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ABSTRACT 

Tremendous efforts have been devoted to stochastic games and control problems 

because of their wide applications in practice. A traditional approach for solving 

stochastic problems is to theoretically analyze the differential equations, which 

describe the dynamics of the underlying systems. However, the uncertainty that the 

environment builds into the system makes solving for analytical solutions impractical. 

Based on the deficiency of standard methods, in this thesis, we apply the Markov 

Chain Approximation method, developed by Kushner, to numerically solve for the 

value function and optimal strategies of control problems, and extended it to solve 

zero-sum stochastic games. In addition, we develop a stochastic control software 

package to assist in the computation of solution for stochastic problems, as well as 

Markov Decision Processes. Numerical examples in MDPs are given to demonstrate 

the use of our package. A one-to-one stochastic Pursuit-Evasion game is provided as 

an application of the Markov Chain Approximation method. The results have been 

extended to multiple stochastic PE game by using a decentralized approach. 
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CHAPTER 1 

INTRODUCTION 

1.1 Stochastic Games 

Game theory is a methodology for the study of competitive interaction among 

players with the relationship ranging between conflict and cooperation. Dynamic 

games are used to model competitive processes evolving over time. Stochastic 

games are dynamic games with stochastic transitions, where stochastic transitions 

are used to model or to formalize inherent uncertainty. They enjoy rich and mature 

mathematical theories [2], [3] and have a wide range of applications including 

economics, military, population and evolutionary biology, queuing theory and 

performance evaluation. 

Stochastic games concentrate on decision situations where at different time points 

the players have to make a choice. The joint choices of all the players together 

have two applications. First, each player receives some reward, or cost when this 

reward is negative. Second, the underlying dynamic system moves on along its 

trajectory. However, the system here plays a role in the sense that the transition is 

the outcome of a random experiment, which might be dependent on the choices the 
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players made. The dynamic system of a stochastic game is defined in term of a 

state space and the transitions are defined as moves from one state to another. In 

any of the states, players have their own action sets, which might be state dependent. 

When the system arrives at a state, each of the players has to choose an action from 

his available action set. In the course of a stochastic game being played, each of 

the players is rewarded by a series of immediate payoffs at different decision 

moments. 

Stochastic games were first defined by L.S. Shapley [1], who studied simple 

zero-sum stochastic games with probabilistic moves and real pay-off. He proved 

that the value functions exist for such games and both players have stationary 

optimal strategies. Shapley also discovered an algorithm by which it is possible to 

find both the value of the game and the optimal strategies. The algorithm is nearly 

identical to value iteration for Markov Decision Processes. The other algorithm for 

solving the simple stochastic games, which is an extension of policy iteration, was 

introduced by Pollatsched and Avi-Itzhak [11]. Later, stochastic games, which 

differ from Shapley games in that they can be infinite, have been studied. They are 

called stochastic games with limiting mean pay-off. In 1981, J. F. Mertens and A. 

Neyman proved the existence of the value of such a game and of stationary optimal 

strategies under a hypothesis of ergodicity of the Markov chain [4]. These results 

have been generalized to cases where restrictions on the number of states and 

elementary strategies have been removed and to the case of other forms of pay-off [5, 

6]. Recent results in zero-sum stochastic games include studying in zero-sum 
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stochastic games with borel state spaces [31] and zero-sum ergodic stochastic games 

[32, 33]. 

We wil l be concerned here with the computation of zero-sum stochastic games. 

For a deterministic game, one can apply dynamic programming techniques to obtain 

a solution by computing the appropriate value function. However, this method is 

only tractable for very simple games. For reasonably complex games such as chess, 

one must typically apply heuristic techniques and receding horizon approximations 

in order to reduce the computational complexity. For stochastic games, the value 

function is defmed over the space of all possible probability distributions over the 

state space. Thus, the problem is much more computationally intensive. Since the 

dynamics of stochastic games are always described by stochastic differential 

equations (SDE), it was tempting to try to solve for or approximate the various cost 

functions and optimal strategies by dealing directly with the appropriate differential 

equation and numerically approximating their solution. However, a basic 

impediment is that the differential equations often have only a theoretical meaning 

which could be impracticable, and standard methods of numerical analysis might not 

be usable to prove convergence of the numerical methods. For many problems of 

interest, one cannot even write down a differential equation explicitly. During the 

recent past, more analytical methods, such as applying reinforcement learning to 

stochastic games [34, 35], have been studied but even then it seems that many 

important classes of problems are still not covered. In 1977, Kushner suggested the 

method of Markov Chain Approximation to approach the numerical solution of 
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stochastic control problems [7]. This method applies a Markov chain 

approximation to continuous time, continuous state stochastic control problems by 

renormalizing finite different forms as proper Markov chain transition probabilities. 

An important advantage of this method is that the Markov chain approximation 

facilitates convergence proofs for the numerical methods in terms of probabilistic 

arguments. This method is further advanced by Kushner [8], and by Kushner and 

Dupuis [9], with the special attention to convergence proofs. This method has been 

shown to be robust and to converge under broad conditions, and it is a good 

algorithm for solving the numerical problems, i f the dimension is not too high. 

1.2 Pursuit-Evasion Games and Motivation 

Pursuit-Evasion (PE) games vary in complexity ranging from pursuers capturing 

evaders, or following moving target, to avoiding stationary targets and navigating. 

The games have received serious attention from game theorists for decades because 

of their importance in tactical air combat and other military applications [10]. 

The most commonly used techniques adapted to deal with PE games include the 

classical calculus of optimal control technique, dynamic programming, reinforced 

machine learning and game theory. Traditional game theory has focused on games 

with discrete moves. However, in the 1950s, Isaacs [13] utilized game theory in 

modeling and analyzing pursuit-evasion situations such as aerial combat, where 

moves unfold continuously over time, and control system can vary continuously in 

the strategies they implement. Isaacs had two basic insights. First, 
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Pursuit-Evasion games do require game theory rather than simple optimality theory. 

Second, the continuous nature of Pursuit-Evasion games can be modeled using 

differential equations that specify how state conditions change incrementally as a 

function of players' strategies and previous state, such that the moves become 

continuous trajectories through a state-space. Afterward, differential game theory 

has developed as a tool for analyzing the structure and complexity of PE games. 

Differential PE games are defined by a set of controls (the actions of each player), a 

set of dynamics (mapping from the control variables onto the state variables of the 

game), and a set of termination conditions (state conditions that determine when 

successful capture or evasion happens). For example, Berkovitz [12] analyzed a 

classic case, in which a pursuer and an evader move with constant speed in a plane 

and control the direction of their velocity vector. 

Though differential theory may prove useful in analyzing PE games, generally 

speaking, PE games are characterized by various dimensions of complexity: the 

number of players (from the two-player case to the multi-player case), the number of 

moves (from discrete action space to continuous action space), the continuity of the 

strategy space (from discrete state space to continuous state space), the structure of 

value function (from zero-sum games to non zero-sum games) and the information 

structure (from games with perfect information to games with imperfect information). 

These difficulties indicate that differential PE games are complicated to analyze even 

under the best circumstances, and that the introduction of realistic complexity makes 

most of them numerically unfeasible. 
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To avoid these complexities, differential game theory usually assumes that the PE 

game is one of perfect information between two players with fixed and 

pre-determined roles, deterministic dynamics, constant speeds and a zero-sum payoff 

structure. The case of two-player zero-sum PE games has been solved by 

computing the value function of the game by means of the Isaacs equation [11]. 

Mathematically proficient researchers can relax one or two of these assumptions at a 

time to obtain results for special and simplified cases. Li and Cruz proposed a 

hierarchical approach and a rigorous approach for solving multiple players PE games 

[14]. Hepanha, Kim, and Sastry introduced a probabilistic framework of PE game 

simulation where a swarm of autonomous pursuers are chasing an evader and the 

objective is to come up with a policy that will maximize the probability of finding 

the evader in finite time [15]. However, relaxing all the assumptions at once makes 

the game hopelessly complex. A recent complexity-theoretic analysis of 

differential PE games by Reif and Tate [16] illustrates the difficulties of designing a 

control system for robots and autonomous vehicles playing such games. 

Therefore, although differential game theory provides a framework for describing 

the important features of PE games, and a set of normative results concerning 

optimal strategies in simple cases, it cannot generally provide optimal strategies for 

practically PE problems, even though the solution can be shown theoretically to exist 

and to be unique. It motivates us to apply the Markov Chain Approximation 

method to stochastic PE games, to numerically compute the value functions and 

optimal strategies. 
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1.3 Thesis Organization 

After this introductory chapter, this thesis is divided into 5 more chapters. In 

Chapter 2, we formulate stochastic control problem and stochastic games in SDE. 

We provide Ito's Formula and the difFerential operator, which gives a theoretical 

approach to solve the SDE. Then we describe the basic idea of Markov chain 

approximation method and derive the formula for optimal control problems. We 

extend it to two-player zero-sum stochastic differential games, in which it is proved 

that the value exists and the numerical methods converges to this value. 

Chapter 3 focuses on the software package which we construct to solve general 

MDPs problems. We provide algorithms for solving various classes of MDPs, 

including value iteration for discrete state space models, and Bellman Equation 

collocation methods for continuous state space models. 

In Chapter 4, we introduce the stochastic control software package which we 

develop to solve general MDPs, stochastic control and zero-sum stochastic games. 

Description of the functions is provided and the use of this package is explained in 

details. 

In Chapter 5, first we illustrate the use of our stochastic control software package 

by examples in the field of economics. Then we give a model of a one-to-one PE 

game and a model of multiple players PE game. We apply the results of Chapter 2 

and functions in our software packages to these models. Numerical solutions are 

computed and discussed. 
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In the last chapter, we summarize the resuits obtained in the previous chapters and 

give some suggestions on future research directions. 

1.4 Thesis Contributions 

Firstly, we develop a method for the computation of zero-sum stochastic games. 

We extend the Markov Chain Approximation method, which is initially developed to 

approximate stochastic control problems by Markov chains, to zero-sum stochastic 

games. We apply the method to zero-sum stochastic Pursuit-Evasion games, and 

the simulation results demonstrate the success of the application. 

Secondly, we develop a stochastic software package, including functions written 

as MATLAB files. The package is capable of solving general Markov Decision 

Processes problems, for both discrete and continuous state space. We use this 

package to numerically solve MDPs problems more conveniently and systematically. 
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CHAPTER 2 

M A R K O V CHAIN APPROXIMATION F O R ZERO-SUM 

STOCHASTIC D I F F E R E N T I A L G A M E S 

In this chapter, we first formulate two-player zero-sum stochastic Pursuit-Evasion 

games. We provide necessary mathematic background used to formulate and 

analyze stochastic problems theoretically. Then we introduce the Markov chain 

approximation method which numerically computes the value function and optimal 

strategies of stochastic game problems. The method is first derived to solve 

stochastic optimal control problems and then extended to solve two-player zero-sum 

stochastic games. 

2.1 Problem Formulation 

We consider a two-player, zero-sum stochastic Pursuit-Evasion game described by 

where w stands for standard wiener process, and »(•) and v(-) are the control of 

pursuer and evader respectively . The objective function of the game can be 

formulated as 

dx(t) = f (x(t), u(t), v(t), t)dt + cT{x{t))dw{t) (2-1) 

(2-2) 
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The value of the objective function is the expected value on the space of all random 

processes x starting at x(0). In a stochastic zero-sum PE game, pursuer (evader) 

applies the control of M(-)( v (-)) t 0 minimize (maximize) the objective function. 

I f the value function exists, the value of the game is defined as 

In the rest of the thesis, we assume that each player has access to perfect state 

information. The existence of value functions for general two-player, zero-sum 

stochastic differential games has been proved by W. H. Fleming and P. E. Souganidis 

[17]. Since a closed-form solution to the optimal strategies is not available, our 

objective is to numerically solve the problem and obtain the optimal strategies for 

both of the pursuer and the evader. 

2.2 Stochastic Control Problems 

2.2.1 Stochastic Differential Equation 

One of the most important models for stochastic systems is the stochastic 

differential equation (SDE) of the form 

where x(-) is an W -valued process with continuous sample paths, w(-) is an 

-valued process which serves as a "driving noise", / ( • ) and c7(-) are bounded 

measurable functions mapping E" into M" and into the space of real nxk 

matrices, respectively. The above equation can also be written in the symbolic 

V{t,x{t)) = min max{J{x(t),t,u,v)} (2-3) 

(2-4) 
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form 

dxit) = f {x{t))dt + a{x{t))dw{t) (2-5) 

We will consider stochastic integrals with respect to the Wiener process. The 

classic probabilistic tool used to analyze the solution to (2-4) is the theory of 

stochastic differential equations due to K. Ito [18]. The resulting stochastic integral 

and related theory of SDE provide a very convenient family of models that are 

Markovian and possess continuous sample paths. 

Let x(-) be the solution to the above SDE. The link between the process x^) 

and certain second order partial differential equations is provided by Ito's formula 

and the differential operator [18]. Let A{x) = a{x)a{x)1 =ialj{x)\, i,j-\,...,n, 

and for any twice continuously differentiable real value function g on K " , define 

the differential operator as 

( f g ) (*) = g j (*)/(*) + - tr\gm {x)A{x)\. (2-6) 

where 

(2-7) 

(2-8) 

( x M (*)] = £ (*) (2-9) 
i] 

Then Ito's formula states that 

(2-10) 
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2.2.2 Formulation of Stochastic Control Problem 

A stochastic control problem is generally described in the form of SDE 

dx{t) = f{x, u)dt + a{x)dw (2-11) 

where *(•),/(•)>^O) are defined as above, and «(•) is the control that takes values 

in a compact set U . It is a pure Markov control i f the control can be written as a 

function of the current state and time. In the remainder of this thesis, we wil l 

consider pure Markov controls that depend only on the state. 

The objective function is defined as 

J{x, u) = E"x[[ G{x{s), u{s))ds + e(x(r) ) ] (2-12) 
J 0 

where r = mf{t: x(t) e dS}, S is the terminal set, and £*(•) is the expectation of 

the expression with respect to u and x. The optimal value of this control 

problem is defined as 

V(x) = mfJ(x,u) (2-13) 
ueU 

We now apply a formal dynamic programming argument to derive the partial 

differential equation (PDE) which is satisfied by the optimal value function V(-). 

Refer to [20, 21] for more development details. Suppose that V{-) is as smooth as 

necessary for the following calculations to be valid and there is an optimal control 

«*(•) which is pure Markov. Let A > 0 and let a be any value in U. Define 

u{-) to be the composite control policy that uses the feedback control «*(•) for 

/ > A and uses the control identically equal to a for / < A . Define the process 

x{-) to be the process which corresponds to use of the control M(-) . Let r be the 

time that terminal set is reached under this control policy. Let x(-) and r be the 
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solution and escape time under the optimal control w*(-). By definition, we have 

V(x) = Ei [ f ' G{x{s\ u ix(s)))ds + Q(X(T))] (2-14) 
J 0 

The optimality of F ( - ) implies 

V{x) < E"x [ G{x{s), u{x{s)))ds + e(x(r))] 

= El [ ' G{x{s\a)ds + e ( x ( r ) ) / { r < 4 ) ] (2-15) 

+ E': [ £ Gix(s), uix(S)))ds + Q{xiT))]IlT>A) 

By the Markov property, the definition of «(•), and the optimality of M*( ) , the 

inequality above may be rewritten as 

Fix) < K[ j " ' G i x ^ s ) , a ) d s + Q(xiT))I{T<A) + F ( x ( A ) ) / { T , A ) ] (2-16) 

Therefore 

j E: [V{X{A)) -Vix)+ j ' G(x{s),a)ds] > j E^r, A, u)I{t<A) (2-17) 

where 

h(T,A,u) = V(x(A))- \ A G{x{s),a)ds-Qix{T)) (2-18) 

is bounded uniformly in wand A. I f we assume the condition .Pr" (r < A} / A - > 0 

as A -> 0, then the right hand side of the inequality (2-15) tends to zero as A -» 0. 

Therefore, combining with (2-6), (2-10) in Ito's theorem and taking this limit yields, 

for any value of « i n t / , 

TaV{x) + G(x,a)>0. (2-19) 

Let us replace a by u'{x(s)) on [0 ,A) , and that w'(-) is continuous at x. 

Then that analogue of (2-19) holds with the inequality replaced by equality. We 

then formally obtain the equation 

Y"'ix)V{x) + Gix,u{x)) = 0 (2-20) 
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It follows that 

'mf[TaV{x) + G(x,a)] = 0, xeS0 

(2-21) 
V(x) = Q(x), xedS 

2.3 Markov Chain Approximation Method 

2,3.1 Controlled Markov Chain 

Markov chain and Markov decision processes (MDPs) are special cases of 

two-player zero-sum stochastic games. A Markov chain describes the dynamics of 

the states of a stochastic game where each layer has a single action in each state. 

Markov decision processes are stochastic games with a single player. A particular 

MDPs is defined by its state and action sets and by the one-step dynamics of the 

system. Let U be the set of possible controls with generic variable a. The 

transition probabilities are written as p{x'\x,a) or p"x. , which means the 

probability that the next state is x' when the current state is x and action a is 

taken. The cost is written as r(x,a) which represents the cost received at this 

time period when the current state is x and action a is taken.. Let 

u — (iiy, Mj , . . . ) denote the sequence of control actions taken at time 0,1,.... We say 

that u is admissible i f the Markov property continues to hold under use of u 

P{xM =x'\xi,ul,i<t} = P{xl+[ =x'\xl,ut} = p{x'\x,u) (2-22) 

I f there is a function «(•) such that M, = M ( X ( ) , then we refer to the control as a 

feedback or pure Markov policy. 
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Classified by the form of objective functions, there are two main types of 

controlled Markov chain models. 

(1) Discounted cost 

Suppose that y>0. For an admissible control sequence M , the objective 

function is defined in the form 

Jix,u) = E:fjr'r(xl,ul) (2-23) 
(=0 

Let F(x)denote the infimum of the objective function J{x,ii) over all 

admissible control sequences and defmed as 

V{x)=M%Y<r,r{xt,uf) (2-24) 

The value function V{x) is finite for each x due to the discounting and 

satisfies the dynamic programming 

V{x) = min [rEa

xV{x') + r{x, a)] (2-25) 

(2) Control to a terminal Set 

When the discounted factor is absent, let S be the terminal set and dS 

denote the boundary of S. A controlled process stops once the state 

reaches 5 . The objective function is defined as 

J(x, u) = E l ! f j r{x,,«,) + E"xq{xr) (2-26) 

Let us define the optimal value function V{x)-'miJ{x,u), where the 

infimum is over all admissible control sequences. The dynamic 

programming equation for the objective function is 
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lM[E"V{x') + rix,a)], xeS-dS 
V(x) = \**' (2-27) 

[qix), xedS 

2.3.2 Markov Chain Approximation Method 

For standard control problems, we apply Ito's formula to derive the partial 

differential equations for the optimal cost. These partial differential equations are 

generally known as Bellman equations (PDE) or dynamic programming equations. 

Their forms are very suggestive of good numerical methods. However, the 

equations themselves have only a theoretical meaning, and little is known 

concerning the existence and uniqueness of the solution. Also, the operator in Ito's 

formula is often difficult to calculate. Based on these obstacles, we introduce the 

Markov chain approximation (MCA) method developed by Kushner. This MCA 

method can be applied to a very broad class of stochastic and deterministic control 

problems. 

The MCA method suggests that we approximate the original problem with a 

Markov chain on a fmite state space, which is a discretization of the original state 

space of the underlying problem, and associated objective function for which the 

desired computation can be carried out. The approximation Markov chain is 

chosen such that certain local properties of the approximation chain are similar to 

those of the original controlled process. Then the objective function for the 

Markov chain model which approximates the objective function for the original 

model is constructed. This procedure can be used almost automatically, in that 

there are standard methods to construct the chains and objective functions [8]. 
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And since there are many methods to solve the Markov chain problems, the 

computation for the chosen Markov chain is accessible at the level of application. 

The approximating chain is characterized by a parameter, which is analogous to a 

finite difference interval or to a finite element size in classical numerical analysis. 

When the parameter goes to zero, the local properties of the chain are more and more 

similar to those of the original process. It can be proved that the sequence of 

optimal value functions for the sequence of approximating chains converges to that 

for the original process as the approximation parameter goes to zero under broad 

conditions. We omit the proof here because this thesis's emphasis lies on the 

application. Refer to [8, 9, 27] for details. 

The specific method of MCA to be discussed and used later in the thesis is called 

the finite difference method. We use it to construct the locally consistent 

approximating Markov chains. It turns out that when a carefully chosen finite 

difference approximation is applied to the differential operator in Ito's formula, the 

coefficients of the resulting discrete equation can serve as the desired transition 

probabilities and interpolation interval. 

We work with the controlled process x{-) satisfying (2-11) with objective 

function defined in (2-12). The optimal value function is defined as (2-13). 

Define the matrix 

A{x) = cr{x)c7(xy ={aiJ(x)}, i,J = l,...,n. 
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The differential operator r a of (2-24) is defined as: 

r = ^ f i ( x , a ) - ^ + \ t a i J i x ) - ^ — (2-28) 
M ox, 2,. y = 1 dxfiXj 

By (2-21), we have the following partial differential equation 

inf {ruMV{x, u) + G(x, M(JC))1 = 0 (2-29) 

Let e, denote the unit vector in the i -th coordinate direction and let R"h denote 

the uniform h-grid on K"; i.e. R"h ={x:x = h^ijelmi •.mj =0,±],±2,...}. Here, 

we use a uniform grid to demonstrate the construction process. However, such a 

uniform grid is not necessary. Let = R"h denote the state space of the 

approximating Markov chain. We use Vh(X,u) to denote the finite difference 

approximation to (2-13) and substitute suitable finite difference approximations for 

the derivatives at each state x. As we mentioned, the coefficients in the resulting 

fmite difference equation can serve as the transition probabilities and interpolation 

interval automatically. 

The Diagonal Case 

First we apply the method on the case where alj(x) = 0 for i&j. 

For the first derivatives, we use one sided approximation 

l l f i x + e f t - f i x W h i f y ; ( x , « ) > o l 
fx (*) - H r (2-30) 

' [[fW-fix-eM'h ifU*,<*)«>] 

For the second derivative, we use the standard approximation 

/ (x) ) + e ' / ? ) + ^ - ^ - (2-31) 

Define the positive and negative parts of a real number by 

a+ = max[a, 0],a~ = max[-a, 0] (2-32) 
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Substitute (2-30), (2-31) and (2-32) into (2-29), we have 

m i n { £ {x, a)[V{x + e,h) - Fix)] I h + ^ f ; {x,a)[V{x -e.h)- V{x)] I h 

+ Z aity(* + e,7') + v i x - e , h ) - 2^(x)]} + Gix) = 0 
1=1 

We collect terms and divide the terms by the coefficient of F ' ' ( X , M ) . Hence, we 

(2-33) 

obtain the finite difference equation 

Vh(x,u) = min £ / Cv I x, uix))Vh iy, u) + Gix, u(x))Ath ix, M(X)) (2-34) 

where 

p'^x + efi \x,a) = 

Ir 

a ^ l l + hf^x^a) 
Q"(x,a) 

At\x,a) = — 
Qhix,a) 

e*(^a) = XKW + A|/(^a)|] 

(2-35) 

We assume that Ath{x,a) = 0(h). For y not taking on the listed values, we 

define ph{y\x,a) = 0. The constructed phiy\x,a) are nonnegative, and for 

each x and a, they sum (over y) to 1. Thus, they can be considered as the 

transition probabilities for a controlled Markov chain. 

The dynamic programming equation for the optimal value function is 

V h { X ) = mm YJp"iy\x,a)V"{y) + G{x,a)At\x) (2-36) 

in which, py{y\x,a) serves as the transition probabilities. Thus, the above 

equation is in a standard form of Markov chain, and any conventional method to 

solve Markov Decision Process can be used to solve this problem. 
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The General Case 

Now consider the case where the off-diagonal terms flL(x), / * j , are not all zero. 
For the first and second derivates, the formulas are the same as the previous. For 
the mixed derivatives, where we use the standard finite difference 

approximations: For o.(jc)>0,use 

I f < 0, use 

f X i X j (*) -[2f{x) + f{x + eth + e}h) +f(x -elh - e f t ] I lh1 

- [f{x + e.h) + f i x -e,h) + f i x + e f t (2-38) 

+ f i x - e f t / 2 h 2 

We assume that a ) V ( x ) - | cr^x) | > 0 , for all i, x. Substituting (2-30), 

(2-31), (2-32), (2-37) and (2-38) into (2-27), collecting terms and dividing the terms 

by the coefficient of Jhix,u), we get the finite difference equation as follows. 

f X i X j ix) -> [2 f i x ) + f i x + eih + e f t + f i x -eth- e f t ] 12h2 

- [ f i x + e,h) + f i x - eft) + f i x + e f t 

+ f i x - e f t ^ h 2 

(2-37) 

VhiX,u) = min X p" iy I x, uix))V" iy, u) + Gix, uix))Mh ix, u(x)) (2-39) 

where 

phix±e,h\x,a) = [a, (x) / 2 - ^ I « y ix)\/2 + hf* (x, a)] I Qh (x, a) 

ph (x + + ejh \X,a) = phix,x-elh-ejh\a) = a* ix) 12Qh (x, a) 

p iX-eih + eJh\x,a) = phix,x + eft - e;/z | a) = aZ ix) 12Qh ix, a) (2-40) 

e"(x,a) = X K W + / ?U(x , a ) | ] 
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For y not taking on the listed values, define ph{y\x,a) = 0 . The different 

choices for the finite difference approximation to the mixed second order derivatives 

are made in order to guarantee that the coefficients of the off-diagonal terms 

ph ix + eih±ejh \ x, a), ph{X-elh±eJh\x,a), j , 

are nonnegative. Also these choices guarantee that the coefficients sum to 1, so 

that they can be considered to be transition probabilities for an approximating 

Markov chain. 

The dynamic programming equation for the optimal value function is 

YJph(y\x,a)Vh{y) + G{x,a)Ath(x) Vh(x) = mm 
aeU 

2.3.3 Extend to Two-Player Zero-Sum Stochastic Games 

The approximating procedure is similar to the control problem. 

For the dynamics of the game and the objective function described by (2-1) and 

(2-2), define the matrix 

Aix) = <j{x)a{X)T ={<%(*)}, / J = ! , . . . ,« . 

The differential operator T a J of (1) is defined as follows. 

r - ' a , / ^ - ^ Z V * ) ^ (2-42) 
M dxt 2 / J = l dx.dXj 

By Ito's formula, we have the following partial differential equation 

min max \r"(xHx)V{x, u, v) + G(x, u(x), v(x))l = 0 (2-43) 
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Let e, denote the unit vector in the i-th coordinate direction and let Rr

h denote 

the uniform h-grid on R", i.e., R"h = {x: x = h^e^-.m, =0,±l,±2,...}. We use 

Sh = R'l as the state space of the approximating Markov chain. 

We only present for the general case here. By same construction process, with 

the assumption that au(x) - ^] | ^(x) | > 0, for all i,x, we get the finite difference 

equation as follows 

—H 

V (x,u,v) = min max 

ueU veK 

(2-44) 

where 
p" (x ± efi | x, a, p) = [a,, (x) / 2 - ^ I ^ W I / 2 + hf* (x, a, /?)] / Qh (x, a,p) 

]:J*i 
p"(x + e}/j + ejh | x ,a , fi) = ph(x,x-eji-eft \a,p) = a*(x)/2Qh(x,a,fi) 
ph {x-eih + \ x, a, p) = p" (x, x + eih-eJh\a,/3) = a' (x) / 2Q'' (x, a, P) (2-45) 

Mh{x,a,P)= f 
Q ix,a,P) 

Qh{x,a,P) = Yj[au{x) + h \ f { x , a , m 
i 

For y not taking on the listed values, define ph{y\x,a,P) = Q. 

Defme F(x) 

V_{x) = max m i n [ y p' 1 {y \ x, M(X), V(X))F(^) + G(x, w(x), v(x))Af*(x, M(X), V(X) ) ] 
veK » e f / 

y 

(2-46) 

I f F(x) = F ( x ) , then F(x) = F(x) = F(x) is called value function. 
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C H A P T E R 3 

COMPUTATION OF M A R K O V D E C I S I O N P R O C E S S E S 

AND A R E L E V A N T S O F T W A R E P A C K A G E 

In this chapter, we provide the algorithms that we use in our software package for 

solving Markov decision processes with different structures of state space and action 

space. The different cases of MDPs that we discuss include: finite MDPs with 

finite horizon, finite MDPs with infinite horizon, MDPs with continuous state space. 

We also extend the algorithm for finite MDPs to the algorithm for two-player 

zero-sum games. 

3.1 Discrete Time, Discrete State Space MDPs 

3.1.1 Models 

A Markov decision process is called a finite MDPs i f its state space and action set 

are finite. A particular finite MDPs is defined by its state and action sets and by the 

one-step dynamics of the environment. Define U the set of possible actions with 

variable a. Let {x,} be the corresponding Markov chain defined on a finite state 

space X . In every period / , the player observes the state of a dynamic system xl, 
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takes an action ut, and earns a reward (or cost i f the reward is negative) r(x (,M,) 

that depends on both the state of the system and the action taken. The player's 

objective is to seek a control strategy {//,} that given any state, the player take an 

action w, = ju^x,) which maximizes (minimizes) the objective function. 

A discrete finite MDPs may be either deterministic or stochastic. In the 

stochastic case, given any state and action, x and a, the probability of each 

possible next state, x',is 

Pl-=P{xM=x,\xl=x,ul=a} (3-1) 

These quantities are called transition probabilities. Similarly, given any state and 

action, x and a , the expected value of the next reward is 

r(x, a) = E{rM | x, = x, w, = a} (3-2) 

In the deterministic case, the next period's state is known with certainty once the 

current period's state and action are known, a state transition func t ion / , instead the 

transition probability, can be used to explicitly gives the state transitions 

Let us consider the objective function with discounted cost for example. The 

objective function is in the following form 

y , = £ : £ / / - ( x „ W , ) (3-4) 

where / is a per-period discount factor. The value function is the maximization 

of the objective function and can be defmed as 

^ = m a x £ ; i > ' K * , , " , ) (3-5) 
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A finite MDPs problem may have an infinite horizon ( T = co) or a finite horizon 

( r < o o ) . 

The classic tool to analyze discrete finite MDPs is the dynamic programming 

methods developed by Richard Bellman [22]. The method is based on the principle 

of optimality. The principle of optimality can be expressed in the form of the 

Bellman equation, which implies that the value function VX*) must satisfy 

Vlix) = max{r(X,a) + rY,PaM*')) (3-6) 

In the case of infinite horizon, the value function V{x) must satisfy 

Fix) = max{r(x, a) + r ^ pa„V(x')} (3-7) 
x eS 

3.1.2 Algorithm 

1. Backward Recursion 

For the finite MDPs with finite horizon, we can use backward recursion to 

compute the optimal value and policy functions F, and M, . The algorithm is 

described as follows. 

Initialize the reward function transition probabilities discount factor ^ , terminal 

period T, terminal value function V r + ] 

Set t<-T 

Repeat 

For each xe X 

F,ix) <- max(r(x ,«) + X 7 K ^ + l ( ^ ' ) ) 
aeU j~T 

x 

u, (*) <- arg max(r(x ,«) + ^ Ypa

xxV,+, {x')) 
aeU X' 

t < - t - \ 

Until / = 0 
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However, it should be noticed that it may be possible to have more than one 

sequence of optimal policies due to the ties occurring when performing the 

maximization embedded in the Bellman equation. 

2. Value Iteration 

For the finite MDPs with infinite horizon case, one of the algorithms is called 

Value iteration. We consider the Bellman equation in (3-7) as a fixed -point 

equation. We can compute the optimal value and policy function Vl and u, 

using standard function iteration methods. The algorithm is described as follows. 

Initialize the reward function r , transition probabilities p , discount factor y , convergence 

tolerance d. Initialize F arbitrarily, e.g., F(x) = 0, for all XGX 

Repeat 

For each x & X 

v_old<- Vix) 

V{x) <r- max ^ (r(x, a) + yp^Vix')) 
x 

A <— norm{v _ old - V) 

Until A < # 

Output a policy / / , such that 

u{x) <- argmax(r(*,a) + ^rp^Vix')) 
aeU x' 

3.2 Discrete time, Continuous State Space MDPs 

3.2.1 Model 

In this section, we discuss the discrete time, continuous state space MDPs 

problems. The most distinct property of the discrete time, continuous state space 
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MDPs is that the state space X includes continuous state variables whose ranges 

are intervals of the real line. Define U the set of possible actions with variable 

a. Let {x,} be the corresponding Markov chain defined on a finite state space 

X. In every period / , the player observes the state of a dynamic system jc,, takes 

an action ufi and earns a reward (or cost if the reward is negative) r(x,,M,) that 

depends on both the state of the system and the action taken. The player's 

objective is to seek a control strategy {//,} that given any state, the player take the 

action ut = f i t { x i ) which maximizes (minimizes) the objective function. 

A continuous MDPs may also be deterministic or stochastic. In the case of 

stochastic, the dynamic of the system can be described as 

x M = f { x t , u t > w M ) (3-8) 

where w, serves as random noise. In the case of deterministic, w, is absent. The 

general objective function with discounted cost is in the following form 

4 = i ; i > ' K * , , « , ) (3-9) 

where ^ is a per-period discount factor. The value function is the maximization 

of the objective function and can be defined as 

V ^ m n L E j ^ y ' r ^ u , ) (3-10) 
1=1 

A continuous state space MDPs problem may have an infinite horizon ( r = o o ) or a 

finite horizon (T < co). 

Like the finite MDPs, the discrete time, continuous state space MDPs can be 

analyzed using dynamic programming methods, which can be expressed in the form 
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of Bellman equation. By using the principle of optimality, it implies that the value 

function V^x) must satisfy 

V, (x) = max{r(x, u) + yEwVM ( f { x , u,w))} (3-11) 

In the case of infinite horizon, the value function V{x) must satisfy 

V(x) = max{r(jcs u) + rEJ{f{x, u, w))} (3-12) 
wet/ 

3.2.2 Algorithm 

For the continuous state MDPs problems, we cannot calculate the value for each 

state one by one or express the value in a vector form. Hence, the algorithms for 

the finite MDPs problems are no longer suitable here. Instead, we introduce 

Bellman equation collocation method [23]. The basic idea of the collocation 

method is to approximate the value function by a linear combination of n known 

basic functions. Therefore, we can use these basic functions to calculate the value 

at any state. 

Consider the Bellman equation (3-12) for an infinite horizon, discrete time, 

continuous state MDPs problem. To compute the approximation to the Bellman 

equation, we first write the value function approximation as a linear combination of 

n known basic functions <t>n on X with corresponding unknown 

coefficient cvc2,...,cn 

F ( x ) « £ C ^ ( x ) (3-13) 

Second, we compute the basis function coefficients cvc2,...,cH such that the 

approximating value function satisfies the Bellman equation at n collocation nodes 
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xl,x2,..,,xn . Specifically, to compute the coefficients C p C , , w e need to solve 

the set of equations 

Z ( x * ) = maxi^C^ >") + rEw Z C J ( f ( x > ' . ' = 1 . 2 , n (3-14) 

We can express the above n equations in vector form as the collocation equation 

cDc = v(c) (3-15) 

where O is a n*n collocation matrix, whose y t h element is the y th basic 

function evaluated at the k th collocation node 

%=<I>M) (3-16) 

And v is a M" to K" collocation function where 

v,.(c) = max{r(x 1, u) + yEK. Y c$ ( / (x , , w, w))} (3-17) 
7=1 

3.2.2.a Choice of Basis Function and Collocation Nodes 

There are many basis-node schemes available to implement the collocation 

method. We introduce two typical choices for basic function here: Chebyshev 

Polynomials and Piecewise Polynomial Splines. 

1. Chebyshev Polynomials 

First we define z = 2 (x-a ) / (Z7-a ) - l to normalize the interval of approximation 

[cr,^] to the interval [-1,1] . Then the Chebyshev polynomials are defined 

recursively as follows. 
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Uz) = \ 
Tl{z) = z 
T2{z) = 2z2-\ (3-18) 

7}(z)=2zr;_1(z)-r,_2(z) 

Both of numerical analysis theory and empirical experience suggest that 

polynomial approximation over a bounded interval [a,b] should be constructed by 

interpolating the underlying function at Chebyshev nodes: 

a + b b-a n-i + 0.5 i m 
xi = + cos( 7r),V/ = \,2,...,n (3-19) 

2 2 n 

Chebyshev polynomials are an excellent basis function set for constructing 

polynomials that interpolate function values at the Chebyshev nodes. Chevychev 

basis polynomials with Chebyshev interpolation nodes yield an extremely 

well-conditioned interpolation equation that can be solved efficiently. 

2. Piecewise Polynomial Splines 

A spline is a special function defined piecewise by polynomials. It has a locally 

very simple form, yet at the same time be globally flexible and smooth. Splines are 

very useful for modeling arbitrary functions. An order-A: spline consists of a 

series of k th-order polynomial segments spliced together so as to preserve 

continuity of derivatives of order k-\ or less. Suppose that the interval of 

approximation is [a,b], the points at which the polynomial pieces are spliced 

together, a = v0 < v, < v 2 <.. . < vm = Z>, are called the knots of the spline. 

The most useful way to apply the spline to numerical work is the B-splines, or 

basic splines. B-splines for an order-A: spline with v knots vector can be defined 

as using the Cox-de Boor recursion formula 
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B { ) j 1 ' i f V J - X < V i Q 20) 
0, otherwise 

Bj,, (X) = - ^ - ^ Bjk_x {x) + V i + k + i Bj+\,k-\ W (3-21) 
v j + k - v j v y + t + 1 - v y + 1 

When the knots are equally spaced, we call the B-spline is uniform, otherwise we 

call it non-uniform. 

The differentiation and integral of the spline can be computed as follows 

dB.Ax) k k 
^ ( - v ) + BJ+1 ( . , (x) 

dx v^-Vj vj+k+]-vj+, 

[ B ^ d s ^ ^ p - B ^ i x ) 
i=j «• 

3.2.2.b Choice of Algorithm to Solve Collocation Equation 

The collocation equation can be solved by any nonlinear equation solution method. 

We provide two algorithms here. 

1. Fixed-point problem 

One way is to view the collocation method as a fixed-point problem 

c = (jr'vO:) 

The algorithm is described as follows. 

Initialize the reward function r , discount factor y , basic function O , convergence 

tolerance 6. Initialize the coefficient c arbitrarily 

Repeat 

c _ old <— c 

c < - 0 ~ ' v ( c ) 

A <— norm{c -c _old) 

Until A<d 
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2. Root finding problem 

Another way is to view the collocation equation as a root finding problem 

Oc - v(c) = 0 

We can apply the Newton's method to solve a root finding problem. The 

algorithm is described as follows. 

Initialize the reward function r , discount factor y , basic function 0 , convergence 

tolerance 0. Initialize the coefficient c arbitrarily 

Repeat 

c_old <— c 

Compute the v'(c) is the « x « Jacobian of the collocation function v at c 

Foreach / = ! , . . . , « , J = 

v'iJ{c) = ^-{c) = yEJ]{f{xl,u,w)) 
OCj 

end 

c ^ c - [ 0 - v ' ( c ) r ' [ O c - v ( c ) ] 

A <— norm{c-C_old) 

Until A<e 

3.3 Remark 1 

In this section, we discuss the extension of the above results on MDPs to results 

on two-player zero-sum stochastic games with finite states spaces and actions, so 

called Markov games. 

The model of a finite state space and action space two-player zero-sum game is 

minor modification to the model of finite MDPs. Define U,V the sets of possible 

32 



actions for Player 1 and Player 2 respectively. Let {x,} be the corresponding 

Markov chain defined on a finite state space X. In every period / , the Player 1 

(the Player 2) observes the state of a dynamic system x,, takes an action w, (v,), 

and earns a reward (or cost i f the reward is negative) r{xl,ul,vl) that depends on 

the state of the system and both the action taken by the Player 1 and the Player 2. 

The Player l's (the Player 2's) objective is to seek a control strategy n {v ) that 

given any state, the Player 1 (the Player 2) takes the action u, = //(x,) (v, =v(x , ) ) 

which minimizes (maximizes) the objective function. 

A game may be either deterministic or stochastic. In the stochastic case, given 

any state and action, the probability of each possible next state, x ' , is 

K ' " = ^ k + , = ^ ' U , = ^ " , =«>v ( =/?} (3-22) 

Similarly, given any state and action, x and « , together with any next state x ' , 

the expected value of the next reward is 

r(x, a, fi) = | x, = x, M, = a, v, = /?} (3-23) 

The general objective function of the two-player zero-sum game is in the form 

J = E"-vfjYlr{x„ul,vl) (3-24) 

where 7 is a per-period discount factor. 

Define 

_ T 
F = min max E"/ V y'^ (x, u, v) (3-25) 

and 
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T 
F = m a x m i n £ ; v y r , ( x , M , v ) (3-26) 

(=1 

I f V{x) = F ( x ) , then V{x) = V_{x) = V(x) is called the value function of the game. 

By using the principle of optimality, it implies that the value function V(x) must 

satisfy 

V(x) = min max{r{x, a, /?) + r T paJV(x')} (3-27) 
asU BeV ~t 

xeX 

A l l the algorithms described above for the infinite horizon finite MDPs problems 

are suitable for solving Markov games. Let us take the policy iteration method for 

example. The algorithm is described as follows 

Initialize the reward function r , transition probabilities p , discount factor y , 

convergence tolerance 6. Initialize V arbitrarily, e.g., F ( x ) = 0, for all xeX 

Repeat 

For each x^ X 

v_old <- V{x) 

V{x) <- min max(r(x, a, fi) + yY paJV{x')) 
aeU BeV , 

r X 
A <- norm{v _ old - V) 

Until A<e 
Output the policy / / , v , such that 

u{x),v{x) <- arg min m&x{r{x,a, P) + y'ypa

xfV{x')) 
r X 

3.4 Remark 2 

Our ultimate purpose in developing a software package is to provide a set of 

programs for solving two-player zero-sum stochastic games as well as stochastic 

optimization problems. When we use min max to calculate the optimal value 
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function of zero-sum games, in essence it is an extended optimal control problem. 

Therefore, it is reasonable that the software package also includes functions for 

solving stochastic control problems as well and that is also a reason that we first 

describe the algorithms for solving control problems for convenience and then 

extend them to games. 

It is evident that when we use the Markov Chain Approximation method to solve 

the two-player zero-sum stochastic games or stochastic control problems, the 

resulting Markov chain is exactly in the form of finite MDPs. Since the method is 

straightforward and can be used under broad conditions, by using this software 

package, we can automatically calculate the value function and optimal strategies for 

stochastic control problems and zero-sum stochastic games, when a suitable Markov 

chain is chosen and corresponding transition probabilities and reward (cost) is 

formulated. 
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CHAPTER 4 

STOCHASTIC C O N T R O L S O F T W A R E P A C K A G E 

In this chapter, we introduce a preliminary stochastic control software package, 

which is written on the platform of MATLAB. The software package is a 

collection of functions whose prime purpose is to solve general stochastic games and 

stochastic optimal control problems. The software package includes routines for 

the following problems 

• Discrete time, discrete state space Markov decision processes with discrete 

action space 

• Discrete time, continuous state space Markov decision processes with discrete 

action space 

• Continuous time, continuous state space stochastic control with discrete action 

space 

• Continuous time, continuous state space two-player zero-sum stochastic games 

with discrete action space 
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4.1 Functions for Discrete Time, Discrete State Space MDPs 

4,1.1 Function: finite_Viter 

Description 

fimte_Viter solves general discrete time, discrete state space MDPs probl 

with finite horizon described by (3-6) 

Syntax 

[V_opt, act_opt]=finite_Viter(v, f, prob, T, gamma) 
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Input Arguments 

V Array containing the value function for each time and state. In a problem 

which has Mdiscrete states and T time periods, it is an Mx(T + \) 

array, where V{:,T + \) is the value of terminal set, v ( : , I : r ) i s the 

initialization of the value function for each period from / = 1 to t = T 

/ Array containing the rewards for each state and action, In a problem which 

has Mdiscrete states and JV discrete actions, it is an MxN array, 

where / ( / , _ / ) is the reward when the current state is xi and action 

is taken 

prob Array containing the transition probability for each state and action, In a 

problem which has M discrete states and discrete actions, it is an 

NxMxM array, where prob{i,j,k) is the value of p"^x 

T Time periods 

gamma Discount factor 
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Output Arguments 

V opt Array containing the value function for each time and state 

act _opt Array containing the optimal action for each state and period. In a problem 

which has M discrete states and discrete actions, it is an MxT 

array, where act opt{i,t) is the optimal action for state x, at time t 

Algorithm 

finite_Viter utilizes the Backward Recursion algorithm described in section 

3.1.2.1. 

4.1.2 Function: infinite_Viter 

Description 

infinite_Viter solves general discrete time, discrete state space MDPs 

problems with infinite horizon described by (3-7) 

Syntax 

[V_opt, act_opt,V_iter]=infinite_Viter(v, f, prob, gamma, tol) 
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Input Arguments 

V Vector containing the initialization of the value function for each state. In a 

problem which has M discrete states, it is an A / x l vector 

/ Array containing the rewards for each state and action, In a problem which 

has M discrete states and N discrete actions, it is an MxN array, 

where / ( / ' , / ) is the reward when the current state is Xj and action Uj 

is taken 

prob Array containing the transition probability for each state and action. In a 

problem which has M discrete states and discrete actions, it is an 

NxMxM array, where prob{i,j,k) is the value of pu^x 

gamma Discount factor 

tol Criterion for the iteration. Iteration stops when the error between v and 

the previous v is less than tol 
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Output Arguments 

V _opt Vector containing the optimal value function for each state after the 

iteration. In a problem which has M discrete states, it is an Mxl 

vector 

act _ opt Vector which stores the optimal action for each state. In the problem which 

has M discrete states, it is an M x l vector. 

V _ iter Array containing the value function for each state during the iteration. In a 

problem which has M discrete states and wtimes of iteration, it is an 

Mxn array, where V iter(:,i) contains the value function for each 

state during /' iteration 

Algorithm 

infinite_Viter utilizes the Value Iteration algorithm described in section 

3.1.2.2. 

4.2 Functions for Discrete Time, Continuous State Space MDPs 

4.2.1 Function: mdp_con_c 

Description 

mdp_con_c solves the coefficients c in general discrete time, continuous 

state space MDPs problems described by (3-12) 
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Syntax 

c_opt=mdp_con_c(c, basic_f, e, w, gamma, tol) 

Input Arguments 

c Vector containing the initialization of coefficients for the basic functions. 

In a problem when user wants to use n basic functions, it is an nxi 

vector 

basic _ f Structure containing the basic functions used to approximate the value 

function. It is defined by function fun _ d e f , in which user can choose 

the type of basic functions, either 'Chebyshev Polynomials' or 'Polynomial 

Splines' 

e Vector containing the value of the noise 

w Vector containing the probabilities of the noise 

gamma Discount factor 

tol Criterion for the iteration 

Output Arguments 

c _opt Vector containing the coefficients of the basic functions after iteration 

Algorithm 

mdp_con_c utilizes the Collocation Method algorithm described in section 

3.2.2. 
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4.2.2 Function: mdp_con 

Description 

mdp_con solves the approximating value functions and optimal actions in 

general discrete time, continuous state space MDPs problems given the basic 

functions and corresponding coefficients. 

Syntax 

[V opt, act_opt]=mdp_con(c, basic_f, node, e, w, gamma) 

Input Arguments 
c the coefficients gotten by using function mdp con c 

basic _ / Structure containing the basic functions used to approximate the value 

function. It should be the same as the one used in function 

mdp con c 

node Vector containing the states where the user wants the value of the 

approximating value function 

e Vector containing the value of the noise 

w Vector containing the probabilities of the noise 

gamma Discount factor 
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Output Arguments 

V _opt Vector containing the approximation of value function for corresponding 

states. 

act _ opt Vector containing the optimal actions for corresponding states. 

Remark 

User needs to write two functions named Act and Reward, which wil l be 

called by function mdp_con. The syntax of function Act is action=Act(x), in 

which the input argument x is the current state and the output argument action is 

the action set under the current state. The syntax of function is reward is 

reward=Reward(x, action), in which the input arguments x and action are the 

current state and action respectively and the output argument reward is the reward 

under the current state and action. 

4.3 Functions for Stochastic Control Problems 

4.3.1 Function: stochajnin 

Description 

stochajnin solves the value function of general stochastic optimal control 

problems described by (2-11) and (2-12) with dimension 1 or 2. 

Syntax 

V_opt=stocha_min(A, h, x, v, v_term, u, tol) 
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Input Arguments 

A Matrix defined as A{x) = <7{x)<7{x)1 ={aij{x)}, i,j = \,...,n 

h Variable containing the width of the grid used in the construction of desired 

Markov chain 

X Array containing the states where the value function is approximated by the 

constructed Markov chain 

V Array containing the initialization of the value function of the Markov chain 

v term Array containing the value function of the terminal set 

u Action of the player 

tol Criterion for the iteration 

Output Arguments 

Algorithm 

stocha min utilizes the Markov Chain Approximation Method algorithm 

described in section 2.3.2. 
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4.3.2 Function: opt_act_control 

Description 

opt_act control solves the optimal action for players of general stochastic 

optimal control problems with dimension 1 or 2, given the value function of the 

approximating Markov Chain. 

Syntax 

opt_act=opt_act_control(A, h, x, v, v_term, u) 

Input Arguments 
A Matrix defined as A{x) = a{x)a{x)' ={aij{x)), i,j = \,...,n 

h Variable containing the width of the grid used in the construction of desired 

Markov chain 

X Array containing the states where the value function is approximated by the 

constructed Markov chain 

V Array containing the value function of the Markov chain 

v _ term Array containing the value function of the terminal set 

u Action of the player 

Output Arguments 

opt _ act Array containing the optimal action for the player at each state of the 

constructed Markov chain 
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Remark 

User needs to write two functions named b\_value and b2_value, which wil l 

be called by function stocha jnin and opt_actj:ontwl. The syntax of function 

b\_value is y=bl_value(x, u l , u2), in which the input argument x is the current 

state, wl is the action and ul is a virtual variable which will not be used, and the 

output argument y is calculated by system's first-dimension dynamic equation. 

In the case of two dimensional problems, the syntax of function bl_value is the 

same as function b\_value. The input arguments of function bl_value are the 

same as function b\ value, while the output argument y is calculated by 

system's second-dimension dynamic equation. In the case of one dimensional 

problems, the output argument y is set to be 0. 

4.4 Functions for Zero-Sum Stochastic Games 

4.4.1 Function: stochajninimax 

Description 

stochajninimax solves the value function of general two-player, zero-sum 

stochastic games described by (2-1) and (2-2) with dimension 1 or 2. 

Syntax 

V_opt=stocha_minimax(A, h, x, v, v_term, u l , u2,tol) 
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Input Arguments 

A Matrix defined as A{x) = G{X)(J{X)' = {aij{x)), i,j = \,...,n 

h Variable containing the width of the grid used in the construction of desired 

Markov chain 

X Array containing the states where the value function is approximated by the 

constructed Markov chain 

V Array containing the initialization of the value function of the Markov chain 

v _ term Array containing the value function of the tenninal set 

Ml Action of Player 1 

M2 Action of Player 2 

tol Criterion for the iteration 

Output Arguments 

Algorithm 

stocha minimax utilizes the Markov Chain Approximation Method algorithm 

described in section 2.3.3. 

48 



4.4.2 Function: opl_act_game 

Description 

opt_act_game solves the optimal action for both of the players of general 

two-player, zero-sum stochastic games described by (2-1) and (2-2) with dimension 

1 or 2, given the value function of the approximating Markov Chain. 

Syntax 

[opt_ul, opt_u2]=opt_act_game(A, h, x, v, v_term, u l , u2) 
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Input Arguments 

A Matrix defined as A{x) = <J{X)G{X)' = {ai]{x)}, i,j = \,...,n 

h Variable containing the width of the grid used in the construction of desired 

Markov chain 

X Array containing the states where the value function is approximated by the 

constructed Markov chain 

V Array containing the value function of the Markov chain 

v _ term Array containing the value function of the terminal set 

u\ Action of Player 1 

ul Action of Player 2 

Output Arguments 

opt ul Array containing the optimal action for Playerl at each state of the 

constructed Markov chain 

opt _ul Array containing the optimal action for Player2 at each state of the 

constructed Markov chain 

Algorithm 

stocha minimax utilizes the searching method to solve min max problems. 

For each action of Player 1, it searches over each action of Player 2 and identifies the 

action in correspondence with the maximum value of the value function. Then it 

identifies the action of Player 1 which is in correspondence with the minimum value 

among the previous maximum values. 
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Remark 

User needs to write two functions named b\_value and Z)2_va/Me, which wil l 

be called by function stochajninimax and optjict_game. The syntax of function 

b\_value is y=bl_value(x, u l , u2), in which the input argument x is the current 

state, ul is the action of Player 1 and u2 is the action of Player 2, and the output 

argument y is calculated by system's first-dimension dynamic equation. In the 

case of two dimensional problems, the syntax of function b2_value is the same as 

function b\_value. The input arguments of function b2_vahie are the same as 

function b\_value, while the output argument y is calculated by system's 

second-dimension dynamic equation. In the case of one dimensional problems, the 

output argument y is set to be 0. 
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CHAPTER 5 

A P P L I C A T I O N TO PURSUIT-EVASION GAMES 

In this chapter, we first provide three numerical examples to demonstrate the use 

of our stochastic control software package. Then we emphasize the application of 

the Markov Chain Approximation method to a typical zero-sum stochastic game: 

pursuit-evasion games. We illustrate the validity and practicability of this method 

by numerically solving a PE game with one pursuer and one evader. An example 

of PE games with multiple pursuers and evaders is also given in which the 

decentralized strategy is used to decouple the multiple players into several 

one-to-one PE games. 

5.1 Numerical Examples of Markov Decision Processes and Demonstrations of 

Stochastic Control Software Package 

5.1.1 A Numerical Example of Discrete Time, Discrete State Space MDPs with 

Finite Horizon 

5.1.l.a Problem Description: Mine Extraction [29] 
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A mine operator wants to decide how much ore to extract from a mine that wi l l be 

shut down and abandoned after T years of operation. The price of extracted ore is 

p dollars per ton, and the total cost of extracting a tons of ore in any year, given 

that the mine contains x tons at the beginning of the year, is c(x, a) dollars. The 

mine currently contains M tons of ore. The value of the ore is depreciated by 

discount factor S . Assuming the amount of ore extracted in any year must be an 

integer number of tons, we are asked to seek the optimal extraction strategy to 

maximize profits. 

S.l.l.b Model 

This problem can be formulated as a discounted, finite MDPs with finite horizon. 

State space: x e {0,1,2,...,M} 

Action space: ae {0,1,...,.*}. 

Discount factor: y 

Reward function: / { x , a ) = pa-c{x,a) = pa- —— 
l+a 

f l , x' = x-a 
Transition probability: p{x,\x,a) = \ 

[0, otherwise 

5.1.l.c Numerical Simulation 

In this mine extraction example, let the current content M to be 200 tons, the 

operation period T to be 20 years, the price p to be 1 dollar per ton, and the 

discount factor y to be 0.9. We use the function finite_viter to solve this finite 

MDPs problem with finite horizon. The value of the input arguments are listed in 

Table 5.1 
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V A 200x(20 + 1) array. V{:,2\) is the value function of the terminal 

set, which is zero because the operator does not want to see any ore left 

when the mine is shut down; v ( : , l : 20) is the initialization of the value 

function for each period from t - \ to / = 20, we set it to be 0 

/ / 
A 200x200 array, where f ( i , j ) = J when i > j and 

l + i 

/ ( / , y ) =—inf when z < j because the value function doesn't exist for 

other states 

prob A 200x200x200 array, where prob(i,j,k) = \ when j = k — i , 

otherwise prob(i, j , k ) = 0 

T 20 

gamma 0.9 

Table 5.1 Value of Input Arguments in Example: Mine Extraction 

MATLAB codes, which defme the input arguments and call the function 

finite_viter , are as follows. 

M=200 ; 

T=20 ; 

va lue=zeros(M,T+1) ; 

gannma=0.9; 

54 



f=zeros(M,M) ; 

f o r i = 1 : M 

f o r j = 1 : M 

if i>=j 

f(i.j)=j-jA2/(1+i); 

else 

f(i,j)=-inf; 

end 

end 

end 

for 1=1 :M 

f o r j = 1 : M 

for k=1:M 

if j==k- i 

prob( i , j ,k )=1; 

else 

prob(i,j,k)=0; 

end 

end 

end 

end 
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[V_opt ,act_opt ]=f in i te_Vi ter(value, f ,prob,T,gamma); 

Figure 5.1 shows the optimal strategy at each state. Figure 5.2 shows the stock 

ofthe mine through the operation period by using optimal strategy. 
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finite MDPs: Mine Extraction Optimal Strategy 

0 ' 1 1 j 1 i i i i i I 
0 20 40 60 80 100 120 140 160 180 200 

state 

Figure 5.1 Optimal Strategy, Mine Extraction 

finite MDP: Mine Extraction: Stock throught 20 years 

tirne 

Figure 5.2 Stock Though 15 year. Mine Extraction 
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5.1.2 Numerical Example for Discrete Time, Discrete State Space MDPs with 

Infinite Horizon 

5.1.2.a Example Description: Gambler's Problem [23] 

5.1.2.b Model 

At the beginning of each year, a manufacturer must decide whether to continue to 

operate an aging physical asset or replace it with a new one. An asset that is x 

years old yields a profit contribution / ( x ) up to TV years, at which point the asset 

becomes unsafe and must be replaced by law. The cost of a new asset is c. We 

are asked to seek the replacement policy which maximizes the profit. 

This problem can be formulated as an discounted finite MDPs with infinite 

horizon. State space: xe{\,2,...,N) 

Action space: a e {replace, keep}. 

Discount factor: y = 0-9 

[-25, i f a=replacement 
Reward function: f{x,a) = < 

5.1.2.c Numerical Simulation 

We use the function infinite_viter to solve this finite MDPs problem with 

infinite horizon. 

i f a=replacement, x - 1 

i f a=keep, x - x + 1 ; 

otherwise 

Transition probability: p{x} \ x,a) = ' 

0, 
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In this example, let the maximum operation age of the machine Nto be 5 

dollars. We use the function infinite_viter to solve this finite MDPs problem with 

infinite horizon. The value of the input arguments is listed in Table 5.2. 

V A 5x1 vector, whose initial value is set to be 0 

/ A 2x5 array, where / ( / , / ) = —25 when ( = 1 , Otherwise, 

/ ( / J ) = 5 0 - 2 . 5 y - 2 . 5 / 

prob A 2 x 5 x 5 array, where prob{i,j,k) = \ when i = \,j = \ , 

prob{i,j,k) = ] when / = 2,7 = A; +1 ,and prob(i,j,k) = 0 for other 

situations 

gamma 0.9 

tol IO"8 

Table 5.2 Value of Input Arguments in Example: Asset Replacement 

MATLAB codes, which define the input arguments and call the function 

finite_viter , are as follows. 

n=5; 

gamma=0 .9 ; 

va lue=zeros(n ,1) ; 

t o l=10 A ( -8 ) ; 

f=zeros(2,n) 
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f (1, : )=50-75; 

f(2I:)=(50-2.5*(1:n)-2.5*(1 :n).A2)'; 

prob=zeros(2,n,n) ; 

for i=1:n 

f o r j = 1 : n 

if i==j+1 

prob(2 , iJ )=1; 

end 

end 

end 

prob(1 ,1 , : )=1; 

[V_opt,act_opt,V_iter]=inflnite_Viter(value,f,prob,gamma,tol); 

Figure 5.3 shows the value function at each state. Figure 5.3 also shows the 

iteration procedure of the value function, which is initially set to be 0 for each state 

and gradually converges to the optimal value function. Table 5.3 shows the optimal 

strategy at each state. For example, we should replace the machine in its 4 t h year of 

operation. 
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Finite MDP: asset replacement: optimal value 
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Figure 5.3 Optimal Value during iteration, Asset Replacement 

Age of the Machine Optimal Strategy 

1 Keep 

2 Keep 

3 Keep 

4 Replace 

5 Replace 

Tabel 5.3 Optimal Strategy, Asset Replacement 
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5.1.3 Numerical Example of Discrete Time, Continuous State Space MDPs 

5.1.3.a Example Description: Water Management [30] 

Water from a reservoir can be used for either irrigation or recreation. Irrigation 

during the spring benefits farmers, but reduces the reservoir level during the summer, 

damaging the interests of recreational users. Specifically, i f the reservoir contains 

x units of water at the beginning of the year and a units are released for irrigation, 

farmer and recreational user benefits during the year wi l l be F{a) and U{x-a) 

respectively. Reservoir levels are replenished by random rainfall during the winter. 

Specifically, it rains k units with probability pk,k = ],2,...,K . The reservoir can 

hold only M units of water, and excess rainfall flows out without benefit to either 

farmer or recreational user. The reward is the sum of farmer's and recreational 

user's benefit. We are asked to seek the irrigating policy to maximize the reward. 

5.1.3.b Model 

This problem can be formulated as continuous state space MDPs with infinite 

horizon. 

State space: x e [2, M] 

Action space: a e {0,0.05,...,x} 

Rainfall: k units with probability pk,k = l,2,...,K 

State transition function: f{x,a,e) = m'm(x-a + e,M) 

Farmer's benefit: F(a) = a^' 

Recreational user's benefit: U(x,a) = a2(x-a)02 

Reward function: / ( * , a ) = F{a) + U(x,a) 
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Bellman equation: V(x) = max{R(x,a) + V{min(x -a + k,M))} 
0<,a<x 

5.1.3.C Numerical Simulation 

In this example, let the reservoir capacity M to be 7, and the rainfalls are 

0.7,1,1.3 with probability 0.2,0.6,0.2 respectively. Let 

a, =-!,/?[ =-l,a2 =-\,/32 = - 2 . We use the function mdp_con to solve this 

continuous MDPs problem. The value of input arguments of function mdp con is 

listed in Table 5.3. 

The user defmed function action is written as follows, 

funct ion [act ion]=Act(x) 

act ion=[0:0.05:x] ; 

The user defined function reward is written as follows, 

funct ion reward=Reward(x ,a ) 

a 1 = - 1 ; 

a 2 = - 1 ; 

a 2 = - 1 ; 

b2=-2; 

r ewa rd=a1*x A b1+a2* ( x -a ) A b2 ; 
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c We use 10 basic functions to approximate the original value function. 

Therefore, c is a 10x1 vector containing the coefficients. The initial 

value is set to be 0. 

basic _ f Structure containing the basic functions used to approximate the value 

function. It is defined by /M«_c/e / ( 'cheb ' , 10,2,7), which means the 

basic functions are 10 chebyshev polynomials, and the range of states is 

[2, 7] 

e [0.7,1,1.3] 

w [0.2,0.6,0.2] 

gamma 0.9 

tol 10"6 

Table 5.4 Value of Input Arguments in Example: Water Managmet 

MATLAB codes, which define the input arguments and call the function 

mdp_con_c and /77^_co« , are as follows. 

n=10; 

s1=2; 

s2=9; 

gamma=0 .9 ; 

t o l=10 A ( -6 ) ; 

fspace=fun_def( 'cheb' ,n ,s1 ,s2); 
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snodes=fun_node( fspace) ; 

c=zeros(n,1) ; 

e=[0.7;1;1.3] ; 

w=[0.2;0 .6 ;0 .2 ] ; 

c_opt=mdp_con_c(c, basic_f, e, w, g a m m a , tol) 

x p l o t ^ s - U s l ^ ^ O ^ ) ' ; 

[vp lo t ,actp lo t ]=mdp_con_c(c,bas ic_f ,xp lo t ,e ,w,gamma); 

Figure 5.4 shows the approximation of original value function at each state. 

Figure 5.5 shows the optimal strategy at each state. For example, when the 

reservoir contains 7 unit of water, the optimal strategy is to extract 2.1 units of water 

for irrigation. 
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continuous MDP:water: optimal value 

_g I i i i i \ i i i i_ 
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 

water level 

Figure 5.4 Value Function, Water Management 

continuous MDP:water:optimal strategy 

i i i i i i i i i 
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Water Level 

Figure 5.4 Optimal Strategy, Water Management 
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5.2 Deterministic Pursuit-Evasion Games 

We consider a one to one deterministic game with two dimensions. The 

dynamics of the Pursuer and Evader are as follows: 

dxp = cos 6dt 

dyp = sin 6dt 

dxc =b{t) + \ + ^2 

df = -2 

in which the moving direction d{t) is the control of the pursuer and the velocity 

b(t) is the control of the evader with - ] < ^ ( / ) < l for / > 0 . The tenninal set S 

of the game is defined as {{xp ,yp),(xc yp > y'}. The objective function is 

defined as J = ^ (6(/) + l + V2-cos(6'(/)))£// . The analytical solution to this 

problem is given in [36] and the value function and the optimal strategies are given 

as follows 

V i x p , y p , x \ / ) = / - y p 

4 
b'(t) = \ 

We apply the Markov Chain Approximation method to this problem. By 

defining xl = x''-x",x2 = yp - y e , we get the following new dynamics of the 

system: 

dx, = (cos(0(O) - b(t) -1 - j2)dt 

dx2=(sm{d(t)) + 2)dt 

Since it is a deterministic case, the matrix A 

concrete form of / ( x , a, /?), we have 
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Vh(x,u) = min max 
ueU veK 

Phiy I x,u{x),v(x))Vh(y,u) + (COS(M(JC)) -b{x)-\~42)Mh{x,u{x),v(x)) 

where 

hicose-b-l-yflY 
Q {{xx,x2,9,b) 

± h/t . . m / x m ^(sin6' + 2) p {{xvx2±h)\{xvx2),a,p) = —h 

Qh{{xvx2ie,b) 

h2 

Athi(xl,x2),a,/3) = - ! r 

Q {{xvx2),e,b) 

Qh ((JC, ,x2),a,P) = 'Yjh\cos,6~b-\--j2\+h\smO + 2\ 
t 

For the numerical simulation, let 

h = l, 

0 e{0,—TT,—TV,..,,—ni, 
16 16 16 

& e { - l , - 0 . 9 . . . . , l } 

We use the function stochajnimmax to solve this two-player zero-sum MDPs 

problem. The value of input arguments is listed in Table 5.5. 

The user defined function b\_value is as follows, 

funct ion y=b1_value(x ,u1 ,u2) 

y=cos(u1 )-(u2+1 +sqrt(2)) ; 

The user defined function b2_value is written as follows, 

funct ion y=b2_value(x ,u1,u2) 

y=s in(u1)+2; 
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A u u 

lo oj 

h 1 

X A 21x21 array, in which each element stands for a state 

V A 21x21 array containing the initialization of the value function. We set 

it to be 0. 

v _ term We set it to be a reasonably large number 200 

u\ (0, — n, — TZ,..., — n \ , actions of Player 1 
16 16 16 

u2 {-1,-0.9,.. . ,!} , actions of Player2 

tol 10"6 

Table 5.5 Value of Input Arguments in Example: One-to-one deterministic PE Game 

Figure 5.6 shows the trajectories of the pursuer and the evader according to the 

numerical solution and analytical solution respectively. Figure 5.7 shows the 

trajectories of the relative position of the pursuer and the evader according to the 

numerical solution and analytical solution respectively. The starting point of the 

pursuer is [0, 0] and it is [2, 1] of the evader. The numerical solution is identical to 

the analytical solution. It proves the validity of the Markov Chain Approximation 

method and our software package. 
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1 
trajectory of one to one PE: intitial position: P(0,0),E(2,1):numerical solution 

cs 
:=-, 

^ 5 
— * — pursuer 
--O--- evader 

A 
0 0.5 1 1.5 2 2.5 3 3.5 

x axis 
trajectory of one to one PE: intitial position: P(0,0),E(2,1):analytical solution 

Figure 5.6 Trajectories of the Players: numerical and analytical solution 

trajectory of relative position:numerical solution 

-3.2 -3 -2.8 -2.6 -2.4 -2.2 
x axis 

trajectory of relative position:analytical solution 

-0.5 

x axis 

Figure 5.7 Trajectories of the relative position: numerical and analytical solution 
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5.3 Stochastic Pursuit-Evasion Games 

5.3.1 One Pursuer One Evader P E Games 

We consider a one to one PE game with two dimensions [14]. The dynamics of 

the Pursuer and Evader are as follows: 

dx" = vp cos{0p{t))dt + o-{xp)dw 

dy" = vp sm(0p(t))dt + a(yp)dw 

dxe = ve cos(0e (t))dt + C7{xe )dw 

dy" = ve sin de(t)dt + a(y')dw 

in which the moving direction G^t) is the only control. 

The new state variables are represented as 

x2=yp-y 

Thus, we have 

dx, = ivp cos{0p (0) - v, cos(^ (t)))dt + aix, )dw 

dx2 = {vp s\n{dp(/)) - sin(^ i t)))dt + a(x2)dw 

with x10 = xp - xl

0, xw = yp - yl. 

The terminal set is defined as 5 = {(^,^2) I I ^ P ^ I L - • ^ ' i e 0 b j e c t i v e of the 

pursuer is to minimize the capture time. The objective function is J = j d / . 

Hence, G=l and Q=0 in the general model. 

The analytical solution of is given as follows [36]. 

F(x„ x 2 ) = + f + a \ i \ n ( x 2

+ x l ) + C{e) 
v - v , 4(v - v , ) v ' 

where C(s) = - ^ - - ^ + 
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We assume a{x) = 
c 0 

0 c 
is constant, hence the matrix 

A(x) = <j(X)O-{X)T = 
cz 0 

0 c 2 

We use the uniform h-grid on K 2 and the Markov Chain Approximation method 

described in Chapter 2 to construct the approximating Markov chain and to 

numerically approximate the value function. The matrix A is in the general form 

and satisfies the assumption that au ( * ) - Z I au W I - 0 > ^or a " '• substituting 
j:J*i 

the concrete form of / ( x , a, /?) into (2-47) and (2-48), we have 

V{X) = min m a x [ y ph(y\x, u{x), v{x))V(y) + Ath (x, u{x), v(x))] 
uell veK 

where 

ph((x, +h,x2)\ (x,,x 2),a,/?) = h{vp cos^ - v e c o s ^ ) * / Q * ( ( x , , x 2 ) , e p , e e ) 

p" ((x, ,x2+h)\ (x, ,x2),a,P) = h{vp sin ^ - v e sin ^ / Qh ((x, ,x2),0p,0e) 

ph ((x, + /?,x 2 +/0l ( ^ ,x2),ep,0e) = p" ( ( x , - h , x 2 - h ) \ ( x , , x 2 ) , ^ , ^ ) = c2 / 22" ((x,, x 2 ) , ^ 

/;* ((x, +h,x2-h)\(x,, x 2 ) , 0p ,9e) = p" ((x, - /?, x 2 + /z) | (x,, x 2 ) , ^ , ^ ) = 0 

Ath{(X.,x2),0n,0.) = — 
" 2;' tfiix^WA) 

Q" ((x,, x 2 ) , ^ , ^ ) = 2c2 + | cos ^ - ve cos ^ | +/»| v p sin ^ - ve sin 

For the numerical simulation, let 

v ; ) =12,v e =10,/7 = l , c 2 = 0 . 1 , 

e'n e {0, TT,..., TT} , 
16 16 16 

/ 3 / n 1 1 1 5 > 
16 16 16 

We use the function stochajninimax to solve this two-player zero-sum MDPs 

problem. The value of input arguments is listed in Table 5.6. 
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The user defined function b\_value is as follows, 

funct ion y=b1_value(x,u1,u2) 

vp=12; 

ve=10; 

y=vp*cos(u 1 ) -ve*cos(u2); 

The user defined function b\ _ value is written as follows, 

funct ion y=b2_value(x ,u1,u2) 

vp=12 ; 

ve=10; 

y=vp*s in(u1)-ve*s in(u2) ; 

A 
l o o . i , 

h 1 

X A 21x21 array, in which each element stands for a state 

V A 21x21 array containing the initialization of the value function. We set 

it to be 0. 

v _ term We set it to be a reasonably large number 200 

Ml {0, — n, — n,..., — n}, actions of Player 1 
16 16 16 

u2 rn 1 1 15 , 
|U , — K, — Tt,..., — n), actions of Player 2 

16 16 16 
tol 10"6 

Table 5.6 Value of Input Arguments in Example: One-to-one PE Game 
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Figure 5.8 shows the numerical solution of the value function at each state. 

Figure 5.9 shows the analytical solution of the value function at each state. Two 

figures are in identical shape. The difference between the numerical solution and 

analytical solution is because we approximate the value function on a discrete state 

space Rh instead of on the original continuous state space and the terminal value is 

not accurate. Figure 5.10 shows the trajectories of the Pursuer and the Evader in an 

example of one-to-one PE games when the Pursuer's starting position is [0,0] and 

the Evaders' is [ -9 , -4 ] . In our case, the objective function is the capture time. 

However, it should be noticed that the resulting value function does not exactly give 

us the optimal value at each state because of the noise. Instead, it only gives 

relative value which is used to calculate the optimal strategy at each state. 
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Value function: one-to-one PE game: Numerical Solution 

Figure 5.8 Value Function, One to One PE game: Numerical Solution 

Value function: one-to-one PE game: Analytical Solution 

Figure 5.9 Value Function, One to One PE game: Analytical Solution 

75 



trajectory of one to one PE: intitial position: P(0,0),E(-9,-4) 

x axis 

Figure 5.10 Trajectories of Pursuer and Evader, One to One PE 

5.3.2 Multiple Players Pursuit-Evasion Games 

Let us consider a PE game with N pursuers and M evaders. The dynamics 

of each pursuer is described as 

dxf =vl'cos0l

pdt + a{xl')dw 

dyf = vf sinO'dt + a{yp)dw, i = 1,2,...,N 

Similarly, the dynamics of each evader is described as 

dx] = v'j cos 6jdt + a{Xj)dw 

dyj = vj sin 9jdt + (7(yj)dw, j = 1,2,...,M 

Let Tjij = ],...,M) denote the capture time for Evader j . We use the 

minimum capture time T ^ m a x i r } as the objective function. It is possible to 
j 

take all the pursuers and evaders as a whole and solve the problem as a high 
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dimensional stochastic game by mechanically applying the Markov Chain 

Approximation method. However, for a PE game with N pursuers and M 

evaders played on a plane, the dimension of the state wil l be at least 2 x ( A + M - 1 ) . 

I f we take the increase of possible action space into consideration, the time that the 

iteration of the value function takes to converge rises more than exponentially with 

the increase of number of players [28]. To avoid this dimension curse, we use a 

decentralized approach. At each time period, we decompose the game into several 

one-to-one PE games. Each pursuer and evader wil l determine his optimal strategy 

according to the given engagement scheme. Let us assume N>M. The 

algorithm is carried out as follows. 

We assume that each pursuer can only chase one evader at each time period. At 

each time period t, assume that we know the value function of the games between 

any pursuer and evader V{pt,e,). The search for optimal engagement can be 

formulated as follows. 

N 

mmJ = m i n f m a x V F(w ,e,)&,,} 

^ { 0 , 1 } 
N 

Subjectto Z ^ = 1 ' J = l>->M 
M 
7=1 

Here, hy = 1 means Pursuer /' chases Evader j and bg = 0 means not. The 

case is much more complicated when A < M because the search space is larger. 

However, the approach is similar in principle. 
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In the specific case of deterministic PE games, such as the homicidal chauffeur 

game described in [19], V{pj,ej) can be expressed by an analytical equation and 

can be calculated precisely. However, in stochastic PE games, as well as in a 

majority of deterministic games, we are unable to do the same calculation because 

the exact value of V{pl,ej) is unavailable. To solve this problem we first solve 

the one-to-one stochastic PE game for all the possible combinations of any one 

pursuer from the multiple pursuers and any one evader from the multiple evaders. 

For example, we solve the one-to-one stochastic game with Pursuer i and Evader 

/ to obtain the value function. Then we use the resulting value function as an 

approximation of V{pj,e]) and substitute it for the true V{pl,ej) in 

decentralization approach described above. 

We take a stochastic PE game with two pursuers and two evaders as an example. 

The value of parameters used for the simulation is listed in the Table 5.8. 

Pursuer 1 Pursuer 2 Evader 1 Evader 2 

( • W o ) (0,0) (7,3) (3,-4) (5,-2) 

v p (v e ) 12 11 10 8 

c 2 0.1 0.1 0.1 0.1 

Table 5.7 Value of Parameters in Example: Multiply PE Game 
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trajectories of pursers and evaders in stochastic PE games with multiple players 

x axis 

Figure 5.11 Trajectories of Pursuers and Evaders, Multiple PE 

The corresponding trajectories are illustrated in the Figure 5.11. Pursuer 1 and 

Pursuer 2 start at (0, 0) and (7, 3) respectively. Evader 1 and Evader 2 start at (3, -4) 

and (5, -2) respectively. At first, Pursuer 1 is engaged in chasing Evader 1, and 

Pursuer 2 is engaged in chasing Evader 2. As the pursuit-evasion game moves on. 

Evader 2 is first captured by Pursuer 2 when Pursuer 1 is still on the path of chasing 

Evader 1. After that point, Evader 2 stops at the position where it is captured and 

Pursuer 2 continues to chase Evader 1. At the end of the game. Evader 1 is 

captured by Pursuer 1 and stops moving. 
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CHAPTER 6 

CONCLUSIONS AND F U R T H E R R E S E A R C H 

6.1 Conclusions and Summary of Thesis Contribudons 

The first contribution of this thesis is that we developed a method for numerically 

solving zero-sum stochastic Pursuit-Evasion games. It is called the Markov Chain 

Approximation method, and it selects a suitable Markov chain to approximate the 

original problem. A significant advantage of this method is that the construction of 

the Markov chain is straightforward and the resulting Markov chain is in the 

standard form of finite MDPs problems which can be solved conveniently by 

existing algorithms. 

The second contribution is that we also developed a stochastic control software 

package, which is capable of solving general Markov Decision Processes problems. 

The package includes functions for solving both optimal control problems of finite 

MDPs and MDPs with continuous state space and for solving zero-sum stochastic 

games with finite state space and action space. 

Several numerical examples are given to demonstrate the use of our software 

package. A one-to-one stochastic Pursuit-Evasion game is discussed step by step to 
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illustrate the application of the Markov approximation method. This is extended to 

a method for solving a stochastic PE game with multiple players, using a 

decentralized approach. 

6.2 Further Research 

The Bellman collocation method for MDPs with continuous space is promising 

and it can also be used for solving finite MDPs problems when the state space is 

large, though finite. The idea of the method is similar to the parametric 

approximation algorithm of Neuro-Dynamic programming [25], which uses Neural 

networks to approximate the optimal value function and selects the weights of the 

networks. In this thesis, we only solve one dimensional control problems or games 

by applying this method. We need to extend the method to higher dimensional 

problems. Neuro-Dynamic programming should be a useful technique for this. 

Also, we must consider how to quantify the effects of approximation. 

Reinforced machine learning, in which the players learn how to map situations to 

actions, has also been a useful technique to analyze PE games. The basic idea is 

simply to capture the most important aspects of the real problem facing a learning 

agent interacting with its environment to achieve a goal [24]. Methods like 

TD-learning and Q-learning [24, 26] used in Artificial Intelligence might be a good 

initial approach to solve stochastic pursuit-evasion games. 

The information structure of stochastic PE games we considered in this thesis is 

the closed-loop perfect state information structure, i.e., the state of the system and 

the other player's objective function, are known without error. In realistic 
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applications, this is not always the case. The players' observation might be 

imperfect. One player might not know the value of some parameters in the other 

player's objective function or even does not know the expression of the other 

player's objective function. Is the problem still feasible by using the Markov Chain 

Approximation under these conditions? 

The stochastic software package that we developed in this thesis should be 

extended when considering the extended problems listed above. Further 

improvement and extension are necessary to refine this software package for a 

practical toolbox, such as the toolboxes in MATLAB. 
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