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Abstract

We present an exposition on Koopman operator-based reduced-order modeling

of high-dimensional electromagnetic (EM) systems exhibiting both linear and non-

linear dynamics. Since the emergence of the digital age, numerical methods have

been pivotal in understanding physical phenomena through computer simulations.

Computational electromagnetics (CEM) and computational plasma physics (CPP)

are related yet distinct branches, each addressing complex linear and nonlinear elec-

tromagnetic phenomena. CEM primarily focuses on solving Maxwell’s equations for

intricate structures such as antennas, cavities, high-frequency circuits, waveguides,

and scattering problems. In contrast, CPP aims to capturing the complex behavior

of charged particles under electromagnetic fields. This work specifically focuses on

the numerical simulation of electromagnetic cavities and particle-in-cell (PIC) kinetic

plasma simulations.

Studying electromagnetic field coupling inside metallic cavities is crucial for vari-

ous applications, including electromagnetic interference (EMI), electromagnetic com-

patibility (EMC), shielded enclosures, cavity filters, and antennas. However, time-

domain simulations can be computationally intensive and time-consuming, especially
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as the scale and complexity of the problem increase. Similarly, PIC simulations,

which are extensively used for simulating kinetic plasmas in the design of high-power

microwave devices, vacuum electronic devices, and in astrophysical studies, can be

computationally demanding, especially when simulating thousands to millions of

charged particles. Moreover, the nonlinear nature of the complex wave-particle in-

teractions complicates the modeling task.

Data-driven reduced-order models (ROMs), which have recently gained promi-

nence due to advances in machine learning techniques and hardware capabilities,

offer a practical approach for constructing "light" models from high-fidelity data.

The Koopman operator-based data-driven ROM is a powerful method for mod-

eling high-dimensional dynamical systems, particularly those exhibiting nonlinear

behavior. We explore the realizations of the finite-dimensional Koopman operator

through dynamic mode decomposition (DMD) and Koopman autoencoders (KAEs).

We demonstrate how DMD and KAE can model the fields and currents in resonating

cavities and plasma systems. KAEs leverage the expressivity of neural networks and

can outperform DMD for highly nonlinear problems. Furthermore, neural network-

based approaches such as KAE offer a straightforward way to incorporate physical

constraints into the model, leading to more accurate and stable long-term predic-

tions. Additionally, we develop an on-the-fly DMD algorithm to detect in real-time

when to stop the high-fidelity time-domain simulations by identifying the onset of

self-repeating behavior.
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Chapter 1: Introduction

1.1 Motivation

Since the introduction of computers and digital computing, numerical techniques

have been a key tool in simulating complex physical phenomena. Often the practical

problems we deal with in science and engineering do not have a closed form analyti-

cal solution, necessitating the use of numerical algorithms which break the solution

domain in discrete smaller portions and solve for the quantities of interest from first

principles. Fast, accurate and reliable electromagnetic models are essential for effi-

cient and accelerated design of high-performance microwave and optical devices such

as antennas, filters, high-frequency circuit components etc. These simulations are

also essential for the study of electromagnetic interference (EMI) and electromag-

netic compatibility (EMC) effects which have become critical with the advent of

internet of things (IoT), 5G and ever increasing density of electronic components in

everyday gadgets. The present analytical tools are limited in their ability since they

are often restricted to simple geometries. Computational electromagnetics (CEM)
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has been an essential tool for physicists and engineers for simulating electromagnetic

wave propagation through complex structures, electromagnetic scattering, radiation

etc. While the numerical tools such as finite-difference time-domain (FDTD), finite-

element time-domain (FETD), finite-element method (FEM) etc [3, 4]. are able to

accurately capture electromagnetic behavior for a broad range of structures [5], these

methods don’t scale well as the problem becomes electrically large or complicated.

This challenge is further compounded in space applications, study of astrophysi-

cal phenomena, design and analysis of particle accelerators, high-power microwave

sources, fusion reactors etc. [6, 7, 8, 9], where interaction of electromagnetic waves

with plasma needs to be accounted for. A plasma can be defined as a quasi-neutral

ionized mixture of neutral, positive-, and negatively-charged, mutually interacting

particles. Computational plasma physics (CPP) deals with numerical simulation of

plasma dynamics which can be broadly divided into a fluids model, which deals with

magnetohydrodynamics (MHD) equtions [10, 11, 12] and a kinetic model, which is

governed by governed by Maxwell-Vlasov equations [6, 7, 13]. The MHD or fluids

model captures well the large-scale behavior of certain plasmas at length scales larger

that the mean free-path. Kinetic models, on the other hand, are designed for sce-

narios where the mean free-path is much larger than the characteristics dimensions

of the problem. The Particle-in-cell (PIC) kinetic plasma simulations [14, 15] can

accurately capture intricate wave-particle interactions including electron bunching,

kinetic instabilities, Landau damping, microscopic turbulence, space-charge effects,
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etc. otherwise not possible through MHD [16, 17, 18, 19]. Electromagnetic particle-

EMPIC plasma simulations play an important role in the analysis of such “colli-

sionless” plasmas, which are present in high-power microwave sources, laser ignited

devices, particle accelerators, vacuum electronic devices, and many other applica-

tions [6, 7, 13, 20, 21, 22, 23, 24].

EMPIC can be seen as an extension to the FDTD or FETD where one must ad-

ditionally deal with nonlinear interactions of charged particles with electromagnetic

fields. Both the EMPIC and FDTD/FETD suffer from the drawbacks of any grid-

based numerical method, namely, the curse of dimensionality. The “curse" manifests

in the form of an exponential growth in the number of elements required for dis-

cretization as a function of the dimensionality of the solution domain. In this thesis,

we are primarily concerned with time-domain numerical methods. The time-domain

numerical methods provide certain advantages over frequency domain method for

simulating transient phenomena, nonlinear effects, wideband devices and electro-

magnetic cavities especially with high Q-factor. The PIC plasma simulations are

inherently time-domain since they need to capture the dynamic interaction between

charged particles and electromagnetic fields, in order to simulate the time-evolution

of the particle phase-space. The PIC simulations typically use FDTD (structured

grid) or FETD (unstructured grid) for the field update. However, the computa-

tional challenges in PIC simulations are further compounded by the several thou-

sands of charged particles (superparticles) which need to simulated individually at
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each timestep. These observations dovetail with the recent surge in data-driven

modeling in the scientific community [25, 26] due to advances in “big data” process-

ing [27, 28, 29], hardware capabilities [30, 31], and data-driven (including machine

learning based) techniques [32, 33, 34]. Part of the motivation for some of these de-

velopments comes from the fact that oftentimes there is only partial information (or

no information) available regarding the underlying physics or guiding principles of

the problem under study [35, 36]. In other cases, the dynamic system is so large and

involves so many uncorrelated variables that modeling from first principles is simply

not feasible (such as pandemic dynamics). In such cases, data-driven methods present

a viable option. Finally, in disciplines such as computational fluid dynamics (CFD),

CPP and CEM, the underlying physics is largely well understood, however majority

of the problems can only be solved numerically requiring extensive computational

resources.

The concept of a data-driven reduced-order model (ROM) is to leverage data

from one or more high-fidelity simulations to create a low-dimensional model that

captures the dominant behavior of the system. These ROMs can then be used

for efficient model interpolation or extrapolation. Given our focus on accelerating

high-fidelity time-domain simulations, we concentrate on time-extrapolatory ROMs

applicable on a case-by-case basis. The process involves running the high-fidelity

time-domain solver for a brief period, constructing a data-driven ROM from the

collected data, and then using the ROM to predict future solutions with minimal
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computational cost. This approach is depicted in Fig. 1.1. The primary benefit of

this methodology is addressing one of the key challenges in scientific machine learning

(SciML), namely the generation of training data. Typical interpolatory parametric

models, particularly those based on neural networks, require thousands of training

samples. Executing thousands of high-fidelity simulations, each potentially taking

several hours to days, is impractical even with parallel computing architectures.

In our approach (Fig. 1.1), the simulation proceeds as usual until an on-the-fly

algorithm signals that sufficient data has been generated. At this point, the high-

fidelity simulation stops, and the collected data is used to build a ROM, which then

predicts future solutions. The downside is that the high-fidelity simulation must still

run for a short duration, which can range from several minutes to days. However, this

method can significantly reduce overall simulation time. For example, a simulation

initially requiring a week could be reduced to a few days. In this thesis, we specifically

explore Koopman ROMs, which are linear and advantageous for control applications.
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Figure 1.1: Schematic illustration of the time-extrapolatory Koopman ROMs for
accelerating high-fidelity time-domain simulations. The high-fidelity simulation is
run for a short time. Based on the available data a data-driven ROM is built, which
is used for future prediction. We want to build a linear Koopman model which will
be beneficial for control application as well.

Koopman operator theory provides an operator theoretic approach for model-

ing nonlinear dynamical systems [37]. The key idea is to transform the original

state space to a feature or observable space where the dynamics is linear. For linear

dynamical dynamical systems, this transformation is essentially the identity trans-

formation. The key challenge lies in identifying such as transformation which leads

to a finite-dimensional Koopman observable space. Since we are dealing with high-

dimensional systems (large number of mesh elements in high-fidelity simulations), we

would ideally prefer this Koopman invariant subspace to have a dimension smaller

than the original state space. There are several data-driven techniques for approxi-

mating such Koopman reduced-order models (Koopman ROMs), most popular being

the dynamic mode decomposition (DMD) [38, 39, 40, 41] and Koopman autoencoders
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(KAEs) [42, 43, 44]. Given a short time-window of high-fidelity (spatio-temporal)

data, DMD extracts a set of DMD modes (spatial features), DMD frequencies (tem-

poral signatures), and modal amplitudes to approximate the underlying dynamics

through a reduced-order linear system. Although originally developed for modeling

fluid flows, DMD has also been recently applied in the successful modeling of elec-

tromagnetic radiation [45] and nonlinear evolution of plasma-wave systems [46, 47].

The popularity of DMD across several fields from fluid dynamics to plasma physics

is rooted in its close relation to the Koopman operator theory [48], which is a pow-

erful framework for the analysis of very generic, nonlinear dynamical systems. The

Koopman autoencoder exploits the expressivity of neural networks to find the low

dimensional Koopman observable space. The KAE architecture resembles the tradi-

tional autoencoder architecture with an extra linear layer between the encoder and

decoder layers to advance the dynamics in a linear fashion [42, 43, 44, 2, 49]. We

will explore the effectiveness of DMD and KAE for modeling electromagnetic fields

in cavities [50] and self-felds and currents in kinetic plasma simulations [47, 51, 49].

1.2 Contribution of This Dissertation

The primary contributions of this dissertation are following:

• We establish the suitability of Hankel-DMD formulation with time-delayed

fields for modeling electromagnetic resonances. We identify the condition for

the one-to-one correspondence between the numerically extracted DMD modes
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and physical cavity modes, and discuss the scenarios under which these condi-

tions are not observed. This helps build confidence in the data-driven extrap-

olation performed by the DMD, unlike most of the other data-driven methods

which are blackbox (i.e. not interpretable) in nature. The DMD modes and

frequencies also provide a convenient way to extract the spatial pattern of reso-

nance modes and corresponding resonance frequencies in complex cavities from

limited time-series data with no need for time consuming frequency-domain

eigenmode solvers. We also demonstrate the use of the extracted DMD fre-

quencies to directly evaluate the Q−factor corresponding to particular modes.

• We analyze DMD’s time-extrapolation capabilities for reducing the computa-

tion time of time-domain cavity simulations by accurate prediction of fields in

future time. This not only helps in rapid late-time query of fields, but also

accelerates the frequency domain analysis which typically requires long time-

series data for high-resolution fast-Fourier transform (FFT).

• We develop DMD-based reduced-order model for modeling the self fields in

EMPIC simulations and analyze DMD’s ability to provide insights into un-

derlying key patterns as well as its prediction ability in future time. We also

study the effect of DMD extrapolated fields on the superparticle dynamics, i.e.

phase-space distribution of the charged particles.
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• We develop DMD-EMPIC, an intrusive physics-informed reduced-order model

of space-charge dynamics, to accelerate EMPIC simulations exhibiting self-

repeating behavior, such as limit cycle behavior.

• We develop on-the-fly (online) DMD algorithms for real-time detection of when

to stop the high-fidelity simulations such as FDTD/FETD or EMPIC, indicat-

ing that sufficient simulation data has been collected for long-term extrapola-

tion using data-driven techniques like DMD.

• We develop on-the-fly tracking algorithm for DMD modes and frequencies as

the system transitions from transient to equilibrium or quasi (or pseudo) equi-

librium states. Tracking DMD modes and frequencies helps analyze how tran-

sient DMD features evolve into equilibrium features and identify the optimal

stopping point for high-fidelity simulations in real-time.

1.3 Organization of This Dissertation

This dissertation is organized as follows:

Chapter 2 introduces the Koopman operator theory for dynamical systems and

explores data-driven Koopman reduced-order models, such as DMD and KAE. In

Chapter 3, we present the proposed on-the-fly DMD algorithms for real-time termina-

tion of high-fidelity time-domain simulations. This chapter discusses two algorithms:

one based on DMD mode tracking and the other on the convergence of DMD predic-

tions.Chapter 4 examines the effectiveness of DMD in modeling electric fields within
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electromagnetic cavities, especially from partial observations. We demonstrate how

combining online (on-the-fly) and offline DMD can expedite FDTD cavity simula-

tions. In Chapter 5, we investigate the use of DMD for modeling and predicting

nonlinear self-fields from Electromagnetic Particle-in-Cell (EMPIC) plasma simula-

tions. This chapter also discusses the impact of DMD-predicted self-fields on (su-

per)particle dynamics. Chapter 6 showcases how DMD modeling of current density

can accelerate EMPIC simulations. Finally, Chapter 7 explores neural network-based

Koopman reduced-order models, such as KAE, for modeling nonlinear current den-

sity in EMPIC simulations.
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Chapter 2: Koopman Reduced-Order Models

B.O. Koopman in the early 1930s demonstrated that Hamiltonian flows governed

by nonlinear dynamics can be analyzed via an infinite-dimensional linear operator on

the Hilbert space of observable functions [37]. The spectral analysis of this infinite-

dimensional linear operator, or the so called “Koopman operator theory” provides

an operator theoretic understanding of dynamical systems. The Koopman operator

theory essentially tells us that the state space corresponding to a nonlinear dynamical

system can be transformed into an infinite-dimensional observable space where the

dynamics is linear. Since the Koopman operator operates on functionals, it is infinite-

dimensional in nature. In this chapter we will explore the basics of Koopman operator

theory and finite-dimensional approximation of Koopman operator via data-driven

techniques like DMD and KAE. This chapter is primarily based on [49, 52, 50].

2.1 Koopman Operator Theory

Let us consider a discrete time nonlinear dynamical system evolving on a N -

dimensional manifold M [40]. The discrete time evolution of state x is given by the
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flow map F : M 7→ M, where M is theN -dimensional manifold (x = [x1 x2 . . . xN ]
T)

x(n+1) = F (x(n)). (2.1)

The discrete-time Koopman operator, denoted by K, operates on the Hilbert space of

observable functions g(x) (observable functions take the state as input and produces

a scalar valued output, g : M 7→ C), such that

Kg(x(n)) = g(F (x(n))) = g(x(n+1)). (2.2)

In other words, Kg = g ◦ F , where “◦” represents the composition of functions.

The infinite dimensionality of the Koopman operator stems from the fact that the

observable functions g(x) which satisfy (2.2) form an infinite-dimensional Hilbert

space, i.e. g(x) =
∑∞

i=1 αiζi(x), where ζi(x) are the basis observable functions and

αi ∈ C. Naturally, the eigenvalues λi ∈ C and the eigenfunctions ϕi : M 7→ C

associated with K are infinite in number such that Kϕi(x) = λiϕi(x), i = 1, 2 . . .∞ .

Given that the Koopman eigenfunctions span the observable functions, one can write

g(x) =
∑∞

i=1 ϕi(x)vi, where vi ∈ C. In a similar fashion, a vector valued observable

g(x) = [g1(x) g2(x) . . . gp(x)]
T can be expressed as g(x) =

∑∞
i=1 ϕi(x)vi, where

vi = [v1i v2i . . . vpi]
T are defined as Koopman modes. Using the initial state, x(0)

along with linearity of the Koopman operator, we have

g(x(n)) = Kng(x(0)) = Kn

∞∑
i=1

ϕi(x
(0))vi =

∞∑
i=1

Knϕi(x
(0))vi =

∞∑
i=1

λni ϕi(x
(0))vi .

(2.3)
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Figure 2.1: Schematic illustration of the Koopman approach for modeling the time
evolution of nonlinear systems. The nonlinear dynamical system (on left) is trans-
formed to a feature space (on right) where the dynamics is linear.

Although (2.3) helps us decompose the underlying dynamics in terms of Koopman

modes vi and corresponding eigenvalues λi, from a computational perspective it

is not practical to work in an infinite-dimensional space. However, for a finite-

dimensional Koopman invariant subspace, it is possible to find a finite-dimensional

matrix representation K (Fig. 2.1), of the infinite-dimensional Koopman operator

K [53]. Consider a class of observable functions gj(x) belonging to the Koopman

invariant subspace SK of dimension dS . As the subspace is K-invariant, gj(x) ∈

SK =⇒ Kgj(x) ∈ SK. Furthermore, let us assume some basis Koopman observables
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si(x) spanning the subspace SK. For some αji ∈ C, we can write

gj(x
(n)) =

dS∑
i=1

αjisi(x
(n)) (2.4a)

Kgj(x(n)) = gj(x
(n+1)) =

dS∑
i=1

αjisi(x
(n+1)) =

dS∑
i=1

βjisi(x
(n)) , (2.4b)


g1(x

(n))
g2(x

(n))
...

gp(x
(n))

 =


α11 α12 . . . α1dS

α21 α22 . . . α2dS
...

... . . . ...
αp1 αp2 . . . αpdS



s1(x

(n))
s2(x

(n))
...

sdS (x
(n))

 , (2.5)

⇒ g(x(n)) = A s(x(n)) , [where [A]j,i = αij] (2.6)

In a similar fashion, we can write g(x(n+1)) = B s(x(n)) with [B]j,i = βji. Assum-

ing the existence of K such that

g(x(n+1)) = K g(x(n)) (2.7)

⇒B s(x(n)) = KA s(x(n))

⇒(B−KA) s = 0 (2.8)

Eq. (2.8) will hold for any set of basis si, if B = KA. There will exist a unique K

if A is square and full-rank which necessiates the observables g1(x), g2(x), . . . , gp(x)

to be linearly independent and span SK with p = dS . Clearly, a careful choice of the

observable functions g(x) is crucial for the effectiveness of the Koopman approach,

and the development of algorithms or heuristics for identifying optimal observables

is still an active area of research. The primary takeaway is that, with an appropriate
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choice of observables, we can bypass the infinite sum in (2.3) and make the problem

tractable.

However, there is a last piece of the puzzle that needs to be addressed. The

Koopman mode decomposition (2.3) consists of the eigenvalues λi, eigenfunctions

ϕi(x), and Koopman modes vi corresponding to the infinite-dimensional operator

K. We need to establish how these quantities relate to the eigenvalues λki and

eigenvectors of the finite-dimensional K. For the linear dynamical system,

g(x(n+1)) = K · g(x(n)) (2.9)

Kui = λkiui , K∗wi = λ̄kiwi , [i = 1, 2, . . . , p], (2.10)

where ui and wi are the right and left eigenvectors of K respectively. The “ ∗ ”

denotes complex conjugate transpose and the overbar denotes complex conjugate.

The wi are defined in such a way that ⟨ui,wj⟩ = δij, where ⟨·, ·⟩ denotes inner

product in Cp. Let us define a scalar valued observable ψi(x) such that

ψi(x) = ⟨g(x),wi⟩ = w̄i1g1(x) + w̄i2g2(x) + . . .+ w̄ipgp(x) , [i = 1, 2, . . . , p],
(2.11)

where wi = [wi1 wi2 . . . wip]
T. Note that ψi(x) is a linear combination of Koopman

observables. As a result, from linearity of the Koopman operator, ψi(x) is also a
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Koopman observable. Thus, K upon operating on ψi(x
(n)) results in

Kψi(x
(n)) = ψi(x

(n+1)) = ⟨g(x(n+1)),wi⟩ = ⟨Kg(x(n)),wi⟩

= ⟨g(x(n)),K∗wi⟩ = ⟨g(x(n)), λ̄kiwi⟩

⇒ Kψi(x
(n)) = λki⟨g(x(n)),wi⟩

⇒ Kψi(x
(n)) = λkiψi(x

(n)). (2.12)

It turns out that eigenvalues of K are also the eigenvalues of K (λki = λi) and ψi(x)

are nothing but the eigenfunctions ϕi(x),

ϕi(x) = ψi(x) = ⟨g(x),wi⟩ = w̄i1g1(x) + w̄i2g2(x) + . . .+ w̄ipgp(x). (2.13)

In other words, ϕi(x) ∈ span{gj(x)}, j = 1, 2, . . . , p [40]. However, unlike K, K

has infinite eigenvalues. Through simple algebraic manipulations we can show that

λki (k ∈ Z+) is also an eigenvalue of K with eigenfunction ϕk
i (x) [48]. Up to this

point, no assumptions have been made about K, except that it exists. Let us assume

that K has a full set of eigenvectors, i.e. ui are linearly independent and form a

basis. With this assumption, we can write the solution for a linear system as follows

g(x(n)) =

p∑
i=1

⟨g(x(n)),wi⟩ui =

p∑
i=1

⟨Kng(x(0)),wi⟩ui

=

p∑
i=1

⟨g(x(0)), (K∗)nwi⟩ui (2.14)
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⇒ g(x(n)) =

p∑
i=1

⟨g(x(0)), (K∗)nwi⟩ui =

p∑
i=1

⟨g(x(0)), (̄λi)
nwi⟩ui

=

p∑
i=1

λni ⟨g(x(0)),wi⟩ui

⇒ g(x(n)) =

p∑
i=1

λni ϕi(x
(0))ui , [Using (2.13)] (2.15)

Eqs. (2.3) and (2.15) don’t contradict each other if we consider ui, the right

eigenvectors of K, as the Koopman modes vi. In that case (2.15) is just the fi-

nite truncation of infinite summation in (2.3). Eq. (2.15) may also be interpreted

as the set of eigenfunctions ϕi(x) , [i = 1, 2, . . . , p] forming the finite-dimensional

K-invariant subspace in question. Note that this is in agreement with the initial as-

sumption that Koopman eigenfunctions span the observable space. In summary, in a

suitable observable space where the dynamics is linear with g(x(n+1)) = K · g(x(n)),

the following points can be noted:

• The eigenvalues of K are the eigenvalues of the linear infinite-dimensional

Koopman operator K.

• If K has full set of eigenvectors, then the (right) eigenvectors represent Koop-

man modes associated with K.

• If K does not have a full set of eigenvectors, then it remains an open question

whether they represent Koopman modes [39].
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2.2 Dynamic Mode Decomposition (DMD)

Let us consider a discrete-time dynamical system

x(n+1) = F (x(n)), (2.16)

where x(n) is the state of the system at nth time step with step size of ∆t . The state x

evolves on aN−dimensional manifold M according to the flow-map F : M 7→ M. In

general, for practical applications, x ∈ RN with F : RN 7→ RN . The first step in the

DMD process involves snapshot collection and formation of the snapshot matrices.

The state x is sampled (snapshots) at every ∆th
n time step starting from (k − 1)th

time sample at n = nk−1 = (k− 1)∆n or equivalently t = tk−1 = (k− 1)∆n∆t. Total

(l+1) snapshots are collected inside the harvesting window (DMD window) spanning

from nk−1 to nk−1+ l∆n. With xk = x(nk), the snapshot columns are stacked to form

the snapshot matrices Xk−1 and Xk,

Xk =
[
xk xk+1 . . . xk+l−1

]
, (2.17)

Xk−1 =
[
xk−1 xk . . . xk+l−2

]
, (2.18)

Xk differs from Xk−1 by shift of one snapshot. DMD assumes a linear relationship

between the snapshot matrices and proceeds to find a least-squares solution to the

problem Xk ≈ AXk−1, given by A ≈ XkX
†
k−1, where ‘†’ denotes the Moore-Penrose

pseudoinverse. In order to calculate the pseudoinverse, singular value decomposition

(SVD) is performed on Xk−1,

Xk−1 = UΣVH , (2.19)
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where superscript ‘H’ denotes the complex-conjugate transpose. The columns of

UN×l capture the dominant spatial pattern ranked by their singular values which

are essentially the elements of the diagonal matrix Σl×l, and the rows of VH
N×l are

corresponding time signatures. Sharp decay in the magnitudes of the singular values

acros the singular value spectrum indicates that the first few columns of U (associated

to the dominant singular values) are sufficient to accurately capture the subspace

over which the relevant signal dynamics is evolving, thus confirming the existence

of an underlying lower-dimensional structure. We retain the first r columns of U,

first r singular values of Σ and first r rows of VH , resulting in the reduced SVD

matrices Ũ,Σ̃ and ṼH , so that Xk−1 ≈ ŨΣ̃ṼH . With X†
k−1 ≈ ṼΣ̃−1ŨH , we can

write A ≈ XkṼΣ̃−1ŨH . Note that AN×N is a large matrix (N can be in thousands

or millions), making its eigendecomposition invariably computationally expensive.

Hence, A is projected to a lower dimensional subspace spanned by the columns of

Ũ as Ã = ŨHAŨ, where Ã is a r × r matrix with usually r ≪ N . We can write

Ã = ŨHXkṼΣ̃−1. (2.20)

From eigendecomposition of Ã we get

ÃW = WΛ, (2.21)

where columns of W represent the right eigenvectors of Ã and the diagonal matrix Λ

contains its eigenvalues (DMD eigenvalues λi, i = 1, 2, . . . , r) which are an adequate

approximation of the eigenvalues of A. The eigenvectors of A, approximated by the
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columns of Φ, are also known as the exact DMD modes [39, 40],

Φ = XkṼΣ̃−1W. (2.22)

The continuous time DMD reconstruction (x̂) at any time t ≥ t0 (= nk−1∆t) is given

by

x(t) ≈ x̂(t) =
r∑

i=1

ϑiϕie
ω̂i(t−t0), (2.23)

where ϕi are the columns of Φ, also known as the (exact) DMD modes, ω̂i are

the DMD frequencies and ϑi are the DMD modal amplitudes. DMD frequencies

are related to DMD eigenvalues by ω̂i = ln(λi)/∆t, where ∆t is the time interval

between two consecutive snapshots (∆t = ∆n∆t). The ϑi can be calculated by

solving an optimization problem as described in [54]. Note that for real data, the

triplets {ϕi, ω̂i, ϑi} (i = 1, 2, . . . , r) appear in complex-conjugate pairs. So, for real

data (2.23) can be written as

x̂(t) =
M̂∑

m̂=1

(ϑm̂ϕm̂e
ω̂m̂(t−t0) + ϑ∗

m̂ϕ
∗
m̂e

ω̂∗
m̂(t−t0)), (2.24)

where the superscript ‘∗’ denotes the complex-conjugate. For purely real modes, two

terms in (2.24) can be combined to a single term (2M̂ ≥ r). Since we are dealing

with the real data, from this point onward by ith DMD mode, we will essentially

refer to the ith complex-conjugate pair of DMD modes. The schematic illustration

of the DMD process is shown in Fig. 2.2.
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Figure 2.2: Schematic illustration of the DMD method for modeling current density of an
oscillating electron beam.

2.2.1 Hankel-DMD

The usual DMD fails to resolve the dynamics when the spectral complexity Ms

is larger than the spatial complexity N of the observed system [55, 56]. The spectral

complexity Ms depends on the frequency content of the system and essentially equals

to the number of terms required to accurately describe the dynamics as summation

of complex exponentials (2.23). This situation typically arises when N < l, where

the SVD matrices UN×l,ΣN×N and Vl×N can have maximum rank of N , restricting

r ≤ N . SinceMs > N ≥ r, r number of DMD frequencies are not sufficient to capture
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the system’s temporal evolution. There can be other scenarios [56] as well where the

usual DMD fails. We will discuss those issues in details in the next section in the

context of electromagnetic resonances. These issues can be addressed by assuming a

higher order linear system of the form

Xk ≈ A1Xk−1 +A2Xk−2 + . . .+AdXk−d. (2.25)

The equivalent first-order problem of (2.25) can be written as,

JXKk = JAKJXKk−1 (2.26)

⇒


Xk−d+1

Xk−d+2
...

Xk−1

Xk

 ≈


0N IN . . . 0N 0N

0N 0N . . . 0N 0N
...

... . . . ...
...

0N 0N . . . 0N IN
Ad Ad−1 . . . A2 A1




Xk−d

Xk−d+1
...

Xk−2

Xk−1

 , (2.27)

where 0N and IN are respectively zero and identity matrices of dimension N ×N

with J·K indicating the stacked quantities. The Hankel-DMD follows the same steps

of usual DMD, but with following exceptions:

• Instead of Xk and Xk−1, JXKk and JXKk−1 are the new snapshot matrices.

• First N rows of Φ in (2.22) are retained to obtain the DMD modes in original

state-space dimension, i.e. ΦH = Φ[1:N,:]. The final reconstruction is same as

(2.23) where ϕi are the columns of ΦH .

For a dynamical system exactly satisfying Xk = AXk−1, A1 = A, A2 =

A2, . . . Ad = Ad; both the usual and the Hankel-DMD produce same set of DMD
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eigenvalues and modes (after truncation). Note that we use Hankel-DMD for both

on-the-fly and offline application.

2.3 Koopman Autoencoders (KAEs)

In what follows, we assume that the reader is familiar with basic concepts of

neural networks and we keep the associated discussion very brief. In a nutshell, given

a collection of input x and output y dataset {(xi,yi)}si=1, a neural network “learns”

the mapping from input to output through an optimization process and predicts yi

for a given xi, outside the training dataset, i.e. for i > s. Autoencoders [57, 58] can

be seen as a special type of feed-forward fully-connected neural networks which have

essentially two separate components: an i) encoder and a ii) decoder. The encoder

component maps (encodes) the input to a lower dimensional space and the decoder

decodes it back to the original high-dimensional space. Autoencoders are primarily

used in data compression to facilitate machine learning methods and to make efficient

use of memory. As a result of its ability to compress data while retaining relevant

information, autoencoders are a natural choice for nonlinear model order reduction.

In the context of Section 2.1, Koopman autoencoders (KAEs) seek to obtain

a suitable vector-valued observable z = g(x), such that z(n+1) = K · z(n) as in

(2.9). KAE models have been successfully implemented in modeling of fluids, sea-

surface temperature [44, 43, 59] and many other complex nonlinear phenomena. KAE

models have also been recently applied to plasma systems, in particular to model the

evolution of plasma currents in EMPIC simulations [2]. In what follows, we will
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Figure 2.3: Schematic diagram of a consistent Koopman autoencoder architecture.
The input and output layers are shown by the blue neurons (nodes) whereas the
hidden layers are shown by gray neurons. The green neurons denote the encoded
layer where it learns the (reduced-order) linear dynamics.

describe the basic aspects of an KAE architecture and provide some illustrative

results of its application to the reduced order modeling of kinetic plasma problems.

Similar to an generic autoencoder, a KAE has an encoding Ψe and a decoding

Ψd layer. In between those two, there is an extra linear Kf layer which approximates

K. In other words, the encoder mapping Ψe approximates the transformation g(·)

i.e., Ψe(x) ≈ g(x).
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Fig. 2.3 shows the KAE architecture. It should be noted that, in typical KAE

architecture, the linear layer in the middle only approximates the forward dynamics

Kf (≈ K) [43]. However, we will focus here on an improved type of KAE archi-

tecture [44] where the backward dynamics Kb is also taken into consideration, such

that Kf ·Kb ≈ I (identity matrix). This consideration improves the stability of the

solution and is referred to as consistent KAE [44] to distinguish it from the earlier,

more traditional KAE. However, for brevity we will refer to it simply as KAE. The

input and output layers (white) consist of Nin = Nout = N neurons which are typ-

ically equal to the dimension of the state which we are attempting to model. Both

the encoding and decoding layers have Nh neurons in the hidden (gray) layer. The

“bottleneck” layer (or encoded layer, in black) has Nb neurons with Nb ≪ N (order-

reduction). The linear layers are followed by a hyperbolic tangent activation layer

except the bottleneck layer. The state at the nth time step x(n) is fed to the input

layer, which is then encoded to g(x(n)). The linear layer in the middle section of the

network advances the dynamics in the forward (or backward) directions by k time

steps to generate g(x(n±k)), which is then decoded back to the original state space

giving us x̂(n±k):

x(n+k) ≈ x̂(n+k) = Ψd ◦Kk
f ◦Ψe(x

(n)), (2.28a)

x(n−k) ≈ x̂(n−k) = Ψd ◦Kk
b ◦Ψe(x

(n)). (2.28b)

Here, “◦" denotes the composition of two operators. The Ψe and Ψd are not exactly

symmetric because Ψd has an extra nonlinear activation layer at the end. Before
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feeding the autoencoder, the input data are scaled in the range [−1, 1]. Since the

hyperbolic tangent activation function also varies from −1 to 1, the final activation

layer for Ψd ensures that the output is in the desired range. Note that typically,

data are sampled regularly across certain time steps ∆n. In that case, Kk
f advances

the dynamics by k time samples or k∆n time steps. In order to facilitate a concise

explanation of the functionality of KAE, we assume ∆n = 1.

The autoencoder is trained to minimize the total loss function Ltot which consists

of four separate components denoted as (i) identity loss Lid, (ii) forward loss Lfwd,

(iii) backward loss Lbwd, and (iv) consistency loss Lcon:

Ltot = γidLid + γfwdLfwd + γbwdLbwd + γconLcon, (2.29)

where γid, γfwd, γbwd and γcon are the user defined weights. The identity loss Lid

measures the autoencoder’s ability to reconstruct the state as it is at a particular

time step n by first encoding it to a lower dimensional subspace and then by decoding

it back to the original state space. Lid can be defined as

Lid =
1

2l

l∑
n=1

||x̂(n) − x(n)||2, (2.30)

where l is number of time samples in the training data. The consistency loss Lcon

measures consistency of the matrices Kf and Kb, i.e. how closely they follow the

relation Kf ·Kb ≈ I. It can be expressed as

Lcon =

Nb∑
i=1

1

2i
||Kbi⋆Kf⋆i − INb

||F +
1

2i
||Kf⋆iKbi⋆ − INb

||F , (2.31)
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where Kbi⋆ is the upper i rows of Kb, Kf⋆i is the i left most columns of Kf , || · ||F

denotes the Frobenius norm, and INb
is the identity matrix of dimension Nb × Nb.

The forward loss Lfwd measures the autoencoder’s ability to reconstruct x(n+k) by

encoding x(n), forwarding the dynamics by k time steps (or time samples) in encoded

space and then decoding it back to the original state space. Mathematically, Lfwd

can be expressed as

Lfwd =
1

2kml

km∑
k=1

l∑
n=1

||x̂(n+k) − x(n+k)||22, (2.32)

where km is the maximum number of time steps utilized in the forward direction.

Finally, the backward loss Lbwd plays a role similar to Lfwd except it deals with

reconstruction in the backward direction, that is x(n−k). As such, the backward loss

is expressed as

Lbwd =
1

2kml

km∑
k=1

l∑
n=1

||x̂(n−k) − x(n−k)||22, (2.33)

where km now represents the maximum number of time steps utilized in the backward

direction. Note that for notational convenience we have explained the KAE opera-

tion in the above by assuming that each time step data corresponds to one sample

in training data. However, as mentioned earlier, the input data does not need to

correspond to the sampling of every consecutive time step. Instead, there might be

regular or irregular intervals comprising several time steps between consecutive input

data samples. Apart from the usual neural network training hyperparameters such

as learning rate, training epochs etc., the tunable parameters γid, γfwd, γbwd, γcon, Nh,
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and Nb play a crucial role in determining the extrapolation accuracy of the KAE

model.

2.4 Summary

In this chapter, we have described two Koopman ROMs: DMD and KAE. DMD

is a linear model, whereas KAE is nonlinear. In subsequent chapters, we will explore

how both methods, particularly the Hankel variant of DMD, can be applied to model

linear and nonlinear electromagnetic systems. While DMD will be utilized for mod-

eling both electromagnetic cavities and kinetic plasmas, we will explore KAE only

for kinetic plasmas.
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Chapter 3: On-the-fly Dynamic Mode Decomposition for

Real-Time Detection of End of Transience

One of the key components of our approach (Fig. 1.1) is a real-time stopping

criterion for the high-fidelity time-domain simulations. In order to exploit the time

extrapolation ability of DMD for reducing computation cost of high-fidelity simu-

lations, it is important to identify the end of the transient state on-the-fly (online

or in-line) i.e. in real-time with the ongoing high-fidelity simulation. Accurate long

term prediction of self-repeating behavior requires the DMD harvesting region to

include the time window showcasing such behavior. Such self-repeating nature can

be broadly characterized by steady state (constant), periodic and quasi (or pseudo)

periodic behavior. For simplicity, we will refer to steady-state and periodic behavior

with constant amplitude as “equilibrium,” and periodic behavior with growing or

decaying amplitude as quasi equilibrium, despite a slight abuse of the terms. One

may terminate high-fidelity simulations once the system has started showing such

behavior, ensuring enough quality data for the DMD to work with. Several past

works [60, 61, 62, 63] deal with identification of state transition in high-dimensional
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physical systems. Some recent publications [64, 65] highlight the importance of DMD

in identifying such regime transitions. The authors in [64] rely on the DMD recon-

struction error difference between transient and equilibrium states of a dynamical

system to identify such transitions. However, one of the key assumptions in [64] is

the fast relaxation of the dynamical system in transience, i.e. a faster time scale of

the transient dynamics compared to equilibrium dynamics. The present work does

not rely on the fast relaxation assumption since the transience is characterized by

temporal variations in the amplitude and changing frequency content. While [65] also

performs identification of regime transition, it does so by observing the variation of

a DMD-based least-squares residual term as the DMD window is gradually increased

to span the spatial domain. In contrast, the residual term in this work is based on

the loci of DMD eigenvalues in the complex plane and consistency between different

DMD predictions. This chapter focuses on two different approaches for real-time

identification of onset of self-repeating (constant, periodic or quasi periodic) behav-

ior charcterized by steady state, equilibrium, quasi (or pseudo) equilibrium, or limit

cycle behavior:

1. The first approach focuses on systems exhibiting equilibrium behavior. This

approach involves tracking DMD modes with the sliding DMD time windows

during high-fidelity simulations (Fig. 3.1). We monitor the positions of DMD

eigenvalues relative to the unit circle on the complex plane to detect the equi-

librium state. This analysis provides insight into the convergence of DMD
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mode shapes and the shifting of DMD eigenvalues as the DMD window tran-

sitions from the transient to the equilibrium state. Such analysis can reveal

how hidden features in the transient state manifest as the system approaches

equilibrium.

2. The second approach extends the first by also identifying the quasi equilibrium

state. Such scenarios can be accurately modelled and predicted by DMD, thus

real-time identification of onset of quasi equilibrium can reduce the high-fidelity

simulation time. This approach utilizes the difference between DMD predic-

tions from consecutive DMD windows. It is more general, capable of detecting

the onset of any self-repeating behavior, whether oscillation amplitudes remain

constant, decay, or grow over time. However, since it does not involve DMD

mode tracking, it does not provide insights into how transient DMD features

evolve into equilibrium features.

3.1 Real-Time Detection of Equilibrium by DMD Mode Track-
ing

We slide the DMD time window in forward time as the new data becomes available

from time-domain high-fidelity simulation, and track the changes in the extracted

DMD features. This is particularly useful while characterizing highly nonlinear phys-

ical systems [66], as the sliding-window DMD approximates the evolution of a non-

linear system through piecewise linear dynamic systems supported by the windowed
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Figure 3.1: Illustrative cartoon of on-the-fly DMD approach for detecting state tran-
sition based on tracking of dominant DMD eigenvalues from transient (λ(tr)) to equi-
librium (λ(eq)) on the complex plane. Here QoI represents the quantity of interest.

data [67, 68, 69, 70, 71, 72]. Next, we present the algorithm to track DMD modes

across sliding DMD windows, followed by detection of the equilibrium phase.

3.1.1 Tracking DMD Modes

DMD captures key features of a dynamical system within the data-harvesting

time window. For a sufficiently “well-behaved” dynamic system, an infinitesimal

shift in the DMD window is not expected to produce a drastic change in its con-

stituent spatio-temporal features. We aim to track each DMD eigenvalue-mode pair

(λ,ϕ) from one DMD window to next, because doing so provides insights into how

constitutive features of the dynamic system evolve. More importantly, it also helps

identify if certain (λ,ϕ) pairs become “sufficiently” stationary over several windows,
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indicating the onset of equilibrium. Mode tracking is an evolving field of study

[73, 74, 75, 76]. Generally, the tracking of eigenvectors is preferred over eigenval-

ues due to convergence issues caused by repeated (or nearly equal) eigenvalues [73].

However, in DMD theoretical framework we work with the assumption that DMD

eigenvalues are distinct [38, 39, 77].

In DMD, the effect of a sliding window can be viewed as a perturbation in the

snapshot matrices. Let X
(w)
k−1,X

(w)
k (from (2.17), (2.18)) be the snapshot matrices

for the wth window and X
(w+1)
k′−1 ,X

(w+1)
k′ for the (w + 1)th window, with wth and

(w+1)th window usually multiple snapshots apart. Note that we use k′ subscript for

(w + 1)th window since as we move to the next window, the snapshot matrix starts

from a different time snapshot k′, where (k′ − k) is the amount of shift in terms

of time samples or snapshots. One can write X
(w+1)
k′−1 = X

(w)
k−1 + δ1 and X

(w+1)
k′ =

X
(w)
k + δ2. The amount of perturbation (δ1, δ2) depends on how fast the system

changes between two consecutive DMD windows. Through the arguments presented

below, we first point out that infinitesimal perturbations in the snapshot matrix will

result in only infinitesimal changes in DMD modes and eigenvalues. The following

arguments concerning (2.17)-(2.23) support this claim:

1. DMD elements A, Ã, Φ, as well as the reconstruction in (2.23) are linear

transformations whose continuity ensures small change in output with small

change in input.
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2. Continuity is less obvious for (2.19) and the spectral decomposition of Ã. How-

ever, the perturbation bounds for singular values and singular vectors are well

documented [78, 79, 80, 81], ensuring infinitesimal change in output given in-

finitesimal change in input for (2.19). Regarding the eigendecomposition step,

continuity of the roots of a polynomial ensures that eigenvalues of Ã (roots

of its characteristic polynomial) do not experience discontinuities under small

perturbations. Similarly, perturbation bounds for eigenvectors of simple eigen-

values [82] assures an infinitesimal change in W, thus an infinitesimal change

in DMD modes with infinitesimal change in Ã.

Following the above arguments, a gradual shift in the DMD window is expected to

lead to a gradual change in DMD eigenvalues and mode shapes. An exception arises

at bifurcation points, which we address in the tracking algorithm described below.

The tracking algorithm refers to each DMD mode and corresponding eigenvalue as

the pair (λ,ϕ). In other words, both the position of λ in the complex plane as well as

information on the spatial distribution of ϕ are employed for mode tracking. Define

(λ(w)
i ,ϕ

(w)
i ) as the DMD eigenvalue-mode pair in the wth window, where 1 ≤ i ≤ p.

The aim of the tracking algorithm is to assign (λ
(w+1)
j ,ϕ

(w+1)
j ), (1 ≤ j ≤ q) from

(w+1)th window to (λ(w)
i ,ϕ

(w)
i ) as its successor. Assuming p and q to be the number

of DMD modes in the wth and (w + 1)th window respectively, there can be broadly

three scenarios,
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1. p = q: In this case, each DMD eigenvalue-mode pair in the wth window is

associated with exactly one pair in the (w + 1)th window.

2. p > q: The algorithm must terminate the tracking of some pairs (λ(w)
i ,ϕ

(w)
i ) to

which no successors can be assigned.

3. p < q: The algorithm must initiate the tracking of newly identified pairs start-

ing at the (w + 1)th window after all pairs from the wth window have been

assigned unique successors.

The primary condition for successor assignment is given in terms of the place-

ment of DMD eigenvalues. In other words, the first candidate for mode-matching of

(λ(w)
i ,ϕ

(w)
i ) is

j̃ = argmin
j=1,...q

∥λ(w)
i − λ

(w+1)
j ∥ (3.1)

If a conflict arises, resulting in assignment of the same j̃ for multiple i, mode-shape

matching is invoked as the secondary criterion for tracking. The modal assurance

criterion (MAC) is a popular metric used for comparing mode shapes [74], given by,

MAC(ϕi,ϕj) =

∣∣ϕT
i ϕj

∣∣2
(ϕT

i ϕi) · (ϕT
j ϕj)

. (3.2)

This work uses the absolute value of MAC, defined as ρ(ϕi,ϕj) = |MAC(ϕi,ϕj)|.

The maximum value ρ can attain is 1, denoting an exact configuration match, while

ρ = 0 indicates no match at all. The tracking algorithm is described in Algorithm 1.

At the bifurcation point, broadly two scenarios are possible. First, one complex

conjugate pair of DMD eigenvalues generates two real eigenvalues after encountering
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Algorithm 3.1: Algorithm for tracking DMD eigenvalue-mode pair (λ,ϕ).

Input: DMD eigenvalue-mode pair (λ(w)
i ,ϕ

(w)
i ) from wth window, i = 1, 2, . . . , p

and (λ(w+1)
j ,ϕ

(w+1)
j ) from (w + 1)th window, j = 1, 2, . . . , q.

Output: Successor of (λ(w)
i ,ϕ

(w)
i ).

1: for i = 1 to p do
2: Find j̃ = argminj=1,...q dλ(i, j) = argminj=1,...q ∥λ

(w)
i − λ

(w+1)
j ∥.

3: end for
4: if All i are associated with distinct j̃ then
5: return (λ(w+1)

j̃
,ϕ

(w+1)

j̃
) as successor of respective (λ(w)

i ,ϕ
(w)
i ).

6: else
7: Identify the set of indices i which share a common j̃. Let I be the set of i

(i ∈ I) which have common j̃ = j̃I .
8: Identify î = argmaxi∈I ρ(ϕ

(w)
i ,ϕ

(w+1)

j̃I
)

9: Identify the second closest eigenvalue to λ(w)

î
from (w + 1)th window after

λ
(w+1)

j̃I
. Let the index of second closest eigenvalue be j̃2I .

10: if
(
ρ(ϕ

(w)

î
,ϕ

(w+1)

j̃I
) ≥ ρ(ϕ

(w)

î
,ϕ

(w+1)

j̃2I
)
)

then

11: return (λ(w+1)

j̃I
,ϕ

(w+1)

j̃I
) as successor of (λ(w)

î
,ϕ

(w)

î
).

12: For, ∀i ∈ I − {̂i}, replace the closest eigenvalue index j̃I by next closest
eigenvalue index j̃2I from (w + 1)th window. If there is no next closest
eigenvalue, the eigenvalue-mode pair corresponding to i ∈ I − {̂i} is not
tracked further. Repeat from step 4 for rest of the eigenvalues.

13: else
14: Delete î from I, so that î ̸∈ I. Then repeat from step 8.
15: end if
16: if

(
ρ(ϕ

(w)
i ,ϕ

(w+1)

j̃I
) < ρ(ϕ

(w)
i ,ϕ

(w+1)

j̃2I
)
)
, ∀i ∈ I then

17: Identify the ĩ = argmaxi∈I |dλ(i, j̃I)− dλ(i, j̃2I)|.
18: return (λ(w+1)

j̃I
,ϕ

(w+1)

j̃I
) as successor of (λ(w)

ĩ
,ϕ

(w)

ĩ
).

19: For, ∀i ∈ I − {̃i}, replace the closest eigenvalue index j̃I by next closest
eigenvalue index j̃2I from (w + 1)th window. If there is no next closest
eigenvalue, the eigenvalue-mode pair corresponding to i ∈ I − {̃i} is not
tracked further. Repeat from step 4 for rest of the eigenvalues.

20: end if
21: end if
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the real axis. Second, two real DMD eigenvalues merge and become a complex

conjugate pair of eigenvalues. Since for real data the DMD eigenvalues are mirrored

with respect to the real axis, the tracking algorithm concentrates only on the upper

half complex plane including the real axis. The first scenario leads to p < q, where the

algorithm starts tracking the newly generated DMD eigenvalues from that particular

window. For the second case p > q, the algorithm stops tracking some eigenvalues

from the previous window.

3.1.2 State Transition: From Transient to Equilibrium

DMD analysis of a dynamical system focuses on low-dimensional modeling of the

equilibrium state, usually ignoring transient phenomena [83, 84, 85]. Regardless of

the ROM employed, knowing when the transient phase comes to an end is useful

for terminating the high-fidelity simulation in a timely fashion so that the future

solution can be predicted with predictive models like Koopman ROMs. In the litera-

ture, several methods are available for detecting state transition of high-dimensional

dynamical systems [60, 61, 62, 63]. The authors in [64] have presented a method

exploiting DMD reconstruction error for identifying such transitions. The current

paper takes advantage of the temporal variation in position of the DMD eigenvalues

in the complex plane with respect to the unit circle. The algorithm presented here

can be exploited for on-the-fly applications, given some a priori knowledge about

the timescale of the problem. This will be discussed in detail later. A preliminary

version of this state transition algorithm was described in our work [86].

37



(a) Radial movement. (b) Azimuthal movement.

Figure 3.2: Eigenvalue movements: (a)Radial movement of eigenvalue towards unit
circle as the DMD window moves from transient to equilibrium state; (b) Eigenvalue
movement along unit circle to the equilibrium position (green) as the DMD window
moves towards equilibrium from transient.

The fundamental idea behind the proposed approach is that given a sufficiently

wide data harvesting region within the equilibrium state, it follows that (a) the

dominant DMD eigenvalues lie on the unit circle [38, 39, 87] and (b) the mode shapes

and corresponding frequencies associated with the dominant DMD modes remain

invariant. Intuitively, the latter makes sense because in equilibrium the dynamics of

the system remain unchanged irrespective of the observation window as long as that

window is sufficiently wide. The Maxwell-Vlasov equations (governing equations in
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kinetic plasma simulations) are autonomous in nature. In the equilibrium state, the

number of particles entering the solution domain remains same as the number of

particles leaving, ensuring that the governing dynamics are autonomous. Note that

the solution of the well-posed DMD is unique [77], whereby the extracted dominant

DMD modes and corresponding eigenvalues remain unchanged as we slide the window

within the equilibrium region. Of course, conditions (a) and (b) are not necessarily

true in the transient state as indicated by the presence of dominant DMD eigenvalues

away from the unit circle and continuously changing dynamics.

In practical scenarios, the data obtained is not free from noise (in a general sense,

either from finite machine precision and discretization errors present in a simulation

or from ambient and instrument noise present in a measurement). As a result, con-

ditions (a) and (b) are not exactly satisfied. Therefore, we emphasize that invariance

of characteristics applies to only dominant DMD modes (i.e. with physically mean-

ingful character) in the equilibrium stage. DMD modes corresponding to the noise

space of the data do not follow such observations. Here, we adopt a 5% error cri-

terion, so the first few high energy DMD modes corresponding to ≥ 95% of the

reconstructed amplitude 1 are defined as the dominant modes. As the harvesting

window approaches the equilibrium state, two key parameters are tracked. The α

parameter measures the relative error in the reconstructed data, assuming exponen-

tial growth or decay to be the only source of error due to non-zero distance of the

1Note that the modal amplitude, defined as Am(t) = ∥ϑmϕmeω̂m(t−t0)+ϑmϕmeω̂m(t−t0)∥2 (∥.∥2
denotes the Frobenius norm) varies with time, so the measurements are performed at the end of
the DMD harvesting window.
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dominant DMD eigenvalues from the unit circle. The β parameter represents the

error in reconstructed data considering the error only due to fluctuation in phase of

dominant DMD eigenvalues. The expressions for α and β are derived next. Recall

the DMD reconstruction formula,

x̂(t) ≈
Md∑
m=1

(ϑmϕme
ω̂m(t−t0) + ϑmϕme

ω̂m(t−t0)) (3.3a)

=

Md∑
m=1

eω̂mR(t−t0)(ϑmϕme
jω̂mI(t−t0) + ϑmϕme

−jω̂mI(t−t0))

=

Md∑
m=1

eω̂mR(t−t0)ψm, (3.3b)

where complex frequency ω̂m = ω̂mR+jω̂mI . ψm = (ϑmϕme
jω̂mI(t−t0)+ϑmϕme

−jω̂mI(t−t0))

is the oscillating part of the solution and Md is the number of dominant DMD modes.

In equilibrium, the DMD solution must not include exponentially growing or decay-

ing factors, i.e. ω̂mR = 0, m = 1, 2, . . .Md. Assuming non-zero ω̂mR to be the only

source of error, the ideal solution x(t) must be

x(t) ≈
Md∑
m=1

ψm. (3.4)

Using ω̂m = ln(λm)/∆t, λm = |λm|ejθm , one can write ω̂m = ln |λm|
∆t

+ jθm
∆t

= ω̂mR +

jω̂mI , giving ω̂mR = ln |λm|
∆t

. From (3.3b),

x̂(t) ≈
Md∑
m=1

|λm|
(t−t0)

∆t ψm. (3.5)

The relative 2-norm error, δ(t), is given below, under the assumption that error is

only due to exponential growth/decay. This results in the definition of the parameter

40



α:

δ(t) =
||x̂(t)− x(t)||2

||x(t)||2
=

||
∑Md

m=1 |λm|
(t−t0)

∆t ψm −
∑Md

m=1 ψm||2
||
∑Md

m=1 ψm||2
(3.6)

=
||
∑Md

m=1(|λm|
(t−t0)

∆t − 1)ψm||2
||
∑Md

m=1 ψm||2
(3.7)

and hence, from the triangle inequality, it follows

δ(t) ≤
∑Md

m=1 ||(|λm|
(t−t0)

∆t − 1)ψm||2
||
∑Md

m=1 ψm||2
= α(t− t0) = α(t̃). (3.8)

Note that ψm is a function of the time difference between target time t and the

reference initial time of that particular DMD window t0, which we denote as t̃. As

a result, we can write α(t − t0)=α(t̃) in the above. As the DMD window moves

towards equilibrium, the dominant DMD eigenvalues move closer towards unit circle

(Fig. 3.2), thus decreasing α(t̃), for a fixed t̃. We define the convergence in α as

the termination of its secular decay. However, a dynamical system can continue to

be in transience even after all DMD eigenvalues have moved to the unit circle (Fig.

3.2b). This happens when the transient state involves variation of frequency content

instead of amplitude. Thus the presented approach also validates that the dominant

DMD eigenvalues do not move along the unit circle. Doing so ensures that the error

due to shift in phase (∆θm) over successive windows is less than some predetermined
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threshold βthr.

x̂(t) ≈
Md∑
m=1

(ϑmϕme
ω̃m(t−t0) + ϑmϕme

ω̃m(t−t0)) (3.9)

=

Md∑
m=1

(ϑmϕme
(ω̂mR+j(ω̂mI+∆ω̂mI))(t−t0) + ϑmϕme

(ω̂mR−j(ω̂mI+∆ω̂mI))(t−t0))

=

Md∑
m=1

(χme
j∆ω̂mI(t−t0) + χme

−j∆ω̂mI(t−t0))

=

Md∑
m=1

(χme
j∆θm

∆t
(t−t0) + χme

−j∆θm
∆t

(t−t0))

=

Md∑
m=1

2Re{χme
j∆θm

∆t
(t−t0)}, (3.10)

where, ω̃m = ω̂m + j∆ω̂mI and χm = ϑmϕme
ω̂m(t−t0), a function of (t − t0) = t̃. As

above, we compute the relative 2-norm error δ(t) under the assumption that error is

only due to ∆ω̂mI with x(t) ≈
∑Md

m=1 2Re{χm} as the ideal solution. This results in

the definition of the parameter β:

δ(t) =
||x̂(t)− x(t)||2

||x(t)||2
=

||
∑Md

m=1 2Re{χme
j∆θm

∆t
(t−t0)} −

∑Md

m=1 2Re{χm}||2
||
∑Md

m=1 2Re{χm}||2

=
||
∑Md

m=1 2Re{χm(e
j∆θm

∆t
(t−t0) − 1)}||2

||
∑Md

m=1 2Re{χm}||2
(3.11)

and hence

δ(t) ≤
∑Md

m=1 ||Re{χm(e
j∆θm

∆t
(t−t0) − 1)}||2

||
∑Md

m=1 Re{χm}||2
= β(t− t0) = β(t̃) (3.12)
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Parameters α and β are computed for dominant DMD modes only. Our goal is

to detect the “knee” or “elbow” region in the graph of α against w (window index),

capturing transition to equilibrium state. However, on-the-fly detection of the knee

region is challenging, especially when data is noisy. We thus examine the rolling

average of α over W successive windows and search for a non-negative slope in the

averaged graph, hinting convergence in α. Once convergence in α is detected, the

focus shifts to the parameter β to ensure that the error due to phase shift of the

dominant eigenvalues over W windows is within an acceptable bound (≤ βthr). We

will illustrate the on-the-fly algorithm (Algorithm 2) assuming we have some a priori

knowledge about the timescale of the problem to inform the selection of appropriate

window width ∆tw (in time) or equivalently ∆nw (in time steps).

It is important to note that the performance of Algorithm 2 depends on the choice

of parameters ∆tw, W , βthr and δnw, where δnw is the shift between two successive

sliding DMD windows in terms of time steps. In terms of continuous time, this shift

is represented by δtw = δnw∆t. These parameters must be selected beforehand and

do not adapt during the run. We make the following observations:

• The parameter ∆tw denotes the width of each sliding window. Prior knowledge

about the time-scale of the problem helps to make sure that ∆tw covers multiple

oscillation cycles (if any) in the equilibrium state. If the window width is not

sufficient to capture the dynamics of the equilibrium, temporal variation in the

parameter α might not elicit convergence even as the window slides towards
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Algorithm 3.2: Algorithm for detecting onset of equilibrium state
Input: Data from high-fidelity simulation.
Output: Window index indicating onset of equilibrium.

Initialization : For first window, calculate r as using optimal hard thresholding
and use it for rest of the algorithm.

1: At current (wth) window, say D denotes the set of dominant DMD eigenvalues.
Identify the i for which λ(w)

i ∈ D, where 1 ≤ i ≤ p, and p is number of DMD
modes (M from (2.24)) in the wth window.

2: Calculate α(t̃) for wth window at t̃ = ∆tw denoted by α(∆tw)(w), where ∆tw is
the DMD window width.

3: For w ≥ Wh, perform averaging of α over W windows to get
< α >

(h)
W = [α(∆tw)

(s+1) + α(∆tw)
(s+2) + . . .+ α(∆tw)

(s+W )]/W , where
s = W (h− 1), h = 1, 2, . . ..

4: if (log(< α >
(h)
W ) ≥ log(< α >

(h−1)
W )) then

5: From the tracking Algorithm 1, identify the predecessors of λ(w)
i ∈ D for

previous W windows, λ(w−1)
(i) , λ

(w−2)
(i) , . . ., λ

(w−W )
(i) , calculate

∆θ
(w)
a,i = |Arg(λ(w−a)

(i) )− Arg(λ(w)
i )|, where a = 1, 2, . . . ,W .

6: Calculate β(∆tw) wrt. ∆θ
(w)
a,i at wth window for W predecessors,

β(∆tw)
(w)
1 , β(∆tw)

(w)
2 , . . ., β(∆tw)

(w)
W .

7: if (β(∆tw)
(w)
1 , β(∆tw)

(w)
2 , . . ., β(∆tw)

(w)
W ≤ βthr) then

8: Stop harvesting.
9: return w

10: else
11: Continue harvesting, move to the (w + 1)th window and return to the step

1.
12: end if
13: else
14: Continue harvesting, move to the (w + 1)th window and return to the step 1.
15: end if

44



equilibrium. For offline applications, one of many simple algorithms such as

zero crossing detection or peak detection can be used to approximate the period

of limit cycle oscillations.

• The shift δnw generally spans an integer multiple of snapshots. For on-the-fly

processes, the natural choice is to shift by one snapshot, in which case DMD is

performed when a new snapshot becomes available. In our test cases, we shift

by two snapshots as it provides enough flexibility to experiment with varying

snapshot intervals, keeping the shift δnw(≡ δtw) constant. Ideally, overlap be-

tween successive windows must be avoided to minimize the computation cost.

In practice however, intersection between consecutive sliding windows is em-

ployed for the following reasons: (i.) window overlap implies smaller perturba-

tion in the snapshot matrix, which helps with tracking DMD eigenvalue-mode

pair, and, (ii.) overlap helps determine W , the number of windows over which

α is averaged.

• W is chosen such that it is the minimum number of shifts for there to be no

overlap between wth and (w+W )th window. In other words, W = ⌊∆tw/δtw⌋.

Too small a value for W can result in premature, erroneous detection of equi-

librium, especially for highly noisy α variation. While a large W overcomes this

difficulty, it is at the cost of delayed detection of equilibrium. Delayed detec-

tion of equilibrium does not pose risk of increased error in DMD extrapolation,

only inefficiency.
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• The threshold βthr is based on the acceptable error limit for each application.

In this work we follow a 5%. From experience, the error due to fluctuations in

phase is much smaller than errors due to exponential growth/decay. Therefore,

we set βthr = 0.01 (1% error). As shown in (3.12), β is calculated based on the

difference in phase of dominant eigenvalue at the wth window and it’s predeces-

sors at previous windows. It aims to detect slow unidirectional movement (Fig.

3.2b) of eigenvalues along the unit circle. As a rule of thumb, we check for the

error due to shift in phase over W previous windows. If there is extremely slow

movement of DMD eigenvalues along the unit circle in the transient state, it

might go undetected for small W value. Of course, very slow phase variation

might not be of interest, as long as the reconstruction accuracy stays within

acceptable limits.

3.1.3 Toy Example: Lorenz’96 Model

The proposed on-the-fly equilibrium detection algorithm is discussed in chapter

5 in the context of EMPIC plasma simulations. In this chapter, we will showcase its

effectiveness for a toy example, the Lorenz’96 model. The Lorenz’96 model was intro-

duced by Edward Lorenz in 1996 [88] as a simplified model for predicting atmospheric

phenomena. It has been widely used with data assimilation and ensemble forecast-

ing techniques [89, 90, 91, 92]. Here, we use the Lorenz’96 model to demonstrate

the effectiveness of Algorithm 2 in detecting the onset of the equilibrium state in a

perhaps more familiar setting. For N states, the equations governing the dynamics
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are

ẏi = (yi+1 − yi−2)yi−1 − yi + Fe (3.13)

y−1 = yN−1 (3.14)

y0 = yN (3.15)

yN+1 = y1 (3.16)

where, yi (i = 1, 2, . . ., N) represents the state of the dynamical system and Fe the

external force. We set N = 4 and Fe = 10, leading to stable limit cycle behavior (Fig.

3.4f). 200 random realizations of the initial state are achieved in the following form:

(y
(0)
1 , y

(0)
2 , y

(0)
3 , y

(0)
4 ) = (Fe + δ̂j, Fe, Fe, Fe), j = 1, 2, . . . , 200, where δ̂j is randomly

generated with uniform distribution in [−2, 2]. The system is solved until t = 120

units, with a total of n = 6001 time steps. Each snapshot is a 800× 1 vector formed

by stacking the instantaneous values of each of the 200 realizations of the four states.

Algorithm 2 is used to identify the onset of equilibrium with βthr = 0.01 and

δtw = 0.16. Using ∆tw = 4.8 ns allows it to cover multiple cycles of the limit cycle

oscillations with interval between two consecutive snapshots being ∆t = 0.08. It is

seen that α(∆tw) decreases with increasing k initially but eventually converges (Fig.

3.3), with the knee/elbow region marking the transition from transient to steady-

state. In this figure, the rolling average of α(∆tw) over ⌊∆tw/δtw⌋ data points is

shown (in this case, 30 datapoints). The knee/elbow region for the averaged graph

is clearly visible around w = 105, indicating state transition around nst(105) = 833
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Figure 3.3: Variation in α(∆tw) as the window slides towards equilibrium for ∆t = 0.08.
The knee region of the averaged (red) graph is at around w = 105.

to nen(105) = 1073, where nst(k) and nen(k) are respectively the starting and ending

time step of kth window.

This result is validated by plotting the state-space trajectories, see Fig. 3.4. For

nbeg = 900, we observe formation of a periodic orbit (Fig. 3.4e) indicating the

onset of equilibrium. This is in agreement with Algorithm 2, which suggests state

transition in the range n = 833 to n = 1073. The sensitivity of α(∆tw) towards

variation in ∆tw and ∆t is shown in Fig. 3.5 (∆k equivalent to 8 time steps for

each case). The early detection of equilibrium region for large window widths (Fig.

3.5a) can be attributed to the “look-ahead" artifact due to the finite width of DMD

time window. As in other examples in this work, on-the-fly detection of the knee

is adversely impacted by the use of the non-negative slope criterion. As seen in
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(a) nbeg = 100 (b) nbeg = 300 (c) nbeg = 500

(d) nbeg = 700 (e) nbeg = 900 (f) nbeg = 1100

Figure 3.4: Trajectory of state-space (y1, y2, y3) for 200 different initial conditions, from
n = nbeg to n = 6001. The noisy trajectories for early values of nbeg suggest that the states
are not yet evolving on a periodic orbit, thus still in transience. From nbeg = 900 we see a
clear periodic orbit, indicating the onset of equilibrium.

Fig. 3.5b, the knee region appears first, visually speaking, around w = 105, but the

first non-negative slope is encountered much later, around w = 135 for ∆t = 0.04.

The algorithm detects it at w = 180 and terminates. The delayed detection is not

necessarily a drawback in the sense that it provides a conservative estimate. When
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the graph of α(∆tw) is “noisy”, there is potential for false positives in an on-the-fly

approach. The non-negative slope criterion provides robustness against such false

detection, but at the cost of precision since detection of equilibrium is delayed. As

mentioned before, delayed equilibrium detection does not affect prediction accuracy,

but it does affect its computational efficiency. More work is needed for building better

methods for on-the-fly detection of the knee region in noisy datasets. Discussion of

additional textbook example can be found in [86].

(a) (b)

Figure 3.5: (a) Sensitivity of Algorithm 2 towards window width ∆tw (±20%), keeping
fixed ∆t = 0.08. Equilibrium detected at w = 168, 150 and 144 for ∆tw = 3.84, 4.8 and
5.76 respectively. (b) Sensitivity of Algorithm 2 towards sampling interval ∆t , keeping
fixed ∆tw = 4.8. Equilibrium detected at w = 180, 150 and 150 for ∆t = 0.04, 0.08 and
0.16 respectively.
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3.2 Real-Time Detection of Quasi Equilibrium using Consis-
tency among DMD Predictions

A sliding-window DMD algorithm for online identification of equilibrium was dis-

cussed in Section 3.1 [47, 86]. Recently a similar approach of observing convergence

in DMD eigenvalues and modal amplitudes was proposed in [93] as well. However,

our proposed method is much simpler and focuses only on convergence of the DMD

solution at some future time-window. It is also important to mention that the method

in Section 3.1 is tailored towards online detection of only the equilibrium state. How-

ever, since we are interested in detecting the pseudo-equilibrium as well, we propose

a sliding-window DMD algorithm based on convergence of the DMD solutions inside

a fixed future time window. Below we provide our rationale for using the convergence

in DMD solutions as our criterion,

• The underlying features of a dynamical system (e.g. frequency content) re-

main invariant in equilibrium or quasi equilibrium, indicating invariance in

the extracted DMD modes and frequencies, given that the observation (DMD)

window is large enough.

• A well-posed DMD has unique solution i.e. a unique set of DMD modes,

frequencies and modal amplitudes [94], ensuring a unique DMD reconstruction

for some future time-window. The Hankel stacking essentially helps make an

ill-posed DMD problem well-posed [95, 56].
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Algorithm 3.3: On-the-fly sliding-window DMD algorithm for detecting tf
for real-time termination of FDTD/FETD.

Input: • The approximate time instant tqry up to which we wish to extrapolate for
any specific application.

• Approximate idea regarding the maximum dimension (L) and material
properties of the cavity.

• High-fidelity data from the ongoing FDTD/FETD simulation.
Output: FDTD/FETD termination flag.
1: Determine the DMD window width ∆tw or equivalently ∆nw, where

∆nw = ⌈∆tw/∆t⌉ following Section 4.3.1.
2: After the FDTD simulation reaches n = ∆nw, determine the DMD sampling interval

∆t and appropriate number of stacks d as per Section 4.3.1.
3: As the FDTD/FETD simulation progresses, shift the DMD window by δnw time steps

(represented by increasing window index w). Let us denote the starting and endpoint
of the wth window by tst,w(≡ nst,w) and ten,w(≡ nen,w) respectively.

4: for Current (wth) DMD window do
5: if ten,w > tqry then
6: Failed to detect FDTD/FETD before desired the query time.
7: return
8: else
9: Perform Hankel-DMD for wth window and obtain the DMD prediction from

tqry(≡ nqry) to tqry +∆tw(≡ nqry +∆nw) at (nw + 1) time steps. Let us denote
this DMD prediction corresponding to wth DMD window as x̂

(n)
w .

10: Get the average relative 2-norm error between x̂
(n)
w and x̂

(n)
w−1 over (nw + 1) time

steps, denoted by ⟨δ(n)⟩w, where

⟨δ(n)⟩w =
1

(nw + 1)

nqry+∆nw∑
n=nqry

||x̂(n)
w − x̂

(n)
w−1||2

||x̂(n)
w−1||2

(3.17)

11: if (⟨δ(n)⟩w, ⟨δ(n)⟩w−1, . . . , ⟨δ(n)⟩w−q < δ0) then
12: Raise the FDTD/FETD termination flag.
13: return
14: else
15: Move to the next DMD window, w = w + 1.
16: end if
17: end if
18: end for
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Following this reasoning, we can state that as we slide the DMD window from

transient to quasi equilibrium, the extracted DMD modes, frequencies, and modal

amplitudes {ϕm̂, ω̂m̂, ϑm̂} keep varying within the transient phase. Consequently, the

DMD prediction over some fixed future time window also keeps varying. However,

as we enter pseudo-equilibrium, the extracted {ϕm̂, ω̂m̂, ϑm̂} become invariant to

the DMD window shift, resulting in convergence of the DMD prediction. Upon

satisfying a predetermined convergence criterion (δ0), a flag is raised to terminate

the FDTD/FETD simulation. The algorithm is described in 3.

The success of algorithm 3 depends on the careful selection of the parameters

∆tw, ∆t, d, δnw, δ0, and q. Selection of ∆tw, ∆t, d is problem dependent, and de-

pends on approximate idea about the time scale of the problem. The shift δnw can

be chosen as some fraction of ∆nw. We choose δnw = ⌈∆nw/20⌉. Other parameters

of importance are the convergence threshold δ0 and the number of windows q for

checking the convergence in line 11. A large value of q (small value of δ0) ensures

greater confidence in the convergence, but delayed detection of the equilibrium or

pseudo-equilibrium. Delayed detection does not affect the extrapolation accuracy

but reduces overall efficiency. We select δ0 = 0.1 and q = 2 for all our test cases.

The test cases are discussed in chapter 4 and 6.

3.3 Summary

In this chapter, we have explored the critical role of real-time termination in

high-fidelity time-domain simulations to effectively utilize time extrapolation models
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for acceleration. We introduced two on-the-fly DMD algorithms capable of detect-

ing when a system reaches steady state, equilibrium, or quasi -equilibrium, thereby

signaling the onset of self-repeating behavior. We discussed how the DMD mode

tracking algorithm provides insights into the transition from transient to equilib-

rium states, and its potential to identify equilibrium behavior from transient data

alone. In subsequent chapters, we will apply these on-the-fly algorithms, along with

offline DMD methods, to enhance the efficiency of electromagnetic cavity and kinetic

plasma simulations.
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Chapter 4: Modeling Fields Inside Electromagnetic Cavities

using Dynamic Mode Decomposition

Electromagnetic (EM) cavities are essential components in many radio-frequency

and microwave systems. Application of cavity resonators includes shielded enclo-

sures, cavity-backed antennas, power sources, filters, amplifiers, oscillators, etc. Time-

domain numerical methods such as finite-difference time-domain (FDTD) and the

finite-element time-domain (FETD) [3, 4, 96, 97] are often used for simulating EM

fields inside cavities and shielded enclosures because of their ability to accurately

capture transient, wideband, and nonlinear effects. For wideband applications,

frequency-domain solvers can be computationally cumbersome, especially for high−Q

resonating structures where it is necessary to solve for a wideband of frequencies with

very sharp frequency resolution. In addition, handling of nonlinear and time-varying

media is far more challenging in the frequency-domain than in the time-domain [98].

However, the time-domain methods have their own set of challenges, with the pri-

mary limitation arising from the sequential nature of the solver [99]. Time-domain
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solvers typically use a marching-on-time scheme in a sequential manner, result-

ing in a long simulation time for querying late-time fields. Also, the well-known

Courant–Friedrichs–Lewy (CFL) condition, which poses a restriction on the maxi-

mum time step size based on the spatial dimension of mesh elements, prevents an

arbitrarily large selection of the time step [4, 3, 99].

Several methods have been proposed to overcome these deficiencies. Although un-

conditionally stable FDTD algorithms [100, 101, 102, 103, 104] are not limited by the

CFL condition, the accuracy for these implicit methods tends to degrade with time

step larger than the CFL limit. This happens due to splitting errors and additional

numerical dispersion errors. A series of stable and explicit FDTD schemes based on

reduced-order models (ROMs) were recently proposed [105, 106, 107]. Reduced-order

model based in proper orthogonal decomposition (POD) was also proposed in [108].

Although these methods address several issues related to the time-update scheme,

they require knowledge of the state vector, boundary conditions, and the system

matrix, which in many cases may be inefficient to store. Also, the electromagnetic

response in practice may be required only for certain components of the field, at cer-

tain points in space or within a limited region of the cavity, rather than throughout

the entire cavity domain. In this respect, purely data-driven approaches for extrap-

olating the electromagnetic response fare better because they are agnostic to the im-

plementation details of the high-fidelity time-domain solver. Over the years, several
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data-driven approaches such as autoregression (AR) [109], autoregressive moving av-

erage (ARMA) [110], Prony’s method [111, 112], matrix pencil [98, 113], estimation

of signal parameters using rotational invariance techniques (ESPIRIT) [114, 115],

and state-space based methods [116, 117, 118], have been developed for the time

extrapolation of electromagnetic responses. However, most of these methods assume

the time-series to be a finite sum of scaled complex exponentials and proceed to

find the model parameters that best fit the data, without providing much physi-

cal insight about the parameters, especially the scaling factors. State-space based

methods [116, 117] go a bit further by assuming a first-order linear time-invariant

(LTI) system representation for the underlying dynamics and proceed to solve for

the unknown system matrices from available data. However, these methods provide

little insight into how the eigenvectors and eigenvalues of extracted system matri-

ces are related to the electromagnetic (physical) resonances. This is not surprising

since these methods are primarily developed for modeling single or multi-channel

time-series data only and not tailored towards extracting spatial features.

In this chapter, we will first give brief overview of the FDTD algorithm which is

used to generate the high-fidelity data for cavity simulations. We will then explore

how DMD can be used to extract the resonant modes and frequencies of cavity

fields which can be used for analysis, time extrapolation and extraction of the Q-

factor. In this work, we use Hankel-DMD (Section 2.2.1) which utilizes the time-

delayed embedding of the observed state to gain generality [56, 119, 55, 95]. We
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Figure 4.1: DMD assisted FDTD/FETD (DMD-FDTD or DMD-FETD) scheme for anal-
ysis and acceleration of high-fidelity time-domain simulations.

show that under certain conditions, the extracted DMD modes exhibit a one-to-one

correspondence with the cavity modes. Although DMD has been recently applied for

certain radiation problems [45], insights into the physical significance of the DMD

modes is still lacking. We address this issue in detail and justify the use of the

Hankel matrix approach for modeling electromagnetic resonances especially based

on restricted data points. It is important to note that state-space based methods

such as eigensystem realization algorithm (ERA) [118] and multi-channel matrix

pencil method [113] are related to DMD through similarity transforms [39, 120].

However, DMD is specifically tailored towards the extraction of spatial (in addition to
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temporal) features, whereas those other methods are not. DMD also exhibits better

stability and robustness to noise compared to its Arnoldi-type counterparts [48, 121].

The overall approach is summarized in Fig. 4.1. This chapter is primarily based on

[50].

4.1 Finite Difference Time Domain (FDTD) Overview

The Finite-Difference Time-Domain (FDTD) method is a numerical technique

for solving Maxwell’s equations directly in time and space. It was first introduced

by Kane Yee in 1966 [122] and has since become a widely used method for modeling

electromagnetic wave interactions with materials. The high-fidelity data used for

DMD is obtained from cavity simulations using in-house Cartesian and cylindrical

FDTD algorithms with split-field perfectly matched layer (PML) absorbing boundary

conditions (ABCs) [123, 124, 125, 97]. We also implement DMD on time-domain data

obtained from commercial software such as CST Studio Suite which also uses FDTD

algorithm.

4.1.1 Cartesian FDTD

Maxwell’s time-dependent curl equations in three dimensions for general materi-

als, including conductivity, are given by [126]:
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∂H

∂t
= − 1

µ
∇× E−M (4.1)

∂E

∂t
=

1

ϵ
(∇×H− σE) + J (4.2)

where E is the electric field intensity (V/m), H is the magnetic field intensity

(A/m), J is the electric current density (A/m2), M is the equivalent magnetic current

density (V/m2), ϵ is the permittivity, µ is the permeability, and σ is the electrical

conductivity of the medium.

The constitutive relations are:

D = ϵE, B = µH,

where D and B are electric and magnetic flux densities respectively. Yee [122]

introduced a system of finite-difference approximations of Maxwell’s curl equations.

The electric and magnetic field components are staggered in both space and time to

achieve second-order accuracy. The spatial derivatives are approximated using cen-

tral differences, and the time derivatives are approximated using a leapfrog scheme.

For example, the finite-difference approximation of the spatial derivative ∂Hz

∂y
at point

(i∆x, (j + 1/2)∆y, k∆z) and time step n is:

∂Hz

∂y

∣∣∣∣n+1/2

i,j+1/2,k

≈ H
n+1/2
z (i, j + 1, k)−H

n+1/2
z (i, j, k)

∆y
(4.3)

The time stepping scheme updates the magnetic field components at half-time

steps and the electric field components at integer time steps. The FDTD method
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involves updating the magnetic field components using the electric field components

and vice versa.

The update equations for the magnetic field components in Cartesian coordinates

are:

Hn+1/2
x (i+ 1/2, j, k) = Hn−1/2

x (i+ 1/2, j, k)

− ∆t

µ

(
En

z (i+ 1/2, j + 1/2, k)− En
z (i+ 1/2, j − 1/2, k)

∆y

−
En

y (i+ 1/2, j, k + 1/2)− En
y (i+ 1/2, j, k − 1/2)

∆z

)
−∆tMn+1/2

x (i+ 1/2, j, k) (4.4)

Hn+1/2
y (i, j + 1/2, k) = Hn−1/2

y (i, j + 1/2, k)

− ∆t

µ

(
En

x (i, j + 1/2, k + 1/2)− En
x (i, j + 1/2, k − 1/2)

∆z

−E
n
z (i+ 1/2, j + 1/2, k)− En

z (i− 1/2, j + 1/2, k)

∆x

)
−∆tMn+1/2

y (i, j + 1/2, k) (4.5)

Hn+1/2
z (i, j, k + 1/2) = Hn−1/2

z (i, j, k + 1/2)

− ∆t

µ

(
En

y (i+ 1/2, j, k + 1/2)− En
y (i− 1/2, j, k + 1/2)

∆x

−E
n
x (i, j + 1/2, k + 1/2)− En

x (i, j − 1/2, k + 1/2)

∆y

)
−∆tMn+1/2

z (i, j, k + 1/2) (4.6)

The update equations for the electric field components are:
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En+1
x (i, j + 1/2, k + 1/2) =( ϵ

∆t
+
σ

2

)−1
[(

H
n+1/2
z (i, j + 1, k + 1/2)−H

n+1/2
z (i, j, k + 1/2)

∆y

−H
n+1/2
y (i, j + 1/2, k + 1)−H

n+1/2
y (i, j + 1/2, k)

∆z

)
+
( ϵ

∆t
− σ

2

)
En

x (i, j + 1/2, k + 1/2)
]
+∆tJn

x (i, j + 1/2, k + 1/2) (4.7)

En+1
y (i+ 1/2, j, k + 1/2) =( ϵ

∆t
+
σ

2

)−1
[(

H
n+1/2
x (i+ 1/2, j, k + 1)−H

n+1/2
x (i+ 1/2, j, k)

∆z

−H
n+1/2
z (i+ 1, j, k + 1/2)−H

n+1/2
z (i, j, k + 1/2)

∆x

)
+
( ϵ

∆t
− σ

2

)
En

y (i+ 1/2, j, k + 1/2)
]
+∆tJn

y (i+ 1/2, j, k + 1/2) (4.8)

En+1
z (i+ 1/2, j + 1/2, k) =( ϵ

∆t
+
σ

2

)−1
[(

H
n+1/2
y (i+ 1/2, j + 1, k)−H

n+1/2
y (i+ 1/2, j, k)

∆x

−H
n+1/2
x (i+ 1, j + 1/2, k)−H

n+1/2
x (i, j + 1/2, k)

∆y

)
+
( ϵ

∆t
− σ

2

)
En

z (i+ 1/2, j + 1/2, k)
]
+∆tJn

z (i+ 1/2, j + 1/2, k) (4.9)

To ensure numerical stability, the time increment ∆t must satisfy the Courant-

Friedrichs-Lewy (CFL) condition:

∆t ≤ 1

c

√(
1
∆x

)2
+
(

1
∆y

)2
+
(

1
∆z

)2 (4.10)
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where ∆x, ∆y, and ∆z are the smallest spatial increments, and c is the speed of

light in the material.

4.1.2 Cylindrical FDTD

The cylindrical Finite-Difference Time-Domain (FDTD) method is preferred for

modeling cylindrical geometries, such as logging tools, cylindrical cavities etc. due

to its conformity to cylindrical structures and reduced discretization errors [127].

The cylindrical coordinates are (ρc, ϕc, z), indicating radius, azimuthal angle and

height. The subscript c is used to avoid confusion with correlation coefficient ρ and

DMD modes ϕ. The cylindrical FDTD algorithm involves discretization of Maxwell’s

equations 4.1 in the cylindrical coordinates:
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Hn+1/2
ρc (i, j + 1/2, k + 1/2) = Hn−1/2

ρc (i, j + 1/2, k + 1/2)+

∆t

µ

(
En

ϕc
(i, j + 1/2, k + 1)− En

ϕc
(i, j + 1/2, k)

∆z

−E
n
z (i, j + 1, k + 1/2)− En

z (i, j, k + 1/2)

ρci∆ϕc

)
−∆tMn

ρc(i, j + 1/2, k + 1/2) (4.11)

H
n+1/2
ϕc

(i+ 1/2, j, k + 1/2) = H
n−1/2
ϕc

(i+ 1/2, j, k + 1/2)+

∆t

µ

(
En

z (i+ 1, j, k + 1/2)− En
z (i, j, k + 1/2)

∆ρci

−
En

ρc(i+ 1/2, j, k + 1)− En
ρc(i+ 1/2, j, k)

∆z

)
−

∆tMn
ϕc
(i+ 1/2, j, k + 1/2) (4.12)

Hn+1/2
z (i+ 1/2, j + 1/2, k) = Hn−1/2

z (i+ 1/2, j + 1/2, k)+

∆t

µ

(
En

ρc(i+ 1/2, j + 1, k)− En
ρc(i+ 1/2, j, k)

ρci+1/2∆ϕc

−
En

ϕc
(i+ 1, j + 1/2, k)− En

ϕc
(i, j + 1/2, k)

2∆ρci

)
−∆tMn

z (i+ 1/2, j + 1/2, k) (4.13)

The update equations for the electric field components are:
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En+1
ρc (i+ 1/2, j, k) =( ϵ

∆t
+
σ

2

)−1
[
H

n+1/2
z (i+ 1/2, j + 1/2, k)−H

n−1/2
z (i+ 1/2, j − 1/2, k)

ρci+1/2∆ϕc

−
H

n+1/2
ϕc

(i+ 1/2, j, k + 1/2)−H
n−1/2
ϕc

(i+ 1/2, j, k − 1/2)

∆z

+
( ϵ

∆t
− σ

2

)
En

ρc(i+ 1/2, j, k)
]
+∆tJn

ρc(i+ 1/2, j, k) (4.14)

En+1
ϕc

(i, j + 1/2, k) =( ϵ

∆t
+
σ

2

)−1
[
H

n+1/2
ρc (i, j + 1/2, k + 1/2)−H

n−1/2
ρc (i, j + 1/2, k − 1/2)

∆z

−H
n+1/2
z (i+ 1/2, j, k + 1/2)−H

n−1/2
z (i− 1/2, j, k + 1/2)

∆ρci

+
( ϵ

∆t
− σ

2

)
En

ϕc
(i, j + 1/2, k)

]
+∆tJn

ϕc
(i, j + 1/2, k) (4.15)

En+1
z (i, j, k + 1/2) =( ϵ

∆t
+
σ

2

)−1
[
H

n+1/2
ϕc

(i+ 1/2, j, k + 1/2)−H
n−1/2
ϕc

(i− 1/2, j, k + 1/2)

∆ρci

+
H

n+1/2
ϕc

(i+ 1/2, j, k + 1/2)−H
n−1/2
ϕc

(i− 1/2, j, k + 1/2)

ρci∆ϕc

+
( ϵ

∆t
− σ

2

)
En

z (i, j, k + 1/2)
]
+∆tJn

z (i, j, k + 1/2) (4.16)

The spatial derivatives in cylindrical coordinates are approximated using central

finite differences, and the time derivatives are approximated using a leapfrog scheme:

∂F

∂ρc
≈ F n(i+ 1/2, j, k)− F n(i− 1/2, j, k)

∆ρc
(4.17)

∂F

∂t
≈ F n+1/2(i, j, k)− F n−1/2(i, j, k)

∆t
(4.18)
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To ensure numerical stability, the time increment ∆t must satisfy the Courant-

Friedrichs-Lewy (CFL) condition:

∆t ≤ 1

v

√(
1

∆ρcmin

)2
+
(

1
ρcmin∆ϕc

)2
+
(

1
∆zmin

)2 (4.19)

where ∆ρcmin, ρcmin∆ϕc, and ∆zmin are the smallest spatial increments, and v is

the maximum phase speed.

ABCs such as the Perfectly Matched Layer (PML) are used to prevent reflections

at the boundaries of the simulation domain. The cylindrical FDTD method pro-

vides a powerful tool for modeling electromagnetic wave propagation in cylindrical

geometries, accommodating anisotropic materials, and ensuring numerical stability

through appropriate discretization and boundary conditions.

4.1.3 Split-Field PML-FDTD

Split-field Perfectly Matched Layer - Finite-Difference Time-Domain (PML-FDTD)

is a method used to simulate electromagnetic wave propagation in inhomogeneous

media [123, 124, 125, 97]. This approach incorporates the PML absorbing boundary

condition to effectively eliminate spurious reflections from the boundaries of the com-

putational domain. In the split-field PML-FDTD formulation, the electromagnetic

field components are split into subcomponents. This technique introduces matched

artificial electric and magnetic conductivities within the PML region, which makes

the PML implementation transparent to the constitutive properties of the medium.
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Essentially, the PML can be considered an analytic continuation of Maxwell’s equa-

tions into a complex spatial domain, facilitating a more accurate representation of

boundary conditions in the simulation. This method is particularly useful for time-

domain simulations involving complex media, such as layered microstrip antennas,

biological tissues, or subsurface sensing applications. By ensuring zero reflection co-

efficients at the PML interface and exponential decay along the normal direction,

split-field PML-FDTD significantly enhances the accuracy of simulations for scenar-

ios involving inhomogeneous media.

4.2 Modeling Cavity Resonances

The phenomena of cavity resonance can be explained through superposition of

several standing waves. Limitation of standard DMD in capturing standing waves

and possible solution by stacking snapshot matrices had been earlier noted in [39].

However, not much attention has been given to why and how such stacking works.

In this section, we analyze the challenges in spatio-temporal modeling of cavity res-

onance in the light of recent advances in the Hankel-DMD literature [56, 55].

4.2.1 Physical Modes

In the absence of sources, the oscillating electric field at any location inside a

cavity can be expressed by summation of resonance modes as follows [128],

e(t) =
∑
m

em(t), (4.20)
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where for perfect electric conductor (PEC) walls, the electric field em(t) correspond-

ing to the mth resonance mode satisfies [128]

∂2em
∂t2

+ ω2
mem = 0. (4.21)

The resonance frequency ωm = k2m/µϵ corresponds to mth cavity mode, where km is

the corresponding wave number, with µ and ϵ being the material permeability and

permittivity respectively. The resonance frequency ωm can be complex for complex

µ or ϵ. The solution to (4.21) is given by

em(t) = am eω̃mt + a∗m eω̃
∗
mt, (4.22)

where ω̃m = jωm, with ω̃m, ωm, am ∈ C and j =
√
−1. Due to bandlimited excita-

tion, the summation in (4.20) can be truncated to finite number of terms for practical

purpose. In light of (4.22), the electric field sampled at any N points in space inside

the cavity can be represented in terms of a column vector as

e(t) =
M∑

m=1

am eω̃mt + a∗
m eω̃

∗
mt, (4.23)

where e ∈ RN , am ∈ CN . It is interesting to note the similarity between (4.23) and

(2.24). This will be further discussed next.
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4.2.2 DMD Modeling of Physical Modes

Assuming discrete-time evolution with sampling interval ∆t, the expression in

(4.23) can be rewritten as

e(k∆t) = ek =
M∑

m=1

am eω̃mk∆t + a∗
m eω̃

∗
mk∆t

=
2M∑
p=1

ap e
ω̃pk∆t

⇒ ek =
2M∑
p=1

ap λ̃
k
p =

2M∑
p=1

ãpvp λ̃
k
p, (4.24)

where λ̃p = eω̃p∆t , and ap = ãpvp for some ã ∈ C. Any quantity in the form of

(4.24) can be expressed as the solution of a discrete-time first-order linear system

with eigenvalues λ̃p ∈ C and eigenvectors vp ∈ CN as long as vp or equivalently ap

are linearly independent for p = 1, 2, . . . , 2M [56]. In other words, DMD can model

cavity resonance with good accuracy if ap are linearly independent.

The first restriction arises from the spectral (Ms = 2M) and spatial (N) com-

plexities. For ap to be linearly independent, N ≥ 2M . Even if the latter condition is

satisfied, ap i.e. the partial spatial pattern of the cavity modes may still be linearly

dependent, e.g. TM110 and TM310 modes (indexing along x, y and z) when observed

restricted to the yz−plane of a closed rectangular cavity. The stacks of time-delayed

observables as in (2.27) have been used to overcome the issue regarding linear de-

pendency [56]. The significance of time-delayed embedding for partial observations of
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electromagnetic fields can be better understood in the context of FDTD time-update

equations.

Without loss of generality, let us assume the number of integer and half-integer

grid points be N in a three-dimensional (3-D) space. The explicit time-update of

electric (e) and magnetic fields (h) in source free region on staggered FDTD grid

can be written as [105],[
e(n+1)

h(n+ 1
2
)

]
=

[
I3N −∆t2M ∆tDh

−∆tDe I3N

] [
e(n)

h(n− 1
2
)

]
, (4.25)

where Dh and De are the dicretization of the curl operator operating on h and e

respectively, and M = DhDe. As mentioned earlier, due to the CFL limit, the

time step ∆t for FDTD/FETD simulation is usually quite smaller than required for

capturing the time variation of the fields. We can write (4.25) in terms of DMD

sampling interval ∆t = ∆t∆n, expressing the time evolution of the state from one

time sample to next ((k − 1)th to kth) as[
e(n+∆n)

h(n− 1
2
+∆n)

]
=

[
I3N −∆t2M ∆tDh

−∆tDe I3N

]∆n
[

e(n)

h(n− 1
2
)

]
(4.26)

⇒
[
eν
hν

]
=

[
I3N −∆t2M ∆tDh

−∆tDe I3N

]∆n
[
eν−1

hν−1

]
(4.27)

Let [
eν
hν

]
= uν ;

[
I3N −∆t2M ∆tDh

−∆tDe I3N

]∆n

= G. (4.28)

Equation (4.27) can be written as first-order linear evolution of u with state transition

matrix G6N×6N ,

uν = Guν−1. (4.29)
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Without loss of generality, any partial state observation ũ can be expressed as ob-

serving the first Ñ elements (Ñ < 6N) of u. We can re-write (4.29) as[
ũν

ûν

]
=

[
G11 G12

G21 G22

] [
ũν−1

ûν−1

]
, (4.30)

where ũ ∈ RÑ , û ∈ R6N−Ñ , G11 ∈ RÑ×Ñ , G12 ∈ RÑ×(6N−Ñ), G21 ∈ R(6N−Ñ)×Ñ and

G22 ∈ R(6N−Ñ)×(6N−Ñ). After some basic algebraic manipulation, the time evolution

of ũ can be written as,

ũν = G11ũν−1 +
d−2∑
q=0

G12G
q
22G21ũν−2−q +G12G

d−1
22 ûν−d (4.31)

For sufficiently large d, the final term in (4.31) typically corresponds to the transient

response [95]. Letting G̃i = G12G
i−2
22 G21 (i = 2, 3, . . . , d), and neglecting the last

term, we can approximately write

ũν ≈ G11ũν−1 + G̃2ũν−2 + . . .+ G̃dũν−d. (4.32)

The striking similarity between (4.32) and (2.25) is noteworthy. Equation (4.32) es-

sentially tells us that the time-delayed observations or higher-order terms are needed

to improve the modeling of the partial state dynamics. The Hankel-DMD (2.25)

strives to find a solution such that the snapshots of the state under consideration x,

best fits a relation of the form (4.32) in the least-square sense.

4.2.3 DMD Modes and Cavity Modes

Assuming the linear independence among ap (4.24) is ensured through sufficient

stacking, there exists a matrix Ae exactly satisfying JeKk = AeJeKk−1. If DMD is
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able to extract exact eigenvectors and eigenvalues of Ae, the DMD modes (truncated)

and frequencies will match exactly with the cavity modes and resonance frequencies.

However, as with any other data-driven method, DMD accuracy depends upon the

quality of the training dataset, the judicious choice of training parameters, and the

finite machine precision. It is also important to keep in mind that DMD seeks to

estimate the eigenvalues and eigenvectors through a reduced-order approximation.

As long as the training dataset (snapshot matrices) is “rich” enough, the extracted

DMD modes and frequencies will be a close approximation of the cavity modes and

resonance frequencies. The only exception occurs for degenerate modes sharing a

common resonance frequency, in which case the extracted DMD modes extracted are

just a linear combination of the spatial pattern of degenerate modes, which is further

discussed in the next subsection.

4.2.4 Degenerate Modes

The case of degenerate resonance modes needs special attention since the one

to one correspondence of DMD modes with that of the cavity modes fails in the

presence of degenerate modes. Due to the presence of certain symmetries in the

cavity geometry, cavity modes with different spatial pattern might share the same

resonance frequency. A typical example is the closed regular rectangular cavity

where length of one side is integer multiple of any other two sides. Note that the

DMD formulation relies on the eigenvalues λp in (4.23) being distinct [56, 95, 39].
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For repeating eigenvalues, the DMD formulation still remains valid after we club

together the terms with same eigenvalues.

Without loss of generality, consider mode 1 and mode 2 to be degenerate (ω̃1 =

ω̃2 = ω̃12) in (4.23). Combining those two terms,

e(t) = a12 e
ω̃12t + a12 e

ω̃12t +
M∑

m=3

am eω̃mt + am eω̃mt, (4.33)

where a12 = a1 + a2. Naturally, the extracted DMD mode corresponding to ω̃12 will

be approximately a12 = a1 + a2. We can say that in the presence of degenerate

modes, DMD will return linear combination of those degenerate modes as a single

DMD mode. This is further explained in section 4.4.1 with the example of a losy

rectangular cavity.

4.3 Selection of DMD Training Parameters

Like any other data-driven method, the DMD performance also depends on the

appropriate choice of training parameters or hyperparameters. The crucial training

parameters are the DMD time-window width ∆tw, the DMD sampling interval ∆t

(not to be confused with the FDTD time step interval ∆t), the rank r for truncating

SVD matrices, the number of Hankel stacks d, and the end point of the DMD window

tf (= t0+∆tw) (t0 being the starting of DMD window), essentially the timestamp for

terminating the FDTD/FETD simulation. We will discuss the empirical selection of

these parameters and describe our proposed online sliding-window DMD algorithm
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to detect tf on-the-fly i.e. concomitantly with the ongoing FDTD/FETD simulation

and in an unsupervised fashion.

4.3.1 Selecting ∆tw,∆t, r and d

The DMD window ∆tw should be large enough to capture multiple cycles of any

oscillatory behavior, in our case the EM field oscillations inside the cavity. For offline

applications, the lowest frequency component fmin can be easily extracted using FFT

and ∆tw can be chosen accordingly. However, for on-the-fly applications (without

the availability of the entire time history), ∆tw can be chosen based on a priori

knowledge of the maximum cavity dimension, say Lmax. A conservative lower bound

for the possible resonance frequencies can be the fundamental resonance frequency

of a cuboid of side length Lmax. For inhomogeneous media, a homogeneous cuboid

with volume average of ϵ and µ can be chosen. Once the lowest frequency is decided,

as a rule of thumb we take ∆tw to be wide enough to incorporate at least 30 cycles

of those oscillations.

The time interval ∆t between the DMD snapshots plays a pivotal role in de-

termining the DMD extrapolation accuracy. Excessive dense sampling (very small

∆t) poses an ill-conditioned problem [95]. Also, smaller the sampling interval, more

rapidly the error accumulates for long-term prediction. On the other hand, very

large ∆t might violate the Nyquist criterion. The ideal choice for ∆t is based on

the Nyquist limit. Once the window width ∆tw is decided, we extract the maximum

frequency fmax using FFT and choose ∆t = 1/(2fmax). The value of r decides the
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number of DMD modes M̂ (r ≤ 2M̂) as in (2.23) and (2.24). In this work we choose

r based on optimal hard thresholding, as discussed in [129, 130]. As far as the num-

ber of Hankel stacks d is concerned, there is no definitive way of selecting d in the

absence of the full-system information [56, 95]. Even when available, the calculation

of the optimum value of d can be very involved and computationally expensive. A

rather straightforward way is to check convergence of the DMD solution within the

training region as d is gradually increased in steps. Note that very high value of d

might be computationally restrictive.

Another key parameter is the end point tf for the training region or the DMD

window. The quality of the training data is critical to the success of any data-driven

method. In typical DMD applications, the transient region is conveniently ignored to

ensure stability and good extrapolation accuracy for long-term predictions. However,

in order to truly leverage the extrapolation ability of DMD, it is important to identify,

in real-time, the onset of equilibrium or pseudo or quasi equilibrium dynamics. In

a cavity, after the transient phase is over, the oscillating EM fields in a source free

region can be expressed as

e(t) =
M∑

m=1

ãme
−αmt cos(ωR,mt+ θ), (4.34)

where ãm ∈ RN and αm, ωR,m ∈ R+. Equation (4.34) is merely another way of

representing the same fields as in (4.23), with αm and ωR,m corresponding to the real

(imaginary) and imaginary (real) part of ω̃m (ωm). When αm ̸= 0 (lossy cavity), the

system is strictly not in equilibrium as the fields gradually decay with time. But since
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αm and ωm remain constants after the cavity modes have settled in, we refer to this

state as quasi equilibrium. We use the on-the-fly algorithm described in algorithm

3 for real-time detection of quasi equilibrium.

4.4 DMD Applied to Cavity Fields

We first demonstrate our DMD assisted FDTD/FETD scheme (Fig .4.1) for two

simple test cases, i) closed cylindrical cavity and ii) closed rectangular cavity with

lossy dielectric. Since the theoretical solution for resonance frequencies and mode

shapes are available for canonical geometries, it is easier to check the sanity of the

extracted DMD modes and frequencies. Next we demonstrate our method for a

complicated L-shaped cavity with slot, and a coaxial cavity. Note that first three

examples are simulated using in-house FDTD code, whreas coaxial cavity is simulated

using CST software. In order to make it more challenging, we place a metal object

inside the L-shaped cavity with partial dielectric loading and model the fields only

over a two-dimensional (2-D) cross-section. Note that for all the test case we are

interested in modeling the time evolution of z−directed electric field ez using DMD.

In the context of 2.2, x = ez = [ez,1 ez,2 . . . ez,N ]
T, where superscript ‘T’ denotes

transpose and ez,i represent the z−directed electric field at ith grid point in space

(i = 1, 2, . . . , N).
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(a) Cylindrical cavity dimensions. (b) Snapshot of ez at 23.69 ns.

Figure 4.2: Closed cylindrical cavity test case

4.4.1 Closed Cylindrical Cavity

A closed cylindrical cavity of length 40 cm and radius 10 cm (Fig. 4.2a) is

simulated using an in-house FDTD code for 5× 105 time steps (t = 370.13 ns) with

step size of ∆t = 0.740 ps. The cavity is excited using a z−directed electric field

source having the profile of a Gaussian pulse with center frequency of 2 GHz and

1 ns pulse width (Fig. 4.3). The walls are made of aluminium with conductivity

σwall = 3.7 × 107 S/m , relative permittivity ϵr,wall = 1.7 and relative permeability

µr,wall = 1. Inside of the cavity is vacuum/air with ϵr,cav = µr,cav = 1 and σcav = 0.
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Figure 4.3: Frequency response for closed cylindrical case.

We are interested in modeling the time evolution of z−directed electric field (Fig.

4.2b) inside the entire cavity using DMD. The frequency response of the cavity is

shown in Fig. 4.3, where FFT of 20 random points in space are averaged to generate

the receiver FFT plot.

On-the-Fly DMD

The on-the-fly (online) DMD algorithm 3 is applied with ∆tw = 51.68 ns, ∆t =

0.15 ns, d = 10, and tqry = 222.07 ns. The equilibrium is detected at tf = 64.63

ns, flagging the end of FDTD simulation. The final window of the sliding-window

which spans from t0 = tf −∆tw = 12.95 ns to tf = 64.63 ns, is used to extrapolate

ez beyond tf , and extract relevant features for analysis purpose.
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(a) Singular values (b) DMD eigenvalues.

Figure 4.4: Singular values and DMD eigenvalues for the closed cylinder case (Fig. 4.2).
DMD eigenvalues are color-coded according to the normalized energy of the corresponding
DMD modes.

Analysis

The sharp decay in singular values (Fig. 4.4a) indicates an underlying lower-

dimensional structure, which is further validated by Fig. 4.3 which shows that finite

number of cavity modes dominate the dynamics. Fig. 4.6 shows the first eight

most energetic2 DMD modes. The corresponding DMD eigenvalues are shown in

Fig. 4.4b. Eigenvalues lying on or inside the unit circle (black) ensures stability

for the reduced-order time-extrapolation (note that DMD eigenvalues are related to

the DMD frequencies). Due to numerical noise, some of the DMD eigenvalues might

2The energy of a DMD mode is calculated by averaging the 2-norm of the DMD modes over all
the time-samples inside the DMD window.
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Figure 4.5: Correlation coefficient among DMD modes for closed cylindrical case.

lie outside the unit circle, causing instability. For our application, before perform-

ing the time-extrapolation, in order to ensure stability for long-term predictions,

we force those eigenvalues radially to place them on the unit circle. As we see in

Fig. 4.6, the extracted DMD modes resemble the familiar TMnpq modes (n, p and q

corresponds to ϕc, ρc and z direction, not to be confused with the time step n and

other indices used earlier) of a closed cylindrical cavity. This becomes obvious when

we compare the corresponding DMD frequencies (fDMD) with the theoretical ones

(ftheo) and the FFT peaks (fFDTD) obtained from long run of FDTD (Fig .4.3). This

is summarized in table 4.1, where we compare the frequencies of the top eight most

energetic DMD modes corresponding to almost 90% of the total energy. The cross

correlation coefficient between the DMD modes (Fig. 4.5) further supports the claim
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Figure 4.6: First six most energetic DMD modes for the setup in Fig. 4.2. The DMD
modes resemble typical transverse magnetic (TM) modes of a closed cylindrical cavity.
Mode 1 (ϕ1) resembles TM111 mode, ϕ2 TM112 mode and so on.

that DMD modes are indeed the same as cavity modes. Since the cavity modes are

spatially orthogonal to each other, ideally we expect all the off-diagonal elements in

Fig. 4.5 to be zero. However, similar to other data-driven methods, DMD is also

prone to numerical noise and it is essentially a reduced-order approximation of the

original physics. For the first 16 DMD modes, which corresponds to > 90% of the
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total energy, the cross correlation is approximately zero. Beyond that the numeri-

cal noise and artifacts start corrupting the correlation values. We take the absolute

value of the well-known modal assurance criterion (MAC) [74, 47] as our correlation

coefficient for correlating two spatial modes ϕi and ϕj ,

MAC(ϕi,ϕj) =

∣∣ϕT
i ϕ

∗
j

∣∣2
(ϕT

i ϕ
∗
i ) · (ϕT

j ϕ
∗
j)
. (4.35)

Figure 4.7: FDTD vs DMD prediction for closed cylindrical cavity.

Time-Extrapolation

The extracted DMD modes (ϕi) and frequencies (ω̂i) are used for time-extrapolation

of ez beyond tf (FDTD termination). The long-term DMD prediction matches well

with the FDTD result as can be seen in Fig. 4.7. The relative 2-norm (|| · ||2) error

82



Figure 4.8: DMD reconstruction error for closed cylindrical cavity.

in DMD reconstruction is given by,

δ(n) =
||ê(n)z − e

(n)
z ||2

⟨||e(n)z ||2⟩[n0,nex]

, (4.36)

where ⟨·⟩[n0,nex] denotes average over [n0, nex] time steps with n0 being the discrete

equivalent of t0 and nex being the time step upto which we wish to check the extrap-

olation accuracy. Fig. 4.8 shows the DMD extrapolation error around 1%, which is

sufficient for most applications. One of the motivations for rapid time-extrapolation

is to facilitate the frequency domain analysis. High resolution in the frequency do-

main requires large number of time steps, in other words, long simulation time. Short

run of FDTD/FETD simulation results in a coarse FFT plot which might not be

accurate, as can be seen (blue curve) in Fig. 4.9. However, with the help of DMD

extrapolation, even with short run of FDTD, we get very accurate FFT plot, as
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Figure 4.9: FFT with DMD extrapolated fields for closed cylindrical case.

suggested by the close overlap of the red dashed line (DMD-FFT) with the black one

(long run of FDTD) in Fig. 4.9.

4.4.2 Closed Rectangular Cavity

A closed rectangular cavity of dimension 40 cm × 20 cm × 10 cm (Fig. 4.10) is

simulated using the in-house FDTD code for 6× 104 time steps (t = 491.08 ns) with

the step size of ∆t = 8.185 ps. The walls are made of aluminum and inside of the

cavity is filled with a dielectric material with ϵr,cav = 2.5 and µr,cav = 1. We introduce

loss through non-zero value of conductivity for the dielectric, σcav = 0.0005 S/m. A

z−directed current source is used to excite the cavity. The excitation waveform is a

Gaussian pulse with center frequency of 2 GHz and pulse width of 3 ns (Fig. 4.11).
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Table 4.1: Comparison between FDTD, DMD and theoretical resonance frequencies
for closed cylinderical cavity. The frequency of ith DMD mode is denoted by fi.

fFDTD (GHz) fDMD (GHz) ftheo (GHz)

1.864 1.865 (f1) 1.866 (TM111)

1.975 1.974 (f2) 1.976 (TM112)

2.145 2.144 (f3) 2.146 (TM113)

1.826 1.827 (f4) 1.828 (TM110)

2.361 2.362 (f5) 2.364 (TM114)

2.475 2.476 (f6) 2.479 (TM211)

1.886 1.886 (f7) 1.888 (TM014)

1.605 1.605 (f8) 1.606 (TM013)

This particular test case is carefully chosen since it reveals DMD’s strength and

limitations in the following ways,

• The theoretical expressions for resonance frequencies and mode shapes are

available for a rectangular cavity. Thus, it is easy to check whether the ex-

tracted DMD modes and frequencies resemble the cavity modes and resonance

frequencies.

• It helps us demonstrate the effectiveness of our proposed DMD assisted FDTD

scheme for decaying fields (pseudo-equilibrium).
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Figure 4.10: Closed rectangular cavity dimensions. Length is 40 cm, width is 20 cm
and height is 10 cm. Source is located at the bottom, 4.5 cm far from each side of a
corner.

• It addresses the issue of degenerate modes, a scenario where DMD modes do

not necessarily represent the cavity modes. However, we will see that it does

not affect DMD’s extrapolation accuracy.

• It helps us showcase how we can extract Q−factors of individual modes by

analyzing the DMD frequencies only.

On-the-Fly DMD

With ∆tw = 102.80 ns, ∆t = 0.196 ns, d = 20, and tqry = 409.22 ns, equilibrium

is detected at tf = 128.50 ns. The final sliding DMD window spans from t0 = 25.70

ns to tf = 128.50 ns, which is used for analysis and time-extrapolation purpose.
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Figure 4.11: Frequency response for closed rectangular cavity.

Analysis

Most of the analysis is similar to the cylinder case, except the fact that in this

case the dominant eigenvalues lie just inside the unit circle to capture decaying fields.

The top five most energetic DMD modes are shown in Fig. 4.12. As expected, the

DMD modes resemble the usual TMmnp modes of a closed rectangular cavity, however

with the exception of mode 1 (ϕ1).

Degenerate modes: The ambiguity in shape of ϕ1 arises from the degeneracy of

some of the cavity modes. Since the dimensions of the cavity are integer multiples of

each other, several cavity modes share common resonance frequencies. For example,

TM341 and TM261 both have resonance frequency of 1.954 GHz (table 4.2). The
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Figure 4.12: DMD modes and cross-correlation matrix (bottom right) for the setup in
Fig. 4.10. First three most energetic DMD modes which resembles TM modes for a closed
rectangular cavity. Mode 2 (ϕ2) resembles TM351, ϕ3 TM360 and so on.

corresponding DMD mode ϕ1 has the DMD frequency (ω̂1) of 1.952 GHz which very

close to the theoretical value. However, the shape of ϕ1 is neither of TM341 or TM261,

rather a linear combination of both the patterns. Let us consider ith and jth modes

in (4.23) to be degenerate with common frequency ω̃ij. We can combine these terms

together to get a new mode shape (ai+aj) associated with eω̃ijt. Since DMD ensures

temporal orthogonality, it extracts (ai + aj) as the spatial pattern associated with
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Table 4.2: Comparison between FDTD, DMD and theoretical resonance frequencies.
The frequency of ith DMD mode is denoted by fi.

fFDTD (GHz) fDMD (GHz) ftheo (GHz)

1.951 1.952 (f1) 1.954 (TM341,261)

2.078 2.077 (f2) 2.080 (TM351)

2.007 2.007 (f3) 2.011 (TM360)

1.906 1.906 (f4) 1.911 (TM270)

1.848 1.848 (f5) 1.851 (TM350)

ω̃ij. This claim is further strengthened by the zero (or near zero) correlation (Fig.

4.12) of ϕ1 with other DMD modes, suggesting that ϕ1 must be linear combination

of cavity modes which are mutually orthogonal in nature. Note that TM351 and

TM132 are also degenerate in nature with common resonance frequency of 2.080 GHz

(Table 4.2). However, DMD does not mix those modes since they are not exactly

same. The Yee’s FDTD implementation considers staggered grid points for ez in the

z− direction, resulting in slight mismatch when the index “p” in TMmnp differs for

any set of degenerate (theoretically) modes. Similar observations can be made for

other modes as well. Note that the theoretical values in 4.2 were calculated without

taking into consideration the lossy material. As a result, they are slightly shifted

from fFDTD and fDMD.
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Q−factor extraction: Electric fields inside the cavity in a source free re-

gion can be described by (4.34). The Q−factor for mth mode is given as, Q =

|ωm,R/(2αm)|. With respect to (4.23), a more familiar expression for Q-factor would

be Q = |Re{ωm}/2Im{ωm}| = |Im{ω̃m}/2Re{ω̃m}|. Since the DMD frequencies are

also complex in nature and approximate the resonance frequencies ω̃, we can write

the Q−factor in terms of real and imaginary parts of the DMD frequency ω̂. The

Q−factor for mth cavity mode which corresponds to the m̂th DMD mode, can be

written as

Qtheo
m =

∣∣∣∣ Re{ωm}
2Im{ωm}

∣∣∣∣ = ∣∣∣∣ Im{ω̃m}
2Re{ω̃m}

∣∣∣∣ ≈ ∣∣∣∣ Im{ω̂m̂}
2Re{ω̂m̂}

∣∣∣∣ = QDMD
m̂ (4.37)

Table 4.3: Comparison between theoretical Q−factor and Q−factor derived from
DMD frequencies.

TM341 TM351 TM360 TM270 TM350

Qtheo 543.64 578.50 559.40 531.51 514.90

QDMD 542.95 577.73 558.37 530.34 514.08

The Q−factor derived from DMD frequencies matches very closely with the the-

oretical ones (Table 4.3).
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Figure 4.13: DMD reconstruction error for closed rectangular cavity.

Figure 4.14: FFT with DMD extrapolated fields for closed rectangular cavity.
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Time-Extrapolation

The relative error in the extrapolation region is much below 1% (Fig. 4.13),

indicating DMD modes are able to capture the dynamics accurately. This is also

reflected in the accurate reconstruction of the high-resolution FFT plot in Fig. 4.14.

4.4.3 L-Shaped Cavity

Figure 4.15: L-shaped cavity dimensions.

Next we consider a more complicated and practical test case scenario of a L-

shaped cavity with slot. In order to make it more challenging, we put a metal

object inside it with dielectric loading, with the aim of modeling ez on the xy-plane

(horizontal plane) passing through the slot, metal object and the dielectric. The

whole setup is illustrated in Fig. 4.15. The width of the slot is 4 cm and the center
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Figure 4.16: Frequency response for L-shaped cavity.

of the slot is located 8.5 cm away from the far end of the shorter arm and 6.5 cm

above from the bottom of the cavity. The metal block has dimension of 3.5 cm

×2.5 cm ×1.5 cm along x, y and z−direction respectively and located just after the

dielectric block (ϵr,block = 2.5) along y− direction. The center of the block is located

4.5 cm above the cavity bottom and 8.5 cm from the side wall (closer to the slot)

of the long arm. Both the metal block and the cavity walls are made of aluminum.

The cavity is excited with a z−directed current source from outside the cavity. The

fields couple through the slot and excites cavity modes. The simulation is run for

6× 104 time steps (t = 491.08 ns), and the frequency response is shown in Fig. 4.16.

This example is particularly challenging for following reasons,
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Figure 4.17: First three most energetic DMD modes and spatial correlation matrix for the
setup in Fig. 4.15. The boundary between the dielectric block and rest of the cavity is
shown by black dotted line, whereas the metal block is denoted by a rectangle.

• The open slot radiates, resulting in more continuous frequency response, which

is not necessarily favourable for DMD, since it attempts to model the time

evolution with finite number of discrete frequencies (DMD frequencies).
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Figure 4.18: DMD reconstruction error.

• Multiscale nature of the dynamics due to presence of a dielectric block, and

metal object makes the modeling task challenging.

• The fields are observed only on a cross-section of the cavity. Modeling partial

state using a linear model such as DMD poses certain challenges which were

discussed in sec. 4.2.2.

On-the-Fly DMD

With ∆tw = 92.52 ns, ∆t = 0.213 ns, d = 20, and tqry = 409.24 ns, equilibrium is

detected at tf = 328.78 ns. The final sliding DMD window spans from t0 = 236.26 ns

to tf = 328.78 ns, which is used for analysis and time-extrapolation purpose. Note
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Figure 4.19: FFT with DMD extrapolated fields.

that due to complex geometry and time taken by the cavity modes to settle in, the

pseudo-equilibrium is detected much later compared to the earlier test cases.

Analysis and Time-Extrapolation

Fig .4.17 shows the first three most energetic DMD modes and spatial correlation

among different DMD modes. We observe that DMD modes are able to capture

the multiscale phenomena, especially mode 3 (ϕ3) which captures the oscillations

inside the dielectric block. However, correlation matrix has several non-zero off-

diagonal elements, indicating not all the DMD modes corresponds to the cavity

modes. However, this is expected in the presence of a radiating slot. Total 63 DMD

modes are utilized to approximate the dynamics.
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Figure 4.20: FDTD vs DMD prediction of ez at t = 486.17 ns.

DMD’s difficulty in modeling the dynamics is reflected in the extrapolation error

in Fig. 4.18 which is around 8.83%, higher compared to previous test-cases. However,

this is good enough for accurate reconstruction of the high-resolution FFT graph as

can be seen in Fig. 4.19. The predicted ez pattern also matches closely with that

from FDTD in the deep extrapolation region (Fig. 4.20).

4.4.4 Coaxial Cavity

We also test our method on data generated from commercial software like CST

Studio Suite. We simulate a coaxial cavity resonator (4.21) which is typically used

in filter design. The cavity is excited with a z-directed current source spanning from

top to bottom of the cavity. The excitation signal is a Gaussian pulse spanning 4
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GHz - 10 GHz frequency band. The walls of the cavity are 1 mm thick and have

conductivity of σ = 37.7 × 106 S/m. Inside of the cavity is filled with vacuum/air.

The simulation is run until 60 ns in CST, and fields are sampled at every 0.01 ns. We

are interested in modeling the z-directed electric field on the xy plane 5 mm above

the bottom of the cavity.

Figure 4.21: Dimensions of the coaxial cavity geometry. The figure on the right shows the
top view. All the units are in mm. The z-directed current source (blue line (left), red cross
(right)) spans from the top to bottom of the cavity.

With ∆tw = 13.55 ns, ∆t = 0.04 ns, d = 20, and tqry = 60 ns, equilibrium is

detected at tf = 16.95 ns. A total of 74 DMD modes are used for time extrapolation

beyond the final DMD window. The DMD modes and frequencies are compared

with the resonant modes and frequencies obtained from CST’s eigenmode solver.

Comparison for first three most energetic DMD modes are provided in Fig 4.22.

The DMD modes and frequencies are in good agreement with the eigenmodes and
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Figure 4.22: Comparison between cavity modes and frequencies obtained from DMD and
CST. DMD mode 1 is shown at the top and mode 2 at bottom.

frequencies obtained from CST. Fig. 4.23 shows that the average extrapolation error

is below 1%.
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Figure 4.23: Relative 2-norm error in the extrapolation region for coaxial cavity.

4.4.5 Effect of d

One of the key parameters for Hankel-DMD is the number of stacks d. As men-

tioned earlier, there is no straight-forward way to select d. For a large number of

training samples typically larger d results in better accuracy, but with higher com-

putation cost. We study the effect of d on our proposed DMD-FDTD algorithm for

L-shaped and coaxial cavity. First, we observe the effect of d on detection of pseudo-

equilibrium. Second, we keep the window location and other parameters fixed and

vary d to observe the variation in average extrapolation error ⟨δ⟩ext (δ(n) averaged
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Figure 4.24: Effect of different values of d on (a) pseudo-equilibrium detection (tf ), and
(b) average extrapolation error ⟨δ⟩ext.

over all n beyond the DMD window). Since DMD is typically able to model the dy-

namics better with large d, we expect to see convergence in tf as well with ⟨δ⟩ext (Fig.
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4.24). Convergence characteristics for the L-shaped cavity are not ideal, primarily

because of the modeling difficulty due to several reasons as mentioned in Section

4.4.3.

4.5 Computational Gain, Stability and Error Bounds

The computational complexity of FDTD/FETD algorithm for each time step is

O(N), N being the aggregate mesh dimension, i.e. the number of mesh elements.

For query at n = nqry, total computational complexity is given by O(nqryN).

The computation cost of DMD is dominated by the SVD step (2.19). For (l+ 1)

DMD snapshots, and d stacks, the runtime complexity of DMD is O(ld2N2). Note

that for our proposed DMD assisted FDTD/FETD scheme, we need to perform DMD

several times due to the on-the-fly nature of our algorithm. Since the equilibrium or

pseudo-equilibrium is detected at nf , number of times DMD is performed is nf−nw+1

∆n
.

For conciseness, we consider the upper bound nf

∆n
as the number of times we need

to perform DMD for online or on-the-fly application. The computation complexity

for on-the-fly DMD is then given by O(
ld2N2nf

∆n
). Comparing it with FDTD time

complexity of O(nqryN), we can conclude that the DMD-FDTD or DMD-FETD

scheme will be useful if nqry ≫ nf . Note that the computation cost for on-the-fly

DMD can be further reducd using incremental approaches [70]. The gain in runtime is

summarized in Table 4.4 when nqry = 5×105 for cylindrical cavity and nqry = 6×104

for rectangular and L-shaped cavity. For the coaxial example, we choose nqry = 6001.

The DMD-FDTD runtime is derived by calculating the time FDTD would take if it
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Table 4.4: Computational gain in runtime using DMD-FDTD

Test-cases FDTD runtime
(mins)

DMD-FDTD runtime
(mins)

Cylindrical cavity 1959 347

Rectangular cavity 224 64

L-shaped cavity 435 301

Coaxial cavity (CST) 4 1.47

was stopped at nf , and then adding the approximate DMD runtime in MATLAB.

Note that the computational gain depends on the time step up to which it is desired

to extrapolate. The gain in runtime is not large for L-shaped cavity 4.4, because the

system takes longer time to attain pseudo equilibrium compared to the other cases.

As a result, raising the FDTD termination flag is delayed. With nqry ≫ nf , the

numbers in Table 4.4 will look more favourable towards DMD-FDTD, as long as the

long-term predictions satisfy a certain error criterion.

The stability of the DMD model depends on the relative position of DMD eigen-

values (λi, i = 1, 2, . . . , r) compared to the unit circle on the complex plane. The

eigenvalues residing outside the unit circle essentially translate to positive real part

for ω̂ in (2.23), resulting in an exponentially growing solution with time. However,

for our application, we force the λi s residing outside the unit circle radially inwards
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to lie exactly on the unit circle. As a result, our method does not suffer from insta-

bility. In other words, our proposed DMD-FDTD/FETD scheme is unconditionally

stable.

In order to apply any data-driven extrapolation method for practical systems,

it is useful to have prior insights regarding the error bounds. Although authors in

[131] provided error bounds for DMD extrapolation in the context of parabolic partial

differential equations (PDEs), to the best of the authors’ knowledge, error bounds for

general dynamical systems or hyperbolic PDEs are still undefined. However, DMD

is not entirely blackbox and users can look into certain parameters to get some idea

regarding the extrapolation accuracy of DMD. Typically, the extrapolation error is

higher than the interpolation error (DMD reconstruction error inside DMD window)3.

So, if the interpolation error is higher than acceptable error limit (defined by user),

it is not wise to use DMD for extrapolation. A similar conclusion can be made by

observing the term ⟨δ(n)⟩w as well. For cavity resonances, the spatial correlation

matrix can give some idea whether DMD is able to extract the orthogonal cavity

modes or not. A “cleaner” (i.e. zero or near zero off-diagonal elements) correlation

matrix for the dominant modes is generally a good sign that DMD is able to model

the dynamics well.

3The extrapolation error in Fig. 4.13 goes down in the extrapolation region because of the
decaying field amplitudes. Typically as we go deep into the extrapolation region, the difference
between the ground truth and DMD prediction increases. But due to the decaying fields, as an
overall effect, the difference between ground truth and DMD decreases. Since the denominator in
the error expression is fixed, the overall relative error decreases.
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4.6 Summary

In this chapter, we discussed how a linear Koopman Reduced-Order Model (ROM)

such as DMD can effectively model electromagnetic cavity resonances, which are in-

herently linear. Using a linear ROM to model a linear system allows DMD to be

interpreted from a state-space modeling perspective for EM cavity problems, rather

than solely from a Koopman perspective. We showcased how Hankel DMD effectively

extracts physical cavity modes, corresponding resonance frequencies, and individual

Q-factors from only partial state observations. We also addressed scenarios where

the extracted DMD modes might not accurately reflect the actual cavity modes.

We demonstrated how DMD can accelerate FDTD/FETD-based simulations and

indirectly facilitate frequency domain analysis.
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Chapter 5: Modeling Self-Fields in Particle-in-Cell Plasma

Simulations using Dynamic Mode Decomposition

In this chapter, we will first discuss the details of EMPIC algorithm which is used

to generate the high-fidelity data. Then we will explore the effectiveness of DMD

in modeling the self-fields in EMPIC simulations and the effect of DMD predicted

fields on the particle phase-space. In order to minimize the computational cost,

ideally one would like to perform reduced-order modeling such as DMD using data

from high-fidelity simulations based on relatively short time windows and extrapolate

the results in future time. However, as is shown in this chapter, accurate prediction of

the equilibrium dynamics using data-driven methods such as DMD requires sufficient

data harvesting near equilibrium. As a result, a related important question to be

addressed is how to leverage DMD to optimally predict the equilibrium state. In

this chapter, We will use an on-the-fly DMD algorithm discussed in Chapter 3 for

real-time termination of EMPIC simulations. This chapter is based on [47, 49].
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5.1 EMPIC Algorithm

5.1.1 Overview

EMPIC algorithms have been widely used for collisionless plasma problems for

their ease of implementation and their ability to accurately capture transient and

nonlinear effects. There are many EMPIC algorithm variants [132, 133, 134, 135,

136, 15]. However, at their core, any EMPIC algorithm implements a marching-

on-time evolution wherein, at each time step, four stages are involved (Fig. 5.1):

(i) field-update, (ii) gather, (iii) pusher, and (iv) scatter. These four stages are

executed in a cyclic fashion for every time step.

Within a EMPIC algorithm, the field-update solution of Maxwell’s equations

can be obtained by conventional partial-differential equation (PDE) solvers such as

finite differences or finite elements. The former is typically used in conjunction with

structured (regular) meshes and the latter with unstructured (irregular) meshes.

The fields E and B and the current density J are defined on mesh elements (element

edges and facets) whereas the (super)particles are defined on ambient space (i.e.

they can move continuously anywhere across the various finite difference or finite

element cells comprising the solution domain). This is where the “particle-in-cell”

terminology comes from [137].

Before delving into a more detailed discussion of the particular EMPIC algorithm

considered here, it is important to discuss the type of Maxwell field discretization
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scheme that we will employ. Depending on the chosen field discretization, the details

of the equations governing the four cyclic steps may vary.

The spatial domain of interest can be discretized by a structured (regular) mesh

or by an unstructured (irregular) mesh. A common example of a structured mesh is

a Cartesian one where each mesh element is a rectangle with identical dimensions.

On the other hand, unstructured meshes are typically comprise triangular elements

in two dimensions or tetrahedral elements in three dimensions. The shape of each

triangle or tetrahedron can vary so as to conform to the specific problem geome-

try. In general, structured meshes have certain advantages over unstructured meshes

such as simplified bookkeeping of the mesh elements and the local solution. How-

ever, unstructured meshes can better capture complex geometries and are free from

staircase errors. Unstructured meshes can also provide better grid (mesh) dispersion

performance in plasma problems and mitigate spurious numerical artifacts such as

artificial Cherenkov radiation [138].

One of the critical aspects related to the spatial discretization of EMPIC algo-

rithms based on unstructured meshes is charge conservation [139, 140, 141]. On the

finite element mesh, the macroscopic charge density ρq is a variable based on mesh

nodes and the macroscopic current density J is a variable based on mesh element

edges. Such an assignment choice is based on first-principle rules set by discrete

exterior calculus, as discussed in [142]. Both these macroscopic quantities need to be

computed numerically from the instantaneous positions and velocities of the charged
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(super)particles in ambient space. However, unless this calculation is performed in a

consistent manner, charge conservation can be violated. Indeed, many attempts at

developing unstructured mesh EMPIC algorithms over the years have led to viola-

tion of conservation laws and other spurious effects. Charge conservation has been a

especially challenging problem for unstructured mesh EMPIC algorithms because of

irregular connectivity among the mesh elements. Ad hoc approaches such as pseudo-

currents [140] or Poisson correction steps [139] have been utilized in order to enforce

charge conservation a posteriori; however, these approaches either subtly alter the

physics of the problem or call for an additional, time-consuming linear solver at each

time step. Recently, the problem of charge conservation was successfully resolved

from first-principles by employing Whitney forms as the correct finite-element ba-

sis functions to both represent the fields and macroscopic charges/currents as mesh

variables, and to project the effects of the movement of the ambient point charges

back onto the mesh variables during the scatter procedure [132]. Other variants

of first-principle conservation strategies in EMPIC algorithms have been considered

in [135, 141, 15]. In this chapter, we will follow references [132, 143, 144] and discuss

the implementation of a finite-element-based charge-conservation EMPIC algorithm

on unstructured meshes from first principles with a matrix-free field-update scheme.

This implementation is used to generate the full-order numerical results presented

later on in this Chapter. The key feature of Whitney forms is that they represent

consistent interpolants for discrete differential forms of various degrees representing
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the macroscopic variables ρq, J, E, and B on the mesh. In the language of the

exterior calculus of differential forms, the electric field intensity E is considered as a

differential form of degree one or 1-form, the magnetic flux density B as a 2-form,

and the (Hodge dual of the) current density J as a 1-form, and the charge density ρq

as a 0-form. A detailed discussion on discrete exterior calculus of differential forms is

out of scope for this chapter. The interested reader is referred to [145, 132, 146, 142]

for more details on this topic. We will next discuss a few important aspects which

are pertinent to explain the four cyclic procedures in the EMPIC algorithm and later

on to their relation to the reduced-order approaches.

In a nutshell, the present charge-conserving EMPIC algorithm on unstructured

meshes has been developed based on first principles. In each time step, the electric

field intensity values E (defined on element edge), and the magnetic flux density

values B (defined on element facet) are solved using a finite element time-domain

algorithm with a spatial discretization based on discrete exterior calculus approach

as mentioned above. The discrete time-update is based on a second-order leap-frog

algorithm ([143, 144]). The E and B fields are then interpolated at each particle po-

sition (gather) using Whitney forms, and used to update the position and velocity of

each particle via Lorentz force law and the kinematic equations of motion (pusher).

Finally, the motion of charged particles is mapped back to the mesh variables rep-

resenting the macroscopic current J and charge ρq densities (scatter). These steps
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are repeated again in the next time step. The details of each of these steps are as

follows:

Figure 5.1: Cyclic stages of the EMPIC algorithm at each time step.

5.1.2 Field Update Stage

In the present finite element setting, the electric field intensity E(n)(r) and the

magnetic flux density B(n+ 1
2
)(r) at the nth (half-integer time steps for B) time step

can be represented using vector proxies of the Whitney forms [147, 148, 149, 133] as

E(n)(r) =

N1∑
i=1

e
(n)
i W1

i (r), (5.1a)

B(n+ 1
2
)(r) =

N2∑
i=1

b
(n+ 1

2
)

i W2
i (r), (5.1b)
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where N1 and N2 denote, respectively, the total number mesh element edges and

mesh element facets. The basis functions W1
i (r) and W2

i (r) are the vector proxies of

Whitney 1- and 2-forms [147, 148]. These functions have a one-to-one correspondence

with the element edges and element facets of the mesh. The ei and bi coefficients are

the degrees of freedom (DoF) for the discretized E and B fields, respectively. For ease

of discussion, with mild abuse of language, we will refer to the above vector proxies

of Whitney forms simply as Whitney forms. Note that for a two-dimensional (2-D)

unstructured mesh composed of triangular elements, the mesh element facets are

simply the triangular elements themselves. One can similarly represent the electric

current density and the charge density on the mesh as

J(r)(n+
1
2
) =

N1∑
i=1

j
(n+ 1

2
)

i W1
i (r), (5.2a)

Q(r)(n) =

N0∑
i=1

q
(n)
i W0

i (r), (5.2b)

where N0 is the total number of nodes on the mesh and W0
i is a set of Whitney

0-forms having one-to-one correspondence with the mesh nodes, with ji and qi being

the DoFs for current density and charge density, respectively. From the above, it is

clear that the Whitney forms in (5.1) and (5.2) acts as basis functions in the usual

finite element context, and the unknown DoFs are simply the weights corresponding

to each basis function. Using the leap-frog discretization for the time derivatives

to construct the time update scheme, the following discrete Maxwell’s equations are
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obtained [132, 143, 133],

b(n+ 1
2
) = b(n− 1

2
) −∆tC · e(n), (5.3a)

e(n+1) = e(n) +∆t [⋆ϵ]
−1 ·

(
C̃ · [⋆µ−1 ] · b(n+ 1

2
) − j(n+

1
2
)
)
, (5.3b)

with constraints

S · b(n+ 1
2
) = 0, (5.4a)

S̃ · [⋆ϵ] · e(n) = q(n), (5.4b)

where e, b, j and q represent column vectors of DoFs, i.e. e = [e1 e2 . . . eN1 ]
T, b =

[b1 b2 . . . bN2 ]
T, j = [j1 j2 . . . jN1 ]

T, and q = [q1 q2 . . . qN0 ]
T, with ′T′ denoting the

transpose. In addition, C and S refer to the incidence matrices encoding the discrete

representation of the curl and divergence operators on the (primal) mesh while C̃ and

S̃ represent their counterparts on the dual mesh [146, 142, 150, 151]. These matrices

are related through C̃ = CT and S̃ = ST [150, 151]. The incidence operators are

metric-free in the sense that their elements are equal to 1, 0 or −1, depending on

the connectivity of mesh elements and their assigned relative orientation. Since, E,

B and J are directional in nature, ei, bi and ji are signed scalar quantities. We

should point out that J defined in (5.2a) and (5.3) is actually the Hodge dual of

2-form current density. In the language of differential forms, the current density is

a 2-form defined on the dual mesh facets, where as the dual of current density is a

1-form defined on the primal mesh edges (from the Hodge duality, there is a one-to-

one correspondence between dual mesh facets and primal mesh edges). However, to
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facilitate the discussion, we will again abuse the language slightly and refer to J as

the current density. Note that if the initial conditions satisfy the pair of equations

(5.4) (which correspond to the divergence constraints ∇ · B = 0 and ∇ · ϵ0E = ρq)

then these equations are automatically satisfied [143] at all subsequent times steps.

The metric information is encoded in the symmetric positive definite matrices [⋆µ−1 ]

and [⋆ϵ] in (5.3b), representing the discrete Hodge star operators [142, 133, 148]. One

of the features of (5.3) is the explicit nature of the field update, which obviates the

need for a linear solver at each time step. However, this comes at the one-time cost

of calculating the approximate inverse [⋆ϵ]
−1 in Eq. (5.3b). Instead of computing

[⋆ϵ]
−1 directly (which is computationally impractical for large problems), a sparse

approximate inverse (SPAI) can be precomputed with tunable accuracy [143, 133].

5.1.3 Field Gather Stage

As explained before, the DoFs of the fields and currents are defined on the mesh;

however, the particles can be anywhere in the solution domain. In order to model

the effect of fields on the charged particles, it is necessary to interpolate the fields at

the particle position. This is performed at the gather stage using the same Whitney

forms as in Eqs. (5.1a) and (5.1b). The fields at pth particle position rp are simply

given by

E(n)(rp) =

N1∑
i=1

e
(n)
i W1

i (rp), (5.5a)

B(n+ 1
2
)(rp) =

N2∑
i=1

b
(n+ 1

2
)

i W2
i (rp), (5.5b)
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5.1.4 Particle Pusher Stage

Once the fields are interpolated at the particle position, the position and velocity

of the particle can be updated using the Lorentz force equation and Newton’s laws of

motion, considering relativistic effects if necessary. The pth particle (or superparticle)

kinematic equations in the continuous time domain are given by

γ2p =
1

1− |vp|2/c2
(5.6)

drp
dt

= vp =
up

γp
, (5.7)

dup

dt
=

qp
m0

[E (rp, t) + vp ×B (rp, t)] , (5.8)

where rp, vp and qp denotes the position, relativistic velocity and charge of pth su-

perparticle. The velocity of light and relativistic factor are given by c and γp respec-

tively. Using a standard finite-difference approximation for the time derivatives, the

discrete-time version of (5.7) and (5.8) becomes

r
(n+1)
p − r

(n)
p

∆t
=

u
(n+ 1

2
)

p

γ
(n+ 1

2
)

p

, (5.9)

u
(n+ 1

2
)

p − u
(n− 1

2
)

p

∆t
=

qp
m0

(
E(n)

p +
ūp

γ̄p
×B(n)

p

)
, (5.10)

where v̄p denotes the mean particle velocity between the (n ± 1
2
)th time steps, and

given the mean up and mean γp, we set ūp = γ̄pv̄p. The mean velocity for non-

relativistic case (γp → 1) is simply v̄n
p = vn

p =
(
v
n+ 1

2
p + v

n− 1
2

p

)
/2. In the relativistic

regime, however, the mean velocity v̄p should be calculated carefully. The reader is

referred to [144] for more details on the different types of relativistic pushers.
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5.1.5 Current and Charge Scatter Stage

In the scatter stage, the effect of the collective movement of charged particles are

mapped back to currents defined on the element edges of the mesh, and mapped to

charges defined on the mesh nodes. This mapping is performed using the Whitney

forms to ensure consistency, and in particular, charge conservation on the mesh.

The charge density is assigned to the mesh nodes from the instantaneous positions

of the charged particles using Whitney 0-forms, whereas Whitney 1-forms are used to

map current density to mesh element edges from the trajectory traversed by charged

particles during a single time step [132, 143].

The total charge assigned to the ith node at the nth time step is calculated as

follows

q
(n)
i =

∑
p

qpW
0
i (r

(n)
p ) =

∑
p

qpλ̂i(r
(n)
p ), (5.11)

where the summation index p runs over all the Np superparticles, qp is the charge

and r
(n)
p is the position of the pth superparticle at the nth time step, W0

i represents

the Whitney 0-form or equivalently, the barycentric coordinate λ̂i(rp) of the point

rp with respect to the ith node. Similarly, the current density generated at mesh

element edges due to movement of charged particles are calculated using Whitney

1-forms. Let us consider the pth (super)particle moving from r
(n)
p to r

(n+1)
p during

one time step (comprising ∆t time duration). The current density j(n+
1
2
)

ij,p generated
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due to movement of the pth particle4 at the ijthedge (indexed by its two end nodes,

ith and jth nodes) is given in terms of the line integral of the Whitney 1-form along

the path from r
(n)
p to r

(n+1)
p , i.e.

j
(n+ 1

2
)

ij,p =
qp
∆t

ˆ r
(n+1)
p

r
(n)
p

W1
ij(rp) · dl

=
qp
∆t

[
λ̂i(r

(n)
p )λ̂j(r

(n+1)
p )− λ̂i(r

(n+1)
p )λ̂j(r

(n)
p )
]
, (5.12)

where W1
ij(rp) is the Whitney-1 form with respect to ijth edge calculated at rp.

In the above, we have used the standard relation between Whitney 1-forms and

Whitney 0-forms to evaluate the integral in closed form [132]. The total current

density generated at the ijth edge is obtained by summing the contributions from all

superparticles:

j
(n+ 1

2
)

ij =
∑
p

qp
∆t

[
λ̂i(r

(n)
p )λ̂j(r

(n+1)
p )− λ̂i(r

(n+1)
p )λ̂j(r

(n)
p )
]
. (5.13)

It can be shown that due to this intrinsic relation between Whitney-1 and 0 forms,

the following discrete charge continuity equation (5.14) is always satisfied

q(n+1) − q(n)

∆t
+ S̃ · j(n+

1
2
) = 0. (5.14)

For more details, the reader is referred to [144, 132].

5.1.6 Computational Challenges

High-fidelity EMPIC simulations in general suffer from high runtime and large

memory requirements. Along with the potentially large number of mesh elements,
4Note that the jij in (5.13) and ji in (5.2a) represent the same quantity. The only difference is

how we index the mesh element edge over which j is defined. In (5.13) we use the indices of the
two end nodes to index an mesh element edge, while we directly use edge indices in (5.2a).
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the position and velocities of thousands or millions of superparticles need to be stored

in memory to execute each time step.

The computational complexity of a typical EMPIC algorithm for each time step

is given by O(N s+Np) [152], where N is the aggregate mesh size and Np is the total

number of superparticles. The specific dependence of computational complexity on

the mesh size depends on the particular choice of field update scheme (5.3). Typically

for implicit field updates, s ≥ 1.5. However, for an explicit field-update scheme such

as in (5.3), s = 1. Depending on the problem setup, especially if the solution domain

is large, resulting in large N , the repeated solution of (5.3) for many time steps can

pose significant computational challenges.

The dependence onNp arises from the EMPIC stages involving the superparticles,

namely, the gather, pusher and scatter stages. These stages require the EMPIC

algorithm to perform computations across the entire set of superparticles at any

given time step. Although these computations are embarrassingly parallelizable,

they can become a serious bottleneck unless a extremely large number of processors

are available. Typically, the number of superparticles is far greater than the number

of mesh elements (Np ≫ N), resulting in O(N + Np) ≈ O(Np). In other words,

the cost of superparticles computations can dominate the computational burden of

EMPIC simulations in serial computers.
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5.2 DMD Applied to EMPIC Self-Fields

In this section, the effectiveness of DMD in the modeling and prediction of self

electric fields as well as its effect on the particle dynamics is demonstrated. The

proposed equilibrium detection algorithm is discussed in details in Chapter 3. This

section presents three test cases. The first two examples consider a two dimensional

(2-D) plasma ball expansion and an oscillating electron beam respectively. We es-

tablish the effectiveness of DMD in extracting low dimensional key features from

self electric field data e(t) of EMPIC kinetic plasma simulations and reconstruct the

data with good accuracy. Finally, we investigate the extrapolation accuracy beyond

the detected equilibrium point for both the predicted fields as well as the particle

dynamics. The final example deals with virtual cathode formation, where the main

focus is on the accuracy of predicted self-fields and its effect on particle dynamics.

We treat the data generated from high-fidelity EMPIC simulation as the “ground

truth” to evaluate DMD performance. Nevertheless, for long-term predictions, we

should keep in mind that long simulation runtimes might introduce numerical noise

in high-fidelity data queried at later time due to “numerical heating” effects [153].

Due to this and other sources of numerical error mentioned earlier, some of the

dominant DMD eigenvalues might not lie exactly on the unit circle. After detecting

equilibrium and before extrapolation, we adjust the dominant DMD eigenvalues in

the radial direction so that they are exactly on the unit circle. Note that for all the

cases we use two Hankel stacks, i.e. d = 2.
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5.2.1 Plasma ball expansion

The solution domain is a L × L square two-dimensional cavity (L = 10 m: see

Fig. 5.2a). It is discretized using an irregular triangular mesh with N0 = 8037

nodes, N1 = 23797 edges and N2 = 15761 triangles. Superparticles are initially

placed at the center of the cavity within a circle of radius 0.5 m. The plasma ball

is initially assumed to be neutral as each electron-ion pair is initially located at the

exact same position. All four sides of the cavity are assumed to be perfect magnetic

conductors (PMC). Superparticles are given an initial radial velocity with Maxwellian

distribution. The time step interval is 0.1 ns and each superparticle represents 2×105

electrons. Superparticles are absorbed as they hit the boundary. We store the data

at every 500th time steps until n = 500000.

Self Electric Field Reconstruction

In equilibrium, the self electric field attains a steady state with a constant spatial

configuration (Fig. 5.2a). For extracting low-dimensional features in equilibrium

through DMD, we harvest data from n = 200500 to n = 275000 with interval ∆t =

100 ns between consecutive snapshots. A selection of r = 19 leads to 12 DMD modes,

effectively reducing the degrees of freedom from 23797 to only 12. Fig. 5.2b shows

the exponential decay of singular values, revealing the dominance of a single mode.

The DMD eigenvalue distribution in the complex plane and dominant stationary

mode (ϕ(ss)
1 ) field configuration are shown in Fig. 5.3. The modes are numbered

according to their energy content (|Am|2), with ϕ(ss)
1 being the most energetic mode.
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(a) (b)

Figure 5.2: (a) Snapshot of plasma ball expansion at n = 400000 in a square cavity. The
yellow dots represent superparticles and magenta arrows show the self electric field quiver
plot. (b) Normalized singular values from SVD of snapshot matrix in equilibrium state.

With increasing mode indices (decreasing energy), the field configuration becomes

more random, as can be observed in the recessive modes (Fig. 5.4).

For comparison, we also perform DMD in the transient state with the harvesting

region spanning from n = 500 to n = 75000, snapshots ∆t = 100 ns apart. We choose

r = 27, giving us 15 DMD modes. For comparing the spatial configuration of DMD

modes, we plot the absolute value of MAC (ρ) in a matrix form in Fig. 5.5. Unlike

other projection-based reduced order model techniques such as the proper orthogonal

decomposition (POD), DMD does not enforce orthogonality of modes in the spatial

domain, which explains the presence of nontrivial off-diagonal elements. At the same
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(a) (b) ϕ
(ss)
1

Figure 5.3: (a) DMD eigenvalues in the complex plane. The green circle denotes the
dominant mode and black curve indicates the unit circle. (b) Dominant mode ϕ(ss)

1 . The
blue arrows show the self electric field quiver plot. The colormap indicates logarithm (base
10) of amplitude.

time, Fig. 5.5 reveals a clear distinction among various equilibrium DMD modes. On

the other hand, transient-state DMD modes are less distinguishable from each other

due to more complex dynamics. The 2-norm relative error in reconstructed self

electric field is shown in Fig. 5.6 for different sampling rates. The 2-norm relative

error in DMD reconstruction (ê) compared to the full-order solution (e) at nth time

step (δ(n)) is given by,

δ(n) =
||ê(n) − e(n)||2

||e(n)||2
. (5.15)

122



(a) ϕ(ss)
2 (b) ϕ(ss)

3

(c) ϕ(ss)
4 (d) ϕ(ss)

5

Figure 5.4: First four recessive DMD modes for plasma ball in equilibrium.

As expected, decreasing sampling interval ensures better accuracy, but the solution

diverges more rapidly in the extrapolation region. Note that the surprisingly good

performance for ∆t = 200 ns in Fig. 5.6a can be attributed to the aliasing effect
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(a) Transient state DMD modes (b) Equilibrium state DMD modes

Figure 5.5: (a) Absolute value of MAC coefficient ρ between transient state DMD modes.
(b) Coefficient ρ between equilibrium state DMD modes.

for this particular sampling interval. The ∆t = 200 ns case is an anomaly for which

the DMD frequencies are such that it produces a stable solution with relative error

oscillating around a fixed value. This is further confirmed by the fact that the ∆t =

250 ns case continues to follow the trend as shown by the ∆t = 50 and 100 ns cases.

Higher error at the beginning of the simulation can be attributed simply to the very

low field magnitudes then, causing a spike in the relative error. The extrapolation

error is higher for transient state DMD compared to DMD in the equilibrium state,

which further evokes the need to correctly determine the equilibrium state for good

prediction accuracy.
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(a) Transient state DMD (b) Equilibrium state DMD

Figure 5.6: (a) 2-norm relative error when the DMD window (green shaded area) is in the
transient region. (b) 2-norm relative error when the DMD window (green shaded area) is
in the equilibrium region.

Sliding-Window DMD

In the plasma ball expansion case, the self-fields attain a non-oscillatory steady

state in equilibrium. This makes the prediction task trivial once equilibrium is de-

tected and presents an opportunity to verify the accuracy of the equilibrium detection

algorithm. First, we discuss the robustness of our algorithm with respect to the sam-

pling interval and sliding window width. Then, the convergence of dominant mode

shapes and accuracy of predicted particle dynamics is presented.
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Figure 5.7: Variation in α(∆tw) as the window slides towards the equilibrium state for
∆t = 100 ns.

Equilibrium Detection: Algorithm 2 is used for identifying the onset of equi-

librium state with βthr = 0.01 and δtw = 200 ns. In this case we know that the

fields will eventually attain steady state without limit-cycle oscillations, whereby the

selection of ∆tw is not a critical factor. We choose ∆tw = 3 µs with 30 snapshots

inside the harvesting window. Starting and ending points of the wth DMD window

are given by nst(w) = 500+(w−1)×δnw and nen(w) = (500+∆nw)+(w−1)×δnw

respectively.

126



(a) (b)

Figure 5.8: (a) Sensitivity of Algorithm 2 towards window width ∆tw (±20%), keeping
fixed ∆t = 100 ns. (b) Sensitivity of Algorithm 2 towards sampling interval ∆t, keeping
fixed ∆tw = 3 µs.

As seen in Fig. 5.7, α(∆tw) decreases initially with increasing w and eventually

converges, the knee/elbow region marking the transition from transient to steady-

state. The algorithm detects the steady-state at w = 75 (nst(75) = 148500). The

sensitivity of α(∆tw) towards variation in ∆tw and ∆t is shown in Figs. 5.8a and 5.8b

respectively. For better comparison, we set δtw = 200 ns for all the three cases in

Fig. 5.8b. Using the non-negative slope criterion, the algorithm stops at w = 96, 75

and 144 for ∆tw = 2.4 µs, 3 µs and 3.6 µs respectively. As explained in 3.1.3,

non-negative slope is employed to indicate a “knee”, which can potentially delay the
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detection of equilibrium. For ∆tw = 3.6 µs in Fig. 5.8a, α(∆tw) encounters non-

negative slope at a much later time compared to the other two cases, even though the

actual knee region appears earlier. For ∆t = 50 ns, 100 ns and 200 ns, the algorithm

detects equilibrium at w = 75, 75 and 105 respectively.

Figure 5.9: Correlation coefficient (ρ) of ϕ(75)
1 with its predecessors (black dotted curve).

ρ between ϕ(ss)
1 and predecessors of ϕ(75)

1 (red curve). Inset: ϕ(75)
1 and its predecessor ϕ(1)

1

at w = 1.

Convergence in DMD Mode Shapes: Algorithm 1 helps track the evolution of

DMD mode shapes through the parameter ρ. We correlate the steady-state mode

ϕ
(ss)
1 (from sec. 5.2.1) and dominant DMD mode in the last window ϕ

(75)
1 with its

predecessors ϕ(k)
(1) (k = 1, 2, . . . , 75, where ϕ(75)

(1) = ϕ
(75)
1 ) . As can be seen in Fig.
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(a) (b)

Figure 5.10: (a) Movement the eigenvalue corresponding to (λ
(75)
1 ,ϕ

(75)
1 ). (b) 2-norm

relative error in self electric field reconstruction. The green shaded area denotes the DMD
window corresponding to w = 75.

5.9, the high value of ρ indicates that the dominant mode shape remains almost

time invariant. Close proximity of red and black curves (Fig. 5.9) further confirms

that the equilibrium is attained at w = 75 as ϕ(ss)
1 and ϕ(75)

1 are almost identical.

Fig. 5.10a shows convergent movement of the dominant eigenvalue towards the unit

circle.

Prediction of Self-Fields and Particle Dynamics: The high-fidelity simulation

is stopped after detecting the equilibrium state. The final data harvesting window
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Figure 5.11: Schematic representation of EMPIC algorithm with DMD predicted self-
fields. Prior to detection of equilibrium state, the EMPIC algorithm consists of usual four
stages. After the equilibrium is detected, we perform DMD to extrapolate self-field values
and utilize those values bypassing field-update stage for future time. To observe the effect
of predicted self-fields on particle behavior, we also perform the gather stage and particle
pusher stage.

(w = 75) is then used for extrapolation (Fig. 5.10b). Again, as mentioned earlier,

extrapolating the self-fields in this particular example is trivial because of the non-

oscillatory steady-state nature of the solution.

As we are interested in how this predicted self electric field affects the (predicted)

particle dynamics, we will substitute it in place of the self electric field generated

by original EMPIC algorithm. However, we can entirely bypass the field solver

(update) stage of the EMPIC algorithm as illustrated in Fig. 5.11 by performing

DMD on the self magnetic flux b(t) as well. In this work we identify the equilibrium
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Figure 5.12: Phase-space plot comparison between finite-element full-order EMPIC simu-
lation (blue) and reduced-order DMD (red) in extrapolation region (n = 225000). Phase-
space plot for absolute velocity and radial distance (R) from center of mesh (5,5). Inset:
Phase-space plot corresponding to radial velocity and radial distance.

performing sliding-window DMD on electric field dataset and extrapolate both the

self electric and magnetic field from the last DMD window. However, the DMD

extrapolated self-fields do not ensure energy conservation in the extrapolated region.

To the extent that the extrapolated fields remain close to the original solution, energy

is approximately conserved in the extrapolation region given that the high-fidelity

algorithm itself is energy-conserving.

We next compare the particle dynamics generated from the full-order and reduced-

order DMD in the extrapolation region at n = 225000, beyond the final snapshot

(n = 178500) of the last window. Fig. 5.12 shows a good match between the phase
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(a) (b)

Figure 5.13: Particle dynamics comparison at n = 225000. (a) Radial variation of average
radial velocity of particles. (b) Radial variation of particle density. For both cases, relative
error is defined as δ = |X̂ (R) − X (R)|/max |X (R)|, where X represents either v

(n+1/2)
R or

Np and “hat” denotes DMD approximation.

space plots of the full-order and reduced-order models in the radial direction (R).

Fig. 5.13 compares the average radial velocity and particle density as a function of

radial distance from the center of the plasma ball. For calculating the average radial

particle velocity and particle density at R, we consider a thin annular region with

outer radius R + L/40 and inner radius R − L/40 and perform the averaging for

all the particles present inside that annular region. It is clear that the predicted

fields produce good prediction of the particle dynamics and thus have the potential

to speed-up EMPIC simulations for long term predictions.
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5.2.2 Oscillating Electron Beam

(a) (b)

Figure 5.14: (a) Snapshot of an oscillating 2-D electron beam at n = 64000 in a square
cavity, propagating along +ve y direction. The cyan arrows show the self-electric field lines.
(b) Normalized singular values from SVD of snapshot matrix in equilibrium state.

Consider the case of a 2-D electron beam propagation along the positive y direc-

tion in the xy plane, under the influence of an external oscillating transverse magnetic

flux (Fig. 5.14a). The solution domain is a square cavity of size 1 m × 1 m that is

discretized via an irregular triangular mesh wit N0 = 1647 nodes, N1 = 4788 edges

and N2 = 3142 triangles. Superparticles are injected randomly with a uniform distri-

bution at the bottom of the cavity in the region [0.5− bh, 0.5+ bh]. Here, bh = 0.1 m

is the half-beam width. All four sides of the cavity are assumed to be perfect electric
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(a)

(b) ϕ(eq)
1 (c) ϕ(eq)

2

Figure 5.15: Oscillating electron beam case: (a) DMD eigenvalues in complex plane when
DMD is performed on data from equilibrium. (b) First dominant DMD mode. (c) Second
dominant DMD mode.

conductors (PEC). Superparticles are injected with initial velocity v0 = 5× 106 m/s

along the positive y direction at rate 10 superparticles (1 superparticle ≡ 2 × 105

electrons) per time step (= 0.01 ns ). The external voltage bias is set to Vb = 2×103
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(a) ϕ(eq)
3 (b) ϕ(eq)

4

(c) ϕ(eq)
5 (d) ϕ(eq)

6

Figure 5.16: First four recessive DMD modes extracted from equilibrium region of oscil-
lating electron beam.

V and external magnetic flux to Bext = B0 sin (2πt/Tb) ẑ, where B0 = 10−3 T and

Tb = 20 ns. Superparticles are absorbed as they hit the upper boundary. Time series
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data of degrees of freedom (DoF) of self-fields is stored at every 80th time step. The

data set spans n = 80 to n = 80000 (1000 datapoints).

(a) (b)

Figure 5.17: Oscillating electron beam case: (a) Coefficient ρ between DMD modes from
transient region. (b) Coefficient ρ between DMD modes from equilibrium region.

Self Electric Field Reconstruction

Transience ends shortly after the beam reaches the upper boundary of the do-

main. The DMD window in equilibrium spans form n = 40080 to n = 49600, with

consecutive samples ∆t = 1.6 ns apart. As seen in Fig. 5.14b, energy is primarily

concentrated in the first few (∼ 10) modes, revealing existence of underlying low-

dimensional coherent features. We truncate the SVD matrices at r = 17, generating

9 DMD modes, resulting in a reduced-order model with only 9 degrees of freedom
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(a) (b)

Figure 5.18: Relative 2-norm error for reconstruction of self electric field for oscillating
electron beam, with green shaded area denoting the DMD window. (a) DMD window is in
transient region. (b) DMD window is equilibrium region.

compared to 4788 in the full-order finite element model. Fig. 5.15a with dominant

eigenvalues highlighted using green circles indicate that DMD is able to successfully

extract the stationary component ϕ(eq)
1 and the oscillating component ϕ(eq)

2 from the

equilibrium state, with the oscillation frequency matching the frequency of oscilla-

tion of external magnetic flux. In equilibrium, these two modes contain more than

99% of the energy.

As for the plasma ball example, we perform DMD during transience as well. This

DMD window spans from n = 80 to n = 9600 with ∆t = 1.6 ns, r = 25 and 13
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DMD modes. Fig. 5.17 reveals a clear distinction in nature of correlation among

equilibrium modes versus correlation among transient modes: the former have greater

separation while the latter have more overlap among each other. This phenomenon

is similar to the plasma ball case.

Similar to the plasma ball case, the self-field reconstruction error stays within

reasonable limits inside the interpolation region, but rapidly increases in the extrap-

olation region for transient DMD (Fig. 5.18a). However, for DMD in the equilibrium

region (Fig. 5.18b), the extrapolation error remains within acceptable bounds.

Sliding-Window DMD

We set βthr = 0.01 and δtw = 3.2 ns. Using prior knowledge about the oscillation

period of the external magnetic flux (Tb = 20 ns), we choose ∆tw = 56 ns so that

it covers multiple cycles of the forced oscillation. The resulting interval between

successive snapshots is ∆t = 1.6 ns.

Equilibrium Detection: The algorithm detects the steady-state at w = 136

(nst(136) = 43280). The sensitivity of α(∆tw) towards variation in ∆tw and ∆t

is shown in Fig.5.20.

138



Figure 5.19: Variation in α(∆tw) for ∆t = 1.6 ns, as the DMD window slides towards
equilibrium for oscillating electron beam. The red curve shows averaged α over 17 windows.

Convergence in DMD Mode Shapes: There are two dominant DMD modes

that describe equilibrium dynamics: the stationary mode and an oscillating mode

corresponding to external magnetic flux oscillation frequency. It is of interest to track

their evolution to their final spatial configuration (ϕ(136)
1 and ϕ(136)

2 ) in equilibrium.

The tracking algorithm reveals that the dominant stationary mode ϕ(1)
1 in transient

state (w = 1) eventually evolves to the dominant stationary mode ϕ(136)
1 in equilib-

rium (w = 136). The inset in Fig. 5.22 reveals that the mode shape ϕ(1)
1 at w = 1 is

nothing but the self-field configuration of the straight beam (stationary component)

emitting from the lower boundary of the mesh, whereas that of ϕ(136)
1 suggests a full
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(a) (b)

Figure 5.20: (a) Sensitivity of Algorithm 2 towards window width ∆tw (±20%), keeping
fixed ∆t = 1.6 ns. (b) Sensitivity of Algorithm 2 towards sampling interval, keeping fixed
∆tw = 56 ns.

fledged straight electron beam. Fig. 5.21a shows convergent migration of the DMD

eigenvalue towards the unit circle. Similar behavior is observed for the eigenvalue

corresponding to the oscillating mode ϕ(136)
2 (Fig. 5.21b), which is traced back to

ϕ
(1)
4 in the first window. Interestingly, the fourth most energetic mode at w = 1

evolves to become the second most energetic mode at w = 136. Note that during

transience, it is harder to separate modes in terms of energy due to complex dynam-

ics and rapidly time varying amplitudes. Tracking evolution of the oscillating mode

underscores how a relatively hidden feature in transience can become prominent in
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equilibrium. This gradual evolution in mode shape is captured by the continuous

variation of parameter ρ as seen in Figs. 5.22 and 5.23.

(a) (b)

Figure 5.21: (a) DMD eigenvalue movement corresponding to (λ(136)
1 ,ϕ

(136)
1 ). (b) DMD

eigenvalue movement corresponding to (λ(136)
2 ,ϕ

(136)
2 ).
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Figure 5.22: Coefficient ρ of late-time DMD mode 1 with its predecessors (black dotted
curve). ρ between equilibrium mode 1 and predecessors of late-time DMD mode 1 (red
curve). Inset: late-time DMD mode 1 and its predecessor at w = 1.

Figure 5.23: Coefficient ρ of ϕ(136)
2 with its predecessors (black dotted curve). ρ between

ϕ
(eq)
2 and predecessors of ϕ(136)

2 (red curve). Inset: ϕ(136)
2 and its predecessor at w = 1.
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Predicted Field and Particle Dynamics: Recall that a key motivation for using

a ROM such as DMD is to expedite the EMPIC simulation by predicting future self-

fields and particle dynamics. The 2-norm relative error in predicted fields is close

to 1% after extrapolation from the window at w = 136. We compare the x and y

directional phase-space plots (Figs. 5.24-5.25) and the x and y directional average

velocity and particle density (Figs. 5.26-5.27) at n = 76000, which extends well into

the extrapolation region.

Figure 5.24: The y-directional phase-space plot comparison between finite-element full-
order EMPIC simulation (blue) and DMD (red) in extrapolation region (n = 76000).
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Figure 5.25: The x-directional phase-space plot comparison between finite-element full-
order EMPIC simulation (blue) and DMD (red) in extrapolation region (n = 76000).
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(a) (b)

Figure 5.26: Comparison between full-order and DMD predicted average velocity and
particle density at n = 76000 in the y-direction. Relative error for X (y) is defined as
δ = |X̂ (y) − X (y)|/max |X (y)|, where “hat” denotes the DMD approximation. (a) y-
directional average velocity (left axis) and relative error (right axis) plot. (b) Particle
density variation along the y-direction (left axis) and relative error plot (right axis). Few
missing points in the error graph correspond to points where the error is below the log scale
range shown.
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(a) (b)

Figure 5.27: Comparison between full-order and DMD predicted average velocity and
particle density at n = 76000 along the x-direction. Relative error is similarly defined as in
Fig. 5.26. (a) x-directional average velocity (left axis) and relative error (right axis) plot.
(b) Particle density variation along x-direction (left axis) and relative error plot (right axis).
The missing points in the error graph are below the log scale range shown.

5.2.3 Electron Beam with Virtual Cathode Formation

A relatively complex example of interest is the reduced-order modelling of virtual

cathode oscillations. The setup of 5.2.2 is adopted with two major differences: (i.)

the amount of injected current is increased 15 times, and, (ii.) a y-directional non-

oscillating confining magnetic flux is employed instead of a transverse oscillating

magnetic flux. The superparticle ratio is increased to 3×106, while holding the same

injection rate. The external voltage bias is turned off and a strong magnetic flux,

B = Byŷ is applied in the y direction, with By = 100 A/m. The increased current
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injection initiates virtual cathode formation, eventually leading to small oscillations

near the root of the beam in the equilibrium state (Fig. 5.28a). The data set spans

from time step n = 80 to n = 160000, containing a total of 2000 data points (stored

at every 80th time step), with ∆t = 0.02 ns. Unlike the previous examples, we only

discuss the key takeaways from DMD analysis for this problem.

(a) (b)

Figure 5.28: (a) Snapshot of virtual cathode formation for 2-D electron beam at n =
80000. The cyan arrows show the self electric field lines. (b) Normalized singular values for
DMD in equilibrium region.
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(a) ϕ(eq)
1 (b) ϕ(eq)

2

Figure 5.29: Dominant modes extracted from equilibrium region of virtual cathode for-
mation.

DMD in Equilibrium State

The harvesting window spans from n = 88000 to n = 120000 with r = 71 and

37 DMD modes, although only two dominant modes capture more than 99% of the

total energy in equilibrium. Exponential decay in singular values (Fig. 5.28b) reveals

the underlying low-dimensional structure in equilibrium dynamics. The stationary

structure of the virtual cathode is represented by the mode ϕ(eq)
1 and the small

oscillations at the location of virtual cathode formation are captured by ϕ(eq)
2 . The

relative 2-norm error remains close to 1% inside the harvesting window and oscillates

around 5% margin in the extrapolation region.
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Predicted Particle Dynamics

We apply the sliding-window DMD method on self electric field data from the

virtual cathode, with βthr = 0.01, δtw = 6.4 ns, ∆tw = 160 ns and ∆t = 3.2

ns. Equilibrium is detected at k = 180 (nen(180) = 65360), at which point the

field-update is replaced with extrapolated self-field values from DMD. The predicted

particle dynamics at n = 128000 is shown in Figs. 5.30-5.33.

Figure 5.30: The y-directional phase-space plot comparison between finite-element full-
order EMPIC simulation (blue) and DMD (red) in extrapolation region (n = 128000).
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Figure 5.31: The x-directional phase-space plot comparison between finite-element full-
order EMPIC simulation (blue) and DMD (red) in extrapolation region (n = 128000).
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(a) (b)

Figure 5.32: Comparison between full-order and DMD predicted average velocity and
particle density at n = 128000 along the y-direction. Relative error in v

(n+1/2)
y and Np

are as defined in Fig. 5.26. (a) y-directional average velocity plot and relative error. (b)
Particle density variation along the y-direction and relative error.
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(a) (b)

Figure 5.33: Comparison between full-order and DMD predicted average velocity and
particle density at n = 128000 along the x-direction. (a) x-directional average velocity plot
and relative error. (b) Particle density variation along the x-direction and relative error.

5.3 Computational Complexity

The time step complexity (runtime computational complexity to evolve through

one time step) in our explicit particle-in-cell algorithm is O(Np +N) [152] where Np

is the number of particles and N represents aggregate mesh dimension. For implicit

field solvers the time step complexity5 is O(Np + N s), with s ≥ 1.5. We will use

O(N s) to denote the complexity of field solver with s = 1 for explicit solver, and

s > 1.5 for implicit solver.

5The time step complexity of our solver is reduced by employing a sparse approximate inverse
of the finite-element mass matrix in the time stepping procedure [133, 143]. This strategy basically
trades the reduction in time step complexity for the one-time cost (incurred prior to time stepping)
of computing the sparse approximate inverse.
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Usually, Np ≫ N and therefore the field gather, particle push, and current scatter

stages represent the main bottleneck, especially in serial computers. On the other

hand, in parallel computers, one can exploit the fact that the particle steps are

embarassingly parallelizable. Nevertheless, in large problems with millions of grid

nodes and edges, the field update can also consume significant amount of time.

DMD based reduced-order models for self-fields can reduce this cost for long term

predictions. In addition, EMPIC simulations are often run beyond the equilibrium

onset (which is not known a priori). Let this post-equilibrium time step upto which

we want tp query the solution be denoted as nq. The runtime of a typical EMPIC

simulation up to time step nq in a serial computer is then O(nqNp + nqN
s). The

runtime complexity of exact DMD is dominated by the SVD step, given by O(l2N),

where l is the number of DMD snapshots. For Hankel DMD, effective dimension

is Nd and number of snapshots is typcally ld = l − d, leading to complexity of

O(l2dNd). Note that for the sliding-window DMD method, the DMD features can be

calculated in an incremental manner. However, let us assume the wort case scenario,

i.e. the usual DMD calculations are performed for each sliding window, and shift

is by one time snapshot (δnw = ∆n). If the equilibrium onset is detected at neq,

the runtime complexity of equilibrium detection is O(
l2dNdneq

∆n
). Here ∆n represents

the number of time steps between two consecutive DMD snapshots. The resulting

overall computational complexity of the sliding-window DMD is thus O(
l2dNdneq

∆n
+

neqNp + neqN
s). Consequently, if we are only interested in self-fields, the presented
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method is advantageous compared to EMPIC (O(nqNp+nqN
s)) for Np ≫ N and/or

nq ≫ neq.

If the particle dynamics at nq is also sought, then the reduced-order model for self-

fields also provides some advantages given nq ≫ neq since the field solver is obviated

beyond neq. The overall computation complexity becomes O(
l2dNdneq

∆n
+nqNp+neqN

s)

compared to the original cost of O(nqNp + nqN
s). If Np ≫ N , it turns out that the

computation advantage is insignificant. However, if Np and N are comparable, then

the sliding-window DMD model is advantageous for nq ≫ neq.

For simplicity, the above estimates assume a serial implementation. As noted, in

parallel computers, one can readily exploit the fact that all particle steps (gather,

pusher, and scatter) are embarrassingly parallelizable. In that case, the runtime

estimates would of course depend on other factors such as the number of available

processors.

5.4 Summary

In this section, we delved into the nonlinear dynamics of plasma. We examined

the effectiveness of DMD in modeling self-fields within EMPIC simulations. Ad-

ditionally, we evaluated the quality of fields predicted by DMD by analyzing their

impact on particle dynamics. Our exploration covered plasma ball expansion, oscil-

lating electron beams, and virtual cathode oscillators. We also demonstrated how

transient DMD features evolve into equilibrium features, supporting our hypothesis

behind DMD mode tracking. This approach can significantly reduce simulation time
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when the focus is solely on self-fields. However, a notable drawback is that DMD-

predicted fields do not inherently adhere to the underlying physical laws, making it

challenging to provide performance guarantees.
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Chapter 6: Accelerating Particle-in-Cell Plasma Simulations

via Reduced-Order Modeling of Space-Charge Dynamics

using Dynamic Mode Decomposition

In this chapter, we demonstrate the application of DMD in current density fore-

casting to accelerate EMPIC simulations. We demonstrate an interpretable, reduced-

order model for the space-charge dynamics in EMPIC simulations. This is achieved

by DMD modeling of the current density which is essentially the manifestation of

charged particle dynamics. While our main goal is to accelerate the EMPIC sim-

ulations, such reduced-order modeling of space-charge dynamics also helps analyze

and diagnose the problem at hand. Note that using DMD-based linear reduced-order

models (ROMs) of the inherently nonlinear plasma dynamics also opens the doors

for leveraging control theoretic tools that already exist for linear systems. The DMD

modes and frequencies can help in analyzing the efficiency loss due to harmonic

generation in high-power microwave devices. By analyzing the spatial patterns and

growth rates of the modes, DMD can help predict areas that are prone to decay

or damage due to high energy densities, heating, or other factors. DMD can also
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identify unstable modes and flaws in device design or the numerical solver itself.

Furthermore, understanding the dominant modes and their characteristics can help

in optimize the design parameters of such devices. A novel DMD-EMPIC algorithm

(Fig. 6.1) is presented to accelerate the EMPIC simulations showing post-transient

behavior, i.e. either steady-state, equilibrium, or any type of periodic behavior. The

time-domain DMD model of the current density implements rapid prediction of the

current density at any time instant, and thus eliminates the need for EMPIC stages

involving particles. The DMD-EMPIC strategy utilizes the on-the-fly algorithm dis-

cussed in Chapter 3 to detect the end of transience in real-time. It then replaces the

computationally expensive gather, pusher and scatter with DMD predicted current

beyond that point in time. It is important to highlight that the key distinction be-

tween this work and previous research, as outlined in [154], lies in the application of

the DMD model to current density for replacing EMPIC stages involving particles.

This approach not only facilitates the prediction of future current density but also

enables fast and accurate forecasting of self-field values, adhering precisely to the

discrete Maxwell’s equations. Moreover, this study employs a more versatile on-the-

fly algorithm, distinguishing it from the method utilized in [154]. DMD-EMPIC has

the potential to significantly expedite the EMPIC simulations for plasma systems

showing long oscillations (e.g. limit-cycle behavior).
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Figure 6.1: DMD-EMPIC algorithm for accelerating EMPIC simulations. Note that for
t > tf , the stages are not exactly cyclic since fields no longer have any effect on the DMD
predicted current density (illustrated by the broken line).

6.1 DMD-EMPIC Algorithm

As described in Section 5.3, the primary computational bottleneck comes from

the gather, pusher and scatter stages as they involve each and every particle in

the solution domain. However, these steps are necessary as they dictate the time

evolution of the current density which subsequently helps update the electromagnetic

fields. We try to address this issue by directly modeling the time evolution of current

density j using DMD. An analytical equation of the type (2.24) for time variation of

current density in EMPIC serves the following purpose,
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• DMD helps in rapid prediction of j with negligible computation cost compared

to the particle operations. Also, a linear time-evolution model for current

density can facilitate control theory applications.

• The gather, pusher and scatter stages can be replaced by the DMD predicted j

which is then used to update the electric and magnetic fields in the field-update

stage (Section 5.1.2) within the finite-element time-domain (FETD) setting.

This can drastically reduce the computation cost of EMPIC.

The DMD-EMPIC algorithm is illustrated in Fig. 6.1. It consists of two main

phases, the transient (t ≤ tf ) and post-transient phase (t > tf ).

• Transient phase (t ≤ tf): The high-fidelity EMPIC simulation is run until

the transient phase ends, denoted by the final time tf . The on-the-fly DMD

algorithm [50] is run simultaneously with the ongoing EMPIC simulation to

identify tf on the fly. The electric field data (e) is fed to the Hankel DMD

algorithm and it provides feedback in real-time regarding whether to stop the

EMPIC simulation or not. In order to maximize computational gains, it is

desirable to terminate the time-consuming EMPIC simulation at the earli-

est opportunity. At the same time, if the simulation is terminated too early

(i.e. before the transient ends), DMD will not be able to make accurate time-

extrapolation due to the lack of quality training data [154]. Thus, a real-time

algorithm for timely termination of high-fidelity EMPIC simulation is neces-

sary. In the DMD-EMPIC algorithm, this is achieved by the sliding-window
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on-the-fly DMD algorithm developed in [50] which analyzes the time evolution

of e in order to detect the end of transience at t = tf . However, in order to

handle the repetitive execution of DMD for large datasets, we make modifica-

tions to the algorithm described in [50]. Instead of using the standard version

of DMD, we perform randomized DMD to reduce the computational load. The

on-the-fly algorithm is described in Algorithm 3. 6

• Post-transient phase (t > tf): Following the detection of end-of-transience

(tf ), Hankel DMD is performed in offline or a posteriori fashion on the snap-

shots of j collected inside the final DMD window. The purpose of the offline

DMD is to predict the current density beyond tf , denoted by ĵ. Typically, the

gather, pusher and scatter steps are required for the time-update of j. Here,

since an analytical expression (similar to (2.23)) for the time evolution of j

is available from the offline DMD, we avoid these steps by using the DMD

predicted ĵ. The predicted current ĵ is then used in consecutive time steps to

update the self electric and magnetic fields in the field-update stage (Section

5.1.2). Note that for t > tf , the relation between the self-fields and current

density is not exactly cyclic. Beyond t = tf , the fields do not have any effect

on the time-evolution of the current density ĵ.

As shown in Fig. 6.1, before the end of transience is detected (t < tf ), the

computation cost for each time step of the simulation is same as the cost of typical

6Note that we use a slight variant of Algorithm 3, a slightly different convergence criterion [52].
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EMPIC (O(N +Np)) with the added cost of on-the-fly DMD, where N is aggregate

mesh dimension and Np is the total number of charged particles. However, beyond

tf the computation cost per time step reduces to O(N), which is a significant re-

duction in computation time given that Np ≫ N in typical EMPIC settings 7. The

computational gain of the proposed DMD-EMPIC is discussed in details in Section

6.3.

6.2 DMD Applied to EMPIC Current Density

6.2.1 Oscillating Electron Beam

A 2-D electron beam propagating along the positive y direction and oscillating

under the influence of an external transverse magnetic flux is shown in Fig. 6.2a.

The solution domain (xy plane) is a square cavity of dimension 1 cm × 1 cm, which

is discretized via an unstructured mesh composed of triangular elements. The mesh

consists of N0 = 844 nodes, N1 = 2447 edges and N2 = 1604 elements (triangles).

Superparticles (blue dots in Fig. 6.2a), are injected at the bottom of the cavity in the

+y direction with a velocity of 5×106 m/s. The superparticles are injected at the rate

of 50 per time step in a random fashion uniformly in the range [0.45 cm, 0.55 cm].

The superparticles discretize the phase-space of the electrons assuming a delta dis-

tribution in both position and velocity space. Superparticles are treated as point

7Note that the contemporary EMPIC algorithms such as geometric electromagnetic particle-n-
cell algorithm or GEMPIC [15] and conformal EMPIC algorithms [155] involves the “grid to particle"
and “particle to grid" interpolation stages along with the particle pusher stage. Our DMD-EMPIC
framework can be applied to these algorithms as well replacing the particle stages with DMD model
of current density.
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charges with mass msp = rspme and charge qsp = rspqe, where me and qe are re-

spectively the mass and charge of an electron, and rsp = 5000 is the number of

actual electrons represented by each superparticle (superparticle ratio). An external

oscillating magnetic flux Bext = B0 sin(2π/Tb) ẑ is applied in the z-direction, where

B0 = 2.5 × 10−2 T, and Tb = 0.8 ns. The simulation is run until n = 320000 time

steps or t = 64 ns with the time step interval ∆t = 0.2 ps.

The post-transient snapshot of the current density j is shown in Fig. 6.2b at

t = 16 ns (n = 80000). The goal is to model the time evolution of such snapshots

inside the cavity using DMD. Unlike electromagnetic fields, j is restricted to only

the mesh elements interacting with the particles. In other words, the number of

active edges N1a over which j is nonzero (within the DMD window span) is less

than total number of mesh edges N1. We only consider those active edges for DMD

modeling with x = ja, where ja is the current density vector with active edges. After

performing DMD, we revert back to the original state space with zero padding.

On-the-fly DMD on fields

The on-the-fly DMD is carried out on the electric field data to detect the end

of transience or onset of the periodic behavior as described in Appendix 3.2 [50].

Approximate prior knowledge about the time-scale is required to choose the DMD

window width ∆tw accordingly, ensuring that it covers multiple oscillation cycles.

We select ∆tw = 8 ns. Once the EMPIC simulation reaches t = ∆tw, fast Fourier
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(a) Electron beam snapshot at t = 64
ns.

(b) Current density snapshot at t = 64 ns.

(c) Singular values for oscillating electron beam.

Figure 6.2: (a) Snapshot of the electron beam at t = 64 ns. The beam is propagating along
the +y direction, and oscillating under the influence of a z-directed transverse magnetic
flux. The blue dots represent superparticles and grey lines show the finite element mesh
edges. (b) Snapshot of the current density at t = 16 ns. The magnitude is shown by a
colormap [1], whereas the direction is denoted by the blue arrows. Note that in all the
current density plots, the magnitude colormap is smoothed for visualization purpose. (c)
Singular values after performing SVD on the snapshots of current density.
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Table 6.1: DMD parameters for modeling current density.
Parameters Osc. Beam Vircator BWO

tst 15.60 ns 22.40 ns 91.20 ns

ten 23.60 ns 30.40 ns 107.20 ns

∆tw 8 ns 8 ns 16 ns

∆t 8 ps 40 ps 2 ps

d 80 50 20

r 302 42 1999

M 152 22 1006

transform (FFT) is performed on a randomly chosen set of 20 points in space. Av-

eraged FFT allows us to select the DMD sampling interval ∆t = 8 ps. We select the

target rank r = 200, and number of Hankel stacks d = 10. The shift in consecutive

sliding DMD windows is δtw = 0.4 ns. The on-the-fly DMD parameters are men-

tioned in details in the Table 6.2. on The onset of equilibrium (end of transience) is

detected at t = tf = 23.06 ns.
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(a) DMD eigenvalues. (b) Spatial correlation among DMD modes.

Figure 6.3: (a) The DMD eigenvalues on the complex plane wrt. the unit circle. The DMD
eigenvalues are color-mapped according to their normalized energy. (b) Spatial correlation
(ρ) among different DMD modes.

Offline DMD on current density

The primary contribution of this chapter is to accelerate EMPIC simulations by

DMD modeling of the plasma current density. EMPIC stops at t = tf (detected

end of transience), and offline DMD on current density j is performed in the window

t ∈ [tf−∆tw, tf ] for time-extrapolation. We first identify the active edges to construct

ja, perform DMD on the snapshots of ja to get the predictions ĵa, and then revert

back to ĵ. The DMD parameters are summarized in Table 6.1. The tst, ten, i.e.

the location of the DMD window for current density is already determined from the

on-the-fly DMD with tst = tf − ∆tw and ten = tf . FFT is performed in [tst, ten]
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to determine the DMD sampling interval ∆t. As a rule of thumb, we choose DMD

sampling frequency to be four times the Nyquist frequency.

The sharp decay in the singular values (Fig. 6.2c) indicates the existence of a

low-dimensional structure in the plasma current dynamics. Fig. 6.4 shows the first

four most energetic DMD modes and corresponding DMD eigenvalues, as well as the

spatial cross-correlation matrix. The DMD modes are indexed according to their

energy 8, with mode 1 (Fig. 6.4a) being the most energetic one which is essentially

a DC mode. Mode 2 (Fig. 6.4b) captures the oscillation frequency of the external

magnetic flux with DMD frequency of f2 = 1.25 GHz (fm = | Im{ωm}
2π

|). Mode 3 (Fig.

6.4c) indicates the first harmonic. Together these two modes capture > 90% of the

total energy (Fig. 6.3a). As the mode index increases, the spatial pattern becomes

less structured due to the effect of numerical noise. The frequencies associated with

mode 3 (Fig. 6.4c) and mode 4 (Fig. 6.4d) indicate that those are essentially the

harmonics of mode 2, generated due to the nonlinear wave-particle interaction. The

correlation ρ between different spatial patterns of DMD modes indicates their extent

of orthogonality. We use the absolute value of modal assurance criterion (MAC)

[74, 154] to compute the spatial correlation among DMD modes,

ρ(ψi,ψj) = |MAC(ψi,ψj)| = |
∣∣ψT

i ψj

∣∣2
(ψT

i ψi) · (ψT
j ψj)

|. (6.1)

We reiterate that by mth DMD mode, we refer to the {ϕm,ϕm} pair in (2.24).

While plotting the modes (Fig. 6.4) as well as calculating ρ, we use ψm = (ϕm +

8The energy of a DMD mode is calculated by averaging the 2-norm square of that particular
DMD mode over all the time-samples inside the DMD training window.
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(a) DMD mode 1 with f1 = 0 (DC). (b) DMD Mode 2 with f2 = 1.25 GHz.

(c) DMD Mode 3 with f3 = 2.50 GHz. (d) DMD mode 4 with f4 = 3.75 GHz.

Figure 6.4: Extracted DMD features for oscillating electron beam. (a,b,c,d) The DMD
modes (ϕm +ϕm) and their corresponding frequencies (fm) for the current density model-
ing.
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ϕm) = 2Re{ϕm}, where Re{·} represents the real part. The spatial correlation

matrix shows that the dominant DMD modes are orthogonal to each other with off-

diagonal elements close to zero. However, it is important to note that unlike POD,

DMD does not ensure orthogonality in space, but guarantees orthogonality in time.

The DMD predicted current density (Fig. 6.5b) deep into the prediction (ex-

trapolation) region is plotted against the current density from high-fidelity EMPIC

simulation (Fig. 6.5a) for side-to-side comparison. The relative error given by (6.2),

is also plotted in Fig. 6.5c.

δ(t) =
||̂j(t)− j(t)||2

||j(t)||2
, (6.2)

where || · ||2 indicates the 2-norm. The average relative error in the extrapolation

region is 1.80%. The gather, pusher and scatter stages are replaced by the DMD

prediction ĵ for t > tf (≡ n > nf ) in the EMPIC simulation, as illustrated in Fig.

6.1. The self-fields e and b generated beyond tf is compared against the self-fields

generated from EMPIC simulation. The relative error is calculated in a similar

manner as in (6.2). The electric field patterns from EMPIC and DMD-EMPIC in

the extrapolation region at t = 64 ns are shown in Fig. 6.6a, and Fig. 6.6b showing

good agreement. The relative errors in the self electric and magnetic field are 0.94%

and 2.60% respectively (Fig. 6.6c). The gain in runtime is discussed in Section 6.3.
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(a) EMPIC simulation of current density at
t = 64 ns.

(b) DMD prediction of current density at t =
64 ns.

(c) Relative error between EMPIC and DMD predicted
current density according to (6.2).

Figure 6.5: Comparison between EMPIC and DMD predicted current density. The shaded
green region in (c) denotes the DMD training window. Note that the gap at the end of
DMD window is due to the time-delayed stacking.

169



(a) EMPIC simulation of electric field at t = 64
ns.

(b) DMD-EMPIC simulation of electric field at
t = 64 ns.

(c) Relative errors between EMPIC and DMD-
EMPIC simulated self electric (e) and magnetic
(b) fields.

Figure 6.6: Comparison between EMPIC and DMD-EMPIC simulated self-fields in the
extrapolation region.
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6.2.2 Virtual Cathode Oscillations

Next we consider a more challenging example of virtual cathode oscillation. We

use the same setup as in Section 6.2.1, however with the following modifications.

We increase the current injection by both increasing the superparticle ratio to rsp =

75000 and the superparticle injection rate to 200 per time step. The superparticles

are injected at the bottom in the region [0.4 cm, 0.6 cm]. Instead of a transverse

oscillating magnetic flux, we apply a strong confining magnetic field, B = Byŷ along

the y direction, withBy = 100 T. The simulation is run until n = 320000 time steps or

t = 64 ns with time step ∆t = 0.2 ps. The snapshot of the beam after virtual cathode

formation at t = 16 ns, and the corresponding current density plot are shown in Fig.

6.7a and Fig. 6.7b respectively. Modeling the current density for virtual cathode

oscillations is particularly challenging because there are no external forces dictating

a clear oscillation pattern of the electrons. The majority of oscillations are limited

to a small region (near the bottom) causing possible rank deficiency, and the leakage

from the sides makes variation of j more prone to the particle noise.

On-the-fly DMD on fields

Similar to the oscillating beam case, the on-the-fly DMD is carried out to detect

the end of transience indicating the onset of virtual cathode oscillations. We select

∆tw = 8 ns, ∆t = 8 ps, δtw = 0.4 ns, r = 200, and number of Hankel stacks

d = 10. The onset of the virtual cathode oscillations is detected at tf = 30.40 ns.

The on-the-fly DMD parameters are provided in details in Table 6.2.
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(a) Virtual cathode snapshot at t = 64
ns.

(b) Current density snapshot at t = 64 ns.

(c) DMD mode 1 with f1 = 0 (DC). (d) DMD Mode 2 with f2 = 1.66 GHz.

Figure 6.7: (a) Snapshot of the virtual cathode formation at t = 64 ns. (b) Snapshot of
the current density at t = 64 ns. (c,d) Extracted DMD modes for current density modeling
in virtual cathode oscillations.
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(a) Singular values for virtual cathode os-
cillations.

(b) DMD eigenvalues.

Figure 6.8: Extracted DMD modes and eigenvalues for current density modeling in virtual
cathode oscillations.

Offline DMD on current density

The training parameters for the Offline DMD is summarized in Table 6.1. Fast

decay of the singular values in Fig. 6.8a indicates that most of the energy is con-

centrated in small number of modes. First two most energetic DMD modes carry

more than 95% of the total energy, and are plotted in Fig. 6.7. Mode 1 (Fig. 6.7c)

represent the DC leakage current from sides of the virtual cathode, whereas mode 2

(Fig. 6.7d) captures the oscillations near the root of the beam, having frequency of

1.65 GHz. The DMD eigenvalues (Fig. 6.8b) also indicate the dominance of the DC

mode in terms of energy.
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(a) Relative error in DMD predicted current density.

(b) Relative errors in the DMD-EMPIC simulated self-fields.

Figure 6.9: Relative errors for the virtual cathode oscillations.
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With the help of extracted DMD modes, frequencies and modal amplitudes, cur-

rent density is extrapolated for t > tf using DMD. The relative error in predicted

current is shown in Fig. 6.9a. The average error in extrapolation region around

6.65%, which is higher compared to the oscillating beam case (1.80%). This is

expected because the leakage from both sides of the virtual cathode results in non-

smooth current variation due to high-particle noise. Also, the localized nature of the

oscillation contributes to a possible rank-deficiency resulting in higher error. The

relative error in self electric field e and magnetic flux b is shown in Fig. 6.9b. The

average relative error in e is around 1.81% whereas in b is around 8.10%. Error in

b is typically higher for both the test-cases since self magnetic field is generally very

low in magnitude, and more susceptible to particle and numerical noise.

6.2.3 Backward Wave Oscillator

Now we consider a more challenging and practical 2.5D case of a backward wave

oscillator (BWO) [156]. The finite element discretization of the longitudinl cross-

section of a sinusoidally corrugated slow-wave structure (SCSWS) is depicted Fig.

6.10a. The SCWS has boundary profile R(z) = 1
2
(A + B) + 1

2
(A − B) cos(2π

C
z).

Based on an eigenmode analysis, the SCSWS is designed to have A = 19.5 mm,

B = 10.5 mm, C = 16.7 mm, and Ncrg = 8.5. Each superparticle in the EMPIC

model represents rsp = 1.25 × 108 electrons, with injection rate of 20 superparticles

per time step (∆t = 0.5 ps). The superparticles are injected in a random fashion

with uniform distribution within the region centered around y = 0.008 m with beam
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(a) Snapshot of electron beam inside the BWO at t = 140 ns.

(b) DMD mode 1 (DC mode)

(c) DMD mode 2 with f2 = 8.32 GHz.

Figure 6.10: Offline DMD on current density of a backward wave oscillator (BWO).

width 0.0018 m. Superparticles are injected with a velocity of 2.5 × 108 m/s in the

x-direction. The simulation is run for 440, 001 time steps or t = 220.005 ns. The

fundamental frequency of the BWO is 8.31 GHz.

The on-the-fly algorithm detects end of transience at tf = 107.20 ns with ∆tw =

16 ns, ∆t = 2 ps and δtw = 1.6 ns (see Table 6.2 for details). The training parameters
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Table 6.2: On-the-fly DMD parameters
Parameters Osc. Beam Vircator BWO

∆tw 8 ns 8 ns 16 ns

δtw 0.4 ns 0.4 ns 1.6 ns

η 10 10 10

q 5 5 5

δ0 0.05 0.05 0.05

r 200 200 200

∆t 8 ps 8 ps 2 ps

d 10 10 5

for offline DMD on current density are provided in Table 6.1. The average extrap-

olation error in the current density is 13.52% (Fig. 6.11). The higher error can be

attributed to particle noise which plays a significant role in the absence of a strong

external force dictating the oscillations (oscillating beam). The most energetic mode

is the DC mode (Fig. 6.10b) followed by the mode (Fig. 6.10c) oscillating with fun-

damental frequency at f2 = 8.32 GHz. As expected, the oscillations are concentrated

towards the end of BWO where the bunching of electrons (superparticles) occurs.

The error in the self electric field from the DMD-EMPIC framework is 5.58% (Fig.

6.11).
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Figure 6.11: Relative 2-norm error in current density j (DMD extrapolation) and self
electric field e (DMD-EMPIC framework) for the backward wave oscillator.

6.3 Computational gain

6.3.1 Computational complexity

As discussed in Section 5.3, the time-complexity of EMPIC simulation to run up

to nq time steps is given by O(N snq + Npnq). For explicit solver, s = 1, and for

implicit solvers s > 1.5. Since we are using explicit solver, we will proceed with

s = 1.

The computation cost of repeated calculation of the DMD features for the on-

the-fly application also adds to the typical EMPIC cost for n ≤ nf (≡ t ≤ tf ) in the

DMD-EMPIC algorithm. The computation complexity of DMD is dominated by the

SVD step, resulting in time-complexity of O(l2dNd), where ld is the number of DMD
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snapshots after d number of Hankel stacking. Time complexity for randomized DMD

with target rank r(< ld), is typically O(rldNd).Note that as mentioned in [70], SVD

need not be recalculated every time we shift the DMD window. The resulting DMD

features can be calculated in an incremental manner. In the worst case scenario, let

us consider that the SVD is performed for each sliding window. Also, in the worst

case scenario, the DMD window is shifted by only one snapshot, i.e. the amount of

shift in terms of time steps δnw = ∆n. With these considerations, the cost of the

sliding-window on-the-fly DMD (randomized) is approximately O(
rldNdnf

∆n
), where nf

is the time step at which EMPIC is stopped, and ∆n is the number of time steps

between two consecutive DMD snapshots.

The time-complexity of the DMD-EMPIC algorithm for n < nf (≡ t < tf ) is

O(Nnf +Npnf +
rldNdnf

∆n
), whereas for n > nf (≡ t > tf ) is O(N(nq − nf ) + l2dNd)

considering one-time cost of offline DMD with d Hankel stacks. Since there are no

particles involved in case of DMD-EMPIC for n > nf , Np does not appear in the time

complexity. For a simulation run until n = nq, the time-complexity of the DMD-

EMPIC is O(Nnq +Npnf +
rldNdnf

∆n
+ l2dNd). The time-complexities for EMPIC and

DMD-EMPIC are summarized in Table 6.3.

6.3.2 Runtime comparison

As mentioned earlier, in typical EMPIC setting Np ≫ N . As long as nq is

moderately larger than nf , there will be significant gain in the runtime. For late-

time queries (nq ≫ nf ), the ratio of runtimes for EMPIC (Tq) and DMD-EMPIC
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Table 6.3: EMPIC and DMD-EMPIC complexities with explicit field solver.

EMPIC O(Nnq +Npnq)

DMD-EMPIC O(Nnq +Npnf +
rldNdnf

∆n
+ l2dNd)

(T̂q) can be roughly given by, T̂q/Tq ≈ nf/nq, given field solver takes negligible time

compared to the entire simulation. Note that for large scale problems such as BWO,

this approximation may not necessarily hold.

The simulation runtime depends on several factors including the specific compu-

tational platform and hardware, and code optimization. In this work, the numerical

experiments are run on Intel Xeon E5-2680 v4 (Broadwell) compute CPU with 2.4

GHz and 14 cores per processor. Each node has 128 GB of memory. The interconnect

used is Mellanox EDR Infiniband Networking (100Gbps). Each simulation job was

allocated 1 node and 5 cores. The node runtimes for all the test cases are listed in

Table 6.4. Note that the CPU runtime is approximately 5 times the node runtime,

exhibiting good shared-memory parallelization across cores.

6.3.3 Effect of Parallelization

It is important to note that particle-in-cell (PIC) algorithms are highly paralleliz-

able and an appropriate parallel computing architecture can be employed to accel-

erate EMPIC simulations [157]. Single nodes with multiple CPUs (shared memory)
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Table 6.4: Node runtime in days.
EMPIC DMD-EMPIC

Osc. Beam 4.43 1.66

Vircator 5.96 2.93

BWO 7.04 4.08

or multiple nodes (each with one or more CPUs and distributed memory) can re-

duce the simulation time from days to several hours. Fortunately, the DMD-EMPIC

algorithm should also achieve comparable acceleration from parallelization for the

following reason: let the computation time for performing DMD (online + offline) be

TDMD. Let the runtime for the original EMPIC simulation up to the desired query

time be Tq. Suppose the on-the-fly (online) DMD raises the flag to stop the EMPIC

simulation at Tf (< Tq). The relative gain in computation time GT is,

GT =
Tq

Tf + TDMD + TFS

≈ Tq
Tf
, (6.3)

where TFS is the time taken by the field solver beyond Tf . This approximation

holds if TDMD and TFS are negligible compared to Tf . Depending on the scale

of the problem, type of the field solver and parallelization, TFS can be negligible

compared to Tf . TDMD is usually much less than Tf even with parallelization, because

parallelization not only helps accelerate EMPIC but also the DMD computation. For

example, authors in [158] utilize a parallel Tall and Skinny QR (TSQR) algorithm
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for parallelizing the SVD computation. Construction of the Koopman operator,

eigendecomposition, and the construction of DMD modes are also done in a highly

parallel fashion. Recently, authors in [159] used a communication-optimal parallel

TSQR algorithm for reduced-communication parallel DMD. These parallel DMD

methods are reported to scale well. A detailed study of how parallel EMPIC scales

compared to parallel DMD in the presence of parallel computing architecture is

beyond the scope of this paper. Since both DMD and EMPIC can benefit from

parallel computation, the overall acceleration by DMD-EMPIC depends on how early

the system reaches equilibrium or pseudo equilibrium, i.e., how small Tf is compared

to Tq. Consequently, Eq. (6.3) is independent of the hardware platform or the type

of PIC algorithms used, as both Tf and Tq are similarly affected.

6.4 Summary

In this section, we discussed how charged particle dynamics can be indirectly

modeled through current density to accelerate EMPIC simulations. We employed

Hankel DMD, a Koopman ROM, to model the nonlinear time evolution of current

density. We introduced DMD-EMPIC, a physics-informed hybrid ROM framework

that integrates with parts of the EMPIC algorithm to enhance its efficiency. The

DMD-EMPIC framework partly adheres to the underlying physics in that the self-

fields and current density strictly obey Maxwell’s equations. However, it does not

enforce energy conservation. The DMD-EMPIC approach presents a viable method

for accelerating particle-based simulations. Although we utilized Hankel DMD, other
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ROMs could also be implemented within the same framework. To address large-scale

practical problems, we proposed using randomized Hankel DMD for the on-the-fly

components of the framework. We demonstrated the effectiveness of our method

through a large-scale example involving a backward wave oscillator.
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Chapter 7: Koopman Autoencoders for Modeling Kinetic

Plasmas

In order to understand the motivation behind adopting a Koopman reduced-

order model such as Koopman autoencoder or KAE for plasma problems, let us

revisit the problem we are trying to solve. We are essentially trying to devise a

reduced-order model which will help us perform the time-update of dynamic variables

such as E,B and J with a reduced memory requirement, lower time complexity, and

sufficient accuracy by capturing the dominant physical features of a nonlinear kinetic

plasma problem. As noted before, large memory/storage requirement is the direct

result of the large number of mesh elements and particles that need to be stored

for executing an EMPIC algorithm. A data-driven reduced-order model helps us

tackle this issue by extracting the dominant characteristic features from high-fidelity

data and modeling the dynamics governed by such reduced number of features or

modes, and thus reducing the size of the original problem. Apart from memory usage,

another aspect contributing to the high computational load is the long simulation

time required by EMPIC simulations. As already discussed in Section 6.3, typical
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EMPIC algorithms have time complexity of O(N s + Np) at each time step. As

a result, modeling time evolution of current density is essential for avoiding steps

involving particles.

The primary contribution of this chapter is to study the effectiveness of KAE as a

reduced-order time extrapolation model for current density modeling in EMPIC sim-

ulations. We previously studied the effectiveness of DMD in Section 6 for modeling

the time evolution of j. In this chapter, we will investigate whether nonlinear mod-

els such as KAE can provide any benefit over linear models like DMD for modeling

plasma systems with oscillatory behavior. Note that here we will explore the usual

two test cases: an oscillating electron beam and a virtual cathode oscillator (with a

slightly different configuration compared to what was used in Chapter ??). Thus,

this is not a comprehensive comparison between the two methods but rather aims to

give readers some idea about the potential advantages of each method. The primary

motivation for using a nonlinear modes stems from the inherent nonlinearity in the

plasma dynamics. The equations (5.3a) and (5.3b) are just the discretized version

of Maxwell’s equations which are linear in nature. However, in the EMPIC setting,

the time variation of j(n+
1
2
) in (5.3b) is dependent on the fields as they dictate the

particle motion. The gather, pusher, and the scatter stages takes into account this

wave-particle interaction and governs the time update of j. This makes the time

evolution of j and the overall dynamics of the problem nonlinear, leading to nonlin-

ear time variation of e and b. In some cases, such as for physics-informed learning,
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we might need to explicitly model e and b as well. We will briefly discuss those in

Section 7.3. This chapter is based on [49].

7.1 KAE for Modeling Oscillating Electron Beam

We will first revisit and address the problem discussed in [2], which deals with a

two-dimensional (2D) oscillating electron beam. Consider a 2D square domain of size

1m × 1m as shown in Fig. 7.1a. The solution domain is discretized by an unstructured

mesh with N0 = 1647 nodes, N1 = 4788 edges, and N2 = 3142 triangular cells

for the EMPIC simulation. Perfect electric conductor (PEC) boundary conditions

are assumed for the fields. Superparticles representing rsp = 2 × 105 electrons,

are injected at random points along the x coordinate in the bottom of the domain

following a uniform distribution in the range [0.4 m, 0.6 m]. The injection rate is

10 superparticles per time step (∆t = 0.01 ns). The superparticles have an initial

+y directional velocity of 5 × 106 m/s. They are absorbed as they hit the opposite

boundary. An external voltage bias of Vext = 2 kV is set to accelerate the electrons

in positive y direction. An external, oscillating transverse magnetic flux density field

Bext = B0 sin (2πt/Tb) ẑ is applied where B0 = 10−3 T and Tb = 20 ns. The EMPIC

simulation is run for n = 240, 000 time steps and the current density DoFs (j(n+1/2))

are sampled from n = 16, 000 to n = 240, 000 with sampling interval ∆n = 40 (in

terms of time steps), providing total 5, 601 time samples (or snapshots) for training

and testing.
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(a) Electron beam snapshot at n = 40000. (b) Current density snapshot at n = 40000.

Figure 7.1: (a) Snapshot of an oscillating 2D electron beam propagating along the +y
direction at n = 40000. The blue grey dots represent the superparticles in the backdrop of
the unstructured mesh shown by the light grey. This figure is adapted from [2]. (b) The
quiver plot of current density at n = 40000. The blue arrows indicate the direction and
their magnitude is shown in the background.

As discussed earlier, the various stages of the EMPIC algorithm involving parti-

cles act as computational bottlenecks, restricting our ability to speed up the simula-

tions. The steps involving particles are necessary for the time update of the current

density j(n+1/2), which is an integral part of the full Maxwell’s time update equa-

tions (5.3). If we can otherwise model and predict the time evolution of j, we can

bypass the time consuming steps involving particles in the EMPIC algorithm. Note,

however, that the inherent nonlinearity of the problem makes it challenging to accu-

rately model the evolution of j. In addition, j is not guaranteed to have a smooth
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(a) (b)

Figure 7.2: (a) Relative 2-norm error for j
(n+1/2)
nz in the extrapolation region. (b) The

Koopman eigenvalues (small circles) corresponding to C, the forward dynamics. The large
circle represents the unit circle in the complex plane. This figure is adapted from [2].

behavior in the spatial or in the temporal domain. As noted before, when dealing

with nonlinear problems, it makes sense to exploit nonlinear transformations which

are realizable by nonlinear activation layers in KAE [2].

As can be seen in Fig. 7.1a, the charged particles are confined to a limited

region of space along the horizontal direction centered around the midpoint x = 0.5

m. As a result, the corresponding current density (Fig. 7.1b) is zero outside this

region of space. So, a new vector j(n+1/2)
nz is formed with the edges (i) where current

density DoF is nonzero, i.e. j(n+1/2)
i ≥ 10−20 A/m for all the training time samples.

Note that in the context of Fig. 2.3, x(n) = j
(n+1/2)
nz , since we want to model the
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time-evolution of snapshots of current density (Fig. 7.1b) using KAE. This results

in Nin = Nout = N = 2, 072. The other hyperparameters are chosen as follows:

Nh = 256 and Nb = 32 with γid = 1, γfwd = 2, γbwd = 0.1 and γcon = 0.01. A

total of 2, 000 training samples are used spanning from n = 16, 000 to 95, 960 with

consecutive time samples sampled at 40 time steps (∆n = 40) apart. The model

is trained for 100 steps (km = 100) in the forward and the backward directions,

and tested on 3, 500 time samples in the extrapolation region. The key training

parameters are summarized in Table 7.1.

Parameters ∆n km Nin, Nout Nh Nb γfwd γid γbwd γcon
Value 40 100 2072 256 32 2 1 0.1 0.01

The parameters Nin and Nout depend on the number of mesh elements over which

we seek to model the current density. The Nh and Nb values are commonly tuned by

trial and error. However, the physics of the problem provides some insight on how to

choose Nb. For example, Nb essentially denotes the number of features for modeling

the dynamics in the transformed space. The Koopman eigenvalues (λ) are related to

the frequencies (ω = ln |λ|/∆t, ∆t being the time interval between training samples)

under which the Koopman modes evolve in time. Since we are dealing with real-

valued data, the Koopman eigenvalues exist in complex-conjugate pairs, except for

those residing on the real axis. If we consider the original state space, there are two

primary frequency components for this electron beam problem: the static component

(representing the net, longitudinal particle transport from the bottom to the top of

the domain) and the transversal oscillatory component with oscillation frequency
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matching that of the external magnetic flux. So, we can expect at the very minimum

two modes (three eigenvalues) to roughly represent the dynamics in the original state

space. However, in case of KAE, we are dealing with a nonlinearly transformed space

and we generally do not have intution regarding how these frequency components may

be transformed (through a nonlinear transformation) to the feature space. However,

Nb > 3 acts as a good starting point. High values of Nh might result in a large

number of trainable parameters which could lead to overfitting. On the other hand,

while small Nh avoids overfitting, the model may not be able to capture all the

intricacies of the dynamics. The weights for the loss functions also play a crucial

role in determining the extrapolation accuracy of the KAE model. Intuitively, it

makes more sense to assign larger weights to γfwd and γid as our primary interest

is to predict (extrapolate) the solution in future time. After gaining a rough idea

about the range of various weights, grid search can be implemented to determine

their optimum values.

Note that in the context of this problem, (2.28a) can be re-written as

j
(n+ 1

2
+k∆n)

nz ≈ ĵ
(n+ 1

2
+k∆n)

nz = Ψd ◦Kk
f ◦Ψe(j

(n+ 1
2
)

nz ), (7.1a)

j
(n+ 1

2
−k∆n)

nz ≈ ĵ
(n+ 1

2
−k∆n)

nz = Ψd ◦Kk
b ◦Ψe(j

(n+ 1
2
)

nz ). (7.1b)

Fig. 7.2a shows that the relative error in the predicted jnz is around 8%. Note

that the relative error is calculated over all the mesh element edges associated with

jnz. It is important to mention that we can always go back to j (or ĵ) from jnz (or

ĵnz), simply by zero padding. The expression for the relative error at nth time step
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is given by

δ(n) =
||̂j(n+

1
2
)

nz − jnz
(n+ 1

2
)||2

||jnz(n+
1
2
)||2

, (7.2)

where hatted quantities represent the KAE reconstruction and || · ||2 denotes the L2

norm. The stability of the solution, even for long term predictions can be attributed

to the Koopman eigenvalues, as depicted in Fig. 7.2b, staying inside or on the unit

circle in the complex plane. This can be better understood from the perspective of

theory of linear systems. Let us go back to the (2.9), (2.15) which tells us that under

suitable transformation g(·), any dynamical system can be represented through linear

dynamics:

g(x(n+1)) = K · g(x(n)), (7.3)

In our setting, x ≡ jnz, g ≡ Ψe and K ≡ Kf . From theory of linear systems, we can

say that for a stable systems, eignevalues of K, |λi| ≤ 1, or in other words, eigenvalues

of Kf should lie on or inside the unit circle, which is the case in Fig. 7.2b. However,

we must emphasize that for neural networks with continuous activation functions,

stability in the latent space will guarantee stability in the original state space if

the transformation is Lipschitz continuous. In this work, we use the hyperbolic

tangent (tanh) activation function, ensuring that the transformation is continuous

or “smooth.” However, any guarantees regarding Lipschitz continuity cannot be

provided. Nevertheless, the location of eigenvalues in the latent space can offer

insights into potential instability.
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7.2 KAE for Modeling Virtual Cathode Oscillations

Next, we test KAE for virtual cathode formation. Fig. 7.3a shows a 2D electron

beam propagating along the positive y direction and forming the virtual cathode.

The solution domain (xy plane) has dimensions 1 cm×1 cm and is discretized by an

unstructured mesh consisting of N0 = 844 nodes, N1 = 2447 edges, and N2 = 1604

triangular cells. Superparticles are injected with initial velocity v0 = 5× 106 ŷ m/s

at the bottom of the cavity with uniform random distribution in the spatial interval

[0.4, 0.6] cm along x. The injection number rate of superparticles is set to 30 per

time step (with rsp = 5 × 105 and ∆t = 0.2 ps). A strong confining magnetic field,

Bext = By ŷ is applied in the y direction, with By = 100 T.

The current density is sampled at every 80th time steps (∆t = 80), generating

a total of 2, 000 time samples. A virtual cathode formation with stable oscillations

takes place after the transient regime is over. We are essentially trying to model these

oscillations in the current density (Fig. 7.3b) using the KAE. We consider a total

of 800 time samples for training, starting from the 400th time sample onward. We

use 350 time samples for testing. An approach similar to the one considered in the

previous example is taken in order to model the current density; however, unlike the

previous case where the oscillations are prominent due to external magnetic flux, the

oscillations in this case are more subtle and localized. The oscillations are localized

in the sense that they take place at the root of the beam, close to the virtual cathode,

and a lingering effect can be observed at the edges due to the lateral beam leakage.
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(a) Beam snapshot at n = 80000. (b) Current density snapshot at n = 80000.

Figure 7.3: (a) Snapshot of virtual cathode formation at n = 80, 000. The blue dots
represent the superparticles, whereas the light grey lines indicate the unstructured mesh.
Two leakage streams are observed, corresponding to the electrons that are able to laterally
circumvent the virtual cathode repulsion. (b) The quiver plot of current density with
magnitude at n = 80, 000.

The higher concentration of superparticles results in “smoother” time variation of

the current density at the root of the beam compared to boundary of the beam (Fig.

7.5). Such weak localized oscillations make the modeling task challenging which is

reflected in relatively higher error in reconstruction in the extrapolation region.

The KAE training parameters in this case are chosen as follows 7.2:

Parameters ∆n km Nin, Nout Nh Nb γfwd γid γbwd γcon
Value 80 100 459 256 32 2 1 0.1 0.01

Fig. 7.4 shows on average relative error of 15% in the predicted current density.

Similar to the oscillating beam case, the Koopman eigenvalues residing inside or on
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(a) (b)

Figure 7.4: (a) Relative 2-norm error in the extrapolation region for j
(n+1/2)
nz (b) The

relative position of the Koopman eigenvalues (corresponding to forward dynamics) w.r.t.
the unit circle in the complex plane.

the unit circle ensures stability in the reconstruction. However, relatively high error

in reconstruction can be attributed to limitations of fully connected neural networks

in learning high-frequency functions. Note that KAE is realized by fully connected

layers and fully connected NNs are known to have spectral bias [160] also known as “F-

principle" [161]. As mentioned earlier, the time signature of current density is not so

“smooth” for this particular test case, especially at the mesh edges located at two sides

of the beam. Fig. 7.5 shows how smoothness of current density time signature varies

based on the density of superparticles. The edge indexed 530 (indexed with respect to

2447 edges) is located at the root of the beam where superparticles are concentrated.
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Consequently the time variation of j is smooth and KAE reconstruction follows the

original high-order solution closely as can be seen in Fig. 7.5a. Same comments

can not be made for the edge indexed 777, which encounters much lower density

of superparticles resulting in non-smooth time variation in j (Fig. 7.5b). This

phenomena leads to higher relative error in the KAE reconstruction.

One of the primary reasons behind the non-smooth nature of the current varia-

tion is the point nature of the superparticles, i.e. representation of number density

function for a superparticle through a delta distribution. Consideration of finite-size

superparticles in EMPIC algorithms can mitigate this issue to some extent, but it

poses additional implementation challenges. One straightforward approach would be

to inject a much large number of superparticles while keeping the Np × rsp same.

But recall that time step complexity of EMPIC algorithms is approximately O(Np).

therefore, a careful consideration should be made regarding the trade-off between

smoothness and computational cost.

7.2.1 Computational Gain

The potential computational gain is similar to that in Section 6.3. Once the

model is trained, the current density at any time step can be queried by O(N1)

or equivalently O(N) operations, effectively reducing the one time step cost from

O(N+Np) tp O(N). Recall that N1 is the number of mesh element edges over which

j evolves and N is the aggregate mesh dimension. Fig. 7.6 illustrates this approach,

which can be exploited similar to DMD-EMPIC framework (Fig. 6.1) as discissed in
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(a) KAE reconstruction at root of the beam at mesh edge index 530 (green edge).

(b) KAE reconstruction at edge of the beam at mesh edge index 777 (red edge).

Figure 7.5: (a) Current density sampled at the root of the beam with larger concentration
of superparticles (blue dots). The top right figure shows the corresponding reconstruction
of current density DoF. (b) KAE reconstruction of the current density (bottom right) at
the edge of the beam experiencing leakage current (bottom left).

Chapter 6. However, the primary drawback of KAE compared to DMD is its training

time. Training any neural network model requires tuning hyperparameters, which

can be time-consuming. For high-fidelity simulations with very long runtimes, KAE

can be beneficial as a reduced-order time extrapolation model. The primary appeal

of neural network-based models lies in their applicability to parametric problems
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Figure 7.6: EMPIC with KAE predicted current density (̂j) only involvs field update
with ĵ, with time step complexity of O(N).

and their straightforward approach to enforcing physical constraints. This is further

discussed in Section 7.3.

7.2.2 DMD vs. KAE

In order to compare KAE’s performance with DMD, we applied Hankel DMD on

the test cases mentioned in this chapter. The average extrapolation error is listed

in Table 7.1. We can clearly see that KAE does not provide any obvious advantage

over DMD for modeling the plasma beam oscillations. Although this might initially

seem strange, a deeper look into the spectrum of each problem clarifies the situation.

Note that a nonlinear model such as KAE will be advantageous over linear models
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(a) Current density FFT for oscillating electron beam.

(b) Current density FFT for virtual cathode oscillator (vircator).

Figure 7.7: Frequency spectrum of oscillating electron beam and vircator.

like DMD for highly nonlinear problems. While it is not straightforward to quantify

the extent of nonlinearity, one measure can be the spread of the spectrum.

Whether it is the oscillating electron beam or the vircator, both have a funda-

mental oscillation frequency. The nonlinearity in the system gives rise to harmonics.
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Table 7.1: KAE vs. DMD comparison of extrapolation error.
KAE DMD

Osc. Beam 8.00 % 7.83 %

Vircator 12.79 % 10.95 %

However, if the spectrum is more or less discrete, DMD will be able to accurately

model the dynamics. In such cases, linear models like DMD, especially Hankel DMD,

will always have an advantage over more complicated nonlinear models. Theoreti-

cally, a dynamic system governed by a band-limited discrete spectrum can always be

modeled by a finite number of harmonics, thus DMD modes and frequencies. Sharp

peaks in Fig. 7.7a explain the good performance of DMD. The spectrum in Fig.

7.7b is slightly more spread, leading to less accurate DMD reconstruction. However,

overall sharp distinct peaks in both cases ensure good performance for DMD. KAE

performance is also close and might slightly improve with further tuning.

The primary takeaway is that the test cases are not “nonlinear” enough to es-

tablish a clear advantage of KAE over DMD. Further thorough investigation for a

variety of test cases needs to be carried out to reach any solid conclusion. Note that

the higher DMD error, compared to the test cases in Chapter 6 is due to the lower

particle injection rate, which results in higher particle noise in the data.
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7.3 Towards A Physics-Informed Approach

One key advantage of neural network-based models is the ease of incorporat-

ing physical constraints into the reduced-order model. Modeling and forecasting

multiscale multiphysics systems from a purely data-driven perspective has its own

limitations. This is because machine learning models, and in particular deep learn-

ing models involving neural networks, tend to lack general interpretability. Models

trained purely on data might fit the observations well in the training region, but

when it comes to predicting beyond the observed dataset, these models typically fail

in the presence of any new underlying physical regimes not present in the training

dataset (for example, beyond a phase transition) [162]. Also, the accuracy of any

data-driven model depends on the quality of the data used to train that particular

model. Often, the available data are corrupted with noise. Therefore, it becomes im-

portant to have some a priori information regarding the governing physics model of

the system to distinguish “physical data” from “non-physical data” (noise). Another

motivation for including physics information into the training process stems from the

data-hungry nature of ML models. In many cases, certain parts of a physical system

might be inaccessible to experiments or a large amount of time might be necessary to

collect/generate sufficient amount of data. In such data-limited scenarios, one needs

to incorporate physics constraints to guide the ML model through any limited-data

regime. In the past, one of the strategies for the inclusion of physics knowledge in the

training of machine learning models included the so-called knowledge-based neural
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networks [163, 164, 165, 166]. It is of note that neural networks have been used in

the past to directly solve PDEs [167] and to emulate certain types of measurement

data as well [168]. However, a number of recent advances in ML techniques have

shed new light [169, 170] on the topic of physics-informed machine learning (PIML).

The reader is referred to [162] for a recent account of ongoing developments in this

area.

Depending on the available data, there can be broadly three categories of prior

information levels encountered while trying to model a physical system. First, a

limited amount of data and a comprehensive knowledge of the governing physics

leads to traditional approaches where physics equations are used to describe a sys-

tem. On the other extreme, an absolute lack of information regarding the underlying

physics and the presence of a large dataset motivates a purely data-driven blackbox

approach. The more common scenario lies somewhere in the middle, where some

physics information regarding the system is available (for example some of the gov-

erning equations but not the full boundary conditions, energy conservation, expected

underlying symmetries, etc.), and some data is available through measurements or

partial simulations. A “physics-informed” or “physics-guided” machine learning ap-

proach is suitable for such scenarios.

We have so far demonstrated the effectiveness of KAE for modeling EMPIC sim-

ulations without involving the physics of the problem (other than using high-fidelity

simulations to provide the underlying data for training). Therefore, this approach
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is more data-centric rather than physics-centric. As a result, there is no guarantee

that reconstructed current density (or the electromagnetic field for that matter) will

follow the physics relations discussed in (5.3). One way to make the model aware

of the underlying physics is to introduce new loss term(s) incorporating physical

constraints (laws and/or boundary conditions) so that the physics information can

be included during the training process. In the context of EMPIC kinetic plasma

simulations, the energy constrain or the contraints arising from the Maxwell’s equa-

tions can be taken into account while training KAE. The new physics loss term will

be simply equivalent to the equation error in the discretized Maxwell’s equations

(5.3), or energy equation. These involve the quantities e, b, j, C, C̃ and the Hodge

star matrices [⋆µ−1 ] and [⋆ϵ]. Recall that C and C̃ depends only on the connectivity

among mesh elements whereas [⋆µ−1 ] and [⋆ϵ] contains the metric information from

the computational mesh. In other words, for a fixed mesh, C, C̃, [⋆µ−1 ] and [⋆ϵ] are

fixed. For each of e, b and j we can have separate KAE architectures, the outputs of

which will be connected through the equation error from physical constraints. Note

that there are several training challenges associated with physics-informed learning

in general [171]. It can be challenging for neural networks to learn physical laws from

loss functions derived from complex equations, such as Maxwell’s discrete field up-

date equations ((5.3)), where multiple quantities are being predicted. Additionally,

introducing a new loss term only imposes the physics constraints in a “soft” man-

ner, which does not necessarily ensure exact adherence to the underlying physical
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principles. This is an area of ongoing research and further investigations need to be

carried out to take full advantage of physics-informed approach.

7.4 Summary

While KAE provides a unique approach to realizing a finite-dimensional Koopman-

invariant subspace, its practical use for pure time extrapolation in scientific machine

learning might be limited. The main limitations stem from the training complexity

of neural networks, which can hinder its applicability for real-time acceleration of

high-fidelity time-domain simulations. Particularly for systems with a band-limited

discrete spectrum, linear models that employ time-delay embeddings, such as Hankel

DMD, are often more suitable than neural network-based models.

However, the true potential of neural network-based models like KAE can be

leveraged for parametric problems and physics-informed learning. KAEs can be

trained across different parameters—such as varying initial conditions, boundary

conditions, and beam parameters—eliminating the need for new simulations each

time. Furthermore, as discussed in Section 7.3, KAEs are well-suited for incorpo-

rating physics-informed learning approaches. This makes KAE an ideal Koopman

ROM for physics-informed learning across various simulations, rather than limiting

it to a case-by-case application.
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Chapter 8: Conclusions and Future Work

Extrapolating periodic data, such as limit cycle behavior, might seem trivial, but

traditional statistical tools like auto regressive integrated moving average (ARIMA)

and Fourier-based models are not well-suited for long-term predictions of high-

dimensional complex nonlinear systems, especially when the assumption of stationar-

ity is violated. Neural network (NN) based models, such as recurrent neural networks

(RNN) and long short-term memory (LSTM) networks, can effectively handle non-

linearity and perform well for short-term predictions. However, for long-term fore-

casting of high-dimensional complex nonlinear dynamics, Koopman operator-based

methods have been shown to outperform the aforementioned methods. Additionally,

Koopman reduced-order models (ROMs) are designed to learn reduced-order dynam-

ics in a low-dimensional space, leading to better scalability. This scalability is crucial

for modeling cavity resonances and EMPIC simulations, which consist of thousands

to millions of mesh elements (edges, facets, etc.). The high dimensionality, inherent

nonlinearities, and complex nature of plasma dynamics make Koopman ROMs an

ideal choice for reduced-order modeling.
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In this dissertation, we explored data-driven reduced-order models based on

Koopman operator theory for spatio-temporal modeling of electromagnetic fields

and currents in electromagnetic cavities exhibiting linear dynamics, as well as kinetic

plasma dynamics showing nonlinear behavior. Although Koopman-based models for

linear problems reduce to linear state-space models, the Hankel DMD approach pro-

vides significant insights into modeling linear systems from partial observations. For

nonlinear plasma problems, the time-delayed stacking of the original state in Han-

kel DMD offers a “better” Koopman observable for modeling nonlinearities. The

Koopman Autoencoders (KAEs) exploit the nonlinearity of neural networks and the

dimension reduction capabilities of autoencoders to search for a reduced-order Koop-

man observable space, thereby modeling high-dimensional nonlinear plasma prob-

lems more accurately than DMD. However, this comes at the cost of neural network

training, which can be time-consuming and complicated depending on the problem’s

complexity. Koopman ROMs, especially DMD, provide meaningful insights into the

dynamics of the problem, identifying stable and unstable modes, which is crucial

for control applications. Nevertheless, the primary focus of this dissertation has

been on the predictive capabilities (time extrapolation) and computational efficiency

of Koopman ROMs for reducing the simulation time of high-fidelity time-domain

simulations based on FDTD, FETD, or EMPIC. We proposed two on-the-fly DMD

algorithms for real-time termination of high-fidelity simulations, effectively reducing
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the runtime of EMPIC and FDTD cavity simulations. The DMD predictions closely

match the high-fidelity simulations and help expedite frequency domain analysis.

There are several exciting avenues to further build on or extend this work. The

DMD mode tracking algorithm proposed in this dissertation provides insights into

how DMD features evolve from transient to equilibrium, paving the way for future

work on predicting equilibrium behavior by observing only transient data. Further

extensions of DMD, such as extended DMD, kernel DMD, and physics-informed

DMD, can be exploited to better model plasma nonlinearities. An active area of

research focuses on increasing the robustness and trustworthiness of data-driven

models. Establishing an error bound for DMD predictions can make these mod-

els applicable to more sensitive real-world applications. Physics-informed machine

learning (PIML) is an active area of research that focuses on incorporating underlying

physics to make ML models more accurate, robust, and trustworthy. KAEs can be

further improved by incorporating physical constraints such as charge conservation

in EMPIC simulations or energy conservation in EM wave propagation problems.

Currently, most neural network models are based on multilayer perceptrons (MLPs),

which do not account for spatial awareness. Emerging fields like geometric machine

learning (GeoML), including graph neural networks (GNNs), hold great promise for

modeling unstructured particle phase-space as well as fields and currents on unstruc-

tured meshes.
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