
AUTOMATIC CREATION OF REAL-TIME MUSCLE
SYSTEMS

A Thesis

Presented in Partial Fiilfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Brent Mark Watkins, B.S.

The Ohio State University

2004

Master's Examination Committee: Approved by

Richard Parent, Advitier

Matthew Lewis
Adviser

Department of Computer
and Information Science

A B S T R A C T

Animat ing a l iv ing creature is one of the greatest challenges in computer graphics.

One of the many details that need to be accounted for in order to achieve convincing

results is the interaction of the skin w i th the subdermal structures such as the muscles,

fa t ty tissue, and bones. The challenge is even greater when the body is in motion.

This work presents a new approach for animating skin deformation that utilizes a

simulation of muscles and computes their effects on the overlying skin. The muscle

system is able to automatically generate muscles to match existing surface geometry

in locations specified by the user. The deformation algorithm is designed in such a

way as to handle first-order discontinuous surfaces. Additionally, the deformation

algoiil Inn is able l o run in rcal-l i m r w h i l e d i r c c l i v manipulat i n ; ; I liousands of control

points in order to improve usability by artists.

By specifying two curves on the skin geometry, the user determines the place­

ment of a muscle that is automatically generated to f i t the topology of the skin. A

contraction model for these muscles is presented that mimics the effects of isotonic

contraction. The contraction model is also able to simulate the effects of structures

which influence the shape of a muscle during contraction, such as underlying bones.

The resulting influence on the skin is generated by adjusting the location of skin con­

t ro l points using information derived f rom local muscle movement. Mult iple falloff

i i

functions are provided in order for the user to define a muscle's effect on the skin as

the distance f rom the muscle increases.

i i i

A C K N O W L E D G M E N T S

I would like to thank the Burpee Museum of Natural History and Brave New

Pictures for allowing A C C A D to take part in the production of their television doc­

umentary, and A C C A D and Professor Maria Palazzi for allowing me to participate.

Not only was the project the impetus for this research, i t also provided me wi th

valuable experience in a production environment.

1 would like to thank Mike Al tman , Ryan English, and Brent Zorich for creating

the dinosaur models that appear in this document, and Jenny Macy for creating their

textures. Ryan deserves additional recognition for pull ing double duty as the rigger

for the dinosaurs. His feedback, some of which was given while he was in the employ

of Rhy thm & Hues Studios as a professional rigger, was invaluable.

Many thanks to my master's examination committee, my adviser Dr. Richard

Parent and Dr. Matthew Lewis, for their help wi th the thesis wri t ing process. In

addition, I would like to thank Dr. Parent for encouraging me to participate in the

dinosaur production in the first place.

The human head model seen in this document was generated using FaceGen Mod­

eler by Singular Inversions.

Maya@was provided to the Computer Science & Engineering department as a g i f t

from A l i a s ® .

i v

VITA

Apr i l 15, 1976 Born - Spangdahlem A F B ,
West Germany

1998 B.S. Computer Science & Engineering,
The Ohio State University

1999-2002 Member of Technical Staff I ,
Lucent Technologies,
Columbus, O H

2002-2004 Graduate Teaching Associate,
The Ohio State University

2004-present Graduate Research Associate,
The Ohio State University

F I E L D S OF S T U D Y

Major Field: Computer and Information Science

v

T A B L E OF C O N T E N T S

Page

Abstract u

Acknowledgments 1 V

V i t a v

List of Tables v i i i

List of Figures 1 X

Chapters:

1. Introduction 1

1.1 Art is t ic Anatomy 5

2. Previous Work '

2.1 Surface Models 7
2.2 Free-Form Deformations 9
2.3 Simulations 9
2.4 Performance-Based Techniques H
2.5 Parameterization 12

3. Musculature I 4

3.1 Muscle Generation l o
3.1.1 Algor i thm 2 0

3.1.2 Shortcomings 26
3.2 Contraction 2 8

3.2.1 Algor i thm 2 9

vi

3.3 Bulge 36
3.3.1 Algor i thm 36

3.4 Summary 38
3.5 Sphincter Muscles 39

4. Surface Deformation 41

4.1 Algor i thm 44
4.1.1 Implementation Details 48
4.1.2 Falloff 49

5. Results 5 4

5.1 Performance 61

6. Conclusion and Future Work 67

Bibliography 72

vii

L I S T OF T A B L E S

Table Page

3.1 Variables used in muscle generation 17

3.2 Muscle generation inputs 19

3.3 Variables used in muscle contraction 28

3.4 Muscle contraction inputs 31

3.5 Variables used in muscle bulging 37

4.1 Surface deformation design constraints 41

4.2 Variables used in surface deformation 45

5.1 System variables adjustable at run-time 57

v i i i

LIST OF F I G U R E S

Figure Page

3.1 Muscle boundaries 18

3.2 In i t ia l basis grid interpolation 21

3.3 Basis grid example 22

3.4 Quadratic thickness function plot 23

3.5 Generated muscle 2(1

3.6 Jagged surface1 normals 26

3.7 Jagged surface normals solution 27

3.8 Depth preservation 30

3.9 Contraction example 1 32

3.10 Contraction example 2 34

3.11 Contraction example 3 35

3.12 Contraction example 4 35

3.13 Muscle contraction summary 38

3.14 Sphincter muscle contraction 40

4.1 Unstable spring-mass system feature 43

ix

4.2 Outline of deformation algorithm 44

4.3 Rough geometry 47

4.4 Pseudocode for the surface deformation algorithm 49

4.5 Falloff functions 51

4.6 Surface deformation example 52

4.7 Real model deformation example 53

5.1 Interface snapshot 59

5.2 Deformation benchmark (frames per second) 63

5.3 Deformation benchmark (seconds per frame) 64

5.4 Frames f rom human animation sequence 65

5.5 Frames f rom dinosaur animation sequence 66

x

C H A P T E R 1

I N T R O D U C T I O N

One of the greatest challenges in computer animation is the simulation of l iv­

ing creatures. Living creatures are highly complex, consisting of complex internal

structures surrounded by a flexible outer skin. The diff icul ty of creating a synthetic

creature is further compounded by our famil iar i ty w i th them - we have spent our

entire lives observing the movements of humans. As experienced authorities, we are

easily able to notice flaws in a simulation.

As complex as the internal structure of a creature is, i t is only the surface that is

visible. However, approaches that only model the skin and do not consider any other

anatomical structures have not met w i th much success when i t comes to creating a

convincing artif icial being. Models that take into account the underlying anatomy

that influences the shape of the skin have been able to produce much more convincing

results. This comes as no surprise - it is often the case that greater realism is achieved

by carefully modeling the real world rather than using ad-hoc methods.

1

Other coiiiinon ap])roa(hes involve (he use ot rree-l'orm (lerornial ions o r inorph

targets 1. Free-form deformations have considerably flexibility, and therefore are ap­

plicable to a variety of situations. However, they also require a considerable amount

of t ime to set up, especially when t ry ing to achieve photorealistic results.

Morph targeting refers to the process of manually generating a number of poses

for a character by adjusting the control points. Animat ion is then done by interpo­

lating the control point positions between the poses. This process allows the desired

appearances to be specified exactly, but is extremely time-consuming to set up. Even

w i t h this costly setup time, however, morph targets are often used because they allow

complete control over the animation. For example, the facial animations for the char­

acter of Gollum in the Lord of the Rings films were performed by using 675 morph

targets [6].

This document presents a new approach to simulating skin deformation. In order

to achieve greater realism, the approach follows the model of simulating the under­

lying anatomy. Specifically, muscles are simulated. These muscles undergo isotonic

contraction wi th adjustable bulging characteristics, and the skin is affected accord­

ingly.

There have been a number of recent anatomically-based techniques that approach

the problem by creating detailed anatomical models, including bones, muscles, ten­

dons, and fat ty tissue. In these approaches, creatures are created from the bot tom

up and the appearance of the skin is produced as an output based on the state of

the anatomical model. While these techniques are able to provide realistic results,

the actual appearance of the skin can be diff icul t to predict. Such unpredictability

'Morph targets are referred tu in Mawi as Mend shapes

2

is a problem when a top-down approach is required - that is, when the outer surface

specilicd l irsl .

One example of a situation in which a top-down approach is needed is in the

creation of "hero" characters. A hero character is one of the main characters in

a piece of animation, and the appearance of the character is carefully designed in

advance and therefore must look a certain way. At tempt ing to match a desired

outer appearance when building a character w i t h a bottom-up approach would be an

exceedingly diff icul t task.

Another case1 in which a top-down approach is used is when surface data is obtained

f rom the real world. This data could be obtained in a number of ways, including laser

range finders and video-based techniques. Again, in this situation the outer surface

is created first, making a bottom-up approach impossible.

These sil nations call for a top-down approach to modeling realistic skin. The

system presented in this document allows for the creation of muscles given existing

surface geometry, so that the surface may be specified first and the musculature may

be added later. The modeler is allowed maximum artistic freedom and can design

the surface without being required to worry about what sort of underlying anatomy

may be required to produce such a surface.

A common challenge wi th physical models, regardless of whether they are included

in a top-down or a bottom-up workflow, is that they are often computationally in­

tensive. As a result, tuning the model to achieve the desired results can become a

tedious task for an animator. After adjusting the parameters of the model, a lengthy

delay may be incurred by computation before the results can be viewed.

This problem is amplified by the increasing power of 3D hardware available in

workstations. Increasing power allows ever more complex models w i th greater num­

bers of control points to be designed and manipulated at interactive speeds. Unfor­

tunately, physical simulations typically do not have linear computational complexity,

which means that the time required to compute the physical model for a given piece

of geometry grows faster than the complexity of the model itself.

The approach presented here trades off some physical accuracy in order to increase

the speed of computation. The animator is therefore able to be more productive,

because the results of altering parameters of the model may be immediately visualized.

The process of design is itself iterative by nature, meaning that the result is

continually modified unt i l a satisfying result is achieved. In this case, the satisfying

result is realistic skin deformation. The interactive speed of the deformation algorithm

results in immediate results for the designer, who is therefore able to work more

efficiently while manipulating the system.

This research has evolved f rom the needs of a production that is currently in

progress at the Advanced Computing Center for the Arts and Design, in conjunction

wi th Brave New Pictures. A muscle system was desired in order to create more

realistic skin deformations. The muscle system was intended to provide better results

than the approach used to provide most of the other character deformations for the

project, which utilized free-form deformations. The needs of the project resulted in

the following design constraints:

• A top-down approach in which muscles are generated to fit existing models

• Real-time calculation of skin deformation based on muscle actions

4

• A skin deformation algorithm able handle first-order discontinuous surfaces

This document describes a system for simulating skin by modeling the underly­

ing musculature that meets the above constraints. This system differs f rom other

anatomically-based systems by emphasizing speed and top-down muscle creation. I t

differs f rom other skin animation approaches such as FFDs and morph targeting

by producing visually pleasing results w i t h much less setup time. Chapter 2 dis­

cusses previous approaches to the problem of representing skin. Chapter 3 describes

the muscles themselves, including how they are created and how they behave when

undergoing contraction. Chapter 4 describes how the contraction of the muscles in­

fluences the skin. Chapter 5 discusses the results of this research, and Chapter 6

presents conclusions and avenues for future research.

1.1 Artistic Anatomy

The motivation for this and other approaches that simulate skin deformation by

modeling the underlying anatomy comes f rom the area of Artistic Anatomy [30].

Art is t ic anatomy is a specialization of general anatomy that is concerned w i t h the

structures of the body that influence surface form. This field has long been of use to

artists in tradit ional media, and has become valuable to computer graphics as well.

The greatest influence on the shape of the surface is the skeleton. The general

shape of the body is a direct result of the shape of the skeleton. Movement of the

skeleton creates gross changes in the shape of the skin. However, fine details can also

be produced by the skeleton itself. For example, the heads of the metacarpal bones

can only be seen when the hand is clenched into a fist.

5

Located between the skeleton and the skin is the musculature. Besides being re­

sponsible for the motions of the skeleton, the muscles themselves have direct influence

on the surface. Their shape can be seen on the surface as a series of convexities. Fur­

thermore, the shape of a muscle changes as i t contracts, resulting in a change in the

shape of the surface.

A muscle consists of a bundle of muscle fibers which are connected, often wi th

tendons, to the body in two locations. These locations are known as the origin and

the insertion. The origin is the stationary end of the muscle and serves as its anchor.

The insertion is the point of attachment to some structure that is moved when the

muscle contracts. This is often a bone, but in some cases, such as the face, the muscle

may insert directly into the epidermis.

When a muscle is contracted, i t changes in shape. Two types of contraction are

possible: isotonic and isometric contraction. In both cases, the contraction causes

the muscle to change in thickness. The result of this can be seen on the overlying

skin. Furthermore, isotonic contraction results in a change of length. The result of

a change in length is especially apparent in the face, where muscles insert directly

into the epidermis. When these muscles shorten, they pull the skin near the muscle

insertion point toward the muscle origin.

6

C H A P T E R 2

P R E V I O U S W O R K

Animat ing convincing skin deformation has been an active area of research for

the past 30 years. Parke presented the seminal work in human facial animation [17]

in 1972. His approach modeled the face as a polygonal mesh consisting of about 250

polygons. This model was developed by drawing a mesh on the face of an assistant,

who was then photographed in a variety of poses. Each of these poses was used to

define v i r tua l pose in the computer, and animation was done by blending between

the shapes. This technique was among the earliest application of the morph target

approach,

A variety of other strategies for animating the movement of skin have been utilized

over the years, and wi l l be discussed by category.

2.1 Surface Models

The term surface model is used to classify approaches that only use the skin

surface itself when computing animation. For example, Piatt and Badler [18] describe

a system in which "muscles" are defined by identifying a muscle connection vertex and

the direction of muscle action. Vertices are then moved based on their connectivity.

7

Waters proposed another surface approach [28]. This approach presented tlie

concept of muscle vectors. Such a vector defined a direction of muscle contraction.

The effect of the vector was scaled by a falloff function based both on distance f rom

the muscle vector and deviation f rom the direction of the muscle vector.

Lewis et. al. introduced the concept of pose-space deformations [12]. This tech-

nique uses an internal skeleton whose joints have weighted effects on the skin control

points. The Animator manually generates a small number of poses, and the weights

are then calculated automatically.

Wang and Phillips [27] use a similar approach in which a character is animated

through a "training exercise" by some external means. The resulting data is used to

compute coefficients for a deformation equation. Unlike the Lewis approach, comput­

ing a new pose is not dependent on the number of training poses.

Wade [26] describes a,n approach wi th which a control skeleton can be automat­

ically generated f rom a polygonal model. The skeleton is generated based on a a

discrete medial surface, and each vertex of the model is bound to a particular bone

in the control skeleton. Animation of the control skeleton therefore results in the

animation of the polygonal model.

Bloomenthal [2] presents a system that automatically computes weights which

determine an existing control skeleton's effect on a particular surface control point

by convolving a filter through the medial axis/surface of the character.

K r y et. al. [10] describe a system in which predefined key poses are decomposed

into principal components. The resulting "eigenbases" describe the influence of the

joints in the control skeleton. Skeletal poses are expressed in terms of the eigenbases,

and the "EigenSkin" is generated using vertex programming on graphics hardware.

8

Yoshizawa et. al. [32] present another approach for automatically generating a

control skeleton. The skeleton is extracted using a Voronoi-based technique. This

skeleton is then deformed using free-form deformations, and the character is adjusted

to fit the new skeleton.

2.2 Free-Form Deformations

The concept of free-form deformations was proposed in 1986 by Thomas Sederberg

[21]. These were used in 1988 to deform the skin by Komatsu [9].

In 1989, Chadwick et. al. [3] proposed a method for animating characters using

FFDs. This approach used multiple, aligned FFDs along the limbs. The FFDs at

the joints served to deform the skin at the joints, and the FFDs between the joints

expand outward to simulate muscle bulging.

FFDs typically relied on rectangular lattices, which are not ideal for every situa­

tion. In 1996, MacCracken and Joy [13] proposed a method for performing free-form

deformations wi th lattices of arbitrary topology. This technique was based upon

subdivision surfaces and allowed to creat ion of more general control lattices for FFD-

based approaches.

Singh and Flume introduced the concept of wire deformers [22]. In this model,

wires represent the shape of the skin, and deforming the wires results in a deformation

of the surface.

2.3 Simulations

Terzoupolos and Waters describe a model [23] for modeling a human face that

consists of three layers in a mass-spring system. Lee et. al. [11] slightly simplified

9

this approach using a skin layer, a muscle layer, and a bone layer. Vertices on the

bone layer are fixed and attached wi th springs to vertices in the muscle layer, which in

tu rn are attached w i t h springs to the vertices in the skin layer. In addition, springs

are embedded wi th in the muscle and skin layers themselves. Muscle movements

are simulated by only adjusting the vertices in the skin layer - the resulting forces

propagate to the skin layer through the mass-spring system.

Thalmann and Thalmann [14] use fini te element methods to model skin during

contact wi th the environment and during flexion of joints.

Chen and Zeltzer [4] created animation using a detailed biomechanical simulation.

This simulation included a very detailed muscle model that was contracted using a

finite element model. The effects on the skin were also computed via a finite element

model.

Turner and Thalmann present a system [25] in which an elastic surface is wrapped

around a kinematic skeleton. As the skeleton moves, the skin is acted upon by spring

and reaction forces.

Such techniques are also used for other purposes besides animation. Koch et al [8]

describe a method simulating the face during surgery. This method also uses finite

element techniques.

Thalmann et al [24] describe a method for shaping skin based on a simplified

underlying anatomy. Muscles are represented as ellipsoids, and the skin is an implici t

surface based on the muscles.

K l

During the same SIGGRAPH conference, Scheepers et. al. [20] and Wilhelms and

Van Gelder [29] presented character animation techniques based on a detailed anatom­

ical model of subsurface elements that influence the skin. Scheepers et. al. repre­

sented muscles using either ellipsoids or bicubic patches which bulge under volume-

preservation constraints. Wilhelms and Van Gelder utilize a deformable cylinder to

represent muscles which also maintain volume while bulging. Both techniques build

the skin implic i t ly as an output of the state of the anatomical simulation.

Nedel and Thalmann [16] present a similar approach that uses a skeleton layer,

a muscle layer, and a skin layer. Muscles are represented as a polygonal mesh and

are contracted by embedding a mass-spring system and applying forces. The skin is

generated over the other two layers by casting rays outward f rom the skeleton into a

cylindrical grid.

Kahler et. al. describe a an approach [7] that creates muscles based on existing

polygonal skin. Each muscle is represented by a group of ellipsoids that bulge when

the muscle is contracted. The model also incorporates a bone layer. The bone,

muscles, and skin are all connected w i t h springs and a spring-mass system is used to

compute skin deformations.

2.4 Performance-Based Techniques

Performance teclmiques refer to animation methods that require a user to act out

the desired animation. This animation is captured and then applied to a synthetic

figure.

Allen et. al. [1] capture real-world poses w i t h a combination of optical motion

capture and laser rangefinders to gather data f rom the real world. Markers are placed

I I

on the limbs of a character who is scanned wi th the laser rangefinder in a variety of

poses. The optical motion capture markers allow the location of the skeleton to

be determined, and the rangefinder provides a detailed surface model. Using this

data, a parameterization is computed for the effect of the skeleton on the data. This

parameterization allows new poses that were not captured to be interpolated.

Sand et. al. [19] use a similar approach, but use silhouettes f rom one or more

cameras in place of a laser rangefinder. As a result, the capture process is much

faster and the actor may move about the capture space1 freely, but the results an 1 loss

precise.

Chai et. al [31] describe a technique for animation facial expression by acting out

the desired motions in front of a camera. Features tracked in the input video are

combined wi th knowledge embedded in a database of facial motion capture data in

order to produce realistic facial poses.

2.5 Parameterization

There are two commonly used standards that parameterize facial skin motion:

FACS [5] and MPEG-4 [15]. Both of these models define facial animation in terms of

a number of parameters w i t h specific meaning.

FACS, which was developed by psychologists Ekman and Friesen, breaks down

facial movements into a series of action units (AUs). Each A U describes a particular

facial movement f rom a high level, such as "inner brow raiser" or "lip tightener". In

reality most AUs correspond to the movement of multiple facial muscles. Although

not intended for animation, FACS is commonly used as an input technique into facial

animation systems.

12

MPEG-4 [15] also provides a generic set of inputs. Each head used must be marked

wi th a particular set of feature points called Facial Definition Parameters (FDPs).

These points provide a correspondence between MPEG-4 heads. Facial Animat ion

Parameters describe a particular facial movement in terms i f FDP movements, and

therefore may be applied to any face that as been specified wi th FDPs.

The MPEG-4 specification also defines BDPs (Body Definition Parameters) and

BAPs (Body Animat ion Parameters). These are analogous to FDPs and FAPs, but

are used to parameterize human bodies rather than fact's.

i;3

C H A P T E R 3

M U S C U L A T U R E

This document presents a skin deformation algorithm that is based on the simu­

lation of muscles. Therefore, the muscle model itself is crucial to the quality of the

system. The material in this chapter presents the details of the muscle model. Both

muscle generation and muscle conlraction wil l be discussed.

The muscle model allows for the simulation of linear muscles. Such muscles are

characterized by having two extremities known as the origin and the insertion. The

origin is stationary and provides an anchor point for the muscle. The insertion con­

nects to some part of the body that the muscle is intended to move. Typically this is

a bone, but in some cases the muscle inserts directly into epidermal tissue. One place

that this occurs is the face, where there are few movable bones but a large number

of muscles that are able to generate a huge variety of facial configurations.

The human body also contains several significant sphincter muscles, most notably

the orbicularis oris that surrounds the mouth. These muscles are rings and contract

toward a central point. Sphincter muscles w i l l be discussed briefly at the end of this

chapter. The proposed implementation is a straightforward extension of the sphincter

muscle described in [7].

1 I

When contracting, a muscle can undergo either isotonic or isometric contraction.

In isotonic contraction, the muscle shortens while increasing in thickness. A n example

of this phenomenon is the bulging of the biceps muscle when the elbow is flexed.

Isometric contraction occurs when a muscle bulges without changing length. In this

case, no movement is produced at the muscle's insertion, but the skin is s t i l l affected

by the bulging of the muscle beneath the surface.

The muscle model presented here is primari ly concerned wi th isotonic contrac­

t ion. Furthermore, the model is particularly suitable for facial muscles, because the

deformation algorithm allows for both skin bulging and skin stretching. Stretching

is typically seen on the face when muscles that insert directly into the epidermis are

contracted.

Linear muscles come in multiple forms, f rom the broad sheets of the pectoralis

in the chest to the narrow form of the biceps. In order to allow for a wide variety

of shapes, muscles are represented using parametric surfaces. Such a representation

allows for the specification of a smooth, first-order continuous surface using relatively

few control points. Continuity is needed in the muscle model in order to achieve

continuity in the skin deformation, as wi l l be seen in Chapter 4. Additionally, a

smooth surface provides a much better approximation of the shape of a real muscle

than other approaches, such as using a single or multiple [7] ellipsoids.

A parametric surface is defined by a two-dimensional mesh of control points.

Therefore, operations on the surface consist of modifying the mesh. A l l muscle ac­

tions wi l l therefore be operations that manipulate the muscle's control mesh. Muscle

generation w i l l be performed by calculating the location of of all points in the control

15

mesh, and likewise muscle contraction and bulging w i l l be performed by adjusting

the control mesh.

Two different meshes wi l l be discussed in this chapter. The first mesh, known

as the basis grid, consists of a mesh of points that all lie at approximately the same

depth below the surface. The basis grid represents the middle of the muscle in terms

o f depth. The actual control m e s h of the muscle is generated above (closer lo the

surface than) the basis grid, using a thickness function that varies across the muscle

surface.

The two dimensions of a parametric control mesh are referred to as the u and

the v directions. By convention, the v direction wi l l always extend in the direction

from muscle origin to muscle insertion, and wi l l therefore be the direction in which

contraction is performed. Likewise, the u direction w i l l be across the body of the

muscle. Recall that while the u and v directions are orthogonal in parametric space,

in world space they may follow curved paths, allowing for muscles w i th organic shapes.

The specific parametric surface that was chosen for the implementation of the

system is t h e X L l l l i S surfaee. The primary motivation lor this c h o i c e is the p r e ­

existing availability of a rich set of NURBS functionali ty in the Maya A P I , which

was used for the implementation. Using the existing NURBS functionality saved the

work of implementing a parametric surface, allowing effort to b e spent on the muscle

model itself.

.3.1 Muscle Generation

One of the primary goals of the muscle generation procedure is to allow for the

creation of muscles based on existing surface geometry. Basing new muscles on an

existing surface allows for the use of a top-down approach in character modeling. To

I his c u d . die lirsl step in muscle generation is for the user to define where the new

muscle should be located by outl ining its location on the surface. Prom this informa­

tion the basis grid is created. The points on the basis grid all lie at approximately

the same user-defined depth beneath the surface, wi th in the area delimited by the

boundaries drawn by the user.

There is a one-to-one correspondence f rom the basis grid points to the control

points of the muscle surface. Therefore, there are the same number of basis grid

points as surface control points. Each surface control point is located at a calculated

distance f rom its corresponding basis grid control point. This distance is defined by

a quadratic thickness function.

Tg skin thickness
r,„ muscle thickness
p a control point on the user-drawn curve
n the surface normal at a control point p
Pij a point on the basis grid
qi j a control point on the muscle surface
Hij the interpolated normal at
Xij the distance \\qij — Pi,j\\
itot the number of control points in the u direction
jtot the number of control points in the v direction

Table 3.1: Variables used in muscle generation

From the point of view of the user, muscle generation consists of the following

steps:

1. The user draws two curves on the surface of the geometry that define the extent

of the muscle.

17

2. The user specifies T s , the thickness of the skin, r m , the thickness of the muscle,

and optionally the degree of the parametric surface and the number of patches

in the u and v directions.

3. The system generates a muscle which lies below the surface, conforms to the

surface topology, and honors the extents defined by the user.

The location of the muscle is drawn by the user on the surface geometry by

using two curves. These curves define boundaries for the muscle in one dimension.

The boundaries for the muscle in the second dimension are defined by imaginary

lines joining the endpoints of the curves. The boundaries in the th i rd dimension are

provided by the two thickness parameters, T s and r m . The relationship between the

curves, the thickness parameters, and the muscle boundaries is shown in Figure 3.1.

Figure 3.1: The thick solid lines represent curves drawn by the user. These curves,
together w i t h the thickness parameters r s and r m , determine the boundaries of the
muscle, which is shown in pink.

IS

The curves also determine which end of the muscle is the origin and which end

is the insertion. Therefore, the curves determine the v direction of the parametric

muscle surface. The imaginary lines that connect the endpoints of the curves lie in

the u parametric direction. The muscle origin is defined to be at the end at which

t he curves begin. Likewise, the muscle insertion is defined to be at the end at which

the curves end. The "beginning" of a curve is defined as the first control point, and

the "end" of a curve is the last control point.

The parameters for degree and number of patches are optional. Increasing or

decreasing these values allows the user to generate muscles that exhibit greater or

lesser local detail as desired. For example, greater detail may be required to create

an adequate muscle for a surface w i t h high-frequency features. However, empirical

observation has found that a degree of three is sufficient for most situations.

The inputs into the muscle generation algorithm are given in Table 3.2.

• the original surface

• the curves drawn by the user

• r g , the thickness of the skin

• r m , the thickness of the muscle

• the degree of the muscle surface

• the number of patches on the muscle surface in the u direction

• the number of patches on the muscle surface in the v direction

Table 3.2: Muscle generation inputs

19

3.1.1 Algorithm

The first step in muscle generation is to compute the basis grid. Because of

the one-to-one correspondence of the basis grid to the actual control points of the

muscle surface, the number of points required for the basis grid is determined by

the requested degree and the number of patches. The relationship of the degree and

number of patches to the number of points is:

The number of patches may be different in the u and v directions, so the basis

grid may not be a square array.

The control points of the user-defined curves serve as the ini t ia l points for the basis

grid. Kadi of these points nmsl be m o v e d t o the p r o p e l ' d e p t h . This w i l l be d o n e in-

moving them a l o n g the normal of the skin surface at the control point's location.

The curves are generated by using Maya's "draw on surface" capability. When

this feature is utilized, the control points for the curves are placed directly on the

surfaee. In addition, Maya provides functionali ty to lookup the normal at a given

surface location. By leveraging this functionality, the surface normal can be obtained

at each control point. Each control point is then displaced inward along its normal

to a distance of r , + r m beneath the surface.

Once they have been moved to the proper depth, the displaced control points are

used to initialize the basis grid. Equation 3.1 determines how many points are needed

along each (u or v) direction. The curves lie i n the v direction, so the first step is

number of points = degree + number of patches (3.1)

p = p - n - (rs + T m) (3.2)

20

to generate the required number of points in the v direction by linear interpolation

between the existing control points of each curve.

Af te r this step, there are two "columns" of control points - one for each of the

curves used to define the muscle location. Each of these two columns has the needed

number of points in the v direction. The remaining u — 2 columns are generated by

interpolating the corresponding vertices, resulting in u columns of v control points.

This process is illustrated in Figure 3.2.

Figure 3.2: Interpolation of basis grid points f rom the original control points. In this
example, 5 points are needed in the v direction and 4 points are needed in the u
direction. From left to right: the original control points, interpolation wi th in each
colunm to generate 5 points, interpolating additional columns to generate 4 columns.

In order to place each basis grid point at approximately the same depth beneath

the surface, the normals for the new points are also generated by interpolating between

the normals at the displaced control points. This interpolation is performed linearly

through quaternion space2. Once a normal f t i j has been defined for each p i j , the

locations of the points may be refined such that they are all at a distance of r , + T T O

beneath the surface, measured in the direction of the normal.

2Maya provides this functionality. The interpolation is done "by rotating vector a into vector b
about their mutually perpendicular axis by a given factor (e [0,1])"

2]

The complete basis grid has now been computed. The basis grid is composed of

a sufficient number of points to define the parametric muscle surface, all of which lie

at a distance of approximately r , + r m beneath the surface.

The f inal control points for the muscle surface w i l l be computed using the basis

grid as an input. By offsetting each control point qij f rom its corresponding basis

grid point pij by a different amount, a curved muscle surface wi l l be generated.

Figure 3.3: The basis grid (blue crosses) is created at depth r , + r,„ below the surface.
The muscle has maximum thickness Tm.

The relationship between the basis grid, the muscle surface, the skin surface, and

the thickness parameters r , and r,„ is demonstrated Figure 3.3. Notice that the muscle

surface actually represents only half of a muscle, and r m gives the half-thickness rather

than the f u l l thickness. The reason for this is that the bottom half of the muscle is

not actually needed by the surface deformation algorithm. I t was therefore omit ted

in order to speed computations.

22

In order to generate each control point q^, its displacement f rom the correspond­

ing basis grid point pij must be computed. The displacement wi l l be toward the

surface, in the direction of f t i j , the normal at p i j . The distance of the displacement,

Xij, is initialized to be r m .

I f each control point were displaced f rom the corresponding p i t j by the same

amount, the result would be a muscle of uniform thickness that conforms to the

shape of the surface above i t . However, in order to create a better muscle model the

thickness should be allowed vary, such that the muscle is thickest in the center and

thinnest at the edges.

Figure 3.4: A plot of the function used to scale the thickness of the muscle. For this
example, i t o t and j f 0 t are equal to 5.

23

In order to produce a muscle that reaches maximum thickness in the middle and

minimum thickness at the extremities, the distance Xij is scaled by a simple quadratic

function. This function takes i and j as input and is equal to 1 at the center of the

basis grid and 0 at the edges. The function, f { i , j) , is based on the one used by [7],

but has been extended to three dimensions.

\ttot - 1 /

itot and jtot are the number of basis grid points in the u and v dimensions, re­

spectively, i and j are 0-based, so i E [0. ifnt — 1] and j G [0, j (0 f — 1]. A plot of this

function is shown in Figure 3.4.

After computing f { i , j) , i t can be used to scale the final value of Xu.

= T,,, • f { i j) (3.4)

Due to the properties of the quadratic thickness function (Equation 3.3, Figure

3.4), the value of Xij w i l l be the greatest in the middle and the least near the edges.

Because f { i , j) G [0,1], the result of mul t ip lying by r m is that x^j € [0, r m] . Therefore,

the muscle reaches a maximum thickness of r m , the user-supplied muscle thickness.

Once xtj has been calculated, all the information necessary to produce the muscle

surface control points is available. Each control point is computed by displacing from

the corresponding basis grid point a distance of Xij.

Qij = Pij "1" ^ij ' ^ij (3-5)

This model allows for muscles that are thicker in the middle than toward the

extremities. Some muscles, especially sheet muscles such as the pectoralis, are in

reality broad sheets of mostly uniform thickness. Such muscles may stil l be created

24

- i ^ - - >v
\ jtot - 1 /

using this model, by setting r m to be very small or even zero. I t should be noted,

however, that a side effect of setting T M to zero is that there wi l l be no bulging when

the muscle undergoes contraction. The reason for this wi l l become clear in Section

3.3.

Once the control points for the muscle surface have been generated, the basis grid

is not discarded. In fact, the basis grid is key to both the contraction and bulging

algorithms. Neither operation directly manipulates the muscle control points. Con­

traction is accomplished by modifying the basis grid points, and bulging is accom­

plished by modifying Xij, the distance f rom a basis grid to its corresponding muscle

control point.

The basis grid was generated by moving all of its points to be the same distance

beneath the surface. By maintaining constant depth, the basis grid follows the con­

tours of the surface. Furthermore, the shape of the muscle is determined by the shape

of the basis grid. As a result, the shape of the muscle w i l l be similar to the shape of

the surface. Figure 3.5 demonstrates a basis grid generated f rom a random surface

and the corresponding muscle.

In reality, the shape of the surface is determined by the shape of the underlying

anatomy. W i t h this algorithm, the shape of the underlying anatomy is determined

by the shape of the surface. In both cases, the surface and the underlying anatomy

have similar shapes. This approach is therefore able to mimic reality, while at the

same time allowing for a top-down approach to character construction.

25

Figure 3.5: Perspective and side views of a muscle generated f rom a random surface.
Both views include the larger skin surface above the smaller muscle surface. Note
the blue cross-shaped locators corresponding to the basis grid and the shape of the
resulting red muscle.

3.1.2 Shortcomings

The surface normals are used to project the curve control points below the skin

surface. These projected control points serve to initialize the basis grid. Al though i t

has not occurred in practice, if the curve control points are placed on discontinuous

surface features, the resulting normals would result in the basis grid not being placed

at the intended depth below the surface. This situation is demonstrated in Figure

3.G.

Figure 3.6: Jagged surface normals. The surface normals at the selected control
points do not point in a direction that result in an accurate measurement of depth.

2(i

I i i this figure, the control points wi l l be projected along the arrows, which represent

the negated surface normals. The points w i l l be located a distance of r , + r m f rom

their original positions, measured along the normal. However, the projected points

wi l l clearly be closer to the surface when measured in other directions. Specifically,

directions that are more t ru ly "outward" toward the surface of the skin.

A possible solution to this issue would be to not use the surface normals. Instead,

consider the grid on the surface determined by the control points on the user-defined

curves. A t least four points are required (two each for two curves), which would result

in a grid w i th a single cell. Addit ional control points would result in additional cells.

The normal for each cell could be determined by treating as a 4-sided polygon. Then,

the normal for each control point could be calculated by averaging the normals of

each cell that is incident on the point. This process is similar to the way normals are

calculated for polygonal meshes. The resulting normals are shown in Figure 3.7.

Figure 3.7: Jagged surface normals solution. The surface normals at the selected
control points are based on the curves drawn by the user instead of the surface itself.

This approach results in a depth measurement that is truer to the overall shape

of the surface, rather than a local feature.

27

3.2 Contraction

Muscle contraction is an important part of any muscle model. I t is muscle contrac­

t ion that is responsible for causing visible deformations of the skin. When a muscle

contracts, it pulls on some piece of anatomy, typically hone or skin. This pulling can

cause the skin to be stretched, especially when the muscle inserts directly into the

skin itself. Contracting muscles also affect the skin by bulging. A bulging muscle

pushes outward against the skin and causes a visible bulge on the surface.

Pij a point on the basis grid
Pkj a column of points on the basis grid
c contraction amount (c G [0,1])
tj normalized distance of point pkj along basis grid column k
t j tj contracted using c
cij the index of the point p^j that starts the line segment containing ij
p'i j a point on the basis grid after contraction

Table 3.3: Variables used in muscle contraction

This muscle model performs isotonic contraction. During isotonic contraction, a

decrease in the length of the muscle causes a corresponding increase in the thickness

of the muscle. The increase in thickness serves to maintain the volume of the muscle.

Typical physical simulations [20],[29] incorporate volume preservation constraints that

would create the exact amount of bulging necessary to compensate for the length

lost during contraction. This model instead follows an artistic approach, where the

amount of bulge is a parameter than may be adjusted by the artist. Bulging is

discussed further in Section 3.3.

28

When undergoing contraction, the muscle shortens. This shortening occurs along

the v direction of the parametric surface, as was established in Section 3.1. Therefore,

an algorithm is needed that wi l l move the control points of the muscle surface closer

to the muscle origin w i th respect to the v direction.

Instead of moving the control points themselves, the contraction algorithm w i l l

instead move the points on the basis grid. Once the basis grid points have been

adjusted, the muscle control points can then be recomputed using Equation 3.5.

Real muscles experience certain constraints while undergoing contraction. While

there is freedom to expand outward because the skin is flexible, typically there is not

freedom to move inward because of the rigid bone beneath them. Instead, muscles

slide over the surface of bones as they decrease in length. Although bones are not ex­

pl ici t ly modeled in this system, this property of contraction should st i l l be accounted

for in order to increase realism.

The contraction algorithm w i l l ensure that the muscle does not penetrate any

deeper into the body. This property of the algorithm serves to simulate the effect

that underlying bone would have on a real muscle.

The means by which this constraint wi l l be satisfied is to adjust the basis grid

points such that their new positions lie along the line segments which connected the

ini t ia l points (as created by the muscle generation algorithm). A n example of this is

illustrated in Figure 3.8.

3.2.1 Algorithm

The v direction on the muscle surface is the direction along which contraction

occurs. Therefore, the points of the basis grid w i l l be contracted in the v direction.

29

Figure 3.8: While undergoing contraction, the basis grid points d o not penetrate any
d e e p e r I h a n I he l i n e segments joining their initial positions. I n I his example. I l ie o p e n

points represent the ini t ia l positions and the filled points represented the contracted
positions. The points have been contracted by 25%.

Each "column" of grid points in the v direction is contracted separately, in the manner

that is demonstrated in Figure 3.8.

Given a basis grid point p^j, i represents an index along the u direction and j

represents an index along the v dimension. Therefore, define a colunm of basis grid

points to be a collection of points w i t h the same index along the u direction.

30

For each fixed u index k, there exists a column in the basis grid pkj : j € [0, jtot - 1]

that lies along the direction of contraction. The points in this column wi l l be con­

tracted in such a way that the length is decreased and the points do not penetrate

any deeper than their ini t ia l positions. The algorithm for this is based on the one

used in [7].

The amount of muscle contraction wi l l be defined by the parameter c S [0,1]-

A value of c = 0 signifies that the muscle has undergone no contraction (i.e. is

completely relaxed), while a value of c = 1 signifies that he muscle is fu l ly contracted.

Here fu l ly contracted means in the mathematical sense - the muscle has contracted

so far that its length is approaching zero. Such behavior would not be possible in

physical muscles, but setting an artif icial upper bound on contraction could prevent

an animator from achieving a desired look. Therefore the entire range of contraction

is niride available.

The inputs into the contraction algorithm are given in Table 3.4. The output of

the contraction algorithm is a new column of basis grid points, p'fe •.

c The amount of muscle contraction
Pkj A colunm of points f rom the original basis grid

Table 3.4: Muscle contraction inputs

From this point forward, the fixed u index h w i l l not be used in variable subscripts.

The contraction algorithm works on a one-dimensional colunm of points, not the two-

dimensional array that represents the entire grid. The k is dropped for brevity, except

when referring to a basis grid point.

31

The contraction algorithm works by moving the points along the line segments

joining their ini t ial positions. The first step in determining their new positions is to

compute the combined length of all the line segments; this is the tota l distance along

the line segments f rom the first point to the last point. Af te r determining the overall

length, each control point pkj is assigned a parameter tj E [0, 1] which represents the

normalized distance of that control point along entire path. The first point, Pkfl, w i l l

be at distance to = 0. The last point, Pkjtot-\, w i l l be at distance t j t o t - \ — 1.

In order to normalize tj such that all values are between 0 and 1, the distance to

each control point is divided by the total distance. This is shown in Equation 3.6.

Figure 3.9 shows a simple running example of the contraction algorithm. In the

example, each point is an (hi nal (list a nee from i I s preceding point. so I he values of / ,

are evenly spaced.

(3.6)

^=0.25 ^=0.50 ^-0.75
/ , = 1.00

Figure 3.9: Contraction example 1

32

The contraction parameter, c, represents how much contraction the muscle has

undergone as a fraction of the original length. Let C^-ig represent the original (uncon­

tracted) length of the muscle, and £ n e w represent the contracted length. The amount

of contraction can be expressed as:

^orig ^new ^orig ' C (3-7)

Solving for £ n e w gives:

^new ^orig ^orig ' C (3-8)

£new — (1 c) * £orig (3-9)

Therefore. I c represents the contracted lengtli o f t h e muscle, as a t r a c t i o n of

the original length.

(1 - C) = ^ (3.10)

In order to avoid contracting the muscle so far that it has zero length, the value

of 1 — c is clamped to [0.01,1]. I t is then used to scale each t j , effectively remapping

the values of tj f rom [0,1] [0,1 - c].

ij = max{0.01,(1 - c) } - tj (3.11)

Figure 3.10 again shows the running example, wi th the values of t j and tj for each

point . A value of c = 0.25 was used for the example.

tj represents the uncontracted distance of point pkj along the entire path. There­

fore, mult iplying this value by 1 — c, the fraction of the new length over the old length,

gives a new set of values i j , each of which represents the contracted distance of point

p'k j along the path.

33

^=0.25 t2=0.50 t3=0J5
to=0 7r0A9 h-03H 73=0.56 t4=\m
70=0 T4=0J5

Figure 3.10: Contraction example 2 (c = 0.25)

Now that the distance of each p'k j along the path is known, the location of each

of these distances along the path must be found. Each new position p'kj w i l l be

romputed I iy linearly interpolating bet w e e n s o n i c pair o l p o i n t s o n t he original pa t h .

Each ij is mapped to an index Oj G { 0 , . . . , j t o t — 2} , which represents the index

of the original point that immediately precedes the distance i j . In other words, the

distance i lies on the line segment joining the points pk^j and Pk^j+i-

0 . V = 0 (312)

m :tm < tj < < m + i else

Figure 3.11 again shows the running example, this t ime wi th the values of a j

included. Note that each cr, represents an index such that ij > t a j and tj < ta.+i-

At this point, i t is known which of the uncontracted points pkj that each distance

tj lies between. A l l t hat remains is to perform the linear interpolation.
Pkj = Pk.aj + (Pk.aj+l - P k . a j) ~ (3.13)

Figure 3.12 shows the running example in the final configuration. The original

path is grayed out and the original points Pkj are connected w i t h dashed lines. The

new points p'kj are shown in red and connected wi th solid lines.

31

/2=0.50
^=1.00
^=0.75

Figure 3.11: Contraction example 3 (c = 0.25)

t0=Q
r2=o.50

• a

^=1.00
74=0.75

a 4=2

•o • •

Figure 3.12: Contraction example 4 (c = 0.25). The gray path represents the original
path, and the red path represents the contracted path.

After the contraction algorithm has been performed on each column from the basis

grid, a new, contracted basis grid has been created. This new grid has been shortened

toward the muscle origin by a factor of c. Furthermore, the points on the new basis

grid do no penetrate any deeper into the body than the original basis grid.

The final step required in order to complete the muscle contraction is to calculate

the new locations of the control points for the muscle surface1. Using the adjusted

35

basis grid points p - j , the mnscle control points qitj can again be found using the

algorithm given in Section 3.1.

3.3 Bulge

The last remaining task of the muscle model is to simulate the muscle bulging that

arises f rom isotonic contraction. The contraction model f rom Section 3.2 has already

adjusted the basis grid points in order to shorten the muscle. Therefore, modeling

bulge wil l simply require increasing the muscle's thickness.

As described in Section 3.1, the muscle thickness is determined by mult iplying T M ,

the muscle thickness value provided to the muscle generation routine, by the quadratic

thiekuess function (Equation 3.3). Modeling bulge merely requires increasing this

thickness value and again recomputing the muscle control points.

Furthermore, the amount of bulge should increase as the muscle length decreases.

More specifically, the muscle thickness should be increased by an amount that is

inversely proportional to the length of the muscle. A s w a s stated previously, the

amount of bulge wi l l not be constrained in order to preserve muscle volume but w i l l

instead be left in the control of the artist.

3.3.1 Algorithm

The value Xij represents the original muscle thickness as generated by Equation

3.4. That is, the distance from the basis grid p o i n t / v , t o the c o r r e s p o n d i n g muscle

surface control point qij. The bulge algorithm w i l l scale this value by a funct ion

g{c,b). c is the same contraction parameter given in Section 3.1. 6 is the bulge factor,

which is initialized to 2 and is adjustable by the user. A value of 6 = 0 signifies that

the muscle wi l l undergo no bulge during contraction.

36

Pij a point on the basis grid
p'i j a point on the basis grid after contraction
qij a control point on the muscle surface
Xij the distance \\qi-j — p - d |
c contraction amount (c G [0,1])
h bulge factor

Table 3.5: Variables used in muscle bulging

The bulging function g{c, b) exhibits the following characteristics. First, when

c = 0, the value of (7(0,6) = 1. Therefore, when there has been no contraction the

thickness values are scaled by 1, resulting in uo change. Second, when c = 1 the

value of (7(1,6) = b+ 1. Therefore, under fu l l contraction, each thickness value wi l l be

multiplied by 6 + 1. b + 1 was chosen in favor of simply b so that a value of 6 = 0 gives

a result of 1. meaning no bulging, rather than 0, which would zero out the thickness

that was otherwise calculated by Equation 3.4.

The loruiula for / /(r . / i) w h i c h exhibits these cliaracteristics is a simple one:

g{c,b) = l + bc (3.14)

Using this result, the new thickness value after bulging wi l l be:

Xij = T,„ • f { i , j) • g{c,b) (3.15)

This replaces the previous value calculated in Equation 3.4. As in section 3.2.1,

the muscle surface control points again need to be recalculated f rom the corresponding

basis grid points, using the new values of Xij.

Note that the value of the function g is based only on b and c, and is therefore

constant across all grid points. The value of the thickness function f { i , j) serves to

37

scale the bulge such that there is more bulge in the center of the muscle and decreasing

bulge near the edges of the muscle.

Although the system is intended to simulate isotonic contraction, isometric con­

traction may also be approximated. Recall that during isometric contraction, the

muscle increases in thickness without decreasing in length. This can be done by in­

creasing the value of b without changing the value of c. By doing so, the value of

g{c, b) w i l l increase, resulting in an increase in thickness. Note that before doing this,

the muscle must be contract by at least some small amount. Otherwise, i f c = 0, the

value of (/(O, b) w i l l be equal to 1 regardless of the value of b.

3.4 Summary

While undergoing contraction, the muscle decreases in length and bulges. This is

accomplished by moving the basis grid points, modifying the thickness values, and

then recomputing the muscle surface control points. This process is outlined in Figure

3.13

1. Compute the new basis grid points p- ., using the algorithm given in Section
3.2.1

2. Compute the new thickness values X j j , using the algorithm given in Section
3.3.1

3. Using these new values, compute the new positions of the muscle surface control
points using Equation 3.5

4. Move the muscle control points to the new locations

Figure 3.13: Muscle contraction summary

38

3.5 Sphincter Muscles

Unlike- the linear inuseles d e s e r i h e d previously, a sphincter muscle takes the l o n n

of a ring that is able to expand and contract like a rubber band. A proposal for

implementing such muscles wi th in the existing framework is given below.

Muscle generation would be performed in a similar way, except that the curves

used to define the extents of the muscle would need to be closed in order to provide

the ring shape. Once these closed curves were drawn on the surface, the basis grid

could be projected beneath the skin in the same way. The resulting muscle surfaee

would also be closed along one parametric dimension to produce the ring shape.

Rather than using the contraction algorithm discussed previously, all points would

be contracted toward a defined center of contraction. This center point could either

be automatically generated, perhaps as the centroid of all basis grid points, or user-

delinalile. A s the contraction factor r is increased, e a c h basis grid p o i n t w o u l d be

moved closer to the center of contraction. This concept is demonstrated in Figure

: i . l 1.

Figure 3.14: Sphincter muscle contraction. During contraction, all basis grid points
are moved closer to the center of contraction, which is displayed as a cross.

10

C H A P T E R 4

S U R F A C E D E F O R M A T I O N

Once muscles have been created for a character, they are used to deform the

skin. The effects of real muscle bulging and contraction are seen in bulging and

stretching of the skin, respectively. Simulating these behaviors is the goal of the

surface deformation algorithm.

Due to the needs of the project, the surface deformation strategy was subject to

the design constraints listed in Table 4.1.

1. I t must be fast, so that users can interactively visualize the results of muscle
contraction on the surface.

2. I t must be able to handle challenging surface geometry, especially:

(a) Polygonal meshes wi th vertices of high degree

(b) Polygonal meshes wi th faces having more than four sides

(c) Polygonal meshes that do not represent a smooth, first-order continuous
surface

(d) Non-polygonal geometry such as NURBS and subdivision surfaces

Table 4.1: Surface deformation design constraints

11

The first constraint, that the system be fast enough to produce results interac­

tively, is a result of the nature of the project. The animators and lighters on the

project are all students working wi th very l imited time. Additionally, the eomput-

ing resources available belong to an instructional inst i tut ion and are not exclusively

available for the project. Therefore, the computing time required to perform a more

rigorous simulation is not available.

The second constraint, that the system must be able to handle challenging surface

geometry, exists precisely because of the models used in the project. The main

characters in the project are dinosaurs, and were modeling using polygons. The

models have many locations in which the vertices have high degree, or the faces have

more than four sides. Furthermore, the shape of the skin is not smooth and first-order

continuous, as the skin on a human being typically is. Instead, the skin surface has

many rough edges and spiky protrusions, due to the reptilian nature of dinosaurs.

The resulting algorithm is an attempt to produce skin movement that appears

as realistic as possible, while s t i l l meeting the design constraints. As in any system,

however, tradeoffs had to be made. In this case, both constraints demanded a tradeoff

of some physical accuracy i der to be sal ih lied.

The first constraint, speed, requires that the strategy not be overly complex. A

common approach to performing skin simulation is to use finite element analysis or

a spring-mass system [11, 7]. Unfortunately, both of these techniques are expensive

computationally. A spring-mass approach was attempted, and was able to reach near-

interactive speed when used to manipulate skin w i t h a relatively low number of skin

vertices, but was ultimately rejected. One reason for this is that the actual character

models in use have on the order of 10,000 vertices. Solving a spring-mass system is

12

not linear in computation complexity, and therefore does not scale up well to large

problem sets. The other reason for rejecting the spring-mass approach is related to

the second constraint.

The second constraint requires that challenging geometry is able to be handled

by the algorithm. As mentioned above, the dinosaur models in use by the project

have many vertices of high degree, faces w i t h more than four sides, and first-order

discontinuous surface features. Using a spring-mass system required embedding the

system into the surface geometry, such that masses existed at the vertices and springs

existed at the edges. Because of the nature of the geometry, this resulted in an

unstable spring-mass system. One example of an unstable feature is given in Figure

4.1.

Figure 4.1: A n example of a surface feature that results in an unstable spring-mass
syslem. The initial eonfiguration is shown on the left. However, both configurations
are equally satisfying when solving the spring-mass system. Assuming that there is
a spring in each edge, in both cases the corresponding springs have the same length.

In order to satisfy both design constraints, the resulting algorithm adjusts the

control points of the surface geometry based only on the local movement of the inf lu­

encing muscle (s). Each control point is deformed individually and does not depend on

any connectivity information wi th its neighboring control points. Therefore, vertex

degree is irrelevant. Furthermore, the algorithm is able to work on skin geometry

that is composed of polygonal, parametric, or subdivision surfaces.

The computat i o i u i l complexity of the surface deformation algorithm is linear in

the number of control points being deformed. Therefore, the computation time scales

relatively well w i th the complexity of the surface geometry.

4.1 Algorithm

The surface deformation process proceeds by iterating over every control point Sj

of the surface geometry and performing the steps described in Figure 4.2. Control

point is used here as a generic term that applies regardless of the surface type. For

example, in the case of a polygonal mesh, a control point represents a vertex. In the

case of a parametric surface, a control point represents a points in the control mesh.

1. I)elermine the location on the muscle surface thai is c loses t t o ,s,

2. Determine the displacement of that location on the muscle f rom the rest position
(c = 0) to the current position

3. Apply this displacement to s,, scaled by a falloff funct ion.

Figure 4.2: Out line of deformation algorithm

The surface control points are given the one dimensional index i because in the

most general case control points do not have a multi-dimensional organization. Re­

call that the control points for the muscle surface have a two-dimensional index i,j

(Table 3 .1). This is because the muscle surface is a NURBS surface, whose control

I I

points inherently possess two-dimensional structure. Because the surface deformar

t ion algorithm can also handle surfaces such as polygonal meshes, a two-dimensional

organization cannot be assumed.

Si a skin point being deformed
Ui, Vi uv-coordinates of the point on the relaxed muscle closest to S;
p-* the world space location of the point Ui,Vi on the relaxed muscle
pj the world space location of the point on the contracted muscle
6i the vector f rom p° to pj
rpi the1 falb iff v a l u e a p p l i e d to the def(m n a l i o n of .s, ((,', 6 [0. I])
s' the deformed location of Si

Table 4.2: Variables used in surface deformation

The first step is to find the closest location on the muscle surface to the skin

control point Sj. This step assumes that the closest location to Si is likely to have the

greatest influence on s,;. Note that this location is determined f rom the muscle's rest

position.

The second step is to determine how the location found in step one has been

affected by the muscle contraction and/or bulge. This can be represented as a simple

vector that points f rom the rest position to the current position.

Finally, the displacement found in the second step is scaled by a falloff function

and then applied to the control point. I f the result of the falloff function is equal to

1, then the surface control point exactly mimics the movement of the muscle control

point. The falloff function serves to decrease the effect of the muscle as distance f rom

the muscle increases.

r ,

The speed advantage of this algorithm over finite element or mass-spring systems

is clear. There is only a single loop, and none of the operations wi th in the loop

have any dependency on the number of control points on the skin surface. The most

expensive operation is determining the contracted position of the closest point on the

muscle surface, as wi l l be discussed in Section 4.1.1.

The algorithm is also able to handle all of the types the challenging geometry

listed in Table 4.1. The degree of the vertices is not relevant to the algorithm. Nor

is the number of edges on a polygonal face. The continuity of the surface does not

aflfect the algorithm. Finally, the algorithm is able to work on polygonal surfaces,

NURBS surfaces, and subdivision surfaces. A l l of these properties are due to the fact

that the deformation algorithm handles the control points entirely independently of

each other.

The abili ty to handle these types of geometry allowed the deformation algorithm

to successfully deform the dinosaur model shown in Figure 4.3.

The movement of each surface control point is linked directly to the movement

of the muscle itself. Therefore, the quality of the surface deformation algorithm is

directly affected by the quality of the muscle model. In order to obtain deformations

that vary smoothly across the skin control points, i t is necessary to use a muscle

model that exhibits a smooth, first-order continuous surface. This is precisely the

reason that a parametric surface is used to represent the muscles in the muscle model.

Alternative muscle models that are composed of a combination of smaller elements,

such as those used in [20] and [7], do not exhibit first-order continuity, and therefore

would not be suitable for this deformation algorithm.

I t ,

Figure 4.3: Challenging geometry that the system was called upon to deform. Above:
close-up of dinosaur head. A particularly diff icul t section is outlined wi th a red box.
Below: enlarged and rotated view of the diff icult section.

17

4,1.1 Implementation Details

The first step in the skin deformation algorithm is for each influenced surface

control point Sj to determine the closest point on the surface of the muscle when the

muscle is at rest (c = 0). Because this calculation is expensive, these locations are

prec puled.

Af te r creating a muscle, i t must be "attached" to the surface. A t the t ime that

attachment occurs, a loop is run that determines the closest point on the muscle

surface to each skin control point. Each of these closest locations is then cached so

that when the deformation algorithm is run, the value can simply be looked up rather

than computed.

The movement of these locations when the muscle contracts needs to be found in

the second step of the surface deformation algorithm. To facilitate this, the locations

are represented in the (u, v) coordinate space of the muscle surface. The contrac­

tion and bulging algorithms reshape the muscle surface by moving its control points.

Therefore, finding the new world-space coordinates of the location can be done by

simply plugging the (u, v) coordinates into the parametric equation representing the

muscle surfaee.

Pseudocode for the surface deformation algorithm is shown in figure 4.4.

The lookupClosestPoint function retrieves the cached location of the point

on the muscle surface that is closest to The lookupRelaxedMusclePoint and

lookupCurrentMusclePoint functions take as input a location in {u,v) coordinates,

and output the world-space coordinates of that location on the muscle in the relaxed

or current states, respectively. Once these two world-space positions are known, a

simple subtraction gives the vector that describes the movement of the point on the

IS

foreach undeformed surface v e r t e x Sj
Ui,Vi = lookupClosestPoint(i)
p® = lookupRelaxedMusclePoint(Ui,Vi)
pj — lookupCurrentMusclePoint(Ui,Ui)
£ = Pi - P?
0, = c a l c u l a t e f a l l o f f (Us, —Pi| |)

s • = Sj + (5* •

Figure 4.4: Pseudocode for the surface deformation algorithm

muscle surface. This vector can be added to the undeformed coordinates of the surface

point after being scaled by the falloff function.

4.1.2 Falloff

A real muscle affects the skin by pushing i t upward f rom below as i t bulges. Mus­

cles that insert directly into the epidermal layer can also effect the skin by pulling it

during contraction. In both situations, the elastic nature of skin causes the deforma­

tion to be spread across the surface, beyond the point of direct effect. As the distance

f rom the muscle increases, the amount that the muscle affects the skin decreases.

This property is modeled in the skin deformation algorithm by the falloff function.

The falloff function takes as input the distance of the skin surface point f rom the

muscle, and produces as output a scaling factor in the range [0,1]. This scaling factor

is then multiplied by the displacement that is applied to the skin surface point.

The actual distance measured is the distance f rom the undeformed surface point,

Sj, to the closest point on the undeformed (c = 0) nmscle surface, p° . The distance

is measured using the undeformed configurations of the muscle and the skin so that

the falloff factor remains constant and predictable for a given surface control point .

I!)

Because this technique is used in computer animation, i t is important that the

output of the deformation algorithm be deterministic. That is, for a given muscle

and piece of skin geometry, setting the muscle contraction parameter c to a particular

value should always result in exactly the same deformed configuration of the skin

surface control points. In order to achieve this, the distance that is input into the

fal loff function must be predictable. For example, the "most recent" distance could

not be used. This is because using the most recent distance could result in a distance

for a given value of c that would depend on the prior value of c. The prior value

of c could in fact be any value in the interval [0,1]. To solve this problem, the

measurement from the ini t ia l , undeformed configuration is always used.

The parameters of the falloff function are two distances. The first, rf/uH, is the

distance inside of which the muscle has f u l l effect. The second, d n o n e , is the distance

outside of which the muscle has no effect. These two distance parameters are constant

across the entire muscle surface.

The falloff function takes as input a distance d. This distance is the distance f rom

the skin control point to the closest position on the surface of the undeformed muscle,

and was previously calculated to be ||sj — p°\\ in Figure 4.4.

When the input distance d is less than or equal to dfuii, the muscle has f u l l effect

and the multiplier is one. When the distance is greater than or equal to (i n o r i e , the

muscle has no effect and the multiplier is zero. I f d falls between these extremes, its

location between dfua and d n (m e is normalized to the range [0,1]. The normalization

is done so that the result may be passed into A : [0,1] —* [0,1]. The funct ion A

0

r = | 1

l l ^ ^none
if (/ < dfuii (4.1)

50

determines the shape of the falloff. That is to say, i t controls how the fal loff value

changes between the maximum and minimum values.

Mult iple A functions are provided that may be selected by the user. Examples of

linear, quadratic, cubic, and cosine [28] falloff functions are given in Figure 4.5.

0 0.2 0.4 0.6 0.8 1

Figure 4.5: Falloff functions

51

Figure Ui : Au example of a simple planar surface being influenced by a nmscle. The
muscle is shown in both a relaxed (first two rows) and a contracted (last two rows)
state.

r>2

Figure 4.7: A n example of a real model being deformed by a muscle. The muscle is
both bulging and stretching the skin.

C H A P T E R 5

R E S U L T S

The entire system has been implemented and tested in a production environment

for a documentary concerning dinosaurs. The system was used to automatically

create muscles for existing dinosaur models and to create skin deformation during

the animation sequences.

The system has also been tested on a human head model. This model was created

wi th FaceGen Modeler by Singular Inversions. Muscles were created in locations that

would allow various facial expressions to be created, such as in the forehead, around

the mouth, and in the cheeks. Some animation frames using this model are shown in

Figure 5.4.

Various synthetic test environments were also used to test the muscle system,

including fiat planes (Figure 4.6), cylinders, and spheres.

The muscle generation process is quite simple f rom the point of view of the user.

I t merely involves sketching two curves on the surface and providing the desired

thickness values for the muscles. After these steps have been taken, muscle generation

only requires a single mouse click. I f the placement of the muscle does not match

the user's expectations, adjusting the curves and regenerating the muscle is a simple

process requiring only a few minutes of work.

5 1

The simplicity of muscle generation allows this task to be performed very quickly.

The nmscles in the dinosaur characters were set up in approximately one hour per

character. Each character was ini t ia l ly created w i t h three pairs of muscles. Each

pair consists of a muscle and its mirror across the sagittal plane of the body. The

dinosaurs each have similar muscles in their jaws and around their nostrils. Other

muscles were placed in various locations as needed, such as in the neck and on the

back.

Most of the skin movements of the dinosaur models were set up using free-form

deformations. This setup was done by a student wi th r igging 3 experience who partic­

ipated in the production. Currently, he is employed as a professional character setup

technical director at Rhythm & Hues Studios in Los Angeles, California. FFDs allow

for great flexibility, but can be time-consuming to set up. For example, the nostrils

on the dinosaur models were set up such that they could be controlled either by the

muscle system or by FFDs. The ini t ia l F F D setup required a half hour per nostril .

Thus, setting up the nostrils alone required an hour, during which all muscle-based

setup could be done. When asked how long i t would take to simulate the skin de­

formation created by the cheek muscles, the response f rom the rigger was "1 am not

sure that Maya could effectively and reliably create those results straight out of the

box." Here the muscle system has even greater benefit, because the deformations it

performs may not even be achievable w i t h the techniques used for the rest of the

character setup. A t the very least, a significant time investment would be required

in order to research another way of creating this motion.

'Rigging refers to the process of setting up a character model for animation. This is done by
providing controls to do tilings such as move the leg (using forward or inverse kinematics) or blink
the eyes

55

Therefore, the muscle system benefited the production in two major ways. First,

i t allowed skin deformations to be setup in far less t ime than required w i t h FFDs.

Second, i t was able to produce pleasing muscle-based skin movement that could not

be reproduced w i t h other techniques.

Some of the dinosaur muscles were set up to be manually controlled by the an­

imator, and some were set up to contract automatically based on the dinosaur's

movement. For example, the muscles controlling the nostrils were set up for manual

control. In contrast, the muscles in the cheeks were set up to contract based on the

movement of the jaw. In this case, skin deformation was automatically produced by

opening and closing the mouth, without requiring any additional work on the part of

the animator. In fact, some of the animation had already been completed before the

muscles were added. Although the muscles were added later, the end effect was s t i l l

the same skin deformation, without requiring any extra work by the animator.

Figure 5.5 shows a series of images f rom a completed animation using the same

model and muscle setup as Figure 5.1. The animator did not need to directly manipu­

late the contractions of the cheek muscles because they were set up to be automatically

driven by the movement of the jaw. For the purposes of these images, all keyframes

other than those for the jaw were removed and the camera was moved in closer to

the head so that the results of the cheek muscles may be more carefully scrutinized.

The dinosaur animations are part of a documentary, and realism is a major factor.

Therefore, some manual tweaking of the system's runtime parameters (see Table

5 .1) was necessary. This iterative design process was made far more efficient by the

real-time speed of the deformation algorithm. The result of modifying one of the

parameters could be visualized immediately, allowing a more explorative approach to

56

be taken. Slower muscle simulation systems uti l izing mass-spring or finite element

models would have taken much more time to solve, increasing the time between

iterations of the design.

c contraction amount (r E [0. f])
b bulge factor
f i / , , / / the distance inside of which the muscle has fu l l effect on the skin
dnone the distance outside of which the muscle has no effect on the skin
A falloff function

Table 5.1: System variables adjustable at run-time

The runtime parameters listed in Table 5.1 are those provided directly by this

system. Because the system was implemented as a plugin for Maya, various other

runtime parameters are available as a part of the Maya infrastructure.

The surface deformation algorithm is implemented as a Maya deformer 4 . Maya

deformers provide an overall "envelope" parameter that globally scales the effect of

the deformer. When finer control is desired, a weight may be applied individually to

any control point that is affected by the deformer. This weight value is multiplied by

the deformation and can scale it up or down. Assigning a weight of zero to a control

poinl results in the muscle not alfecting it at all.

Additionally, the set of points that the deformer affects may be edited. However,

if the desired behavior is to prevent a muscle from alfecting a particular control point,

i t is more efficient to remove i t f rom the deformer's point set than to set the weight

to zero. A weight of zero causes the deformation loop to be performed on the point,

J A "deformer" in Maya is a tool that modifies the shape of some piece of geometry hy manipu­
lating its control points

57

the output of which is multiplied by zero. A l l of the computation time spent by

the deformation algorithm on that point is therefore wasted, because the result w i l l

always be zero. Removing the point f rom the deformer's set prevents it f rom being

considered in the deformation loop. The computation time that was wasted when

setting the weight to zero is therefore avoided. As a result, the time required to

perform surface deformation is reduced.

This sort of set editing was done when setting up the muscles for the human head

example (Figure 5.4). In order to keep the muscles in the upper l ip from affecting

the lower l ip, the control points in the lower lip were manually removed f rom the

upper lip muscles' deformation sets. Likewise, the control points in the upper l ip

were manually removed f rom the lower l ip muscles' deformation sets. This manual

tweaking was necessary because using only the distance parameters dfuii and d n o n e

was not sufficient. When at rest, the head model's mouth was closed. Therefore, the

control points on the surfaces of the upper and lower lips were immediately adjacent

to each otlier. In some cases, where the lips were touching, the upper lip control

points and lower lip control points were in the exact same position. Therefore, there

was no distance from the muscle that could include only the upper lip's control points

and none of the lower lip's control points.

This additional and somewhat tedious task caused the human head model to

require longer to set up than any of the dinosaur characters. Approximately two hours

was spent creating the muscles, adjusting the deformation sets, and creating more

natural controls for the muscles. The "more natural '" controls consisted of moving

the parameters for muscle contraction together in a common location, grouping them,

and giving them names such as "brow left" and "smile".

58

In all cases, empirical observation shows that the generated muscles do conform

to the shape of the skin surface above them. This can be seen in Figures 3.5, 1.6, 5.1,

and 5.4. Thus, the system is successfully able to create new muscles based on existing

surface geometry, which satisfies the primary goal of the muscle generation algorithm.

Satisfying this goal allows for the use of a top-down character design process.

; [O • w f v r"? £ S £ &
. « • i > r j = . « z % 0 > a r a • | » ? w £> | o ».w | s « a i

[Km i • i | Oil HI i | lip«<| . •^• in i l l , , | i i I H a ^ ^ l f >i i | iulmM.] I

1 , At

- , C l
« *o M a » » m n i

i". "•• 1 KI •-•

I i SI t i i i ;||M«CI0 [tiiOO" v |No [> « i«S* 9

Figure 5.1: A snapshot of the Maya interface wi th the muscle creation window open.

Figure 5.1 shows the Maya interface wi th the muscle creation window open in

the lower left-hand corner. The tyrannosaurus rex model in the image is made up of

59

about 12 ,000 polygons and 1 2 , 0 0 0 vertices. Even wi th its rough geometry, generating

muscles that fit the surface and preserved the modeler's intent was a simple task,

requiring only a few minutes to achieve the desired muscle shape and placement.

The results of the skin deformation algorithm have also been satisfying. The

resulting skin deformations were approved for use in the documentary for which they

were created. Although some accuracy has been traded off for speed, the results

w e r e nonel lieless pleasing to 1 he eye. Figures 5, 1 a n d 5.5 s h o w t he results of I he skin

deformation on human and dinosaur models.

In the case of the dinosaur models, this skin deformation algorithm was able to

succeed where other approaches did not. A system involving the use of springs,

masses, and dampers was also attempted, but was never able to achieve pleasing

results. In fact, the rough edges of the dinosaur models (see Figure 4.3) caused

unpredictable and generally unsatisfactory results. In some cases, this was able to be

resolved by using a very small t ime step size in the forward integration algorithm that

solved the spring-mass system, but this resulted in unaceeptably l o n g coniputation

time.

This system can be implemented into the animation pipeline in a variety of ways.

Most obviously, muscles can be attached to characters and used to directly manipulate

their skin. The system can also be combined wi th other techniques when setting up

a character for animation.

Another way to utilize the system is in the creation of morph targets. The morph

target approach calls for manually specifying various configurations for the charac­

ter and interpolating between them. The drawback is that specifying each desired

configuration requires considerable time. The system could be used to facilitate this

60

process. If t he t arget configuration is intended to show the result of muscle influences,

muscles could be attached to the target model and used to create the desired effect.

I f the physical accuracy of the muscle system is inadequate for the situation, i t could

instead be used to generate an ini t ial approximation of muscle effects, which could

then be fine-tuned. Such a use of the system would s t i l l provide a time benefit over

creating the target by hand.

5.1 Performance

Performance was a design constraint of the skin deformation algorithm. Hands-on

use of the system when connected to the existing dinosaur animation setup resulted

in speed that "felt" interactive. In order to quantify the performance, some tests were

run on the Tyrannosaurus Rex model shown in Figures 5.1 and 5.5.

In order to perforin these tests, as many features as possible were disabled that

were not directly involved in the muscle algorithm. This was done in order to isolate,

as much as possible, the performance of the muscle system itself f rom any other

computationally expensive elements in the model.

Although the fu l l dinosaur model consists of approximately 12,000 control points,

less than 1,000 were in the deformer sets of the two cheek muscles. In this case,

removing points f rom the deformer sets was done to save processing time (by looping

over several hundred vertices rather than 12,000) rather than to fine-tune the effects

of the muscles, as was done for the human head model.

After setting up the test environment, a simple animation of opening and closing

the jaw of the dinosaur played back at approximately 15fps on a 3GHz Pentium4.

61

The complete dinosaur, fu l ly setup for animation, comprises a very complex 3D

model. In order to obtain performance numbers that more accurately represented the

muscle system in isolation, a synthetic test environment was created using a simple;

plane setup as in Figure 4.6. A simple animation loop was created that contracted

the muscle from c = 0 to c = 0.6 and back over the course of 60 frames. For each

t r ia l , the only change was in the number of control vertices in the plane. d f u i i and

dnone were specified such that all control vertices were in the area of influence of the

muscle, and no control points were removed f rom the muscle's deformation set.

Figure 5.2 shows the results of the t r ia l in terms of frames per second. This

number was obtained by configuring Maya to playback the animation at the maximum

framerate possible, and observing the fps value.

Observing this plot shows that the frames per second achieved is essentially in­

versely proportional to the number of control points being deformed. In other words,

r « a • - , where r is the rate in frames per second, n is the number of control points,

and a is some constant.

In Chapter 4, the claim was made that the surface deformation algorithm runs

in linear time wi th respect to the number of control points being deformed. This

statement refers to the amounl of time required to compute the deformation for

all skin control points. Figure 5.2 shows the rate at which the deformation can be

calculated, not the time required. However, converting between the rate (r) and the

time for one iteration of the algorithm (t) is t r iv ia l .

t = - (5 .1)
r

This formula suggests that the amount of time required for the surface deformation

algorithm is indeed linear w i th respect to the number of control points being deformed,

62

Figure 5.2: A plot of the performance of the surface deformation algorithm. The
x-axis shows the number of control points being deformed, and the y-axis shows the
number of frames per second computable by the algorithm.

I f r = j ss « • ^, then n sa « • t, a linear relationship. Figure 5.3 replots the data

f rom Figure 5.2 using Equation 5.1 to provide the values along the y-axis. The

resulting graph proves the linear relationship between the number of eontrol points

being deformed and the time taken by the surfaee deformation algorithm.

Synthetic benchmarking wi th the plane provides a good benchmark of the surface

deformation algorithm running in isolation. This is useful for examining the raw per­

formance of they system by itself. However, the numbers obtained wi th the dinosaur

model serve as a good indicator of performance in an actual animation environment.

63

0 I 1 1 1 1 J
0 10000 20000 30000 40000 50000

n u m b e r of control points

Figure 5.3: A plot of the performance of the surface deformation algoriti ini. The
x-axis shows the number of control points being deformed, and the y-axis shows the
time taken to execute the surface deformation algorithm once.

In such an environment, the muscle system is just one of many animation techniques

being concurrently applied to the model.

The performance measurements in this section demonstrate that the performance

constraint placed on the surface deformation algorithm has been met. Not only does

the algorithm run in linear time, but i t is fast enough that the results of changing a

parameter of the system may be visualized immediately.

(. I

65

Figure 5.5: Frames of a tyrannosaurus rex f rom a fu l ly animated sequence. The
animator had direct control over the jaw, and the muscle movement in the cheek
region was driven by the jaw joint .

(i(i

C H A P T E R 6

CONCLUSION AND F U T U R E W O R K

This document has presented a system for simulating skin deformation by mod­

eling the underlying musculature. By modeling reality rather than using ad-hoc

methods, a greater degree of realism is obtained.

The system is able to automatically generate muscles based on existing surface

geometry. This abili ty allows characters to be constructed in a top-down fashion, in

which the character models are created first and the muscles are added later. Each

automatic ally generated muscle is represented by a first-order c ontinuous parametric

surface. The muscle surface lies wi th in an area defined by user input. Furthermore,

the shape of the muscle wi l l automatically conform to the topology of the skin surface.

The muscles are able to be contracted in order to influence the skin. The model

simulates isotonic contraction, in w i n c h the m n s c l e t h i c k n e s s i nc r ea se s as the length

decreases. The increase in thickness results in a bulge, the amount of which can be

customized by the artist in order to satisfy a variety of visual requirements. Both the

contraction and the bulge factor can be keyframed by the artist in order to produce

animation. Isometric contraction, in which the muscle increases in thickness without

changing in length, may also be approximated by modifying the bulge of the muscle

independently of the length.

07

Bones are not explicitly represented in this model, bnt their effect on the overlying

muscles is simulated. While contracting, a muscle does not penetrate deeper into the

character's body than its ini t ia l configuration. This preserves the influence of the

bones as the muscles slide across them.

As muscles contract and bulge, they influence the skin above them. In this system,

the skin deformation is done in a manner which trades off pure physical accuracy in

order to gain speed and applicability to a large variety of geometry. Especially impor­

tant is the ability to work wi th geometry that does not exhibit first-order continuity.

The speed achieved by the algorithm allows the deformation to be performed at inter­

active speeds, even when the muscle is affecting tens of thousands of control points.

The effect of the muscles on the skin decreases as the distance from the muscle

increases. This is modeled by specifying the distances at which falloff begins and ends,

and a function that controls the shape of the falloff. These distances and the falloff

function are fu l ly under the control of the animator, and may even be keyframed in

order to maximize the flexibility of the system.

The system was created in order to fu l f i l l the needs of a production. By using

the muscle system, the production was able to generate visually pleasing skin mo­

tion in much less time than would be required by other methods, such as free-form

deformations and morph targets.

In accordance wi th the pipeline already in use by the production, the system was

developed as a plugin for the Maya 3D animation system. Muscles are implemented

using Maya's existing NURBS functionality, and the skin deformation is implemented

as a Maya deformer. A clean integration into the existing Maya environment resulted

in a short learning curve for the artists.

68

The surface deformation algorithm used by this model emphasizes stretching of

the skin as well as bulging. As a result, the system is particularly applicable to facial

musculature. Facial muscles typically insert directly into the epidermis. Therefore,

when they are contracted, they pull the skin toward the muscle origin. The skin

deformation algorithm also pulls the skin control points toward the muscle insertion.

Muscles that do not do much stretching of the skin, such as the biceps, can be

simulated by increasing the bulge of the muscle while only making small changes to

the muscle's length.

In comparison to other muscle-based techniques, this approach offers increased

speed, the ability to handle first-order discontinuous surface geometry, and automatic-

generation of muscles based on existing surface geometry. Given these advantages,

the system would be a good candidate to use when:

• Speed is important. Such a situation can arise when resources are l imited,

whether the resources are computing power or time.

• Muscles need to be added after the surface geometry has been modeled. One

example of this is when surface data is obtained from the real world, such as w i t h

a laser rangefinder. Another example is when the appearance of the character

is designed by an artist, and must look a certain way.

• When the surface geometry is not smooth or could otherwise not be handled by

other algorithms. The dinosaur models shown in this document are examples

of such geometry.

When compared to techniques for skin deformation that are not anatomically

based, such as free-form deformations and morph targeting, a major advantage of

(I!)

this approacli is the time saved in setting up the character. These other methods

allow considerable f lexibil i ty in deforming a character, but are very time-consuming

to set up. Furthermore, some skin stretching results may be impossible to create

wi th FFDs. Although any skin movement can be created wi th morph targets, each

desired skin configuration must be manually modeled, which is highly time-intensive.

Fortunately, if morph targeting is desired, this system can be used in the production

of the targets, which improves the speed of that approach.

A number of avenues for future research are available. In order to further auto­

mate the muscle creation process, a system could be developed that would take a

character's skeleton as input and automatically create muscles for i t . The locations

for these muscles could be based on an analysis of the skeleton's jo in t structure and

the skin that is bound to the skeleton. Muscle and skin depth could be automatically

determined based on the distance of the skin f rom the skeleton. Such technology

could greatly reduce the amount of t ime required to prepare a character model for

animation.

Similarly, a generic facial muscle layout could be applied to a head model by

identifying various feature points. Important features would likely include the mouth,

nose, ears, and eyes. Once these features have been identified, their locations could

be used to determine the positions of facial muscles. Identifying these feature points

could either be done by the user, or possibly automated in some way.

The skin deformation algorithm performs the same algorithm independently on

many different inputs. This S IMD (single instruction multiple data) behavior makes

the algorithm ideally suited for parallelization. Recently there have been a number of

techniques proposed which harness the power of the processors on consumer graphics

70

hardware. These processors are built to perform S I M D tasks. I t is likely that per­

formance could be increased by offloading this task f rom the main processor to the

processor on the video hardware.

A number of the parameters in the muscle system are constant across the entire

muscle. Some examples of such parameters are r m , the thickness of the muscle, and

6, the bulge factor. Allowing these results to vary across the muscle surface could

increase the flexibil i ty of the system. This could be done by allowing the user to

specify the values at some locations, and using these given values to interpolate the

rest of the values.

71

B I B L I O G R A P H Y

[1] Brett Allen, Brian Curless, and Zoran Popovid Articulated body deformation
f rom range scan data. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 612-619. A C M Press, 2002.

[2] Jules Bloomenthal. Medial-based vertex deformation. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 147-
151. A C M Press, 2002.

[3] J. E. Chadwick, D. R. Haumann, and R. E. Parent. Layered construction for
deformable animated characters. In Proceedings of the 16th annual conference
on Computer graphics and interactive techniques, pages 243-252. A C M Press,
1989.

[4] David T. Chen and David Zeltzer. Pump i t up: computer animation of a biome-
chauically based model of muscle using the finite element method. In Proceedings
of the 19th annual conference on Computer graphics and interactive techniques,
pages 89-98. A C M Press, 1992.

[5] Paul Ekman and Wallace V. Friesen. Facial Action Coding System. Consulting
Psychologists Press, 1978.

[6] Joe Fordham. Middle earth strikes back. Cinefex, 92:71 142, 2003.

[7] Kolja Kahler, Jdrg Haber, and Hans-Peter Seidel. Geometry-based muscle mod­
eling for facial animation. In Proceedings Graphics Interface, pages 37-46, 2001.

[8] Rolf M . Koch, Markus H . Gross, Friedrich R. Carls, Daniel F. von Biireu, George
Fankhauser, and Yoav I . H . Parish. Simulating facial surgery using finite element
models. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, pages 421-428. A C M Press, 1996.

[9] K . Komatsu. Human skin model capable of natural shape variation. The Visual
Computer, 3(5):265-271, March 1988.

72

[10] Paul G. Kry, Doug L. James, and Dinesh K. Pal. Eigenskin: real t ime large
deformation character skinning in hardware. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 153-159.
A C M Press, 2002.

[11] Yuencheng Lee, Demetri Terzopoulos, and Kei th Waters. Realistic modeling for
facial animation. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 55-62. A C M Press, 1995.

[12] J. P. Lewis, Ma t t Cordner, and Nickson Fong. Pose space deformation: a unified
approach to shape interpolation and skeleton-driven deformation. In Proceedings
of the 27th annual conference on Computer graphics and interactive techniques,
pages 165-172. A C M Press/Addison-Wesley Publishing Co., 2000.

[13] Ron MacCracken and Kenneth I . Joy. Free-form deformations wi th lattices of
arbitrary topology. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 181-188. A C M Press, 1996.

[14] Nadia Magnenat-Thalmann and Daniel Thalmann. Human body deformations
using joint-depeiidenl local operators and linite-elemenl theory, pages 243 262.
1991.

[15] Overview of the mpeg-4 standard. Technical report, ISO/ IEC, March 2002.

[16] L. Nedel and D. Thalmann. Modeling and deformation of the human body using
an anatomically-based approach. In Proceedings of the Computer Animation,
page 34. IEEE Computer Society, 1998.

[17] Frederick I . Parke. Computer generated animation of faces. In Proceedings of
the ACM annual, conference, pages 451-457. A C M Press, 1972.

[18] Stephen M . Piatt and Norman I . Badler. Animat ing facial expressions. In Pro­
ceedings of the 8th annual conference on Computer graphics and interactive tech­
niques, pages 245-252. A C M Press, 1981.

[19] Peter Sand. Leonard McMil lan , and Jovan Popovic. Continuous capture of skin
deformation. ACM Trans. Graph., 22(3):578-586, 2003.

[20] Ferdi Scheepers. Richard E. Parent. Wayne E. Carlson, and Stephen F. May.
Anatomy-based modeling of the human musculature. In Proceedings of the 24th
annual conference on Computer graphics and interactive techniques, pages 163-
172. A C M Press/Addison-Wesley Publishing Co., 1997.

[21] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geo­
metric models. In Proceedings of the 13th annual conference on Computer graph­
ics and interactive techniques, pages 151-160. A C M Press, 1986.

7:',

[22] Karan Singh and Eugene Fiume. Wires: a geometric deformation technique. In
Proceedings of the 25th annual conference on Computer graphics and interactive
techniques, pages 405-414. A C M Press, 1998.

[23] Demetri Terzopoulos and Kei th Waters. Physically-based facial modeling, analy­
sis, and animation. Journal of Visualization and Computer Animation, 1:73-80,
December 1990.

[2 1] Daniel Thalmann. Jianhua Shen. and Eric Chaiivineau. Fast realistic human
body deformations for animation and vr applications. In Proceedings of the
1996 Conference on Computer Graphics International, page 166. IEFJE Computer
Society, 1996.

[25] R. Turner and D. Thalmann. The elastic surface layer model for animated char­
acter construction, 1993.

[26] Lawson Wade and Richard E. Parent. Fast, fully-automated generation of con­
trol skeletons for use in animation. In Proceedings of the 2000 Conference on
Computer Animation, page 164. IEEE Computer Society, 2000.

[27] Xiaohuan Corina Wang and Gary Phillips. Multi-weight enveloping: least-
squares approximation techniques for skin animation. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 129-
138. A C M Press, 2002.

[28] Kei th Waters. A muscle model for animating three-dimensional facial expres­
sion. In Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, pages 17-24. A C M Press, 1987.

[29] Jane Wilhelms and Allen Van Gelder. Anatomically based modeling. In Pro­
ceedings of the 24th annual conference on Computer graphics and interactive
techniques, pages 173-180. A C M Press/Addison-Wesley Publishing Co., 1997.

[30] Eugene Wolff. Anatomy for Artists. H . K . Lewis & Co., London, 4th edition,
1968. Illustrated by George Charlton.

[31] Jin xiang Chai, Jing Xiao, and Jessica Hodgius. Vision-based control of 3d
facial animation. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 193-206. Eurographics Association,
2003.

[32] Shin Yoshizawa, Alexander G. Belyaev, and Hans-Peter Seidel. Free-form
skeleton-driven mesh deformations. In Proceedings of the eighth ACM sympo­
sium on Solid modeling and applications, pages 247-253. A C M Press, 2003.

71

