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ABSTRACT 

This thesis presents research into techniques for storing, accessing and analyzing mas­

sive scale semantic graphs. The end result of this research effort has been the development 

of a software framework, MSSG, to enable the analysis of scale-free semantic graphs with 

O(10 1 2 ) vertices and edges. Here, we present the overall architectural design of the frame-

Work, as well as a prototype implementation for cluster architectures. The sheer size of 

these massive-scale semantic graphs prohibits storing the entire graph in memory even on 

medium- to large-scale parallel architectures. We therefore propose a new graph database, 

grDB, for the efficient storage and retrieval of large scale-free semantic graphs on sec­

ondary storage. This new database supports the efficient and scalable execution of parallel 

out-of-core graph algorithms which are essential for analyzing semantic graphs of massive 

size. We have also developed a parallel out-of-core breadth-first search algorithm for per­

formance study. Experimental evaluations on large real-world semantic graphs show that 

the MSSG framework scales well, and grDB outperforms widely used open-source out-of-

core databases, such as BerkeleyDB and MySQL, in the storage and retrieval of scale-free 

graphs. 
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CHAPTER 1 

INTRODUCTION 

Graphs have been used to model many interaction networks, ranging from the bio­

logical to the computational sciences. Some examples of these interaction networks are 

metabolic and signaling pathways, gene regulatory networks, protein interaction networks, 

taxonomies of proteins and chemical compounds, and social networks [42,43,53,59,68,69]. 

These types of real-world graphs are known as semantic graphs [32]. In a semantic graph, 

vertices represent certain concepts or objects and edges represent the relationships between 

those concepts or objects. Further, the vertices and edges in the semantic graph are asso­

ciated with some meaningful types. These vertex and edge types form an ontology graph, 

which summarizes the semantic information the corresponding semantic graph carries. 

Figure 1.1 shows an example semantic graph and its ontology. By itself, an ontology 

is just an instance of a semantic graph. The vertex and edge interconnections only take 

on special meaning when the ontology is used as a blueprint for other semantic graphs. 

When used as a blueprint, the ontology's topology restricts the topology of the instance 

semantic graph. Taking the Figure 1.1 ontology as an example, note that the 'Date' vertex 

types are not allowed to be directly connected to the 'Person' vertex type. Any indirect 

association must occur through the 'Meeting' vertex type and through the allowed edge 

types, 'attends' and 'occurred on.' The effect of these ontological restrictions is such that 
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Semantic Graph associated Ontology 

Figure 1.1: An example semantic graph and ontology 

any semantic instance graph (as shown on the left of Figure 1.1) must only contain the 

vertex and edge interconnections as allowed in its associated ontology. That is, 'Date' 

vertices are only connected to 'Meeting' vertices and 'Travel' vertices. 

Since semantic graphs model the relationships between concepts or entities in the real 

world, their sizes often must reflect the large amount of information required for various 

models to be accurate. Further, while real-world semantic graphs are typically large, new 

graphs in some emerging fields are expected to have truly massive numbers of vertices and 

edges. For example, Kolda et al. [42] predict semantic graphs representing social networks 

of interest to the Department of Homeland Security w i l l have 10 1 5 entities. Additionally, 

real-world graphs which model interaction networks such as social networks or even the In­

ternet's website interconnections have degree distributions which follow a power-law [10]. 

This means that i f y is the number of nodes with degree rr in a graph, then y oc x'13. These 

power-law or scale-free graphs have several unique properties. They exhibit the small-

world phenomenon, because their diameter increases only logarithmically with the number 
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of vertices [66]. As a consequence of this small-world property, queries which analyze long 

paths often must access a significant portion of the graph data, sometimes over 80% of the 

total graph's edges in our experiments. Analyzing such large graphs and answering user 

queries within a reasonable amount of time is an important and very challenging problem. 

First, a set of novel graph algorithms are needed in order to analyze these huge data sets. 

In the best case, a graph with one trillion edges requires 8 billion bytes of disk space to store 

and over 2,300 seconds at 50 MB per second just to scan through the data spread over 64 

clustered compute nodes. Clearly, in order to process given user queries in a timely manner, 

these graph algorithms must explore large semantic graphs in parallel. More importantly, 

they must be out-of-core (OOC) algorithms that read and process input graphs that are 

stored in persistent storage, as the memory requirements of any massive semantic graph are 

prohibitively large. Although in the literature there are various parallel graph algorithms [9, 

20,21,30,40,41,69], and OOC (also called external memory) algorithms [2,3,22,25,46,50], 

along with one concurrent work which provides a parallel out-of-core breadth-first search 

algorithm [49], there is no practical framework yet provided to allow future work in this 

direction. 

Second, a new graph storage system and data format are needed. Although traditional 

relational database systems provide enough performance for business applications such as 

transaction processing, relational databases are not ideal platforms for storing and process­

ing massive semantic graphs. The same flexibility which makes relational databases ap­

propriate for a wide variety of divergent applications causes them to perform poorly when 

faced with such strict data and speed requirements as are imposed when dealing with large 

semantic graphs. Therefore, a new data management system is needed. This data manager 
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must be able to store streaming semantic graphs of massive size and provide an underlying 

infrastructure to allow the parallel graph algorithms to access and process the stored graph 

in a scalable and cost-effective way. 

In this thesis, we present a middleware framework for storing, accessing and analyzing 

massive-scale semantic graphs. The framework, Massive-Scale Semantic Graphs (MSSG), 

targets scale-free semantic graphs with O(10 1 2 ) vertices and edges. In a scale-free graph, 

most of the vertices are only connected to a small number of other vertices (i.e., they have 

low degree), while a few vertices, known as hubs, are connected to a large number of other 

vertices. Most ofthe real-world semantic graphs exhibit this topological property. 

The sheer size of these massive-scale semantic graphs prohibits storing the entire graph 

in memory even on medium- to large-scale parallel architectures; hence, these graphs w i l l 

need to be persistently stored in a distributed database. The framework is architected tar­

geting large clusters with compute nodes that have direct access to fast disk storage. One of 

the many possible configurations is compute nodes with large local disks. Another configu­

ration is compute nodes that are connected to fast storage arrays via Storage Area Network 

switches. An example of the latter is Ohio Supercomputing Center's Mass Storage sys­

tem [18]. 

We propose a new graph database, grDB, for storing and processing large scale-free 

semantic graphs on secondary storage. The grDB database stores the vertices and edges of 

a semantic graph in such a way that the number of disk I/Os required to access adjacent 

vertices is minimized while still efficiently utilizing the storage space. 

We have developed a prototype implementation of MSSG. This prototype has been built 

on top of DataCutter [15,16], which uses MPI as its low-level communication protocol. 

Experimental evaluations with both real-world scale-free graphs and synthetic scale-free 
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graphs show that our prototype scales well. We have also compared grDB against other 

widely used open-source databases, BerkeleyDB [61] and MySQL [47], as well as in-

memory graph storage implementations (for small graphs). These experiments showed the 

effectiveness of the proposed graph database for scale-free graphs. 

The main contributions of this research are summarized as follows. 

• We have architected a framework, MSSG, to store, retrieve, and process massive-

scale semantic graphs. 

• We have developed a novel data management system called grDB. Unlike traditional 

relational databases, grDB is optimized specifically for efficiently storing and access­

ing semantic graphs of massive size. 

• We have developed a parallel OOC breadth-first search algorithm that runs on dis­

tributed parallel machines. 

• We have evaluated the performance of MSSG using large real-world semantic graphs 

and randomly generated large scale-free graphs . The results show that the MSSG 

framework scales well, and that the proposed graph database, grDB, outperforms 

other open-source database systems, Berkeley DB and MySQL. 

The remainder of this thesis is organized as follows. Some related work is presented 

in chapter 2. The architecture of the proposed MSSG framework and its implementation 

are described in detail in chapters 3 and 4. Experimental results are presented in chapter 5, 

followed by concluding remarks in chapter 6. 
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CHAPTER 2 

PREVIOUS AND RELATED WORK 

Since the focus of this work is to create a framework for designing parallel, out-of-

core algorithms to analyze massive-scale semantic graphs, there are several fields which 

can be looked to for inspiration and competition. Clearly, the field of graph models w i l l 

have a large part to play, as well as the newer specialization within that field dealing with 

scale-free graphs. Since no analysis can occur in a computer system without an algorithm, 

the fields of external-memory algorithms and graph algorithms wi l l both come into the 

equation. Also, the field of parallel algorithms must be given a voice, since the volume 

of data to be processed wi l l necessitate a parallel solution to our problem, as stated in the 

introduction. Lastly, the field of runtime middleware wil l likely have some part to play, 

since our system intends to be an easy-to-use framework on top of which parallel, out-of-

core graph algorithms can be designed. 

The early graph models [19] relied on the assumption that any sufficiently large graph 

would exhibit two properties which would completely describe the graph, number of ver­

tices and average degree of connectedness of the vertices. This model was the most widely 

used for randomly constructed graphs for the first several decades of graph modeling. With 

the advent of the Internet and the increased ability to automatically traverse and store 

graphs, [10] found that the ER model for random graphs failed to explain the topology 
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present in the Internet website graph. It was also found that other types of self-organizing, 

real-world graphs have a degree distribution which is not predicted by the ER model. 

Therefore, a new theory for random graphs has become popular. The scale-free theory 

of random graphs states that in these graphs, the degree distribution follows a power-law. 

That is, the probability of a node to have a certain degree k is proportional to k raised to 

a some negative constant. The term 'scale-free' denotes that these power-law graphs w i l l 

retain the power-law degree distribution no matter how you scale the time over which the 

vertices are added and connected, provided that the method used to add vertices and edges 

is not altered. 

The field of out-of-core algorithms extends a computer's ability to process data sets 

to those which do not fi t into main memory. Since many algorithms use a simple record 

sort or pennutation as part of their computational kernel, it stands to reason that the field 

of external-memory algorithms began with techniques for sorting and permuting records 

which do not fit into the main memory of a single machine [33,39,51]. That is, some form 

of persistent secondary memory is the main location where the records are resident, and 

only some small proportion of the records are brought into the main memory at any one 

time. Algorithms in fields such as computational geometry [27], computer graphics [17], 

linear algebra [62], and graph theory [26] make use of out-of-core techniques when the 

input data sets cross certain thresholds. Out-of-core graph algorithms, which are directly 

pertinent to our research, exist for most of the in-memory algorithms for graph problems: 

directed and undirected search, connected components, minimum spanning trees, etc. 

Due to the large size of the data this research targets, the field of parallel algorithms 

must also have a part to play in our solution. Parallel algorithms have been developed for an 

enormous array of different problems, ranging from simple sorting and permuting [29,58] 
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to graph algorithms of all kinds [57], from linear algebra [35] and matrix multiplication 

to finite element methods (FEM) for solving systems of partial differential equations [31], 

from parallel molecular dynamics simulations [28,36,56] to algorithms for visualizing and 

analyzing data sets too large to fit into a single computer [17]. It is a mature field with a 

large number of publications, and it has much to offer this research in the way of inspiration 

and background. 

.Since the goal of this research is to design and implement a runtime system to enable 

graph algorithms to process extremely large data sets, the runtime engine or middleware 

fields [1,5,6,23,38,52,55] may also have some valuable insight. Additionally, any research 

into the handling of massive data is also worth reviewing. A common thread in practical 

methods for processing massive data is to consider the data to be streaming through some 

computation. This idea is found in many of the data-intensive runtime systems presented 

in the literature, and should therefore be considered carefully. 

TPIE [7] is a runtime engine where the algorithm developer does not specify any of the 

details about the movement of data to and from the secondary memory. Rather, the devel­

oper need only specify the operations to perform the computation, and the runtime system 

itself wi l l manage the movement of data in an I/O-efficient manner. DataCutter [16] is 

a component-based middleware framework designed to provide support for user-defined 

processing of large multi-dimensional datasets across a wide-area network. In DataCutter, 

application processing structure is implemented as a set of components, referred to as fil­

ters, that exchange data through a stream abstraction. River [8] takes the stream concept a 

stage further and allows its processing filters to take work from a distributed queue, thereby 

adaptively allocating work where it is needed most. River's main goal is to disallow non-

uniformities in the processing nodes from affecting the computation adversely. MQO [12] 
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is a grid middleware platform which uses a distributed index cache to answer multiple-

range queries efficiently. While not directly applicable to the storage and analysis of graph 

data, the techniques put to work in MQO to deal with the massive amount of data, and the 

distributed nature of the application may also be appropriate in this research. The Parallel 

Boost Graph Library [54] is meant to provide a generic framework and template functions 

for graph analysis on parallel machines. 

Indexing is a well-known technique for reducing the latency associated with retrieving 

data elements stored on disk. The B-tree (and its variants) is a well-known, efficient data 

structure used for indexing single-dimensional data. Various index structures have been 

proposed for retrieval of multidimensional data. Examples include VQ-Index [63], kdb 

trees [60], hB tree [45], R* tree [11], R tree [34], SS tree [67], TV tree [44], X tree [14], 

Pyramid Technique [13], Hybrid Tree [24]. While graph data is different from spatial 

data, it is still likely that some of the techniques employed in these indexing schemes are 

applicable. 

While scalable and communication-efficient parallel graph algorithms and I/O-efficient 

external memory algorithms exist separately, and some concurrent research has investigated 

merging parallel and out-of-core techniques in a breadth-first search algorithm [49], there 

is no framework or middleware platform which allows for the practical development of 

algorithms which are meant to run on parallel architectures and utilize external memory. 

MSSG intends to be that framework, which wi l l enable these types of algorithms to be 

designed and implemented. 

There are a number of commercial solutions which are worth considering for this type 

of graph analysis, one of which is marketed by Netezza [48]. We believe that our solution 

is preferable to that of the Netezza search appliance because MSSG allows an unrestricted 
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set of operations to be performed on the graph data, while the Netezza solution's set of 

operations are restricted naturally by the computational resources (in this case, an FPGA) 

which are close to the data stored on disk. By using MSSG, the algorithm developer is 

only constrained by the aggregate size of the memory space and the speed of the compu­

tational resources available, both of which can be improved when required. Additionally, 

our solution does not required that the computational resources are devoted to the database 

application. A distributed memory parallel machine can be used for a myriad of other scien­

tific and engineering applications, beyond that of data storage and processing. Moreover, 

our solution allows parties interested in graph search to leverage their current resources 

without needing to buy extra expensive, proprietary hardware. 
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CHAPTER 3 

ARCHITECTURAL DESIGN 

The MSSG framework is designed to provide storage, retrieval and processing of large 

scale-free graphs. It consists of one or more front-end nodes which provide an entry point 

for the user queries as well as graph data ingestion, and a set of back-end nodes that are 

responsible for storing and processing the graph data (Figure 3.1). MSSG has been built on 

top of DataCutter [15,16] and its functionality is provided by a set of modular, customizable 

services implemented as DataCutter components and pluggable interfaces. The Ingestion 

Service provides an entry point for data storage and it is responsible for clustering and 

declustering of the graph data to the back-end storage nodes. The Query Service allows for 

analysis of the stored graph, while the GraphDB Sendee provides a unified mechanism for 

storing and accessing graph data. 

Both the Ingestion and GraphDB services can draw parallels from the parallel file-

system domain, particularly the Parallel Disk Model [64,65] (PDM). The PDM provides 

a generic model for use in designing OOC algorithms and in calculating upper and lower 

bounds for OOC algorithm performance. In a sense, the Ingestion service's declustering of 

the input graph is equivalent to striping the graph data intelligently across multiple disks in 

a uniprocessor system. Within the Ingestion and GraphDB implementations, there are also 

PDM optimization techniques which may be applicable. 
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Figure 3.1: MSSG Overall System Architecture 

In the following sections, we first present a brief overview of DataCutter and then dis­

cuss the details of each service. 

3.1 DataCutter 

DataCutter [15,16] is a component-based middleware framework [1,5,6,23,38,52,55] 

designed to support coarse-grain dataflow [8] execution on heterogeneous environments. 

In DataCutter, the application processing structure is implemented as a set of components, 

referred to as filters, that exchange data through logical streams. A stream denotes a uni­

directional data flow from one filter (i.e., the producer) to another (i.e., the consumer). A 

filter is required to read data from its input streams and write data to its output streams only. 
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The DataCutter runtime system supports both data- and task-parallelism. Processing, net­

work, and data copying overheads are minimized by the ability to place filters on different 

platforms. The filtering service of DataCutter performs all steps necessary to instantiate 

filters on the desired hosts, to connect all logical endpoints, and to call the filter's interface 

functions for processing work. Data exchange between two filters on the same host is car­

ried out by memory copy operations, while a message passing communication layer (e.g. 

TCP sockets or MPI) is used for communication between filters on different hosts. 

3.2 Ingestion Service 

The Ingestion service provides the entry point for graph data to the MSSG system. Its 

job is to cluster and decluster (distribute) the ingested data appropriately to the GraphDB 

instances on the back-end nodes. Due to the sheer size of target graphs, these operations 

should be very efficient. The ideal approach is to perform these operations while the graph 

data is being ingested by the system via streaming. 

The goal of this clustering and declustering is to achieve fast query processing by re­

ducing the total number of disk I/Os incurred to access the database and increasing the par­

allelism during the query processing. Parallelism is relatively easier to achieve for queries 

which require processing a large portion of the dataset compared to queries that require 

processing only a localized portion of the data. For example, i f a query were in the form 

of search between two vertices, it would be ideal i f the vertices of the graph that are close 

to source of the search were clustered together in one GraphDB instance to reduce the I/O 

overhead. However, we also would like those vertices to be spread out to the nodes of the 

distributed storage system in order to achieve better parallelism. 
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A graph can be clustered and stored mainly at two granularity levels: 1) at the vertex 

level by storing all the edges incident to a vertex together and 2) at the edge level by storing 

each edge as an independent entity. MSSG supports both granularity levels. Similarly, 

streaming updates can arrive at those two granularity levels. Adding new vertices and new 

edges using vertex- and edge-level granularity respectively, however, necessitates novel 

clustering techniques. I f vertex granularity is selected at the storage side, it would largely 

dictate the clustering and declustering of streaming updates. That is, i f a vertex has been 

already clustered and assigned to storage node, all the new edges incident to that vertex 

have to be added to the same cluster to which the vertex belongs. Clustering would be 

simpler in this paradigm, but updating the data each time a new edge is stored can be very 

costly. Smart caching and blocking techniques help reduce the number of disk I/Os due to 

updates. 

For clustering streaming data, MSSG processes the ingested data in blocks (or win­

dows) of a predetermined size, each of which fits into memory. Any streaming data can be 

converted into this format by accumulating incoming data to construct a block. Clustering 

algorithms wi l l work on those blocks one by one. These algorithms must be very efficient 

in order for decisions to be made in real-time. Furthermore, these algorithms should keep 

some additional summary information about the data that has been already clustered and 

distributed to the nodes of the storage system. Using the summary information, the cluster­

ing algorithms should be able to make more intelligent decisions on where to send blocked 

data. 

Figure 3.2 shows a simple example of a graph being partitioned and distributed to three 

back-end database nodes. In this example, the block which is to be partitioned contains 

nine vertices and the edges which interconnect them as shown. The partitioning algorithm 
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Figure 3.2: An example of graph partitioning 

has chosen vertices 4, 5 to go to database node 0, vertices 1, 2, and 3 to go to database 

node 1, and vertices 6 and 7 to go to database node 2. I f an edge in a block needs to be 

partitioned when the source vertex has already been assigned to a back-end node (in the 

case of vertex granularity partitioning), the Ingestion service needs to keep track of the 

owner of that vertex's edges. Various methods of accomplishing this goal exist, spanning 

from using a deterministic function to map the vertex id's to back-end node id's to simply 

broadcasting all edges to all back-end nodes and required the back-end node to store the 

edge, i f appropriate. 
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MSSG provides a customizable interface for developing clustering and declustering 

techniques. By default, the MSSG framework provides simple declustering techniques 

such as vertex- and edge-based round-robin declustering. 

3.3 Query Service 

The Query service provides the query interface for the client and orchestrates the ex­

ecution of data analysis queries. In the MSSG framework, data analysis techniques are 

implemented as DataCutter filter graphs communicating via DataCutter's filter-stream in­

terface. A l l implemented data analysis techniques are registered with the system and can 

be queried by the user. Any data analysis accesses the stored graph data via the unified 

graph interface provided by GraphDB Service. Since each GraphDB instance only pro­

vides direct access to local data stored in each node, data analysis service instances need to 

be implemented in such a way as to take this data distribution into account. For example, 

i f the graph is stored using vertex-level granularity, the complete adjacency list of any arbi­

trary vertex wi l l be stored in only one node. Hence, any operation that requires accessing 

the adjacency list of a vertex needs to be either delegated to that node or the adjacency list 

needs to be transfered to the node that initiated the access. As an example Query Service 

instance, a relationship analysis method based on breadth-first search is described in more 

detailed in Section 4.2. 

3.4 GraphDB Service 

The GraphDB Service's job is to interface with a number of disparate storage medi­

ums, such as various in-memory data structures, relational databases, and other disk-based 

storage methods. 
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i p u b l i c i n t e r f a c e Graph { 
2 
3 p u b l i c v o i d storeEdges(List<Edge> edges) t h r o w s 

GraphStorageException; 
4 
s p u b l i c i n t g e t M e t a d a t a ( l o n g v e r t e x ) t h r o w s GraphStorageException; 
6 
7 p u b l i c v o i d s e t M e t a d a t a ( l o n g v e r t e x , i n t metadata)throws 

GraphStorageException; 
8 
9 / / operation is defined as follows: 

IB / / -2 : ignore metadata and return all neighbor vertices 
ti // o r r e t u r n an neighbor to vertex if its metadata is: 
12 / / -1 : not egual to input metadata 
13 / / 0 : egual to input metadata 
14 // I : g r e a t e r than input metadata 
is // 2 : less than input metadata 
16 p u b l i c v o i d g e t A d j a c e n c y L i s t U s i n g M e t a d a t a ( l o n g v e r t e x , 

FastLongArrayStorage a d j l i s t , i n t metadata, i n t o p e r a t i o n ) ; 
17 J 

Listing 3.1: GraphDB Service Interface 

One of the main innovations of the MSSG API consists of a Java interface Graph (List­

ing 3.1) which exposes the smallest complete set of graph operations possible, along with 

one higher-performance method which implements a slightly higher-level graph function, 

for performance reasons. In order to be complete, a graph-storage service only needs to 

store edges and retrieve lists of distance-1 neighbors (adjacent vertices). It is important to 

note that none of the methods in the GraphDB Service interface perform any communica­

tion or remote operations. A l l of the methods listed operate on data local to the back-end 

node. 

Currently, there are several concrete classes which implement the graph interface and 

store the actual graph data in different formats and different storage mediums. Two of the 

default implementations are based on efficient in-memory storage for graphs that could fit 

in memory of the MSSG installation. We also provide four disk-based implementations 

of GraphDB services. Two of them are based on open-source databases, BerkeleyDB and 
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MySQL. One of them is based on the notion, borrowed from research into Active Disks [4], 

that database searches which touch a large portion of the data wi l l benefit by simply stream­

ing the entire data set into the CPU and processing it in chunks. The last one, grDB, is a 

novel disk-based graph database designed for massive scale-free graphs. 

3.4.1 grDB: Graph Database 

We propose a novel graph database, grDB, which is intended to allow the efficient out-

of-core storage and retrieval of scale-free graphs. A grDB instance is comprised of two 

components; the storage component and the block cache component. The storage compo­

nent is responsible for the storage and retrieval of blocks which store partial adjacency lists 

of one or more vertices. The block cache component provides in-memory caching of the 

storage blocks for improved performance. 

A scale-free graph in grDB is stored in multiple files that are composed of blocks. 

Blocks are smallest unit of I/O for grDB. While the optimum block size is determined by 

the performance characteristics of the physical storage system, we nevertheless expect the 

optimum block size wi l l not be smaller than the filesystem's block size. Each block w i l l 

be further divided into sub-blocks that are uniquely addressable. A sub-block is used to 

store a vertex's partial adjacency list. A grDB instance contains multiple levels of storage 

files. At level £, each sub-block of a storage file can store up to de adjacent vertices, where 

de > 2x de-i for £ > 1. Since our target graphs exhibit the power-law degree distribution, 

we suggest choosing de values that also follow an exponential curve, such as de = 22 . 

Each vertex in grDB wi l l have a 6-byte unique Global ID (GID) in the range between 

0 to n , where n is the number of vertices in the graph; hence, each sub-block in level i is 

b x de bytes. Since each block can store one or more sub-blocks, block size Be at level £ 
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Figure 3.3: An illustration of grDB file format 

is computed as Be = ke x b x de, for an integer > 1. Because of file system limitations 

as well as performance reasons, at each level i graph data is stored in multiple files with 

a maximum size of M-bytes, or equivalently Ne = M/Be blocks. The location of a sub-

block s in the disk at a level £ can be found using simple modulo arithmetic as follows. 

Since each block stores ke sub-blocks, sub-block s is stored in s/ke-th block, which is 

stored in s/ke/Ne-th file at offset Be x {{s/ke) % Nt) + 6 x de x (s % ke). 

The beginning of the adjacency list of a vertex v in grDB is stored in t'-th sub-block at 

level 0. I f a vertex has do or less number of adjacent vertices, they are directly stored in that 

level. I f v has more adjacent vertices than do, the first do — 1 adjacent vertices are stored in 

the level 0 sub-block, and the last location in the level 0 sub-block is used as a pointer into 
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the higher level files. During the ingestion of the graph data set, i f the adjacent vertices are 

added in small groups, the adjacency list of a vertex could have entries in multiple levels of 

the grDB. For example, i f vertex v already has d0 adjacent vertices and one more adjacent 

vertex is added, a new sub-block is allocated for that vertex in level 1. A link from the 

-u-th sub-block at level 0 to the newly allocated sub-block at level 1 is created. When the 

degree of vertex v achieves d0 + di, a new sub-block is allocated for that vertex at level 

2, and either all of the contents of the sub-block at level 1 are moved to the new sub-block 

at level 2 and subsequent new adjacent vertices are added to that sub-block, or the sub-

block at level 1 is left unchanged and simply links to the newly allocated sub-block at level 

2. The former approach necessitates extra copy operations during the insertion, while the 

latter creates fragmentation in the adjacency list. One approach is to leave the adjacency 

lists fragmented during the ingestion, and later during "idle" time, the grDB service can 

defragment these multi-level adjacency lists in the background. Figure 3.3 illustrates the 

file format of grDB, and a small example is shown in Figure 3.4. 
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CHAPTER 4 

PROTOTYPE IMPLEMENTATION 

We have implemented a prototype of the MSSG framework in Java. The framework 

allows analysis services to be implemented in Java using DataCutter's filter interface. We 

have implemented an analysis service which uses breadth-first search. Below we present 

the details of the prototype MSSG middleware and the breadth-first search analysis plug-in. 

4.1 Customization of GraphDB Service 

We have implemented six different instances which meet the generic GraphDB inter­

face contract, two in-memory versions and four out-of-core versions using various persis­

tent storage managers. Although the graphs we are targeting wi l l not fit in memory, the 

two in-memory implementations provide a solid base-line comparison for our out-of-core 

implementations. In a sense, they represent the lower-bound we could achieve with the 

out-of-core implementations. Here is a brief description of these six GraphDB instances: 

4.1.1 Array 

The first in-memory implementation uses the standard compressed adjacency list for­

mat to store the graph in memory. When using the compressed adjacency list format, a 

graph Q = (V, £ ) is stored using two arrays of size \£\ and |V| + 1, respectively. The first 
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array, adj, contains the adjacency list of all vertices concatenated one after the other, while 

the second array, xadj, stores a pointer to the beginning of adjacency list for each vertex. 

That is, the adjacency list of vertex v is stored at adj[xadj[v]],..., adj[xadj[v + 1] — 1]. 

The advantage of this format is it provides very efficient access to the adjacency list of 

each vertex, by using the highest-performance in-memory data structure possible. How­

ever, this format has three major issues. First, Java only allows 32-bit integers as array 

indices, which restricts the input graph size. Second, this storage format is not suitable 

for dynamically-growing graphs. Third, it is poorly suited for storing graphs distributed to 

multiple machines; unless a block distribution of vertices is used, each node has to store 

the fu l l xadj array. Therefore, the array-based storage format's memory requirement does 

not scale with increasing numbers of back-end nodes. For small graphs that fit into main 

memory, the first and third concerns wi l l not cause problems. For the input stage, when 

the graph is streaming in from the front-end nodes, we have actually used the HashMap 

implementation (see 4.1.2) with integer IDs as temporary storage. After flushing the graph 

to disk, the A r r a y GraphDB instance loads the graph into the compressed adjacency list 

arrays. The A r r a y implementation is useful as a lower-bound on the search execution 

times. 

Figure 4.1: An example of the Array GraphDB Service instance 
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The Figure 4.1 shows a small example of how a graph might be mapped into the A r r a y 

GraphDB instance. For instance, the vertex 0 has adjacent vertices 1, 2, and 3. These 

neighbor vertices to vertex 0 are located in adj from index xac^O] = 0 to index xadjf l] — 

1 = 2. The adjacency list of vertex 1, consisting of vertices 0 and 2, is stored immediately 

after that of vertex 0, beginning at xadj[l] = 3 and continuing to adj[2] — 1 = 4 . The 

other adjacency lists are stored adj in a similar manner, and their beginning and ending 

indices are stored in xadj similarly also. 

4.1.2 HashMap 

By using a hash data-structure one can improve on the memory requirements of the 

A r r a y implementation when dynamic or distributed graph storage is required. There are 

two possible implementations, the first of which is to use a hash data-structure to map 

global vertex IDs to local vertex IDs. The compressed adjacency list array implementa­

tion can then be used with the local, renumbered vertices. This implementation requires 

global-to-local and local-to-global vertex ID translations and (like the A r r a y instance) is 

not very suitable for dynamically growing its storage during the ingestion. The other im­

plementation option entails storing the adjacency lists of each vertex separately and using a 

hash data-structure to store and retrieve the pointers to those adjacency lists. Although only 

global vertex IDs (64-bit longs in Java) are used and there is no need for global-to-local and 

local-to-global ID translation, accessing the adjacency list of a vertex still requires a hash 

look-up. We have implemented the latter approach using Java's HashMap data stmcture, 

which gives this GraphDB instance its name. As already mentioned, this implementation's 

memory requirement scales well when increasing the number of back-end nodes, at the 

expense of additional hash look-up time in order to access the adjacency list for a vertex. 
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{ 0 , 1 , 3 , . . . } 

Hash function 

3 | 4 | 8 | 10 | 12 | 14 | ... 0 | 4 | 6 | 7 | 

Figure 4.2: An example of the HashMap GraphDB Service instance 

The Figure 4.2 shows a simple example of how a graph might be stored in a HashMap 

GraphDB instance. In this example, the vertex 0 has at least 6 adjacent vertices stored in 

an array. The key in the HashMap in our implementation is simply the vertex id 0 and the 

value is a pointer to the adjacent vertex storage object. The actual location of 0's adjacency 

list storage is unimportant, since the HashMap wi l l always hold the pointer to that object. 

This is a major advantage in storing graphs which wi l l have edges and vertices added to 

them in a dynamic fashion, as opposed to cases where the entire graph wi l l be known before 

it is stored in the GraphDB Service instance. 

4.1.3 MySQL 

We have implemented an out-of-core graph database instance using MySQL 4.1.12 |47 ]. 

With a standard {sre, dest} table model, the overhead of retrieving the adjacency list of a 

vertex w i l l be prohibitively high for a table with conceivably hundreds of millions of rows. 

Therefore, we have chosen to store the adjacency list of a vertex in one or more MySQL 

records indexed by the vertex ID. In order to provide a level of performance that approaches 

the other implementations we also have chosen to serialize the adjacency list into a BLOB 

data type in a table which is indexed by the source vertex. Since BLOBs can be of arbitrary 
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0 0 | { binary data} 
1 0 | { binary data} 
1 0 | { binary data} 

0 i {binary data) 

2 | 4 | 6 | 71... 

3 | 4 | 8 | 10 | 12 I 14 | 

Figure 4.3: An example of the MySQL and BerkeleyDB blocking 

size, however, we chose to chunk the adjacency list into standard-sized blocks (8 KB), as 

suggested by the MySQL documentation and demonstrated in Figure 4.3. The figure shows 

a database table with three columns. The first column is the vertex id. The third column is 

the adjacency list storage area, in binary format. The second column is simply a bookkeep­

ing column to keep track of adjacency lists of too large a size to fit into one binary data 

object. That is, i f the adjacency list of a vertex is too large to fit into one row, it is split over 

multiple rows and the second column in the table is used as a unique identifier for each row. 

4.1.4 BerkeleyDB 

We have also implemented an out-of-core graph database instance using BerkeleyDB 

version 1.7.1 [61]. The BerkeleyDB is a programming API which gives the user easy access 

to persistent, transactional, and storage without the overhead of using a relational database 

server. The chunking technique used in the MySQL implementation is also used here. 

4.1.5 StreamDB 

We have implemented a basic streaming database which stores the edges to disk as they 

are received by the backend node. No sorting or clustering of the edges is performed, which 

makes this GraphDB instance simple to implement and able to exhibit high performance 
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during ingestion of graph data. However, this simplicity and ingestion speed is obtained 

by accepting lower search speed and higher search algorithm complexity. This design of 

the database prevents an instance from returning a vertex's adjacency list without scanning 

through the entire edge set. The expansion of a fringe in a breadth-first search, for example, 

would be very expensive i f each vertex were considered one at a time. Therefore, any search 

algorithm which needs the adjacent vertices to another set of vertices to proceed must post 

a request for all of the 'fringe' vertices at once, thereby allowing the database to only scan 

through its data once. This database design was inspired by the active disk work in [4]. 

4.1.6 grDB 

We have implemented the proposed grDB discussed in Section 3.4.1 in Java using the 

standard R a n d o m A c c e s s F i l e class. Global vertex IDs and file sub-block address point­

ers are 64-bit long integers where the 3 most significant bits are reserved for the grDB's 

internal use to mark when the value is a pointer to a higher-degree storage file. With 3 bits 

acting as the pointer indicator, we still allow 61 bit vertex numbers which wi l l be sufficient 

for graphs with up to 2 quintillion vertices (2 * 10 1 8 ) . In our experiments we have restricted 

the maximum file size to be M = 256 MB. We have used a 6-level instance of grDB with 

de values are equal to 2, 4, 16, 256, 4K and 16K, and with a block size, i ^ , of 4 KB in 

the first 4 levels and 32 KB and 256 KB for the last two levels. 

4.2 Parallel Out-of-core Breadth-First Search 

In the prototype we provide an example instance of the Query Service which imple­

ments a parallel out-of-core Breadth-First Search (oocBFS) algorithm. BFS is one of the 

basic algorithms for relationship analysis [42,69]. 
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Algorithm 1 Parallel Out-of-core Breadth-First Search Algorithm 
1: function oocBFS(<7 = (V, £), s, d) 
2: Initial data distribution: Q is divided into p subgraphs Gi = (V i , £ a ) , . . . , Gp -

{Vp, Ep) where Ei,...,Ep is a disjoint partition of the edge set E and C V 
for 1 < z < p. 

on each processor Pf, 1 < t < p. 
ieve/ft;] = oo for w e V 
F <- at|rG.(s) 
ieveZ[s] <— levant <— 0 
while 'found' message has not been received do 

levant <— levcnt + 1 
for t; G F do 

for u G adja.{v) do 
if ti = d then 

send found message to all processors and return levcnt 
else if level[u] = oo then 

level[u] <— levcnt 
N ^ NU{u} 

if ^ is stored with vertex-level granularity and vertex mapping map[u] is 
known by every processor then 

17: for u E N do 
18: Smap^u] < Smap[u} U { l i } 
19: send S 1 , to processor for 1 < ^ < p. 
20: else 
21: broadcast N to all processors 
22: Receive Rq from Pq for I < q < p. 
23: F ^ U , ^ 
24: return infty 

4 

5: 

6: 

7: 

8: 

9: 

10 

11: 

12 

13 

14: 

15: 

16: 

Algorithm 1 outlines the parallel oocBFS algorithm, which is not much different than 

a sequential BFS algorithm. The main differences come from graph data distribution and 

storage. I f an edge-level granularity is used to store the graph, it is possible that the adja­

cency list of a vertex is distributed to multiple nodes. In such a case, the successive search 

level's frontier vertices N need to be broadcasted to all the processors. A similar situation 

arises when vertex-level granularity is used but the vertex mapping is not known globally 

by every processor. In this case, frontier vertices have to be broadcasted to all processors 
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also. In both of these cases, the frontier set F wi l l be identical for all processors. However, 

i f vertex-level granularity for distribution is used with a globally-known mapping (such as 

GID % p, where p is the number of back-end nodes), on each processor Pi the frontier 

set F w i l l only contain the vertices assigned to Pi. Algorithm 1 handles all of these cases 

naturally by using a simple graph interface which returns the empty set when an adjacency 

list of a vertex that is not assigned to that processor is requested (steps 5 and 10). 

In the current implementation, we rely heavily on the underlying database's caching and 

clustering capabilities to hide the latency that comes from accessing the adjacency list on 

disk. This dramatically simplifies the oocBFS implementation and our experiments show 

that both BerkeleyDB and grDB benefit from using a cache. 

Algorithm 2 outlines the pipelined parallel oocBFS algorithm. This algorithm differs 

from algorithm 1 in that the communication is overlapped with computation as much as 

possible. This overlap is achieved by splitting the next level fringe into chunks and sending 

these chunks to the other processors in a pipelined fashion in lines 16 to 22. Each processor 

only sends a fringe chunk to another processor when the chunk which contains the vertices 

owned by that processor is past a certain size, threshold. In the case where vertex ownership 

is not globally known, all of the fringe chunks must be sent to all other processors. After 

sending (line 17) this fringe chunk to the appropriate processor, the local next-level fringe 

container is cleared, so as to not send redundant data (line 19). However, i f the vertex-level 

ownership is not known, then the next level fringe must be broadcast (also line 17) to all of 

the other processors. It is then transferred to local storage before the container is cleared. 

Since sending a small message from one DataCutter filter to another filter is a non-blocking 

operation, this allows the algorithm to return to processing local fringe vertices while the 

communications subsystem actually sends the message. 
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Algorithm 2 Pipelined Parallel Out-of-core Breadth-First Search Algorithm 
1: function P O O C B F S ( ^ = (V,<f), 5, d) 
2: Initial data distribution: Q is divided into p subgraphs Gi = ( V j . ^ i ) , . . . ,GP = 

{Vp, Ep) where Ei,...,Ep is a disjoint partition of the edge set £ and C V 
for 1 < i < p . 

3: Vertex mapping map is initialized such that map[u] gives the processor which 
owns vertex u. If the global vertex distribution is not known, map[u\ = 0 V 
u G V, Â o will be the broadcast queue, and N\ will be the local next level 
queue. 

on each processor Pi, 1 < i < p. 
level[v\ = oo for f G V 
F *- adjGi{s) 
level[s\ <— levcnt <— 0 
while 'found' message has not been received do 

for w e F do 
for u G adjafv) do 

if u — d then 
send found message to all processors and return levcnt 

else if level[u] = oo then 
level[u] <— levcnt 
A m a p [ w ] < A^m ap^] U { i i } 
if Nmap[u] > threshold then 

send Nmap[uj to processor map[u] or broadcast 
if 7nap[u] 7̂  0 then 

N-map^u] < 0 
else 

Aa ^ ^ U N0 

AQ ^ 0 
F <— 0 
if message i? is waiting then 

for v E R do 
if Zet;eZ[f ] = oo then 

else 
levcnt <— levcnt + 1 
send A j to each other processor Pi 
if map[0] = 0 then 

F <— Nil) N0 

else 
P < Nmyid 

for I <i <p do 
M ^ 0 

return m/ty 
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The performance of these algorithms can be further optimized by introducing some 

pre-fetching of the adjacency lists of the vertices in the frontier. Further optimization for 

performance might include sorting the pre-fetch disk accesses by file offsets to reduce the 

seek overhead. As part of our future work, we wi l l investigate both of these options. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

We carried out the experimental evaluation of the MSSG framework on a 64-node Linux 

cluster owned by the Department of Biomedical Informatics at The Ohio State University. 

Each node of the cluster is equipped with dual 2.4 GHz Opteron 250 processors, 8 GB 

of R A M and two 250 GB SATA drives providing 500 GB of local storage via software 

RAIDO. The nodes are interconnected with switched gigabit Ethernet and Infiniband. 

The tests were performed using vertex declustering during ingestion; the vertex own­

ership knowledge was leveraged during the search phase. Additionally, the search perfor­

mance tests were performed with an in-memory visited data structure, with the exceptions 

where noted. We wish to characterize the operation of the actual graph storage; the sim­

plest way to obtain a fair comparison is to simply fix the visited data-structure. A l l the tests 

were performed with one of three graphs; two real-world semantic graphs, PubMed-S and 

Graph Vertices Und. Edges Min. Deg. Max. Deg. Avg. Deg. 
PubMed-S 3,751,921 27,841,339 1 722,692 14.84 
PubMed-L 26,676,177 259,815,339 1 6,114,328 19.48 

Syn-2B 100,000,000 999,999,820 1 42,964 20.00 

Table 5.1: Statistics for graphs used in experiments 
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Search Performance 

| Array, p=2 
• HashMap, p=2 
H Array, p=4 

| HashMap, p=4 
| Array, p=8 
| HashMap, p=8 
• Array, p^l6 
• HashMap, p=16 

Path length 

Figure 5.1: Search performance of in-memory GraphDB implementations on PubMed-S 
graph 

were performed with one of three graphs; two real-world semantic graphs, PubMed-S and 

PubMed-L, were extracted f rom the PubMed document database, while the third, Syn-2B 

was created to exhibit the scale-free properties which MSSG targets. The graph informa­

tion is given in table 5. While these graphs are smaller than the trillion-edge graphs MSSG 

targets, examining the outcome of these experiments is a necessary first step in order to 

scale to larger graphs. 

The first results displayed in Figure 5.1 represent a base-line comparison of the search 

performance of the MSSG framework using in-memory implementations of GraphDB. In 

this experiment 100 random BFS queries were executed on 16 nodes against the PubMed-S 

graph, and the query execution times are averaged based on the path length between the 
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• BerkeleyDB w/o cache 
• BOB 
H grDB w/o cache 
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Path length 

Figure 5.2: Search performance of BerkeleyDB and grDB on PubMed-S graph with and 
without cache 

source and destination vertices. As seen in the figure, the Array graph storage performs 

much better than the HashMap implementation, as expected. The HashMap GraphDB 

storage requires a hash lookup to access the adjacency list of a vertex; with large graphs, 

this overhead becomes significant. This is especially true as the path length increases, 

since the size of the fringe at each search level increases exponentially. However, when 

increasing the number of processors, this overhead is spread over multiple processors and 

the difference between Array and HashMap is lessened. 

The second set of experiments shows the importance of caching effects when dealing 

with out-of-core data structures. Figure 5.2 displays the average performance on 16 nodes 

of BerkeleyDB and grDB on 100 random queries against the PubMed-S graph, with their 

34 



Ingestion Performance 
275 

250 

225 

200 

^ 175 

9 150 

E 125 

100 

11 frontend node 

14 frontend nodes 

ARRAY HASH GRDB BDB MYSQL 

GraphDB Service Implementations 

Figure 5.3: Ingestion performance comparison of five GraphDB implementations on 
PubMed-S graph 

intemal (block) caches enabled and disabled. As seen in the figure, caching can reduce 

the execution time up to 50% on both implementations, especially for longer path queries. 

Therefore, further results w i l l only come f rom our cache-enabled out-of-core implementa­

tions. 

Figure 5.3 displays a comparison of the five different GraphDB implementations on 

16 nodes using the PubMed-S graph. To investigate the effect of increasing the number 

of front-end ingestion nodes, we repeated the ingestion of PubMed-S multiple times and 

varied the number of ingestion nodes. The result shown in Figure 5.3 shows that Array, 

BerkeleyDB, and grDB achieved similar performance in both cases (1 ingestion node vs 

4 ingestion nodes). However, the HashMap and MySQL implementations were slower 
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Figure 5.4: Search performance comparison of five GraphDB implementations on 
PubMed-S graph 

when only 1 ingestion node was used. When using 1 ingestion node, the ingestion speed 

is clearly limited by the I/O and network performance of that node. Furthermore, even 

though the ingestion node reads a block (window) of edges and then distributes them to 

back-end nodes, edge ordering in the streaming input graph could negatively affect the 

load balance on the back-end nodes. By increasing the number of ingestion nodes, we both 

remove the bottleneck f rom the front-end node and also achieve better load balance on the 

back-end nodes. The results show that the ingestion performance is more or less the same 

for all approaches, except for MySQL, which is slower than all other GraphDB storage 

implementations. 
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Figure 5.5: Ingestion performance comparison of five GraphDB implementations on 
PubMed-L graph: 8 front-end ingestion nodes, vary back-end storage nodes 

As seen in Figure 5.4, the Array implementation gives the lowest search time. Not 

surprisingly, the second best results are achieved with the other in-memory implementa­

tion, HashMap. MySQL performs significantly worse than all other implementations. The 

fastest of the three out-of-core GraphDB implementations, grDB, performs an average of 

33% faster than the next fastest out-of-core implementation, BerkeleyDB. When comparing 

grDB with the in-memory implementations, grDB is only 1.7 times slower than HashMap 

and about 2.9 times slower than Array, on average. Finally, the search times for short paths 

(and hence small fringe sizes) are negligible for all GraphDB implementations. As such, 

future results w i l l only show longer path lengths. 
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Figure 5.6: Execution time search performance comparison of five GraphDB implementa­
tions on PubMed-L graph 

The results of the ingestion experiments in Figure 5.5 show that when the graph size 

increases, grDB begins to have a significant advantage over the BerkeleyDB database. The 

time for BerkeleyDB to ingest the graph is actually over 1,600 seconds, but the chart is 

zoomed to give some resolution to the lower values. Further, we see that the StreamDB 

instance has unrivaled ingestion performance. This is to be expected, since i t is simply 

writing the edge set for each node directly to disk. What's more, the output format is more 

efficient than the ingestion node format for these experiments; the output format is binary, 

while the input data is ASCII . 
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Figure 5.7: Edge/s search performance comparison of five GraphDB implementations on 
PubMed-L graph 

Figure 5.6 shows the results of the search experiments. As before, the Array GraphDB 

implementation is the fastest of the five instances, followed closely by the HashMap in­

stance. On 8 and 16 processors, grDB performs admirably, but the random access of the 

graph data forces the performance to drop below that of StreamDB on 4 nodes. In this 

way, StreamDB acts as a useful lower-bound, indicating when some extra effort needs to 

be applied to our other out-of-core database solutions to bring their performance to an 

appropriate level. 

Figure 5.7 shows the aggregate edges processed per second during the search experi­

ments. When visiting a large portion of the graph, as in the larger search paths, the Array 

implementation processes nearly 30 mill ion edges per second. The grDB implementation 
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Figure 5.8: Execution time search performance for Syn-2B graph using grDB 

reaches 20 mill ion edges per second processed on 16 nodes, but this number drops signif­

icantly on 4 nodes. Additionally, while grDB is able to process more edges per second 

than the StreamDB instance, grDB's search time is actually higher than that of StreamDB. 

There is some room for improvement in the grDB database instance, when the grDB cache 

size becomes negligible compared to the size of the graph. 

Figures 5.8 and 5.9 show the results of MSSG's performance when working with the 

Syn-2B graph. The trends seen before are upset somewhat, with the HashMap implemen­

tation's performance equaling or bettering that of the Array instance. This is surprising, 

but the effect of a cache on a randomly accessed data structure can start to rival that of a 
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Figure 5.9: Edge/s search performance for Syn-2B graph using grDB 

sequentially accessed data structure when those structures become very large, as is the case 

here. But the out-of-core solution still lags behind that of the in-memory solutions, as is 

expected. 

Additionally, while the use of an external-memory visited data structure adversely af­

fects the performance, this is expected also. Nevertheless, the MSSG system can clearly 

search very large graphs in reasonable time-frames and provides a high level of perfor­

mance. When touching a large portion of the graph, as is done in the later levels of any 

breadth-first search on a scale-free graph, MSSG and grDB can process over 10 mil l ion 

edges per second. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

In this paper we presented a middleware framework, MSSG, for storing, accessing, 

and analyzing massive-scale semantic graphs. We proposed and developed a novel disk-

based graph database, grDB, for massive scale-free graphs. We have also developed a 

parallel out-of-core breadth-first search algorithm. Experimental evaluations on large real-

world semantic graphs and randomly generated large scale-free graphs show that the MSSG 

framework scales well. Also, grDB outperforms widely used open-source databases, such 

as BerkeleyDB and MySQL, in storage and retrieval of scale-free graphs. 

A major goal of this research was to provide a flexible and efficient framework to allow 

the development and analysis of different graph algorithms which are intended to operate 

on graphs of previously intractable size. We believe we have provided such a framework. 

As future work, we wi l l now move to the development of more complex approaches for 

improving the efficiency of the MSSG framework, in order to move closer to our goal of 

offering an environment to truly analyze graphs of enormous size. 

It is clear when dealing with such massive amounts of data that a good clustering of the 

graph data is imperative. Due to the properties of scale-free graphs, longer path searches 

w i l l often search large portions of the graph. This fact wi l l require an efficient solution to 

store vertices which are close to each other in the graph to be stored close to each other 
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on the disk. Additionally, while breadth-first search does not perform a large amount of 

computation on the graph data, overlapping the disk accesses with the computation that is 

required wi l l still lead to some additional performance. 

More experiments on larger graphs are an important part of validating our work in this 

area. Simply gathering or generating graphs of this size is an interesting problem, one 

which could be helped by the MSSG framework, and its high ingestion and storage speed. 
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