
OBJECT NAMING IN REVERSE ENGINEERING OF
UML SEQUENCE DIAGRAMS

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Beth Harkness Connell, B.A.

The Ohio State University

2004

Master's Examination Committee: Approved by

Atanas Rountev, Adviser A/i . s-?/]/

Neelam Soundarajan
Adviser

Graduate Program in
Computer and Information

Science

ABSTRACT

U M L sequence diagrams are essential for modeling object-oriented behavior by

showing in sequential order the messages exchanged among a set of objects. Reverse

engineering of sequence diagrams automatically extracts the diagrams from existing

code and is useful in iterative development, software maintenance, and program test­

ing. The challenging issues involved in creating these diagrams statically are not

adequately addressed by existing approaches. This thesis presents a technique for

precisely modeling the run-time receiver objects for a specific category of call sites

in Java programs for the purposes of reverse engineering of sequence diagrams. Our

approach is based on classic data-flow analysis techniques and uses an interprocedural

flow- and context-sensitive analysis algorithm. Extensive empirical studies indicate

that the cost of the analysis is practical and its solution is highly precise.

i i

ACKNOWLEDGMENTS

I would like to thank my adviser Dr. Nasko Rountev for the many things he has

taught me about software engineering and working on a large research project. I

would also like to thank him for giving me the opportunity to work wi th him on this

project.

I also want to extend my thanks to the many other teachers who have brought

me to this point and helped me reach my goals.

Finally, I would like to thank my family and friends for their never ending support.

In particular, I would like to thank Chris and my other running friends for helping

me maintain my sanity during times of high stress.

i i i

V I T A

July 3, 1979 Born - Decatur, Illinois

June 2002 B.A. Mathematics and Computer Science,
Kalamazoo College,
Kalamazoo, Michigan

September 2002 - September 2004 Graduate Teaching Assistant,
The Ohio State University,
Columbus, Ohio

September 2003 - September 2004 Course Coordinator:
Data Structures for Information Systems,
The Ohio State University,
Columbus, Ohio

FIELDS OF STUDY

Major Field - Computer and Information Science

iv

TABLE OF CONTENTS

Page

Abstract i i

Acknowledgments i i i

Vita iv

List of Figures v i i

List of Tables v i i i

Chapters:

1. Introduction 1

1.1 Object Naming in Sequence Diagrams 3
1.1.1 Naming Based on Variable Names 4
1.1.2 Singleton Call Sites and Equivalence Relations 5

1.2 Analysis and Evaluation 6

2. Problem Definition 7

2.1 Interesting Call Sites 9
2.2 Singleton Allocation Sites 10
2.3 Singleton vs. Non-Singleton Call Sites 11

2.3.1 Representation of Non-Singleton Call Sites 14
2.4 Equivalence Classes 16

3. Data-flow Problem 18

3.1 Data-Flow Lattice 19
3.2 Control-Flow Graphs 21

v

3.3 Transfer Functions 23
3.4 Interprocedural Control-Flow Graphs 24
3.5 Meet-Over-All-Paths Solution 28
3.6 Analysis Algorithm 29

4. Analysis Enhancements 30

4.1 Static Fields 30
4.2 Instance Fields 31
4.3 Non-Singleton Allocation Sites 34
4.4 Limited Propagation of Lattice Elements 36

5. Empirical Study 38

5.1 Empirical Study 38
5.1.1 Examination of bigdecimal Component 41

5.2 Static and Instance Field Enhancements 46
5.3 Non-Singleton Allocation Sites Enhancement 48
5.4 Limited Propagation Enhancement 50
5.5 Call Chain Depth 50

6. Related Work 55

7. Conclusions and Future Work 57

Appendix: A 58

Bibliography 61

v i

LIST OF FIGURES

Figure Page

2.1 Running example 8

2.2 (a) Naming in ControlCenter (b) Naming in our approach . . 9

2.3 Non-singleton call site b . p 0 12

3.1 Lattice 19

4.1 Handling of static fields 31

4.2 Handling of instance fields 33

4.3 Example of a non-singleton allocation site 34

5.1 Multiple return values 42

5.2 References stores in arrays 44

5.3 Missed singleton allocation site 45

vi i

LIST OF TABLES

Table Page

5.1 Experimental results 39

5.2 Experimental results with field enhancements 47

5.3 Experimental results wi th non-singleton allocation site enhancement . 49

5.4 Experimental results wi th limited propagation enhancement 51

5.5 Experimental results with for call chain depths 2-4 53

5.6 Experimental results wi th for call chain depths 5-8 54

A . l Assignment of constant value 59

A.2 Assignment of variable value 60

v i i i

CHAPTER 1

INTRODUCTION

Iterative development is a widely adopted approach to building software systems.

When developing a system iteratively, a detailed complete system design is not pre­

pared in advance; rather, the program evolves in short iterations where analysis,

design, implementation, and testing are part of each iteration. Developers design the

next iteration based on their understanding of the existing implementation. In an

object-oriented program, the code needing to be analyzed to gain this understand­

ing is typically spread out over methods in multiple classes. This makes i t difficult

to comprehend object interactions and the overall fiow of control from manually ex­

amining the source code. I t is possible, due to challenges encountered during the

implementation in the previous iteration, that the design artifacts constructed in the

beginning of that iteration do not match the existing code. Obtaining the necessary

understanding of object interactions can be simplified by automatically creating var­

ious diagrams that represent parts of the design of the existing code. Since reverse

engineering builds the diagrams from the existing code, they are guaranteed to reflect

the up-to-date implementation. Diagrams, easy to understand due to their visual

nature, can be used as the starting point for the next designing phase.

1

The Unified Modeling Language (UML) is a group of graphical notations providing

a visual description of software systems [5]. U M L sequence diagrams are essential

for modeling object-oriented software by showing in sequential order the messages

exchanged among a set of objects [16, 9]. Sequence diagrams also assist by showing

the flow of control for a scenario wi thin a system, by using interaction frames [9]

for displaying if-then conditions, looping blocks, and other control flow information.

Figure 2.2 shows two examples of U M L sequence diagrams, each wi th an interaction

frame labeled opt representing that the messages sent wi thin the frame are only

executed i f some condition is true.

Reverse engineering of sequence diagrams automatically extracts the diagrams

from existing code. Not only is this necessary for iterative development, but i t is ben­

eficial for software maintenance. As object-oriented languages grow in popularity, the

number of software systems implemented in these languages greatly increases. Con­

siderable resources are invested into such systems making them essential and worth

maintaining. Due to employee turnover i t may not be possible to gain the assis­

tance of the original designers and programmers in performing maintenance, but an

understanding of the existing software implementation is required for modifications.

Significant periods of time can easily be wasted attempting to gain insight from in­

vestigating the source code. Alternatively, understanding of object interactions and

control flow for software maintenance can be gained by reverse-engineered sequence

diagrams.

Reverse engineering of sequence diagrams is also beneficial for program testing.

U M L models provide a rich source of test design information [2]. The first step in

2

designing tests for a system is to identify, model, and analyze the system's responsibil­

ities. Reverse engineering of U M L diagrams automates part of this step by modeling

the behavior of the system being tested. Object interactions are complex, and i t is

likely that defects relating to such interactions wi l l occur in a system. For example,

messages can be passed to the wrong objects or to objects that have already been

destroyed. Sequence diagrams model object interactions, helping to highlight various

aspects of these interactions that should be the target of testing.

Existing tools that provide support for reverse engineering of U M L do so mainly

for class diagrams. Class diagrams show the static structure of a software system. The

information for constructing these diagrams is easily extracted from the code. The

challenge of extracting the interactions displayed in sequence diagrams has resulted

in thus far inadequate tools for static reverse engineering of sequence diagrams. The

need is important enough that a request to tool vendors for tool support for reverse

engineering of sequence diagrams is included in one popular software development

book [7].

1.1 Object Naming in Sequence Diagrams

To reverse engineer U M L sequence diagrams, the following important question

must be addressed: how should the object(s) referred to by the variable x at the

call site x.mQ be represented in the diagram? A n answer to this question defines an

object naming scheme for representing potential run-time receiver objects, by creating

a mapping between these objects and the objects represented in a sequence diagram.

3

1.1.1 Naming Based on Variable Names

A possible naming scheme is to represent the object by the variable name used

in the invocation expression. The scheme used to name objects in reverse-engineered

sequence diagrams generated by the commercial Borland Together ControlCenter

modeling tool is not published, but this simple approach appears to be the one in use

in the tool. Figure 2.2(a) was constructed from the code in Figure 2.1 using the reverse

engineering functionality of the ControlCenter tool. To simplify the presentation of

the diagram, the visual representation was modified without changing its meaning.

This naming scheme is misleading in two major ways. The first, demonstrated by

the comparison of the two diagrams in Figure 2.2, is that one run-time object can be

represented by multiple diagram objects. For example, the objects labeled a, c, f , and

g in the ControlCenter diagram actually represent a single run-time object, labeled a

in the second diagram. The redundant objects result in an unnaturally large sequence

diagrams and incorrectly show that messages are sent to different objects when at run

time the messages are actually sent to only one object. The other misleading result of

this naming scheme occurs when a single variable name is used for multiple run-time

objects. For example, i f a variable x of class X is assigned a newly instantiated object

after a call x .mO, and then method m is again invoked upon variable x, the sequence

diagram constructed with the simple scheme wi l l show method m being invoked twice

upon the same object, when in actuality i t is not possible for both calls to have been

made upon the same object. Similarly, the same diagram object can sometimes be

used to represent objects that are possibly the same at run time, but not guaranteed

to be the same. This is exemplified in the ControlCenter diagram wi th the calls to p7

andpS. These calls have the same run-time receiver object only i f the condition b > 0

4

in the running example is false. The deficiencies of sequence diagrams produced wi th

this naming scheme prompted us to consider some of the challenging issues raised

in defining a better naming scheme. The result of this work is the object naming

analysis described in this thesis.

1.1.2 Singleton Call Sites and Equivalence Relations

In attempting to create a scheme for representing the run-time receiver objects

at a given call site, we recognized the need to distinguish between sites that have

multiple possible run-time receiver objects and sites that have only one. Informally, a

call site that has only one run-time receiver object every time the site is executed is a

singleton call site. The advantage of this distinction is that representation of receiver

objects at singleton sites in reverse-engineered diagrams is straightforward, because a

single diagram object is guaranteed to represent possible run-time objects precisely.

I f i t is possible for a call site to have more than one receiver object at run time, then

the site is non-singleton and there is no guarantee of straightforward representation.

Examples that illustrate this distinction and a more formal definition of singleton call

sites are provided in Chapter 2.

In addition to the analysis identifying singleton sites, equivalence relations are

found between these sites. The sites are singleton so there is only one possible run­

time receiver object for each. I f the run-time receiver at one call site is guaranteed to

be the same as the object at another, then the sites are equivalent. Determining these

equivalence classes is important because i f call sites are equivalent, they are invoked

on the same run-time object and in the reverse-engineered diagram the messages

should be represented as being sent to the same diagram object.

5

1.2 Analysis and Evaluation

The algorithm presented in this thesis provides a way to represent run-time re­

ceiver objects at singleton call sites by identifying such sites and grouping them into

equivalence classes. To design the algorithm, we started by defining a data-flow

problem similar to the constant propagation problem. Chapter 3 presents the lat­

tice and transfer functions for this problem along wi th a brief overview of the flow-

and context-sensitive data-flow algorithm designed to find a precise solution to the

problem.

The rest of the thesis is organized as follows. Several enhancements to the analysis

are introduced in Chapter 4; these enhancements include a generalization for handling

fields, as well as consideration of some non-singleton call sites. Empirical studies are

presented in Chapter 5, in order to evaluate the precision of the analysis, the effect

of the enhancements, and the running time of the analysis algorithm. These results

indicate that the analysis is practical and achieves high precision. Related work is

discussed in Chapter 6. Chapter 7 proposes future work and concludes the thesis.

The contributions of this thesis include:

• A naming scheme for singleton call sites

• A set of refinements for the naming scheme

• Experimental evaluation of the cost and precision of the object naming analysis

• Experimental evaluation of different parameters of the analysis

6

CHAPTER 2
*

PROBLEM DEFINITION

The analysis described in this work is part of the RED tool for reverse engineering

of sequence diagrams. The goal of this project is to provide a quality tool for reverse

engineering of U M L 2.0 sequence diagrams from Java code. RED takes as input from

the user a set of Java classes that form the component under analysis (CUA). A l l of

the classes that are transitively referred to by classes in the CUA are automatically

added to the input. The tool first builds a call graph for the component using the

Andersen-style points-to analysis from [13]. This analysis requires a complete program

so i f a main method is not included in the CUA, the fragment analysis approach from

[14] is used to adapt the whole-program points-to analysis. Additional static analyses

performed by the tool include call chain analysis [12] and control flow analysis [15].

As input, the user of RED also selects a method m from the component. We wi l l

refer to m as the start method. The user selects this start method indicating his/her

desire for a sequence diagram representing the possible sequences of run-time events

when the method is invoked. The construction of this diagram raises the question

about how to represent objects invoked at call sites. Suppose in Figure 2.1 that

method m in class A is selected as the start method. Assume that the CUA includes

class X and class A. For simplicity also assume that methods p l through p8 in class

7

c l a s s X { . . . }
c l a s s A {

publ ic void in(X a , i n t b) {
a . p l O ;
X c = t h i s . m 2 (a) ;
c . p 4 0 ;
X d = t h i s . m 4 () ;
d. p 6 0 ;
X e = d;
i f (b > 0){ e = new X () ; e .p7 () ; }
e. pSQ ;

}
publ ic X m2(X f) { f . p 2 () ; X q = t h i s . m 3 (f) ; r e t u r n q; }
publ i c X m3(X g){ g .p3 () ; r e t u r n g; }
publ i c X m4() { t h i s . f i d . p 5 () ; r e turn t h i s . f i d ; }
p r i v a t e X f i d = new X () ;

Figure 2.1: Runnmg example

X do not make any calls. Figure 2.2 shows two possible sequence diagrams for this

method: the first using the naming scheme based on variable names (as discussed in

Section 1.1.1), and the second using the naming scheme proposed in our work.

Clearly representing objects by the variable name used in the invocation expression

can be confusing and imprecise. Use of such a scheme requires the programmer

or tester examining the diagram to invest considerable time attempting to recover

the true nature of the object interactions by examining the source code. Since the

incentive for reverse engineering of sequence diagrams was to ease understanding

of object interactions, a diagram that does not clarify object interactions is inutile.

Instead we propose using a naming scheme based on an interprocedural data-flow

analysis which tracks the flow of object references.

8

MfA i ra3n n s n r w i resn r o p i raxi

m2(a) -

m3(l)

P2()

ML
ptQ,

j
opl 1

1 createO^r-^

-

opl
- L S !

P7() ,
-

opl

-

--

lhis:A | r a 5 ~ l I lhi!i.|ld:X

mQ.

opt

pip
rr2(a) V

m3(a) ' L

[Tmo
y p4()

m4()

P5()

P6()

PMU?

PZ!)

Figure 2.2: (a) Naming in ControlCenter (b) Naming in our approach

2.1 Interesting Call Sites

Consider again the code in Figure 2.1 wi th m as the start method. The sequence

diagram representing the potential sequences of run-time events that can result from

invoking m must show the messages exchanged within the CUA along all call chains

starting at the start method. An example of such a chain is "m calls m2 which calls

m3 which in turn calls p3". Each of these calls must be represented :n the diagram

so i t is at these call sites that we are interested in determining how to represent the

run-time receiver objects. These interesting call sites only belong to call chains that

remain within the CUA because method calls that take place in methods outside the

CUA are not of interest to the user and therefore do not need to be represented in the

diagram. The last method in the call chain may be outside the component, since a

call to i t would take place in the component. A l l the call sites in the running example

9

are interesting according to this definition because both class A and class X are in the

CUA.

2.2 Singleton Allocation Sites

When a start method m is invoked, i t is done so wi th respect to an ini t ial set of

objects Oj . I f m is non-static, the receiver object is part of the set. A l l other objects in

existence at the method invocation, including the objects passed to the start method

and the objects their fields refer to, are also in the set of objects O,. An invocation of

m results in a sequence of run-time events from from the moment m is invoked unt i l

i t returns to its caller. Let Sj = { s i , s B } be the set of possible sequences of

run-time events from invoking the start method m wi th respect to Oi. Even though

the objects init ially passed to the start method are set, i t is possible for more than

one sequence to belong to 5,. For example, a start method that takes primitive

parameters affecting the flow of control clearly has multiple possible sequences for a

given set of ini t ial objects. This is the case in the running example in Figure 2.1,

where there are two possible sequences of events for some Oj. Which sequence is

executed depends on whether the integer passed to the start method m is positive.

A receiver object at a call sites may be in the set Oi of ini t ial objects. The

alternative is that the object is created at an allocation site in the sequence of run­

time events leading up to the call site. Allocation sites can create multiple objects i f

they are in a loop or otherwise occur multiple times along a sequence s*. We start

by distinguishing between such allocation sites and allocation sites that represent the

creation of an unique object in the execution of the start method and its transitive

callees.

10

Definition 1 Let Si = {si, $2, • • sn} be the set of possible sequences
of run-time events from invoking the start method m with respect to Oi.
An allocation site a is singleton with respect to an initial set
of objects Oi for the start method if for every Sk € Si, a occurs in Sk at
most once.

Statement e = new X() in Figure 2.1 satisfies this property for start method m.

The statement is executed once in the sequence of events that occur when b>0 and is

not executed in the sequence when b <= 0.

2.3 Singleton vs. Non-Singleton Call Sites

Some call sites can have multiple possible run-time receiver objects. We distin­

guish between these call sites and sites for which there is only one possible run-time

receiver object, because the representation is straightforward i f there is only one pos­

sible receiver object.

Definition 2 Let Si = {si, 82, • • •, sn} be the set of possible sequences of
run-time events from invoking the start method m with respect to Oi. A
call site c is singleton with respect to an initial set of objects Oi
for the start method if:

1. there does not exists a sequence Sk € 5, such that c has more than
one run-time receiver object o^c in Sk, even if c is executed multiple
times in Sk

2. and if for all pairs of distinct sequences Sk, Si G 5, and their respective
run-time receiver objects o^ c and 0;iC for the call site c, one of the
following holds:

• Oi)C zs the same object as Okfi o.nd this object is in Oi

• Ok,c & Oi and o;iC $ Oi are objects created by the same allocation
site a such that a is a singleton allocation site for Oi

For example, in Figure 2.3, the call site b . p () in method n is singleton for start

method methodi wi th respect to an ini t ia l set of objects where the object passed to

11

c l a s s W {
publ ic void methodl(B b) {

t h i s .11(b) ;
t h i s . n (b . p l ()) ;

}
publ ic void method2(B b, in t x) {

i f (x>0) t h i s . n (b . p 2 ()) ;
e l se t h i s . n (b . p 3 (x)) ;

}
publ ic void n(B b) { b . p () ; }

}

c l a s s B {

publ i c B p l () { r e turn p 2 () ; }

publ ic C p2 () { re turn new C O ; }

publ i c C p3(int x) { re turn p 2 () ; }

publ i c void p () { . . . }

c l a s s C extends B {
publ ic B p l O { r e t u r n t h i s ; }

publ ic C p3(int x) {
if(x==0) r e t u r n p 2 () ;
e l se re turn new C O ;

}

Figure 2.3: Non-singleton call site b . p ()

methodi through formal b is an instance of class C. There is only one possible sequence

of run-time events and for that sequence the only possible receiver object at the call

site both times the site is executed is the instance of class C init ial ly passed to the

start method. On the other hand, i f the object is an instance of class B, then the site

where method p is called is not singleton because the first condition of the definition

is not met. Both the object passed to the start method and the object allocated by

the new expression in method p2 are possible run-time receiver objects for the call to

12

Consider another example from Figure 2.3. Let inethod2 be the start method, and

examine again call site b . p () . I f the object passed to method2 is an instance of class

C in the init ial set of objects, then the first condition is met but the second is not.

For sequences where integer x is greater than or equal to zero, the receiver object

is created by the allocation expression in method p2. For all other sequences the

receiver object is created by the allocation expression in method p3 of class C. Both

allocation expressions create a new instance of class C upon which the method at the

call site is invoked, but in order for the site b . p O to be singleton, the receiver objects

in all sequences must be created by the same allocation expression. This is the case

for start method method2 wi th respect to object sets Oj where the parameter object is

an instance of class B. For all possible sequences of run-time events the receiver object

of b . p () is the object created by the allocation statement in method p2, which is

a singleton allocation site. Since the call site is only reached once in any possible

sequence, the first condition is also met and the site is singleton wi th respect to the

object sets described.

Definition 3 A call site c is singleton for a given start method if it is
singleton with respect to all potential initial sets of objects for that start
method.

The call site b . p O in Figure 2.3 is clearly not singleton for either methodi or

method2 as start methods because for neither is the site singleton with respect to all

ini t ial sets of objects. The call site is not singleton for start method methodi wi th

respect to sets where the object passed to the start method is an instance of class B.

The site is not singleton for start method method2 where the object passed to the

method is an instance of class C.

13

Returning to the running example found in Figure 2.1: all call sites are singleton

with m as the start method except e .p8() . This site is not singleton because the

second condition of Definition 2 is not met. For any set of init ial objects, the run­

time receiver object is created by the singleton allocation expression e = new X()

for the sequence of events that occur when b>0, but for the sequence of events when

b<=0 the receiver object is a member of the ini t ia l set of objects.

We distinguish between singleton and non-singleton call sites because in reverse-

engineered diagrams receiver objects at singleton call sites can be represented pre­

cisely, whereas the representation at non-singleton call sites is not as straightforward.

As shown in Figure 2.2, i f a site is singleton, i t is simple to represent the receiver

object as the only possible run-time object. Since there is more than one possible

run-time receiver object for a non-singleton site, diagrams accurately reflecting all

possible object interactions would need to show at such a site that more than one

receiver object exists, and possibly even show which objects are potential receiver

objects.

2.3.1 Representation of Non-Singleton Call Sites

For modeling non-singleton call sites we considered several possible representations

based on notations used in UML. The first representation is simple: show a message

to only one of the possible receivers. This is what is done in Figure 2.2(a). Although

the call to p8() has two possible receiver objects, only one object is shown in the

diagram to be a receiver. While simple, this representation does not accurately reflect

all the interactions of the objects. Information about the existence of other objects

is lost so a person examining the diagram has no indication that there are possibly

14

different run-time objects exchanging messages. The person would have to discover

this f rom investigating the source code. Since the representation of non-singleton

sites is not differentiated in from the representation of singleton sites, the user would

have to waste time examining the code to understand the behavior not only at the

non-singleton sites, but also at the singleton sites to verify that they are singleton

and accurately represented in the diagram.

A second idea for modeling the behavior at a non-singleton call site is to introduce

a "helper" object that represents all of the possible receivers. This approach is an

improvement over the first approach because no information is lost. The person

examining the diagram can see there are multiple possible run-time receiver objects

and which objects they are f rom looking at the diagram. The drawback to this

approach is that i t is not visually intuitive for the user. To see all of the messages

exchanged by a single object t h i s . f l d : X the user cannot look simply at the lifeline

of that object in the diagram, but must also look at all of the "helper" objects to see

i f t h i s . f l d : X is one of the possible receivers being represented.

Another approach is to show multiple messages: one for each possible run-time

receiver object. In Figure 2.2(b), for the non-singleton call site e .p8 () in the running

example, one message would be shown sent to the object labeled t h i s . f l d : X and

another shown sent to the object labeled e:X. This approach better models the be­

havior of each object by clearly showing the user all the message exchanges in which

an object is involved. The problem is that non-singleton call sites can have many

possible receiver objects so the diagrams resulting from using this approach could be

verbose, making them hard to understand.

15

A fourth approach is to create a separate diagram for each alternative. A major

advantage of this approach is that each diagram wi l l accurately represent one possible

execution of the system. Unfortunately, the number of diagrams generated using this

approach could be quite large. For example, i f there are two non-singleton call sites,

one with four possible run-time receiver objects and the other wi th two, eight diagrams

would be generated to model each alternative using this approach.

There is no straightforward approach for modeling the behavior at non-singleton

call sites. Each of the representations discussed here has potential advantages and

disadvantages. Due to the complexity of handling non-singleton sites, we decided to

consider the question of how to represent run-time receiver objects at a call site in

two stages. Once singleton sites are identified, their representation is straightforward;

thus, we started by defining techniques for singleton sites. This includes identifying

singleton sites and creating appropriate diagram objects for them. This work is

described in this thesis. The second stage is to deal wi th non-singleton sites. This

work is currently in progress, and except for a few special cases of non-singleton sites

handled by enhancements in Chapter 4, i t is not discussed further.

2.4 Equivalence Classes

Each singleton call site has exactly one run-time receiver object. Since only one

diagram object should be used to represent each run-time object, we need to know all

call sites for which a given object is the receiver object. We do this by first defining

what i t means for singleton call sites to be equivalent.

Definition 4 Two singleton call sites cl and c2 are equivalent with respect
to a given initial set of objects for start method m i f , for each possible
sequence Sk € Si, cl and c2 are always executed with the same run-time
receiver object in Sk-

16

Consider the example in Figure 2.3. For the invocation of start method ml where

the object passed in is an instance of C, singleton call sites b . p l () and b . p O are

equivalent.

Definition 5 Two singleton call sites cl and c2 are equivalent for a given
start method if they are equivalent for all possible initial object sets for that
method.

While b . p l O and b . p O are equivalent for one invocation context of m, they are

not equivalent because they are not equivalent for all possible object sets. The call

site b . p O is not even singleton for all object sets. Call sites that are equivalent

can be grouped together to form equivalence classes of singleton call sites. For start

method m in the example in Figure 2.1, there are four equivalence classes:

{ t h i s . m 2 0 , t h i s . m 3 (f) , t h i s . m 4 0 }

{ a . p l O , f . p 2 () , g .pSO, c . p 4 () }

{ t h i s . f i d . p 5 () , d . p 6 0 } and {XO , e . p 7 () }

Each equivalence class corresponds to a diagram object in Figure 2.2(b). In gen­

eral, a static analysis that identifies singleton call sites and partitions them into

equivalence classes provides a naming scheme for singleton call sites, where each

equivalence class is mapped to a different object in the reverse-engineered diagram.

17

CHAPTER 3

DATA-FLOW PROBLEM

Data-flow analysis is a classic form of static analysis of program properties. Equa­

tions are used to relate the collected information for different program points. Data­

flow analysis has frequently been used for code optimization. There are many well

known data-flow problems including finding reaching definitions, determining avail­

able expressions, and calculating the propagation of constant values. The goal of our

data-flow problem, which is defined in this chapter, is to find the sources of receiver

objects at call sites. I f there is only one possible source for the receiver object at a

site, the call site is singleton. The problem of finding the sources of receiver objects

was inspired by the traditional constant propagation problem due to the similarities

between the two. Constant propagation is used to determine expressions that defi­

nitely have the same value, a constant value, along all execution paths. Similarly, our

analysis determines variables that definitely refer to the same unique object along all

execution paths. Specifically, the variables that we are interested in are the variables

through which calls are made.

As previously stated, our approach to this problem is to identify the sources of

receiver objects at calls sites. The two common categories of sources discussed in

this chapter are the formal parameters of the start method and singleton allocation

18

T

J_

Figure 3.1: Lattice

sites. For example, for start method m in Figure 2.1, there are two formal parameter

sources: the parameter a and the implicit formal t h i s . I f the only source of a receiver

object at a call site c is the formal f j , then c is a singleton site at which the receiver

object is guaranteed to be the same object that f j refers to at the invocation of the

start method. There is also a singleton allocation site source in Figure 2.1: statement

e = new X () . A discussion of other types of sources is presented in Chapter 4.

3.1 Data-Flow Lattice

We start defining the data-flow problem by defining a lattice of values. The pos­

sible sources of receiver objects are included as lattice elements, where each singleton

allocation site and each reference formal of the start method is represented by a dis­

tinct lattice element. Additionally, the lattice contains a top element T and a bottom

element L . The lattice for our running example is shown in Figure 3.1, in which the

lattice element Ithu corresponds to the implicit formal t h i s , la corresponds to the

formal a, and laiioci corresponds to the singleton allocation site e = new X () .

19

The goal of the analysis is for lattice elements to be associated with program

variables. A t a call site where the call is through a variable v, i f the lattice element

/ / corresponding to the formal / is associated with v, then the call site is singleton

and variable v points to the object that f refers to when the start method is invoked.

I f instead X is associated wi th v, then v can refer to more than on object, meaning

the call site is not singleton. The element T associated with a variable means that

the variable has not been initialized and therefore has no value. In Java, since a call

through a variable v can only be made after the variable has been initialized, at no

call sites through v wi l l T be the associated lattice element in the final solution of

the data-flow problem.

Consider again the running example in Figure 2.1. The final solution computed

associates la wi th a, c, f , and g for each call through these variables. This means

that the only possible run-time receiver object at any of these call sites is the object

the formal a refers to at the invocation of the start method. This indicates that these

call sites are singletons and form an equivalence class.

In the same example, at the call site e .p7() the lattice element laiioci is associated

wi th variable e. This means that this particular call site is singleton, but i t does not

indicate that all call sites through the variable e are singleton. In fact, the lattice

element _L is associated with the same variable e at the call site e . p 8 () , indicating

that this site is non-singleton.

As shown in the lattice in Figure 3.1, the partial order in the lattice is _L < ^ < T.

Let x and y be distinct lattice elements. The meet operation A is defined as follows:

; cA_L = _L, x/\T = x, xAx = x,

and if x ^ T and y ^ T then x Ay = ±.

20

The meet operation is used in the analysis to merge the information gathered along

the paths corresponding to potential paths of execution. For instance, in the running

example, there are two paths that reach the statement e . p8 () , so the information

about which lattice elements are associated with the program variables is merged

immediately preceding the statement.

Consider a location in the program where two paths merge. I f a variable v refers

to one object along one execution path and another object along the other path, then

v wi l l be associated with two distinct lattice elements before the merge and the last

rule (x A y = _L) for the meet operation applies. I t is logical in this situation that

after the merge _L be the lattice element associated wi th v, because at run-time v

could refer to either object.

Thus far in this discussion, the meet operation has been used to merge two lattice

elements associated with a single program variable. In practice, at any program point

a set of variables V exists where each v E V has a lattice element associated with

i t . In other words, at each program point we associate a map Sn : V L where L is

the lattice. For each variable Vi 6 V, Sn{vi) is the lattice element associated with

in Sn. To merge the information gathered along two paths where Sa is the map from

one path and 5^ is the map of the other, the meet of the two maps Sa A Sb needs to

be defined. The meet of 5 a and Sb is defined as

{Sa A Sb)^) = Saivi) A Sbivi) for all Vi e V

3.2 Control-Flow Graphs

A control-flow graph (CFG) is used to represent the flow of control between dif­

ferent parts of the code. CFG nodes represent program statements, and CFG edges

21

represent the flow of control between statements. Consider the control-flow graphs

for all methods that are reachable in the call graph from the start method. Let V be

the set of all ref erence-typed formal parameters and reference-typed local variables.

We consider the following categories of nodes:

• V! = V2, where W(, Ug € V and Vi ^ Vg

m vi — V2-fld, where f j , G V and fld is an instance field

• V] .fld = V2, where , G V and fld is an instance field

• v = X.fld, where v G V, X is a class, and fld is a static field

• X.fld = v, where v G V, X is a. class, and fld is a static field

• vj = where Wi, Wg G V and i is an integer

• Vt [i] = Vg, where v1,V2 G V and i is an integer

• v — new X:, where v E V and X is a class. We assume that such a
statement represents only the allocation of heap memory, but not the
invocation of the corresponding constructor. The constructor call is
treated as a separate statement v.X{...).

• c or w = c, where v €: V and c is a call expression

• retum v, where v (E V

• branch node: e.g., the condition of an i f , switch, or whi le state­
ment. We assume that the condition does not have side effects —
i.e., no values are changed when the condition is evaluated. Only a
branch node can have multiple CFG successors.

• declaration node: e.g., X v where v E V and X is a type

• irrelevant node: e.g., i = 5 where i is a variable of primitive type

I t is only necessary to consider these categories of nodes, because a more compli­

cated statement can be broken down to a sequence of simpler statements where each

fits into one of the categories. This can be done by introducing temporary variables.

For example, the complex statement i f (m() . f l d) where the call to m returns an

object of class X can be rewritten as the sequence of statements fitting into the stated

categories:

22

X v;
v = m() ;
boolean b;
b = v . f l d
i f (b)

declaration node
v = c, where c is a call expression
irrelevant node
irrelevant node
branch node

A n instance call expression is of the form vo-m{vi,... ,vn), where G V for all t

such that 0 < i < n. A static call expression is , . . . , « «) , where E V and m

is a static method.

3.3 Transfer Functions

We associate a map Sn : V ^ L wi th each CFG node n where, once again, V

is the set of all reference-typed formal parameters and local variables and L is the

lattice described in section 3.1. I f Sn{v) is some lattice element other than T and

_L, then v is guaranteed to refer to the unique object corresponding to that element

immediately before the execution of n. I f ^ (w) = _L then the analysis was unable

to determine that v refers only to a particular object represented by a single lattice

element. In the beginning of the analysis Sn{v) = T for all n and v, indicating that

no information is currently known.

We represent the effects of program statements on maps of variables to lattice

elements wi th data-flow transfer functions. For each CFG node n, the analysis asso­

ciates a function / „ : (F —»£)—)•(F i) . The map Sn provides information about

the values of variables immediately preceding the node n, so the map fn{Sn) shows

the values immediately after n. For any map S : V ^ L, we w i l l use the notation

S[v H> I] to denote a new map where the only change is to the value associated with

v e V, which is changed to I € L. The transfer functions are as follows:

• for = vg: fn{Sn) = Slvj i-> Sn{vg)]

23

• for Vi = V2.fld: fn{S„) = S^Vj »-> X]

• for Vi>fld = V2: fniSn) = Sn

. for v = X.fld: fn{Sn) = Sn[v ^ 1]

• for X.fld = v. fn{Sn) = Sn

• for Vi = V2[l]: fniSn) = S n [^ ^ ±]

• for v,[i] = u 2 : f n { S n) = S n

• for v = new X:

~ fn{Sn) = Sn[v ^ laihc] i f this is a singleton allocation site wi th a
corresponding lattice element laiioc

- fn{Sn) = Sn[v (->• -L] otherwise

For an assignment V] = Vg, the analysis propagates the current value of to . I f

Vj is assigned the value of a field or a value stored in an array, _L is propagated because

a conservative assumption is made that any object reference could be assigned to Vi.

In Chapter 4 we discuss an approach for more precise handling of fields.

3.4 Interprocedural Control-Flow Graphs

The handling of calls requires the introduction of an interprocedural CFG (ICFG)

[18], in which the method-level CFGs are linked through interprocedural edges. En­

t ry and exit nodes are added to each method's CFG, and within CFGs each node

representing a call site is split into two nodes: a call node and a return node. These

two nodes are connected by an intraprocedural edge. For each method m that could

be called by call site c, an interprocedural edge connects the call node for c wi th the

entry node of the method's CFG. Likewise, another edge connects the exit node of

method m wi th c's return node. Transfer functions are associated with the edges to

entry nodes to represent the effects of parameter passing and with the edges from

exit nodes to represent the effects of return values. There are also transfer functions

24

for the edges connecting a call site's call node to its return node for the handling of

local variables that are not modified by the method calls.

Thus far, all of transfer functions have been for nodes wi th one incoming edge and

one outgoing edge. Our notation has been that Sn provides the information about the

values of variables immediately preceding the node n, so f n { S n) is the map showing

the values immediately after n. A call node has at least two outgoing edges: one to

the return node and another to the entry node of the method being called. There are

even more outgoing edges i f there are multiple possible target methods. Some nodes

also have more than one incoming edge. Like a call node, a return node has at least

two incoming edges: one from the call node and another from the exit node of the

called method. These nodes with multiple incoming and outgoing edges require more

detailed notation to explicitly describe the changes to the values of variables. The

function fn^m : (F -» L) -> (F —> L) is associated with call/exit node n's outgoing

edge to node m. This means i f Sn provides the information about the values of

variables immediately preceding the node n, then the map fn,m(Sn) shows the values

immediately after node n along the edge to node m.

Method calls can be made to static or non-static methods. Consider first a method

call Vo-m{vi,..., u n) to a non-static method m wi th either a void return type or a

primitive return type. Since we are not interested in the values of primitives, a call

to a method returning a primitive is treated the same as a method not returning

anything. Suppose there is only one possible target method m for this call and that

the formal parameters of m are w0,..., wn, where WQ is the formal t h i s . Let node c

be the call site's call node, node r be the site's return node, node entry be the entry

node of the target method, and node exit be the exit node of the target method. The

25

map Trnap : V ^ L maps every variable in F to T . The notation Tmap[v (->• I] is used

to denote that variable v is mapped to I and all other variables in V are mapped to

T . The transfer functions for the nodes involved in this call are as follows:

• fc,entry{Sc) = T map[wo ^ Sc{Vo)] . . .[wn I—> Sc{vn)]

• fc,r{Sc) = Sc

• fexit,r{Sexit) ~ ~^map

As shown in the first of these transfer functions, the effect of passing parameters

is similar to assignments, where the formal parameter is assigned the value of the

actual parameter.

No object reference is returned by the call to method m, so the mapping of

variables to lattice elements immediately following the return node of the call site r

should be no different than the map of values before the call. To obtain the mapping

of variables to lattice elements for the return node, the meet operation is used. The

map resulting from / c ,r(5c) A fexit,n{Sexit) provides the values of variables immediately

following the return node. In this case, the map for the call node along the edge to

the return node is the same as the map for the node preceding the call node, and the

exit node of the called method maps every variable to T . Since any element x met

wi th T is a;, the meet results in every variable being mapped to the same value i t was

mapped to before the method call.

Consider now a call to a static method with a primitive or void return type. The

only difference is in the feentry transfer function. Since the method is not called on an

object the method call is of the form m{vi,.. . r v n) and in the called method there is

no formal WQ for t h i s . The transfer function for the static method call is as follows:

• fcentryiSc) = T m a p[w; J l-> S^Uj)] . . . [wn t-> Sc{vn)]

26

Let us now consider more complicated situations where the methods return object

references. For each method m, wi th a reference return type, a "fake" return variable

reti € 7 is created to represent the return value of the method. In the case of a call

to a non-static method returning an object reference, the method call to m, is of the

form r = Vo-m{vi,..., vn). The fc,entry function is the same as the transfer function

for the non-static method call wi th a void return type, but the other two functions

are different:

• f c A S c) = Sc[r^T]

• fexit,T{Sexit) — T m a p [r I \ Sexii{jeti)\

These two transfer functions are also used for static method calls where an object

reference is returned in combination with the same function fc,entry that is used for

static method calls wi th void return types. The notation Tmap[v i-> l\ in the second

function denotes a new map where all variables in V are associated with T except v

which is associated wi th / G L.

The first of these transfer function shows that the intraprocedural flow of infor­

mation does not tell us anything about the value of r after the call since i t is assigned

the value returned by the method call. The variable r is assigned the value T so that

when the meet operation is performed, the value associated wi th r in the map for the

return node wil l end up being the same value v is mapped to in the return node. The

method call cannot effect any other values in intraprocedural flow of information, so

in the second transfer function all variables except r are associated with T. After the

meet, these variables wi l l be mapped to the same values that they were mapped to

in Sc before the method call.

27

3.5 Meet-Over-All-Paths Solution

A path in an ICFG is a sequence of edges such that each edge starts at the node in

which the previous edge ended. Not all paths represent possible paths of execution.

For example, i f a method m is called by both method a and method b, there are edges

connecting the entry and exit nodes of m to both the call site in a and the call site

in b. There exists a path f rom the call site in method a to the entry node of method

m, through the method, and from the exit node of m to the call site in method b, but

this is not a possible path of execution. A t run time method m must return to the

call site in the calling method a. Only paths that return to the appropriate call sites

are valid paths.

The transfer function fp for a path p is the composition of the functions for the

nodes in the path. Let P — { p i , . . . ,pn} be the set of valid ICFG paths from the

node start representing the entry node of the start method to node n not including

n itself. Recall that Sn is the map associated wi th node n that provides information

about the values of variables immediately preceding the node n. Thus, the map Sstart

is the information about the values of variables immediately before the invocation

of the start method. For any reference-typed formal v of the start method wi th

corresponding lattice element lv, 5 s t a r f (v) = lv. For all other v £ V, Sstart{v) = T .

The meet-over-all-valid-paths solution 5* for a CFG node n is defined by the following

equation:

Sn = Ul {Sstart) A . . • A f P n { S s t a r t) , where Pi, . . . ,pn E P.

28

3.6 Analysis Algorithm

The data-flow problem defined earlier belongs to the category of interprocedural

distributive environment (IDE) problems. In an IDE problem the information at a

program point is represented by a map from some finite set of symbols to some set

of values. Also, in an I D E problem, the transfer functions must distribute over the

meet operation. Our data-flow problem is an example of an I D E problem, where the

set V of variables in the problem is the set of symbols and the lattice elements L are

the values to which the symbols are mapped. Proof that the data-flow problem is

distributive can be found in the appendix of the thesis. A general approach for solving

IDE problems precisely is defined by Sagiv et al. [17]. We adapted their approach

to obtain a fiow- and context-sensitive algorithm. The algorithm is provably precise,

meaning i t computes the meet-over-all-valid-paths solution for each node. Detailed

information about the algorithm can be found in [11].

29

CHAPTER 4

ANALYSIS ENHANCEMENTS

Several refinements can be made to the data-flow problem and analysis described

in the previous chapter. These refinements, described in this chapter, result in the

identification of more singleton call sites. In Chapter 5, we provide experimental

evaluation of the analysis wi th and without these enhancements. The evaluations

were performed on a set of Java components. In this chapter, accompanying the

discussion of the refinements are segments of code from these components showing

situations where the enhancements are used to obtain better results.

4.1 Static Fields

The analysis takes a conservative approach in the handling of static fields. Fre­

quently though, the values of static fields do not change. This is the case i f a static

fields is not modified by any method reachable from the start method. Such read-only

static fields are easy to identify and they provide an additional source for receiver ob­

jects. For each read-only static field sf we add a corresponding lattice element l s f .

The transfer function corresponding to an assignment from a read-only static fields

is

• for v = X.sf: fn{Sn) = Sn[v H> l s f] .

30

publ ic c l a s s DecimalFormat extends NumberFormat {
p r i v a t e s t a t i c Hashtable cachedLocaleData = new Hashtable(3);

1 publ ic DecimalFormatO {
2 Locale def = L o c a l e . g e t D e f a u l t () ;
3 S t r i n g pat tern = (Str ing) cachedLocaleData.get(def) ;
4 i f (pattern == n u l l) { /*cache miss * /
5 / / G e t the pattern for the defaul t l o c a l e .
6
7 cachedLocaleData.put(def , p a t t e r n) ;
8 }
9
10 }

}

Figure 4.1: Handling of static fields

Figure 4.1 shows an example from the DecimalFormat class in one of the com­

ponents; this class is part of the standard library package j ava . t ex t . I t provides func­

tionality for formatting decimal numbers and contains a static field cachedLoca leData

which is read-only. Let the Dec imalFormatO constructor be the start method. In

this example, note that without this refinement in the handling of static fields, the

call sites at lines 3 and 7 would not be identified as singleton. Clearly though, once

cachedLoca leData is identified to be read-only, these sites are singleton.

4.2 Instance Fields

Like wi th static fields, the analysis takes a conservative approach in the handling

of instance fields. Recall that when a statement such as = V2.fld is encountered,

the assumption is made that any object reference could be assigned to Vi, so J. is

propagated as the lattice element associated wi th vi- This conservative approach

31

in dealing wi th instance fields results in singleton call sites not being identified as

singleton. In the running example found in Figure 2.1, consider the calls to p5 and

p6. These singleton call sites are not identified as singleton using the conservative

approach. However, there is only one possible receiver object at these sites: the object

to which t h i s , f l d refers at the invocation of the start method m.

The analysis can be modified in its handling of instance fields to identify more

singleton call sites. The first step is to determine wi th regard to a program statement

Vi = V2-fld i f there is only one object to which V2 can refer. One run through the

conservative analysis associates lattice elements wi th all program variables at every

program point, so this step is done by running the analysis once and then examining

statements of the form v-i = V2-fld. I f the lattice element associated with V2 at

this point is something other than ± , then there is exactly one object to which

can refer: the object Oj corresponding to that lattice element. The next step is to

determine i f the field fld of Oj is not modified by any method reachable from the

starting method. I f this is the case, then the value of fld in Oj does not change and

the expression v2.fld is guaranteed to refer to a unique object. For each such object

identified, a new corresponding element lo^fid is added to the lattice. The analysis

is then executed again with the new lattice and with appropriately modified transfer

functions for statements of the form V\ = V2-fld.

Let us consider again the running example. In method in4 lattice element Ithis

is associated wi th t h i s . Since t h i s . f l d is not modified by any method reachable

f rom the start method m, an element Ims.fid is added to the lattice. At the call site

t h i s . f l d . p 5 () element khis.fid is associated with t h i s . f l d , so the site is identified as

singleton. Likewise, at the statement r e t u r n t h i s . f l d , element khis.fid is associated

32

publ ic c l a s s BigDecimal extends Number{
p r i v a t e Biglnteger i n t V a l ;

1
2
3

}

Figure 4.2: Handling of instance fields

wi th t h i s . f l d and Ithis.fid is propagated to variable d along the interprocedural edge

from the exit node to return node. As a result the call site d . p 6 () is identified as

singleton.

Figure 4.2 shows a straightforward example f rom the BigDecimal class of one

of the subject components, based on standard library package Java.math. In this

example negate is the start method. In line 2 of the code a call to the negate method

of the B i g l n t e g e r class is made on the i n t V a l instance field of t h i s . Clearly, the

only object t h i s . i n t V a l can refer to is the object i t refers to at the invocation of

the start method. The steps described earlier identify this call site as singleton.

I t is possible for the objects to which fields refer to also have fields. The process

of identifying the objects to which these fields refer and introducing the correspond­

ing new lattice elements continues unti l the solution stabilizes. This approach may

introduce lattice elements that represent chains of field accesses: e.g., elements of

the form Ix.fidi.fid2.fid3- As shown by the experimental evaluation of the analysis in

Chapter 5, the analysis typically stabilizes wi th a chain length between 3 and 5.

33

c l a s s X { . . . }
c l a s s G {

publ ic void m(int b) {
X y = n() ;
i f (b>0)

y = n () ;
y . k 2 0 ;

}
publ ic X n() {

X x = new X () ;
x . k l O ;
re turn x;

}
}

Figure 4.3: Example of a non-singleton allocation site

4.3 Non-Singleton Allocation Sites

The third enhancement considers non-singleton allocation sites. Recall that a

non-singleton allocation site is a site that can be executed more than once. I f the

source of a receiver object is a singleton allocation site then there is only one possible

receiver object, but i f the source is a non-singleton allocation site, then in general the

receiver object could be, for example, the object created at the first execution of the

site or the object created at the f i f t h execution. Recall also that non-singleton allo­

cation sites occur when some segment of code containing the allocation statement is

executed more than once in some sequence of events from the start method. Consider

the situation in Figure 4.3 where method ra is the start method. The non-singleton

allocation site x = new X() is the source of the receiver object for the call site x . k l ()

following the allocation site in the same segment of code. The receiver object x refers

to at this call site is the object created by the expression x = new X() in the same

34

execution o f t he segment. The call site x . k l O is not singleton, but for any execution

of the call i t is possible to identify the receiver object source as a particular execution

of the allocation site so we wi l l call such sites "resolvable".

We would like the sequence diagrams to show that the sources for resolvable call

sites such as x . k l O in Figure 4.3 are the corresponding allocation sites in the same

execution of the method. To achieve this, we introduce special lattice elements laiiocj

corresponding to each non-singleton allocation site Sj.

Consider the result of lattice elements corresponding to non-singleton allocation

sites being propagated in the same manner as all other lattice elements. Return to

the example in Figure 4.3 and let laiiocn be the lattice element associated wi th the

allocation site in method n. The element would be propagated back and associated

with y at both returns from method n. Due to the branching caused by the i f state­

ment immediately preceding the call to k2, a meet of the lattice elements associated

with variables would be performed. The element laiiocn would be associated wi th y

along both branches, so at the call to k2 the element laiiocn would be associated with

y. While i t is true that the call to k2 can only be made on an object created at the

allocation site in method n, there is no way of determining during which execution

of method n the receiver object was created. As a result, we would like _L to be

associated wi th variable y at this call site and the lattice elements corresponding to

non-singleton allocation sites must be handled slightly differently from other lattice

elements. I f a lattice element laiiocj corresponding to a non-singleton allocation site is

associated wi th a variable at a return statement, J. is propagated back to the calling

method instead of laiiocj • This guarantees that the value is confined within the method

in which the allocation site is present, and the methods that i t transitively calls.

35

Figure 4.3 shows a straightforward example where refining the handling of non-

singleton allocation sites results in a sequence diagram that better reflects the behav­

ior of the code. Due to the handling of memory allocation and constructor calls by

our analysis, there is another type of situation that also benefits from this refinement.

Recall f rom Section 3.2 that a statement such as x = new X() is divided into two

nodes in the CFG: the first node corresponds to the allocation of memory and the

second corresponds to the constructor call. As a result of this division, without the

refinement, for each non-singleton allocation site, its artificially separated constructor

call is determined to be a non-singleton allocation site. For example, in Figure 4.3

the statement x = new X Q is divided by the analysis into statements x = new X;

and x . X () . Without the refinement, the constructor call x . X () is not resolved.

4.4 Limited Propagation of Lattice Elements

The sequence diagram generated by RED can be limited by the user in two ways.

First, the user can choose that calls made by some methods are not displayed in the

diagram. For example, i f calls made by certain library methods are not of interest to

the user, the user can choose to have the calls by these methods omitted from display.

Secondly, when using RED, the user can restrict the depth of calling relationships

to make the diagram easier to understand. Relationships of the form "m calls m2

which calls m3 which in turn calls m4" are call chains. The depth of a call chain is

the number of methods in the chain. For example, a call chain depth of two indicates

that the user desires only to have the start method and the calls this method makes

displayed in the diagram. The default depth used in RED is 5.

36

The analysis determines from these user defined constraints the set of call graph

edges that wi l l be represented in the diagram. The values of actual parameters are

then only propagated along the call-entry edges that are in this set. The transfer func­

t i o n / e j e f r t r i , (5 c) = T m a p , rather than/centnf (5c) = Tmap[w01-> Sc{v0)]... [w r t i-> Sc{vn)],

is used for edges that are not in the set of call graph edges to be represented in the

diagram.

Without this enhancement, i f a method m in the CUA transitively calls itself by

calling a method outside of the CUA, values f rom the non-CUA method are propa­

gated to m. Since these values are not necessarily the same values that were previously

propagated to m, this can cause some call sites that would otherwise be resolved to

become associated wi th _L. The goal of RED is to represent the behavior of methods

in the CUA. Understanding the behavior of a method m in the CUA when called by

some method not the CUA is gained by making m the start method of a diagram, so

i t is not relevant to propagate values along edges from non-CUA methods, or other

call graph edges that are not intended to be represented in the diagram.

37

CHAPTER 5

EMPIRICAL STUDY

This chapter presents the experimental results evaluating the object naming anal­

ysis. The experiments were performed on a set of 21 subject components that come

from various domains and typically are parts of reusable libraries. The analysis was

implemented using the Soot framework [21] and were run on a 900 MHz Sun Fire

280-R machine.

5.1 Empirical Study

Table 5.1 shows the experimental results from running the analysis wi th all of the

enhancements described in Chapter 4 and l imit ing the call chain depth to the default

of 5. The column labeled "Number of sequence diagrams" shows the number of

component methods that contain at least one interesting call site. An interesting call

site is a site that (1) belongs to call chains that remain within the CUA, and (2) is not

an invocation of methods in classes such as j a v a . l a n g . S t r i n g , J a v a . l a n g . Integer ,

and other numeric types that are essentially primitive types. Each method with an

interesting call site was considered as a start method of a sequence diagram. The

analysis was executed on each of these start methods.

38

Component
name

Number of
sequence
diagrams

Time
(in seconds)

Number
of call

sites

Percent
of sites

resolved
bigdecimal 30 1.1 (0.09) 322 55.59%
boundaries 39 0.8 (0.17) 367 83.38%
bytecode 450 32.1 (0.13) 11012 78.00%
calendar 101 12.0 (0.13) 918 87.47%
checked 10 0.2 (0.48) 10 100%
collator 02 2.2 (0.12) 1154 79.29%
date 56 9.3 (0.08) 2173 90.4T%
decimal 48 3.6 (0.09) 1361 96.33%
gzip 32 1.1 (0.11) 255 93.33%
html 214 25.7 (0.11) 4910 84.05%
io 46 8.7 (0.14) 300 85.00%
jess 457 1695.3 (0.89) 100974 71.13%
j f l e x 237 13.2 (0.11) 4657 87.55%
math 166 26.2 (0.13) 5831 60.62%
message 84 23.7 (0.10) 4003 77.47%
mindbright 328 44.3 (0.11) 10618 82.18%
pdf 146 67.7 (2.32) 2261 79.21%
pushback 13 0.2 (0.30) 13 100%
sql 109 6.3 (0.08) 411 99.03%
vector 30 0.4 (0.21) 66 96.97%
zip TT 2.0 (0.12) 1075 88.74%

Table 5.1: Experimental results

39

The column labeled "Time" shows the time (in seconds) to run the analysis for all

sequence diagrams in the component. We also normalized this running time by the

number of analyzed CFG nodes; the number in parenthesis shows the time to analyze

one thousand CFG nodes. The running times indicate that the cost of the analysis

is practical and that running time wi l l not deter the use of the analysis in real-world

software tools.

Sequence diagrams generated by RED represent the behavior of a start method

and its transitive callees wi thin the component up to a user defined call chain depth.

Call sites in these component methods are represented in reverse-engineered diagrams

as messages. The column labeled "Number of call sites" shows the total number of

call sites in all diagrams. The analysis solution can be used to determine which

diagram object should be the receiver of each message. The last column in the table

shows the percentage of call sites for which the analysis is able to determine a unique

diagram object that should be the receiver. These are the call sites that are singleton

or resolvable.

The results show that the analysis can successfully resolve the majority of call sites.

Note that for 18 of the components, more than 75% of the call sites are associated wi th

lattice elements other than JL. These lattice elements correspond to receiver object

sources such formal parameters, allocation sites, and fields, and can be represented

in reverse-engineered diagrams by appropriate precise object names. For two of the

components all of the call sites were resolved. For an additional six of the components

more than 90% of the call sites were resolved precisely. This result is important,

because i t indicates that i t is possible to have a naming scheme that accurately

represents the objects involved in a message exchange. Such a scheme is valuable for

40

reverse-engineering tools such as RED, because the greater the diagram precision, the

easier i t is for the user to accurately understand the behavior of the code. Accurate

understanding of source code is useful in system development, software maintenance,

and the wri t ing of test cases.

5.1.1 Examination of bigdecimal Component

Component bigdecimal has the lowest percentage of resolved call sites. To gain

an understanding of why only 55.59% of the call sites in the component were resolved

precisely, we examined each unresolved call site by hand. This examination showed

that o f the 143 unresolved call sites, 125 are non-singleton call sites, so no analysis can

determine a single run-time receiver object for these calls. The analysis legitimately

reported _L at all these call sites.

This section presents situations summarizing the unresolved call sites, both sin­

gleton and non-singleton, encountered when analyzing the bigdecimal component.

The component contains the BigDecimal class, which is part of the standard library

package j ava. math. Some of the following situations are accompanied by examples

from this class.

We wi l l start by looking at situations where the unresolved call sites are non-

singleton. A typical situation occurs when a method m has branch statements and a

variable x in the method is assigned different objects along different execution paths.

For all subsequent calls through x there are multiple possible run-time receiver objects.

Also, in situations where x is the return value of m, or i t is otherwise possible

for m to return multiple possible objects, all subsequent calls on whatever is returned

by calling m are non-singleton. Figure 5.1 shows an example of this situation. The

41

publ ic c l a s s BigDecimal extends Number {
publ i c BigDecimal divide(BigDecimal v a l , in t s c a l e , i n t roundingMode)

throws ArithmeticExcept ion, I l legalArgumentException {

Biglnteger r = i [l] ;
i n t cmpFracHalf = r . a b s () . m u l t i p l y (B i g l n t e g e r . v a l u e O f (2)) .

c o m p a r e T o (d i v i s o r . i n t V a l . a b s ()) ;

}
}

publ ic c l a s s Biglnteger extends Number{
publ i c Biglnteger a b s () {

r e t u r n (signum >= 0 ? t h i s : t h i s . n e g a t e ()) ;

}
publ i c Biglnteger negate(){

r e t u r n new Biglnteger(this .magnitude, - th i s . s i gnum);

}
}

Figure 5.1: Multiple return values

call to m u l t i p l y made in d i v i d e is non-singleton because the call to abs of the

B ig ln t ege r class can return t h i s or an object newly created by the call to negate.

In the component, there are 58 call sites described by these branching situations for

which the analysis legitimately reported _L.

Another frequently occurring situation in the component has to do wi th fields.

When a variable x can refer to multiple possible objects at run time, all subsequent

call sites where a call is made on fields of the object to which x refers are also non-

singleton sites. A l l calls made on fields of such an object are non-singleton because

i t is not possible to determine the object referred to by a field of an indeterminable

object. The analysis enhancement for instance fields requires that a new lattice

element representing a field be added only when i t is a field of an object that is not

42

J_. In the bigdecimal component, there are 29 call sites whose receiver objects are

legitimately associated wi th J_ due to this type of situation.

The remaining six unresolved non-singleton call sites can be described by the

following situation. A call site x . n () in a method m can be a non-singleton site

when there are multiple possible call chains from the start method to method m. For

example, i f the start method has calls a.mQ and b.m() where a and b do not refer

to the same object and x is assigned t h i s before the call site in m, then the call site

is not a singleton site because there are multiple runtime receiver objects: the object

referred to by a or the object referred to by b.

Of the unresolved sites in the b igdecimal component, 87.4% are non-singleton

sites. For the small percentage of remaining sites, our analysis did not determine

there was only one run-time receiver object. For most of these singleton sites, the

analysis was unable to determine the run-time receiver object due to the treatment

of arrays. As is standard for most program analysis, our analysis treats assignments

involving arrays conservatively. The index of an array element is typically not taken

into consideration, so when an object reference is assigned to some location in the

array, the assumption is made that the reference could be stored at any array element.

Likewise, when the reference stored at some location in an array is assigned to some

variable, the assumption is made that any reference stored in the array could be read.

Of course, i t is sometimes possible to gather additional information about the objects

stored in arrays. Figure 5.2 shows an example of this case. In this example, the

start method is the add method of class BigDecimal. Note that in method add, the

formal t h i s is stored at index 0 of the array that is passed to method matchScale,

and that no other object reference could possibly be stored at index 0 of the array

1:5

publ ic c l a s s BigDecimal extends Number {
publ ic BigDecimal add(BigDecimal v a l) {

BigDecimal arg[] = new BigDecimal[2];
arg[0] = t h i s ;
a r g [l] = v a l ;
matchScale(arg);
re turn . . .

}
publ ic s t a t i c void matchScale(BigDecimal [] v a l) {

i f (v a l [0] . s c a l e < v a l [1] . s c a l e)
v a l [0] = v a l [0] . s e t S c a l e (v a l [1] . s c a l e) ;

}
}

Figure 5.2: References stores in arrays

before setScale is invoked. The call to setScale is singleton, but the analysis does

not identify i t as such due to the complexities involved in dealing wi th arrays. In

the bigdecimal component, there are 12 unresolved singleton call sites where the

receiver is an object stored in an array.

In b igdecimal , the remaining six unresolved singleton call sites were not identified

as singleton because the analysis does not analyze branching conditions. Consider in

Figure 5.3 the setScale method as the start method. (The code of the BigDecimal

class has been modified slightly in this figure to ease understanding.) The call site

we are discussing is at line 8 and is not identified by the analysis as a singleton

call site. This site is in the d i v i d e method which is called by setScale. The only

possible source for the receiver object at this site is the allocation site in method

valueOf, so i f this allocation site is singleton then the call site is singleton. The

start method setScale can call d i v i d e , which in turn can call setScale. Since

44

publ i c c l a s s BigDecimal extends Number {
publ ic BigDecimal s e t S c a l e (i n t s c a l e , in t roundingMode) {

1 i f (s c a l e == t h i s . s c a l e) { . . . }
2 e l s e i f (s c a l e > t h i s . s c a l e) { • • • }
3 e l se { / * sca le < t h i s . s c a l e * /
4 r e t u r n d iv ide (va lueOf(1 , 0) , s c a l e , roundingMode);

}
}
publ ic BigDecimal divide(BigDecimal v a l , in t s c a l e , in t roundingMode)

throws ArithmeticExcept ion, I l legalArgumentException {

5 BigDecimal d i v i s o r ;
6 i f (s c a l e + v a l . s c a l e >= t h i s . s c a l e) { . • • }
7 e l se {
8 d i v i s o r = v a l . s e t S c a l e (t h i s . s c a l e - s c a l e , ROUNDJJNNECESSARY);

}

}
publ ic s t a t i c BigDecimal valueOf(long v a l , in t s c a l e) {

9 r e t u r n new B igDec imaKBig ln teger .va lueOf (va l) , s c a l e) ;

}
publ i c BigDecimaKBiglnteger . v a l , in t s c a l e) {

10 t h i s . i n t V a l = v a l ;
11 t h i s . s c a l e = s ca l e ;

}
}

Figure 5.3: Missed singleton allocation site

45

valueOf is called in setScale (which can be called multiple times), without analyzing

branching conditions, i t is easy to assume that the allocation site can be executed

multiple times. However, i t is not possible for the allocation site located in line 9 to

be executed more than once. In order for i t to be executed at all, scale must be less

than t h i s .scale. The newly allocated object's scale is 0, so when d i v i d e is invoked

scale < t h i s . s c a l e and v a l . s c a l e is 0. This means that the else portion of the

d i v i d e method wi l l be executed. In this portion of code, when setScale is called,

i t is invoked on v a l , so inside setScale, for this second invocation, t h i s . s c a l e is 0

and scale is a positive value. This means the else i f in setScale at line 2 wi l l be

t r u e and the allocation site at line 9 is only executed once.

The results from the closer examination of the bigdecimal component are impor­

tant because they show that the low percentage of resolved call sites for this compo­

nent is due in large part to the its unusually high number of non-singleton call sites.

This examination is also valuable for the insights i t provides about the unresolved call

sites. For example, in order to identify all singleton call sites in the component, we

observed that a more precise treatment of arrays and a detailed analysis of branching

conditions would be necessary.

5.2 Static and Instance Field Enhancements

The data-flow problem discussed in Chapter 3 takes a conservative approach with

regard to fields. Sections 4.1 and 4.2 describe enhancements for the analysis to more

precisely analyze the behavior of static and instance fields. The effects of these

enhancements are shown in Table 5.2.

46

Component Num. Percent of sites Percent of sites Additional call sites Num. of
name of call resolved without resolved with all resolved due to iterations

sites fld enhancements enhancements fld enhancements
bigdecimal 322 47.83% 55.59% 7.76% 2
boundaries 367 52.04% 83.38% 31.34% 2
bytecode 11012 71.20% 78.00% 6.80% 4
calendar 918 72.77% 87.47% 14.71% 3
checked 10 0% 100% 100'/ 2
collator 1154 62.65% 79.29% 16.64% 3
date 2173 67.14% 90.47% 23.33% 3
decimal 1361 75.02% 96.33% 21.31% 2
gzip 255 42.35% 93.33% 50.98% 3
html 4910 48.25% 84.05% 35.80% 4
io 300 74.67% 85.00% 10.33% 3
jess 100974 67.71% 71.13% 3.40% 5
j f l e x 4657 72.26% 87.55% 15.29% 5
math 5831 58.50% 60.62% 2.13% 3
message 4003 63.05% 77.47% 14.41% 3
mindbright 10618 65.17% 82.18% 17.01% 5
pdf 2261 75.85% 79.21% 3.36% 2
pushback 13 100% 100% 0% 1
sql 411 99.03% 99.03% 0% 1
vector 66 96.97% 96.97% 0% 1
zip 1075 60.09% 88.74% 28.65% 3

Table 5.2: Experimental results wi th field enhancements

47

The first two columns in this table are the same as the similarly labeled columns

in the Table 5.1. They show the component names and numbers of call sites in all

diagrams. The fourth column, labeled "Percent of sites resolved wi th all enhance­

ments," is also the same as the last column in Table 5.1. I t shows the percentage of

call sites for which the analysis is able to determine which diagram object should be

the receiver. To obtain these results and all other results in this table, the analysis

was run wi th the refinements relating to non-singleton allocation sites (Section 4.3),

l imited propagation along call graph edges (Section 4.4), and the default call chain

depth of 5. The column labeled "Percent of sites resolved without fld enhancements"

shows the percentage of call sites that were resolved when the analysis is run with the

conservative treatment of static and instance fields. The column labeled "Additional

call sites resolved due to fld enhancements" shows the difference of the percentages of

the previous two columns. From this last column, note that 18 of the 21 components

benefit f rom the field enhancements and that these enhancements are responsible for

resolving more than 20 percent of the total call sites for 7 out of the 21 components.

Recall that instance field enhancement involves repeatedly executing the analysis

and updating the lattice by adding lattice elements associated wi th instance fields.

Each time the analysis is executed is a separate iteration; the last column of Table

5.2 shows the number of iterations for the analysis solution to stabilize.

5.3 Non-Singleton Allocation Sites Enhancement

The results from running the analysis with the non-singleton allocation sites en­

hancement are shown in Table 5.3. These results were obtained by running the anal­

ysis wi th the rest of the enhancements and with a default call chain depth of 5. The

48

Component Number Percent of call Percent of Additional call
name of call sites resolved call sites sites resolved

sites without non- resolved due to non-
singleton allocation with all singleton allocation

site enhancement enhancements site enhancement
bigdecimal 322 17.70'/ 55.59% 37.89%
boundaries 367 82.56% 83.38% 0.82%
bytecode 11012 58.43% 78.00% 19.57%
calendar 918 72.66% 87.47% 14.81%
checked 10 100% 100% 0%
collator 1154 58.15% 79.29% 21.14%
date 2173 66.27% 90.47% 24.21%
decimal 1361 90.52% 96.33% 5.80%
gzip 255 73.73% 93.33% 19.61/
html 4910 49.31% 84.05% 34.75%
io 300 26.67% 85.00% 58.33%
jess 100974 6.60% 71.13% 64.54%
j f l e x 4657 66.29% 87.55% 21.26%
math 5831 20.10'/ 60.62% 40.52%
message 4003 39.35% 77.47% 38.12%
mindbright 10618 48.95% 82.18% 33.23%
pdf 2261 17.34% 79.21% 61.88%
pushback 13 76.92% 100% 23.08%
sql 411 69.34% 99.03% 29.68%
vector 66 75.76% 96.97% 21.21%
zip 1075 53.49% 88.74% 35.26%

Table 5.3: Experimental results with non-singleton allocation site enhancement

49

last column of the table shows that a substantial percentage of call sites are resolved

due to this enhancement. Of the 21 components, the only component that does not

benefit f rom this enhancement is a component for which all call sites were determined

to be singleton without the enhancement. In 15 out of the 21 components, more than

20% of the total call sites are resolved due to this enhancement and in three of the

components over half of the call sites are resolved due to this enhancement.

5.4 Limited Propagation Enhancement

The results f rom running the analysis wi th the limited propagation enhancement

are shown in Table 5.4. These results were obtained by running the analysis wi th all

other enhancements and with a default call chain depth of 5. The last column shows

that while most components were not effected significantly by this enhancement,

there were some components for which the enhancement had a substantial effect.

Component checked showed the greatest improvement with a 100% improvement

rate, but the results for three other components also improved by more than 10%.

5.5 Call Chain Depth

A user of RED can restrict the depth of calling relationships to be displayed in a

sequence diagram. Tables 5.5 and 5.6 show the sensitivity of the analysis precision

with diflerent depths. The complexity of a sequence diagram increases along wi th the

depth of calling relationships being shown. A call chain depth of much more than

five is difficult to understand, so we are showing results of depths no greater than

eight. The tables show (for call chain depths f rom two to eight) the percentage of call

sites for which the analysis is able to determine which diagram object should be the

50

Component Number Percent of call Percent of Additional call
name of call sites resolved call sites sites resolved

sites without limited resolved due to limited
propagation

enhancement
with all

enhancements
propagation

enhancement
bigdecimal 322 54.35% 55.59% 1.24%
boundaries 367 83.38% 83.38% 0%
bytecode 11012 77.56% 78.00% 0.44%
calendar 918 87.15% 87.47% 0.33%
checked 10 0% 100% 100%
collator 1154 79.29% 79.29% 0%
date 2173 85.96% 90.47% 4.51%
decimal 1361 95.59% 96.33% 0.73%
gzip 255 56.86% 93.33% 36.47%
html 4910 77.68% 84.05% 6.37%
io 300 81.33% 85.00% 3.67%
jess 100974 68.32% 71.13% 2.81%
j f l e x 4657 87.09% 87.55% 0.45%
math 5831 51.47% 60.62% 9.16%
message 4003 67.35% 77.47% 10.12%
mindbright 10618 77.33% 82.18% 4.85%
pdf 2261 77.71% 79.21% 1.50%
pushback 13 100% 100% 0%
sql 411 99.03% 99.03% 0%
vector 66 96.97% 96.97% 0%
zip 1075 73.21% 88.74% 15.53%

Table 5.4: Experimental results wi th limited propagation enhancement

51

receiver. For each call chain depth, the table has a column showing the total number

of call sites in all diagrams when limited to that depth, and a column showing the

percentage of those sites that are resolved. Although the number of call sites grows,

sometimes significantly, as the depth of the call chains increases, the percentage of

resolved sites does not vary greatly. The last column in Table 5.6 shows the range of

the percentage of call sites resolved. Of the 21 components, 14 vary by less than ten

percent; this indicates that for call chain depths up to eight, the analysis precision is

not very sensitive to the user-defined depth. Regardless of this depth, the analysis is

able to resolve a substantial percentage of the call sites.

52

Call Chain Depth
2 3 4

Component Num. Resolved Num. Resolved Num. Resolved
name of call

sites
of call

sites
of call

sites
bigdecimal 176 63.64% 217 60.83% 253 60.08%
boundaries 26,-, 87.92% 346 82.66% 355 82.82%
bytecode 3385 78.88% 6369 77.53% 8986 78.60%
calendar 451 94.24% 568 91.55% 787 87.17%
checked 10 100% 10 100% 10 100%
collator 572 88.64% 826 82.20% 1032 78.59%
date 898 94.32% 1480 93.38% 1829 91.96%
decimal 912 95.72% 1276 96.08% 1361 96.33%
gzip 118 100% 184 99.46% 229 96.94%
html 1120 95.27% 2185 92.31% 3618 85.82%
io 245 85.71% 300 85.00% 300 85.00%
jess 10514 66.11% 22556 72.90% 60916 72.60%
j f l e x 3481 93.74% 4173 90.73% 4552 88.38%
math 1256 74.68% 2849 68.37% 4603 64.31%
message 1195 85.27% 2030 83.10% 2763 78.14%
mindbright 4052 86.60% 6424 84.54% 8598 82.91%
pdf 2075 79.95% 2259 79.24% 2261 79.21%
pushback 12 100% 13 100% 13 100%
sql 358 98.88% 399 99.00% 411 99.03%
vector 59 96.61% 66 96.97% 66 96.97%
zip 507 98.82% 879 95.90% 1053 91.17%

Table 5.5: Experimental results with for call chain depths 2-4

53

Call Chain Depth Range
5 6 7 8 2-8

Num. Resolved Num. Resolved Num. Resolved Num. Resolved
of call of call of call of call

sites sites sites sites
322 55.59% 368 53.53% 370 53.78% 370 53.78% 10.10%
367 83.38% 367 83.38% 367 83.38% 367 83.38% 5.20%

11012 78.00% 12115 77.64% 12440 77.00% 12545 76.68% 2.20%
918 87.47% 945 86.56% 946 86.58% 946 86.58% 7.67%

10 100% 10 100% 10 100% 10 100% 0%
1154 79.29% 1230 80.49% 1289 81.38% 1301 81.55% 10.05%
2173 90.47% 2467 91.00% 2765 88.50% 2765 88.50% 5.82%
1361 96.33% 1361 96.33% 1361 96.33% 1361 96.33% 0.00%
255 93.33% 279 90.32% 299 86.29% 303 84.49% 15.51%

4910 84.05% 6314 82.93% 6885 81.95% 7082 82.45% 13.32%
300 85.00% 300 85.00% 300 85.00% 300 85.00% 0.71%

100974 71.13% 122402 69.32% 138917 67.27% 155203 65.22% 7.68%
4657 87.55% 4699 87.17% 4708 87.04% 4711 86.99% 6.75%
5831 60.62% 6459 58.31% 6667 56.49% 6719 56.09% 18.59%
4003 77.47% 5008 78.25% 5722 76.97% 5906 73.55% 11.72%

10613 82.18% 11784 81.07% 12555 79.52% 12875 78.76% 7.84%
2261 79.21% 2261 79.21% 2261 79.21% 2261 79.21% 0.74%

13 100% 13 100% 13 100% 13 100% 0%
411 99.03% 411 99.03% 411 99.03% 411 99.03% 0.14%
66 96.97% 66 96.97% 66 96.97% 66 96.97% 0.36%

1075 88.74% 1077 88.77% 1077 88.77% 1077 88.77% 10.07%

Table 5.6: Experimental results wi th for call chain depths 5-8

54

CHAPTER 6

RELATED WORK

Reverse engineering of U M L sequence diagrams can be done wi th a static analysis

or a dynamic analysis. Dynamic analysis of object interactions is relatively easy.

The basic approach is to trace information about sources and targets of method

calls through executions. Some existing research has considered reverse engineering

of sequence diagrams and other related types of diagrams through dynamic analysis

[19, 10, 4, 8, 3]. A disadvantage of this approach is that the resulting diagrams

are dependent upon a particular run-time execution. This means that i f the run­

time executions are not complete, possible object behaviors wi l l not be modeled in

the resulting diagrams. Representations created dynamically either use one diagram

object per class and represent interactions wi th any object in a given class as occurring

wi th the diagram object for that class, or they use a diagram object for each run-time

object.

Relatively l i t t le research has been done on reverse engineering of U M L sequence

diagrams and other closely related types of U M L diagrams through static analysis. As

described earlier, information about the naming scheme used by Borland's Together

ControlCenter tool has not been published, but the tool appears to use a naming

scheme based on variable names. The disadvantages of this approach are discussed

55

in Section 1.1.1. Kollman and Gogolla [6] propose a static analysis for constructing

collaboration diagrams (called communication diagrams in U M L 2) which similarly to

sequence diagrams are a U M L representation of object interactions. Object naming

issues are not discussed in this work.

Tonella and Potrich [20] propose static techniques for reverse engineering of both

sequence diagrams and collaboration diagrams by using a points-to analysis similar

to Andersen's analysis [1]. The naming scheme they define uses a separate diagram

object for each allocation expression. We decided against using points-to analysis,

because with this technique i t is not possible to identify singleton call sites. Points-to

analysis is used to determine relationships of the form "at program statement s\ refer­

ence variable v may point to some object allocated by program statements S2 or some

object allocated by statement S 3 . " Even i f v only refers to objects created at a single

statement S j , i t is possible that the statement is a non-singleton allocation statement

so there may be multiple objects to which v could potentially refer. Also, our goal

was to create a sequence diagram modeling all possible executions of some given start

method. W i t h points-to analysis, i f the start method is called from multiple places,

singleton call sites (with respect to the start method) wi l l frequently be identified as

non-singleton. Consider the running example in Figure 2.1. I f method m is called

from two locations where the actual parameters passed to the method are different,

then the points-to sets of reference variable a wi l l contain two elements and call sites

a . p l O , f . p2 () , g . p 3 () , and c .p4() wi l l not be recognized as singleton call sites.

56

CHAPTER 7

CONCLUSIONS A N D FUTURE WORK

This thesis presents a partial naming scheme for the reverse engineering of U M L

sequence diagrams. Such reverse engineering is useful in iterative development, soft­

ware maintenance, and program testing. The problem of creating sequence diagrams

from existing code presents many challenging issues that are not adequately addressed

by existing approaches.

The naming scheme presented in this work proposes a technique for precisely

modeling the run-time behavior at singleton call sites. Our approach is based on

classic data-flow techniques. Experimental evaluation of the analysis indicates that

its cost is practical and i t achieves high precision. The analysis successfully resolved

the vast majori ty of call sites in our subject components by associating them with

appropriate precise object names.

The analysis is a major step towards representing run-time receiver objects in

reverse-engineered U M L sequence diagrams, but clearly some open questions remain.

To start wi th , additional refinements for resolving more singleton call sites should be

investigated. Also, non-singleton call sites need to be handled by creating a naming

scheme for representing such sites. Once a scheme has been created, a static analysis

needs to be designed for obtaining the information required by the scheme.

57

APPENDIX: A

A data-flow problem is distributive i f each of its transfer functions is distributive.

A transfer function / for our problem is distributive if f{x A y) = f{x) Af{y) for all

maps x and y. Proof that all transfer functions defined in Chapter 3 distribute over

the meet operation (defined in the same chapter) is as follows.

The simplest transfer function presented in Sections 3.3 and 3.5 is the identity

function where f { S n) = Sn. This transfer function is associated with program state­

ments such as vi[i] = V2 and wi th interprocedural edges connecting call nodes to

return nodes when the called method does not return an object. Since the transfer

function is the identity and has no effect on the map, Vu G V (/ (5 0)) (u) = Sa{v) and

U[Sb)){v) = Sb{v) so U{Sa)){v) A (/ (5 6)) (U) which is the same as (/ (5 0) A / (5 6)) (v)

equals Sa{v) A S^v). Therefore, the map f{Sa A Sb) is the same as the map Sa A Sj.

Another simple transfer function is f { S n) — T which is associated with interpro­

cedural edges connecting exit nodes to return nodes, when the called method does not

return an object reference. Regardless of what value a variables is mapped to in Sn,

everything is mapped to T in f { S n) , so G V { f { S a)) { v) = T, {f{Sh)){v) = T , and

{f{SaASb)){v) = T . The meet of T with T is T , so Vu G V{f{Sa)){v)A{f{Sb)){v) also

equals T . Therefore, this transfer function also distributes over the meet operation.

Consider now the three transfer functions which only change the original map

slightly by mapping a variable to a specific lattice element:

f { S n) = Sn[v ^ T] , f { S n) = Sn[v ^ I], f { S n) = Sn[v H . J.]

58

transfer function / (5a) f i s b) f{Sa A 5 6) / (5 a) A / (5 6)

f { S n) = Sn[vc^T] vc T t i l H4 T Uc ^ T U c T
f { S n) = Sn[vc ^ I] vc i-> / vc i-> / r r H> / Uc l->- /

f { S n) = Sn[vc ^ ±] V c ^ r 1. Uc i - ^ -L

Table A . l : Assignment of constant value

As shown with the identity transfer function, for all the variables for which the transfer

function has no effect on the original map, the following fact holds:

Identity fact: {Sa A Sb){v) = { f { S a A Sb)){v) = (/ (&) A f{Sb)){v)
yv eV such that {f{Sn)){v) - Sn{v)

As a result, in order to prove that these functions are distributive, we need only to

show that for the variables that are assigned new values by the function, the function

distributes over the meet operation. Let u c be the variable that is mapped to a

different lattice element as a result of the transfer function. Table A . l shows that the

function distributes over the meet operation for u c . Therefore these transfer functions

are distributive. Note that the value that u c is originally mapped to in 5 a and the

value i t is originally mapped to in 56 do not matter.

Let us now consider the transfer functions associated wi th basic assignment state­

ments such as Wi = Vi. The function is f { S n) = Sn[wi i-4 Sn{vi)]. Once again, due to

the identity fact, i t is only necessary to examine the variable mapped to a new value

by the transfer function. Let Wi be the variable that is assigned a new value, the

value of U j . Table A.2 shows that the function distributes over the meet operation for

Wi, Note that element x and element y are distinct lattice elements and that the last

row of the table applies when x ^ T and y ^ T.

59

Sa / (5 a) sb nsb) SaASb f { S a A S b) / (5 a) A / (5 6)

Vi t-^- X
Wi ^ X
Vi i—y X Vi^ -L Vi>-^ _L iH*-* ±

Wi i-t JL

Vi*-> 1.

1—>• J_

Vi 1 ^ -L

Vi ^ X
Wi^ X
Vi i—y x Vi^T

Wi ^ T
Vih^T Vi ^ X

Wi ^ X
Vi ^ X

Wi' y X
Vi^t X

Vi ^ X
Wi*-¥ X
Vi^ X Vi ^ X

Wi ^ X
Vi ^ X Vi I—} X

Wi^f X
Vi^f X

Wi ^ X
Vi ^ X

Vi*~t X

Wi ^ X
Vi ^ X

W i ^ y

Vi^-y Vi^ -L

Wi^t J-

Vi^ JL

Wj i—> _L
Uj h-> ±

Table A .2: Assignment of variable value

The only remaining transfer function is f { S n) = T m a p [w i »-> Sn(vi)].. .[wk i->

Sn{vk)] which is associated wi th parameter passing. Like the transfer function that

assigns every variable to T , Vu G F such that (/ (5 n)) (u) = T , (/ (5 a A 56)) (u) =

(/ (5 a) A / (5 6)) (u) . As a result, once again, i t is necessary only to examine the

variables mapped to new values by the transfer function. This was done for the last

function in Table A .2 . The same table applies for this transfer function, showing that

for all W j such that 1 < i < A; where Wj is assigned the value to which Uj is mapped,

(/ (5 a A 56)) (u) = (/ (5 a) A f{Sb){v). Therefore this last transfer function is also

distributive proving that all of the transfer functions in Chapter 3 are distributive

over the meet operation.

GO

BIBLIOGRAPHY

[1] L. 0 . Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, D I K U , University of Copenhagen, 1994.

[2] R. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley, 1999.

[3] L . Briand, Y. Labiche, and Y. Miao. Towards the reverse engineering of U M L
sequence diagrams. Technical Report SCE-03-03, Carleton University, 2003. Also
available in Working Conference on Reverse Engineering, 2003.

[4] W. DePauw, E. Jensen, N . Mitchell, G. Sevitsky, J. Vlissides, and J. Yang.
Visualising the execution of Java programs. In Software Visualization, LNCS
2269, pages 151-162, 2002.

[5] M . Fowler. UML Distilled. Addison-Wesley, 2nd edition, 2000.

[6] R. Kollman and M . Gogolla. Capturing dynamic program behavior wi th U M L
collaboration diagrams. In European Conference on Software Maintenance and
Reengineering, pages 58-67, 2001.

[7] C. Larman. Applying UML and Patterns. Prentice Hall, 2002.

[8] R. Oechsle and T. Schmitt. JAVAVIS: Automatic program visualization with
object and sequence diagrams using the Java Debug Interface (JDI). In Software
Visualization, LNCS 2269, pages 176-190, 2002.

[9] GMG. UML 2.0 Infrastructure Specification. Object Management Group,
www.omg.org, Sept. 2003.

[10] T. Richner and S. Ducasse. Using dynamic information for the iterative recovery
of collaborations and roles. In Intemational Conference on Software Mainte­
nance, pages 34-43, 2002.

[11] A. Rountev and B. H. Connell. Object naming analysis for reverse-engineered
sequence diagrams. In International Conference on Software Engineering, May
2005. To appear.

61

[12] A. Rountev, S. Kagan, and M . Gibas. Static and dynamic analysis of call chains
in Java. In International Symposium on Software Testing and Analysis, pages
1-11, July 2004.

[13] A. Rountev, A. Milanova, and B. G. Ryder. Points-to analysis for Java based on
annotated constraints. In Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 43-55, Oct. 2001.

[14] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis for testing
of polymorphism in Java software. IEEE Transactions on Software Engineering,
30(6):372-387, June 2004.

[15] A. Rountev, O. Volgin, and M . Reddoch. Control flow analysis for reverse engi­
neering of sequence diagrams. Technical Report OSU-CISRC-3/04-TR12, Ohio
State University, Mar. 2004.

[16] J. Rumbaugh, I . Jacobson, and G. Booch. UML Reference Manual. Addison-
Wesley, 1999.

[17] M . Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis wi th
applications to constant propagation. Theoretical Computer Science, 167:131-
170, 1996.

[18] M . Sharir and A. Pnueli. Two approaches to interprocedural data flow analy­
sis. In S. Muchnick and N . Jones, editors, Program Flow Analysis: Theory and
Applications, pages 189-234. Prentice Hall, 1981.

[19] T. Systa, K. Koskimies, and H. Muller. Shimba—an environment for reverse
engineering Java software systems. Software-Practice and Experience, 31(4):371-
394, Apr. 2001.

[20] P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams from
C-I--I- code. In International Conference on Software Maintenance, pages 159-
168, 2003.

[21] R. Vallee-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundare­
san. Optimizing Java bytecode using the Soot framework: Is i t feasible? In
International Conference on Compiler Construction, LNCS 1781, pages 18-34,
2000.

02

