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CHAPTER I

INTRODUCTION

In recent years the concept of digital or sampled-data systems has
becoﬁe a reality in the field of Communications. Such systems have
often proven to be more efficient, less complicated, and much faster
means of sending and receiving various types of signals than their
continuous—-time predecessors.

Several mathematical studies have been made in the past ten years
concerning the feasibility of particular networks or elements of digital
communications systems. One such study was performed by the Stanford
University Systems Theory Laboratory. The primary objective was to

describe and analyze the concept of an adaptive filter.

The term adaptive filter might be defined as a device that processes

incoming signals or other data so as to produce a desired response, with
the added feature that it is self-optimizing and may be adjusted in order
to minimize some chosen performance or error criterion.

The purpose of this thesis is to simulate various types of adaptive
filters using a digital computer and to study and analyze their perfor-
mance under certain input/output requirements and for variations in

design parameters.



Prior to presenting the computer programs and the experimental
results, some of the background theory developed by the Stanford Systems

Laboratory will be discussed.



CHAPTER II

THEORY

The term "filter" is often applied to any device or system that
processes incoming signals or other data in such a way as to eliminate
noise, or smooth signals, or identify each signal as belonging to a
particular class, or even predict the next signal from moment to
moment. The term "adaptive' used in tﬁis text refers to the ability
of a system to self-optimize or self-adjust its variable parameters in
order to optimize some chosen performance criterion.

The type of adaptive filter that will be discussed is a sampled-
data system in which the input and output signal levels exist at only
fixed instants of time, forming numerical sequences. Thus the input
and output relations can be described by means of difference equations.

Two kinds of processes take place in an adaptive filter: training
and operating.. The training process (adaptation) is concerned with
adjusting parameters (in this case variable weights or gains). The
operating process consists in forming output signals by weighing the
various inéut (and or feedback) samples, using the final optimum weight
values resulting from the training prbcess.

During the training process an additional input signal, the

"desired response', must be supplied to the filter in addition to the



usual input signals. It is precisely the difference between this
desired signal and the actual filter output which forms an error signal
used’to correct or adjust the weights between successive input sambles.

The performance criterion used throughout this paper will be
minimum mean square error between desired and filter outputs. A least
mean square algorithm based on a gradient search or "method of steepest
descent" will be used as the optimizing scheme for weight adjustment.

In the caée of a purely feedforward or transversal adaptive filter,
the quadratic form for the mean square error "surface" as a function of
the weight settings is assured and a unique minimum exists. However,
the performance criterion must be modified slightly to eliminate the
possibility of local minima in this same error surface when a feedback
system is employed. Each case will be thoroughly discussed in this
section.

Although much of the theory presented will refer to statistical
properties of the input samples, it is a simple matter to adapt these
ideas to deterministic signals for which means and variances have little
meaning. The same filter operations are valid in both cases.

Now that a general view of adaptive filters has been presented, it
is appropriate to discuss the mathematics of particular designs of these

filters.

A. The Feedforward Discrete Adaptive Filter

The analysis of the feedforward adaptive filter performance will be
based on a study of the system shown in Figure 2-1. Stationary input

signals will be assumed.



A set of input signals is weighted and summed to form an output
signal. The inputs are assumed to occur simultaneously and discretely
in time.

The error signal at time L is given by:

N
E(L) = D(L) - Y(L) = D(L) - } Wi X(L - (i-1)) (1)
i=1
where

D(L) = the desired response at time L

Y(L) = the filter output at time L

X(L) = the input at time L

Wi = the ith variable gain or weight

The square of the error given by (1) is:

N N
E2(L) =D2(L) + )} )} Wi Wy X (L - (1-1)) X (L - (3-1))
i=1 j=1
N
-2D() ) Wy X (L - (i-1)) (2)
i=1

The expected value of this error squared (the mean-square error)

is given by:

N N
E2(L) = D2(L) + [ ] Wy W5 ¢(X{,X3)
i=1 j=1

N
-2 ) Wy ¢(Xi,D) (3)
i=1 o

D(L) X(L - (i-1))

where  ¢(Xi,D)

(@ - (I-D) XL - G-1))

¢ (X1,X5)
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are the statistical correlations between input and desired response,
and combinations of input samples respectively.

It may be observed that for stationary inputs, the mean-square
error is a second-order or parabolic function of the weights so that
a unique minimum may be found. The means that will be used to accomplish
this is known as the method of steepest descent.3’8

The steepest descent technique uses gradients of the performance
surface in seeking a minimum point on the surface. The gradient at any
point on the performance surface may be obtained by differentiating the
mean-square error function. The ith gradient component from (3) is:

3EZ (L) x
—_— = - s . 4
- 2 $(X1,D) + 2 jgl W5 ¢(X1,X5) (4)

, that minimized E2(L),

To find the optimal set of weights, WpMs

set VE2(L) = 0.

VE2(L), = -2 9(X,D), + 2 W, [9(X,X)] (5)

using matrix notation where

l¢(X,D)' EQ(Xi,D), ¢(X29D)9 eov ey ¢(XN9D)’
HE WL, Wy eeel., Wy
(00X, 1 = [$CKLLXD) «eneee 6(RE,XY)]

O (XoXi) seenen ¢'<XN,xN)J




Accordingly,

Wis, = $GLD), [0(X,0)] 7 (6)

An expression for the minimum mean-square error may be obtained

in the form ¢
E2(L) = D2(L) - ¢(X,D) wLMs] (7
MIN

In seeking the minimum error by the method of steepest descent,
an initial set of values is chosen for the weights. The next set
weight values is obtained from the previous set by making a change in
the weights in a direction opposite to the gradient vector of the error
surface. If the mean-square error is reduced with each weight vector
change, the process will converge on the stationary minimum regardless
of the choice of initial weights.

The method of steepest descent for the feedforward adaptive filter

weights may be expressed as a relation

—= PREViOUS
WpRESENT = Wprevious + ks VEZ Ciycigp ) (8
CYCLE . CYCLE L }

where kg is the adaptation constant of proportionality which controls
the rate of change of the adaptive process.

The linearity of the gradient as a function of the weights and the
quadratic form of the error surface, providing freedom from local minima,
make the method of steepest descent a very desirable technique for this

adaptive process.



It can be shown that the weights undergo geometric (discrete
exponential) transients in relaxing toward the error surface minimum.
If the unit of time is taken to be one iteration cycle, a time constant
-1/T

can be defined as the time constant of an exponential envelope e

where T is the constant. If,

T >> 1 then Tp = EI-C_T (9)
s 4p

where Tp is the time constant of the pth weight expressed in a proper
coordinate syst:em8 and Ap is the pth eigenvalue of the correlation
matrix [¢(X,X)]. The number of natural modes is equal to the number of
weights N. |

Widrow has shown that the steepest descent adaptation process is
stable when all Tp > 1/2. Since the eigenvalues of a'correlation matrix
are always 2> 0, the only way that stability can be assured is for the
conditions |ks AMAX} <1 and ks < 0 to be true. A bound can then be

placed on the adaptation constant kse

- 1 <ks<0o (10)

AMAX

In practice, the true value of the gradient vector for the mean-
square error surface is seldom available. To overcome this difficulty,
a Least Mean-Square (LMS) Adaptation Algorithm offers an easy procedure
for implementing the method of steepest descent. This algorithm uses
méasured gradient estimates in place of true gradient values. These
estimates may be ﬁnoisy" (contain errors) but the error can be minimized

through careful application of the LMS algorithm.



10
In effect the algorithm employs the gradient vector approximation

for time L

JE2(L), = JE2(L), = - 2 E(L) X(L), * (11)

ALl that is needed in order to estimate the gradient is the present

input-signal vector X(L) and its associated scalar error E(L). It

can be shown thatl(VEZ(L))’=lVE2(LX and thus the gradient estimate is

unbiased.8
The final form for the LMS algorithm for adjusting the weights can

be expressed, using the gradient approximation, as

PREVIOUS PREVIOUS
W(PRESENT, = W(PREVIOUS, - 2 kg E ( ) X ( (12)
CCoae)  Covar ) crcte ) * Ceyeie )

or

W(L), = W(L-1) - 2 kg E(L-1) X(L-1)

for the weight vector at time L.

The expression for the adaptation time constant using the LMS
algorithm is the same as stated earlier in (9). The bounds on kg which
insure stability of the LMS algorithm may be expressed in a different

manner than (10).8

1
0> ks > = T3 : (13)

Tz,

where ll X IIZ is the squared magnitude of the input vector.
| —

X(L) consists of all input samples at time L which affect the output
e Cey X(L), X(L—l), ss ey X(L_(N_l))-
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Thus If the maximum input vector magnitude is known or can be
estimated closely, the adaptation constant stability range is well
defined without knowledge of the eigenvalues of the correlation matrix.
If it is not known a priori, then the magnitude can be estimated and
updated as more input-signal observations are made.

As was stated previously, the difference between the true gradiené
and the measured gradient estimate used in the LMS algorithm can

introduce error or gradient-measurement noise. After transients in the

adjustments essentially die out (3 to 5 time constants of slowest natural
mode), there can still be random fluctuations of the weight values about
their LMS-optimal values. If the input signal is deterministic, then
such "noise" will not be observed since the true gradient and measured
gradient are equal.

Widrow has gone through extensive analysis to show that the

amplitude of this steady state noise has a statistical relationship to

the input signals expressed by8
[e(V, V)] = 4 (Efpy) [9(X,X)] (14)
where r- -
[(OCV,V)] = | vyp Vg ViL Vo eee..
VNL viL ooooo-nooVNL VNL
Vo = 9E2(L) _ 3E2(L)
iL oW1 W1

2
EMiN = minimum mgan square error
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He has also shown that the average excess mean-square error due

to adaptation in the steady state is related to the normal mode time

8

constants by
—_ —_— N

2 - E2. =31 (g2 1

(E2(L)) - Bjy = 5 (Bfpy) pzl T (15)

summed over all modes p.

it is observed that if the adaptigg process is done slowly (small
ks), the Tp's will be large and theoretically the excess mean-square
error can be made arbitrarily'small. Slow adaptation acts as a gradient

noise filter.

B. The Feedback Discrete Adaptive Filter

The analysis of the feedback discrete adaptive filter will be based
on a study of the system shown in Figure 2-2.
A set of input signals and a set of previous output signals are
weighted and summed to form the output signal. When the filter is iIn
the normgl mode aftef adaptation is complete, the output at time L may
be expressed as a difference equation of the form
N+l N
Y(L) = [ Ap XL - (1-1)) + [ By Y(L - 3) _ (16)
i=1 i=1
The error criterion used for the feedback adaptive filter is
slightly different from that used in the feedforward case. Mantey4 in
his study of such systems has proven that the sum-squared difference
criterion in which the.error at time L is given by
CE@ =) - YA an

where D(L) is the desired response at time L
and Y(L) is the filter output at time L given by (16),
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will not have a unique set of weight values for the miniﬁhm mean-—
squared error. It can be shown that the error surface

(o] 00

s= ] Ew?2= ] o -yw)n? (18)
k=0 k=0

is quadratic in the feedforward weights Aj but not in the feedback
weights Bj. So if the feedback weights are not fixed, there is a

high probability that local minima will exist on the error surface S..

In fact, the partial derivative of S with respect to each of the weights
Bi is a function of order N + 2 in these variables. Thus the possibility
of as many as N + 2 real solutions to the equation for the minima,

3 . o, exists.4
9B4

Therefore, the desirable method of steepest descent for determining
the optimal éet of weight values could fail.

In order to circumvent this problem a modified quadratic performance
criterion with a unique minimum can be establi;hed. Much of the analysis
of such an error surface is based on subtle theory of Z-Transforms aud
will not be presented here.4 However, physically, this performance
measure is the sum of the squares of the differences between the network

output and the desired output, with the modification, that, during the

synthesis or adaptation process the desired output is feedback instead

of the actual filter output.
This error surface is quadratic in all of the variable weights and
therefore has a single, optimal set of weight values for the minimum.

In fact, if a set of values exists for which (18) vanishes, then this



solutioﬁ also makes the modified error surface vanish. So this
criterion as a measure of ''goodness" is established.é
Under the new criterion the error at time L is given by
N+1 N
E(L) = D(L) - 121 A{ X(L - (i-1)) - jgl Bj D(L-j)

The square of the error in (19) is

N+1 N+1
E2(L) = D2(L) + § § A5 A X(L - (i-1)) X(L - (k-1))
i=1 k=1
N N .
+ ] 1 Bj By D(L-j) D(L-k)
j=1 k=1
N+l N
+2] ] Ay Bj X(L - (i-1)) D(L-J)
i=1 j=1
N+1
- 2D(L) [ A{ X(@L - (i-1))
i=1
N
- 2D(L) ] Bj D(L-j)
j=1

The mean-squared error is given by

N+1 N+1
E2(L) = D2(L) + | ] Aj Ag 6(Xi,Xk)
i=]1 k=1

) N N
+ ] 1 Bj By ¢(Dj,Dk)
3=1 k=1
N+l N ,
+2 § ] A Bj 6(X1,Dy)
i=1 j=1
N+1 N
-2 ] Af ¢(X4,D) = 2 ] Bj ¢(D,Dj)
i=1 j=1

15

(19)

(20)

(21)
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X(L - (i-1) X(L - (k-1))

where ¢ (X4,Xy)

¢(D3,Dx) = D(L-j) D(L-k)
$(X1,D3) = X(L - (i-1)) D(L-J)
¢(X3,D) = X(L - (i-1)) D(L)
$(D,Dj) = D(L) D(L-3)

are the statistical correlations between various combinations of input
and desired output samples.

Again the method of steepest descent will be employed to seek the
error surface minimum. The ith gradient component for the feedforward

weights from (21) is

;;j;L"L =2 [ Ao(Xi,X) +2 [ By ¢(X4,D4)
i k=1 j=1

- 2 ¢(X1,D) (22)

and the jth gradient component for the feedback weights is given by

) N N+1
§E§§L1'= 2 I By ¢(D§»DK) +2 [ Aj ¢(Xi,D5)
J k=1 i=1
- 2 ¢(D,Dy) (23)

The optimal weight vectors, ApMg and Bpmg that minimize E2(L)
are obtained by setting the partial derivative expressions equal to zero

and solving two sets of vector equations simultaneously.
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A ys = ($(X,D) - (¢(D,D) - &(X,D)

[¢(x,X)]7L [2(X,D)]) ([¢(D,D)] - [#(X,D)]

[o(x,%)17L [ox,D) 1)L [o(X,D)]) [&(X,X)]7L

Byms = (#(D,D) - &(X,D) [¢(X,X)]7L [e(x,D)])

([¢(D,D)] - [¢(X,D)] [¢(X,X)]_l [¢(X,D)1)_1 (24)
where

[6(D,D)] = [ 6(D1sD1) eeeee 6(Di,DN) |
| $(ONLDY) eeeee $(DNSDN)

[0(X,D)] = [$(X1,D1) +evves 6(X1.DN) |
~¢(XN;1,D1)......¢(XN;1,DN)J

.EKD,D), H Lfgpl,D), ¢(D2,D),....., ¢(DN,D)]

L‘b(XsD)l 2 1¢(Xi’D)’ ¢(X29D)9 sesee ¢(XN+19 D)l

and the other correlation mgtrices are identical to those in the feed-
forward case. Statistically stationary signals are assumed.

In order to implement the system a measured gradient estimate
similar to that developed for the feedforward case is used. From (2D)

the gradient estimates are obtained.
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2 |
BN L 1y i)

3[EZ(L)]

3 By = -2 E(L) D(L-}) (25)

As in (11) the gradient vector approximation for time L,

lEEZ(L),z SEZ(L)P has been used.

The final forms for the LMS algorithm for adjusting the weights

can be expressed as

AL), = A(L-1) - 2 kg E(L-1) X(L-1) (26)

for the feedforward gains at time L, and

B(L) = B(L-1) - 2 kp E(L-1) D(L-1) (27)

for the feedback gains at time L,

where kj = adaptation constant for the feedforward weights
ko = adaptation constant for the feedback weights
X(L-1) = the vector of input samples in the filter at time L-1
| . |
D(L-1) = the vector of desired response samples in the filter
L =5

at time L-1.
By referring to (13) the stability bounds on the adaptation
constants kj and kj can be established easily since the LMS algorithm

for the feedback adaptive filter is the same as that for the feedforward

case.8
1
0>ky >~
TX 2
1 , .
0>k >~ —— (28)

[Ip ]2
" "MAX
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If a single adaptation constant kg for adjusting all weights is
desired, then a value that lies within both intervals must be chosen.
A typical bound for kg, although somewhat stricter than required,
would be

N
0>ks >~ (29)

TXTIZ_+ 110,112

All weights undergo geometric transients in relaxing toward the
error surface minimum. The expressions for these adaptation time
constants are exactly the same as those developed for the feedforward

case in (9).8

-1

To = 2%1 2p

(30)

for the feedforward weights, and

Tq * 7Rz X
for the feedback weights, where Ap is the pth eigenvalue of the
correlation matrix [¢(X,X)] and Aq is the qth eigenvalue of the
correlation matrix [¢(D,D)]. The number of natural modes is equal to
the number of weights 2N + 1.

If a single adaptation constant kg is used, then kj = k2 = ks in
(30).

It is evident that for non-deterministic signals gradient-measure-
ment noise in the steady state will be observed because the actual and
estimated mean-square error gradients are not equal. But no specific
~ statistical quantities for the amplitﬁde of these '"noise" fluctuations
about the optimal weight values has been devgloped for the feedback

adaptive filter.



In Chapter V the experimental results will be presented. It is
hoped that through analysis of these data a hypothesis concerning the
merits of using feedback might be formulated. Because the output of
the feedback adaptive filter is a function of previous outputs and

hence of all past inputs, there is an advantage of more 'working"

knowledge for the filter in this case. The effect remains to be seen.



CHAPTER III

DISCUSSION OF TEST PROBLEMS

In order to study the adaptive filter under a wide variety of
conditions, three very different problems were considered. For each
case, given a known input, a certain desired output was specified.

The operation of adaptive filters utilizing only feedforward weights,
or only feedback weights, or a combination of the two was studied and
analyzed in each of the three cases,

Computer programs were written to simulate the filter signal
processing and internal adjustment or optimization schemes. These
programs were constructed so that they would be easy to change to
accommodate the three problems considered and the variation of filter
parameters required. More will be said about this phase of the
experiment in Chapter IV,

For each type of adaptive filter the number of weights or variable
gains, the rate of adaptation, and the number of iteration or adjustment
cycles were vari;d in a widé range so that their effect upon the filter
response could be examined. The results will be discussed in Chapter V.

At this time it is appropriate that the three problems be defined

and discussed both mathematically and practically.

21
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A. SIN X/X Continuous Time Response

Most of the literature published on the subject of adaptive
filters is concerned with continuous time responses. Both the input
and desired output signals are zero for only a finite number of points.

Therefore, it seemed advantageous to formulate a problem that
utilized only continuous time waveforms for the first test of the
adaptive system. By analyzing these results any unforeseen difficulties
in the simulation programs or in the application of the theory might be
detected early.

The time functions chosen for this phase of the experiment were
of the SIN X/X type. Since it was desired to make the filter response
causal and since the computer simulation used subscripted variables
(the subscripts must be positive integers), only the part of the wave~
forms for t > 0 could be utilized. The input sampling began at t = 1
and continued every integer time unit for the duration of the sampling
interval.

The input signal chosen was

and the desired output signal chosen was

d(t) = 3 —S—I—“Iit—:—t—/-g u(t)

where u(t) is the unit step function. Time delays through the filter

were ignored.
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The corresponding Fourier Transforms for these waveforms are’

X(@) = 5= (p1/g (@) * D))

1
5 (P1/g (@) * (16(w) + 1))

ZPi/g @, - 1/8 < ws 1/8

f

R

9 > 1/8; w < - 1/8
213 ey A A /

where p (w) =1, -1/8 5 wg1/8
1/8

0 otherwise
and D(w) = 3X(w).

Since the system is linear and time-invariant the continuous time
impulse response of the filter can be found from its Fourier Transform
H(w).

Hw) = Dw)/X(w) =3 -o00<w < o

This is effectively an all-pass filter with linear amplifying
characteristics at all frequencies. Such a filter has an impulse

response of the form

h(t) = 38(t) .

In addition there would probably be some phase function e—je(w)
associated with H(w). However, such a response can be made causal and
realizable with proper choice of 6(w) since the Paley-Weiner Criterion
1s satisfied and the integral

?P In 3 dw
-0 1+ w2

converges.5
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This particular problem really has little practical importance and
was devised solely as an initial test of the simulated system using
continuous time waveforms. However, an analysis of the results from
this phase of the experiment provided valuable information concerning

adaptation characteristics of the filter.

B. Square Pulse Distorted by RC Channel

The next problem considered was that of reconstructing a
rectangular pulse that had been distorted by transmission through a
channel with an RC (exponential decay) time-invariant impulse response
characteristic.

In order to set up the problem assume that the square pulse f(t)
shown in Figure 3-1 has been transmitted through a medium with an
impulse response determined to be very similar to the time waveform
h(t) shown in Figurg 3-2 and have a frequency characteristic displayed
in Figure 3-3. The output signal x(t) will be the convolution
f(t) % h(t) since the channel is linear, deterministic, and time -

invariant.

x(t) = £(t) % h(t)

= /2 X TED/RC yery [u(T) - u(r-10)] dT

ko ft e—(t—T)/RC d4T - ft o= (t=T)/RC dT]
RC 0 10

0Lt g oo 10 £t £ 0

k 1-et/RC) [ 0¢tg10

k e t/RC (L10/RC_1y 5 < ¢t < oo
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In this particular case k was given the value one for simplicity
and the RC time constant was chosen to be 10. The reason for selecting
this value for RC was that it insured enough distortion to eliminate
any facsimile of the flatness of the original pulse, which would defeat
the purpose of the experiment.

Figure 3-4 depicts the output waveform x(t).

This distorted signal was then applied as the input to the
simulated adaptive filter system. The desired output was the original
pulse. Tests were then made to determine how well the filter could
adjust so that it would reconstruct the square pulse and compensate
for the channel distortion. Time delays were again ignored.

The problem considered here, although somewhat narrowed in scope,
has many practical applications. The need for general purpose
"repeaters" to reduce the uncontrollable distortion caused by trans-
mission media atmospheric conditions, local environment interference, and
receiver front end noise has often been shown. Linear amplifiers alone
will not suffice when the waveform shape has undergone great changes.

For the purposes of the simulation study a deterministic channel
impulse response was assumed. In general, this problem would be handled
statistically, considering the channel as representative of a
stochastic process. But, as previously discussed, the filter operation
is optimum under these conditions if certain statistical properties are

known.
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C. Square Pulse Distorted by Additive
Gaussian Noise

‘The final problem considered in this experiment was that of
reconstructing a rectangular pulse upon which additive White Gaussian
Noise had been superi?posed. The method used to simulate the Gaussian
Process and provide the additive samples needed is discussed thoroughly
in the first part of the appendix. It was assumed, for the sake of
simplicity and because no test for checking serial correlation was
available, that the samples were uncorrelated and hence independent.6
The distribution had zero mean and unit variance approximately.

Figure 3-5 shows a block diagram of the simulated system. The
square pulse waveform was sampled at unit time intervals and a noise
sample was added at each instant to form tﬁe input signal to the filter.
The desired response was the "clean" pulse. Again time delay through
the filter was ignored. |

The purpose of this phase of the experiment was to determine how
effectively the filter could smooth out or reduce the noise distortion
on the pulse. The basic difference between this problem and the
previous two is that the filter input is actually a stochastic process
with known statistical properties rather than a deterministic signal.

Most types of thermal noise such as that encountered at the
receiver front end or in circuit elements such as resistors and gas
tubes may be représented as additive broadband Gaussian Noise. In many
other situations noise interferences are assumed to be Gaussian for the

purpose of simplifying analysis.



N

2

INIL o 0

wa3sAg 9STON ueyssnen pajernurs *G-¢ 2andrg

4
+
el el
A
—4 4 dI3Lnid
wﬁmwﬁ.m JALAdYAY

-4

JWIL 0\

POY.Y S 132

/




So this problem has many practical applications and represents

one of the most common noise models used today.
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CHAPTER IV

COMPUTER SIMULATION

There were two computers available féf the simulation, the IBM
7094 and the Digital Equipment Corporation PDP-9. The former was used
for the Gaussian Noise problem, since it possessed a random number
generator in its external function library.9 The PDP-9 was used in
all other cases.

The programs were written in standard Fortran IV language.

Figures 4-1, 4-2, and 4-3 show the general flow charts describing
all of the simulation programs. Figure 4-1 displays the continuous
time (one-pass) sampling case in which minimum memory storage of past
input samples is reduired during the adaptation process. Figure 4-2
depicts the repetitioﬁ case in which a certain number of input samples
(25 in this case) are stored during the first pass and then repeated
several times at the input during adaptation. This method is especially
powerful for time-limited signals or continuous signals which have most
of their energy contained in a small time interval.

Figure 4-3 is common to both cases and shows the calculation of the
filter output and mean-square error after the adaptation process has been

completed. The same input samples were applied here as during the

filter learning cycle.
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The final form of the computer programs in Fortran IV language
as well as a table listing the important program variables and their

meaning will be presented in part B of the Appendix.
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CHAPTER V

EXPERIMENTAL RESULTS

This section is devoted to a presentation and explanation of some
of the important results obtained from the adaptive filter simulation.
Each of the three problems explained in Chapter III will be considered

separately.

A. Eﬁ%%}ﬁ Continuous Time Response

All of the simulation work on this phase of the experiment was
performed on the DEC PDP-9 Computer. Three parameters (the adaptation
constant, the number of adaptation cycles, and the number of weights)
were varied over the widest range £hat computer storage limits and
system stability would permit. One hundred output samples from the
adjusted filter were observed in every case and a time-averaged square
error (T.A.S.E.) was calculated. This error can be expressed by the
equation

100

T.A.S.E. = ) (D(L) - Y(L))2/100 (31)
L=1

where D(L) the desired response at time L

Y(L)

the adjusted filter output at time L

36
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The initial weight values were set equal to unity before each
computer run.

Table 5-1 shows the stability bounds for the adaptation constant
kg calculated from equations (13) and (29) of Chapter II. During the
course of the entire experiment these equations proved quite adequate
both for deterministic and statistical inputs although their accuracy

was much better for the latter.

TABLE 5-1
Adaptation Constant Stability Bounds
for Sli X Continuous Time Response
#Feedforward Weights #Feedback Weights Bounds

5 0 0 > kg > - 133.8
7 0 0> kg > - 108.5
10 0 0> kg > - 76.6
3 2 0> kg >- 30.5
1 4 0 >ks >- 17.8
5 5 0> kg > - 13.4
1 9 0>kg>- 9.1

Although mﬁéh of the tﬁeory developed previously was not based on
deterministic signals, several of the ideas presented by these statisti-
cal expressions are verified in this case.

Figures 5-1 through 5-5 pertain to the feedforward adaptive filter

and Figures 5-6 through 5-9 to the feedback system.
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Figure 5=6.Feedback Adapted Filter Response,Problem A,
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In Figures 5-1 and 5-6 the adaptation constant in each case
corresponds to that for which the T.A.S.E. was minimum for all the
experimental values considered.

Two of the important characteristics of all the response curves
shown are that there is a noticeable time delay ranging from two to ten
time units at the first zero-crossing and there is a "rise time"
ranging from ten to fifteen time units before the filter outputs
approach the desired response curve.

One explanation for these phenomena is that any filter subjected
to a signal with an abrupt amplitude change will usually require a short
time to adjust. A typical example is the unit step response of a linear

5 There is a certain rise time requirement before the

phase filter.
response approaches the final amplitude.

The zero—-crossing time delay might be considered a result of this
rise time. Since the peak amplitude of the filter response was not
reached immediately, its time waveform can be expected to be delayed in
relation to the desired response with the difference in later zero-
crossing times becoming smaller and smaller.

It is interesting to observe that as the rise time becomes shorter
the zero-crossings become closer as expectéd.

For each type of filter, as the number of weights was increased
the response became poorer in shape aﬁd the mean-square error became
greater. This observation was made for a; equal number of adaptation

cycles and the best adaptation constant in each case. One major cause

for this might be the transients undergone by the weights in adjusting
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to the error surface minimum. For each type of filter the best
adjustment rate decreased as the number of weights increased. From
(9) énd(30) in Chapter II the transient time constants are inversely
proportional to the adaptation constant. With these time constants
increasing as the number of weights increases it seems likely that the
weight adjustment transients would affect the response of a filter with
more weights for a longer time.

0f course, (9) and (30) were developed for statistical inputs but
there is no reason to believe that a very similar relation cannot be
applied to deterministic input signals.

One observation for which no explanation can be presented is that
the optimum adaptation constant for the feedback filter was not the
"largest" (most negative). Since gradient measurement noise is not a
factor when the signals are deterministic, adapting slowly should not
be an advantage. Indeed the "largest" constant was always the best for
the feedforward filter, but a relatively small constant always proved
superior in the feedback case.

In the final analysis the filter employing both feedforward and
feedback weights seemed to perform best in approximating the desired
continuous time response. Its time averaged square error was less than
that for the pure feedforward and pure feedﬁack cases given equivalent
operating conditions, especially when 10 weights were used. However,
the feedforward filter operation was very satisfactory for the cases

examined. The pure feedback filter performed poorly in all categories.
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B. Rectangular Pulse Distorted by RC Channel

The DEC PDP-9 Computer performed all of the simulation work for
the RC Channel Distortion Problem. The same parameters mentioned in the
continuous time example were varied over the widest ranges possible.
Twenty-five output samples from the adjusted filter were observed in
every case and a time-averaged square error (T.A.S.E.) was calculated.
This error is given by

25
T.A.S.E. = [} (D(L) - Y(L))2/25 (32)
L=1

The initial weight values were set equal to unity before each
computer run. |

There were two key differences in simulation technique and filter
operation between this test problem and the continuous time example.
First, since the desired response was a time-limited waveform with all
zero values beyond ten time units, it was considered highly impractical
to perform continuous time, one-pass sampling in this case. Instead,
the first twenty-five input and desired. output samples were calculated
and repeated over and over again during the adaptation process. In
practice this would require.the filter to have a finite memory or storage
capacity available.

Secondly, the feedback adaptive filter was at a disadvantage in
this case because the twenty-five repeated desired output samples
consisted of several zero-values. The first ten desired response

samples were equal to unity, but the last fifteen were zero. Therefore,
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the feedback weights were only being adjusted during two-fifths of
the total adaptation time. In 9rder to make an objective comparison
of the three different types of filters in performing the pulse

reconstruction, an adaptation cycle scaling process was used. The

final "equalizer" in all cases was the total number of adjustments and

not the total number of complete cycles. The following simple equation

¢

was used.

SCLDCYC (NFWD + (NFBK X 2/5)) = NADJ (33)

where SCLDCYC = number of adaptation cycles after scaling

NFWD = number of feedforward weights
NFBK = number of feedback weights
NADJ = total number of weight adjustments desired

In order to use the repeat process the number of scaled cycles was
"rounded-off'" to the nearest multiple of twenty-five.

Table 5-2 shows some of the values used in this phase of the
experiment.

Table 5-3 shows the stability bounds for the adaptation constant
kg calculated from equations (13) and (29) of Chapter II.

Figures 5-10 through 5-14 pertain to the feedforward adaptive filter
and figures 5-15 through 5-19 to the feedback system.

In Figures 5-10 and 5-15 the adaptation constant in each case .

corresponds to that for which the T.A.S.E. was minimum for all the

experimental values considered.



TABLE 5-2

Adjustment Equalization

SCLDCYC
NFWD NFBK (Rounded) NADJ
3 2 125 500
3 2 250 1000
3 2 400 1500
3 2 450 1750
1 4 200 500
1 4 375 1000
1 4 575 1500
1 4 675 1750
5 5 150 1000
5 5 275 2000
5 5 425 3000
5 5 500 3500
1 9 225 1000
1 9 425 2000
1 9 650 3000
1 9 750 3500
TABLE 5-3

Adaptation Constant Stability Bounds

for Channel Distortion Problem

# Feedforward Weights

HFukEWOoONWVm

# Feedback Weights

ownNnesENNOOO

OCOOO0OOO0O

VvV VVVV VY

.606
471
.376
. 325
. 227
.151
.106
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The desired square pulse has two abrupt changes in amplitude.
These occur at time zero and at ten time units. As discussed in
part A of this chapter, the filter response exhibited rise and fall
times due to its Inability to adjust immediately. 1In the feedforward
case these rise and fall times incfeased as the number of weights
increased. Although well-defined "flat" portions for the filter
response were not evident in all of the feedback cases, it appears
that the time required to rise to the maximum response amplitude and
fall to the zero value again also increased with the total number of
weights. |

For an equal number of weights the filter employing both feed-
forward and feedback weights had the smallest rise and fall times. The
pure feedforward filter, however, had very comparable times, especially
for ten weights. The pure feedback filter had much longer rise and fall
times than either of the other types.

For each type of filter, as the number of weights increased the
response became generally poorer in shape for the samé totalrnumber of
weight adjustments and the best adaptation constant. As surmised
previously, the fact that the transients undergone by the weights in
adjusting to the error surface minimum have longer time constants with
increasing number of weights is probably the major cause for this
phenomenon.

The optimal adjustment constant for the feedforward filter was
again the "largest" (most negative). As before, a relatively small

- constant always proved superior in the pure feedback case. However,
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this time the "largest' adaptation constant worked best for the filter
using both feedforward and feedback weights. This is in direct contrast
to the continuous time problem of part A and remains without a reasonable
explanation.

The mean square error decreased as the number of adaptation cycles
increased and as the adaptation constant increased in all cases in
which only feedforward weights were used. This is not an unexpected
result when deterministic signals are involved and the method of
steepest descent is being used as the adjustment algorithm.

In general, this same observation was true for the mean square
error of the filter using both feedforward and feedback weights.

No such overall remarks can be made about the error in the pure
feedback case. There were no obvious trends which could be established.

There are threée areas which must be considered when comparing the
overall performance of the various types of adaptive filters for this
particular problem. These are response shape, response amplitude, and
adjustment time.

The combination feedforward and feedback adaptive filter had a
slightly better response shape than that of the pure feedforward filter

in most cases. However, the amplitude was much smaller than the desired

response.
The feedforward filter response had an amplitude which was very
close to the desired waveform in its best case.

The pure feedback filter was inferior in both categories.
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But the feedforward filter required several adaptation cycles
less than the combination filter to produce its reasonably good response.
This is due to the time-limited nature of the desired response.
Unless a slight improvement in response shape outweighs all other
considerations, the feedforward filter is desirable in this case.

C. Square Pulse Distorted by Additive
White Gaussian Noise

The simulation for the Gaussian Noise problem was performed
entirely on the IBM 7094 computer. The same three filter parameters
previously mentioned were varied éver the widest ranges possible.
Twenty-five output samples from the adjusted filter were observed in
every case and the time-averaged square error given by (32) was
calculated.

The initial weight values were set equal to unity before each
computer run.

Each input sample consisted of the value of the reétangular pulse
at that time plus a random noise sample from an approximate normal
distribution. The generation of this noise process is discussed in the
Appendix. r

The desired output was the "clean" rectangular pulse with no noise
present.

Several values of signal to noise ratio (S/N) were tested for
every.case to determine the effect upon the filter performance. The
statistical effect of multiplying each noise sample by a constant k is
to scale the varianée of the noise process by k2. Iﬂcreasing the

variance is equivalent to reducing the S/N.
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Since the desired response was time-limited the filters employing
feedback were at some disadvantage. In order to make the performance
comparisons for all types of filters more valid 600 adaptation cycles
were used for the feedback filters and only 400 for the feedforward
filter. This tended to equalize the total number of weight adjustments
in all cases. The compensation was not as thorough as that used in the
RC channel distortion problem but it was effective. However, one minor
difficulty was encountered in this method. The computer program was
written so that the input noise samples for the adjusted filter were
identical for all cases in which the number of adaptation cycles was
the same. Therefore, the input waveform was not identical in the feed-
forward and feedback cases. Statistically this made no difference,
but experimentally some problems could have been encountered in making
performance comparisons for a relatively short adaptation time.

Table 5-4 shows the various signal to noise ratios used in the

experiment and the approximate distribution of the normal noise process.

TABLE 5-4

Experimental Signal to Noise Ratios
and Noise Distributions

S/N Approx. Normal Noise Distribution
Absolute DB Mean L, Variance
400.0 26.0 0 1
100.0 20.0 0] 4
44.4 16.5 0] 9
25.0 14.0 0] 16
16.0 12.0 0] 25
11.1 10.5 0] 36
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The time-limited nature of the signals made it advantageous to
use the method described in the RC channel problem. The first twenty-
five signal values (10 unity values, and 15 zero values) were repeated
at the input over and over again. However, the additive Gaussian Noise
Samples were different for each time unit so that the repetition
procedure did not affect the continuous time nature of the noise process.
Table 5-5 shows the stability bounds for the adaptation constant
kg calculated from equations (13) and (29) of Chapter II. Since the

noise process had zero mean it was not a factor in these calculations.

TABLE 5-5

Adaptation Constant Stability Bounds
for Gaussian Noise Problem

# Feedforward Weights # Feedback Weights Bounds

5 0 0 > kg > = .00050
10 0 0 > kg > - .00025
13 0 0 > kg > - .00019

3 2 0> kg > - .00050

1 4 0 > kg > - .00050

5 5 0 > ks > - .00025

1 9 0 > kg > - .00025

Figures 5-20 through 5-27 pertain to the feedforward adaptive filter
and Figures 5-28 through 5-35 to the feedback system.

In Figures 5-20, 5-21, 5~-28, and- 5-29 the adaptation constant in
each case corresponds to that for which the time-averaged square error

was minimum for all experimental values considered.
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Figure 5-24. Feedforward Filter Output Mean Square Error
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One general observation can be made for all types of filters, all
S/N, and all experimental values of the filter parameters. The output
waveform was much "'smoother" than the input waveform in all cases. The
maximum amplitude change for consecutive input samples was always
greater than that for’ consecutive output samples. In other words, the
filter was reducing the variance or noise power through the adaptation
process. The smoothing effect was more noticeable as the S/N ratio
was decreased.

The best adaptation constant for all filter types when the S/N
was high was a relatively large (most negative) value. However, for
low S/N (less than 44.4) a small constant proved superior in terms of
output average square error. \

This is an anticipated result. When the S/N is high the noise
effect is small and the input signal possesses nearly a deterministic
quality. As determined from the previous two problems, there is an
advantage to adjusting at a fast rate when thé grédient measurement
‘noise effect is very small or non-existent. However, for small S/N
when the input samples are composed of a large amount of noise, adjust-
ing slowly is thought to be a remedy for reducing the steady state
gradient noise fluctuations. The experimental results fortify
theoretical expectations in this area.

The mean square error of the output was much lower than that of
the input for small S/N but was slightly higher for large S/N. This is
not alarming when it is known that the transients undergone by the weights
in adjusting to the.error surface minimum have time constants inversely

proportional to the variance of the noise process. .
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Equations (19) and (30) of Chapter ii might be rewritten for all
time constants as
-1

T =~ (34)
2 kg ©

where 02 is the variance of the noise process.

The eigenvalues of the input correlation matrix are all equal to
the variance of the process for White Gaussian Noise.7 As the
variance increases (S/N decreases) the time constant decreases.

Therefore, the weights were probably being heavily affected by
transients for high S/N cases. Calculations show that for 02 = 1,2
many more adaptation cycles than were used in the simulation would be.
needed to make transient effects negligible.

No trends could be established concerning the relations between
filter performance and number of weights.

Although no filter "rise time" phenomenon could be observed

consistently, there were many cases in which the first one or two output

_samples were well below the average amplitude level for the rest of the
samples.

Comparison of the various types of filters showed that the combina-
tion feedforward and feedback filter consistently had slightly smaller
mean square error. However, the "smoothing" effect was a little more
pronounced for the feedférward filter than for either of the other
types.

In both categories the pure feedback performance was worst but not

significantly.



No overall rating can be placed on the various types of filters
with the limited data available. But it seems that with a time-
limited desired response, the smaller adaptation time requirement

gives an advantage to the feedforward filter.
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CHAPTER VI

CONCLUSIONS

The main objectives of this thesis=-~to simulate an adaptive filter
system on a digital computer and to make a qualitative comparison
between previously developed theory and experimental results--have been
fulfilled.

In Chapter II some of the theory developed by Patrick Mantey and
Bernard Widrow for the System Theory Laboratory at Stanford University
was presented. In essence they showed that an adaptive filter based
on a mean square error performance criterion and using a gradient
search method (steepest descent) can adjust its variable weights or
gains so that a-minimum mean square difference between a desired
response and the filter output is obtained.

In the case of feedback adaptive filters Mantey has shown that
feeding back the desired response rather than the filter output during
adaptation eliminates any possibility of the error surface containing
local minima. |

It has also been shown that the weights undergo transients in
adjusting to the error surface minimuﬁ which are inversely proportional
to the adaptation constant and the eigenvalues of the input correlation

matrix.
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The stability analysis for adaptive filters has indicated that
the adaptation constant must be less than zero and greater than the
nega;ive inverse of the squared magnitude of the input sample vector.

Finally, it was shown that in the steady state the weights
undergo fluctuations about their least mean square values. This
phenomenon is called gradient measurement noise and results from the
fact that the actual error square gradient and the estimated gradient
using the Least Mean Square Algorithm are not equal. Widrow concluded
that since this excess mean square error is proportional to the
adaptation constant, a slow adjustment rate would be the easiest way
to eliminate this problem.

In all three examples considered in this experiment the theory
proved basically sound. Transients during weight adjustment were
observed regularly with the effects being most severe for small
adaptation constants.

The stability bounds on the adaptation constant were fairly
accurate for all cases. When the adjustment rate was increased to
values exceeding the maximum bound definite signs of filter instability
(exceptionally large outputs) were observed. .

For the Gaussian Noise Problem when the S/N was small the outputs
were affected by gradient measurement noise. However, the steady state
mean square error was much less when small adaptation constants were
used.

The combination feedforward and feedback filter consistently had
the smallest mean sduare error, but the feedforward filter was superior

in "smoothing" the noise (reducing noise power).
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The results for the continuous time response problem (812 x)

showed that for feedforward filtering a fast adaptation rate was best
when the input signal was deterministic but a relatively slow rate
proved superior in the other cases. This unexpected result could not
be explained. The combination feedforward and feedback filter gave
the best approximation to the desired response, although the feed-
forward filter performance was very satisfactory.

For the RC Channel Distortion Problem the combination filter had
a slightly better response shape than the feedforward filter but fell
far short of the desired response amplitude. The feedforward filter
output amplitude was very close to the desired value. A fast adaptation
rate proved superior in all cases except the pure feedback filter.

No particular mention has been given to the pure feedback filter
because its performance in every aspect was far inferior to the other
two filter types.

It is not evident to this author which type of filter (feedforward
or combination) was most outstanding overall. In instances where the

desired response is time-limited the shorter adjustment time require-

ment makes the feedforward filter most desirable. However, the fact
that adaptive filters are workable systems not only on paper but also
under experimental conditions has been initially substantiated by the

results of this thesis.



CHAPTER VII

SUGGESTIONS FOR FUTURE RESEARCH

It was not possible to explore all of the potential uses for
adaptive filters nor was it intended that this thesis be an all-
inclusive analysis of adaptive filter operation. Rather it is hoped
that this experimental work might generate further intérest in this
area.

There are several extensions to the work just completed and
several new topics which might be investigated.in future research on
discrete~time adaptive filters.

A thorough mathematical analysis of the stability regions for
feedback adaptive filters is necessary in order to determine why a
relatively small\adaptation constant proved superior to a large one
for deterministic signals.

The possibility of using the repetition method for continuous time
input signals when most of the energy is concentrated in a relatively
small time interval could be explored.

It might prove extremely interesting to carry out the computer
simulation to complete filter steady étate conditions to observe
gradient measurement noise closely. This would eliminate the weight

adjustment transients observed so often in this work.
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Other stochastic processes with different statistics might be
generated in the digital computer or in an analog computer and then
digiéized. The adaptive filter performance for such distributions as
Poisson (shot noise), Rayleigh (fading channels with random phase and
amplitude), and Gamma could be :i.nvestigated.6’7
If a method could be developed to generate non~stationary processes
or those with slowly time varying statistics, then a study of the
adaptive filter performance in this case would be extremely valuable.
Widrow has suggested that it is in this area where the adaptive filter
would have its greatest advantage over conventional designed filters.
Very little has been mentioned about the frequency response of
the adaptive filter in this thesis. But it seems plausible that such
filters could be designed and analyzed using Z~transform techniques.
Frequency spectrum studies would be another topic worth considering.
Finally, a comparison of the performances of the adaptive filter

and an optimal Weiner filter would provide important knowledge about

the advantages, if any, in using this self—dptimizing signal processor.



APPENDIX

A. Generation of Normally Distributed Samples

.In the IBM 7094 computer a random number generator is provided
as an external function RECDIS( ).9 It is designed to supply pseudo-
random floating point numbers with a uniform distribution in the
interval (0,1). Such a distribution has a probability density function
of the form
px(x) =1 b <x <1

= 0 elsewhere

It can be shown by use of the famous central limit theorem that
the uniformly distributed random numbers can be transformed into other

numbers with an approximate normal distribution having mean zero and

1,2
variance one.

"If X§,X9,....,Xy are random samples from a distribution
which has mean u and variance 02, then the random
variable

Y=V/N (i—u)/o

has a limiting distribution that is normal with mean
zero and variance one."2

N
Here X = (] Xj)/N is the sample mean.
1

For the case of the uniform distribution over the unit interval,

u=1/2 and 02 = 1/12.
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In this computer simulation of a Gaussian Noise Process 49

uniform samples were used to create a single normal sample.

In order

to check the approximate distribution of the newly generated numbers,

a program was written which grouped these samples into intervals of

size 1/2 centered about zero and also calculated their sample mean

and variance.

Table A~1 shows the results for 400 such numbers.

TABLE A-1

Distribution of Simulated Noise Samples

Frequency of Occurrence

1
0
5
22
39
65
78

78
48
39
14
7
3
1

Sample Mean = ,0328
Sample Variance = 1.0211

Interval
[~00, =3.0]
(-3.0, -2.5]
(-2.5, -2.0]
(-2.0, -1.5]
(-1.5, -1.0]
(-1.0, -0.5]
(-0.5, 0 ]

(0, 0.5]
(0.5, 1.0]
(1.0, 1.5]
(1.5, 2.0]
(2.0, 2.5]
(2.5, 3.0]
(3.0, o0 ]

92

Figure A-2 displays a comparison of the ideal normal distribution

probability with that of the 400 generated normal numbers.



93 .

SUOTINQTIISTC SATILTNUN) TEWION PaIeIdUas pue Teapl Jo uostaedwo)y °*z-v 2an3dry

ALITISVEONd NOILNGINLSIA SAILVINWND
ob° oL

B

i
*
-—
|

RN S

(o)

27

‘v
! ‘
Y SRS

|
-+

B Tt L S D PR

<

S I

T
' il
N e

!
N
N

(]
.

2O~ naEoldild ><CADIW



94
The ideal normal distribution probability function F(x) is given

by

- - L w2
F(x) = Pr (X € x) {m e e aw

for the unit variance, zero mean case.
The cumulative distribution probability expression for the 400

generated normal numbers G(N) is given by

where N(x) = the number of generated sample values < Xx.

It is obvious that these two distributions lie in the interval
{0,1] and are monotonic increasing functions in x.

The generated numbers are very nearly normal as the comparison

of the distributions show.

B. Computer Programs

The actual computer programs used in the simulation are presented
in the next few pages. In the READ and WRITE statements the numbers 5
and 6 appear regularly. These numbers refer to the devices which
perform those operations in the IBM 7094 system. For the most part
changing these calling digits and observing maximum array dimensioning
would be the only requirements to use these programs on the PDP-9 or
any other computer that compiles Fortran IV.

Table A-3 lists several of the important computer variables used
throughout the programs and gives a brief_description of their purpose.
The corresponding mathematical variables from Chapter II are given in

[ ] where appropriate.
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TABLE A-3

Program Variables

Name of Variable Definition

AQM) [Ag] MP Feedforward Weight (Gain)

AINTL (M) M'P Feedforward Weight (Initial
Value)

ADRATE [kg] Constant Controlling Adaptation Rate

B(M) (Bm] Mth Feedback Weight (Gain)

BINTL (M) Mth Feedback Weight (Initial Value)

D(L) [D(L)] Desired Output at L Time Units

EMSQ ) Time Averaged Mean Square Error

ERR [EC )] Error; Desired Output - Filter Output

ICYC Number of Iteration or Adaptive
Cycles

IREPET Number of Repetitions of 25 Input
Samples

N [N] Number of Weights (Gains); Feed-
forward Case Only

. NA : —[N+1] - . . Number of Feedforward Weights

NB [N] Number of Feedback Weights

RC RC Channel Time Constant

SMEAN Sample Mean of Random Uniform Numbers

UNNM ~ : A Uniform Number from Generator
Routine

W(M) (W] Mth Weight (Gain); Feedforward Case
Only

WTINTL (M) Mth Weight; Feedforward Case Only
(Initial Value)

X(L) [X(L)] Input Sample at L Time Units

X(L,I) - [X(L-(i-1))] Input Sample at Time L at Ith Weight;

) Feedforward Case Only
Y(L) [Y(1)] Filter Output at L Time Units
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In order to relate the mathematics of the adaption process
developed in Chapter II with the computer simulation programs a
detailed description of the important calculations will be presented.

For the feedforward adaptive filter the error at time L is

given by
N
E(L) = D(L) - ] Wi X(L-(i-1))
i=1
where D(L) = the desired response sample at time L
Wi = the ith feedforward weight or variable gain
X(L-(i-1)) = the input signal sample at time L-(i-1)

The Least Mean Square (LMS) Algorithm used to adjust the weights
during each adaptation cycle employs the gradient search Method of
Steepest Descent. This gradient search method may be expressed as a

relation

WpRESENT = WPREVIOUS t ks VEZPREVIOUS
CYCLE =~ CYCLE ___CYCLE

! )

where kg = the adaptation constant controlling the adjustment rate.

The LMS Algorithm uses a mean square error gradient estimate

instead of the true error gradient and this measured estimate is given

by

HYEZ(LX =IVE2(LZ = - 2 E(L) X(L)

where E(L) = the error at time L
lX(L) = the vector of input samples affecting the output at time L.
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Now the LMS algorithm for adjusting the weight vector may be

expressed by

WprEsENT = Wprevious ~ 2 ¥s Eppevious Xprevious
CYCLE | . CYCLE | CYCLE CYCLE

or

| -

W(L+l)l=,W(LZ - 2 kg EQL) X(L)

for the weight vector at time L+1.

Once the adaptation process has been completed the input samples
are reapplied to the adjusted filter starting at time zero. An
approximate mean square error can be calculated for the normal

operation process which uses time averages.

L
I o® - Y(K))2

E2(L) = E2 (L) = K=1
TIME AVERAGE L
N
where Y(K) = ] Wi apiusrpp X(L-(1-1) 1is the adjusted filter output
i=1
at time K.

For the adaptive filter employing feedback the error at time L

(during adaptation)is given by

N+L N
E(L) = D(L) - ] A1 X(L-(i-1)) - } Bj D(L-j)
i=L j=L
where D(L) = the desired response sample at time L
Ai = the ith feedforward weight (gain)
By = the jth feedback weight -
X(L-(i-1)) = the input signal sample at time L-(i-L)



The LMS Algorithm used for adjusting all weights in the feedback
filter is the same as that for the feedforward filter. The gradient
estimate used instead of the true error gradient for ease of

implementation is given by

-2 E(L) X(L)

VE2(L) = VE2(L)
L J L H | E— i

for the feedforward weights, and

VE2(L) = VE2(L) = -2 E(L) D(L)

for the feedback weights, where

E(L) = the error at time L

X(L) = the vector of input samples affecting the, output
E— at time L

D(L) = the vector of desired response (feedback) samples
| S

affecting the output during adaptation.

Now the LMS algorithm for adjusting the feedforward and feedback

weight vectors may be expressed by

AWHD), = AW) - 2 kg EQL) X0,

for the feedforward weight vector at time L + 1, and

B(L+1) = B(L) - 2 ks E(L) D(L)

for the feedback weight vector at time L + 1.

Once the adaptation process has been completed the input samples
are reapplied to the adjusted filter étarting at time zero. However,
the actual filter output samples are fed back instead of the desired

response samples during this normal operation mode. An approximate

98
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mean square error using time averages can also be calculated for the

feedback filter. L
,~ I o® - Y®)?

E2@) = g2 (L) - k=1
TiME AVERAGE L
. N+1 N
where Y(K) = ] Aj X(L-(i-1)) + ] Bj Y(L-j) is the adjusted filter
i=1 j=1

output at time K.



(@}

100

209

281

2072

223

204

285

206

297

FORMING SIN X/ X TYPE RESPONSE USING
FEFDFORWARD ADAPTIVE FILTERING

DIMENSION D(5€@8).W(15),Y(588),X(588,15)
REATI(5,1ZB)IN, ICYC, ABRATE, (W(M),M=1,N)
FORMAT (215, F10.5/(7F18.5))

WRITE(6,270)

FORMAT (9X, 1HN, 9X,4HICYC,9X, 6HADRATE, 31X,

C21HINITIAL WEIGHT VALUES/)

WRITE(6,231) N,ICYC,ABRATE, (W(M),~=1,N)
FORMAT (38X, 12,9X,14:,7X,F12.5,5X+5F18.5/

€C(45X,5F12.5))

D02 L=1,ICYC
002 I=1,N
X(L. T)-f.

OGCL)=3.#SIN(FLOAT(L)/8.)/(3.,1416=FLOAT (L))
X(L,1)=D(L)/3. ‘

po6 I=1,N

SUM=SEM+W(T) =X (L, 1)

CONTI~NUE

ERR=D(L)-SUM

004 J=1,N

WD) =W (UY)-2.#ADRATE#ERR#X (L, J)

CONT IMUE

WRITE(6,282)

FORMAT (//5@8X,19HF INAL WEIGHT VALUES)
WRITE(6,283) (W(J),J=1,N)
FORMAT(/12X,10F12.5)

WRITE(6,2¢4)

CFORMAT (/73¢X»L3HFILTER OUTPUT, 18X, 14HDESIRED

C OUTPUT, 15X, 14HTIME UNITS)

SUMSQ=2,

D07 L=1,I1CYC

SuM=i,

D03 I=1,N

SUV‘SUM+h(I)sX(LrI)

CONT InUE

ESO=(N(L)-SUM) ==2

Y(L)=5UM

SUMS=SuMSO+ESQ

WRITE(4,285) Y(L),D(L),L

FORMAT (26X,F15.6,8X,F15.6,12X,16)
CONTINUE

EMSN=SUMSQ/FLOAT(L=1)
WRITE(6,286)L

FORM, T(//3BX,27HTIME AVERAGE SQUARED ERROR,,

Cl15,14-CUTPUT SAMPLES)

WRITE(6,207) EMSQ
FORMAT(5@BX,F15.6////7)
STAP

END
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Q

196

219

209

13
17

14
18
202
283
204

205

FORMIMG SIN X/ X TYPE RESPONSE USING BOTH

FEEQFK[; AND FEEDBACK ADAPTIVE FILTERING

DIMEKNSTONM X(580),Y(508),D(500),B(14),A(14)

READ(S,17#INA,NB,ICYC, ADRATE, (A(K) ,K=1,NA),
€ (B(K),K=1,NB)

FORMAT (315, F10.5/(5F10.5))

WRITE(A,21€)

FORMAT (18X »2HNA, 9X,2HNB, 18X, 4HICYC,10X,
€ 6HADRATE,36X,21HINITIAL WEIGHT VALUES/)

WRITE(6,2%9) NA,NB,ICYC,ADRATE, (A(K),K=1,NA),
C (B(K),x=1,NB) _

FORMAT (1U%+12,9X,12,108X,14, 7X,F14.5,15X%,
C5F10.5/7(69%,5F10.5))

D04 L=1,ICYC

SuM=y,

D(LY=3.«CSIN(FLOAT(L)/8.)/(3.1416%FLOAT(L))

X(L)=D(L» /3.

IF(L.EZ.1)G0T019

K=L-1
D06 1=1,:P

SUMESUF+R (1) #D (K)

K=K-1

IF(K.EQ.2)60T020

CONTI ML

K=L-1

RO7 1=2,NA

SUMzSUNM+A(T) #X (K)

K=K-1

IF(K.EG,2)G0r1019 )
CONT 1R

SUM=SLiM+A (L)Y #X (L)
ERR=MN(L)-SUM

D013 J=%,NB

I1=L-J

IF(IT.EZ.B)GOTO17
B(J)=E(J)-2.%*ADRATE®ERR#D(ITI)
COMTINUE

D014 J=2,MA

II1=L-u+1

IFCIT.EL.2)GNTO018
ACI»=A()Y-2.xADRATE=ERR#X(I1I)
CONTIMIE
AC1)=A(2)-2.#ADRATE*ERR®X (L)
CONT Itwi'p

WRITE(6,222)
FORMAT(//50X,19HF INAL WEIGHT VALUES)
WRITE(E,203) (A(K),K=1,NA)
FORMAT (/1UX,10F10,5) )

- WRITE(6,234) (B(K),K=1,NB)
FORMAT (//,(13%,18F10,5))
WRITE(&6,265) -
FORMAT (//38X,13HFILTER OUTPUT, 10¥, 14HDESIRED

C OuUTPUT,1@X»1@HTIME UNITS)
SUMSO=a,

D08 L=1.,ICYC
SuM=t.
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22

19
21

206

207

208

IF(L.EQ.1;G0T021

K=L-1

009 1=1,NB

SUM=SUM+B (1) =Y (K)

K=K-1

IF(K.ES.2)G0T022

COMTTNUE

K=L-1

DO1¢ I=z,NA

SUM=SUNM+A(CT) =X (K)

K=K-1

IF(K.E2.#)GCT021

CONTIRUE

SUM=SUM~A(L1) =X (L)

ESG=(D(L)-SUM)#&2

Y(L)=Su»

SUMSC=SUMSQR+ESA

WRITE(A,206) Y(L)Y,D(L),L

FORMAT(26X,F15.6,8X,F15,6,12X,16)

CONTINUGE

EMSO=SUNSQ/FLOAT(L=})

WRITE(g,207)L

FORMAT(//30X,27HTIME AVERAGE SJUARED ERROR.,
C15,14H0UTRPUT SAMPLES)

WRITE(A,268) EMSO

FORMAT(=axX,F15.6///777)

STOP

END
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193 |

ip1

210

209

38

6@

79

202
273

204

RECORSTRUCTING RECTANGULAR PULSE THAT HAS BEEN

DISTCRTED BY RC CHANNEL USING FEEDFORWARD

ADAPTIVE FILTER

DIMENSIGN D(508),Y(580),X(500,15),W(15)

READ(5,10%) N,ICYC, IREPET,ADRATE,RC

READ(5,1%1) (W(M),M=1,N)

FORMAT(315,2F10.5)

FORMAT(7F10@.5)

WRITE(#,210)
C6HADRATE,12X,13HTIME CONSTANT,19X,21HINITIAL
€ VEIGHT VALUES/)

WRITE(6,209) N, ICYC, IREPET,ADRATE,RC,
C (W), mz1,N)

FOPM»’\T(SX’13’9X!14’12X!IS!QX’Flg.S’SX’F1@-5’
C4X,4F13.5/(80X,4F10.5))

pb2 L=1,ICYC

Do2 1=1,N

XL, )=,

CONTINUF

DO 4 M=1,IREPET

004 L=1,25

SUmM=2.

IF(M.GT.1)G0TO70

IF(L.EG.1)G0TO30

D05 I=2,N

XL IY=X(L=-1,1-1)

CONTINUF

IF(L.LE.180)GO0T060@

D(LI)=C.

X{L,»1)=EXP(~-FLOAT(L)/RCY®#(EXP(18.2/RC)-1.0)

GOTO7@

D(L)=1.¢

X{L,1)Y=(1,0~EXP(-FLOAT(L)/RC))

DO6 1=1,N

SUM=SUM+M(T)=X(LL,I)

CONTINUE

ERR=D(L)-SUM

f]O4 I--lyN

WET)=ki(1)-2.«ADRATE#ERR#X(L,T)

CONT INU'FE

WRITE(6.222)

FORMAT (//58X,19HFINAL WEIGHT VALUES)

WRITE(6,2(3) (W(M).M=1.N)

FORMAT (/10X,10F18.5)

WRITE((,204)

FORMAT (/30X+13HFILTER QUTPUT,12X,14HDESIRED
C OULTPLT,10X,1@HTIME UNITS)

SUMSO0=2,

D07 L=1,25

SUM=g.

D08 T=1,N

SUM=SU#+W (T )X (L,I)

CONT INUE

ESQ=(D(L)-SUM)==2

Y(L)=SUM

103



SUMS“=SUUMSQ+ESQ
WRITE(6,285) Y(L),D(L),L
205 FORMAT(26X+F15.6,8X,F15.6,12X,16)
7 CONTINUE
EMSG=SUMSQ/FLOAT(L=1)
; WRITE(&,206)L ‘
206 FORMAT(//30X,27HTIME AVERAGE SQUARED ERROR,,
C 15,1440UTPUT SAMPLES)
WRITE(6,207) EMSQ
207 FORMAT(B5@BX,F15,6/77/77)
STOP :
END
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o NONS]

129

210

209

212

211

60

35
79

RECONSTRUCTING A RECTANGULAR PULSE DISTORTED

BY AN RC CHANNEL USING BOTH FEEOFWO 105

AND FEEDBACK ADAPTIVE FILTERING

DIMENSION X(1000),Y(1000),0(1202).B(14),A(14)

READ(5.12%)INANB,ICYC, IREPET,ADRATE,RC,
c(A(K))KzleA))(B(K))Kzl)NB)

FORMAT (415,2F12.5/(7F10.5))

WRITE(6,210)

FORMAT (19X, 2+NA,9X,2HNB.1@X,4HICYC,10X,
CO6HIREPET, 19X, 6HADRATE . 180X, 13HTIME CONSTANT/)

WRITZ(6,209) ~A.NB,ICYC.IREPET,ADRATE,RC

FORMAT(9X, 13.8X,13,10X,14,11X,13.12X,F12.5,
Cl1OX,F1¢.4/7)

WRITE(6,212)

FORMAT (5AX,21hINITIAL WEIGHT VALUES/)

WRITE(6,211)(A(K),K=1,NA), (B(K),K=1,NB)

FORMAT (12X,12F10.5)

D03 M=1,IREPET

003 L=1,25

SUM=@,

[F{(M.GT.1)GOT{35

IF(L.LE.12)GQT060

D(L)Y =,

X(L)=EXP(-FLCAT(L)/RC)Y*#(EXP(12.2/RC)-1.2)

GOTO7¢

O(L)Y=1.7%

X(L)=(1.0-EXP(-FLOAT(L)/RC))

IF(L.EQ.1)GOT0O19

K=L-1

004 1=1,NB

SUM=SUM+R (1) =D (K)

K=z=K-1

IF(K.EQ,.B)GOTG20

CONTINUE

K=L-1

005 1=2,NA

SUM=SUM+A(T)=X(K)

KzK-1

IF(K.EQ.,?)GOTO19

CONTINUE

SUM=SUM+A (1) =X (L)

ERR=0G(L)-SUM

D06 J=1,NB

I1=L-J

IF(IT.EQ0.®%)GOTO17

B(J)=B(J)-2.=ADRATE=ERR=D(I1)

CONTINUE

D07 U=2,NA

I1l=L-U+1

IF(IT.EQ.BXGQTO18

ACJ)Y=A(J)=-2. #ADRATE=ERR=X(I1)

CONT INUE
A1) =A(1)Y-2 . #ADRATE=ERIR=X (L)

CONTINUE

WRITE(6,202) .

FORMAT (//50X,19HF INAL WEIGHT VALUES)



WRITE(6,283) (ACK) ,K=1,NA) "
203 FORMAT (/18X,10F10,5) 6
WRITE (6,204) (B(K),K=1,NB)
204 FORMAT (//, (18X,10F10.5))
WRITE(6,205)
205 FORMAT (//38X»13HFILTER OUTPUT, 108X, 14HOESIRED
€ OUTPUT,14X,13HTIME UNITS)
SUMSQ=7,
008 L=1,25
SUM=9.
IF(L.EN,1)60T021
K=L-1
009 1=1,NB
SUM=SUM+B (1) %Y (K)
K=K-1
IF(K.EQ,B)G0T022
9 CONT IMUE
22 K=L-1
, 0010 1=2,NA
SUM=SUM+A (1) X (K)
K=K-1
IF(K.50.0)60T021
10 . CONT INUE
21 SUM=SUF+A (1) =X (L)
£SO=(D(L)-SUM)#=
Y (L) =SuM
SUMSA=SUMSO+ESO
WRITE(H,246) Y(L),D(LY,L
206 FORMAT (26X,F15.6,8X,F15,6,12X, 16)
8 CONT IR UE
EMSO=SUMSQ/FLOAT (L =1)
WRITI (6,227)L
207 FORMAT (//38X,27HTIME AVERAGE SQUARED ESROR,,
€ 15,14A40UTPUT SAMPLES)
WRITE(6,208) £MSQ
208 FORMAT (508X,F15,6///77)
STOP
END.
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100

22

219

209

60

72

200
203

204

RECONSTRUCTION OF RECTANGULAR PULSE DISTORTED

BY ADDIIIVE WHITE GAUSSIAMN NOISE USING 107

FEEDFCRWARD ADAPTIVE FILTERING

DIMENSION D(4¢B),W(15).Y(400),X(400,15) , WTINTL(15)

COMMGN C(450)

CALL NORMAL

READ(5,1u%)N.ICYC, IREPET,ADRATE, (WTINTL(J) »J=1,N)

FORMAT(315.F16.6/(7F18.5))

DO1NM=z=1,6

D022J=1,N

W(J)=HWTINTL ()

CONTINIE

WRITE(A,212)

FORMAT(1@X,1HN,10X,4HICYC,10X, 6HIREPET, 10X,
C 6HADRATE, 7X» 16HNQISE MULTIPLIER,19X,
CZ1IHINITIAL WEIGHT VALUES/)

WRITE(6,219)n, ICYC, [REPET, ADRATE , NM,
CWTINTL(J),J=1,N)

FOR?’AI(BX;IS)‘9X714r11X) IS)BX)F1Q-6’7X7113’
C7X,4F14,5/(84X,4F10.5))

11=9

Do2L=1,ICYC

DO2I=1,N

X(L,1)=¢,

COMT INIIE

DO4M=1, IREPET

D04L=1,25

I1=11+1

SuM=9,

IF(L.Er.1)G07030

DO51=2,N

X(L,I)=X(L=-1,1-1)

CONTINUE

IF(L.LE,12)G0T060

D(L)=d,

X(L,1)=C(IIY#FLOAT (M)

GOTO7%

D(L)=24.9

X(L,1)=23

DO6I=1,N

SUM=SUM+W (I =4 (L. 1)

CONTINUE '

ERR=D(L)-SUM

DO4J=1,n

W(J)=W(J)-2.*ADRATE=ERR%X(L,J)

CONT INIIE

WRITE(6,26%)

FORMAT (/ /52X, 19HFINAL, WEIGHT VALUES)

WRITE(4,203) (w(J),Jd=1,N)

FORMAT (/19X,12F14.5)

WRITE(6,2%4)

FORMAT (/3% X, 13HFILTER OUTPUT.18X.14HDESIRED
€ OUTPUT,1#X, 1Z2HTIME UNITS)

SUMS0=a,

DO7L=1,25

SuM=3.

LO+CCII)=FLOAT(NM)



205

206

207

DO8I=1,N

SUM=SUM+UW (1) =X (L, 1)

CONT INUE

ESO=(N(L)-SUM)#x2

Y{L)=5UM

SUMSQR=5UMSO+ESQ

WRITE(6,235) Y(L),D(L)»L

FORMAT (26X,F15,6,8X,F15.6,12X,16)

CONT INUE

EMSO=SUMSQ/FLOAT(L =)

WRITE(6,236) L

FORMAT (//32X%X,27HTIME AVERAGE SQUARED ERROR,,
€C15,14400TPUT SAMPLES)

WRITE(6,2%7) EMSQ

FORMAT(5GX,F15,6////7)

CONT I MUE

STOP

END
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c RECONSTRUCTING A RECTANGULAR PULSE DISTORTED
c BY ADDITIVE WHITE GAUSSIAN NOISE USING BOTH
C FEEOFWO AND FEEDBACK ADAPTIVE FILTERING 109
DIMENSION X(6080),Y(680),D(600),B(14),A(14)
C,AINTL(14),BINTL(14)
COMMON C(608)
CALL NORMAL
READ(5,100)MA,NB,ICYC, ADRATE , IREPET,
CCAINTL(J),J=1,NA)» (BINTL(J)»J=1,NB)
100 FORMAT (415,F10.6/(7F10.6))
DO1NM=1, 6
D023J=1,NA
ACJY=AINTL (J)
23 CONTINUE
D024J=1,NB
B(J)=BINTL (J)
24 CONT INUE
WRITE(6,210)
210 FORMAT (18X, 2HNA, 9X, 2HNB, 8X, 4HICYC, 10X, 6HIREPET,

C10X, 6HADRATE,9X, 16HNQISE MULTIPLIER)
WRITE(6,209)NA,NB, ICYC,IREPET, ADRATE ,NM
209 FORMAT (/8X»13,8X»13,8X514,11X,13,10X:F10.6>
C10X,11¢//)
WRITE(6,212)
212 FORMAT (5@X,21HINITIAL WEIGHT VALUES/)
NRITE(6)211)(A(K))K=11NA))(B(K))K=1)NB)
211 FORMAT (10X,10F10.5)
JJ=0
DO4M=1, IREPET
D@4L=1,25
JJd=JdJ+1
SuM=0@.
IF(L.LE.10)6G0T060
D(LI)=02,
X(L)=C(JJ)#FLOAT (NM)
GOT070
649 D(L)=20.0
X(L)=20.0+C(JJ)=+FLOAT (NM)
IF(L.ER.1)GOTO19
70 K=L-1
DO51=1,NB
SUM=SUM+B () #D (K)
K=K-1
IF(K.ER.0)GOT020
5 CONT INUE
20 K=L-1
DO61=2,NA
SUM=SUM+A () *X(K)
K=K-1
IF(K.E0.2)GOTO019
6 CONT INUE
19 SUM=SUM+A (1) #X (L)
ERR=D(L)-SUM
0011J=1,NB
I1=L-J :
IF(IT.EQ0.B)GOTO17



B(J)=B(J)-2.%ADRATE#ERR#D(I]) 110

11 CONTINUE
17 D012J=2, NA
IT1=L-J+1

‘ IF(I1.EQ.®2)C0OTO0O18 .

ACJ)=A(J)-2.%ADRATE=ERR=X(11)

12 CONTINUE

18 A(1)=A(1)-2 . #ADRATE#ERR#*X (L)

4 CONTINUE:
WRITE(6,2082)

292 FORMAT(//58%X,19HF INAL WEIGHT VALUES)
WRITE(6,203) (A(K)»K=1sNA)

203 FORMAT(/10X%X,10F13.5)
WRITE(6,284) (B(K),K=1.NB)

204 FORMAT(//,(18X+»10F18+.5))
WRITE(6,2085)

285 FORMAT(//30X,13HFILTER OUTPUT,18X,14HDESIRED

€C OUTPUT.1@X+.1@BHTIME UNITS)

SuMsQ=g,
DO7L=1)25
SuUM=@,
IF(L.EQ.1)G0T021
K=L-1
DO81=1,NB
SUM=SUM+B (1) #Y(K)
K=K-1
IF(K.E0.B)G0T022

8 CONT INUE

22 K=L-1
DO1@I=2.NA
SUM=SUM+A (1) #X(K)
K=K-1

, IF(K.E0.2)G0T021

10 CONTINUE

21 SUM=SUM+A (1) #X (L)
ESQ=(D(L)-SUM) #=2
Y(L)=SUM
SUMSG=SUMSQ+ESQ
WRITE(6,206) Y(L).D(L).L

. 206 FORMAT(26X,F15.6.8X,F15.6,12X,16)

7 CONTINUE
EMSQ=SUMSQ/FLOAT(L=1)
WRITE(6,207) L

207 FORMAT (//3@X,27HTIME AVERAGE SQUARED ERROR,,

C 15.14HOUTPUT SAMPLES) ‘

WRITE(6,2088) EMSQ

208 FORMAT (58X ,F15.6////7)
1 CONTINUE
STOP

END



SUBROUTINE NORMAL ‘
COMMCN C(409) 111
DO3KK=1,400

SUM1=3.

DO4MM=1,49

UNNM=RECD 1S (X)

SUM1=5UML+UNNM

CONTINUE

SMEAN=SUM1/49.0
C(KK)=7.2%(SMEAN-.5)#SQRT(12.0)
CONT TNUE

RETURN

END
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