
MSSG: A FRAMEWORK FOR MASSIVE-SCALE
SEMANTIC GRAPHS

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Timothy D. R. Hartley, B.S.

rj>

The Ohio State University

2006

Master's Examination Committee:

Dr. Umit Catalyurek, Co-Adviser

Dr. Fiisun Ozguner, Co-Adviser

Dr. Eylem Ekici

Approved by

CO-^Adviser

Graduate Program in
Electrical and Computer

Engineering

i

ABSTRACT

This thesis presents research into techniques for storing, accessing and analyzing mas­

sive scale semantic graphs. The end result of this research effort has been the development

of a software framework, MSSG, to enable the analysis of scale-free semantic graphs with

O(10 1 2) vertices and edges. Here, we present the overall architectural design of the frame-

Work, as well as a prototype implementation for cluster architectures. The sheer size of

these massive-scale semantic graphs prohibits storing the entire graph in memory even on

medium- to large-scale parallel architectures. We therefore propose a new graph database,

grDB, for the efficient storage and retrieval of large scale-free semantic graphs on sec­

ondary storage. This new database supports the efficient and scalable execution of parallel

out-of-core graph algorithms which are essential for analyzing semantic graphs of massive

size. We have also developed a parallel out-of-core breadth-first search algorithm for per­

formance study. Experimental evaluations on large real-world semantic graphs show that

the MSSG framework scales well, and grDB outperforms widely used open-source out-of-

core databases, such as BerkeleyDB and MySQL, in the storage and retrieval of scale-free

graphs.

i i

ACKNOWLEDGMENTS

I would like to take this opportunity to thank the people without whom this thesis never

would have come to fruition.

I would like to thank Dr. Fiisun Ozguner, who was very helpful in getting me settled into

graduate school after an absence from school. I would like to thank Dr. Umit Catalyurek,

whose patience and guidance have been instrumental in getting to this point. I 'd also like

to thank Dr. Eylem Ekici for his advice and committee membership.

I would like to thank my colleagues at Lawrence Livermore National Laboratory, Andy

Yoo, Scott Kohn, and Keith Henderson.

Lastly I 'd like to thank Annie Lindgren for her invaluable support and advice. Without

her help, I am certain this thesis would not have seen the light of day!

i i i

VITA

January 16, 1980 Bom - High Wycombe, UK

2002 B.S. Electrical and Computer Engineer­
ing

2005-present Graduate Research Associate,
The Ohio State University.

PUBLICATIONS

Research Publications

T. D. R. Hartley, U Catalyurek, F Ozguner, Andy Yoo, Scott Kohn, Keith Henderson,
"MSSG: A Framework for Massive Scale Semantic Graphs," in Proceedings of2006 IEEE
Inteniotional Conference on Cluster Computing, 2006.

FIELDS OF STUDY

Major Field: Electrical and Computer Engineering

iv

TABLE OF CONTENTS

Page

Abstract 1 1

Acknowledgments 1 1 1

Vita i v

List of Tables v i i

List of Figures V 1 1 1

List of Algorithms 1 X

List of Listings X 1

Chapters:

1. Introduction 1

2. Previous and Related Work 6

3. Architectural Design H

3.1 DataCutter 1 2

3.2 Ingestion Service 13
3.3 Query Service 1 6

3.4 GraphDB Service 16
3.4.1 grDB: Graph Database 18

v

4. Prototype Implementation 22

4.1 Customization of GraphDB Service 22
4.1.1 Array 22
4.1.2 HashMap 24
4.1.3 MySQL 25
4.1.4 BerkeleyDB 26
4.1.5 StreamDB 26
4.1.6 grDB 27

4.2 Parallel Out-of-core Breadth-First Search 27

5. Experimental Results 32

6. Conclusions and Future Work 42

Bibliography 44

v i

LIST OF TABLES

Table Page

5.1 Statistics for graphs used in experiments 32

vii

LIST OF FIGURES

Figure Page

1.1 An example semantic graph and ontology 2

3.1 MSSG Overall System Architecture 12

3.2 An example of graph partitioning 15

3.3 An illustration of grDB file format 19

3.4 A sample graph and its storage representation in a 3-level grDB instance
with do = 2,d1=Aandd2=8 21

4.1 An example of the Array GraphDB Service instance 23

4.2 An example of the HashMap GraphDB Service instance 25

4.3 An example of the MySQL and BerkeleyDB blocking 26

5.1 Search performance of in-memory GraphDB implementations on PubMed-
S graph 33

5.2 Search performance of BerkeleyDB and grDB on PubMed-S graph with
and without cache 34

5.3 Ingestion performance comparison of five GraphDB implementations on
PubMed-S graph 35

5.4 Search performance comparison of five GraphDB implementations on PubMed-
S graph 36

vi i i

5.5 Ingestion performance comparison of five GraphDB implementations on
PubMed-L graph: 8 front-end ingestion nodes, vary back-end storage nodes 37

5.6 Execution time search performance comparison of five GraphDB imple­
mentations on PubMed-L graph 38

5.7 Edge/s search performance comparison of five GraphDB implementations

on PubMed-L graph 39

5.8 Execution time search performance for Syn-2B graph using grDB 40

5.9 Edge/s search performance for Syn-2B graph using grDB 41

ix

LIST OF ALGORITHMS

Algorithm Page

1 Parallel Out-of-core Breadth-First Search Algorithm 28

2 Pipelined Parallel Out-of-core Breadth-First Search Algorithm 30

x

LIST OF LISTINGS

Listing Page

3.1 GraphDB Service Interface 17

x i

CHAPTER 1

INTRODUCTION

Graphs have been used to model many interaction networks, ranging from the bio­

logical to the computational sciences. Some examples of these interaction networks are

metabolic and signaling pathways, gene regulatory networks, protein interaction networks,

taxonomies of proteins and chemical compounds, and social networks [42,43,53,59,68,69].

These types of real-world graphs are known as semantic graphs [32]. In a semantic graph,

vertices represent certain concepts or objects and edges represent the relationships between

those concepts or objects. Further, the vertices and edges in the semantic graph are asso­

ciated with some meaningful types. These vertex and edge types form an ontology graph,

which summarizes the semantic information the corresponding semantic graph carries.

Figure 1.1 shows an example semantic graph and its ontology. By itself, an ontology

is just an instance of a semantic graph. The vertex and edge interconnections only take

on special meaning when the ontology is used as a blueprint for other semantic graphs.

When used as a blueprint, the ontology's topology restricts the topology of the instance

semantic graph. Taking the Figure 1.1 ontology as an example, note that the 'Date' vertex

types are not allowed to be directly connected to the 'Person' vertex type. Any indirect

association must occur through the 'Meeting' vertex type and through the allowed edge

types, 'attends' and 'occurred on.' The effect of these ontological restrictions is such that

1

Semantic Graph associated Ontology

Figure 1.1: An example semantic graph and ontology

any semantic instance graph (as shown on the left of Figure 1.1) must only contain the

vertex and edge interconnections as allowed in its associated ontology. That is, 'Date'

vertices are only connected to 'Meeting' vertices and 'Travel' vertices.

Since semantic graphs model the relationships between concepts or entities in the real

world, their sizes often must reflect the large amount of information required for various

models to be accurate. Further, while real-world semantic graphs are typically large, new

graphs in some emerging fields are expected to have truly massive numbers of vertices and

edges. For example, Kolda et al. [42] predict semantic graphs representing social networks

of interest to the Department of Homeland Security w i l l have 10 1 5 entities. Additionally,

real-world graphs which model interaction networks such as social networks or even the In­

ternet's website interconnections have degree distributions which follow a power-law [10].

This means that i f y is the number of nodes with degree rr in a graph, then y oc x'13. These

power-law or scale-free graphs have several unique properties. They exhibit the small-

world phenomenon, because their diameter increases only logarithmically with the number

2

of vertices [66]. As a consequence of this small-world property, queries which analyze long

paths often must access a significant portion of the graph data, sometimes over 80% of the

total graph's edges in our experiments. Analyzing such large graphs and answering user

queries within a reasonable amount of time is an important and very challenging problem.

First, a set of novel graph algorithms are needed in order to analyze these huge data sets.

In the best case, a graph with one trillion edges requires 8 billion bytes of disk space to store

and over 2,300 seconds at 50 MB per second just to scan through the data spread over 64

clustered compute nodes. Clearly, in order to process given user queries in a timely manner,

these graph algorithms must explore large semantic graphs in parallel. More importantly,

they must be out-of-core (OOC) algorithms that read and process input graphs that are

stored in persistent storage, as the memory requirements of any massive semantic graph are

prohibitively large. Although in the literature there are various parallel graph algorithms [9,

20,21,30,40,41,69], and OOC (also called external memory) algorithms [2,3,22,25,46,50],

along with one concurrent work which provides a parallel out-of-core breadth-first search

algorithm [49], there is no practical framework yet provided to allow future work in this

direction.

Second, a new graph storage system and data format are needed. Although traditional

relational database systems provide enough performance for business applications such as

transaction processing, relational databases are not ideal platforms for storing and process­

ing massive semantic graphs. The same flexibility which makes relational databases ap­

propriate for a wide variety of divergent applications causes them to perform poorly when

faced with such strict data and speed requirements as are imposed when dealing with large

semantic graphs. Therefore, a new data management system is needed. This data manager

3

must be able to store streaming semantic graphs of massive size and provide an underlying

infrastructure to allow the parallel graph algorithms to access and process the stored graph

in a scalable and cost-effective way.

In this thesis, we present a middleware framework for storing, accessing and analyzing

massive-scale semantic graphs. The framework, Massive-Scale Semantic Graphs (MSSG),

targets scale-free semantic graphs with O(10 1 2) vertices and edges. In a scale-free graph,

most of the vertices are only connected to a small number of other vertices (i.e., they have

low degree), while a few vertices, known as hubs, are connected to a large number of other

vertices. Most ofthe real-world semantic graphs exhibit this topological property.

The sheer size of these massive-scale semantic graphs prohibits storing the entire graph

in memory even on medium- to large-scale parallel architectures; hence, these graphs w i l l

need to be persistently stored in a distributed database. The framework is architected tar­

geting large clusters with compute nodes that have direct access to fast disk storage. One of

the many possible configurations is compute nodes with large local disks. Another configu­

ration is compute nodes that are connected to fast storage arrays via Storage Area Network

switches. An example of the latter is Ohio Supercomputing Center's Mass Storage sys­

tem [18].

We propose a new graph database, grDB, for storing and processing large scale-free

semantic graphs on secondary storage. The grDB database stores the vertices and edges of

a semantic graph in such a way that the number of disk I/Os required to access adjacent

vertices is minimized while still efficiently utilizing the storage space.

We have developed a prototype implementation of MSSG. This prototype has been built

on top of DataCutter [15,16], which uses MPI as its low-level communication protocol.

Experimental evaluations with both real-world scale-free graphs and synthetic scale-free

4

graphs show that our prototype scales well. We have also compared grDB against other

widely used open-source databases, BerkeleyDB [61] and MySQL [47], as well as in-

memory graph storage implementations (for small graphs). These experiments showed the

effectiveness of the proposed graph database for scale-free graphs.

The main contributions of this research are summarized as follows.

• We have architected a framework, MSSG, to store, retrieve, and process massive-

scale semantic graphs.

• We have developed a novel data management system called grDB. Unlike traditional

relational databases, grDB is optimized specifically for efficiently storing and access­

ing semantic graphs of massive size.

• We have developed a parallel OOC breadth-first search algorithm that runs on dis­

tributed parallel machines.

• We have evaluated the performance of MSSG using large real-world semantic graphs

and randomly generated large scale-free graphs . The results show that the MSSG

framework scales well, and that the proposed graph database, grDB, outperforms

other open-source database systems, Berkeley DB and MySQL.

The remainder of this thesis is organized as follows. Some related work is presented

in chapter 2. The architecture of the proposed MSSG framework and its implementation

are described in detail in chapters 3 and 4. Experimental results are presented in chapter 5,

followed by concluding remarks in chapter 6.

5

CHAPTER 2

PREVIOUS AND RELATED WORK

Since the focus of this work is to create a framework for designing parallel, out-of-

core algorithms to analyze massive-scale semantic graphs, there are several fields which

can be looked to for inspiration and competition. Clearly, the field of graph models w i l l

have a large part to play, as well as the newer specialization within that field dealing with

scale-free graphs. Since no analysis can occur in a computer system without an algorithm,

the fields of external-memory algorithms and graph algorithms wi l l both come into the

equation. Also, the field of parallel algorithms must be given a voice, since the volume

of data to be processed wi l l necessitate a parallel solution to our problem, as stated in the

introduction. Lastly, the field of runtime middleware wil l likely have some part to play,

since our system intends to be an easy-to-use framework on top of which parallel, out-of-

core graph algorithms can be designed.

The early graph models [19] relied on the assumption that any sufficiently large graph

would exhibit two properties which would completely describe the graph, number of ver­

tices and average degree of connectedness of the vertices. This model was the most widely

used for randomly constructed graphs for the first several decades of graph modeling. With

the advent of the Internet and the increased ability to automatically traverse and store

graphs, [10] found that the ER model for random graphs failed to explain the topology

6

present in the Internet website graph. It was also found that other types of self-organizing,

real-world graphs have a degree distribution which is not predicted by the ER model.

Therefore, a new theory for random graphs has become popular. The scale-free theory

of random graphs states that in these graphs, the degree distribution follows a power-law.

That is, the probability of a node to have a certain degree k is proportional to k raised to

a some negative constant. The term 'scale-free' denotes that these power-law graphs w i l l

retain the power-law degree distribution no matter how you scale the time over which the

vertices are added and connected, provided that the method used to add vertices and edges

is not altered.

The field of out-of-core algorithms extends a computer's ability to process data sets

to those which do not fi t into main memory. Since many algorithms use a simple record

sort or pennutation as part of their computational kernel, it stands to reason that the field

of external-memory algorithms began with techniques for sorting and permuting records

which do not fit into the main memory of a single machine [33,39,51]. That is, some form

of persistent secondary memory is the main location where the records are resident, and

only some small proportion of the records are brought into the main memory at any one

time. Algorithms in fields such as computational geometry [27], computer graphics [17],

linear algebra [62], and graph theory [26] make use of out-of-core techniques when the

input data sets cross certain thresholds. Out-of-core graph algorithms, which are directly

pertinent to our research, exist for most of the in-memory algorithms for graph problems:

directed and undirected search, connected components, minimum spanning trees, etc.

Due to the large size of the data this research targets, the field of parallel algorithms

must also have a part to play in our solution. Parallel algorithms have been developed for an

enormous array of different problems, ranging from simple sorting and permuting [29,58]

7

to graph algorithms of all kinds [57], from linear algebra [35] and matrix multiplication

to finite element methods (FEM) for solving systems of partial differential equations [31],

from parallel molecular dynamics simulations [28,36,56] to algorithms for visualizing and

analyzing data sets too large to fit into a single computer [17]. It is a mature field with a

large number of publications, and it has much to offer this research in the way of inspiration

and background.

.Since the goal of this research is to design and implement a runtime system to enable

graph algorithms to process extremely large data sets, the runtime engine or middleware

fields [1,5,6,23,38,52,55] may also have some valuable insight. Additionally, any research

into the handling of massive data is also worth reviewing. A common thread in practical

methods for processing massive data is to consider the data to be streaming through some

computation. This idea is found in many of the data-intensive runtime systems presented

in the literature, and should therefore be considered carefully.

TPIE [7] is a runtime engine where the algorithm developer does not specify any of the

details about the movement of data to and from the secondary memory. Rather, the devel­

oper need only specify the operations to perform the computation, and the runtime system

itself wi l l manage the movement of data in an I/O-efficient manner. DataCutter [16] is

a component-based middleware framework designed to provide support for user-defined

processing of large multi-dimensional datasets across a wide-area network. In DataCutter,

application processing structure is implemented as a set of components, referred to as fil­

ters, that exchange data through a stream abstraction. River [8] takes the stream concept a

stage further and allows its processing filters to take work from a distributed queue, thereby

adaptively allocating work where it is needed most. River's main goal is to disallow non-

uniformities in the processing nodes from affecting the computation adversely. MQO [12]

8

is a grid middleware platform which uses a distributed index cache to answer multiple-

range queries efficiently. While not directly applicable to the storage and analysis of graph

data, the techniques put to work in MQO to deal with the massive amount of data, and the

distributed nature of the application may also be appropriate in this research. The Parallel

Boost Graph Library [54] is meant to provide a generic framework and template functions

for graph analysis on parallel machines.

Indexing is a well-known technique for reducing the latency associated with retrieving

data elements stored on disk. The B-tree (and its variants) is a well-known, efficient data

structure used for indexing single-dimensional data. Various index structures have been

proposed for retrieval of multidimensional data. Examples include VQ-Index [63], kdb

trees [60], hB tree [45], R* tree [11], R tree [34], SS tree [67], TV tree [44], X tree [14],

Pyramid Technique [13], Hybrid Tree [24]. While graph data is different from spatial

data, it is still likely that some of the techniques employed in these indexing schemes are

applicable.

While scalable and communication-efficient parallel graph algorithms and I/O-efficient

external memory algorithms exist separately, and some concurrent research has investigated

merging parallel and out-of-core techniques in a breadth-first search algorithm [49], there

is no framework or middleware platform which allows for the practical development of

algorithms which are meant to run on parallel architectures and utilize external memory.

MSSG intends to be that framework, which wi l l enable these types of algorithms to be

designed and implemented.

There are a number of commercial solutions which are worth considering for this type

of graph analysis, one of which is marketed by Netezza [48]. We believe that our solution

is preferable to that of the Netezza search appliance because MSSG allows an unrestricted

9

set of operations to be performed on the graph data, while the Netezza solution's set of

operations are restricted naturally by the computational resources (in this case, an FPGA)

which are close to the data stored on disk. By using MSSG, the algorithm developer is

only constrained by the aggregate size of the memory space and the speed of the compu­

tational resources available, both of which can be improved when required. Additionally,

our solution does not required that the computational resources are devoted to the database

application. A distributed memory parallel machine can be used for a myriad of other scien­

tific and engineering applications, beyond that of data storage and processing. Moreover,

our solution allows parties interested in graph search to leverage their current resources

without needing to buy extra expensive, proprietary hardware.

10

CHAPTER 3

ARCHITECTURAL DESIGN

The MSSG framework is designed to provide storage, retrieval and processing of large

scale-free graphs. It consists of one or more front-end nodes which provide an entry point

for the user queries as well as graph data ingestion, and a set of back-end nodes that are

responsible for storing and processing the graph data (Figure 3.1). MSSG has been built on

top of DataCutter [15,16] and its functionality is provided by a set of modular, customizable

services implemented as DataCutter components and pluggable interfaces. The Ingestion

Service provides an entry point for data storage and it is responsible for clustering and

declustering of the graph data to the back-end storage nodes. The Query Service allows for

analysis of the stored graph, while the GraphDB Sendee provides a unified mechanism for

storing and accessing graph data.

Both the Ingestion and GraphDB services can draw parallels from the parallel file-

system domain, particularly the Parallel Disk Model [64,65] (PDM). The PDM provides

a generic model for use in designing OOC algorithms and in calculating upper and lower

bounds for OOC algorithm performance. In a sense, the Ingestion service's declustering of

the input graph is equivalent to striping the graph data intelligently across multiple disks in

a uniprocessor system. Within the Ingestion and GraphDB implementations, there are also

PDM optimization techniques which may be applicable.

11

Streamed
Graph

a .
vs

S e
yD

B

Q
L

H
a
sh

B
e
rk

e
l tn

2

Back-Enc

Figure 3.1: MSSG Overall System Architecture

In the following sections, we first present a brief overview of DataCutter and then dis­

cuss the details of each service.

3.1 DataCutter

DataCutter [15,16] is a component-based middleware framework [1,5,6,23,38,52,55]

designed to support coarse-grain dataflow [8] execution on heterogeneous environments.

In DataCutter, the application processing structure is implemented as a set of components,

referred to as filters, that exchange data through logical streams. A stream denotes a uni­

directional data flow from one filter (i.e., the producer) to another (i.e., the consumer). A

filter is required to read data from its input streams and write data to its output streams only.

12

The DataCutter runtime system supports both data- and task-parallelism. Processing, net­

work, and data copying overheads are minimized by the ability to place filters on different

platforms. The filtering service of DataCutter performs all steps necessary to instantiate

filters on the desired hosts, to connect all logical endpoints, and to call the filter's interface

functions for processing work. Data exchange between two filters on the same host is car­

ried out by memory copy operations, while a message passing communication layer (e.g.

TCP sockets or MPI) is used for communication between filters on different hosts.

3.2 Ingestion Service

The Ingestion service provides the entry point for graph data to the MSSG system. Its

job is to cluster and decluster (distribute) the ingested data appropriately to the GraphDB

instances on the back-end nodes. Due to the sheer size of target graphs, these operations

should be very efficient. The ideal approach is to perform these operations while the graph

data is being ingested by the system via streaming.

The goal of this clustering and declustering is to achieve fast query processing by re­

ducing the total number of disk I/Os incurred to access the database and increasing the par­

allelism during the query processing. Parallelism is relatively easier to achieve for queries

which require processing a large portion of the dataset compared to queries that require

processing only a localized portion of the data. For example, i f a query were in the form

of search between two vertices, it would be ideal i f the vertices of the graph that are close

to source of the search were clustered together in one GraphDB instance to reduce the I/O

overhead. However, we also would like those vertices to be spread out to the nodes of the

distributed storage system in order to achieve better parallelism.

13

A graph can be clustered and stored mainly at two granularity levels: 1) at the vertex

level by storing all the edges incident to a vertex together and 2) at the edge level by storing

each edge as an independent entity. MSSG supports both granularity levels. Similarly,

streaming updates can arrive at those two granularity levels. Adding new vertices and new

edges using vertex- and edge-level granularity respectively, however, necessitates novel

clustering techniques. I f vertex granularity is selected at the storage side, it would largely

dictate the clustering and declustering of streaming updates. That is, i f a vertex has been

already clustered and assigned to storage node, all the new edges incident to that vertex

have to be added to the same cluster to which the vertex belongs. Clustering would be

simpler in this paradigm, but updating the data each time a new edge is stored can be very

costly. Smart caching and blocking techniques help reduce the number of disk I/Os due to

updates.

For clustering streaming data, MSSG processes the ingested data in blocks (or win­

dows) of a predetermined size, each of which fits into memory. Any streaming data can be

converted into this format by accumulating incoming data to construct a block. Clustering

algorithms wi l l work on those blocks one by one. These algorithms must be very efficient

in order for decisions to be made in real-time. Furthermore, these algorithms should keep

some additional summary information about the data that has been already clustered and

distributed to the nodes of the storage system. Using the summary information, the cluster­

ing algorithms should be able to make more intelligent decisions on where to send blocked

data.

Figure 3.2 shows a simple example of a graph being partitioned and distributed to three

back-end database nodes. In this example, the block which is to be partitioned contains

nine vertices and the edges which interconnect them as shown. The partitioning algorithm

14

Figure 3.2: An example of graph partitioning

has chosen vertices 4, 5 to go to database node 0, vertices 1, 2, and 3 to go to database

node 1, and vertices 6 and 7 to go to database node 2. I f an edge in a block needs to be

partitioned when the source vertex has already been assigned to a back-end node (in the

case of vertex granularity partitioning), the Ingestion service needs to keep track of the

owner of that vertex's edges. Various methods of accomplishing this goal exist, spanning

from using a deterministic function to map the vertex id's to back-end node id's to simply

broadcasting all edges to all back-end nodes and required the back-end node to store the

edge, i f appropriate.

15

MSSG provides a customizable interface for developing clustering and declustering

techniques. By default, the MSSG framework provides simple declustering techniques

such as vertex- and edge-based round-robin declustering.

3.3 Query Service

The Query service provides the query interface for the client and orchestrates the ex­

ecution of data analysis queries. In the MSSG framework, data analysis techniques are

implemented as DataCutter filter graphs communicating via DataCutter's filter-stream in­

terface. A l l implemented data analysis techniques are registered with the system and can

be queried by the user. Any data analysis accesses the stored graph data via the unified

graph interface provided by GraphDB Service. Since each GraphDB instance only pro­

vides direct access to local data stored in each node, data analysis service instances need to

be implemented in such a way as to take this data distribution into account. For example,

i f the graph is stored using vertex-level granularity, the complete adjacency list of any arbi­

trary vertex wi l l be stored in only one node. Hence, any operation that requires accessing

the adjacency list of a vertex needs to be either delegated to that node or the adjacency list

needs to be transfered to the node that initiated the access. As an example Query Service

instance, a relationship analysis method based on breadth-first search is described in more

detailed in Section 4.2.

3.4 GraphDB Service

The GraphDB Service's job is to interface with a number of disparate storage medi­

ums, such as various in-memory data structures, relational databases, and other disk-based

storage methods.

16

i p u b l i c i n t e r f a c e Graph {
2
3 p u b l i c v o i d storeEdges(List<Edge> edges) t h r o w s

GraphStorageException;
4
s p u b l i c i n t g e t M e t a d a t a (l o n g v e r t e x) t h r o w s GraphStorageException;
6
7 p u b l i c v o i d s e t M e t a d a t a (l o n g v e r t e x , i n t metadata)throws

GraphStorageException;
8
9 / / operation is defined as follows:

IB / / -2 : ignore metadata and return all neighbor vertices
ti // o r r e t u r n an neighbor to vertex if its metadata is:
12 / / -1 : not egual to input metadata
13 / / 0 : egual to input metadata
14 // I : g r e a t e r than input metadata
is // 2 : less than input metadata
16 p u b l i c v o i d g e t A d j a c e n c y L i s t U s i n g M e t a d a t a (l o n g v e r t e x ,

FastLongArrayStorage a d j l i s t , i n t metadata, i n t o p e r a t i o n) ;
17 J

Listing 3.1: GraphDB Service Interface

One of the main innovations of the MSSG API consists of a Java interface Graph (List­

ing 3.1) which exposes the smallest complete set of graph operations possible, along with

one higher-performance method which implements a slightly higher-level graph function,

for performance reasons. In order to be complete, a graph-storage service only needs to

store edges and retrieve lists of distance-1 neighbors (adjacent vertices). It is important to

note that none of the methods in the GraphDB Service interface perform any communica­

tion or remote operations. A l l of the methods listed operate on data local to the back-end

node.

Currently, there are several concrete classes which implement the graph interface and

store the actual graph data in different formats and different storage mediums. Two of the

default implementations are based on efficient in-memory storage for graphs that could fit

in memory of the MSSG installation. We also provide four disk-based implementations

of GraphDB services. Two of them are based on open-source databases, BerkeleyDB and

17

MySQL. One of them is based on the notion, borrowed from research into Active Disks [4],

that database searches which touch a large portion of the data wi l l benefit by simply stream­

ing the entire data set into the CPU and processing it in chunks. The last one, grDB, is a

novel disk-based graph database designed for massive scale-free graphs.

3.4.1 grDB: Graph Database

We propose a novel graph database, grDB, which is intended to allow the efficient out-

of-core storage and retrieval of scale-free graphs. A grDB instance is comprised of two

components; the storage component and the block cache component. The storage compo­

nent is responsible for the storage and retrieval of blocks which store partial adjacency lists

of one or more vertices. The block cache component provides in-memory caching of the

storage blocks for improved performance.

A scale-free graph in grDB is stored in multiple files that are composed of blocks.

Blocks are smallest unit of I/O for grDB. While the optimum block size is determined by

the performance characteristics of the physical storage system, we nevertheless expect the

optimum block size wi l l not be smaller than the filesystem's block size. Each block w i l l

be further divided into sub-blocks that are uniquely addressable. A sub-block is used to

store a vertex's partial adjacency list. A grDB instance contains multiple levels of storage

files. At level £, each sub-block of a storage file can store up to de adjacent vertices, where

de > 2x de-i for £ > 1. Since our target graphs exhibit the power-law degree distribution,

we suggest choosing de values that also follow an exponential curve, such as de = 22 .

Each vertex in grDB wi l l have a 6-byte unique Global ID (GID) in the range between

0 to n , where n is the number of vertices in the graph; hence, each sub-block in level i is

b x de bytes. Since each block can store one or more sub-blocks, block size Be at level £

18

Allocation Unit = Block

Adi(v,i Adj(v 2 j A d j ^ j

Sub-block: Adj(V| j

U2 • - - link

levei-0; a=2 level-l:d=22

Adi(v,) Adj(v 2 i Adj(vK) AdKv,) Adj{v k)

Figure 3.3: An illustration of grDB file format

is computed as Be = ke x b x de, for an integer > 1. Because of file system limitations

as well as performance reasons, at each level i graph data is stored in multiple files with

a maximum size of M-bytes, or equivalently Ne = M/Be blocks. The location of a sub-

block s in the disk at a level £ can be found using simple modulo arithmetic as follows.

Since each block stores ke sub-blocks, sub-block s is stored in s/ke-th block, which is

stored in s/ke/Ne-th file at offset Be x {{s/ke) % Nt) + 6 x de x (s % ke).

The beginning of the adjacency list of a vertex v in grDB is stored in t'-th sub-block at

level 0. I f a vertex has do or less number of adjacent vertices, they are directly stored in that

level. I f v has more adjacent vertices than do, the first do — 1 adjacent vertices are stored in

the level 0 sub-block, and the last location in the level 0 sub-block is used as a pointer into

19

the higher level files. During the ingestion of the graph data set, i f the adjacent vertices are

added in small groups, the adjacency list of a vertex could have entries in multiple levels of

the grDB. For example, i f vertex v already has d0 adjacent vertices and one more adjacent

vertex is added, a new sub-block is allocated for that vertex in level 1. A link from the

-u-th sub-block at level 0 to the newly allocated sub-block at level 1 is created. When the

degree of vertex v achieves d0 + di, a new sub-block is allocated for that vertex at level

2, and either all of the contents of the sub-block at level 1 are moved to the new sub-block

at level 2 and subsequent new adjacent vertices are added to that sub-block, or the sub-

block at level 1 is left unchanged and simply links to the newly allocated sub-block at level

2. The former approach necessitates extra copy operations during the insertion, while the

latter creates fragmentation in the adjacency list. One approach is to leave the adjacency

lists fragmented during the ingestion, and later during "idle" time, the grDB service can

defragment these multi-level adjacency lists in the background. Figure 3.3 illustrates the

file format of grDB, and a small example is shown in Figure 3.4.

20

21

CHAPTER 4

PROTOTYPE IMPLEMENTATION

We have implemented a prototype of the MSSG framework in Java. The framework

allows analysis services to be implemented in Java using DataCutter's filter interface. We

have implemented an analysis service which uses breadth-first search. Below we present

the details of the prototype MSSG middleware and the breadth-first search analysis plug-in.

4.1 Customization of GraphDB Service

We have implemented six different instances which meet the generic GraphDB inter­

face contract, two in-memory versions and four out-of-core versions using various persis­

tent storage managers. Although the graphs we are targeting wi l l not fit in memory, the

two in-memory implementations provide a solid base-line comparison for our out-of-core

implementations. In a sense, they represent the lower-bound we could achieve with the

out-of-core implementations. Here is a brief description of these six GraphDB instances:

4.1.1 Array

The first in-memory implementation uses the standard compressed adjacency list for­

mat to store the graph in memory. When using the compressed adjacency list format, a

graph Q = (V, £) is stored using two arrays of size \£\ and |V| + 1, respectively. The first

22

array, adj, contains the adjacency list of all vertices concatenated one after the other, while

the second array, xadj, stores a pointer to the beginning of adjacency list for each vertex.

That is, the adjacency list of vertex v is stored at adj[xadj[v]],..., adj[xadj[v + 1] — 1].

The advantage of this format is it provides very efficient access to the adjacency list of

each vertex, by using the highest-performance in-memory data structure possible. How­

ever, this format has three major issues. First, Java only allows 32-bit integers as array

indices, which restricts the input graph size. Second, this storage format is not suitable

for dynamically-growing graphs. Third, it is poorly suited for storing graphs distributed to

multiple machines; unless a block distribution of vertices is used, each node has to store

the fu l l xadj array. Therefore, the array-based storage format's memory requirement does

not scale with increasing numbers of back-end nodes. For small graphs that fit into main

memory, the first and third concerns wi l l not cause problems. For the input stage, when

the graph is streaming in from the front-end nodes, we have actually used the HashMap

implementation (see 4.1.2) with integer IDs as temporary storage. After flushing the graph

to disk, the A r r a y GraphDB instance loads the graph into the compressed adjacency list

arrays. The A r r a y implementation is useful as a lower-bound on the search execution

times.

Figure 4.1: An example of the Array GraphDB Service instance

23

The Figure 4.1 shows a small example of how a graph might be mapped into the A r r a y

GraphDB instance. For instance, the vertex 0 has adjacent vertices 1, 2, and 3. These

neighbor vertices to vertex 0 are located in adj from index xac^O] = 0 to index xadjf l] —

1 = 2. The adjacency list of vertex 1, consisting of vertices 0 and 2, is stored immediately

after that of vertex 0, beginning at xadj[l] = 3 and continuing to adj[2] — 1 = 4 . The

other adjacency lists are stored adj in a similar manner, and their beginning and ending

indices are stored in xadj similarly also.

4.1.2 HashMap

By using a hash data-structure one can improve on the memory requirements of the

A r r a y implementation when dynamic or distributed graph storage is required. There are

two possible implementations, the first of which is to use a hash data-structure to map

global vertex IDs to local vertex IDs. The compressed adjacency list array implementa­

tion can then be used with the local, renumbered vertices. This implementation requires

global-to-local and local-to-global vertex ID translations and (like the A r r a y instance) is

not very suitable for dynamically growing its storage during the ingestion. The other im­

plementation option entails storing the adjacency lists of each vertex separately and using a

hash data-structure to store and retrieve the pointers to those adjacency lists. Although only

global vertex IDs (64-bit longs in Java) are used and there is no need for global-to-local and

local-to-global ID translation, accessing the adjacency list of a vertex still requires a hash

look-up. We have implemented the latter approach using Java's HashMap data stmcture,

which gives this GraphDB instance its name. As already mentioned, this implementation's

memory requirement scales well when increasing the number of back-end nodes, at the

expense of additional hash look-up time in order to access the adjacency list for a vertex.

24

{ 0 , 1 , 3 , . . . }

Hash function

3 | 4 | 8 | 10 | 12 | 14 | ... 0 | 4 | 6 | 7 |

Figure 4.2: An example of the HashMap GraphDB Service instance

The Figure 4.2 shows a simple example of how a graph might be stored in a HashMap

GraphDB instance. In this example, the vertex 0 has at least 6 adjacent vertices stored in

an array. The key in the HashMap in our implementation is simply the vertex id 0 and the

value is a pointer to the adjacent vertex storage object. The actual location of 0's adjacency

list storage is unimportant, since the HashMap wi l l always hold the pointer to that object.

This is a major advantage in storing graphs which wi l l have edges and vertices added to

them in a dynamic fashion, as opposed to cases where the entire graph wi l l be known before

it is stored in the GraphDB Service instance.

4.1.3 MySQL

We have implemented an out-of-core graph database instance using MySQL 4.1.12 |47].

With a standard {sre, dest} table model, the overhead of retrieving the adjacency list of a

vertex w i l l be prohibitively high for a table with conceivably hundreds of millions of rows.

Therefore, we have chosen to store the adjacency list of a vertex in one or more MySQL

records indexed by the vertex ID. In order to provide a level of performance that approaches

the other implementations we also have chosen to serialize the adjacency list into a BLOB

data type in a table which is indexed by the source vertex. Since BLOBs can be of arbitrary

25

0 0 | { binary data}
1 0 | { binary data}
1 0 | { binary data}

0 i {binary data)

2 | 4 | 6 | 71...

3 | 4 | 8 | 10 | 12 I 14 |

Figure 4.3: An example of the MySQL and BerkeleyDB blocking

size, however, we chose to chunk the adjacency list into standard-sized blocks (8 KB), as

suggested by the MySQL documentation and demonstrated in Figure 4.3. The figure shows

a database table with three columns. The first column is the vertex id. The third column is

the adjacency list storage area, in binary format. The second column is simply a bookkeep­

ing column to keep track of adjacency lists of too large a size to fit into one binary data

object. That is, i f the adjacency list of a vertex is too large to fit into one row, it is split over

multiple rows and the second column in the table is used as a unique identifier for each row.

4.1.4 BerkeleyDB

We have also implemented an out-of-core graph database instance using BerkeleyDB

version 1.7.1 [61]. The BerkeleyDB is a programming API which gives the user easy access

to persistent, transactional, and storage without the overhead of using a relational database

server. The chunking technique used in the MySQL implementation is also used here.

4.1.5 StreamDB

We have implemented a basic streaming database which stores the edges to disk as they

are received by the backend node. No sorting or clustering of the edges is performed, which

makes this GraphDB instance simple to implement and able to exhibit high performance

26

during ingestion of graph data. However, this simplicity and ingestion speed is obtained

by accepting lower search speed and higher search algorithm complexity. This design of

the database prevents an instance from returning a vertex's adjacency list without scanning

through the entire edge set. The expansion of a fringe in a breadth-first search, for example,

would be very expensive i f each vertex were considered one at a time. Therefore, any search

algorithm which needs the adjacent vertices to another set of vertices to proceed must post

a request for all of the 'fringe' vertices at once, thereby allowing the database to only scan

through its data once. This database design was inspired by the active disk work in [4].

4.1.6 grDB

We have implemented the proposed grDB discussed in Section 3.4.1 in Java using the

standard R a n d o m A c c e s s F i l e class. Global vertex IDs and file sub-block address point­

ers are 64-bit long integers where the 3 most significant bits are reserved for the grDB's

internal use to mark when the value is a pointer to a higher-degree storage file. With 3 bits

acting as the pointer indicator, we still allow 61 bit vertex numbers which wi l l be sufficient

for graphs with up to 2 quintillion vertices (2 * 10 1 8) . In our experiments we have restricted

the maximum file size to be M = 256 MB. We have used a 6-level instance of grDB with

de values are equal to 2, 4, 16, 256, 4K and 16K, and with a block size, i ^ , of 4 KB in

the first 4 levels and 32 KB and 256 KB for the last two levels.

4.2 Parallel Out-of-core Breadth-First Search

In the prototype we provide an example instance of the Query Service which imple­

ments a parallel out-of-core Breadth-First Search (oocBFS) algorithm. BFS is one of the

basic algorithms for relationship analysis [42,69].

27

Algorithm 1 Parallel Out-of-core Breadth-First Search Algorithm
1: function oocBFS(<7 = (V, £), s, d)
2: Initial data distribution: Q is divided into p subgraphs Gi = (V i , £ a) , . . . , Gp -

{Vp, Ep) where Ei,...,Ep is a disjoint partition of the edge set E and C V
for 1 < z < p.

on each processor Pf, 1 < t < p.
ieve/ft;] = oo for w e V
F <- at|rG.(s)
ieveZ[s] <— levant <— 0
while 'found' message has not been received do

levant <— levcnt + 1
for t; G F do

for u G adja.{v) do
if ti = d then

send found message to all processors and return levcnt
else if level[u] = oo then

level[u] <— levcnt
N ^ NU{u}

if ^ is stored with vertex-level granularity and vertex mapping map[u] is
known by every processor then

17: for u E N do
18: Smap^u] < Smap[u} U { l i }
19: send S 1 , to processor for 1 < ^ < p.
20: else
21: broadcast N to all processors
22: Receive Rq from Pq for I < q < p.
23: F ^ U , ^
24: return infty

4

5:

6:

7:

8:

9:

10

11:

12

13

14:

15:

16:

Algorithm 1 outlines the parallel oocBFS algorithm, which is not much different than

a sequential BFS algorithm. The main differences come from graph data distribution and

storage. I f an edge-level granularity is used to store the graph, it is possible that the adja­

cency list of a vertex is distributed to multiple nodes. In such a case, the successive search

level's frontier vertices N need to be broadcasted to all the processors. A similar situation

arises when vertex-level granularity is used but the vertex mapping is not known globally

by every processor. In this case, frontier vertices have to be broadcasted to all processors

28

also. In both of these cases, the frontier set F wi l l be identical for all processors. However,

i f vertex-level granularity for distribution is used with a globally-known mapping (such as

GID % p, where p is the number of back-end nodes), on each processor Pi the frontier

set F w i l l only contain the vertices assigned to Pi. Algorithm 1 handles all of these cases

naturally by using a simple graph interface which returns the empty set when an adjacency

list of a vertex that is not assigned to that processor is requested (steps 5 and 10).

In the current implementation, we rely heavily on the underlying database's caching and

clustering capabilities to hide the latency that comes from accessing the adjacency list on

disk. This dramatically simplifies the oocBFS implementation and our experiments show

that both BerkeleyDB and grDB benefit from using a cache.

Algorithm 2 outlines the pipelined parallel oocBFS algorithm. This algorithm differs

from algorithm 1 in that the communication is overlapped with computation as much as

possible. This overlap is achieved by splitting the next level fringe into chunks and sending

these chunks to the other processors in a pipelined fashion in lines 16 to 22. Each processor

only sends a fringe chunk to another processor when the chunk which contains the vertices

owned by that processor is past a certain size, threshold. In the case where vertex ownership

is not globally known, all of the fringe chunks must be sent to all other processors. After

sending (line 17) this fringe chunk to the appropriate processor, the local next-level fringe

container is cleared, so as to not send redundant data (line 19). However, i f the vertex-level

ownership is not known, then the next level fringe must be broadcast (also line 17) to all of

the other processors. It is then transferred to local storage before the container is cleared.

Since sending a small message from one DataCutter filter to another filter is a non-blocking

operation, this allows the algorithm to return to processing local fringe vertices while the

communications subsystem actually sends the message.

29

Algorithm 2 Pipelined Parallel Out-of-core Breadth-First Search Algorithm
1: function P O O C B F S (^ = (V,<f), 5, d)
2: Initial data distribution: Q is divided into p subgraphs Gi = (V j . ^ i) , . . . ,GP =

{Vp, Ep) where Ei,...,Ep is a disjoint partition of the edge set £ and C V
for 1 < i < p .

3: Vertex mapping map is initialized such that map[u] gives the processor which
owns vertex u. If the global vertex distribution is not known, map[u\ = 0 V
u G V, Â o will be the broadcast queue, and N\ will be the local next level
queue.

on each processor Pi, 1 < i < p.
level[v\ = oo for f G V
F *- adjGi{s)
level[s\ <— levcnt <— 0
while 'found' message has not been received do

for w e F do
for u G adjafv) do

if u — d then
send found message to all processors and return levcnt

else if level[u] = oo then
level[u] <— levcnt
A m a p [w] < A^m ap^] U { i i }
if Nmap[u] > threshold then

send Nmap[uj to processor map[u] or broadcast
if 7nap[u] 7̂ 0 then

N-map^u] < 0
else

Aa ^ ^ U N0

AQ ^ 0
F <— 0
if message i? is waiting then

for v E R do
if Zet;eZ[f] = oo then

else
levcnt <— levcnt + 1
send A j to each other processor Pi
if map[0] = 0 then

F <— Nil) N0

else
P < Nmyid

for I <i <p do
M ^ 0

return m/ty

30

The performance of these algorithms can be further optimized by introducing some

pre-fetching of the adjacency lists of the vertices in the frontier. Further optimization for

performance might include sorting the pre-fetch disk accesses by file offsets to reduce the

seek overhead. As part of our future work, we wi l l investigate both of these options.

31

CHAPTER 5

EXPERIMENTAL RESULTS

We carried out the experimental evaluation of the MSSG framework on a 64-node Linux

cluster owned by the Department of Biomedical Informatics at The Ohio State University.

Each node of the cluster is equipped with dual 2.4 GHz Opteron 250 processors, 8 GB

of R A M and two 250 GB SATA drives providing 500 GB of local storage via software

RAIDO. The nodes are interconnected with switched gigabit Ethernet and Infiniband.

The tests were performed using vertex declustering during ingestion; the vertex own­

ership knowledge was leveraged during the search phase. Additionally, the search perfor­

mance tests were performed with an in-memory visited data structure, with the exceptions

where noted. We wish to characterize the operation of the actual graph storage; the sim­

plest way to obtain a fair comparison is to simply fix the visited data-structure. A l l the tests

were performed with one of three graphs; two real-world semantic graphs, PubMed-S and

Graph Vertices Und. Edges Min. Deg. Max. Deg. Avg. Deg.
PubMed-S 3,751,921 27,841,339 1 722,692 14.84
PubMed-L 26,676,177 259,815,339 1 6,114,328 19.48

Syn-2B 100,000,000 999,999,820 1 42,964 20.00

Table 5.1: Statistics for graphs used in experiments

32

Search Performance

| Array, p=2
• HashMap, p=2
H Array, p=4

| HashMap, p=4
| Array, p=8
| HashMap, p=8
• Array, p^l6
• HashMap, p=16

Path length

Figure 5.1: Search performance of in-memory GraphDB implementations on PubMed-S
graph

were performed with one of three graphs; two real-world semantic graphs, PubMed-S and

PubMed-L, were extracted f rom the PubMed document database, while the third, Syn-2B

was created to exhibit the scale-free properties which MSSG targets. The graph informa­

tion is given in table 5. While these graphs are smaller than the trillion-edge graphs MSSG

targets, examining the outcome of these experiments is a necessary first step in order to

scale to larger graphs.

The first results displayed in Figure 5.1 represent a base-line comparison of the search

performance of the MSSG framework using in-memory implementations of GraphDB. In

this experiment 100 random BFS queries were executed on 16 nodes against the PubMed-S

graph, and the query execution times are averaged based on the path length between the

33

Performance effect of cache on search
15-1

14 H
13 1
12 H
i i B

• BerkeleyDB w/o cache
• BOB
H grDB w/o cache
• GRDB

Path length

Figure 5.2: Search performance of BerkeleyDB and grDB on PubMed-S graph with and
without cache

source and destination vertices. As seen in the figure, the Array graph storage performs

much better than the HashMap implementation, as expected. The HashMap GraphDB

storage requires a hash lookup to access the adjacency list of a vertex; with large graphs,

this overhead becomes significant. This is especially true as the path length increases,

since the size of the fringe at each search level increases exponentially. However, when

increasing the number of processors, this overhead is spread over multiple processors and

the difference between Array and HashMap is lessened.

The second set of experiments shows the importance of caching effects when dealing

with out-of-core data structures. Figure 5.2 displays the average performance on 16 nodes

of BerkeleyDB and grDB on 100 random queries against the PubMed-S graph, with their

34

Ingestion Performance
275

250

225

200

^ 175

9 150

E 125

100

11 frontend node

14 frontend nodes

ARRAY HASH GRDB BDB MYSQL

GraphDB Service Implementations

Figure 5.3: Ingestion performance comparison of five GraphDB implementations on
PubMed-S graph

intemal (block) caches enabled and disabled. As seen in the figure, caching can reduce

the execution time up to 50% on both implementations, especially for longer path queries.

Therefore, further results w i l l only come f rom our cache-enabled out-of-core implementa­

tions.

Figure 5.3 displays a comparison of the five different GraphDB implementations on

16 nodes using the PubMed-S graph. To investigate the effect of increasing the number

of front-end ingestion nodes, we repeated the ingestion of PubMed-S multiple times and

varied the number of ingestion nodes. The result shown in Figure 5.3 shows that Array,

BerkeleyDB, and grDB achieved similar performance in both cases (1 ingestion node vs

4 ingestion nodes). However, the HashMap and MySQL implementations were slower

35

40

35

30

« 2 5

E 20

15

10

5

0

Search Performance

-
1 n

3 4
Path length

I ARRAY

| HASH

| GRDB

I BDB

| M Y S Q L

Figure 5.4: Search performance comparison of five GraphDB implementations on
PubMed-S graph

when only 1 ingestion node was used. When using 1 ingestion node, the ingestion speed

is clearly limited by the I/O and network performance of that node. Furthermore, even

though the ingestion node reads a block (window) of edges and then distributes them to

back-end nodes, edge ordering in the streaming input graph could negatively affect the

load balance on the back-end nodes. By increasing the number of ingestion nodes, we both

remove the bottleneck f rom the front-end node and also achieve better load balance on the

back-end nodes. The results show that the ingestion performance is more or less the same

for all approaches, except for MySQL, which is slower than all other GraphDB storage

implementations.

36

Ingestion Performance

• ARRAY

• HASH
• GRDB

• STREAM
• BDB

Number of Processors

Figure 5.5: Ingestion performance comparison of five GraphDB implementations on
PubMed-L graph: 8 front-end ingestion nodes, vary back-end storage nodes

As seen in Figure 5.4, the Array implementation gives the lowest search time. Not

surprisingly, the second best results are achieved with the other in-memory implementa­

tion, HashMap. MySQL performs significantly worse than all other implementations. The

fastest of the three out-of-core GraphDB implementations, grDB, performs an average of

33% faster than the next fastest out-of-core implementation, BerkeleyDB. When comparing

grDB with the in-memory implementations, grDB is only 1.7 times slower than HashMap

and about 2.9 times slower than Array, on average. Finally, the search times for short paths

(and hence small fringe sizes) are negligible for all GraphDB implementations. As such,

future results w i l l only show longer path lengths.

37

Average Search Performance
240

220

Number of Processors

Figure 5.6: Execution time search performance comparison of five GraphDB implementa­
tions on PubMed-L graph

The results of the ingestion experiments in Figure 5.5 show that when the graph size

increases, grDB begins to have a significant advantage over the BerkeleyDB database. The

time for BerkeleyDB to ingest the graph is actually over 1,600 seconds, but the chart is

zoomed to give some resolution to the lower values. Further, we see that the StreamDB

instance has unrivaled ingestion performance. This is to be expected, since i t is simply

writing the edge set for each node directly to disk. What's more, the output format is more

efficient than the ingestion node format for these experiments; the output format is binary,

while the input data is ASCII .

38

Average Seach Performance

Number of processors

Figure 5.7: Edge/s search performance comparison of five GraphDB implementations on
PubMed-L graph

Figure 5.6 shows the results of the search experiments. As before, the Array GraphDB

implementation is the fastest of the five instances, followed closely by the HashMap in­

stance. On 8 and 16 processors, grDB performs admirably, but the random access of the

graph data forces the performance to drop below that of StreamDB on 4 nodes. In this

way, StreamDB acts as a useful lower-bound, indicating when some extra effort needs to

be applied to our other out-of-core database solutions to bring their performance to an

appropriate level.

Figure 5.7 shows the aggregate edges processed per second during the search experi­

ments. When visiting a large portion of the graph, as in the larger search paths, the Array

implementation processes nearly 30 mill ion edges per second. The grDB implementation

39

Search Performance

3.

E

I ARRAY
I HASH
| GRDB
I GRDB - OOC

5 6

Path length

Figure 5.8: Execution time search performance for Syn-2B graph using grDB

reaches 20 mill ion edges per second processed on 16 nodes, but this number drops signif­

icantly on 4 nodes. Additionally, while grDB is able to process more edges per second

than the StreamDB instance, grDB's search time is actually higher than that of StreamDB.

There is some room for improvement in the grDB database instance, when the grDB cache

size becomes negligible compared to the size of the graph.

Figures 5.8 and 5.9 show the results of MSSG's performance when working with the

Syn-2B graph. The trends seen before are upset somewhat, with the HashMap implemen­

tation's performance equaling or bettering that of the Array instance. This is surprising,

but the effect of a cache on a randomly accessed data structure can start to rival that of a

40

Search Performance

| ARRAY

| HASH

IGRDB
j G R D B - OOC

Path length

Figure 5.9: Edge/s search performance for Syn-2B graph using grDB

sequentially accessed data structure when those structures become very large, as is the case

here. But the out-of-core solution still lags behind that of the in-memory solutions, as is

expected.

Additionally, while the use of an external-memory visited data structure adversely af­

fects the performance, this is expected also. Nevertheless, the MSSG system can clearly

search very large graphs in reasonable time-frames and provides a high level of perfor­

mance. When touching a large portion of the graph, as is done in the later levels of any

breadth-first search on a scale-free graph, MSSG and grDB can process over 10 mil l ion

edges per second.

41

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this paper we presented a middleware framework, MSSG, for storing, accessing,

and analyzing massive-scale semantic graphs. We proposed and developed a novel disk-

based graph database, grDB, for massive scale-free graphs. We have also developed a

parallel out-of-core breadth-first search algorithm. Experimental evaluations on large real-

world semantic graphs and randomly generated large scale-free graphs show that the MSSG

framework scales well. Also, grDB outperforms widely used open-source databases, such

as BerkeleyDB and MySQL, in storage and retrieval of scale-free graphs.

A major goal of this research was to provide a flexible and efficient framework to allow

the development and analysis of different graph algorithms which are intended to operate

on graphs of previously intractable size. We believe we have provided such a framework.

As future work, we wi l l now move to the development of more complex approaches for

improving the efficiency of the MSSG framework, in order to move closer to our goal of

offering an environment to truly analyze graphs of enormous size.

It is clear when dealing with such massive amounts of data that a good clustering of the

graph data is imperative. Due to the properties of scale-free graphs, longer path searches

w i l l often search large portions of the graph. This fact wi l l require an efficient solution to

store vertices which are close to each other in the graph to be stored close to each other

42

on the disk. Additionally, while breadth-first search does not perform a large amount of

computation on the graph data, overlapping the disk accesses with the computation that is

required wi l l still lead to some additional performance.

More experiments on larger graphs are an important part of validating our work in this

area. Simply gathering or generating graphs of this size is an interesting problem, one

which could be helped by the MSSG framework, and its high ingestion and storage speed.

43

BIBLIOGRAPHY

[1] The ABACUS project, http^/www.cs.cmu.edu/^amiri/abacus.html.

[2] James Abello, Adam L. Buchsbaum, and Jeffery Westbrook. A functional approach
to external graph algorithms. Algorithmica, 32(3):437-458, 2002.

[3] James Abello, Mauricio G. C. Resende, and Sandra Sudarsky. Massive quasi-clique
detection. In LATIN, pages 598-612, 2002.

[4] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: programming model,
algorithms and evaluation. In ASPLOS-VIII: Proceedings of tlie eighth international
conference on Architectural support for programming languages and operating sys­
tems, pages 81-91, New York, NY, USA, 1998. ACM Press.

[5] Martin Aeschlimann, Peter Dinda, Julio Lopez, Bruce Lowekamp, Loukas Kal l i -
vokas, and David O'Hallaron. Preliminary report on the design of a framework for
distributed visualization. In Proceedings ofthe International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA'99), pages 1833-
1839, Las Vegas, NV, June 1999.

[6] Khalil Amiri , David Petrou, Gregory R. Ganger, and Garth A. Gibson. Dynamic func­
tion placement for data-intensive cluster computing. In the USENIX Annual Technical
Conference, San Diego, CA, June 2000.

[7] Lars Arge, Octavian Procopiuc, and Jeffrey Scott Vitter. Implementing I/O-efficient
data structures using TPIE. In ESA, pages 88-100, 2002.

[8] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E. Culler, Joseph M .
Hellerstein, David Patterson, and Kathy Yelick. Cluster i/o with river: making the fast
case common. In IOPADS '99: Proceedings of the sixth workshop on I/O in parallel
and distributed systems, pages 10-22, New York, NY, USA, 1999. ACM Press.

[9] David A. Bader and Guojing Cong. A fast, parallel spanning tree algorithm for sym­
metric multiprocessors (smps). J. Parallel Distrib. Comput., 65(9):994-1006, 2005.

[10] A . - L . Barabasi and A. Reka. Emergence of scaling in random networks. Science,
286(5439):509-512, 1999.

44

[11] N . Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The r* tree: An effcient
and robust access method for points and rectangles. In ACM SIGMOD Int. Conf. on
Management of Data, pages 322-331, May 1990.

[12] Henrique Andrade Beomseok Nam and Alan Sussman. Multiple range query opti­
mization with distributed cache indexing. In Proceedings ofthe Intl. Conf. for High
Perf. Computing, Networking, Storage and Analysis (SC06), 2006.

[13] S. Berchtold, C. Bohm, and H.-R Kriegel. The pyramid-technique: Towards breaking
the curse of dimensionality. In ACM SIGMOD Int. Conf. on Management of Data,
pages 142-153, Seattle, Washington, June 1998.

[14] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: an index structure for high-
dimensional data. In International Conference on Very Large Databases VLDB, pages
28-39, Bombay, India, September 1996.

[15] Michael D. Beynon, Renato Ferreira, Tahsin Kurc, Alan Sussman, and Joel Saltz.
DataCutter: Middleware for filtering very large scientific datasets on archival stor­
age systems. In Proceedings of the Eighth Goddard Conference on Mass Storage
Systems and Technologies/17th IEEE Symposium on Mass Storage Systems, pages
119-133. National Aeronautics and Space Administration, March 2000. NASA/CP
2000-209888.

[16] Michael D. Beynon, Tahsin Kurc, Umit Catalyurek, Chialin Chang, Alan Sussman,
and Joel Saltz. Distributed processing of very large datasets with DataCutter. Parallel
Computing, 27(11):1457-1478, October 2001.

[17] Michael D. Beynon, Tahsin Kurc, Umit Catalyurek, Alan Sussman, and Joel Saltz.
A component-based implementation of iso-surface rendering for visualizing large
datasets. Technical Report CS-TR-4249 and UMIACS-TR-2001-34, University of
Maryland, Department of Computer Science and UMIACS, May 2001.

[18] Shahid Bokhari, Benjamin Rutt, Pete Wyckoff, and Paul Buerger. An evaluation of
the osc fastt600 turbo storage pool. Technical Report OSUBMI_TR_2004_n02, The
Ohio State University, Department of Biomedical Informatics, Sep 2004.

[19] B. Bollobas. Random Graphs. Cambridge University Press, 2001.

[20] Erik G. Boman, Doruk Bozdag, Umit Catalyurek, Assefaw H. Gebremedhin, and
Fredrik Manne. A scalable parallel graph coloring algorithm for distributed memory
computers. In EuroPar 2005, 2005.

[21] Domk Bozdag, Umit Catalyurek, Assefaw H. Gebremedhin, Fredrik Manne, Erik G.
Boman, and Fiisun Ozguner. A parallel distance-2 graph coloring algorithm for dis­
tributed memory computers. In The 2005 International Conference on High Perfor­
mance Computing and Communications (HPCC-05), 2005.

45

[22] Adam L. Buchsbaum, Michael Goldwasser, Suresh Venkatasubramanian, and Jeffery
Westbrook. On external memory graph traversal. In SODA, pages 859-860, 2000.

[23] Common Component Architecture Forum, http://www.cca-forwn.org.

[24] Kaushik Chakrabarti and Sharad Mehrotra. The hybrid tree: An index structure for
high dimensional feature spaces. In ICDE, pages 440-447, 1999.

[25] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Dar­
ren Erik Vengroff, and Jeffrey Scott Vitter. External-memory graph algorithms. In
SODA '95: Proceedings of the sixth annual ACM-SIAM symposium on Discrete al­
gorithms, pages 139-149, Philadelphia, PA, USA, 1995. Society for Industrial and
Applied Mathematics.

[26] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Dar­
ren Erik Vengroff, and Jeffrey Scott Vitter. External-memory graph algorithms. In
Symposium on Discrete Algorithms, pages 139-149, 1995.

[27] Yi-Jen Chiang, Claudio T. Silva, and William J. Schroeder. Interactive out-of-core
isosurface extraction, vis, 00:167, 1998.

[28] Terry W. Clark, James Andrew McCammon, and L. Ridgway Scott. Parallel molec­
ular dynamics. In Proceedings ofthe Fifth SI AM Conference on Parallel Processing
for Scientific Computing, pages 338-344, Philadelphia, PA, USA, 1992. Society for
Industrial and Applied Mathematics.

[29] Richard Cole. Parallel merge sort. SI AM J. Comput., 17(4):770-785, 1988.

[30] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V. Catalyurek. Paral­
lel hypergraph partitioning for scientific computing. In Proceedings of 20th Interna­
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2006.

[31] Raff Diekmann, Uwe Dralle, Friedhelm Neugebauer, and Thomas Romke. Padfem:
A portable parallel FEM-tool. In HP CN Europe, pages 580-585, 1996.

[32] Tina Eliassi-Rad and Edmond Chow. Using ontological information to accelerate
search in large semantic graphs: A probabilistic approach. Technical Report UCRL-
CONF-20200, Lawrence Livermore National Laboratory, 2005.

[33] R.W. Floyd. Permuting information in idealized two-level storage. Complexity of
Computer Computations, pages 105-109, 1972.

[34] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Pro­
ceedings ofSIGMOD'84, pages 47-57. ACM Press, May 1984.

46

[35] Don Heller. A survey of parallel algorithms in numerical linear algebra. SIAM Review,
20(4):740-777, oct 1978.

[36] Bruce Hendrickson and Steve Plimpton. Parallel many-body simulations without all-
to-all communication. Journal of Parallel and Distributed Computing, 27(1): 15-25,
1995.

[37] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. Computing connected compo­
nents on parallel computers. Communications of the ACM, 22(8):461^1-64, 1979.

[38] Carsten Isert and Karsten Schwan. ACDS: Adapting computational data streams for
high performance. In 14th International Parallel & Distributed Processing Sympo­
sium (IPDPS 2000), pages 641-646, Cancun, Mexico, May 2000.

[39] Hong Jia-Wei and H. T. Kung. I/o complexity: The red-blue pebble game. In STOC
'81: Proceedings of the thirteenth annual ACM symposium on Theory of computing,
pages 326-333, New York, NY, USA, 1981. ACM Press.

[40] Mark T. Jones and Paul Plassmann. A parallel graph coloring heuristic. SIAM J. Sci.
Comput., 14(3):654-669, 1993.

[41] G. Karypis, K. Schloegel, and V. Kumar. Parmetis: Parallel graph partitioning and
sparse matrix ordering library, version 3.1. Technical report, Dept. Computer Sci­
ence, University of Minnesota, 2003. http://www-users.cs.umn.edu/ karypis/metis/-
parmetis/download.html.

[42] Tamara Kolda and et. al. Data sciences technology for homeland security informa­
tion management and knowledge discovery. Technical Report UCRL-TR-208926,
Lawrence Livermore National Laboratories, 2004. Report of the DHS Workshop on
Data Sciences, September 22-23, 2004.

[43] Elana Konstantinova. Chemical hypergraph theory. Lecture Notes from Combinato­
rial & Computational Mathametics Center, http://com2mac.postech.ac.kr/, 2000.

[44] King-Ip Lin, H. V. Jagadish, and Christos Faloutsos. The TV-tree: An index structure
for high-dimensional data. VLDB Journal: Very Large Data Bases, 3(4):517-542,
1994.

[45] D. B. Lomet and B. Salzberg. The hb-tree: A multiattribute indexing method with
good guaranteed performance. ACM Transactions on Database Systems, 15(4):625-
658, December 1998.

[46] Ulrich Meyer and Norbert Zeh. I/o-efficient undirected shortest paths. In ESA, pages
434^45, 2003.

[47] MySql Database, http://www.mysql.com/.

47

[48] Netezza Data Warehouse Appliance, http://www.netezza.com/.

[49] Robert Niewiadomski, Jose Nelson Amaral, and Robert C. Holte. A parallel external-
memory frontier breadth-first traversal algorithm for clusters of workstations. In
ICPP, pages 531-538, 2006.

[50] Mark H. Nodine, Michael T. Goodrich, and Jeffrey Scott Vitter. Blocking for external
graph searching. Algorithmica, 16(2): 181-214, 1996.

[51] Mark H. Nodine and Jeffrey Scott Vitter. Deterministic distribution sort in shared
and distributed memory multiprocessors. In SPAA '93: Proceedings of the fifth an­
nual ACM symposium on Parallel algorithms and architectures, pages 120-129, New
York, NY, USA, 1993. ACM Press.

[52] Ron Oldfield and David Kotz. Armada: A parallel file system for computational
grids. In Proceedings of CCGrid2001: IEEE International Symposium on Cluster
Computing and the Grid, Brisbane, Australia, May 2001. IEEE Computer Society
Press.

[53] Frank Olken. Graph data management for molecular biology. OMICS, 7(l):75-78,
2003.

[54] Parallel Boost Graph Library, http://osl.iu.edu/research/pbgl/.

[55] Beth Plale and Karsten Schwan. dQUOB: Managing large data flows using dynamic
embedded queries. In IEEE International High Performance Distributed Computing
(HPDC), August 2000.

[56] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics, 1993.

[57] Michael J. Quinn and Narsingh Deo. Parallel graph algorithms. ACM Comput. Sun'.,
16(3):319-348 ! 1984.

[58] Sanguthevar Rajasekaran and John H. Reif. Optimal and sublogarithmic time ran­
domized parallel sorting algorithms. SIAM J. Comput., 18(3):594-607, 1989.

[59] Emad Ramadan, Ari j i t Tarafdar, and Alex Pothen. A hypergraph model for the protein
complex network in the yeast. In Proceedings of 186th International Parallel and
Distributed Processing Symposium (IPDPS), Third Workshop on High Performance
Computational Biology, Santa Fe, N M , April 2004.

[60] J. T. Robinson. The kdb-tree: A search structure for large multi-dimensional dynamic
indexes. In ACM SIGMOD Int. Conf. on Management of Data, pages 10-18, 1981.

[61] Sleepy Cat Software. Berkeley DB. http://www.sleepycat.com/.

48

[62] Sivan Toledo. A survey of out-of-core algorithms in numerical linear algebra, pages
161-179, 1999.

[63] Ertem Tuncel, Hakan Ferhatosmanoglu, and Kenneth Rose. Vq-index: An index
structure for similarity searching in multimedia databases.

[64] Jeffrey Scott Vitter. External memory algorithms and data structures. In James
Abello and Jeffrey Scott Vitter, editors, Extemal Memory Algorithms and Visualiza­
tion, pages 1-38. American Mathematical Society Press, Providence, RI, 1999.

[65] Jeffrey Scott Vitter and Elizabeth A. M . Shriver. Algorithms for parallel memory I :
Two-level memories. Technical Report Technical report DUKE-TR-1993-01, 1993.

[66] Steven H. Watts, Duncan J.and Strogatz. Collective dynamics of 'small-world' net­
works. Nature, 393:440-442, June 1998. 10.1038/30918.

[67] D. A. White and R. Jain. Similarity indexing with the SS-tree. In International
Conference on Data Engineering ICDE, pages 516-523, New Orleans, L A , March
1996.

[68] Wanhong Xu, Larkshmi Krishnamurthy, Murat Tasan, Gultekin Ozsoyoglu, Joseph H.
Nadeau, Z. Meral Ozsoyoglu, and Greg Schaeffer. Pathways database system: An
integrated set of tools for biological pathways. In SAC, pages 96-102, 2003.

[69] Andy Yoo, Edmond Chow, Keith Henderson, William McLendon, Bruce Hendrick­
son, and Umit Catalyurek. A scalable distributed parallel breadth-first search algo­
rithm on BlueGene/L. In Proceedings ofSC2005 High Performance Computing, Net­
working, and Storage Conference, 2005. Gordon Bell Finalist.

49

