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ABSTRACT 

In recent years, available genetic databases based upon the SAGE algorithm have 

grown rapidly in size and complexity. Along with this increased richness of data comes 

the need to process more data more thoroughly. In the past, such analysis was done on a 

relatively small scale by uniprocessor machines running generic serial code. Given the 

size of genetic databases today, this is no longer a viable option. In this paper, an 

architecture for a reconfigurable hardware based solution is presented, along with results 

of implementation, including performance and resource consumption. This processor is 

shown to be effective, efficient, flexible, and scalable. This solution wil l provide new 

processing power that will allow for more useful and detailed searches of genetics 

databases. 
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CHAPTER 1 

INTRODUCTION 

Large scale genomic processing is now well into its second decade in existence^. 

In this time, several methods of gathering and digitizing genomic data have emerged as 

defacto standards. One of these leading methods is the Serial Analysis of Gene 

Expression (SAGE) method. In the last decade, SAGE has been improved, expanded, 

and refined into a fairly elegant and robust process. While the SAGE method for the 

generation of genomic data has improved greatly in the last ten years, the actual 

processing of the data has improved little. Largely, processing today is still done by 

purpose written, inefficient brute force codes, largely written in C, C++, Java or some 

other equivalent language. 

One of the greatest improvements has been the incorporation of database 

technology, so that large collections of data remain orderly and searchable. However, 

this solves only the most minor problems relating to SAGE data processing. SAGE 

datasets still take a significant amount of time to process and almost all processing is 

done statically, with no room for SAGE processing transcription errors. The very few 

systems that do account for such errors are still inefficient and not very fast, or are 

incredibly power hungry and expensive. 

While this development in bioinformatics has been ongoing, development in 

another area has taken great steps forward as well. In the last ten years, reconfigurable 

computing has grown from a laboratory novelty to a high performance solution to many 

problems. In the future it looks poised to grow further to become a solution to any 

problem. 
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Reconfigurable computing has its 

roots in the development of Field 

Programmable Gate Arrays (FPGAs). 

FPGAs were first widely available starting 

in 1985[21. They began as small 

collections of memory that could be 

programmed to emulate a small logic 

function in a circuit. They quickly grew in 

size and the electronics industry started to 

take notice of them as a less expensive 

altemative to ASICs (Application Specific 

Integrated Circuit) in low volume 

productions. As FPGA costs decreased 

and logic capacities increase, they 

continue to replace more and more ASICs 

in system level designs. Today the 

computational cores of many electronics 

devices, such as cell phones, PDAs, and 

the like, are actually FPGA cores. 

Algorithm specific computation with 

FPGAs began later when the complexity 

and size of the chips finally reached a 

critical mass that allowed for sufficiently 

sophisticated algorithms to be 

implemented within them. 

Most recently there has been an 

emergence of a variety of commercial 

reconfigurable computing platforms. 
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Figure 1 : Reconfigurable Computer 
Configurations'4' 

These platforms all provide reconfigurable logic via different configurations of FPGAs 

(see figure 1 for different classes of RC system). Access to the reconfigurable logic is 

provided to the user through a variety of programming environments. These systems 



have been shown to be very powerful, sometimes achieving performance increases over 

modem CPU systems of 800x or more t 3 ]. Currently, Cray, SGI, and many other 

companies are offering commercial reconfigurable computing systems. Today, 

reconfigurable computing is rapidly establishing itself as a valuable choice in 

supercomputing[4]. There are additional motivations beyond pure performance. Given 

that FPGA clock speeds are an order of magnitude slower than CPU clock speeds, and 

that more of the hardware in FPGAs is operating directly toward the computational 

solution, FPGA resources result in an average energy savings of 35% to 70%, depending 

on the application^. Given that modem computer rooms are limited in computation only 

by how much power can be brought into the building, doing more computation with less 

power is extremely desirable. Also, given the cost of power, a higher efficiency system 

results in an overall reduction to the operational cost of a supercomputing facility. 

In this paper the developing fields of reconfigurable computing and SAGE data 

processing join to help create the SMART fuzzy searching coprocessor system. The 

SMART coprocessor will allow faster, more efficient processing of larger amounts data. 

This is done by leveraging the inhering parallelism in genetic string searching found in 

SAGE as well as the ability of reconfigurable computing to adapt to take full advantage 

of said parallelism. Hardware designs of all created hardware modules that compose the 

SMART coprocessor are presented. Additionally, the advantages and disadvantages of a 

hardware solution over a software solution are examined through comparisons of 

performance data, as well as additional information such as development time, 

portability, flexibility and so on. Current limitations of the SMART system are also 

presented, as well as future development paths for this project. Finally recommendations 

are put forth for future developers including suggestions of development behavior, 

pitfalls to avoid, overall design strategy where reconfigurable computing is concemed, 

and tools that were or would have been useful. 
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CHAPTER 2 

SAGE BACKGROUND 

Biological Background 

Serial Analysis of Gene Expression, or SAGE, was conceived at the Johns 

Hopkins Oncology Center[5] in 1995 as a method to rapidly analyze a large number of 

genetic transcripts. To better understand the value of this technology, a brief overview of 

genetics and genomic processing is helpful. 

The genome of any organism is composed of a collection of chromosomes. These 

chromosomes are made of long sequences of DNA, which are in tum composed of four 

base nucleotides: cytosine, adenine, thyamine, and guanine. These chemicals bond 

together to form the familiar double helix of DNA. Before any computational work can 

be done, actual DNA must be harvested and digitized. In genomic processing, the above 

chemicals are digitally represented by the letters C, A, T, and G. Series of these 

characters are often referred to as transcripts and individual characters are referred to as 

base pairs or bp. These character sequences, or transcripts, are then digitized for 

processing. The SAGE method is one method of gathering DNA from cells and 

digitizing it into character sequences. SAGE was originally developed as a way to study 

pancreatic cells, specifically related to cancer[5]. 

With SAGE, double stranded DNA within cells is first harvested and divided into 

smaller sections via an anchoring tag, typically with average length of 256 (or 4 4 ) [ 5 ] . The 

portion of the sequence not attached to the anchoring tag is then isolated, which provides 

a unique sequence associated with that particular division. This is then processed to 

release a small unique sequence along with the known anchoring tag. Al l of these small 

sequences are then concatenated and the full long sequence is then cloned. After this 

final step, the sequence is digitized (see Figure 2^) . In this way, the presence of a small 
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number of a particular tag can still be captured, and, overall, the abundance of different 

tags, or their expression level, can be determined. At this point in the process, each tag 

represents a particular portion of the organisms' genome, and each tags' expression level 

refers to the extent to which that portion of the genome is being used. This information 

has lead to the classification of innumerable genes in many organisms. 

The success of the SAGE method is based upon two primary principles'^. First, 

that a short sequence of nucleotides is 
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Figure 2 : The SAGE Process IM 

sufficient to uniquely identify a 

transcript. Second, the combining of 

many short tags into a single longer 

tag allows for more efficient cloning. 

Based upon these principals, SAGE 

became the first method that did not 

require priori knowledge of sequence 

significance'81. Because of this, 

SAGE analysis has expanded from the 

study of pancreatic cancer to the study 

of expression levels in general. From 

this study, theories can be generated 

on the functionality of particular parts 

of the genetic code. Additionally, 

observations can be made with regard 

to the effects of drugs, or other 

stimulus, on the cell . 

Originally, SAGE used 

sequences of 9 to 10 nucleotides to 

distinguish transcripts; more recently, 

sequence lengths have been increased 

to as many as 21 nucleotides through 

the Long Sage[9] and RL-SAGE [ 1 0 ] 

processes. It is foreseeable that 



sequence lengths could increase in the future to 25 or perhaps even 30 base pairs. Far 

beyond these lengths, very little further distinction can be gained as the number of 

sequence combinations become so large that they begin to loose meaning. In addition to 

increased tag length, the process as a whole has been improved. Today, genetic 

information can be derived from amounts of genetic material nearly one hundredth the 

size of those in the original SAGE process'101. Additionally, the process as a whole has 

been made more robust and less prone to errors'101. 

As the SAGE process has grown more robust, well developed, and accepted, the 

amount of SAGE data available has grown accordingly. Fortunately, since its inception, 

SAGE data has been stored in databases, or at least database-like libraries. Thus, the data 

is well organized and widely available. There are now a great many examples of SAGE 

data repositories including the Gene Expression Omnibus'1'1, the Saccharomyces Genome 

Database'121, GeneBank'131, and many others. 

Computational Background 

Much of the history of SAGE computational analysis is severely lacking in 

technical sophistication. This may be primarily due to the background of SAGE 

computational methods largely being focused upon the statistical analysis of generated 

data sets, rather than the computational methods used to create and search these datasets. 

In searching for research relating to the computational analysis of SAGE data, many 

papers were discovered such as [14], which discusses possible biases within SAGE data 

sets. This sort of statistical computational analysis is outside the scope of this work, but 

has seemingly been the focus of much of the effort regarding computational SAGE 

techniques. 

In many cases such as [15], papers reference [5] with regard to their 

computational approaches. Beyond that, analysis is done primarily with nondescript 

purpose written code. For instance, in [16], "A series of JAVA and C programs were 

designed for [the SAGE] analysis" is as in-depth a description as the researcher provides. 

Likewise, in [17], the author states only that, "Computational programs were designed 

using Java language for the [processing]." Again in [18], the author merely covers that 

Perl was chosen for its "versatile portability" and says nothing of how the algorithm was 
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actually implemented. In all of these cases, the vagueness of description leaves one to 

conclude that these programs are most likely simple, unoptimized, serial applications. 

More recently, as the issue of volume processing of SAGE data has become more 

pressing, more attention has been paid to this topic. Among the efforts to enhance the 

performance of analysis is the Gene Identification and Sequence Topography suite 

(GIST) produced by the University of Chicago'19'. This package performs exact 

matching between genetic data in parallel. Additionally, a suite of tools known as 

Bioconductor'201 has been produced by a collaboration of many universities. This 

software package provides extensive functionality beyond the processing of SAGE data, 

but it seeks to provide a common platform of bioinformatics based computation. 

Finally, several hardware designs for biosequence processing have been 

developed. Quite a few special purpose architectures using sequences or identical 

processing elements, known as systolic arrays have been developed'21^. However, 

success has been limited due to lack of flexibility of these pure-hardware devices. More 

successful is the FPGA based SPLAH2 system. However, the SPLASH2 system was not 

built explicitly for the processing of biosequences, but rather for the implementation of 

systolic array systems'22^. Additionally, the core designs of the system are not open for 

development and the FPGA hardware of the boards themselves are becoming grossly 

outdated. In addition to the SPLASH and SPLASH2 systems, the Decipher system from 

TimeLogic is another option, though is suffers many of the same problems as the 

SPLASH systems. 

Al l the above solutions are still not fully sufficient for two primary reasons. First, 

the SAGE process is not perfect. SAGE, being a biological and thus analogue process, is 

subject to noise and therefore inaccuracies. An acceptable error rate for usable data is 

often considered to be around 1 in 100'18]. In the event of such an error, it is desirable to 

still be able to retum a result, noting the neamess of the match. Given the cost of the 

creation of SAGE data'10], allowing for slight errors in processing allows for the usage of 

greater amounts of data, making money spent on generating said data more effective. 

Today, only a few software solutions that allow fuzzy matching exist, mostly utilizing the 

Smith-Waterman algorithm'241 or the BLAST algorithm'2 5 1. Most notable among these is 

the SAGESPY application developed at OSC for the Cray X I system'261. This 
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application uses a BLAST search approach to SAGE data processing and incorporates the 

ability to perform fuzzy matching. While SAGESPYs performance characteristics, even 

during fuzzy matching, are quite promising, the execution of the application depends 

heavily upon the special hardware available only on the Cray X I , which is quite an 

expensive computer system. Performance of SAGESPY on other platforms is 

considerably slower. 

Secondly, and more critically, as sequence lengths increase and databases grow, 

computational demands will certainly increase. Scientists will want to perform more 

detailed searches for more sequences in larger databases. For software solutions, 

updating to changing input parameters will not be a problem. However, computation 

times will increase riotously. Conversely, for hardware solutions available today, the 

user will either be forced to upgrade to new hardware, in the case of traditional hardware, 

or wil l be required to wait for an upgrade to their FPGA based solution, as the current 

FPGA solutions do not have open cores, i f indeed an upgrade is even possible. 

Obviously, none of these situations are desirable. Combining all these considerations, 

even the relatively short search times involved in most work today will increase to 

unreasonable lengths. 

The SMART coprocessor is a more cost effective and efficient solution than 

SAGESPY, while being nearly as powerful. Additionally, SMART is a more modem and 

focused solution to genomic data processing than the hardware solutions existing today. 

Further, as the core is open, it is user maintainable and more highly adaptive to changes 

in the SAGE process. Finally, SMART was designed to be as scalable as possible to 

allow for expansion of the system as new technology arrives and further functionality is 

needed. 
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CHAPTER 3 

SMART PROCESSOR DEVELOPMENT 

Problem Requirements and Conditions 

To best understand the decisions made during the development of the SMART 

coprocessor, understanding the design constraints of the problem itself is necessary. 

These constraints consist of the format of input data, the information needed from the 

processor, and the relative likelihood of important processing events. An examination of 

these constraints is presented here before going into greater depth with the SMART 

design. 

First, consideration must be given to the system the application will be 

implemented on. The Cray XD1 is a cluster-type supercomputer system with optional 

reconfigurable hardware. Computational nodes consist of dual Opteron processors 

connected via a HyperTransport interconnect. This interconnect also services the 

reconfigurable hardware of the XD1. On the CPU side of development, a software 

interface is provided by Cray which implements basic functionality. It allows for all of 

the memory within the FPGA to be mapped into CPU memory space and, also, for up to 

1GB of CPU memory to be made available to the FPGA via a dynamic memory 

allocation (DMA) region, which allows for high speed burst transfers between the FGPA 

and CPU. Memory attached and within the FPGA is fairly limited, with 16MB available 

in static RAM attached to the FPGA and additional smaller block rams integrated into the 

FPGA itself. Memory attached to the CPU is much larger, ranging from 1GB to 8GB. 

Cray provides several hardware cores for the developer. These cores provide access to a 

64-bit wide data bus to CPU. The FPGA itself is capable of running at up to 199MHz. 

Next consider the data format that the SMART coprocessor will be required to 

take as an input. The SAGE process produces a tremendous amount of textual data that 
9 



represents sequences of nucleotides. This data is almost universally stored in an ASCII 

file format specifically created for protein sequences known as the FASTA format. In 

general, query strings (Q's) are relatively short, from 9 to 21 characters'51'91, which are 

also referred to as base pairs or bps. In a typical search, a user might wish to search for 

anywhere from hundreds to thousands of Q's. These Q's wil l be compared to all possible 

substrings of a very large target sequence (or T). Target sequences are typically between 

tens of thousands and hundreds of thousands, but can be as short as a few thousand or as 

long as a millions or more. A typical search will only involve a few, possibly only one, T 

string. Both Q's and T's are stored in ASCII FASTA files. 

Another consideration is output data from the processor. The SMART 

coprocessor will be looking for exact, as well as near, or fuzzy, matches with an error 

range of 2 characters between Q's and a T substring. For any given match, it is important 

for the user to know which Q matched a substring of T, the position of the substring, and 

the neamess of the match. It should be noted that any given search can be broken down 

into a series of smaller searches by either dividing sets of Q's into smaller subsets or 

dividing T strings into substrings. Likewise, many smaller searches can often be 

combined into a single larger search in the opposite way. 

Finally, briefly consider the statistics involved in genomics searching. FASTA 

files encode strings of nucleotides by representing each of the four chemicals they are 

composed of by one of four letters: A, C, T, or G. Based on the assumption that these 

strings are purely random, the probability of finding an exact match between a Q of 

length n and a T of length m is upper bounded by: 

m 
E{number of exact match in T) < 

4"« 

For n = 9, and m = 10,000,000 this evaluates to approximately 10. Thus, for the 

shortest meaningful Q, and a relatively long T, the approximate expected number of exact 

matches is 10. During SAGE processing, transcription errors can occur and therefore 

fuzzy matching that would allow for no more than 2 transcription errors per match was 

deemed an important objective for the SMART coprocessor. Clearly for fuzzy matching 

the probability of a match will increase. In fact, it is upper bounded by: 
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E{number of fuzzy matches in T) < 
l + 3« + 3 2 ^ ( « - 0 

1=1 m 
• • -4" n 

For the same values of n and m as above, this evaluates to approximately 1492 

fuzzy matches, which means one result will be found for approximately every 6700 

characters of T that are processed. However, it should be noted that genomic data is not 

purely random. In fact that a SAGE experiment is being performed is, by itself, enough 

to increase the likelihood of matches significantly. However, in practice, this increase is 

no more than a single order of magnitude. 

Design Considerations, Goals, and Decisions 

The above information leads to a collection of design considerations, goals and 

decisions. First among these was to keep all input and output data in processor memory 

space. While the memory available within the FPGA would most likely be sufficient to 

store all the needed data, the overhead involved in accessing this memory from the 

FPGA, as well as the cost in time of writing the data from the processor memory to the 

FPGA memory, was too great. More pointedly, data will not be permutated upon in this 

application and, therefore, each word of memory will only be accessed once. As such, 

moving it from CPU memory to FPGA memory is superfluous when one could move 

data from CPU memory directly into the computation path of the FPGA at the same cost. 

The next consideration has to do with the format of input data. Given that, in the 

XD1 architecture, the bus between the FPGA and the CPU is only 64-bits wide and 

ASCII characters are 8 bits each, this allows only eight characters of data to enter the 

coprocessor per clock cycle. In the early stages of development, it was desirable to 

reduce the likelihood of the coprocessor being starved for data. To this end, it was 

decided that the coprocessor should take as input compressed FASTA data. So long as 

the compressed characters are two bits apiece, the translation from ASCII to binary is 

irrelevant, so long as it is globally consistent. In this implementation, a FASTA 

compression algorithm from the Cray BioLibrary1 2 7 1 was used. Still, given the sensitivity 

of this application to data starvation, it was decided that the coprocessor should still be 

able to deal with data starvation periods of arbitrary length. Additionally, compressing 

the FASTA characters to 2-bits each will help reduce the size of our comparator, as the 
11 



comparison of characters will only deal with 2 bits rather than 8. However, the inevitable 

trade off is additional processing time on the CPU prior to FPGA execution. In the 

future, FASTA fde compression may be moved into the SMART coprocessor to further 

reduce CPU processing burden. This addition to the coprocessor could be accomplished 

with almost no discernable effect on performance of the coprocessor. 

Another consideration with input is the length of Qs. Given that different forms 

of SAGE produce different length Qs and, more importantly, that the length of these Qs 

is generally increasing, it was decided that the coprocessor should be able to 

accommodate Qs of length greater than the largest generated today. To date, some of the 

most advanced SAGE processes are producing Qs of length 2 Ibp' 9 1. 

Additionally, given that the Qs are very manageable in size (from 18 bits to 48 

bits to date) and in quantity, and T strings tend to be unwieldy large, it was decided that 

the coprocessor should hold a number of Q values and have a single T string streamed 

through it. Because of this, it was decided that the coprocessor should consist of a large 

number of identical processing elements (or PEs) each of which would hold a single Q 

value, and a single controller to orchestrate their configuration and the movement of data 

to and from the CPU. Then, all the T characters would be streamed through these 

elements, with each element performing comparisons in parallel. By using an array of 

identical PEs, design and optimization efforts were focused on one unit, which will then 

be replicated, greatly increasing the effectiveness of time spent improving the PEs. This 

overall design pattem was influenced by both systolic array systems, as well as dataflow 

architectures. 

When considering the required output, note that the Q value and the T substring 

are not needed. This allows the processing engine within each processing element (or 

PE) to consume these values, passing on only how close of a match the particular T 

substring is to the Q value. However, each PE must be aware of the position in T from 

which the substring was taken. Additionally, each PE must, in some way, make its 

matches distinct. To accomplish this, each input Q value is assigned an ID based upon its 

position in CPU memory. When these Q values are loaded into the PEs, the 

corresponding ID is loaded into the PE as well. All results generated by the PEs are 
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tagged with their IDs, so that the Q value can be retroactively matched to results by the 

CPU. 

Finally, consider buffering of the data generated by each PE. As each PE works 

in parallel with all the others, it is possible for results to be generated simultaneously in 

all PEs in the coprocessor. Therefore, it will be necessary to buffer results in the PEs, 

and create a reporting system that will ensure that each PE can report results, without 

worrying about bus contention and without worrying about starving any PE of access to 

the bus. When considering the likelihood of a match in a given PE, it becomes clear that 

buffers intemal to the PEs would not need to be very large, even for very small Q strings 

and extremely large search strings. In the extremely unlikely situation of results 

generated by a PE overflowing the buffer, it will be sufficient to signal this condition, as 

finding such a high concentration of a particular string is, more likely than not, going to 

either negate the entire experiment or, altematively, make the actual density meaningless 

in comparison to other statistics. 

Finally, consider that the SMART coprocessor is using a serial chain of PEs and 

that scalability is of critical importance since as FPGA logic capacity grows, increasing 

the PE chain length will be highly desirable. Creating a linear bus by sending results 

back down the PE chain to the controller seems the most obvious solution; however 

results could be generated in such a way that there would be contention between the PE 

and its neighbors further down the chain. Creating logic to handle this contention in 

every PE is likely to be costly. Further, position of the PE in the chain would affect the 

desired result of the arbitration logic, making the PEs non-uniform. At the same time, a 

shared bus system would not work either, because any arbitration logic would grow with 

the number of PEs in the system, dismpting the scalability of the system as a whole. In 

the end, the system uses a shared bus, but access to the bus is granted by a token which is 

passed along a token ring between the PEs. In this way the system scales nicely and a 

minimum of logic is added to every PE. 
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Software Description 

Software Overview 

The SMART software package will be as streamlined and as simple as possible. 

Ideally, the user will only need to supply FASTA input fdes, one containing all the Qs 

they wish to search and all the T strings they wish to search for them in. At present the 

software is only implemented to accept up to 10 Qs, and a single T string. This present 

limitation is purely artificial and will exist only as long as hardware debugging is taking 

place. Once debugging is completed, it should be possible to have the software initialize 

multiple runs of the coprocessor in the most efficient way with regard to memory and 

disk access. 

Overall, the software application is quite small and most of the complex 

programming has been taken care of via software libraries available as part of the C 

standard or provided by Cray specifically for accessing the FPGAs on the XD1. The 

libraries used in the software are detailed in the table below: 

Library Name Functionality 

argp.h Command line argument parsing library, used to easily deal with 
command line input 

fcntl.h File control options library, used to make code more readable and 
maintainable 

stdio.h Standard C I/O library, used for accepting user input and providing 
command line feedback. 

stdlib.h ISO standard C library, used for memory allocation algorithms 
ufplib.h CRAY provided API for the accelerator FPGA, used to control, configure, 

and run the FPGA coprocessor 
unistd.h Standard Symbolic Constants and Types 

Table 1: Software Library Descriptions 

Software Details 

The software operates in the manner described below. The software first 

initializes the FPGA, and loads the hardware core into the FPGA. Then, the software 

creates a shared memory space between the FPGA and CPU and loads the Q and T 

FASTA files into this space. These FASTA strings are then compressed via the Cray 

BioLibrary. The software then signals the coprocessor to begin execution and polls the 
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coprocessor for a completion signal. Please refer to the Software/Hardware interaction 

diagram for a more complete picture of computation flow. 

There are two likely changes in a future version of the software. First, 

compression from FASTA into 2-bit binary representation will likely be moved to the 

FPGA, assuming that the bandwidth between the processor and the FPGA is sufficient. 

This was not done initially due to fears that bandwidth between the CPU and FPGA 

might not be sustainable. Compression reduces the bandwidth needs of the coprocessor 

by a factor of 4. It would be beneficial to move compression to the CPU as it would take 

up very little space and not add noticeably to computation time. Also, the FPGA is 

capable of raising an interrupt for the processor and this could be used to signal 

completion rather than busy waiting. This has the obvious advantage of allowing the 

processor to perform other actions while waiting on the coprocessor. 
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Figure 3: Software Hardware Interaction Diagram 
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Hardware Description 

Full System Overview 

The high level structure of the acceleration system is that of a serial string of 

custom designed processors controlled by a single controller tied into the Cray provided 

hardware. The coprocessor can accommodate multiple Q's, dependent upon the size of 

the FPGA provided with the XD1. As the XD1 at OSC Springfield is equipped, each 

reconfigurable processor can theoretically search a T of one hundred and eighty million 

bps per second for sixty Q's. Details of both the processing elements and the controller 

are below. 
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Figure 4: SMART Coprocessor Overview 

Processing Element 

The workhorse of the accelerator is the long chain of processing elements that 

will take up the majority of FPGAs real estate. As a linear chain, most of the inputs and 

outputs of the unit are dedicated to the passing of data through the unit. There are a few 

outputs of each PE that are attached to a shared bus and are used to send computational 

results back to the system controller. The PE requires some control signals, which 

originate from the system controller and are passed along the PE chain. Additionally, the 

PE requires a Q value and an ID value. Finally, the PE requires one character of the T 
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string per clock cycle in order to perform its task of fuzzy string comparison. Al l of these 

needs are handled by the Dataflow subcomponent of the PE. 

Once ail of this data is available 
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Figure 5: Processing Element 

to the PE, it is capable of performing 

one fuzzy comparison per clock cycle. 

This computation takes place in the 

Popcount subcomponent of the PE. 

Each clock cycle, the Popcount unit 

receives the Q value of the PE and the 

current T substring present in the PE. 

These values are fed into a pipelined 

unit that computes the number of 

mismatches between the Q and T string. 

The pipelined Popcount unit outputs the 

number of mismatches six clock cycles 

later. Additionally, it delays a number 

of control signals so that the Saver 

subcomponent knows the state the 

machine was in when the T string was 

first latched into the Popcount unit. 

The signals from the Popcount unit are then analyzed by the final unit in the PE, 

the Saver subcomponent. This unit contains a counter that keeps track of the current 

position in T. It saves the position and match quality of results computed by the PE. 

Additionally, whenever the Saver unit receives the token, it may report a single buffered 

result back to the system controller. Below are more detailed descriptions of each of 

these three units. 

Processing Element: Dataflow Unit 

By dividing the PE into three subcomponents specific functionality is isolated. 

Within the Dataflow unit all the buffers and logic needed to control the passage of signals 

down the PE chain, as well as logic involved in the initial configuration of the PEs with Q 
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values and ID, is located. The unit is mostly composed of buffers, including 64 bits to 

store a single Q, 64 bits to hold 32 characters of T, and a variety of other buffers for 

control signals. Early in the design of this unit, a 64-bit wide bus was added specifically 

for the passing of Q values down the chain. This not only reduced the latency involved in 

loading Qs, but also greatly simplified the logic needed to do so in the PEs. 

Al l communication between PEs takes place in this unit (with the small exception 

of the token), and thus, through the careful design of this unit, it is ensured that the PE 

chain will be highly scalable. Also, due to the design of the Dataflow Unit (and the 

results reporting system), the system can be expanded simply by adding additional PEs to 

the end of the PE chain. In fact, the only current limitations are the size of the FPGA 

itself, and an arbitrary limitation of the ten bit ID value. The ID value could easily be 

made much larger, allowing for thousands of PEs. 
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Often, serial chains such as this result in higher latency since data has a 

correspondingly longer path to travel. In our case, the increase in latency is insignificant 

compared to the execution time of the application overall. The latency of the chain 

overall is a linearly dependent on the length of the chain. The design has been optimized 

so as to minimize the overall latency by not streaming the T values all the way through 

the T buffer in each unit, but rather have T characters back out again immediately as well 

as down the buffer (see figure 5). Moreover, the added latency is going to be measured 

in hundreds of clock cycles, while 

execution time will be measured in 

hundreds of thousands of cycles, 

dependent on the length of T. An 

additional advantage of streaming 

the T values in this way is that all 

values, data and control, that come 

into the PE on clock x leave the unit 

on clock x+1. The only exception to 

this is when the PEs are being 

configured with Q values. During 

this initialization step, PEs only pass 

along Q values after they themselves 

have received and stored a Q value. 

This greatly simplifies the decision 
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Figure 7: T Buffer Shift Register 

logic within the PEs that involves 

their initialization. 

Processing Element: Popcount Unit 

Within the Popcount unit are all the computational components of the PE. The 

Popcount pipeline is six stages deep. The first stage compares the individual characters 

between Q and T and generates a 32 bit vector, wherein all mismatches of characters 

between Q and T are represented by Is and all matches by Os. The subsequent 5 stages of 

the pipeline sum all the bits of this vector together, generating a total number of ones, or 
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the "population count". This unit was fully pipelined in order to allow it to achieve a 

maximum clock rate of 200MHz (the highest supported clock on the FPGAs available in 

the Springfield XD1). In that this unit is fully pipelined, at any given moment it is 

performing six comparisons in parallel, so, in effect, it still performs one comparison per 

clock. Also, there is additional latency created by pipelining these units since a single 

comparison takes 6 clock cycles. However, the six extra clock cycles are again 

inconsequential when compared to the hundreds of thousands the full processing will 

require. 
th 

In a future version a 7 

stage will be added to the 

pipeline that will allow for the 

masking of bits. This will allow 

the end user to use Qs of length 

less than 32bp. Also, 

experimentation has shown that 

by collapsing certain stages of 

the pipeline together, resource 

usage can be reduce without 

lowering the clock rate below the 

200MHz barrier that the FPGA 

sets forth. Since the core 

computational workings of the 

PE are all contained within this 

unit, it would be possible to swap 

out this unit with another that 

implemented another search 

function. In this way, 

compartmentalizing our design 

has added some degree of 

reusability to it. 

D 
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Also within the Popcount unit are a series of buffers that delay the control signals 

such that the subsequent Saver unit will have the state of the machine corresponding to 

the current output of the Popcount unit. 

Processing Element: Saver Unit 

The final component of the PE is the Saver unit. Within this unit is all the logic 

that analyzes the output of the Popcount unit. Additionally, it contains logic that keeps 

track of the current position of the T substring as it is streamed through the coprocessor. 

Using these two logic components, it decides every clock cycle whether or not to buffer 

the current position of the T substring as a match to the Q value within the PE or to rule 

the result a mismatch. The buffers within the PE are implemented using the numerous 

block rams within FPGA and can contain up to 128 results at once. The buffers are also 

circular, that is, data is written to locations sequentially, and when the last position in the 

buffer is reached, the process beings again at the first postion. This eliminated the need 

for complex logic to keep track of 

empty and full locations. Each PEs 

saver unit uses one block ram as a 

buffer and, as the FPGA has more 

block rams than its capacity for 

PEs, this is clearly not an issue 

with scalability. The buffers can 

be so small due to small 

probability of a match occurring. 

The probability of a match is 

certainly higher than pure statistics 

suggests, since it is conditioned on 

the fact that meaningful genetics 

data is being searched. However, 

it is still very small, and software 

solutions have shown that well less 

than 0.1% of T substrings result in 
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matches'261. Given the statistical unlikelihood of a buffer overflow, it was decided that 

any run in which one might occur would have very little meaning anyhow, and simple 

writing a special value to the buffer in these cases to signal to the user that overflow 

occurred would be a sufficient response. In this way, the user can make adjustments as 

needed for future runs. 

Also, given the unlikelihood of a large number of matches, a single bus was used 

to connect the controller to all the PEs. Control of the bus is granted by a token 

originated at the system controller and passed between the PEs. Whenever a PE receives 

a token, it may report a single value back to the system controller before passing on the 

token. In this way the PEs dependence on their buffers are further reduced and at the 

same time, a bus arbitration system is provided that ensures there will be no starvation 

while requiring a minimum of logic to be present in the PEs. 

System Controller 

The most complex component of the fuzzy matching system is the main system 

controller. This controller interfaces with both the PEs and several Cray provided 

modules. To the PEs, it is responsible for providing configuration and, once the 

computation has begun, a constant stream of input data as well as collecting results 

during the course of execution. When interfacing with the hardware modules provided 

by Cray, the controller is responsible for responding appropriately to initialization and 

configuration data, requesting reads and writes to and from CPU memory space, and 

alerting the CPU when the computation is completed. The controller interfaces with 

several Cray modules to achieve these objectives (see table 2 below). The system 

controller is composed of three sub modules each of which contain the hardware related 

Core Name Purpose MHz Slices 

d m a i f Provides DMA based access to CPU memory 189 727 

reg_if This register unit was modified to become the register 
controller discussed below 

818 50 

rtclient This unit provides routing to different CPU addressable 
regions of the FPGA 

270 468 

rt core This unit abstracts the rapid transport interconnect 199+ n/a 

Table 2: Cray IP Modules 
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to a specific function of the 

controller. These three 

subcomponents are the Data 

Collector, the Data Streamer, and 

the Main Controller. These three 

components will be discussed in 

detail later. 

In designing the system 

controller, Cray modules were 

critical. Making use of these Cray 

provided modules helped ensured 

proper functionality. What's more, 

these components implemented 

some of the more difficult 

hardware in the design in an 

efficient and general way. They 

are highly reliable, easy to use, and 

do not present a significant 

bottleneck in the system. Al l hardware communication interfaces were abstracted by 

Cray modules to provide a more clear and intuitive interface. Additionally, the routing of 

data transfers to and from the CPU and from within FPGA memory units were handled 

by Cray modules. 

By dividing the system controller into three subcomponents, development and 

testing were not only simplified, but the reusability of the design was increased. The 

Data Streamer and Data Collector units only interface with the Main Controller. Al l 

connections between Cray IP cores and the coprocessor are contained within the Main 

Controller. In this way, moving the system to another platform should only involve the 

modification of this subcomponent. 
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-Data Bus-
Token out-
Token in^ 

Figure 10: System Controller 

23 



System Controller: Data Streamer 

The Data Streamer unit is an intelligent parallel to serial converter that keeps the 

PEs supplied with elements of the target sequence at a rate of one character per clock 

cycle. It relies on the Main Controller for parallel T data retrieved from the CPUs 

memory space. Its intelligence comes from its awareness of the data contained within its 

self. Rather than simply shifting whatever is contained within it, the Data Streamer 

tracks where valid and invalid data is within its 32 bp buffer. When less than half the 

buffer is valid, the Data Streamer starts requesting additional data from the Main 

Controller. Should the buffer ever empty fully, the Data Streamer asserts the global 

pause signal, sending the PEs into a suspended state, awaiting new data. 

The Data Streamer was 

created to be as small as 

possible while still providing a 

limited awareness of its own 

state. The simplest way to 

achieve this was with a 64-bit 

(32 bp) buffer and a small 

counter. As the buffer is 

shifted out to the PEs one bp at 

a time, the counter counts 

down. When new data arrives, 

the counter is reset. Logic 

signals for new data when the 

counter drops below the halfway mark. This ensures that the main controller has 

sufficient time to retrieve and route data to the Data Streamer. Also, a second set of logic 

pauses the system whenever the counter is less than 1. The actual logic that determines 

when to send data to the Data Streamer is all contained within the Main Controller. 

System Controller: Data Collector 

The Data Collector is a simple token generator and a circular data buffer system. 

It creates the initial token that is passed between the PEs. It also receives the token from 
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the final PE in the chain and passes it back to the first PE again. It monitors the shared 

reporting bus and control lines that are connected to each of the PEs. The PEs signal as 

they receive the token whether or not they have any results to report and, i f they do, they 

latch this data onto the bus for two clock cycles. In this time, the saver unit buffers the 

data into the next available location 

in its circular buffer. This buffer is 

again smaller than one might 

imagine, due to the small probably 

of many matches occurring at once, 

but also because the Data Collector 

can request one write per clock 

cycle back to the CPU via the Main 

Controller. Therefore, baring bus 

contention between the CPU and 

FPGA, the Data Collector can only 

receive one new result every two 

clock cycles, but can report 2. So buffering is solely to compensate for possible system 

bus contention. For now, the buffer contains 256 locations for data. However, there is 

plenty of room for expansion should this prove to be insufficient. 

Again, the design goal was to keep the subcomponent as simple as possible while 

providing only the minimum necessary functionality. The single bus with an access 

token was used because it could be implemented independent of the number of PEs 

allowing for simple expansion and contraction of the system as needed for new hardware. 

Also, a circular buffer was used to simplify control logic. Though unlikely, it is possible 

for more results to be generated than the buffer can hold, should a prolonged period of 

extemal system bus utilization take place. Given the improbability of this taking place, 

and the further improbability of enough results building up to cause an overflow, it was 

decided that such a condition could simply be marked in the buffer itself to alert the user. 

In future work additional control lines will be added that will disable the reporting of data 

to the Data Collector in the event the Data Collectors buffer fills. This would essentially 

cause each PE to temporarily hold buffered data, greatly reducing the probability of an 
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overflow. In the event that an overflow did occur, it would corrupt less data (only a 

particular PEs buffer), and, further, that data would more than likely be useless anyhow, 

given the meaning of so many matches in such a short span of T. 

System Controller: Main Controller 

The main system controller is a collection of four sub-controllers that are 

responsible for interlinking the Cray modules and the rest of our coprocessor. Each of 

these sub-controllers has distinct tasks and interconnections with the other sub-

controllers. Dividing functionality again reduces complexity of individual units, eases 

debugging and optimization, and allows for greater reusability of code overall. 
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PE Controller 
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interface Collector Controller Data Collector 
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Figure 13: Main Controller 

The first, and simplest, of these four sub-controllers is the register controller. 

This controller is an adaptation of some Cray example code. It creates a series of 

registers that are addressable both by the CPU and by a secondary interface on the 

controller. Further, it arbitrates read and write access to them between these two sources. 

This unit is essential in the communication of basic status information between the CPU 

and the coprocessor. The CPU uses a register in this controller to signal the coprocessor 

that all data is setup in memory, and that the coprocessor is free to begin execution. 
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The most complex sub-controller of all is the PE controller. This controller serves 

a variety of purposes. First, it contains a finite state machine that determines how it 

operates overall. During initialization of the machine, the PE controller is connected to 

the DMA read interface. Once it receives the signal from the register controller, it begins 

to read configuration data from the DMA memory space. It reads in a variety of 

information, including the number of Qs that need to be processed, the length of each Q, 

and the length of T. It also reads in all the Q values from this memory space and 

configures the PEs with them via the proper combination of control signals. 

Additionally, it initializes the Data Steamer and Collector. Throughout the entire 

execution, the PE controller asserts the needed control lines attached to the PE chain. 

Finally, it keeps track of the current position of the T string. Once T has been fully 

passed through the unit, it stops execution and calls for flushes of data out of all the 

relevant data buffers in the system. 

The next sub-controller is the Streamer controller which interlinks the Data 

Streamer and the DMA read interface. After initialization, control of the DMA read 

interface is passed from the PE controller to the Streamer controller. Once this occurs, 

the Streamer controller ensures that the read buffer contained within the Cray DMA 

module fill and stays are full as possible. Whenever a request for another segment of T is 

received from the Data Streamer, this controller presents it with one from the DMA unit. 

It waits for the Data Streamer to latch the data into its buffer. The Streamer controller 

then waits for the Data Streamer to again signal for another segment. 

The final sub-controller is the Collector controller which connects the Data 

Collector with the DMA write interface provided by Cray. Whenever the Data Collector 

has data in its buffer, it signals the Collector controller. Whenever receiving this signal, 

the Collector controller ensures that the DMA write interface is ready and, when it is, 

writes data from the Data Collector back into CPU memory space. This unit is also 

partially responsible for flushing the data from the systems' many buffers. It signals the 

Data Collector to perform a flush itself. It then writes all the data in the Data Collectors' 

buffer to the DMA write interface. Finally, it signals the DMA write interface to flush all 

data buffered within it to the CPU memory space. It then signals the PE controller that 

all flushes have completed. 
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Simulation and Verification 

While designing the above described modules, a series of simulations and tests 

were used to ensure that at all stages of development the modules were working as 

intended, both within themselves and when interacting with other modules. In this way, 

top level testing, which is by far the most expensive in terms of time and effort, was 

minimized while overall confidence in the design was maximized. The following 5 steps 

formed the verification plan of the project: 

1) Unit testing: whenever a module was created or modified, it was tested 

in isolation from all other modules. Simulated input tested either all 

classes of input or all classes of inputs whose results were last 

modified. Once the unit was working properly, testing finished. 

2) Interaction testing: all interaction between modules were simulated 

thoroughly, two modules at a time. In this way, most glitches between 

output of one module and the input of another were captured and 

corrected without the added complexity of simulating other modules as 

well. This step usually resulted in additional unit testing of modules. 

3) Data path testing: once all modules along a given data path were 

completed, for instance the PE controller, streamer controller, and data 

streamer, the modules were simulated together to ensure proper 

functionality from start to finish. In most cases, these simulations 

resulted in few errors due to the extensive previous testing. 

4) Full unit testing: once all custom produced modules were completed 

and all data path testing yielded no errors, all the custom designed 

modules were simulated together. Cray provided module were not 

simulated, but rather emulated by input into the simulation. In this way 

the hardware was tested independent of Cray hardware. 

5) Full system testing: in this case, all the modules that would be present 

in the FPGA were simulated to ensure that the Cray modules interfaced 

correctly with the custom written modules. This testing yielded only 

two errors over the course of the full development, primarily due to the 

extensive testing done prior to this final test. 

28 



CHAPTER 4 

RESULTS AND PERFORMANCE ANALYSIS 

Synthesis Results 

After suceessful full system simulation, all the modules were translated from code 

into an FPGA configuration file, this process is referred to as hardware synthesis. This is 

a critical step in the design process, as the results of synthesis will tell both how fast the 

coprocessor will be able to run and how many processing elements the FPGA will 

accommodate at a time. The following table summarizes the synthesis results for all 

units outside the processing element chain. 

Unit Name Clock (MHz) Slices 

Controller 240 311 

-Collector Controller 292 46 

-Data Collector 274 57 

-Data Streamer 333 44 

-PE Controller 240 171 

-Streamer Controller 292 60 

Cray Core: dma i f 190 727 

Cray Core: rt client 270 468 

Cray Core: reg i f 431 139 

Table 3: Nonrecurring Module Synthesis Results 

The total FPGA logic capacity usage by nonrecurring modules is estimated to be 

1645 slices in addition to the space taken by the rt core IP module. This is roughly 8% 

of the space on the FPGAs available on the Springfield X D l , which are Virtex2Pro50 

29 



chips with 23616 logic slices each. This leaves well over 20000 slices for occupation by 

processing elements. Note that the total number of slices taken by the controller is in fact 

less than the sum of slices taken by its components. This is due to optimizations built 

into the synthesizer that are working between components to remove redundant logic. 

Results of PE synthesis are listed below. 

Unit Name Clock (MHz) Slices 

Processing Element 257 305 

-Dataflow Unit 344 119 

-Popcount Unit 306 65 

-Saver Unit 258 119 

Table 4: Processing Elenient Synthesis Results 

From these results each PE will take 305 slices. Note that in this instance, the 

sum of the slices used by the subcomponents is actually 2 slices less than the overall unit. 

This is caused by additional overhead needed for connecting the subcomponents together. 

For a safer estimate, logic usage is increased to 310 slices to allow for possible overhead, 

and thus the predicted capacity for a single FPGA will be approximately 64 processing 

elements. This number is likely to go up to 80 or even 100 PEs as further optimization of 

the PEs themselves takes place, as well as optimizations of other hardware present in the 

design. 

During the course of synthesis itself, a number of warnings were observed. Most 

frequent among these were warnings about signals not being connected in component 

blocks. In all cases, the signals were found to be connected and, as no errors were found 

to be caused by this in the hardware, it is assumed that this waming is simply the 

synthesizer being overly cautious. Also, a number of warnings were observed reporting 

that signals had identical functionality. In these cases, the synthesizer removed the 

redundant signal automatically. Finally, a few errors were encountered that referred to 

specific register implementations within the design and possible optimizations. For all 

instances in the original SMART code, it was determined that these optimizations were 

not appropriate with regard to preserving functionality. 
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Figure 14: Linear Scalability 

Also, synthesis reveals the scalability of the design. The chart below shows that 

the FPGA logic usage of the SMART coprocessor scales linearly for all explicitly 

synthesized configurations. 

Once hardware was created, FPGA trials began and immediately a problem was 

uncovered. While the input test data should only have resulted in 5 matches being found, 

the coprocessor was reporting hundreds of matches. It was found that the number of 

erroneous matches reported scaled linearly with the input data and, likewise, the run time 

of the coprocessor. It was determined that the error was being caused by a signal line to 

the controllers' collector unit that was shared amongst all the processing elements. The 

synthesis of such a shared line created erroneous functionality of the unit without 

generation of an error or waming during synthesis. This shared line was replaced by a 

small amount of logic in the top level of the design that still scales linearly, and 

subsequently functionality in hardware was verified for 1,5, 10, and 60 PEs (see Figure 

14). 

Performance 

Prior to hardware testing, the following predictions about the SMART 

coprocessors' real world performance were made: first that the coprocessor will be able 
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to run at least 180MHz, possibly faster; second, that the SMART coprocessor will 

contain at least 60 processing elements. After implementation, the target of 180MHz was 

indeed attained. Currently the largest version of the SMART coprocessor contains 

50PEs. With the current hardware code as many as 55 may be attainable, however with 

depredated clock performance. With additional optimization of the PEs it should be 

possible to attain 60 or even more PEs in the final design. 

It was detennined that a reasonable performance metric number of raw character 

comparisons per second. With this metric, the SMART coprocessor was predicted to 

achieve a theoretical performance rating of 345.6 billion comparisons per second and 

currently has achieved 303.2 billion. These numbers are obviously greater than actual 

performance when taking into consideration file EO time, configuration overhead, and 

other factors. However, through intelligent software design, these effects can be largely 

minimized for large data inputs. 

The following performance measures have been calculated. This set of measures 

fully expresses the power and advantage of reconfigurable computing. These 

performance metrics include comparisons per second, comparisons per clock cycle, 

comparisons per second per watt, and finally comparisons per second per dollar. For 

information regarding the development of these statistics, please refer to appendix A. 

First presented is a measure of raw performance, comparisons per second (see figure 15). 

A reasonable measure of efficiency is Q-comparisons per clock cycle. As 

systems that get more done per clock cycle they tend to use less power, this measure will 

add insight to the next performance measure (see figure 16). 

The next metric presented is comparisons per second per watt. This is an 

excellent measure of efficiency and can be a good predictor of cost of operation for a 

system. The wattage of processing units as well as comparisons per second per watt are 

noted on the chart below [ 2 8 1 ' [ 2 9 ] (see figure 17). 

A final comparison metric presented here is one of economics. Present below is 

the Q-comparisons per second per thousand dollars of each of the seven solutions 

presented so far. The dollar figure used in this equation is based upon the cost of the 

portion of the system used. For the most part, this is simply a division of the full system 

cost by the percentage of the system utilized. However in the case of the SMART 
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coprocessor, a more fair measure is the percentage of the XDl cost, if the X D l were 

totally unequipped with FPGAs, plus the cost of a single FPGA expansion board. 

Therefore, this measure was estimated (see figure 18). 

The SMART coprocessor shows itself to be extremely competitive, especially 

when considering metrics involving economic and efficiency factors. 
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CHAPTER 5 

FUTURE WORK 

Optimizations 

With any system of this size, there are invariably optimizations that can and 

should be made. In implementing the initial design, the focus was on achieving a stable, 

working coprocessor. Now that this has been accomplished, optimization can begin. 

Most of the optimization effort will focus on the PEs, as any savings in terms of logical 

area will be multiplied along the enter PE chain. The following optimizations of the PE 

are planned in the near future: 

Performance optimization of the Popcount unit could reduce its logical footprint 

by as much as 50%. The optimization would be accomplished by collapsing the 6 

pipeline stages into 3, eliminating the intermediary 32x2 and 8x2 bit buffers. This 

modification would reduce the maximum clock speed of the unit, however 

experimentation has shown that it will most likely remain well over 200MHz 

Performance optimization of the Data Flow unit could help reduce its logical 

requirements tremendously. This would be done primarily by using a small, single line 

block ram rather than a register to store the Q value. As this value changes very little, the 

extra power granted by a register is unused. Additionally, it may be possible to eliminate 

the T buffer by converting the top most level of the Popcount unit into a shifting register 

itself. Through these two optimizations, it is possible that the dataflow unit could be 

reduced in size by as much as 90%. 

Finally, a design change may make it possible to remove the 32-bit counter from 

the Saver unit. This counter constitutes a large percentage of the logical requirement of 

this unit. Rather than have every PE contain a counter, it may be possible to move the 
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counter to the system controller and stream the counter value to the PEs along with 

control signals and T characters. 

Outside of the PE, there are a few optimizations that are significant enough to be 

compelling. The first of these is the elimination of the write interface and associated 

logic of the Cray dma if. This could increase overall system clock speed and free up a 

significant number of resources. To do this, the interface provided by the rt core would 

be used directly when writing data back to the CPU, as write volume is lower and timing 

is less critical. 

Also, functionality to implement a CPU interrupt already exits within the FPGA 

cores. By using this to signal completion of execution, rather than a status bit, the CPU 

would be free to perform other tasks while waiting for the SMART coprocessor to 

complete its task. 

Functional Improvements and Additions 

Most of the functional improvements planned involve the processing elements. 

First among these is the implementation of a mask in the PE that will allow Qs of lengths 

shorter than 32bp to be searched for. This is a simple matter of adding another stage to 

the top of the pipeline that ANDs together a mask and the result of the Q-to-T character 

comparison. 

Another improvement would be the addition of additional control lines between 

the PEs and the data collector that would allow the data collector to deny the PEs access 

to the reporting bus. In this way, the data collector could prevent overflows in its buffer 

should it be unable to report results for an extended period of time. This may prove to be 

more costly than its value to the overall system however, due to the small number of 

matches reported during a run. 

Another valuable improvement would be the addition of an ASCII to 2-bit binary 

encoder. This unit would compress incoming 8 character ASCII strings into 2-bit binary 

coded strings. This would remove a significant processing burden from the CPU in such 

a way as to be hardly noticeable, so long as transmission of data from the CPU to the 

FPGA can be sustained at this higher rate. 
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Finally, there are eurrently 64 bits in the main system status register, 32 that are 

proeessor read only and 32 that are FPGA read only. At present, only two of these are 

used to signal the start and end of computation. Additional functionality could be added 

to the remaining bits, including information such as coprocessor present state, buffer 

overflows, DMAs current location in memory, etc. This information could lead to a 

variety of other improvements, such as the ability to begin processing before all data is 

loaded into memory. 
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CHAPTER 6 

CONCLUSION 

SAGE processing has for many years been expanding in its capacity, detail, and 

scope. Large depositories of SAGE data have now been collected for a wide number of 

organisms, and wide-scale use of SAGE data is now assured. SMART is presented as a 

computational sophisticated solution. It should enable greater, more detailed analysis of 

SAGE data. SMART is implemented on a reconfigurable computing system to take 

advantage of the massive amount of parallelism inherent in SAGE data analysis. 

Careful design ensures that SMART will be able to expand to meet future 

computational needs as well. Additionally, SMARTs design allows for greater flexibility 

when compared to other solutions and lends itself to other uses outside of SAGE data 

analysis. Additional functionality can be added with relative ease and, in doing so, future 

developers should only need to verify the PE elements themselves, rather than the full 

system. Addition of functionality should add only a negligible amount of resource usage 

and latency. Additionally, optimization of SMART is greatly eased by its highly 

repetitive structure. 

Most impressive is the efficiency of the SMART processor. Not only does it 

match performance with the most advanced altematives, it does so while using less 

power, at a lower clock cycle, on hardware that costs far less than the altematives. The 

trade off for this perfonnance is a long and difficult development cycle. However, as 

reconfigurable computing becomes more wide-spread, further work on development tools 

will ease these problems to the point where development is little more difficult than 

traditional software development. 

Overall, the SMART coprocessor will be a useful tool in the analysis of genomic 

data, especially as databases of such data increase and searches become increasingly 
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more complex. Most pointedly, the flexibility, scalability, efficiency, and power of 

reconfigurable computing have been made clear. As FPGAs continue to grow in size and 

increase in speed, the power of this form of computing will continue to grow. 
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APPENDIX A 

NOTES ON STATISTICS 
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Notes on Comparisons Per Second 

Comparisons per second represents a raw number of character comparisons. For 

each Q string comparison to a substring of T, the number of comparisons per second 

generated is equal to the length of Q. For SAGESPY, Q is typically of length 21, while 

for SMART, Q is typically of length 32. It should be noted that both systems allow for 

variable length Q's, however these typical lengths were used for the generation of the 

relevant statistics. 

Below, in tabular form, is a listing of comparisons per second: 

SAGESPY, Cray SVI - 1 Billion 
SAGESPY, Cray X I - 3.7 Billion 
SAGESPY, Intel Xeon - 5.9 Billion 
SMART, Cray X D l w/ Virtex2P - 288 Billion 
SMART, Cray X D l w/ Virtex4 (est) - 2336 Billion 

Notes on Clock Speed 

Clock speeds presented for the Virtex4 are an estimate, as actual hardware was 

unavailable. 

Below, in tabular form, is a listing of clock speeds 

Cray SVI -450MHz 
Cray X I - 800MHz 
Intel Xeon - 2.2GHz 
Virtex2P- I80MHz 
Virtex4 (est) - 365MHz 

Notes on Wattages 

Wattages used for statistical generation include only the wattage of the actual 

processor involved in the computation. This was chosen for several reasons. First, 

determination of the wattage of a cluster is very difficult and would most likely require 

the installation of special monitoring equipment, and would result in machine down time. 

Second, including wattages for the full system is in many cases unfair, as some systems 

have high performance interconnects built into them, which consume large amounts of 

power, but are not used in computation. Likewise, FPGA systems have CPUs that 
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consume power but are only involved tangentially in computation. Take all these factors 

into account is difficult, i f not impossible, so the best solution left was to simply use 

processing unit power comsumption. 

Below, in tabular form, are the wattages used for each system 

Cray SVI-222W 
Cray X I - 203W 
Intel Xeon - 60W 
Virtex2P (est) - 15W 
Virtex4 (est) - 25W 

Notes on Cost 

Costs are generalized system prices for systems located at the Ohio 

Supercomputer Center. It was decided not to attempt to adjust these costs for inflation, as 

no known depreciation method seemed a fair approach. Further, leaving the original 

prices shows the advancement of computation with time, which is still a beneficial 

metric. 

As with wattage, there was difficulty in deciding how to measure cost. As the 

cost of the individual processor was not available in many instances, it was decided that 

the best method available to be to take into account the full system price, divided by the 

number of processors in the system. Note that the Intel Xeon cost is based upon an 

estimate cost of a single processor workstation. Also, note that the cost per node of the 

X D l is greater than simple division would suggest. This is due to the fact that only 6 of 

18 nodes are equipped with FGPAs, and the cost has been adjusted to account for this. 

Also, the price of the Virtex4 node is an estimate base upon the relative cost of the 

Virtex2P chips and the Virtex4 chips. 

Below, in tabular form, are the number of processors in each system as well as a 

ballpark cost of each system. 

Cray SVI - 16, ~$1.5 Million, per node, approx $100K 
Cray X I - 12, ~$2 Million, per node, approx $150K 
Intel Xeon - 1,~$1 OK 
Cray X D l w/ Virtex2P - 18, ~$200K, per FPGA node, approx $15K 
Cray X D l w/ Virtex4 (est) - per FPGA node, approx $17K 
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