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INTROSECTION

A. General

The fundamental problem of geodesy is to find the
space coordinates of any point (P) on the physical surface
of the earth. 1In order to develop a solution to this
problem, two auxlliary surfaces have been established.
(1) A reference surface which is as regular as possible
and at the same time sufficiently close to the actual earth
surface., This is a mathematical surface called the refer-
ence ellipsold. It is assumed that the reference ellipsoid
i1s a substitute for the spheroid which is an equipotential
surface in the normal gravity field. (2) An intermediate
surface called the geold which is the equipotentlal
surface of the actual gravity field coinciding with the
mean Surface of the oceans ZT§7. Using the gravity
anomalies (Ag), the deviations (N, § and # ) of the geod
from the reference ellipsoid (spheroid) can be computed.
Then a return to the physical surface 1s made to get the
gpace coordinates of the point.

In order to find the differences between the reference
ellipsoid and the geoid the formulas developed by Stokes
and Vening-Meinesz are employed in what is called the

gravimetric method. The gravity anomallies covering the
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entire earth's surface are the primary requirements of this
method, Known for over a century, this method has not been
applied untlil recently due to the scarcity of gravity
material. Only during the past 20 years has enough material
become availlable to compute the devliations of the geoid.
Although there has been an improvement in the gravity cover-
age of the water areas of the world, the primary increase
has been on land. This is due to the development of
lightweight, easy to handle gravity meters. Gaps still
remaln, particularly in the ocean areas, which limit the
application of this method. If, however, the distribution
of gravity anomalies is known rather accurately in the
neighborhood of a computation point and in broad lines
over the rest of the world the geoidal properties (N,§
and # ) can be completed satisfactorily / 37.

For this reason the gravity meter has become the
dominate gravity instrument now used for geodetic purposes.
However, difficulties often arise in gathering gravity
data in sufficient density in the neighborhood of the
observation point to use the gravimetric method. Gravity
data 1s not available say out to 6° x 6° at locations near
bodies of water. Inaccesslble land areas such as Jjungles,
mountains, etc., also place gaps in the gravity data
in the neighborhood of a computation point. Some other
method could be used in these areas to provide the re-

quired geoidal properties,



_One method which could easlly be adapted to these
areas 1nvolves the use of an instrument known as the torsion
balance, Prior to World War I, R. Eotvos developed the
torsion balance primarily for geophysical prospecting. It
was used successfully for this purpose for many years. It
has now been replaced by the gravity meter. Although the
torsion balance gives Iimportant information concerning the
shape and structure of the earth, it has not as yet been
used for geodetic purposes / 7/. An important advantage
of the torsion balance is that observations need only be
taken at the computation point. Therefore, it is not
dependent on gravity material in large surrounding areas
obtained with the gravity meter. Along with astro-geodetic
observations the geoid properties (N, S, # ) can be determined
with the torsion balance.

The torsion balance can provide detailed information
about the geoid or geops which may be of increasing inter-
est to the geodesist in the future. Also data obtained
with the gravity meter can be complimented by torsion
balance data in the search for new geodetic knowledge.

It is 1likely that an interest in the torsion balance
will develop in the United States. Interest in this
country in gravimetric geodesy has increased considerably
since the establishment of the World Wide Gravity Pro ject

in 1950 at The Ohio State University.



B. Purpose

Specifically this paper explores the problem of
interpolating deflections of the vertical between known
points by applying the gradients of gravity. Eotvos
derived formulas for accomplishing this. However, very
little field work has been done except by Eotvos and
his contemporaries to verify his theorlies. This 1s an
initial study to test the methods which he evolved and
determine 1f they could be of value in the light of
today's advanced technology. If some success emerges
from this study then follow-on projects of a more extensive
and specific nature should be attempted. It should be
emphasized that this is an initial effort in what could be
an expanding field, and therefore the results cannot be

viewed as conclusive,

C. Origin of Data

Data was obtained from a region in Southern Ohio
along a first order triangulation net extending from station
BARR, 7 miles NE of Circleville to TEMPLETON, 4 miles west
of Xenia for a total distance of 62 miles (see map, page 6 1s

Astro-Geodetic Deflections

BARR - A first order longitude observed by the
US Coast and Geodetic Survey in 1929.

TEMPLETON - A first order latitude observed by
Saul Cushman and Ronald Adler in 1962.
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Gravimetric Deflections of Eight Triangulation Stations

TEMPLETON, FOUST, TAYLOR, LANUM, HOYT, OWERS,
MEINFELER, BARR

Inner Ring - Gravity meter observations,

Rice's Rings - Free Air Anomalies in Ohio, Institute
of Geodesy, Photogramnﬁtqy{and Cartography of
The Ohio State University,. 1956.

Outer Area 6.5° x 6° - Data from a thesis of

L. Martucei /6/.

Gradients of Gravity

Torsion Balance Observations for 21 stations along
the north line of the triangulation net from BARR to
TEMPLETON obtained from a thesis by Holway / 4/.
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3
GRAVIMETRICALLY COMPUTED DEFLECTIONS OF THE VERTICAL

A. General Considerations
gg‘.

The eight triangulation stations bni%he survey line
were computed for vertical deflections using gravimetric
methods based on Stokes theorm. In 1849 Stokes concluded
that knowlng the total mass and rotational speed of a
fotating body the potential and its first derivatives on
any equipotential surface could be determined independent
of the mass distribution, providing no masses lie outside
the equipotential surface in question. In order to apply
Stokes theorm to deflection computations the gravity
must be observed over the entire earth's surface. 1In
Stokes'! day it seemed quite unlikely that his theorm would
be put to any practieal use since there was available
very limited gravity data, and the computations would have
been extremely laborious. Today gravity data is quite
plentiful, though not complete, and high speed computers
make the computations entirely feasible. The scarcity of
gravity data in certain areas,; particularly the oceans,
results in obtalnable accuracies by this method in the
order of I 1",

The deflections were computed for all stations using

a common area of 6.5o x 6°. Since the maximum distance
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between the two outside triangulation stations was 54 minutes
of arc, the assumption was made that the effect of the earth
beyond 6.5° x 6° would be the same for each station in

between,

B. Inner Circle

The inner circle was taken as the area within a radiué
of six km of the station. Data for the iunner circle area
was obtained by making field observations with the Worden
Gravity Meter at approximately 16 points per station. The
observed values around each station were made independent of
the other stations, and were not tied into a station of
known gravity since only gravity differences were re-
quired.

Sites for gravity readings were selected which were
accessible and easily pinpointed on the map. Benchmarks
and road intersections were theprimary site locations.
Elevations were interpolated from USGS maps (1:62500).
Kaula found this method as accurate as barometrically ob-
tained elevations / 5/.

A simple free air reduction was used, and since the
terrain is quite level a topographic correction was un-
necessary (see sample reduction Table I).

The observed gravity at the first point of each

station was arbitrarily selected as 980.000 gals.



SAMPLE COMPUTATIONS OF AS AND A7 EFFECTS AROUND

TABIE I

A TRIANGULATION STATION (MEINFELER)

Sta. | Mean h in Read X Diff. I9s Relative
No. Obs. Feet K Gals From 1 Yo Gals. Ag
676 | 530.0 676 . 0450 0 980.1571 | .0636 -93.5
Fox | 496.2 718 L0421 | -,0029 [980,1601 | .0675 -95.5
1 505.1 710 .0428 | -,0021 .1615 | ,0668 -96.8
2 529.9 691 L0449 | -,0000 .1608 | ,0650 -95,8
697 | 5404 697 L0458 | +,009 .1592 | ,0656 -92.7
ISL. | 564.0 690 L0478 | +.0029 .1591 | .0649 -91.3
3 578,4 661 L0491 | +.0041 .1607 | .0622 -94 .4
657 | 570.5 659 L0484 | +,0034 .1582 | ,0620 -92.8
L 574,0 680 L0487 | +.0037 <1573 | .0640 -89.6
S.Town| 576, 4 665 LOU87 | +.0039 .1564 | ,0625 -90,0
80 |558,0 758 L0473 | +.,0023 .1585 | .0713 -84.9
81 |535.0 680 L0454 | +,0004 .1639 | .0640 -99.5
83 |[525.3 791 0446 | -,0004 L1612 | , 0744 -87.2

Agg
AN =
AgVNJ =
AgE =
A gSEa
ABgy=
Agqu

|l 4§ 1 1
OOFEFONNDONDRO

oW N WOV WO Ul

s o e o o e o o

(Ags“AgN)g-. 5+ 8.7

(ABgE-deyg +48gy- By )= +2.8 - 0.7 - 4.3 + 8.8

= 0.02625(+8.2) + 0,01856 (+6.6) = +.338

(AgW“AEE)='6’A9 - 2.9

= 0.02625(-9.8) + 0.01856 (-16.6)= -Y565

(Agsw-AgsE +AgNW_AgNE)= -4’3 - 2'8 - 8'8 < BT
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Then the following gravity anomaly formula was used:

go = observed gravity at the point
'yb = normal gravity at the points
85 = free alr reduction

Ag = free air anomaly at the point

Then to obtain the relative gravity anomalies the following

formulas were used:

Aggy = 980.000 - (v, - dg ;)

aggp = 980.000 + (g, - g;) - (¥, —sgie)

agg, = 980.000 + (g - &) - (v, -ng)

where AgR is the relative gravity at each point based on

a constant gravity of 980.000 gals at point 1. g is the
gravity meter reading times the constant K. Y 1s the
normal gravity value computed for one point around each
station., Since Y is a function of latitude only it was
linearly interpolated for the other points around the
station. Sgg = 0,09406 h where h is in feet. All values
in Table I are in gals except ¢ng which is in mgals.

From the ‘ng values a relative gravity anomaly map was

drawn for each station with a contour interval of one mgal.



1l
(see Figures 1-4).

Initially i1t was assumed that all of the stations dis-
played a constant gravity gradient within the 6 km radius
circle. This would imply straight parallel gravity anomaly
contours at uniform spacing. Although from the Figures
(1-4) 1t can be seen this 1s not everywhere the case, the
deflection effects were nevertheless first computed for
alleight triangulation stations using the Rice Three
Gradient method which assumes linearity.

The following formulas were initially used to obtain
the vertical deflection effects of the inner circle of

6 km radius for all eight triangulation stations.

n
Ago -1’.'0 = O.105r~o( SAE )

§y
(1)

1]
aho -r_ = 0.105r N )

§x

Using the Rice Three Gradient method, and developing the
horizontal gravity gradients from the point values,
equation (2) can be derived from (1).

ASo v, = 0.02625 (8, -4g )+ 0.01856 (Aggp-agyp+

* Agsy T A8 NW) (2)

1
APo -r_ = 0.02625 (Agw -AgE)+ 0.01856(zkgswﬁAgSE+

+ A8y ~ Alyg)
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Where all the Ag values are the ABp anomaly differences
in mgal. Anomaly differences were read on the circular
ring and when substituted into the formula the desired
gravity gradient values are achieved /117.

From inspection of the Figures (1-4), it can be
seen that three of the stations (TEMPLETON, FOUST, and
BARR) do not appear very linear. Therefore at these
stations the Rice's Rings method (explained in Chapter II C)
was used between radii 0.8 and 6.0 km. This was done by
constructing a template of Rice's Rings (Zones 12-23, 0.8
to 6.0 km) and reading the mean gravity anomalies from
the Figures 1 and. &, respectively, for the three
stations. For the template used see Figure 5. Then the
deflection effects for this area were computed by the
Rice's Ring Method.(For sample calculations see Table II).
The effect of the circle of radius 0.8 km was computed
using the Rice Three Gradient method in the same way the
inner circle of 6 km was previously computed for all
eight triangulation stations. (Sample calculation,
bottom of Table II).  For these three stations the
effects using the Rice Three Gradient Method out to a
rading of 0.8 km,, plus the Rice's Rings out to a
radius of 6 km would, of course, be more accurate than
only using the Rice three Gradient method out to 6 km.

as was initially done. The maximum difference between
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TABLE II

SAMPLE COMPUTATION OF RICE'S RINGS FROM 0.78 km. to 6.0 km.
(Zones 12-23) Using the Inner Circle Gravity Anomaly Map

TEMPLETON - Compartments Starting from North
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
12/-7-7-7-7-6-6-6-5-5-5=-5=-5-5-5-5-5-5-5
- -g-0-1- 6-6-6-5-5-5-5-5-5-5-5-5-5-5
14-8-7-7-7-6-6-6-5-5-5-5-5-5-5-5-5-5-5
15|« 8 -8 « 7T -7 =6-6=-86=85x86«5=8-8-8f-8-5:504u585
6/|-8-8-7-7-6-6-6-5-5-h-baf-lh-t-f-h-5_-5
17|-8 -8 -T-7-6-6-5-5-5-4 -4 -b-fh-4-h4_-5.5
18/-9-8-7-7-6-6-5-5-4_-4_-4-3_-3-3-L4_14.5-5
19]-9-8-7-6-6-5-5-4-4-4-3-3-3-3-3-4-5.5
20|w 0 o« T =T =B «6 -8l sl -Rs33aPBec2cr@-3<4-5u6b
Plle T« b af oG sl callcl sl cTs2xBuleaelaelBeallabil
90| 6 -85 -4 -l o} +23-3=-23=23~2<1-«1=-0=0=-=1=«3-6-T
93 B « B o B « B o B+ B «cF «FnwB3aPe]l=1c8-0=-2+86=7
Sector =
. 1-9%h-93 -76 =73 -64 -61 -59 -53 -51 -46 -40 -37 -35 -34 -40 -49 -62 -66
Zlmu
50 150 259 350 450 55° 65° 759 65° 85° 75° 65° 550 45° 350 25° 15° 5

Cos Az23>

-9% -80 -69 -60 -U5 -35 -25 -14 - 4 + 4 +10 +16 +20 +24 +33 +44 +60 +66
sin A x> .

- 8 o1 -30 42 -45 50 -53 ~51 -51 -51 -39 =33 -29 -24 -23 -21 -16 - 6

Computation of Inner Cifcle (Radius 0.8 km.,)

ABg = -5  ABSE'= -5 A% o.02625—2+2g + 0.01856£+23= +0,090
Agy = =T Agyp = -6 AR = 0.02625(-1) + 0.01856(-2)= +0.063
Agg = -5 Ay = T
Agy = -6 Aggy = -6

8T



TABLE II (continued)

1 2 3 & 5 66 T 8 9 1 2 3 & 5 6 T B8 9
1B [ oB w8 a8 =B o ul B 8T aT-TaFTaFuBalul=l
293 |~ B ol o« B o o ob -8 -7 a¥-T- g - g - g w8 - Z
N14|-5-5-5-6-6-6-7-7-7-8-8-8-8-8-8-8-8-28
5|-5-5-6-6-6-7-7-7-8-8-8-8-9-9-9-9-9-28
6|-5-5-6-6-6-7-7-8-8-8-8-9-9-9-9-9-9-9
1T = B b o ebaT - TeoluBel«l«-g=-9 10 10 ~16-10 -~ 9
8|-5-6-6-7-7-7-8-8-8-9-9-9 -9 -10 -10 -10 -10 -10
9|-6-6-6-7-7-8-8-8-8-9-9-9 -10-10 -10 -10 -10 -10
20|-6-6-7-7-8-8-8-8-9-9-9-9 -10 -11 -11 -11 -10 -10
2|-7-7-7-8-8-8-8-8-9-9-9-9 -10 -11 -11 -11 -10 - 9
8 e T aTwBael w8 «8 8Bl «8 ol 16 -1l =11 «9 = 8
23|/-8-8-8-8-8-8-8-9-9-9-9-9-10-11-11-10-9 -7

Sector 2

-69 -71 -75 -80 -83 -86 -89 -93 -97 -100-102—103—109—116—116-115-11_0-103
Azimuthb & - & . P
5215o 250 35° 45° 559 65° 750 85° 85° 75° 65° 55° 45° 35° 25° 15° 5
Cos AzX g
 +69 469 +68 +66 +59 +49 438 +24 + 8 - 9 -26 -43 -62 -82 -95- 103-106-102
sin AzxZ
+ 6 +18 +32 +46 +59 +70 +81 +89 +97 +99 +98 +93 +89 +82 66 +49 428 + 9

ToTAL

+324
"

-516

61



20
the two methods was 07345 seconds of arc. This was for the
AS% effect at TEMPLETON, 1In the final summation of gravi-
metric deflection effects (Table X), the inner circle
effects for TEMPLETON, FOUST and BARR includes an inner
éircle of 0.8 km. radius computed by the Rice three Gradient
method, and then Rice's Rings out to 6 km, For the other
five stations the inner circle effects are computed from
the Rice three Gradient method for a 6 km. inner circle

radius.

C. Rice's Rings

Computation of a 25' x 25! "window" excluding the
inner circle was done using Rice's Ring method / 97.
From the vertical deflection component formulas developed
by Vening Meinesz in 1928 Rice developed a template system
to compute the numerical integration required. The
template is constructed on a sheet of tracing paper with
a uniform angular aperture of 10°, Rice computed from
Sollins' table the values of zone radii so that each com-
partment has a deflection effect of 0”001 for a mean
anomaly of 1 mgal. For the 25' x 25' "window" it was
necessary to use zones 24 through 34 (6.08 km. to 39.67
km.,) (see Figure 3). The totals for each compartment were
added up and multiplied by the cosine of the azimuth for
the effect on the meridian component and by the sine of

the azimuth for the effect on the prime vertical component.
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Appropriate signs were applied with the azimuth beginning
from south, then final summation was made to find deflection

effects (see Table III).

D. oOuter Area (6.5° x 6°)

Values of deflection effects for this area were ob-
tained from a computer program devised by Martuceil / 67,
The program computes the déflection component contribution
for the 6.5o x 6° area, except for the 25! x 25! "window"
located around the station.

Due to the_fact that no values were avallable for
the area of Laké Erie i1t was assumed that this area has
a zero contribution., The "window" is oriented using the
5! x 5' "square" containing the station as the center
5t x 5' "square" in the 25' x 25' "window." Input of the
geographical coordinates of the station into the program
ylelds deflection component effects. For details of the

program see the thesis of Martucci ZT§7.'

E. Summary

The sign convention was fixed as follows: S is
positive with a deflection away from north and Q 1is
positive with a deflection toward the eaét. Special care
was taken to insure that the signs for all three

computational areas were consistent.



COMPARTMENT

TABLE III

SAMPLE COMPUTATIONS OF RICE'S RINGS (Zones 24-34) for
WINDOW (25' - 25') NOT INCLUDING INNER CIRCLE

A-1 BARR

OUTER WINDOW (25' x 25!)

)

¥

1

2

3

i

5

6

T

" 8

9

1

2 3

i

5

6

7

8

9

2L

25
26

el
28

29

2%
-£3
-23
-22
-22
-21

30 -25 -21
31 -18 -18
B - -
B = =
- P

-22
-22
-21
-20
-19
-18
18
-20
- 4

-20
-20
-19
~19
-18
<1

-19
-18
-18
~17
-18
-19

-18
-18
<17
w17
-18
-20

=17
=17
-17
~17
-18
-20

-16
-16
-16
-16
L7
-19

_15
_15
-1
-14
-16
-19

-14
-13
~18
=13
-14
-18

-13 -12
-11 -11
-1l -10
-12 -10
-14--13
-18 -17

_13
-12
-11
-11
-1k
_16

-14
~14
1
14
_15
_17

-15
-15
-15
-16
-18
-20

-16
=5
17
-18
-19
-21

-18
-18
-18
-19
-21
-22

-18
-19
-20
-21
-22
-23

-17 -21 -22 -22 -22 -2 -23 -22 -19 -1T7 -20 -2]1 -2¢ -23 -2k

AT U7 <19 <16 = § = = =¥1 =10 =15 -20 -92 -2 -ph 9%

-15 -12 “f = = - o P -Qé 80 <13~ 3 -
= - al - S 5 _5 . =

Sector
Sector A
(Cosay) x

(sinA,)x(3

50 150 250 350 450 550 65° 750 85° 850 75° 65° 550 45° 35° 250 15° 5

-193-173-165-162-166-155-144-131-115-108-112-108-117-157-167-167-167-172

@)

2
+192+1é7+1ﬁ9+132+117+ 89+61 +34 +10 - 9 -29 -46 -67-111-137-151-161-1T71
+17 +45 +70 493 +117+127+131+127+115 108+108+98 +96+111 +71 +43 +15 -16

€2



TABLE III (continued)

m2oN

L

2

3

.

5

8

2

24 -20
25 -21
26 -21
27 -2¢
28 -23
29 -24
30 -25
31 -26

-21
-21

-22
_23
_23
-2k
_26
_26
_27
28
_15

-22
-3
-24
-25
-26
-27
-26
-25
-11

-23
ok
-25
-26
~27
-26
-25
-9

-25 -26

-27 -28.

-29 -30
-30 =31
-29 -32
~18 ~18

=27 =27

-28

-29 -29 -29

~30 =3l
38 =33
=95 -8
-33 -36

w wid

-31

“39

=35

-3¢

-36

-10

-27
~2G
=37
o 5.
-5
_36
-38
-36
-10

<7
-28
-30
=31
~33
.
-36
-36

-26
-28
-29
-30
21
-32
-33
-25

-26
~27
2T
-28
-29
-29
-30
-18

Sector 2

-182-196-214-208-185-161-147-137-145-150-161-186-204-239-275-262-254-214

Sector A

(CosAé
(sinA

5% $5° 250 35° 45° 550 65° 75° 85° 85° 75° 65° 55° 45° 350 25° 15°

) x (X)
1- 189 194-171-131-92 -62 -36 -12 +13 +41 +79+117 +169+235+237+226+213

50

g) -31 —9% -119-131-132-133-132-142-149-156-169-167-169-158-111-61 -19

e
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Discussion of Errors. e —

At some stations a drift check was made and the drift
found was very small, so drift corrections were neglected,

Systematic errors could occur in estimating mean
anomalies but since they would be of opposite signs they
should for the most part cancel out.

Some small errors may occur in the gravimetric
computations., However, the purpose of collecting the gravi-
metric deflection values is to show a trend along the
survey line. This trend can then be compared to the
torsion balance deflection trend. Therefore, small errors
in the gravimetric method will not compromise the purpose

for which they have been computed.
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INTERPOLATION OF DEFLECTIONS OF THE VERTICAL
USING THE CURVATURE GRADIENTS OF GRAVITY

A. Development of Formulas / 7/

If deflections of the vertical are to be interpolated
between any two points, it 1s necessary to assume that
the deflectlion changes between Intermediary points 1is
linear. Therefore, the distance between intermediary
points that can be safely used varies with the mass dis-
tribution close to the physical surface of the earth. To
obtain such a dense net of deflections using astronomic
means would be extremely laborious. As explalned in
Part I A, obtaining the deflections using the gravimetric
method is simply not possible in some areas of the world
due to a lack of available gravity data.

However, by using the curvature gradients of gravity
obtained with a torsion balance, the deflection can be
obtained to the desired density. The only requirément is
that both deflection components gi, ?7 are known at one
station, and at least one of the components is known at
another station. So, along with the torsion balance
observations, a minimum of three astronomic determiﬁations

are necessary. The following change 1s used to simplify

26
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notation for the gradients of gravity.

2
%W W AW W

ete.

The torsion balance observations produce the curvature

gradients Wop = wyy - Wyxx, and W Using these quantities

Xy*
the deflection differences between points can be computed
using Formulas derived by Eotvos in 1906.

A start is made with an initial point (O) which should
be a point where both the astronomic and geodetic positions
are known so that the astro-geodetic deflections are
avallable. The initial point 1s used as the origin of
the (x, y, z) coordinate system with the x axis oriented
positive toward the north (tangent to the local meridian)
and the z axis coincides wlith the local vertical, positive
down. The y axislis perpendicular to the x and z axis
and is positive toward the east. This means that the
relative orientation of the coordinate system is differ-
ent at each station. For simplicity only one coordinate
system is used for the survey area. Taking the initial
point (0) as the reference station, the coordinate system
based on this point 1s used over the whole area. Therefore,
at any point in the survey area the z axls 1s parallel to
the vertical at point (o) and the x axis is parallel to
the tangent of the meridian at point (0).
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In Figure 7 the plane of the paper can be taken as the

xz plane of the above defined coordinate system. In this

new coordinate system with the origin at any arbitrary

point Al the z axis is parallel to the vertical of the

initial point (0). Therefore, it will not coincide with

the direction of the gravity vector at the arbitrary point

Al. Line AlG is the projection of the gravity vector.

)
+
x

+Z

Figure 7.

at point A1 on the xz plane. Since the dominate gravity
change is a function of latitude the change along the x axis

is much greater than the change along the y axis. Therefore,
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the difference between the vector AlG and the true gravity

vector at point A1 is small and can be neglected. AlH is
the gx component of g and line EE represents the equatorial
plane intersecting the xz plane. It can be seen from the
figure that the astro-latitude of the initial point (0) is ¥

and of point A, is 2+A¢f,.

1

For point A f, = ¢ +A3% then
1

x

-g, =g sln A%, but since AF, (3)
is a small angle

A%, = = By ()
g

and using a similar reasoning along the prime vertical:

Al_l cosf1 - - By

g
whereAL1 . 1s the astro-longitude between the points

0 and Al.

The geop of the observation point is defined as the
equipotential surface of the gravity passing through the
center point of the torsion bélance, i.e., where the
horizontal beam is attached to the torsion fiber, The
perpendicular to the equipotential surface at that point
i1s, of course, the geop normal. The above equations give
the North and East components of the angle between the

geop normals at O and A This development can be used

1.



30
to determine the respective North and East components of
the angle between the geop normals at 0 and another
arbitrary point A2, A805 and AL2.

Subtracting the equations for points Ay and A2
gives the expressions for the quantities ( A, -Ad 1)
and ( A;Lz-zsLl) which are the North and East components

of the angle between the geop normals at A2 and Al'

afp maZy = -1 (g - gyg) =T L (W, - W)

€m &m
o (6)
(AL,-AL)) cosg = -1 (g5 - 8y3) = -1 (Wyp-Wy,)

Where g, and ¢m are the mean gravity and the mean

1» and Ay (AZ, —A¢1)
and (ASL2 - AL, ) are the astro-latitude and longitude

astro-latitude between points A

differences between points A2 and A The quantities

1.
€x1s Bx2s Byps Byps 2TE the g, and gy gravity components

at A1 and A These can be substituted by the first

2.
partial derivative of the potential function of the
gravitational force (W) since according to Newton's Second

Law of Motion:
G = mg (gr cm sec'e) units (7)

where G 1s the gravitational force, and g is the
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gravitational acceleration. Let the mass m = 1 gr

and by definition

aw

. AW g aw 8
B =0xs gr=0Cy; i - Gy (8)
therefore G = g and _
aw g _; daw _ g_ 3 v _ g
S5z = K 7 =Y E Z = 2

The spheroidal normals are perpendicular to the spheroid,
but can also be assumed to refer to the reference ellip-
sold, and the spherop of the observation polint. The refer-
ence to the spherolid implies the normal gravity field.
Using the same analysis as previously the equations for the
North and East components of the angle between the spherio-
can be developed.

2

Bfy ~billy = rl—m (Ux2 = Uxa) —

dal normals at A1 and at A

(AA AZ,) cos B =~ L

2 m

Here the quantities ( Ag, -A@,) and (AA2 -Aal) are
the geodetic latitude and longltude differences between

points Al and A2. Then U

xl’ U U

x2* Uy1s Uyo
and A2, and ‘Ym is the mean normal

are the normal
gravity components at A1
gravity. Now g , the north-south component of the

deflection of the vertical is equal to the astro-geodetic

latitude difference:

3=2-% (11)
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and the east west component involves the astro-geodetic

longitude differences in the expression

P o= (A=) cos & (12)

therefore, the differences between the astronomic and
geodeticlatitude and longltude differences in the above
equations (6) and (10) are the differences of the

deflection components between the points A, and A..-

1 2
Assuming that in the relatively small survey area:

Tm=8  and g =3,
and then subtracting the previous equations gives:

Z_(ﬁ§2— A¢2) - (411-A¢1)_7gm - _(wx2—wxl)+(UX2_UX1)

(13)
[ (AL, -a2,)c088,-( AL -4}, )cos Bg =
= -(Wyp - wyl) + (Uyp - Ugy)
or
(S2 -51)em = ~(Wyplixy) + (Uxp = Uyy) (14)

(Ro-1)8y = ~(Wyo-Wyq) + (Upp - TUy)

Defining W - U as the potential anomaly A W and similarly
for the other partial derivatives.

Substituting
ASe ™ $a - 51

Aoy =Nao N1

(15)
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gives

F i = -AW__ +AW
Sm §21 x2 x1 (16)

g.mA'?Ql = -Awy2 +Awy1

Calling upon the assumption that the points Al and A2

“are close enough together so that the varliations of the
gradients between them is linear, a new coordinate system
(n, s, t) is introduced.

X

Az

A

S

Figure 8.
The t axis coincides with the z axis of the (x, y, 2)
coordinate system and the n axis goes through points A1
and A2. The s axis is then perpendicular to n and ¢t.

(see Figure 8). The coordinates of points A. and A_. in

1 z
the new coordinate system are ( s=0, nanl) and (s=o,

nnne) respectively. One of the second partial derivatives

of the potential in the new coordinate system is d2W "
dnds

This 1s also called a gradient of gravity and it

expresses the change of the gravity component in a
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certain direction for a unit distance.

These relationships exist between the gradients

2
d2W - W _ dgg _ dgy

dnds dsdn dn ds

In order to find the first partial derivatives of the

potential the gradient of gravity is integrated..

By
2
T . = d“w dn =(dWy -(dW W, » ¥
12 f Ty (EE)Q (-d-s-)1 s2 sl (17)
ny

the'change in d2W 1s assumed to be linear so approxi-
dnds
mate lntegration can be used.

The Trapezoidal Rule gives:

Ty 5?2 d2w dn = 1/2 (d2W ).f(dzw (ns-nq)
12 4 dnds [dnds 7 dnds)Q] i (18)
1

B 1/2(W + W ) (n2—n1)

nsl ns2

The transformation equations between the two coordinate
systems are:
8 =y cosX - X sin«
n =7y sinx + X cosx (19)
t =z
So the transformation equation of the first partial

derivative is:



W, = -W sinx + W cos« (20)
S b v

Substituting (20) into (17) we get:

dnds

2
i i = dw dn = W - W =
12 { s2 sl (21)

B

_(w

x2

= +(Wy2 - wyl) cos < .,

- sin
le) 12

932 is the azimuth of the dilrection Al A2. In the same

manner an expression for the normal gravity field can be

developed.

N

Tio = +(Ux2—UX1) COS°<12-(Ux2-UX1) sine ., (22)
the term T?e is the same as T12 butin the normal gravity
field. Now as before (22) is subtracted from (21) and
using the notation AT = T - TN

12 12 12

AT, = -(—Awy2+Awy1)cos«12 +(-AWX2 +wa1) sine,
(23)

substitute (16) into (23)

ATy, = gmAgel singh - g Af, 08, (24)

Now 43T12 can be computed using:

Wns - UnS = ASWnS

and equation (18) becomes

35
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‘3T12 =1/2 Zj_‘ansl tdw082;7 (nz-nl) (25)

The torsion balance observation gives the quantities

W

yy
after subtracting the effect of the normal gravity
field the observed gradient anomalies are obtalned:

AW

‘A and way

These values must be transformed to the (n, s, t) co-
ordinate system.

Using the transformation equations

X = 1N coSX - 8 sina

y n sinx + s cose

zZ =t

the partial derivatives are obtained

gﬁxn COS < %a-sinx
g%a sin g-gncosrx
dz dz

an ™ © as = ©

Now the first partial derivatives of the potential function
W are calculated by using the Chain Rule,

dw dW dx + dW dy + dW dz dw + dW
T "3a d&@ dy an qz d@o = Tx 9% ais‘m“(ga)

dw AW dx + dW dy + dW dz - dw + dw
T3 a5 dy ds dz ds = gx sinx gy cos=
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Again using the Chain Rule the second partial derivative

is found:
d2W o a (dW) dx + d (dW) dy + d (dW) dz _
2 2
(d W - dEW) sinx cosx + AW (cos%< - 8inx)
dyz dxe dxdy

using the Trigonometric identitiles

Sin 2X= 2 sin«x cos =<

COS 2X = cos%X- sinax
glves:
AW = 1/2 AW, sin 2 +way cos2 (30)
Now moving on to a third point A3 a triangle Al’ A2, A3

-

is formed and equations corresponding to equation (24)
can be written.

For side A, A

1 ™3
zﬁT13 = gmA§31 sinm33 - gmaqgl co8°9 3 (31)
For side A2 A3
43T23 = gm£§32 sinwyg - gnA3p COS%Hg (31)

Summing the deflection components in a given triangle
should give O.

This gives us two more equations

A3z tafg 45z~ 0 (32)

ARyq *A731 +Af30 = O
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With equations (24) (31) (32) we have five equations and
8ix unknowns. To solve this, five of the unknowns must
be expressed as a function of the sixth. The six unknowns

are

Taking the difference between the North components at

triangle side Agel as an unknown then
Af oy = -0 L33
&m

then when the equations (24), (31) and (32) are solved
for the unknowns, this gives:

AT
A - 12 + u sin=12
/?21 €m cos*12 (34)

ASz = (35)
_ ATpzcosezyy (AT314 EmA21517°51 "8, %701 °95%51 Y cosa23

g, sin( 3-1—o<23)
Alfse = (36)

- o
gATQBSino%l +(AT31+gmA§218100<31 gmA721005 31)sino<23
gmsin( «3i—a(23)

The normal gravity value for the station can be used
for 8m-

The formulas (35) (36) are then applied repeatedly
to get values for subsequent lines. For example,the next

line would be 3-1 so we would solve forA331 andA'?31
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using appropriate subscripts in the formulas. Then the

formulas would be used for the next triangle A2, A3,A4,
and so on until reaching the end of the chain where

another astro-geodetic deflection is known (see Figure 9).

Az Ay A6

Figure g,

At this point there are formulas for the deflection
differences on each line which are -unknown. Also, each
formula contains the unknown u., Nowu can be solved pro-
vided three values of S and ‘? are known at two points
in the chain, preferably at the initlial point and the end.

The deflection components at the two end stations can
be determined through astronomic observations or by
gravimetric means. If astronomic observations are used
the values are relative since the values depend on the
sizé, shape and orientatlon of the reference ellipsoid
used., If the deflection components are computed gravi-
metrically the values are considered absolute. In this

case the triangle corner values will also be absolute.
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B. Practical Computations

The torsion balance observations give values which
must be corrected for local terrain (100 metef radius of
observation point),the cartographic effect and for normal
gravity. The values entered in Table IV then are actually
corrected values. The constants for the torsion fibers
in the instrument were not known exactly / 4/. If the
assumed values were incorrect the 5 and '? values would
have a proportional change.

The first formula used is (30)

AW = 1/2 AW, sin 2« +way cos 2

There is one AW,y at each point for each line that

terminates at the point (see Figure10).

Figure 10.
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X is the azimuth from north (measured from the local
meridian) of the initial point (1). It was measured
from a USGS map (1:62500) to the nearest tenth of a
degree, For example for the line 1 - 2 the calculations
andAw

1 ns2°*
with the magnitude represented by the gradients of gravity

require ‘Awns These are vector quantities
and the direction fixed by the azimuth taken from north.
For example (Figure 10)
Line 1-2 would require
cOS 20<A

AWy = 1/2 AW, 8in 2.4, + AW

1 vl

and  AWpgo = 1/2 AWy, 810 2 < + Alyyp cos 2

e

Of course, o(A = Xps Ko = 0<D, ete.

C

A is the vector of ‘ansl for line 1-2 and F is the

vector of zﬁwnsl for line 3-1, Values of AW . are computed
n

at each point for each line terminating at that point.

The next calculation involves equation (25).

AT, = 1/2 (Akwnsl + AWpgo) (nz-nl)

Since this formula is derived from the Trapozoidal
Rule, zﬁT12 represents the area of a trapozoid (see
Figure 11), The n values were taken from the USGS map

(1: 62500) with an accuracy of + 25 meters. The shortest
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r’///j
AW o2
AWNSJ.
= A Nay R —h
Wg

Figurell.

line distance was 218,750 cm which is accurate to four
places. AT is tabulated for each line in Table III.

AW, and ASWXy are in Eotvos units where 1E = ,0001
gals/km or 1077 em sec'a/cm. AT 1s then in 10 Zcm sec™@
units, but for convenience they are tabulated in cm sec'2
10'3.

Solution of formulas (33) (34) is tabulated in
Tables V and VI. Since the survey area was close to a
straight line the triangle chaln method described in
Part III A was modified. The line was computed as a
traverse so the triangles were not closed. Then the

formulas take the following form (Table V, column 8):

Asel = -U

A§32 = a32 + b32u

ASMB = 843 + b43u
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A‘Sn-(n--l)_l= apsn-1 + b, n-lu

n, n-1 n, n-1 n, n-1
ZAS = Z a +u z b (37)
21 23 21

Where 1t 1s assumed the astro-geodetic latitude is known
at points 1 and n: then it is known that

n, n-1

Taf-51 - §n

The only unknown in equation (37) is u which can easily
be solved. a and b are constants which automatically
result from the formulas, If instead the astro-geodetic

longitudes at the two points were known then the 43/?
equations (Table VI, column 12) would have to be summed
in order to find u. After u i1s determined, it can be
applied to each formula and then the 43§ , and 4}? can be
golved for each line,

Obviously,

ASik = gi—gk
A'71k N 71_71&

Referring back to Tables V and VI the units of the
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=3

constant term in each column are cm sec"2 10 and

units of terms involving u are cm sec'2. In these compu-
tations the AW,4 for station 22 was an unknown.

Since the observations for station 22 were not
available, this procedure was necessary. The final
summation equations for § and ’? were solved as two

equations with two unknowns.

The final equations for computing the u and Awm522 are

AS =AS7-B - 417004 - 2!387 = +37481
AN =APPB = +2.173 - (-1.020) ~ +3.193

Let g = rm = 980,101 cm gec 2

g
AS x g _ +0.16541555 cm sec™?

——

/
AP x By o +.015172992 cm sec™2

+ .2375215 + .0014097 AW ., - 35.095u = +.016541555

S

-5.544882 + ,0073066 Awns22 + 739.760 u = +.015172992

1st AWnsQQ = +35.0959u - ,220979945 - +24,896u -156,756714
. 0014097

Substitute in 2nd equation
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-5.544882 + 181.9051u - 1,1453586 +739.760u = +.015172992
921,6651u = 6,7054136

u = .00727532 cm sec 2

AW 181,1264

Ay o +2—2—W

L7 210.4397 em™1 sec™2

g
m

Normally u is found from a single equatlion using

Akgl-n orzA/71_n, whichever is known. If both are known
a check can bg made but is not ngcessary. The gm value is
simply left out of the calculations until the final solu-
tion for u 1is made, and the¢A§ ,AX? values are computed.
The International Gravity Formula was used to find a

.rm for an average latitude of the 1line. The value
obtained was

-2
gy =ty = 980,161 cm sec

Table VII gives the final values where column 1 under 5
and 7 are in cm seac‘2 10"3 radians. Then column 2

under §, and /7 are in seconds of arc.
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COMPARISON OF GRAVIMETRIC AND TORSION BALANCE RESULTS

The adopted values of the deflections for the end
points of the 1line afe as follows:
TEMPLETON: .g - +1YO94 Astro-Geodetic
7"= +2?173
BARR: 31- +2.387
7'« -1.020 Astro-Geodetic

7 for TEMPLETON and S for BARR are based on the
gravimetric values out to 6.50 x 6° plus the effect of
the rest of the earth, The effect over the yrest of the
earthis computed from the known astro-geodetic deflections
at the two stations minus the gravimetric effect out to
6.5 x 6° (see Table VIII).

The adopted values are used for the values at
TEMPLETON in Table VIII. Then the deflection differences
between the points based on the gradients of gravity are
used to compute the deflections at the remaining points.
The values obtained at BARR should be the same as the
adopted values there. These deflection values are then
plotted on the graphs Figures 12, 13.

The final values for the three areas around each
triangulation station are summed up in Table X. These
values added to the effect over the rest of the earth

as computed in Table IX, give the total gravimetric
46
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deflection values, These are plotted in Figures 12,
13. Also the profile of the free air anomaly map over
the line 1is plotted as a comparison. Results show a close
comparison of the /7 values. The magnitude of the values
obtalned with the gradients of gravity are too high. This
i1s probably caused by the use of incorrect instrument
constants. The g values do not have too much correlation;
however, this also could be a problem in instrument
constants. At the end of the appendix is a discussion of
a method for recomputing the constants and a graph using

the new constants.
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ERROR ANALYSIS

The accuracj of the gradients of gravity could be
effected by several factors. Since the surrounding
area of the project line is fairly flat, the topographic
correction was neglected. There are some hilly areas
near station BARR; however, the error in assuming flat
topography here would be very small. At some stations
the local terrain correction was taken only to 30 meters
instead of 100 meters., This could produce some error
which may average out over the survey line, Errors in
terrain correction are, therefore, also neglected.

' The effect of possible errors in instrument constants,
reading of photographic plates, and measuring quantities
from the map can be found analytically since there is a
functional relation between them. The following formulas
were developed to observe the effects of errors in these
quantities:

Development of Formulas

Assume all variables are independent

g - instrument constant

D, K, t are physical quantities of the instrument

a2 = DK da D dK - Dkdt
s Bt A &

50



da D da - DK

\ P 2
ngm/ (g 92)2  (mg 92)° =,,/(mK D)* + (m, DK)

W, =+ .76082 (d4,-d,) - 0.47024 (dg-d )
a e 473 "—2‘%"__(52

dw, - 0.76082 (d,-d ) + 0.47024 (d_-d
EEA" (2a) %3 (2a )z 5 2)

Since dd is very small assume dd2 = dd3 = dd4 = dd5
aw + 76082 (ddy-dd,) + 0.47024 (ddz-dd,) = O
2W - e 6 = . d
Xy 0_22_2_7_ (d3+dl4) }_g%']_?_ul (d2+ 5)
dwxy + 0.55276 (d +d4)+ 1.44724 (d +d )
3 A
S 2i2a5 2(2a)%
dWyy _ - 0.55276 - 1.4472h4
aa 2a 2a
2
mW, = [(m_ dw, 2 4 (mqy aw
= / a Ja)" + (mg L)
i, v/{m - o. 76082 (8,-a5) + 0.41034 (d5-d2%]}
= [ (m dny) + (my AWgy )@
“xy / i e
2
mWy.=/[m, /+.55276(d +d4)+ 1. 44724 (4, + ) g e 2L
3’/ [o (58 5" Bt et} -

+ [’ﬂd (— O‘.22276 - 1.21;724')]2 1

51



AW, = 1/2 W, sin 2 +AWXy cos 2«

dAwnS - WA cos 2« - 2wa gin 2

y
dx
d AW 1/2 sin 2« d AW, g cos 2
ns = =
aw » Wy o

2 2
2
m dAWns> +(my dAWnS) +<mwxy d AW
TAWns "4/( Tax a7y aw

92
mAW | - 4/[m“ (Wscos 2 -2 sinzx)] +

My, 1/2 o] 2 " - Th
+[ Wp - 8in ] + xy COS ]
T = 1/2( AW o + Awns)An =AW . An
dT L An dT - AW
dAWns aAn
2 2 *

m. = /|m AW aT +|m T
T /]: o EAWns] [An dan

2 a2 "
m
M "'/[ AWpg An] * [mAn AWy g

Agu - 2Tcos o« - AScos« + A Dcos 2 o
g;msino( sin

dAg - 2 cot «
dT g

m
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5 _+ 27 cs02 x + AS sin= -A7%cosx -A’Jcos <
g, 8in%e

mAf’\/[ng.cﬁ,j_]z + En“ gifje
5

nee =i Qcotoﬁ [ (+ 2T csclu +4 §sina-a 9_0;;25—4?0080}]

Alm " 2T —Agsinrx+A’7cos"<

&
g%/].z - 2_ da? - —Afcosm-Af sine
d=

\

- /[ )| [o-( a5 coom-apuan)] ?

Using the underlined formulas with appropriate

values the standard error of the quantities a, W ,
ny, AWyes T Ag 4 andA?can be determined. This
analysis should be done for each trianglein the net

separately.
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TABLE IV

COMPUTATION OF AT VALUES (EQUATION 25)
AND TRIGONOMETRIC VALUES

AT

Line Sta «° 2«° sin2«K 1/24W, cos2X AW AW Distance cm sec_“ cos«  sin«
4 3 ns AN x 1073

2 +2.78 +2.15 -,67765

1-2 76.7 153.4 +44776 -.89415 586,250 -1.1860 +.23005 +.97318
2 +3.54 +5.54 -3.3685 ;
2 . +3'5u‘ +5.54 _6.5602

2-3 104.4 208,8 -.48175 -.8731 650,000 -4,7118 -,24869 +,96858
3 +0.56 +8.75 -7.9375
3 +0.56 +8.75 -8.7642

3-1 271.0 542 -.03490 -.99939 1,206,250 -6,6403 +.,01745 -,99985
. +2.78 +2.15 -2,2457
3 +0.56 +8.75 -8.3695

3-4 100.5 201,0 -,35837 -.93358 430,625 -2,2067 -.18224 -+,98325
4 ; -0.07 +2.04 -1,8794 :
L -0,07 +2.04 -1,7995

4o 283.1 566.2 -.44151 -.89726 1,075,000 -4,4791 +.22665 -,97398
2 +3.54 +5.54 -6,5338 :
L -0,07 +2.04 -2,0301

4-5 92,0 184,0 -,06976 -.99756 298,750 -0.08746-.03490 +.99939
5 +1,17 -1.53 +1.4446
5 +1.17 -1.53 +1.2533 .

5-3 276.0 552,0 -,20791 -.97815 796,875 -2.9572 +.10452 -,99452
3 +0.56 +8.75 -8.6752
5 _ +1.17 -1.53 +1.8167 "

5-6 81.0 162.0 +.30902 -.95106 218,750 +0.1894 +,15643 +,98769
6 +1.14 +0.46 -,0852
6 +1.14 +0.46 -,3794

6-4 268.0 536.0 +.06976 -.99756 525,000 -0.6351 -.03490 -.99939
4 -0,07 +2,04 -2,0399

ag



TABLE IV (continued)

2

Line Sta. < 2 sin2« 1/24W, cos2X My AW,g Distance cfgg " eosx 8inx
Paly x10

6 +1,14 +0.46 -.7117

6-7 96.7 193.4 -.23175 -.97278 481,250 -1.6387 -.11667 +.99317
7 +0.08 +6.25 -6.0984
T +0.08 +6.25 -6,2472

7-5 271.3 542,.6 -.04536 -.99897 700,000 -1,6701 +.02269 -.99974
5 +1.17 -1.53 +1.4754
7 +0.08 +6.25 -5.9879

7-8 98.7 197.4 -.29904 -.95424 475,000 -2,8772 -.15126 +.98849
8 +0.32 +6.32 -6,1265
8 +0.32 +6.32 -6.1209

8-6 278.8 557.6 -.30237 -.95319 945,000 -3.2622 +.15299 -.98823
6 +1.14 +0.46 -0,7832
8 - +0.32 +6.32 -5.9273 :

8-9 101.7 203.4 -.39715 -.91775 J 469,375 -1.7626 -,20279 +.97922
9 -2.60 +2.85 -1,5830
9 ! -2,60 +2.85 -1.7289

9-7 280.5 561.0 -.35837 -.93358 931,875 -3.5376 +.18224 -,98325
T +0.,08 +6.25 -5.8635
9 . -2,.60 +2.85 -2,4082

9-10 94,5 189.0 -.15643 -.98769 297,500 -0,2404 -,07846 +,99692
10 +1.63 -1,06 +0,7920
10 } +1.63 -1,06 +0,.5371

10-8  278.5 557.0 -.29237 -.95630 771,875 -2.1614 +,14781 -.98902
8 +0.32 +6.,32 -6,1374
10 +1.63 -1.06 +1.3070

10-11 85.4 170.8 +.15988 -.98714 581,250 -0.7587 .08020 +.99678
11 +0.07 +3.98 -3.9176 -

95



TABLE IV (continued)

Line gta o 2K

BT
Distance em sec~2

sin2X 1/24W, cos2x AW__ AW cosx  sinx
= xy T h x1073 -

;e +0.07 +3.98 -3.9800

11-9 270.0 540.0 0 -1.0000 871,250 -2.9753 - =, ]
9 -2.60 +2.85 -2.8500
11 +0.07 +3.98 -3.8787 _

11-12 97.0 194.0 -.24192 -.97030 408,125 -0,7928 -.12187 +.99255
12 -6.39 +1.60 -0,0066
12 _r -6.39 +1.60 -1.4434

12-10 270.7 541.4 -.02443 -.99970 987,500 -0,2091 +.01222 -.99993
10 +1.63 -1.06 +1.0199 _
12 -6.39 +1.60 -1.3760

12-13 91.0 182.0 -.03490 -.99939 550,000 -0.8305 -.01745 +.99985
13 -1.00 +1.68 -1.6441
13 "~ ~1,00 +1,68 -1.5663

13-11 273.0 546.0 -.10453 -.99452 953,750 -2.6380 +.05234 -.99863
11 +0,07 +3.98 -3.9655
13 -1.00 +1.68 -1.9546 2

13-14 74,0 148.0 +.52992 -.84805 371,875 -1.1233 +.27564 +.96126
14 -6.08 +1.02 -4,0869
14 -6.08 +1,02 -2.2217

14-12 264.2 528,.4 +,20108 -.97958 911,250 -2,3118 -,10106 -.99488
12 -6.39 +1,60 -2,8522 .
14 _ -6.08 +1,02 +0,4812 :

14-15 97.0 194,0 -.24192 -.97030" 775,000 -0,0174 -,12187 +.99255
15 -3.12 +1.,32 -0.5260
15 -3.12 +1.32 -1,4388

15-13  268.9 537.8 +.03839 -.99926 . 1,131,250 -1.7851 -.01920 -.99982
13 -1.00 +1.68 -1.7171

1S



TABLE IV (continued)

7 =2
Line Sta x 22X  gin2x 1/24W,cos2« AW AW Distance cmAse cosx sSin«
/240, W g AN X10-3

15 -3,12 +1.32 -2,0356

15-16 83.0 166.0 +.24192 -.97030 ; 517,500 -0.7187 .12187 .99255
16 -0.26 +0.70 -0,Th21 o =
16 -0.26 +0.70 -0.6854

16-14 271.5 543.0 -,05234 -.99863 1,286,250 -0.8912 +.02618 -,99966
14 -6,08 +1,02 -0,7004
16 A -0.26 +0.70 -0.5057

16-17 103.5 207.0 -.45399 -.89101 420,000 -0.5452 -,23345 +,97237
17 +1.15 41,76 -2.0003 N
17 +1.15 +1.76 -1.8604 _ ‘

17-15 272.7 545.4 -,09411 -.99556 921,875 -1.3279 +.04711 -,99889
15 -3.12 #1.%38 -1.0205
17 +1.15 +1.76 -2.0193 '

17-18 98.5 197.0 -.29237 -.95630 650,000 -0.7246 -.14781 +.98902
18 -6.64 +2.25 -0,2103
18 -6.64 +2.25 +0,5721 _

18-16 281.7 563.4 -.39715 -.91775 1,050,000 +0,0173 +.20279 -.97922
16 -0, 56 +0.70 -0.5392
18 o -6.64 +2.25 -0.,1369 ;

18-19 98.8 197.6 -.30237 -.95319 387,500 +0,.1931 -.15299 +,98823
19 +3.66 -2.35 +1.1333
19 +3.66 -2.35 +1.0156 ; ;

19-17 279.6 559.2 -.32887 -.94438 1,018,750 -0.5220 +,16677 -.98600
17 +1.15 +1.76 -2.0403
19 +3.66 -2,35 +2,4638

19-20 89.1 178.2 +.03141 -.99951 4o5,000 -1,5203 +.01571 +.99988
20 +4,05 +9.75 -9.6180

8%



TABLE IV (continued)

-2

Line Sta x 2« sin2x 1/24H, cos2« way AW o Distance cm‘%gc COS sin«
20 +4,05 +9.75 -10.2549

20-18  274.4 548.8 -.15299 -.98823 805,000 -4.6137 +.07672 -.99705
18 -6.64 +2.25 - 1.2077
20 +4.05 +9.75 - 9.3083

20-21 87.2 174.4 +.09758 -.99523 533,750 -8.4205 +.04885 +.99881
21 -11.53 +21,22 -22,2439
21 ~-11.53 +21.,22 -22,5718

21-19 269.1 538.2 +.03141 ~.99951 950,000 -9.0763 -.01571 -.99988
19 PRI +3.66 -2.35 +2.4638 '
21 =11:53 +21.22 -23.6296 *.-8.0119

21l-22 81.7 163.4 +.28569 -.95832 678,125 +. 3391 +,14436 +.98953
22
22 -5.1656

22-20  263.7 527.4 +.21814 -.97592 1,196,875 +.59844 -,10973 -.99396
20 +4.05 +9.75 - 8.6318

6S



TABLE V

COMPUTé%IONAOF A S (USING EQUATIONS 33,35)
‘ g

[ &
- | Atézﬁ,)*-;;__*éfy;-/ SR oy i B et O g, dnd Z Col (/#2+3)
LINE | A | x073 w2 + M x /075 + M x/073 + «
Afor : - . v . - -
5 2| -6.6403 | - + .99985u|l - ,08974 + .07382u [- 6.7300 + 1.0737u
3 ﬁ -4,4791 |+ 6.6886 - 1.1221u | - 1.7676 + 1,0171 u |+ O0.4419 - ,1050u
5l -2.9572 |+ 12.7297 - 0.4188u | - 5.9537 + .2378u |+ 3.8188 - .1T740u
A 5 -0.6351 |+ 2.0401 - 0.0873u | + 1.9529 - 0.0870u |+ 3.3579 - .1743u
6| -1.6701 |- 44,2567 + .2239u | - ©0.5822 + ,032lu |- 6.5090 + .2560u
gg 7| -3.,2622 |+ T.5837 - .3140u | - 7.8456 4+ .B134u |- 3.5241 + .0994u
9 8| -3.5376 |- 52.1404 + 8.4278u | + 66.669 -10.2367u [+ 10.991 - 1.8089u
109 9| -2.1614 |-120.44 +17.3244u | + 88.203 -12.5031u |- 34,398 + 4,8213u
11-10 |10| -2.9753 |- 37.9917 + 5.4229u - - - 40,9670 + 5.4229u
12-11 |11 -0.2091 |+ 40.9641 - 5.,4225u | + 6.1064 - .8236u |+ 46.8614 - 6.2461u
13-12 |12 -2.6380 |- 52,0629 + 6.9275u | + 22.5640 - 2.9572u |- 32.1369 + 3.9703u
14-13 |13 -2.3118 |- 14.7464 + 1.9755u | - 90.643 +11.48951u | -107.701 +13.471 u
15-14 |14 -1.7851 [+166.98 -20.964u - 11.1042  + 1.4040u |+154.091 -19.560u
16-15 |15| -0.8912 |-133.23 +16.912u + 28.421 - 3,6072u [-105.700 +13.305u
17-16 |16 -1.3279 |+ 8T7.184 -10,958u + 33,207 - 4,2090u |[+119.063 -15.167u
18-17 |17| +0.0173 |-145.39 +18.503u +125.880 -15.961u - 19.49 + 2.5420u
19-18 |18 | -0.5220 |- 48.300 + 6.6364u | + 55.479 - 7.5112u |+ 6.6570 - .8748u
20-19 |19| -4,6137 |+ 70.444 - 9,5562u | - 35,108 + 4,7510u |+ 30.722 - 4,8052u
21-20 |20| -9.0763 |- 3.9618 + .8172u | + 5.4823 - .8172u |- T7.5558 -
29.21 |2T| -5,1656 |+ T7.0880 - - 2.8879 - - .9555 + ,5984
+ '598L'.AWMF22 AV\//V.fzz

09



TABLE V (continued)

& 6 Z g
Zrcos x P, AT, ir) B worerator [surt 5+6] ~NUMERATOR/Siv (Keay aai™|
LINE | A X /073 + XCOSX upimy x/070 + — X, iwt) x/05 M L/INE
Aéﬂ. 1 - - - , - - -u - 21

32 2|+ 1.6737 - .2670u |-.08222 |+ 1.5915 - .2670u | - 6.8673 + 1.1521u 32

43 3] - .0805 + .0191u [-.5001 |- .5806 + .0191u |- 12.7998 + ,4211u 43

54 41 - ,1333 + .0061u |-.0091 |- .1424 + ,0061u | - 2.0413 + .08T4u 54

65 5+ .5253 - .0273u [-.0066 |+ .5189 - .0273u |+ 4.2578 - .2240u 65

6 6+ .7594 - .0299u |-.0372 |+ .7222 - .0299u | - T7.6740 + .3177u 76

74 7|+ .5330 - .0150u |-.4402 |+ .0928 - .0150u | + 53.0286 - 8.5714u 87

98 8| - 2.2289 + .3668u |-.3212 |- 2.5501 + .3668u | +121.78 = -17.5167u 98
109 9|+ 2.,6989 - .3783u [-.0355 |+ 2.6634 - ,3783u | + 37.9917 - 5.4229u 109
11-10| 10| - 3.2856 + .4349u | - - 3.2856 + .4349u | - 40,9670 + 5.4229u 11-10
12-11| 11| - 5.7110 + .7612u |-.0097 |- 5.7207 + .7612u | + 52,1343 - 6.9370u 12-11
13-12| 12 | + .5608 - ,0693u |-.0435 |+ .5173 - .0693u | + 14.8223 - 1,9857u 13-12
14-13| 13| -29.687 +3.7131u |+.1135 |[-29.574 +3.7131 | -167.01 +20.968u 14-13
15-14 | 14 | -18.779 +2.3838u |+.0003 |-18.779 +2.3838u | +133.28 -16.918u 15-14
16-15| 15 | -12.882 +1.6215u |-.0188 |-12.901 +1.6215u |- 87.281 +10.970u 16-15
17-16| 16 | -27.795 +3.5407u |-.0257 |[-27.821 +3.5407u | +148.474 -18.896u 17-16
18-17| 17 | + 2.8813 - .3757u |-.1469 |+ 2.7344 - .3757u | + 48.986 - 6.7306u 18-17
19-1 18| - 1.0185 + ,1338u |+.0322 - .,9863 + .1338u | - 70.652 + 9.5845u 19-18
20-19| 19 | + 0.4826 -0.07549u|-.1166 |+ .3660 - ,07549ul + 3.9623 - .8173u 20-19
21-20| 20 | - 0.3691 - +.1323 |- .2368 - | - T7.1411 - 21-20
22-21( 21| - .1379 + .0864 |[+.8791 |+ .T412 + .0492 |+ 21.258 + 1.4097 22-21

AWws 22 ~o 03721M”M57_2 AW/VS,.; AWy 5.2
S= +237.5215-35.0959u+
+1.4097 Awn322

19



COMPUTATION SJF A?(USING EQUATIONS 34, 36)
o //

TABLE VI

L2

A? < AT s =~//860 + M SINX,; = (A'/fz ""/4{5//\/"(/2)/(059(,2"‘
2l / =+ 773184 |=-5./428 *+ 42303 X +85 /928 = 42303 44
; COL 4 SINX G, iv AT, 4wy 1073 WopERATOR 2 (7#/0) “NUMERATOR/SiN (Ruy o [

LINE | A X073 * X XSingp i X 107F + 4 — X aty) X/ 73 +u

Af§2 2|- 6,5185 + 1.0400ul +4.7111 |- 1.8074 + 1.0400ul + T7.7989 - 4.,4876u
43 3|+ 0.,4345 - ,1032u| +2.1493 |+ 2.5838 - ,1032u + 56.9621 - 2.2751lu
50 4{+ 3,8165 - ,1739u| +0.0870 |+ 3.9035 - .1739ul + 55.956 - 2.4928u
65 5+ 3.3166 - ,1722u| -0.1893 |+ 3.1273 - .1722u + 25.661 - 1.,4130u
76 6|- 6,4645 + .2543u| +1.6383 |- 4.8262 + .2543u + 51.282 - 2.7022u
87 71 - 3.4835 + ,0983u|l +2.8433 |- 0.6402 + .0983u -365.83 + 56,1715u
98 8|+ 10,7626 - 1 712u +1.7330 |+ 12.4926 - 1.77134 -596.73 + 84,589u
109 9 |- 34,2921 + 4.,806Lu| +0.2378 |- 34,05 + 4,806Lul -188.16 + 68.8991u
11-10(10 | - 40.8351 + 5.4054u| +0.7587 |- 40.0764 + 5.4054u -499,706 + 67.399u
12-11|11 | + 46.5123 - 6.1996u +o.592 + 47,3050 - 6.1996ul -431.104 + 56.499u
13-12|12 | - 32.1321 + 3.9697u| +0.829 - 31,3027 + 3.9697u| -896.926  +113.745u
14-13(13 | -103.53  +12.949u | +1.1175 |-102.413 +12.949u | -578.343 + 73.125u
15-14(14 | +152.94  -19.414u | +0.0174 k152.96 -19.414u |1,085.59 +137.786u
16-15|15 | -104.91- +13.206u | +0.7185 [-104.19 +13,206u | -704,.89 + 89.344u
17-16|16 | +115.77  -14,.748u | +0.5446 |+116.375 -14,748u | -620.T74 + 78.706u
18-17|17 | - 19.279 + 2.5141u| +0.7095 |- 18.570 + 2.5141u| -322.67 + 45,039u
19-18|18 | + 6.5786 - 8645u -0,1904 | 6.3882 - ,8645u +457.607 - 61.927u
20-19/19 | + 30.718 - I, 8046u +1.5158 |+ 32.234 - 4,8046u| +348.97 - 52.015u
21-20(20 | - 7.5468 +8.4195 K  .8727 - + 26,318 -
22-21|21 | - ~ .9455 +7.9635 |+ 7.0180 +20,109 -

+ 5921 Awns22 2‘%@22 +  .2550 Awn522 + 7.3066Awns22

-5544 ,8822+739,760u

+7.3066

Awn822
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TABLE VII

FINAL COMPUTATION OF AfAND A'7 USING COMPUTED
VALUES FOR wu, and g

A % -3 . I 3 2
A310 A g anlo “

Line o $ 1 = 7
| - T.8758 -1.53 -25.634 - 5.39
3-2 + 1,515 +0,31 -24,850 - 5,23
4-3 - 9.736 -2.05 +40.410 + 8.50
5-1 - 1,405 -0.30 +37.820 + T7.96
6-5 + 2,628 +0.55 +15,381 + 3,94
7-6 - 5.363 w1, 8 +31.623 + 6.65
B-7 - 9.331 -1.96 +42,835 + 9.01
9-8 - 5.660 ~1.19 +18.682 + 3.93
10-9 - 1.461 -0.30 +13.103 + 2,76
11-98] - 1.614 = - 9.357 = 1497
12-11 + 1.665 +0.35 -20.056 - 4,22
13-12| + 6.376 +0,08 -69.395 -14,60
14-13| -14.461 -3, Ol -46,335 - 9.75
15-14| +10.196 +2.15 -83.153 -17.50
16-15| - T7.471 +1.57 -5l 884 -11.55
17-16| +11.000 +2.32 -48,129 -10.13
18-171 ~ 6.019 0.00 - 5.000 - 1.05
19-18| - 0.992 -0.19 + 7.068 + 1,49
20-19| - 1.984 -0,.42 -29.,456 - 6,20
51-90] = T7.141 -1.50 +26,318 + 5.54
22-21| +36.38 +7.89 +167.00 +35.32

Note: u = 0.00727532 cm sec~2
g, = 980.101 cm sec—2




TABLE VIII

FINAL COMPUTED VALUES FOR $ AND /) USING THE
DIFFERENCES FOUND IN TABLE VII

174 y
Station \§ fy’
1 TEMPLETON + 1.094% + 2,173
2 - 0.44 - 3.22
3 FOUST - 0,13 - 8.45
L - 2,18 + 0.05
5 - 2,48 + 8,01
6 - 1.93 +11.25
7 TAYLOR - 3.06 +17.90
8 - 5,02 +26.91
9 - 6.21 +30.84
10 - 6,51 +33.60
11 - 6.82 +31.63
19 - 6.47 +27.41
13 - 6.39 +12.81
14 - 9.43 + 3.06
15 , - T7.28 -14.44
16 OWERS - 5.71 -25.99
17 - 3.39 -36.12
18 - 3.39 -37.17
19 - 3.58 -35.68
20 - 4,00 -41,88
21 - 5.50 -36.34
22 BARR + 2,387 - 1,020%

¥ Astro-Geodetic Deflections

Note: Torsion balance observations were not availlable
for triangulation stations LANUM, HOYT, and
MEINFELER.




65
TABLE IX

TOTAL GRAVIMETRIC DEFLECTIONS TO INCLUDE
COMPUTED EFFECT OF ENTIRE EARTH

TEMPLETON

'y

Sag = +1.004
A" (6° x 6P) = -0.346

1"
Eozii‘;:;geo&%% % 59) = §AG - A§(6 5° x6°)=+1.440

74 //
Station AS (6.5° x6°) Total S
TEMPLETON T-4 - 0.346 + 1,094
FOUST G-1 + 0.726 + 2.166
TAYLOR F-1 + 1.689 + 3.129
LANUM E-1 + 2,612 + 4,052
HOYT D-1 + 0,736 + 2.176
OWERS c-1 - 0,696 + O0.744
INFELER B-1 + 0.677 + 2.117
BARR A-1 + 0.947 + 2.387
{BARR

"

7AG = -1".’020

7" /’ le) o) "
‘ggi:ggeof64goon 6Pc)>ver earth 7AG _Alf(6,5 x 6°9)=-0.071

” /"
A”(6.5° x 6°) = 0199

Station an (6.5° x 6°) Total /7
TEMPLETON T-4 + 2.244 + 2,173
FOUST G-1 + 1,769 + 1.698
TAYLOR F-1 + 3.979 + 3.908
LANUM E-1 + 4,246 + 4,175
HOYT D-1 - 3.953 - 4,024
OWERS Cc-1 - 9,147 - 9.218
INFELER B-1 - 4.573 - 4.644
FﬁRR A-1 - 0.949 - 1,020




TABLE X

SUM OF GRAVIMETRIC DEFLECTIONS INCLUDING
INNER CIRCLE, RICE'S RINGS AND (6.50 x 69)

124 77
Station Inner :% Rice's 6.5°Lat Inner Rice's 6.5%Lat
Ring Rings 6°Long. Total Ring Rings 6°Long. Total
- (251x251) (251x251)
TEMPLETON +.434 - 027 -.753 - 346) + .579 - .122 +1.787 +2.244
(T-4) +1.094
F?UST) +.238 + 597 -.109 + .726| - .389 + .004 +2,154 +1,769
G-1
T?YLO? +.397 - 822 +. 470 +1.689| + .399 +1.483 +2.097‘ +3.979
F-1
L%NUM) +:971 +1,781 -.140 +2.612| +1.081 +2.481 + .684 +U4, 246
E-1
HO%T ; +.429 + 545 -.238 +..736| - .550 -1.738 -1.665 -3.953
D-1
OW?RS ) -.247 - 397 -.052 - .696| -1,718 -3.994 -3.435 -9.147
Cc-1
ME%NFE%ER +.338 + .339 -.093 + 677| + .565 -1,609 -3.529 -4.573
B-1
BARR +.635 + .322 -.010 +0,947 | +..454 + .520 -1.923 -0.947
(A-1) -1,020%

*¥Astro-Geodetic Deflections
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Possible error in instrument constant: The following
method was used to fidd a better constant. The gradients
of gravity in the east-west direction-are compared using a
torsion balance obsefﬁation and the inner circle gravity
anomaly map. 'The triangulation stétion'TAYLOR was selected
for comparison bécause of its falrly linear pattern of
gravity ahémaly change. The wXy for TAYLOR with the terrain
correction is +14.6E. Using Rice's three gradient method
weighting the center difference 1 and the 45° point
difference as 1/2 the following value is obtained Wyz=5.8E
Therefore 5.8 =+ 14.6 = 0.4. Using this analysis the
value of the instrument constant should be reduced by
a factor of .4 then the values of the deflection

would also be reduced by .4. The results are shown in

Figures 18, 19.
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