
THE SMART RECONFIGURABLE
COPROCESSOR FOR FUZZY SEARCHING OF

SAGE GENERATED DATASETS

A Thesis

Presented in Partial Fulfdlment of the Requirements for

the Degree Master of Science and Engineering in the

Graduate School of The Ohio State University

By

Harrison B. Smith, B.S.E.
l|c 3)C 3|t 3)C 3|(

The Ohio State University

2006

Masters Examination Committee:

Dr. Stanley C. Ahalt, Advisor

Dr. Ashok Krishnamurthy Approved by

Dr. Bradley D. Clymer

Advisor
Graduate Program in Electrical Engineering

ABSTRACT

In recent years, available genetic databases based upon the SAGE algorithm have

grown rapidly in size and complexity. Along with this increased richness of data comes

the need to process more data more thoroughly. In the past, such analysis was done on a

relatively small scale by uniprocessor machines running generic serial code. Given the

size of genetic databases today, this is no longer a viable option. In this paper, an

architecture for a reconfigurable hardware based solution is presented, along with results

of implementation, including performance and resource consumption. This processor is

shown to be effective, efficient, flexible, and scalable. This solution wil l provide new

processing power that will allow for more useful and detailed searches of genetics

databases.

ii

Dedicated to my parents, who paid for this document.

iii

ACKNOWLEDGMENTS

I wish to thank my advisor, Stanley Ahalt for all his help and support in producing

this document. Additionally, 1 would like to thank the members of my defense

committee for helping me to work around their busy schedules.

1 would like to thank Eric Stahlberg for all his help and insight with this project

and his countless hours explaining various nuances of problem to me.

iv

VITA

July 2, 1981 Bom - Naples, Florida

2004 B.S.E. Electrical Engineering,
The Ohio State University

2004 - present Graduate Researcher, Ohio Supercomputer

Center, Columbus Ohio

FIELDS OF STUDY

Major Field: Electrical & Computer Engineering

v

TABLE OF CONTENTS

Abstract i i
Acknowledgments iv
Vita v
List of Tables viii
List of Figures ix

Chapters:

1. Intro cution 1

2. SAGE Background 4
Biological Background 4
Computational Background 6

3. SMART Processor Development 9
Problem Requirements and Conditions 9
Design Considerations, Goals, and Decisions 11
Software Description 14

Software Overview 14
Software Details 14

Hardware Description 16
Full System Overview 16
Processing Element 16
Processing Element: Dataflow Unit 17
Processing Element: Popcount Unit 19
Processing Element: Saver Unit 21
System Controller 22
System Controller: Data Streamer 24
System Controller: Data Collector 24
System Controller: Main Controller 26

Simulation and Verification 28

4. Results and Performance Analysis 29
Synthesis Results 29
Performance 31

vi

5. Future Work 36
Optimizations 36
Functional Improvements and Additions 37

6. Conclusion 39

Appendix A: Notes on statistics 41
Notes on Comparisons Per Second 42
Notes on Clock Speed 42
Notes on Wattages 42
Notes on Cost 43

Bibliography 44

vii

LIST OF TABLES

Table Page

1 Software Library Descriptions 14

2 Cray IP Modules 22

3 Nonrecurring Module Synthesis Results 29

4 Processing Element Synthesis Results 30

viii

LIST OF FIGURES

Figure P a g e

1 Reconfigurable Computer Configurations 2

2 The SAGE Process 5

3 Software Hardware Interaction Diagram 15

4 SMART Coprocessor Overview 16

5 Processing Element 17

6 Dataflow Unit 18

7 T Buffer Shift Register 19

8 Popcount Unit 20

9 Saver Unit 21

10 System Controller 23

11 Data Streamer 24

12 Data Collector 25

13 Main Controller 26

14 Linear Scalability 31

15 Raw P erformance 32

16 Clock Efficiency 32

17 Power Efficiency 33

18 Cost Efficiency 33

ix

CHAPTER 1

INTRODUCTION

Large scale genomic processing is now well into its second decade in existence^.

In this time, several methods of gathering and digitizing genomic data have emerged as

defacto standards. One of these leading methods is the Serial Analysis of Gene

Expression (SAGE) method. In the last decade, SAGE has been improved, expanded,

and refined into a fairly elegant and robust process. While the SAGE method for the

generation of genomic data has improved greatly in the last ten years, the actual

processing of the data has improved little. Largely, processing today is still done by

purpose written, inefficient brute force codes, largely written in C, C++, Java or some

other equivalent language.

One of the greatest improvements has been the incorporation of database

technology, so that large collections of data remain orderly and searchable. However,

this solves only the most minor problems relating to SAGE data processing. SAGE

datasets still take a significant amount of time to process and almost all processing is

done statically, with no room for SAGE processing transcription errors. The very few

systems that do account for such errors are still inefficient and not very fast, or are

incredibly power hungry and expensive.

While this development in bioinformatics has been ongoing, development in

another area has taken great steps forward as well. In the last ten years, reconfigurable

computing has grown from a laboratory novelty to a high performance solution to many

problems. In the future it looks poised to grow further to become a solution to any

problem.

1

Reconfigurable computing has its

roots in the development of Field

Programmable Gate Arrays (FPGAs).

FPGAs were first widely available starting

in 1985[21. They began as small

collections of memory that could be

programmed to emulate a small logic

function in a circuit. They quickly grew in

size and the electronics industry started to

take notice of them as a less expensive

altemative to ASICs (Application Specific

Integrated Circuit) in low volume

productions. As FPGA costs decreased

and logic capacities increase, they

continue to replace more and more ASICs

in system level designs. Today the

computational cores of many electronics

devices, such as cell phones, PDAs, and

the like, are actually FPGA cores.

Algorithm specific computation with

FPGAs began later when the complexity

and size of the chips finally reached a

critical mass that allowed for sufficiently

sophisticated algorithms to be

implemented within them.

Most recently there has been an

emergence of a variety of commercial

reconfigurable computing platforms.

• • • • • • • •
• • • • • • CPU • • • • • • • • • • • • • • •

o
1 srta

o
s

c
O

reconfigurable
processing unit

• • • • • • • •
• •
• •
• D •
• CPU • C o
• • I o
• •
• •
• • • • • • • •

8

UIL • • • • • • • •
• •
• •
• • • cpy •
• •
• •
• •
• • • • • • • •

i =

• • • • • • • •
• •
• •
• CPU •
• • ich

e

I/O
 in

ter
lac

e

• • • • • • • •
• •
• •
• CPU •
• • ich

e

I/O
 in

ter
lac

e

• • • • • • • •
• •
• •
• CPU •
• • ich

e

I/O
 in

ter
lac

e
• 1 i a
• F u •

3 I/O
 in

ter
lac

e
• ' 1 •
• • • • • • • •

3 I/O
 in

ter
lac

e

• • • • • • • •
• • • programmable n
• fabric •
• •
• • • CPU •

• • •
• • • • • • • •

Figure 1 : Reconfigurable Computer
Configurations'4'

These platforms all provide reconfigurable logic via different configurations of FPGAs

(see figure 1 for different classes of RC system). Access to the reconfigurable logic is

provided to the user through a variety of programming environments. These systems

have been shown to be very powerful, sometimes achieving performance increases over

modem CPU systems of 800x or more t 3]. Currently, Cray, SGI, and many other

companies are offering commercial reconfigurable computing systems. Today,

reconfigurable computing is rapidly establishing itself as a valuable choice in

supercomputing[4]. There are additional motivations beyond pure performance. Given

that FPGA clock speeds are an order of magnitude slower than CPU clock speeds, and

that more of the hardware in FPGAs is operating directly toward the computational

solution, FPGA resources result in an average energy savings of 35% to 70%, depending

on the application^. Given that modem computer rooms are limited in computation only

by how much power can be brought into the building, doing more computation with less

power is extremely desirable. Also, given the cost of power, a higher efficiency system

results in an overall reduction to the operational cost of a supercomputing facility.

In this paper the developing fields of reconfigurable computing and SAGE data

processing join to help create the SMART fuzzy searching coprocessor system. The

SMART coprocessor will allow faster, more efficient processing of larger amounts data.

This is done by leveraging the inhering parallelism in genetic string searching found in

SAGE as well as the ability of reconfigurable computing to adapt to take full advantage

of said parallelism. Hardware designs of all created hardware modules that compose the

SMART coprocessor are presented. Additionally, the advantages and disadvantages of a

hardware solution over a software solution are examined through comparisons of

performance data, as well as additional information such as development time,

portability, flexibility and so on. Current limitations of the SMART system are also

presented, as well as future development paths for this project. Finally recommendations

are put forth for future developers including suggestions of development behavior,

pitfalls to avoid, overall design strategy where reconfigurable computing is concemed,

and tools that were or would have been useful.

3

CHAPTER 2

SAGE BACKGROUND

Biological Background

Serial Analysis of Gene Expression, or SAGE, was conceived at the Johns

Hopkins Oncology Center[5] in 1995 as a method to rapidly analyze a large number of

genetic transcripts. To better understand the value of this technology, a brief overview of

genetics and genomic processing is helpful.

The genome of any organism is composed of a collection of chromosomes. These

chromosomes are made of long sequences of DNA, which are in tum composed of four

base nucleotides: cytosine, adenine, thyamine, and guanine. These chemicals bond

together to form the familiar double helix of DNA. Before any computational work can

be done, actual DNA must be harvested and digitized. In genomic processing, the above

chemicals are digitally represented by the letters C, A, T, and G. Series of these

characters are often referred to as transcripts and individual characters are referred to as

base pairs or bp. These character sequences, or transcripts, are then digitized for

processing. The SAGE method is one method of gathering DNA from cells and

digitizing it into character sequences. SAGE was originally developed as a way to study

pancreatic cells, specifically related to cancer[5].

With SAGE, double stranded DNA within cells is first harvested and divided into

smaller sections via an anchoring tag, typically with average length of 256 (or 4 4) [5] . The

portion of the sequence not attached to the anchoring tag is then isolated, which provides

a unique sequence associated with that particular division. This is then processed to

release a small unique sequence along with the known anchoring tag. Al l of these small

sequences are then concatenated and the full long sequence is then cloned. After this

final step, the sequence is digitized (see Figure 2^) . In this way, the presence of a small
4

number of a particular tag can still be captured, and, overall, the abundance of different

tags, or their expression level, can be determined. At this point in the process, each tag

represents a particular portion of the organisms' genome, and each tags' expression level

refers to the extent to which that portion of the genome is being used. This information

has lead to the classification of innumerable genes in many organisms.

The success of the SAGE method is based upon two primary principles'^. First,

that a short sequence of nucleotides is

rrrrrrl

I'L't'l'lTl

1 TiTlTTl

I I ^441

H LJ •

1
TX TL

Wcrodissection/celi ourification

Caoture of ocly-A RUA on
olgo-dT beads and double-
stranded cDNA synthesis

Formation of dernec oosition
•Aith n each transcript by
cleavage with anc"ori"g enzyne
(usually Nlalli)

Release of SAGE tags after
tgation to a iinker with a tyoe IIS
restriction enzyme site and
cleavage with the tagging
enzyme (usually BsnFl)

Fornatlon of citags, Tollowea :>y
PCR amplification and
c 0- eaten e ̂ zati ci" to fa ci itate
sequencing

SAGETag

ZATSGAr jTCTTAAT

CATS-3TtSACCT07rT

Z A T j A j T J G f t S j T S S

NMI
iMi

Sequencing and data analysis

T:.g C:i..nt : n 10C COO taasi
Absolute

abundance

Figure 2 : The SAGE Process IM

sufficient to uniquely identify a

transcript. Second, the combining of

many short tags into a single longer

tag allows for more efficient cloning.

Based upon these principals, SAGE

became the first method that did not

require priori knowledge of sequence

significance'81. Because of this,

SAGE analysis has expanded from the

study of pancreatic cancer to the study

of expression levels in general. From

this study, theories can be generated

on the functionality of particular parts

of the genetic code. Additionally,

observations can be made with regard

to the effects of drugs, or other

stimulus, on the cell .

Originally, SAGE used

sequences of 9 to 10 nucleotides to

distinguish transcripts; more recently,

sequence lengths have been increased

to as many as 21 nucleotides through

the Long Sage[9] and RL-SAGE [1 0]

processes. It is foreseeable that

sequence lengths could increase in the future to 25 or perhaps even 30 base pairs. Far

beyond these lengths, very little further distinction can be gained as the number of

sequence combinations become so large that they begin to loose meaning. In addition to

increased tag length, the process as a whole has been improved. Today, genetic

information can be derived from amounts of genetic material nearly one hundredth the

size of those in the original SAGE process'101. Additionally, the process as a whole has

been made more robust and less prone to errors'101.

As the SAGE process has grown more robust, well developed, and accepted, the

amount of SAGE data available has grown accordingly. Fortunately, since its inception,

SAGE data has been stored in databases, or at least database-like libraries. Thus, the data

is well organized and widely available. There are now a great many examples of SAGE

data repositories including the Gene Expression Omnibus'1'1, the Saccharomyces Genome

Database'121, GeneBank'131, and many others.

Computational Background

Much of the history of SAGE computational analysis is severely lacking in

technical sophistication. This may be primarily due to the background of SAGE

computational methods largely being focused upon the statistical analysis of generated

data sets, rather than the computational methods used to create and search these datasets.

In searching for research relating to the computational analysis of SAGE data, many

papers were discovered such as [14], which discusses possible biases within SAGE data

sets. This sort of statistical computational analysis is outside the scope of this work, but

has seemingly been the focus of much of the effort regarding computational SAGE

techniques.

In many cases such as [15], papers reference [5] with regard to their

computational approaches. Beyond that, analysis is done primarily with nondescript

purpose written code. For instance, in [16], "A series of JAVA and C programs were

designed for [the SAGE] analysis" is as in-depth a description as the researcher provides.

Likewise, in [17], the author states only that, "Computational programs were designed

using Java language for the [processing]." Again in [18], the author merely covers that

Perl was chosen for its "versatile portability" and says nothing of how the algorithm was

6

actually implemented. In all of these cases, the vagueness of description leaves one to

conclude that these programs are most likely simple, unoptimized, serial applications.

More recently, as the issue of volume processing of SAGE data has become more

pressing, more attention has been paid to this topic. Among the efforts to enhance the

performance of analysis is the Gene Identification and Sequence Topography suite

(GIST) produced by the University of Chicago'19'. This package performs exact

matching between genetic data in parallel. Additionally, a suite of tools known as

Bioconductor'201 has been produced by a collaboration of many universities. This

software package provides extensive functionality beyond the processing of SAGE data,

but it seeks to provide a common platform of bioinformatics based computation.

Finally, several hardware designs for biosequence processing have been

developed. Quite a few special purpose architectures using sequences or identical

processing elements, known as systolic arrays have been developed'21^. However,

success has been limited due to lack of flexibility of these pure-hardware devices. More

successful is the FPGA based SPLAH2 system. However, the SPLASH2 system was not

built explicitly for the processing of biosequences, but rather for the implementation of

systolic array systems'22^. Additionally, the core designs of the system are not open for

development and the FPGA hardware of the boards themselves are becoming grossly

outdated. In addition to the SPLASH and SPLASH2 systems, the Decipher system from

TimeLogic is another option, though is suffers many of the same problems as the

SPLASH systems.

Al l the above solutions are still not fully sufficient for two primary reasons. First,

the SAGE process is not perfect. SAGE, being a biological and thus analogue process, is

subject to noise and therefore inaccuracies. An acceptable error rate for usable data is

often considered to be around 1 in 100'18]. In the event of such an error, it is desirable to

still be able to retum a result, noting the neamess of the match. Given the cost of the

creation of SAGE data'10], allowing for slight errors in processing allows for the usage of

greater amounts of data, making money spent on generating said data more effective.

Today, only a few software solutions that allow fuzzy matching exist, mostly utilizing the

Smith-Waterman algorithm'241 or the BLAST algorithm'2 5 1. Most notable among these is

the SAGESPY application developed at OSC for the Cray X I system'261. This

7

application uses a BLAST search approach to SAGE data processing and incorporates the

ability to perform fuzzy matching. While SAGESPYs performance characteristics, even

during fuzzy matching, are quite promising, the execution of the application depends

heavily upon the special hardware available only on the Cray X I , which is quite an

expensive computer system. Performance of SAGESPY on other platforms is

considerably slower.

Secondly, and more critically, as sequence lengths increase and databases grow,

computational demands will certainly increase. Scientists will want to perform more

detailed searches for more sequences in larger databases. For software solutions,

updating to changing input parameters will not be a problem. However, computation

times will increase riotously. Conversely, for hardware solutions available today, the

user will either be forced to upgrade to new hardware, in the case of traditional hardware,

or wil l be required to wait for an upgrade to their FPGA based solution, as the current

FPGA solutions do not have open cores, i f indeed an upgrade is even possible.

Obviously, none of these situations are desirable. Combining all these considerations,

even the relatively short search times involved in most work today will increase to

unreasonable lengths.

The SMART coprocessor is a more cost effective and efficient solution than

SAGESPY, while being nearly as powerful. Additionally, SMART is a more modem and

focused solution to genomic data processing than the hardware solutions existing today.

Further, as the core is open, it is user maintainable and more highly adaptive to changes

in the SAGE process. Finally, SMART was designed to be as scalable as possible to

allow for expansion of the system as new technology arrives and further functionality is

needed.

8

CHAPTER 3

SMART PROCESSOR DEVELOPMENT

Problem Requirements and Conditions

To best understand the decisions made during the development of the SMART

coprocessor, understanding the design constraints of the problem itself is necessary.

These constraints consist of the format of input data, the information needed from the

processor, and the relative likelihood of important processing events. An examination of

these constraints is presented here before going into greater depth with the SMART

design.

First, consideration must be given to the system the application will be

implemented on. The Cray XD1 is a cluster-type supercomputer system with optional

reconfigurable hardware. Computational nodes consist of dual Opteron processors

connected via a HyperTransport interconnect. This interconnect also services the

reconfigurable hardware of the XD1. On the CPU side of development, a software

interface is provided by Cray which implements basic functionality. It allows for all of

the memory within the FPGA to be mapped into CPU memory space and, also, for up to

1GB of CPU memory to be made available to the FPGA via a dynamic memory

allocation (DMA) region, which allows for high speed burst transfers between the FGPA

and CPU. Memory attached and within the FPGA is fairly limited, with 16MB available

in static RAM attached to the FPGA and additional smaller block rams integrated into the

FPGA itself. Memory attached to the CPU is much larger, ranging from 1GB to 8GB.

Cray provides several hardware cores for the developer. These cores provide access to a

64-bit wide data bus to CPU. The FPGA itself is capable of running at up to 199MHz.

Next consider the data format that the SMART coprocessor will be required to

take as an input. The SAGE process produces a tremendous amount of textual data that
9

represents sequences of nucleotides. This data is almost universally stored in an ASCII

file format specifically created for protein sequences known as the FASTA format. In

general, query strings (Q's) are relatively short, from 9 to 21 characters'51'91, which are

also referred to as base pairs or bps. In a typical search, a user might wish to search for

anywhere from hundreds to thousands of Q's. These Q's wil l be compared to all possible

substrings of a very large target sequence (or T). Target sequences are typically between

tens of thousands and hundreds of thousands, but can be as short as a few thousand or as

long as a millions or more. A typical search will only involve a few, possibly only one, T

string. Both Q's and T's are stored in ASCII FASTA files.

Another consideration is output data from the processor. The SMART

coprocessor will be looking for exact, as well as near, or fuzzy, matches with an error

range of 2 characters between Q's and a T substring. For any given match, it is important

for the user to know which Q matched a substring of T, the position of the substring, and

the neamess of the match. It should be noted that any given search can be broken down

into a series of smaller searches by either dividing sets of Q's into smaller subsets or

dividing T strings into substrings. Likewise, many smaller searches can often be

combined into a single larger search in the opposite way.

Finally, briefly consider the statistics involved in genomics searching. FASTA

files encode strings of nucleotides by representing each of the four chemicals they are

composed of by one of four letters: A, C, T, or G. Based on the assumption that these

strings are purely random, the probability of finding an exact match between a Q of

length n and a T of length m is upper bounded by:

m
E{number of exact match in T) <

4"«

For n = 9, and m = 10,000,000 this evaluates to approximately 10. Thus, for the

shortest meaningful Q, and a relatively long T, the approximate expected number of exact

matches is 10. During SAGE processing, transcription errors can occur and therefore

fuzzy matching that would allow for no more than 2 transcription errors per match was

deemed an important objective for the SMART coprocessor. Clearly for fuzzy matching

the probability of a match will increase. In fact, it is upper bounded by:

10

E{number of fuzzy matches in T) <
l + 3« + 3 2 ^ (« - 0

1=1 m
• • -4" n

For the same values of n and m as above, this evaluates to approximately 1492

fuzzy matches, which means one result will be found for approximately every 6700

characters of T that are processed. However, it should be noted that genomic data is not

purely random. In fact that a SAGE experiment is being performed is, by itself, enough

to increase the likelihood of matches significantly. However, in practice, this increase is

no more than a single order of magnitude.

Design Considerations, Goals, and Decisions

The above information leads to a collection of design considerations, goals and

decisions. First among these was to keep all input and output data in processor memory

space. While the memory available within the FPGA would most likely be sufficient to

store all the needed data, the overhead involved in accessing this memory from the

FPGA, as well as the cost in time of writing the data from the processor memory to the

FPGA memory, was too great. More pointedly, data will not be permutated upon in this

application and, therefore, each word of memory will only be accessed once. As such,

moving it from CPU memory to FPGA memory is superfluous when one could move

data from CPU memory directly into the computation path of the FPGA at the same cost.

The next consideration has to do with the format of input data. Given that, in the

XD1 architecture, the bus between the FPGA and the CPU is only 64-bits wide and

ASCII characters are 8 bits each, this allows only eight characters of data to enter the

coprocessor per clock cycle. In the early stages of development, it was desirable to

reduce the likelihood of the coprocessor being starved for data. To this end, it was

decided that the coprocessor should take as input compressed FASTA data. So long as

the compressed characters are two bits apiece, the translation from ASCII to binary is

irrelevant, so long as it is globally consistent. In this implementation, a FASTA

compression algorithm from the Cray BioLibrary1 2 7 1 was used. Still, given the sensitivity

of this application to data starvation, it was decided that the coprocessor should still be

able to deal with data starvation periods of arbitrary length. Additionally, compressing

the FASTA characters to 2-bits each will help reduce the size of our comparator, as the
11

comparison of characters will only deal with 2 bits rather than 8. However, the inevitable

trade off is additional processing time on the CPU prior to FPGA execution. In the

future, FASTA fde compression may be moved into the SMART coprocessor to further

reduce CPU processing burden. This addition to the coprocessor could be accomplished

with almost no discernable effect on performance of the coprocessor.

Another consideration with input is the length of Qs. Given that different forms

of SAGE produce different length Qs and, more importantly, that the length of these Qs

is generally increasing, it was decided that the coprocessor should be able to

accommodate Qs of length greater than the largest generated today. To date, some of the

most advanced SAGE processes are producing Qs of length 2 Ibp' 9 1.

Additionally, given that the Qs are very manageable in size (from 18 bits to 48

bits to date) and in quantity, and T strings tend to be unwieldy large, it was decided that

the coprocessor should hold a number of Q values and have a single T string streamed

through it. Because of this, it was decided that the coprocessor should consist of a large

number of identical processing elements (or PEs) each of which would hold a single Q

value, and a single controller to orchestrate their configuration and the movement of data

to and from the CPU. Then, all the T characters would be streamed through these

elements, with each element performing comparisons in parallel. By using an array of

identical PEs, design and optimization efforts were focused on one unit, which will then

be replicated, greatly increasing the effectiveness of time spent improving the PEs. This

overall design pattem was influenced by both systolic array systems, as well as dataflow

architectures.

When considering the required output, note that the Q value and the T substring

are not needed. This allows the processing engine within each processing element (or

PE) to consume these values, passing on only how close of a match the particular T

substring is to the Q value. However, each PE must be aware of the position in T from

which the substring was taken. Additionally, each PE must, in some way, make its

matches distinct. To accomplish this, each input Q value is assigned an ID based upon its

position in CPU memory. When these Q values are loaded into the PEs, the

corresponding ID is loaded into the PE as well. All results generated by the PEs are

12

tagged with their IDs, so that the Q value can be retroactively matched to results by the

CPU.

Finally, consider buffering of the data generated by each PE. As each PE works

in parallel with all the others, it is possible for results to be generated simultaneously in

all PEs in the coprocessor. Therefore, it will be necessary to buffer results in the PEs,

and create a reporting system that will ensure that each PE can report results, without

worrying about bus contention and without worrying about starving any PE of access to

the bus. When considering the likelihood of a match in a given PE, it becomes clear that

buffers intemal to the PEs would not need to be very large, even for very small Q strings

and extremely large search strings. In the extremely unlikely situation of results

generated by a PE overflowing the buffer, it will be sufficient to signal this condition, as

finding such a high concentration of a particular string is, more likely than not, going to

either negate the entire experiment or, altematively, make the actual density meaningless

in comparison to other statistics.

Finally, consider that the SMART coprocessor is using a serial chain of PEs and

that scalability is of critical importance since as FPGA logic capacity grows, increasing

the PE chain length will be highly desirable. Creating a linear bus by sending results

back down the PE chain to the controller seems the most obvious solution; however

results could be generated in such a way that there would be contention between the PE

and its neighbors further down the chain. Creating logic to handle this contention in

every PE is likely to be costly. Further, position of the PE in the chain would affect the

desired result of the arbitration logic, making the PEs non-uniform. At the same time, a

shared bus system would not work either, because any arbitration logic would grow with

the number of PEs in the system, dismpting the scalability of the system as a whole. In

the end, the system uses a shared bus, but access to the bus is granted by a token which is

passed along a token ring between the PEs. In this way the system scales nicely and a

minimum of logic is added to every PE.

13

Software Description

Software Overview

The SMART software package will be as streamlined and as simple as possible.

Ideally, the user will only need to supply FASTA input fdes, one containing all the Qs

they wish to search and all the T strings they wish to search for them in. At present the

software is only implemented to accept up to 10 Qs, and a single T string. This present

limitation is purely artificial and will exist only as long as hardware debugging is taking

place. Once debugging is completed, it should be possible to have the software initialize

multiple runs of the coprocessor in the most efficient way with regard to memory and

disk access.

Overall, the software application is quite small and most of the complex

programming has been taken care of via software libraries available as part of the C

standard or provided by Cray specifically for accessing the FPGAs on the XD1. The

libraries used in the software are detailed in the table below:

Library Name Functionality

argp.h Command line argument parsing library, used to easily deal with
command line input

fcntl.h File control options library, used to make code more readable and
maintainable

stdio.h Standard C I/O library, used for accepting user input and providing
command line feedback.

stdlib.h ISO standard C library, used for memory allocation algorithms
ufplib.h CRAY provided API for the accelerator FPGA, used to control, configure,

and run the FPGA coprocessor
unistd.h Standard Symbolic Constants and Types

Table 1: Software Library Descriptions

Software Details

The software operates in the manner described below. The software first

initializes the FPGA, and loads the hardware core into the FPGA. Then, the software

creates a shared memory space between the FPGA and CPU and loads the Q and T

FASTA files into this space. These FASTA strings are then compressed via the Cray

BioLibrary. The software then signals the coprocessor to begin execution and polls the

14

coprocessor for a completion signal. Please refer to the Software/Hardware interaction

diagram for a more complete picture of computation flow.

There are two likely changes in a future version of the software. First,

compression from FASTA into 2-bit binary representation will likely be moved to the

FPGA, assuming that the bandwidth between the processor and the FPGA is sufficient.

This was not done initially due to fears that bandwidth between the CPU and FPGA

might not be sustainable. Compression reduces the bandwidth needs of the coprocessor

by a factor of 4. It would be beneficial to move compression to the CPU as it would take

up very little space and not add noticeably to computation time. Also, the FPGA is

capable of raising an interrupt for the processor and this could be used to signal

completion rather than busy waiting. This has the obvious advantage of allowing the

processor to perform other actions while waiting on the coprocessor.

CPU
program flow
Application Loads

X

FPGA
memory access

CPU
memory access

Initialize FPGA
FPGA enabled, ready for

programming

Configure FPGA with
SMART core

Configure DMA
memory space

Poll FPGA done bit

Close FPGA

FPGA programmed with
bit stream

Contiguous block in
)| physical memory fixed in

place

Load and compress Memory block loaded with
Data files Q and T data

1 Start bit in FPGA
Start FPGA h configuration register set Q data consumed

by CPU write

Finished bit in FPGA
configuration register read

by CPU

T data consumed, Results
written to memory

Yes
J. Results read from

memory buffer, saved to
file

Save Results to file
Results read from

memory buffer, saved to
file

Save Results to file
Results read from

memory buffer, saved to
file 1

Results read from
memory buffer, saved to

file
Close FPGA — ! FPGA reset and disabled

Results read from
memory buffer, saved to

file

Clear DMA memory Contiguous block in
space physical memory released

FPGA
execution path

SMART coprocessor
sits idle

SMART coprocessor
starts

SMART coprocessor
Computes

SMART coprocessor
sets finished bit

SMART coprocessor
sits idle

Figure 3: Software Hardware Interaction Diagram

15

Hardware Description

Full System Overview

The high level structure of the acceleration system is that of a serial string of

custom designed processors controlled by a single controller tied into the Cray provided

hardware. The coprocessor can accommodate multiple Q's, dependent upon the size of

the FPGA provided with the XD1. As the XD1 at OSC Springfield is equipped, each

reconfigurable processor can theoretically search a T of one hundred and eighty million

bps per second for sixty Q's. Details of both the processing elements and the controller

are below.

>- «
ra a)

-o-S
o 3

System Controler

Data Streaming Unit

Data in

Program
Controller

i
Data
out

i
Data Gathering Unit

I

T'sr

Q's-

H-Cntrl

token

Processing Element Chain

—»• • • — •

PE PE a ' • • ^ PE PE
0 1 ' — • • • • — • n-1 n

• — • • • • — ^ —*-

-Results-

-to ken-

Figure 4: SMART Coprocessor Overview

Processing Element

The workhorse of the accelerator is the long chain of processing elements that

will take up the majority of FPGAs real estate. As a linear chain, most of the inputs and

outputs of the unit are dedicated to the passing of data through the unit. There are a few

outputs of each PE that are attached to a shared bus and are used to send computational

results back to the system controller. The PE requires some control signals, which

originate from the system controller and are passed along the PE chain. Additionally, the

PE requires a Q value and an ID value. Finally, the PE requires one character of the T

16

string per clock cycle in order to perform its task of fuzzy string comparison. Al l of these

needs are handled by the Dataflow subcomponent of the PE.

Once ail of this data is available

—Control-*-
D a t a F l o w

U n i t

—Con t ro l s

—Q's—•

- T ' s — •

D a t a F l o w

U n i t
Q ' s ^ ^

- T ' s — •

i

P o p c o u n t

U n i t

1
Token S a v e r Token

In ^ U n i t Out

To Results
Bus

Figure 5: Processing Element

to the PE, it is capable of performing

one fuzzy comparison per clock cycle.

This computation takes place in the

Popcount subcomponent of the PE.

Each clock cycle, the Popcount unit

receives the Q value of the PE and the

current T substring present in the PE.

These values are fed into a pipelined

unit that computes the number of

mismatches between the Q and T string.

The pipelined Popcount unit outputs the

number of mismatches six clock cycles

later. Additionally, it delays a number

of control signals so that the Saver

subcomponent knows the state the

machine was in when the T string was

first latched into the Popcount unit.

The signals from the Popcount unit are then analyzed by the final unit in the PE,

the Saver subcomponent. This unit contains a counter that keeps track of the current

position in T. It saves the position and match quality of results computed by the PE.

Additionally, whenever the Saver unit receives the token, it may report a single buffered

result back to the system controller. Below are more detailed descriptions of each of

these three units.

Processing Element: Dataflow Unit

By dividing the PE into three subcomponents specific functionality is isolated.

Within the Dataflow unit all the buffers and logic needed to control the passage of signals

down the PE chain, as well as logic involved in the initial configuration of the PEs with Q

17

Q Q ID
buffer buffer

-Control 1

- Q ID ir>

— Q i n -

I
Q save/pass logic

-Control out-i

—Q ID o u H

— Q o u t —

IT bp lr T shift register

Q

I T bp ou t -

Control

i I I
Figure 6: Data Flow Unit

values and ID, is located. The unit is mostly composed of buffers, including 64 bits to

store a single Q, 64 bits to hold 32 characters of T, and a variety of other buffers for

control signals. Early in the design of this unit, a 64-bit wide bus was added specifically

for the passing of Q values down the chain. This not only reduced the latency involved in

loading Qs, but also greatly simplified the logic needed to do so in the PEs.

Al l communication between PEs takes place in this unit (with the small exception

of the token), and thus, through the careful design of this unit, it is ensured that the PE

chain will be highly scalable. Also, due to the design of the Dataflow Unit (and the

results reporting system), the system can be expanded simply by adding additional PEs to

the end of the PE chain. In fact, the only current limitations are the size of the FPGA

itself, and an arbitrary limitation of the ten bit ID value. The ID value could easily be

made much larger, allowing for thousands of PEs.

18

Often, serial chains such as this result in higher latency since data has a

correspondingly longer path to travel. In our case, the increase in latency is insignificant

compared to the execution time of the application overall. The latency of the chain

overall is a linearly dependent on the length of the chain. The design has been optimized

so as to minimize the overall latency by not streaming the T values all the way through

the T buffer in each unit, but rather have T characters back out again immediately as well

as down the buffer (see figure 5). Moreover, the added latency is going to be measured

in hundreds of clock cycles, while

execution time will be measured in

hundreds of thousands of cycles,

dependent on the length of T. An

additional advantage of streaming

the T values in this way is that all

values, data and control, that come

into the PE on clock x leave the unit

on clock x+1. The only exception to

this is when the PEs are being

configured with Q values. During

this initialization step, PEs only pass

along Q values after they themselves

have received and stored a Q value.

This greatly simplifies the decision

PE
N

T b u f

PE
n+1

T b u f

— T input*- — T - * • • •
f T
T ?
T

•

•

•

T

•

•

•

f T
T •

T T

Figure 7: T Buffer Shift Register

logic within the PEs that involves

their initialization.

Processing Element: Popcount Unit

Within the Popcount unit are all the computational components of the PE. The

Popcount pipeline is six stages deep. The first stage compares the individual characters

between Q and T and generates a 32 bit vector, wherein all mismatches of characters

between Q and T are represented by Is and all matches by Os. The subsequent 5 stages of

the pipeline sum all the bits of this vector together, generating a total number of ones, or

19

Q

i s i
32x2-bit Comparator

32x2-bit adder

16x2-bit adder
Overflow

8x2-bit adder
Overflow

4x2-bit adder
Overflow

I
Overflow

2x2-bit adder

• 2-bit adder

Overflow Sum

Figure 8: Popcount Unit

Gontrol

the "population count". This unit was fully pipelined in order to allow it to achieve a

maximum clock rate of 200MHz (the highest supported clock on the FPGAs available in

the Springfield XD1). In that this unit is fully pipelined, at any given moment it is

performing six comparisons in parallel, so, in effect, it still performs one comparison per

clock. Also, there is additional latency created by pipelining these units since a single

comparison takes 6 clock cycles. However, the six extra clock cycles are again

inconsequential when compared to the hundreds of thousands the full processing will

require.
th

In a future version a 7

stage will be added to the

pipeline that will allow for the

masking of bits. This will allow

the end user to use Qs of length

less than 32bp. Also,

experimentation has shown that

by collapsing certain stages of

the pipeline together, resource

usage can be reduce without

lowering the clock rate below the

200MHz barrier that the FPGA

sets forth. Since the core

computational workings of the

PE are all contained within this

unit, it would be possible to swap

out this unit with another that

implemented another search

function. In this way,

compartmentalizing our design

has added some degree of

reusability to it.

D
SL
su

Gontrol

20

Also within the Popcount unit are a series of buffers that delay the control signals

such that the subsequent Saver unit will have the state of the machine corresponding to

the current output of the Popcount unit.

Processing Element: Saver Unit

The final component of the PE is the Saver unit. Within this unit is all the logic

that analyzes the output of the Popcount unit. Additionally, it contains logic that keeps

track of the current position of the T substring as it is streamed through the coprocessor.

Using these two logic components, it decides every clock cycle whether or not to buffer

the current position of the T substring as a match to the Q value within the PE or to rule

the result a mismatch. The buffers within the PE are implemented using the numerous

block rams within FPGA and can contain up to 128 results at once. The buffers are also

circular, that is, data is written to locations sequentially, and when the last position in the

buffer is reached, the process beings again at the first postion. This eliminated the need

for complex logic to keep track of

empty and full locations. Each PEs

saver unit uses one block ram as a

buffer and, as the FPGA has more

block rams than its capacity for

PEs, this is clearly not an issue

with scalability. The buffers can

be so small due to small

probability of a match occurring.

The probability of a match is

certainly higher than pure statistics

suggests, since it is conditioned on

the fact that meaningful genetics

data is being searched. However,

it is still very small, and software

solutions have shown that well less

than 0.1% of T substrings result in

Overflow Sum Control

Results Analyzer

Counter I
Circular Buffer

Token
" In ' Token Logic Token

! Out *

Reporting Logic

To Data
Bus

To Control
Bus

Figure 9: Saver Unit

21

matches'261. Given the statistical unlikelihood of a buffer overflow, it was decided that

any run in which one might occur would have very little meaning anyhow, and simple

writing a special value to the buffer in these cases to signal to the user that overflow

occurred would be a sufficient response. In this way, the user can make adjustments as

needed for future runs.

Also, given the unlikelihood of a large number of matches, a single bus was used

to connect the controller to all the PEs. Control of the bus is granted by a token

originated at the system controller and passed between the PEs. Whenever a PE receives

a token, it may report a single value back to the system controller before passing on the

token. In this way the PEs dependence on their buffers are further reduced and at the

same time, a bus arbitration system is provided that ensures there will be no starvation

while requiring a minimum of logic to be present in the PEs.

System Controller

The most complex component of the fuzzy matching system is the main system

controller. This controller interfaces with both the PEs and several Cray provided

modules. To the PEs, it is responsible for providing configuration and, once the

computation has begun, a constant stream of input data as well as collecting results

during the course of execution. When interfacing with the hardware modules provided

by Cray, the controller is responsible for responding appropriately to initialization and

configuration data, requesting reads and writes to and from CPU memory space, and

alerting the CPU when the computation is completed. The controller interfaces with

several Cray modules to achieve these objectives (see table 2 below). The system

controller is composed of three sub modules each of which contain the hardware related

Core Name Purpose MHz Slices

d m a i f Provides DMA based access to CPU memory 189 727

reg_if This register unit was modified to become the register
controller discussed below

818 50

rtclient This unit provides routing to different CPU addressable
regions of the FPGA

270 468

rt core This unit abstracts the rapid transport interconnect 199+ n/a

Table 2: Cray IP Modules

22

Data
Streamer

Cray dma read
interface

Cray rt client
interface

Cray dma_write
interface

r
Control

-Pause-

-Ts (ser ia l)^

Ts
(parallel)

Main
Controller

r
Control

Control
Signals

~ 1
Results

to a specific function of the

controller. These three

subcomponents are the Data

Collector, the Data Streamer, and

the Main Controller. These three

components will be discussed in

detail later.

In designing the system

controller, Cray modules were

critical. Making use of these Cray

provided modules helped ensured

proper functionality. What's more,

these components implemented

some of the more difficult

hardware in the design in an

efficient and general way. They

are highly reliable, easy to use, and

do not present a significant

bottleneck in the system. Al l hardware communication interfaces were abstracted by

Cray modules to provide a more clear and intuitive interface. Additionally, the routing of

data transfers to and from the CPU and from within FPGA memory units were handled

by Cray modules.

By dividing the system controller into three subcomponents, development and

testing were not only simplified, but the reusability of the design was increased. The

Data Streamer and Data Collector units only interface with the Main Controller. Al l

connections between Cray IP cores and the coprocessor are contained within the Main

Controller. In this way, moving the system to another platform should only involve the

modification of this subcomponent.

Data
Collector

Control
Bus

-Data Bus-
Token out-
Token in^

Figure 10: System Controller

23

System Controller: Data Streamer

The Data Streamer unit is an intelligent parallel to serial converter that keeps the

PEs supplied with elements of the target sequence at a rate of one character per clock

cycle. It relies on the Main Controller for parallel T data retrieved from the CPUs

memory space. Its intelligence comes from its awareness of the data contained within its

self. Rather than simply shifting whatever is contained within it, the Data Streamer

tracks where valid and invalid data is within its 32 bp buffer. When less than half the

buffer is valid, the Data Streamer starts requesting additional data from the Main

Controller. Should the buffer ever empty fully, the Data Streamer asserts the global

pause signal, sending the PEs into a suspended state, awaiting new data.

The Data Streamer was

created to be as small as

possible while still providing a

limited awareness of its own

state. The simplest way to

achieve this was with a 64-bit

(32 bp) buffer and a small

counter. As the buffer is

shifted out to the PEs one bp at

a time, the counter counts

down. When new data arrives,

the counter is reset. Logic

signals for new data when the

counter drops below the halfway mark. This ensures that the main controller has

sufficient time to retrieve and route data to the Data Streamer. Also, a second set of logic

pauses the system whenever the counter is less than 1. The actual logic that determines

when to send data to the Data Streamer is all contained within the Main Controller.

System Controller: Data Collector

The Data Collector is a simple token generator and a circular data buffer system.

It creates the initial token that is passed between the PEs. It also receives the token from

24

Control
(Main Controller) 1

Counter

Data
Request Counter Logic Pause-

Data Data Latch
Response Logic

Parallel
Data

i r
Parallel

Data Shift Register Serial
Data"

Figure I I : Data Streamer

the final PE in the chain and passes it back to the first PE again. It monitors the shared

reporting bus and control lines that are connected to each of the PEs. The PEs signal as

they receive the token whether or not they have any results to report and, i f they do, they

latch this data onto the bus for two clock cycles. In this time, the saver unit buffers the

data into the next available location

in its circular buffer. This buffer is

again smaller than one might

imagine, due to the small probably

of many matches occurring at once,

but also because the Data Collector

can request one write per clock

cycle back to the CPU via the Main

Controller. Therefore, baring bus

contention between the CPU and

FPGA, the Data Collector can only

receive one new result every two

clock cycles, but can report 2. So buffering is solely to compensate for possible system

bus contention. For now, the buffer contains 256 locations for data. However, there is

plenty of room for expansion should this prove to be insufficient.

Again, the design goal was to keep the subcomponent as simple as possible while

providing only the minimum necessary functionality. The single bus with an access

token was used because it could be implemented independent of the number of PEs

allowing for simple expansion and contraction of the system as needed for new hardware.

Also, a circular buffer was used to simplify control logic. Though unlikely, it is possible

for more results to be generated than the buffer can hold, should a prolonged period of

extemal system bus utilization take place. Given the improbability of this taking place,

and the further improbability of enough results building up to cause an overflow, it was

decided that such a condition could simply be marked in the buffer itself to alert the user.

In future work additional control lines will be added that will disable the reporting of data

to the Data Collector in the event the Data Collectors buffer fills. This would essentially

cause each PE to temporarily hold buffered data, greatly reducing the probability of an

25

Collection Logic I
t-Data—

Buffer_
""Status

-Controh

Results Buffer I
Control

Bus

Data
Bus

Reporting Logic

-Controh Token Generator
i-Token in—

-Token outt

Figure 12: Data Collector

overflow. In the event that an overflow did occur, it would corrupt less data (only a

particular PEs buffer), and, further, that data would more than likely be useless anyhow,

given the meaning of so many matches in such a short span of T.

System Controller: Main Controller

The main system controller is a collection of four sub-controllers that are

responsible for interlinking the Cray modules and the rest of our coprocessor. Each of

these sub-controllers has distinct tasks and interconnections with the other sub-

controllers. Dividing functionality again reduces complexity of individual units, eases

debugging and optimization, and allows for greater reusability of code overall.

DMA read
interface Streamer Controller

Control

Data Streamer
interface

PE Controller

1
-PE control

Start Bit Done Bit

i
rt client Register
interface Controller

Control

DMA write
interface Collector Controller Data Collector

interface

Figure 13: Main Controller

The first, and simplest, of these four sub-controllers is the register controller.

This controller is an adaptation of some Cray example code. It creates a series of

registers that are addressable both by the CPU and by a secondary interface on the

controller. Further, it arbitrates read and write access to them between these two sources.

This unit is essential in the communication of basic status information between the CPU

and the coprocessor. The CPU uses a register in this controller to signal the coprocessor

that all data is setup in memory, and that the coprocessor is free to begin execution.

26

The most complex sub-controller of all is the PE controller. This controller serves

a variety of purposes. First, it contains a finite state machine that determines how it

operates overall. During initialization of the machine, the PE controller is connected to

the DMA read interface. Once it receives the signal from the register controller, it begins

to read configuration data from the DMA memory space. It reads in a variety of

information, including the number of Qs that need to be processed, the length of each Q,

and the length of T. It also reads in all the Q values from this memory space and

configures the PEs with them via the proper combination of control signals.

Additionally, it initializes the Data Steamer and Collector. Throughout the entire

execution, the PE controller asserts the needed control lines attached to the PE chain.

Finally, it keeps track of the current position of the T string. Once T has been fully

passed through the unit, it stops execution and calls for flushes of data out of all the

relevant data buffers in the system.

The next sub-controller is the Streamer controller which interlinks the Data

Streamer and the DMA read interface. After initialization, control of the DMA read

interface is passed from the PE controller to the Streamer controller. Once this occurs,

the Streamer controller ensures that the read buffer contained within the Cray DMA

module fill and stays are full as possible. Whenever a request for another segment of T is

received from the Data Streamer, this controller presents it with one from the DMA unit.

It waits for the Data Streamer to latch the data into its buffer. The Streamer controller

then waits for the Data Streamer to again signal for another segment.

The final sub-controller is the Collector controller which connects the Data

Collector with the DMA write interface provided by Cray. Whenever the Data Collector

has data in its buffer, it signals the Collector controller. Whenever receiving this signal,

the Collector controller ensures that the DMA write interface is ready and, when it is,

writes data from the Data Collector back into CPU memory space. This unit is also

partially responsible for flushing the data from the systems' many buffers. It signals the

Data Collector to perform a flush itself. It then writes all the data in the Data Collectors'

buffer to the DMA write interface. Finally, it signals the DMA write interface to flush all

data buffered within it to the CPU memory space. It then signals the PE controller that

all flushes have completed.

27

Simulation and Verification

While designing the above described modules, a series of simulations and tests

were used to ensure that at all stages of development the modules were working as

intended, both within themselves and when interacting with other modules. In this way,

top level testing, which is by far the most expensive in terms of time and effort, was

minimized while overall confidence in the design was maximized. The following 5 steps

formed the verification plan of the project:

1) Unit testing: whenever a module was created or modified, it was tested

in isolation from all other modules. Simulated input tested either all

classes of input or all classes of inputs whose results were last

modified. Once the unit was working properly, testing finished.

2) Interaction testing: all interaction between modules were simulated

thoroughly, two modules at a time. In this way, most glitches between

output of one module and the input of another were captured and

corrected without the added complexity of simulating other modules as

well. This step usually resulted in additional unit testing of modules.

3) Data path testing: once all modules along a given data path were

completed, for instance the PE controller, streamer controller, and data

streamer, the modules were simulated together to ensure proper

functionality from start to finish. In most cases, these simulations

resulted in few errors due to the extensive previous testing.

4) Full unit testing: once all custom produced modules were completed

and all data path testing yielded no errors, all the custom designed

modules were simulated together. Cray provided module were not

simulated, but rather emulated by input into the simulation. In this way

the hardware was tested independent of Cray hardware.

5) Full system testing: in this case, all the modules that would be present

in the FPGA were simulated to ensure that the Cray modules interfaced

correctly with the custom written modules. This testing yielded only

two errors over the course of the full development, primarily due to the

extensive testing done prior to this final test.

28

CHAPTER 4

RESULTS AND PERFORMANCE ANALYSIS

Synthesis Results

After suceessful full system simulation, all the modules were translated from code

into an FPGA configuration file, this process is referred to as hardware synthesis. This is

a critical step in the design process, as the results of synthesis will tell both how fast the

coprocessor will be able to run and how many processing elements the FPGA will

accommodate at a time. The following table summarizes the synthesis results for all

units outside the processing element chain.

Unit Name Clock (MHz) Slices

Controller 240 311

-Collector Controller 292 46

-Data Collector 274 57

-Data Streamer 333 44

-PE Controller 240 171

-Streamer Controller 292 60

Cray Core: dma i f 190 727

Cray Core: rt client 270 468

Cray Core: reg i f 431 139

Table 3: Nonrecurring Module Synthesis Results

The total FPGA logic capacity usage by nonrecurring modules is estimated to be

1645 slices in addition to the space taken by the rt core IP module. This is roughly 8%

of the space on the FPGAs available on the Springfield X D l , which are Virtex2Pro50

29

chips with 23616 logic slices each. This leaves well over 20000 slices for occupation by

processing elements. Note that the total number of slices taken by the controller is in fact

less than the sum of slices taken by its components. This is due to optimizations built

into the synthesizer that are working between components to remove redundant logic.

Results of PE synthesis are listed below.

Unit Name Clock (MHz) Slices

Processing Element 257 305

-Dataflow Unit 344 119

-Popcount Unit 306 65

-Saver Unit 258 119

Table 4: Processing Elenient Synthesis Results

From these results each PE will take 305 slices. Note that in this instance, the

sum of the slices used by the subcomponents is actually 2 slices less than the overall unit.

This is caused by additional overhead needed for connecting the subcomponents together.

For a safer estimate, logic usage is increased to 310 slices to allow for possible overhead,

and thus the predicted capacity for a single FPGA will be approximately 64 processing

elements. This number is likely to go up to 80 or even 100 PEs as further optimization of

the PEs themselves takes place, as well as optimizations of other hardware present in the

design.

During the course of synthesis itself, a number of warnings were observed. Most

frequent among these were warnings about signals not being connected in component

blocks. In all cases, the signals were found to be connected and, as no errors were found

to be caused by this in the hardware, it is assumed that this waming is simply the

synthesizer being overly cautious. Also, a number of warnings were observed reporting

that signals had identical functionality. In these cases, the synthesizer removed the

redundant signal automatically. Finally, a few errors were encountered that referred to

specific register implementations within the design and possible optimizations. For all

instances in the original SMART code, it was determined that these optimizations were

not appropriate with regard to preserving functionality.

30

L inear Growth

25000 -|— 1 —, 1

20000

15000

in
10000

5000

0 -I 1 i 1 \ 1 1 1
0 10 20 30 40 50 60 70

P E s

Figure 14: Linear Scalability

Also, synthesis reveals the scalability of the design. The chart below shows that

the FPGA logic usage of the SMART coprocessor scales linearly for all explicitly

synthesized configurations.

Once hardware was created, FPGA trials began and immediately a problem was

uncovered. While the input test data should only have resulted in 5 matches being found,

the coprocessor was reporting hundreds of matches. It was found that the number of

erroneous matches reported scaled linearly with the input data and, likewise, the run time

of the coprocessor. It was determined that the error was being caused by a signal line to

the controllers' collector unit that was shared amongst all the processing elements. The

synthesis of such a shared line created erroneous functionality of the unit without

generation of an error or waming during synthesis. This shared line was replaced by a

small amount of logic in the top level of the design that still scales linearly, and

subsequently functionality in hardware was verified for 1,5, 10, and 60 PEs (see Figure

14).

Performance

Prior to hardware testing, the following predictions about the SMART

coprocessors' real world performance were made: first that the coprocessor will be able

31

Comparisons Per Second

70

60

50
</> c

30

20

10

Cray SV1 Cray X1 Intel Xeon Virtex2P Virtex4*

* Estimated Values

Figure 15: Raw Performance

Comparisons Per Clock

250 -,

200 -

Cray SV1 Cray XI Intel Xeon Virtex2P

* Estimated Values

Virtex4*

Figure 16: Clock Efficiency

32

Comparisons Per Sec Per Watt

3500

3000

2500

</> 2000
c
o
S 1500

1000

500

0
Cray SVI Cray XI Intel Xeon Vlrtex2P

* Estimated Values

Virtex4*

Figure 17: Power Efficiency

4,500,000

4,000,000

3,500,000

3,000,000

^ 2,500,000
o

| 2,000,000

1,500,000

1,000,000

500,000

Comparisons Per Second Per Dollar

Cray SV1 Cray X1 Intel Xeon Virtex2P

* Estimated Values

Virtex4*

Figure 18: Cost Efficiency

33

to run at least 180MHz, possibly faster; second, that the SMART coprocessor will

contain at least 60 processing elements. After implementation, the target of 180MHz was

indeed attained. Currently the largest version of the SMART coprocessor contains

50PEs. With the current hardware code as many as 55 may be attainable, however with

depredated clock performance. With additional optimization of the PEs it should be

possible to attain 60 or even more PEs in the final design.

It was detennined that a reasonable performance metric number of raw character

comparisons per second. With this metric, the SMART coprocessor was predicted to

achieve a theoretical performance rating of 345.6 billion comparisons per second and

currently has achieved 303.2 billion. These numbers are obviously greater than actual

performance when taking into consideration file EO time, configuration overhead, and

other factors. However, through intelligent software design, these effects can be largely

minimized for large data inputs.

The following performance measures have been calculated. This set of measures

fully expresses the power and advantage of reconfigurable computing. These

performance metrics include comparisons per second, comparisons per clock cycle,

comparisons per second per watt, and finally comparisons per second per dollar. For

information regarding the development of these statistics, please refer to appendix A.

First presented is a measure of raw performance, comparisons per second (see figure 15).

A reasonable measure of efficiency is Q-comparisons per clock cycle. As

systems that get more done per clock cycle they tend to use less power, this measure will

add insight to the next performance measure (see figure 16).

The next metric presented is comparisons per second per watt. This is an

excellent measure of efficiency and can be a good predictor of cost of operation for a

system. The wattage of processing units as well as comparisons per second per watt are

noted on the chart below [2 8 1 ' [2 9] (see figure 17).

A final comparison metric presented here is one of economics. Present below is

the Q-comparisons per second per thousand dollars of each of the seven solutions

presented so far. The dollar figure used in this equation is based upon the cost of the

portion of the system used. For the most part, this is simply a division of the full system

cost by the percentage of the system utilized. However in the case of the SMART

34

coprocessor, a more fair measure is the percentage of the XDl cost, if the X D l were

totally unequipped with FPGAs, plus the cost of a single FPGA expansion board.

Therefore, this measure was estimated (see figure 18).

The SMART coprocessor shows itself to be extremely competitive, especially

when considering metrics involving economic and efficiency factors.

35

CHAPTER 5

FUTURE WORK

Optimizations

With any system of this size, there are invariably optimizations that can and

should be made. In implementing the initial design, the focus was on achieving a stable,

working coprocessor. Now that this has been accomplished, optimization can begin.

Most of the optimization effort will focus on the PEs, as any savings in terms of logical

area will be multiplied along the enter PE chain. The following optimizations of the PE

are planned in the near future:

Performance optimization of the Popcount unit could reduce its logical footprint

by as much as 50%. The optimization would be accomplished by collapsing the 6

pipeline stages into 3, eliminating the intermediary 32x2 and 8x2 bit buffers. This

modification would reduce the maximum clock speed of the unit, however

experimentation has shown that it will most likely remain well over 200MHz

Performance optimization of the Data Flow unit could help reduce its logical

requirements tremendously. This would be done primarily by using a small, single line

block ram rather than a register to store the Q value. As this value changes very little, the

extra power granted by a register is unused. Additionally, it may be possible to eliminate

the T buffer by converting the top most level of the Popcount unit into a shifting register

itself. Through these two optimizations, it is possible that the dataflow unit could be

reduced in size by as much as 90%.

Finally, a design change may make it possible to remove the 32-bit counter from

the Saver unit. This counter constitutes a large percentage of the logical requirement of

this unit. Rather than have every PE contain a counter, it may be possible to move the

36

counter to the system controller and stream the counter value to the PEs along with

control signals and T characters.

Outside of the PE, there are a few optimizations that are significant enough to be

compelling. The first of these is the elimination of the write interface and associated

logic of the Cray dma if. This could increase overall system clock speed and free up a

significant number of resources. To do this, the interface provided by the rt core would

be used directly when writing data back to the CPU, as write volume is lower and timing

is less critical.

Also, functionality to implement a CPU interrupt already exits within the FPGA

cores. By using this to signal completion of execution, rather than a status bit, the CPU

would be free to perform other tasks while waiting for the SMART coprocessor to

complete its task.

Functional Improvements and Additions

Most of the functional improvements planned involve the processing elements.

First among these is the implementation of a mask in the PE that will allow Qs of lengths

shorter than 32bp to be searched for. This is a simple matter of adding another stage to

the top of the pipeline that ANDs together a mask and the result of the Q-to-T character

comparison.

Another improvement would be the addition of additional control lines between

the PEs and the data collector that would allow the data collector to deny the PEs access

to the reporting bus. In this way, the data collector could prevent overflows in its buffer

should it be unable to report results for an extended period of time. This may prove to be

more costly than its value to the overall system however, due to the small number of

matches reported during a run.

Another valuable improvement would be the addition of an ASCII to 2-bit binary

encoder. This unit would compress incoming 8 character ASCII strings into 2-bit binary

coded strings. This would remove a significant processing burden from the CPU in such

a way as to be hardly noticeable, so long as transmission of data from the CPU to the

FPGA can be sustained at this higher rate.

37

Finally, there are eurrently 64 bits in the main system status register, 32 that are

proeessor read only and 32 that are FPGA read only. At present, only two of these are

used to signal the start and end of computation. Additional functionality could be added

to the remaining bits, including information such as coprocessor present state, buffer

overflows, DMAs current location in memory, etc. This information could lead to a

variety of other improvements, such as the ability to begin processing before all data is

loaded into memory.

38

CHAPTER 6

CONCLUSION

SAGE processing has for many years been expanding in its capacity, detail, and

scope. Large depositories of SAGE data have now been collected for a wide number of

organisms, and wide-scale use of SAGE data is now assured. SMART is presented as a

computational sophisticated solution. It should enable greater, more detailed analysis of

SAGE data. SMART is implemented on a reconfigurable computing system to take

advantage of the massive amount of parallelism inherent in SAGE data analysis.

Careful design ensures that SMART will be able to expand to meet future

computational needs as well. Additionally, SMARTs design allows for greater flexibility

when compared to other solutions and lends itself to other uses outside of SAGE data

analysis. Additional functionality can be added with relative ease and, in doing so, future

developers should only need to verify the PE elements themselves, rather than the full

system. Addition of functionality should add only a negligible amount of resource usage

and latency. Additionally, optimization of SMART is greatly eased by its highly

repetitive structure.

Most impressive is the efficiency of the SMART processor. Not only does it

match performance with the most advanced altematives, it does so while using less

power, at a lower clock cycle, on hardware that costs far less than the altematives. The

trade off for this perfonnance is a long and difficult development cycle. However, as

reconfigurable computing becomes more wide-spread, further work on development tools

will ease these problems to the point where development is little more difficult than

traditional software development.

Overall, the SMART coprocessor will be a useful tool in the analysis of genomic

data, especially as databases of such data increase and searches become increasingly

39

more complex. Most pointedly, the flexibility, scalability, efficiency, and power of

reconfigurable computing have been made clear. As FPGAs continue to grow in size and

increase in speed, the power of this form of computing will continue to grow.

40

APPENDIX A

NOTES ON STATISTICS

41

Notes on Comparisons Per Second

Comparisons per second represents a raw number of character comparisons. For

each Q string comparison to a substring of T, the number of comparisons per second

generated is equal to the length of Q. For SAGESPY, Q is typically of length 21, while

for SMART, Q is typically of length 32. It should be noted that both systems allow for

variable length Q's, however these typical lengths were used for the generation of the

relevant statistics.

Below, in tabular form, is a listing of comparisons per second:

SAGESPY, Cray SVI - 1 Billion
SAGESPY, Cray X I - 3.7 Billion
SAGESPY, Intel Xeon - 5.9 Billion
SMART, Cray X D l w/ Virtex2P - 288 Billion
SMART, Cray X D l w/ Virtex4 (est) - 2336 Billion

Notes on Clock Speed

Clock speeds presented for the Virtex4 are an estimate, as actual hardware was

unavailable.

Below, in tabular form, is a listing of clock speeds

Cray SVI -450MHz
Cray X I - 800MHz
Intel Xeon - 2.2GHz
Virtex2P- I80MHz
Virtex4 (est) - 365MHz

Notes on Wattages

Wattages used for statistical generation include only the wattage of the actual

processor involved in the computation. This was chosen for several reasons. First,

determination of the wattage of a cluster is very difficult and would most likely require

the installation of special monitoring equipment, and would result in machine down time.

Second, including wattages for the full system is in many cases unfair, as some systems

have high performance interconnects built into them, which consume large amounts of

power, but are not used in computation. Likewise, FPGA systems have CPUs that

42

consume power but are only involved tangentially in computation. Take all these factors

into account is difficult, i f not impossible, so the best solution left was to simply use

processing unit power comsumption.

Below, in tabular form, are the wattages used for each system

Cray SVI-222W
Cray X I - 203W
Intel Xeon - 60W
Virtex2P (est) - 15W
Virtex4 (est) - 25W

Notes on Cost

Costs are generalized system prices for systems located at the Ohio

Supercomputer Center. It was decided not to attempt to adjust these costs for inflation, as

no known depreciation method seemed a fair approach. Further, leaving the original

prices shows the advancement of computation with time, which is still a beneficial

metric.

As with wattage, there was difficulty in deciding how to measure cost. As the

cost of the individual processor was not available in many instances, it was decided that

the best method available to be to take into account the full system price, divided by the

number of processors in the system. Note that the Intel Xeon cost is based upon an

estimate cost of a single processor workstation. Also, note that the cost per node of the

X D l is greater than simple division would suggest. This is due to the fact that only 6 of

18 nodes are equipped with FGPAs, and the cost has been adjusted to account for this.

Also, the price of the Virtex4 node is an estimate base upon the relative cost of the

Virtex2P chips and the Virtex4 chips.

Below, in tabular form, are the number of processors in each system as well as a

ballpark cost of each system.

Cray SVI - 16, ~$1.5 Million, per node, approx $100K
Cray X I - 12, ~$2 Million, per node, approx $150K
Intel Xeon - 1,~$1 OK
Cray X D l w/ Virtex2P - 18, ~$200K, per FPGA node, approx $15K
Cray X D l w/ Virtex4 (est) - per FPGA node, approx $17K

43

BIBLIOGRAPHY

[I] "Complementary DNA sequencing: expressed sequence tags and human genome
project." Adams MD, Kelley JM et al. Science, June 1991

[2] "FPGAs in Reconfigurable Computing Applications." Fawcett B, 1SBN# 0-7803-
2636-9

[3] "High-Level Language Abstraction for Reconfigurable Computing." Najjar W, et
al. IEEE Computer Society, August 2003

[4] "Reconfigurable computing: architectures and design methods." Todman T J, et
al, IEE Proceedings, 2005

i
[5] "Serial Analysis of Gene Expression." Velculescu VE, Zhang L, et al. Science,
October 1995

[6] "Analysing uncharted transcriptomes" Velculescu VE, Vogelstein B, Kinzler
KW, TIG, October 2000

[7] "Serial analysis of gene expression (SAGE): unraveling the bioinformatics tools."
Tuteja R, Tuteja N, BioEssays 26:916-922, 2004

[8] "The Arabidopsis Root Transcriptome by Serial Analysis of Gene Expression.
Gene Identification Using the Genome Sequence." Fizames C, et al. Plant Physiology,
January 2004

[9] "Using the transcriptome to annotate the genome." Saha S, Sparks AB et al.
Nature Biotechnology 20: 508, 2002

[10] "Robust-LongSAGE (RL-SAGE): A Substantially Improved LongSAGE Method
for Gene Discovery and Transcriptome Analysis." Gowda M, Jantasuriyarat C, et al.
Plant Physiology 134(3):890, 2004

[I I] "Gene Expression Omnibus." http://www.ncbi.nlm.nih.gov/geo/

[12] "Saccharomyces Genome Database." http://www.yeastgenome.org/

[13] "GenBank"
http://www.psc.edu/general/software/packages/genbank/genbank.html

44

[14] "Identification and prevention of a GC content bias in SAGE libraries."
Marquilies E, Kardia S, Innis J, Nucleic Acids Research, 2001, Vol 29, No. 12 e60

[15] "Charactersization of the Yeast Transcriptome." Velculescu V, et al. Cell, Vol
88, 243-251, January 24, 1997

[16] "Identifying novel transcripts and novel genes in the human genome by using
novel SAGE tags." Chen J, et al. PNAS, September, 2002, vol 99 no 19, 12257-12262

[17] "SAGE is far more sensitive than EST for detecting low-abundance transcripts."
Sun M, et al. BMC Genomics, January, 2004

[18] "A Comparative Molecular Analysis of Developing Mouse Forelimbs and
Hindlimbs Using Serial Analysis of Gene Expression (SAGE)." Margulies E, Kardia S,
Innis J, Genome Research, June 2001

[19] "Computational Analysis of Gene Identification with SAGE." Clark T, et al.
Joumal of Computational Biology, Vol 9, Num 3, 2002, 513-526

[20] "Bioconductor: open software development for computational biology and
bioinformatics." Gentleman R, et al. Genome Biology 2004, 5:R80

[21] "Reconfigurable Architectures for Bio-Sequence Database Scanning on FPGAs."
Oliver T, Schmidt B, Maskell D. IEEE Transactions on circuits and systems-11: Express
Breifs, Vol 52, No 12, December 2005

[22] "Reconfigurable Computing Systems." Bondalapati K, Prasanna V. Proceedings
of the IEEE, Vol 90, No 7, July 2002

[24] "Identification of common molecular subsequences." Smith T F, Waterman M S.
Joumal of Molecular Biology, vol 147, 195-197, 1981

[25] "Basic Local Alignment Search Tool." Altschul S F, et al. Joumal for Molecular
Biology, vol 215, 403-410, May 1990

[26] "High Performance Genome Scale Comparisons for the SAGE Method Utilizing
Cray Bioinformatics Library (CBL) Primitives." Gowda M, Wang G, et al., CUG ,05
proceedings, 2005

[27] "Cray Bioinformatics Library (CBL) Datasheet." Cray Inc. BioLib Release 2.0,
2003

[28] "Cray X D l Site Planning", Cray Inc, 2004

[29] "Cray X I Site Planning", Cray Inc, 2003

45

