NUMERICAL SOLUTION OF ZERO-SUM STOCHASTIC
GAMES AND RELEVANT STOCHSTIC CONTROL
SOFTWARE PACKAGE

A Thesis
Presented in Partial Fulfillment of the Requirements for
the Degree Master of Science in the

Graduate School of the Ohio State University

By
Ziyi Sun, B.S.

ook ok ok ok

The Ohio State University

2006
Master’s Examination Committee: Approved by
Dr. José B. Cruz, Jr., Adviser M
Dr. Randolph L. Moses
v O v
Adviser

Electrical Engineering Graduate Program

ABSTRACT

Tremendous efforts have been devoted to stochastic games and control problems
because of their wide applications in practice. A traditional approach for solving
stochastic problems is to theoretically analyze the differential equations, which
describe the dynamics of the underlying systems. However, the uncertainty that the
environment builds into the system makes solving for analytical solutions impractical.
Based on the deficiency of standard methods, in this thesis, we apply the Markov
Chain Approximation method, developed by Kushner, to numerically solve for the
value function and optimal strategies of control problems, and extended it to solve
zero-sum stochastic games. In addition, we develop a stochastic control software
package to assist in the computation of solution for stochastic problems, as well as
Markov Decision Processes. Numerical examples in MDPs are given to demonstrate
the use of our package. A one-to-one stochastic Pursuit-Evasion game is provided as
an application of the Markov Chain Approximation method. The results have been

extended to multiple stochastic PE game by using a decentralized approach.

To my family

iii

ACKNOWLEDGMENTS

I gratefully acknowledge the constant and invaluable academic support received
from my advisor, Dr. Jose B. Cruz, Jr. throughout my two-year graduate study at the
Ohio State University. Thank you for leading me to the world of game theory; thank
you for guiding me and giving me constructive suggestions on my research work.
Above all, thank you for preparing me for future challenges.

[also want to thank Dr. Randolph L. Moses, at the Ohio State University for being
in my committee and for his valuable suggestions on my thesis writing. My sincere
thanks also go to Dongxu, Li for his stimulating discussions on this thesis, to
Xiaohuan Tan, for her earnest help with my study, and to my teammates Mo Wei, Dan
Shen and Xu Wang for their kind assistance.

I am also deeply indebted to all my classmates in the control group at OSU and
friends from Chinese association for their friendship and encouragement

Last but not least, I want to express my gratitude to my dearest parents, for their
love, patience, guidance and support throughout all these years. I couldn’t have
completed my studies without them. I miss them so much and wish them all the best

with my deepest heart.

iv

VITA

MY 21, 1983 ... e cecenrercnnesrvpsmsrimssppassseserssssosssamamemsse Born — Nanchang, China.
JUNE 2004 ..o B.S.
Peking University,

Beijing, China

FIELDS OF STUDY

Major Field: Electrical Engineering.
Studies in: Controls

TABLE OF CONTENTS

Page
ABSTIRACT: svesmssvsusssossssessms ioisims s sss S s o o TR o aT oA A Ao A SR s s S E Bt P A S ii
DEDICATION i scu00ci5msssssnssssasesasssessussusssenssasssssonsesssssasesmosissgings ssissssssassssrssseosossvssnaswsssinsvesinssnssissonnss i seos iii
ACKNOWLED GEMENTS i soussnimssassmsios s iin s maiss s s oo amsiss i (e s s vas s s ssrs s toiss iv
B] . N L L T - Teeapen \%
LISTIOFTIGUREScocosciecsssesssseassasasorssasenssusssavesssssssssassonassnnssonssonssntossss e bssaisjoasssonsissgonssmsnsossssenssonsis ix
LISTIOE TABLES . .coisusioinonsviassssos s issvsaissiriaiaissiamss iimssss sorivessamons sssosnssio s et sss soos svpsssssssnssnssssssvasas ix
CHAPTER. 1 INTRODUCGTION ususssissossssssmivossesssisssosssssssnams s sseeiss s simsgisissssansssissssvssonssioesstosgers 1
1L S OO ABEIC: (GATIIES i1 cxssarssnssnssnsnsensososs senssassavmmsas snnessbsnasansnssnssnssasnssiss s THaeTR VAT RSN EVEHoA oo Ts VRN SRR SIS SRS AR 1
1.2 Pursuit-Evasion Games and MotiVation .. cssssesssssssmsasssssisssssssssssasssssisisiassssissssasssssosoassssasssssassssvassans 4
1.3 Thesis Organizationeumersssesssmeresisisseresissssisnsssissessssssessssssasssserssassorsassasssnsansasssassosssassssasssssssesnssons 7
1.4 ‘Thesis Contributions:. ... summsnsmsrnnssisssmssis s mimsmsin s s s s siss s SEsya e oo osssdsoatines 8
CHAPTER 2 MARKOV CHAIN APPROXIMATION FOR ZERO-SUM STOCHASTIC
DIFFERENTIAL GAMEScovtitiitiiteiireeeeerseetessessessesessesssaessesssssssssssesssesssssssessssssssssesssessasessasessaessessns 9
o B 2 o) L o)1 0= T m— 9
2.2 Stochastic Contio] PrODICHIS .cc.oesessussusssssossssusssnmsssisississisesssssssessssessssisasssssossspsosnssansgorassssssssiotensstoes 10
2.2, 1 Stachastic, Differential EQUALIOR. .o vewswssovmmmsimmommicomorsssssnnsonapinsnsswesssssses snsss s aos s gssvinsnsas 10
2.2.2 Formulation of Stochastic, Control ProBlem.neswssssvmmmnsimmssssnmssiosvimmsssssmsssaess 12
2.3 Markoy Chain Apptoximation MeEthod «.wmssessmsmseemssmssmisgssssisssoimssismevess iFmsssvimss 14
2.3, 1 Controllad MarEOVICHGIN. ..ovoorsmsinismocxonmnssomsssmssssununasssannsnssaanbsinsnsansavss i8558 5 vt Gms s peoss e o 14
2.3.2 Markoy Chain Approximation MetROG s ivnossnsinssssississssmsass sasesssissssmsssess 16
2.3.3 Extend to Two-Player Zero-Sum StochQStic GAMEScococviviiiviiiiiiiiiiiinisiessseisiias 21

CHAPTER 3 COMPUTATION OF MARKOV DECISION PROCESSES AND A RELEVANT

SOFTWARE PACKAGE ;v essvvisess s viss o s0o0iaopesss e eis casosisssrsasssoas s ssssissasodo a9 30 sassvonsssssoessasnons 23
3.1 Discrete Timie, Discrete State . Space IMDPE..cumesmessssmssisssissssmaasiossiiossissaesbsmsseinssostasssssessiiois 23

B L VIOTELS .inissmissnmmsinsmnonsmoonssomsssommssusanmonsusnassmenssnssssssns o ssssns s asinmsine Fam e o o BT AT PO Y 23

3. 1.0 ALBOR IR cssosvcossvssmsmmmesnmsmmss s oo A G oA AP RS S SNV BRI 25

3.2 Discrete tie, Continuous. State SPace MDPS.......yusosovmirissisisesssssissorsssnsspssissssessssassssnsonsaiiaasaisoasssis 26
302 MOTEL..is5:555imimovimsmmnmmsansemmmonssuonsammsvansumssiranbanmmsasmussion smassssssenssn s sasn s o aToRs SA T SRS 26
3.2, 2 AUGOFIIII. suvusrvsempsninpesmsmssmssss oo e o R S N S0 S S A R B A e SR 28

3.3 Remark 1

3.4 Remark 2
CHAPTER 4 STOCHASTIC CONTROL SOFTWARE PACKAGEcccoovviminiiiiiiiiiciniins 36
4.1 Functions for Discrete Time, Discrete State Space MDPs......ccccocvivciiiiiniininininnnnen. 37
4.1.1 FUNCHION: fIRite_ViEFcccovovvviisrissieisiisiinis ittt 37
4.1.2 Function: Infinite_Viter ..ottt 39
4.2 Functions for Discrete Time, Continuous State Space MDPS.....cc.cccevviiiviininiinenniis 41
4.2.1 FUNCHION: MAD_COM_C wovovviviineisieieiisi i e 41
4.2.2 FUNCHION: MAD_COM ..onvvvnivirininsensssissesisssissistssssestssisisisiststassssssisbasishssssssssinssssssssssassssasssssassassns
4.3 Functions for Stochastic Control Problems
4.3.1 FUNCHON: SEOCRA_ TNccvovvrvinriennsinnnsisinssasssissssssstissssssssssssssusssstussssssssssissismsassssssassorsensanssssens
4.3.2 FUNCHION: OPI_ACE CONIFOL ..ot
4.4 Functions for Zero-Sum StochastiC GamES.......cceueiiiisserssiessaesssissnsssessasssasssnsssssssasssssasassassssassasessnssns 47
44,1 FUnction: SCOCHE TRITIIIEN .oscvisssssnississaonso s s saisisvivmsns osas sses s os s sspssss sH5ss8 a3 st espsansssnesis 47
4.4.2 FUNCLION: OPE_QCE_GAMEovvovvireisiiieissiseis s 49
CHAPTER 5 APPLICATION TO PURSUIT-EVASION GAMES........ccoiiiniiiiiniiiininieenine 52

5.1 Numerical Examples of Markov Decision Processes and Demonstrations of Stochastic Control
SOMWATE PACKAZEcvevevirenenererrecenenitsiiessssae st ssssssssss st s st s se s s b s ssbsnssats s s sastsnbsasnsnsnssassstsnasannann 52
5.1.1 A Numerical Example of Discrete Time, Discrete State Space MDPs with Finite Horizon......... 52
5.1.1a Problem Description: Mine Extraction [29]
5.11b Model

S.1.le Nutrierioal STMIATION, . s sssmsessns s Es o (N s Faus e s sSaas o SR roma Thp 53
5.1.2 Numerical Example for Discrete Time, Discrete State Space MDPs with Infinite Horizon......... 58
512a Example Description: Gambler's Problem [29]...........cccvuiiimininminiiniisinsensnnes 58
5.12b 1173 s L) T R e 58
5.1.2¢ NUMETICAl SIMUIALION ..ottt 58
5.1.3 Numerical Example of Discrete Time, Continuous State Space MDPS ..o, 62
5.13a Example Description: Water Management [30]c..ccccvnieimmnininnisseensenens 62
5.1.3.b 117, 375 7<) OO 0 PO SOTPR RO NP R =2 62
5.13.¢ INOEETCA] STITLALION 1. covsiometssinsonnms siivssibsfes oA e S ST T TR A S AT B aw 63

5.2 Deterministic Pursuit-Evasion Gamescc.ceveivesinrniinminssseniseniniiminisssnsssssssssssesmsmsseen 67
5.3 Stochastic PUrSUit-Evasion GaAMES.........ccvereersrersescssissessncssesanssnsssessasssssassassasssnssnssssansssssnssssssssssessasasss 5|
5.3.1 One Pursuer One EVOOEr PE GINGS. .q.smwsssssssevssisess s ssms isssssss s ss e ssaassnis s insensssasness s ves 71
5.3.2 Multiple Players Pursuit-Bvasion GAMES......ssusswsssssmssmssssssvmssesssnsssssnssaissassssamvsssvsorosssssnsvs 76
CHAPTER 6 CONCLUSIONS AND FUTURE Research...........ccccccocevivinininnnnninniininesennessiessnsenene 80
6.1 Conclusionsand Summary:of Thesis Contributions v wsssasmimsesmmmmsmmsssmmsissssensmsmssiss 80
6.2 FUTthET RESEATCH suumussurvimssssswssusisussuosmossissssiasssssnsiomsssesnssnsssinias sxuisssnmessomsisnsssuosns sons s susssa ssssugorssamosvinmss 81

BIBLIOGRAPHY

viii

LIST OF TABLES

Table Page

Table 5.1 Value of Input Arguments in Example: Mine Extraction.............ccocovvveniiinns 54
Table 5.2 Value of Input Arguments in Example: Asset Replacementccccccoeveiins 59
Tabel 5.3 Optimal Strategy, Agset REPIGCEMIENT i msmussmmsonsanmmsnsrssessismreamorspss souos 61
Table 5.4 Value of Input Arguments in Example: Water Managmet..............cccooevennenn 64

Table 5.5 Value of Input Arguments in Example: One-to-one deterministic PE

81 TR S PO O 69
Table 5.6 Value of Input Arguments in Example: One-to-one PE Game............c..c.c.... 73
Table 5.7 Value of Parameters in Example: Multiply PE Game........cc.ccooveereiinienssansnvenas 78

LIST OF FIGURES

Figure Page

Pigure 5.1 Optimal Strategy, Mine EXHRGHEN .. commmmmismsmmmssmmmmmsmssrtssvomin 57
Figure 5.2 Stock Though 15 vear, Ming EXtraction «.ucsmsemsmanmmsssssmssmmenssme 57
Figure 5.3 Optimal Value during iteration, Asset Replacement.............ccccccevviiiiiiinnnnn. 61
Figure 5.4 Value Funetion, 'Water Managoment ...cmemummsissmpamsmssenpsn sammrissasn 66
Figure 5.4 Optimal Strategy, Water Management..........c.ccccovviiiiiiniiiiiiennennnn, 66
Figure 5.6 Trajectories of the Players: numerical and analytical solution...................... 70

Figure 5.7 Trajectories of the relative position: numerical and analytical

SOMREENOUIL s s s et R 6 o AR AR R B S R R AN ET S 70
Figure 5.8 Value Function, One to One PE game: Numerical Solutioncc.cccun.e. 75
Figure 5.9 Value Function, One to One PE game: Analytical Solutionccccoevvnne. 75
Figure 5.10 Trajectories of Pursuer and Evader, One to One PE.......ccvmnscassmcssersassess 76
Figure 5.11 Trajectories of Pursuers and Evaders, Multiple PEc..ccoooiiiiiiiinnnn 79

CHAPTER 1

INTRODUCTION

1.1 Stochastic Games

Game theory is a methodology for the study of competitive interaction among
players with the relationship ranging between conflict and cooperation. Dynamic
games are used to model competitive processes evolving over time. Stochastic
games are dynamic games with stochastic transitions, where stochastic transitions
are used to model or to formalize inherent uncertainty. They enjoy rich and mature
mathematical theories [2], [3] and have a wide range of applications including
economics, military, population and evolutionary biology, queuing theory and
performance evaluation.

Stochastic games concentrate on decision situations where at different time points
the players have to make a choice. The joint choices of all the players together
have two applications. First, each player receives some reward, or cost when this
reward is negative. Second, the underlying dynamic system moves on along its
trajectory. However, the system here plays a role in the sense that the transition is

the outcome of a random experiment, which might be dependent on the choices the

players made. The dynamic system of a stochastic game is defined in term of a
state space and the transitions are defined as moves from one state to another. In
any of the states, players have their own action sets, which might be state dependent.
When the system arrives at a state, each of the players has to choose an action from
his available action set. In the course of a stochastic game being played, each of
the players is rewarded by a series of immediate payoffs at different decision
moments.

Stochastic games were first defined by L.S. Shapley [1], who studied simple
zero-sum stochastic games with probabilistic moves and real pay-off. He proved
that the value functions exist for such games and both players have stationary
optimal strategies. Shapley also discovered an algorithm by which it is possible to
find both the value of the game and the optimal strategies. The algorithm is nearly
identical to value iteration for Markov Decision Processes. The other algorithm for
solving the simple stochastic games, which is an extension of policy iteration, was
introduced by Pollatsched and Avi-Itzhak [11]. Later, stochastic games, which
differ from Shapley games in that they can be infinite, have been studied. They are
called stochastic games with limiting mean pay-off. In 1981, J. F. Mertens and A.
Neyman proved the existence of the value of such a game and of stationary optimal
strategies under a hypothesis of ergodicity of the Markov chain [4]. These results
have been generalized to cases where restrictions on the number of states and
elementary strategies have been removed and to the case of other forms of pay-off [5,

6]. Recent results in zero-sum stochastic games include studying in zero-sum

2

stochastic games with borel state spaces [31] and zero-sum ergodic stochastic games
[32, 33].

We will be concerned here with the computation of zero-sum stochastic games.
For a deterministic game, one can apply dynamic programming techniques to obtain
a solution by computing the appropriate value function. However, this method is
only tractable for very simple games. For reasonably complex games such as chess,
one must typically apply heuristic techniques and receding horizon approximations
in order to reduce the computational complexity. For stochastic games, the value
function is defined over the space of all possible probability distributions over the
state space. Thus, the problem is much more computationally intensive. Since the
dynamics of stochastic games are always described by stochastic differential
equations (SDE), it was tempting to try to solve for or approximate the various cost
functions and optimal strategies by dealing directly with the appropriate differential
equation and numerically approximating their solution. However, a basic
impediment is that the differential equations often have only a theoretical meaning
which could be impracticable, and standard methods of numerical analysis might not
be usable to prove convergence of the numerical methods. For many problems of
interest, one cannot even write down a differential equation explicitly. During the
recent past, more analytical methods, such as applying reinforcement learning to
stochastic games [34, 35], have been studied but even then it seems that many
important classes of problems are still not covered. In 1977, Kushner suggested the

method of Markov Chain Approximation to approach the numerical solution of

3

stochastic control problems [7]. This method applies a Markov chain
approximation to continuous time, continuous state stochastic control problems by
renormalizing finite different forms as proper Markov chain transition probabilities.
An important advantage of this method is that the Markov chain approximation
facilitates convergence proofs for the numerical methods in terms of probabilistic
arguments. This method is further advanced by Kushner [8], and by Kushner and
Dupuis [9], with the special attention to convergence proofs. This method has been
shown to be robust and to converge under broad conditions, and it is a good

algorithm for solving the numerical problems, if the dimension is not too high.

1.2 Pursuit-Evasion Games and Motivation

Pursuit-Evasion (PE) games vary in complexity ranging from pursuers capturing
evaders, or following moving target, to avoiding stationary targets and navigating.
The games have received serious attention from game theorists for decades because
of their importance in tactical air combat and other military applications [10].

The most commonly used techniques adapted to deal with PE games include the
classical calculus of optimal control technique, dynamic programming, reinforced
machine learning and game theory. Traditional game theory has focused on games
with discrete moves. However, in the 1950s, Isaacs [13] utilized game theory in
modeling and analyzing pursuit-evasion situations such as aerial combat, where
moves unfold continuously over time, and control system can vary continuously in

the strategies they implement. Isaacs had two basic insights. First,

4

Pursuit-Evasion games do require game theory rather than simple optimality theory.
Second, the continuous nature of Pursuit-Evasion games can be modeled using
differential equations that specify how state conditions change incrementally as a
function of players’ strategies and previous state, such that the moves become
continuous trajectories through a state-space. Afterward, differential game theory
has developed as a tool for analyzing the structure and complexity of PE games.
Differential PE games are defined by a set of controls (the actions of each player), a
set of dynamics (mapping from the control variables onto the state variables of the
game), and a set of termination conditions (state conditions that determine when
successful capture or evasion happens). For example, Berkovitz [12] analyzed a
classic case, in which a pursuer and an evader move with constant speed in a plane
and control the direction of their velocity vector.

Though differential theory may prove useful in analyzing PE games, generally
speaking, PE games are characterized by various dimensions of complexity: the
number of players (from the two-player case to the multi-player case), the number of
moves (from discrete action space to continuous action space), the continuity of the
strategy space (from discrete state space to continuous state space), the structure of
value function (from zero-sum games to non zero-sum games) and the information
structure (from games with perfect information to games with imperfect information).
These difficulties indicate that differential PE games are complicated to analyze even
under the best circumstances, and that the introduction of realistic complexity makes

most of them numerically unfeasible.

To avoid these complexities, differential game theory usually assumes that the PE
game is one of perfect information between two players with fixed and
pre-determined roles, deterministic dynamics, constant speeds and a zero-sum payoff
structure. The case of two-player zero-sum PE games has been solved by
computing the value function of the game by means of the Isaacs equation [11].
Mathematically proficient researchers can relax one or two of these assumptions at a
time to obtain results for special and simplified cases. Li and Cruz proposed a
hierarchical approach and a rigorous approach for solving multiple players PE games
[14]. Hepanha, Kim, and Sastry introduced a probabilistic framework of PE game
simulation where a swarm of autonomous pursuers are chasing an evader and the
objective is to come up with a policy that will maximize the probability of finding
the evader in finite time [15]. However, relaxing all the assumptions at once makes
the game hopelessly complex. A recent complexity-theoretic analysis of
differential PE games by Reif and Tate [16] illustrates the difficulties of designing a
control system for robots and autonomous vehicles playing such games.

Therefore, although differential game theory provides a framework for describing
the important features of PE games, and a set of normative results concerning
optimal strategies in simple cases, it cannot generally provide optimal strategies for
practically PE problems, even though the solution can be shown theoretically to exist
and to be unique. It motivates us to apply the Markov Chain Approximation
method to stochastic PE games, to numerically compute the value functions and

optimal strategies.

1.3 Thesis Organization

After this introductory chapter, this thesis is divided into 5 more chapters. In
Chapter 2, we formulate stochastic control problem and stochastic games in SDE.
We provide Itd’s Formula and the differential operator, which gives a theoretical
approach to solve the SDE. Then we describe the basic idea of Markov chain
approximation method and derive the formula for optimal control problems. We
extend it to two-player zero-sum stochastic differential games, in which it is proved
that the value exists and the numerical methods converges to this value.

Chapter 3 focuses on the software package which we construct to solve general
MDPs problems. We provide algorithms for solving various classes of MDPs,
including value iteration for discrete state space models, and Bellman Equation
collocation methods for continuous state space models.

In Chapter 4, we introduce the stochastic control software package which we
develop to solve general MDPs, stochastic control and zero-sum stochastic games.
Description of the functions is provided and the use of this package is explained in
details.

In Chapter 5, first we illustrate the use of our stochastic control software package
by examples in the field of economics. Then we give a model of a one-to-one PE
game and a model of multiple players PE game. We apply the results of Chapter 2
and functions in our software packages to these models. Numerical solutions are

computed and discussed.

In the last chapter, we summarize the results obtained in the previous chapters and

give some suggestions on future research directions.

1.4 Thesis Contributions

Firstly, we develop a method for the computation of zero-sum stochastic games.
We extend the Markov Chain Approximation method, which is initially developed to
approximate stochastic control problems by Markov chains, to zero-sum stochastic
games. We apply the method to zero-sum stochastic Pursuit-Evasion games, and
the simulation results demonstrate the success of the application.

Secondly, we develop a stochastic software package, including functions written
as MATLAB files. The package is capable of solving general Markov Decision
Processes problems, for both discrete and continuous state space. We use this

package to numerically solve MDPs problems more conveniently and systematically.

CHAPTER 2

MARKOV CHAIN APPROXIMATION FOR ZERO-SUM

STOCHASTIC DIFFERENTIAL GAMES

In this chapter, we first formulate two-player zero-sum stochastic Pursuit-Evasion
games. We provide necessary mathematic background used to formulate and
analyze stochastic problems theoretically. Then we introduce the Markov chain
approximation method which numerically computes the value function and optimal
strategies of stochastic game problems. The method is first derived to solve
stochastic optimal control problems and then extended to solve two-player zero-sum

stochastic games.

2.1 Problem Formulation
We consider a two-player, zero-sum stochastic Pursuit-Evasion game described by
dx(t) = f(x(t),u(?),v(t),t)dt + o (x(t))dw(t) (2-1)
where w stands for standard wiener process, and u(-) and v(-) are the control of
pursuer and evader respectively . The objective function of the game can be
formulated as
J(x)=E, ([Gxu v+ Q(x(r))) 2-2)

g

The value of the objective function is the expected value on the space of all random
processes x starting at x(0). In a stochastic zero-sum PE game, pursuer (evader)
applies the control of u(-)(v(-)) to minimize (maximize) the objective function.
If the value function exists, the value of the game is defined as
V(t,x(t) = m“m m?x{J(x(t),t,u, v)} (2-3)
In the rest of the thesis, we assume that each player has access to perfect state
information. The existence of value functions for general two-player, zero-sum
stochastic differential games has been proved by W. H. Fleming and P. E. Souganidis
[17]. Since a closed-form solution to the optimal strategies is not available, our
objective is to numerically solve the problem and obtain the optimal strategies for

both of the pursuer and the evader.

2.2 Stochastic Control Problems

2.2.1 Stochastic Differential Equation
One of the most important models for stochastic systems is the stochastic
differential equation (SDE) of the form
x(t)=x(0)+ || f(x(s))ds+ [o(x(s)ew(s) (2-4)
where x(-) is an R"-valued process with continuous sample paths, w(:) is an
R* -valued process which serves as a “driving noise”, f(-) and o() are bounded

measurable functions mapping R” into R” and into the space of real nxk

matrices, respectively. The above equation can also be written in the symbolic

10

form
dx(t) = f(x())dt + o (x(1))dw(t) (2-5)

We will consider stochastic integrals with respect to the Wiener process. The
classic probabilistic tool used to analyze the solution to (2-4) is the theory of
stochastic differential equations due to K. It6 [18]. The resulting stochastic integral
and related theory of SDE provide a very convenient family of models that are
Markovian and possess continuous sample paths.

Let x(-) be the solution to the above SDE. The link between the process x(-)
and certain second order partial differential equations is provided by It6’s formula
and the differential operator [18]. Let A(x)=o(x)o(x)" ={a,.j(x)}, e
and for any twice continuously differentiable real value function g on R”", define

the differential operator as

Tg)x) =g, (x)f(x) +%tr[gxx(x)/1(x)]- (2-6)
where
g8] _
g"(x){ax, " ox, ""’axj Wi
og’ .
2.0 ={g,, (0} = {ax.ax}’ iy j=Lesn 2-8)
(g, (x)A(x)]= Z 8y, (X)a; (%) (2-9)

Then 1t6’s formula states that

g(x(0) = g(x(0) + [T)x(s)dls + [g, (x()ox(s)dw(s) (2-10)

11

2.2.2 Formulation of Stochastic Control Problem

A stochastic control problem is generally described in the form of SDE
dx(t) = f(x,u)dt + o(x)dw (2-11)
where x(-), f(-),o(-) are defined as above, and u(:) is the control that takes values
in a compact set U . It is a pure Markov control if the control can be written as a
function of the current state and time. In the remainder of this thesis, we will
consider pure Markov controls that depend only on the state.
The objective function is defined as
J(x,u) = ELL [G(x(s),u(s))ds +Q(x(r))] (2-12)
where 7 =inf{t:x(t)e S}, S is the terminal set, and E;(-) is the expectation of
the expression with respect to # and x. The optimal value of this control
problem is defined as
V(x)= 5{135 J(x,u) (2-13)
We now apply a formal dynamic programming argument to derive the partial
differential equation (PDE) which is satisfied by the optimal value function V(:).
Refer to [20, 21] for more development details. Suppose that 7(:) is as smooth as
necessary for the following calculations to be valid and there is an optimal control
u'(-) which is pure Markov. Let A>0 and let o be any value in U. Define
Zz(-) to be the composite control policy that uses the feedback control u"(-) for
t>A and uses the control identically equal to a for r<A. Define the process

x() to be the process which corresponds to use of the control z~4(-). Let 7 be the

time that terminal set is reached under this control policy. Let x(-) and 7 be the

12

solution and escape time under the optimal control #'(-). By definition, we have
V(x)=EL [[, G(x(s)u" (x(s))ds + Q(x())] (2-14)
The optimality of V() implies
V(x) < L[G(x(s), u(x(s))ds + O(x(x)]
= EX[[G(x(s), @)dls + Q(x(t))] (2-15)
+ EL [GOx(s),u(x(s))ds + QoD)
By the Markov property, the definition of u(-), and the optimality of «"(), the

inequality above may be rewritten as

V()< B[GGs)a)ds + Q@) ey +V (KA] (2-16)
Therefore
%Ef [V (x(A)) =V (x) + j : G(x(s),a)ds] = %th(r, % . (2-17)
where
Wz, 0 0) =V (x(8) - | Glx(s), @)ds - O(x(x)) (2-18)

is bounded uniformly in wand A. If we assume the condition Px;‘{r <A}/ A—0
as A — 0, then the right hand side of the inequality (2-15) tends to zero as A — 0.
Therefore, combining with (2-6), (2-10) in It6’s theorem and taking this limit yields,
for any value of « in U,

Ir'vix)+G(x,a)=0. (2-19)
Let us replace @ by u'(x(s)) on [0,A), and that #'(-) is continuous at x.
Then that analogue of (2-19) holds with the inequality replaced by equality. We
then formally obtain the equation

T OV (x)+G(x,u’ (x)) =0 (2-20)

13

It follows that

. f a — L
{L‘zu[r diia il b L, 2-21)

Fiz)=01(x), xe€oS

2.3 Markov Chain Approximation Method

2.3.1 Controlled Markov Chain

Markov chain and Markov decision processes (MDPs) are special cases of
two-player zero-sum stochastic games. A Markov chain describes the dynamics of
the states of a stochastic game where each layer has a single action in each state.
Markov decision processes are stochastic games with a single player. A particular
MDPs is defined by its state and action sets and by the one-step dynamics of the
system. Let U be the set of possible controls with generic variable «. The
transition probabilities are written as p(x'|x,a) or p&., which means the
probability that the next state is x' when the current state is x and action « is
taken. The cost is written as r(x,a) which represents the cost received at this
time period when the current state is x and action « is taken.. Let
u = (uy,u,,...) denote the sequence of control actions taken at time 0,1,.... We say
that u is admissible if the Markov property continues to hold under use of «

Pix.,=x'| g,u,i<th=Plx,, =x"| 2.4} = p(x'| x,4) (2-22)
If there is a function u(:) such that u, =u(x,), then we refer to the control as a

feedback or pure Markov policy.

14

Classified by the form of objective functions, there are two main types of
controlled Markov chain models.
(1) Discounted cost
Suppose that ¥ >0. For an admissible control sequence u, the objective

function is defined in the form
J(xsu) = E,: Z y’r(x,,u,) (2'23)
1=0

Let V(x)denote the infimum of the objective function J(x,u) over all

admissible control sequences and defined as

= u N ! 0
V(x)=inf E; > y'r(x,u, (2-24)

=0

The value function ¥V (x) is finite for each x due to the discounting and
satisfies the dynamic programming
V(x)= IZIEI(I]‘I [VEIV(x")+r(x,a)] (2-25)
(2) Control to a terminal Set
When the discounted factor is absent, let S be the terminal set and oS
denote the boundary of S. A controlled process stops once the state

reaches S. The objective function is defined as
7'-1
J(ru) = E} Y r(x,u)+ Ejq(x;) (2-26)
1=0
Let us define the optimal value function V(x):in(t/“ J(x,u), where the

infimum is over all admissible control sequences. The dynamic

programming equation for the objective function is

15

ael (2-27)

{inf[EfV(x Y+r(x,@)], xeS-08S
V(x)=
q(x), xeodS

2.3.2 Markov Chain Approximation Method

For standard control problems, we apply Itd’s formula to derive the partial
differential equations for the optimal cost. These partial differential equations are
generally known as Bellman equations (PDE) or dynamic programming equations.
Their forms are very suggestive of good numerical methods. However, the
equations themselves have only a theoretical meaning, and little is known
concerning the existence and uniqueness of the solution. Also, the operator in [td’s
formula is often difficult to calculate. Based on these obstacles, we introduce the
Markov chain approximation (MCA) method developed by Kushner. This MCA
method can be applied to a very broad class of stochastic and deterministic control
problems.

The MCA method suggests that we approximate the original problem with a
Markov chain on a finite state space, which is a discretization of the original state
space of the underlying problem, and associated objective function for which the
desired computation can be carried out. The approximation Markov chain is
chosen such that certain local properties of the approximation chain are similar to
those of the original controlled process. Then the objective function for the
Markov chain model which approximates the objective function for the original
model is constructed. This procedure can be used almost automatically, in that

there are standard methods to construct the chains and objective functions [8].

16

And since there are many methods to solve the Markov chain problems, the
computation for the chosen Markov chain is accessible at the level of application.

The approximating chain is characterized by a parameter, which is analogous to a
finite difference interval or to a finite element size in classical numerical analysis.
When the parameter goes to zero, the local properties of the chain are more and more
similar to those of the original process. It can be proved that the sequence of
optimal value functions for the sequence of approximating chains converges to that
for the original process as the approximation parameter goes to zero under broad
conditions. ~ We omit the proof here because this thesis’s emphasis lies on the
application. Refer to [8, 9, 27] for details.

The specific method of MCA to be discussed and used later in the thesis is called
the finite difference method. ~We use it to construct the locally consistent
approximating Markov chains. It turns out that when a carefully chosen finite
difference approximation is applied to the differential operator in [t&’s formula, the
coefficients of the resulting discrete equation can serve as the desired transition
probabilities and interpolation interval.

We work with the controlled process x(-) satisfying (2-11) with objective
function defined in (2-12). The optimal value function is defined as (2-13).

Define the matrix

A@) =)o x) ={a,(d)}, §LJj=l..n.

17

The differential operator I'* of (2-24) is defined as:

- g 1 o
r =;ﬁ(x,a)—a7+52a,j(x) (2-28)

. 2ia Ox,0x,
By (2-21), we have the following partial differential equation
inf [r"mV(x, u)+G(x, u(x))] =0 (2-29)

Let e, denote the unit vector in the i-th coordinate direction and let R’ denote
the uniform #A-grid on R"; ie. R} ={x:x= hzie,m, v, =0,%£1,12,...} . Here,
we use a uniform grid to demonstrate the construction process. However, such a
uniform grid is not necessary. Let S, =R) denote the state space of the
approximating Markov chain. We use V"(x,u) to denote the finite difference
approximation to (2-13) and substitute suitable finite difference approximations for
the derivatives at each state x. As we mentioned, the coefficients in the resulting
finite difference equation can serve as the transition probabilities and interpolation
interval automatically.
The Diagonal Case

First we apply the method on the case where a,(x)=0 for i#j.

For the first derivatives, we use one sided approximation

x+eh)— f(x)/h if f(x,a)=0
R TRy S
For the second derivative, we use the standard approximation
£ () > f(x+e,h)+f§;~e,.h)—2f(x) 2-31)
Define the positive and negative parts of a real number by
a* =max[a,0],a” = max[-a,0] (2-32)

18

Substitute (2-30), (2-31) and (2-32) into (2-29), we have

rzlelgl{i f[Tx,)V (x+eh)-V(x)/h+ 5_: [(x,a)V(x—eh)=V(x)]/h
- - (2-33)
+Z a,lV(x+eh)+V(x—eh)-2V(x)]}+G(x)=0

i=l

We collect terms and divide the terms by the coefficient of V”(x,u). Hence, we

obtain the finite difference equation
V" (x,u) = min {Z P 1 xu()W" (1) +Gx,u(x)AL" (x, U(X))J (2-34)
Yy

where

a,(x)/2+hf* (x,@)
0" (x,a)

pl(xteh|x,a)=
h2

0" (x,)

Qh(xaa) = Z[aii(x)+h | fi(x,)]

At"(x,a) =

(2-35)

We assume that A¢"(x,a)=0O(h). For y not taking on the listed values, we
define p"(y|x,a)=0. The constructed p”"(y|x,a) are nonnegative, and for
each x and «, they sum (over y) to 1. Thus, they can be considered as the
transition probabilities for a controlled Markov chain.

The dynamic programming equation for the optimal value function is
V' (x)= mil? z Py x,a)V"(»)+G(x,a)Al" (x)} (2-36)
84

in which, p”(y|x,a) serves as the transition probabilities. Thus, the above
equation is in a standard form of Markov chain, and any conventional method to

solve Markov Decision Process can be used to solve this problem.

19

The General Case

Now consider the case where the off-diagonal terms a, (x), i # j, are not all zero.

For the first and second derivates, the formulas are the same as the previous. For
the mixed derivatives, where i# j, we use the standard finite difference

approximations: For a,(x)>0, use
fx,x, (x)—> [2f(x)+f(x+e,.h+ejh)+f(x—e,h—ejh)]/th
~[f(x+eh)+ f(x—eh)+ f(x+e,h) (2-37)
+f(x—ejh)/2h2
If a,<0,use
fx,.x, (x) — —[2f(x)+f()c+e,.h+ejh)+f(x—e,h—ejh)]/2h2
~[f(x+eh)+ f(x—eh)+ f(x+e,h) (2-38)
+f()c—ejh)/2h2

We assume that a,.,(x)—Z|a,.j(x)|20, for all i, x. Substituting (2-30),
Jij#i

(2-31), (2-32), (2-37) and (2-38) into (2-27), collecting terms and dividing the terms

by the coefficient of J”(x,u), we get the finite difference equation as follows.
V' (x,u) = min 22" xu()W " (y,u) + G(x, u(x)Al" (x, u(X))} (2-39)
2 4

where

ph(Xiel‘hl x,a)=[a,(x)/2- Zla,j(x)l/2+hfii(xaa)]/Qh(xsa)

JiJ#i
ph(x+e,h+ejh|x,a):ph(x,x—e,h—ejh|a)=a;(x)/2Q"(x,a)
ph(x—e,h+ejh|x,a) = ph(x,x+e,.h—ejh| a) :a,.j‘.(x)/ZQ"(x,a) (2-40)

2
At (x,a) = hh
Q' (x,@)

Qh(xaa) = Z[aii(x)‘*'hlﬁ(xaa) Il

20

For y not taking on the listed values, define p"(y|x,a)=0. The different
choices for the finite difference approximation to the mixed second order derivatives
are made in order to guarantee that the coefficients of the off-diagonal terms

p"(x+e,.h-|_-ejh|x,a),p"(x—e,hie}.hlx,a), i]
are nonnegative. Also these choices guarantee that the coefficients sum to 1, so
that they can be considered to be transition probabilities for an approximating
Markov chain.

The dynamic programming equation for the optimal value function is

Wuﬁqq{Zp%ﬂnaW%w+GWamﬂuﬂ (2-41)

2.3.3 Extend to Two-Player Zero-Sum Stochastic Games
The approximating procedure is similar to the control problem.
For the dynamics of the game and the objective function described by (2-1) and
(2-2), define the matrix
Ax)=o(x)o(x)" = {a,(x)}s LJj=L...n.

The differential operator T'*# of (1) is defined as follows.

- 0 1 o
r? =% fine, fl—i—Y a, 2-42
gﬁuam& 2Z%w&& (2-42)

i i,j=1 e
By 1t6’s formula, we have the following partial differential equation

min max | T (x,1,v) + G(x, u(x), v(x))} =0 (2-43)

uel vel

21

Let e, denote the unit vector in the i-th coordinate direction and let R’ denote
the uniform h-grid on R”, ie.,, R} ={x:x= hz’e,m, o =0,%042,..5. We use
S, =R/, as the state space of the approximating Markov chain.

We only present for the general case here. By same construction process, with

the assumption that a,(x)— Z |a,(x)| =0, for all i,x, we get the finite difference
Jij#i

equation as follows

V" (x,u,v) = min max {Z P % u(x), v (61, v) + GCx, u(x), ()AL (x, u(x), v(x))}

uel velV
(2-44)

where

p'(xxeh|xa,f)=la,(x)/2= Y |a,(x)|/ 2+ (x,a, AV Q" (x, e, B)

p"(x+e,.h+ejh]x,a,ﬁ):ph(x,x—e,.h—ejhla,ﬁ)=a;.(x)/2Q"(x,a,,B)

p"(x—e,h+ejh|x,a,ﬂ)=p"(x,x+e,.h—ejh|a,,B)=a,.j_.(x)/2Qh(x,a,,B) (2-45)
hZ

0"(x,a,p)

0'(x,a.) = Yla,(¥) +h] (5.0, B)]

A" (x,a, B) =

For y not taking on the listed values, define p"(y|x,a,8)=0.
Define V(x)

V() =maxminy" p* (v | x,u(), VDV () + Gx,u(), ()AL (3, (), v(x)]
(2-46)

If f/-(x) =F{x),then V(x)= ?(x) =V(x) is called value function.

22

CHAPTER 3

COMPUTATION OF MARKOYV DECISION PROCESSES

AND A RELEVANT SOFTWARE PACKAGE

In this chapter, we provide the algorithms that we use in our software package for
solving Markov decision processes with different structures of state space and action
space. The different cases of MDPs that we discuss include: finite MDPs with
finite horizon, finite MDPs with infinite horizon, MDPs with continuous state space.
We also extend the algorithm for finite MDPs to the algorithm for two-player

Zero-sum games.

3.1 Discrete Time, Discrete State Space MDPs

3.1.1 Models

A Markov decision process is called a finite MDPs if its state space and action set
are finite. A particular finite MDPs is defined by its state and action sets and by the
one-step dynamics of the environment. Define U the set of possible actions with
variable . Let {x,} be the corresponding Markov chain defined on a finite state
space X . Inevery period ¢, the player observes the state of a dynamic system x,,

23

takes an action u,, and earns a reward (or cost if the reward is negative) r(x,,u,)
that depends on both the state of the system and the action taken. The player’s
objective is to seek a control strategy {4, } that given any state, the player take an
action u, = u,(x,) which maximizes (minimizes) the objective function.

A discrete finite MDPs may be either deterministic or stochastic. In the
stochastic case, given any state and action, x and «, the probability of each
possible next state, x', is

B =Pl =% |7, =x, =} 3-1)

These quantities are called transition probabilities. Similarly, given any state and

action, x and «, the expected value of the next reward is
r(x,a)=E{r,, | x, = x,u, = a} (3-2)

In the deterministic case, the next period’s state is known with certainty once the
current period’s state and action are known, a state transition function /', instead the
transition probability, can be used to explicitly gives the state transitions

X = S (x,u,) (3-3)

Let us consider the objective function with discounted cost for example. The

objective function is in the following form
7' :
J, = E;'Z ¥ r(%,u,) (3-4)

where y is a per-period discount factor. The value function is the maximization

of the objective function and can be defined as

V,=max E;) y'r(x,u,) (3-5)

i=t

24

A finite MDPs problem may have an infinite horizon (7 =) or a finite horizon
(T <).

The classic tool to analyze discrete finite MDPs is the dynamic programming
methods developed by Richard Bellman [22]. The method is based on the principle

of optimality. The principle of optimality can be expressed in the form of the

Bellman equation, which implies that the value function V,(x) must satisfy

Vi(x) = max{r(x,a) +7 Y, paVia(x)} (3-6)

x'eS

In the case of infinite horizon, the value function V' (x) must satisfy

V(x)=max{r(x,a)+y Y, pLV (x)} (3-7)

x'e§
3.1.2 Algorithm

1. Backward Recursion
For the finite MDPs with finite horizon, we can use backward recursion to

compute the optimal value and policy functions ¥, and u,. The algorithm is

described as follows.

Initialize the reward function 7, transition probabilities p, discount factor y, terminal
period 7', terminal value function V.,

Set t« T
Repeat
Foreach xe X

V/(x) mag((r(xaa) + Zypjx'l/;ﬂ(x'))

1, (x) < arg max(r(x,a) + 7 paV;, (x))

ael x'
t<t-1
Until £=0

25

However, it should be noticed that it may be possible to have more than one
sequence of optimal policies due to the ties occurring when performing the
maximization embedded in the Bellman equation.

2. Value Iteration

For the finite MDPs with infinite horizon case, one of the algorithms is called
Value iteration. We consider the Bellman equation in (3-7) as a fixed —point
equation. We can compute the optimal value and policy function V, and u,

using standard function iteration methods. The algorithm is described as follows.

Initialize the reward function 7, transition probabilities p, discount factor y, convergence
tolerance @. Initialize V arbitrarily, e.g., V(x) =0, forall xe X

Repeat
Foreach xe X

v_old <« V(x)

V(x) ¢ max 3 (r(x,@) +7pgV (x7)

A < norm(v_old -V)
Until A<@
Output a policy u, such that
u(x) « argmax(r(x,a)+ Z ypaV(x")

ael

3.2 Discrete time, Continuous State Space MDPs

3.2.1 Model

In this section, we discuss the discrete time, continuous state space MDPs

problems. The most distinct property of the discrete time, continuous state space

26

MDPs is that the state space X includes continuous state variables whose ranges
are intervals of the real line. Define U the set of possible actions with variable
a. Let {x,} be the corresponding Markov chain defined on a finite state space
X . Inevery period 1, the player observes the state of a dynamic system x,, takes
an action u,, and earns a reward (or cost if the reward is negative) r(x,u,) that
depends on both the state of the system and the action taken. The player’s
objective is to seek a control strategy {z,} that given any state, the player take the
action u, = u,(x,) which maximizes (minimizes) the objective function.
A continuous MDPs may also be deterministic or stochastic. In the case of
stochastic, the dynamic of the system can be described as
X = S (X, W) (3-8)
where w, serves as random noise. In the case of deterministic, w, is absent. The

general objective function with discounted cost is in the following form

"
J,=E,> 7'r(x,u,) (3-9)

i=t

where) is a per-period discount factor. The value function is the maximization

of the objective function and can be defined as

T
V,=maxE,Y y'r(x,u,) (3-10)

i=t
A continuous state space MDPs problem may have an infinite horizon (7' =) or a
finite horizon (7 <).
Like the finite MDPs, the discrete time, continuous state space MDPs can be

analyzed using dynamic programming methods, which can be expressed in the form

27

of Bellman equation. By using the principle of optimality, it implies that the value
function ¥, (x) must satisfy

V() = max{r(e,u) + yE,Vu (f (5,0, w)} (3-11)
In the case of infinite horizon, the value function 7 (x) must satisfy

V(x)= m%x{r(x, w)+yEV(f(x,u,w))} (3-12)

3.2.2 Algorithm

For the continuous state MDPs problems, we cannot calculate the value for each
state one by one or express the value in a vector form. Hence, the algorithms for
the finite MDPs problems are no longer suitable here. Instead, we introduce
Bellman equation collocation method [23]. The basic idea of the collocation
method is to approximate the value function by a linear combination of » known
basic functions. Therefore, we can use these basic functions to calculate the value
at any state.

Consider the Bellman equation (3-12) for an infinite horizon, discrete time,
continuous state MDPs problem. To compute the approximation to the Bellman
equation, we first write the value function approximation as a linear combination of
n known basic functions ¢,¢,,...4, on X with corresponding unknown

coeflicient ¢,,¢,,.:¢,

V(x)~ jc 4,(0) (3-13)

Second, we compute the basis function coefficients ¢,,c,,...,c, such that the

approximating value function satisfies the Bellman equation at » collocation nodes

28

X,,X,,...,%,. Specifically, to compute the coefficients c¢,c,,...,c,, we need to solve

the set of equations
ch¢1 (%)= ryg/x{r(x,,u)-&- yE“,ZCJ¢j(f(x,,u,w))},i =1 2;.0n (3-14)
Jj=1 Jj=1

We can express the above » equations in vector form as the collocation equation

Dc =v(c) (3-15)

where @ is a nxn collocation matrix, whose ijth element is the j;th basic
function evaluated at the £ th collocation node

@, =¢,(x,) (3-16)

And v isa R” to R" collocation function where
v,() =max{r(x,u)+yE, Y ¢,,(f (x,u,w))} (3-17)
j=1

3.2.2.a Choice of Basis Function and Collocation Nodes

There are many basis-node schemes available to implement the collocation
method. We introduce two typical choices for basic function here: Chebyshev
Polynomials and Piecewise Polynomial Splines.
1. Chebyshev Polynomials

First we define z=2(x—a)/(b—a)—1to normalize the interval of approximation
[a,b] to the interval [-1,1]. Then the Chebyshev polynomials are defined

recursively as follows.

29

T,(z)=1
T(z)=2
T,(z)=2z* -1 (3-18)

T,(2) = 22T, ()T, ,(2)
Both of numerical analysis theory and empirical experience suggest that

polynomial approximation over a bounded interval [a,b] should be constructed by

interpolating the underlying function at Chebyshev nodes:

% = a;b+b;acos(n_l+0'5 Z)LVi=1,2,.0,0 (3-19)
n

Chebyshev polynomials are an excellent basis function set for constructing
polynomials that interpolate function values at the Chebyshev nodes. Chevychev
basis polynomials with Chebyshev interpolation nodes yield an extremely
well-conditioned interpolation equation that can be solved efficiently.

2. Piecewise Polynomial Splines

A spline is a special function defined piecewise by polynomials. It has a locally
very simple form, yet at the same time be globally flexible and smooth. ~Splines are
very useful for modeling arbitrary functions. An order-k spline consists of a
series of k th-order polynomial segments spliced together so as to preserve
continuity of derivatives of order k—1 or less. Suppose that the interval of
approximation is [a,b], the points at which the polynomial pieces are spliced
together, a=v, <v, <v, <...<v, =b, are called the knots of the spline.

The most useful way to apply the spline to numerical work is the B-splines, or
basic splines. B-splines for an order-k spline with v knots vector can be defined

as using the Cox-de Boor recursion formula

30

B () l, ifv,<x<v,, (3-20)
. X)= -
. 0, otherwise

X = vj vj+k+l —-X
Bj,k(x):v—_Bj',‘_l(x)+—Bj+lvk_,(x) (3-21)

J+k J Vitka ~ Vin
When the knots are equally spaced, we call the B-spline is uniform, otherwise we
call it non-uniform.

The differentiation and integral of the spline can be computed as follows

dB, ,(x) k k
b =By ()t B, (¥)

J+k J vj+k+l _vj+l

K : Viek = Vi
[Bu(s)ds=3 " =0B, ()
i=)

3.2.2.b Choice of Algorithm to Solve Collocation Equation
The collocation equation can be solved by any nonlinear equation solution method.
We provide two algorithms here.
1. Fixed-point problem
One way is to view the collocation method as a fixed-point problem
c=Dd"v(c)

The algorithm is described as follows.

Initialize the reward function 7, discount factor y, basic function @, convergence

tolerance €. Initialize the coefficient c arbitrarily
Repeat

¢ _old«c
¢« dv(c)
A < norm(c—c _old)

Until A<@

31

2. Root finding problem
Another way is to view the collocation equation as a root finding problem
Dc-v(c)=0
We can apply the Newton’s method to solve a root finding problem. The

algorithm is described as follows.

Initialize the reward function 7, discount factor y, basic function @, convergence

tolerance @. Initialize the coefficient c arbitrarily
Repeat

c_old «c
Compute the v'(c) isthe nmxn Jacobian of the collocation function v at ¢

Foreach i=L...nj=L.sn

V€)= 210 = 7., (f it)

end

cc—[D-v'(c)]'[Pc-v(c)]
A < norm(c—c _old)

Until A<@

3.3 Remark 1

In this section, we discuss the extension of the above results on MDPs to results
on two-player zero-sum stochastic games with finite states spaces and actions, so
called Markov games.

The model of a finite state space and action space two-player zero-sum game is

minor modification to the model of finite MDPs. Define U,V the sets of possible

32

actions for Player 1 and Player 2 respectively. Let {x,} be the corresponding
Markov chain defined on a finite state space X . In every period ¢, the Player 1
(the Player 2) observes the state of a dynamic system x,, takes an action u, (v,),

and earns a reward (or cost if the reward is negative) r(x,,u,,v,) that depends on

the state of the system and both the action taken by the Player 1 and the Player 2.
The Player 1°s (the Player 2’s) objective is to seek a control strategy u (v) that
given any state, the Player 1 (the Player 2) takes the action u, = u(x,) (v, =v(x,))
which minimizes (maximizes) the objective function.

A game may be either deterministic or stochastic. In the stochastic case, given
any state and action, the probability of each possible next state, x', is

P = Pix x'|x, =xu =a,v, =} (3-22)

2
Similarly, given any state and action, x and «, together with any next state x',
the expected value of the next reward is

r(xaﬂ) E{ +l|x :a’vzzﬂ} (3-23)

The general objective function of the two-player zero-sum game is in the form

J=E" y'r(x,,u,v,) (3-24)

1=1

where y isa per-period discount factor.

Define

V= mm max E"”Zy r(x,u,v) (3-25)

1=1

and

33

T
F= max mm E'“Zr,(x,u, V) (3-26)

=1
If V(x) =V (x), then V(x) =V (x)=V(x) iscalled the value function of the game.

By using the principle of optimality, it implies that the value function V' (x) must
satisfy

V(x) =min max{r(x a,B)+r Y. pulv(x)} (3-27)

x'eX

All the algorithms described above for the infinite horizon finite MDPs problems
are suitable for solving Markov games. Let us take the policy iteration method for

example. The algorithm is described as follows

Initialize the reward function 7 , transition probabilities p , discount factor ¥ ,
convergence tolerance @ . Initialize V arbitrarily, e.g., V'(x)=0, forall xe X

Repeat
Foreach xe X

v_old <« V(x)
. a,f v
Vi) ¢ minmato(aon B) + 1 2 PSP

A <« norm(v_old -V)

Until A<@
Output the policy £,V , such that

. a,p
ula),wx) « acgminmax(riz.a, F)+y) pEfV)

3.4 Remark 2
Our ultimate purpose in developing a software package is to provide a set of
programs for solving two-player zero-sum stochastic games as well as stochastic

optimization problems. When we use minmax to calculate the optimal value

34

function of zero-sum games, in essence it is an extended optimal control problem.
Therefore, it is reasonable that the software package also includes functions for
solving stochastic control problems as well and that is also a reason that we first
describe the algorithms for solving control problems for convenience and then
extend them to games.

It is evident that when we use the Markov Chain Approximation method to solve
the two-player zero-sum stochastic games or stochastic control problems, the
resulting Markov chain is exactly in the form of finite MDPs. Since the method is
straightforward and can be used under broad conditions, by using this software
package, we can automatically calculate the value function and optimal strategies for
stochastic control problems and zero-sum stochastic games, when a suitable Markov
chain is chosen and corresponding transition probabilities and reward (cost) is

formulated.

35

CHAPTER 4

STOCHASTIC CONTROL SOFTWARE PACKAGE

In this chapter, we introduce a preliminary stochastic control software package,
which is written on the platform of MATLAB. The software package is a
collection of functions whose prime purpose is to solve general stochastic games and
stochastic optimal control problems. The software package includes routines for
the following problems
e Discrete time, discrete state space Markov decision processes with discrete
action space

e Discrete time, continuous state space Markov decision processes with discrete
action space

e Continuous time, continuous state space stochastic control with discrete action
space

e Continuous time, continuous state space two-player zero-sum stochastic games

with discrete action space

36

4.1 Functions for Discrete Time, Discrete State Space MDPs

4.1.1 Function: finite Viter
Description

finite_Viter solves general discrete time, discrete state space MDPs problems
with finite horizon described by (3-6)

Syntax

[V_opt, act_opt]=finite_Viter(v, f, prob, T, gamma)

37

Input Arguments

Array containing the value function for each time and state. In a problem
which has M discrete states and 7T time periods, it is an M x (T +1)
array, where V' (:,T+1) is the value of terminal set, v(:,1:7)is the

initialization of the value function for each period from ¢ =1 to =T

Array containing the rewards for each state and action, In a problem which
has M discrete states and N discrete actions, it is an M x N array,

where f(i,) is the reward when the current state is x; and action u,

is taken

prob Array containing the transition probability for each state and action, In a
problem which has M discrete states and N discrete actions, it is an
NxMxM array, where prob(i, j, k) is the value of p,':;xj

T Time periods

gamma | Discount factor

38

Output Arguments

V _opt Array containing the value function for each time and state

act _opt | Array containing the optimal action for each state and period. In a problem
which has M discrete states and N discrete actions, it is an M xT

array, where act _opt(i,t) is the optimal action for state x; attime ¢

Algorithm

finite _Viter utilizes the Backward Recursion algorithm described in section

E N B

4.1.2 Function: infinite Viter
Description

infinite_Viter solves general discrete time, discrete state space MDPs
problems with infinite horizon described by (3-7)

Syntax

[V_opt, act_opt,V_iter]=infinite_Viter(v, f, prob, gamma, tol)

39

Input Arguments

Vector containing the initialization of the value function for each state. In a

problem which has M discrete states, it isan M x1 vector

Array containing the rewards for each state and action, In a problem which

has M discrete states and N discrete actions, it is an M XN array,

where f(i, j) is the reward when the current state is X, and action u,

is taken

prob Array containing the transition probability for each state and action, In a
problem which has M discrete states and N discrete actions, it is an
NxM xM array, where prob(i, j, k) is the value of p;'ixl

gamma | Discount factor

tol Criterion for the iteration. Iteration stops when the error between v and

the previous v is less than o/

40

Output Arguments

V _opt Vector containing the optimal value function for each state after the
iteration. In a problem which has M discrete states, it is an M x1
vector

act _opt | Vector which stores the optimal action for each state. In the problem which
has M discrete states, it isan M x1 vector.

V _iter | Array containing the value function for each state during the iteration. Ina
problem which has M discrete states and »times of iteration, it is an
M xn array, where V _iter(:,i) contains the value function for each
state during i” iteration

Algorithm

infinite _Viter utilizes the Value Iteration algorithm described in section

3122,

4.2 Functions for Discrete Time, Continuous State Space MDPs

4.2.1 Function: mdp con c

Description

mdp_con _c solves the coefficients ¢ in general discrete time, continuous

state space MDPs problems described by (3-12)

41

Syntax
c_opt=mdp_con_c(c, basic_f, e, w, gamma, tol)

Input Arguments

c Vector containing the initialization of coefficients for the basic functions.
In a problem when user wants to use » basic functions, it is an nx1

vector

basic _ f | Structure containing the basic functions used to approximate the value

function. It is defined by function fum _def , in which user can choose

the type of basic functions, either ‘Chebyshev Polynomials’ or ‘Polynomial

Splines’
e Vector containing the value of the noise
w Vector containing the probabilities of the noise

gamma Discount factor

tol Criterion for the iteration
Output Arguments

¢_opt Vector containing the coefficients of the basic functions after iteration
Algorithm

mdp _con _c utilizes the Collocation Method algorithm described in section

3.2.2.

42

4.2.2 Function: mdp con
Description

mdp_con solves the approximating value functions and optimal actions in
general discrete time, continuous state space MDPs problems given the basic
functions and corresponding coefficients.
Syntax

[V_opt, act_opt]=mdp_con(c, basic_f, node, e, w, gamma)

Input Arguments

c the coefficients gotten by using function mdp con _c

basic _ f | Structure containing the basic functions used to approximate the value
function. It should be the same as the one used in function

mdp _con_c

node Vector containing the states where the user wants the value of the

approximating value function

e Vector containing the value of the noise

w Vector containing the probabilities of the noise

gamma Discount factor

43

Output Arguments

V _opt Vector containing the approximation of value function for corresponding

states.

act _opt | Vector containing the optimal actions for corresponding states.

Remark
User needs to write two functions named Act and Reward, which will be

called by function mdp con. The syntax of function Act is action=Act(x), in
which the input argument x is the current state and the output argument action is

the action set under the current state. The syntax of function is reward is

reward=Reward(x, action), in which the input arguments x and action are the
current state and action respectively and the output argument reward is the reward

under the current state and action.

4.3 Functions for Stochastic Control Problems

4.3.1 Function: stocha_min
Description

stocha_min solves the value function of general stochastic optimal control
problems described by (2-11) and (2-12) with dimension 1 or 2.

Syntax

V_opt=stocha_min(A, h, x, v, v_term, u, tol)

44

Input Arguments

A Matrix defined as 4(x) = o(x)o(x)" = {a,(0)}, i,j=L..,n

h Variable containing the width of the grid used in the construction of desired

Markov chain

X Array containing the states where the value function is approximated by the

constructed Markov chain

L4 Array containing the initialization of the value function of the Markov chain

v_term Array containing the value function of the terminal set

u Action of the player
tol Criterion for the iteration
Output Arguments

V _opt Array containing the optimal value function of the approximating Markov

Chain

Algorithm

stocha_min utilizes the Markov Chain Approximation Method algorithm

described in section 2.3.2.

45

4.3.2 Function: opt act control
Description

opt_act control solves the optimal action for players of general stochastic
optimal control problems with dimension 1 or 2, given the value function of the
approximating Markov Chain.

Syntax

opt_act=opt_act_control(A, h, x, v, v_term, u)

Input Arguments
A Matrix defined as A(x) = o(x)o(x)" = {a,(x)}, 4j=L.,n
h Variable containing the width of the grid used in the construction of desired

Markov chain

X Array containing the states where the value function is approximated by the

constructed Markov chain

v Array containing the value function of the Markov chain

v_lerm Array containing the value function of the terminal set

u Action of the player

Output Arguments

opt_act | Array containing the optimal action for the player at each state of the

constructed Markov chain

46

Remark

User needs to write two functions named bl value and b2 _value, which will
be called by function stocha minand opt act control. The syntax of function
bl _value is y=bl value(x, ul, u2), in which the input argument x is the current
state, ul is the action and %2 is a virtual variable which will not be used, and the
output argument y is calculated by system’s first-dimension dynamic equation.
In the case of two dimensional problems, the syntax of function 52 value is the
same as function b1 value. The input arguments of function b2 value are the
same as function bl _value, while the output argument y is calculated by
system’s second-dimension dynamic equation. In the case of one dimensional

problems, the output argument y is set to be 0.

4.4 Functions for Zero-Sum Stochastic Games

4.4.1 Function: stocha_minimax
Description

stocha_minimax solves the value function of general two-player, zero-sum
stochastic games described by (2-1) and (2-2) with dimension 1 or 2.

Syntax

V_opt=stocha_minimax(A, h, x, v, v_term, ul, u2,tol)

47

Input Arguments

A Matrix defined as A(x) = o(x)o(x)" = {a,(0)}, i,j=L...n

h Variable containing the width of the grid used in the construction of desired

Markov chain

X Array containing the states where the value function is approximated by the

constructed Markov chain

v Array containing the initialization of the value function of the Markov chain

v_lerm Array containing the value function of the terminal set

ul Action of Player 1

u2 Action of Player 2

tol Criterion for the iteration
Output Arguments

V _opt Array containing optimal value function of the approximating Markov

Chain

Algorithm

stocha_minimax utilizes the Markov Chain Approximation Method algorithm

described in section 2.3.3.

48

4.4.2 Function: opt act game
Description

opt_act_game solves the optimal action for both of the players of general
two-player, zero-sum stochastic games described by (2-1) and (2-2) with dimension
1 or 2, given the value function of the approximating Markov Chain.

Syntax

[opt_ul, opt u2]=opt_act _game(A, h, x, v, v_term, ul, u2)

49

Input Arguments

A Matrix defined as A(x) = o(x)o(x)" = {a,(x)}, i,j=1..,n

h Variable containing the width of the grid used in the construction of desired

Markov chain

X Array containing the states where the value function is approximated by the

constructed Markov chain

4 Array containing the value function of the Markov chain

v_term Array containing the value function of the terminal set

ul Action of Player 1
u2 Action of Player 2
Output Arguments

opt _ul | Array containing the optimal action for Playerl at each state of the

constructed Markov chain

opt _u2 | Array containing the optimal action for Player2 at each state of the

constructed Markov chain

Algorithm

stocha_minimax utilizes the searching method to solve minmax problems.
For each action of Player 1, it searches over each action of Player 2 and identifies the
action in correspondence with the maximum value of the value function. Then it
identifies the action of Player 1 which is in correspondence with the minimum value

among the previous maximum values.

50

Remark

User needs to write two functions named b1 _value and b2 value , which will
be called by function stocha_minimax and opt act game. The syntax of function
bl _value is y=bl value(x, ul, u2), in which the input argument x is the current
state, w1 is the action of Player 1 and #2 is the action of Player 2, and the output
argument y is calculated by system’s first-dimension dynamic equation. In the
case of two dimensional problems, the syntax of function b2 value is the same as
function bl_value. The input arguments of function b2 value are the same as
function bl_value , while the output argument y is calculated by system’s
second-dimension dynamic equation. In the case of one dimensional problems, the

output argument y is set to be 0.

51

CHAPTER 5

APPLICATION TO PURSUIT-EVASION GAMES

In this chapter, we first provide three numerical examples to demonstrate the use
of our stochastic control software package. =~ Then we emphasize the application of
the Markov Chain Approximation method to a typical zero-sum stochastic game:
pursuit-evasion games. We illustrate the validity and practicability of this method
by numerically solving a PE game with one pursuer and one evader. An example
of PE games with multiple pursuers and evaders is also given in which the
decentralized strategy is used to decouple the multiple players into several

one-to-one PE games.

5.1 Numerical Examples of Markov Decision Processes and Demonstrations of

Stochastic Control Software Package

5.1.1 A Numerical Example of Discrete Time, Discrete State Space MDPs with

Finite Horizon

5.1.1.a Problem Description: Mine Extraction [29]

52

A mine operator wants to decide how much ore to extract from a mine that will be
shut down and abandoned after 7" years of operation. The price of extracted ore is
p dollars per ton, and the total cost of extracting a tons of ore in any year, given
that the mine contains x tons at the beginning of the year, is ¢(x,a)dollars. The
mine currently contains M tons of ore. The value of the ore is depreciated by
discount factor 6. Assuming the amount of ore extracted in any year must be an
integer number of tons, we are asked to seek the optimal extraction strategy to
maximize profits.
5.1.1.b Model

This problem can be formulated as a discounted, finite MDPs with finite horizon.
State space: x€{0,1,2,..., M}

Action space: ae€ {0,1,...,x}.

Discount factor: ¥

2

Reward function: f(x,a)= pa—c(x,a)= pa-

14+ x
- - 1, x'=x-a
Transition probability: p(x'|x,a) ={ .
0, otherwise

5.1.1.c Numerical Simulation

In this mine extraction example, let the current content M to be 200 tons, the
operation period 7' to be 20 years, the price p to be 1 dollar per ton, and the
discount factor y tobe 0.9. We use the function finite viter to solve this finite
MDPs problem with finite horizon. The value of the input arguments are listed in

Table 5.1

33

v A 200x(20+1) array. V(:,21) is the value function of the terminal

set, which is zero because the operator does not want to see any ore left

when the mine is shut down; v(:,1:20) is the initialization of the value

function for each period from =1 to =20, we setittobe 0

3
4 A 200x200 array, where f(i,j)=j—% when i>j and
I

f(i,j)=—inf when i< j because the value function doesn’t exist for

other states

prob A 200x200x200 array, where prob(i,j,k)=1 when j=k-i,

otherwise prob(i, j,k)=0

T 20

gamma | 0.9

Table 5.1 Value of Input Arguments in Example: Mine Extraction

MATLAB codes, which define the input arguments and call the function

finite _viter , are as follows.
M=200;
T=20;
value=zeros(M, T+1);

gamma=0.9;

54

f=zeros(M,M);
fori=1:M
for j=1:M
if i>=j
f(i.j)=j-1"2/(1+i);
else
f(i,))=-inf;
end
end

end

fori=1:M
for j=1:M
for k=1:M
if j==k-i
prob(i,j,k)=1;
else
prob(i,j,k)=0;
end
end
end

end

55

[V_opt,act_opt]=finite_Viter(value,f,prob,T,gamma);

Figure 5.1 shows the optimal strategy at each state. Figure 5.2 shows the stock

of the mine through the operation period by using optimal strategy.

56

optimal extraction strategy at each state

are left unit

(6]
(o]

e
(3]

=
=)

(48]
(ig]

w
o

b
m

A
(mm)

—
(8]

o

200

180

160

140

120

100

80

60

40

20

finite MDPs: Mine Extraction Optimal Strategy

T T T T T T T T

1

| 1 1
20 40 60 80 100 120 140 160

state

Figure 5.1 Optimal Strategy, Mine Extraction

finite MDP: Mine Extraction: Stock throught 20 years

180

200

T

T T T T T T T T

e

1
2 4 B 8 10 12 14 16
time

Figure 5.2 Stock Though 15 year, Mine Extraction

57

18

20

5.1.2 Numerical Example for Discrete Time, Discrete State Space MDPs with

Infinite Horizon

5.1.2.a Example Description: Gambler's Problem [23]
5.1.2.b Model

At the beginning of each year, a manufacturer must decide whether to continue to
operate an aging physical asset or replace it with a new one. An asset that is x
years old yields a profit contribution f(x) upto N years, at which point the asset
becomes unsafe and must be replaced by law. The cost of a new assetis ¢. We
are asked to seek the replacement policy which maximizes the profit.

This problem can be formulated as an discounted finite MDPs with infinite
horizon. State space: xe{l,2,...,N}
Action space: a € {replace, keep} .

Discount factor: y =0.9

=23, if a=replacement

Reward function: f(x,a)= ")
50-2.5x-2.5x°, if a=keep

1, if a=replacement, x'=1,
Transition probability: p(x'|x,a) =11, if a=keep, x'=x+1;
0, otherwise

5.1.2.c Numerical Simulation

We use the function infinite viter to solve this finite MDPs problem with

infinite horizon.

58

In this example, let the maximum operation age of the machine Nto be 5
dollars. We use the function infinite viter to solve this finite MDPs problem with

infinite horizon. The value of the input arguments is listed in Table 5.2.

i A 5x1 vector, whose initial value is set to be 0

f A 2x5 array, where f(i,j)=-25 when i=1 , Otherwise,

f(,))=50-2.5-2.5/°

prob A 2x5xS5 array, where prob(i,j,k)=1 when i=1,j=1,
prob(i, j,k)=1 when i=2,j=k+1,and prob(i,j,k)=0 for other

situations

gamma 09

tol 1™

Table 5.2 Value of Input Arguments in Example: Asset Replacement

MATLAB codes, which define the input arguments and call the function

finite _viter , are as follows.
n=>5;
gamma=0.9;
value=zeros(n,1);

tol=107(-8);

f=zeros(2,n)

39

f(1,:)=50-75;

f(2,:)=(50-2.5*(1:n)-2.5*(1:n).A2)";

prob=zeros(2,n,n);
fori=1:n
for j=1:n
if i==j+1
prob(2,i,j)=1;
end
end
end

prob(1,1,:)=1;

[V_opt,act_opt,V_iter]=infinite_Viter(value,f,prob,gamma,tol);

Figure 5.3 shows the value function at each state. Figure 5.3 also shows the
iteration procedure of the value function, which is initially set to be 0 for each state
and gradually converges to the optimal value function. Table 5.3 shows the optimal
strategy at each state. For example, we should replace the machine in its 4™ year of

operation.

60

Finite MDP: asset replacement: optimal value

250 T T T T T | T
k-
200%-- -
S £
FE e o S 4
150 i
—#— value function
---#--- yalue function: 1st iter
— 4— -value function: 3rd iter
100 ---4--- value function: 20th iter | |
. — “— value function: 30th iter
i T 1
50 S g sl s 1
G - 1 * 1 * 1 * 1
1.5 2 25 3 35 4 45 5

Figure 5.3 Optimal Value during iteration, Asset Replacement

Age of the Machine | Optimal Strategy
1 Keep

2 Keep

3 Keep

4 Replace

5 Replace

Tabel 5.3 Optimal Strategy, Asset Replacement

61

5.1.3 Numerical Example of Discrete Time, Continuous State Space MDPs

5.1.3.a Example Description: Water Management [30]

Water from a reservoir can be used for either irrigation or recreation. Irrigation
during the spring benefits farmers, but reduces the reservoir level during the summer,
damaging the interests of recreational users. Specifically, if the reservoir contains
x units of water at the beginning of the year and aunits are released for irrigation,
farmer and recreational user benefits during the year will be F(a) and U(x—a)
respectively. Reservoir levels are replenished by random rainfall during the winter.
Specifically, it rains & units with probability p,,k=1,2,..,K. The reservoir can
hold only M units of water, and excess rainfall flows out without benefit to either
farmer or recreational user. The reward is the sum of farmer’s and recreational
user’s benefit. We are asked to seek the irrigating policy to maximize the reward.
5.1.3.b Model

This problem can be formulated as continuous state space MDPs with infinite
horizon.

State space: xe[2,M]

Action space: a € {0,0.05,...,x}

Rainfall: & units with probability p,,k=1,2,..,K
State transition function: f(x,a,e)=min(x—a+e, M)
Farmer’s benefit: F(a) = a,a”

Recreational user’s benefit: U(x,a) = a, (x — a)”

Reward function: f(x,a) = F(a)+U(x,a)

62

Bellman equation: V(x)= {)rs)g{R(x, a)+V(min(x—a+k,M))}
5.1.3.¢c Numerical Simulation

In this example, let the reservoir capacity M to be 7, and the rainfalls are
0.7,1,1.3 with probability 0.2,0.6,0.2 respectively. Let
a=-1,4=-La,=-1,6,=-2. We use the function mdp_con to solve this
continuous MDPs problem. The value of input arguments of function mdp con is
listed in Table 5.3.

The user defined function action is written as follows.

function [action]=Act(x)

action=[0:0.05:x];

The user defined function reward is written as follows.

function reward=Reward(x,a)

al=-1,
az2=-1,
az2=-1;
b2=-2;

reward=a1*x"b1+a2*(x-a) b2;

63

c We use 10 basic functions to approximate the original value function.
Therefore, ¢ is a 10x1 vector containing the coefficients. The initial

value is set to be 0.

basic _ f | Structure containing the basic functions used to approximate the value
function. It is defined by fun _def('cheb',10,2,7), which means the

basic functions are 10 chebyshev polynomials, and the range of states is

[2, 7]
e [0.7,1,1.3]
W [0.2,0.6,0.2]

gamma | 0.9

tol 107¢

Table 5.4 Value of Input Arguments in Example: Water Managmet
MATLAB codes, which define the input arguments and call the function

mdp _con_c and mdp _con, are as follows.

n=10;

s1=2;

§2=9;

gamma=0.9;

tol=107(-6);

fspace=fun_def('cheb’,n,s1,s2);

64

snodes=fun_node(fspace);
c=zeros(n,1);
e=[0.7;1;1.3];

w=[0.2;0.6;0.2];

c_opt=mdp_con_c(c, basic_f, e, w, gamma, tol)
xplot=(s1:(s1-s2)/20:s2)";

[vplot,actplot]=mdp_con_c(c,basic_f,xplot,e,w,gamma);

Figure 5.4 shows the approximation of original value function at each state.
Figure 5.5 shows the optimal strategy at each state. For example, when the
reservoir contains 7 unit of water, the optimal strategy is to extract 2.1 units of water

for irrigation.

65

value of Bellman equation

2.2

Unit for Irrigation
.r=- m fas)

s
[jN]

continuous MDP:water. optimal value

1
35 4 45 5 5.5 6
water level

6.5 7

Figure 5.4 Value Function, Water Management

continuous MDP:water.optimal strategy

1 1 1 1

1 1 | |

1
45 5
Water Level

35 4 5.5 3] 6.5 7

Figure 5.4 Optimal Strategy, Water Management

66

5.2 Deterministic Pursuit-Evasion Games
We consider a one to one deterministic game with two dimensions. The

dynamics of the Pursuer and Evader are as follows:

dx” =cos dt

dy” =sin @dt

dx* =b(1) +1+2
ady* =-2

in which the moving direction 6(¢) is the control of the pursuer and the velocity
b(t) is the control of the evader with —1<b(r) <1 for +>0. The terminal set S
of the game is defined as {(x”,y”), C 1% Zy”}. The objective function is
defined as J= ﬂ (b(t)+l+\/§ —cos(@(1)))dt . The analytical solution to this
problem is given in [36] and the value function and the optimal strategies are given
as follows
Vix?,y?, x5y)=y ="
. 1
0 ()= Zﬂ,
b (1) =1
We apply the Markov Chain Approximation method to this problem. By
defining x, =x" —-x°,x, =y” —-»°, we get the following new dynamics of the
system:

dx, = (cos(0(t)) — b(t) —1-~/2)d
dx, = (sin(0(t)) + 2)d

0

Since it is a deterministic case, the matrix A:{O 0

] By substituting the

concrete form of f(x,a,), we have

67

Vi(x,u)= min max D 0" (] x,u(x), ()" (y,u) + (cos(u(x)) - b(x) —1- V)AL (x,u(x), v(x))}

where

h(cos@—b—1-+/2)*
O ((x,, x,,0,b)
h(sin 8 +2)*
0" ((x,,x,),0,b)
h2
0"((x,,x,).6,b)
0" (%, %,),0, B) = Y h|cos@—b—1-+2 | +h]sin 6+2|

ph((xl thx,)|(x,x,),a,B)=

P ((x %, 1) | (x,%,), 0, B) =

Ath((xnxz)’aaﬂ) =

For the numerical simulation, let

h=1,

06{0,—1—7Z,L7r,...,£7r},
16 16 16

be{-1,-09,...,1}

We use the function stocha_minimax to solve this two-player zero-sum MDPs

problem. The value of input arguments is listed in Table 5.5.

The user defined function bl _value is as follows.
function y=b1_value(x,u1,u2)

y=cos(u1)-(u2+1+sqrt(2));

The user defined function b2 _value is written as follows.
function y=b2_value(x,u1,u2)

y=sin(u1)+2;

68

h 1

x A 21x21 array, in which each element stands for a state

v A 21x21 array containing the initialization of the value function. We set
it to be 0.

v_tlerm We set it to be a reasonably large number 200

ul {0,—1-7L’,—1—7Z',...,En} , actions of Player 1
16 16 16

u2 {-1,-0.9,...,1}, actions of Player 2

tol 107°

Table 5.5 Value of Input Arguments in Example: One-to-one deterministic PE Game

Figure 5.6 shows the trajectories of the pursuer and the evader according to the
numerical solution and analytical solution respectively. Figure 5.7 shows the
trajectories of the relative position of the pursuer and the evader according to the
numerical solution and analytical solution respectively. The starting point of the
pursuer is [0, 0] and it is [2, 1] of the evader. The numerical solution is identical to
the analytical solution. It proves the validity of the Markov Chain Approximation

method and our software package.

69

trajectory of one to one PE: intitial position: P{0,0),E(2,1):numerical solution

—+— pursuer
\% ---Zr -~ gyader
‘1'4
\% u
D//] 1 1 1 1

1
0 0.5 1 15 2 25 3 3.5
X axis
trajectory of one to one PE: intitial position: P{0,0),E(2,1):analytical solution
1

T T T 4%' T

0 05 1 15 2 25 3 35
X axis

y axis
o
[8)]

T
o

—#F— pursuer

y axis
o]
m
T

Figure 5.6 Trajectories of the Players: numerical and analytical solution

trajectory of relative position:numerical solution
DS T T T T T T

/
/

/

32 -3 28 26 2.4 57 2 1.8
X axis

trajectory of relative position:analytical solution
D5 T T T T T T

y axis

Figure 5.7 Trajectories of the relative position: numerical and analytical solution

70

5.3 Stochastic Pursuit-Evasion Games

5.3.1 One Pursuer One Evader PE Games

We consider a one to one PE game with two dimensions [14]. The dynamics of

the Pursuer and Evader are as follows:

dx” =v,cos(0,(1))dt +o(x")dw
dy? =v,sin(0,()dt +o(y")dw
dx® =v,cos(0,(1))dt + o (x*)dw
dy* =v,sin@,(t)dt + o(y*)dw

in which the moving direction & (¢) is the only control.

The new state variables are represented as

x=x" =x"

X, =y" =y
Thus, we have

dx, = (v, cos(8,(1)) - v, cos(8, (1)) dt + o (x,)dw
dx, = (v, sin(@, (1)) —v, sin(6,(1)))dt + o (x,)dw

with X, =af =x0, %, =¥ =¥,
The terminal set is defined as S = {(xl,xz) |Gk %), < e}‘ The objective of the
pursuer is to minimize the capture time. The objective function is J = Idt :
Hence, G=1 and Q=0 in the general model.

The analytical solution of is given as follows [36].

2 2 2 2
VX +x ol +o
V(x,x,)=~—724 -1 2 ln(xlz+x§)+C(a)

2
R, =%, 4(vp—ve)

¢ (o] +0;)In(e%)

where C(e)=-

2
VY 4, —v,)

71

c 0

We assume o(x)= [0 } is constant, hence the matrix
c

c2

Ax)=o(x)o(x)" = LC) 0} .

We use the uniform h-grid on R*> and the Markov Chain Approximation method
described in Chapter 2 to construct the approximating Markov chain and to

numerically approximate the value function. The matrix A4 is in the general form

and satisfies the assumption that a,(x)— Z |a,(x)|20, forall i. By substituting
Jij#i

the concrete form of f(x,a,) into (2-47) and (2-48), we have

V(x)=minmax(y’ p" (v] xu(x), v () + A" (x,u(x), v(x))]
where

P ((x, +h,x,) | (x,%,),, B) = h(v,cos8, -v, cos 0,)* /Q"((xl,xz),Hp,He)
P (%, %, +h) | (x,,%,), @, B) = h(v,sin@,—v,sin Ge)i/Qh((xl,xz),Hp,Gu)
p"((x, +h,x, +h)| (%,%,),0,,6,) = p"((x,—h,x,—h)]| (%,,%,),0,,6,) = c? /2Q”((x1,x2),0p,0t,)
p"((x, +h,x,—)| (2,5%,),8,,6,)= P"((x, = h,x, +h) | (%,,%,),6,,6,) =0
Py
0"((%,%,),6,,6,)

0" ((%,,x,),6,,6,) =2c* +h|v,cos8,—v,cos6, | +h|v,sind, —v,sin6, |

Ath((xl,xz)yapﬁee) =

For the numerical simulation, let

v, =12,% =10,h=1c*=0,1,

p

t9p € {0,-1—7Z,—1-7Z',...,£7Z'
16 16 16
1

16

3
0, e {0,—1-7[, ﬁ,...,Eﬂ.’}
16 16

We use the function stocha minimax to solve this two-player zero-sum MDPs

problem. The value of input arguments is listed in Table 5.6.

12

The user defined function b1 _value is as follows.

function y=b1_value(x,u1,u2)

vp=12;
ve=10;

y=vp*cos(u1)-ve*cos(u2);

The user defined function b1 _value is written as follows.

function y=b2_value(x,u1,u2)

vp=12;
ve=10;

y=vp*sin(u1)-ve*sin(u2);

A 0.1 0
0 0.1
h 1
X A 21x21 array, in which each element stands for a state
v A 21x21 array containing the initialization of the value function. We set
it to be 0.
v_lerm We set it to be a reasonably large number 200
ul {0 1 V4 1 V4 3 7}, actions of Player 1
s =TT, ——TC5.00s— T} , action
16 16 16
2 {0 1 T 1 V4 L 7}, actions of Player 2
u s Sy T T gy T > 1 Y
16 16 16
tol 10°°

Table 5.6 Value of Input Arguments in Example: One-to-one PE Game

73

Figure 5.8 shows the numerical solution of the value function at each state.
Figure 5.9 shows the analytical solution of the value function at each state. Two
figures are in identical shape. The difference between the numerical solution and
analytical solution is because we approximate the value function on a discrete state
space R” instead of on the original continuous state space and the terminal value is
not accurate. Figure 5.10 shows the trajectories of the Pursuer and the Evader in an
example of one-to-one PE games when the Pursuer’s starting position is [0,0] and
the Evaders’ is [-9,—4]. In our case, the objective function is the capture time.
However, it should be noticed that the resulting value function does not exactly give
us the optimal value at each state because of the noise. Instead, it only gives

relative value which is used to calculate the optimal strategy at each state.

74

Value function: one-to-one PE game: Numerical Solution

Pl
-

-

¥ axis

y axis

Figure 5.8 Value Function, One to One PE game: Numerical Solution

Value function: one-to-one PE game: Analytical Solution

X axis

-10

y axis

Figure 5.9 Value Function, One to One PE game: Analytical Solution

75

trajectory of one to one PE: intitial position: P(0,0),E(-9,-4)
0 T T T T T T T T T

—¥—— pursuer
evader

5L

10 % i
L2
3
>
15t J
20k i
_25 1 1 1 1 1 1 1 1 1
-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
X axis

Figure 5.10 Trajectories of Pursuer and Evader, One to One PE

5.3.2 Multiple Players Pursuit-Evasion Games

Let us consider a PE game with N pursuers and M evaders. The dynamics

of each pursuer is described as

dx! =vl cos@dt +o(x!)dw
dy? =vPsin@’dt+o(y')aw, i=12..N
Similarly, the dynamics of each evader is described as
dx =vjcos8dt+o(x])dw
dy; =visin@/dt+o(y;)aw, j=12,..M
Let 7,(j=1,...,M) denote the capture time for Evader ;. We use the

minimum capture time 7 =max{7,} as the objective function. It is possible to
J

take all the pursuers and evaders as a whole and solve the problem as a high

76

dimensional stochastic game by mechanically applying the Markov Chain
Approximation method. However, for a PE game with N pursuers and M
evaders played on a plane, the dimension of the state will be at least 2x (N +M —1).
If we take the increase of possible action space into consideration, the time that the
iteration of the value function takes to converge rises more than exponentially with
the increase of number of players [28]. To avoid this dimension curse, we use a
decentralized approach. At each time period, we decompose the game into several
one-to-one PE games. Each pursuer and evader will determine his optimal strategy
according to the given engagement scheme. Let us assume N>M . The
algorithm is carried out as follows.

We assume that each pursuer can only chase one evader at each time period. At
each time period ¢, assume that we know the value function of the games between

any pursuer and evader V(p,e;). The search for optimal engagement can be

formulated as follows.
N
inJ = mi V(p,e)b.
min r{},;p{m;lx; (P-e,)b,}

b, € (0,1}

N
Subjectto Y b, =1, j=1..M

Here, b, =1 means Pursuer i chases Evader j and b, =0 means not. The

case is much more complicated when N < M because the search space is larger.

However, the approach is similar in principle.

77

In the specific case of deterministic PE games, such as the homicidal chauffeur
game described in [19], V(p,,e;) can be expressed by an analytical equation and
can be calculated precisely. However, in stochastic PE games, as well as in a
majority of deterministic games, we are unable to do the same calculation because
the exact value of V(p,,e;) is unavailable. To solve this problem we first solve
the one-to-one stochastic PE game for all the possible combinations of any one
pursuer from the multiple pursuers and any one evader from the multiple evaders.
For example, we solve the one-to-one stochastic game with Pursuer i and Evader
Then we use the resulting value function as an

Jj to obtain the value function.

and substitute it for the true

approximation of V(p,.e)) V(pi,e;) in
decentralization approach described above.
We take a stochastic PE game with two pursuers and two evaders as an example.

The value of parameters used for the simulation is listed in the Table 5.8.

Pursuer 1 | Pursuer 2 | Evader 1 | Evader 2
(x5 20) | (0,0) (7,3) G4 | (5-2)
v,(v,) 12 11 10 8
¢ 0.1 0.1 0.1 0.1

Table 5.7 Value of Parameters in Example: Multiply PE Game

78

trajectories of pursers and evaders in stochastic PE games with multiple players

#* —— P
0 # .
* \,;' —e—E1 |7
‘" - wiipe= B
B]
Ak -
R
=
o
)
A5+ 4
E2 captured
_20 | * ol
25+ o
El captured <
230 1 1 1 1
0 5 10 15 20 25

X axis

Figure 5.11 Trajectories of Pursuers and Evaders, Multiple PE

The corresponding trajectories are illustrated in the Figure 5.11. Pursuer 1 and
Pursuer 2 start at (0, 0) and (7, 3) respectively. Evader 1 and Evader 2 start at (3, -4)
and (5, -2) respectively. At first, Pursuer 1 is engaged in chasing Evader 1, and
Pursuer 2 is engaged in chasing Evader 2. As the pursuit-evasion game moves on,
Evader 2 is first captured by Pursuer 2 when Pursuer 1 is still on the path of chasing
Evader 1. After that point, Evader 2 stops at the position where it is captured and
Pursuer 2 continues to chase Evader 1. At the end of the game, Evader 1 is

captured by Pursuer 1 and stops moving.

79

CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH

6.1 Conclusions and Summary of Thesis Contributions

The first contribution of this thesis is that we developed a method for numerically
solving zero-sum stochastic Pursuit-Evasion games. It is called the Markov Chain
Approximation method, and it selects a suitable Markov chain to approximate the
original problem. A significant advantage of this method is that the construction of
the Markov chain is straightforward and the resulting Markov chain is in the
standard form of finite MDPs problems which can be solved conveniently by
existing algorithms.

The second contribution is that we also developed a stochastic control software
package, which is capable of solving general Markov Decision Processes problems.
The package includes functions for solving both optimal control problems of finite
MDPs and MDPs with continuous state space and for solving zero-sum stochastic
games with finite state space and action space.

Several numerical examples are given to demonstrate the use of our software

package. A one-to-one stochastic Pursuit-Evasion game is discussed step by step to

80

illustrate the application of the Markov approximation method. This is extended to
a method for solving a stochastic PE game with multiple players, using a
decentralized approach.

6.2 Further Research

The Bellman collocation method for MDPs with continuous space is promising
and it can also be used for solving finite MDPs problems when the state space is
large, though finite. The idea of the method is similar to the parametric
approximation algorithm of Neuro-Dynamic programming [25], which uses Neural
networks to approximate the optimal value function and selects the weights of the
networks. In this thesis, we only solve one dimensional control problems or games
by applying this method. We need to extend the method to higher dimensional
problems. Neuro-Dynamic programming should be a useful technique for this.
Also, we must consider how to quantify the effects of approximation.

Reinforced machine learning, in which the players learn how to map situations to
actions, has also been a useful technique to analyze PE games. The basic idea is
simply to capture the most important aspects of the real problem facing a learning
agent interacting with its environment to achieve a goal [24]. Methods like
TD-learning and Q-learning [24, 26] used in Artificial Intelligence might be a good
initial approach to solve stochastic pursuit-evasion games.

The information structure of stochastic PE games we considered in this thesis is
the closed-loop perfect state information structure, i.e., the state of the system and

the other player’s objective function, are known without error. In realistic

81

applications, this is not always the case. The players’ observation might be
imperfect. One player might not know the value of some parameters in the other
player’s objective function or even does not know the expression of the other
player’s objective function. Is the problem still feasible by using the Markov Chain
Approximation under these conditions?

The stochastic software package that we developed in this thesis should be
extended when considering the extended problems listed above. Further
improvement and extension are necessary to refine this software package for a

practical toolbox, such as the toolboxes in MATLAB.

82

BIBLIOGRAPHY

[1] L. S. Shapley, “Stochastic games,” in Proc. of National Academy of Sciences, vol.
39, pp. 1095-1100, 1953.

[2] J. Filar and K. Vrieze, Competitive Markov Decision Processes, New York, NY:
Springer-Verlag, 1997.

[3] S. Sorin, 4 First Course on Zero-Sum Repeated Games, Berlin, NY:
Springer-Verlag, 2002.

[4] J. F. Mertens and A. Neyman, “Stochastic games have a value,” in Proc. of
National Academy of Sciences, vol. 79, pp. 2145-2146, 1982.

[5] T. Bewley and E. Kohlberg, “The asymptotic theory of stochastic games,”
Mathematics of Operations Research, vol. 1, pp. 197-208, 1976.

[6] L. S. Shapley and T. E. S. Raghavan, Stochastic Games and Related Topics: In
Honor of Professor L. S. Shapley, Boston, MA: Kluwer Academic Publishers,
1991.

[7] H. J. Kushner, Probability Methods for Approximations in Stochastic Control and
for Elliptic Equations, New York, NY: Academic Press, 1977.

[8] H. J. Kushner, “Numerical methods for stochastic control in continuous Time,”
SIAM Journal on Control and Optimizations, vol. 28, pp. 999-1048, 1990.

[9] H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control in
Continuous Time, Berlin, NY: Springer-Verlag, 1992.

[10]Y. Yavin and M. Pachter, Pursuit Evasion Differential Games, Elmsford, NY:
Pergamon Press, 1987.

[11] O. J. Vrieze, “Stochastic games with finite state and action spaces,” CWI Tracts

No. 33, Center for Mathematics and Computer Science, Amsterdam, The
Netherlands, February, 1987.

83

[12] L. D. Berkovitz, “Two-person zero-sum differential games: an overview,” in
The Theory and Application of Differential Games (J. D. Grote, eds), pp.12-22,
Dordrecht, Holland: D. Reidel Publishing Co., 1975.

[13] R. Isaacs, Differential Games, New York, NY: John Wiley and Sons, 1965.

[14] Dongxu, Li and Jose B. Cruz, Jr., “An iterative method for pursuit-evasion
games with multiple players,” submitted to the IEEE Trans. on Automatic
Control.

[15] J. P. Hespanha, H. J. Kim, and S. Sastray, “Multiple-agent probabilistic pursuit
evasion games,” in Proc. of the IEEE 35 Conference on Decision and Control,

vol. 3 (Phoenix, AZ), pp. 2432-2437, December, 1999.

[16] J. H. Reif and S. R. Tate, “Continuous alternation: the complexity of pursuit in
continuous domains,” Algorithmica, vol. 10, pp. 157-181, 1993.

[17] W. H. Fleming and P. E. Souganidis, “On the existence of value functions of
two-player, zero-sum stochastic differential games,” Indiana University

mathematics Journal, vol. 38, pp. 293-314, 1989.

[18] K. Ito, “Stochastic differential equations in a differentiable manifold”, Nagoya
Mathematical Journal, vol. 1, pp. 35-47, 1950.

[19] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, New York,
NY: Academic Press, revised ed., 1998.

[20] W. H. Fleming and R. Risher, Deterministic and Stochastic Optimal Control,
Berlin, NY: Springer-Verlag, 1975.

[21] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity
Solution, New York, NY: Springer-Verlag, 1992.

[22] R. E. Bellman, Dynamic Programming, Princeton, NJ: Princeton University
Press, 1957.

[23] M. J. Miranda and P. L. Fackler, Applied Computational Economics and
Finance, Cambridge, MA: MIT Press, 2002.

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Cambridge, MA: MIT Press, 1998.

[25]D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Belmont,

84

MA: Athena Scientific, 1996.

[26] L. P. Kaelbling, M. L. Littman and A. W. Moore, “Reinforcement learning: a
survey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237-285, 1996.

[27]1 G. Yin, S. Miao and Q. Zhang, “Finite difference methods and markov chain
approximation to a class of robust control problems,” in Proc. of the IEEE 34™
Conference on Decision and Control, vol. 4 (New Orleans, LA), pp. 3366-3371,
December, 1995.

[28] M. Bowling and M. Veloso, “An analysis of stochastic game theory for
multi-agent reinforcement learning,” Technical report CMU-CS-00-165,
Computer Science Department, Carnegie Mellon University, 2000.

[29] N. L. Stokey, R. E. Jucas, Jr. and E. C. Prescott, Recursive Methods in
Economic Dynamics, Cambridge, MA: Harvard University Press, 1989.

[30] J. Adda and R. W. Cooper, Dynamic Economics: Quantitative Methods and
Applications, Cambridge, MA: MIT Press, 2003.

[31] O. Hernandez-Lerma and J. B. Lasserre, “Zero-sum stochastic games in borel
spaces: average payoff criteria,” SIAM Journal on Control and Optimization, vol.
39, pp. 1520-1539, 2000.

[32] A. S. Nowak, “Sensitive equilibria for ergodic stochastic games with countable
state spaces,” Mathematical Methods of Operations Research, vol. 50, pp. 65-76,
1999.

[33] A. S. Nowak, “Optimal strategies in a class of zero-sum ergodic stochastic
games,” Mathematical Methods of Operations Research, vol. 50, pp. 399-419,
1999.

[34] J. Hu and M. P. Wellman, “Multiagent reinforcement learning: theoretical
framework and an algorithm,” in Proc. Of the 15" International Conference on
Machine Learning, (San Francisco, CA), pp. 242-250, July, 1998.

[35] S. Singh, M. Kearns and Y. Mansour, “Nash convergence of gradient dynamics
in general-sum games,” in Proc. of the 16™ Conference on Uncertainty in

Artificial Intelligence, (Stanford University, CA), pp. 541-548, June, 2000.

[36] Dongxu, Li, “Multi-player pursuit-evasion differential games”, Ph.D.
dissertation, the Ohio State University, Columbus, OH, 2006.

85

