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INTRODUCTION

A spline function f of degree n, or simply an n-spline on
! is any function whose graph consists of arcs of polynomials of
degree <n connected so that the (n - 1)st derivative of f is
continuous on R. The simplest spline functions are polygonal
lines (see Figure 1). As it is well known, any continuous func-—

tion on R can be approximated uniformly on R by a polygonal line.

T N\

Figure 1. A spline function f of degree 1 on f.

An adjustable curve used by draftsmen is called a ''spline''.
It consists of an elastic rod to which weights are attached to
hold the spline in place (see Figure 2). The mechanical spline
can be bent to approximate any desired curve, limited only by the
elasticity of the material. This instrument gave its name to the
class of functions discussed here.

The name spline function was introduced by I. J. Schoenberg

in 1944 who systematically studied functions of this type as a
tool for the approximation of functions. They were suggested by
the work of T. N. E. Greville and other actuarial writers in
connection with problems of osculatory interpolation.
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Elastig Rod

Figure 2. A Mechanical Spline Used by Draftsmen.

For purposes of interpolatiqn the use of spline functions
offers substantial advantages. By employing polynomials of rela-
tively low degree one can often avoid the marked undulatory
behavior that commonly arises from fitting a single polynomial
exactly to a large number of empirical observations [1]. On the
other hand, much greater smoothness is obtained by using spline
functions instead of the traditional piecewise interpolation pro-
cedures, which give rise to discontinuities in the first deriva-
tive [1]. A spline function provides continuity of the greatest
possible number of derivatives of the interpolating function
consistent with the use of polynomials of lower degree than would
be required to fit all data points exactly by a single polynomial
[1, quoting Schoenberg].

In a series of fundamental papers ([2], [3], [4] anda [5])

Schoenberg shows that the fundamental role played by polynomial



interpolation in elementary numerical analysis is taken over by
spline interpolation, and that the resulting formulae are best in
a certain sense.

The procedures for interpolation by means of spline functions
are facilitated by Schoenberg's unique representation of an arbi-
trary spline function as a sum of a linear combination of
"elementary spline functions" of particularly simple form LRz

The appearance of spline functions and their use in inter-
polation and approximation of functions began with Schoenberg's
work in 1944 and his published paper in 1946 [2]. Both the theory
and applications of spline functions have been developed with
increasing intensity in the last four years. The theory now
includes the finite and periodic cases; functions of several
variables; arbitrarily spaced, multiple (coalescent) abscissae,
etc. The role of spline functions of one or several variables in
the broad realm of the numerical Analysis of Engineering and
mathematical Physics is discussed by Birkoff and deBoor in [él.

This thesis will follow the work of Schoenberg (3], (4] ana
[5]. We shall consider only spline functions of one real vari-
able with simple, arbitrarily spaced abscissae at which the
ordinate is specified.

The first chapter will give definitions and basic properties
of the '"fundamental spline functions.'" Its main point will be
Schoenberg's representation theorem for arbitrary spline functions
by fundamental spline functions.

In the second chapter the existence and uniqueness of the

interpolating spline function is shown. This 'spline fit'" arose



L
from the need in numerical analysis for a method of interpolation
which produces derivatives as smooth as possible [10]. Interpo-
lation by spline functions, being essentially the numerical
analogue of the draftsman's spline, consists of joining the as-
signed n points by section of polynomials of degree < 2m - 1,
requiring that the first 2m - 2 derivatives be continuous at the
junction points.

Letting S be an interpolating function, the quality of

approximation is measured by

b
f (S(m)(x))2 dx

a
where m is a positive integer. It will be shown in the concluding
section that the interpolating spline function minimizes this
integral.

We remark here that if the number of points of interpolation

is nand n<m, then n < m -1 and S is a polynomial of degree
<m - 1. In this case the integral is zero. Thus, we shall

assume that m < n.



CHAPTER I

DEFINITIONS AND REPRESENTATION THEOREMS

I.1. Definitions and examples of

spline functions

The precise definition of a spline function given by

Schoenberg in [3] is as follows:

Definition l. Let

(1-1) ...<X_2<X_1<xo<x1<x2< ceoe

be a sequence of real numbers, and let n be a natrual number > 1.

By a spline function S(x,n), of degree n, having knots (1.1l), we

n—l(_ ©,0), such that in each

mean a function of the class C
interval (xv,xv+1) it reduces to a polynomial of degree not

exceeding n. S(x,n) will also be referred to as an n-spline.

When the degree of the spline function is clear, we shall
use the simpler notation S(x) instead of S(x,n).

Definition 1 shows that an S(x,1) is a continuous broken
linear function with possible corners at some or all of the points
(1.1). Likewise, an S(x,2) has a graph composed of a sequence of
parabolas which join at the knots continuously together with their
slopes [4]. These are illustrated in Figure 3.

The simplest n-spline functions are generated by the
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(a) A 1-spline S(x,1). (b) A 2-spline S(x,2).
Figure 3. Spline functions.

trincated power function x, defined as follows:

O +B

n
n =" 1
x, =4
<A\O ’ x & O
where n is a positive integer. The differentiation rule for this
function is similar to that for ordinary powers:

d n n-1
= % = (n - 1)x+ "

The nth derivative of xz is n!xg, where xg is taken to be the
Heaviside function, defined as 1 for positive x and O for nega-.
tive x.

A function of the form (x - c)i, where ¢ is a real number,

will be called an elementary spline function. The nth derivative

of this function has its only discontinuity at x = c, where there
is a jump of magnitude nl! [11s

The first two special cases of elementary spline functions
are shown in Figure L.,

The operation of differentiation (or integration) trans-—
forms a spline into another spline of a degree decreased (or

increased) by one.
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(a) Graph of (x - c)i (b) Graph of (x - c)+

Figure 4. Graphs of the function (x - c)i for n = 1 and 2.

The n-splines with fixed knots (1.1) form a linear space
Jn. Although the knots (1.1) may be points of discontinuities
for S(n)(x,n), they need not be. Hence, Jn contains the family
Pn of polynomials of degree § n of which Jn is a generalization
41, [51.

We shall consider now a spline function S(x,n) vanishing

outside the range (xv,x ) but not outside any subrange. Ve say

v+N
in this case that S(x,n) has the span N [(4]. Clearly for n =1
we have N 2 2. It will be shown in Theorem 1 that in general
N >n + 1 for all n.

The spline functions of this type with the smallest possible
span, i.e,, for which N = n + 1, play an important role in the

theory of spline functions. We shall see next that these spline

functions coincide with the so-called fundamental n-splines [h]

(or B-splines, where B stands for '"basis" [5]). Figure 5 illus-
trates spline functions with finite spans.

To define the fundamental n-splines we first consider
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(a) A 1-spline vanishing (b) A 2-spline vanishing
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(c) A l-spline vanishing outside (d) A 2-spline vanishing outside
[XO’XSJ’ with span N = 5. [xo,x7], with span N = 7.

Figure 5. Spline functions with finite spans.

the elementary spline function M, defined as follows:

Definition g. The function M is defined by

{1.2) M(x,n3y) = (o + Dy = )] ,
so that M is a polynomial of degree n for x < y and vanishes for

all x > y, and M € Cn—l. Hence, M is an n-spline.

The coefficient n + 1 has been employed by Schoenberg (3]
to normalize the function for other properties, and will be re-
tained here; although the properties discussed herein do not
depend upon this coefficient.

It should be noted that

(1.3) (x, - 0 = (x, - 0% + DG - 2



for 2all k = Oy 1y eeey and v = 0y, + 1, + 2, sess Therefore, we
may, without loss of generality, develop the fundamental splines

in terms of either (x - x) or (x = x ) .
v + v+

Definition 3. The fundamental spline function

Mv(x,n;xv,...,x ) of degree n is defined to be the (n + 1)-st

vin+l

order divided difference of the function M(x,n;y) with respect to

[u].

the variable y, and based on the points X, X1t °° 0 xv+n+l

Using the general formula for divided differences in E29 s

ice-,
v+n+l
f(x.)
n+l z; ——T—iy
A f(y) = f[x\), ..o'x\)+n+1] -— i—\) wl xi (]

where w(x) = (x - xv)'°’(x - ), we see that the fundamental

x
v+n+1l

spline Mv(x,n;xv,....x ) is defined by

v+n+l
v+n+l 5
(n +1)(x; = 0]
(l'l") M (X,n;x ,...,X = .
v Y v+n+l e w,(xi)

The function Mv is clearly an n-spline function with the n + 2

knots x 4 eseey X since it is a linear combination of
v v+n+l
n-splines, (x - x)7, «.., (x - BT
¥ ¥y +! . v+n+l +
It is also easy to see that Mv vanishes outside [xv‘xv+n+l]'

IF x < X, we may omit the subscript "+" on the right hand side

of (1.4). Thus, for x < x, we have

v+n+1 -
2: (n + 1) (x, = x)
) i

st ™
vin+l i=v w'(xi)

M (e n3x s60s5X
v , 9 \), 9

= 62 (n + Dy - ) =0
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since the (n + 1)=-st divided difference of a polynomial of degree

n is zero. On the other hand, if x > x 1 we have (xi - x)i

v+n+ -
Oy 1 =2 Vy evesg v + 0 + 1y and so

MV(X’n;xv’ooo,x ) = 0.

v+n+l
This shows that the span of the fundamental n-spline Mv is
clearly of minimal length n + 1.

The notation will sometimes be simplified by

Mv(x,n) = Mv(x,n;xv,...,xv+n+1)
The derivatives of Mv are given by
(k) .
M (x,n,xv,...,xv+n+l)
v+n+1l s
K z (xi --x)+
(n + 1)neee(n + 1 - k) (~1) e
i=vy w'(xi)

for k = l, eney DNe
Explicit expressions and graphs of the fundamental n-splines

will be given for n = 1 and 2, assuming that X, = i, 1 =2 0y 1y eesve

Example. Let n =1, x, = 0, x, =1, and X, = 2, then we

have
2 2(xi - x)+
Mo(x,l;O,l,Z) = I
i:O w' (Xi)

where w(x) = x(x - 1)(x = 2). Thus

o if x<0O
% if 0< x< 1
-(x -2) ifl1<x<2e2

\.O 1f 2 g b'e

The graph of this fundamental l-spline is shown in Figure 6.



Figure 6. Graph of the fundamental l-spline Mo(x,1;0,1,2).

Example. Let n =2, and X; = i for & = 0, 1, 24 35, then

we have

2
+

3 3(xi - X)
Mo(x,z;o,1,2,3) = I
i=0 (D'(Xi)

where w(x) = x(x = 1)(x - 2)(x = 3). Each term in the expansion

of this fundamental 2-spline is al a 2-spline as illustrated in

Figure 7.
M(x,2;3) _ 1 2
L w3 - = x)+
- M(x,2;2) _ 3 2

PN\
4 - e — R

-1 1/—T .
T M(x,2;0) _ l( )2
| =00y 2y = +
$ M(xy231) _ 3¢5 _ )2
. a3 ~wrlL - 2 +
- 4

Figure 7. Graph of the 2-splines composing Mo(x,2;0,1,2,3).

Combining the functions shown in Figure 7 gives
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O if =<0
% x2 If0Lx< 1

My(x,230,1,2,3) =< - x> + 3% —% if 1

[17AN
s
A
n

% x2 - 3x + g, if 2

[17AN
"
VAN
W

~0 if 3

A
-

The graph of this fundamental 2-spline is shown in Figure 8.

1 #_y

0 1 2 3
Figure 8. Graph of the fundamental 2-spline Mo(x,2;0,1,2,3,).

The fundamental spline functions of higher orders will be
similar to the illustrated fundamental 2-spline, except of course
the polynomial arcs between nodes will be of correspondingly
higher degree.

It is useful to observe that the fundamental splines on
simple, equidistant knots over [a,b] is symmetric with respect

to the bisector x = 3—§~E .

For the discussion of spline interpolation we shall need to
consider the set of all spline functions of degree 2 - 1 having
the knots Xq < wae & X . This set will be denoted by
sz_l(xo,...,xn). We shall also need the following

Definition i. A function S is called a natural spline function

of degree 2m - 1 provided that
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(a) S(x,2m-1) € Jam_l(xo,...,xn) and

(b) S(x,2m-1) € Pm- in (- w,xo) U (xn,+ «) [5].

1
The class of such natural spline functions is denoted by

* *
JZm—l(xO""’xn)’ and clearly Jam_l(xo,...,xn) CIJZm_l(xO,...,xn).

3

Figure 9. Graph of a natural spline function
S{x,1) € J{(xo....,XB).

I.2. Representation of arbitrary

spline functions by fundamental

spline functions

The fundamental n-splines will be shown to form a basis for
all spline functions of degree n and given knots [3]. Thus, the
functions do indeed merit their name from this fundamental role.
The discussion will follow Schoenberg's paper [3].

The proof of the representation theorem is based on the

following elementary lemma.

Lemma 1. If P is a polynomial of degree < n, and

PR e By b By Dy weny B 1

then
P(x) = A(x - &)™ .
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Proof. Since P =0y k 20y 1, eeey n = 1, the polynomial

has a zero of degree m 2 nat c. Thus
P(x) = (x - ¢)™Q(x)

where Q is a polynomial such that
m + deg Q <n.

Since m 2 0, it follows that deg Q = O, i.e.
Q(x) = A for all x € R,

and the lemma is proved.

For simplicity, the representation of arbitrary spline
functions by fundamental spline functions is discussed in four
theorems, each increasing the span of the spline functions of the

preceding case.

Theorem 1. If O < N < n and if S is an n-spline having the knots

Xq < x1 & e L Xy and such that

S(xyn) = 0 everywhere outside the interval (xo,xN),
then

S(xyn) = 0 for all x.

Proof. On each of the subintervals [xo,xl), e [XN—l’xN) the

graph of S is a polynomial of degree < n and S € o co 00}

By hypothesis, the n-spline S vanishes for all x % X5 i.e.,
S(x) = 0, x< X
Thus

S(k)(x) w0y Forall <€ X k=0, 1y 2y wews

0

The continuity condition, S € Cn—l(- ©,0), requires that

(1.5) s(k)(xo) a0y B=0; 1y casy B = Ls
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Since on [xo,xl] S coincides with a polynomial of degree
< n, then from (1.5) it follows, by Lemma 1, that S is of the form

S(x) = ao(x - xo)n " x € [xo,xl],

where ao is a constant.

Proceeding to the next interval [xl,xz], the continuity

condition at xl requires that
n
S(xl) = ao(x - X)),

1 0
and

)n—k

L]

S(k)(xl) = ag(m e + 1 -0 (xy - xg

k'—'—'l, 2’ cevy n-1. Let
)n

P(x) = 8(x) - ao(x -0 3 x€ [xl,xz].

0]

We have then, deg P < n and

P(k)(xl) = O, k = O, 1. e e vy n - 10

Thus, by Lemma 1, we have

n
P(x) = al(x - xl) 5
ises,
n n
S(x) - ao(x - xo) = al(x - xl) .
and so
n n
S(x) = ao(x - xo) + al(x - xl) 5 x € [Xl'x2]'
Continuing this process for succeeding intervals gives,
k
) n
(1.6) S(x) = v-oav(x - xv) s X E [Xk'xk+l]

for k = O, l’ o ey N o 10

In particular, for x € [xN—l’xN] we have
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N-1

S(x) = 2: a (x - x )",
v v

v=0
By hypothesis, S(x) = 0 for x > Xys 8O the continuity condition
requires that

N-1

). 0 _

S(xN) = av(xN - xv) = 0,
v=0

and N—1

S(k)(xN) = (n)eee(n + 1 = k) vzg av(xN = x\))nmk = 0,

for k =1, 24 eeey = 1., It follows that the numbers Bas eees

ay_, are solutions of the following system:
ao(xN - xo)n + eee + aN-l(xN - xN—l)n =0
aq(xy - xo)n"1 * eee +oay o (xy - xN_l)n-l =0
ao(xN - xo)n-'k +oeee oy Gy - xN__l)n_k =0

ao(xN - xo) & wow & aN_l(xN - xo) =0

We have here n equations in N unknowns, and N n.

A

First, assume N = n. Since

p
(xN - xo) — (xN - Xy 4

it follows that the only solutions of the preceding system are
the trivial solutions, ag = Oy seey aN_] = 0. Thus, if N = n,

then
S(x) = 0 for all x.
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Next, assume N < n. Without loss of generality, we can add
simple knots between Xq and Xy SO that there are exactly n + 1

knots. This results in precisely the previous case, proving the

theorem.
The following corollary is a useful restatement of Theorem 1.

Corollary. A non-zero n-—-spline S has at least n + 2 knots, i.e.,

deg S < span S + 1.

Theorem 2. If N> n + 1 and if S is an n-spline having the knots

xo < xl < Saw & xN and such that

(1.7) S(xyn) = 0 everywhere outside the interval (xo,xN),
then S can be uniquely represented in the form
N-n-1

(108) S(X,n) = z c M (x’n;x geeey X
v=0 bl »

) 9

v+n+l

where MO’ esey MN-n-l are fundamental n-splines.

Proof. Assuming that (1.7) holds, and using (1.6), an n-spline S

may be written as

N\
(@)
b

([PAN
el

0

a(x = x)" ANl A

0 0 0 = = 71

k n

(1.9) S(xyn) =< .2 ai(x - xi) X $ X< X 4

i=0
N-1 5

r a.(x - xi) . Xy_1 S X < %y
i=0

(IVAN
o]



Figure 10 illustrates S for N > n + 1.

\“_,/ N

5 :
XO Xl © . . Xn \ ’/ XN
\,./

n + 1l.

Figure 10. An n-spline on (xo,xN) for N

nv

By (1.3) and (1.4), the fundamental n-splines may also be

written in the form (1.9). Thus, for suitable constants bij’ we

have
(O ’ b4 § Xq
% n
Mo(x,n) =‘< j?o boj(x - xj) v X X< X g
k=o, ...,n
0 EME- L
0 ’ X g xl
- n
Ml(x,n) =‘< jil bl.(x - xj) ' X XL X0y
k=l, ...,n+l
hs ¥ B B E
and in general, for v = Oy 1y ¢vey N =n =1
{0 ’ < x
= A\
k
n
{1:20) Mv(x,n) =.< jfv bvj(x - xj) y &€ [xk,xk+1]

k=\),o-0’\)+n

n/\
b

X
v+n+l
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The following figure shows the fundamental n-splines MO’

Ml’ sy MN-n—l on [xo,xN] for N >2n + 1.
MO Ml Ll . - MN—n_l
XO Xl - . - xN_n_l . o0 xn+l xn+2 . . . XN

Figure 11. The fundamental n-splines on [xo,xN], N 2n+ 1.

It is required to show for an arbitrary n-spline S vanishing
outside (xo,xN), N>n + 1 that
N-n-1

(1.8) S(x,n)

;E; cva(x.n) , for all x,

where the c 's are uniquely determined. From (1.9) and (1.10) it

follows that on [xo,xl] we have
S(x,n) = ao(x - xo)n

n .
Mo(x,n) = boo(x - xo) » Where b, # 0, since My

is a fundamental n-spline

O, \)=1,00-‘N"‘n"‘lo

M (x,n)
v

If we define So by
N-n-1

So(x,n) = S(xyn) = E: ¢ M (x,n) ,
v v
v=0

we have on [xo,xl]
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n n
So(x,n) = ao(x - xo) - coboo(x - xo)
n
= (ao - coboo)(x - xo)
%0
Then So(x.n) = O for all x € [xosxl] if and only if ¢y = 358 .

Next, let x € [xl’XZJ’ then by the same procedure

S(x,n) = ao(x - xo)n + al(x - xl)n.

n n
Mo(x,n) = boo(x - xo) & bOl(x - xl) "

n
Ml(x,n) bll(x - xl) y by £ 0,

MV(X,n) O, v =2' so ey N-n-1.

Define S1 by
N-n-1

Sl(x,n) = S(x,n) - ;Zg cVMV(x.n) >

Then on [xl,xz] we have

n
Sl(x,n) = (ao - coboo)(x - xo) +
n
(al ~ cobgy - clbll)(x - xl)
. n
i.e. Sl(x,n) = (a1 - coboy ~ clbll)(x - xl)

Thus, Sl(x,n) = 0 for all x € [xl,xa] if and only if

By = Colgy

C o v ————
b11
Continuing to the next interval, x € [xz,x3], we have
n n n
S(x,n) = ao(x - xo) + al(x - xl) ¥ a2(x - x2) »
)n

k]

n n
Mo(x.n) = boo(x - xo) + b01(x - xl) + boz(x - x,

b, (x = xl)n + by, (x - x2)n

M, (x,yn) 11 12

M, (xym) = b,,(x - xe)n, by, # 0
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M\)(X9n) = 0 [ v = 3, ee ey N-n - Yo

The difference 82 defined by

N-n-1
Sz(x,n) = S(x,n) - E: cva(x,n)
v=0
is then
n
Sz(x,n) = (aO - coboo)(x - xo) +
n
(al - cgbgy - clbll)(x - xl) 3
n
(a2 - cobgo - clb12 - c2b22)(x - x2) "
. . S,(xym) = (8, = cbyy = €1bg, = Coby0) (x - xz)n.

Then Sa(x,n) = 0 for all x € [xz,x3] if and only if

. 227 %P2 " %1f12

boo

In general, for x € [xk,x s B w0y sang H =8 =73 u@

k+1

have the recursion relation

Thus,

for all x € [x

n
So(x,n) = (ao - coboo)(x = xo) , and

n Mw

n
Sk(x,n) Sk_l(x,n) + [ak - L cvbv,k](x - xk) 5

k=l' o.o’N—no

N—n-1
Sk(x’n) = S(X,n) - \Eo CvMV(X’n) =0
k’xk+1]’ k =0y see9 N=n -1 if and only if
a
Co = ——Q— ’ and
b



Cy. = ’ k'—‘l’ooo’N—n"‘lo

Now consider the n-spline S in the interval [xN-n'xN]'
Define S* by
N-n-1

S(x,n) = Z: c M (x,n) , x € [x
Vv v

’x]
- 0’"N

(1011) S*(x’n) =
o L x £ (xgaxy)

Since S* is a linear combination of n-splines, it is also an
n-spline, with knots Xq < Xy € eew £ Xy By the previous
arguments

£1.12) S*(xy,n) = 0 for x € [xO’xN—n]‘

Hence, S* degenerates into an n-spline with only n + 1 knots, so
by Theorem 1

(1.13) S*(xyn) =0 for x € [xN-n’xN]'

Finally, combining (1.11), (1.12) and (1.13)
S*(xyn) = 0 for all x,

which implies that
N-n-1

S(x,n) = 2: ¢ M (x,n) for all x,
ve0 V'V

completing the proof for Theorem 2.

Theorem 3. An n-spline S vanishing if x < %o can be uniquely

represented in the form

o0

(1.14) S(x,n) = £ c¢ M (x,n),
v V'V

22
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and conversely any such series represents an n-spline vanishing

for x < xo.

Proof. Figure 12 illustrates this case.

Figure 12. An n-spline vanishing for x < X

The proof of this theorem is the same as for Theorem 2,

except the sum continues indefinitely, resulting in

©o
(1.14) S(xyn) = £ ¢ M (x,n) .
oelts ¥ ¥
Theorem 2 is clearly a special case of this where By = 0 for

v>N-n -1, N finite,

We can now establish the following property of the funda-

mental splines which will be needed for the next theorem.

Lemma 2. The n + 1 fundamental n-splines

M—n’ M—n+1’

..., M—l, MO
are linearly independent in the interval (xo,xl) and therefore

form in this interval a basis for Pn.

Proof. Figure 13 jillustrates the n + 1 fundamental n-splines

).

ver (x _,x
o ( -n'"n+l
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Figure 13. The fundamental n-splines over (x_n,xn+1).

Each fundamental n-spline has exactly n + 2 knots so that exactly
2n + 2 distinct knots are required for these n + 1 functions.
Assume these n-splines are dependent in (xo,xl), Xq # Xy

then there exists constants C_pr *o*0 g not all zero, such that

0
S(xyn) = .E ch.(x,n) =0, xE€ (xo,xl) 5
J=-n
We may represent S by
fo £] - 00 < X < X_n
SL(X) 5 X_ < x< X
S(x,n) =< So(x) . Xg € X < X
SR(x) . 3 L4 W
~o ’ CxgL®

xn+1
which is illustrated in Figure 1k4.
S is an n-spline vanishing for all x € (- °°,x_n) U [xo,xl) U

[x

X

n+1'm)‘ with the usual continuity conditions at X_v Xge Xy and

n+l’ Let
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< S > S < SR

/-\\,__,/ i : /\
5/’ > { - ~
X—n e e o XO Xl \~ / e e o Xn +l

Figure 14. An n-spline on (x_n,x

n+l) vanishing in (xo,xl).

SR(x,n) s X L X
Sﬁ(x,n) =
0 ’ elsewhere

Since SR is a segment of an n-spline and the continuity conditions

at its endpoints are satisfied, then Sﬁ is an n-spline with at

most n + 1 knots, namely x Hence, by Theorem 1

1, ooy Xn+l.

Sﬁ(x,n) 0 for all x,

so that

Q 4 % & %€ %

Sp(x,n) 1 n+l

i}

and thus

S(xyn) =0 , Xy < X< X .

We can now represent S as an n-spline with at most n + 1
knots, namely X_p1 e Xpe Again applying Theorem 1, this implies
S(xyn) = 0 for all x.
From the uniqueness property in Theorem 2, it follows that
c.=0, j=-ny, +00y O, contradicting the assumption of linear

J
dependence. This completes a proof of Lemma 2.
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Theorem i. Every n-spline S can be uniquely represented in the

form
4+ o
(1.15) S(x,n) = ng °°cvM\’(x,n) .

where the cv are constants and the Mv are fundamental n-splines.

Conversely, any such series represents an n-spline.

Proof. Let S be an arbitrary n-spline, and let

S(x,n) = P(x) , Xy < X < X (p € Pn) .

By Lemma 2, we can write

0
(1.16) P(x) = ji_nchj(x,n) . x € (xo,xl) .
Define S* by
(1.17) S*(x,n) = S(x,n) - P(x)

which is an n-spline vanishing in the interval (xo,xl). We may
therefore write

(1.18) S*(x,n) = So(x,n) + Sl(x,n) "

where S, and S, are n-splines vanishing in the intervals (xo,+ )

0 1

and (- ”,xl), respectively. By Theorem 3 we may therefore write

uniquely
—-n-—1
So(x,n) = .jg . chj(x,n) "
:]_.
(1.19)

oo

Sl(x,n) = E: c.M.(x,n) ,
j:l j J

for all x.



Combining (1.16) through (1.19) and solving for S gives

S(x4n) = S*(x,n) + P(x)
= So(x,n) + P(x) + Sl(x,n) )
i.e.,
(1.15) S(x,n) = I chj(x,n) "

jum
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which is the desired representation. This completes the proof of

the representation theorems.

We observe that on any finite interval the series (1.15)

always reduces to a finite sum [4].

I.3. Examples

This chapter will be concluded with some examples to
illustrate the representation theorems.

Example. The fundamental spline functions of degree 1 and
2, being easily computed, are frequently used to illustrate the
theory. Their explicit expressions, when the integers serve as

knots, are given below:

(O ’ -2 x< Vv
(x = v) ' vExLy + ]
Mv(x,l;v,v+l,v+2) =< -
i w9 =2) 3y vEILXLY +2
L.O y YVHE2LXC +™



0 ’ =l 00 KKV

%(x-\a)2 P vSEx<y

Mv(x,Z;v,v+l,v+2) = =(x -y = %)2 + % @ YELLXLYW
%(x -V - 3)2 y v+2<x<y

~0 . v + 3 g x < +

for any v = O, + Ly weiew

Example. To obtain the constant function 1 we may use the

so—called 'roof function'", or fundamental l-splines, since
oo

B Mv(x,l;v,v+1,v+2) — T g for all x.

V=80

This representation is obvious in view of Figure 15.

I, N JIN N N N N
r &' N AN Ny >" 7%
d oy I Fy ox By AN N
/ / N N NN AL h \

O . id . \)"2 \)—1 v \)+1 \)+2 - . .

Figure 15. The constant function 1 as a linear
combination of fundamental l-splines.
Example. As illustrations of Theorems 3 and L, Schoenberg
[3] gives the following identities:

let X =% for all integers v, then

xf = Z (v+210+2) (v + k)MV(x,k,v,...,v+k+l),

v=0

and

28
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+ oo
x = Z (v+21)(yv+2)eee(yv + k)Mv(x,k;v,...,v+k+l).

y== o

The first four special cases are:

©o

= B Mv(x,k;v,...,v+k+1) s for any k > O
x = Z (v + 1M (x,13v,v+1,v+2)
- OO v
2 [~
x = Z (v +21( + 2)Mv(x,2;v,v+l,v+2,v+3)
(<]
X3=

2 v+ +2)v + B)Mv(x,B;v,v+l,v+2,v+3,v+4).

- OO0

Example. Define a l-spline function S by

(O ’ x € 0
x ’ 0 g %X & 4
- %vx + % 5 1 < x< 2
S(x,1) =<
-2x+8 4 3gx<h
. O . L < x

and find the representation of S as a linear combination of
fundamental l-splines.

Solution. Figure 16 shows the graph of S with the solid lines,
and the graph of the fundamental l-splines with dotted lines.

We have as the degree of the spline n = 1 and the span is N = 4,
so that n + 1 < N < «, and thus Theorem 2 applies. Hence, we are

to f£find ¢ c. and c¢. such that

o' "1 2
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Figure 16. An example for Theorem 2.

2
z

S(x,1) =
v

c M (x,1;v,v+l,v+2) , for all x.
oV Vv

The required fundamental l-splines are given in Table 1.

TABLE 1

FUNDAMENTAL 1-SPLINES

Mo(x,l;o,l,E) Ml(X91;192’3) Mz(x)l;293!’+)

Interval

-0 & x L0 (6] 0] 0o
0 < x< 2§ X 0 0
l1<gx<z2 -(x = 2) (x - 1) 0
2L xLB 0 -(x - 3) (x = 2)
FLgxaet 0 0 ~(x = B
b CExL™ 0 0 0

To evaluate cg, let x € [0,1), then

S(x,1) = x,

and
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2
ZCM(X,l):Cx.
=0 vy 0
ThuS, Co':-lo
Now let x € [1,2), then
S(X,1)=—%X+%,
and
2
L e M (x,1) = =(x=2) + c,(x =-1)
v=0 ¥V 1
= (c1 - Dx + (2 - cl) "
1
Thus, cl =

Finally let x € [2,3), then

S(X,l) =—3'x 'g' ’

2
and
a 1
viocva(x,l) = - E(x = 3) + o,(x = 2)
= (02 - %Jx + (% - 2c2) "
Thus, 02 = 2 .

The desired representation is then
S(x,1) = M (x,130,1,2) + 3 M (x,131,2,3) +
2M, (x,152,3,4) ,  for all x.
Example. An additional property of the function M given

by Definition 2, i.e.

M(x,k;y) =k + 1)(y - X)E s

is that M(x,k;y) > O for all x. Moreover its (k + 1l)st divided

difference is also non-negative, i.e.



Mv(x,k;xv,...,x ) >0 4n (xv,x )

v+k+1 v+k+1

and

)

Mv(x,k) = 0 outside (xv’xv+k+l

As shown by Schoenberg (5]
o0

) 4% = 1 , for any v ,

I a Mv(x’k;xv""’xv+k+l

follows from Peano's Theorem. Hence, we may think of the

fundamental spline functions as frequency functions [3], [51].
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CHAPTER II
INTERPOLATION

II.1. Interpolation by spline functions

It will be shown that spline functions can be used with
great advantages as interpolating functions. The usual questions
of existence, uniqueness, characterization, and best approximation
will be discussed.

First, we consider three lemmas needed for the existence

and uniqueness theorem proof.

k—1[x (k-=1)

Lemma 3 [4]. If f € ¢ o,xk] while f is absolutely
continuous, then its divided difference of order k may be expres-—

sed as

"

(2:1) f[xo,...,xk] = %T Ixo Mo(x,k-l;xo,...,xk)f(k)(x) dx .

Proof. This lemma follows from Peano's general theorem ([81],
p. 69ff) concerning linear functionals which vanish for poly-

nomials of degree at most k — 1 [4].

Lemma ﬁ. Suppose that wfxo,...,xm] = 0, then there exists a

unique polynomial Q of degree < m - 1 such that

CP(X\)) = Q(x\)) ’ v = O’ eeey M o

33



Proof. The interpolating polynomial Q of degree < m may be

uniquely represented by a finite Newton series (see [8], p. 39ff)
such that

¢(xv) = Q(xv) s O a0 sesy B %

The Newton representation is defined by

Q(x) = Q[xo] + (x = xo)wfxo,xl] +
(x - xo)(x - xl)wfxo,xl,xzj e 8

(x - xo)'--(x - xm_1)¢[xo,...,xm] i

Since w[xo.,...xm] 0, we have clearly deg @ < m - 1.

Lemma 5. If 1 < m< nand

¢[xi’...'xi+m] =0 5 i=o, spey N = m ,

then there exists a unique polynomial P of degree < m - 1 such
that

P(xv) = w(xv) s Neby sesy B

Proof. By Lemma 4, there exists a unique polynomial Pi of degree
< m - 1 such that for each fixed i (i = Oy «eey n = m)

Pi(xv) = ¢(xv) " %o Ly ssayg T A M .

But this implies that for each i (i = Oy «eey n = m)

Pi(x\’) = Pi+l(x\,) [} fOI‘ vV = i ¥+ 1, seo ey 3 Eom s

Since two polynomials of degree < m - 1 coinciding at m points
are identical, it follows that

PO=P1= oo e =Pn—m=P’

and the lemma is proved.
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Let m be a natural integer and define a class of functions
Fm in a given finite interval [a,b] as follows:

(m=-1)

(2.2) f € Fm[a,b] & £ € e ukl, 2 absolutely

continuous on [a,b] and f(m) € L2(a,b) ;
Let the integer n > O be given and suppose that we are also given
n + 1 abscissae

xo & xl <L ame S xn in [a,b] @

We now choose arbitrary but fixed reals x, for v > n and
v < 0 so as to obtain a sequence of knots

<x <x <...<x < .0 L

(2:3) eoe < X_ o 1 -

« xn < xn+l

1
All of the spline functions in the following discussion may be
considered to be defined on the knots (2.3). However, only the
n + 1 knots Xyy eeey X will be of direct concern.

The following theorem gives the existence and uniqueness of

interpolating spline functions.

Theorem 5 [4]. Let there be given in [a,b] a function f in the
class Fm[a,b] defined by (2.2) and a set of n + 1 points

(2.4) 2 <Xy <X < eee <X < b

1
with 1 < m < n. Then there is a uniquely determined natural

: $ 3 - ; :
spline function S 1n.J2m_1(xO,...,xn) which interpolates the

function f at the points (2.4), i.e.,

S(Xv) = f(xv) b ] vV = O, evey I o

Proof. Consider the (m - 1)-spline function 8 represented by
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n-m

8(x,m=1) = ;2; cva(x,m—l;xv,...,xv+m) 5

where the c, are arbitrary constants and the Mv are fundamental
(m - 1)-splines. Ve have then

8(x,m=1) =0 if x < Xy Or x> X .

The numbers Cos +e*s C . are determined from the following

equations
o

(2.5) fa(ng e M (xym-1) - f(m)(x))Mj(x,m—l) dx = 0 ,
J =0y ee0y n=m,

i.es

Ib Ib Ib jb
M2 (m)
cO & de + c1 aMlMde + eee + cn-m aMn__mModx = af Modx

b

b b
| | [
1dx + c1 aMidx + 200 + ® et aMn_lidx = af Mldx

. . . . . . . - . . - . - . . .

b b
J i % = f e ™y ax.
a n-m a n-m

fb
cO aMOM

[ [
c0 aM Mn_mdx + cl aM

5 an_mdx + see + C

n—
The determinant of this linear system in the unknowns o is
the Gramian of the functions Mv(x,m-l). (v =0y esey B = i)
These being linearly independent in [a,b], by Lemma 2, we conclude
that the problem (2.5) has a unique solution 8.
Assuming now that 8 has been uniquely determined by the
above procedure, we integrate this (m - 1)-spline function m times,

obtaining a (2m - 1)-spline, denoted by 5:
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X
(2.6) Stx,20-1) = = f (% = "' F(e,m-1) 4% «
(m -1)¢ *o

Clearly B € ng_l(xo,...,xn) .

Define the function ¢ by

e(x) = f(x) = 8(x,2m-1) .

Then

o™ (x) = ™ () - 3™ (g,2m0) ,
-
(2.7) o™ (x) = £ (x) - F(x,n-1) .

Substituting (2.7) into (2.5) gives

b
(2.8) Ia ¢(m)(x)Mj(x,m—l) dx = 0 , j =0y eesy n - m .

By Lemma 3 we have for each i (i = 0, +.cy n - m)

J\xi+m ( )
;i
(2.9) ¢[xi,...xi+m] = =r x, o " (x)Mi(x,m-l;xi,...,xi+m)dx,

and so, from (2.8) and (2.9)

(2-10) w[xi,o¢c,xi+m] = o [} i = O, ewoey n -m .

Applying Lemma 5 to (2.10) there exists a unique polynomial
P of degree < m -~ 1 such that
P(Xv) = Q(Xv) Y v = o, o0y n ,
i.e.
P(xv) = f(xv) - §(xv,2m—l) i
or

S(xv,Zm-l) + P(Xv) = f(xv) .

we may therefore define S by
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S(x,2m=1) = S(x,2m-1) + P(x) ,
. i 2
and thus obtaining uniquely S € sz_l(xo,...,xn) such that

S(xv) = f(xv) g U w0y vaag W 5

proving Theorem 5.

Remark. The natural spline function S in Theorem 5 is also

characterized by the following property:

b
(2.11) fa (5™ (x,2m-1) - £™ (x))2ax =

b
inf Ia(g(m)(x,Zm—l) - f(m)(x))zdx %
gGJém_l(xo,...,xn)

Corollary [4]. Given n + 1 points in the plane

(xv’yv) , (V = O, esey NG xo < xl L v K xn)'

and an integer my, 1 < m < n, then there exists a unique spline
*
S EJJZm_l(xO,...,xn) such that

’ (v = O, ®eoy n) .

S(xv) =7y,

(x - 1)2 on [0,3], 2and let m = 2,

Example. Given f(x)
n = 3, and the knots be X, =Wy W = 0, 1, 25 3. Construct a
unique 3-spline function S with the given knots and such that

a) S"(x,3) =0 if x< O or x> 3, and

b) S(xv,S) f(xv) " v =0y 15 24 5o

Solution. Following the proof of Theorem 5, we first consider

the l-spline 8 represented by
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8(x,1) = I cva(x,l;v,v+l,v+2) .

v=0
where

X 5 0 <x & X

My(x,150,1,2) =< =(x -2) , 1g<x<2

0 ’ elsewhere

(x =1) & 1 <x<2

Ml(x,1;1,2,3) =< =(x - 3) , 2Lxg3

‘\O ’ elsewhere

Using (2.5) we may evaluate ¢, and cye We have f'"(x) = 2,

so the linear system becomes

cofoMg(x,l)dx + cljoMO(x,l)Ml(x,l)dx =2 IOMO(X’I)dx

i [ [,
°q oMo(x,l)dx + o oMi(x,l)dx =2 OMl(x,l)dx

Performing the simple integration results in

%CO+%C1=2
‘i\%-co + é'cl = 2
with unique solutien Co = € = 1275

The 1l-spline $ is now uniquely determined, i.e.,

r—lé X ’ 0 § x < 1
l% ’ 1 § x< 2
§(x,1) =<
- l—;—(x -3Fy 2€£x%x€3
&

0 ’ elsewhere



Lo

Integrating § twice we obtain the 3-spline 5. Finally, we
can find a and B such that the function
S(x) = S(x) + ax + B
satisfies the conditions

S(x\)) = f(x\)) L] vV = O' l, 2, 3 .

A simple calculation shows that

= x + 1 ’ x< 0
2 3 7
1 X~ - = x + 1 ’ 0 < x < &
S(x,3) =4 ~g(x = 2)° & E% x —<l% y l<x<e
2 3 L7 31
__s_(x—3) +—-S-x——5—, 2§X<3
\.l% X - 2% ’ > g X

Figure 2.1 illustrates the problem.

>

—

0

Figure 17. An interpolation problem.
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I1.2. Minimal property of interpolating

spline functions

As an application of this section, Holladay [11] uses the
problem of bending a stick a little bit. '"A bent stick assumes
a position which, subject to the bending constraints, will mini-
mize its potential energy. Assuming the stick to be originally
straight and uniform, Hooke's Law implies that its potential
energy will be proportional to the integral along its arc length
of the square of its curvature. If the problem is two dimensional,
and if the bending is sufficiently slight [so] that the arc
length may be considered as being practically proportional to some
coordinate axis, then we get the problem of minimizing

J(en(t))Cat.n

After describing the class of functions which interpolates
a given set of points, we then seek to minimize the amount of
"twisting", and whenever twisting is necessary, we wish to 'spread
it out."

The minimal property of the interpolating spline functions

is given in the following.

Theorem 6 (Minimal Property) [4]. Let f be any function such

(m) € cla,b], and such that

that f
(2012) f(xi) = yi [y i = O’ e oy n [}
where

a g xO L wpe & X, g b .
Then
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b b
(2.13) ja(f(m)(x))zdx > fa(s(m)(x,Zm-l))de 5
where S G‘JEm_l(xO,...,xn) and

(2111'{') s(xi) = yi ) is= O, ceoey Il »

Proof. Let f be any function such that (2.12) holds and

f(m) € Lz[a,b]. Let S € Jém_l(xo,...,xn) be such that (2.14)

holds. Following [4] we shall show that

b b
(2.15) facf‘“‘)(xnzdx - fa(f(‘“)<x) - sy om1))2ax +

b
Ia(s(m)(x,2m—l))2dx "

from which the minimal property (2.13) of the spline interpolation
immediately follows.

Since

f‘;(f‘m)(x))zdx = 2™ o - 8™ (x,2n-0)) Pax
# 2 5™ (g2 (¢ () - 51 (x,2m-1))ax

4 f:(S(m)(x,2m—l))2dx .

we have only to show that the middle term on the right side
vanishes.

Letting @(x) = f(x) - S(x,2m-1), we have from (2.12) and
(2.14) that

(2.16) ¢(xi) 20 ¢y 1wy wang B«

Also, since S € P outside (x.,x ), we have
m— 0" 'n

1
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(2017) Sm+j)(X,2m-—1) = 0 9 j = O’ l, oo

for x € (-~ w,xo] U [xn,+ %),
Integrating by parts, we get

f:S(m)(x,2m-l)¢(m)(x) dx =

[s(m)(x'am_1)¢(m—1)(x)]2 _ jz S(m+l)(x'2m_l)¢(m—l)(x)dx

[S(m)¢(m—1)]z _ [S(m+1)¢(m—2)]: 5 fz S(m+2)¢(m'2) i

- .o -

k
T (—l)v[S(m+V)(x,2m-l)¢(m-l_v)(x)]z +
v=0

(~1)*E 2 gm0 (o an )™ (4) ax .

Finally, letting k = m - 2 gives

b

(2.18) fa S(m)(x,Zm-l)CP(m) (x) dx =
m-?
) TR Ul [ g Y g
v=0

b
O e fa s@m=1) (. on 1) (x) dx .

But, since a < x, and x_ < b, and by (2.17), the finite sum on

0
the right side of (2.18) vanishes. Then since S €/, ,, we have

(2m-1)

that S is constant on each subinterval, i.e.,

S(2m-1) (x' ), v = O' ew oy n-ln

2m=1) = % x € [xv,xv+1

Thus
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b xn
Ia S(m)(x,am-l)w(m)(x) gz s (=) Ix S(zm-l)(x,Zm—l)v'(x)dx

0
n-l x\)+1
s Te) ek Z a, fx @' (x)dx
v=0 v
n-1 X
v+1
m-1 2: r i
= (—1) L,ocvtp(x)_,x = 0 ’
v=0 V)

where the last step follows from (2.16). This establishes (2.15),

and hence proves the theorem.
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