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A. General 

I 
INTRODUCTION 

The fundamental problem of geodesy is to find the 

space coordinates of any point - (P) on the physical surface 

of the earth~ In order to develop a solution to this 

problem, two auxiliary surfaces have been established. 

(1) A reference surface which is as regular as possible 

and at · the same time sufficiently close to the actual earth 

surface. This is a mathematical surface called the refer-

ence ellipsoid. It is assumed that the reference ellipsoid 

is a substitute for the spheroid which is an equipotential 

surface in the normal gravity field. (2) An intermediate 

surface called the geoid which is the equipotential 

surface of the actual gravity field coinciding with the 

mean surface of the oceans L§l• Using the gravity 

anomalies (..1g), the deviations ( N, S and 'I ) of the geod 

from the reference ellipsoid (spheroid) can be computed. 

Then a return to the physical surface is made to get the 

space coordinates of the point. 

In order to find the differences between the reference 

ellipsoid and the geoid the formulas developed by Stokes 

and Vening-Meinesz are employed in what is called the 

gravimetric method. The gravity anomalies covering the 

l 
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entire earth's surface are the primary requirements of this 

method. Known for over a century, _ this method has not been 

applied until recently due to the scarcity of gravity 

material. Only during the past .20 years has enough material 

become available to compute the deviations of the geoid. 

Although there has been an improvement in the gravity cover-

age of the water areas of the world~ the primary increase 

has been on land. This is due to the development of 

lightweight, easy to handle gravity meters. Gaps a.till 

remain, particularly in the ocean areas, which limit the 

application of this method. If, however, the distribution 

of gravity anomalies is known rather accurately in the 

neighborhood of a computation point and in broad lines 

over the rest of the world the geoidal properties (N,S 
and f') can be completed satisfactorily CJI. 

For this reason the gravity meter has become the 

dominate gravity instrument now used for geodetic purposes. 

However, difficulties often arise in gathering gravity 

data in sufficient density in the neighborhood of the 

observation point to use the gravimetric method. Gravity 

data is not available say out to 6° x 6° at locations near 

bodies of water. Inaccessible land areas such as jungles, 

mountains, etc., also place gaps in the gravity data 

in the neighborhood of a computation point. Some other 

method could be used in these areas to provide the re-

quired geoidal properties. 
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. One method which could easily be adapted to these 

areas involves the use of an instrument known as the torsion 

balance. Prior to World War I, R. Eotvos developed the 

torsion balance primarily for geophysical prospecting. It 

was used successfully for this purpose for many years. It 

has now been replaced by the gravity meter. Although the 

torsion balance gives important information concerning the 

shape and structure of the earth, it has not as yet been 

used ror geodetic purposes C'J7. An important advantage 

of the torsion balance is that observations need only be 

taken at the computation point. Therefore, it is not 
' 

dependent on gravity material in large surrounding areas 

obtained with the gravity meter. Along with astro-geodetic 

observations the geoid properties (N, $ , '1 ) can be determined 

with the torsion balance. 

The torsion balance can provide detailed information 

about the geoid or geops which may be of increasing inter-

est to the geodesist in the future. Also data obtained 

with the gravity meter can be complimented by torsion 

balance data in the search for new geodetic knowledge. 

It is likely that an interest in the torsion balance 

will develop in the United States. Interest in this 

country in gravimetric geodesy has increased considerably 

since the establishment of the World Wide Gravity Pro· ject 

in 1950 at The Ohio State University. 



B. Purpose 

Specifically this paper explores the problem of 

interpolating deflections of the vertical between known 

points by applying the gradients of gravity. Eotvos 

derived formulas for accomplishing this. However, very 

little field work has been done except by Eotvos and 

his contemporaries to verify his theories. This is an 

initial study to test the methods which he evolved and 

determine if they could be of value in the light of 

today's advanced technology. If some success emerges 

4 

from this study then follow-on projects of a more extensive 

and specific nature should be attempted. It should be 

emphasized that this is an initial effort in what could be 

an expanding field, and therefore the results cannot be 

viewed as conclusive. 

C. Origin of Data 

Data was obtained from a region in Southern Ohio 

along a first order triangulation net extending from station 

BARR, 7 miles NE of Circleville to TEMPLETON, 4 miles west 

of Xenia for a total distance of 62 miles (see map, page 6 ). 

Astro-Geodetic Deflections 

BARR - A first order longitude observed by the 

US Coast and Geodetic Survey in 1929. 
TEMPLETON - A first order latitude observed by 

Saul Cushman and Ronal~ Adler in 1962. 
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Gravimetric Deflections of Eight Triangulation Stations 

TEMPLETON, FOUST, TAYLOR, LANUM, HOYT, OWERS, 

MEINFELER, BARR 

Inner Ring - Gravity meter observations, 

Rice I s Rings - Free Air Anoma--lies in Ohio, Ins ti tu te 

of Geo·desy, Photogramme~, and Cartography of 

The Ohio State University,, -1956. 

6 0 60 Outer Area .5 x - Data from a thesis of 

L. Martucci L§J• 

Gradients of Gravity 

Torsion Balance Observations for 21 stations along 

the north line of the triangulation net from BARR to 

TEMPLETON obtained from a thesis by Holway Llfl• 
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II 
GRAVIMETRICALLY COMPUTED DEFLECTIONS OF THE VERTICAL 

A. General Considerations 
t-

The eight triangulation stations on Xthe survey line 

were computed for vertical deflections using gravimetric 

methods based on Stokes theorm. In 1849 Stokes concluded 

that -knowing the total mass and rotational speed of a 

rotating body the potential and its first derivatives on 

any equipotential surface could be determined independent 

of the mass distribution, providing no masses lie outside 

the equipotential surface in question. In order to apply 

Stokes theorm to deflec:tion computations the gravity 

must be observed over the entire earth's surface. In 

Stokes• day it seemed quite unlikely that his theorm would 

be put to any practical use since there was available 

very limited gravity data, and the computations would have 

been extremely laborious. Today gravity data is quite 

plenti:ful, though not complete, and high speed computers 

make the computations entireiy feasible. The scarcity of 

gravity data in certain areas, particularly the oceans, 

res\lits in obtainable accuracies by this method in the 

order of+ l". 

The deflections were computed for all stations using 

a common area of 6.5° x 6°. Since the maximum distance 

7 
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between the two outs i de triangulation stations was 54 minutes 

of arc, the assumption was made that the effect of the earth 

beyond 6.5° x 6° would be the same for each station in 

between. 

B. Inner Circle 

The inner circle was taken as the area within a radius 

of six km of the station. Data for the inner circle area 

was obtained by making field observations with the Worden 

Gravity Meter at approximately 16 points per station. The 

observed values around each station were made independent of 

the other stations, an~ were not tied into a station of 

known gravity since 

quired. 

only gravity differences were re-

Sites for grav·i ty readings were selected which were 

accessible and easily pinpointed on the map. Benchmarks 

and road intersections were theprimary site locations. 

Elevations were interpolated from USGS maps (l:62500). 

Kaula found this method as accurate as barometrically ob-

tained elevations Lr:iJ• 
A simple free air reduction was used, and since the 

terrain is qµite level a topographic correction was un-

necessary (see sample reduction Table I). 

The observed gravity at the first point of each 

station was arbitrarily selected as 980.000 gals. 



Sta.. Mean bin 
No. Obs. Feet 

676 530.0 676 
Fox 496.2 718 

1 505.1 710 
2 529.9 691 

697 540.4 697 
ISL. 564.o 690 

3 578.4 661 
657 570.5 659 

4 574.o 680 
S.Town 576.4 665 

80 558.0 758 
81 535.0 680 
83 525.3 791 

TABLE I 

SAMPLE COMPUTATIONS OF Ll.) AND A fl EFFECTS AROUND 
A TRIANGULATION STATION (MEINFELER) 

Read X Diff. &'jf- Relative 
K Gals From 1 Yo Gals. Ag 

.0450 0 980.1571 .0636 -93.5 

.0421 -.0029 980.1601 .0675 -95.5 

.0428 -.0021 .1615 .0668 -96.8 

. 0449 -.0000 .1608 .0650 -95.8 

.0458 +.009 .1592 .0656 -92.7 

.0478 +.0029 .1591 .0649 -91.3 

.0491 +.0041 .1607 .0622 -94.4 

.0484 +.0034 .1582 .0620 -92.8 

.0487 +.0037 .1573 .o64o -89.6 

.0487 +.0039 .1564 .0625 -90.0 

.0473 +.0023 .1585 .0713 -84.9 C 

.0454 +.0004 .1639 .0640 -99.5 

.0446 -.0004 .1612 .0744 -87.2 
-

(~gs-.agN)~-.5 + 8.7 (4gsE-~gNE +agsw- gNw)== +2.8 - 0.7 - 4.3 + 8.8 
== 0.02625( +8.2) + 0.01856 ( +6.6) • +:'338 

(~w-AgE)--6.9 - 2.9 (~gsw-4gsE +4gNW-AgNE)- -4.3 - 2.8 - 8.8 - 0.7 
= 0.02625(-9.8) + 0.01856 (-16.6)- -~565 

4gs - -o. 5 
~gN == -8.7 
4gw = -6.9 
4gE ""' +2.9 
.<igsE= +2.8 
A gNE= +O. 7 
Agsw= -4. 3 
AgNW ... -8.8 

i..o 
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Then the following gravity anomaly formula was used: 

go - observed gravity at the point 

Yo - normal gravity at the points 

c{gf - free air reduction 

,6. g - free air anomaly at the point 

Then to obtain the relative gravity anomalies the following 

formulas were used: 

where ~gR is the relative gravity at each point based on 

a constant gravi ty of 980.000 gals at point 1. g is the 

gravity meter reading times the constant K. Y is the 

n_ormal gravity value computed for one point around each 

station. Since y is a function of latitude only it was 

linearly interpolated for the other points around the 

station . r = 0 . 09406 h where his in feet . All values <'gf 
in Table I are in gals except Ll gR which i s in mgals. 

From the ~ gR values a relative gravity anomaly map was 

drawn for each station with a contour interval of one mgal. 
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( see Figures 1--4). 

Initially it was assumed that all of the stations dis-

played a constant gravity gradient within the 6 km radius 

circle. This would imply straight parallel gravity anomaly 

contours at uniform spacing. Although from the Figures 

( 1-:4) it can be seen this is not everywhere the case, the 

deflebtion effects were nevertheless first computed for 

alleight triangulation stations using the Rice 'fhree 

Gradient method which assumes linearity. 

The following formulas were initially used to obtain 

the vertical deflection effects of the innei[' circle of 

6 km radius for all eight triangulation stations. ,, 
L\ 3 o -r· .. o .105r' ( s~g ) 0 0 

f,y 
(1) 

II 
£L1g L::.'70 -:r· = o.105r 0 ( ) 0 
ix 

Using the Rice Three Gradient method, and developing the 

horizontal gravity gradients from the point values, 

JI 

Lif?o -r0 - 0.02625 _ (.D.gw -L\gE)+ 0.01856(.Agsw-LlgsE+ 

+ LlgNW - LigNE) 
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Where all the ,b.g values are the 6gR anomaly differences 

in mgal. Anomaly differences were read on the circular 

ring and when substituted into the formula the desired 

gravity gradient values are achieved C1y. 
From inspection of the Figures (1-4), it can be 

seen that three of the stations (TEMPLETON, FOUST, and 

16 

BARR) do not appear very linear. Therefore at these 

stations the Rice's Rings method (explained in Chapter II C) 

was used between radii o.8 and 6.0 km. This was done by 

constructing a template of Rice's Rings (Zones 12-23, o.8 

to 6.o km) and reading the mean gravity anomalies from 
I 

the Figures 1 and 4 , - respectively, for the three 

s ·ta.t-ions. For the template used see Figure 5. Then the 

deflection effects for this area were computed by the 

Rice's Ring Method.(For sample calculations see Table II). 

The et'fect of the circle of radius 0.8 1an was computed 

using the Rice Three Gradient method in the same way the 

inner circle of 6 1an was previously computed for all 

eight triangulation stations. (Sample calculation, 

bottom of Table II). ~or these three stations the 

effects using the Rice Three Gradient Method out to a 

radius of o.8 lan., plus the Rice's Rings out to a 

radius of 6 1an would, of course, be more accurate than 

only using the Rice three Gradient method out to 6 lan. 

as was initially done. The maximum difference between 
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Figure 5. N 
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TABLE II 
SAMPLE COMPUTATION OF RICE'S RINGS FROM 0.78 km. to 6.o km. 

(Zones 12-23) Using the Inner Circle Gravity Anomaly Map 
TEMPLETON - Compartments Starting from North 

l 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

z 12 - 7 - 7 - 7 - 7 - 6 - 6 - 6 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 
1~ - i - 7 - 7 - 7 - 6 - 6 - 6 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 

t 1~ - - 7 - 7 - 7 - 6 - 6 - 6 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 5 - 5 
15 - 8 - 8 - 7 - 7 - 6 - 6 - 6 - 5 - 5 - 5 - 4 - 4 - 4 - 4 - 4 - 5 - 5 - 5 
16 - 8 - 8 - 7 - 7 - 6 - 6 - 6 - 5 - 5 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 5 - 5 
17 - 8 - 8 - 7 - 7 - 6 - 6 - 5 - 5 - 5 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 5 - 5 
18 - 9 - 8 - 7 - 7 - 6 - 6 - 5 - 5 - 4 - 4 - 4 - 3 - 3 - 3 - 4 - 4 - 5 - 5 
19 - 9 - 8 - 7 - 6 - 6 - 5 - 5 - 4 - 4 - 4 - 3 - 3 - 3 - 3 - 3 - 4 - 5 - 5 
20 - 9 - 7 - 7 - 6 - 5 - 4 - 4 - 4 - 4 - 3 - 2 - 2 - 2 - 2 - 3 - 4 - 5 - 6 
21 - 7 - 6 - 5 - 5 ·- 4 - 4 - 4 - 4 - 3 - 3 - 2 - l - l - 1 - 2 - 4 - 5 - 6 
22 - 6 - 5 - 4 - 4 - 4 - 3 - 3 - 3 - 3 - 2 - 1 - l - 0 - 0 - 1 - 3 - 6 - 1 
23 - 5 - 4 - 4 - 3 - 3 - 3 - 3 - 3 - 3 - 2 - 1 - O - 1 - 2 - O - 2 6 - 7 
Seetor-2 

- -91 -93 -76 -73 -64 - 61 -59 -53 -51 -46 -40 -37 -35 -34 -40 -49 -62 - 66 
Azimuth 

5° 15° 25° 35° 45° 55° 65° 75° 65° 85° 75° 65° 55° 45° 35° 25° 15° 5 
Cos Azit2 
- -91 -80 - 69 -60 -45 - 35 -25 -14 - 4 + 4 +10 +16 +20 +24 +33 +44 +60 +66 
sin A x~ - S -21 - 2 -42 -4 - 0 - -16 - 6 
Computation of Inner Circle // 

6gs ... -5 L:l. gSE ' = -5 S..,. O. 02625-~ +2 + O. 01856~ +2 ~= +O. 090 
..6gN = -7 A gNE = -6 L:>.f'l = 0.02625 -1 + 0.01856 -2 - +0!1063 
.6gE = -5 . AgNW = -7 
~gw = -6 1:,.gsw = -6 

1--' I 
CX) 



TABLE II (continued) 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

12 - 5 - 5 - 5 - 5 - 6 - 6 - 6 - 6 - 7: 7 - 7 - 7 - 7 - 8 - 8 - 8 8 - 7 
~13 - 5 - 5 - 5 - 6 - 6 - 6 - 6 - 7 - 7 - 7 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 
N 14 - 5 - 5 - 5 - 6 - 6 - 6 - 7 - 7 - 7 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 
£ 15 - 5 - 5 - 6 .- 6 - 6 - 7 - 7 - 7 - 8 - 8 - 8 - 8 - 9 - 9 - 9 - 9 - 9 - 8 

16 - 5 - 5 - 6 - 6 - 6 - 7 - 7 - 8 - 8 - 8 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 
17 - 5 - 6 - 6 - 6 - 7 - 7 - 8 - 8 - 8 - 8 - 9 - 9 - 9 -10 -10 -10 -10 - 9 
18 - 5 - 6 - 6 - 7 - 7 - 7 - 8 - 8 - 8 - 9 - 9 - 9 - 9 -10 -10 -10 -10 -10 
19 - 6 - 6 - 6 - 7 - 7 - 8 - 8 - 8 - 8 - 9 - 9 - 9 -10 -10 -10 -10 -10 -10 
20 - 6 - 6 - 7 - 7 - 8 - 8 - 8 - 8 - 9 - 9 - 9 - 9 -10 -11 -11 -11 -10 -10 
21 - 7 - 7 - 7 - 8 - 8 - 8 - 8 - 8 - 9 - 9 - 9 - 9 -10 -11 -11 -11 -10 - 9 · 
22 - 7 - 7 - 8 - 8 - 8 - 8 - 8 - 8 - 9 - 9 - 9 - 9 -10 -11 --11 -11 - 9 - 8'' 
23 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 9 - 9 - 9 - 9 - 9 -10 -11 -11 -10 - 9 - 7' 

ec-tor-·.2 
-69 -71 -75 -80 -83 -86 -89 -93 -97 -100-102-103-109~116~116-115~110-103 

Azimuth --
50 15° 25° 35° 45° 55° 65° 75° 85° 85° 75° 65° 55° 45° 35° 25° 15° ~o• -

Cos A'Z "~ TOT '-' ,, 
, +6y +69 +68 +66 +59 +49 +38 +24 + 8 - 9 -26 -43 -62 -82 -95- 103-106-+02 +.324 

sin A£'<~ ,, 
+ 6 +18 +32 +46 +59 +70 +81 +89 +97 +99 +98 +93 +89 +82 +66 __ -+49 +28 + 9 -.5lq 

t-J I 
\0 
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the two methods was 0:1345 seconds of arc. This was for the 

.6.} effect at TEMPLETON. In the final sum.ma tion of gravi-

metric deflection effects (Table X), the inner circle 

effects for TEMPLETON, FOUST and BARR includes an inner 

circle of o.8 km. radius computed by the Rice three Gradient 

method, and then Rice's Rings out to 6 km. For the other 

five stations the inner circle effects are computed from 

the Rice three Gradient method for a 6 km. inner circle 

radius. 

c. Rice's Rings 

Computation of a 25 1 x 25 1 "window" excluding the 

inner circle was done using Rice's Ring method L27• 
From the vertical deflection component formulas developed 

by Vening Meinesz in 1928 Rice developed a template system 

to compute the numerical integration required. The 

template is constructed on a sheet of tracing paper with 

a uniform angular aperture of 10°. Rice computed from 

Sollins 1 table the values of zone radii so that each com-

partment has a defle c tion effect of 0~001 for a mean 

anomaly of 1 mgal. For the 25' x 25' "window" it was 

necessary to use zones 24 through 34 (6.08 km. to 39.67 

km.) (see Figure 3). The totals for each compartment were 

added up and multiplied by the cosine of the azimuth for 

the effect on the meridian component and by the sine of 

the azimuth for the effect on the prime ve~tical component. 
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Figure 6. 

Template 
Rice's Rings - Zones 24-33 
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Appropriate signs were applied with the azimuth beginning 

from south, then final supnnation was made to find deflection 

effects (see Table III)o 

Values of deflection effects for this area were ob-

~ained from a computer .program devised by Martucci L§lo 
The program computes the deflection component contribution 

0 0 for the 6.5 x 6 area, except for the 25 1 x 25 1 "window" 

located around the station. 

Due to the fact that no values were available for 

the area of Lake Erie it was assumed that this area has 

a zero contribution. The "window" is oriented using the 

5' x 5' "square" containing the station as the center 

5' x 5' "square" in the 25 1 x 25 1 "windowo" _Input of the 

geographical coordinates of the station into the program 

yields deflection component effects. For details of the 

program see the thesis of Martucci L§J. 

E. Summary 

The sign convention was fixed as follows: j is 

positive with a deflection away from north and q is 

positive with a deflection toward the east. Special care 

was taken to insure that the signs for all three 

computational areas were consistent. 



COMPARTMENT 

TABLE III 
SAMPLE COMPUTATIONS OF RICE'S RINGS (Zones 24-34) for 

WINDOW (25' - 25') NOT INCLUDING INNER CIRCLE 
A-1 BARR OUTER WINDOW (25' x 25') 

z ., i 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6. 7 8 9 

24 -25 -23 -22 -20 -19 -18 -17 - 16 -15 -14 -13 -12 -13 -14 -15 -16 -18 -18 
25 -25 -23 -22 -20 -18 -18 -17 - 16 -15 -13 -11 -11 -12 -14 -15 -17 -18 -19 
26 -25 -23 -21 -19 -18 -17 -17 -16 -14 -13 -11 -10 -11 -14 -15 -17 -19 -20 
27 -25 -22 -20 -19 -17 -17 -17 -16 -14 -13 -12 -10 -11 -14 -16 -18 -19 -21 
28 -25 -22 -19 -18 -18 -18 -18 -17 -16 -14 -14 --13 -14 -15 -18 -19 -21 - 22 
29 -25 -21 -18 -17 -19 -20 -20 -19 -19 -18 -18 -17 -16 -17 -20 -21 -22 -23 
30 -25 -21 -19 -17 -21 -22 -22 -22 -22 -23 -22 -19 -17 -20 -21 -22 -23 -24 
31 -18 -18 -20 -17 -17 -19 -16 - 9 - - -11 -16 -16 -20 -22 -24 -24 -25 
32 - - - 4 -15 -15 - 6 - - - - - - - 7 -21 -20 -13 - 3 -
33 - - - - - 4 - - - - - - - - - 8 - 5 - -
34 - - - - - - - - - - - - - - - - - -
Sector 2 

-193-173-165-162-166-155-144-131-115-108-112-108-117-157-167-167-167-172 
Sector Ai . . o 

5o 15° 25° 35° 45° 55° 65° 75° 85° 85° 75° 65° 55° 45° 35 25° 15° 5° 
(CosAz) x( ) 

+192+167+149+132+117+ 89+61 +34 +10 - 9 -29 -46 -67-111-137-151-161-171 
( sinA )x( l ) 

+17 +45 +70 +93 +117+127+131+127+115 108+108+98 +96+111 +71 +43 +15 -16 

I\) 
lJJ 



TABLE III (continued) 

z 
0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 N 
E 

24 -20 -21 -22 -22 -23 -23 -24 ~25 -25 -25 -26 -27 -27 -28 -27 -27 -26 -26 
25 -21 -21 -23 -23 -24 -25 -25 -25 -25 -27 -28 . -29 -2g -29 -29 -28 - 28 -27 
26 -21 -22 -23 -24 -25 -25 -25 -25 -28 -29 -30 -30 -31 -31 -31 -30 -29 -27 
27 -22 -23 -24 -25 -26 -26 -26 -26 -29 -30 -31 -32 -33 -33 -33 -31 -30 -28 
28 -23 -24 -26 -26 -27 -26 -25 -25 -27 -29 -32 -35 -35 -35 -35 -33 -31 -29 
29 -24 -26 -26 -27 -26 -25 -22 -11 - 9 -10 -14 -33 -36 -37 -36 -35 -32 -29 
30 -25 -26 -27 -26 -25 -11 - - - - - - -13 -36 -38 -36 -33 -30 
31 -26 -28 -28 -25 - 9 - - - - - - - - -10 -36 -36 -25 -18 
32 - - 5 -15 -11 - - - - - - - - - - -10 - 6 - -
33 - - - - - - - - - - - - - - - - - -
34 - - - - - · - - - - - - - - - - - - -
Sector 2_ 

-182-196-214-208-185-161-147-137-145-150-161-186-204-239-275-262-254-214 
Sector A 

5° !5° 25° 35° 45° 55° 65° 75° 85° 85° 75° 65° 55° 45° 35° 25° 15° 5° 
(CosA) X (.a) 

-1S1-189-194-111-131-92 -62 -36 -12 +13 +41 +79+111 +169+235+231+226+213 
( sinA ) x ( ) · 

-16 -31 -90 -119-131-132-133-132-142-149-156-169-167-169-158-111-61 -19 

I\) 
+=" 



Discussion of Errors. 

At some stations a drift check was made and the drift 

found was very small, so drift corrections were neglected. 

Systematic errors could ocnur in estimating mean 

anomalies but since they would be of opposite signs they 

should for the most part cancel out. 
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Some small errors may occur in the gravimetric 

computations. However, the purpose of collecting the gravi-

metric deflection values is to show a trend along the 

survey line. This trend can then be compared to the 

torsion balance deflection trend. Therefore, small errors 

ln the gravimetric method will not compromise the purpose 

for which they have been computed. 



III 
INTERPOLATION OF DEFLECTIONS OF THE VERTICAL 

USING THE CURVATURE GRADIENTS OF GRAVITY 

A. Development of Formulas Ltl 
If deflections of the vertical are to be inte~polated 

between any two points, it is necessary to assume that 

the defrection changes between intermediary points is 

linear. Therefore, the distance between intermediary 

points that can be safely used varies with the mass dis-

tribution close to the physical surface of the earth. To 

obtain such a dense net of de.flections using astronomic 

means would be extremely laborious. As explained in 

Part I A, obtaining the deflections using the gravimetric 

method is simply not possible in some areas of the world 

due to a lack of available gravity data. 

However, by using the curvature gradients of gravity 

obtained with a torsion balance, the deflection can be 

obtained to the desired density. The only requirement is 

that both deflection components 5 , ? are known at one 

station, and at least one of the components is known at 

another station. So, along with the torsion balance 

observations, a minimum of three astronomic determinations 

are necessary. The following change is used to simplify 

26 
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notation for the gradients of gravity. 

d2W W --- ... xx dxdy 
2 

d W Wxy axay = etc. 

The torsion balance observations produce the curvature 

gradients W~ - Wyy - Wxx, and Wxy· Using these quantities 

the deflection differences between points can be -computed 

using Formulas derived by Eotvos in 1906. 

A start is made with an initial point (o) which should 

be a point where both the astronomic and geodetic positions 

are known so that the astro-geodetic deflections are 

available. The initial point is used as the origin of 

the (x, y, z) coordinate system with the x axis oriented 

positive toward the north (tangent to the local meridian) 

and the z axis coincides with the local vertical, positive 

down. They axis is perpendicular to the x and z axis 

and is positive toward the east. This means that the 

relative oriemtation of the coordinate system is differ-

ent at each station. Fer simplicity only one coordinate 

system is used for the survey area. -Taking the initial 

point (0) as the reference station, the coordinate system 

based on this point is used over the whole area. Therefore, 

at any point in the survey area the z axis is parallel to 

the vertical at point (o) and the x axis is parallel to 

the tangent of the meridian at point (o). 
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In Figure 7 the plane o~ the paper can be taken as the 

xz plane of the above defined coordinate system. In this 

new coordinate system with the origin at any arbitrary 

point A the z axis is parallel to the vertical of the 
1 

initial point (o). Therefore, it will not coincide with 

the direction of the gravity vector at the arbitrary point 

A1 • Line A1G is the projection of the gravity vector . 

0 +x ~------
LlJ, 

+-Z. 

Figure 7. 
at point , A1 on the xz plane. Since the dominate gravity 

change is a function of latitude the change along the x axis 

is much greater than the change along they axis. Therefore, 
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the · di£ference between the vector A1G and the true gravity 

veetGr at point A1 is small and can be negleeted. A1H is 

the gx component of g and line EE represents the equatorial 

plane intersecting the xz plane. It can be seen from the 

figure that the astro-latitude of the initial point (0) is.£ 

and of point A1 is~ +L:i.I,. 

For point A1 l, == I +.6.~ then 
1 

-gx - g sin ~.I,, but since ..c:::.1, 

is a small angle 

and using a similar reasoning along the prime vertical: 

- - gy 
g 

(3) 

(4) 

where.t1.L1 
0 and A1 • 

is the astro-longitude between the points 

The geop of the observation point is defined as the 

equipotential surface of the gravity passing through the 

center point of the torsion balance, i • .e. , . where the 

horizontal beam is attached to the torsion fiber. The 

perpendicular to the equipotential surface at that point 

is, of course, the geop normal. The above equations give 

the North and East components of the angle between the 

geop normals at O and A1 • This development can be used 
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to determine the respective North and East components of 

the angle between the geop normals at O and another 

arbitrary point A2 , .4§ 2 , and L1L2 • 

Subtracting the equations for points A1 and A2 
gives the expressions for the quantities ( Ll§ 2 - .d..£ 1 ) 

and ( L::.. L2- L::.. L1 ) which are the North and East components 

of the angle between the geop normals at A2 and A1 • 

Llf2 - LlJl == - ! ( g..,.,n. - g ) - - l (W W ) xl x2 - xl 

Where g, and ¢ are the mean gravity and the mean m m 
astro-latitude between points A1 , and A2• (~¢2 -Ll¢1 ) 

and (.cL2 -~L1 ) are the astro-latitude and longitude 

differences between points A2 and A1 • The quantities 

(6) 

gx1, gx2, gyl' gy2, a r e t he gx and gy gr avity component s 

at A1 and A2 . These can be substituted by the first 

partial derivative of the potential function of the 

gravitational force (W) since according to Newton's Second 

Law of Motion: 

G • mg (gr cm sec-2 ) units (7) 

where G is the gravitational force, and g is the 



gravitational acceleration. 

and by definition 

aw Gx . dW Gy . ax= , ay - , 
-· •· . .. 

there:rore G = .g '',and 

aw gx . dW gy . 
- :m , 

ay -
, 

dx 

Let the mass m • 1 gr 

dW G az - z 

dW g oz - z 

31 

(8) 

The spheroidal normals are perpendicular to the spheroid, 

but can also be assumed to refer to the reference ellip-

soid, and the spherop of the observation point. The refer-

ence to the spheroid implies the normal gravity field. 

Using the same analysis as previously the equations for the 

North and East components of the angle between the spheric-

dal normals at A1 and at A2 can be developed. 

~¢2 -~!2\ = 1 (Ux2 - Ux1) 
rm 

- 1 
Ym 

Here the quantities ( ..6.~2 - ~01 ) and ( LlA 2 - ~A 1 ) are 

the geodetic latitude and longitude differences between 

(10) 

points A1 and A2 • Then uxl' ux2, uyl' uy2 are the normal 

gravity components at A1 and A2 , and Ym is the mean normal 

gravity. Now ! , the north-south component of the 

deflection o:r the vertical is equal to the astro-geodetic 

latitude difference: 
(11) 



and the east west component involves the astro-geodetic 

longitude differences in the expression 

'? == ( ")...
1 

- A ) cos fl) 

therefore, th~ 1ifferences between the astronomic and 

geodetic1atitude and longitude differences in the above 

equations (6) and (10) are the differences of the 

deflection components between the points A1 and A2 • · 

Assuming that in the relatively small survey area: 

y m ... gm and ¢m = 1 m 
and then subtracting the previous equations gives: 
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(12) 

L-(Llf2-Li¢2) - ( L:111-Ll¢1.2Jgm • -(Wx2-Wx1)+(Ux2-Ux1) 
(13) 

CJ ~L2 -L.'.l). 2 )cos¢m-( .6.L1-L1A1 )cos ¢~ • 

== -(Wy2 - Wyl) + (Uy2 - Uy1) 

or 

( 3 2 - 51)~ - -(Wx2-Wx1) + (UX2 - uxl) 

( '7 2- f?1 )~ "'" -(Wy2-Wyl) + (Uy2 - Uyl) 

(14) 

Defining W - U as the potential anomaly~ Wand similarly 

for the other partial derivatives. 

Substituting 

D. s 21 - 5 2 - s 1 (15) 
6 1? 21 - t? 2 -11 



33 
gives 

(16) 

Calling upon the assumption that the points A1 and A2 
are close enough together so that the variations of the 

gradients between them is linear, a new coordinate system 

(n, s, t) is introduced. 

X 

s 

Figure 8 . 

n 

The taxis coincides with the z axis of the (x, y, z) 

coordinate system and then axis goes through points A . 1 
and A • The s axis is then perpendicular ton and t. 

2 
(see Figure 8). The coordinates of points A1 and A2 in 

the new coordinate system are ( s.o, n-n1 ) . and (s=o, 

n-n2 ) respectively . One of the second partial derivatives 

of the po~ential in the new coordinate system is a2w . 
dnds 

This is also called a gradient of gravity and it 

expresses the change of the gravity component in a 
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certain direction ~or a unit distance. 

These relationships exist between the gradients 

a2w 2 
d W dgs dgn = - -dndS dsdn a:n 

In order to find the first partial derivatives of the 

potential the gradient of gravity is integrated. 

. n2 

T • f d
2

W 12 dnds (17) 
n.1 

the change in a2w is assumed to be linear so approxi-
ariTs" 

mate integration can be used. 

The Trapezoidal Rule gives: 

(18) 

The transformation equations between the two coordinate 

systems are: 

S = y COSo( - X Sino< 

n .... y sine< + x cos<>< 

So the transf@rmation equation of the first partial 

derivative is: 

(19) 



W - -W sin o< + W eos <>< 
S X y (20) 

Substituting (20) into (17) we get: 

(21) 

- +(W 2 - W ) cos~ 12 -(W 2 - W ) sino<. 
Y yl X xl 12 

°)_2 is the azimuth of the direction A1 A2 • In the same 

manner an expression for the normal gravity field can be 

developed. 
N 

Tl2 = +(Ux2-Ux1) cos«12-(Ux2-Ux1) sino<l2 (22) 

. N the term T12 is the same as T12 but:ln the normal gravity 

field. Now as before (22) is subtracted from (21) and 
N using the notation ~T12 = T12 - T12 

substitute (16) into (23) 

+( -L1Wx2 + .6.Wxl) sin c>< 12 
(23) 

(24) 

Now b.. T12 can be computed using : 

and equation (18) becomes 
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The torsion balance observation gives the quantities 

W - W = W ,,1 and W yy xx '-I xy 

after subtracting the effect of the normal gravity 

field the observed gradient anomalies are obtained: 

and ~w xy 

These values must be transfQrmed to the (n, s, t) co-

ordina t.e system. 

Using the transformation equations 

x • n coso< - s sino< -y n sincx + s cosC>( 

z - t 

the partial derivatives are obtained 

dx dX 
an - cos 0( as --sin o<: 

dy 
an - sine>< dy 

as - cos o< 

dz 0 dz 0 -- ---dn ds 
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(25) 

Now ' the first partial derivatives of the potential function 

W.are calculated by using the Chain Rule. 

dW dW dx + dW ay + dW dz dW coso<+ dW sino( an - ax: an ay an oz an -ax ay (28) 
aw dW dx + dW dy + filW dz - aw sin o< + aw cos e>< as - a:x as ay as az as - ax ay 



Again using the Chain Rule the second partial derivative 

is found: 

d
2

W d 
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anas - ax (dW) dx + d (dW) dy + d (dW) ~s • an as ay an as az an ulj (29) 
2 2 2 2 d w) sino< COS°< + d w ( cos o<' ... sin o() 

dx2 dxdy 

2 
( d W -... --
dy2 

using the Trigonometric identities 

sin 2o<.-= 

cos 2o< -

gives: 

2 sin e>< cos o< 

2 2 cos o< - sin c-< 

sin 2o< +AW xy cos2 <>< (30) 

Now moving on to a third point A3 a triangle A1 , A2 , A3 .. 
-is formed and equations corresponding to equation ( 24) 

can be written. 

For si.de A2 A
3 

~T23 - gm~~32 sin23 - ~6/?32 coso<23 

Summing the deflection components in a given triangle 

should give o. 
This gives us two more equations 

LlS21 +4 ~31 +6 !32 - O 

4 '?21 +~'731 +£1132 """ 0 

(31) 

(31) 

(32) 
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With equations (24) (31) (32) we have five equations and 

six unknowns. To solve this, five of the unknowns must 

be expressed as a function of the sixth. The six unknowns 

are 

Taking the difference between the North components at 

triangle side..ci.S21 as an unknown then 

4 S 21 - -u (33) 

then when the equations (24), (31) an~ (32) are solved 

for the unknowns, this gives: 

- T12 + u sin0(12 
gm cosO<J..2 

• .=-T23coso<31+(..dT31+ ~421 sin31-gm6 '?21 cos3l)cos0(23 
~sin ( o< 31o<23) 

The normal gravity value for the station can be used 

for~-

(34) 

(35) 

(36) 

The formulas (35) (36) are then applied repeatedly 

to get values for subsequent lines. For example,the next 

line would be 3-1 so we would solve for4j 31 and~?31 
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using appropriate subscripts in the formulas. Then the 

formulas would be used for the next triangle A2 , A
3

,A4, 

and so on until reaching the end of the chain where 

another astro-geodetic deflection is known (see Figure 9). 

A, 

Figure 9~ 

At this point there are formulas for the deflection 

differences on each line which ar~ ·unknown. Also, each 

formula contains the unknown u. Now u can be solved pro-

vided three values of Sand '? are known at two points 

in the chain, preferably at the initial point and the end. 

The deflection components at the two end stations ean 

be determined through astronomic observations or by 

gravimetric means -.,_ If astronomic observations are used 

the values are relative since the values depend on the 

size_, shape and orientation of the reference ellipsoid 

used. If the deflection components are computed gravi-

metrically the values are considered absolute. In this 

case the triangle corner values will also be absolute. 
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B. Praetieal Computations 

The torsion balance observations give values which 

must be corrected for local terrain (~00 meter radius of 

observation point),the cartographic effect and for normal 

gravity. The values entered in Table IV then are actually 

corrected values. The constants for the torsion fibers 

in the instrument were not known exactly £"?:fJ. If the 

assumed values were incorrect tre 3 and 1 values would 

have a proportional change. 

The first formula used is (30) 

LW = 1/2 ..6.WA sin 2o<:. +LM cos 2o< ns / L... xy 

There is one .6.Wns at each point for-:-each line that 

terminates at the point (see Figure '19). 

n 

B 

A 3 

E 
D 

s 

Figure 10. 



o<. is the azimuth from north (measured from the local 

meridian) of the initial point (1). It was measured 

from a USGS map (1:62500) to the nearest tenth of a 

degree. For example for the line 1 - 2 the calculations 

require ~Wnsi and~Wns 2 • These are vector quantities 
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with the magnitude represented by the gradients of gravity 

and the direction fixed by the azimuth taken from north. 

For example (FigurelO) 

Line 1-2 would require 

..6.Wnsl = 1/2 Ll~l sin 2 o(A +.6Wxyl cos 20(A 

Of course, o<.A - o< B' o< C - o< D' etc. 

A is the vector of .6Wnsl for line 1-2 and Fis the 

V'ector of Ll.Wnsl for line 3-1. Values of .6.W are computed ns 
at each point for each line terminating at that point. 

The next calculation involves equation (25). 

Since this formula is derived from the Trapozoidal 

Rule, ~T12 -represents the area of a trapezoid (see 

Figure 11). The n values were taken from the USGS map 

(1: 62500) with an accuracy of+ 25 meters. The shortest 
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.1.. 1----------=.6=..:.n_:_e,2,1..1 ______ __.__ ____ n 

• 
5 

Figure ll. 

line distance was 218,750 cm which is accurate to four 

places. ..6 T is tabulated for each line in Table III. 

L.. WA and i:::,. Wxy are in Eotvcis uni ts where lE • • 0001 

gals/km or 10-9 cm sec-2/cm. ~Tis then in l0-9cm sec-2 

units, but for convenience they are tabulated in cm ·aec-2 

10-3. 

Solution of formulas (33,) (34) is tabulated in 

Tables V and VI. Since the survey area was close to a 

straight line the triangle chain method described in 

Part III A was modified. The line was computed as a 

traverse so the triangles were not closed. Then the 

formulas take the following form (Table V, column 8): 

~~21 = -u 

t1 5 43 = a43 + b43u 

b.~ 54 = a54 + b54U 



n, n-1 
+u 2 b (37) 

21 

Where it is assumed the a-stro--g-eodet-i-c - latitude . is known 

at points 1 and n: then it is ,.known .:that 

n, n-1 

21 

The only unknown in equation (37) is u whieh can easily 

be solved. a and bare constants which automatically 

result from the formulas. If instead the astro-geodetic 

longitudes at the two points were known then the '( 

equations (Table VI, column 12~ would have to be summed 

in order to find u. After u is determined, it can be 

applied to each formula and then the Li 3 , and ..:1 '( can be 

solved for each line. 

Obviously, 

L:isik ... 
.... 

Referring back to Tables V and VI the units of the 
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constant term in each column are cm sec-2 10-3 and 

units of terms involving u are cm sec-2 • In these ·compu-

tations the ~Wns for station 22 was an unknown. 

Since the observations for station 22 were not 

available, this procedure was necessary. The final 

summation equations for ! and ? were solved as two 

equations with two unknowns. 
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The final equations for computing th~ u and.6.W are ns22 
I I /I II +1.094 - 2.387 • +3.481 

• +2:173 - (-1~020) - +3~~93 

Let~• rm• 980.101 -2 cm sec 

g 
m --f'' 

.004751955 
(; II 

Lj x gm_ +0.16541555 cm sec-2 

// 

1:::..7 x §n. = +.015172992 cm sec-2 

+ .2375215 + .0014097.6.Wns22 - 35.095u = +.016541555 

-5.544882 + .0073066 .6W0522 + 739.760 u = +.015172992 

1st ~W 22 = +35.0959u - .220979945 +24,896u -156,756714 
ns • 0014097 • 

Substitute in 2nd equation 
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-5.544882 + 181.9051u - 1.1453586 +739.760u - +.015172992 

921.6651u - 6.7054136 

u == .00727532 cm sec-2 

181.1264 
-1~6,7657 
+2 ,3697 

Normally u is found from a single equation using 

.6.,S1_n or 6.? l-n' "fhichever is known. If both are known 

a check can b~ made but is not necessary. The g value is 
m 

simply left out of the calculations until the final solu-

tion for u is made, and the ..6.j , Ll? values a.re computed. 

The International Gravity Formula was used to find a 

r for an average latitude of the line. The value 
m, 

obtained was 

= 980.161 cm sec-2 

Table VII gives the final values where column 1 under J 
and ? are in cm sec-2 10-3 radians. Then column. 2 

under S , and ? are in seconds of arc. 



IV 
COMPARISON OF GRAVIMETRIC AND TORSION BALANCE RESULTS 

The adopted value,s of the deflections for the end 

points of the line are as follows: 
11 

=: II TEMPLETON: j +1.094 Astro-Geodetic 
" +2.173 

BARR: 
,, 

+2.387 

- -1.020 Astro-Geodetic 7/~ JI 

'? for TEMPLETON and j for BARR are based on the 
0 0 gravimetric values out to 6.5 · x 6 plus the effect of 

the rest of the earth. The effect over the est of the 

earthis computed from the known astro-geodetic deflections 

at the two stations minus the gravimetric effect out to 
0 0 6.5 x 6 (see Table VIII). 

The adopted values are used for the values at 

TEMPLETON in Table VIII. Then the deflection differences 

between the points based on the gradients of gravity are 

used to compute the deflections at the remaining points. 

The values obtained at BARR should be the same as the 

adopted values there. These deflection values are then 

plotted on the graphs Figures 12, 1]. 

The final values for the three areas around each 

triangulation station are summed up in Table X. These 

values added to the effect over the rest of the earth 

as computed in Table IX, _give the total gravimetric 
46 
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deflection values. These are plotted in Figures 12, 

13. Also the profile of the free air anomaly map over 

the line is plotted as a comparison. Results show a close 

comparison o:f the 1 values. The magnitude of the values 

obtained with the gradieDts of gravity are too high. This 

is probably caused by the use of incorrect instrument 

constants. The S values do not have too much correlation; 

however, this also could be a problem in instrument 

constants. At the end of the appendix is a discussion of 

a method for recomputing the constants and a graph using 

the new constants. 
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V 

ERROR ANALYSIS 

The accuracy of the gradients of gravity could be 

effected by several factors. Since the surrounding 

area or the project line is fairly flat, the topographic 

correction was neglected. There are some hilly areas 

near station BARR; however, the error in assuming flat 

topography here would be very small. At some stations 

the local terrain correction was taken only to 30 meters 

instead of 100 meters. This could produce some error 

which may average out over the survey line. Errors in 

terrain correction are, therefore, also neglected. 

The effect of possible errors in instrument constants, 

reading of photographic plates, and measuring quantities 

from the map can be found analytically since there is a 

functional relation between them. The following formulas 

were developed to observe the effects of errors in these 

quantities: 

Development of Formulas 

Assume all variables are independent 

a - instrument constant 

D, K, tare physical quantities of the instrument 

a= DK da D dK - Dkdt 
t -t 7 
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da - DK 
at"=~ 

Since dd is very small assume dd2 = aa3 = aa4 - dd5 

dWA • + • 1g~82 ( dd4-dd3 ) \ 0. ~7024 _:(d~~!/dd2 ) 
"---------a 

- 0 

dWxy _ - 0.55276 - 1.44724 
_dd 2a 2a 



.awns= 1/2 _wA sin 2o<+...aw cos 2c:><:. xy 
d.6.Wns _ W.Ll eos 2<><- - 2.6.Wxy sin 2 o< 

do<. 

d L:.W 
ns -1/2 sin 2 o< 

2 2 
( mo< MWns) +(~ cMWns) 

tn.1.wns • do< dW.c:,. 

""' 

mLIW03 -j[moc(WLi eos 2<>< -2Wxy s1n2o<)] 
2 

+ 

dT 
MWns 

mT -/[m LIWno 

dT ~W 
dL'..\n = ns 

2 
+ [m dT ] An d£1n 

cos 2 o<. 

2 

- Ll J cos c:><:. + 4 & cos 2. 
s n <>< 

- 2 cot o< 
g 

m 
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+ 2T csc? o< + 4j sin o< -L17- eos -A. ?cos~ 
sin~o< 

m,,J -) h d~J ] 2 

2 
m,,5 - mT(-2c~:JJ + 

dAr/ - 2 
'aT" - g 

m 

Using the underlined fo~ulas with appropriate 

values the standard error of the quantities a, W , 

Wxy' Ll Wns, T, ..::1 j , and .6. 7 can be determi,ned. This 

analysis should be done for each triangle:in the net 

separately. 
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TABLE IV 

COMPUTATION OF 6T VALUES (EQUATION 25) 
AND TRIGONOMETRIC VALUES 

ILine Sta 17( o 2 o(o 
L::iT 2 

sin21K l/24W.a. cos2~ llW:x;:r L'lW,n~ Di~~nce c~ . _ cos <?< sin o< 

1-2 

2-3 

3-1 

l 

2 
2 

3 
3 

l 
3 

3-4 
4 
4 

4-2 

4-5 
2 
4 

5 
5 

5-3 
3 
5 

5-6 
6 
6 

6-4 
4 

+2.78 +2 . 15 -.67765 
76.7 153.4 +44776 -.89415 586,250 -1.1860 +.23005 +.97318 

+3.54 +5 . 54 -3.3685 
+3.54 +5 . 54 -6.5602 

104.4 208.8 -.48175 -.8731 650,000 -4.7118 -.24869 +.96858 
+0.56 +8 .75 -7.9375 
+0.56 +8 .75 -8.7642 

271.0 542 -.03490 -.99939 1,206,250 -6.6403 +.01745 -.99985 
+2.78 +2 . 15 -2.2457 . 
+0.56 +8 .75 -8.3695 

100.5 201.0 -.35837 -.93358 430,625 -2.2067 -.18224 -+~98325 
-0.07 +2 . 04 -1.8794 . 
-0.07 +2 . 04 -1.7995 

283.1 566.2 -.44151 -.89726 1,075,000 -4.4791 +.22665 -.97398 
+3.54 +5 . 54 -6.5338 
-0.07 +2 . 04 -2.0301 

92.0 184.o -.06976 -.99756 298,750 -0.08746-.03490 +.99939 
+1.17 -1 . 53 +1.4446 
+1.17 -1 . 53 +1.2533 , 

276.0 552.0 -.20791 -.97815 796,875 -2.9572 +.10452 -.99452 
+0.56 +8 .75 -8.6752 

_ +1.17 -1 . 53 +1.8167 , : 
81.0 162.0 +.30902 -.95106 218,750 +0.1894 +.15643 +.98769 

+1.14 +0. 46 -.0852 
+1.14 +o.46 -.3794 

268.0 536.0 +.06976 -.99756 . 
-0.07 +2 . 04 -2.0399 

525,000 -0.6351 -.03490 -.99939 

\Jl 
\Jl 



TABLE IV ( continued) 

Line Sta. °' 2o<. sin2o< 1/2.1WA cos2c,<. L:i.Wxy L\Wn·s Distance crfl~s-2 
.6. n xlO -

cosc:>< sin o< 

6 +1.14 +0.46 -.7117 
6-7 96.7 193.4 -.23175 -.97278 481,250 -1.6387 -.11667 +.99317 

7 +0.08 +6.25 -6.0984 
7 +0.08 +6.25 -6.2472 

7-5 271.3 542.6 -.04536 -.99897 700,000 -1.6701 +.02269 -.99974 
5 +1.17 -1.53 +1.4754 
7 +0.08 +6.25 -5.9879 

7-8 98_7 ··197.4 -.29904 -.95424 475,000 -2.8772 -.15126 +.98849 
8 +0.32 +6.32 -6.1265 
8 +0.32 +6.32 -6.1209 

8-6 278.8 551.6 - ~30237 -.95319 945,000 -3.2622 . +.15299 -.98823 
6 +1.14 +0.46 -0.7832 
8 +0.32 +6.32 -5 .-9273 

8-9 101.7 203.4 -.39715 -.91775 469,375 -1.7626 -.20279 +.97922-
9 -2.60 +2.85 ..::1.5830 
9 ) ·. . -2.60 +2.85 -1.7289 

9-7 280.5 561.0 -.35837 -.93358 931,875 -3.5376 +.18224 -.98325 
7 +0.08 +6.25 -5.8635 
9 

94.5 1s9.'o -.15643 
-2.60 +2.85 -2.4082 

9-10 -.98769 297,500 -0.2404 -.07846 +.99692 
10 +1.63 -1. 06 +0. 7920 
10 +1.63 -1.06 +0.5371 

10-8 278.5 557.0 -.29237 -.95630 771,875 -2.1614 +.14781 -.98902 
8 +0.32 +6.32 -6.1374 
10 +1.63 -1. 06 +1. 3070 

10-11 85.4 170.8 +.15988 -.98714 581,250 -0.7587 .08020 +.99678. 
11 +0.07 +3 .98 -3.9176 -



' ·'· 

TABLE IV ( cont.inued) 

Line Sta a<, 2o<-. L::.T 
sin2o< l/2l1W~·cos2o<. LlW .dWns Distance cm sec-2 coso< 

xy h x10-3 
sin o<.. 

11 +0.07 +3.98 -3.9800 
11-9 270.0 540.0 O -1.0000 871,250 -2.9753 -1 

9 -2.60 +2.85 -2.8500 
11 +0.07 +3.98 -3.8787 

11-12 97.0 194.o -.24192 -.97030 408,125 -0.7928 -.12187 +.99255 
12 -6.39 +1. 60 -0.0066 
12 -. , _. -6.39 +1. 60 -1.4434 

12-10 270.7 541.4 -.02443 -.99970 987,500 -0.2091 +.012_~2 -.99993 
10 +1.63 -1. 06 +1.0199 
12 -6.39 +1. 60 -1.3760 

12-13 91.0 182.0 -.03490 -.99939 I 550,000 -0.8305 -.017.45 +.99985 
13 · -1.00 +1. 68 -l.6441 
13 - -1.00 +1. 68 -1.5663 

13-11 273.0 546 . o -.10453 -.99452 953,750 -2.6380 +.05234 -.99863 
11 +0.07 +3.98 -3-9655 
13 -1.00 +1.68 -1.9546 --: 

13-14 74.6 148.o +.52992 -.84805 371,875 -1.1233 +.27564 +.96126 
14 -6.08 +l.02 -4.0869 
14 . -6.08 +l.02 -2.2217 

14-12 264.~ 5~8.4 +.20108 -.97958 911,250 -2.3118 -.10106 -.99488 
12 -6.39 +1.60 -2.8522 
14 -6.08 +l.02 +0.4812 

14-15 97.0 194.o -.24192 -.97030 ·- 775,000 -0.0174 -.12187 +.99255 
1~ -3.12 +1.32 -0.5260 
15 -3.12 +1.32 -1.4388 

15~13 268.9 537.8 +.03839 -.99926 1,131,250 -1.7851 -.01920 -.99982 
13 -1.00 +1.68 -1.7171 -

\.Jl 
-...:J 



TABLE rv · (conti~u~d) 
:_ .. :• •" ··-

Line Sta c>( 2o<_ sin2o<. l/2L1W.Acos2« A.Wxy AWns Distance cm.ale~-2 .eoso( sino< ~n x10-5 
15 -3.12 

15-16 83.0 166.0 +.24192 
16 -0.26 
16 -0.26 

16-14 271.5 543.0 -.05234 
14 
16 . 

16-17 103. 5 ·,~H31'.'6 . - • 45399 
17 
17 . 

-6.08 
-0.26 
+1.15 
+1 . 15 

+1.32 -2.0356 
-.97030 · 517,500 -0.7187 .12187 .99~55 

+0.70 -0.7421 - -

-.99863 

-.89101 

-.99556 

+0.70 -0.6854 
1,286,250 -0.8912 +.02618 -.99966 

+l. 02 -0. 7004 
+0.70 -0.5057 

420,000 -0.5452 -.23345 +.97237 
+l. 76 -2. 0903 
+1.76 -1.8604 , 

921,875 -1.3279 +.04711 -.99889 17-15 272.7 545.4 -.09411 
15 -3.12 +1.32 -1.0205 
17 +1.15 +1.76 -2.0193 . , . 

17-18 -.95630 650,000 -0.7246 -.14781 +.98902 98.5 197.0 -.29237 
18 -6.64 +2.25 -0.2103 
18 -6.64 +2.25 +0.5721 

18-16 281.7 563.4 -.39715 
16 
18 . -, , 

18-19 98.8 197.6 -.30237 

-0.26 
-6.64 

19 +3.66 
19 .. _ +3. 66 

19-17 279.6 559.2 -.32887 
17 +1.15 
19 +3.66 

19-20 89.1 178.2 +.03141 
20 +4.05 

-.91775 1,050,000 +0.0173 +.20279 -.97922 

-.95319 

+0.70 -0.5392 
+2.25 -0.1369 J 

387,500 +0.1931 -.15299 +.988_,23 
-2.35 +1.1333 
-2.35 +1.0156 . . 

-.94438 1,018,750 -0.5220 +.16677 -.98600 

-.99951 

+1.76 -2.0403 
-2.35 +2.4638 

425,000 -1.5203 +.01571 +.99988 
+9.75 -9.6180 

\Jl 
(X) 



TABLE IV (continued) 

Line Sta c<. '2o< sin2o<. 

20 . 
20-18 274.4 .548.8 -.15299 

18 

l/2LiWLI. cos2 o( L:M xy 

+4.05 +9-75 
-.98823 

~wns 

-10.2549 
-6.64 +2.25 - 1.2077 
+4.05 +9.75 - 9.3083 

Di~t~nce c~"18232 coso< sineo< 

805,000 -4.6137 +.07672 --99705 

20 
20-21 

21 
21 

21-19 

87.2 174.4 +.09758 
-11.53 

-.99523 533,750 -8.4205 +.04885 +.99881 
+21.22 -22.2439 

19 
21 

21-22 
22 
22 

-11 .• 53 
269.1 538.2 +.03141 

----·-. .. +3.66 
. -11.53 

8~.7 163.4 +.28569 

+21.22 -22.5718 
-.99951 950,000 -9.0763 -.01571 -.99988 

-2.35 +2.4638 
+21.22 -23.6296 ~-8.0119 

-.95832 678,125 +.3391 +.14436 +.98953 

-5.1656 
-.97592 1,196,875 +.59844 -.10973 -.99396 22-·20 263.7 527.4 +.21814 

20 +4.05 +9.75 - 8.6318 

\J1 
\0 



--·- - + ,6. 7;.:+-/-r<, - I 

LIN£ A. xio-3 
6 321 1 -

2 -6.6403 
-4.4791 

54 -2.9572 
65 5 -0.6351 

6 -1.6701 i~ 7 -3.2622 
8 -3.5376 

109 9 -2.1614 
11-10 10 -2.9753 
12-11 11 -0.2091 
13-12 12 -2.6380 
14-13 13 -2.3118 
15-14 11t -1.7851 
16-15 15 -0.8912 
17-16 16 -1.3279 
18-17 17 +0.0173 
19-18 18 -0.5220 
20-19 19 -4.6137 
21-20 20 -9.0763 
22-21 21 -5.1656 

+ . 5984ti.~ 

TABLE V 
COMPUTATION-- OF 4j (USING EQUATIONS 33, 35) 

-5 ' + L1 . . . • -L:.,P,- . j cos 0( • / • ,,_,..t.-l S/NQ{.A.+I .1.-l - ---- ) - - . ,._ J "-"". - A. + J -'-- - I --- -
')< /0-3 +- .,l( )(j()-3 +,M 

- - - -
- + .99985u - .08974 + .07382u 

+ 6. 6886 - 1. 122lu - 1.7676 + 1.0171 u 
+ 12.7297 - o.4188u - 5.9537 + .2378u 
+ 2.0401 - o.0873u + 1.9529 - o.087ou 
- 4.2567 + .2239u - 0.5822 + .0321u 
+ 7.5837 - .3140u - 7.8456 + .4134u 
- 52.1404 + 8.4278u + 66.669 -10.2367u 
-120.44 +17.3244u + 88.203 -12.503lu 
- 37.9917 + 5.4229u - -
+ 40.9641 - 5.4225u + 6.1064 - .8236u 
- 52.0629 + 6.9275u + 22.5640 - 2.9572u 
- 14.7464 + 1.9755u - 90.643 +11.4951u 
+166.98 -20.964u - 11.1042 + 1.4o4ou 
-133.23 +16.912u + 28.421 - 3.6072u 
+ 87.184 -10.958u + 33.207 - 4.2090u 
-145.39 +l8.503u +125.880 -15.961u 
- 48.300 + 6.6364u + 55.479 - 7.5112u 
+ 70.444 - 9.5562u - 35.108 + 4.7510u 
- 3.9618 + .8172u + 5.4823 - .8172u 
+ 7.0980 - - 2.8879 -

~n 

2 Cs>./ (1+2+J) 
x;o-J + 

- -
- 6.7300 + 1.0737u 
+ o.4419 - .1050u 
+ 3.8188 - .174ou 
+ 3-3579 - .1743u 
- 6.5090 + .256ou 
- 3.5241 + .0994u 
+ 10.991 - 1.8089u 
- 34.398 + 4.8213u 
- 40.9670 + 5.4229u 
+ 46.8614 - 6.2461u 
- 3g.1369 + 3.4703u 
-107.701 +13. 71 u 
+154.091 -19.560u 
-105.700 +13.305u 
+119.063 -15.167u 
- 19.49 + 2.5420u 
+ 6.6570 - .8748u 
+ 30.722 - 4.8052u 
- 7.5558 -
- .9555 + .5984 

LI vl"'s .z 2 

0\ 
0 



TABLE V (continued) 

·, L xcos 0( ,' L+/ 
~I ..c T,,.:_ .,:_ r/ ></0 

LINE A )( /~y.5 +·.,t..< KCOSc<L., ; i-{ 

A½l 1 .. - - -. . 
32 2 + i:6~37 - .267ou -.08222 
43 3 - .O 05 + .019lu -.5001 
54 4 - .1333 + .006lu -.0091 
65 5 + .5253 - .0273u -.0066 

~1 6 + .7594 - .0299u -.0~72 
'7 +' :;5330 - . 0150u -.4 02 

98 8 - 2.2289 + .3668u -.3212 
109 9 + 2.6989 - .3783u -.0355 
11-10 10 - 3.2856 + .4349u -
12-11 11 .- 5.7110 + .7612u -.0097 
13-12 12 + .5608 - .0693u -.0435 
14-13 13 -29.687 +3.713lu +.1135 
15-14 14 -18.779 +2.3838u +.0003 
16-15 15 -12.882 +l.6215u -.0188 
17-16 16 -27.795 +3.5407u -.0257 
18-17 17 + 2.8813 - .3757u -:.1469 
19-18 18 - 1.0185 + .1338u +.0322 
20-19 19 + o.4826 -o.07549u -.1166 
21-20 20 - 0.3691 - +.1323 
22-21 21 - .1379 + .0864 +.8791 

Llw't1s 2.2. - • 03721.A' 

~ 
NUMFPLl Trio f SUM 'i"+{,]_ -NV!J.f_{j_,ALQ/,LS_t./Y __ ~:.;._;,-.i.--C. 

)( /0-3 . +-'-< I - i,(~ l i."'-/ J )( +M 

- - -u -
+ 1. 5915 - .267ou - 6.8673 + l.152lu 
- . 5806 + .019lu - 12.7998 + .42llu 
- . 1424 + .006lu - 2.0413 + .0874u 
+ . 5189 - .0273u + 4.2578 - .2240u 
+ . 7222 - .0299u - 7.6740 + .3177u 
+ . 0928 - .0150u + 53.0286 - 8.5714u 
- 2. 5501 + .3668u +121.78 - -17.5167u 
+ 2. 6634 - .3783u + 37.9917 - 5.4229u 
- 3. 2856 + .4349u - 40.9670 + 5.4229u 
- 5. 7207 + .7612u + 52.1343 - 6.937ou 
+ . 5173 - .0693u + 14.8223 - 1.9857u 
-29 . 574 +3.7131 -167.01 +20.968u 
-18 . 779 +2.3838u +133.28 -l6.9.18u 
-12 .901 +l.6215u - 87.281 +10.970u 
-27 .821 +3.5407u +148.474 _. -l8.896u 
+ 2.7344 - .3757u + 48.986 - 6.7306u - .9863 + .1338u - 70.652 _ + 9.5845u 
+ .3660 - .07549u , + 3.9623 - .8173u 

.2368 --
+ .7412 + .0492 

WN's,, aW,,vsa 
2:= 

-t 

I 7.1411 -
+ 21.258 + 1.4097 

I!:::,. \...l,v5 ?. :1. 

+237.5215-35.0959u+ 
+l. 4097 L'.1 Wn822 

... 

1. /NE 

21 
32 
43 
54 
65 
76 
87 
98 
109 
11-10 
12-11 
13-12 
14-13 
15-14 
16-15 
17-16 
18-17 
19-18 
20-19 
21-20 
22-21 

CJ'\ 
f-.J 



L:).?.21 
.(. 

I 

- · -
LINE /4 

~f32 2 
43 3 
50 4 
65 5 
76 6 
87 7 
98 8 
109 9 . 
11-10 10 
12- 11 11 
13-12 12 _ 
14- 13 13 
15-14 14 
16-15 15 
17-16 16 
18-17 17 
19-18 18 
20-19 19 
21-20 20 
22-21 21 

TABLE VI 

9 
COMPUTAT::I:ON OF .af( USING EQUATIONS 34, 36) 

~r;2.-= -//8t0 +AS !No<.12 = 
-=+ , J7318A 

COL ¼: SIN°<,i_r..i..+J .a T; · ,, 10-3>, -·""1-'-•I 
x;o-3 +A X SIN<><L +I i.-1 +A 

- 6.5185 + 1.0400u +4.7111 
+ o.4345 - .1032u +2.1493 
+ 3.8165 - .1739u +0.0870 
+ 3.3166 - .1722u -0.1893 
- 6.4645 + .2543u +1.6383 
- 3.4835 + .0983u +2.8433 
+ 10.7626 - l.~71~u 
- 3~~2921 + 4. 06 u 

+1.7330 
+0.2378 

- 40.8351 + 5.4054u +0.7587 
+ 46.5123 - 6.1996u 
- 32.1321 + 3.9697u +0.~924 +O. 29 
-103.53 +12.949u +1.1175 
+152 .94 -19.414u +0.0174 . 
-104.91 · +13.206u +0.7185 
+115.77 -14.748u +0.5446 
- 19.279 + 2.5141u +0.7095 
+ 6.5786 - .8644u -0.1904 
+ 30.718 - 4.80 6u +1.5158 
- 7 . 5468 - +8.4195 
- .9455 - +7.9635 
+ .5921 LlWn522 - .3371 

.a.Wns22 

·-
(LiT,2 +,4 s 1N"<12)/coso<.,:t 

::. - S. l'-1.26 + "f. Z ..3 OJ A +s l'i2a .-1/.2:J0.3.M. 

IV{.Jf:1_£'/?AiO!{, 2 ('J+IO) -NVl'1el?AT<M,/s1NL"):"'-I--;,: _1-

K /0-3 +..« -0<.,i",.,,:.+1) l!'/0-3 +A 

- 1.8074 + 1.0400u + 7.7989 - 4.4876u 
+ 2.5838 ... .1032u + 56.9621 - 2.2751u 
+ 3.9035 - .1739u + 55.956 - 2.4928u 
+ 3.1273 - .1722u + 25.661 - 1.4130u 
- 4.8262 + .2543u + 51.282 - 2.7022u 
- o.6402 + .0983u -365.83 + 56.1715u 
+ 12.4946 
- 34.05 · - 1.~7l~u + 4. 06 u 

-596.73 
-488.16. 

+ 84.589u 
+ 68.8991u 

- 40.0764 + 5.4054u -499.706 + 67.399u 
+ 47.3050 - 6.1996u -431.104 + 56.499u 
- 31.3027 + 3.9697u -896.926 +113.745u 
-102.413 +12.949u -578.343 + 73.125u 
+152.96 -19.414u '""l.1085.59 +137.786u 
-104.19 +13.206u -704.89 + 89.344u 
rt-116.375 -14.748u -620.74 + 78.706u 
- 18.570 + 2.5141u -322.67 + 45.039u 
+ 6.3882 - .8645u +457.607 - 61.927u 
+ 32.234 - 4.8o46u +348.97 - 52.015u 
+ .8727 - + 26.318 -
+ 7.0180 - +20.109 -
+ . 2550 .:1W + 7.3066L1Wn822 ns22 

2 • -5544.8822+739.76ou 

+7. 3066 ..:1Wn·s ·22 O'\ 
I\) 



TABLE VII 

RII<Jc:AL COMPUTATION OF AS AND A?usrNG COMPUTED 
VALUES FOR u, and gm 

. 1 3 2 1 
Line 

€¾iA310- AJ'' gm~'(l0-3 

2-1 - 7.275 -1.53 -25.634 
3-2 + 1.515 +0.31 -24.850 
4-3 - 9.736 -2.05 +40.410 
5-4 - 1.405 -0.30 +37.820 
6-5 + 2.628 +0.55 +15.381 
7-6 - •5'. 363 -1.13 +31.623 
8-7 - 9.331 -1.96 +42.835 
9-8 - 5 .. 660 -1.19 +18.682 
10-9 - 1.461 -0.30 +13.103 
11-10 .. 

l.514 -0.31 - 9.357 -
12-11 + 1.665 +0.35 -20.056 
13-12 + 0.376 +0.08 -69.395 
14-13 -14.461 -3.04 -46.335 
15-14 +10.196 +2.15 -83.153 
16-15 - i. 471 +1.57 -54.884 
17-16 +11 .. o·oo +2.32 -48.129 
18-17 - 0.019 o.oo - 5.000 
19-18 - 0.992 -0.19 + 7.068 
20-19 - 1.984 -0.42 -29.456 
21-20 - 7.141 -1.50 +26.318 
22-21 +36.38 +7.89 +167.00 

Note: u - 0.00727532 cm sec-2 

=r 980.101 cm sec-2 

2 A? II 

- 5.39 
- 5.23 
+ 8.50 
+ 7.96 
+ 3.24 
+ 6.65 
+ 9.01 
+ 3.93 
+ 2.76 
- 1.97 - 4.22 
-14.60 
- 9.75 
-17.50 
-11.55 
-10.13 
- 1.05 
+ 1.49 
- 6.20 
+ 5.54 
+35.32 



TABLE VIII 

FINAL COMPUTED VALUES FOR 3 AND - 1 USING THE 
DIFFERENCES FOUND IN TABLE VII 

Station s 1/ r'' 
1 TEMPLETON + 1.094* + 2.173 
2 - o.44 - 3.22 
3 FOUST - 0.13 - 8.45 
4 - 2.18 + 0.05 
5 - 2.48 + 8,.01 
6 - 1.93 +11.25 
7 TAYLOR - 3.06 +17.90 
8 - 5.02 +26.91 
9 - 6.21 +30.84 

10 - 6.51 +33.60 
11 - 6.82 +31.63 
12 - 6.47 +27.41 
13 - 6.39 +12.81 
14 - 9.43 + 3.06 
15 - 7.28 -14.44 
16 OWERS - 5.71 -25.99 
17 - 3-39 -36.12 
18 - 3.39 -37.17 
19 - 3.58 -35.68 
20 - 4.00 -41.88 
21 - 5.50 -36.34 
22 BARR + 2.387 - 1.020* 

* Astro-Geodetic Deflections 

Note: Torsion balance observations were not available 
for triangulation stations LANUM, HOYT, and 
MEINFELER. 
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TABLE IX 

TOTAL GRAVIMETRIC DEFLECTIONS TO INCLUDE 
COMPUTED EFFECT OF ENTIRE EARTH 

TEMPLETON 
,, 

SAG - +1.094 
.6.~ "(6° x 6P) = -0.346 

Ef'fect of .:6 g ov0r earth 
outside (6.5° x 6 ) 

Station .6 .3 
11

( 6. 5° x6°) 

tt'EMPLETON T-4 - 0.346 
WOUST G-1 + 0.726 
rr'AYLOR F-:-1 + 1. 689-
LANUM E-1 'I- 2.612 
~OYT D-1 + 0.736 
OWERS C-1 - 0.696 
MEINFELER B-1 + 0.677 
BARR A-1 + 0.947 

Total 

+ 1.094 
+ 2.166 
+ 3.129 
+ l~ • 052 
+ 2.176 
+ 0.744 
+ 2.117 
+ 2.387 

I 

!;~ ARR 
.,i ,, ,, H II 

Ll7(6.50 X 6°) = -0.949 JAG - -1. 020 

s,'' 

Effect of 4g on 
outside (6.5° x 

1 µ H 
go)ver earth _ '7~G -A1(6.5° x 6°)--0.071 

" '? II Station 1 (6.5° X 6°) Tptal 

rr'EMPLETON T-4 + 2.244 + 2.173 
FOUST G,;,.1 + 1.769 + 1.698 
tt'AYLOR F·-1 + 3.979 + 3.908 
LANUM E-1 + 4.246 + 4.175 
HOYT D-1 - 3.953 - 4.024 
OWERS C-1 - 9.147 - 9.218 
tMEINFELER B-1 - 4.573 - 4.644 
tBARR A-1 - 0.949 - 1.020 



Station 

TEMPLETON 
(T-4) 

FOUST 
(G-1) 

TAYLOR 
(F-1) 

LANUM 
(E-1) 

HOYT 
(D-1) 

OWERS 
(C-1) 

MEINFEL.ER 
(B-1) 

BARR 
(A-1) 

TABLE X 

SUM OF GRAVIMETRIC DEFLECTIONS INCLUDING 
INNER CIRCLE ,, RICE'S RINGS AND ( 6 . .50 x 6°) 

j // 
6.5°Lat 

7 II 

Inner Rice's Inner Rice's 6.5°Lat 
Ring Rings 60Long. Total Ring Rings 6°Long. 

· · , · '(-25-• -x25 •) (25'x25') 

+.434 - .027 -.753 - . 34~~ + .579 - .122 +1.787 
+ /. 09'-/ 

+.238 + .597 -.109 + .726 - .389 + .004 +2.154 

. -
+.397 - .822 +.470 +l.689 + .399 +1.483 +2.097 

--· 
-

+.971 +1.781 -.140 +2.612 +1.081 +2.481 + .684 
-

+.429 + .545 -.238 + . • 736 - .550 -1.738 -1.665 

-.247 - .397 -.052 - .696 -1.718 -3.994 -3.435 

+.338 + .339 -.093 + .677 + .565 -1.609 -3.529 

+.635 + .322 - ~010 +0.947 + •• 45!t. + .520 -1.923 

*Astro-Geodetic Deflections 

Total 

+2.244 

+1.769 

+3.979 

+4.246 

-3.953 

-9.147 

-4.573 

-0.947 
-1.020* 

0\ 
0\ 



Pos.sible error in instrument constant; The following 

method was- -·used to find a better constar1t. The gradients 

of gravity in the east-west dire-,ctioH--aPe compared using a 
torsion balance observation and the inner circle gravity 

anomaly map. The triangulation statioA· TAYLOR was selected 

for comparison because of its fairly linear pattern of 

gravity anomaly change. The Wxy for TAYLOR with the terrain 

correction is ·+14.6E. Using Rice's three gradient method 

weightirii -~h~ center difference 1 and the 45° point 

difference as ·1/2 the following value is obtained Wyz=5.8E 

Therefore S.8 14.6 = o.4. Using this analysis the . 
value of the Instrument c9nstant should be reduced by 

a factor of ' .4 then the values of the deflection 

would also be reduced by .4. The results are shown in 

Figures 18, 19. 
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