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ABSTRACT 

This thesis outlines the history of least squares, analysis of variance, the general linear model, 

conditional probability, covariance, and sufficiency, up to the point where measure theory or 

social science dominates. The role of the inner product in developing these ideas is emphasized. 

A detailed expository appendix shows how fundamental results in these subjects can be unified 

and clarified as deriving from the inner product. 
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CHAPTER 1 

INTRODUCTION AND RATIONALIZATION 

In the grand tradition of academics desperately justifying their right to exist, it is appropriate 

to begin by trying to convince the reader that I am doing something worthwhile. A quick defense 

of the study of history is the cliche, "He who does not know the past is doomed to repeat it," 

a chilling threat for those at all familiar with history. What I wish to defend is studying the 

history of ideas. 

Prom the point of view of research, one gets clues about what techniques may work in the 

future by seeing what worked in the past. Research is like digging for gold. You choose a spot 

to dig in without knowing there is anything there; any clues about which places are more likely 

to have anything worthwhile buried are welcome. It is also true that techniques that failed in 

the past might turn out to be useful in the future, either because the problems being attacked 

are different, or because the previously unsuccesful technique can now be supplemented by 

something that will make it more useful. 

A rigidity of thought can be a consequence of growing up seeing only slick, synthesized, 

predigested versions of a difficult idea. Sometimes it is good for the imagination to see things 

done the hard way. More generally, seeing things done a different way than has become cus­

tomary is always desirable, to break the ubiquitous habit of doing things because other people 

do them, the worst possible reason. 
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One also can learn, from studying the histories of ideas, how worthwhile intellectual interac­

tion can be. Here I must hasten to avoid the impression of a banal social cliche. By "interaction" 

I do not mean the intellectually vacuous cheerleading and blind conformity known as "team­

work" in pseudo-intellectual social circles. I mean regular, clear communication and discussion 

of ideas, with blunt criticisms ("negative feedback"—bad for teambuilding) always essential. 

Studying history drives home how much even the most intelligent and creative researchers 

"stand on the shoulders of giants," to paraphrase Einstein. One can also see how much time is 

wasted by people being unaware of previous work, hence duplicating it. 

Studying the history of an idea has particular value for pedagogy. It should help any in­

structor appreciate the struggles of his/her students when he/she sees how confused the most 

intelligent people have been trying to develop and understand an idea. It might also give us 

clues about our students' most likely misconceptions and confusions, to see the misconceptions 

and confusions of scientists first encountering an idea. 

IU quickly mention here one lesson that I see from even a cursory examination of the history 

of ideas. I have to ask why such intelligent people had so much trouble understanding ideas that 

can now be taught in a few weeks. The difference is the theoretical background that students 

can now bring to a subject. The message I see is that requirements for enrollment in a class 

or acquisition of a degree should be ample, chosen carefully and taken seriously; in particular, 

they should not be discarded frivolously. 

I would summarize the value of history in general by saying that, to understand any object, 

you need to understand its origins. I am taking as an axiom, in the context of this academic doc­

ument for an academic credential in an academic department of statistics, that it is worthwhile 

to understand fundamental ideas in statistics. 

Since I am not applying for funding, I will now cease salesmanship and get down to business. 

This thesis is a partial history of one idea: the inner product, as used in statistics. The inner 

product is arguably as fundamental in statistics as it is in differential equations and physics. 



where there appears to be more cognizance of its role. In basic statistics there are two inner 

products often used, 

(the latter is actually a pre-inner product, since there are random variables whose variance is 

zero). Since is also covariance, when restricted to random variables of mean zero, to feel like 

statisticians rather than mathematicians we can visualize either of these as covariance. Note 

that the standard inner product in R n , 

with X{k) = ak, Y(k) = bk,l <k <n. 

In the appendices, after presenting sufficient material on inner products for this thesis, I 

try to indicate how analysis of variance, the general linear model, conditional probability, 

sufficiency, covariance, and variance reduction are all expressions of this one idea. Of course, 

people developing these ideas did not realize their unity, nor initially have access to the idea 

of an inner product. Looking back at the history of these ideas is like looking at a picture of 

your now-grown child as a baby; you see the beginnings of a personality that you didn't see 

then, because it was nascent. The evolution of species is another example of participants in the 

development of a pattern being unaware of the pattern. 

I will treat separately some history of (a) least squares and analysis of variance, (b) the 

general linear model, (c) conditional probability and covariance, and (d) sufficiency. I will not 

go into depth on any of them; my goal is to trace some aspects of these lines of inquiry that led 

separately to the same unifying idea. Where possible, I will give references to more detailed 

{X, Y)1 = E{XY), and {X, Y)2 = Gov {X, Y) 

n 

is a constant multiple of (•), , on the probability space (0,P) 

n = { l , 2 , . . . , n } , P{{k}) = - , l<k<Ti 
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histories. For the sake of intellectual accessibility, in particular to avoid both measure theory 

and social science, I will restrict myself to subjects whose study began before the second half 

of the nineteenth century. 

There is a surprising shortage of studies of the history of statistics. For studying the history of 

statistics before 1930,1 recommend [H], a thorough study emphasizing ideas over personalities. 

For those particularly interested in the application of statistics to social science, I recommend 

[St2], although there is again a truncation, this time at 1900. The best reference for more recent 

history of statistics is the notes at the ends of chapters in [Le], where critical comments about 

both frequentist and Bayesian statistics are made. 
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CHAPTER 2 

ORIGINS OF LEAST SQUARES AND ANALYSIS OF VARIANCE 

If statistics is defined to be "decision making under uncertainty" (from the Ohio State De­

partment of Statistics webpage, www.stat.ohio-state.edu/news/emphasis.html), perhaps the 

simplest example of statistics would be measuring the same thing repeatedly, but getting dif­

ferent results. For example, when I weigh myself, my scale might say 195 pounds. Another 

weighing gives 190, another 194. There is definitely uncertainty; my decision might be what 

answer to give to an authority figure asking the question, "How much do you weigh?" 

For the weighing example, it might now seem natural to take the average, 193 = §(190 + 

194 -|- 195) pounds as my estimate. This is an example of a combination of observations; the 

average, which also happens to be the best least-squares solution of the inconsistent system of 

equations 

195 = a, 190 = a, 194= a, (1.1) 

is the solution of the equation obtained by adding together the three equations. 

Thus, to study the history of least squares it is natural to begin with the combination of 

observations, that is, algebraic manipulations of possibly contradictory data. According to [St2, 

p. 11], as late as the nineteenth century, much of statistics was given this name. 

The general question here is, what to do with an inconsistent set of equations? If we believe 

that it would be consistent if only our measurements and model were accurate, what do we give 

as an estimate of the solution we would obtain in that ideal scenario? 
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The simple special case above, taking the average y = (̂2/1 +2/2 H l-yn) of contradictory 

measurements of the same quantity a, 

Vi = a, 2/2 = a, . . . , y„ = a, (1.2) 

was used as early as the late sixteenth century by the astronomer Tycho Brahe (see [PU, pp. 

122-124]). There is reason to believe that some idea of the average being more accurate than 

individual measurements existed at the end of the seventeenth century (see [PU, p. 124]). 

Roger Cotes went so far as to use a weighted average; this result was published in 1722, but 

had to have been written earlier, since he died in 1716; see [E, p. 202], [Pe-K, p. 155], and [H, 

pp. 93-94]. 

To an eighteenth-century scientist, combining observations was not necessarily considered 

a good thing to do. If the observations were made under much different circumstances, it 

was generally felt that they shouldn't be combined, that observations with large error would 

contaminate the more accurate measurements. 

This is not an unreasonable concern. Suppose, in my weighing example, I had two scales, one 

accurate, the other always subtracting ten pounds from my weight. Averaging the good scale's 

measurements with the bad would certainly damage the accurate data; here I'm disregarding 

benefits to my self-image resulting from this particular inaccuracy. 

Even for the simplest special case of an average, it was sometimes felt that one measurement 

might be as good as the average of several measurements. Here is a quote from Thomas 

Simpson, 1755 ([St2, p. 90], [H, p. 35], [Pl-K, p. 155]) " . . . some persons, of considerable note, 

have been of opinion, and even publickly [sic] maintained, that one single observation, taken 

with due care, was as much to be relied on as the Mean [sic] of a great number." 

Many problems of the eighteenth century yielded inconsistent sets of equations much more 

complex than the three equations given by my imperfect scale (1.1). The cartographer and 

astronomer Tobias Mayer, in 1750, studied the libration of the moon. This refers to the fact 
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that the moon does not show precisely the same face to the earth at all times; about sixty 

percent of the moon's face is visible to us at some time. His observations led to 27 equations 

in 3 variables. The mathematician Leonhard Euler, in 1749, studied the effects of Jupiter and 

Saturn on each other's motions; more precisely, Jupiter being larger, he studied the effect of 

Jupiter on Saturn's motions. This "three-body problem" (Jupiter, Saturn, and the Sun) is 

immensely more complex than the "two-body problem" of calculating Saturn's motion due 

only to the influence of the Sun. Euler came up with 75 equations in 8 variables. 

Mayer first used "the method of selected points" ([H, p. 95]): choosing 3 (not too similar) 

of the 27 equations, and solving those for the 3 variables. He was aware of the disadvantages of 

this method; it is desirable to involve all the data, and there axe (2

3

7) = 2925 possible choices 

of 3 equations. 

Mayer then broke his 27 equations into 3 groups of 9 equations each, and, within each 

group, added the equations together. He then solved the resulting system of 3 equations in 3 

variables. Because Euler noticed a periodicity of 59 years in 6 of the 8 variables, he was willing 

to combine equations that were a multiple of 59 years apart, to solve for the 2 variables that 

were not periodic. But he was unwilling to combine other observations, partly because of their 

dissimilarity; the observations were spread out over the period 1582-1745. Mayer's observations 

were made between April 1748 and March 1749. 

Laplace, also studying Jupiter and Saturn in 1787, had a system of 24 equations with 4 vari­

ables. He obtained 4 equations in the same variables with a much more elaborate combination 

of observations. One equation was the sum of all 24 equations; another 

( I s * + 2nd+--- + 12th) - (13 t / l + Uth + ••• + 24 t h); 

another 

(3 r d + 4th + 10th + n t h + 17th + 18th + 23 r< i + 24th) - ( I s * + 7th + Uth + 20 t f t); 

7 



and, finally, 

(2 n d + 8th + 9th 4- 15th + 16th + 21st + 22^) - (5^ + 6th + 12th + 13th + 19th). 

See [St2, pp. 31-39] for a detailed discussion, including speculation on why Laplace chose these 

particular linear combinations. 

The technique of Mayer and Laplace was sometimes called the "method of averages," and 

was often the method of choice for dealing with inconsistent linear systems, until least squares 

(see [H, pp. 107-108] and [F2]). 

All these combinations of observations can be considered statistical techniques, in that they 

give an estimate of a parameter that is definitely uncertain. The choice of which combination 

to use was subjective, and did not seem to have a uniform motivation. 

Note that the method of averages inevitably involves a loss of mformation. For example, if 

we replace the two equations 

x = y, y = z 

with their sum 

x +y = y + z, equivalent to x = z, 

then we have lost the information x = y. 

What I consider the most important step in developing the technique of least squares is 

using minimization of error, meaning a measurement of the distance between the model and 

the data, as an explicit criterion for choosing the combination of observations. This was first 

done by the Jesuit Roger Boscovich, in 1757. 

Boscovich was estimating the ellipticity of the earth by measuring meridian arcs at different 

latitudes. He had five equations with two variables to consider. In his initial analysis, in 1755, 

he solved each of the ten ((2)) pairs of equations, and combined them in various ways; sort 

of a tour de force of the method of averages used by Mayer and Laplace. By 1757, he had 
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developed the following technique for his 1755 data. For simplicity and familiarity, let's write 

his equations in the form 

yi — a + bxi, l<i<n, (1.3) 

where {xi,yi) are data, a and b are parameters to be estimated, and (for this data) n = 5. The 

error in the i t h observation, in whatever choice of a and b is made, is (rji — { a + ^ t ) ) , 1 < i < n. 

Boscovich wanted a and b to satisfy 

n n 
(1) — (o + fea^)) = 0 and (2) — (a + feCj)] is minimized . 

Notice how close to a least-squares best fit this is: merely replace — (a -I- bx^l with (ŷ  — 

(a + bxi))2 in (2); that is, least squares demands that 

n 

(3) — ( « + fea;*))2 ̂  minimized . 

i=l 

In fact, (1) follows automatically from (3). The only difference between (2) above and least 

squares is in how we measure the distance between two points in R n ; 
n 

\\x — y\\i = \xk — yk\ (mean deviation) 
k=l 

or 
n 

?7||2 = . X]^ X f e — 2/fe)2 (standard deviation). 
\ k=l 

It is also of interest to consider the one-dimensional analog with which we began this chapter: 

getting an approximate solution (a choice of parameter a) of (1.2). 

The analogues of Boscovich's conditions are 

n n 

(1') ^^{yi — a) = 0 and (2') — a)| is minimized, 
t=i i=a 

and least squares is now 
n 

(3') }J$fi — a)2 is minimized. 



Both (!') and (3') yield the average of the data yi,y2,... ,yn, while (2') gives us the median of 

the data. 

At least at first glance, there is no reason why one could not generalize (2) of Boscovich's 

method by replacing the usual least-squares estimator of the parameter p in 

Y = X0 

with one that minimizes 
n 

(instead of E L i ( ^ - ( - W 2 ) -

Boscovich used Newton's "geometric" style of argument, which means drawing pictures in 

lieu of an analytic argument. See [E] for a description. 

Laplace in 1789 gave an analytic presentation of Boscovich's technique, calling it the "Method 

of Situation." In 1799 he generalized Boscovich's method by throwing in weights; that is, 

[Vi — (a -I - bxi)) is replaced with Wi{i/i — (a + bxi)), i = 1,2,..., n, for appropriate weights 

(see [St2, pp. 51-55] and [H, Chapter 6.7, pp. 112-115]). 

Euler in 1749 and Lambert in 1765 introduced an L 0 0 analogue of (2) above, that is, searching 

for a and b that minimize 

max i<i<n\yi - ( a+ 6a;i)|; 

a popular shorthand for this is "minimax." See [Sh]. Laplace gave an explicit technique for 

this in 1783 (see [P12], also % Chapter 6.6, p. 108]). 

Before getting to least squares, the method that "won" historically, I want to emphasize the 

similarity between minimax, Boscovich's method, and least squares. The only difference is in 

the choice of norm, in measuring total error from the errors ê , 1 < fc < n, in each observation: 

n n 
max !<;,<„[eftI, ^Jefef, o r ^ | e j f e | 2 . 

kmX fc=l 
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The mathematician Legendre, in 1805, near the end of a memoir studying comets, stated 

"But it is possible to reduce them [the errors] further by seeking the minimum of the sum of the 

squares of the quantities . . . " ([St2, p. 57]). In an appendix, after an introduction including " 

. . . there is no one [principle] more general, more exact, and more easy to apply than that which 

we have made use of in the preceding researches, and which consists in making the sum of the 

squares of the errors a minimum" {{H, p. 119]; in both quotes the italics are due to Legendre). 

He then applied this technique to the measurements of meridian arcs, replacing (2) above with 

(3). 

More generally, in this appendix, he considered the general linear system 

m 

yi = YlXii^ C 1 ^ ^ " ) ( L 4 ) 

where the a^s are given and the /^s are to be estimated; in matrix language this is 

y = X0 ( y e R n , / 3 e R m , X a n n x m matrix), (1.5) 

and derived the normal equations, whose solution, call it p, minimizes 

n 2 n ( m 

\\y-xM = E - = E - E 3 ^ -
i=i 1 i=i \ j=i 

by taking derivatives and setting them equal to zero. 

It should be mentioned here that having all the partial derivatives equal to zero is not 

sufficient to guarantee that we have a minimum; to guarantee even a local minimum, it must 

be checked that the matrix of second derivatives is strictly negative definite. In this case, the 

matrix of second derivatives equals —2XTX, which we now know is strictly negative definite if 

X is full rank. See Theorem A2.1 for a simpler and more intuitive inner-product approach to 

this minimization problem. 

Legendre then mentions the special case of m = 1 (see (3') above), and shows that the best 

least-squares estimator in that case, minimizing X]fc=i(y< — P)2-i is /? = !/• 
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Legendre is the first person to publicly discover the least-squares technique. He then fell vic­

tim to what many mathematicians during Gauss's lifetime suffered, Gauss's "secret notebook," 

a collection of results Gauss obtamed but didn't publish. After Legendre published his least-

squares results. Gauss asserted that he had discovered the result in 1795, without publishing 

it. After Legendre protested. Gauss produced witnesses to the fact that Gauss had discussed it 

soon after 1795. See [P12] for a discussion, including interesting correspondence from the time. 

What is still missing, to make least squares the statistical technique it is now, is a probability 

distribution. 

The self-taught mathematician Thomas Simpson was the first ([St2, p. 90], [E], [P12]) to 

decompose an observation, X, into the true value, 9, plus an error e : 

X = e + e. (1.6) 

This opened the possibility of applying probability to the estimate of the true value, by giv­

ing the error a probability distribution. He presented this decomposition in a 1755 letter to 

the Earl of Macclesfield titled "On the Advantage of Taking the Mean of a Number of Ob­

servations, in practical Astronomy." Thomas Bayes, of Bayesian inference fame, cast doubt 

on Simpson's optimism in asserting that the error of the average would always shrink (in a 

convergence-in-probability sense) by taking more observations, pointing out that if, for exam­

ple, your measuring device always overestimates what it measures by two units, then that same 

overestimate will appear in the average. Probably in part due to this criticism, Simpson, in a 

1757 revision of his letter of 1755, added hypotheses that essentially mean that the expected 

value of the error is zero, and that the errors are bounded above and below (see [St2, p. 95], 

[H, p. 37]). 

The decomposition (1.6), with a probability distribution on the errors, was also developed, 

probably independently, by Lambert in 1760, where it is believed that the term "theory of 

errors" was introduced (see [H, Chapter 5.1, pp. 79-83], [Fl , p. 79] and [Sh]), Lagrange in 
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1776 (see [Fl, p. 79], and [Sh]), and Daniel Bernoulli in 1778 (see [Fl, p. 79] and [Kl]). Both 

Lambert and Bernoulli looked for a maximum likelihood estimator of 0; see [Fl, pp. 79-80] for 

details. 

Laplace, between 1772 and 1781, gave a methodical presentation of "inverse probability"— 

inferring causes from effects. Part of this was the decomposition (1.6), with a probability density 

0 on the error e, that Laplace called a "curve of errors." He asked only that </) be symmetric 

and decreasing to zero to the right of its axis of symmetry. His goal was to choose an estimator 

of 0 from observed values X (a "choice of mean" of the observed values) that minimized the 

posterior expected loss, with absolute-value loss function and uniform prior. He showed that 

this is the median of the posterior distribution of 9. His favorite choice of error curve (after 

trying many others—see [H, pp. 87-88]) was (for some constant m) the double exponential 

cj>{x) = | e - m ^ (x e R). 

With this error curve, he found great difficulty in calculating the desired median. In modern 

terminology, 7r(^) = 1, so that the posterior distribution, 

*(m - m e ) < e ) = m 6 ) 

K ] ' f f{x\e)TT{9)de ff{x\9)d9 

is proportional to 

n n / n \ 

n m = n = n w * * - 0 ) = ( ? ) e x p [ - m y £ \ x k - 9 \ \ . (1.7) 
k=l fc=l V k=l ) 

The median, call it med(^), would be the real number that satisfies 

/

med (9) / " \ f°° ( n \ 

exp - m V \xk -9\ \ d9= exp - m V ^ - (?| d9. 
\ t^l J J™*m \ & I 

Even for n = 3, Laplace found this difficult; see [H, Chapter 10.4, pp. 171-176] and [St2, pp. 

113-117]. He was also frustrated by the fact that, when he could solve for med(9), it was not 

the average of the data, which he felt it should be. 
13 



Gauss in 1809 took a different approach to (1.6). First, for a probability distribution on the 

error C, he wished to find the mode, rather than the median, of the posterior distribution of 9, 

for a uniform prior; in frequentist language, he was looking for the MLE—maximum likelihood 

estimator. Second, rather than starting with an error curve and finding the best estimator, he 

started by assuming that the best estimator—in this case, the MLE—should be the average x 

of the data x. He then showed that that implied that the probability distribution on e must be 

normal. He wrote this as the density (p having the form 

<P{A) = -^exp{-h2A2), 

where h was a measure of precision (equal to ~^j)> He also showed the converse: if we assume </) 

has a normal distribution, then it follows that x is the MLE, since, as with (1.7), the distribution 

of the posterior distribution of 9,'ir(9\x), is now (compare with (1.7)) proportional to 

which is maximized by choosing 9 ~x. More precisely, Gauss noted that 

n n 

E ( x f c -9)2 = E ( ^ - s ) 2 + n ( 9 - * ) 2 ' 
k=l k=l 

so that the posterior distribution of 9 is proportional to 

exp{-nh2{9-x)2), (1.9) 

a normal distribution with precision y/nh and mean x. 

More generally, if different observations are assumed normal, but with different precisions 

hi, that is, 

(t>i{Xi)=-^=exp{-h2x2) ( l < i < n ) , (1.10) 

then Gauss showed that the MLE is the weighted average 
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and that the posterior distribution of ^ is normal with precision v / J ™ , fif and mean 9, by 

decomposing 2 fe= i hk{xk — 9)2 as we did above. 

Gauss also found the same /3, the best least-squares solution of (1.5), that Legendre did. 

His original contribution here (not counting things done earlier but not published) was the 

probabilistic setting: he put independent normal distributions on the errors ej = (Yi — {X(3)i), 

found the posterior distribution of/3, given independent uniform prior distributions on /3t, and 

showed that /3 was the MLE of ft. 

Since this represents a major turning point in the development of the general linear model, 

and I cannot discuss Gauss's work in detail without doubling the length of this section, I will 

put off this essential synthesis of (1.5) and (1.6) to the next. 

Towards the end of 1810, Laplace saw Gauss's work, and realized that his (Laplace's) work 

described above, with the double exponential error curve, would work much better with a 

normal error curve. The posterior distribution of ̂  is now proportional to (1.9) instead of (1.7). 

The distribution (1.9), being symmetric and unimodal (in 9), has median, mean, and mode all 

equal to x. Thus, x is not only the MLE, it minimizes the posterior expected loss with respect 

to the absolute-value loss function (in fact, also with respect to the squared loss function). 

Laplace could give a much better rationale for using a normal error curve, since he had recently 

proven the central theorem for sums of independent, identically distributed random variables 

with finite variance. 

It is interesting to note that, if Laplace had been, like Gauss, looking for the MLE of 9, he 

could have found it easily even with his original double exponential error curve: the mode of 

the posterior distribution in (1.7) \s 9 = (median of X i , . . . ,xn). 

If only out of patriotism, I should mention here that an American mathematician, R. Adrain, 

in solving a surveying problem, independently developed least squares from a probabilistic point 

of view in 1808; see [H, pp. 368-373] or [St3]. 
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This chapter discusses two developments that coalesce at the conclusion of the chapter. The 

first is purely algebraic: how to estimate the solution of a linear system (the correct theoretical 

model) that has been transformed into an inconsistent system by errors in either measurement 

or choice of model. The second is the basic general linear model or one-way analysis-of-variance 

model (1.6). The first development culminated in the least-squares technique, the second in 

placing a normal distribution on the error, as the methods of choice. I'd like to briefly discuss 

why these became the preferred methods. 

As mentioned just before introducing Legendre, in estimating the solution of a linear system, 

three ways to measure the total error to be minimized, from the individual errors , 1 < fc < n, 

arose: 

For shorthand, call them maximum error, absolute error, and squared error, respectively. 

It is not surprising that maximum error and absolute error appeared first. These are more 

natural and simple to describe. Maximum error is like the strength of a chain: only as strong as 

the weakest link. The difference between absolute error and squared error is like the difference 

between mean deviation ("average distance from the mean") and standard deviation ("square 

root of the average of the squared distance from the mean"). The latter definition sounds 

suspiciously awkward. The fact that it takes so many more words to define standard deviation 

should make one suspicious of its use. More generally, the squaring in squared error looks 

artificial; why are we exaggerating the effect of larger errors by squaring (the fact that the 

mean, the minimizer of squared-error loss with one parameter, is sensitive to extreme values, 

is a reflection of this)? 

Historically, squared error came to be used instead of maximum or absolute error, because 

the calculations are much easier; compare Laplace's work in [St2, pp. 51-55] and [H, Chapter 

6.7, pp. 112-115], for absolute, and in [P12] and [H, Chapter 6.6, p. 108], for maximum, to the 

least-squares technique. See [E, pp. 209-210]. 

n n 
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But this begs the question. What is it about squared error that makes it easier to use than 

maximum or absolute error? The answer is that it is a norm that comes from an inner product; 

n n 

E |efc|2 = (e,e) where (x,y) = ^2xkyk. 
k=l k=l 

For such norms, closed, convex sets are not only guaranteed to have a unique point of minimum 

norm (not true for maximum and absolute error), but also the concept of orthogonality (inner 

product equal to zero) gives us an intuitive and straightforward way to obtain that point; see 

Theorem A1.3(d), Remark Al.4, and Theorem A2.1. 

Standard deviation has the same advantage over mean deviation. Standard deviation also has 

a more qualitative desirability in its relation to the normal distribution, hence to asymptotics. 

This leads us to the second historical development, the choice of the normal distribution for 

the error term in (1.6). 

The normal distribution is easy to work with because it has an inner-product structure. The 

joint density for n independent, standard-normal random variables Z = (Zi, Z2, • •., Zn) is 

/ (x ) = c e x p ( - i | | x | | 2 

where is a norm from the inner product defined above. More generally, if F is a multivariate 

normal with covariance S, then 

f f i y ) = cexp(-^\\y\\l 

where 

11̂111 = ( f j ^ j } ) {x,w)s = {T1-1x,w) , 

and (•, •) is the usual inner product above. 

This inner-product structure also explains why the standard deviation, an inner product 

measurement, is so fundamental to the normal distribution. 

The hidden idea in both these developments is the inner product. 
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CHAPTER 3 

INTERMEDIATE HISTORY OF LEAST SQUARES 

AND THE GENERAL LINEAR MODEL 

In the previous section, we have seen how statisticians looking (unfortunately not in matrix 

language) at the general linear model 

Y = Xp + e (2.1) 

focused, at the beginning of the nineteenth century, on the best least-squares estimator (3 of p, 

defined to be a vector that minimizes 

| | y - ^ | 2 = | | € f = £ 4 
kml 

Here Y £ R71,/? € R m , X is an n x m matrix, and {efc}JJ=1 is a sequence of independent, 

identically distributed random variables. We will assume X has rank m. 

Legendre (1805) and Gauss (allegedly 1795; not publicly until 1809) independently intro­

duced the best least-squares estimator, and showed that being a best least-squares estimator is 

equivalent to being a solution of the normal equations 

XTY = XTXP. (2.2) 

It is interesting that Gaussian elimination, to this day the most popular method of solving 

linear equations, whether done in matrix notation, by computer or by hand, was developed 

(by Gauss, of course) to solve the normal equations. Gauss also in 1809 showed that 0 is the 

maximum likelihood estimator of ,9 if and only if is normal (1 < A; < n). 
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Another sort of minimization, among a class of unbiased estimators of (3, is to look for the 

estimator of minimum variance. It is surprising that, in the class of linear estimators (shorthand 

for linear combinations of the data Y), (3 \s, the unbiased estimator of minimum variance (for 

simplicity, I am assuming X is full rank). More precisely, Gauss showed in 1821 that, for 

I <k <n, the unbiased linear estimator of /3fc of minimum variance is 0k- The result is often 

called the Gauss-Markov theorem because Neyman, unaware of Gauss's proof, believed Markov, 

whose proof appeared in 1912, was the first to prove it. 

Thus /3 is optimal in at least two ways, minimizing the norm of the error and the variance, 

and, for normal, is also optimal in being a maximum likelihood estimator. 

In 1823, Gauss generalized this to the following: for any c € R m , 

m 

ifc=l 

is the unbiased linear estimator of (c, 0) of minimum variance. Neyman and David (see [D-N]) 

believed they were proving this for the first time in 1938. 

Laplace produced an asymptotic version of the "Gauss-Markov" theorem in 1811, although 

the proof was arguably not complete until 1816; see [H, Chapters 20.6 and 20.7]. By "asymptotic 

version" I mean he showed that, when ejt has finite variance (1 < fc < n), then, for any linear 

function i^-iP^j of A the variance of the limiting distribution, as n —>• oo, of (^-iPj i 8 l e s s than 

or equal to the variance of the limiting distribution of any unbiased linear estimator of /c, . 

Many other popular results in the general linear model or analysis of variance are due to 

Gauss in 1823. He showed that s2 = ra2m (X ~ ^ /^) ^ a n unbiased estimator of the variance of 

and found the variances of /?, ̂ c*, (3^ , and s2. As with the "Gauss-Markov" theorem, Laplace 

produced asymptotic analogues of these variance formulas in 1811. 

Gauss in 1823 also considered the effect on p of making another observation i ^ + i . Specifically, 

in (2.1), replace 

(2.3) 
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where Yn+i £ R , / i £ R"1, and en+1 is a random variable independent of e, with the same 

distribution as , 1 < fc < n. It would be inefficient to recalculate /3 from scratch. Gauss 

sought a simple formula that would calculate the new (using Yi,Y2, ...,Yn+1) ft from the old 

(using Yi,Y2,...,Yn) ft, along with other information, such as {XTX)*1, that would be likely 

to be available. 

Using the inner-product definition of the least-squares estimator of (3 in (2.1), it is a straight­

forward calculation to derive Gauss's result. To be consistent with his theorem as stated in 

[H, p. 480], let b = P, the least-squares estimator of p in (2.1), and denote by b the new 

least-squares estimator after another observation, as in (2.3). Also let e = (Yn+i — hTb),c = 

{XTXy1h, fc = (1 + fcJc)-1. Then for all /? £ R m , 

0 = Y X X 

1 R" Yn+i hT b, hT 

1 R" t-i 
Y 

_Yn+i _ 
' X' 
hT_ {b + {b -&) ) , 

= ( Y - X b - X(b - b),Xp)^n + {{Yn+l - hTb) - hT(b - 6)) {hTp) 

= - (X{b - b),Xp)^ +{e-hT{b- b)) {h,p)Rn 

-{XTX)-l{b -b) + {e- hT{b - b))hj 

Thus 

so that 

{XTX)(b - 6 ) = ( e - hT{b - b))h, 

(2.4) (6 - 6) = (e - hT(b - b)){XTX)-1h = (e - hT{b - b))c. 

This makes it natural to conjecture that (6 — 6) = ac, for some real a, which is determined by 

plugging into (2.4): 

ac = (e — hT{ac))c = (e — ahTc)c, 

so that a = (e — ahTc); the solution of this linear equation is a = (1 -I- hTc)~1e = fce; thus, 

b = b + fcec. 
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Gauss also obtained expressions for the variance of the new /3 in terms of k and c above and 

the variance of the old /3. (2.5) was independently obtained by Cochran ([C]) in 1938. Plackett 

([P13]) in 1950 generalized (2.5) to arbitrarily many new observations Yn+i,Yn+2, —,Yn+s; see 

[H, pp. 482-483]. 

Similar considerations of efficiency arise when adding another component, 0m+u to P l n 

(2.1). In general, all the components of 0,01,02,—,Pm would have to be recalculated. In terms 

oi X in (2.1), Gauss's addition of an extra observation Yn+i corresponds to adding another row 

to X, whereas adding the extra parameter 0m+i corresponds to adding another column. 

It would be nice if 0\,02, •••,0m were unchanged by the addition ol0m+i to (2.1), leaving only 

0m+i to calculate. This may be shown to be equivalent to the columns of X being orthonormal, 

meaning both orthogonal (inner product of two different columns equals zero) and of norm one 

(inner product of a column with itself equals one). The sufficiency is clear: 

0 = { X T x r l X T Y = XTY, 

when the columns of X are orthonormal, so that, for 1 < fc < m + 1, /?jt is the inner product of 

the kth column of X (the kth row of XT) with Y. 

Thus, given (2.1) for arbitrary X, the goal is to rewrite (2.1) in such a way that X is 

replaced by a matrix with orthonormal columns. The real work is in achieving orthogonality; 

an orthogonal set is changed to an orthonormal set merely by dividing each vector by its norm. 

Cauchy, in 1835, was the first to consider this sort of orthogonalization problem, although, 

analogous to Legendre's treatment of least squares, without the probabilistic setting. Many 

mathematicians and statisticians worked on this problem throughout the nineteenth century; 

see [H, Chapter 25]. The modern simple and geometrically intuitive method known as Gram-

Schmidt orthogonalization (see the Appendix, proof of Corollary Al.7) did not appear until 

1907. 
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An interesting intermediate technique, due to Chebyshev and Gram, is the use of orthogonal 

polynomials, or, more generally, orthogonal functions. Consider the usual choice oi X in (2.1): 

X = [ z V 1 , . . . , * " 1 - 1 ] 

where, for fixed a ; i , X 2 , . . . , a ; n , 0 < fc < m, I define xk to be the vector [x\,x^,...,x'^\r• Tor f 

and g arbitrary functions from the real line to itself, define the inner product 

{ f , g ) £ ^ f ^ f { x i ) g i x i ) . 
t = i 

Then, for 0 < j , fc < m, the usual R" inner product of the jth and kth columns of X equals 

{ f , g ) s , for f{x) = xl-\g{x)~xk-\ 

Thus we may think of the columns of X as being the polynomials 1 , and or-

thogonalizing the columns of X in R" is equivalent to orthogonalizing the usual basis for 

(m — l ) s * degree polynomials with respect to the inner product (•)£. The resulting (after, say, 

Gram-Schmidt orthogonalization applied to 1 1 ) p)olynomials are called (a set of) 

orthogonal polynomials. 

To summarize: every different choice of points X i , X 2 , . . . , x n produces a different inner product 

{•) s , and every different inner product produces a different set of orthogonal polynomials. These 

have come to have an immense range of applications, much wider than statistics. Certain 

particular choices of inner product have produced particular orthogonal polynomials famous 

enough to be given a particular name. Among other things, it enables one to do with regular 

polynomials the same things one does with trigonometric polynomials l,ete,e2tewhere 

orthogonality already exists, and one can immediately write down (automatically orthogonal) 

Fourier series. 

Laplace, in 1816, was performing orthogonalizations very similar to that ultimately named 

"Gram-Schmidt," in the process of determining the asymptotic distributions of p (see [H, 

Chapter 20.7]). 
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On a personal note, I think it is interesting that Laplace and Gauss, despite their extensive 

mutual intellectual stimulation, never met. 

I should make it clear that all the results in this section were derived without matrices. 

This author is amazed that the matrix representation (2.1) of the general linear model did not 

appear until 1935 ([A]); a complete algebra of matrices was produced by Cayley in 1858 (not 

to mention the use of matrices by Chinese mathematicians to solve systems of equations in 

the Han dynasty, about 200 B.C.—200 A.D.). Perhaps even more surprising, and inhibiting of 

progress, was the lack of awareness of G ^ u s s ' s 1821-1823 statistical work. 
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CHAPTER 4 

ORIGINS OF CONDITIONAL PROBABILITY AND COVARIANCE 

Conditional probability, especially in multiplication laws, is part of the earliest formulations 

of probability. I have included covariance in the same section as conditional probability because 

of the intimacy of their relationship; see Appendix I I I , Propositions A3.10 and A3.14. 

One could argue that any statistical inference is conditional probability: finding the prob­

ability of a cause given an effect, what Laplace called "inverse probability." Since my goal is 

much more humble than a complete history of statistics, I must be selective in my choice of 

topics in conditional probability. The earliest explicit appearance of conditional probability as 

statistical inference would be Bayesian inference, as done by Thomas Bayes. 

Bayes was a Presbyterian minister in Tunbridge Wells, a suburb of London. His interests 

were theology, mathematics, and statistics, in that order. He published only two papers during 

his lifetime, Divine Benevolence: Or, An Attempt to prove that the Principal End Of the Divine 

Providence and Government is the Happiness of his Creatures, in 1731, and An Introduction 

to the Doctrine of Fluxions, and a Defence of the Mathematicians against the objections of 

the Author of the Analyst, in 1736. "The Analyst" was a paper by Bishop Berkeley criticizing 

(probably with much justification) the foundations of calculus. According to [S], Bayes' paper 

was "...not unlike Cauchy's treatment of limits,..." 

No other papers were published by Bayes during his lifetime, although I have mentioned 

in Section I his 1756 criticism of Simpson's too-enthusiastic praise for taking the average of 
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measurements. Bayes' results on the posterior distribution of the parameter ^ in a binomial 

(n, 6) distribution when the prior distribution is uniform, in An Essay towards solving a Prob­

lem in the Doctrine of Chances (hereafter referred to as "the Essay" or "his Essay',), was 

not published until 1764, three years after his death, by Richard Price, another Presbyterian 

minister-mathematician-statistician. It is believed Bayes got the results in his Essay between 

1746 and 1749 (see [Dl] and [D2]). 

If only because of widespread misunderstandings of the part of the Essay known as "Bayes' 

theorem," it is of interest to describe it in some detail. Bayes visualized tossing a ball randomly 

onto a rectangular table; for convenience I ' l l make the table the unit square [0,1] x [0,1] in the 

Cartesian plane. Draw a vertical line through the point where the ball landed. Now toss the 

ball randomly onto the table n times, and let Un be the number of times the ball landed to the 

left of the vertical line. If 0 is defined to be the distance from the vertical line to the y axis, 

that is, the x coordinate of the point where the ball originally landed, then 

Un ~ binom (n, 0). 

Assuming a uniform prior distribution on 9, it is now a familiar calculation to get the posterior 

distribution; for 0 < < 02 < 1 : 

PiUn = k, 91<9< 92) 
P{91 <9<92\Un = k) = 

P{Un = k) 
_$P{Un = k\9)d9 

£ P{Un = k\9)d9 

= {n + l)JJ ^j9k{l-9)n-kd9 

= / p{k + l,n-k + l)9k{l-9)n~k d9; (3.1) 

that is, the posterior distribution of 9, given Un = k, is beta (A; -I- l , n — A; -I- 1). 

This is a sophisticated version of (a special case of) what we now call "Bayes' theorem," 

involving as it does continuous distributions. 
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Among the many criticisms of Bayes' work, perhaps the most well-known is that of the 

quintessential criticizer. Fisher. He argued that choosing the uniform distribution for 6, as 

representing initial ignorance on the part of the observer, was arbitrary, because one could 

reparametrize by replacing 6 with ip = g{9), for some injective g, e.g., = 92, and ^ would 

then fail to have a uniform distribution, although the observer would be identically ignorant of 

i>-

As pointed out by [Mo] and [Ed], and [St2], this criticism is based on a misunderstanding of 

Bayes' paper. Bayes was not assuming a uniform distribution for 9, but for [7n (unconditional 

on 9); that is, P{Un — k) = j i j , for A; = 0,1, ...,n + 1. This is clear from the following quote 

from his paper, which I have copied from [H, pp. 142-3]. 

"And that the same rule is the proper one to be used in the case of an event concerning the 

probability of which we absolutely know nothing antecedently to any trials made concerning 

it, seems to appear from the following consideration; viz. that concerning such an event I have 

no reason to think that, in a certain number of trials, it should rather happen any one possible 

number of times than another. For, on this account, I may justly reason concerning it as if 

its probability had been at first unfixed, and then determined in such a manner as to give no 

reason to think that, in a certain number of trials, it should rather happen any one possible 

number of times than another." 

Note that, for a uniform prior distribution on 9, the calculation in (3.1) contains the conclu­

sion that then Un is uniform. 

Conversely, assuming Un is uniform, for arbitrary n, uniquely determines the prior distribu­

tion on 9. If fi is the prior distribution on 9, then, for 0 < A; < n, 

- i _ = P{Un = = £ PiUn = k\9) dfiiB) = £ ^ V ( l - 9)^ dfiiS); 

in particular (it's interesting that this is sufficient to force fi to be uniform), 

_ i _ = P{Un = n) = / r dni9) {n = 0,1,2,...). 
Tl +1 JQ 
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Since fi has finite support, specifying all its moments uniquely determines In other words, 

the uniform prior on 6, not g{6), is the only choice of prior that makes the marginal distribution 

of Un uniform. 

The detailed analysis in Bayes' paper leading to (3.1) was preceded by his personal construc­

tion of the foundations of probability. It is interesting that he defines probability in terms of 

expectation, reversing the order of definitions usually given prior to him, and in a way anticipat­

ing the modern definition of conditional probability which begins with conditional expectation. 

I will quote here his propositions regarding conditional probability; see [H, Chapters 8.2-4], 

for all the propositions. 

Prop. 3 The probability that two subsequent events will both happen is a ratio compounded of 

the probability of the first, and the probability of the second on supposition the first happens. 

Prop. 5 If there be two subsequent events, the probability of the 2d and the probability 

of both together ^ , and it being 1st discovered that the 2d event has happened, from hence I 

guess that the 1st event has also happened, the probability I am in the right is -6 ' 

In other words, if A and B are events, with A preceding B, Prop. 3 says 

P{A n B) = P{B\A)P{A), 

while Prop. 5 says 

P ( A | B ) = P ^ n S ) 
P{B) • 

It seems curious that the same result, except that past and future are interchanged, is stated 

as two different results. To the modern Bayesian, to the extent that I understand such a 

creature (~ "probability represents the uncertainty of the observer"), this distinction would 

be meaningless. And yet the Heisenberg uncertainty principle seems to imply an unavoidable 

distinction between past and future, stating, in effect, a sort of absolute uncertainty about the 

future, regardless of the expertise and knowledge of the observer. 
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I suppose, according to some sort of Taoist principle of balance, every thoughtful person 

needs a salesman. Richard Price was an effective publicist for Bayes' results, finding and 

stating significance that Bayes would probably have been too humble to assert. But I think it 

is a tragedy that Price wrote his own introduction to the Essay, and published it in place of 

Bayes'; Bayes' introduction to his Essay, along with any other clue about what he thought of 

his results, seems to be lost to the world. Fisher used the fact that Bayes didn't try to publish 

his Essay as evidence of its (according to Fisher) intellectual invalidity. Stigler ([St2, p. 130] 

speculates that Bayes was inhibited by his lack of useful techniques for calculating the beta 

distribution integrals 

needed for posterior probabilities of the parameter 9. 

Almost certainly unaware of the work of Bayes, Laplace, beginning in 1774, developed a 

theory of inverse probability: reasoning from effect to cause, as opposed to direct probability: 

reasoning from cause to effect. Bernoulli, in Ars Conjectandi (1713) also made this distinction, 

using the law of large numbers, with the usual example of an urn full of white and black balls: 

direct (which he called "an a priori determination") being knowing the number of white and 

black balls, and determining the probability of drawing a white ball; indirect (which he called 

"an a posteriori determination") being counting the relative frequency of white balls in many 

drawings. 

Laplace's work included, in 1814, a general statement of what is now called Bayes' theorem, 

p { A k l B ) - ^ m ^ A ) - ( 3 - 2 ) 

Laplace's method of choice was to set up his analysis so that each cause Aj is equally likely; in 

other words, put a uniform prior distribution on {^4 j}" = 1 , so that (3.2) becomes 

P{Ak\B) = P{B\Ak) (3.3) 
ZUPiBlAjY 
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This uniform prior was not meant as an arbitrary assumption; Laplace merely meant that, if 

the initial formulation of the problem did not permit a uniform prior, the causes Aj should be 

further broken down until we did have a partition into equally likely causes. 

This formulation has been called the "principle of insufRcient reason" ([H, p. 143, and top 

of p. 159]), or sometimes the "indifference principle." Laplace also used nonuniform prior 

distributions; see [St2, pp. 135—136]. 

Laplace's 1774 principle of inverse probabilty, copied from [H, p. 160] or [St2, p. 102], is the 

following. 

"If an event can be produced by a number n of different causes, the probabilities of the 

existence of these causes given the event are to each other as the probabilities of the event 

given the causes, and the probability of the existence of each of them is equal to the probability 

of the event given that cause divided by the sum of all the probabilities of the event given each 

of the causes." 

In other words, for Ak and B as in (3.3), as follows from (3.3), 

P{Ai\B) = PjBlAj) 
PiAjlB) PiBlAjY 

We have discussed in Section I Laplace's use of the double exponential as an "error curve," 

that is, a distribution for the error e in (1.6). [St2, pp. 113-117] shows how a fundamental 

misunderstanding of conditional probability on the part of Laplace led to mistakes in his calcu­

lation of the median of the posterior distribution of e. He essentially mistook the proportionality 

of p{x\y) (the conditional density) and p{x,y) (the joint density) for equality. 

Laplace also did extensive and very clever work making the approximations of the beta prob­

ability integral needed, as described in our discussion of Bayes' work, for estimating posterior 

probabilities of a binomial parameter. See [H, Chapter 10.3]. 

Notions of covariance, correlation, and dependence were not expressed explicitly until Gal-

ton introduced them in 1877, although Bravais in 1846, and Gauss and Laplace earlier, had 
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correlation appearing implicitly in their representations of normal distributions. These ideas 

had not arisen naturally, because the observations being studied—astronomical or geodetic 

measurements—tended to be automatically independent. In Galton's measurements of biologi­

cal and social phenomena, especially given his focus on inheritance, correlation and dependence 

are crucial. The development, beginning mathematically with Edgeworth in 1892, was awk­

ward, partly because it was done by a new British school of statisticians who were often unaware 

of the work of Laplace and Gauss or other mathematicians from the European continent; for 

example, it was not realized at first that regression is a special case of the general linear model. 

See [L], [H, Chapters 26.4 and 26.5], or [St2, Part Three] for details. 

Simple (two-dimensional) orthogonality arguments are sufficient to see how covariance and 

correlation arise naturally in regression. Let X and Y be random variables, and let W be the 

space of affine (often misstated as "linear") functions of X, that is, 

W={a + PX\a,p£R}. 

In Appendix I I , Theorem A2.3, is a very short construction of the point in W that minimizes 

E ({Y — (a + /3X)) 2) , the natural measurement of the distance from Y to W : 

T^^r\ Gov (X,Y) , P{Y) = M y + ^ - ^ { X - Hx), 

where P is the orthogonal projection onto W. This implies that, if we standardize X and Y, 

ox ' cry ' 

then 

p ( y ) = px, 

where p is the correlation of X and F. If d is the distance from Y to W, then the Pythagorean 

theorem implies that 

i = E ( r 2 ) = d2 + E ((pi) 2) =d2 + p2. 
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Thus p is measuring how close F is to W, a geometric picture of the linear (actually, affine) 

relationship between Y and X. 

For fitting a straight line to data { ( x i , 7/1), (2:2,^/2), •••) ( x ^ , ^ ) } , let the probability space 

f2 = { l , 2 , . . . , n } , P{{k}) = ^,Y{k) = yk,X{k) = xk,l < k < n; then we get the familiar 

The math needed for this sort of analysis existed at least as early as 1907. 

Galton made no distinction between data about physical parameters such as height and data 

about "natural abilities" such as intelligence; his interest was eugenics in the most complete 

sense. Statistics had come a long way, Jn a little over a century, from the hesitation of Euler 

and Bayes about manipulating inaccurate or meaningless data. 

expressions 
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CHAPTER 5 

ORIGINS OF SUFFICIENCY 

This is one of those ideas that, with twenty-twenty hindsight, seems straightforward. Any 

random variable can be considered data reduction; why not continue reducing the data by 

applying another measurable function to the original random variable? The constraint here 

is that we don't want to lose information about an underlying parameter, whatever "losing 

information" means. 

This history is a very short story, because it is predicated on a much longer story, the 

development of the concept of conditional probability with respect to a random variable or 

sigma algebra (see Section I I I , which itself is unrealistically short because of my avoidance of 

both measure theory and social science). 

Sufficiency (the idea, not the name, which appeared a year later) was invented by Fisher in 

1920, in the process of rebutting a statement by an astronomer, A. S. Eddington, who asserted 

the superiority of the sample mean deviation 

Fisher showed that, for a random sample from a normal distribution, the variance of (72 is less 

than a i . He also showed that, for a random sample from a double exponential distribution. 

over the sample standard deviation 
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Laplace's original distribution of choice, the variance of cri is less than the variance of a-i- This 

is a reminder of the Hilbert-space nature of the normal distribution, commented on at the end 

of Section I . 

As with choosing squared error over absolute error, in the seminal studies of the analysis of 

variance (1.6) discussed in Section I , this expresses a preference for the L 2 norm, coming from 

a pre-inner product, 

k=\ 

over the L1 norm, which does not. Fisher also showed that, for any natural number p not equal 

to 2, for a normal distribution the 1? norm estimator 

where Cp is chosen to make the estimator unbiased, has larger variance than Oi-

This much was done by Gauss in 1816; see [H, Chapter 21.1] for details. What is historically 

significant is that Fisher went on to consider the joint distribution of (cr i ,^) , and showed 

"For a given value of 02 , distribution of ai is independent of a." He also showed this to be 

true with ai replaced by (7p,p G N . He concluded "The whole of the information respecting a, 

which a sample provides, is summed up in the value o f f y " The italics are Fisher's. Even if, as 

with the current author, one is uncertain what the definition of "information" is, it does seem 

plausible to assert that a distribution that is independent of a contains no information about 

cr. 

Note how similar the competition between cri and 02 is to the choice of method in Section I 

for measuring the total error of observation, 

n n 
E N versus E 6 * " 

i=l i=l 

My rationale for including this subject, in a history that allegedly stops somewhere in the 

nineteenth century, is the fact, pointed out by Stigler ([Stl]), that Laplace began a very similar 
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investigation in 1818. Laplace was considering the special case of the linear model 

Ui = Xi(3 + e,, I < i < rt, 

for fixed ar4, and, analogous to Fisher, was comparing two estimators of 0, one, call it /?!, that 

minimizes the L1 norm 
n 

versus another, call it /32, that minimizes the L2 norm 

n 
E(yi - XiP)2-

i=l 

Laplace first compared asymptotic variances of Pi and 0%, finding necessary and sufficient 

conditions on the density of the population sampled from for Pi to be preferable to /?2. Then, 

like Fisher one hundred years later, Laplace considered the joint distribution of Again 

in terms of the density, he found the number C that minimizes the asymptotic variance of 

P 2 - { P 2 - P I ) C . 

He showed that, for a normal distribution, no such C exists; that is, pz is a better estimator 

than any other unbiased linear combination of Pi and P2. 

It is not surprising that Laplace didn't anticipate Fisher in his (Fisher's) final step, of 

looking at the distribution of Pi given P2, because conditional probability was far from being 

understood. Although Fisher preferred to describe sufficiency in the quasi-intuitive language of 

"information," his earliest descriptions of sufficiency, including the 1920 paper we have quoted 

from in which he hasn't introduced the word sufficiency, include the modern precise definition 

in terms of conditional probability; see [Stl] and [H, Chapter 28.5], for quotes from Fisher. 
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CHAPTER 6 

UNIFYING THEME EXTENSIVELY EXPLAINED 

The appendices which follow are meant to show how all the subjects whose early history I've 

outhned are based on the idea of an inner product, and how their presentation, both defini­

tions and proofs, can be unified, clarified and simplified with this intuitive, geometric concept. 

Appendix A presents all the results about inner products needed. What I believe are simple 

proofs are given, with the exception of the spectral theorem, which requires, at least for infinite-

dimensional vector spaces, more sophisticated math than might appear at the undergraduate 

level. The other appendices give proofs of a large portion of a master's degree statistics curricu­

lum that are based on, and simplified by, the results in Appendix A. Appendix B presents basic 

results in analysis of variance and the general linear model. Appendix C is about conditional 

expectation and independence. This leads naturally to Appendix D, on sufficiency, and a very 

short Appendix E, on variance shrinking. 

On a personal note, these appendices also represent some of my attempts to understand, in 

as clear, simple and unified a manner as possible, results that were presented in classes I took. 

Although probably not original in the sense of never having been done before, all of the proofs in 

Appendices B-E, with the exception of the Cramer-Rao theorem, I have derived independently. 

In the language of my pedagogical youth, I have tried throughout my second graduate career 

to use the "discovery" method of learning (also known as "reinventing the wheel"). 
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APPENDIX A 

INNER PRODUCT SPACES 

I ' l l present real inner product spaces initially; the best operator theory is done on complex 

inner product spaces, but the extension is not difficult. 

Everything you need to know about inner product spaces can be done in two dimensions. In 

R 2 , define the inner product of two vectors x = {xx,X2),y = (2/1,1/2) by 

= { x m +2:22/2)-

Define also the norm of X by 

I N = yjxl+x*, 

the length, via the Pythagorean theorem, of the traditional arrow representing f , going from 

the origin (0,0) to x. Note that (x,x) = \\x\\2. 

Some trigonometry shows that 

{x,y) = Hxllllyllcosf, 

where 6 is the angle between (the arrows representing) x and y. This is a surprising sort of result, 

relating geometry (something you can draw) to algebra (something you can calculate). Algebra 

has the advantage of precision, while geometry has the advantage of providing a picture, more 

conceptually intuitive and profound than words or numbers. 
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Everything you might want to know about the pair of vectors (x, y); their lengths and the 

angle between them; is contained in three inner products, of x with y, of x with x and of y 

with y. 

Of particular interest is the case 0 = | : it follows that x and y are orthogonal (perpendicular) 

if and only if their inner product is zero. Let's write this as x J. y. 

Now consider the following approximation problem: given a line W through the origin and 

a point x, probably not in W, find the point in W closest to x; that is, we want a point WQ £W 

such that 

11̂  — ^l i > ll^o — x||, for all w EW. 

It might be believable that we get WQ by drawing a line from x to W that is perpendicular to 

W; that is, WQ satisfies 

(x — wo) X w, or, {x,w) = {wo,w) Vw € W. 

Here are some natural extensions of our inner product on R 2 . On R n , define 

n 

k=l 

Or we could throw on weights: for Wk > 0 {k = 1,2, ...,n), define 

n 

(^y) = ^2v>kXkyk-
k=l 

Leaping into infinite dimensions, define, for random variables X,Y G L 2 ( 0 , P) (that is, of finite 

variance), 

(X,y)i = E{XY) = f iXY)iw) dP{u), 
JQ 

or 

(X, Y)2 ~ Cov(X,y) =E{{X-E{X)){Y - E{Y))). 

As with any abstraction, it is worthwhile to filter out the irrelevant details, and identify the 

useful idea. Here is all we need for an inner product. 
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Definitions A l . l . Suppose F is a real vector space. A pre-inner product {•) on V is a 

nonnegative, symmetric, bilinear map from V xV ^R; this means 

(1) for all y €V, the map x -> (x, y) : V —)• R is linear; 

(2) (x,y) = (y,x), for all x,y eV; snd 

(3) for all x S V, (x, x) > 0. 

If, in addition to (1)—(3), 

(4) (x, x) = 0 only when x is the zero vector, 

then (•) is an inner product on V. 

The pair (V, (•)) is then a (pre-) inner product space. 

The norm of x is 

||x|| EE V ^ X ) . 

The vectors x and y are said to be perpendicular, or orthogonal, written x J_ y, if 

(x,y) = 0. 

As a challenge, let's see how much can be done without anything resembling calculus. 

Definition A1.2. If is a subspace of V, and x € V, then the orthogonal projection of x onto 

W, written Pw{x), is the set of vectors Wo €.W such that 

(x — WQ) -L w, Viw € W. 

More generally, if W is an affine space, that is, a translation of a subspace, WQ € Pw{x) if 

(x — wq) X (to — Wo), Vu; G W. For simplicity, I will restrict myself to subspaces W. 

Here are some useful facts. 

Theorem A1.3. Suppose (V, (•)) is a pre-inner product space and x,y € V. 

(a) (Cauchy inequality) \ (x,y) | < ||x||||y||; equality occurs i f and oniy i f there exists reai a 

such that |jx + Q;y|| = 0 . 
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(b) (Pytiiagorean theorem) x -Ly if and only if \\x + y\\2 = \\x\\2 + \\y\\2. 

(c) x ±y if and only if \\x + ay\\ > \\x\\, for all real a. 

(d) (best approximation) IfW is a subspace ofV and Pw{x) is nonempty, then 

\\x - z\\ < \\x -w\\,Ww£W,ze Pw{x). 

Ifw is not in Pw{x), then 

\\x - z\\ < \\x - w\\. 

(e) I f z € Pw{x), then / V ( x ) = {z+y\ \\y\\ = 0}. 

(f) (parallelogram law) 

||x + y | | 2 + l | ^ - j , | | 2 = 2 ( M 2 + lly| | 2 ) . 

(g) (triangle inequality) \\x+y\\ < \\x\\ + \\y\\. 

Proof: (a) The "trick" here is to consider the nonnegative quadratic function t —> ||x + ty\\2 : 

for any real t. 

\x + ty\\2 = {x + ty,x + ty) = {x, x) + 2t {x, y) +1 2 {y, y) = \\y\\2 (t2 + \x\\2 

I M P ; V " 11 I M I 

Setting t = — j^p- implies that 

N I 2 - % # W + f - M W < l l * - ^ l l 2 ' v t e R . (*) 
IMP ; " V llyIP 

The equality in (*) implies the Cauchy inequality, and the fact that | {x,y) \ = ||x||||y|| implies 

{|sB 4- cty\\ = 0 for some real a; the converse follows from the inequality in (*). 
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(b) 

\\x+y\\2 = {{x+y),{x + y)) = {x,x)+2 {x, y) + (y, y) = \\x\\2 + \\y\\2 + 2 {x, y) , 

which equals ||a;||2 + \\y\\2 if and only if (x,y) = 0. 

(c) From the calculations in the proof of (a), 

i i - ^ H , * ( a + ^ ) V ( M - < < | f ) . 

If (x, y) — 0, then 

||x + a y | | 2 = ||x|| 2 + a

2 | M | 2 > | | x | | . 

Otherwise, we have 

proving the converse. 

(d) By the Pythagorean theorem, 

||x - w\\2 = ||x - z\\2 + \\z - w\\2 > \\x - z\\2, 

with equahty occurring only if \\z — w|| 2 = 0, which implies that, for any w' € W, 

(x — wtv/) = (x — + {z — w,w') = {z — w,w') < \\z — w\\\\w'\\ = 0; 

that is, w € Pw{x). 

(e) The argument at the conclusion of the proof of (d) shows that Pw{x) contains {z+y \ \\y\\ = 

0}. Conversely, suppose k; S PW{X). Then by (d) and the Pythagorean theorem, 

H a . - I | ; | p = | | x - 2 ; | | 2 = | | X - H | 2 + I k - ^ | 2

) 

so that w = z + [w — z), with \\{w — z)\\ = 0. 

(f) Calculate: 

||x + y\\2 + ||x - y\\2 = ((x + y,x + y)) + ({x - y,x - y)) 

= ((x,x) + 2 (x, y) + (y,y)) + {{x,x)-2 (x, y) + (y,y)) 

= 2((x,x) + (y,y)) = 2(||x|| 2 + | |y | | 2 ) . 
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(g) As before, 

II* + y | | 2 = i|x|| 2 + | M | 2 + 2 ( z , y ) = (INI + I M I ) 2 + 2{{x,y) - \\x\\\\y\\) < {\\x\\ + | | y | | ) 2 , 

by the Cauchy inequality. • 

Remark A l . 4 . The value of Theorem Al.3(d) cannot be overemphasized. We shall see later 

that Pw{x) exists, for any x, when W is closed (see Definitions Al.12; this includes W finite-

dimensional). Thus we are not only guaranteed a best approximation from W, which is unique 

when we are in an inner product space, we are given a simple characterization, which leads to 

simple constructions; see, for example. Theorems A1.6 and A2.1. 

Definition A1.5. An orthogonal set is a set of vectors any pair of which are orthogonal. 

Infinite-dimensional analogues of the following theorem are straightforward with a little 

topology (mainly infinite sums), but I ' l l restrict attention to finite dimensions. 

Theorem A1.6. Suppose W is an n-dimensional subspace of the pre-inner product space V 

and {wi,W2, . . . ,w n } is an orthogonal set of nontrivial vectors. Then for any x GV, 

j r7X-WK € Pw{x). 

fe=l M 

Proof: Linear algebra shows that {wi , 102, u»n} is a basis for W. Check the definition of 

Pwix) :'dw€W, then there exist a1,..., an such that w = X ) " = 1 ctjWj, thus, by orthogonality 

and the definition of norm, 

E {x,wk} \ / \ \ ^ \ r - \ x ' W k ) / \ 

1 ' ¥ k ¥ W i , w / = jr{ai { x , W j ) ~ ^ ^ Q j ' ¥ ^ F { W k , W j ) 

n n 1 \ 

• 

Corollary A l . 7 . i f is a Enite-diraensional subspace of an inner product space V, then 

Pw{x) exists for any x €V. 
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Proof: Let {̂ 1,̂ 2, • • • , ^ n } be a basis for the subspace W. Apply Gram-Schmidt orthogonaliza­

tion, using Theorem A1.6: 

Wi = vx, wk = v k - P S P A N (WuW2,...,wk-1)ivk), l<k<n. 

Then {101,1112, •.•, ,ttfn} is an orthogonal basis for W, and Theorem A1.6 guarantees that i V ( z ) 

exists for any x. • 

Again to avoid minor topology, for now I ' l l just state the uniqueness part of an existence 

and uniqueness theorem. 

Proposition A1.8. Suppose W is a convex subset of the pre-inner product space (V, (•)). If 

x and y are both elements ofW of minimum norm, then \\x — y\\ -- 0. 

Proof: Convexity implies that ^{x -\-y) G W. By the parallelogram law, 

| | x - y | | 2 = 2i\\xf + \\y\\2)~\\x+y\\2 = 2 | | a ; | | 2 + 2 | M | 2 - 4 | | i ( x + 2 / ) | | 2 < 2 | | a ; i | 2 +2 | | 2 / | | 2 -4 |H | 2 = 0. 

• 

Definition A1.9. If W is a subset of the inner product space V, then the orthogonal comple­

ment of W, W-L, is the set of all vectors in V that are orthogonal to W, that is, 

W x = {v €V\v A.W Vw €W}. 

For a finite-dimensional affine space, we can characterize its element of mmimum norm; see 

Corollary A. 15 for a major extension. 

Proposition A L I O . If{V, (•)) is an inner product space, x GV and W is a finite dimensional 

subspace of V, then 

(x + W) n w - 1 = {z}, 

a set containing a single point, and z is of mmimum norm in (x -I- W). 
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Proof: Since W is a subspace, (x + W) = (x — W). By Theorem Al.6, Pw(x) exists; by its 

definition, 

{x-W)nW± = {x-Pw{x)}, 

which is unique by Theorem A1.3(e). By Theorem A1.3(d), 

||(x - Pw{x)\\ < ||x - u>|| \/w e W. 

This is saying that z={x — Pw{x)) is the element of minimum norm in (x — W). • 

The following proposition says that two vectors in an inner product space are uniquely 

determined by their inner products. 

Proposition A l . l l . If {V, (•)) is an inner product space, x,y £V, and {x,v) = {y,v) for all 

v £V, then x — y. 

Proof: ||x — y|| 2 = (x — y, x — y) = (x, x — y) — (y, x — y) = 0, by hypothesis. • 

To get some operator theory, and a complete description of when orthogonal projections 

exist, we need some mathematical analysis; that is, a notion of convergence. 

Definitions Al .12 . The inner product space {H, (•)) is a Hilbert space if it is complete w.r.t. 

its norm; that is, whenever {xfe j^ l j is a sequence in H that is Cauchy, meaning 

lim | |x m — x„|| = 0, 

then there exists x £ H such that { x ^ j j i j converges to x, meaning 

lim \\xn — x|| = 0. 
n—>-oo 

A subset, W, of the Hilbert space H, is closed if the limit of every convergent sequence from 

W is in W. 
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Here's the existence part corresponding to the uniqueness result in Proposition A1.8. 

Theorem A1.13. Suppose W is a closed, convex subset of the Hilbert space (H, {•)). Then 

there exists a point inW of minimum norm; that is, x £W such that 

\\x\\ < \\w\\ Vw e w. 

Proof: Since the norm is a continuous map from H into [0, oo), there exists d! > 0 such that 

d = min {||toJ| \ w S W}. 

Let {xky^Lx be a sequence from W such that 

||x f e | | —>• ||d|| as —> oo. 

The parallelogram law, applied as with uniqueness, will show that {x^^Lx is Cauchy: 

\\xm || = : : 2( | |x m || + H^n || ) | | x m + X n || 

= 2 | | x m | | 2 4 - 2 | | x n | | 2 - 4 | | i ( x m + x ? l ) | | 2 

< 2 | | x m | | 2 + 2 | | x n | | 2 - 4 d 2 , 

which converges to 0 as n,m —>• oo. Since W is closed, there exists x £W such that Xjfc —>• x as 

fc —> oo, so that ||x|| = limfe-Kx, ||xfc|| = d, as desired. • 

Now it is easy to characterize subspaces W for which P H ' ( X ) exists, for all x. 

Theorem A1.14. Suppose W is a subspace of the Hilbert space H. Then the following are 

equivalent. 

(a) Pw{x) exists, for all x G H. 

(b) For all x £ H there exists WQ £W such that 

\\x-wo\\ < \\x-w\\ Vw £ W. 

(c) W is closed. 
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Proof: (a) -> (b) is Theorem Al.3(d). (c) -> (b) is Theorem A1.13 applied to x - W. 

(b) —> (c). If W is not closed, then there exists x £ H that is in the closure of W but is not in 

W. This means that, for any W\ S Wy there exists W2 £W such that \\x — W2II < 11* ~ II> but 

there exists now £W such that ||a; — tt;|| = 0. Thus WQ as in (b) is impossible. 

(b) —>• (a). For any real a,wGW, 

\\{x -WQ) ±aw\\ = \\x-{wQ-aw)\\ > \\{x-wQ)\\, 

since [WQ — aw) £ W. Theorem Al.3(c) implies that [x — WQ) J_ w . • 

The same proof now extends Proposition ALIO. 

Corollary A1.15. Proposition Al.10 holds with "Unite-dimensional" replaced by "closed." 

Theorem A1.14 also provides a novel way of showing that finite-dimensional subspaces are 

closed. 

Corollary A1.16. Any Gnite-dimensional subspace of a Hilbert space is closed. 

Proof: Corollary Al.7 and Theorem A1.14. • 

Definition A1.17. Suppose {V, and (W, {^w) are inner product spaces and T -.V —tW 

is linear. Then the null space of T, Af{T), is {x £V \ Tx = 0}, and the range space of T, ̂ ( T ) , 

is {Tx eW\x G V}. 

The following could be considered an existence analogue of Proposition A l . l l . 

Proposition A1.18 (Riesz's lemma). Suppose (iJ, (•)) is a Hilbert space and (f> : H H 

is linear and continuous w.r.t \\ • \\. Then there exists a unique y G H such that 

4>{x) = {y,x) 

for all x G H. 

Proof: Let W = Af{(t>). W is closed: ii wn ^ x G H, then (ftfan) = 0, for all n, hence by 

continuity of (p, (p{x) = l im n _ ) . 0 0 (f>{wn) = 0, so that x GW. 
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If (/> is trivial, let y = 0. Otherwise, there exists z £ H such that (p{z) is not zero. Let 

_ ftz - Pw{z)) 
y = \ \ z - P w { z W ^ - P ^ -

Then yGW1- and 0(y) = ||y|| 2. 

Note that W1- is one-dimensional: if x 1 ,a;2 € W1-, then, since the range of </> is one-

dimensional, there exists real aj,j =1 ,2 , such that 

0 = Q 1 0 ( x i ) + a2<f>{X2) = 4>{OtlXi + Q!2X2); 

that is, {aiXi + 02X2) € W, so that 

a i X i -I-0:2*2 = Pw{(*iXi - 1 -02x2) = aiPw{xi) + 0 2 ^ ( 3 : 2 ) = 0. 

Thus, for any x S i l , since y and ( x — Pw{x)) 6 W1- and P!v(x) £ VF, Theorem Al.6 implies 

that 

0 ( x ) = 0 ( x - Pw{x)) + tiPwix)) 

_ , .<y . (g-JV(ar))) . 

| | y | , 2 ^ 

( y , ( x - P t v ( x ) ) ) 

= — w — 

I M I 2 1 1 2 / 1 1 

= (y,«) • 

Uniqueness follows from Proposition A l . l l . • 

This enables us to define the adjoint of an operator. 

Definition A1.19. Suppose {H,{-)H) and {K,{-)K) are Hilbert spaces and T : H K '\s 

linear and continuous w.r.t. || • ||. 

The adjoint, T* : K H \s defined by 

{T*yrx)a = {y,Tx)K ,VxGH,yGK. 
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Proposition A1.18 applied to 0y(a!) = {y,Tx) K implies that T * is well defined and linear. Note 

that T" = {T'Y = T. 

An n x TO matrix A represents an operator, call it T A , from R O T to R" via matrix multipli­

cation 

TAX = Ax. 

A calculation shows that if A) * == T^r, where J4 t means the transpose of A. 

Proposition A1.20. I f T is as in Definition AI.J9, then 

M{T) = [UiT')]^ =N{T*T). 

Proof: By Proposition A L U , 

x e AA(T) {y,Tx)K = 0 Vy € K ^ T y , x ) H = 0 \/y e K <==» x € ( ^ T * ) ) X . 

It is clear that M{T) C Af^'T). Conversely, suppose x € AA(T*T). Then Tx € AfiT*) = 

[ ^ ( T ) ] ± . Thus 

Tx 6 [72.(T)] n [71{T)]1'. 

For any subspace W,Wn is trivial. Thus Tx = 0, or x € A^(T), as desired. • 

Definition A1.21. I f V is an inner product space, P : V V and there exists a subspace W 

such that P(x) = Pw{x), for all x GV, then P is an orthogonal projection.. 

It is useful to have algebraic characterizations of orthogonal projections. 

Proposition A1.22. Suppose P is a linear, continuous map from a Hilbert space {H, (•)) to 

itseif. 

(1) P is an orthogonal projection i f and on/j i f P 2 = P = P*. 

(2) Jf P is an ortfiogonaJ projection, then x G T^{P) if and only if Px = x. 

(3) I f Pi and P2 are ortiiogonal projections then T^Ps) C "^(Pi) i f and oniy i f P1P2 = P2. 
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Proof: (2) Suppose W is a subspace and P = i V - Since Pww = w for allw GW,W C. TZ{P). 

Clearly Pwx G W for all x £ H. Thus W = Tl{P). 

It x £ Tl{P), then x G W, thus Px = Pwx = x. Conversely, if x is not in W, then since 

Px G W, Px cannot equal x. 

(1) I f P = Pw, for W a subspace, then by (2), for any x G H, P2x = P{Px) = Px, since 

PxGW= TZ{P). Thus P 2 = P. For any x,y G H, 

{Px,y) = (Px -x,y) + (x,y) = {{Px - x, Py) + {Px-x,y- Fy}) + «x, Py) + {x,y- Py)) 

= {{Px -x,y- Py)) + {{x, Py) + {x,y- Py)) = {Px,y - Py) + (x, Py) = (x, Py); 

that is, P = P*. 

Conversely, suppose P : H ^ H satisfies P2 = P = P'. Let PF = TZ{P). To see that 

P = PW, fix a; e FT. Note first that, by definition of TZ, Px G W. For any y G H, 

(x - Px, Py) = (P(x - Px),y) = {Px - P2x, y) = {Px - Px, y) = (o, yj = 0; 

that is, {x — Px) -L Py, for all y G H. Since W ~ {Py \ y G H}, this shows that Px = Pw{x), 

as desired. 

(3) Suppose n{P2) C ^ (P i ) . If x G i l , then P2X G ^ (P j ) , hence P2X G ^ ( P i ) , so by (2) 

P1P2X = Pi(P2x) = P2X. Conversely, if PxP% = P2, suppose x G "^-(Pj)- By (2), P2X = x, thus 

Pix = P1P2X = Pjx = x, thus, again by (2), x S "^(Pi). This is saying that ^ (P j ) C "^(Pi). • 

Definitions A1.23. Let T be a linear, continuous map from a Hilbert space to itself. 

(1) T is symmetric if T = T*. 

(2) T is unitary if T is invertible and T~l = T*. 

In particular, note that an orthogonal projection is symmetric, by Proposition A1.22(l). 

Note also that, by the comments after Definition A1.19, a matrix is symmetric (that is, equals 

its transpose) if and only if the corresponding operator (defined by matrix multiplication) is 

symmetric, 
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Being unitary is equivalent to preserving the inner product: T is unitary if and only if it is 

surjective and 

for all x, y in the Hilbert space. 

Here is arguably the most famous result in operator theory, but stated only in finite dimen­

sions. 

Theorem A1.24 (Spectral Theorem). Jf A is a symmetric matrix, then there exists unitary 

U and diagonal D such that 

A = UDU-1. 
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APPENDIX B 

GENERAL LINEAR MODEL AND ANALYSIS OF VARIANCE 

Throughout, y G R n , F = ( I j , Y ^ , Y n ) is a random vector. Unless stated otherwise, in 

this section (•} will be the usual inner product on R n , 

n 

Also denote by A11 the transpose of a matrix A. A calculation shows that AtF = A*, from 

Definition A1.19, where we still denote by A the operator that maps x —> Ax. 

The extension to weighted least-squares, etc., should be clear by using 

n 

for weights = 1,2, ...,n. 

The linear system 

y = Xf3 {y G R n , / 5 G Ilm,X an nx m matrix ), 

that one obtains from measurements, will probably be inconsistent. Consistency, when it exists, 

is an unstable equilibrium; for example, consider the system 

1=0, l + e = p 

{y = 
i 

l + e , X = ,/3 = /3). For any e not equal to zero this is inconsistent, yet it is 

consistent when e = 0. 
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We need a more constructive response than the assertion "there is no solution." What 

might seem natural, in this imperfect world, is to be satisfied with finding p that minimizes 

the distance between y and Xp, or the norm of (y — X0), Minimization becomes possible, and 

not too hard, with a norm that comes from an inner product. 

The following is a corollary of Proposition A1.20. 

Theorem A2.1 (Normal Equations). Suppose A" is ann x m matrix, y € R" and p G R m . 

Then /3o minimizes 

\\y-xp\\ 

if and only if 0Q is a solution of 

XTy = XTXp. 

Proof: By Theorem Al.3(d), /?o minimizes \\y — if and only if X(3Q = Pw(y), where 

W = TZ{X), and we denote by Pw{y) the unique vector in the set / V ( y ) . By definition of Pw 

and Proposition A1.20, this is equivalent to 

(y - X f a ) € [n{X)\x = Af{X*) = Af{XT), 

which is the same as saying that 

XT{y-XPo)=0. 

• 

Remarks A2.2. In particular, if XTX is invertible (this is equivalent to X having rank m), 

then the unique minimizer of ||y — X/3||; that is, the best least-squares solution of 

y = x0, 

is given by 

P={XTX)-1XTy. 

Note that X/S = X{XTX)~1Xy is the orthogonal projection of y onto TZ{X). 
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For minimizing J^j^iVj ~ { a + Pxj))2 (best least-squares straight line fitting some data 

(a:i,lft))(aJ2>|/2).".,(«niJfe))i w e are minimizing 

Wv-x |, where X = 

bince X T X . and XTy = 

1 Xi 

1 X2 

- f xn. 

, the normal equations become 

which is quickly solved as 

y = a+j3x, {xy) = ax + I3{x2), 

Gov (x, y) - n-
Var (x) 

But this special case can be derived almost instantly by using Theorem Al.6 instead of 

Proposition Al.20. More generally, we can quickly show 

Theorem A2.3. (best affine approximation j Suppose X and Y are random variables of finite 

variance. Then the affine function of A, (a + (3X), that minimizes 

E{{Y-{a+/3X))2) 

is given by 13= ^ J f f l , a = E{Y) - 0E{X). 

Proof: With respect to the inner product 

{Z,W) = E{ZW), 

{l,X — E{X)} is an orthogonal subset of the 2 dimensional subspace W = {a + (3X \a,f3 £ R } 

of whatever L2 space we construct X and Y to act on. By Theorem A1.3(d) and Al.6, our 

desired affine approximation is given by 

52 



(r,l) {Y,X-E{X)) p/v]] — F(Y) i C o v ( ^ y ) / r myv 

• 

For the special case in Remarks A2.2 (best least-squares straight line fit) , choose the prob­

ability space = {1,2, . . . ,n}, with measure P{{k}) = ^,Y{k) = yk,X{k) =xk,k= 1, 2, ...,n. 

Consider, for X a fixed n x m matrix, 

Y = Xp + t, (A2.4) 

where Cov(e) = (y2In and p G R 1 7 1 is the parameter(s) to be estimated. When X has rank m, 

which is equivalent to {XXT) being invertible. Theorem A2.1 implies that 

0={XTX)-1XTY 

minimizes ||e||. 

The Gauss-Markov theorem gives another sense in which (3 is "best." "Linear estimator" 

will mean a linear combination of {Fi , I2 , Yn}. In the following, it is not hard to modify the 

proof for X not full rank, to show that, if cT 13 is estimable, then cT/3 is the unbiased linear 

estimator of minimum variance. 

Theorem A2.5 (Gauss-Markov). Let X, (3, $ be as in (A2.4). 

(1) There exists an unbiased linear estimator of /3j, for all 1 < j < n, if and only if the rank 

of X is m if and only if {XTX) is invertible. 

(2) Then, for 1 < j <m, j3j is the unbiased linear estimator of Pj of minimum variance. 

Proof: (1) If {XTX) is invertible, then 

E{P) = { X T X ) ~ 1XTE{Y) = {XTX)~1XTXP = 0, 

thus Pj is an unbiased estimator of Pj, for all j. 
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Conversely, for 1 < j < m, suppose 

n 

i=l 

is an unbiased estimator of /Sj. Writing e, for the column vector in R m that is one in the jth 

component, zero elsewhere, 
( e - j ) = Pj = EiWj) = (d^BfX)) = (3hX$) = { x T d j j ) , 

for any 0 £ R m . By Proposition A l . l l , Sj = XTdj, for 1 < j < m. This implies that • ^ ( A T ) = 

R m , which is equivalent to the rank of A 7 , which equals the rank of X, being m. 

The equivalence with [ X T X ) being invertible follows from Proposition Al.20: 

n{xT) = R m M{x) = {0} ^ N{xTx) = {o}. 

(2) Fix j between 1 and m. Define 

Uj = { c r G R r i | A T ( r = e : , } . 

The argument in (1) (and its converse) shows that W = (^d,Y^ is an unbiased estimator of/Jj-

if and only if d € Uj. For such W, 

Var (W) = Gov $ 9 ) = $ Gov {Y)dj = a2Indj = cr2!!^!!2. 

Thus we want dj 6 Uj of minimum norm. Since Uj is a translate of J\f{XT), by Proposition 

Al.lO the element in Uj of minimum norm is the unique point in 

U j ^ i x ^ ^ u ^ n i x ) , 

by Proposition Al.20. That is, this desired point 

dj = Xzj, for some Zj g R", 

so that 

{XTX)zj = XTdj = tj Zj = {XTX)-1ej -> dj = X{XTX)~lej, 

and 

Wj = (1,,?) = { x { X T X ) - % , t ) = {ej,{XTX)-'XTY) = faj) = fa, 

as desired. • 
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Lemma A2.6. Suppose A and B are n x n matrices and ABT = 0. Then 

(a) ATy JL BTz, Vy, z G R". 

(b) Cov{AY, BY) = 0, i f Cov(f) = cln. 

Proof: (a) {ATy,BTz) = {y,ABTz) = 0. 

(b) C o v ^ f , BY) = A Gov {Y)BT = A{cIn)BT = cABT = 0. • 

In the following, note that, by Proposition Al.22, the hypotheses on Pj ave equivalent to 

Pf = Pj = Pj, for 3 = 1,2, and Ftf* = P*-

Corollary A2.7. Suppose Pi,Pa are orthogonal projections and "^-(Pj) Q ^(Pi)- Then 

(a) for ally £ R", (y — Piy) i . ( A y - P 2 y), P 2y ± ( P ^ - P 2y), and (y - PJ) L P& 

(b) C o v ( ( f - P i f ) , ( P i f - p 2 y ) ) = o = COV{P2Y,{P1Y-P2Y))= C o v ( ( y - P i y , P i f ) , 

i f Cov(y) == cln\ and 

(c) (y - P j f ) and ( P i f - P 2 y) , P 2 y and ( P i f - fyf), and {Y - Pi?) and Pjf are 

independent ifY ~ N{p,a2In). 

Proof: (a) and (b) are immediate applications of Lemma A2.6, then (c) follows from the fact 

that covariance implies independence, for members of a multivariate normal family. I ' l l do the 

calculation for 

A1* = A = {In - Pi), BT = B = (Pi — Pi), 

and leave it to the reader (if he/she exists) to do the other two calculations. 

{In-Pl){Pl-P2f = ( J „ _ p i ) ( p i _ p 2 ) = ( P 1 _ p 2 ) _ ( p i 2 _ p i p 2 ) = ( p i _ p 2 ) _ ( p i _ p 2 ) = 0 . 

• 

Here is an application of the spectral theorem. 
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Proposition A2.8. Suppose W is a subspace of R", P : R" —>• W is the orthogonal projection 

onto W, P{p) = 0 and f ~ N{p,a2In). Then 

where fc = dim (W). 

Proof: By the spectral theorem, there exists unitary nxn U such that 

UPU'1 =D = h On-k 
ofe on_ f c 

Gov {U{Y -p)) = U Gov {Y)UT = Ua2InUT = = CT2J„, since U is unitary. Again 

using the fact that U is unitary, since P{p) = 0, 

| | p y r = 1 1 ^ - PW = \\UP{Y - m z = WUPU-'uiY - pw 

= \\DU{Y-P)\\2 = j2\u{Y-P) 

r2i 

1 2 2 2 
<7 Xfc. 

since Cov(C/(y — /x)) = CT J n and Y is normal. • 

Remark A2.9. Without normality, the same proof up to the mention of x 2 shows that 

that is, ^| |Py| | 2 is an unbiased estimator of a2. 

ANOVA T A B L E S and other giddy delights. The pedagogical fashion seems to be to 

present these as a table of mind-numbing, random, alphabet soups-a different one for every 

new model. Yet there are really only simple and intuitive consequences of orthogonal projections 

going on here. They always have the following form. 

Theorem A2.10. Suppose Pi and Pz are orthogonal projections on R", with p. £ TZ-iPz) Q 

n{Pi), and Y ~ N{p,a2In). Then 

(1) 

| |y - p 2 y | i 2 = | | f - PiY\\2 + \\PiY - P2Y\\2, 

56 



(2) [Y - PiY) and {PrY - P2Y), and P i f and {Y - Px f ) are independent; and 

(3) 

I ^ J Y - P ^ r - X l , j - ^ Y - P2Y\\2 ~ X l 2 , and ^\\Y - P2Yf ^ X l i + k 2 , 

where kj^n— rank (Pi), k2 = rani (Pi) — ranlc (P^)-

Proof: (1) is the Pythagorean theorem and Corollary A2.7(a). (2) is Corollary A2.7(c). For 

(3), we may apply Proposition A2.8, since by Proposition Al.22(2) Pj(/I) = fl, for j = 1,2, 

thus 

{in - Pi)(/r) = 0 = (Pi - p2){p) = (/„ - p2){p), 

to conclude that ||F — P iy | | 2 ~ rank (I—Pi}' e * C - degrees follow from the orthogonality 

of Corollary A2.7(a), which implies that 

rank (Pi) = rank (P2) + rank (P2 - Pi), 

and 

n = rank (/„) = rank (Pi) + rank (7n — Pi). 

• 

There is a natural one-to-one correspondence between "models" and subspaces (more gen­

erally, affine subsets) of the data space R", or, equivalently, orthogonal projections on R". A 

subspace of R" corresponds to where the data Y "should" be, according to the model. 

For everyone's favorite example, fitting {(11,2/1), (2:2,1/2),(^,2/™)} to a straight line, the 

subspace that Y is being projected onto is the span of { ( 1 , 1 , l ) , x } . 

In general, Pi is the "full model" and P 2 is the "reduced model," sometimes the null hy­

pothesis of a hypothesis test. I ' l l illustrate this with two special cases, then mention a popular 

general case. Throughout, for simplicity, I will assume X is full rank. 
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C A S E 1: general linear model. This is (A2.4), with e ~ N0,(T2In). 

We already know that p is the best least-squares solution of F = Xpr and satisfies the 

minimum variance condition of the Gauss-Markov theorem. Now a short calculation, which I 

skip because it has nothing to do with inner products, shows that $ is the MLE of /?, and the 

MLE of a2 is ±\\Y-Xp\\2. 

For this particular "Anova table," I need to assume that the rank of A is m and the first 

column of X is 1. Note that this includes polynomial regression. 

Apply Theorem A2.10 with 

Pi = X{XTX)-1XT{so that Pxf = A/3), P 2 EE - J n , 

where Jn is the nxn matrix consisting entirely of ones, to get the following ingredients for 

confidence intervals, t tests and F tests. 

Corollary A 2 . l l . 

(1) 0 and | | F - A / 3 | | 2 are independent. 

(2) $ ~ N{0, {XTX)~la2). 

(3) ^ | | F - A / 3 | | 2 ~ x L f c , A r = rank (A). 

(4) U0J = 0,j = 2 , 3 , m , then ||F - A/3|| 2 and \\X0 - F | | 2 are independent, 

E ( F , - F ) 2 = ||F - F | | 2 = HF - A ^ H 2 + \\X$ _ F | | 2 = ^ ( F , - (A/3),) 2 + E ( ( A ^ - F ) 2 , 

with ^ H A ^ - F | | 2 ~ x^-x, ^ 1 1 ^ - i l 2 ~ x 2 ^ . 

Proof: (1) follows from Lemma A2.6(b) and the fact that 0 and (F — Xp) are members of a 

multivariate normal family, since 

( A ^ A ) " 1 A T (1 - A ( A T A ) - 1 A T ) r = ( A T A ) _ 1 A T ( 1 - A ( A T A ) - 1 A T ) 

= {xTx)-1xT - { x T x ) - 1 x T x { x T x r 1 x T ) 

= { X T X ) - 1 X T - { X T X ) - 1 X T = 0. 
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Note that Y ~ N{X0,a2In). Thus (2) follows from p = {XTX)-1XTY. Assertions (3) and (4) 

follow from Theorem A2.10 and Proposition Al.22, since 

p^xp) = x{xTx)-1xTxp = xp, 

and, under the hypotheses of (4), 

P2{XP) = P^i first column of X ) = P1l = Xp. 

In simple linear regression, the general Hnear model with 

A = 

we have 

1 1 1 • • • 1 
Xi X2 X3 • • • XTl 

{PiY)k = {Xp)k = Y + {xk-x) C ° V M , i<k<n, 
Var [x) 

the orthogonal projection onto the span of { ( 1 , 1 , 1 ) , x } . 

Then 

X p - Y = P i f - P2Y = C ° V ^ i f (x - x), 
Var (x) 

so that, in (4) of Corollary A 2 . l l , k = 2 and 

j=i j=i ^ ' 

C A S E 2: one-way analysis of variance. For another example of an ANOVA table, 

one-way analysis of variance is 

Yij = fli + 6y l<i<k,l<j < Ui. 

eij iv N{0,a2) for all and independent. 

The only confusion here is terminology. Ytj is not a vector, so we are not in the form 

of (A2.4), unless we rewrite Yij as a vector. There is more than one way to do this, so it is 

ambiguous to pretend that one-way analysis of variance, as written above, is in the form (A2.4). 
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Let n = ^2i-i ni- If we describe our projections as maps from {I < i < k,l < j < n^} 

into itself, then we have 

^ k rii 

i=i j=i 

1 <£ <k,l <Tn<ne. 

When we want to represent projections by matrices, we will denote by Y the vector in R" 

Ykl,... 

Then 

P2 = -Jn 
n 

(notation as in CASE 1), the orthogonal projection of Y onto the space of constant vectors, 

and 
— JTH OTIS • • 0 n t 

* 1 ? 

J _ 7 
L n,, I 

the orthogonal projection onto 

{{Yu,Y12,...,Ylni,Y21,Y22, ...,Y2n2,..., Ykl,...,Yknk) \ Yj = Yie, 1 <i <k:l < j,£ < n j . 

Applying Theorem A2.10 to these choices of Pj and P2 gives us the following, again setting 

things up for confidence intervals, t tests and F tests. 

Corollary A2.12. 

(1) For 1 < i < fc,F£ is independent of - Yi)2. 

(2) For 1 < l - < f c , F i ~ A ( 6 ) i , g ) . 

(3) ^ r E i ^ i - F i ) 2 - ^ - * . 
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(4) K$i = 9t, forl<i,i< fc, then ^ ^ (Fj - Y)2 and E i j ( ^ , j - ^ i ) 2 ^ independent, 

- F) 2 = 5 > M - F ) 2 + E ^ ( F i - F) 2 

i,j i j i 

with £ Ei niiYi - F) 2 ~ and 4, ^ ^ ( ^ - F) 2 ~ xl-!-

If we wrote p as an element of {(i,j) | l < « < f c , 1 < J < Tij}, 

pij = 6i 1 < i < k,l < j < rii. 

Either way, it should be clear that Pi{p) = p, and, for 9i = Ot, for 1 < i,£ < fc, so that p— 1, 

P2{p) = p. Thus we may apply Theorem A2.10, to obtain assertions (1), (3) and (4). Assertion 

(2) is standard, from independence and normality of the • 

A G E N E R A L C A S E . A popular very general choice of reduced model is to satisfy the null 

hypothesis 

As before, let /? = ( A T A ) ~ 1 A T F , FxY = A/3, and let A) be such that P2Y = Xfa. Here's a 

straightforward orthogonality proof of what's needed for hypothesis tests, confidence intervals, 

etc. 

Proposition A2.13. 

(1) /3b = /3 - {XTX)-1C{CT{XTXr1C)-1{CrP - d). 

(2 ) \\xp - A / 3 0 | | 2 = H ^ y - p 2 y | | 2 = {crp - d ) T { c T { x T x ) ^ c ) - \ c f r p - S). 

Proof: (1) We have ( F - A/3o) 1 {XP \ C^p = 0}, thus 

Proof: Here Y ~ N{p, a 2In), where /i^ = 0i for 1 < ^ < rii, /x̂  = 02 for ni +1 < ^ < n2, etc. 

C T ^ = d , 
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that is, 

xT{Y - X f a ) e K ( C T ) ] 1 = n{C) 

by Proposition Al.20. Thus there exists ,?such that A T ( y — X f f o ) = Cz, so that we may solve 

for fa : 

Po = {XTX)-1{XTY -Cz) = P- {XTX)-1Cz, (*) 

so that 

d= (fPo = ( f p - CT {XT X)~1Cz, 

thus 

z = {cfr{xTxy1c)-1{cTp - d); 

plugging this into (*) gives us (1). 

(2) By (1), 

\\xp - XPof = \\X{XTX)-1C{CT{XTX)-1C)-1{Cfrp - d)\\2 

= [x{xTx)-1c{cT{xTxy1c)-1{cTp - d ) ) 7 • 

• [x{xTxr1c{cT{xTx)-1c)-1{cTp-d)) 

= {CFp - d)T{CT{XTX)-1C)-1Cfr{XTX)-1XTX{XTX)-1-

• C{CT{XTX)-1C)-1{CTp - d), 

which becomes (2) after cancellation. • 
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APPENDIX C 

CONDITIONAL EXPECTATION AND PROBABILITY 

Throughout this section use the inner product 

{W,Z) = E{WZ), 

although the definitions that follow could also be done with covariance (see Proposition A3.10). 

I will state all results for random variables. To extend to random vectors, replace the inner 

product above with 
n 

(w,z) = J2E{WkZk), 
k=l 

on the inner product space L2{£l,J-, P; R"), measurable functions Z : —> R" such that 

Definitions A3.1. If A € L 2 ( f i , j r , P ) , and £ is a sigma algebra contained in J 7, then 

E{X\g) = PL2{n^P){X). (A3.1a) 

This is equivalent to saying that E{X\Q) £ L2{Sl,CJ, P) and 

E{XW) = E{E{X\g)W) W G L 2 ( f i , g , P ) . 

By Theorem A1.14, this projection is guaranteed to exist. 

Note that Definition A3.1 can be extended to A S L 1 ( f i , J7, P) by replacing W G L 2 ( f i , Q, P) 

with W £ L 0 0 ( f i , Q, P). 
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The famous equality 

EiEiXlQ^) = EiE{X\g2)\Si) = EiXm, 

when Qi C Q?, follows immediately, with this definition, from a simple fact about orthogonal 

projections (see Proposition Al.22): 

P1P2 = P2P1 = P2, 

if the range of P2 (the space being projected onto) is contained in the range of Pi . 

This definition also fits our intuition about conditional probability, a shrinking of the universe 

of possibilities, from L 2 ( 0 , .T7, P) to the subspace L 2(fi,£7,P). 

If Y : ( f i , .T7) —>• R is measurable, then 

E(X\Y) = E{X\F(X)), (A3.1b) 

where J-{Y) is the sigma algebra generated by Y. 

The function from R —>• R 

g{y)=E{X\Y = y) (A3.1c) 

satisfies g{Y) = E{X\Y)- as usual, this is defined only almost everywhere w.r.t. the measure 

on R induced by Y. The existence of such a function is guaranteed by the following, a quick 

consequence of the Radon-Nikodym theorem, which itself is proven most easily by Riesz's lemma 

(Proposition A1.18). 

Lemma A3.2 ([Ch, p. 299]). I f Z is a random variable measurable w.r.t. ^{W), then there 

exists Borel-measurable (p such that Z = 4>{W). 

I would like to characterize when conditioning on one random variable is stronger than 

conditioning on another. In the following, L 2 (J r (T)) is shorthand for L2 ( f i , J"(T),P) and PT 

means the orthogonal projection onto L2{^F{T)). 
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Corollary A3.3. IfT and S are random variables, then the following are equivalent. 

(a) ^(^(r)!^) = k{T), when k is Borel measurable and k{T) has finite variance. 

(b) ^ ( T ) C T{S). 

(c) L 2 ( ^ ( T ) ) C L 2 (^ (5 ) ) . 

(d) PTPS = PT-

(e) there exists Borel measurable g such that T = g{S). 

IfT has finite variance, then all of the above are equivalent to 

(f) E{T\S) = T. 

Proof: The equivalence of (b), (c), and (d) seems clear, (e) —* (b) is clear from the definition 

of and 

(c) (a). Lemma A3.2 implies that 

L 2 ( f i , FfW),?) = {giW) | 5 : R -> R is Borel measurable, g{W) € L2{n, F, P)}. 

Thus both (a) and (c) are equivalent to: for all k such that A;(T) € L 2 there exists Borel g such 

that fc(T) = g{S)\ g{s) = E{k{T)\S = s).) 

(a) (e). For n S N, define kn = l[_ n ! „]; for all n, there exists gn such that kn{T) = gn{S). 

For \T{u})\ < n, T{id) = kn{T{u)) = gn{S{uj)), so define 

g{S^)) = gn{S{u;)), for \T{v)\<n. 

Then g is Borel measurable and g{S) = T. 

(e) •^=> (f), when T has finite variance, is clear. • 

All three of the definitions generalize to conditional probabilities: 

P{A\-) = E{lA\-), (A3.1d) 

for A CF. 
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Finally, for A,B £ T, P{A\B) is the value of F ; ( U | 1 B ) on B : 

P{A\B) = [E{lA\lB)]{u) (we 5 ) . (A3.1e) 

Note that 

EiXlB{Y)) = E{E{X\Y)lB{Y)) 

= E{{y->E{X\Y = y)lB{y)){Y)) 

= JBE{X\Y = y)dP{Y <y) (A3.4) 

for all Borel B; in particular, 

P{An{Y £ B))= f P{A\Y = y)dP{Y <y), (A3.5) 
JB 

for all A £ Borel B. 

It is desirable to have constructive versions of these definitions. 

Lemma A3.6. If 

s J gdft, 

where fi is the sum of continuous and discrete finite measures on the real line, then 

for x in the support of g. 

Proof: If cfyx = / dm, where m is Lebesgue measure, then 

u{[x,x+ 1 ] ) = n j ^ j g{t)m dmjt) 
^{[x,x + ^]) nJ*+± f{t)dm{t) 

the numerator converges to g{x)f{x), the denominator to f{x) a.e. (m). 

If p is discrete, then 

v{\x,x+ | ] ) _ 9{x)p{x) + E 

/s*([^* + ^]) M*) + Eaec^+i ] M(y) 

Since E j / e a K y ) < 0 0 ' dominated convergence implies that 

lim V v{y) = 0; 
n- too —' 

the same argument holds for limn^+oo Ylye{x,x+:L) Viv)- '-' 
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CoroUary A3.7. For A G J F 

PiA\Y-v)- lim P ( A n ( r g [ ^ + ; ] ) ) 

almost everywhere w.r.t. the measure induced by Y, ifY is the sum of a continuous and discrete 

random variable. 

Proof: Let v{B) = P ( A n ( F G B)), (i{B) = P{Y G 5) , and apply Lemma A3.6 and (A3.5). • 

Now we may justify the "expectation" terminology. 

Proposition A3.8. Suppose A —> P ( A G A\Y = y) defines a Borel measure on R, for afi real 

y. Then 

E{X\Y = y)= [ xdFxlY=y{x), Vy G R, 

wfiere Fx|y= y (*) = F(A < x |y = y). 

Proof: Let's denote by Py the measure induced by Y, and by F(x,Y) the measure induced by 

( A , F ) . 

For A, B Borel subsets of the real line, by (A3.5), 

f dFxlY=yix)dFY{y)= f f dFx{Y=y{x)dFY{y) 
JAXB JB JA 

= ( P{X&A\Y = y)dFY{y) 
JB 

= P ( A G A , r GB) 

= / dP{x,Y){x,y). 
JAxB 

In the usual way, since the Borel sigma algebra on the plane is generated by {A x S | A, B are 

Borel subsets of R } , this implies that 

/ h{x,y)dFx\Y=yix)dFY{y) = h{x,y) dF{x,Y){x,y), 
7R2 7R2 

for all Borel / i : R 2 R. 
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In particular, for any Borel 5 : R R such that g{Y) £ L 2 ( f i , .F, P), if 

Kv) = / xdFx\Y=y{x), 
JR. 

then 

{k{Y),9{Y)) = E{k{Y)g{Y)) = f k{y)g{y) dFy{y) = f f xg{y) d F x l Y = y dFY{y) 
JR JB. JR 

= ( xg{y) dF{XiY){x,y) = E{Xg{Y)) = {X,g{Y)); 

this is saying that 

k{Y) = P L W { Y ) A X ) , 

a& desired. • 

This proposition justifies the terminology 

Var [X\g) = E{X2\g) - [E{X\g)f , (A3.9) 

with the obvious extensions to Var(X|y) and Var(X|y = y), since, for A", y as in Proposition 

A3.8, the variance of the distribution defined by the cdf FX\Y~y, from the proof, equals 

y&v{X\Y = y)= j x2dFX\Y=y{x)- [ xdFxlY=y{x) . 
JR. UR 

Conditional expectation may be defined in terms of covariance. 

Proposition A3.10. For A, £7 as in Definition A3.J, with respect to the inner product 

{W,Z)2= Cov{W,Z), 

E{X\Q) is that element of P^a^ g p ^ A ) whose expectation is E{X). 

Proof: Let Y be the element of PL2{n,g,P){X) whose expectation is E{X). By definition, for 

aU VFeL 2 ( f i , a ,P ) , 

E{XW) - E{X)E{W) = Gov (A, VF) = Gov {Y, VF) 

= E{YW) - E{Y)E{W) = E{YW) - E{X)E{W), 

thus F;(AVF) = E{YW). • 
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Here is a famous result that follows quickly and naturally from the Pythagorean theorem. 

Proposition A3.11. If X and Y are random variables and X has finite variance, then 

Var (A) = Var {E{X\Y)) + E{ Var {X\Y)). 

Proof: By the definition of the orthogonal projection, with respect to both (•) and {W, 2)2 = 

Gov {W,Z) (see Definition A3.1 and Proposition A3.10), and the Pythagorean theorem, 

E ((A - £;(A|y)) 2 ) = E{X2) - E ( ( j5(A|y)) 2 ) 

and 

Var (A - E{X\Y)) = Var (A) - Var {E{X\Y)). 

Since E{X) = E {E{X\Y)), it follows that Var(A - E{X\Y)) = E ((A — -E(A|F)) 2 ) , thus 

Var (A) - Var {E{X\Y)) = E{X2) - E {{E{X\Y)2) = E ( ^ ( A 2 | F ) ) - E ( (J^AIF) 2 ) 

= E \E{X2\Y) - {E{X\Y))2] =E{Yar {X\Y)). 

• 

The construction of Proposition A3.8 becomes even more explicit when combined with ev­

eryone's favorite wishful thinking. 

Proposition A3.12. If {X,Y) is jointly continuous (discrete), then fory in the support ofY, 

dP{X<X\Y = y ) = ^ f f ; y ) * c , 
jY\y) 

where, for any random vector W, fw is the density (mass) function for W. 

Proof: I think this is clear when A and Y axe discrete. Suppose (A, Y) is jointly continuous. 

For A C R Borel measurable. Corollary A3.7, dominated convergence, and standard results 
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about differentiating integrals, in that order, imply that, for almost all y, 

P ( X e A , ( y e [ y , y + i ] ) ) 
P{X£A\Y = y)= lim 

lim 

P{ye(y,y + i]) 

da; 

p i 

l i n ^ ^ n fr{a)da 
IAf(x,Y){x,y)dx 

fviv) 
f{x,Y){x,y) 

dx. 

Remark A3.13. The formula in Proposition A3.12 is not sufficient (this will be seen to be a 

pun) for treating important examples of conditional probability. The definition of sufficiency, a 

fundamental concept in statistics, involves E{X\Y), where Y = T{X), a function of A . When 

A is continuous, it is highly unlikely that ( A , y ) will be jointly continuous. For a very simple 

one-dimensional case, consider Y = A 2 , for A continuous with support equal to R. Then (A, Y) 

has support equal to the parabola {{x,y) | y = x2}, thus is neither discrete nor continuous. For 

any fixed, positive y, the distribution induced by the cdf 

F x l Y = y = P{X<x\Y = y ) 

is supported on if {X,Y) were jointly continuous. Proposition A3.12 would imply 

that Fx\Y=y is continuous. 

I have often found it necessary to use Corollary A3.7 to construct the distribution for A | y = 

y, or Proposition A3.8 for E{X\Y). 

Independence can be characterized both in terms of conditional expectation and covariance. 

Proposition A3.14. The following are equivalent, ibr random variables X and Y. 

(a) A and Y are independent. 
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(b) Cov{h{X),g{Y)) = 0, for all Borel : R R such that h{X) and g{Y) have Suite 

variance. 

(c) E{h{X)\Y) = E{h{X)), for h as in (b). 

Proof: (a) —¥ (b). Independence of X and Y implies that h{X) and g{Y) are independent, 

which implies that their covariance is zero. 

(b) <=> (c). By Proposition A3.I0, E{h{X)\Y) = E{h{X)) if and only if, for all g as in (b), 

Cov{h{X),g{Y)) = Gov {E{h{X)),g{Y)), which equals zero. 

(b) -> (a). For any real s and f, since Gov(e i t x ,e i s Y ) = 0, it follows that E{eitXeisY) = 

E{eitx)E{eisY)- that is, 

= / ei^+^dFx{x)dFY{y). 
JB.2 

By uniqueness of Fourier-Stieltjes transforms, this implies that 

d F ( X i Y ) = dFx{x) dFyiy), 

which implies independence. • 

Remark A3.15. (b) is a statement about orthogonality, w.r.t. to the covariance pre-inner 

product, of subspaces, and gives perspective about the relationship between covariance and 

independence: A and Y are independent if the subspaces L 2 (0 , ^ r (A) ) and L2{Q,T{Y)) are 

orthogonal, while orthogonality of the individual random variables A and Y is equivalent to A 

and Y being uncorrelated. 
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APPENDIX D 

SUFFICIENCY 

Throughout this section, X = {Xi,X2,—,Xn) is a random sample whose distribution de­

pends on a parameter 6 and E$ denotes expected value given the parameter 6; that is, for any 

Borel measurable h : R n —>• R, 

Ee{h{X)) = / h{x) dPg{Xk <xk,l<k< n). 

Also T will always be a statistic T{X). For simplicity of notation, T and 9 will be assumed 

one-dimensional; it should be clear how to replace integrals over R with integrals over R m , 

etc, to extend to m-dimensional T and 9. 

Definition A4.1. The statistic T is sufficient for 9 if Eg{k{X) \T) is constant w.r.t. 9, for all 

Borel measurable k : R" -+ R such that k{X) has finite variance. 

This is saying (see the previous section) that the orthogonal projection onto 

{g{T) | g is Borel measurable, (/(T) has finite variance } 

is unaffected by 9. Since changing 9 changes the inner product 

( / ( A ) , h ( A ) ) e = ^ ( / ( A ) h ( A ) ) , 

hence changes orthogonality, this is a strong statement. 

Theorem A4.2 (Factorization Theorem). Suppose that either 

(1) A is discrete, or 
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(2) X is continuous and T is continuous with density function t —¥ fT{t\0) continuous on 

its support. 

Then the following are equivalent. 

(a) T is sufficient for 9. 

(b) For all 9 there exists continuous gg and Borel h such that 

f{x\9) = 9e{T{x))h{x) a.e. 

( c ) frlrSm i s C O D s t a n t w-r-t d-

Proof: First let's assume hypothesis (2). 

(a) —> (c). For x in the support oi X,e> 0, denote by 

Be{x) = {y€Kn\\\y-x\\<e}, 

and define 

By definition of conditional expectation, 

f { m dy = Ee{ks^X)) = Eg (E{kSt£{X)\T)) = [E{k^{X)\T = t)fT{t\9) dt 

= [ E{k^{X)\T = t)fT{t\9)dt. 
JT(BJx)) ' •'• -

By the intermediate-value theorem, there exists tg^j G T(B £(x)) such that the last integral 

equals 

/ T ( B e ( x ) ) 

Now let e go to zero in the equality 

/T(<*,C,*|0) / E{ks4X)\T = t)dt. 
JT(BJx)) 

- f f{mdy = fT{ts,e,e\e)-f E{ks>({X)\T = t)dt 
6 JB,{X) € JT{Be{x)) 
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By the usual differentiation-of-integral result, we have 

\dy^f{x\9) a. e. 
e JB,(,g) 

By continuity of T, tstc,9 -* T{x) as e -> 0, hence by continuity of fa, fT{ts,e,9) /T(T'(X) |0) . 

This implies that 

h(x) = Hm - / E{k£te{X)\T=t)dt 
6 JT(B,(S)) 

exists a. e., with 

f{x\e) = Mnx)\9)h{x), 

giving us (c). 

(b) —> (a). By Corollary A3.7, for A Borel measurable, t in the support of T, 

P f l ( ( A e A ) n ( r € [ t , t + i ] ) ) 
PelX&A\T=t)= Hm 

n—KX 

= Hm 

Pfl(re[t,t+A]) 
LnT-igM+^D 9e{T{x))h{x) dx 

fe-Hllt+l;]) 9e{T{y))h{y) dy 
_ 9e{T{xt,n)) / ^ - ^ ^ ^x]) dx 

" n - o c g{T{ytin))JT_1([t^+i_])h{y)dy 

for Xt,n,yt,n € T _ 1 ( [ t , i -I- ^ ] ) , by the intermediate-value theorem. By continuity of 50, 

Hm ge{T{xt,n)) = ge{t) = Hm ffe(T(yt „)). 
n—+co n —)-oo 

Thus 

P 9 ( A e A | T = t ) = l i m % ^ ! ± i ] ^ , 

which is constant w.r.t. 9. In the usual measure-theoretic way, this extends to 

being constant w.r.t. 9, for any Borel measurable k such that k{T) has finite variance, 

(c) (b)is clear by letting <fc(t) = fT{t\e),h{S) = J ^ U Y 

Under hypothesis (I) , for x in the support of A , 

f{x\9) = Pe{X = 2) = P 9 ((A = x) n (T = r ( f ) ) ) = P e (A = x|T = T(x))P e(T = T(x)) 

= Pe{X = f | T = T(x)) / T (T(f ) |0) , 

74 



so that (a) and (c) are equivalent. Clearly (c) —> (b), while if (b) holds, then 

P{X = x) 

•T{y)=T(x) P{X = y) ET(V)=T(X) Kv) 

which is constant w.r.t. 6. • 

Remark A4.3. Information and geometry. When one is asked what sufficiency "means," 

the socially appropriate response is something like "the sufficient statistic contains all the 

information about 9 from the data." Aside from the Fisher information number, this author 

has seen no definition of information, so it is natural to ask what information is contained in 

that quoted speech about information. 

The Likelihood Principle says that (c) of the Factorization Theorem implies that x and 

T'(x) contain the same information about 9. Thus if we accept the Likelihood Principle as a 

meaningful axiom, then the quoted speech above acquires meaning. See also Remark A4.5. 

There is also an interesting geometric interpretation of sufficiency. Consider first the case 

where A is discrete, so that, for x in the support of A , 

Denoting by || • \\e the Hilbert-space norm 

\\Z\\l = {Z,Z)e, {Z,W)e = Ee{ZW) 

we have 

l | l{x- } (A)| | 2 Pe{T = T{x))] | | l { x } ( A ) | | 3 [ > 9 ( r = T(x)) 

Thus sufficiency is equivalent to 

\\Ee ( l { x-}(A)iT) \\e 

being constant w.r.t. 9. This is saying that the right triangles formed by 0, l{ j} . (A) , and 

remain similar, as 9 runs through the parameter space. 
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For X,T as in hypothesis (2) of Theorem A4.2, there is a similar result, with Be{x), for 

e > 0, f in the support of X, terminology as in the proof of Theorem A4.2, replacing x. Since 

T is being assumed sufficient, the 9 in E$ may be removed. 

It is not clear to me if 

lim^\EilBAS){X)\T)\f (*) 

exists (although by the Pythagorean theorem, 

; P ( l B . ( * ) ( ^ m i t 3 < 1̂1 w * ) i P . 

which converges to f{x\9) for almost all x),sol will restrict attention to sequences ejj —>• 0 for 

which (*) does converge. 

Proposition. JTT is sufficient, x is in the support of X, —¥ 0, and 

exists, for some 9, then 

1^^(^)111 

lim 

exists, for all 9, and is a constant w.r.t. 9. 

Proof: Define 

3e,e( t )s^{lB . (a)(X) |T = t ) 

From the proof of Theorem A4.2(a) -* (c), 

gsJt)dt= , { f f f L . and 

so that 

lim -\\lBeis)iX)\\2 = lim - j fiy\e) dy = f{x\9) a.e. 

l i m - \ \ l B € { S ) { X ) \ \ 2

e = MT{x)\9) lim - f g^t) dt. 
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Also, arguing as in the proof of Theorem A4.2(a) —>• (c), 

lim - / {9a-,ck{t)f dt 

exists, with 

lim ^ | | £ ( l B e f c ( i ? ) ( A ) | T ) | | i = lim 1 / ( 5 x - e ( t ) ) 2 fT{t\e) dt 

= / T (T( f ) | 0 ) lim 1 / {gx,tk{t))2 dt. 

Thus 

l i m ii^poijg = L I M ^ ^ W I I I 
^ - 0 0 l\E{lB^s)iX)\T)\\l ±\\E{lB,h{S){X)\T)\$ 

limfc-.oo i f n B 93,^ (t) dt 

lim^oo X / r ( B < i i ( s ) ) (px, e f c(t)) 2 

clearly constant w.r.t. 0. • 

Theorem A4.4. Suppose X and T are as in Theorem A4.2 and there exists continuous k : 

Im{T) -> R n such that 

(1) T{k{z)) = z for all z G Im{T), and 

(2) for all x G R", the map9—>-f{k{T{x))\6) is not identically zero on {9 \ f{x\9) is nonzero}. 

Consider 

{3)x,y 9 —> ^ a J constant on {9 \ f{y\9) is nonzero }. 

Then T is sufficient i f and on/y i f ((T(x) = T(y)) -» (3)x,y). 

Proof: Suppose T is sufficient. Then by Theorem A4.2, f{x\9) = fT{T{x)\9)h{x), thus if 

T{x) = T{y), we have 

f{x\9) = hjx) 

nm m' 

so that {3)x,y holds. 

Conversely, suppose {{T{x) = T(y)) -J* (3)^) • Define 

ge{z) = f{k{z)\9) {zeIm{T)). 
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Since r(fe(r(z))) = T(x), 
f{k(T(x)) e) . 

-> J K ' is constant (*) f{x\e) x 

on {Q | f{x\e) is nonzero }. By (2), there exists BQ such that both /(x|0o) and /(Jfc(T(3))|0o) are 

nonzero. By (*), f{k{T{x))\6) is never zero on {0 | f{x\6) is nonzero }. Thus, for x, 6 such that 

f{x\9) is nonzero, we can define 

mnmoy 
By definition, 

ge{T{x))h{x) = / ( ^ g ) 

for such x, 0; defining /i(x) = 0 when f{x\6) s= 0 now implies, by the Factorization Theorem, 

that T is sufficient. • 

Remark A4.5. Note how Theorem A4.4 is consistent with the Likelihood Principle, which 

states that x and y contain the same information about 9 if ( 3 ) ^ holds. Theorem A4.4 is then 

saying that if T is sufficient and T[x) = T(y), then x and y contain the same information about 

9; thus there is no gained information, after knowing T(x), in knowing x. 

Theorem A4.6 (Basu's Theorem). If T is a complete, sufficient statistic and S is an 

ancillary statistic, then S and T are independent for all 9. 

Proof: Fix h, an arbitrary Borel measurable function such that h{S) has finite variance. 

Define, for y € R, 

9{y) = Ee{h{S)\T = y)~Eg{h{S)). 

Note that, by definition of sufficiency and ancillarity, g is independent of 9. For all 9, 

Ee{g{T)) = Eg {Eg{h{S)\T)) - Ee{h{S)) = 0, 

by definition of conditional expectation. By definition of completeness, (7 = 0 almost everywhere 

w.r.t. the measure induced by T, thus, for all 9, 
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Ee{h{S)\T) = Ee{h{S)). 

By Proposition A3.14, S and T are independent, for any 9. • 

Definition A4.7. The sufficient statistic T is minimal if, for any sufficient statistic S, there 

exists Borel measurable g such that g{S) =T. 

See Corollary A3.3 for equivalent definitions. Of particular interest, using (e) (c) 

of Corollary A3.3, is the fact that minimality is equivalent to a statement about subspaces: 

L 2 (F(T)) C L2(F{S)), for any sufficient statistic S. 

"Minimal" is actually a misnomer here. "Minimal" means there is no further reduction of 

data possible, without losing information about 9; equivalently, that there exists no sufficient 

5 such that L 2 (J r (5)) is properly contained in L 2(J r(r)). The "minimal" sufficient statistic T 

is actually a minimum, meaning that it represents a reduction of data from any other sufficient 

statistic. If we define the natural partial order of inclusion, W < Z M L2{T{W)) C L 2 (F(Z)) , 

then "minimal" means there exists no sufficient S strictly less than T, while minimum (what 

T should be called) means that T < S, for all sufficient 5. 

Proposition A4.8. If there exists a minimal sufficient statistic for 9 and T is complete and 

sufficient, then T is minimal sufficient. 

Proof: Let i? be a minimal sufficient statistic. Fix Borel k such that k(T) has finite variance. 

For any 9, 

Ee{k{T)-E{k{T)\R)) = 0, 

by definition of conditional expectation. But E{k{T)\R) is a Borel function of R, which, by 

minimality, is a Borel function of T. Thus (fc(T) — E{k{T)\R)) is a Borel function of T whose 

expectation is zero, for all 9, thus by completeness 
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k{T) = E{k{T)\R). 

By Corollary A3.3, there exists Borel h such that T = h{R). 

If 5 is any sufficient statistic, then by minimality there exists Borel i such that R = i{S). If 

g = ho then 

T = h{R) = {h0t){S)=g{S), 

as desired. • 

Finally, let's return to the terminology of Theorem A4.4. 

Proposition A4.9. Suppose there exists a minimal sufficient statistic for 9, and for all x,y G 

R n , 

{T{x) = T{y}) ((%,,-). 

Tiien T is minimal sufficient. 

Proof: By Theorem A4.4 T is sufficient. Let W be the hypothesized minimal sufficient statistic. 

If W{x) = W{y), then by Theorem A4.4, (3)x,j? holds, thus, by the hypothesis on T, T{x) = 

T{y). This means that 

h{W{x))=T{x), V x e R n 

unambiguously defines h such that h{W) = T. Since W is minimal, there exists Borel measur­

able k such that W = k{T). Thus h is the inverse of k, hence is Borel measurable. 

Now let S be an arbitrary sufficient statistic. There exists Borel measurable i such that 

W = £{S), thus, Ug~hoi, then T = g{S), as desired. • 
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APPENDIX E 

VARIANCE SHRINKING 

A , T, and 9 are as in the previous section. 

The following was first proven by the mathematician Frechet ([Fr]), in 1943 (see [Le, p. 236]). 

Theorem A5.1 (Cramer-Rao inequality). Suppose that f{x\9) is a density or mass func­

tion for X,W: R" -4 R is Bore] measurable, such that 

[ W{x)f{x\9)dS= ! ^eW{x)f{x\9)d£, and 1 / f{x\9)dS= [ ^ f m ^ -

Then 

VargW{X) > 
Ee[UHf{X\9)) 

with equality occurring if and only if there exist a(9),h[9) such that 

WiX) = a{9)+b{9)±\n{f{X\9)). 

Proof: Apply the Cauchy inequality, with the usual covariance pre-inner product on L 2 ( R n , 

{S, T)e= ( {S{x) - Ee{S)) {T{x) - Eg{T)) f{x\9) dx, Ee{R) = [ R{S)f{x\9) dx, 

with T{x) = jg \n{f{x\9)). Note first that 
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thus | |T| | 2 = Ee(^±Hf{X\e))yy and {S,T)g = JRri S{x)T{x)f{x\e) d£, for any S 

L 2 ( R n , / ( f l 0 ) d f ) . 

^EeW{X) = ^ J u n W{x)f{x\0)<£= j f ^ ^ W m m ^ 

(*) 

de 
r r ^ 1 

f{x\e) dx 

= {W,T)d<\\W\\d\\T\\e = ( ^ l n ( / ( X | 0 ) ) N 

giving the inequality. 

Again by the Cauchy inequality, and (*), equality occurs only if there exists a constant b{6) 

such that 

0 = ||W - b(0)T\\e = Var e (lF(A) - 6(0)T(A)), 

which is equivalent to the existence of another constant a{9) such that 

W{X) - b{e)T{X) = a{e). 

• 

Proposition A5.2. Suppose X and Y are random variables, and X has Unite variance. 

(a) yar(.E(A|y)) < Var (A). 

(b) Var(£;(A|y)) = Var (A) E{X\Y) = X there exists Borel measurable g 

such that X = g{Y). 

Proof: By the Pythagorean theorem, w.r.t. the inner product {W,Z) = Gov (W,Z), 

Var (A) - Var {E{X\Y)) = Var (A - E{X\Y)). 
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This gives (a); also it implies that 

Var {E{X\Y)) = Var {X) 

<=> Var {X - E(X\Y)) = 0 

<=> X - E{X\Y) = E{X — E{X\Y)) = 0 

E{X\Y) = X 

X = g{Y), 

by definition of E{X\Y) and Lemma A3.2. • 

Since E{E{X\Y)) = E{X) by definition, we immediately get the following. Note that 

Ee{W\T) is independent of 0, for T sufficient and W a function of X. 

Corollary A5-3 (Rao-Blackwell). Suppose W is an unbiased estimator of T{9) and T is 

sufficient for 0. Then E{W\T) is an unbiased estimator o f T(0) such that 

(1) Var{E{W\T)) < Var (W); and 

(2) Var{E{W\T)) < Var (W), uniess E{W\T) = W. 

In other words, conditioning cannot increase variance, and, unless it leaves the entire random 

variable unchanged, will strictly decrease variance. 

Proposition A5.4. i f a UMVUE exists, it is unique. 

Proof: Let W be the set of all unbiased estimators of finite variance, with pre-inner product 

{W,Z) = Gov {W,Z). Since W is convex, and the UMVUE is the element of minimum norm 

in W, Proposition A1.8 implies that, if A and Y are UMVUEs, then Var(A - Y ) = 0. This 

implies that X — Y = E{X — K ) = 0, since A and Y are both unbiased, hence have equal 

expectations. • 

Proposition A5.5. IfW is unbiased, then W is the UMVUE if and only if Cov{W,U) = 0 

whenever U is an unbiased estimator of zero. 
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Proof: Let U be the set of all unbiased estimators of zero. The set of all unbiased estimators 

equals W+U, the set of random variables of the form W+U, U G.U. Thus, w.r.t. the covariance 

inner product, 

W is the UMVUE \\W\\ < \\W + UpU GU ^=> \\W\\ < \\W + aU\\ WeU,aeR, 

since U is a vector space. By Proposition Al,3(c), the last equivalence is equivalent to PV J_ 

UjW eU, which by definition means Ccf^W, U)=0. • 

The following is an immediate consequence of the definition of completeness. 

Proposition A5.6 (Lehmann-SchefFe). I f T is compiete and sufficient, then ibr any 9 —> 

r{9) 

{ unbiased estimators of r(0)} |^|{y(r) | g is BoreJ measurable and Varo{g{T)) < oo V0} 

is at most one point. 

Then Rao-Blackwell quickly gives the following. 

Proposition A5.7. I f T is compiete and sufficient and g is a Borel measurable Function, then 

g{T) is the UMVUE ofEe{g{T)). 

Proof: For any unbiased estimator S, Rao-Blackwell implies that Var ^(^(^IT)) < Var e{S). 

By Rao-Blackwell and Lehmann-Scheffe, E{S\T) = g{T). • 
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