
OR-TRACK: A SERVICE ORIENTED ARCHITECTURE (SOA) BASED
DESIGN FOR A RELIABLE, NEAR REAL-TIME PATIENT AND

EQUIPMENT TRACKING IN HOSPITALS

A Thesis

Presented in Partial Fulfillment o f the Requirements for

the Degree o f Master o f Science in the

Graduate School o f The Ohio State University

By

Sudhir Subramanian, B.E.

The Ohio State University

2005

Master's Examination Committee:

Dr. Furrukh Khan, Adviser

Dr. Robert Lee

1 Approved by

Adviser

Graduate Program in Electrical Engineering

ABSTRACT

Information technology applications in health care are rapidly evolving with a

primary focus o f reduced medical errors, improved patient care and keeping the cost o f

care to the lowest possible. As a consequence of this, there is an ever-growing need for

better utilization of limited and expensive hospital resource like operating rooms and

highly skilled medical professionals. Typically, during the day o f the operation, a patient

is moved from one location to another (Admission, Floor, Ambulatory Surgery Unit

(ASU), PreOp Holding Area (POHA), Operating Room (OR), Post Anesthetic Care Unit

(PACU), Surgical Intensive Care Unit (SICU) etc.) in the hospital complex. Keeping in

mind this problem of optimal resource utilization, the importance o f knowing exactly

where a patient is, his/her surroundings, and state can not be understated. A central OR

Desk, when empowered with such a view of patients and equipments, that are the

subjects o f a surgery, can make effective decisions to ensure their smooth movement

f rom phase to phase and minimize costly errors and delays.

This thesis proposes a SOA (Services Oriented Architecture) based solution called

OR-Track, based on open standards (X M L , SOAP, WS-*); that allows building a loosely

coupled implementation o f a framework for automated, reliable and near real-time

tracking o f patients and equipment in hospitals; providing accurate location information

i i

to the clients consuming this data, at all times. Different tracking technologies (USB,

WiFi , RFID) can be seamlessly plugged into the framework which was designed keeping

in mind the ease of scalability to different patient/ equipment tracking technologies. The

need for a rich and extensible X M L data model and a rule based approach for OR Track

processing is emphasized that allows implementation of the system based on X M L

technologies (like X M L Schemas, XPath and XSLT). Furthermore, a brief discussion of

available tracking technologies, their pros and cons with regards to the problem at hand,

and a pilot implementation of a tracking system employing USB memories is presented.

The framework was developed using Web Services Enhancements (WSE),

Microsoft 's implementation of open WS-* specifications like WS-Security, WS-

SecureConversation and WS-Policy. Use o f WS-Policy allows a shift o f paradigm to

declarative programming, where security policy is defined in standardized configuration

files (WS-Policy) outside the actual source code, and makes the system highly

maintainable. The delegation o f the various tasks o f the system is done in such a way as

to address the need for extensibility. Choice o f available technologies such as Windows

Services and Microsoft Message Queues (MSMQ) was made to render superior

performance and robust state management. The system is not bound to a specific platform

since it is based on open specifications like X M L , SOAP, and WS-* standards.

i i i

Dedicated to my parents for all their blessings, support and encouragement.

iv

ACKNOWLEDGMENTS

I deeply thank my adviser, Dr. Furrukh Khan, for all o f his help and guidance

during the course o f my research. His leadership during the design o f the system, as well

as his encouragement and advice during the system's development, is what that made this

thesis possible. 1 would also like to thank Dr. Robert Lee for consenting to be on my

committee and for putting up with my innumerable delays to finish this thesis.

1 also thank the members of the Electrical Engineering Applied Software

Engineering (EASE) research group for all of their help in developing OR-Track. In

particular, 1 would like to thank Sriram Seshadri, my friend and doctoral student o f EASE

lab, for hours spent in many invaluable discussions regarding both the architecture and

implementation o f the system.

1 am indebted to my family for their continuous motivation, moral support and

love. 1 also thank all my friends for their help and encouragement during my stay at OSU.

v

VITA

Sep 25, 1979 Bom - Mumbai, India

Jun, 2000 B.E, University o f Mumbai

Aug, 2000 - Dec, 2002 Software Engineer, Infosys Technologies Ltd.

Feb, 2003 - Present Graduate Associate, The Ohio State University.

FIELDS OF STUDY

Major Field: Electrical Engineering

Studies in Applied Software Engineering: Dr. Furrukh Khan

vi

T A B L E OF CONTENTS

ABSTRACT i i

A C K N O W L E D G M E N T S v

V I T A v i

LIST OF FIGURES x

LIST OF TABLES x i i

Chapters:

1 INTRODUCTION I

1.1. Problem Description 1
1.2. Problems with available solutions 2
1.3. Our Approach 3
1.4. Organization of this Thesis 5

2 OVERVIEW OF TECHNOLOGIES USED 6

2.1. Extensible Markup Language (X M L) 6
2.2. X M L Schemas 7
2.3. XPath 7
2.4. XSL 8
2.5. SOAP 8
2.6. Web Services 10

3 OR T R A C K SYSTEM ARCHITECTURE 12

3.1. Design Goals 12
3.2. U ser Requirements 15
3.3. System Architecture 18

v i i

3.3.1. Approach 18
3.3.2. Initial Architecture 21

3.3.2.1. High Level Design Flow 21
3.3.2.2. Limitations 25

3.3.3. Revised Architecture 26

4 OR T R A C K D A T A M O D E L I N G 29

4.1. Our Approach 29
4.2. Conceptualization o f Entity and Location 30

4.2.1. OR Track Entity 31
4.2.2. OR Track Location 35

4.3. OR Track Input Message 41
4.4. OR Track State 43

4.4.1. The Idea o f OR Track State 43
4.4.2. Approach to model OR Track State 44
4.4.3. Structure of OR Track State 46

4.5. Location Action 48
4.6. OR Track Output 50

5 OR T R A C K DESIGN A N D I M P L E M E N T A T I O N 54

5.1. Rules in OR Track 54
5.1.1. Concept of Rules and Rule Containers 54
5.1.2. Rule Container Inheritance Hierarchy 57
5.1.3. Need for a Rule Compiler 59
5.1.4. Rule Processor 60
5.1.5. Advantages 61

5.2. OR Track Implementation Strategy 62
5.2.1. LocationRecordingService Description 63
5.2.2. OR Track Windows Service Description 64
5.2.3. OR Track Web Service Design Description 69
5.2.4. Error Handling 70

6 USB LOCATE: A R E L I A B L E L O C A T I O N DETECTING APPLICATION 71

6.1. Introduction "71
6.2. Preview of Technology Used 72
6.3. USB Locate System Architecture 73
6.4. USB Locate Design and Implementation 76

v i i i

6.5. Conclusions 83

7 OR T R A C K SECURITY M O D E L 84

7.1. Need for Security 84
7.2. Security Basics 84
7.3. Security in Web Services 88
7.4. WS-SecureConversation 90
7.5. WS-Policy 92
7.6. OR Track Security Model 93

8 CONCLUSIONS A N D FUTURE SCOPE 96

8.1. Conclusions 96
8.2. Future Work 97

LIST OF REFERENCES 99

APPENDIX 102

ix

LIST OF FIGURES

Figure Page

1.1: Block Diagram of OR Track system 5

2.1: Request SOAP Trace 9

2.2: Response SOAP Trace 9

2.3: A Client communicating to a Web Service 10

3.1: OR Track's f i t in the big scheme of EASE lab healthcare projects 20

3.2: Initial architecture for collection and display o f live location information 24

3.3: Initial architecture for archived location information 24

3.4: Revised architecture for collection and display of live location information 27

4.1: A typical hierarchy among Entities 32

4.2: A revised hierarchy with new entities added 32

4.3: Structuring o f entities as different schema files showing inheritance relationships
between them 34

4.4: A n xml instance depicting runtime inheritance by using a single Entity element
referring to an 'Inpatient' type 35

4.5: A simple diagrammatic representation of containment relationship among
different levels o f location granularity 38

4.6: A representation o f containment relationship among different levels o f location
granularity using crow foot notation 38

4.7: Type hierarchies at different location granularity levels 39

4.8: Type hierarchy of room functionalities 41

4.9: The structure o f OR Track State represented using crowfoot notation 46

4.10: Inheritance in ORTrackRequest and ORTrackResponse 51
4.11: Runtime inheritance using a single 'ORTrackRequest' element for all OR Track

request types 52

4.12: The structure o f 'GetEntitieslnLocationRequesffype' and
'GetEntitieslnLocationResponseType' 52

4.13: The structure o f 'GetLocationOfEntitiesRequestType' and
' GetLocationOfEntitiesResponseType' 53

5.1: A n OR Track Rule and its internals 55

5.2: Organization of rules in a Rule Container 56
x

5.3: Inheritance hierarchy observed in Rule Containers 58

5.4: Rule Compiler 60

5.5: Simplified U M L diagram of Rule Processor implementation 61

5.6: Flowchart for SendORTracklnputMessage method 64

5.7: Flowchart for ProcessORTracklnputMessage method 66

5.8: Flowchart for ChecklnGuaranteeTimeOut method 67

5.9: Flowchart for SendLocationActions method 68

6.1: USB Locate System Architecture (A Location Detecting Application) 74

6.2: State diagram for USB Locate application 78

6.3: U M L diagram of USB Locate application 80

6.4: Sequence diagram for LocateEntities method (IN-OUT message generation) 81

6.5: Sequence diagram for GuaranteeEntitiesIn method (' I N Guarantee' message

generation) 82

6.6: Sequence diagram for SendMessage method 83

7.1: Symmetric Key Cryptography 85

7.2: Asymmetric Key Cryptography 86

7.3: Filter - based approach used in WSE 89

7.4: WS-Trust Token Issuance Scenario [24] 91

7.5: OR Track Security Model 94

7.6: USB Locate Security Model 95

xi

LIST OF TABLES

Figure Page

3.1: OR Track functional parts 23

4.1: Structure o f OR Track input message 42

4.2: Contents o f an 'EntityState' node 47

4.3: Structure o f a Location Action 49

5.1: LocationRecordingService Web Methods 63

5.2: Methods o f ORTrackWindowsService 65

5.3: ORTrackService web methods 69

6.1: Public methods of USB Locator class 79

x i i

CHAPTER 1

INTRODUCTION

1.1. Problem Description

The problem to be solved is to develop a healthcare tracking IT system that can be

used to track movement o f patients and equipments in a potentially large hospital

complex. Such a system would be used by hospital administration staff to ensure a

smooth f low of man and material in the hospital thereby ensuring optimal utilization o f

hospital resources and reducing costly errors. The system would be used in a near real

time mode as well as be able to archive sufficient information so that utilization of

expensive hospital resources such as Operating Rooms (OR) could be profiled and

studied for later use; for example Operating Room scheduling purposes. Considering the

workf low related to ORs, such a tracking system can be used to monitor the patient and

the surgical environment in near real time so that errors are prevented before they occur,

and key information is available and displayed at appropriate times. Current means o f

tracking patient f low in many of the nation's hospitals is based on phone calls among OR

staff fol lowing error prone protocols. Even with the best guidelines in place, possibility

of manual error cannot be eliminated.

According to the National Coordinating Council for Medication Error Reporting

and Prevention (NCC MERP); nearly 30% of medication errors occur due to wrong

1

patient, wrong site, improper dose/quantity and prescribing error [1]. Therefore for a

patient in an OR, the importance of availability o f value added services like patient

identification, patient medical records and allergy information, etc.; cannot be over

emphasized.

1.2. Problems with available solutions

Available solutions to computerized health care tracking are primarily Bar Code-

based, Infra Red (IR)-based or Radio Frequency Identification (RFlD)-based system.

Such technologies rely on Bar codes, IR Active badges or RF Tags attached to the patient

or equipment being tracked and a Bar Code Reader, IR sensor or RFID Readers placed

conveniently at the location for tracking purposes. The tracking information or message

is beamed to a location manager software that helps in collecting information about the

position o f various items being traced and provide different views to the users o f the

system. Some implementations addressing the healthcare tracking problem is seen in

products like SynTrack (RFID based solution) and EDTracker (IR based solution). Such

approaches incur significant installation and maintenance costs. Also the reliability o f

such systems comes to question under some special conditions. For example, IR based

systems perform poorly in presence of direct sunlight; whereas RFID based systems do

not detect the tags uniformly for all tag orientations with respect to the RF signals. Also

the location manager software is tightly coupled to the tracking teclinology used.

Furthermore these systems do not scale easily considering the investment cost required

for the infrastructure.

2

1.3. Our Approach

The approach taken to address the tracking problem in this thesis was divided into

two parts as illustrated by Figure 1.1. One part o f the problem addresses a reliable means

to capture location information about the subjects tracked in near real time. This part

comes under the purview of a Location Detecting Application. The other part collects

information f rom the various Location Detecting Applications, maintains a consistent

location state o f the entire hospital complex, applies rules to the state to decrease the

possibility of errors, provides near real time access of locations to clients, as well as

makes this information persistent for future review. This functionality is addressed by our

system named OR Track which constitutes the major topic discussed in this thesis. Such a

clean division allows us to develop these systems separately adhering to a common

means of data exchange.

OR Track provides a framework to track a variety of physical objects which are

subject to tracking at different physical locations in the hospital complex. For such a

generic framework to be realized, a rich data model of the various domain objects is

required. OR Track uses the power of X M L data modeling in defining its rich and

extensible data model. Furthermore OR Track uses X M L technologies (X M L , X M L

Schema, XPath etc.) in handling its internal state, maintaining information about various

hospital locations; as well as the data exchange mechanism with other systems and

applications interacting with it. OR Track's processing is built on a rule-based engine that

promises a possibility of defining and applying different rules using X M L technologies.

With the power o f X M L put to use, OR Track design shows a shift o f paradigm to

Declarative Programming without compromising performance - a desirable feature for

3

any software system. Furthermore, a system like OR Track is agnostic to the technology

used (Java, .NET, U N I X , Windows) for detecting patients or equipments in a location; as

long as the data exchange format is met, it can accept location data from any Location

Detecting Application. Additionally, OR Track is implemented as a Web Services-based

system that allows us to design a clean architecture which is easy to understand, and

therefore easy to maintain.

Besides the design o f OR Track, a highly reliable Location Detecting Application,

named USB Locate, was designed and built based on a USB drive attached between the

subject o f tracking and a laptop/PC fixed near the locations o f interest. The presence (or

absence) of an entity is detected based on the USB drive being 'plugged in ' or 'plugged

out' o f the computer fixed near the location. Such a solution works ideally for tracking

patients in OR where the actions o f 'plugging in ' and 'plugging out' of the USB drive can

be defined as a required step of the clinical workf low followed by the OR staff thereby

ensuring a reliable tracking mechanism for patients in the OR. Furthermore the use of a

large capacity device like a USB device allows storing a large amount o f information

about a particular patient. Several value added services like patient identification by

displaying a patient picture, patient medical records and allergy information, etc. can be

easily incorporated in this approach.

In the future WiFi based Location Detecting Applications shows a lot o f potential

for wireless detection o f locations. Currently the EASE (Electrical Enginnerinf Applied

Software Engineering) group headed by Prof. Khan at The Ohio State University is

working on such an application. One of the OR Track design goals is to seamlessly

4

integrate with this application. A block diagram showing interaction o f a number o f

Location Detecting Application with OR Track system is shown in Figure 1.1.

USB Locate (Location
Detecting Application)

WiFi based Location
Detecting Application

Any Location
Detecting Application

OR TRACK

- Maintains a consistent
location state of the entire
hospital complex

- Applies rules to the state to
decrease the possibility of
errors

- Provides near real time access
of locations to clients

- Persists information for future
use

Figure 1.1: Block Diagram of OR Track system

1.4. Organization of this Thesis

The rest o f this thesis is organized as follows. Chapter 2 gives an overview of

various technologies used in building the OR Track system. Chapter 3 w i l l cover the

system requirements and architecture. Chapter 4 w i l l discuss the OR Track Data

Modeling approach. Chapter 5 w i l l cover the design and implementation of OR Track

architecture. Chapter 6 w i l l talk about USB-Locate, which is a Location Detecting

Application. Chapter 7 describes the OR Track security model. Chapter 8 w i l l give a

conclusion and discuss future work.

5

CHAPTER 2

OVERVIEW OF TECHNOLOGIES USED

2.1. Extensible Markup Language (X M L)

X M L is a standard, simple, self-describing way o f encoding both text and data so

that content can be processed with relatively little human intervention and exchanged

across diverse hardware, operating systems, and applications.

In brief, X M L offers a widely adopted standard way of representing text and data

in a format that can be processed without much human or machine intelligence.

Information formatted in X M L can be exchanged across platforms, languages, and

applications, and can be used with a wide range of development tools and utilities. For

further reading, please refer to [2].

X M L mostly consist o f tags generally define the structure and content o f the data,

with actual appearance specified by a specific application or an associated style sheet.

Some of the key benefits o f using X M L as a means of data interchange or storage are

highlighted below.

• Information coded in X M L is easy to read and understand, plus it can be

processed easily by computers.

• X M L is a W3C open standard, endorsed by software industry market leaders.

6

• X M L is Extensible. New tags can be created as they are needed.

• X M L documents are self describing as they contain meta data in the form of tags

and attributes.

• X M L tags describe meaning not presentation. The look and feel o f an X M L

document can be controlled by XSL style sheets, allowing the look of a document

to be changed without touching the content o f the document.

2.2. X M L Schemas

X M L Schema is a W3C standard that describes a class o f X M L documents by

using schema components to constrain and document the meaning, usage and

relationships o f their constituent parts; data types, elements and their content and

attributes and their values. Schemas may also provide for the specification o f additional

document information, such as normalization and defaulting o f attribute and element

values. Schemas have facilities for self-documentation [3].

X M L Schemas offer several advantages over the DTD (Document Type

Definition) which is also a W3C standard to define X M L documents. X M L Schemas are

easily extensible to future additions are essentially X M L documents itself that allows it to

reap all benefits o f an X M L document. For further reading, please refer to [4].

2.3. XPath

The primary purpose o f XPath is to address parts of an X M L document. In

support o f this primary purpose, it also provides basic facilities for manipulation of

strings, numbers and booleans. XPath uses a compact, non-XML syntax to facilitate use

o f XPath within URls and X M L attribute values. XPath operates on the abstract, logical

7

structure o f an X M L document, rather than its surface syntax. XPath gets its name from

its use o f a path notation as in URLs for navigating through the hierarchical structure o f

an X M L document [5]. It is specified as an open standard in the W3C XPath

specification. For further reading, please refer to [6].

2.4. X S L

XSLT, the Extensible Stylesheet Language for Transformations, is an official

recommendation o f the World Wide Web Consortium (W3C). [7]. It provides a flexible,

powerful language for transforming X M L documents into a H T M L document, another

X M L document, a Portable Document Format (PDF) file, a Scalable Vector Graphics

(SVG) file, a Virtual Reality Modeling Language (V R M L) file, Java code, a flat text file,

a JPEG file, or most anything you want. Once an XSLT style sheet is written to define

the rules for transforming an X M L document, and the XSLT processor does the work o f

actual transformation. For further reading, please refer to [8]

2.5. S O A P

SOAP is a standard that defines nothing more than a simple XML-based envelope

for information exchange and a set o f rules for translating application and platform-

specific data types to X M L representation [9]. SOAP is an application of X M L

specification. It relies heavily on X M L schema and X M L namespaces for its definition

and function. The need for SOAP becomes apparent when we observe that heterogeneous

systems can represent the same data in number o f different ways and thus a simple

standardization would help solve many problems.

8

SOAP messages are contained in a SOAP envelope that consists o f a header,

which contains metadata about the message, and a body, which carries the actual message

payload. A n example o f the SOAP messages sent to and f rom Web Services are shown

in Figure 2.1 and Figure 2.2; note that in this simple case only a SOAP body is present.

<?xml ve rs ion=" l ,0 " encod ing="u t f -8" ?>
<soap;Envelope x m l n s : s o a p = " h t t p : / / s c h e m a s . x m l s o a p . o r g / s o a p / e n v e l o p e / "

xmlns: x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e "
xmlns; x s d = " h t t p : / / w w w . w 3 . o r g / 2 0 0 l / X M L S c h e m a " >
<soap:Bodv>

<doubleThis xmlns="mylSJamespace">
< x > 2 < / x >

</doubleThis>
< /soap:Body>

</soap: Envelope>

Figure 2.1: Request SOAP Trace

<?xml vers ion="1.0" encod ing="u t f -8" ?>
<soap:Envelope x m l n s ; s o a p = " h t t p : / / s c h e m a s . x m l s o a p . o r g / s o a p / e n v e l o p e / "

xrnlns: x s i = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a - i n s t a n c e "
xmlns: x s d = " h t t p : / / w w w . w 3 . o r g / 2 0 0 1 / X M L S c h e m a " >
<5oap;Body>

<doubleThisResponse x m l n s = " m y N a m e s p a c e " >
<doubleThisResul t>4</doubleThisResul t>

</doubleThisResponse>
< /soap:Body>

</soap; Envelop8>

Figure 2.2; Response SOAP Trace

As is shown here, a client makes a request to a Web Service by sending an

appropriately formatted SOAP message, and receives the response from the Web Service

in the form of another SOAP message. Since SOAP is a W3C standard, it is open and

9

can be implemented by anyone using the specification. In fact, although SOAP usually

travels over HTTP, this is not required. Because they are based on open standards, SOAP

in general is not tied to any particular implementation making it adaptable to future

needs, as it is not tied to any particular programming language or proprietary technology

from the start.

2.6. Web Services

A web service is any service that is available over the Internet, uses a

standardized X M L messaging system, and is not tied to any one operating system or

programming language [10]. For X M L messaging, one could use X M L Remote

Procedure Calls (XML-RPC) or SOAP. Altematively, just the use o f HTTP GET/POST

passing arbitrary X M L documents can work. Figure 2.3 shows the notion o f web service

running on a machine and its communication with a web service client running on

another machine.

Machine running a
Web Service client

(An application or web service)

Machine running
Web Service

providing a desired
functionality

XML

SOAP, XML-RPC.
HTTP GET/POST (containing

XML documents)

XML

Computet A
Language: Pfri

Opera? nq iyMpni: rt'Virfcws jWB

Compar ft 8

Figure 2.3: A Client communicating to a Web Service

10

Although not mandatory, a web service may also have two additional (and

desirable) properties:

• A web service should be self-describing. Every new web service published, should

also publish a public interface to the service. At a minimum, the service should

include human-readable documentation so that other developers can more easily

integrate this service. I f a SOAP service is created, ideally a public interface written

in a common X M L grammar must be included. The X M L grammar can be used to

identify all public methods, method arguments, and return values.

• A web service should be discoverable. For every new web service created, there

should be a relatively simple mechanism to publish this fact. Likewise, there should

be some simple mechanism whereby interested parties can fmd the service and

locate its public interface. The exact mechanism could be via a completely

decentralized system or a more logically centralized registry system.

With web services, we move from a human-centric Web to an application-centric

Web. This means that conversations can take place directly between applications as

easily as between web browsers (that require human input) and servers. A n application-

centric Web is not a new notion. For years, developers have created ad hoc CGI programs

and Java servlets designed primarily for use by other applications. With web services, we

have the promise o f some standardization, which would eventually lower the barrier to

application integration.

11

CHAPTER 3

OR T R A C K SYSTEM ARCHITECTURE

3.1. Design Goals

The development o f the OR Track architecture had to address some key design

goals. The primary requirement was to come up with an automated and reliable scheme

of tracking patient and equipments in the hospital complex. This essentially means that

the system must have a unifonn and standardized way to collect location data associated

with subjects o f tracking. Once the location data is available, OR Track must processes

and saves this information in a convenient form so as to provide a rich set o f information

related to the live and archive view of the subjects o f tracking. Also it was required that

information f rom OR Track must be exposed to its client in a standardized form such that

it is consumable irrespective of the implementation technology of the client and the

platform on which it runs.

Also it was necessary that OR Track must be capable o f accepting location data

f rom different places in the hospital. The location data is provided by some applications

which detect the presence of patients or equipments in a location and transmit this data to

OR Track. The transmitted data contain information like the 'patient Id ' which is a key to

retrieve patient information of clinical importance. Further, the communication channel

12

used to send this information to OR Track must use the hospital's available wired or

wireless infrastructure. Because o f the sensitivity o f the data and the insecure nature o f

the communication channel, it was necessary to keep in mind that location data coming

into OR Track must be encrypted for confidentiality purposes. Also to address the

problem of integrity o f data f lowing into OR Track, it was required that all location data

accepted by OR Track be digitally signed by its sender. A similar argument applies for

the need for secure communication between OR Track and the clients retrieving

information from it.

OR Track adds to the big scheme of various health care projects being developed

by the EASE lab at The Ohio State University. A n earlier implementation, called OR

Eye, is a Web Services-based application to retrieve and record vitals signs o f patients in

OR. OR Track must seamlessly integrate into the existing scheme of projects without

compromising on the standardized means to accept and expose data. Further OR Track

w i l l act as a backbone to process and store all location data and hence care must be taken

that it is resilient to different location sensing technologies. A future implementation o f

such a location sensing system, called OR WiFi , based on 802.1 l b wireless tracking, is

foreseen. Also it is foreseen to provide different standardized views of the OR Track data

based on changing needs o f the existing and new clients o f OR Track. Consequently, it

demands an extensible design o f the OR Track framework that must ensure loose

coupling between various components, thereby ensuring minimum modifications to the

existing components with demands for new functionalities.

Further, while the OR Track system facilitates the healthcare staff by providing an

added functionality o f location tracking, it was also required that introduction o f this

13

system does not increase the operational overhead with regards to its maintenance. This

requires the OR Track design to be highly robust displaying desirable properties like self

healing and recovery f rom inconsistencies and error conditions, in as many different

cases possible. For example, i f a patient is found at two different locations based on the

data provided to OR Track, it must ensure appropriate strategy to recover from this

condition and tag its information to mark such conditions. I f a certain condition cannot be

handled by the system then it must log all the relevant information in a systematic and

useful way to aid in system diagnosis. In addition to error recovery, the system must be

able to provide as much functionality as possible even when certain system components

were not functioning.

While, the architecture o f OR Track was designed keeping in mind the system

goals discussed earlier, it is worth noting that certain features do not fal l under the

purview of OR Track system. OR Track maintains the state o f the hospital complex

solely based on the data provided to it by the location detecting applications. When

erroneous information, originating from the location detecting applications, is passed to

OR Track, it makes a best effort based on a well defmed set o f logical rules to mark this

information in its state. Certain errors cannot be handled or even caught by OR Track.

Like, suppose the patient ID associated with a patient changes during the course o f

tracking due to any reason, OR Track does not provide any mechanism to detect or

predict this situation. I f the Admissions department reassign a patient ID already in

current use, OR Track has no means to predict or logically conclude the correct

association between the Id and patient. It should be kept in mind that even though such

features are desirable in healthcare tracking, it is not the responsibility o f OR Track to

14

handle these issues and OR Track limits its responsibility to make a best logical effort to

tag these conditions.

3.2. User Requirements

This section details the set o f desired functionalities imposed by the users o f OR

Track. Broadly, the users o f OR Track system can be classified into the following two

categories:

• Clients that require a live or archived view of OR Track location data

• Location Detecting Applications that provide raw location data to OR Track

Examples o f OR Track clients includes OR Desk Plasma Screen, OR Eye (Brand

Name Monitor), OR Eye smart client application, OR Eye PPC Client, and other future

applications built to view live or archived location data. A n example o f location detecting

application is USB Locate which detects patients connected to a Laptop fixed at various

locations in the hospital (currently ORs). A future version of such a location sensor using

OR Track w i l l be based on wireless tracking technology employing Hidden Markov

Models.

OR Track's possible usage by the various clients and location detecting

applications is discussed next.

Brand Name Monitor Service (OR Eye)

Currently, when Brand Name Monitor Service gets a request to fetch vital signs

f rom a monitor, it responds with a vital signs action which has the patient ID and the

location (OR) embedded in it. Currently the location is obtained f rom a configuration file

which has the mapping o f monitor and its physical location, whereas the patient

15

information is based on the OR schedule that is generated and updated once daily. A live

view of patient connected to the monitor and the monitor's location is a desired

functionality f rom OR Track. Brand Name Monitor Service would query OR Track

passing the monitor ID asking for its location. After getting the location, another call to

OR Track w i l l be made to get the patient connected to this location. With the information

retrieved, a vital sign action w i l l be constructed using this live data f rom OR Track.

O R Eye Smart Client

OR Eye Smart Client provides a graphical user interface that allows the user to

intuitively view, record, and replay vital signs data on a desktop, laptop, or Tablet PC.

After a user logs on to the system, the application gets a list o f all ORs and the monitors

connected to it. It would be desirable for OR Track to provide a means to query for all the

ORs in a Hospital Building or Floor along with the monitors and patient contained in

each.

O R Eye P P C Clients

OR PPC Client is a mobile version o f the OR Eye Smart Client application that

runs on a Pocket PC. The OR Track functionalities desired by this client are similar to the

OR Eye Smart Client requirements.

O R Desk Plasma Screen

OR Desk Plasma Screen client displays a live view of all the OR locations and the

patients and equipments present in it, in the hospital complex, building or floor. The

client requires continuous updates refreshing its current view of the hospital. This live

information can be used by the OR desk personnel to monitor the activities live and make

meaningful conclusions to ensure optimal utilization of the OR and minimize delays. OR

16

Track must be able to provide a holistic view of all the locations in the hospital complex

when the state changes.

O R Track Desktop Client

OR Track Desktop Clients w i l l be used to analyze the location data in a variety o f

different ways. Desired functionalities include a means to retrieve a patient or

equipment's location, entities in a location (like OR, POHA, etc), live view of all

locations o f interest in a floor, history of locations where a patient was moved since

admission, history o f activities in a locations, etc. This client demands some ingenuity on

OR Track's part to expose these functionalities in some standardized way.

Location Detecting Application

As mentioned earlier, location detecting applications detect the state o f a location

with regards to the entities (patients and equipments) present at the location (OR, ASU,

etc.). It generates a message every time an entity is detected inside a room being

observed. One such location detecting application called USB Locate was developed and

is used to test the OR Track architecture. Typical contents of a message include a

description o f entity and location, the time when the entity was detected in or out, etc. OR

Track must have a uniform interface to accept messages generated for different locations,

which in turn w i l l be used to update the state of hospital complex maintained within.

Once OR Track goes ful ly functional, incoming messages traffic was estimated to be

heavy and hence it imposes strict timing requirements on processing each message. This

is a critical aspect to be addressed while designing OR Track.

17

3.3. System Architecture

3.3.1. Approach

From the beginning it was decided to implement OR Track using a service-

oriented architecture based approach. A service-oriented architecture is a style of design

that provides a way to define and provision an IT infrastructure to allow different

applications to exchange data and participate in business processes, regardless of the

operating systems or programming languages underlying those applications [11]. For the

design o f SOA based OR Track, it was decided to use Web Services as the means to

implement various services provided due to the many desirable advantages it offers. Web

services use X M L based interface technologies for message exchange (SOAP, a W3C

standard) and description (WSDL, an open standard) in a decentralized environment;

exposing its methods that are available at a particular internet address. Unlike web

services, earlier implementation like CORBA failed to address standards based

interoperability and relied on middleware services like ORB for message exchange;

which required specific ports to be opened, putting a limitation on communicating across

firewalls, unless configured to allow this traffic. Also the mechanism to expose the

interfaces o f a service relied on 'language like ' IDLs in contrast to standards like X M L

[12]. On the contrary, SOAP messages can travel over HTTP through port 80 (the

standard HTTP port), so additional ports need not be opened.

Also, web services allows to leverage WS-* specifications to provide critical

add-ons to its interface for handling requirements like security protocol, trust

relationship, policy requirements, etc. for the clients consuming the service. WS-*

specifications are open specifications (GXA) that declared the required information as

18

metadata in the SOAP header. Also Microsoft 's implementation o f WSE 2.0, provides

implementation for key WS-* specifications like WS-Security, WS-Trust, WS-

SecureConversation and WS-Policy. This greatly decreases the time to write such

plumbing codes thereby allowing a better focus on the problem to be addressed [13].

Also prior implementation o f OR Eye system proved the benefits o f inclining to a web

services based SOA approach leveraging WS-* specifications.

It was decided to use X M L for all data exchange between OR Track and its users.

For example the location detecting application would provide an X M L string called OR

Track Input Message. A client request to retrieve the daily activity o f a location would

return a list o f Location Actions that is again represented as an X M L . Also it was desired

to maintain the state o f OR Track in an X M L form. By shifting to such an approach, it is

possible to use X M L standards for querying and transforming state when the required

conditions are satisfied.

There is a caveat in using web services based approach - Web services are X M L -

based interface technologies; they are not executable; they do not have an execution

environment - they depend upon other technologies for their execution environments.

When performance is a key criterion for design, then it demands clever use o f web

services with adequate support to limit processing logic, so that web service calls return

quickly, thereby reducing possibilities o f HTTP timeouts under heavy load conditions.

While OR Track was designed; wherever possible, a push-pull strategy o f using web

services in tandem with Windows Service was considered. In this approach a web

services pushes information in a persistent queue that is later pulled by the windows

service to do the required processing. In addition to provide strong decoupling of

19

functionalities, the use o f persistent queues greatly increases the robustness of the system

across system restarts and error conditions.

Figure 3.1 shows a big picture view of health care projects implemented by EASE

Lab at The Ohio State University and highlights OR-Track's fit in this scheme.

Figure 3.1: OR Track's fit in the big scheme of EASE lab healthcare projects

20

3.3.2. Initial Architecture

3.3.2.1. High Level Design Flow

From the beginning, the architecture o f OR Track was considered to have three

main parts namely - Data Collection, Data Processing and Storage, and Data

Presentation. The units must be able to operate independent o f each other thus allowing

clean decoupling o f these functionalities with an appropriate data exchange mechanism

between these parts.

The data collection part was to act as a uniform interface to accept location data

f rom various locations within the hospital or across network boundaries o f the hospital.

For example, OR Track system may be responsible to monitor all the ORs in University

Hospital, University Hospital East, James Cancer Hospital and Ross Heart Hospital.

These conditions imposed, makes the use o f a web service as an obvious choice for

handling the responsibility o f location data collection due to the many advantages offered

by it, as discussed in section 3.3.1. Furthermore, reinstating the push-pull strategy

discussed earlier, it was decided to keep the web service call short lived by pushing all

the data received by it in a preprocessing buffer. The preprocessing buffer acts as a data

exchange mechanism between the data collection and data processing parts.

The data processing part was responsible to maintain the state of all the locations

monitored by OR Track. The information in each message received must be used to

update the current state o f the OR Track. Also data processing for each message in the

queue must be fast to keep the state of all the locations in synch with the real world

conditions. Further to ensure speed o f processing and reduce latencies, the data

processing part would be running on the same machine that contains the preprocessing

21

buffer. These conditions allow us to leverage the potential of a windows service to handle

this task. Further the processed state needs to be persisted in some way so that the live

view of a hospital can be provided to the clients o f the OR Track system. Also OR Track

must archive Location Actions (a structure defining entry or exit o f entity from a hospital

location) that can co exist wi th other medical actions like the vital signs actions recorded

by the OR Eye system, medication actions recorded by the OR Med system, etc. The

Location Actions were to be recorded in a separate database called the Action Bucket

database that contains all the medical center actions o f interest. The live state o f the

various hospital locations was proposed to be stored in a local queue. The local queue and

the Action Bucket database act as a data exchange mechanism between the data

processing and data presentation parts o f the OR Track architecture.

It is important to recall that the data presentation part of the architecture must

allow for viewing the live state o f hospital locations, and the playback o f previously

recorded Location Actions. The data presentation part can be handled using web services

that allows the various clients of the OR Track to view the location information stored by

OR Track. As such, it is helpful to view the functionality of the Web Services depending

on whether the system is displaying live information ("live mode") or previously

recorded information ("archive mode"). This clear distinction is useful since the system

functionality should be considered based upon the appropriate mode.

Based on the above argument, the division of OR Track responsibilities was

realized using the functional parts described in Table 3.1.

22

Functional Part Live Functionality Archive Functionality
LocationRecordingService Collects messages supplied by

location detecting applications
observing different locations in
the hospital complex.

None.

ORTrackWindowsService Processes the messages received
by the
LocationRecordingService and
update the OR Track state to
keep it in synch with the real
world.

None.

ORTrackService Provides different facets o f the
live state o f locations maintained
by OR Track to its clients.

None.

ActionBucketService Records Location Actions sent
by the ORTrackWindowsService
into the Action Bucket database.

Retrieve archived
Location Actions and
sends it to the client.

Table 3.1: OR Track functional parts

The architecture o f OR Track to capture location data and provide live view of the

OR Track state is shown in Figure 3.2. It also shows the recording o f Location Actions

generated by ORTrackWindowsService into the Action Bucket database using the

ActionBucketService. Figure 3.3 describes how an OR Track client would retrieve the

archived Location Actions using the ActionBucketService.

23

Figure 3.2: Initial architecture for collection and display of live location information

Client seeking
archived

Location Actions

Action Bucket

Figure 3.3: Initial architecture for archived location information

24

3.3.2.2. Limitations

Every call to LocationRecordingService uses WS-SecureConversation. Typically

such a call using WS-SecureConversation takes on an average o f 70ms [14]. Including

the time required to validate the message and deposit it in the preprocessing queue, a

conservative estimate o f this web service call is a value well under 100ms. Considering

that location detecting applications send a message to OR Track, for each entity in a

location, every 5 minutes (300s), Location Recording Service can track a maximum of

3000 entities. I f the messages generation rate of location detecting applications increase,

then the number o f entities that can be tracked further reduces. This would severely

thwart the utility o f OR Track in tracking a large number of entities. Such heavy message

traffic would be seen when OR Track is used for continuous tracking working with a

system like OR WiFi .

Another aspect that was considered in this architecture was regarding the storing

of entire OR Track state in a local queue. Such a local queue would act as the data

interchange mechanism between the data processing and the data presentation parts of the

architecture. Web service calls are stateless and every call would require the need to load

the current OR Track f rom the queue, query on it and return a subset o f the state in a form

presentable to the clients. The querying and conversion o f results into a response object

take less time in comparison to the time required to load the entire OR Track state. Hence

a suitable mechanism must be devised to address this issue.

25

3.3.3. Revised Architecture

The limitations o f the initial architecture motivated to reconsider the architecture

to address the issue o f storage o f live OR Track state and devising a suitable mechanism

to track more entities in the system.

To address the former issue, the initial idea was to break the live state into

chunks, and index these chunks in some way to give a fast response to the OR Track

client requests. This would require a careful consideration o f different client calls and

come up with the proper indexing mechanism. However, such an indexing mechanism

would strictly be designed to optimize handling of client requests and we lose generality

in this process. Since the state is maintained as an X M L by OR Track it was considered

to use a Native X M L Database (NXD) - a database is specialized for storing X M L data

and stores all components of the X M L model intact. NXDs support XPath queries that

would be used to handle various OR Track client requests. The use o f a N X D gives us a

persistent store for live OR Track State and also a means to fire standard XPath on it.

The bottleneck in each web service call was the timing overhead o f WS-

SecureConversation. However security between location detecting application and OR

Track is important due to the sensitive nature of data being sent. It was decided to come

up with a mechanism where multiple messages can be wrapped together and sent in a

single call to LocationRecordingService. Figure 3.4 shows such a strategy with an OR

Track extension blocks. The purpose of OR Track extension blocks is to allow collecting

messages f rom location detecting applications locally and aggregate all the messages and

send it as a single payload in a web service call. With this strategy the timing overhead o f

security is distributed over several messages instead of a single message. This

26

significantly improves the capability o f OR Track system to handle a large number o f

clients with a high message generation rates. It must be noted that messages coming from

the location detecting application are encrypted and signed.

Building 1 (Domain 1)

Location Detecting
Application

Building 2 (Domain 2)

Location Detecting
Application

Acion Bucket

Figure 3.4: Revised architecture for collection and display o f live location information

27

We see how the revised architecture allows for handling more messages and

hence allows tracking more entities at a much faster rate in the hospital complex. Also the

use o f a Native X M L Database helps to achieve a more efficient and reliable mechanism

to persist state. Having discussed the architecture of OR Track, the subsequent chapters

described the details of OR Track data modeling and implementation.

28

CHAPTER 4

OR T R A C K DATA MODELING

4.1. Our Approach

During the conceptualization of OR Track, it was required to identify a suitable

means to model all the data coming into OR Track, the states maintained within, the

location action to be stored in the action bucket and the different views o f intemal state

exposed to the outside world. The semantic structure o f the data items to be developed

must ensure independence of the data model from data usage [15]. The model must be

kept generic so as to be able to use it for any health care tracking problem. However, the

OR Track model must not l imit the design based on the available information and logical

assumptions made from it and must be easily extendible allowing accommodations to

future changes in the system easily.

OR Track uses the X M L Data Modeling approach to model its core entities as

well as the data exchange format with other systems interacting with OR Track. This

approach allows us to leverage the many advantages offered by it. The data is stored as

X M L documents which gives us advantages like cross platform usage, availability of a

wide range o f free and commercial parsers and an industry standard format with wide 3rd

party support. Also, X M L messages can easily fit in as a part o f SOAP messages which is

29

the standard used for message exchange between OR Track and systems using it. Other

promising things about X M L , and the new breed o f tools built on it, is that we can build

applications that are driven by a single information model rather than multiple data

models accommodating each application function. We can change the behavior and

functionality o f application programs by changing the underlying X M L rather than by

changing code. Additionally, we can also easily optimize performance by changing the

way information is expressed [16].

The power o f data modeling and data structuring to X M L is provided by W3C's

X M L Schema. X M L Schema is a rich and elegant way to define legal building blocks of

an X M L document. The schema document itself is in essence an X M L document and

consequently enjoys the advantages o f the latter. In the following sections, a thorough

analysis o f the core data items being used in OR Track w i l l be discussed and the

advantages o f using X M L data modeling over traditional data modeling approach w i l l be

highlighted. Finally, data requirements for OR Track input message, state, actions and the

different data views to OR Track clients w i l l be discussed.

4.2. Conceptualization of Entity and Location

Any piece o f tracking information has three main parts - the physical object being

tracked, the physical location where the object is observed and the time of observation.

From the perspective o f data modeling, the time of observation is a f ixed field and not

interesting. However, a concrete idea was to be developed to adequately model the

remaining two data parts. For the OR Track system, the physical object being tracked w i l l

be called an 'Entity' while, the physical location where an 'Entity' is observed w i l l be

30

called a 'Location'. The remaining part of this section describes the conceptualization of

OR Track entities and locations and coming up with a data model for meeting the design

goals discussed.

4.2.1. O R Track Entity

A n OR Track 'Entity' refers to a physical object being tracked in a hospital

complex like a Patient, Monitor, Bed, etc. Having said this, a relevant abstraction o f an

'Entity' was required for the OR Track system. A possible abstraction of a 'Patient' could

be an 'Entity' having patient ID and patient name associated with it. Likewise, a

'Monitor ' can be treated as an 'Entity' having attributes like monitor ID, make, model

number and serial number. Such an abstraction of data can be easily and efficiently

captured using a relational data modeling approach creating tables for Patient and

Monitors. Moreover, relational database model is highly optimized for manipulating and

processing data that f i t well into a tabular structure. Next, the questions asked were -

Does such a structure easily scale to future needs o f the system? What happens when

more entities are tracked? Can the system accommodate tracking o f hospital beds, life

support equipments and physicians? Relational Data Modeling address these questions by

creating additional tables or modifying the existing tables for each new entity being

tracked.

Also it is worth noting that entities fit into a hierarchy o f different types. For

example an 'Inpatient' is a 'Patient' and a 'Patient' is in tum an 'Entity' . Like wise a

'Monitor ' is an 'Equipment' which in tum is an 'Entity' . Figure 4.1 shows the

hierarchical information in entities which we would want to preserve in the data model.

31

Entity

Patient Equipment

Inpatient Outpatient Bed Monitor

Figure 4.1: A typical hierarchy among Entities

Relational Data Modeling does not offer a clean way to store such hierarchical

information among various entities and requires creating additional tables and using self

references among table entries. This is due to the lack o f adequate support in relational

models to store inheritance information in an easy and intuitive way. Further the

inheritance hierarchy shown above is subject to change when additional entities are added

to the tracking system. Figure 4.2 shows such a change which a typical tracking system

must be able to easily accommodate.

Entity

Person Equipment

Nurse Physician Bed Monitor
Patient

Inpatient Outpatient

Figure 4.2: A revised hierarchy with new entities added

32

X M L Schema provides a clean way to define the entire information particular to

an entity as well as the hierarchical information among different entities. The various

attributes o f an entity can be defined using the rich set o f data types supported in X M L

Schema. The power o f X M L schema is seen in its ability to support inheritance in a clean

and intuitive way. The use o f substitution groups, x s i : t y p e and Abstract Types allows

for useful features like runtime inheritance in the xml document instance [17].

A typical X M L instance indicating the details o f representing different Entities is

shown below. It shows that a single element 'Entity' is used to hold data for 'Inpatient'

and monitor types. The actual description and structure o f different entity types along

with the inheritance relationships is defined in the X M L Schema that is used to validate

the X M L instance o f an entity.

<Entity xsi:type="lnpatient">
<ld>999209093</ld>
<PatientName>John Doe </PatientName>

</Entity>

<Entity xsi:type-'Monitor">
<ld>M1982-G</ld>
<BrandName>GE Unity</BrandName>
<SerialNo>3C-12DS-9081</ SeriaINo >

</Entity>

In the OR Track data model using X M L Schemas, each entity is defmed as a

x s : c o m p l e x T y p e encompassing all its relevant attributes. The complex types were

logically structured into different files clearly specifying the inheritance hierarchy among

them. A l l these entities can be collectively reference f rom a single X M L Schema file

which in turn consists o f merely references to other schemas defining these entity types.

Figure 4.3 shows a sample structuring o f entities in different files.

33

schema
reference

Base.xsd

<xs;element name-'Entity" type="EntityType"/>
<xs;complexType name-'EntityType"
abstract="true">

<xs:sequence>
<xs:element name="ld" type="xs:token"/>

</xs:sequence>
</xs:complexType>

schema
reference

Patient.xsd

<xs:comp!exType name="Patient"
abstract="true"> 0 ^

<xs:complexContent>
<xs:extension base="EntityType":

<!_ patient allributes - >
</xs:ex1ension> ^ ^

</xs:complexContent>
</xs:complexType>

— —V

InPatient.xsd

<xs:complexType name="lnPatient">
<xs:complexContent>

<x9;extension base="Patient">
<l— Inpatient attributes —>

</xs:extension> * "
</xs:complexContent>

</xs:compiexType>

Figure 4.3: Structuring o f entities as different schema files showing inheritance
relationships between them.

Figure 4.4 shows a section of instance document detailing runtime inheritance

with the use o f a single 'Entity' element for all the different entity types.

34

InPatient.xsd

schema
reference

i
i
i
i j
i

schema
reference I I

i
•

EntityList.xsd

<!— Maintains references to al!
concrete entities - >

<xs:include schemaLocaIion="lnPatient.xsd"/>
<xs:indude schemaLocation="OutPatient.xsd'7>
<xs:include schemaLocation='"Monitor.xsd"/>

<xs:complexType Bam8="lnPatient''>
<xs:complexContent> ^
<xs:extension base="Patient">
<!— Patient attributes - >

</xs:extension>
</xs;comp!exContent>

</xs:complexType>

AnEntity.xml

<Entity xsi:type="lnPatient">
<ld>999209093</ld>
<!- AH attnbute cf inpatient

</Entity>

Figure 4.4: A n xml instance depicting runtime inheritance by using a single Entity
element referring to an 'Inpatient' type.

Appendix shows the X M L schemas for some entities used in OR Track. From OR

Tracks perspective, only the entity ID and the entity type are the required information

used in its processing logic. So the schemas described currently only consist of entity ID

for each concrete type defined. However additional elements in the extended types can

easily be added in this scheme.

4.2.2. O R Track Location

A n OR Track 'location' refers to a physical space in the hospital complex being

tracked. Typically for tracking a patient undergoing surgery on a particular day, the

locations observed in the hospital would be Ambulatory Surgery Unit (ASU), Pre-Op

Holding Area (POHA), Operating Room (OR), Post Anesthetic Care Unit (PACU),

35

Surgical Intensive Care Unit (SICU), etc. However care must be taken while modeling

such locations o f interest in the OR Track system. A deeper look into this problem

reveals various dimensions to a single location being observed. For example, an OR is

essentially a room in a hospital building. Rather than viewing OR as a location, it more

appropriate to look at OR as a function or purpose o f a particular room in the hospital

building. Such details must be clearly considered while modeling a location being

tracked.

The best way to model location is to keep it close to its physical layout as seen in

the real world. A sample xml representation of a hospital location is shown below.

<?xml version^'1.0" encoding="UTF-8"?>
< HospitalLocation xmlns:orstar="osu.ease.medctr.orstar"
xmlns:xsi="http://www. w3.org/2001/XMLSchema-instance"
xskschemaLocation-'osu.ease.medctr.orstar Map.xsd"
xsi :type="orstar :UniversityHospital ">

<orstar:HospitalFunctionality xsi:type="orstar:GeneralHospital"/>
<orstar:BuildingLocation xsi:type="orstar:Doan">

<orstar:FloorLocation xsi:type="orstar:DoanFloorl">
<orstar: RoomLocation xsi:type="orstar:DoanFloorlRooml01">

<orstar:RoomFunctionality xsi:type="orstar:CardioOR"/>
<orstar:SectorLocation lD="2"/>

</orstar:RoomLocation>
</orstar:FloorLocation>

</orstar:BuildingLocation>
</orstar:HospitalLocation>

It can be seen that a hospital location is abstracted using elements like

'HospitalLocation', 'BuildingLocation', 'FloorLocation' and 'RoomLocation' pointing to

the appropriate concrete types as specified in the ' x s i : t y p e ' attribute. The X M L

instance would validate against an X M L Schema (Map.xsd), which would be a complex

structure encompassing all valid hospital locations in the form of a Hospital Map. A

36

description o f the approach taken and complexities involved to arrive at such an X M L

schema is detailed next.

Typically, a hospital complex contains one or more buildings. A hospital building

contains one or more floors or elevators. Each floor contains one or more rooms or

corridors. And a room or corridor may be divided into one or more logical sectors. A

sector is a logical division within a room or a corridor and provides a finer level of

granularity to address a part o f a room or a corridor. Having said this, i t is evident that a

location can be looked at different levels of granularity. The finest level o f granularity is

specified at the sector level and simply the hospital name at the coarsest level. These

relationships among various levels o f granularity are shown diagrammatically in Figure

4.5. These relationships are represented using crow foot notation in Figure 4.6.

Firstly, we need a structure to abstract different levels o f granularity and the

containment relationships among them. Elaborating this further, we need a way to specify

that a location must always be abstracted in the form - A 'Sector' in a 'Room' in a

'Floor' o f a 'Bui lding ' in a 'Hospital'. Next we need a way to specify different types

allowed in such an abstraction in accordance with the map of the hospitals

It is worth noting that OR Track does not keep any spatial information in

modeling locations. Spatial information would include details like a floor plan which

would allow determining the coordinates o f a room in a floor, the coordinates o f corridors

between rooms and so on. OR Track does not keep this information in its state to keep the

structure simple and light weight. However, it would be useful to consider this aspect for

uniformity in graphical view of locations from different OR track clients.

37

Hospital Complex

Building 1

Floor 2

Floor 1
Room 101

Sectoi

2

Room 102

Building 2

Figure 4.5: A simple diagrammatic representation o f containment relationship among
different levels o f location granularity.

Figure 4.6: A representation of containment relationship among different levels o f
location granularity using crow foot notation.

38

Similar to hierarchy in entity types, there is well defmed hierarchy o f locations at

each level o f granularity. The type hierarchies in various location granularities are shown

in Figure 4.7.

Building Hospital

University
Hospital

Ross
Hospital

UniversityHospitalBuilding RossBuilding

Rhodes Doan

Floor Room

University HospitalFloor RossFloor

RhodesFloor DoanFloor

DoanFloorl DoanFloor2

UniversityHospitalRoom RossRoom

RhodesRoom DoanRoom

DoanFloorl Room DoanFloor2Room

DoanFloorlRoomlOl DoanFloorl Room 102

Figure 4.7: Type hierarchies at different location granularity levels.

From the figure, it can be observed that the hierarchy at each granularity level is

kept tightly coupled to the actual map of the hospital. For example, one cannot assume

DoanFloorlRoomlOl and DoanFloorl Room 102 to be the same type as these may have

different areas and hence the number of sectors in each may differ. Moreover by using

proper naming conventions, following an intuitive pattem, allows us to generate the

entire map of hospital rooms by using a simple X M L aware tool. A similar argument

applies to the hierarchies at other levels o f granularity. Also, it is worth noting that a

39

sector is a logical division of room. Hence, sectors do not fit into any kind of hierarchy.

By keeping the sector dimensions configurable the fineness o f an observed location can

be changed easily.

In order to keep the allowed instances o f location in accordance with the hospital

maps, we need a way to specify the list of allowed types within a particular level of

location granularity. For example, we need a way to specify that the building type 'Doan'

can contain only floor types like 'DoanFloorl ' , 'DoanFloor2', 'DoanFloor3', etc. Taking

advantage of the hierarchies in different location granularities, this information can be

simply specified as building type 'Doan' can have any 'DoanFloor' type. This would

include all concrete types like 'DoanFloorl ' , 'DoanFloor2', 'DoanFloorB', etc. that

inherit f rom the type 'DoanFloor'.

Finally it was required to associate every level of granularity wi th an optional

functionality. As discussed earlier, the functionality o f a room could be OR, ASU, SICU,

PACU, etc. However a corridor or a floor may not have any functionality associated with

it but a room must have a functionality associated with it. The functionality information

would be defined in the structure for different location granularities. Also it is worth

noting that the functionality at different levels may fit into a hierarchy. Fig 4.8 shows the

hierarchy o f room functionalities.

To summarize in brief; the structure, allowed types, the hierarchical relationships

among types and the containment relationships reflecting the actual hospital map; would

be stored in the X M L Schema for locations.

40

RoomFunctionality

ASU OR

CardioOR EmergencyOR

OrthoOR

Figure 4.8: Type hierarchy o f room functionalities.

Appendix shows schemas constituting a subset of a map of all hospital rooms.

Once the conceptualization o f Entity and Location was done and a suitable data model

developed, the next step was to test how well the model fits to define data structures for

different interfaces to OR Track and the state maintained within.

4.3. O R Track Input Message

The quality o f OR Track, in terms of the credibility o f the state of hospital

complex maintained within, is only as good as the quality o f location data passed to it by

the location detecting applications. Hence it is very import to define a generic data

structure for all messages coming into OR Track in order to enforce the location detecting

application to provide sufficient details in the message. Having a rich set o f information

in the message allows OR Track to make logical conclusions to detect and handle

erroneous conditions in the system. The structure of OR Track input message is described

in Table 4 . 1 .

41

Field Name Description
Entity The 'Entity' field contains the entity ID and entity type. It

is sufficient for OR Track to have these two properties
from an entity for processing the input message.

HospitalLocation This field a location in the hospital. OR Track only
accepts locations resolved to the finest granularity, i.e.,
t i l l the sector level, l h e entire path starting f rom the
hospital name to the sector ID is referred to as the
location ID in OR Track. Also the type and functionality
properties o f each location step are used for message
processing by OR Track.

MessageType This field can have the fol lowing attributes.
' I N ' - Indicates that an entity has entered a location
'OUT ' - Indicates that an entity has left a location
' I N G ' - A n acronym for Tn Guarantee'. This message

type is added to increase the reliability o f a
location's state in OR Track. Once an entity is
enters a location, OR track necessitates the
location detecting application to periodically
guarantee the presence of the entity in that
location. This message indirectly also indicates
the health of the location detecting application
reporting state changes to OR Track.

This field can have the fol lowing attributes.
' I N ' - Indicates that an entity has entered a location
'OUT ' - Indicates that an entity has left a location
' I N G ' - A n acronym for Tn Guarantee'. This message

type is added to increase the reliability o f a
location's state in OR Track. Once an entity is
enters a location, OR track necessitates the
location detecting application to periodically
guarantee the presence of the entity in that
location. This message indirectly also indicates
the health of the location detecting application
reporting state changes to OR Track.

MessageTimeStamp This field contains the date and time when the message
was generated.

EventTimeUndetermined This is a boolean flag indicating special circumstances
with the location detecting application that does not allow
it to determine the exact time of an event reported in its
message. For example say when a location detecting
application is started and it detects an entity in the
location observed by it, it generates an ' I N ' message.
However, the exact time when the entity was ' I n ' cannot
be determined. The location detecting application sets this
flag indicating such special condition.

Table 4.1: Structure of OR Track input message

The X M L schema for OR Track input message is shown in Appendix.

42

4.4. O R Track State

4.4.1. The Idea of O R Track State

The heart o f the OR Track system is the live state information maintained within.

The state o f OR Track can be seen as the current state o f all the locations o f interest in a

hospital and all the entities being tracked. Special care had to be taken to model the state

structure o f the OR Track.

Typically based on the real world view of the hospital complex and the

information supplied in an OR Track input message that is received from the location

detecting applications, the basic components of OR Track State would cover the

following information.

• Entity: The entity ID and entity type

• Location: location resolved at the sector level. It also contains the type

information and the functionality at the room level.

• Timestamp of ' I N ' message: Indicates when an entity was first detected in a

location.

• Last ' I n Guarantee' message timestamp: As mentioned earlier, ' In Guarantee'

message adds greatly to the reliability o f OR Track state. So long as ' I n

Guarantee' messages are received between entry and exit o f an entity from a

location, OR Track can guarantee the entity is in the location. I f OR Track stops

receiving Tn Guarantee' messages between entry and exit o f an entity, it could

mark this condition by setting a special flag.

• A flag to indicate multiple entities o f the same type in a hospital location: The

hospital location is resolved at room level to set this flag.
43

• A flag to indicate the presence of an entity in multiple locations: The hospital

location is resolved at room level to set this flag.

• A flag to indicate i f the true timestamp of ' I N ' message could not be determined

due to some special conditions. Such special conditions may occur at the location

detecting application due to which it is not able to determine the exact time of

entry o f an entity at a location. Another cause could be lost ' I N ' message or out of

order messages where 'OR Track' receives an ' I n Guarantee' message before an

' I N ' message. In this case OR Track logically concludes the entity to be inside a

location and marks this flag accordingly.

Having said this, we need to come up with an efficient mechanism to maintain

state. Also OR Track would maintain the state information in its memory so that it can

ensure faster processing of the input messages received and update its state. Considering

these factors, the different approaches to solve this problem is described next.

4.4.2. Approach to model O R Track State

One way to look at state is to consider it as a collection o f state entries where we

have one state entry for each entity-location pair. There is a caveat in choosing this

approach. The number o f locations can be at most all the hospital locations being

observed. But the number o f entities could potentially grow to a very large number with

new entities being tracked. For ' n ' locations and 'm ' entities, we could potentially end up

with 'm*n ' state entries. Any location-centric query (get me entities in location) or entity-

centric query (get me the location o f an entity) would execute in 0(m*n) time. This

motivates to look for a better approach in handling state.

44

OR Track state takes a location centric structure where information about entities

present inside each hospital location is maintained. Such a state structure can be viewed

as a tree containing locations as its first level nodes and each location node storing the

state of entities with in. This approach keeps the model intuitive and in accordance with

the real world view of the locations in a hospital complex.

Furthermore, there are two ways to store this tree structure. One approach is to

store a set o f all locations in a hospital complex and optionally one or more entity states

within. Even i f no entities are present in a location, the state would still hold an empty

node at this level. This approach to model state gives us a sparse tree containing all the

location nodes. A n advantage o f this approach is that any query to get the state o f

location would be executed in 0 (N) , N being the number o f nodes at all levels in the tree.

But the disadvantage is evident in the size of the state tree.

A n altemate approach is to maintain the state as a dense tree where a location

node would be stored only i f there is an entity present in that location. This allows the

keeps the number o f nodes in the tree to minimum. I f a location does not contain an entity

within, then a query to retrieve the state o f location would execute in O(n) time.

However, in this case, n would typically be a smaller number and hence this does not

pose a serious performance limitation and also gives an advantage o f keeping the size o f

state tree small. Also it must be noted, that an entity centric query like locating the

location o f an entity is expected to be faster with this approach due to less number o f

nodes stored. Hence OR Track maintains its state as a location-centric dense tree.

Having said this we need to come up with an appropriate structure to describe

such a tree structure.

45

4.4.3. Structure of O R Track State

Figure 4.9 shows such the data structure used to maintain OR Track state. The

details o f the various blocks in the data structure are described next.

HospitalLocation

State
0-n

LocationState

Reused from HospitaiLocation
schema defined earlier

EntityStates
1-n

EntityState

Entity State
Entity {Entity Id, Entity type)
InMessageTimeStamp
Lastl NGTimeStamp
IsGuaranteed
MultipleEntities
MultipleLocations
EventTimeUndetermined

Figure 4.9: The structure of OR Track State represented using crowfoot notation.

Referring to Figure 4.9, the 'State' element forms the root node of the tree. The

'State' node may contain one or more 'LocationState' nodes within. 'LocationState' node

describes the state o f a location which essentially contains one or more entities inside it.

A 'LocationState' node must contain only one 'HospitalLocation' node and only one

'EntityStates' node within it. 'HospitalLocation' specifies the granularity o f a location to

the sector level. 'EntityStates' node consists o f state o f all entities at a location. It is

structured so that it must have one or more 'EntityState' inside it. The information stored

in an 'EntityState' node is detailed in Table 4.2.

46

Field Name Description
Entity The 'Entity' f ield contains the entity ID and entity type. It

i i i i oi PIT t Tor O R TV^ifK' t n ni^vp t n P Q P twin t^ror^prtiPQ

from an entity to run its processing logic.
InMessageTimeStamp This field contains the date and time when the entity was

first detected inside the hospital location.
LastlNGTimeStamp This field stores the date and time when the last ' I N G ' (In

Guarantee) message was received for the entity inside the
hospital location.

IsGuaranteed This is a boolean field that guarantees the presence of the
entity in the hospital location. When the location sensing
service stops sending Tn Guarantee' messages for the
entity - location pair stored in the LocationState, this field
is set to false after a time interval called the In Guarantee
timeout interval. Keeping this additional flag increases
the reliability o l the EntityState.

MultipleEntities Indicates i f another entity of same type was detected in
the same location as the entity in the EntityState. It is
worth noting that to test this condition, OR Track must
observe a location at room level instead of sector level.

MultipleLocations Indicates i f the entity specified in the EntityState is also
found at a different location in the OR Track State.

EventTimeUndetermined This is a Boolean flag which is set when the exact time of
entry o f an entity into a location could not be determined
by the location detecting application.

Table 4.2: Contents of an 'EntityState' node

The X M L Schema representation of OR Track State is shown in Appendix.

47

4.5. Location Action

This concept o f Actions provides an extensible framework. The OR-Med system

could record Medication Actions (the administration of drugs) whereas OR Eye records

Vital Sign Actions (vital signs readings like heart rate, blood pressure, etc. retrieved

periodically f rom the monitor).

OR Track readily extends this concept and records the entry and exit of an entity

f rom a hospital location as a Location Action (for example entry o f an Inpatient into an

OR). These Actions would exist together in storage called the Action Bucket, and be

retrieved when necessary by a web service (Action Bucket Service) acting on behalf o f a

client. Additionally, the information stored with each of these Actions would allow them

to be correlated in different ways (by time, by patient, or by operating room, for

example), leading to the system to have almost unlimited functionality in terms of what

kinds o f Actions were recorded, and the ways in which they are analyzed.

48

Field Name Description
Entity The Entity field contains the entity ID and entity type.

It is sufficient to have these two properties f rom an
entity for storing a Location Action along with the
other actions in the Action Bucket.

HospitalLocation Location Actions requires locations resolved to the
finest eranularitv i e to the sector level The entire
path starting f rom the hospital name to the sector ID is
referred to as the location ID and is stored in the
ActionBucket as a part o f Location Action.

LocationEventType This field can have the following attributes.
' I N ' - Indicates that an entity has entered a location
'OUT ' - Indicates that an entity has left a location

TimeStampOfEvent This field contains the date and time of the location
event reported by location detecting application or OR
Track.

Special Flags This is collection of boolean flags indicating special
circumstances while generating the event. Each
Location Action contains the following Boolean flags:
• MultipleEntity - Indicates i f another entity of

same type was detected in the location reported in
the 'Location Action ' when created.

• MultipleLocation - Indicates i f the entity in this
'Location Action' was detected at a different
location in OR Track state when the 'Location
Action' was created.

• EventTimeUndetermined - Indicates i f under
some circumstances, the exact time of the
'Location Action' could not be determined by OR
Track.

Table 4.3: Structure of a Location Action

The X M L schema for a Location Action is shown in Appendix.

49

4.6. O R Track Output

OR Track must be able to expose different views o f its live state to the clients.

The clients o f the OR Track system would communicate to a web service (OR Track

Service) which would in turn retrieve the requested information from the OR Track state

and present to the client. Also, the client request and response f rom OR Track Service

would have an X M L representation. For exposing the OR Track state to the clients, it was

required to model the request and response X M L structures o f the different web methods

exposed by OR Track Service.

There are two methods which OR Track service exposes to its clients. One o f the

methods allows tracking all entities in a hospital location. The method would accept a list

o f locations and return the entities in each location. The other method gives a different

view to the OR Track state and allows finding an entity in a hospital location. The second

method accepts a list o f entities. Also, it is worth noting that as per the OR Track design

goals, it was required to indicate all special conditions in the state to the client so that it

can be handled in an appropriate way at the client side. Hence the response objects would

pair the entire location state with the queried parameter and return it to the client. For

example, for a request asking for the location o f an entity, the response object contains a

pair containing entity with all the location states where the entity was observed.

Typically, just a single location state w i l l be observed for an entity passed in request.

The desired functionality o f OR Track Service is provided by its two web

methods namely:

• GetEntitieslnLocations

• GetLocationOfEntities

50

A l l the OR Track Service web method requests as an extension of the abstract

base type 'ORTrackRequestType' and all the OR Track Service web method response as

an extension o f the abstract base type 'ORTrackResponseType'. Figure 4.10 shows this

inheritance relationship.

ORTrackResponseType

GetEntit ieslnLocationResponseType GetLocationOfEntit iesResponseType

ORTrackRequestType

GetEntit ieslnLocationRequestType GetLocationOfEntit iesRequestType

Figure 4.10: Inheritance in ORTrackRequest and ORTrackResponse

Figure 4.11 shows a sample request message as an xml string containing

ORTrackRequest of type 'GetEntitiesInLocationRequest'. It can be seen that having a

hierarchy for request and response types allows us to make use o f runtime inheritance

giving a single point o f reference for all OR Track requests and responses.

51

.Request element

<?xml version="1.0" encodin9="UTF-8"?>
• <ORTrackReauest xmlns="osu.ease.mec

c
OJ
E

LU

A concrete OR Track
Request Type

o g
" eo E o o o tu _j
Q- c

ORTrackRequest xmlns-'osu.ease.medctr.orstar.ortrack"
xmlns:orstar="osu.ease.medctr.orstar" xmlns:xsi="http://www.w3.org/2001/XMLSchema
instance" xsi:schemaLocation-'osu.ease.medctr.orstar.ortrack
GetEntitieslnLocationRequest.xsd" xsiitype^'^etEntit ieslnLocationRequestlyp^'^
<LocationList>
<orstar:HospitalLocation xsi;type="orstar;UniversityHospital">

<orstar:Functionality xsi:type="orstar:GeneralHospital"/>
<orstar:BuildingLocation xsi;type-'orstar:Doan">

<orstar;FloorLocation xsi:type="orstar;DoanFloor1 ">
<orstar:RoomLocation xsi:type-'orstar:DoanFloor1Room101">

<orstar;Functionality xsi:type="orstar:DoanCardioOR"/>
<orstar:SectorLocation ID="27>

</orstar:RoomLocation>
</orstar:FloorLocation>

</orstar:BuildingLocation>
</orstar:HospitalLocation>

-</LocationList>
</ORTrackRequest>

Figure 4.11: Runtime inheritance using a single 'ORTrackRequest' element for all OR
Track request types.

GetEntitieslnLocation 1 LocationList
J < HospitalLocation

RequestType 1 LocationList HospitalLocation
RequestType 1-n

HospitalLocation

GetEntitieslnLocation
ResponseType 1-n

ResultsPer
Location

HospitalLocation

LocationState LocationState
List O-n

LocationState

Figure 4.12: The structure of'GetEntitieslnLocationRequestType' and
'GetEntitieslnLocationResponseType'.

52

GetLocationOfEntities 1 EntityList
RequestType 1 EntityList

1-n
Entity

Entity

GetLocationOfEntities 1 ResultsPer
ResponseType 1-n Entity

LocationState
List O-n

LocationState

Figure 4.13: The structure of'GetLocationOfEntitiesRequestType' and
' GetLocationOfEntitiesResponseType'.

Figure 4.12 and Figure 4.13 shows the format of data structure used for modeling

request and response for the web methods 'GetEntitieslnLocation' and

'GetLocationOfEntities' respectively. The X M L Schemas for ORTrackRequest and

ORTrackResponse are detailed in Appendix.

53

CHAPTER 5

OR T R A C K DESIGN AND IMPLEMENTATION

5.1. Rules in O R Track

5.1.1. Concept of Rules and Rule Containers

OR Track maintains the state of various hospital locations based on the messages

received f rom the location detecting application. Such applications may use different

sensing technologies to provide accurate information within the boundaries of location

for which a message is sent. The purpose o f OR Track is to collect the messages coming

from various locations and update the OR Track state which is adequately modeled to

hold a variety of information regarding the states o f the various locations and the entities

within. Each input message needs to be aptly processed looking at the current state of the

system, clearly indicating special conditions and exceptions i f found. For example, a

message may be received for a patient whose presence is detected at a different state

simultaneously in the OR Track state. Thus OR track can be considered as a smart

repository having a well defined set of processing logic to capture various conditions in

the states o f entities and locations it maintains.

The OR Track processing may be essentially looked upon as a series of rule

checking before effecting any change in its state. From OR Track's perspective, a rule

54

can be considered as an independent block of processing in the OR Track system that

takes in the current state o f the system and parameters f rom the input message, check for

a set of conditions to be satisfied and transforms the existing state of the system to a new

state generating zero or more Location Actions based on the results o f evaluation o f these

conditions. Figure 5.1 depicts the idea of an OR Track rule.

OR Track Input Message,
Current OR Track State

Current State

OR Track Input Message

Next State

>• Localion Action Each Transform
referes to a change
of OR Track state
or genreation of a

Location Action

New OR Track State,
Location Actions

Figure 5.1: A n OR Track Rule and its internals

Such a rule based approach allows us to store a collection o f rules and applying an

appropriate subset o f these rules based on some key parameters. Instead of visualizing

rules as a part o f a huge pool, it is simpler to think of a small set o f rules stored in a

structure called as Rule Container. Rule Container allows an added dimensionality in

55

classifying a set o f rules based on some key parameters. This approach allows a clean

separation o f processing logic into different containers allowing a particular container to

be selected on a case by case basis, keeping the overall design flexible. Figure 5.2 shows

the idea o f a Rule Container. It is worth noting that a Rule Container essentially contains

rules that are independent o f each other. Hence there is no need to apply these rules in a

particular sequence to ensure the desired processing. A n analysis o f OR Track processing

revealed that it is possible to define such processing rules independent o f each other.

Rule Container
Rules are

independent and
1 Rule 1 1 1 Rule 2 [• • 1 Rule n 1 can be applied in
L _ _ _ J L _ _ _ i I 1 any sequence

Figure 5.2: Organization o f rules in a Rule Container

Having said this, it is also important to consider the criteria based on which a Rule

Container has to be picked and applied. OR Track processing depends upon the type o f

entity and the hospital room where it is detected. For example, the processing required for

a message indicating entry of a patient in an OR may be different f rom a message

indicating entry o f a patient in an ASU. Rooms with functionality 'OR' allows only one

patient to be present inside it when being used. Likewise, rooms with functionality ' A S U '

may have a capacity to accommodate multiple patients in it. Also it is possible that a

room with functionality 'OR' may accommodate multiple monitors in it. Looking into

these sample cases, it can be observed that the required processing expected f rom OR

56

Track is dependent on the 'Entity Type' and 'Room Functionality' fieds obtained from

the OR Track input message. OR Track would need a table o f such Rule containers - one

for each 'Entity Type - RoomFunctionality' combination - for faster processing of an

input message received.

5.1.2. Rule Container Inheritance Hierarchy

OR Track may do lot of common processing for different 'Entity Type -

RoomFunctionality' combination. For example, when a message received indicates the

presence of an entity in two different locations at the same time, it must be tagged in the

state appropriately to reflect this condition. This rule would be common for any 'Entity

Type - RoomFunctionality' combination. Likewise for a message indicating an Inpatient

or Outpatient entering an OR, it must be ensured that the OR is vacant for the OR Track

state change to be normal. This is a common rule for any 'Patient-OR' combination. As

simple lesson learnt f rom the above conditions described, there is a potential to organize

the Rule Containers in a hierarchical inheritance pattern with the common rules contained

in the higher levels and all the specialized rules in the lower levels. However this

hierarchy is not trivial as every node it is based on a particular 'Entity Type -

RoomFunctionality' pairing and the container at one level may inherit f rom multiple

parents. An example o f such a hierarchy seen in Rule Containers is shown in Figure 5.3.

The figure shows that rules for any 'Patient - OR' association could be organized in the

'Enti ty-RoomFunc' , 'Entity-OR', 'Patient-RoomFunc' and 'Patient-OR' Rule

Containers pushing all the common rules to the higher levels.

57

- - f - - A -

Entity_RoomFunc /

I S
lc c
o o

| j
Patient RoomFunc Entlty_OR

Figure 5.3: Inheritance hierarchy observed in Rule Containers

The number o f such Rule Containers would be potentially large considering all

the combinations o f elements in the 'Entity Type' and 'Room Functionality' hierarchy.

G i v e n ' m ' nodes in the 'Room Functionality' hierarchy and ' n ' nodes in the 'Entity

Type' hierarchy, there are 'm*n ' Rule Containers possible. These 'm*n ' Rule Containers

w i l l fit into an inheritance hierarchy o f its own. In Figure 5.3, only a subset of possible

Rule Containers detailing the inheritance relationships is shown for clarity.

58

5.1.3. Need for a Rule Compiler

Typically, when rules are organized into different Rule Containers, it would be

done so to inherit rules f rom its parent Rule Container and explicitly define new rules at

that level. Optionally, it may override one or more rules specified in its parent Rule

Containers. Organizing rules into different containers using the above mentioned

approach allows a high reuse o f rules and an intuitive structure of rule orgamzation.

Having such a clean and well separated organization of Rule Containers, at

runtime, a typical 'Entity Type - Room Functionality' pair obtained in the OR Track

input message, would necessitate picking up all the rules that applies to the particular

pair. I f the hierarchy of Rule Containers was used as is; starting at the Rule container

corresponding to 'Entity Type - Room Functionality' pair received in the OR Track

message, it would be required to traverse all the way up the inheritance tree t i l l the root

Rule Container, collect all the rules along the path, override the rules where specified

along the path, and come up with a final set of rules for this pair. After the set o f rules are

obtained, OR Track would process the message according to these rules. As the number

of entity types and room functionalities grow, we would end up with a large number o f

Rule Containers that may fit into a deep hierarchy. Traversing through such a hierarchy

and collecting the relevant rules may be an expensive process and is an additional

overhead in OR Track processing.

Once we have the rules are appropriately organized into an inheritance tree of

Rule Containers, this structure remains static during the operation o f OR Track. The

overhead to collect all the rules by the traversing the hierarchy at runtime for every

message received can be avoided i f we can compile the rules for all the 'Entity Type -

59

Room Functionality' pairings into a tabular structure indexed by 'Entity Type' and

'Room Functionality'. This encourages to the notion o f having a Rule Compiler block

which may be used to pre-compile the hierarchy of Rule Containers into a table o f new

containers having all the rules for a given entity type and room functionality. Figure 5.4

shows the concept o f such a Rule Compiler.

Entity Type Room
Functionality

Compiled Rule
Container

Patient OR • • • Inpatient OR • • • • Inpatient ASU • • • Patient ASU • • Patient Admissions •

Monitor OR • •
Rule Container Hierarchy Table of compiled Rule Containers

Figure 5.4: Rule Compiler

5.1.4. Rule Processor

The Rule Processor block takes in the OR Track input message, the current state

and the set of rules f rom the compiled Rule Container; evaluates the conditions in each

rule and apply them one by one. The result of applying all the rules transforms the current

OR Track state to a new OR Track state and may generate one ore more Location

Actions. A sample implementation o f such a Rule Processor is shown in the simplified

U M L diagram [18] o f Figure 5.5. The sample implementation shows the use o f Decorator

[19] pattern where each rule acts as the decorator applying necessary transforms to

change state and generate Location Actions.

60

ORTracklnputMessage

+EntityType : string
+Entityld : string
+RoomFunctionality: string
+Location : string
MessageType : bool

-MessageTimeStamp : Date

ORTrackState

1 1 1 1

) -qeneratedActions
AbstractTransform

+DoTransform()

DefaultTransform

-DoTransform()

AbstractDecorator
-nextTransform

public void DoTransform()
{

//Do nothing
//(Default processing)

i
Rulel Rule2 Rule3

+DoTransform() +DoTransfomi() +DoTransform()

public void DoTransform()

nextTransform.DoTransform();

//Check Rule specific condition

//if condrtion satisfied,
//change state
//Generate zero or more Location Actions.

LocatlonAction

Figure 5.5: Simplified U M L diagram of Rule Processor implementation

5.1.5. Advantages

The Rule Based approach described so far provides a clean decoupling of the

various OR Track tasks. The concept o f Rule Container hierarchy based on 'Entity Type

- Room Functionality' pairing allows easy and intuitive maintenance of rules by a Rule

Administrator. The idea of Rule Compiler gives yet another decoupled block which acts

as the interface between the 'rule administration world ' that demands easy and intuitive

maintainability and the 'rule enforcing world ' that demands high performance. Rule
61

Compilers can be f i t in the OR Track implementation so that it runs the compilation

process once during start up and subsequently whenever it detects a change in the Rule

Container hierarchy. This greatly simplified the process of enforcement o f new rules in

the system.

Further the idea o f Rule Container hierarchy easily adapts to the X M L world

where the entire hierarchy can be implemented as an X M L document. The compiler can

be seen as a transformation o f this X M L to a new X M L document containing the

aggregated rules for each 'Entity Type - Room Functionality' pair. The rule processing

can be seen as a series o f XSL transformations o f the Input Message (stored as X M L) and

OR Track State (stored as X M L) to zero or more Location Actions (X M L) and a new OR

Track State (X M L) . This gives a potential to implement the entire rule processing in OR

Track using X M L technologies and allows a shift o f paradigm to declarative X M L

programming.

5.2. O R Track Implementation Strategy

It was decided to use Visual Studio .NET 2003 Enterprise Edition for

implementation o f the system. When developing with the .NET framework, code is

compiled to the Microsoft Intermediate Language (MSIL) [20]. A virtual machine called

the Common Language Runtime (CLR) [20] is responsible for Just-In-Time (JIT)

compilation o f MSIL into machine code. This approach allows for platform independence

of the various components o f the system being developed so long as the platform has the

.NET CLR installed on it. This way, as long as a language compiles to MSIL , this MSIL

component can be used in any other .NET program, regardless o f the language this

62

program is written in. C# [21] was chosen to as the language for implementation various

parts o f the system.

5.2.1. LocationRecordingService Description

LocationRecordingService acts as the point of entry for all OR Track input

messages produced by the location detecting application. This service exposes only one

method as shown in Table 5.1.

Web Method Function
void SendORTracklnputMessage (string
messageXML)

Receives the OR Track input message as an
X M L string, validates each message in the
xml string received against the X M L schema
and on successful validation stores this
message in the Preprocessing queue.

Table 5.1: LocationRecordingService Web Methods

Web Services must be designed to keep the web method calls lightweight and

short lived. Hence the responsibility of the LocationRecordingService is limited to

collect, validate and deposit message in the Preprocessing buffer. Also to make efficient

use o f every web service call, Location recording service accepts a bundle o f OR Track

input messages received f rom multiple locations and sent together for processing. A

flowchart detailing the steps o f execution in 'SendORTracklnputMessage'' is shown in

Figure 5.6.

63

M - OR Track input
messages received

For each message'm' in 'M'

Figure 5.6: Flowchart for SendORTracklnputMessage method

5.2.2. O R Track Windows Service Description

The functionality o f the OR Track Windows service was divided to perform four

main methods as shown in Table 5.2. The methods responsible for each of these function

is associated with a timer tick as a timer tick event handler. A timer tick starts the

execution o f the method associated with it in a separate worker thread obtained f rom the

CLR thread pool.

64

Windows Service Method Function
void ProcessORTracklnputMessage {) Checks for new messages in the

preprocessing queue, picks the appropriate
set of rules for each message, processes the
message and updates OR Track state
generating zero or more Location Actions,
and stores these Location Actions in a local
queue - LocationActionQueue.

void ChecklnGuranteeTimeOutQ Scans the entire OR Track state to get the
'LastlNGTimestamp' field f rom each
EntityState. I f the difference between the
current system time and the
LastlNGTimestamp exceeds the Tn
Guarantee' timeout interval, it sets the
'IsGuaranteed' field o f this EntityState to
false.

void SendLocationActions() Checks the LocationActionQueue for
presence of LocationActions. I f found, then
sends each LocationAction as an xml string
to ActionBucketService.

void PersistORTrackStateQ Saves the OR Track State to a local database.
The state is stored as an X M L

Table 5.2: Methods of ORTrackWindowsService

Figure 5.7 indicates the flowchart for ProcessORTracklnputMessage method. As

shown it first peeks for messages in the preprocessing queue, and i f found uses the Rule

Processor block, to take care o f the required message processing to change OR Track sate

and generate one or more Location Actions. The state is persisted in a local database i f

the processing results in the generation of Location Actions. Once the entire process is

completed, the message is removed from the queue. This allows for a robust design in

case o f unexpected system failure or error in processing. The messages left in queue can

be reprocessed once the normal system conditions resume.

65

Locate the Rule Container
applicable to the message

Pass the message and the set of rules
in the Rule Container to the Rule

Processor block (OR Track state is
updated and zero or more Location

Actions are generated)

Yes

t
Send each Location Action

to the local
LocationActionQueue

No

Call PersistORTrackState
method

J
Remove message from
Preprocessing queue

Next

^ STOP ^)

;ure 5.7: Flowchart for ProcessORTracklnputMessage method

66

Figure 5.8 indicates the flowchart for ChecklnGuaranteeTimeOut method. This

method is responsible to guarantee the reliability of the various parts (EntityState node)

of the OR Track state.

Get all the EntityState nodes
from the OR Track state

I
For each EntityState node found

Get the 'LastlNGTimestamp'
field for this node

Yes

J l
Set the 'IsGuaranteed' flag

for this node to 'false'

£ Next

STOP

No

Figure 5.8: Flowchart for ChecklnGuaranteeTimeOut method

67

Figure 5.9 indicates the flowchart for SendLocationActions method. This method

allows decoupling the expensive call to invoke the ActionBucketService methods from

the main OR Track processing. This method allows the Location Action archiving

functionality to be separated from the live OR Track State updates.

Peek for LocationActions in
LocationActionQueue

For each LocationAction found

Call putiocationAction
method of

ActionBucketService

No

^ Next

STOP ^)

Figure 5.9: Flowchart for SendLocationActions method

68

Finally, as described earlier, PersistORTrackState is a simple functionality to

decouple the logic o f persisting a live OR Track state in a local database as an xml .

5.2.3. O R Track Web Service Design Description

ORTrackService acts as the interface to all the clients o f OR Track seeking

various views o f live state o f the hospital locations monitored by the system. Table 5.3

indicated the two web methods exposed by the ORTrackService.

Web Method Function
string GetEntitieslnLocation (string
request)

Accepts a list of hospital locations in the
form of the ORTrackRequest X M L string for
this method; checks i f the request format is in
compliance with the request X M L schema;
and for each hospital location sent, queries
the OR Track State stored in the local
database to get all LocationState nodes for
this location; packs the response in
accordance with the ORTrackResponse
structure for this method; sends this response
object to the calling application.

string GetLocationOfEntities (string
request)

Accepts a list of entities in the form of the
ORTrackRequest X M L string for this
method; checks i f the request format is in
compliance with the request X M L schema;
and for each entity sent, queries the OR
Track State stored in the local database to get
all LocationState nodes for this entity; packs
the response in accordance with the
ORTrackResponse structure for this method;
sends this response object to the calling
application.

Table 5.3: ORTrackService web methods.

69

5.2.4. E r r o r Handling

In Web Services based system like the OR Track, it is an important task to be able

to recover f rom and carefully communicate as many errors as possible. The important

tasks involved in error handling are the logging o f errors and propagation of error

messages.

The former is the simpler o f the two tasks. The Microsoft .NET Framework

provides an API to interact with the Windows Event Logging Service. Using this API ,

messages can be written to the event log, and marked by type (Information, Warning, or

Error). These messages can then be examined by a system administrator and appropriate

action can be taken.

The propagation o f error messages is another important aspect of error handling.

To do this, exceptions are thrown from each of the Web Services to the calling Web

Services. These exceptions are of type "SoapException," which is a class provided by

the .NET Framework. Each exception contains an error code, which can be used to

identify the type o f error which has occurred. When the error propagates back to the

client application, an appropriate message based upon the error code can be displayed to

the user.

70

CHAPTER 6

USB LOCATE: A R E L I A B L E LOCATION DETECTING
APPLICATION

6.1. Introduction

USB Locate is a location detecting application which is capable o f generating OR

Track input messages in response to various location events in the real world. Every

entity being tracked must have a USB drive attached to it. Like wise every location of

interest has a PC/laptop fixed at a suitable place within. The idea behind tracking any

entity entering or leaving a location would be based on 'plugging in ' and 'plugging out'

o f a USB drive (identity o f the Entity) from the PC/laptop (identity o f the location). I f

such a scheme can be made feasible to track certain entities, then it offers a reliable way

of generating messages for tracking such entities and these messages in tum can be sent

to a system like OR Track.

The idea described above can be successfully used to track patients in different

hospital locations. In addition, use o f a reliable storage like USB drive allows us to store

a variety o f additional information of clinical importance apart f rom entity information

required for tracking. This gives us a possibility of storing a patient picture, patient's

allergy records, history o f illness, blood group, etc. Considering a typical case of a patient

71

inside an OR, the availability of such valuable information during surgery need not be

emphasized in terms o f its potential to reduce medical errors. USB Locate was designed

keeping in mind the primary goal to aid tracking along with a motivation to provide other

value added services useful in clinical workflow.

6.2. Preview of Technology Used

The usefulness o f USB Locate application depends on a reliable means to detect

USB devices connected to a computer. Considering the fact that a PC/laptop fixed to a

hospital location runs Windows 2000 operating system or higher, it was decided to

leverage the Windows Management Instrumentation (W M I) framework.

Windows Management Instrumentation (W M I) is the Microsoft implementation

of Web-Based Enterprise Management (WBEM), an initiative to establish standards for

accessing and sharing management information over an enterprise network. W M I is

WBEM-compliant and provides integrated support for the Common Information Model

(CIM), the data model that describes the objects that exist in a management environment.

The word 'Instrumentation' in W M I refers to the fact that W M I can get

information about the internal state o f computer systems. W M I 'instruments' by

modeling objects such as disks, processes, plug and play devices, or other objects found

in Windows systems. These computer system objects are modeled using classes such as

Win32_LogicalDisk, Win32_Process, Win32_PnPEntity, etc. These classes are based on

the extensible C I M schema. The C I M schema is a public standard of the Distributed

Management Task Force.

72

W M I supports a SQL-like query language called Windows Management

Instrumentation Query Language (WQL) to search the repository of C I M objects

maintained by it. W Q L queries were identified to detect a USB drive connected to a

computer along with other useful information like the drive letter assigned to it. Use of

W M I with W Q L support enabled the development of USB Locate without worrying too

much about writing low level code for USB device detection and getting the associated

parameters. Current implementation o f USB device relies on polling the W M I repository

periodically for presence of USB devices connected to the computer. Such a strategy o f

polling, though being resource intensive in terms o f CPU cycles used, allows for a

reliable means for constantly detecting USB devices connected to a computer.

6.3. USB Locate System Architecture

During the development of the USB Locate system architecture, it was required to

divide the problem into two parts namely - a mechanism to detect entities in a location

and generate messages for a system like OR Track; and a means to provide value added

services that may be used to reduce medical errors. Keeping this in mind, the USB Locate

application was divided into two main parts -

• USB Locate Windows Service: A windows service that runs in the background

constantly checking for entities connected to the computer and to send messages to

OR Track.

• USB Locate GUI : A Graphical User Interface displaying additional information about

the entities (like patients) connected to the computer.

73

The USB Locate architecture is described in Figure 6.1 showing the functionality

o f the two parts described above. The sensitive entity information in the USB drive is

stored encrypted in a predefined folder structure.

P C / Laptop fixed at the location

USB Locate GUI

State Of USB Locate Service: Running

John Doe] jim Kleen]
Patient Information
Name: John Doe
Patient Id: 9900901901
List of Allergies:
Allergic to Penicillin

Current USB Locate State Queue

2. Check if
Patient

Connected
Current State:
1. A list of triplets
(drive, Entityld, EntityType)
2. Last InGuarantee Timestamp

3. Get Patient
Data and

Patient Image

Send IN. OUT or
ING Message by a
webservice call to

Location Recording
Service

ORTraekinputMessaae
- MessageType
- Location (Complex Type)
- Entity (Complex Type)
- MessageTimeStamp
- EventTimeUndetermined

Patient Image OR Track

Figure 6.1: USB Locate System Architecture (A Location Detecting Application)

74

The USB Locate windows service uses a W M I layer to check for USB devices

connected to the computer. For each new device connected, it retrieves the encrypted

entity information f rom a file stored in a predefined folder structure. The laptop running

the USB Locate application contains a secure key store which contains the key to decrypt

all the entity information. For every new device detected, i f the entity information

organized in the predefined folder structure is successfully decrypted, USB Locate

concludes this condition as a presence of new entity in this location and generates an ' I N '

message and sends it to OR Track. Likewise, when the windows service no longer finds

the USB drive attached to a detected entity in its state, it generates an ' O U T ' message

and send it to OR Track. Also for all the entities connected, USB Locate periodically

generates an Tn Guarantee' message and sends it to OR Track. USB Locate stores the

entity ID, entity type and drive letter assigned to USB device for each entity in its state.

The current state o f the application is persisted in a local queue (MSMQ) to enable

sharing o f state information with the GUI application.

The USB Locate GUI application is used to show information about the entities

connected to the PC/Laptop in the location. The central idea is to check the current state

of the location f rom the local queue (updated by USB Locate windows service), and

retrieve the entity information stored in the USB drive and display in a user friendly

format. Current implementation of the GUI application shows additional information

about the patients connected like patient picture, allergy information, etc. Further, USB

Locate GUI also gives a visual feedback regarding the state o f the USB Locate Windows

Service (running or stopped).

75

The subsequent section mainly details the design and implementation of USB

Locate windows service and leaves the design o f the USB Locate GUI as an open ended

problem based on additional information desired for different entity types.

6.4. USB Locate Design and Implementation

The design o f USB Locate is purely discussed form the location sensing

perspective and the capability o f the system to provide value added clinical information

like patient records, picture, etc. are left as an open ended problem that can be addressed

on a case by case basis for various entities. The USB Locate windows service is the

backbone o f the entire USB Locate application and is responsible to generate messages

indicating entry, exit and presence o f an entity in the location. Further, since the entire

tracking information generated is based on a physical connection between a computer and

a USB device, it was necessary to consider special cases like restart of the computer,

waking up o f a computer f rom stand by or hibernation mode while a USB device is

connected to it, etc. It would be recommended to keep the PC/Laptop at the location

running at all times with power saving modes disabled to ensure reliable tracking at all

times. But the design o f USB Locate cannot be simplified based on such an assumption.

When the design is influenced by a variety of such external conditions, it is easy

to analyze the system once we can model the different states o f the system. The design o f

USB Locate started with identification of different system states and then fit t ing in the

conditions in response to which a state change occurs. Generally such a state change my

result in generation o f ' I N ' or an 'OUT ' messages. Based on different state conditions,

we can determine whether the time stamp of messages coincides (within the accuracy

76

limits o f USB Locate) with the true events in real world. The process o f generation of Tn

Guarantee' is treated as a parallel activity which guarantees the current state o f the

system seen.

The state of the USB Locate system was modeled based on two Boolean values -

• EntitiesConnected: The value of this Boolean variable is set to 'true' i f there are

one or more entities connected to it. Not that this is different f rom merely a USB

drive connected and also satisfies additional conditions indicating successful

detection and decryption o f entity data stored in the USB drive.

• INGuaranteeExpired: This Boolean value adds reliability to the detection o f

entities connected to the computer. When the state o f the system is guaranteed

this value is set to 'false'. This condition is set to 'true' in response to special

conditions when the current state could not be guaranteed.

Figure 6.2 shows a state diagram for the USB Locate application detailing the

different states and the messages generated in response to state changes. The conditions

which cause state changes are classified into the fol lowing 3 categories -

• NoEntitiesDetected: Indicates whether no entities were detected during the

current polling cycle

• SameEntitiesDetected: Indicates i f the same entities were detected during the

current polling cycle. This variable is insignificant when NoEntitiesDetected is

set to 'true'.

• InGuaranteeTimeOut: Indicates that the difference between the current system

time and the time of last Tn Guarantee' for the state exceeds the time interval of

Tn Guarantee'.

77

SameEntitiedDetecled = F
NoEnlityDetected = 'F

For Entities disconnected.
Generate OUT,

For new Entities
connected, Generate iN

Figure 6.2: State diagram for USB Locate application

78

It was decided to develop a separate class library which helps to generate the

required location events based on USB drive detection. Once such a module in

developed, it can expose methods that can be called from windows service or any other

implementation strategy used. Keeping this idea in mind, the U M L diagram of the class

library developed is shown in Fig 6.3. The main class which acts as the public interface

to this library is the 'USBLocator' class. Table 6.1 shows the public methods o f the

USBLocator class.

Method Description
LocateEntities Gets all the entities plugged into the computer

fixed at the hospital location, i f new entities are
found or i f existing entities are disconnected, it
created OR Track ' I N ' and/or 'OUT ' messages
and sores them in a local queue. The messages
saved in the queue are consumed by
SendMessage running in a parallel thread.

GuaranteeEntitiesIn Guarantees the presence of all the entities
plugged in the computer fixed at the hospital
location.

SendMessage Checks for generated IN/OUT messages in the
queue and i f present, send them to the OR
Track system.

Table 6.1: Public methods of USB Locator class

The three public methods o f USB Locator described in the table above are made

to run in three parallel threads by the USB Locator windows service. Further, the

'USBLocator' class is implemented agnostic o f the USB detection technology used. I f for

79

some reason a different technology other than W M I is used, then the design easily allows

accommodating this change.

-myStale

USBLocator

ING_TIMEJNTERVAL : long
locRecServiceING: LocationRecordingService
•IccRecServicelNOUT: LocationRecordingService

^+locateEntit ies{)
+guaranteeEntitiesln()
+sendMessages()

-usblocMsgQueue

-wmiUSBDetector

USeDetecfor

+ConnectedDrives

+GetUSBDevices()

WMIUSBDetector

-xmlMsgGenerator

USBFileChecker

-_driveName: string
filePath: string

-_fileName; string
+readEntityFromFile(): Hashtable

\ ORTrack:;LocationRecordingService

•i-SendLocationMessage(in locnMegsage: string)

XMLMessageGenerator

schemaPath : string
USBLOCATE_NS : string
USBLOCATE_NS_PREFIX: string =
XSI_NS: string
XSI_NS_PREFIX : string = "xsi"

"usbLoc"

-GenerateMessage(in entld : string, in entType : string, in msgType : string, in evtTimeUndet: bool): XmlDocument

USBLocatorState

stateMSMQ : MessageQueue
-singleton: USBLocatorState
+connectedEntities: Hashtable
tGellnstanceO: USBLocatorState
USBLocatorStateQ
-PersistStateQ

USBLocatorMessageQueue

usbLocaleMSMQ: MessageQueue
singleton: USBLocatorMessaoeQueue

•t-Getlnstancell: USBLocatorMessageQueue
USBLocatorMessageQueueO

+SendMessage{in usbLocMsgString: string)
•t-PeekAIIMessages(): Hashtable
+RemoveMessage(in msgld: string): bool

Figure 6.3: U M L diagram of USB Locate application

80

The sequence diagram for LocateEntities method is shown Figure 6.4. This

method is responsible for generating ' I N ' and 'OUT ' messages in response to state

changes.

USBLocalorWmService USBLocator

LocateEntit ies

GetUSBDevices

For every
device

detected

ead Entity From File

Compare D i ,
detected entities
with current state

GenerateXMLMessage

For each New Entity,
Genrate IN message
AND
For each Entity removed,
Genrate OUT message

I k

T

SendMessage

For each
USBLocate message

genrated, store
message in

USLocate message
Queue

l i

Figure 6.4: Sequence diagram for LocateEntities method (IN-OUT message generation)

The sequence diagram for GuaranteeEntitiesIn method is shown in Figure. This

method is responsible to guarantee the current USB Locate state. ' I n Guarantee'

messages are generated for each entity and sent to OR Track.

81

USBLocatorWinSeivice USBLocator USBDetector USBFileCheker XMLMessoGenerator

GuranteeEntitiesIn GetUSBDevices

T
_ReadEntityFromFile

For every L
device

detected 1
GenerateXMLMessage

For every lS[
Entity detected,
generate
'IN Gurantee'
message

SendLocationMessage

Send each
IN Gurantee
message to
Locationrecording
Webservice

LocationRecordingService

i

Figure 6.5: Sequence diagram for GuaranteeEntitiesIn method (' I N Guarantee' message
generation)

The sequence diagram for SendMessage method is shown in Figure. This method

decouples the overhead o f sending ' I N ' and 'OUT ' in the LocateEntities method and

allows it to limits its functionality to generation o f these messages and putting them in a

local queue. The SendMessage method picks up the entities f rom the local queue and

calls the 'LocationRecordingService' (web service interface to OR Track), and on a

successful return, removes the message from the local queue.

82

USBLocatorWin Service USBLocator JSBLocateMessaQeQueue LocationRecordingService

SendMessages
PeekAIIMessages ^

RemoveMessage

Remove every
successfully
sent message

SendLocationMessage

Send each
USBLocate
message to
LocationRecording
Web Service

Figure 6.6: Sequence diagram for SendMessage method

6.5. Conclusions

We see that USB Locate provides the functionality o f a reliable location detecting

application that easily integrates to the OR Track architecture. In addition to this, it opens

the scope to provide a variety o f value added services concerning the entities being

tracked, which can be used to reduce errors in a typical clinical workflow.

Further, the use o f W M I technology for USB tracking can be further optimized by

the use o f W M I events to detect presence of USB devices. The reliability o f this approach

is being studied and would be considered as an alternative for future implementations o f

this application. The decoupled design approach used throughout, allows accommodating

such changes easily.

83

CHAPTER 7

OR T R A C K SECURITY MODEL

7.1. Need for Security

Clearly with data as sensitive as that generated in a health care setting, the

security of the system handling this data is o f paramount importance. In OR Track, a

design decision was made that security should be maintained between every link. In this

way, all data on the wire is always secure. Even i f an intruder gained unauthorized

access to the network, the clinical data flowing between the Web Services in the system

would not be compromised.

7.2. Security Basics

This seetion introduces the basic security concepts based on which we can

analyze the security considerations required in a system like OR Track. Concepts like

Confidentiality, Authentication and Integrity are discussed that form the basis to establish

trust relationship between two communicating units in a software system.

Confidentiality is the most obvious o f security considerations; that is, the data

sent on the wire must be encrypted in such a way that its meaning is known only to its

intended recipient. Encryption is the transformation of data (plain text) into a form that

conveys no meaning to anyone other than a recipient with proper credentials. This form

84

is referred to as cipher text. There are two main types o f encryption, namely, symmetric

encryption and asymmetric encryption.

In symmetric encryption, both the sender and recipient o f a message have a "key."

A key is a series o f bytes that, when used in a mathematical function, can transform an

input message to cipher text or cipher text to a message. Figure 7.1 shows the concept o f

symmetric key cryptography.

Plain Text
Symmetric
Encryption

Symmetric key

Symmetric
Decryption

Cipher
Text

Plain Text

Figure 7.1: Symmetric Key Cryptography

This approach has some major problems. I f the key were to fall into the hands of

an unauthorized person, that person could easily decipher encrypted messages.

Additionally, for this system to work, a sender would have to share a unique key with

every recipient.

85

In asymmetric encryption, every user in a system has two keys, a public key and a

private key. Messages encrypted with a public key can only be decrypted with the

corresponding private key. As long as a private key is not openly distributed, secure

encrypted messages can be sent to the holder of the private key. Asymmetric encryption

is also referred to as private key operation. Figure 7.2 depicts the concept o f asymmetric

key cryptography.

Plain Text
Asymmetric
Encryption

Cipher
Text

t
Public key

Cipher
Text

Asymmetric
Decryption Plain Text

t

4 Private key

Figure 7.2: Asymmetric Key Cryptography

In spite o f being more secure than symmetric key encryption, this approach is

however very slow and computationally expensive to use. As a result, a compromised is
86

reached - A symmetric key is constructed by one user and sent to another using

asymmetric encryption. Once the key is decrypted, the symmetric key can then be used

to communicate between the two.

Integrity is also an important security consideration according to which it should

be possible for the receiver o f a message to verify that the message is unmodified in

transit; an intruder should not be able to substitute a false message for a legitimate one.

Finally, another important security aspect is Authentication according to which it should

be possible for the receiver o f a message to ascertain with a high degree of confidence the

origin o f the message; an intruder should not be able to masquerade as someone else.

These two aspects are addressed by using Digital Signatures.

To understand digital signatures, we must another key concept used in

cryptography - Hashing. Hashing in conjunction with encryption produces Digital

Signatures. A Cryptographic hash function is a function that takes a variable-length input

string (pre-images) and converts it to a fixed length output string (hash value). These

hash values are relatively easy to compute using the hash function but very hard to

reverse. Thus, these functions are altematively named one-way functions.

Digital signatures work as follows. A user takes the message and uses a hash

function to produce a hash. This hash is then encrypted with the sender's private key.

When the receiver gets the encrypted hash, it is decrypted with the sender's public key.

Next, the encrypted message is decrypted, and a hash is taken of this message. I f the two

hashes match, then the message has not been altered in transit. Thus, the requirement on

integrity is met. Note that this means that anyone can decrypt the encrypted hash that

holds the sender's public key. This is not a problem; i f an intruder decrypts the hash,

87

they w i l l be unable to alter and re-encrypt it (since they do not hold the private key).

Additionally, the contents o f the original message cannot be obtained f rom the hash.

Since the hash was encrypted with the private key o f the sender, and only the sender

holds the private key, then the identity of the sender can be authenticated.

Next, we discuss another term used in securing IT systems - Certificates.

Certificates are credentials that contain public or private keys, are issued by a Certificate

Authority, or CA. The certificates are signed by the certification authority's own private

keys; contain the name of a person or organization, its public key, a serial number, and

other information. The certificate attests that a particular public key belongs to a

particular individual or organization. Certificates provide a useful way for users to keep

their own private credentials and the public credentials of others.

7.3. Security in Web Services

One of the major drawbacks o f web services is that there is no built-in security

mechanism to protect data sent to and f rom web services. Worse yet, the data involved

usually travels via HTTP over port 80 in a clear text format (SOAP). This was an

important drawback to address for using web services for real-world enterprise

applications.

In order to address these deficiencies, companies like Microsoft and I B M started

working on number o f specifications for web services based applications referred to as

the Global X M L Web Services Architecture (GXA) . Microsoft has begun implementing

open Web Services specifications in their Web Services Enhancements (WSE). Among

the specifications contained within the G X A is the specification for WS-Security, which

8S

defines a standard way for SOAP messages to carry signatures and encrypted data, as

well as how to send security credentials. The encrypted data and digital signatures in a

SOAP message adhere to the X M L Encryption and X M L Signature standards.

Microsoft has implemented WSE with a filter-based approach, in which the WSE

runtime takes care o f the manipulation o f incoming and outgoing SOAP messages [22].

For example, an outgoing SOAP message is altered by the WSE output security filter in

order to comply with the user's requirements, such as encrypting and signing the

message. On the receiving side, the WSE input security filter decrypts the incoming

message and verifies the signature i f possible. Filters such as these exist for tracing,

routing, and other functions; in fact, custom filters can be created based upon user needs.

This filter-based approach is shown in Figure 7.3.

The Security Output
Filter encrypts and
signs the message at
the sender side

The Security Input Filter
dencrypts and verifies
the signature of the
message at the receiver
side

Outbound
SOAP Message

Q.

O
0)

. c
O

3
Q.

O

*c
3
O
0)
w

0)

iZ

Q.

O

o

13
Q.

_C
i
CD

O

LL

C

3
O

3
Q.
C
i _
(D

b

Outbound SOAP
Message decrypted

Pipeline Pipeline

Figure 7.3: Filter - based approach used in WSE

89

7.4. WS-SecureConversation

One of the drawbacks of WS-Security is the fact that the notion of secure sessions

is not present. For example, consider a case where a user wants to sign a request to a

Web Service using its own username and password and encrypts the request using the

Web Service's public certificate. The Web Service then signs the response to the client

using an X509v3 certificate and encrypts the response using the username and password

it has received. Since asymmetric encryption and decryption are used for every

communication, the performance o f the system can take a considerable hit.

The implementation o f WSE attempts to address some of these deficiencies.

Upon every secure communication, a symmetric key is generated and is used in the

signature and encryption process. This helps in decreasing the negative performance

impact o f security, but still has the overhead o f the symmetric key generation.

As an additional layer above WS-Security, WS-SecureConversation [23], along

with WS-Trust, defines ways for a client to have a secure session with a Web Services

without exchanging credentials every time. A symmetric key is established between

client and web services, and this key can be used instead of the original credentials.

Since cryptographic operations wi th symmetric keys and much faster and less

computationally intensive then those with an asymmetric algorithm, this provides a way

for a client to have sessions with a web service without suffering the performance hit of

asymmetric cryptographic operations upon every web service call.

There are several security models that can be used when WS-Trust and WS-

SecureConversation are used in tandem. Figure 7.4 shows the trust token issuance

scenario used in OR Track.

90

§55 it l-y
Token

Service

Requester

Web

iw •-.

Figure 7.4: WS-Trust Token Issuance Scenario [24]

In the OR Track system, each web service has its own Security Token Service

(STS). This is done for fine-grained authentication, i.e., each web service can decide

who can and cannot access its methods.

In this scenario, a client provides its username and password to the STS and is

sent two pieces o f information; a Proof Token and a Security Context Token (SCT). The

Proof Token is a symmetric key encrypted with the client's username and password and

signed with the STS's X509v3 certificate. The SCT is the same symmetric key, this time

encrypted with the end-point Web Service's X509v3 certificate and signed with the

STS's X509v3 certificate. Since, in this case, the STS and the end-point Web Service

reside in the same virtual directory; the Security Context Token part of the message

merely contains the Key Identifier. The Key Identifier is the unique ID used to retrieve a

security token. Since the symmetric key is already cached on the machine where the

Web Service runs, there is no need for the SCT to be sent to the client.

91

Once the client has decrypted and verified the signature of the symmetric key, it

can be used to sign and encrypt messages sent to the end-point Web Service. A key

derived f rom the SCT can also be used to maintain a higher degree o f security (as is done

in the most recent release o f WSE). The client forwards the SCT it has received to the

end-point Web Service; i f the STS and end-point Web Service reside in the same virtual

directory, as in OR Track, the SCT consists only o f the Key Identifier; otherwise it is the

encrypted and signed symmetric key provided by the STS. Note that the client needs no

knowledge o f the SCT in order to send it to the end-point Web Service; it needs only to

copy that part o f the SOAP message it has received from the STS into the message it

sends to the end-point Web Service.

7.5. WS-Policy

One of the major software design goals in ensuring maintainability is to separate

business logic f rom other code, such as that responsible for security. Consider the case

where security is intertwined with business logic; the resulting code becomes much more

diff icul t to understand and to maintain. Even in the best case, where security code is

separated out into separate classes f rom the business logic, any change to security policy

requires recompilation. The WS-Policy [25] [26] specification provides not only a way to

separate security f rom business logic, but also to make the policy configurable outside of

compiled code. WS-Policy describes a framework for defining and communicating the

expectations and requirements both for sending messages to and receiving messages from

a Web service, and defines the format o f such requirements. Furthermore, security

policies can be defined via WS-SecurityPolicy [27], which describes a set of policy

92

assertions that defines the types of security features that a Web service has implemented

and the type o f security that's required of an incoming request message. This statement

is mostly true, but with the most recent release o f WSE now also applies to the

requirements o f outgoing messages as well . Using policy, we can separate out security

policy f rom our business logic.

7.6. O R Track Security Model

In OR Track, WS-SecurityPolicy is used with every Web Service in order to

specify the security requirements of each. Note the while all Web Services require

signed and encrypted requests and send signed and encrypted responses, not all the

policies are identical. The ORTrackService accepts requests f rom other web services like

BrandNameMonitorService; hence, it allows its clients to present a signed request for an

SCT using X509v3 certificates as credentials. Also it allows other clients application to

contact them using a SCT requested using Username Tokens. Similarly, the

LocationRecordingService allows to contact it with an SCT obtained using X509v3

certificates as credentials o f the location detecting application. While WSE itself w i l l

handle the signature and decryption of messages sent signed or encrypted with X509v3

certificates, code must be written to handle Username Tokens.

The overall security structure o f OR Track is shown in Figure 7.5. Note that each

link in the system represents a secure conversation; UNT denotes those conversations that

the client initiates by signing the request for the SCT using a Username Token. X509

denotes those conversations that the client initiates by signing the request for an SCT

with an X509v3 certificate.

93

Figure 7.5: OR Track Security Model

Aside: USB Locate Security Model

Figure 7.6 details the security model of USB Locate application. Calls to

LocationRecordingService are made by USB Locate after acquiring a SCT using its

X509v3 certificate. Also the figure shows the security mechanism for encrypting and

decrypting entity (patient) information.

94

USBLocate Patient Data Decryption

Sending Message to LocationRecordingService

Figure 7.6: USB Locate Security Model

95

CHAPTER 8

CONCLUSIONS AND FUTURE SCOPE

8.1. Conclusions

OR Track provides a framework to build systems in which the location o f various

entities o f interest like patients, monitors, etc. can be queried in near real time as well as

captured and securely stored (in a database for example). The architecture for OR Track

is designed in such a way that the system is extensible and robust. This thesis introduces

the concept o f a "Location Detecting Application" that sends location data to the OR

Track system. A n implementation of a Location Detecting Application based on USB

technology called 'USB Locate' was described and the ease with which this design

integrates wi th OR Track was illustrated. Furthermore, we emphasized the importance of

a concrete data model to adequately capture details o f all the entities and locations that

are subjects o f tracking. We further showed how OR Track processing can be

implemented by using a rule-based approach, whose design adapts to possible

implementations using X M L technologies, hence allowing a shift o f paradigm to

'Declarative Programming'.

The security provided in OR Track ensures that all communication amongst the

various Web Services and between the client application and Web Services is secure, and

96

meets the requirements o f confidentiality, integrity, and authenticity. Use o f WS-Policy

allows security policy to be defmed in standardized configuration files outside the actual

source code, and makes the system highly maintainable.

8.2. Future Work

There are potential possibilities of additional work on OR Track, and the current

design provides solutions which are at present left open ended. Currently, the whole

design explains a single OR Track system maintaining state for a huge hospital complex.

This decision is based on the possibility o f OR Track design to track several thousands o f

entities each generating messages to OR Track almost every minute. However i f the

number of entities to be tracked were to increase or the rate o f message generation were

to become faster (like each entity generating messages every 5 seconds), it would limit

the utility o f OR Track. It is possible to address this issue o f processing large number o f

OR track input messages, i f we can split the OR Track system so that a single OR Track

system maintains the state o f one hospital building, or even better just one floor of a

hospital building. Such a split would be useful only i f we could aggregate the states and

keep the split transparent to OR Track clients. The realization o f such a split OR Track

design w i l l make the OR Track system highly scalable enabling it to track a very large

number o f entities and locations.

Furthermore it can be seen that OR Track potentially maintains a large amount o f

state information and clients (like an OR Desk plasma screen) need to constantly poll the

system to determine the current state of all the ORs (possibly located on different floors

or buildings). Though polling makes the system more reliable, polling activity should be

97

kept to a minimum for the sake of system performance. It would be useful to design OR

Track in a way that could provide asynchronous notifications (events) to OR Track

clients. However in a standards based SOA (Services Oriented Architecture) introducing

eventing is challenging and would require implementation o f open specifications like

WS-Eventing and WS-Reliable Messaging. These implementations w i l l be offered in the

future releases o f Microsoft WSE and equivalent technologies from other tool vendors

such as I B M and SUN.

98

LIST OF R E F E R E N C E S

1. USP MedimarxSM Analysis: Medication Errors in the Operating Room, 2003
<http://www.usp.org/pdf/patientSafety/posters042003-03-24.pdf>

2. Eric T. Ray, Learning X M L , O'Reilly & Associates, Inc.,2001

3. X M L Schema, W3C Recommendation 2 May 2001, ©2001 W 3 C ® (MIT, 1NRIA,
Keio), A l l Rights Reserved <http://www.w3.org/TR/2001/REC-xmlschema-l-
20010502/>

4. Eric van der Vlist , X M I Schema, O'Reilly & Associates, Inc., June 2002

5. X M L Path Language (XPath), W3C Recommendation 16 November 1999,
Copyright ©1999 W 3 C ® (MIT, 1NR1A, Keio), A l l Rights Reserved.
<http://www.w3.org/TR/xpath>

6. John E. Simpson, XPath and XPointer, O'Reilly & Associates, Inc., August 2002

7. X M L Path Language (XPath), W3C Recommendation 16 November 1999,
Copyright ©1999 W 3 C ® (MIT, INRIA, Keio), A l l Rights Reserved.
<http: / /www. w3. or g/TR/xpath>

8. Michael Fitzgerald, Learning XSLT, O'Reilly & Associates, Inc., November 2003

9. James Snell, Doug Tidwell and Pavel Kulchenko, Programming Web Services
with SOAP, O'Reilly & Associates, Inc. 2002

10. Ethan Cerami, Web Services Essentials, O'Reilly and Associates, Inc., February
2002

11. Greg Lomow & Eric Newcomer, Understanding SOA with Web Services,
Addison Wesley Professional, 2004

12. Robert Orfali & Dan Harkey, Client/Server Programming with Java and CORBA
Second Edtion, John Wiley & Sons, Inc., 1998.

99

13. Service-Oriented Architecture Drives Improve operational Efficiency and Quality
of Data, Microsoft Windows Server System Customer Solution Case Study, 2004

14. Chris Alan Weber, OR Eye; A health care information system built with X M L
web services and enhanced policy-based open security specifications, Ohio State
University, 2004

15. Franfois Bry and Norbert Eisinger, Data Modeling with Markup Languages
(D M 2 L) , October 2001 <http://www.pms.ifi.lmu.de/forschung/datamodeling-
markup.html>

16. Chris Brandin and Akmal Chaudhri, X M L Data Management - Information
modeling with X M L , May 2003 < http://www-106.ibm.com/developerworks/
xml/library/x-xdmchpl .html>

17. Dare Obasanjo, Designing Extensible, Versionable X M L Formats, July 2004
< http://www.xml.eom/pub/a/2004/07/21/design.html >

18. Martin Fowler & Kendall Scott, U M L Distilled, Addison-Wesley Publishing
Company, 1999.

19. Erich Gamma et al, Design Pattems - Elements of Reusable Object-Oriented
Software, Addison-Wesley Publishing Company, 1995.

20. Seth, Hitesh. Microsoft .NET Kick Start, Indianapolis, I N : Sams Publishing,
2004

21. Jesse Liberty, Programming C#, O'Reilly & Associates, Inc., 2001

22. B i l l Evjen, Understanding the WSE for .Net Applications, Wiley Publishing, Inc.,
2003

23. Anderson, Steve, et al. Web Services Secure Conversation Language (WS-
SecureConversation) Version 1.1,
<http://msdn.microsoft.com/library/default.asp7urH/library/en-
us/dnglobspec/html/ws-secureconversation.asp>, May 2004

24. Anderson, Steve, et al. Web Services Trust Language (WS-Trust), Version 1.1,
<ftp://www6.software.ibm.com/software/developer/library/ws-trust.pdf>, May
2004

25. Box, Don, et al. Web Services Policy Framework Version 1.1,
<http://msdn.microsoft.com/webservices/default.aspx7pulH/library/en-
us/dnglobspec/html/ws-policy.asp>. May 28, 2003

100

26. Box, Don, et al. Web Services Policy Assertions Language (WS-
PolicyAssertions), <http://vAvw-106.ibm.com/developerworks/library/ws-polas/>,
May 28, 2003

27. Della-Libera, Giovanni, et al. Web Services Security Policy (WS-
SecurityPolicy), <http://www-106.ibm.com/developerworks/library/ws-secpol/>,
December 18, 2002

28. Sriram Seshadri, Encrypted Web Information Service (EWIS), Ohio State
University, 2004

101

APPENDIX

OR T R A C K X M L SCHEMAS

Entity Schema:

The following schema describes an Entity being tracked using OR Track system.

The level o f abstraction given to an entity is kept limited and relevant to the perspective

of tracking. Typical instances of X M L document for entities are shown below. We need

an xml schema that allows representing entities in the way specified in the instances

providing a mechanism to check the types specific to different entities.

InPat ient :

<Entity xsi:type="Inpatient">
<ld>999209093</ld>

</Entity>

M o n i t o r :
<Entity xsi:type="Monitor">

<Id>M1982-G</Id>
</Entity>

The schema shown below is the base schema for representing any entity being

tracked. It contains a Type called 'EntityType' which can be generalized as a hierarchy o f

different types. Figure 1 shows the hierarchy of types modeled in the schema documents

to follow.

102

Entity

Patient Equipment

InPatient OutPatient Monitor

Figure 1: Hierarchy of Entity Types

Base.xsd:

<'?xml version="1.0" encoding="UTF-8"?>
<xs:scliema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:oistai-="osu.ease.medctr.orstar"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" targetNamespace="osu.ease.medctr.orstar"
elementFoimDefault="qualified" artributeFo)mDefault="unqualified">

<xs:element name="Entity" type="orstar:EntityType"/>
<xs:complexType name="EntityType" abstract="true">

<xs:sequence>
<xs:element iiame="Id" type="xs:token"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

The schema shown below describes a sample hierarchy for 'Patient' type

extension o f the base type 'EntityType'.

Patient.xsd:

<?xml vers ion- ' 1.0" encoding="UTF-8"?>
<xs:schema xmlns;xs="http://www.w3.org/2001/XMLSchema" eIementForinDefault="qualified"
ai lr ibuteFormDerault- 'unqualif ied" largetNamespace="osu.ease.medctr.orstar" xmlnsiorstar
="osu.ease.medctr.orstar">

<xs:include schemaLocation="Base.xsd"/>
<xs:compIexType name^"Patient" abstract="true">

<xs:compiexContent>
<xs:extension base="orstar:EntityType"/>

</xs:complexContent>
</xs:comp!exType>
<xs:complexType name="InPatient">

<xs:complexContent>
<xs:extension base="orstar:Patient"/>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="OutPatient">

<xs:complexContent>
<xs:extension base="orstar:Patient"/>

103

</xs:complexContent>
</xs:complexType>

</xs:schema>

The schema shown below describes a sample hierarchy for 'Equipment' type

extension of the base type 'EntityType'.

Monitor.xsd:

<?xml version- '1 .0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFonnDefault- 'qualif ied"
attributeForniDetault="unquaiified" targetNamespace="osu.ease.medctr.orstar" xinlns:orstar
="osu.ease.medctr.orstar">

<xs:include scheiTiaLocation="Base.xsd"/>
<xs:complexType name="Equipment" abstract="true">

<xs:complexContent>
<xs:extension base="orstar:EntityType"/>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="Monitor">

<xs:complexContent>
<xs:extension base="orstar:Equipment"/>

</xs:complexContent>
</xs:complexType>

</xs:schema>

The schema shown below describes set of all the entities being tracked. This

document basically contains references to other schema documents discussed earlier.

EntityList.xsd:

<?xml version- '1 .0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attiibuteFonTiDefault="unqualified" targetNamespace-'osu.ease.medctr.orstar" xmlnsrorstar
="osu.ease.medctr.orstar">

<xs:include schemaLocation="Patient.xsd"/>
<xs:include schemaLocation="Monitor.xsd"/>

</xs:scheina>

Location Schema:

The following schemas are used to describe a Location being tracked using OR

Track system. The level o f abstraction given to a location is kept limited and relevant to

104

the perspective of tracking. A n example X M L instance of a location is shown below. Any

location instance is validated against the X M L Schema for hospital locations.

<?xml version="1.0" encoding="UTF-8"?>
< HospitalLocation xmlns:orstar="osu.ease.medctr.orstar"
xmlns:xsi="http://www. w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="osu.ease.medctr.orstar Map.xsd"
xsi: type=" orstar; UniversityHospital ">

<orstar:HospitalFunctionality xsi:type="orstar:GeneralHospital"/>
<orstar:BuildingLocation xsi:type-'orstar:Doan">

<orstar:FloorLocation xsi:type="orstar:DoanFloorl ">
<orstar:RoomLocation xsi;type="orstar:DoanFloorlRooml01">

<orstar:RoomFunctionality xsi:type="orstar:CardioOR"/>
<orstar:SectorLocation lD="2"/>

</orstar:RoomLocation>
</orstar:FloorLocation>

</orstar:BuildingLocation>
</orstar:HospitalLocation>

The schema shown below is the base schema for representing any hospital

location being observed. It describes the containment relationship among different

location granularities that must be followed in an instance document. It also contains the

hierarchy seen in Room functionalities as shown in the Figure 2.

RoomFunctionality

ASU OR
7h

OrthoOR

Figure 2: Hierarchy of Room Functionalities

105

Base.xsd:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:orstar="osu.ease.medctr.orstar"
xinins:xsi="http://www.w3.org/2001/XMLSchema-instance" targetNamespace="osu.ease.medctr.orstar"
elementFormDetau!t="qualified" attributeFormDefault="unqualified">

<!— Start Type definition here —>
<xs:complexType name="Hospital" abstract="true">

<xs:sequence>
<xs:element name="Functionality" type="orstar:HospitalFunctionality" minOccurs="0"/>
<xs:element name="BuildingLocation" type="orstar:Building"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="Building" abstract="true">

<xs:sequence>
<xs:element name="Functionality" type="orstar:BuildingFunctionality" minOccurs="0"/>
<xs:element name="FloorLocation" type="orstar:Floor"/>

</xs:sequence>
</xs:compiexType>
<xs;complexType naine="Floor" abstiact="true">

<xs:sequence>
<xs:element name="Functionality" type="orstar:FloorFunctionaIity" minOccurs="0"/>
<xs:element name="RoomLocation" type="orstar:Room"/>

</xs:sequence>
</xs:coinplexType>
<xs:complexType name="Room" abstract="true">

<xs:sequence>
<xs:element name="Functionality" type="orstar:RoomFunctionality" iiiinOccurs="0"/>
<xs:element name="SectorLocation" type="orstar:Sector"/>

</xs:sequence>
</xs:coniplexType>
<xs:complexType name="Sector">

<xs:attribute name="ID" type="xs:byte" iise="required"/>
</xs:complexType>
<xs:complexType name="HospitalFunctionality" abstract="true"/>
<xs:complexType name="BuildingFunctionality" abstiact="true"/>
<xs:complexType name="FloorFunctionality" abstract="true"/>
<xs:complexType name="RoomFunctionality" abstract="true"/>
<!— OR Functionality type definition—>
<xs:complexType name="OR" abstract="true">

<xs:complexContent>
<xs:restriction base="orstar:RoomFunctionality"/>

</xs:complexContent>
</xs:complexType>
<!— ASL 1 Functionality type definition—>
<xs:complexType name="ASU">

<xs:coinplexContent>
<xs:reslriction basc="orstar:RoomFunctionality"/>

</xs:compiexContent>
</xs:complexType>
<!- - CardioOR Functionality type definition—>
<xs:complexType name="CardioOR">

<xs:complexContent>
<xs:resti iction base="orstar:OR"/>

106

</xs:complexContent>
</xs:complexType>
<!— OrthoOR Functionality type definition—>
<xs:complexType name="OrthoOR">

<xs:complexContent>
<xs:restriction base="orstar:OR"/>

</xs:complexContent>
</xs:complexType>
<!— EmergencyOR Functionality type definition—>
<xs:complexType name="EmergencyOR">

<xs:complexContent>
<xs:resti-iction base="orstar:OR"/>

</xs:complexContent>
</xs:complexType>
<!— Start Element defmition here —>
<xs:element name="HospitalLocation" type="orstar:Hospital"/>

</xs:schema>

A l l the schemas put together would cover the hierarchy information for different

location granularities along with specifying particular types with each level. The

hierarchies of different location granularity are shown in Figure 3.

Building
Hospital

UniversityHospitalBuilding RossBuilding

Hospital Hospital

Rhodes Doan

Room
Floor

UniversityHospitalRoom RossRoom
University HospitalFloor RossFloor

RhodesRoom DoanRoom
RhodesFloor DoanFloor

DoanFloorl Room DoanFloor2Room
DoanFloorl DoanFloor2

DoanFloorlRoomlOl DoanFloorl Rooml 02

Figure 3: Location Granularity hierarchies

107

The schema shown below describes 'UniverstyHospital' type which is a sample

extension o f Hospital' base type. This document contains only Types which can be

reused in other schemas referencing it. It also specifies that 'UniversityHospital' can

contain only 'UniversityHospitalBuilding' types (which could be 'Doan' or 'Rhodes' as

seen later)

UH.xsd:

<?xml version="l .0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefauit="qualified"
attributeFormDefault="unqualified" targetNamespace-'osu.ease.medctr.orstar"
xnilns:orstar="osu.ease.medctr.orstar">

<xs;include schemaLocatioii="Base.xsd"/>
<!— Start Type definition here ~>
<xs:complexType name="UniversityHospital">

<xs:compiexContent>
<xs:restriction base="orstar:Hospital">

<xs:sequence>
<xs:element narne="Functionality" type="orstar:GeneralHospital" minOccurs="0"

maxOccuis="l"/>
<xs:element narne="BuildingLocation" type="orstar:UniversityHospitalBuilding"/>

</xs:seqiience>
</xs:restriction>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="UniversityHospitalBuiIding" abstract="true">

<xs:complexContent>
<xs:restriction base="orstar:Building">

<xs:seqiience>
<xs:element namc="Functionality" type="orstar:BuildingFunctionality" minOccurs="0"

maxOccurs="l"/>
<xs:element name="FloorLocation" type="orstar:UniversityHospitalFloor"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="UniversityHospitalFloor" abstract="true">

<xs:complexContent>
<xs:restriction base="orstar:Floor">

<xs:sequence>
<xs:element name="Functionality" lype="orstar:FloorFunctionality" minOccurs="0"

maxOccurs="I"/>
<xs:element name="RoomLocation" type="orstar:UniversityHospitalRoom"/>

</xs:sequence>
</xs:restriction>

108

</xs;complexContent>
</xs:complexType>
<xs:complexType nanie="UniversityHospitalRoom" abstract="true">

<xs:complexContent>
<xs:restriction base="orstar:Room">

<xs:seqLience>
<xs:element name="Functionality" type="orstar:RoomFunctionality" minOccurs="0M

maxOccurs='T"/>
<xs:elenient name="SectorLocation" type="orstar:Sector"/>

</xs:sequence>
</xs:resti-iction>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="GeneraIHospital">

<xs:coiTiplexContent>
<xs:restriction base="orstar:HospitalFunctionality">

</xs:restriction>
</xs:complexContent>

</xs:coinplexType>
</xs:schema>

The schema shown below describes 'DoanBuilding' type which is a sample

extension of 'UniversityHospitalBuilding' type. It also describes that 'DoanBuilding'

only allows 'DoanFloor' types to be contained in it.

Doan.xsd:

<?xml version-'l.O" encoding="UTF-8"?>
<xs:schema xnilns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault-'qualified"
attributeFormDelmjlt="unqualified" targetNamespace-'osu.ease.medctr.orstar"
xmlns:orstar="osu.ease.medctr.orstar">

<xs:include schemaLocation="UH.xsd"/>
<xs:complexType nanie="HeartHospitalBuilding">

<xs:complexContent>
<xs:restriction base=" orstar:BuildingFunctionality"/>

</xs:complexContent>
</xs:compiexType>
<xs:complexType name="Doan">

<xs:coinplexContent>
<xs:restriction base=" orstar:UniversityHospitalBuilding">

<xs:sequence>
<xs:element name="Functionality" type="orstar:HeartHospitalBuilding" minOccurs="0"

maxOccurs="l"/>
<xs:element name="FloorLocation" type="orstar:DoanFIoor"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>
<xs:complexType name="DoanFloor" abstiact="true">

109

<xs:coniplexContent>
<xs:restriction base="orstar:UniversityHospitalFloor">

<xs:sequence>
<xs:element name-'Functionality" type="orstar:FloorFunctionality" minOccurs:="0"

ma\Occiirs="l"/>
<xs:element name-'RoomLocation" type="orstar:DoanRoom"/>

</xs:sequence>
</xs:iesti"iction>

</xs:complexContent>
</xs:complexType>
<xs:complexType naiTie="DoanRoom" abstract="true">

<xs:complexContent>
<xs:restriction base="orstar:UniversityHospitalRoom">

<xs:sequence>
<xs:element nanie="Functionality" type="orstar:RoomFunctionality" niinOccurs—'O"

maxOccurs="l"/>
<xs:element nanie="SectorLocation" type="orstar:Sector"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:scliema>

The schema shown below describes 'DoanFloorl ' type which is a sample

extension of "DoanFloor' type. It also describes that 'DoanFloorl ' only allows

'DoanFloorlRoom' types to be contained in it.

DoanFloorl.xsd:

<'?xml version="1.0" encoding="UTF-8"?>
<xs:schema xnilns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attnbuteFonnDefault="unquaIified" iaigetNamespace="osu.ease.medctr.orstar"
xmlns="osu.ease.medctr.orstar">

<xs:include schemaLocation="Doan.xsd"/>
<xs:complexType name="DoanFloorl">

<xs:compiexContent>
<xs:restriction base="DoanFloor">

<xs:sequence>
<xs:element name="Functionality" type="FloorFunctionality" ininOccurs="0" maxOccurs="l"/>
<xs:element name="RoomLocation" type="DoanFloorlRoom"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs;complexType>
<xs:complexType naine="DoanFloorIRoom" abstract="true">

<xs:complexContent>
<xs:restriction base="DoanRoom">

<xs:sequence>
<xs:element name="Functionality" type="RoomFunctionaIity" minOccurs="0" maxOccurs="l"/>

110

<xs:element naine="SectorLocation" type="Sector"/>
</xs:sequence>

</xs:restriction>
</xs:complexContent>

</xs:compIexType>
<xs:complexType name="DoanFloor 1 Room 101 ">

<xs:complexContent>
<xs:restriction base="DoanFloorl Room">

<xs:sequence>
<xs:element name="Functionality" type="CardioOR" minOccurs="0" maxOccurs='T "/>
<xs:element name="SectorLocation">

<xs:complexType>
<xs:complexConlent>

<xs:iestriction ba.se="Sector">
<xs:attTibute name="ID" iise="required">

<xs:simpleType>
<xs:resti iction base="xs:byte">

<xs:minlnclusive value-' 1 "/>
<xs:maxlnclusive va]ue="2"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:restriction>
</xs:complexContenl>

</xs:complexType>

<xs:complexType name="DoanFloorlRooml02">
<xs:complexContent>

<xs:restriction base="DoanFloorlRoom">
<xs:sequence>

<xs:element name="Functionality" type="EmergencyOR" minOccurs-'O" maxOccurs="l
<xs:element name="SectorLocation">

<xs:coinplexType>
<xs:complexContent>

<xs:restriction base="Sector">
<xs:attribute name="ID" use="required">

<xs:simpleType>
<xs:restriction base="xs:byte">

<xs:minlnclusive value="l"/>
<xs:maxlnclusive value="6"/>

</xs:restriction>
</xs:simpleType>

</xs:attribiite>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:restrictioii>
</xs:compiexContent>

111

</xs:complexType>
<xs:complexType name="DoanFloorlRooml03">

<xs:complexContent>
<xs:restriction base="DoanFloorlRoom">

<xs:sequence>
<xs:elemeiit name="Functionality" type="ASU" minOccurs="0" niaxOccurs='T "/>
<xs:e!ement name="SectorLocation">

<xs:complexType>
<xs:complexContent>

<xs:resti-iction base="Sector">
<xs:attribute name="ID" use="required">

<xs:sinipleType>
<xs:restriction base="xs:byte">

<xs:minlnclusive value-' !"/>
<xs:maxlnclusive value="6"/>

</xs:restriction>
</xs:simpleType>

</xs:atti"ibute>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:restriction>
</xs:comp]exContent>

</xs:complexType>
</xs:schema>

To make sure that a location being tracked conforms to a valid location in hospital

complex, the entire map of the hospital needs to be represented as an xml schema.

However, only a subset o f hospital map is shown here.

Map.xsd:

<?xiul version="1.0" encoding="UTF-8"?>
<xs:schemaxmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefeult-'qualified"
attributeFormDefault="unqualified" targetNamespace-'osu.ease.medctr.orstar"
xmlns="osu.ease.medctr.orstar">

<xs:include schemaLocation="Rhodes_Floorl.xsd"/>
<xs:include schemaLocation="Doan_Floorl .xsd"/>

</xs:schema>

112

O R Track Input Message Schema:

The fol lowing schema describes input messages coming into OR Track system

from various location detecting applications. This message structure allows for more t l

data f rom more than one location at the same time.

ORTracklnputMessage.xsd:

<?xml version-" 1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ortrack="osu.ease.medctr.orstar.ortrack" .\mlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" targetNamespace="osu.ease.medctr.orstar.ortrack" xnilns:orstar="osu.ease.medctr.orstar"
elementFonnDefault="qualified" attributeFonnDefault="unqualified">

<!—Include all external schemas with same namespace~>
<xs:import namespace="osu.ease.medctr.orstar" schemaLocation="Entity/EntityList.xsd"/>
<xs:import namespace="osu.ease.medctr.orstar" schemaLocation="Location/Map.xsd"/>
<!— Start Type definition here ~>
<xs:complexType name="ORTracklnputMessagesType">

<xs:sequence>
<xs:element name-'ORTracklnputMessage" type="ortrack:ORTrackInputMessageType"

minOccurs='T" inaxOccurs="unbounded" />
</xs:sequence>

</xs:complexType>
<xs:coinplexType name="ORTrackInputMessageType">

<xs:sequence>
<xs:element ref="orstar:Entity" minOccurs—'1" maxOccurs='T"/>
<xs:element ref="orstar:HospitalLocation" minOccurs="l" maxOccurs='T"/>
<xs:element name="MessageType" minOccurs='T" maxOccurs='T">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs;enumeration value="rN" />
<xs:enumeration vaIue="OUT" />
<xs:enumeration value="ING" />

</xs:restriction>
</xs:simpleType>

</xs:element>
<xs:element name="MessageTimeStamp" type="xs:dateTime" minOccurs-'1" maxOccurs='T" />
<xs:element name="EventTimeUndetermined" type="xs:boolean" minOccurs='T" maxOccurs="l"

</xs:sequence>
</xs:complexType>
<!— Start Element definition here —>
<xs:element name="ORTracklnputMessages" type=" ortrack:ORTracklnputMessagesType" />

</xs:schema>

113

O R Track State Schema:

The following schema describes the state of the OR Track system. The OR Track

state must contain tracking information about all the locations being tracked by the

system.

ORTrackState.xsd:

<?xml version=" 1.0" encoding="UTF-8",?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmins:ortrack="osu.ease.medctr.orstar.ortrack " xinlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" targetNamespace-'osu.ease.medctr.orstar.ortrack" xinlns:orstar="osu.ease.medctr.orstar"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<!--lnclude all external schemas with same namespace—>
<xs:import namespace="osu.ease.medctr.orstar" scliemaLocation="Entity/EntityList.xsd"/>
<xs:import namespace="osu.ease.medctr.orstar" schemaLocation="Location/Map.xsd"/>
<!— Start Type defmition here —>
<xs:complexType name="StateType">

<xs:sequence>
<xs:element ref;="LocationState" minOccurs="l" maxOccurs="unbounded"/>

</xs:sequence>
</xs:compIexType>
<xs:element name="LocationState">

<xs:complexType>
<xs:sequence>

<xs:element ref="orstar:HospitalLocation" minOccurs='T" maxOccurs=" 1 "/>
<xs:element rei="EntityStates" minOccurs="l" maxOccurs=" 1 "/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="EntityStates">

<xs:complexType>
<xs:sequence>

<xs:element ref="EntityState" minOccurs—'1" maxOccurs="unbounded" />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="EntityState">

<xs:complexType>
<xs:seqiience>

<xs:element ref="orstar:Entity" minOccurs-'1" maxOccurs="!"/>
<xs:eleinent name="InMessageTimeStamp" type="xs;dateTime" minOccurs—T' maxOccurs='T"/>
<xs:element name="LastInGuaranteeTimeStamp" type="xs;dateTime" minOccurs-'1"

inaxOccurs="l"/>
</xs:sequence>
<xs:attribute name="IsGuaranteed" type="xs:boolean" use="required"/> <!— Indicates whether In

Guarantees are being received—>

114

<xs:attribute nanie="IsMultipleEntity" type="xs:boolean" use="required"/> <!-- Indicates i f an Entity
of same ty pe (eg. 'Patient') is in the same Location. Location considered for the pui pose of evaluating
Multiple Entities are resolved at the Room Level and not at the Sector Level. —>

<xs:attribute name="InMultipleLocation" type="xs:boolean" use="required"/> <!-- indicates if the
same Entity is found in a differnet Location—>

<xs:attribute name="EventTimeUndetermined" type="xs:boolean" use="required"/> <!-- Indicates i f
USBLocate/ORTrack was able to determine the exact time when this event occured. - >

</xs:complexType>
</xs:element>
< ! - Start Element definition here - >
<xs:element name="State" type- ' ortrack:StateType"/>

</xs:schema>

Location Action Schema:

The fol lowing schema describes the structure o f location actions being passed to

the Action Bucket by OR Track.

Location Action.xsd:

<?xm] version^" 1.0" encoding="UTF-8",?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:ortrack="osu.ease.medctr.orstar"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" targetNamespace="osu.ease.medctr.orstar"
elementFormDefaiilt="qualified" attributeFormDefault="unqualified">

<!—Include all external schemas with same namespace—>
<xs:include schemaLocation="Entity/EntityList.xsd"/>
<xs:include schemaLocation="Location/Map.xsd"/>
<!— Start Type definition here —>
<xs:compIexType name="LocationActionType">

<xs:sequence>
<xs:element ref="Entity" minOccurs='T" maxOccui"s='T"/>
<xs:element ref="HospitalLocation" minOccurs-'1" maxOccurs-T"/>
<xs:element name^'^ocationEventType" minOccurs='T" maxOccurs='T">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="IN"/>
<xs:enumeration value="OUT"/>

</xs:restriction>
</xs:simpleType>

</xs:eIement>
<xs:element name="TimeStampOfEvent" type="xs:dateTime" minOccuis='T" maxOccurs='T "/>
<xs:element name="SpecialFlags" type="SpecialFlagsType" minOccurs="l" maxOccurs='T"/>

</xs:sequence>
</xs;complexType>
<xs:compIexType name="SpecialFlagsType">

<xs:attribute name="IsMultipleEntity" type="xs:boolean" use="required"/> < ! - Indicates if an Entity
of same type (eg. 'Patient') is in the same Location. —>

<xs:attribute name="InMultipleLocation" type="xs:boolean" use="required"/> < ! - Indicates if the
same Entity is found in a differnet Location—>

115

<xs;attribute naine="EventTimeUndetermined" type="xs:boolean" use="required"/>
< ! - Indicates if USBLocate/ORTrack was unable to determine the exact time when this event occured

in the real world. —>
</xs:complexType>
<!— Start Element definition here - >
<xs:element name="LocationAction" type="ortrack:LocationActionType"/>

</xs:schema>

O R Track Web Method Schemas:

Currently OR track is designed to support the following two web methods.

• GetEntitieslnLocations : Accepts a list o f locations in its input and returns the

entities and related state information in its response for each location sent in the

request.

• GetLocationOfEntities : Accepts a list of entities in its input and retums the location

and related state information in its response for each entity sent in the request.

A l l OR Track client request types w i l l extend f rom a base type called

'ORTrackRequestType'. Likewise, all responses to OR Track clients w i l l extend f rom a

base type called 'ORTrackRequestType'.

The base schema for any 'ORTrackRequest' is shown below.

ORTrackRequest.xsd:

<?xm! version="I.O" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ortrack="osu.ease.medctr.orstar.ortrack" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" targetNamespace="osu.ease.medctr.orstar.ortrack" elementFormDefault-'qualified"
attributeFormDefaiilt="unqualified">

<!— Start Type definition here —>
<xs:complexType name="ORTrackRequestType" abstract="true" />
<!— Start Element defmition here -->
<xs:element name="ORTrackRequest" type="ortrack:ORTrackRequestType"/>

</xs:schema>

The base schema for any 'ORTrackResponse' is shown below.

116

ORTrackResponse.xsd:

<?xnil version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="osu.ease.medctr.orstar.ortrack"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
targetNamespace="osu.ease.medctr.orstar.ortrack" elemeiitFormDeraull="qualified"
attributeFormDefault="unqualified">

<!— Start Type definilion here ~>
<xs:complexType name="ORTrackResponseType" abstract="true" />
<!— Start Element definition here ~>
<xs:element name="ORTrackResponse" type="ORTrackResponseType"/>

</xs:schema>

The schema for 'GetEntitieslnLocations' request is shown below.

GetEntitiesInLocationRequest.xsd:

<?xml version=" 1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ortrack="osu.ease.medctr.orstar.ortrack" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" taigetNamespace="osu.ease.medctr.orstar.ortrack" xmlns:orstar="osu.ease.medctr.orstar"
elementFormDefault-'qualified" attributeFormDefault="unqualified">

<!—Include all external schemas with same namespace—>
<xs:include schemaLocation="ORTrackRequest.xsd"/>
<xs:import namespace="osu.ease.medctr.orstar" schemaLocation="../Location/Map.xsd"/>
<!— Stan Type definition here —>
<xs:comple.xType name="GetEntitiesInLocationRequestType">

<xs:complexContent>
<xs:extension base="ortTack:ORTrackRequestType">

<xs:sequence>
<xs:element name="LocationList" type="ortrack:LocationListType" minOccurs='T"

maxOccurs-' 1 "/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="LocationListType">

<xs:sequence>
<xs:element ref="orstar:HospitalLocation" minOccurs='T" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

117

The schema for 'GetEntitieslnLocations' response is shown below.

GetEntitiesInLocationResponse.xsd:

<?xml version=" 1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="osu.ease.medctr.orstar.ortrack"
\mlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
targetNamespace="osu.ease.medctr.orstar.ortrack" xmlns:orstar="osu.ease.medctr.orstar"
elementFormDefault="qualified" atlributeForinDefault="unqualified">

<!—Include all external schemas with same namespace—>
<xs;include schemaLocation="ORTrackResponse.xsd"/>
<xs:import namespace="osu.ease.medctr.orstar" schemaLocation="../Location/Map.xsd"/>
<xs:import namespace="osu.ease.medctr.orstar" schemaLocation="../Entity/EntityList.xsd"/>
<!— Start Type defmition here —>
<xs:complexType name="GetEntitiesInLocationResponseType">

<xs:complexContent>
<xs:extension base="ortrack:ORTrackResponseType">

<xs:sequence>
<xs:element name="ResultPerLocation" t\ pe="ortrack:ResultPerLocationType" minOccurs='T"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name=" ResultPerLocationType">

<xs:sequence>
<xs:element ref^"orstar:HospitalLocation" minOccurs='T" maxOccurs='T"/>
<xs:element naine="LocationStateList" type="LocationStateListType" minOcciirs=" 1"

maxOccurs=" 1 "/>
</xs:sequence>

</xs:comple.xType>
<xs:complexType name="LocationStateListType">

<xs:sequence>
<xs:element ref="LocationState" minOccurs—T" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:elenient name="LocationState">

<xs:complexType>
<xs:sequence>

<xs:element ref="orstar:HospitalLocation" minOccurs='T" maxOccurs='T "/>
<xs;element ref="EntityStates" minOccurs='T" maxOccurs='T"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="EntityStates">

<xs:complexType>
<xs:sequence>

<xs:element ref="EntityState" minOccurs—'1" maxOccurs="unbounded"/>
</xs:sequence>

</xs:comple.xType>
</xs:element>
<xs:element name="EntityState">

<xs:complexType>

118

<xs:sequence>
<xs:element ief="orstar:Entity" minOccurs="l" maxOccurs='T"/>
<xs:elemeiit name="In!VIessageTimeStamp" type="xs:dateTime" minOccurs="l" inaxOccurs="l"/>
<xs:element name="LastInGuaranteeTimeStamp" type="xs:dateTime" niinOccurs='T"

maxOccurs-T"/>
</xs:sequence>
<xs:atti'ibute naine="IsGuaranteed" type="xs:boolean" use="required"/>
<!— Indicates whether In Guarantees are being received—>
<xs:attribute naine="IsMultipleEntity" type="xs:boolean" use="required"/>
<!— Indicates i f an Entity of same type (eg. 'Patient') is in the same Location. Location considered for

the purpose of evaluating Multiple Entities are resolved at the Room Level and not at the Sector Level. —>
<xs:attribute name="InMuItipleLocation" type="xs:boolean" use="required"/>
<!— Indicates i f the same Entity is found in a differnet Location—>
<xs:attribute name-'EventTimeUndetermined" type="xs:boolean" use="required"/>
<!— Indicates i f USBLocate/ORTrack was able to determine the exact time when this event occured. -

->
</xs:complexType>

</xs:element>
</xs:schema>

The schema for 'GetLocationOfEntities' request is shown below.

GetLocationOfEntitiesRequest.xsd:

<?xinl version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www. w3.org/2001/XMLSchema"
xmlns:ortrack="osu.ease.medctr.orstar.onrack" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" targetNamespace="osu.ease.medctr.orstar.ortrack" xmIns:orstar="osu.ease.medctr.orstar"
elementFormDefault="qualified" attributeFormDefaiilt="unqualified">

<!—Include all external schemas with same namespace—>
<xs:include schemaLocation="ORTrackRequest.xsd"/>
<xs:import namespace="osu.ease.medctr.orstar" schernaLocation="../Entity/EntityList.xsd"/>
<!— Start Type detlnition here —>
<xs:complexType name="GetLocationOfEntitiesRequestType">

<xs:compiexContent>
<xs:extension base="ortrack:ORTrackRequestType">

<xs:sequence>
<xs:element name="EntityList" type="ortrack:EntityListType" minOccurs='T" maxOccuis='T"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs;complexType>
<xs:complexType name="EntityListType">

<xs:sequence>
<xs:element ref="orstar:Entity" minOccurs='T" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

119

The schema for 'GetLocationOfEntities' response is shown below.

GetLocationOfEntitiesRequest.xsd:

<?xml version=" 1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XlVILSchema"
xmlns:ortrack="osu.ease.medctr.orstar.ortrack" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" targetNamespace="osu.ease.medctr.orstar.ortrack" xmlns:orstar="osu.ease.medctr.orstar"
elementFoimDefault="qualified" attributeFormDefault="unqualified">

<!~lnclude all external schemas with same namespace—>
<xs:include schemaLocation="ORTrackResponse.xsd"/>
<xs:import namespace="osu.ease.medctr.orstar" schemaLocation="../Location/Map.xsd"/>
<xs:import namespace="osu.ease.medctr.orstar" schemaLocation="../Entity/EntityList.xsd"/>
<!— Stan Type definition here -->
<xs:complexType name="GetLocationOfEntitiesResponseType">

<xs:complexContent>
<xs:e.xtension base="ortrack:ORTrackResponseType">

<xs;sequence>
<xs:element name="ResultPerEntity" type="ortrack:ResultPerEntityType" minOccurs='T"

maxOccurs="unbounded"/>
</xs:sequence>

</xs:extension>
</xs:complexConlent>

</xs:complexType>
<xs:complexType name^'^esultPerEntityType'^

<xs:sequence>
<xs:element ref="orstar:Entity" minOccurs-T" maxOccurs='T"/>
<xs:element ref="LocationState" minOcciirs= lT" maxOcciirs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:element name="LocationState">

<xs:complexType>
<xs:sequence>

<xs:element ref="orstar:HospitalLocation" minOccurs—T" maxOccurs=" 1 "/>
<xs:element ref="EntityStates" minOccurs-' 1" maxOcciirs='T"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="EntityStates">

<xs:complexType>
<.xs:sequence>

<xs;element ref="EntityState" minOccurs='T" maxOcciirs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element namc:="EntityState">

<xs:complexType>
<xs:sequence>

<xs:element ref="orstar;Entity" minOccurs='T" maxOccurs-T"/>
<xs:element name="InMessageTimeStamp" type="xs:dateTime" minOccurs='T" maxOccurs-T "/>
<xs:element name="LastInGuaranteeTimeStamp" type="xs:dateTime" minOccurs—T"

maxOccurs='T"/>
</xs:sequence>

120

<xs:attribute name="IsGuaranteed" type="xs:boolean" use="required"/>
<!— Indicates whether In Guarantees are being received—>
<xs:attribute name-'IsMultipleEntity" type="xs:boolean" use="required"/>
<!— Indicates i f an Entity of same type (eg. 'Patient') is in the same Location. Location considered for

the purpose of evaluating Multiple Entities are resolved at the Room Level and not at the Sector Level. - >
<xs:attribute name-'InMultipleLocation" type="xs:booIean" use="required"/>
<!— Indicates i f the same Entity is found in a differnet Location—>
<xs:attribute name="EventTimeUndetermined" type="xs:boolean" use="required"/>
<!— Indicates if USBLocate/ORTrack was able to determine the exact time when this event occured. -

->
</xs:complexType>

</xs:element>
</xs:schcma>

1 2 !

