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Abstract

Soils are a non-renewable resource, which is the foundation of all ecosystems. 

Mismanagement of soil particularly in agro-ecosystems has degraded soil. To guide 

management of soils, to remediate soils, and enable optimal agricultural production, 

soil health indicators are needed. 

The objective of this dissertation was to determine the potential of biological 

and other soil properties to predict soybean yields. The central approach was based on 

soil samples from farmers’ fields instead of long-term experimental sites (LTES). 

Farmers’ fields in this study represented diverse management practices that exist in the 

agricultural sector. Soil Health (SH) measurements that are calibrated and that can 

consistently detect land management are lacking which was shown in Roper’s et al. 

(2017) 2017 publication that found existing SH tests (CASH, Haney) had limited ability 

to identify agronomic land management practices at a North Caroline LTES. And that 

they were poorly correlated with crop yields. This means that the quote by the Soil 

Health Institute “There is no standardized measurement for Soil Health in the United 

States” is still true. 

       Unlike most previous research on SH, which was based on data from long-

term experimental sites (LTES), this investigation utilized analyses of soil samples 

from farmers’ fields. Farmers were surveyed to collect historical management 

information on each field after which LIDAR data, and soil type information from the 

Soil Survey website was obtained. For the 2019, 2020, 2021 growing seasons Ohio 

sampling sites were visited during the spring season and a composite soil sample at a  
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depth of 0-15 cm was collected. In 2021 soil samples were collected at three LTES in 

Ohio and one in Michigan. Furthermore, soils were sampled at two virgin and two 

restored prairie sites in Ohio. 

Soil samples were analyzed for microbial community composition, enzyme 

activities, total carbon (TC), soil organic carbon (SOC), total nitrogen (TN), pH and 

texture. Microbial communities were profiled using the Ester-Linked Fatty Acid Methyl 

Ester (EL-FAME) analysis. The enzyme activity of β-glucosidase (NAG), N-acetyl 

glutamate synthase (NAG), and arylsulfatase (AS) were chosen because previous 

research has shown these measurements have been shown to be sensitive in detecting 

soil/crop management effects.

The results of this dissertation showed that no individual soil property variable 

or other variable had a strong relationship with soybean yield. The multi-variate 

regression analysis on the other hand resulted in a correlation of determination value 

(R2) of 0.84. In this analysis a statistical machine learning algorithm (Elastic Net) was 

used with the help of the glmnet R package. The optimized model was then used to 

develop the biochemical Soil Heath Index (SHI) by extracting the individual regression 

coefficients of all biological variables (e.g. enzyme and EL-FAME variables) and the 

usage of a mathematical algorithem. The most common SH indicators in this study and 

the computed SH scores were analyzed for their ability to detect soil management at 

four LTES by running the Tukey's Honest Significant Difference test in combination 

with a sensitivity scoring algorithm. The sensitivity scores were used to identify the 

most sensitive SH indicators.

 In the final analysis 512 soil variables were scored for their ability to detect
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agricultural land management practices (e.g. crop rotation, cover cropping, soil 

amendments, tillage practices), restored prairies, and virgin soil in Ohio. Additionally 

at the agricultural scale each variable was tested for its temporal sensitivity. The most 

sensitive SH indicators were identified with the help of a sensitivity scoring algorithm 

and their relationship to soil organic carbon was determined. The remaining SH 

indicators were used to determine beneficial and detrimental agricultural land 

management practices. 
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Dissertation Introduction 

Soils are a non-renewable resource, which is the foundation of all ecosystems. 

Mismanagement of soil particularly in agro-ecosystems has degraded soil. To guide 

management of soils, to remediate soils, and enable optimal agricultural production, 

soil health indicators are needed. 

The objective of this dissertation was to determine the potential of biological 

and other soil properties to predict soybean yields. The central approach was based on 

soil samples from farmers’ fields instead of long-term experimental sites (LTES). 

Farmers’ fields in this study represented diverse management practices that exist in the

agricultural sector. Soil Health (SH) measurements that are calibrated and that can 

consistently detect land management are lacking which was shown in Roper’s et al. 

(2017) 2017 publication that found existing SH tests (CASH, Haney) had limited ability 

to identify agronomic land management practices at a North Caroline LTES. And that 

they were poorly correlated with crop yields. This means that the quote by the Soil 

Health Institute “There is no standardized measurement for Soil Health in the United 

States” is still true. 

Extensive research has found certain soil enzyme assays to be quite sensitive 

for detecting land management effects and exhibit seasonal stability. The currently 

promoted SH indicator scores have limited or inappropriate biological indicators (e.g. 

microbial biomass and respiration). The latter measurements vary too much on a 

seasonal basis due to weather variation or a recent short term soil management event 

(e.g. high organic inputs, disturbance). Thus, the global objective of this dissertation 
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was to determine the potential of biological soil properties, specifically enzyme 

activities and microbial community biomarkers to quantify SH. Enzyme activity has the 

added advantage over most other soil biological measurements, that it can be run on air-

dried soil and furthermore is relatively simple. This is attractive to commercial labs 

who want to minimize analytical costs and prefer to use air-died soils. A secondary 

objective was to determine the potential of soil properties to predict soybean yield with 

an individual variable or in a multivariate model. 

Unlike most previous research on SH, which was based on data from long-

term experimental sites (LTES), this investigation utilized analyses of soil samples 

from farmers’ fields. Farmers were surveyed to collect historical management 

information on each field after which LIDAR data, and soil type information from the 

Soil Survey website was obtained. For the 2019, 2020, 2021 growing seasons Ohio 

sampling sites were visited during the spring season and a composite soil sample at a 

depth of 0-15 cm was collected. In 2021 soil samples were collected at three LTES in 

Ohio and one in Michigan. Furthermore, soils were sampled at two virgin and two 

restored prairie sites in Ohio.  

In fall of each year, on farm fields that grew soybeans, soybean yields were 

determined at each soil sampling site. Soil samples were analyzed for microbial 

community composition, enzyme activities, total carbon (TC), soil organic carbon 

(SOC), total nitrogen (TN), pH and texture. Microbial communities were profiled using 

the Ester-Linked Fatty Acid Methyl Ester (EL-FAME) analysis. The enzyme activity of 

β-glucosidase (NAG), N-acetyl glutamate synthase (NAG), and arylsulfatase (AS) were

chosen because previous research has shown these measurements have been shown to  
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be sensitive in detecting soil/crop management effects.  

Chapter 1 of this dissertation reviewed the literature on SH. 

The objective of Chapter 2 was to determine if enzyme activities, individual 

soil properties, or other variables could predict soybean yield. The study used soils 

from farm and long-term experimental sites (LTES) in Ohio and one LTES in 

Michigan. The first statistical analysis was used to correlate these variables with 

soybean yields. The data was further evaluated separately for conventional and organic 

land management. Previous research has shown organic management has lower yields. 

This is because organic production requires wider rows to enable mechanical  weed 

control, as herbicides are not allowed for certified organic production. 

The global objective of Chapter 3 was to develop a biochemical Soil Health 

Index (SHI). To develop this index, multivariate soybean yield prediction models were 

rated for their fitness based on R2 values generated with a general and generalized 

linear analyses. To evaluate the strength of specific variables, a stepwise decrease of 

input variables was conducted in the model development. Instead of using individual 

variables from the multivariate model, data was put into 7 categories (land 

management, soil texture, environmental factors, total nitrogen, soil org. carbon, 

enzymes, and EL-FAME). All 7 categories represent 105 variables. Each variable was 

converted to a relative value constrained from  0 to 1 based on the maximum  value for 

a given variable. To reduce the mean squared error produced by generalized linear 

model (GLM), a least absolute shrinkage and selection operator (Lasso) regularization 

step in combination with a cross-validation was performed. To automate this process 

the package glmnet was used in RStudio. This statistical analysis resulted in a 
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multivariate model that accounted for intercorrelations between variables and that was 

more robust because it was cross validated by running more than 10000 possible 

combinations of training vs. test data sets.  

The resulting soybean yield prediction model had a R2 value of 0.84. To 

develop the biochemical SHI the individual slope coefficients were separated into 

negative and positive groups. This information was used to calculate the weighted 

variable value by taking the total slope coefficient and multiplying the individual 

assigned weight factors with each variable data point. Because the variables and the 

weight factors have a range of 0 to 1, each observation resulted in a SHI score with the 

same range (0 to 1) after the weighted variable scores were summarized. These 

calculation steps were conducted separately for the positive and negative slope 

coefficient which included EL-FAME and enzyme coefficients. Additionally, SHI 

scores were determined separately for EL-FAME variables and enzyme variables which 

is different to the original SHI that used EL-FAME and enzyme variables.  

The most common SH indicators in this study and the computed SH scores 

were analyzed for their ability to detect soil management at four LTES by running the 

Tukey's Honest Significant Difference test in combination with a sensitivity scoring 

algorithm. The sensitivity scores were used to identify the most sensitive SH indicators. 

In Chapter 4 a total of 521 soil variables were scored for their ability to detect 

agricultural land management practices (e.g. crop rotation, cover cropping, soil 

amendments, tillage practices), restored prairies, and virgin soil in Ohio. Additionally at 

the agricultural scale each variable was tested for its temporal sensitivity. The most 

sensitive SH indicators were identified with the help of a sensitivity scoring algorithm 
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and their relationship to soil organic carbon was determined. The remaining SH 

indicators were used to determine beneficial and detrimental agricultural land 

management practices. 
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Chapter 1: Soil Health and Agricultural Challenges 

1.1 Introduction 

Since the beginning of the 1990s a considerable amount of research and 

discussions have been conducted to define and quantify SH. Between 1975 to 2023 

most of the research focused on the quality of a soil reaching a total publication number 

of 221,337 followed by 75,436 publications related to SH (Figure 1.1). This was in part 

driven by the oil embargo of 1973 that impacted fertilizer availability and pricing 

(USDA, 2019). As such research was increased to determine whether the soil microbial 

community could be optimized to increase nutrient availability to crops, and in the case 

of nitrogen (N) to fix atmospheric N2. 

Figure 1.1 Yearly number count of publications related to the topic of “soil quality” (n=221337) 
and “soil health” (n=75436) from 1975-2023. Source: app.Dimensions.ai

The interest in soil quality and health is now increasing because of growing 

environmental challenges, interest in eliminating or reducing chemical inputs for 

agriculture, climate change, and the ongoing soil degradation (FAO, 2022). Another 
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factor is the growth of the world population which is estimated to increase by 21 % in 

the coming 26 years (Census.gov, Jan 2024). These challenges validate the importance 

of restoring and sustaining soil organic matter content, maintaining nutrient availability, 

and the importance of improving soil properties and processes by following the law of 

return (Howard, 1943, 1945; Lal, 2021). 

 

1.2 Soil 

In 2003 a case study estimated that soil degradation is negatively affecting the 

economy by 3-7% of the agricultural gross domestic product (AgGDP) (Berry et al., 

2003). In 2021 the World Bank and OECD reported that around 4.3% of the global 

GDP (US$101.33 trillion) represent the AgGDP which means that the cost of soil 

degradation is estimated to be from 131 billion to US$305 billion per year globally. 

Another study estimated annual losses of US$400 billion due to the erosion of billions 

of tons of arable land worldwide (Borrelli et al. 2017). This means that soil degradation 

is causing negative losses of up to 9.2% on AgGDP. These differences in economic 

estimates indicate that the real costs of soil degradation are possibly higher than 

previously predicted.  

Based on the latest global land-use numbers from 2021 for cropland (1579.9 

million ha) and for pasture- and rangeland (3207.7 million ha) this breaks down to 

economic loss of US$162.46 per ha for cropland and US$40.01 per ha for pasture- and 

rangeland (FAOSTAT, 2022a). The loss of ecosystem services due to soil degradation 

is estimated to be even higher with losses between US$6.3 to 10.6 trillion annually 

which is 17 to 27 times higher than the highest reported economic losses due to soil 
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erosion (ELD, 2015). The economic losses represent the need for sustainable and 

regenerative land management practices around the globe to minimize the effect of soil 

erosion, degradation of soil, and loss of ecosystem services provided by soils. To 

achieve this goal, land management recommendations for the agricultural sector need to 

be based on a model that can quantify the health of the soil.  

To develop such a SH model dynamic interactions between physical, 

chemical, and biological soil properties need to be considered (Granatstein and 

Bezdicek, 1992; Doran and Gregorich, 2002). Soil is a dynamic living system, that 

regulates ecological and environmental functions which vary across regions and soil 

types. Soils have diverse properties because of the unique interactions at a given site 

due to the major soil-forming factors, which include parent material, climate, biota, 

topography, and time (Buol et al., 2011). The evaluation of SH becomes more complex 

when climate related factors like temperature and precipitation must be considered 

because they can interact with soil properties (Roper et al., 2017). Ultimately SH 

assessment is needed to determine the impacts of land management practices such as 

tillage, cover cropping, manure, crop rotation, residue incorporation, and pesticides on 

the ability of soils to deliver agro-ecosystem services. However, detection of land 

management is confounded by soil type.  

The earliest mention of “soil health” date back to a 1910 thesis by Henry A. 

Wallace who later became Secretary of Agriculture under President Franklin Roosevelt 

in 1933. Other works by Sir Albert Howard and Sir Robert McCarrison who wrote 

about the soil-human health connection and organic agriculture expanded on the 

concept (Brevik, 2019; Brevik and Sauer, 2015; Wallace, 1910). The work by Sir 
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Albert Howard introduced the Law of Return which encouraged the adoption of 

farming practices in which all organic waste products are recycled back to the soil and 

thereby would restore and sustain soil organic matter content, maintain nutrient supply, 

and improve soil properties and processes (Howard, 1943, 1945; Lal, 2021).A major 

effort to define and quantify SH started in early 1990s (Doran et al., 1994; Doran and 

Jones, 1996; Doran, 2002). The concept, and definition of SH is still evolving. The 

most recent definition of SH by the US Department of Agriculture is “The continued 

capacity of soil to function as a vital living ecosystem that sustains plants, animals, and 

humans.”. The 2002 definition by John W. Doran describes SH in a more holistic way: 

Soil health, or quality, can be broadly defined as the capacity of a living soil 

to function, within natural or managed ecosystem boundaries, to sustain 

plant an animal productivity, maintain or enhance water and air quality, 

and promote plant and animal health. (Doran and Gregorich, 2002) 

 

The terms soil quality and SH have been used in the past synonymously but the need 

for standardization and the desire to communicate the importance of soil to the broader 

public put a larger emphasis on the term SH.  

Soil quality is defined as “a measure of the condition of soil relative to the 

requirements of one or more biological species and/or to any human purpose” (Johnson 

et al., 1997). In general, this means that soil quality is focused on the fitness and 

function of a soil to achieve a specific task. Such a task can be for example related to 

crop productivity, water storage or detoxification/degradation of pollutants (Doran and 

Zeiss, 2000). 

  SH on the other hand is used in a broader sense with the goal to determine 

what land management practices should be used to sustain not only the biological 
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productivity, but also sustain plant and animal health, and promote environmental 

quality in each ecosystem (Doran et al., 1996, 1998). This means that SH has a strong 

focus to identifying or quantifying the impact of sustainable practices on soils, while 

soil quality can be used to achieve a single ecosystem task.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Simplified representation of the interactions between physical, chemical, and biological 

factors which influence and define Soil Health including the overreaching factors that 

can influence soil health indicators. 

 

 

Over the past decades, SH initiatives, the USDA-NRCS, and the scientific 

community have identified and categorized soil properties that respond to specific 

management practices based on good, adequate, and bad thresholds (Table 1.1; Soil 

Health Institute, 2017; Steward et al., 2018). Furthermore, four principles and 

corresponding practices for improving SH have been identified and later summarized 

by the USDA-NRCS department: (1) maximizing continuous living roots, (2) 

minimizing disturbance, (3) maximizing biodiversity, and (4) maximizing soil cover 

(Roesch-McNally et al., 2018) (Figure 1.3). 

 



- 11 - 
 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 1.3 Visual representation of the four principles of Soil Health and the corresponding 

practices to improve the health of a soil (Roesch-McNally et al., 2018)  

 

Based on this concept three SH assessment frameworks were developed. 

Instead of the common Mehlich-3 soil test, which focuses on chemical soil properties, 

that quantify plant available nutrients and provide a basis for fertilizer 

recommendations, these SH assessments further incorporate physical and biological SH 

indicators. The Haney Soil Health Test includes CO2 respiration in addition to the 

common nutrient test (Haney et al., 2006; Haney et al., 2010). The Cornell Soil Health 

(CASH) test and the Soil Health Management Assessment Framework (SMAF) test use 

a variety of physical, chemical, and biological soil properties to evaluate the health of a 

soil (Andrews et al., 2004; Moebius-Clune et al., 2017). Which is shown in Table 1.2 

(Norris et al., 2020). These tests provide individual indicator measurements and scoring 

system that integrates multiple measures into a single SH index. However, at various 

research sites these tests have not been able to consistently detect agricultural practices 
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and showed limited potential to predict crop yield (Roper et al., 2017; van Es and 

Karlen, 2019; Chu et al. 2019). The research sites were in North Carolina, West 

Tennessee, and Ontario, Canada which primarily represent humid climate regions. The 

outcome of these results started a discussion that the existing SH tests likely need to be 

calibrated on a regional basis to account for divergent soils, climates, and land 

management systems. (Norris et al., 2020; Ghimire et al., 2023; Chahal and Van Eerd, 

2018). To find a solution for this the Soil Health Institute conducted a study on 124 

diverse long-term experiment sites across North America where soil samples were 

collected and analyzed for 31 soil properties (Norris et al., 2020; Ghimire et al., 2023). 

This study concluded that three soil measurements that detected soil/crop management 

were: (1) soil organic carbon, (2) carbon mineralization potential, and (3) aggregate 

stability (Soil Health Institute, 2022). However, no scoring algorithm has been 

developed to quantify the health of a soil. But the evaluation based on these three soil 

properties is likely not sensitive or practical.  

Measurable organic matter changes due to soil management typically takes 

decades (Jastrow, 1996), particularly in arid and semi-arid regions (Ghimire et al. 2019; 

Acosta-Martínez et al., 2011; Jacinthe et al. 2011; Lal, 2004). Thus, soil organic carbon 

changes are too slow to guide soil management.  

Aggregate stability can change through extensive rain events, the formation of 

soil crusts, the shear strength of water flowing over the soil surface, changes in tillage 

practices, changes in soil amendment applications which results in soil organic carbon 

losses (Stavi and Lal, 2011a, 2011b; Algayer et al., 2014). It would be expected that 

aggregation is highly variable as a function of soil type.  Also, it is labor intensive. For 
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these reasons aggregate stability is not a good indicator practical reasons and nor for 

calibration.  

Wade et al. (2018) found that carbon mineralization has many sources of 

variation due to soil handling (sieve size), water content, and direction of rewetting. 

Thus, there is no standard C mineralization procedure that can be applied to enable 

calibration or comparison from one operator or site to another. 

These shortcomings of the most prominent SH indicators shows that other 

indicators and model algorithms are needed that are sensitive for detecting land 

management, have a high throughput capability, and are seasonally stable.  

To achieve this for the agricultural sector SH indicators need to be identified 

that have a relationship with crop yield. Past research found that healthy soils are linked 

to crop productivity and economic profitability (Liebig et al., 2007; Hendrickson et al., 

2008; Paustian et al., 2016). This means that if agricultural land management practices 

follow the four principles of SH an increase in agricultural productivity should be 

expected and specific SH indicators should be able to reflect this (UN, 2022). 

 

 1.3 Agricultural Challenges 

  The identification of sensitive SH indicators is very important for the 

agricultural sector not only because of the challenges due to climate change, and soil 

degradation. But also, because the agricultural sector is slowly reaching its limits of 

productivity since the amount of available agricultural land peaked at 4.87 billion ha in 

1999 followed by a steady decline to 4.79 billion ha by 2021 (Figure 1.4) (FOASTAT, 

2022a; Ritchie and Roser, 2019; Goldewijk et al., 2017).  
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Figure 1.4 Hectares of global agricultural land from 1700 to 2021. Adapted from FOA and 

Goldewijk et al. (2017) data. (FAOSTAT, 2022) 

 
This reduction of agricultural land is on average a yearly loss of 7.23 million ha of 

permanent meadows (1999 to 2021) and the average introduction of 3.84 million ha per 

year (1970-2021) of new cropland which results in a net loss of 3.39 million ha of 

agricultural land per year (Figure 1.5). 
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Figure 1.5 Global cropland and permanent meadows and pastures usage data between 1970 to 

2021. Adapted from FOA data. (FAOSTAT, 2022) 

 

The cropland per person calculation based on UN population data was 0.439 ha/capita 
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time which represents a drop of 54%. (Figure 1.6) (FAOSTAT. 2022a; United Nations, 

2022). Based on this information the agricultural output had to increase by a factor of 

around 2.2 in the same period. This means that the agricultural sector was able to 

produce not just more food but also produce it more efficiently.  
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Figure 1.6 Representation of the recorded cropland per capita changes between 1960 to 2022, and 

the representation of three theoretical predictions model based on the assumption that 

cropland is going to increase linear until 2100, and population prediction number by 

the United Nations. Adapted from FOASTAT, 2022; UN, 2022; Census.gov, Jan 2024. 

 

This represents a monumental achievement by farmers, scientists, and governmental 

organizations like the Food and Agriculture Organization of the United Nations (FAO) 

for combating food insecurity worldwide. Global malnourishment/malnutrition has 

dropped from 66% in 1950 to 24% in 1970 to 19% in 1980 to 14% in 1996 and 9% in 

2020 (FAO, 1946; Boyd-Orr, 1950; FAO, 2009; Carlson, 2023; FAOSTAT, 2023). 

Even though the costs of a healthy diet are similar around the world today, many 

developing countries has major portion of the population who cannot afford these more 
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costly products, which in 2020 was around 3.1 billion (42.2%) people. In Africa, this is 

very high at 80% of the population who could not afford a healthy diet (FAO, IFAD, 

UNICEF, WFP and WHO, 2022). The problem of malnutrition will continue to exist 

with the on-going growth of the world population which is projected to reach 9.7 billion 

by 2050.  

To achieve an increase in productivity the strain on soils will require not only 

an improvement in nutrient management, but also an improvement in SH for optimal 

productivity and food quality. As such a sensitive tool that can quantify the health of a 

soil is needed to provide information to farmers to guide soil management. This will 

require the identification of SH indicators that can: (1) respond to changes in climate 

and soil management quickly, (2) are easy to be sampled, measured, and interpreted by 

farmers, (3) are cheap and if possible accessible to farmers, and (4) can predict 

agronomic productivity and changes in the ecosystem services (Doran and Zeiss, 2000; 

Moebius-Clune et al., 2017). 

Research has shown that the biological measurements for ester-linked fatty 

acid methyl ester (EL-FAME) biomarkers, and enzyme activities, hold potential for 

detecting soil/crop management effects and climate variability. (Pérez-Guzmán et al., 

2021; Pérez-Guzmán et al., 2020; Bandick and Dick, 1999; Schutter and Dick, 2002; 

Acosta-Martínez et. al., 2014; Cotton and Acosta-Martínez, 2018; Cotton et al., 2013; 

Balota et al., 2004; Dick, 1984; Mbuthia et al., 2015; Li et al., 2018). 

Therefore, the objectives of this dissertation were to: 1) determine the ability 

of EL-FAME and soil enzyme activities for detecting soil/crop practices systems in 

fields managed by farmers;  determine if soil properties correlate with soybean yield 
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and develop a SH index model for detecting shifts in soil/crop management and 

predicting soybean yields. The hypotheses were: the selected soil biological indicators 

will detect soil/crop management effects and correlate with soybean yields; and that a 

multivariate SH indicator model can be developed that can predict soybean yields at a 

high level of probability which then can be used to develop a sensitive biochemical SH 

indicator. 
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 Table 1.1 Soil Health indicators adapted from the Soil Health Institute tier list. Each indicator is organized into the corresponding 

biological, physical, chemical, and other measurement standard (Soil Health Institute 2018a, 2018b).

Standard Tier 1 - Indicator Tier 2 - Indicator Tier 3 - Indicator 

Biological ▪ Total Nitrogen

Soil Org. 

Carbon  

/  

Soil Org. 

Matter 

(Core of Soil 

Health) 

▪ Enzymes: β-glucosidase

An indicator that has 

potential to add significant 

information about soil 

health in specific 

locations or on large scales, 

but specific relationships 

among measured values, soil 

processes, and effects of 

land management are not 

fully understood. (Soil 

Health Institute, 2017) 

▪ Carbon Mineralization N-acetyl-B-D-glucosiminidase

▪ Nitrogen Mineralization  Phosphomonoesterase 

 Arylsulfatase 

▪ Phospholipid Fatty Acid (PLFA)

▪ Soil Protein Index

▪ Active Carbon

▪ Genomics

Physical o Soil Texture o Aggregate Stability

o Bulk density o Soil Stability Index

o Infiltration Rate

o Available Water Holding

Capacity

o Water-Stable Aggregation

o Penetration Resistance

o Soil Electrical Conductivity

Chemical ▪ Soil pH ▪ Sodium Adsorption Ratio

▪ Cation Exchange Capacity

▪ Base Saturation

▪ Extractable Phosphorus

▪ Extractable Potassium

▪ Micronutrients

Other ▪ Crop Yield ▪ Reflectance (Spectroscopy)

▪ Erosion Rating
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Table 1.2 List of soil property measurements that are used in three individual Soil Health tests. 

Adapted from Norris et al. (2020). 

 

Soil Health Test Measurement 

Soil Management 

Assessment Framework 
• Nematode Maturity Index 

• Metabolic Quotient Determined from Soil Respiration and 

Microbial Biomass 

• Bulk Density 

• Total organic Carbon 

• Microbial biomass Carbon 

• Potentially mineralizable Nitrogen 

• Soil pH 

• Soil Test P 

• Macroaggregate Stability 

• Soil Depth 

• Available Water Holding Capacity 

• Electrical Conductivity 

• Sodium Adsorption Ratio 

Comprehensive 

Assessment of Soil 

Health 

• Soil Texture - modified method utilizing sieves and decanting 

• Available Water Holding Capacity 

• Surface Hardness by Penetrometer 

• Subsurface Hardness by Penetrometer 

• Aggregate Stability by Rainfall Simulator 

• Soil Organic Matter by Loss on Ignition 

• Soil Protein by Autoclaved Citrate Extractable Protein Index 

• Soil Respiration by CO2–C analysis following 4-d incubation of 

moist soil 

• Active C by Colorimetric Changes to K Permanganate Solution 

• Soil pH by 1:2 soil water suspension 

• Basic Extractable P, K, Mg, Fe, Zn 

• Enhanced Extractable Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Mn, Na, Ni, 

Pb, S, Sr by modified Morgan’s Solution (Ammonium Acetate and 

Acetic Acid) 

The Soil Health Tool 

(Haney Test) 
• CO2–C Analysis following 24-h Incubation of Moist Soil 

• Water Extractable organic Carbon and Nitrogen 

• Oxalic, malic, and Citric Acid (H3A) extractable P, K, Mg, Ca, Na, Zn, 

Fe, Mn, Cu, S, and Al 

• Total water and H3A extractable NO3–N, NH4–N, and PO4–P 
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Chapter 2: Analysis of Individual Soil Health Indicators to predict 
Soybean Yield 

2.1 Abstract 

Soil Health (SH) indicators are needed to guide and quantify sustainable soil 

management systems. Furthermore, the health of soil should correspond to crop yield. 

Although certain soil properties have been shown to detect crop/soil management, 

relating these to yield has been minimally investigated and the most part unsuccessful. 

Certain enzyme assays and the ester-linked fatty acid methyl ester (EL-FAME) 

microbial biomarkers have been shown to be sensitive indicators of soil/crop 

management but are largely uninvestigated for their potential to predict crop yield.  

Therefore, the objective was to conduct linear regression analysis to determine their 

relationship to soybean yield, a major crop world-wide. These along with total carbon, 

total nitrogen, soil organic carbon, pH and texture were measured on soils collected 

annually over three years at 106 farm sites in Ohio, and for one year at four long-term 

experimental sites (n=47). The biological indicators were normalized for clay or sand 

content to overcome soil texture variability as a confounding factor for calibrating 

these, independent of soil type. Additionally, environmental factors (e.g. precipitation, 

soybean growth time) and land management variables (e.g. quantitative tillage 

practices, quantitative residue coverage scores) were regressed against soybean yield. 

Independent variables were also transformed to account for skewed distribution curves 

and reevaluated.  Linear regression models were developed separately for the 

conventional and organic data sets. For the complete data set (n=153) the analysis 

showed the highest R2 of 0.36 for the categorical variable that differentiated between 
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organic and conventional farming practices. The next nine variables were identified to 

have fair coefficients of determination. For the organic data set (n=30) the regression 

analysis showed that the EL-FAME biomarker 17:0 (R2 = 0.29), 17:0 10-ME (R2 = 

0.29), cy19:0 (R2 = 0.28), and soil organic carbon (SOC) (R2 = 0.26) had a moderate 

coefficient of determination. For the conventional data set (n=123) the ten highest 

variables resulted in poor coefficients of determination with total nitrogen having the 

highest R2 of 0.08. The regression analysis showed that agronomic productivity 

predictions need to be done separately for organic and conventional data sets. Most soil 

properties had fair or poor relationship with soybean yield which did not improve by 

normalizing these properties with texture (dividing property by sand or clay content). 

Overall, this study showed that soybean yields cannot be predicted by one independent 

variable when a diverse data set is used. 

2.2 Introduction 

Soybeans (Glycine max) are a major crop in the US (33.6 million ha) and 

grown on soils that are being eroded that have lost 50 to 66% of soil organic carbon 

(Lal, 2004a). To remediate soil sustainable management practices such as no-till, cover 

cropping, and organic amendments need to be implemented which improve the health 

of a soil. Healthy soils are expected to be productive, maintain environmental quality, 

and promote plant and animal health (Doran and Parkin, 1994). To achieve this various 

soil health indicators have been proposed that would allow us to quantify soil health. 

This includes the Haney Soil Health test and the Comprehensive Assessment 

of Soil Health test (CASH; Cornell Soil Health Laboratory) (Haney et al., 2006; 
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Moebius et al., 2007). Both tests analyze a set of biological, chemical, and physical soil 

properties (Norris et al., 2020). Compared to the traditional Mechlich-3 soil test that 

analyzes mineral nutrients to provide plant nutrient recommendations, the intention of 

these soil health tests is a holistic assessment of a soil to reflect its ability to deliver 

ecosystem services. However, a study conducted in 2017 in North Carolina found that 

the Haney and CASH tests had limited ability for detecting crop/soil management 

effects, and that they were not correlated with crop yields (Roper et al., 2017). Studies 

on these indicators conducted in West Tennessee, Pennsylvania, and in Ontario, 

Canada came to the same conclusion (Chu et al., 2019; Chahal and Eerd, 2018; Faé et 

al., 2020).  

The Soil Health Institute study collected soil samples from 124 long-term 

experiment sites (LTES) from Canada to Mexico where each site had various soil/crop 

management treatments (Norris et al., 2020). This study recommended that soil organic 

carbon (SOC), carbon mineralization potential, and aggregate stability to soil health 

indicators (Bagnall et al, 2023; Liptzin et al. 2022; Rieke et al., 2022). However, there 

was no relationship of crop yields with any of these indicators reported. Previous 

publications suggested that it is unlikely that a single or a set of indicators would 

correlate with crop yields because of the wide variation in soil types, climates, 

environmental conditions, and agricultural land management practices (Liebig et al., 

2001; Lehman et al., 2015; Ghimire et al., 2023). 

Certain soil biological properties have been shown to be good SH indicators/ 

This includes the activities of three hydrolytic enzyme assays that have been found to 

be sensitive for detecting soil management in periods as short as 1- 3 years. 
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Furthermore, they play key roles in the C (β-glucosidase; EC 3.2.1.21 b-D-glucoside 

glucohydrolase), C and N (β-glucosaminidase; EC 3.2.1.52 p-nitrophenyl-N-acetyl-β-

D-glucosaminide), and S (arylsulfatase; EC 3.1.6.1 arylsulfate sulfohydrolase) cycles. 

They have detected the following management or environmental conditions:  cover 

cropping, organic amendments, heavy metals, herbicides, tillage, and/or perennial 

management (see review by Acosta‐Martínez, 2021; Ghimire et al. 2023). For 

arylsulfatase and β-glucosidase, Bandick and Dick (1999) and Ndiaye et al. (2000) 

have shown in-season stability which is an asset over other microbial properties that 

have wide variability due to environmental factors that would be difficult to calibrate. 

Another potential microbial SH indicator is the Ester Linked - Fatty Acid 

Methyl Ester (EL-FAME) analysis. It has been widely used to profile microbial 

community composition because it is cost effective, less time‐consuming, and more 

easily interpreted/quantified than DNA‐based methods. The EL-FAME method 

measures biomarkers that are structural components of all microbial cell membranes 

that represent broad functional microbial groups (Zelles et al., 1994). This method 

extracts fatty acids from soil samples and converts them to FAMEs using an alkaline 

reagent (Schutter & Dick, 2000). This analysis produces representative biomarkers for 

Gram positive and negative bacteria, Actinobacteria, saprophytic fungi, arbuscular 

mycorrhizal fungi (AMF), and eukaryotes (Zelles, 1997, 1999). Fatty acid profiling 

methods are thought to represent the “active” microbial biomass (Pinkart et al., 2002; 

White et al., 1996) and have been shown to reflect early changes in microbial 

community structure due to management practices (Bhandari et al., 2018; Schutter et 

al., 2001; Schutter, and Dick, 2002; Bossio & Scow, 1998; Zhang et al., 2016).  
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However, for these enzyme assays and EL-FAME analysis there is very little 

information available from on-farm research and on how well they correlate with crop 

yields. 

Therefore, the objective of this study was to: (1) determine if a single soil 

property, land management, or environmental variable can predict soybean yields, and 

(2) assess if an indicator would improve its coefficient of determination (R2) after the 

data set is separated into conventional and organic observation fragments. To test this, 

soil samples were collected at conventional and certified organic on-farm sites located 

in eight counties of Ohio, and at four long-term field experimental sites (LTES). The 

hypothesis was that there would be a strong predictive relationship of EL-FAME 

biomarkers or enzyme activities with soybean yield, evidenced by high coefficient of 

determinations (R2 = > 0.50). 

 
2.3 Material and Methods 
 
2.3.1 Study Sites 

 
A total of 153 soil samples were collected each spring over the period from 2019 to 2021. 

Each sample site was identified, and GPS tracked before any sampling occurred. One 

hundred and six samples came from 18 farms in eight counties in Ohio (Clinton, Darke, 

Fulton, Hancock, Madison, Morrow, Pickaway, and Tuscarawas). In 2021 47 soil samples 

were collected from four LTES. Three of the LTES are in Ohio and one in Michigan. The 

soils are classified as: silt loam (59%), as a loam (20%), as a clay loam (11%), and as a 

silty clay loam (10%). 

In most cases there were at least two fields where one field had soybeans 
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(Glycine max) the first year and the second field had soybeans the following year of 

sampling. Each farmer was surveyed in person or over the phone to get information on past 

land management on each field and management plans for each growing season. Five 

farmers are certified organic farmers and the remaining 13 have conventional land 

management. 

 

2.3.2 Organic Farm Sites 

 

The organic farm sites (n=18) were in Madison, Handcock, and Clinton county 

and have been under agricultural management for 50 to more than 100 years. Fields under 

organic management had been in place from to one to 20 years and range in size from 5 

to 47 ha. Precipitation for each site ranged from 244 to 553 mm (Climate Fieldview, n.d). 

The growing period from planting to harvest ranged from 120 to 160 days. Most 

organically managed soils were a Crosby-Lewisburg silt loams (mesic Aeric Epiaqualfs / 

shallow Aquic Hapludalfs) and four were Mollisols (Soil Survey Staff, 2019). 

Furthermore, the only four Mollisols in the study were identified at two separate organic 

farm field locations. All organic farm sites used organic seeds, had a soybean-corn-wheat 

rotation, a 30-inch (76 cm) row spacing, and no synthetic inputs to meet certified organic 

standards. However, across the organically, managed fields there was variation in tillage 

manure applications, and cover cropping. 

 

2.3.3 Conventional Farm Sites 

 

Thirteen conventionally managed fields ranged in size from 4 to 77 ha. 

Sixteen fields had a soybean-corn-wheat rotation and 72 a soy-corn rotation. 
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Conventional farmers had a 15-inch (38 cm) (n=74) or 7.5-inch (19 cm) (n=12) row 

spacing. All conventional farmers used synthetic fertilizers and herbicides. Herbicide 

management was divided in three application categories: only glyphosate (N-

(phosphonomethyl) glycine), glyphosate with a secondary herbicide, and dicamba (3,6-

dichloro-2-methoxybenzoic acid). All conventionally managed fields had Alfisols (Soil 

Survey Staff, 2019). The soil samples came from Darke, Fulton, Hancock, Madison, 

Morrow, Pickaway, and Tuscarawas counties. The agricultural fields under 

conventional management ranged from 1 to 100 years of usage. One field was 

converted from native land to farmland. Seasonal precipitation between planting and 

harvest was recorded using the Climate Fieldview website which ranged from 329 to 

653 mm. (Climate Fieldview, n.d). The individual recorded precipitation levels for 

conventional farm sites varied between 329 to 653 mm. The growth period ranged from 

114 to 173 days. Other practices varied for cover cropping, manure application rates 

and type, and tillage. 

 

2.3.4 Long Term Field Sites 

 

2.3.4.1 Wooster - Triplett-Van Doren Site 
 

The LTES in Wooster, OH (40.764° N, -81.906° W) was established in 1962 by 

Glover B. Triplett and David M. Van Doren. The primary soil series is a Wooster silt 

loam (fine-loamy, mixed, active, mesic Oxyaquic Fragiudalfs) with a 2-6 % slope. For 

the first 15 cm the soil particle size distribution (texture) ranges between 25-30 % for 

sand, 55-60 % for silt and 15% for clay (Dick and Van Doren Jr., 1985; Dick et al., 

1986a; Soil Survey Staff, 2019). Deiss et al. (2021) reported a range of 5.4 to 6.8 for soil 
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pH.  

The experimental has a two-way factorial randomized complete block design with 

three replications with three tillage treatments, and three crop rotations (Dick and Van 

Doren Jr., 1985; Deiss et al., 2021). Plot size is 22.3 m by 4.3 m. 

The three tillage treatments are: (1) no-tillage (NT); (2) chisel (minimum) tillage 

(CT); or (3) moldboard plow (MP). The minimum tillage treatment had a para plow from 

1962 to 1984, after which a chisel cultivator was used. Chisel tillage loosens the soil and 

allows up to 30% litter retention on the soil surface. Moldboard tillage inverts soil to a 

depth of 20 cm and buries the litter, leaving 5 % or less on the soil surface (Dick et al., 

2013).  

The three crop rotation treatments on the site are: (1) continuous corn (Zea mays 

L.) (CC); (2) corn and soybean (Glycine max L.) (CS); and (3) corn and oat (Avena sativa 

L.) and/or alfalfa (Medicago sativa) or clover (Trifolium repens L.) (CFF). Nine soil 

samples came from the CS rotation plots which were collected in 2021. 

 

2.3.4.2 Hoytville - Triplett-Van Doren Site 
 

The LTES in Hoytville, OH (41.222 ° N, -83.762° W) was established in 1963 by 

Glover B. Triplett and David M. Van Doren. The primary soil series is a Hoytville clay 

loam (fine, illitic, mesic Mollic Epiaqualfs) with a 0-1 % slope. For the first 15 cm the 

soil particle size distribution (texture) ranges between 25 % for sand, 39 % for silt and 36 

% for clay (Dick and Van Doren Jr., 1985; Dick et al., 1986a; Soil Survey Staff, 2019). 

In contrast to the Wooster soil, The Hoytville soil has a poor surface and internal 

drainage, and it cracks when dry. In 1952 a subsurface tile drainage was installed at a 
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depth of 1.2 - 1.4 m (Dick et al., 1986b; Deiss et al., 2021). Deiss et al. (2021) reported a 

range of 4.3 to 7.5 for soil pH.  

It has a two-way factorial randomized complete block design with three 

replications, and the identical three tillage treatments, and three crop rotations as the 

Wooster LTES (Dick and Van Doren Jr., 1985; Deiss et al., 2021). The plot size is 30.5 

m by 6.4 m. Eight soil samples came from the CS rotation plots which were collected in 

2021. 

 
2.3.4.3 Columbus - Straw Mulch Experiment 

 

The Straw Mulch Experiment (40.017° N, -83.0395° W) was established in 

1996 by the Carbon Management and Sequestration Center (CMASC) at the Ohio State 

University. The objective of this LTES is to determine the effect of wheat straw 

(Triticum aestivum L.) mulching on soil quality, soil organic carbon (SOC) sequestration 

and dynamics, and greenhouse gas emissions (Blanco-Canqui and Lal, 2007). No 

mechanical tillage is used, and glyphosate (N-Phosphonomethyl glycine) is used to 

control weeds. The primary soil series is a Crosby silt loam (fine, mixed, active, mesic 

Aeric Epiaqualfs) with a 2-6 % slope (Soil Survey Staff, 2019). For the top 15 cm the 

soil particle size is 22-23 % for sand, 53-56 % for silt, and 22-24 % for clay (Soil Survey 

Staff, 2019; Nawaz et al., 2016; Saroa and Lal, 2003). Measured soil pH at a depth of 0 

to 15 cm ranged from 5.7 to 7.1. 

The experimental design is a two-way factorial completely randomized block 

design (3 replications) with three mulch rates and two fertilizer rates. The fry mulch 

treatments are: (1) no mulch (control), (2) 8 Mg ha-1 yr-1, and (3) 16 Mg ha-1 yr-1. The 
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fertilizer treatments are: (1) no fertilizer application (control), or (2) annual broadcast 

fertilizer application with a rate of 244 kg N ha-1 (184 kg N ha-1 as Urea) and 60 kg ha-1 

of NPK). Each year, the wheat straw is applied in the spring followed by fertilizer 

application in the late spring to early summer. Until 2020 no crops were grown on the 

plots after which for two years corn and soybean were grown on them. Plot size is 5 by 5 

m. Each plot on which the crop experiment took place was separated into two halves 

(2.5 by 5 m) with a corn-corn and soybean-soybean rotation. For this study only six soil 

samples were collected originating from plots with no fertilizer application and low (0 

Mg/ha) and high (16 Mg/ha) mulch rates that had soybeans grown on them. 

 

2.3.4.4 Michigan - KBS Long-Term Ecological Research Station 
 

The Kellogg Biological Station Long-Term Ecological Research project was 

established in 1987 by Michigan State University and is funded by the National Science 

Foundation and by the Michigan State University AgBioResearch program. Soil samples 

were collected from the Main Cropping System Experiment (42.410° N, -85.373° W) 

which was completed in 1989. The primary soil series is a Kalamazoo loam (fine-loamy, 

mixed, active, mesic Typic Hapludalfs) with a 2-6 % slope. For the top 15 cm the soil 

particle size distribution is 32 - 50 % for sand, 34 - 39 % for silt and around 11-19 % for 

clay (Robertson et al., 2020; Soil Survey Staff, 2019). The soil pH in the 0 to 15 cm 

ranges from 5.7 to 6.5. The plot size is 87 by 105 m.  

It has a factorial randomized complete block design with six replications. The 

tillage treatments are: (1) conventional chisel (minimum) tillage (MT-Conv); (2) 

conventional no-tillage (NT-Conv); (3) chisel tillage with reduced- N input (MT-Conv(-
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N)); and (4) biologically (organic) based system with chisel tillage (MT-Org) (Martin 

and Sprunger, 2022; Naasko et al. 2024). The four tillage treatments follow a corn-

soybean-wheat rotation, but winter cover crops are incorporated in the reduced input 

(MT-Org) and biologically based systems (MT-Org) following corn and soybean harvest 

(corn–ryegrass (Lolium multiflorum)–soybean–winter wheat–red clover (Trifolium 

pratense)). 

Twenty-four soil samples were collected from the four tillage treatments in 

2021. 

 

2.3.5 Surveys and Precipitation Information 

  

The survey used with farmers was designed to study soybean yield gaps due 

to crop management across the north central US (Edreira et al., 2017). The survey asked 

questions about crops grown in the past 3 years, tillage, if herbicides or fungicides were 

used, type of herbicide, if cover cropping, manure rate and type, whether sudden death 

occurred, drainage system, soybean variety, seed treatment, and weather irrigation were 

used. Farmers were asked to identify low and high productivity areas in their fields 

which were sampled separately. Later information was collected on soybean planting 

and harvest dates. This information was used to determine the field specific precipitation 

amounts with the help of the Climate Fieldview website (Climate Fieldview, n.d). 

The same crop management information was obtained from the LTFS. For the 

Main Cropping System Experiment (MCSE) in Michigan the management practices and 

soybean yields were extracted from the publicly available data website and the NSF 

Long-term Ecological Research Program (DEB 2224712) (Robertson and Snapp, 2019; 
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Robertson and Simmons, 2020; Martin and Sprunger, 2022). 

Recent land management information for the Wooster and Hoytville LTFS 

specifically in connection to the 2021 soybean yields were provided by Matthew Davis 

from the OSU agricultural operations department. 

Information regarding the 2021 land management history for the East Straw 

Mulch Experiment, which has been established by the Carbon Management and 

Sequestration Center (CMASC), was provided by Kyle Sklenka. 

  

2.3.6 Soil Sampling and Processing 
 

With the information from the surveys each individual farm field location was 

identified. A soil map, and LIDAR elevation information was obtained from the US Soil 

Survey website and the Ohio Statewide Imagery Program (OSIP). An elevation heatmap 

was created using a 3D point cloud and mesh processing software CloudCompare. The 

soil map was overlayed with the elevation heatmap to identify a low and high elevation 

soil sampling site on each field. Each soil sampling sites was selected based on farmer 

survey yield information and the premise that the soil units would be identical. The GPS 

coordinates for both sites were recorded, and the texture specific information was 

obtained from the US Soil Survey website.  

Six to eight soil (0-15 cm depth) cores (2.54 cm dia.) were taken and 

homogenized to form a composite sample (~1 kg). All cores were taken within a 5 m 

radius. For the LTFS a randomized soil core sampling was done in a w-shaped pattern. 

For the Michigan LTFS it was required to sample five predetermined soil sampling 

subplots. At each subplot two cores (0-15 cm depth; 2.54 cm dia.) were collected and 
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composited. Soil samples were stored as soon as possible in a cooler with ice and 

transferred to a -20 °C freezer (Lee et al., 2007; Veum, 2019). 

After thawing the soil samples in the 4 °C fridge, the wet soil was sieved to 

pass a 2 mm mesh size and all organic material, or mineral fragments were removed. A 

300 to 500g subsample was air dried for 24 to 48 hours at room temperature, then stored 

in the 4 °C fridge and used to measure pH, Total C (TC), Total N (TC), soil organic 

carbon (SOC), and the enzyme activity of β-Glucosidase (GLU), N-Acetyl Glutamate 

synthase (NAG), and Arylsulfatase (AS). The remaining field moist subsample was 

stored at -20 ˚C and used for EL-FAME analysis work. Gravimetric water content was 

determined by weighing before and after a placing a soil subsample in an oven set at 105 

˚C for 24 hours. 

 

2.3.7 Total Nitrogen, Total Carbon, Soil Organic Carbon, and pH 
 

Soil pH was measured with air-dried soils using a 1:1 mixture of soil and 

deionized water followed by measurement with a glass membrane electrode (Accumet 

Model 15 pH meter). 

Total nitrogen (TN) and total carbon TC was determined on sieved air-dried 

soil samples that had been crushed with a pestle and mortar to pass a 106 μm sieve 

(USA Standard Test Sieve Number 104). This subgroup was then used in an elemental 

analyzer system (Carlo Erba CHN EA 1108, now Thermo Fisher Scientific, Waltham, 

MA) (Nelson & Sommers, 1996, Matejovic, 1997).  

Inorganic carbon (SIC) was determined by placing half of the subsample into 

a furnace for 16 hours at 450 ˚C (Ball, 1964; Davies, 1974; Ben-Door & Banin, 1989; 
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Soon and Abboud, 1991; Nelson & Sommers, 1996). Past publications determined that 

organic matter content by loss-on-ignition at this 400 ˚C temperature resulted in a strong 

correlation with soil organic carbon content that was determined via wet-oxidation 

(dichromate) (Ben-Door & Banin, 1989, Nelson & Sommers, 1996). The heating regime 

of 375 ˚C to 450 ˚C oxidizes all organic matter without creating significant errors due to 

losses by crystal water or hydroxyl groups from minerals (Davies, 1974; Nelson & 

Sommers, 1996). After the furnace treatment the subsamples were dry combusted a 

second time in the elemental analyzer system. SOC was calculated by subtracting the 

recorded SIC concentration from the TC concentration. In the final step, TN, TC, and 

the SOC variable, were divided and multiplied by the percentage of clay and separately 

by the percentage of sand to determine a relationship of these properties with soybean 

yield. 

 

2.3.8 EL-FAME 
 

The soil microbial community composition was obtained by running the 

Ester-Linked Fatty Acid Methyl Ester (EL-FAME) analysis which was described by 

Schutter and Dick (2000) and is based on a method developed by Dr. Rhae Drijber.  

Three g of field moist soil was extracted with a 1:1 hexane/methyl-tert butyl 

ether and Methyl Nonadecanoate mixture that was then vortexed with a 0.2 M 

methanolic KOH solution. The tube was placed into a water bath at 37 ˚C and incubated 

for 1h. During this incubation phase the sample was vortexed for 10 seconds every 10 

minutes. Afterwards 1.0 M acetic acid is added to establish a pH of 7. In the next step, 

10 ml of hexane is added, and the tube is vortex for 60 seconds followed by centrifuging 
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(1600 rpm for 20 minutes) that partitioned the EL-FAMEs were into the organic phase. 

The upper, organic phase was removed and evaporated under a stream of N2 gas. The 

dried EL-FAME film was dissolved in 1 ml of the internal standard mixture and 

transferred into a gas chromatograph (GC) for analysis on the 6890N GC (Agilent 

Technologies). 

The GC was equipped with a flame ionization detector that used a fused silica 

capillary column (25 m × 0.20 mm × 0.33 μm). The system used ultra-high purity H2 as 

the carrier gas and the temperature program was ramped from 190 to 285 ˚C at 10 ˚C per 

minute. The Microbial ID PLFA identification software (MIDI ver.6.2) was used to 

identify the biomarker and their relative peak areas. The individual biomarkers 

concentrations (nmol g−1 dry soil) were calculated and categorized based on described 

procedures in the literature (Olsson, et al., 1995; Frostegård & Bååth, 1996; Zelles, 

1999; Schutter and Dick, 2002).  

Each EL-FAME is described with a nomenclature. The first number clarifies 

the number of carbon atoms of the fatty acid molecules. It is followed by a colon and a 

second number which explains the number of double bonds within the molecule. The 

suffixes “c” and “t” are used to indicate Cis and trans isomers. Branched fatty acids are 

indicated by the prefixes i (iso) and a (anteiso). Other notations like “Me”, “OH”, “cy” 

 are used to describe methyl, hydroxy, and cyclopropane groups. 

The total FAME concentration (nmol g−1 dry soil) was determined by the sum 

of all identified EL-FAME biomarkers in a soil sample. The sums of individual EL-

FAME biomarkers were used to compute broad taxonomic microbial groups such as 

Gram-positive bacteria (a15:0, i15:0, i16:0, a17:0, i17:0) (O’Leary and Wilkinson, 
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1988; Zelles, 1999), Gram-negative bacteria (cy17:0, cy19:0, 16:1ω7c, 17:1ω8c, 

18:1ω7c) (Wilkinson, 1988; Tunlid et al., 1989; Kerger, et al., 1986; Haack, et al., 1994, 

Zelles, 1999), Actinobacteria (10Me16:0, 10Me17:0, 10Me18:0, 10Me19:1ω7c) 

(Fischer et al., 1983; Kroppenstedt, 1985; Zelles, 1997; Frostegård et al., 1993, Veum et 

al. 2021), arbuscular mycorrhizal fungi (AMF; 16:1 ω5c) (Nordby et al., 1981; Olsson et 

al., 1995; Olsson, 1999; Madan et al., 2002),  Protozoa (20:3ω6c, 20:4ω6c) (Guckert et 

al., 1985), and Eukaryotes (21:0, 22:0, 23:0, and 24:0) (Zelles, 1999) (Appendix Table 

2).  

Additionally soil microbial ratios were calculated, which included the total 

fungal/bacterial ratio (tFU/BA), fungal/bacterial ration (FU/BA), gram-positive 

bacteria/gram-negative bacteria ratio (GP/GN), saturated/monounsaturated fatty acid 

ratio (SAT/MONO), bacterial/total FAME (BA/ToF), cyclopropane fatty acid 17/ 16:1 

precursor ratio (Cy17/16; cy17:0/16:1ω7c), and cyclopropane fatty acid 19/ 18:1 

precursor ratio (Cy19/18; cy19:0/18:1ω7c). In published studies these ratios were used 

to interpret microbial community shifts due to stress related conditions (McKinley et al., 

2005; Taguchi et al., 1980; Guckert et al., 1986; Kieft et al., 1994, Bossio and Scow, 

1998; Moore-Kucera and Dick, 2007).  

The tFU/BA ratio was determined with the sum of the saprotrophic fungal and 

the arbuscular mycorrhizal fungi (AMF) marker (18:1ω9c, 18:2ω6c, and 16:1ω5c) 

divided by the sum of 11 bacterial markers (15:0, 17:0, i15:0, a15:0, i16:0, i17:0, a17:0, 

cy17:0, cy19:0, 16:1ω7c, and 18:1ω7c). The FU/BA ratio is calculated in a very similar 

way with the exception that the AMF biomarker is removed (Frostegård & Bååth, 1996). 

The GP/GN ratio is calculated with the sum of 5 Gram-positive bacteria divided by 5 
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Gram-negative bacteria (Frostegård et al., 1993; Zelles et al., 1994). The SAT/MONO 

ratio was calculated with the sum of 5 saturated fatty acids (14:0, 15:0, 16:0, 17:0, and 

18:0) divided by the sum of 7 monounsaturated fatty acids (16:1ω5c, 16:1ω7c, 17:1ω8c, 

18:1ω7c, 18:1ω9c, cy17:0, and cy19:0) (McKinley et al., 2005). To determine the 

BA/ToF ratio the sum of 11 bacterial markers (15:0, 17:0, i15:0, a15:0, i16:0, i17:0, 

a17:0, cy17:0, cy19:0, 16:1ω7c, and 18:1ω7c) was divided by the total FAME 

concentration. For the GP/ToF ratio the sum of 5 Gram-positive bacteria was divided by 

the total FAME concentration. In the final step, all recorded EL-FAME variables, were 

divided and multiplied by the percentage of clay and additional by the percentage of 

sand to determine a possible relationship between soybean yields. 

 

2.3.9  Enzyme Activities  
 

The potential enzyme activity of β-glucosidase (B-GLU), Arylsulfatase (AS), 

and N-Acetyl-β-glutamate synthase (NAG; also known as β-glucosaminidase) were 

measured for each dry soil sample. These three enzyme activities are involved in the C 

cycle (B-GLU, NAG), S cycle (AS), and N cycle (NAG) and were determined by 

conducting well known enzyme assays. The assay procedures have been described 

elsewhere: B-GLU (Tabatabai, 1994; Dick, 2011), NAG (Parham and Deng, 2000; 

Dick, 2011), and AS (Tabatabai, 1994; Dick, 2011). For each enzyme assay three 

replicate samples and one control of 1g of air-dried soil was prepared. Each sample 

received the corresponding substrate based on the assay protocol before the 1-hour 

incubation at 37 ˚C started (Table 2.3). For the control the corresponding substrate was 

added after the reaction was stopped. Enzyme activities are expressed as mg of p-



- 43 -  

nitrophenol (PNP) kg−1 dry soil h−1.  

Additionally, the sum of B-GLU + AS, B-GLU + NAG, AS + NAG, and B-

GLU +AS + NAG was determined. Recent studies determined that multi-assay 

combinations of enzymes are possible and thereby could be used as a new soil health 

assessment tool across agroecosystems (Acosta-Martínez et al., 2019). Additionally, the 

ratio of B-GLU / AS, B-GLU / NAG, AS / NAG, (B-GLU +AS) / NAG, (B-GLU + 

NAG) / AS, and (AS + NAG) / B-GLU were determined. In the final step, all recorded 

enzyme variables, were divided and multiplied by the percentage of clay and additional 

by the percentage of sand to determine a possible relationship between soybean yields. 

 
2.3.10 Soybean Yield Sampling  

 

By communicating with farmers during harvest times the beginning maturity 

(R7) or full maturity growth stage (R8) was determined. The number of soybean plants 

were counted within a range of 6 to 14 adjacent rows (dependent on row spacing) with a 

row distance of 5 m. Afterwards around 1.5 kg of soybean plants were randomly 

collected and counted inside the predefined area. To avoid yield errors due to moisture 

differences the plants were placed in a 30 °C incubation chamber to dry. In the first-year 

soybeans seeds were threshed by hand and in the other two years the Agriculex SPT-1A 

thresher was used. For the Agriculex SPT-1A thresher a total loss of material below 1 % 

was determined. The soybeans were stored at 4°C in paper bags to avoid the 

decomposition of proteins and fats. To determine the moisture, protein, and fat content 

for the individual soybean samples the FOSS Infratec NOVA grain analyzer system was 

used. By adjusting the measured moisture content to the 13 % moisture content, which is 
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commonly used for soybeans, and incorporating the recorded stand count, soybean 

weight, soybean count, and area specific information the soybean yield (kg ha-1) was 

determined. 

 

2.3.11 Statistical Analysis 
 

Statistical analyses were performed using RStudio, which is an integrated 

development environment that uses the R programming language and software 

environment for statistical computing and graphics (R Core Team, 2022; RStudio, 

2018). Normality of all data was done with the Shapiro-Wilk test. For variables that 

were not normal, they were transformed to obtain linearity by one of the following as 

appropriate for a given variable: x3, x2, √x, log(x), 1/√x, 1/x, x-2, or x-3. The R2 results 

were then used to sort the variables in a descending order. The coefficient of 

determination was interpreted based on descriptions by Chan (2003) (Table 2.2). To 

accomplish this the tidyverse and dplyr package were used to organize and filter the data 

set (Wickham et al., 2019). To create graphs the ggplot2 and ggpubr packages were used 

(Wickham, 2016). 

 

2.4 Results and Discussion 
 

2.4.1 Yield Regression – Data Set 
 

Previous studies found individual variables had very strong to moderate 

correlations with crop productivity (Nunes et al., 2018; Lorenz et al. 2020; Faé et al., 

2020). However, these strong correlations were primarily observed at LTES or when the 

data set was split into subgroups related by location or years, thereby reducing the samples 
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size and environmental factors (Nunes et al., 2018; Faé et al., 2020). Lorenz et al. (2020) 

found a significant but moderate correlation between β-glucosidase and corn yield in a 

three-year study at on-farm sites across three states. However, this same study found no 

significant correlation of soybean yield with β-glucosidase or arylsulfatase activities soil 

organic matter.  

The highest possible R-squared (R2) value of 0.36 was identified for the 

numerical variable that differentiated between organic and conventional land management 

practices. It is also the only variable out of the 10 highest that was rated as a moderate 

relationship. The remaining 9 were identified to be fair (Table 2.3). The first six highest 

coefficients of determinations were classified into the land management category. Starting 

with Residue Score (R2 = 0.36), Very Low Residue Coverage (R2 = 0.18), percentage of 

Residue Coverage (R2 = 0.14), Tillage Score (R2 = 0.13), and Herbicide Score (R2 = 0.13). 

The numerical classification design for the three scoring variables is provided in Table 2.1. 

The only three soil properties that made it into the list of the 10 highest coefficients of 

determination variables were TN * Sand (R2 = 0.12), TC * Sand (R2 = 0.12)., and 19:0 

cyclo * Sand (R2 = 0.11). Because none of the ten variables were interpreted to have a 

strong coefficient of determination (R2 = > 0.49) no individual variable had the potential to 

predict soybean yields. Consequently, this confirmed what previous studies expressed 

(Liebig et al., 2001; Lehman et al., 2015; Ghimire et al., 2023). 

No single soil property showed a significant relationship with soybean yield 

likely because of the confounding effects on these measurements due to soil type, seasonal 

environmental conditions, and variations in crop management among the participating 

farmers. 
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The moderate coefficient of determination for the variable that differentiated 

between organic and conventional land management practices suggested that soybean yield 

predictions need to be analyzed separately for conventional and organic data sets because 

they were statistically different from each other (Figure 2.1). There was a significant t-test 

difference (P <0.0001) between the soybean yields of 4042 kg ha -1 (60.11 bsh ac -1) for 

conventional farmers compared to 2290 kg ha -1 (34.05 bsh ac -1) for organic farmers. The 

main reason for the lower yields with organic soybeans is that herbicides are not allowed 

and there mechanical cultivation requires 74 cm (30-inch) row spacing to control weeds.  

The regression analysis also found a possible relationship between residue 

coverage and soybean yields. This observation cannot be explained by the residue coverage 

alone because crop residues are directly linked to tillage practices. Intensive tillage 

practices, like moldboard plowing completely turn over the first 20 to 30 cm of soil, and 

thereby burying crop residues. Compared to no-tillage with no soil disturbance and 

retention of crop residues. Furthermore, moldboard plowing has been linked to increases in 

soil erosion and decreased levels of soil organic matter in the topsoil (Doran et al., 1984; 

Lal, 1997; Veum et al., 2014; Nunes et al., 2018).  

A meta-analysis by Nunes et al., (2020) showed that NT increased surface soil 

organic C, biological activity, soil structure, and the labile C and N fractions of SOM 

thereby fostering soil microorganism diversity, providing soil organisms with food and a 

stabilized habitat This means that the visual analysis of crop residue on the surface of a soil 

can indirectly explain what tillage practices were used on an agricultural field if no mulch 

was added to the surface. Furthermore, it could be a visual indicator of the health of the soil 

if the same tillage practices are repeated over several years. Supporting evidence for this is 



- 47 -  

that the tillage score had 5th highest coefficient of determination value (Table 2.3). 

Lopes et al. (2013) found that no tillage in combination with cover crops resulted 

in higher cumulative crop yields over a period of from 12 - 17 years that correlated with 

individual soil properties. However, there was poor coefficients of determination of soil 

properties with individual yearly crop yields.  

 

2.4.2 Yield Regression – Conventional Farming 
 

Because of the statistical difference in soybean yields between conventional and 

organic farming practices the data set was split into these two management systems and the 

data reanalyzed. The highest R2 value of 0.076 was TN with soybean yield. However, this 

is a poor coefficient of determination. The remaining nine highest variables ranged from 

0.073 to 0.063 (Table 2.4). The R2 values confirmed that no individual land management, 

environmental, or soil property variable had the potential to predict soybean yields. 

Additionally, it demonstrated that crop productivity predictions based on individual 

variables are much more complex at conventional farm sites even when soil health 

indicators are normalized or expressed per unit of clay or sand. One interesting observation 

was that 6 out of the 10 highest R2 in this analysis involved enzyme activity ratios or 

individual enzyme activities. Because enzyme activity ratios have not been explored in the 

published literature more research is required. These results could also imply that 

biochemical processes are more important for soils under conventional land management 

practices since they use chemical fertilizers.  

The second highest R2 values of 0.073 was determined on soils from fields that 

had applied manure once in the past three years. A t-test analysis of this variable had  a 
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significant difference (P= 0.006) with an average soybean yield of 4611 kg ha -1 (68.57 bsh 

ac -1) for farm fields that applied manure once every 3 years compared to 3932 kg ha -1 

(58.47 bsh ac -1) for farm fields that applied no manure, every year, or twice in a period of 3 

years. Lower soybean yields on sites on which manure was applied more frequently could 

be due to soluble salt concentration in the soil which could result in plant damage, or that 

the manure was applied during the early soybean growth stage (Shapiro and Kranz, 2005). 

Other studies have shown that frequent manure application resulted in higher SOC and TN 

content, and higher soybean yields compared to those that only received chemical 

fertilizers (Gai et al. 2018; Hoover et al. 2019; Rurangwa et al. 2018; Nguyen et al., 2013). 

These observations contradict our results, but they also showed that a beneficial 

differences in yield would likely become more apparent when manure amendments are 

used over long periods of time.  But because the farmers in this study did not practice the 

same tillage, cover cropping, planting date routine consistently year to year, it could 

explain why a frequent manure application did not result in a higher yields. Regional 

environmental factors like solar radiation and precipitation during the three growing 

seasons could also explain the lower soybean yields even though manure was applied each 

year (Faé et al., 2020). Additionally, manure applications could have not followed the 

“4Rs” for nutrient stewardship (Right Source, Right Rate, Right Time, and Right Place) 

resulting in runoff events. 

 

2.4.3  Yield Regression – Organic Farming 

 

The highest R2 value of 0.294 was determined for the 17:0 FAME biomarker 
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(transformed), followed by the 17:0 10-ME (R2 = 0.289; transformed), 19:0 cyclo (R2 = 

0.279; transformed), SOC (R2 = 0.261; transformed), TN (R2 = 0.248; transformed), TC (R2 

= 0.234; transformed), 22:0 * Clay % (R2 = 0.234; not transformed), 19:0 cyclo * Clay % 

(R2 = 0.233; not transformed), 22:0 / Sand % (R2 = 0. 232; transformed), and iso 16:0 (R2 = 

0.230; transformed). All 10 variables were interpreted to have fair coefficients of 

determination (Table 2.5). Once more, even after separating the data set into two 

subgroups, no individual land management, environmental, or soil property variable 

resulted in a strong coefficient of determination (R2 = > 0.49) that could be used to reliably 

predict soybean yields. One interesting observation was that most of the 10 highest R2 

values were EL-FAME biomarkers, which was very different than the conventional data 

set. Hypothetically it could imply that organic farming practices rely more on biological 

processes in the soil compared to conventional farming practices.  

The fair coefficients of determination for SOC, and TN in connection to soybean 

yields for organically managed farms are very likely explained by their relationship to soil 

organic matter (SOM). SOM is a key component in soils which positively impacts 

microbial activity, water retention, the accumulation and transfer of nutrients in particular 

N, P and S, and its ability to decrease the risk of erosion, and sedimentation (Stevenson 

1986; Lal, 2003, 2004b; Fageria, 2012). Therefore, SOM becomes a key component for 

crop production at an organically managed farm especially because synthetic fertilizers are 

not allowed. Leithold et al. (2015) found that of fresh organic matter inputs are important 

to maintain SOM under organic farming. Additionally, they suggested that conventional 

farming benefits from mineralized nitrogen applications through not only increases in crop 

yields but also in total biomass compared to unfertilized systems.  
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2.5 Conclusion 
 

The statistical analysis of 521 variables, which include soil properties 

(biological, chemical, and physical), land management variables, and environmental 

variables showed that no individual variable was able to predict soybean yield, even 

when those variables are transformed to fit a normal distribution. The multiplication 

and normalizing of soil properties by texture, like clay or sand, resulted in no 

significant improvement for the coefficient of determination (R2). A deeper analysis of 

the data set after it was split into organic and conventional land management practices, 

to account for the statistical difference in soybean yield between the data sets, resulted 

in the same finding. Overall, this study confirms the existing assumptions that 

agricultural productivity prediction needs to be based on a combination of variables 

that account for regional differences in climate, management practices, and soil type. 

Additionally, the study raises the unlikely possibility of a single indicator to predict 

agricultural productivity in a national scale to be very unlikely. Future studies which 

have the goal of predicting agronomic productivity should focus on multivariate 

models. Such a model would allow the identification of beneficial sustainable 

agricultural practices, and management practices that likely increase agricultural 

productivity.  
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Table 2.1. Numerical Scoring tables based on residue coverage (spring season), tillage, and herbicide 

practices. 
  

Variable 
Very High 

Coverage 

High 

Coverage 

Average 

Coverage 
Low Coverage 

Very low 

Coverage 

Residue Cover in % > 60 30 - 60 15 - 30 6 - 15 < 6 

Numerical Score 5 4 3 2 1 

Variable No Tillage Chisel Plow 
Chisel Plow + 

Field Cultivator 

Deep Disk 

Tillage 

Moldboard 

Plow 

Numerical Score 5 4 3 2 1 

      

Variable No Herbicide 
Only 

Glyphosate 

Glyphosate + 

Other Herbicide 
Dicamba   

Numerical Score 4 3 2 1  
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Table 2.2. Interpretation of Pearson's and regression coefficients (Adapted from Akoglu, 

2018) 
  

Correlation Coefficient (r) Coefficient of determination (R2)  Description 
a)

 

+ 1 - 1 1 Perfect 

+ 0.9 - 0.9 0.81 Very Strong 

+ 0.8 - 0.8 0.64 Very Strong 

+ 0.7 - 0.7 0.49 Strong 

+ 0.6 - 0.6 0.36 Moderate 

+ 0.5 - 0.5 0.25 Fair 

+ 0.4 - 0.4 0.16 Fair 

+ 0.3 - 0.3 0.09 Fair 

+ 0.2 - 0.2 0.04 Poor 

+ 0.1 - 0.1 0.01 Poor 

0 0 0 None 

a) Chen, 2003 

 

 

 

 

 

 

 

 

 

 



- 61 -  

 

 

 

Table 2.3. R2 values for the ten untransformed and transformed variables that had the highest relationships with soybean yield using the complete data 

set (n=153). 

Position Variable 
Transformed 

Data R2 
Interpretation a) 

Transformed 

Data 

Untransformed Data 
Data Type 

R2 p-value b) 

1 Conv. or Organic Farming 0.363 Moderate No - 0.363 *** Land Management 

2 Residue Score 0.175 Fair Yes 1/x 0.117 ** Land Management 

3 Very Low Coverage (< 6%) 0.138 Fair No - 0.138 *** Land Management 

4 Residue Coverage (%) 0.137 Fair Yes √x 0.061 * Land Management 

5 Tillage Score 0.131 Fair Yes 1/x 0.108 ** Land Management 

6 Herbicide Score 0.125 Fair Yes x3 0.061 * Land Management 

7 Total Nitrogen * Sand % 0.120 Fair Yes x-3 0.057 * Soil Property * Sand % 

8 Moldboard Plow usage 0.118 Fair Yes √x 0.118 ** Land Management 

9 Total Carbon * Sand % 0.115 Fair Yes x-3 0.052 * Soil Property * Sand % 

10 19:0 cyclo * Sand % 0.107 Fair Yes 1/x 0.061 * FAME-Biomarker * Sand % 

a) Interpretation based on Chen, 2003 (Table 2.2) 

b) *** P < 0.000001; ** P < 0.00005; * P < 0.005        
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Table 2.4. R2 values for the ten untransformed and transformed variables that had the highest relationships with soybean yield using the data set from 

conventionally managed fields (n=123). 
 

Position Variable 
Transformed 

Data R2 
Interpretation a) 

Transformed 

Data 

Untransformed Data 
Data Type 

R2 p-value b) 

1 Total Nitrogen 0.076 Poor Yes 1/√x 0.065 *** Universal Soil Health Indicator 

2 Manure usage 1/3 years 0.073 Poor Yes √x 0.073 *** Land Management 

3 (NAG / AS) 0.073 Poor Yes x-3 0.002 NS Enzyme Ratio 

4 ((NAG+AS) / B-GLU) * Clay 0.069 Poor Yes log(x) 0.061 ** Enzyme Ratio * Clay % 

5 (NAG / AS) / Sand 0.069 Poor Yes x-3 0.006 NS Enzyme Ratio / Sand % 

6 Soil Organic Carbon 0.066 Poor Yes 1/x 0.054 ** Universal Soil Health Indicator 

7 ((B-GLU+NAG) / AS) / Sand 0.065 Poor Yes 1/x 0.030 NS Enzyme Ratio / Sand % 

8 Crop Rotation Score 0.065 Poor No - 0.065 *** Land Management 

9 (B-GLU+NAG) / AS 0.065 Poor Yes x-2 0.014 NS Enzyme Ratio 

10 (B-GLU+AS) / Clay 0.063 Poor Yes 1/√x 0.032 * Enzyme Activity / Clay % 

a) Interpretation based on Chen, 2003 (Table 2.2) 

b) *** P < 0.005; ** P < 0.01; * P < 0.05; NS - Not Significant 
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Table 2.5. R2 values for the ten untransformed and transformed variables that had the highest relationships with soybean yield using the data set from 

organically managed fields (n=30). 
  

Position Variable 
Transformed 

Data R2 
Interpretation a) 

Transformed  

Data 

Untransformed Data 
Data Type 

R2 p-value b) 

1 17:0 0.294 Fair Yes x3 0.224 ** FAME-Biomarker 

2 17:0 10-ME 0.289 Fair Yes x3 0.197 * FAME-Biomarker 

3 19:0 cyclo 0.279 Fair Yes x3 0.239 ** FAME-Biomarker 

4 Soil Organic Carbon 0.261 Fair Yes x2 0.259 ** Universal Soil Health Indicator 

5 Total Nitrogen 0.248 Fair Yes x2 0.248 ** Universal Soil Health Indicator 

6 Total Carbon 0.234 Fair Yes x3 0.224 ** Soil Chemical Property 

7 22:0 * Clay % 0.233 Fair No - 0.233 ** FAME-Biomarker * Clay % 

8 19:0 cyclo * Clay % 0.233 Fair No - 0.233 ** FAME-Biomarker * Clay % 

9 22:0 / Sand % 0.232 Fair Yes x3 0.207 * FAME-Biomarker / Sand % 

10 iso 16:0 0.230 Fair Yes x3 0.173 * FAME-Biomarker 

a) Interpretation based on Chen, 2003 (Table 2.2) 

b) ** P < 0.01; * P < 0.05 
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Figure 2.1.  Soybean Yields for conventional (n=123) and organic (n=30) farm sites collected 

from 2019 to 2020. Red point is the mean soybean yield. 
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Chapter 3: Development of a novel Soil Health Score Index based on a 
Multivariate Soybean Prediction Model 

3.1 Abstract 

The statistical analysis in Chapter 2 showed that there were poor correlations of 

individual soil health measures with soybean yields from farmers’ fields in Ohio. The same 

observation was true for categorical variables related to environmental factors and 

agricultural management practices. A recent publication by Jemo et al. (2023) showed that it 

is possible to predict soybean yields with a multivariate model. Therefore, the objective of 

this study was to develop a robust multivariate soybean yield prediction model that utilized 

the minimum number of variables selected from the following input variables:  enzyme 

activity, ester-linked fatty acid methyl ester (EL-FAME) biomarkers, total nitrogen (TN), 

soil organic carbon (SOC), pH, soil texture information, environmental, and land 

management practice. To develop the data set for model development, soil samples and 

soybean yields were collected over a period of three years at 153 on-farm sites in Ohio, and 

for one year at four long-term experimental sites (LTES). The strongest multivariate 

soybean yield prediction model had an R2 of 0.86 (99 variables). Cross-validation combined 

with the complexity reduction algorithm to minimize overfitting and variable 

intercorrelations, resulted in an optimized model with an R2 of 0.84 that utilized 77 

variables. The regression coefficients for all biological variables were then used to compute 

the weighted biochemical Soil Health Score (SH) variables.   

Furthermore, the sensitivity scores for 521 soil variables at the four LTES were 

determined using the t-test and Tukey-Kramer post hoc test. This analysis identified two 

variables (SH-Score [Enz + FAME] and 16:0 iso EL-FAME biomarker) with the highest 

sensitivity scores for detecting soil/crop management effects. 
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3.2 Introduction 
 

High quality or healthy soils are essential for optimal agricultural production and 

delivery of the ecosystem services (Doran, Sarrantonio, & Liebig, 1996). These services are 

critical for nutrient and water cycles and maintaining and improving biodiversity. But to 

maintain and improve these functions a quantitative soil health (SH) indicators or models 

are needed to guide sustainable agricultural practices. This is also important for developing 

mitigation and adaptation cropping systems to address the negative impacts on crop 

productivity, water resources and soils of climate change (Lal, 2004a, b; Lal, 2019; Lal 

2020).  

Because of these risks, the world food charter was adopted that stated, “soil 

health management is sustainable if the supporting, provisioning, regulating, and cultural 

services provided by soil are maintained or enhanced without significantly impairing either 

the soil functions that enable those services or biodiversity” (FAO, 2015). This means that 

soil degradation should be avoided, and sustainable management should be adopted. But 

the agricultural sector continues to use chemical fertilizers, tillage, and pesticides, which 

have been linked to soil organic matter losses (Post and Mann, 1990), and nutrient and 

pesticide leaching into watersheds (Caraco & Cole, 1999; Mottes et al., 2013). Various 

sustainable practices can reduce or eliminate these negative environmental impacts such as 

cover cropping, no-till, and organic amendments.  

 However, to guide or determine the best cropping system an assessment tool for 

a SH is needed. The most prominent SH tests are the Haney Soil Health test and the 

Comprehensive Assessment of Soil Health test (CASH; Cornell Soil Health Laboratory) 

(Haney et al., 2006; Moebius et al., 2007). However, an investigation by Roper et al. (2017) 
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showed that they are limited in their ability to differentiate between crop/soil management 

effects and that they poorly correlate with crop productivity. Other studies conducted in 

West Tennessee, Pennsylvania, and in Ontario, Canada reported similar deficiencies of 

these tests (Chu et al., 2019 t; Chahal and Eerd, 2018; Faé et al., 2020,). The tests largely 

focus on physical and chemical indicators for their SH evaluations and exclude sensitive 

biological indicators like enzyme assays and microbial properties (Norris et al., 2020).  

Conversely arylsulfatase and β-glucosidase have been shown to be sensitive in 

detecting: (1) cover cropping (Miller and Dick, 1995; Bandick and Dick, 1999; Mendes et 

al., 1999; Ndiaye et al., 2000; Schutter et al., 2001; Schutter and Dick, 2002; Sprunger et al, 

2020), (2) organic amendments ( Dungan et al., 2021; Carlson et al., 2015; Yaroshevich, 

1966; Khan, 1970; Verstraete and Voets, 1977; Dick et al., 1988; Goyal et al., 1993; 

Kandeler and Eder, 1993; Werner et al., 1988; Perucci, 1992), (3) heavy metals and 

herbicides (Hinojosa et al., 2004; Al-Khafaji and Tabatabai; Bardgett et al., 1994; Yeates et 

al. 1994), (4) climate effects (Acosta-Martínez et a., 2014a,b), (5) tillage (Dick, 1984; 

Montero et al., 2004; Balota et al., 2004, 2014; Lorenz et al., 2020), and/or (6) perennial 

management (Vallejo et al., 2009, 2012; Chenhui et a., 2021). For arylsulfatase and β-

glucosidase, Bandick and Dick (1999) and Ndiaye et al. (2000) showed that these assays 

have low in-season variability while demonstrating an overall temporal trajectory, thus 

enabling the calibration and interpretation of these indicators to detect changes in SH. 

To improve the ability to predict yields based on SH indicators, multivariate 

models are a logical approach, but a review of the literature showed very little research on 

such model development. Jemo et al. (2023) developed a strong soybean yield prediction 

model (R2=0.57) (Table 2.2). The model was based on input variables of soil chemical and 
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texture properties without any land management variables. Malone et al. (2024) developed 

a soybean prediction model with a low R2 of 0.32 using soil data collected from a variety of 

agricultural fields in Wisconsin using the random forest test. Shukla et al. (2003) used 

stepwise multiple regression to develop a corn yield prediction model (R2 = 0.37). The Soil 

Health Institute who collected a large data set of SH measurement from 124 from long-term 

experimental sites (LTES) across North America which has not been used to develop 

multivariate yield prediction models (Norris et al. 2020).  

In summary very few and less than robust multivariate yield prediction models 

have been published and individual soil measurements have shown a poor ability to 

correlate with or predict crop yield (Chapter 2, Roper et al., 2017). Therefore, the objective 

of this study was to take a different approach in developing a yield prediction model using 

multi-variate machine learning algorithms (elastic net). Model development was based on 

data derived from soil analyses and land management variables. Furthermore, various 

variable transformations and variable ratios were tested to improve model predictability. 

Lastly the final model with the highest R2 had to pass cross-validation and penalty tests to 

reduce overfitting and variable intercorrelations. Soybean was used as the test crop because 

it is grown worldwide. It was hypothesized that a multi-variate yield prediction model with 

high R2 would be developed. 

The second objective was to use the optimized model to compute the weighted 

biochemical Soil Health Score (SHS) variables (derived from EL-FAME and enzyme 

activities) which would be used for SH assessment or detecting soil/crop management 

effects - using data from farmer fields and four long-term field experimental sites (LTES). 

The SHS variable was calculated with a mathematical algorithm that used the biological 
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regression coefficients from the optimized model. The hypothesis was that by replacing the 

original biological variables with the SHS variables the adjusted R2 values would increase. 

The third objective was to screen and score 521 soil variables (includes SHS 

variables) for their ability to detect various soil/crop management treatments at four LTES. The 

hypothesis was that a minimum subset of variable would have high levels of sensitivity for 

detecting land management based on means separation analysis. 

 

3.3 Material and Methods 
 
3.3.1 Study Sites 

 
A total of 153 soil samples were collected each spring from 2019 to 2021. Each 

sample site was identified, and GPS tracked before any sampling occurred. One hundred and 

six samples came from 18 farms in eight counties in Ohio (Clinton, Darke, Fulton, Hancock, 

Madison, Morrow, Pickaway, and Tuscarawas). In 2021 47 soil samples were collected from 

four LTES. Three of the LTES are in Ohio and one in Michigan. The soils are classified as: silt 

loam (59%), as a loam (20%), as a clay loam (11%), and as a silty clay loam (10%). 

In most cases there were at least two field where one field had soybeans (Glycine 

max) the first year and the second field had soybeans the following year of sampling. Each 

farmer was surveyed in person or over the phone to get information on past land management 

on each field and management plans for each growing season. Five farmers are certified 

organic farmers and the remaining 13 have conventional land management. 

 

3.3.2 Organic Farm Sites 

 

The organic farm sites (n=18) were in Madison, Handcock, and Clinton county and 
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have been under agricultural management for 50 to more than 100 years. Fields under 

organic management had been in place from to one to 20 years and range in size from 5 to 47 

ha. Precipitation for each site ranged from 244 to 553 mm (Climate Fieldview, n.d). The 

growing period from planting to harvest ranged from 120 to 160 days. Most organically 

managed soils were a Crosby-Lewisburg silt loams (mesic Aeric Epiaqualfs / shallow Aquic 

Hapludalfs) and four were Mollisols (Soil Survey Staff, 2019). Furthermore, the only four 

Mollisols in the study were identified at two separate organic farm field locations. All 

organic farm sites used organic seeds, had a soybean-corn-wheat rotation, a 30-inch (76 cm) 

row spacing, and no synthetic inputs to meet certified organic standards. However, across the 

organically, managed fields there was variation in tillage manure applications, and cover 

cropping. 

 

3.3.3 Conventional Farm Sites 

 

Thirteen conventionally managed fields ranged in size from 4 to 77 ha. Sixteen 

fields had a soybean-corn-wheat rotation and 72 a soy-corn rotation. Conventional farmers 

had a 15-inch (38 cm) (n=74) or 7.5-inch (19 cm) (n=12) row spacing. All conventional 

farmers used synthetic fertilizers and herbicides. Herbicide management was divided in 

three application categories: only glyphosate (N-(phosphonomethyl) glycine), glyphosate 

with a secondary herbicide, and dicamba (3,6-dichloro-2-methoxybenzoic acid). All 

conventionally managed fields had Alfisols (Soil Survey Staff, 2019). The soil samples 

came from Darke, Fulton, Hancock, Madison, Morrow, Pickaway, and Tuscarawas 

counties. The agricultural fields under conventional management ranged from 1 to 100 

years of usage. One field was converted from native land to farmland. Seasonal 
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precipitation between planting and harvest was recorded using the Climate Fieldview 

website which ranged from 329 to 653 mm. (Climate Fieldview, n.d). The individual 

recorded precipitation levels for conventional farm sites varied between 329 to 653 mm. 

The growth period ranged from 114 to 173 days. Other practices varied for cover cropping, 

manure application rates and type, and tillage. 

 

 

3.3.4 Long Term Field Sites 

 

3.3.4.1 Wooster - Triplett-Van Doren Site 

 
The LTES in Wooster, OH (40.764° N, -81.906° W) was established in 1962 by 

Glover B. Triplett and David M. Van Doren. The primary soil series is a Wooster silt loam 

(fine-loamy, mixed, active, mesic Oxyaquic Fragiudalfs) with a 2-6 % slope. For the first 15 

cm the soil particle size distribution (texture) ranges between 25-30 % for sand, 55-60 % for 

silt and 15% for clay (Dick and Van Doren Jr., 1985; Dick et al., 1986a; Soil Survey Staff, 

2019). Deiss et al. (2021) reported a range of 5.4 to 6.8 for soil pH. 

The experimental has a two-way factorial randomized complete block design with 

three replications with three tillage treatments, and three crop rotations (Dick and Van Doren 

Jr., 1985; Deiss et al., 2021). Plot size is 22.3 m by 4.3 m. 

The three tillage treatments are: (1) no-tillage (NT); (2) chisel (minimum) tillage 

(CT); or (3) moldboard plow (MP). The minimum tillage treatment had a para plow from 

1962 to 1984, after which a chisel cultivator was used. Chisel tillage loosens the soil and 

allows up to 30% litter retention on the soil surface. Moldboard tillage inverts soil to a depth 

of 20 cm and buries the litter, leaving 5 % or less on the soil surface (Dick et al., 2013).  

The three crop rotation treatments on the site are: (1) continuous corn (Zea mays 
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L.) (CC); (2) corn and soybean (Glycine max L.) (CS); and (3) corn and oat (Avena sativa L.) 

and/or alfalfa (Medicago sativa) or clover (Trifolium repens L.) (CFF). Nine soil samples 

were collected in 2021 from the CS rotation plots that grew soybeans. 

 

3.3.4.2 Hoytville - Triplett-Van Doren Site 

 

The LTES in Hoytville, OH (41.222 ° N, -83.762° W) was established in 1963 by 

Glover B. Triplett and David M. Van Doren. The primary soil series is a Hoytville clay loam 

(fine, illitic, mesic Mollic Epiaqualfs) with a 0-1 % slope. For the first 15 cm the soil particle 

size distribution (texture) ranges between 25 % for sand, 39 % for silt and 36 % for clay 

(Dick and Van Doren Jr., 1985; Dick et al., 1986a; Soil Survey Staff, 2019). In contrast to the 

Wooster soil, The Hoytville soil has a poor surface and internal drainage, and it cracks when 

dry. In 1952 a subsurface tile drainage was installed at a depth of 1.2 - 1.4 m (Dick et al., 

1986b; Deiss et al., 2021). Deiss et al. (2021) reported a range of 4.3 to 7.5 for soil pH.  

It has a two-way factorial randomized complete block design with three 

replications, and the identical three tillage treatments, and three crop rotations as the Wooster 

LTES (Dick and Van Doren Jr., 1985; Deiss et al., 2021). The plot size is 30.5 m by 6.4 m. 

Eight soil samples were collected in 2021 from the CS rotation plots that grew soybeans. 

(Theoretically 9 but for one plot no soybean yield was recorded). 

 

3.3.4.3 Columbus - Straw Mulch Experiment 

 

The Straw Mulch Experiment (40.017° N, -83.0395° W) was established in 1996 

by the Carbon Management and Sequestration Center (CMASC) at the Ohio State 

University. The objective of this LTES is to determine the effect of wheat straw (Triticum 
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aestivum L.) mulching on soil quality, soil organic carbon (SOC) sequestration and 

dynamics, and greenhouse gas emissions (Blanco-Canqui and Lal, 2007). No mechanical 

tillage is used, and glyphosate (N-Phosphonomethyl glycine) is used to control weeds. The 

primary soil series is a Crosby silt loam (fine, mixed, active, mesic Aeric Epiaqualfs) with a 

2-6 % slope (Soil Survey Staff, 2019). For the top 15 cm the soil particle size is 22-23 % for 

sand, 53-56 % for silt, and 22-24 % for clay (Soil Survey Staff, 2019; Nawaz et al., 2016; 

Saroa and Lal, 2003). Measured soil pH at a depth of 0 to 15 cm ranged from 5.7 to 7.1. 

The experimental design is a two-way factorial completely randomized block 

design (3 replications) with three mulch rates and two fertilizer rates. The fry mulch 

treatments are: (1) no mulch (control), (2) 8 Mg ha-1 yr-1, and (3) 16 Mg ha-1 yr-1. The 

fertilizer treatments are: (1) no fertilizer application (control), or (2) annual broadcast 

fertilizer application with a rate of 244 kg N ha-1 (184 kg N ha-1 as Urea) and 60 kg ha-1 of 

NPK). Each year, the wheat straw is applied in the spring followed by fertilizer application 

in the late spring to early summer. Until 2020 no crops were grown on the plots after which 

for two years corn and soybean were grown on them. Plot size is 5 by 5 m. Each plot on 

which the crop experiment took place was separated into two halves (2.5 by 5 m) with a 

corn-corn and soybean-soybean rotation. For this study only six soil samples were collected 

originating from plots with no fertilizer application and low (0 Mg/ha) and high (16 Mg/ha) 

mulch rates that had soybeans grown on them. 

 

3.3.4.4 Michigan - KBS Long-Term Ecological Research Station 

 
The Kellogg Biological Station Long-Term Ecological Research project was 

established in 1987 by Michigan State University and is funded by the National Science 
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Foundation and by the Michigan State University AgBioResearch program. Soil samples 

were collected from the Main Cropping System Experiment (42.410° N, -85.373° W) which 

was completed in 1989. The primary soil series is a Kalamazoo loam (fine-loamy, mixed, 

active, mesic Typic Hapludalfs) with a 2-6 % slope. For the top 15 cm the soil particle size 

distribution is 32 - 50 % for sand, 34 - 39 % for silt and around 11-19 % for clay (Robertson 

et al., 2020; Soil Survey Staff, 2019). The soil pH in the 0 to 15 cm ranges from 5.7 to 6.5. 

The plot size is 87 by 105 m.  

It has a factorial randomized complete block design with six replications. The 

tillage treatments are: (1) conventional chisel (minimum) tillage (MT-Conv); (2) 

conventional no-tillage (NT-Conv); (3) chisel tillage with reduced- N input (MT-Conv(-N)); 

and (4) biologically (organic) based system with chisel tillage (MT-Org) (Martin and 

Sprunger, 2022; Naasko et al. 2024). The four tillage treatments follow a corn-soybean-

wheat rotation, but winter cover crops are incorporated in the reduced input (MT-Org) and 

biologically based systems (MT-Org) following corn and soybean harvest (corn–ryegrass 

(Lolium multiflorum)–soybean–winter wheat–red clover (Trifolium pratense)). 

Twenty-four soil samples were collected from the four tillage treatments in 2021. 

 

3.3.5 Surveys and Precipitation Information 

 
The survey used with farmers was designed to study soybean yield gaps due to 

crop management across the north central US (Edreira et al., 2017). The survey asked 

questions about crops grown in the past 3 years, tillage, if herbicides or fungicides were 

used, type of herbicide, if cover cropping, manure rate and type, whether sudden death 

occurred, drainage system, soybean variety, seed treatment, and weather irrigation were 
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used. Farmers were asked to identify low and high productivity areas in their fields which 

were sampled separately. Later information was collected on soybean planting and harvest 

dates. This information was used to determine the field specific precipitation amounts with 

the help of the Climate Fieldview website (Climate Fieldview, n.d). 

The same crop management information was obtained from the LTFS. For the 

Main Cropping System Experiment (MCSE) in Michigan the management practices and 

soybean yields were extracted from the publicly available data website and the NSF Long-

term Ecological Research Program (DEB 2224712) (Robertson and Snapp, 2019; Robertson 

and Simmons, 2020; Martin and Sprunger, 2022). 

Recent land management information for the Wooster and Hoytville LTFS 

specifically in connection to the 2021 soybean yields were provided by Matthew Davis from 

the OSU agricultural operations department. 

Information regarding the 2021 land management history for the East Straw 

Mulch Experiment, which has been established by the Carbon Management and 

Sequestration Center (CMASC), was provided by Kyle Sklenka. 

 

3.3.6 Soil Sampling and Processing 

 
With the information from the surveys each individual farm field location was 

identified. A soil map, and LIDAR elevation information was obtained from the US Soil 

Survey website and the Ohio Statewide Imagery Program (OSIP). An elevation heatmap was 

created using a 3D point cloud and mesh processing software CloudCompare. The soil map 

was overlayed with the elevation heatmap to identify a low and high elevation soil sampling 

site on each field. Each soil sampling sites was selected based on farmer survey yield 
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information and the premise that the soil units would be identical. The GPS coordinates for 

both sites were recorded, and the texture specific information was obtained from the US Soil 

Survey website.  

Six to eight soil (0-15 cm depth) cores (2.54 cm dia.) were taken and 

homogenized to form a composite sample (~1 kg). All cores were taken within a 5 m radius. 

For the LTFS a randomized soil core sampling was done in a w-shaped pattern. For the 

Michigan LTFS it was required to sample five predetermined soil sampling subplots. At 

each subplot two cores (0-15 cm depth; 2.54 cm dia.) were collected and composited. Soil 

samples were stored as soon as possible in a cooler with ice and transferred to a -20 °C 

freezer (Lee et al., 2007; Veum, 2019). 

After thawing the soil samples in the 4 °C fridge, the wet soil was sieved to pass a 

2 mm mesh size and all organic material, or mineral fragments were removed. A 300 to 

500g subsample was air dried for 24 to 48 hours at room temperature, then stored in the 4 °C 

fridge and used to measure pH, Total C (TC), Total N (TC), soil organic carbon (SOC), and 

the enzyme activity of β-Glucosidase (GLU), N-Acetyl Glutamate synthase (NAG), and 

Arylsulfatase (AS). The remaining field moist subsample was stored at -20 ˚C and used for 

EL-FAME analysis work. Gravimetric water content was determined by weighing before 

and after a placing a soil subsample in an oven set at 105 ˚C for 24 hours. 

 

3.3.7 Total Nitrogen, Total Carbon, Soil Organic Carbon, and pH 

 
Soil pH was measured with air-dried soils using a 1:1 mixture of soil and 

deionized water followed by measurement with a glass membrane electrode (Accumet 

Model 15 pH meter). 
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Total nitrogen (TN) and total carbon TC was determined on sieved air-dried soil 

samples that had been crushed with a pestle and mortar to pass a 106 μm sieve (USA 

Standard Test Sieve Number 104). This subgroup was then used in an elemental analyzer 

system (Carlo Erba CHN EA 1108, now Thermo Fisher Scientific, Waltham, MA) (Nelson 

& Sommers, 1996, Matejovic, 1997).  

Inorganic carbon (SIC) was determined by placing the half of the subsample into a 

furnace for 16 hours at 450 ˚C (Ball, 1964; Davies, 1974; Ben-Door & Banin, 1989; Soon 

and Abboud, 1991; Nelson & Sommers, 1996). Past publications determined that organic 

matter content by loss-on-ignition at this 400 ˚C temperature resulted in a strong correlation 

with soil organic carbon content that was determined via wet-oxidation (dichromate) (Ben-

Door & Banin, 1989, Nelson & Sommers, 1996). The heating regime of 375 ˚C to 450 ˚C 

oxidizes all organic matter without creating significant errors due to losses by crystal water 

or hydroxyl groups from minerals (Davies, 1974; Nelson & Sommers, 1996). After the 

furnace treatment the subsamples were dry combusted a second time in the elemental 

analyzer system. SOC was calculated by subtracting the recorded SIC concentration from 

the TC concentration. In the final step, TN, TC, and the SOC variable, were divided and 

multiplied by the percentage of clay and separately by the percentage of sand. 

 

3.3.8 EL-FAME 

 
The soil microbial community composition was obtained by running the Ester-

Linked Fatty Acid Methyl Ester method (EL-FAME) which was described by Schutter and 

Dick (2000) and is based on a method developed by Dr. Rhae Drijber.  

Three g of field moist soil was extracted with a 1:1 hexane/methyl-tert butyl ether 
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and Methyl Nonadecanoate mixture that was then vortexed with a 0.2 M methanolic KOH 

solution. The tube was placed into a water bath at 37 ˚C and incubated for 1h. During this 

incubation phase the sample was vortexed for 10 seconds every 10 minutes. Afterwards 1.0 

M acetic acid is added to establish a pH of 7. In the next step, 10 ml of hexane is added, and 

the tube is vortex for 60 seconds followed by centrifuging (1600 rpm for 20 minutes) that 

partitioned the EL-FAMEs were into the organic phase. The upper, organic phase was 

removed and evaporated under a stream of N2 gas. The dried EL-FAME film was dissolved 

in 1 ml of the internal standard mixture and transferred into a gas chromatograph (GC) for 

analysis on the 6890N GC (Agilent Technologies). 

The GC was equipped with a flame ionization detector that used a fused silica 

capillary column (25 m × 0.20 mm × 0.33 μm). The system used ultra-high purity H2 as the 

carrier gas and the temperature program was ramped from 190 to 285 ˚C at 10 ˚C per 

minute. The Microbial ID PLFA identification software (MIDI ver.6.2) was used to identify 

the biomarker and their relative peak areas. The individual biomarkers concentrations (nmol 

g−1 dry soil) were calculated and categorized based on described procedures in the literature 

(Olsson, et al., 1995; Frostegård & Bååth, 1996; Zelles, 1999; Schutter and Dick, 2002).  

Each EL-FAME is described with a nomenclature. The first number clarifies the 

number of carbon atoms of the fatty acid molecules. It is followed by a colon and a second 

number which explains the number of double bonds within the molecule. The suffixes “c” 

and “t” are used to indicate Cis and trans isomers. Branched fatty acids are indicated by the 

prefixes i (iso) and a (anteiso). Other notations like “Me”, “OH”, “cy” 

 are used to describe methyl, hydroxy, and cyclopropane groups. 

The total FAME concentration (nmol g−1 dry soil) was determined by the sum of 
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all identified EL-FAME biomarkers in a soil sample. The sums of individual EL-FAME 

biomarkers were used to compute broad taxonomic microbial groups such as Gram-positive 

bacteria (a15:0, i15:0, i16:0, a17:0, i17:0) (O’Leary and Wilkinson, 1988; Zelles, 1999), 

Gram-negative bacteria (cy17:0, cy19:0, 16:1ω7c, 17:1ω8c, 18:1ω7c) (Wilkinson, 1988; 

Tunlid et al., 1989; Kerger, et al., 1986; Haack, et al., 1994, Zelles, 1999), Actinobacteria 

(10Me16:0, 10Me17:0, 10Me18:0, 10Me19:1ω7c) (Fischer et al., 1983; Kroppenstedt, 1985; 

Zelles, 1997; Frostegård et al., 1993, Veum et al. 2021), arbuscular mycorrhizal fungi 

(AMF; 16:1 ω5c) (Nordby et al., 1981; Olsson et al., 1995; Olsson, 1999; Madan et al., 

2002),  Protozoa (20:3ω6c, 20:4ω6c) (Guckert et al., 1985), and Eukaryotes (21:0, 22:0, 

23:0, and 24:0) (Zelles, 1999) (Appendix Table 2).  

Additionally soil microbial ratios were calculated, which included the total 

fungal/bacterial ratio (tFU/BA), fungal/bacterial ration (FU/BA), gram-positive 

bacteria/gram-negative bacteria ratio (GP/GN), saturated/monounsaturated fatty acid ratio 

(SAT/MONO), bacterial/total FAME (BA/ToF), cyclopropane fatty acid 17/ 16:1 precursor 

ratio (Cy17/16; cy17:0/16:1ω7c), and cyclopropane fatty acid 19/ 18:1 precursor ratio 

(Cy19/18; cy19:0/18:1ω7c). In published studies these ratios were used to interpret 

microbial community shifts due to stress related conditions (McKinley et al., 2005; Taguchi 

et al., 1980; Guckert et al., 1986; Kieft et al., 1994, Bossio and Scow, 1998; Moore-Kucera 

and Dick, 2007).  

The tFU/BA ratio was determined with the sum of the saprotrophic fungal and the 

arbuscular mycorrhizal fungi (AMF) marker (18:1ω9c, 18:2ω6c, and 16:1ω5c) divided by 

the sum of 11 bacterial markers (15:0, 17:0, i15:0, a15:0, i16:0, i17:0, a17:0, cy17:0, cy19:0, 

16:1ω7c, and 18:1ω7c). The FU/BA ratio is calculated in a very similar way with the 
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exception that the AMF biomarker is removed (Frostegård & Bååth, 1996). The GP/GN 

ratio is calculated with the sum of 5 Gram-positive bacteria divided by 5 Gram-negative 

bacteria (Frostegård et al., 1993; Zelles et al., 1994). The SAT/MONO ratio was calculated 

with the sum of 5 saturated fatty acids (14:0, 15:0, 16:0, 17:0, and 18:0) divided by the sum 

of 7 monounsaturated fatty acids (16:1ω5c, 16:1ω7c, 17:1ω8c, 18:1ω7c, 18:1ω9c, cy17:0, 

and cy19:0) (McKinley et al., 2005). To determine the BA/ToF ratio the sum of 11 bacterial 

markers (15:0, 17:0, i15:0, a15:0, i16:0, i17:0, a17:0, cy17:0, cy19:0, 16:1ω7c, and 18:1ω7c) 

was divided by the total FAME concentration. For the GP/ToF ratio the sum of 5 Gram-

positive bacteria was divided by the total FAME concentration. In the final step, all recorded 

EL-FAME variables, were divided and multiplied by the percentage of clay and additional 

by the percentage of sand. 

 

3.3.9 Enzyme Activity  

 

The potential enzyme activity of β-glucosidase (B-GLU), Arylsulfatase (AS), 

and N-Acetyl-β-glutamate synthase (NAG; also known as β-glucosaminidase) were 

measured for each dry soil sample. These three enzyme activities are involved in the C 

cycle (B-GLU, NAG), S cycle (AS), and N cycle (NAG). The assay procedures have been 

described elsewhere: B-GLU (Tabatabai, 1994; Dick, 2011), NAG (Parham and Deng, 

2000; Dick, 2011), and AS (Tabatabai, 1994; Dick, 2011). For each enzyme assay three 

replicate samples and one control of 1g of air-dried soil was prepared. Each sample 

received the corresponding substrate based on the assay protocol before the 1-hour 

incubation at 37 ˚C started (Table 2.3). For the control the corresponding substrate was 

added after the reaction was stopped. Color development was measured on a 
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spectrophotometer. Enzyme activities are expressed as mg of p-nitrophenol (PNP) kg−1 dry 

soil h−1. 

Additionally, the sum of B-GLU + AS, B-GLU + NAG, AS + NAG, and B-GLU 

+AS + NAG was determined. Recent studies determined that multi-assay combinations of 

enzymes are possible and thereby could be used as a new soil health assessment tool across 

agroecosystems (Acosta-Martínez et al., 2019). Additionally, the ratio of B-GLU / AS, B-

GLU / NAG, AS / NAG, (B-GLU +AS) / NAG, (B-GLU + NAG) / AS, and (AS + NAG) / 

B-GLU were determined. In the final step, all recorded enzyme variables, were divided and 

multiplied by the percentage of clay and additional by the percentage of sand to determine a 

possible relationship between soybean yields. 

 

3.3.10 Soybean Yield Sampling  

 

By communicating with farmers during harvest times the beginning maturity (R7) 

or full maturity growth stage (R8) was determined. The number of soybean plants were 

counted within a range of 6 to 14 adjacent rows (dependent on row spacing) with a row 

distance of 5 m. Afterwards around 1.5 kg of soybean plants were randomly collected and 

counted inside the predefined area. To avoid yield errors due to moisture differences the 

plants were placed in a 30 °C incubation chamber to dry. In the first-year soybeans seeds 

were hand threshed and in the other two years the Agriculex SPT-1A thresher was used. For 

the Agriculex SPT-1A thresher a total loss of material below 1 % was determined. The 

soybeans were stored at 4°C in paper bags to avoid the decomposition of proteins and fats. 

To determine the moisture, protein, and fat content for the individual soybean samples the 

FOSS Infratec NOVA grain analyzer system was used. By adjusting the measured moisture 
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content to the 13 % moisture content, which is commonly used for soybeans, and 

incorporating the recorded stand count, soybean weight, soybean count, and area specific 

information the soybean yield (kg ha-1) was determined. 

 

3.3.11   Statistical Analysis 

 

Statistical analyses were performed using RStudio, which is an integrated 

development environment that uses the R programming language and software environment 

for statistical computing and graphics (R Core Team, 2022; RStudio, 2018). To determine a 

biochemical Soil Health Score Index with a range of 0 to 1, and simplify the multivariate 

model interpretation, all measured variables were normalized by dividing the individual 

measured observation by the maximum recorded observation value in the data set. This rule 

did not apply to soil properties such as pH (pHmax = 12), residue coverage, clay, silt, and 

sand, which have a scientific or mathematically maximum (100 %) compared to SOC, 

enzyme activities, or microbial concentrations which can have no fixed maximum. Binary 

variables (Yes / No) were also transformed into numerical 1 and 0 variables. A list of all 

variables that were used in this study are listed in Suppl. Table 3.4.  

After the normalization steps were completed, the coefficient of determination 

(R2) and the adjusted R2 values for different multivariate regression models was determined 

by utilizing the lm function. By using the lm function in R, the statistical analysis is 

classified as a general linear model. But because the models in this study use continues and 

binary numeric variables, and that there is no clear answer if a general or generalized linear 

model should be considered, the glm function was also used to analyze the same models in a 

generalized linear model design. To determine the goodness-of-fit measurement for the 
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generalized models the McFadden pseudo R2 values were determined, which cannot be 

compared with the R2 results from the general linear model. 

To determine the capability of various data clusters to predict soybean yields, 

separate multivariate models based on soil related properties, and land management 

characteristics were analyzed. A large variable model design with different combinations of 

both data clusters were also determined. Because R2 tends to increase when more variables 

are added to the model the adjusted R2 value was used to identify the best multivariate model 

to account for overfitting (eq. 2). Afterwards the best model was reevaluated through cross-

validation and a penalty analysis test. The goal of these tests was to reduce the risk of 

overfitting and intercorrelations between variables. To achieve this the cv.glmnet function 

was used which was obtained through the glmnet package (Friedman et al., 2010; Tay et al., 

2023). 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . . +𝛽𝑝𝑥𝑖 + 𝜖      (eq. 1) 

 
The resulting multivariate model was then used to extract the coefficient 

parameters (βp) for all relevant Enzyme and EL-FAME variables (eq. 1). This information 

was used to compute the individual coefficient ratios (βp-r) separately for all negative and 

positive coefficient parameters. To compute these ratios all positive and negative 

coefficients were summed up and each individual coefficient was divided by the computed 

positive or negative summed value. By multiplying the ratio (βp-r) with the corresponding 

normalized explanatory variable (xi) and summing the results the positive and negative 

weighted biochemical Soil Health Scores (SHS) were determined for each observation. To 

calculate the fitted biochemical SHS (weighted mean), the positive and negative SHS and 

the coefficient parameters were used (Figure 3.1). With the computed positive, negative, and 



- 84 -  

fitted SHS a follow up multivariate model analysis was conducted. In this analysis all 

Enzyme and EL-FAME variables were replaced by computed SHS variables. In this analysis 

different combinations of variable clusters were explored. The goal was to determine if a 

simplified model would result in a similar prediction strength (R2) to the original model and 

to determine what variable clusters result in drastic changes if they were removed from the 

model. 

Additionally, 521 variables which included the computed SHS variables were 

statistically analyzed for their capability to detect crop/soil management effects at four 

LTES. To determine the statistical differentiation power for all variables sensitivity scoring 

was done. The scoring concept was based on the t-test and Tukey’s post-hoc test outcomes 

(Table 3.1). The p-value for those tests was defined to be below 0.05. To create graphs the 

ggplot2 and cowplot packages were used (Wickham, 2016). 

 

3.4 Results and Discussion 
 

3.4.1 Multivariate Yield Prediction Models 

 

The multivariate model analysis, based on general and generalized modeling, 

generated a moderate to strong soybean yield prediction model. For a general model that 

only included soil property variables and the binary distinction variable between organic and 

conventional farming practices had an R2 value of 0.76 (p<0.0001) (Table 3.2, Run 24). If 

the biological variables (enzyme activities and EL-FAME) are excluded from this model the 

R2 value drops to 0.46 (Table 3.2, Run 3), which is 30 percentage points lower than the best 

soil property model. The outcome of this analysis showed that models that include 

biological properties increase the soybean prediction strength significantly.  
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The highest R2 value for a yield prediction model using only land management 

variables and environmental factors was 0.55 (p<0.0001), which is 21 percentage points 

lower than the model based on soil property variables (Table 3.2, Run 29). But by including 

texture, soil order, and environmental information, which can be freely extracted from the 

US Soil Survey and Climate.com website, the model could be increased to an R2 value of 

0.62 (p<0.0001) (Table 3.2, Run 31).  

The above results showed that in theory a strong or very strong multivariate yield 

predication models using land management information or soil property data could be 

developed (Table 2.2). However, the coefficient of determination (R2) does not indicate 

causality and cannot account for extreme weather events, which could create outliers that the 

model cannot predict. The R2 value also only represents the percentage of variance of the 

dependent variables and does not correct for the sample size and number of coefficients in a 

model. Because of these factors the prediction strength of a multivariate model should be 

based on adjusted R2 outcomes (eq. 2). 

This was done for the two models with the highest R2 values and resulted in an 

adjusted R2 values of 0.59 using soil properties (Table 3.2, Run 24) and 0.53 using land 

management information and online soil data (Table 3.2, Run 31). These results still support 

the hypothesis that both model concepts can predict soybean yields, but the results also show 

that the standard error of the regression is still too large to predict soybean yield accurately.  

Separate model runs found that excluding the binary variable which differentiates 

organic and conventional farming practices resulted in significantly lower R2 values. It 

reduced the model by 16 percentage points (Table 3.2, Run 25 vs 24 and 28 vs 31). 

The combination of both data sets of variables not only resulted in a higher R2 
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value but also in a higher adjusted R2 value. The multi-variate model that had the highest R2 

value of 0.87 (adjusted R2 of 0.69, p<0.0001) used all 105 explanatory variables (Table 3.2, 

Run 48). A multi-variate machine learning algorithm (elastic net) was used, which ran a 

cross-validation (training vs test data) and a complexity model reduction. The outcome of 

this algorithm was that some variables were eliminated due to variable intercorrelations, 

resulting in an optimized model with an R2 value of 0.83. 

The same multi-variate machine learning algorithm was used for the second-best 

model (99 variables) but had the EL-FAME ratio variables excluded (Table 3.2, Run 47). 

This model had a lower R2 value of 0.86 (p<0.0001) compared to the previous model, but a 

higher adjusted R2 of 0.70. After the machine learning algorithm was used the number of 

variables in the optimized model was reduced to 77 and the R2 value was 0.84.  

Therefore, of the two top models the one with the highest adjusted R2 value was 

selected as the optimized model. These results show that the development of crop yield 

prediction models using the machine learning algorithm method should focus on the 

adjusted R2 value rather than the R2 value to determine the final optimized model. 

A study conducted in Nigeria, with soil samples from 350 on-farm sites produced 

a soybean prediction model with an R2 of 0.57 (28 variables) (Jemo et al, 2023). This study 

measured environmental factors, and physical, and chemical soil properties. In this study a 

random forest machine learning design was used. If biological soil properties had been 

included the prediction strength of the model could have been higher. This is supported by 

the model results that only used physical and chemical soil properties and resulted in an R2 

value of 0.46 (Table 3.2, Run 3). 

Overall, this statistical model development using various combinations of 
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variables resulted in a robust soybean yield prediction model adjusted for overfitting 

applicable Ohio and possibly Michigan. This optimized model was used to determine the 

weighted biochemical Soil Health Scores (SHS). Additionally, no significant differences 

between the general and generalized models were found. This observation showed that the 

interpretation of the multi-variate general models was most reliable and that errors due to 

non-normal distributions were negligible. 

 

3.4.2  The Biochemical Soil Health Score Index 

 

Individual regression coefficients (βp) for enzyme activities, enzyme ratios, and 

EL-FAME variables were extracted from the multi-variate optimized regression soybean 

prediction model. From this a weighted biochemical Soil Health Score (SHS) with an index 

range of 0 to 1 was calculated. Separate to this index two different approaches were 

explored. The first index was based on regression coefficients of individual enzyme activity 

variables. The second one used regression coefficients based on individual EL-FAME 

variables (Figure 3.1). To determine these scores the coefficient ratios (βp-f) had to be 

determined and multiplied by the normalized explanatory variables (xi). An example of the 

basic computational steps for the determination of the enzymatic SHS is presented in Table 

3.3 and Table 3.4. All SHS variables have no unit because each biological variable was 

divided by the corresponding maximum variable value with the same unit. A linear 

regression analysis of all nine SHS resulted in a poor correlation with soybean yield. The 

outcome of this analysis supports the findings in Chapter 2. 
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3.4.3  Multivariate Model Reevaluation 

 

Statistical model runs where enzyme and EL-FAME variables were replaced by 

only the fitted SHS variable resulted in the poorest prediction model than those that used the 

positive and negative SHS variable (Table 3.5, Run 1 vs 2; Run 8 vs 9; Run 15 vs 16). This 

can be thought of like a balance scale where positive or negative SHS change the position of 

the scale. But if the fitted SHS is used the balance would stay still.  

This is corroborated by the R2 values for all model runs that used the fitted SHS, 

and the original large variable run that did not include any enzyme or EL-FAME related 

variables (Table 3.2, Run 39; Table 3.5, Run 1, 8, 15). All four model runs resulted in a 

nearly identical R2 value of 0.65, an adjusted R2 value of 0.53, and a pseudo R2 value of 

0.65.  

Based on this observation any model comparisons were conducted for those 

models that included the negative and positive SHS. The best model that included the 

negative and positive SHS, which were developed using the enzymatic assay, enzymatic 

ratio, and EL-FAME biomarker variables, resulted in a coefficient of determination (R2) of 

0.84 (Table 3.5, Run 16). The adjusted R2 was determined to be at 0.78, which is 

significantly larger than the adjusted R2 (0.70; Table 3.2, Run 47) that was determined for 

the original model. The increase in the adjusted R2 was expected since the number of 

independent predictors dropped from 99 to 48, and the number of observations stayed the 

same (eq. 2). A correlation graph that plots the predicted soybean yields against the recorded 

soybean yields is shown in Figure 3.3. 
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𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 − (1−𝑅2)(𝑛−1)𝑛−𝑝−1   (eq. 2) 

Where: 
 
R2 = Computed R2 for the model 
n    = Number of observations 
p  = Number of independent predictors (variables) 

 

When texture data was excluded from model development the reduction of R2 

values were only ~1 to 3 % (Table 3.5, Run 2 vs 4, Run 9 vs 11, Run 16 vs 18). This 

observation was unexpected because oil texture is frequently found to be an important factor 

that controls other soil properties, particularly microbial measurements (Liebig et al., 2001; 

Vallejo et al., 2009; Dick, 2011; Lehman et al., 2015; Ghimire et al., 2023). This is likely 

due to the soils used in the model development had similar soils and texture content (Figure 

3.4).  This needs to be tested on a broad range of soil textures to confirm or refute this 

observation. 

The changes in the coefficient of determination were also small when 

environmental factors such as precipitation, growing time, and soil order were excluded with 

small reduction of ~1.28% to 2 % (Table 3.5, Run 2 vs 3, Run 9 vs 10, Run 16 vs 17).  

Conversely, if land management variables obtained from farmers or the binary 

organic and conventional farming variables were removed from the models, R2 values 

dropped significantly, ranging from ~25 to 31%; (Table 3.5, Run 2 vs 7, Run 9 vs 14, Run 

16 vs 21) and ~21 to 23% (Table 3.5, Run 2 vs 6, Run 9 vs 13, Run 16 vs 20), respectively. 

This provides evidence for the importance of using crop/soil management information that 

includes whether organic and conventional farming practices are being followed towards the 

development of robust yield prediction model.  

To reduce cost and labor it is important to have as few measured soil variables as 
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possible. An analysis found that a soybean yield prediction model based on 3 enzyme 

assays, survey information, and pH measurements resulted in a strong soybean yield 

prediction model with an R2 of 0.71 (Table 3.5, Run 22), which was 6 % higher than the 

model that used the EL-FAME SHS in the same combination of variables (Table 3.5, Run 

23). The difference seems insignificant, however enzyme assays have much less labor and 

material costs than EL-FAME. First soil handling is easier for enzyme assays, because air-

dried soils can be used where as EL-FAME requires soil samples to be stored at -20 °C until 

analysis. Secondly analytical costs are greater, mainly because EL-FAME requires the use 

of a gas chromatograph and purchase of MIDI software, whereas enzyme assays only 

require a spectrophotometer. However, using SHS based on just enzyme variables 

minimizes the detection of crop/soil management effects as further discussed in section 

3.4.5. 

Overall, the results showed that it is possible to develop a robust yield prediction 

model, for soybeans even when texture and environmental information is unavailable. 

Furthermore, a comprehensive survey with the farmer that captures management practices, 

has shown to be an important component in improving the model. 

  

3.4.4 EL-FAME, Enzyme activities and ratios 

 

Tillage, at the Hoytville and Wooster long-term field site, did not have any 

significant effect on the EL-FAME biomarkers for gram-negative bacteria, arbuscular 

mycorrhizal fungi (AMF), protozoa, fungi/total FAME ratio, AMF/Bacteria ratio, 

SAT/MONOSAT ratio, the cy17:0/Precursor ratio, β-Glucosidase enzyme activity (β-GLU), N-

acetyl-β-glucosaminidase enzyme activity (NAG), β-GLU + NAG, and β-GLU / NAG ratio 



- 91 -  

(Table 3.6, Table 3.7, Table 3.8).  

A significant change in total FAME concentration due to tillage practices was only 

observed at the Hoytville LTES (Table 3.6). The plots that experienced considerable 

disturbance through intensive tillage (PT) had approximately an 18 to 20 % lower FAME 

concentration (p < 0.05) compared to MT and NT respectively. This can be explained by the 

loss of SOC that occurred on the PT plots since the experiment started. In this study SOC 

concentrations on the PT (14.5 g kg-1) were significantly lower compared to MT (17.05 g kg-1) 

and NT (17.65 g kg-1) (Table 3.10). Maas et al. (2017) showed similar results in his 

publication. The moderate correlation between total FAME and SOC (r = 0.60) provides 

support for this (Figure 3.5). 

Unexpectedly, total FAME concentration did not differ between tillage treatments at 

the Wooster LTES. Furthermore, gram-positive bacteria, eukaryotes and the 16:0 iso biomarker 

for NT were significantly lower than the MT and PT once (Table 3.6). This stands in contrast 

to many studies where  NT is significantly higher than PG for  enzyme activities (Acosta-

Martínez et al., 2003; Bergstrom et al., 2000; Deng and Tabatabai, 1997; Dick, 1986a; Dick, 

1986b), mycorrhizal fungi (Drijber et al., 2000; McGonigle et al., 1999), fungal to bacteria 

ratios (Frey et al., 1999; Drijber et al., 2000; Helgason et al., 2009), macro aggregation (Kumar 

et al., 2012a; Six et al., 2000b), TC and TN concentration (Feng et al., 2003; Hendrix et al., 

1986), SOC concentration (Kumar et al., 2012a; Dick, 1986a; Dick, 1986b) and available water 

and field capacity (Kumar et al., 2012a, Kumar et al., 2012b). Other papers also reported 

changes in the composition of microbial communities in the soils due to the tillage intensity 

(Jackson et al., 2003; Drijber et al., 2000; Frey et al., 1999; Doran, 1980). At the Wooster site 

virtually none of the soil enzyme activities or microbial community structure (EL-FAME 
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biomarkers and total EL-FAME) follow the above findings in the literature.   

A potential explanation for the unexpected results for the Wooster LTES could be 

due to plot renovations in 2006. The objective of this renovation was to remove effects of 

extensive erosion that occurred after 44 years (W. Dick, 2024, pers. comm.).  The erosion 

created a berm at the bottom of the PT plots where water would accumulate. The accumulation 

of excess water on PT plots would be affecting yields negatively. In the end the decision was 

made to relevel the plots and move soil from the plot boarder area. In the following 15 years 

the soil was very likely redistributed on the PT and CT plots due to reoccurring tillage 

practices. This could explain the lack of soil management treatment effects. 

At the Hoytville site the NT plots resulted in an approximately 23% to 25% lower 

fungal to bacterial ratios, which raises the question about the it as an indicator for detecting 

crop/soil management effects (Table 3.7). The AMF showed no significant difference between 

the tillage practices (Table 3.7) which is likely due to AMF needing a host plant to produce 

hyphae from the roots which was not there during the spring sampling. Other studies have 

found elevated AMF level later in the growing season with reduced tillage systems (Feng et al., 

2003; Helgason et al., 2009; Mathew et al., 2012, Mbuthia et al., 2015).  

The KBS and the Straw Mulch experimental sites have resulted in significant 

differences between treatments for the AMF concentration (Table 3.6). On the Straw Mulch 

LTES, the soils for each plot have not been disturbed since the experiment started in 1996 

(Jacinthe et al., 2002). This suggests that the amendment of mulch at the soil surface provided 

the necessary carbohydrates for the microorganisms to thrive. The continuous presence of a 

protective residue layer against environmental impacts and the establishment of beneficial 

microclimate likely accelerated this process (Opara-Nadi and Lal, 1987; Duiker and Lal, 2000). 
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This beneficial environment for the microbial community in the soil very likely explains the 

significant treatment effects on all EL-FAME biomarkers, and enzyme activities, which 

suggests that mulch amendments are beneficial for the health of a soil (Table 3.6 Table 3.8).  

At the Michigan LTES most EL-FAME biomarkers and enzyme assay were 

significantly higher for the CSW-MT-Conv(-) and CSW-MT-Org compared to the CSW-MT-

Conv and CSW-NT-Conv plots (Table 3.6; Table 3.8). This indicates that continuous cover 

cropping in a corn-soy-wheat rotation has a beneficial effect on soil microbiology and the 

biochemical nutrient cycles in soil. This is further demonstrated by the total nitrogen 

concentrations where treatments are in the order of CSW-MT-CC-Conv(-) > CSW-MT-CC-Org 

> CSW-MT-Conv = CSW-NT-Conv (Table 3.10). 

The individual EL-FAME biomarker 16:0 iso was significantly affected by tillage 

(p<0.001) at the Hoytville LTES following a PT < MT < NT order (Table 3.6). At the Wooster 

LTES the order was determined to be PT >= MT > NT. This observation is unusual because 

gram-positive bacteria tend to be much larger in size, have thicker cell walls, and have the 

capability to resist water stress compared to gram-negative bacteria. It is possible that the 16:0 

iso biomarker was wrongly classified as a gram-positive bacteria by O’Leary and Wilkinson 

(1988) and that it could belong to a gram-negative bacteria or fungal organism. Zelles (1997) 

suggested that this might be possibility. 

For the Michigan and Straw experiment the 16:0 iso provided additional evidence 

that mulch amendments and cover cropping were beneficial for the health of the soil (Table 

3.6). Furthermore, the 16:0 iso biomarker was the most sensitive among all EL-FAME and 

enzyme activity variables with a sensitivity score of 3.25 (max = 4). A search of the literature 

found no published information of this biomarker being able to detect treatment effects. This is 
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likely because EL-FAME biomarkers are frequently organized into taxonomic groups and not 

as individual biomarkers. This result means that previously conducted studies might have 

overlooked a sensitive soil health indicator.  

When we consider the sensitivity scores of other EL-FAME and enzyme variables 

some of them (gram-positive (2.75), eukaryotes (2.75), β-GLU + AS (2.75), β-GLU + NAG + 

AS (2.75)) show the potential to detect treatment effects on a local scale and possibly even on a 

regional one, but not likely on a national scale. 

 

3.4.5 Yield, Soil Health Score, Total Carbon, Soil org. Carbon, and Total Nitrogen 

 

A difference in soybean yield was determined at the Hoytville long-term field site (p 

< 0.05). The plots that have been tilled intensively with a moldboard plow (PT) resulted in a 16 

to 21 % lower yields than those that were chisel tilled (MT) or were never tilled (NT) (Table 

3.10). Difference between NT and PT soils have been published with NT soils having higher 

TC and TN concentration (Feng et al., 2003; Hendrix et al., 1986), SOC concentration (Kumar 

et al., 2012a; Dick, 1986a; Dick, 1986b) and available water and field capacity (Kumar et al., 

2012a, Kumar et al., 2012b).  

This research indicates that PT results in lower soil quality that in turn reduces yields 

over time. This corresponds to reduced levels of TC, SOC, TN, and all three SHS variables for 

PT over the MT and NT (Table 3.10). This increase in soybean yield is inconsistent with what 

has been reported for the Hoytville site in the past. In past studies the 5-year average yields for 

the NT plots were always lower compared to the PT plots at the Hoytville long-term field site 

(Dick and Van Doren, 1985; Dick et al., 1986). But a study conducted from 1988 to 1994 in an 

adjacent field at the Hoytville site showed that no-till and minimal tillage practices had higher 
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soybean yields compared to intensive tillage practices (Lal, 1996). It may be that it took longer 

for soils to improve and increase yields after the earlier yield measurements were made. 

The only other difference in soybean yield was at the KBS-LTER site in Michigan, 

where the biologically based land management system (CSW-MT-C-Org), were significantly 

lower (p<0.001) than the once determined at the other three systems (Table 3.10). In 2021 the 

soybean yield for the CSW-MT-C-Org treatment were approximately 51% to 53% lower than 

the other treatments, which is significantly lower than a meta-analysis study of soybean yield 

reported by Kniss et al. (2016). This meta-analysis study reported that on average soybean 

yields were 11% to 32% lower for organically over conventional managed farms. These 

significantly lower yields are because organic soybeans are planted in a 30-inch row spacing. 

Other factors for lower yields could be due to frequent field cultivation to control weeds, no 

chemical fertilizers, or the lack of pest control. This reduction in soybean yield for the organic 

treatment could also be because in 9 of 10 growing seasons (1994-2021), soybeans have been 

planted last (7 days later on average than other treatments). Singh and Siler (2022) found that 

row spacing, and late planting date at conventional on-farm fields in Michigan resulted in 

lower soybean yields. Similar results were found in Ohio which showed that if the seeding rate 

is not increased with later planting dates lower yields will be lower (Fabiano et al., 2023). 

Past soybean yield data for the Michigan LTES was obtained for each treatment. The 

1990, 1991, and 1992 years were excluded because soybeans were planted in different growing 

seasons which would not account for weather related conditions, pest problems and soil 

nutrient conditions (Table 3.11). Running statistics on this data set showed that over 10 

growing seasons soybean yields were significantly different among treatments following an 

order of CSW-NT-Conv = CSW-NT-CC-Conv(-) => CSW-MT-Conv > CSW-MT-CC-Org 
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(Table 3.11). 

A trendline analysis showed that from 1994 to 2021 the mean soybean yields were 

increasing for the CSW-MT-Conv, CSW-NT-Conv, CSW-NT-CC-Conv(-), whereas the  CSW-

MT-CC-Org showed a negative trajectory (Figure 3.2). But a coefficient of determination (R2) 

analysis revealed that the variances in these linear trendlines were not strong evidence because 

the R2 values ranged from 0.32 to 0.001. These low R2 are likely due to variations in crop/soil 

management (e.g. planting date, soil nutrient levels, pests, and weather conditions). 

The statistical analysis of TC, SOC, and TN showed that all three are affected by 

reduced tillage, cover cropping, and soil mulch amendments. The effect of tillage, cover 

cropping, and mulch amendments on these variables has been shown in previous publications 

(Feng et al., 2003; Hendrix et al., 1986; Kumar et al., 2012a; Dick, 1986a; Dick, 1986b). The 

only exception in is the Wooster LTES as discussed above was impacted by the renovation to 

relevel plots in 2006 that had been severely eroded. A coefficient of determination of 0.85 was 

determined for SOC and TN (Figure 3.6). Similarly, Liptzin et al. (2022) found a high R2 value 

of 0.92 from soils collected from 124 LTES in North America.  

The SHS variable based on enzymatic variables was determined to be sensitive to 

tillage practices and cover cropping practices. At the Hoytville LTES the SH scores were 

affected by tillage in the order of PT < MT < NT (Table 3.10). At the Michigan LTES 

treatments with cover crops resulted in significantly higher SH scores. However, it could not 

differentiate between treatments at the straw mulch LTES. The SHS variable based on EL-

FAME variables was overall more sensitive in detecting crop/soil management effects. 

However, the scores were not as affected by tillage compared to the enzymatic SHS variable. 

The SHS variable based on enzymatic and EL-FAME variables scored like the iso 16:0 
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biomarker the highest sensitivity score of 3.25 (max=4). This SHS variable was significantly 

affected by tillage at the Wooster and Hoytville LTES, by mulch amendments, and by cover 

cropping at the Michigan LTES. Like the iso 16:0 biomarker it determined an unusual tillage 

treatment effect at the Wooster LTES with an order of PT <= MT > NT. Again, confirming that 

the 2006 renovation likely affected the soil.  

 

3.5 Conclusions 
 

From data collected on-farm and long-term experimental multiple multi-variate soybean 

yield prediction models were successfully developed evidenced by high adjusted R2 > 0.5. 

These strong prediction models could be developed with the help of soil properties or by 

using land management survey information. But the large multi=variate model that 

included both soil property and survey resulted in the highest adjusted R2 of 0.70 (R2 = 

0.84). This very strong soybean prediction model is significantly stronger than previously 

published models and R2 ranging from 0.32 to 0.56 (Malone et al. 2024; Jemo et al., 2023). 

The model not only allowed for prediction of soybean yields for organic and conventional 

farmers, but also the creation of an algorithm to calculate a biochemical Soil Health Score 

(SHS) based on information from three enzyme assays and EL-FAME biomarkers. This 

SHS was able to quantify crop/soil management effects independent of soil type at four 

long-term experimental sites much more reliably than the most used SH indicators. The 

sensitivity scores identified not only the SHS to be the most sensitive SH indicator but also 

the EL-FAME 16:0 iso biomarker. Further refinement of the model is needed by utilizing 

data sets generated across diverse soils, agro-ecosystems, and environments and then 

develop models applicable to other crops such as corn and wheat. 
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Table 3.1. Differentiation Power Scoring Table based on Tukey’s post hoc testing 
(P<0.05) for individual long-term field sites. 

           

2 - Treatments 

(Waterman Farm) 
Post-Hoc outcomes a b   

Scoring  0 1     

3 - Treatments 

(Hoytville, Wooster) 
Post-Hoc outcomes a b c   

Scoring  0 0.5 1   

4 - Treatments 

(KBS - Michigan) 
Post-Hoc outcomes a b c d 

Scoring  0 0.5 0.75 1 
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Table 3.2. Table of multivariate soybean yield prediction models with various combinations of variables that are separated into soil property, land 
management and large variable combination groups (n=153). R2 and adjusted R2 were determined for general multivariate linear models and the 
pseudo R2 was determine based on a generalized multivariate linear model using the McFadden formula. 

 
 

 

Var. 

Group 

Farm. 

Type 

Soil 

Texture 

SOC 

+ TN 

pH 

Set 

Enzy. 

Act. 

Enzy. 

Ratios 

EL-

FAME 

FAME 

Ratios 

Envi. 

Factors 
Tillage 

Plant.  

Date 

Crop  

Rot. 
CC  

Res. 

Cover. 
Manure Pest. 

General Linear 

Model 
GLM 

Total 

var. # 
# of 

var. 1 3 2 6 7 6 40 6 3 5 3 2 4 6 6 5 R2 
Adj. 

R2 

Pseudo 

R2 

Run # 

 

S
o

il
 r

e
la

te
d

 p
ro

p
e

rt
ie

s 

1 x x 
              

0.390 0.373 0.390 4 

2 x x x 
             

0.426 0.402 0.426 6 

3 x x x x 
            

0.455 0.413 0.455 12 

4 x x x x x 
           

0.483 0.430 0.483 19 

5 x x x x x x 
          

0.545 0.480 0.545 25 

6 x x x x 
  

x 
         

0.648 0.491 0.657 52 

7 x x x x 
  

x x         0.673 0.499 0.682 58 

8 x x x x x  x          0.658 0.491 0.666 59 

9 x    x            0.409 0.393 0.409 8 

10 x x   x            0.437 0.410 0.437 11 

11 x    x x           0.455 0.421 0.455 14 

12 x x   x x           0.488 0.444 0.488 17 

13 x     
 

x          0.606 0.479 0.610 41 

14 x x     x          0.612 0.473 0.616 44 

15 x     
 

x x         0.635 0.491 0.638 47 

16 x x    
 

x x         0.642 0.486 0.645 50 

17 x    x  x 
 

    
  

  0.617 0.480 0.620 48 

18 x    x x x          0.637 0.484 0.640 54 

                   continues 
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19 x    x  x x     
  

  0.645 0.490 0.647 54 

20 x    x x x x         0.678 0.515 0.679 60 

21 x x  x x x x x 
    

    0.701 0.512 0.702 69 

22 x x x 
 

x x x x         0.732 0.576 0.737 65 

23 x x x x x x x x         0.740 0.566 0.744 71 

24 x x x x x x x x x        0.762 0.590 0.766 74 

25  x x x x x x x x        0.603 0.322 0.606 73 

26 
 

x x x x x x x         0.593 0.327 0.595 70 
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+ TN 
pH 
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Activ. 
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Ratios 
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FAME 
FAME 

Ratios 
Envir. 

Factors 
Tillage 

Plant.  

Date 
Crop  
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Cover. 
Manure Pest. R2 
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 E
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27 
         

x x x x x x x 0.376 0.259 0.376 31 

28  x       x x x x x x x x 0.465 0.333 0.465 37 

29 x     
    

x x x x x x x 0.545 0.455 0.545 32 

30 x x 
       

x x x x x x x 0.610 0.522 0.610 35 

31 x x 
      

x x x x x x x x 0.622 0.525 0.622 38 

32 x x 
      

x  x x x x x x 0.590 0.502 0.590 33 

33 x x 
      

x   x x x x x 0.590 0.510 0.590 30 

34 x x 
      

x    x x x x 0.572 0.492 0.572 28 

35 x x 
      

x     x x x 0.571 0.502 0.571 24 

36 x x 
      

x      x x 0.543 0.489 0.543 18 

37 x x 
      

x       x 0.435 0.391 0.435 12 

38 x x 
      

x        0.419 0.391 0.419 7 

 

continues 
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 Var. 

Group 
Farm. 

Type 
Soil 

Texture 
SOC 

+ TN 
pH 

Set 
Enzy. 

Activ. 
Enzy. 

Ratios 
EL-

FAME 
FAME 

Ratios 
Envir. 

Factors 
Tillage 

Plant.  

Date 
Crop  

Rot. 
CC  

Res. 

Cover. 
Manure Pest.  R2 

Adj. 

R2 
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R2 

Total 

var. # 

 

La
rg

e
 V

a
ri

a
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le
 C

o
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b
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a
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39 x x x x     x x x x x x x x 0.652 0.536 0.652 46 

40 x x x x x    x x x x x x x x 0.696 0.584 0.696 53 

41 x x x x x x   x x x x x x x x 0.760 0.656 0.760 59 

42 x x x x   x 

 

x x x x x x x x 0.782 0.574 0.796 86 

43 x x x x   x x x x x x x x x x 0.789 0.555 0.804 92 

44 x x x x x 

 

x 

 

x x x x x x x x 0.819 0.634 0.839 93 

45 x x x  x x x  x x x x x x x x 0.849 0.694 0.861 93 

46 x x x 

 

x x x x x x x x x x x x 0.859 0.689 0.872 99 

47 x x x x x x x  x x x x x x x x 0.860 0.695 0.870 99 

48 x x x x x x x x x x x x x x x x 0.870 0.690 0.882 105 

49 x x x x x x x x  x x x x x x x 0.854 0.695 0.866 102 

50 x  x x x x x x x x x x x x x x 0.846 0.679 0.859 102 

51 x x  x x x x x x x x x x x x x 0.838 0.658 0.843 103 

52 x x   x x x x x x x x x x x x 0.829 0.663 0.835 97 
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Table 3.3. Example of how the coef. ratios (βp-f) were calculated for individual enzyme activity variables. In this 
example the regression coefficients (βp) were extracted from the amended multivariate regression model. 

 

    Variable (xi) 
regress. 

coefficient (βp)  
Positive Coefficient Ratio 

E
n

zy
m

e
 E
n

zy
m

e
 A

ct
iv

it
y

 
GLU 0 

 
Variable (xi) (βp) coef. ratio (βp-f) 

NAG 6524.352 
 

NAG 6524.352 0.3806 

AS -1668.738 

 

GLU / AS 1698.396 0.0991 

GLUAS -5558.141 
 

(GLU + AS) / NAG 6396.022 0.3731 

GLUNAG 0 
 

(AS + NAG) / GLU 2523.709 0.1472 

NAGAS 0 
 

Sum 17142.479 
 

GLUNAGAS 0 
    

E
n

zy
m

e
 R

a
ti

o
s 

GLU / AS 1698.396  Negative Coefficient Ratio 

GLU / NAG -2229.598  Variable (xi) (βp) coef. ratio (βp-f) 

NAG / AS 0 
 

AS -1668.738 0.1765 

(GLU + AS) / NAG 6396.022  GLUAS -5558.141 0.5878 

(GLU + NAG) / AS 0  GLU / NAG -2229.598 0.2358 

(AS + NAG) / GLU 2523.709  Sum -9456.477  
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Table 3.4. Example of how the mean weighted positive, negative, and fitted biochemical Soil Health Scores are 
calculated. In this example the measurements for the three replication plots at the LTFS in Wooster, 
Ohio were used. The individual normalized explanatory variables (xi) measurements are multiplied 
with the corresponding coef. ratio (βp-f) to determine individual SHS for specific variables. 
Afterwards the individual SHS results are summed up to determine the positive or negative SHS for 
each replication. To determine the weighted fitted SHS a new positive and negative coef. ratio is 
calculated and then multiplied with the corresponding summed SHS result. 

 

 

Variable NAG GLU / AS (GLU + AS) / NAG (AS + NAG) / GLU Positive 

Rep. xi βp-f SHSi xi βp-f SHSi xi βp-f SHSi xi βp-f SHSi ∑(SHSi) 

1 0.362 0.381 0.138 0.644 0.099 0.064 0.446 0.373 0.167 0.236 0.147 0.035 0.403 

2 0.370 0.381 0.141 0.596 0.099 0.059 0.454 0.373 0.169 0.251 0.147 0.037 0.406 

3 0.457 0.381 0.174 0.513 0.099 0.051 0.374 0.373 0.140 0.299 0.147 0.044 0.408 

            
Mean: 0.406 

                

   Variable AS GLU + AS GLU / NAG Negative 

   Rep. xi βp-f SHSi xi βp-f SHSi xi βp-f SHSi ∑(SHSi) 

   1 0.218 0.176 0.039 0.350 0.588 0.206 0.472 0.236 0.111 0.356 

   2 0.238 0.176 0.042 0.364 0.588 0.214 0.467 0.236 0.110 0.366 

   3 0.265 0.176 0.047 0.370 0.588 0.218 0.362 0.236 0.085 0.350 

            Mean: 0.357 

         

 

   

 
  

      
CS_PT positive SHS negative SHS Fitted 

      
Rep. SHS + βp-f SHSi SHS - βp-f SHSi ∑(SHSi) 

    

 

 
1 0.403 0.644 0.260 0.356 0.356 0.126 0.386 

      2 0.406 0.644 0.262 0.366 0.356 0.130 0.392 

      3 0.408 0.644 0.263 0.350 0.356 0.124 0.388 

            Mean: 0.389 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fitted Coefficient Ratio 

Variable (xi) ∑ βp coef. ratio (βp-f) 

SHS + 17142.479 0.644 

|SHS -| 9456.477 0.356 

Sum 26598.956  



- 116 -  

Table 3.5. Table of multivariate soybean yield prediction models developed from various variable combinations that include Soil Health Scores, land 
management factors, environmental factors, soil properties, and the binary variable for org. vs conv. farming. 

 

  Variable 

Group 

Farm. 

Type 

Soil 

Texture 

SOC + 
TN 

pH Set 

Enzyme - SHS EL-FAME - SHS 
Enzyme + EL-

FAME - SHS Envi. 

Factors 

All 

Land 

Manag. 

Factors 

General 

Linear Model 
GLM Total 

var. 

#   

pos. + 

neg. 
fitted  

pos.+ 

neg. 
fitted 

pos.+ 

neg. 
fitted 

  # of var. 
1 3 2 6 2 1 2 1 2 1 3 31 R2 

Adj.   

R2 

Pseudo 

R2    Run # 

S
im

p
li

fi
e

d
 M

o
d

e
ls

 t
h

a
t 

in
cl

u
d

e
d

 S
o

il
 H

e
a

lt
h

 S
co

re
 v

a
ri

a
b

le
s E

n
zy

m
e

 

1 x x x x   x         x x 0.653 0.533 0.653 47 

2 x x x x x   
 

  x x 0.752 0.663 0.752 48 

3 x x x x x   
 

  
 x 0.742 0.659 0.742 45 

4 x  x x x   
 

  x x 0.744 0.661 0.744 45 

5 x x  x x   
 

  x x 0.729 0.639 0.729 46 

6  x x x x   
 

  x x 0.595 0.455 0.595 47 

7 x x x x x           x   0.523 0.467 0.523 17 

E
L-

F
A

M
E

 

8 x x x x  
  x   x x 0.655 0.536 0.655 47 

9 x x x x   x    x x 0.726 0.629 0.726 48 

10 x x x x   x    
 x 0.713 0.620 0.713 45 

11 x  x x   x    x x 0.701 0.605 0.701 45 

12 x x  x   x    x x 0.685 0.580 0.685 46 

13  x x x   x    x x 0.568 0.418 0.568 47 

14 x x x x     x       x   0.543 0.490 0.543 17 

E
n

zy
m

e
 +

 E
L-

F
A

M
E

 

15 x x x x           x x x 0.655 0.535 0.655 47 

16 x x x x   
  x  x x 0.841 0.784 0.841 48 

17 x x x x   
  x  

 x 0.828 0.773 0.828 45 

18 x  x x   
  x  x x 0.821 0.764 0.821 45 

19 x x  x   
  x  x x 0.792 0.723 0.792 46 

20  x x x   
  x  x x 0.650 0.529 0.650 47 

21 x x x x     x  x  0.584 0.535 0.584 17 

22 x x  x x   
 

 
 

 x 0.711 0.640 0.711 43 

23 x x  x   x     x 0.673 0.592 0.673 43 

24 x x   x         x     x 0.773 0.717 0.773 43 
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Table 3.6.  Ester-linked fatty acid methyl ester (EL-FAME) results a) of four different long-term field sites with different treatment practices taken at a soil depth of 
15 cm (KBS-LTER site in Michigan, Triplett-Van Doren Sites in Wooster and Hoytville, and the East Straw Mulch Experiment located at the 
Waterman Farm in Columbus, Ohio).  

  

Site Treatment n Total FAMEs 
Gram-positive 

(+) bacteria 

Gram-negative 
(-) bacteria 

Actinomycetes 

Arbuscular 
mycorrhizal fungi 

  (AMF) 
Protozoa Eukaryotes 

16:0 iso 

[ Gram (+) ] 

   
_____________________________________________________   nmol g-1 soil   ________________________________________________________ 

KBS-LTER 
(Michigan) 

 CSW-MT-Conv b) 6 98.8 (± 8.0) b 11.2 (± 0.9) c 14.1 (± 1.6) c 6.32 (± 0.66) c 2.58 (± 0.52) c 0.956 (± 0.13) b 6.36 (± 0.71) c 2.49 (± 0.22) c 

CSW-NT-Conv 6 102.3 (± 13.1) b 12.5 (± 1.6) c 16.0 (± 2.2) c 8.19 (± 1.20) b 3.42 (± 0.42) bc 1.156 (± 0.21) ab 7.01 (± 0.84) bc 2.88 (± 0.39) bc 

CSW-MT-CC-Conv(-) 6 131.7 (± 9.1) a 15.8 (± 1.2) b 19.6 (± 0.9) b 8.69 (± 0.47) b 4.61 (± 1.13) ab 1.419 (± 0.19) a 8.43 (± 0.70) ab 3.46 (± 0.34) ab 

CSW-MT-CC-Org 6 146.7 (± 16.1) a 18.7 (± 2.2) a 22.9 (± 2.9) a 10.66 (± 1.23) a 5.01 (± 0.99) a 1.176 (± 0.19) ab 9.74 (± 1.54) a 3.85 (± 0.51) a 
           

Hoytville 
(Ohio) 

CS_PT 3 150.2 (± 14.1) b 21.3 (± 2.0) b 23.4 (± 2.8) a 13.2 (± 1.33) b 7.73 (± 1.10) a 1.062 (± 0.30) a 6.86 (± 0.39) b 3.98 (± 0.23) c 

 CS_MT 3 182.8 (± 8.1) a 26.8 (± 0.9) a 25.5 (± 1.4) a 15.5 (± 0.79) ab 9.36 (± 1.43) a 1.001 (± 0.15) a 8.74 (± 0.34) a 5.29 (± 0.17) b 

CS_NT 3 186.5 (± 8.0) a 30.5 (± 1.8) a 28.6 (± 3.1) a 17.0 (± 1.19) a 7.71 (± 0.96) a 0.906 (± 0.12) a 9.44 (± 0.47) a 6.57 (± 0.36) a 
           

Wooster 
(Ohio) 

CS_PT 3 144.1 (± 20.4) a 17.7 (± 1.5) ab 23.1 (± 4.4) a 9.95 (± 0.94) a 5.48 (± 0.97) a 1.176 (± 0.10) a 9.41 (± 1.34) ab 3.60 (± 0.30) ab 

 CS_MT 3 186.6 (± 51.3) a 20.3 (± 2.8) a 23.0 (± 3.9) a 11.5 (± 2.01) a 6.31 (± 0.89) a 1.333 (± 0.09) a 10.88 (± 1.47) a 3.93 (± 0.34) a 

CS_NT 3 114.3 (± 22.6) a 15.2 (± 1.4) b 18.3 (± 4.2) a 8.61 (± 0.92) a 6.14 (± 2.29) a 1.187 (± 0.36) a 7.47 (± 1.16) b 3.01 (± 0.27) b 
           

Waterman 
Farm 
(Ohio) 

M0F0 3 57.5 (± 9.2) b 8.1 (± 0.84) b 8.97 (± 1.3) b 5.46 (± 0.87) b 1.17 (± 0.34) b 0.363 (± 0.13) b 3.63 (± 0.96) b 1.51 (± 0.27) b 

 M16F0 3 96.9 (± 13.1) a 13.4 (± 1.1) a 15.0 (± 2.9) a 7.76 (± 0.28) a 3.29 (± 0.22) a 0.701 (± 0.17) a 6.11 (± 1.05) a 2.18 (± 0.17) a 
           

Diff. Power (max = 4) 2 2.75 1.75 2.25 1.75 1.5 2.75   3.25 

a)  Data are means and standard deviation values across the four long-term field sites 

b) CSW-MT-Conv…Conventional; CSW-NT-Conv…No-Till; CSW-MT-CC-Conv(-)…Conventional with Reduced Input (30% less N) with Cover Crops;  

     CSW-MT-CC-Org …Biologically Based with Cover Crops 

c)  CS…Corn/Soy crop rotation; PT…Plow Till (Moldboard Plow); MT…Minimal tillage (Chisel Till); NT…No-Till 
d)  M0F0…No-Till + No Mulch + No Fertilizer; M16F0…No-Till + 16Mg/ha Mulch + No Fertilizer 

e)  Sum of a15:0, i15:0, i16:0, a17:0, and i17:0 

f)   Sum of cy17:0, cy19:0, 16:1ω7c, 17:1ω8c, 18:1ω7c 

g)     Sum of 10Me16:0, 10Me17:0, 10Me18:0, 10Me19:1ω7c 

h)  16:1ω5c 

I)    Sum of 20:3ω6c, and 20:4ω6c 

j)      Sum of 21:0, 22:0, 23:0 and 24:0 

k)    Values within a site and column followed by the same letter(s) are not significantly different according to Tukey test (P< 0.05) 
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Table 3.7. Ester-linked fatty acid methyl ester (EL-FAME) - Ratio results a) from four long-term field sites with different treatment practices taken at a soil 
depth of 15 cm (KBS-LTER site in Michigan, Triplett-Van Doren Sites in Wooster and Hoytville, and the East Straw Mulch Experiment located 
at the Waterman Farm in Columbus, Ohio). 

 
 

Site Treatment n 
Bacteria e)/  

Total FAMEs 

Fungi f)/  

Total FAMEs 

Fungi f)/  

Bacteria e) 

AMF g)/  

Bacteria e) 

SAT h)/ 

MONOSAT i) 

Gram (+) j)/ 

Gram (-) k) 

cy17:0 / 

Precursor l) 

cy19:0 / 

Precursor m) 
 

  ____________________________________________________________    (  -  )  __________________________________________________________ 

KBS-LTER  CSW-MT-Conv b) 6 0.330 (± 0.01) b n) 0.281 (± 0.03) a 0.853 (± 0.11) a 0.079 (± 0.01) b 0.724 (± 0.06) a 0.798 (± 0.06) a 0.252 (± 0.02) a 0.602 (± 0.07) a 

CSW-NT-Conv 6 0.371 (± 0.01) a 0.223 (± 0.01) b 0.602 (± 0.04) c 0.092 (± 0.01) ab 0.698 (± 0.05) a 0.786 (± 0.07) a 0.248 (± 0.04) a 0.610 (± 0.05) a 

CSW-MT-CC-Conv(-) 6 0.345 (± 0.01) b 0.248 (± 0.01) b 0.721 (± 0.04) b 0.101 (± 0.02) a 0.708 (± 0.05) a 0.810 (± 0.04) a 0.260 (± 0.03) a 0.463 (± 0.03) b 

CSW-MT-CC-Org 6 0.366 (± 0.01) a 0.236 (± 0.01) b 0.646 (± 0.06) bc 0.093 (± 0.01) ab 0.725 (± 0.03) a 0.820 (± 0.06) a 0.254 (± 0.01) a 0.517 (± 0.04) b 
 

          

Hoytville 
(Ohio) 

   CS_PT c) 3 0.394 (± 0.01) ab 0.210 (± 0.01) a 0.534 (± 0.01) a 0.131 (± 0.01) a 0.724 (± 0.13) a 0.913 (± 0.02) b 0.309 (± 0.04) a 0.658 (± 0.18) b 

CS_MT 3 0.381 (± 0.00) b 0.209 (± 0.01) a 0.548 (± 0.02) a 0.135 (± 0.03) a 0.804 (± 0.02) a 1.052 (± 0.02) a 0.340 (± 0.03) a 0.738 (± 0.09) b 

CS_NT 3 0.419 (± 0.02) a 0.172 (± 0.00) b 0.411 (± 0.02) b 0.099 (± 0.01) a 0.853 (± 0.04) a 1.073 (± 0.06) a 0.284 (± 0.04) a 1.039 (± 0.02) a 
 

          

Wooster 
(Ohio) 

   CS_PT c) 3 0.364 (± 0.03) a 0.236 (± 0.06) a 0.660 (± 0.23) a 0.105 (± 0.01) a 0.667 (± 0.06) a 0.791 (± 0.19) a 0.220 (± 0.07) a 0.434 (± 0.05) a 

CS_MT 3 0.319 (± 0.10) a 0.293 (± 0.15) a 1.112 (± 0.96) a 0.113 (± 0.01) a 0.689 (± 0.08) a 0.886 (± 0.03) a 0.227 (± 0.01) a 0.473 (± 0.02) a 

CS_NT 3 0.379 (± 0.02) a 0.216 (± 0.01) a 0.571 (± 0.01) a 0.139 (± 0.03) a 0.696 (± 0.05) a 0.853 (± 0.12) a 0.278 (± 0.05) a 0.497 (± 0.10) a 
 

          

Waterma
n Farm 
(Ohio) 

  M0F0 d) 3 0.423 (± 0.03) a 0.220 (± 0.05) a 0.524 (± 0.14) a 0.05 (± 0.01) b 0.695 (± 0.10) a 0.911 (± 0.11) a 0.214 (± 0.17) a 0.712 (± 0.09) a 

M16F0 3 0.388 (± 0.01) a 0.194 (± 0.02) a 0.502 (± 0.07) a 0.089 (± 0.01) a 0.768 (± 0.07) a 0.912 (± 0.10) a 0.274 (± 0.04) a 0.467 (± 0.04) b 
         

Diff. Power (max = 4) 1 1         1.25 1.5 0 0.5 0 2 

a)   Data are means and standard deviation values across the four long-term field sites 

b) CSW-MT-Conv…Conventional; CSW-NT-Conv…No-Till; CSW-MT-CC-Conv(-)…Conventional with Reduced Input (30% less N) with Cover Crops;  

     CSW-MT-CC-Org …Biologically Based with Cover Crops 

c)   CS…Corn/Soy crop rotation; PT…Plow Till (Moldboard Plow); MT…Minimal tillage (Chisel Till); NT…No-Till 

d)   M0F0…No-Till + No Mulch + No Fertilizer; M16F0…No-Till + 16Mg/ha Mulch + No Fertilizer 

e)   Sum of 15:0, 17:0, i15:0, a15:0, i16:0, i17:0, a17:0, cy17:0, cy19:0, 16:1ω7c, and 18:1ω7c 

f)    Sum of 18:1ω9c, 18:2ω6c, and 16:1ω5c 

g)   16:1ω5c 

h)    Sum of 14:0, 15:0, 16:0, 17:0, and 18:0 

i)    Sum of 16:1ω5c, 16:1ω7c, 17:1ω8c, 18:1ω7c, 18:1ω9c, cy17:0, and cy19:0 

j)    Sum of a15:0, i15:0, i16:0, a17:0, and i17:0 

k)   Sum of cy17:0, cy19:0, 16:1ω7c, 17:1ω8c, and 18:1ω7c 

l)    16:1ω7c             m) 18:1ω7c 

n)   Individual long-term field site means within a column followed by the same letter(s) are not significantly different according to Tukey test (P< 0.05). 
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Table 3.8. Soil enzyme activity results a) from four long-term field sites with different treatment practices taken at a soil depth of 15 cm (KBS-LTER site 

in Michigan, Triplett-Van Doren Sites in Wooster and Hoytville, and the East Straw Mulch Experiment located at the Waterman Farm in 
Columbus, Ohio). 

  

Site Treatment n 
β-Glucosidase 

activity (β-GLU) 

Arylsulfatase 

activity (AS) 

N-acetyl-β-

glucosaminidase 

activity (NAG) 

β-GLU + AS β-GLU + NAG AS + NAG β-GLU + NAG + AS 

   
_____________________________________________   mg PNP g-1 dry soil h-1   ______________________________________________ 

KBS-LTER 
(Michigan) 

 CSW-MT-Conv b) 6 239.2 (± 33.5) b 112.8 (± 47.8) b 72.6 (± 8.0) b 352.0 (± 78.6) c 311.8 (± 33.3) b 185.4 (± 44.7) b 424.6 (± 76.2) c 

CSW-NT-Conv 6  277.5 (± 33.1) b 210.1 (± 38.4) a 87.0 (± 10.4) b 487.6 (± 68.9) b 364.5 (± 41.7) b 297 (± 46.9) a 574.6 (± 77.5) b 

CSW-MT-CC-Conv(-) 6  379.5 (± 38.6) a 217.4 (± 24.9) a 113.0 (± 9.8) a 596.9 (± 61.8) ab 492.6 (± 47.3) a 330.4 (± 33.2) a 709.9 (± 70.3) a 

CSW-MT-CC-Org 6  429.5 (± 49.6) a 246.4 (± 49.8) a 117.5 (± 7.9) a 675.9 (± 95.2) a 546.9 (± 53.8) a 363.9 (± 56.5) a 793.3 (± 100.6) a 
 

         

Hoytville 
(Ohio) 

CS_PT 3  458.4 (± 38.5) a 446.8 (± 35.5) c 100.6 (± 6.8) a 905.3 (± 29.4) c 559.1 (± 44.7) a 547.5 (± 29.3) c 1005.9 (± 30.5) c 

CS_MT 3  546.9 (± 54.3) a 579.6 (± 41.7) b 119.0 (± 26.4) a 1126.6 (± 95.8) b 666 (± 79.8) a 698.7 (± 66.3) b 1245.6 (± 120.6) b 

CS_NT 3  550.9 (± 27.9) a 806.2 (± 44.2) a 111.1 (± 6.2) a 1357.1 (± 66.3) a 662 (± 32.9) a 917.3 (± 44.9) a 1468.2 (± 68.7) a 
 

         

Wooster 
(Ohio) 

CS_PT 3  552.3 (± 12.3) a 345.2 (± 33.7) a 122.5 (± 16.2) a 897.6 (± 25.4) a 674.9 (± 5.9) a 467.8 (± 49.2) a 1020.1 (± 39.3) a 

CS_MT 3  489.8 (± 37.5) a 329.6 (± 49.7) a 116.1 (± 4.8) a 819.3 (± 86.7) a 605.8 (± 33.5) a 445.6 (± 45.2) a 935.4 (± 82.3) a 

CS_NT 3  431.4 (± 90.8) a 408.9 (± 79.2) a 125.4 (± 8.7) a 840.4 (± 158.9) a 556.8 (± 96.8) a 534.3 (± 87.8) a 965.7 (± 166.5) a 
 

         
Waterman 
Farm 
(Ohio) 

M0F0 3  113.7 (± 67.8) b 198.1 (± 92.1) b 33.3 (± 6.5) b 311.7 (± 158.9) b 147.0 (± 73.1) b 231.4 (± 96.5) b 345 (± 163.7) b 

M16F0 3  232.6 (± 29.9) a 440.6 (± 55.2) a 82.0 (± 20.4) a 673.3 (± 78.9) a 314.6 (± 44.5) a 522.6 (± 75.4) a 755.2 (± 97.6) a 
          

Diff. Power (max = 4) 1.5      2.5        1.5           2.75            1.5                  2.5           2.75 

a) Data as means including the computed standard deviation. 

b) CSW-MT-Conv…Conventional; CSW-NT-Conv…No-Till; CSW-MT-CC-Conv(-)…Conventional with Reduced Input (30% less N) with Cover Crops;  

     CSW-MT-CC-Org …Biologically Based with Cover Crops 

c) CS…Corn/Soy crop rotation; PT…Plow Till (Moldboard Plow); MT…Minimal tillage (Chisel Till); NT…No-Till 

d) M0F0…No-Till + No Mulch + No Fertilizer; M16F0…No-Till + 16Mg/ha Mulch + No Fertilizer 

e) p-nitrophenol 

f)  Individual long-term field site means within a column followed by the same letter(s) are not significantly different according to Tukey test (P< 0.05) 
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Table 3.9. Soil enzyme activity ratio results a) from four long-term field sites with different treatment practices taken at a soil depth of 15 cm 
(KBS-LTER site in Michigan, Triplett-Van Doren Sites in Wooster and Hoytville, and the East Straw Mulch Experiment located 
at the Waterman Farm in Columbus, Ohio).  

 

Site Treatment n β-GLU / NAG β-GLU / AS NAG / AS 
(β-GLU + NAG) /  

AS 

(β-GLU + AS) /  

NAG 

(NAG + AS) /  

β-GLU 

   ________________________________________________   (  -  )  _________________________________________________ 

KBS-LTER 

(Michigan) 
 CSW-MT-Conv b) 6 3.335 (± 0.67) a f) 2.271 (± 0.46) a 0.716 (± 0.22) a 2.987 (± 0.67) a 4.94 (± 1.47) a 0.769 (± 0.09) b 

CSW-NT-Conv 6 3.200 (± 0.25) a 1.337 (± 0.14) c 0.419 (± 0.04) b 1.757 (± 0.17) b 5.61 (± 0.44) a 1.068 (± 0.09) a 

CSW-MT-CC-Conv(-) 6 3.358 (± 0.17) a 1.750 (± 0.10) bc 0.522 (± 0.04) b 2.272 (± 0.13) b 5.28 (± 0.27) a 0.871 (± 0.04) b 

CSW-MT-CC-Org 6 3.658 (± 0.35) a 1.772 (± 0.21) b 0.487 (± 0.07) b 2.259 (± 0.26) b 5.74 (± 0.59) a 0.847 (± 0.08) b 
         

Hoytville 

(Ohio) 
   CS_PT c) 3 4.554 (± 0.17) a 1.033 (± 0.16) a 0.227 (± 0.03) a 1.260 (± 0.19) a 9.02 (± 0.66) b 1.202 (± 0.14) b 

 CS_MT 3 4.676 (± 0.56) a 0.942 (± 0.03) a 0.204 (± 0.03) ab 1.146 (± 0.06) a 9.65 (± 1.29) b 1.278 (± 0.01) b 

CS_NT 3 4.962 (± 0.19) a 0.684 (± 0.03) b 0.138 (± 0.01) b 0.822 (± 0.04) b 12.23 (± 0.74) a 1.666 (± 0.05) a 
         

Wooster 

(Ohio) 
  CS_PT c) 3 4.565 (± 0.65) a 1.612 (± 0.18) a 0.354 (± 0.02) a 1.966 (± 0.17) a 7.39 (± 0.77) a 0.848 (± 0.11) b 

CS_MT 3 4.232 (± 0.49) a 1.497 (± 0.11) a 0.359 (± 0.06) a 1.855 (± 0.17) a 7.09 (± 1.04) a 0.909 (± 0.03) b 

CS_NT 3 3.430 (± 0.57) a 1.062 (± 0.17) b 0.312 (± 0.04) a 1.374 (± 0.18) b 6.67 (± 0.86) a 1.255 (± 0.20) a 
         

Waterman 

Farm 

(Ohio) 

  M0F0 d) 3 3.296 (± 0.38) a 0.559 (± 0.51) a 0.188 (± 0.04) a 0.746 (± 0.88) a 9.18 (± 0.41) a 2.168 (± 0.54) a 

 M16F0 3 2.935 (± 0.17) a 0.530 (± 0.31) a 0.184 (± 0.11) a 0.714 (± 0.44) a 8.43 (± 0.25) a 2.255 (± 0.42) a 
  

                

Diff. Power (max =4) 0 1.75 1 1.5 0.5 1.5 

a) Data as means including the computed standard deviation. 

b) CSW-MT-Conv…Conventional; CSW-NT-Conv…No-Till; CSW-MT-CC-Conv(-)…Conventional with Reduced Input (30% less N) with Cover Crops;  

     CSW-MT-CC-Org …Biologically Based with Cover Crops 

c) CS…Corn/Soy crop rotation; PT…Plow Till (Moldboard Plow); MT…Minimal tillage (Chisel Till); NT…No-Till 

d) M0F0…No-Till + No Mulch + No Fertilizer; M16F0…No-Till + 16Mg/ha Mulch + No Fertilizer 

e) p-nitrophenol. 

f)  Individual long-term field site means within a column followed by the same letter(s) are not significantly different according to Tukey test (P< 0.05). 
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Table 3.10. Soybean Yield, Total Carbon, Soil Org. Carbon, Total Nitrogen, Soil Health Score results a) from four long-term field sites with different treatment 
practices taken at a soil depth of 15 cm (KBS-LTER site in Michigan, Triplett-Van Doren Sites in Wooster and Hoytville, and the East Straw Mulch 
Experiment located at the Waterman Farm in Columbus, Ohio).  

 

Site Treatment n    Soybean Yield   Total Carbon 
Soil Organic 

Carbon 
Total Nitrogen 

fitted SH-Score          

(Enzyme) 

fitted SH-Score          

(EL-FAME) 

fitted SH-Score 

(Enzyme + EL-FAME) 

   
____  kg ha -1 ____ __________________ g kg-1  __________________ ____________________  (  -  )  _____________________ 

KBS-LTER 

(Michigan) 
 CSW-MT-Conv b) 6 4229 (± 316) a f) 9.95 (± 0.77) ab 9.38 (± 0.80) ab 0.88 (± 0.08) b 0.262 (± 0.024) c 0.249 (± 0.025) b 0.253 (± 0.019) c 

CSW-NT-Conv 6 4182 (± 146) a 9.72 (± 0.93) b 9.13 (± 0.90) b 0.90 (± 0.04) b 0.285 (± 0.017) bc 0.271 (± 0.027) b 0.275 (± 0.022) c 

CSW-MT-CC-Conv(-) 6 4097 (± 287) a 11.31 (± 1.22) a 10.75 (± 1.23) a 1.03 (± 0.10) a 0.315 (± 0.015) ab 0.330 (± 0.021) a 0.325 (± 0.016) b 

CSW-MT-CC-Org 6 2006 (± 332) b 10.69 (± 0.95) ab 10.12 (± 0.94) ab 1.00 (± 0.07) ab 0.335 (± 0.021) a 0.380 (± 0.049) a 0.366 (± 0.033) a 
 

Hoytville 

(Ohio) 
   CS_PT c) 3 3963 (± 1.70) b † 14.47 (± 1.45) b 13.72 (± 1.38) b 1.57 (± 0.11) b 0.396 (± 0.010) c 0.319 (± 0.018) b 0.343 (± 0.015) c 

 CS_MT 3 4712 (± 352) a 17.05 (± 0.82) ab 16.27 (± 0.83) ab 1.82 (± 0.12) ab 0.445 (± 0.011) b 0.392 (± 0.015) a 0.408 (± 0.014) b 

CS_NT 3 5006 (± 154) a 17.65 (± 1.34) a 16.91 (± 1.31) a 1.97 (± 0.15) a 0.511 (± 0.017) a 0.422 (± 0.021) a 0.450 (± 0.020) a 
 

Wooster 

(Ohio) 
   CS_PT c) 3 2786 (± 836) a 9.26 (± 0.74) a 8.64 (± 0.76) a 0.98 (± 0.04) a 0.389 (± 0.003) a 

0.356 (± 0.036) 

ab 
0.366 (± 0.026) ab 

 CS_MT 3 3220 (± 339) a 10.78 (± 1.15) a 10.16 (± 1.16) a 1.05 (± 0.06) a 0.368 (± 0.022) a 0.412 (± 0.024) a 0.398 (± 0.010) a 

CS_NT 3 2826 (± 95) a 9.48 (± 1.10) a 8.82 (± 1.07) a 1.01 (± 0.07) a 0.369 (± 0.036) a 0.297 (± 0.040) b 0.320 (± 0.039) b 
 

Waterman 

Farm 

(Ohio) 

 M0F0 d) 3 1815 (± 491) a 9.69 (± 1.25) b 9.01 (± 1.21) b 0.97 (± 0.04) b 0.291 (± 0.071) a 0.149 (± 0.032) b 0.194 (± 0.033) b 

M16F0 3 1987 (± 1089) a 13.82 (± 1.32) a 13.08 (± 1.35) a 1.15 (± 0.04) a 0.359 (± 0.011) a 0.249 (± 0.038) a 0.284 (± 0.024) a 
 

Diff. Power (max =4) 1 2 2 2 1.75 2.5 3.25 

a) Data as means including the computed standard deviation 

b) CSW-MT-Conv…Conventional; CSW-NT-Conv…No-Till; CSW-MT-CC-Conv(-)…Conventional with Reduced Input (30% less N) with Cover Crops;  

     CSW-MT-CC-Org …Biologically Based with Cover Crops 

c) CS…Corn/Soy crop rotation; PT…Plow Till (Moldboard Plow); MT…Minimal tillage (Chisel Till); NT…No-Till 

d) M0F0…No-Till + No Mulch + No Fertilizer; M16F0…No-Till + 16Mg/ha Mulch + No Fertilizer 

e) Individual long-term field site means within a column followed by the same letter(s) are not significantly different according to Tukey test (P< 0.05) 

†  Only two soybean yield samples were recorded and used 
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Table 3.11.  Soybean yields and Tukey Post Hoc test results (α = 0.05) from four management systems 

at the Main Cropping System Experiment in Michigan (KBS-LTER). The mean yield is 
determined for each growing season between 1990 to 2021.  

  

Year 
CSW-MT-

Conv a) 

CSW-NT-

Conv 

CSW-MT-CC-

Conv(-) 

CSW-MT-CC-

Org 
ANOVA 

 ____________________ kg /ha ____________________  

1990 2841 2973 0 0 n.d. 

1991 0 0 3177 3148 n.d. 

1992 1839 2219 0 0 n.d. 

1994 3013 2862 3091 3192 n.d. 

1997 1515 c 2044 a 1814 ab 1651 bc * 

2000 2657 2896 2866 2899 n.d. 

2003 1621 a 1855 a 1198 b 1010 b * 

2006 2867 c 3602 a 3205 b 2971 bc * 

2009 1967 b 2570 a 2219 b 2165 b * 

2012 1302 b 1884 a 1405 b 1215 b * 

2015 3537 b 3966 a 4154 a 2530 c ** 

2018 3101 3589 3617 3315 n.d. 

2021 4226 a 4180 a 4094 a 2005 b * 

Mean      2580 ab     2945 a     2766 a      2295 b  
Yield Gap b)      11.1%     22.1%     17.0% -  

      

a) CSW-MT-Conv…            Conventional  
CSW-NT-Conv…             No-Till  
CSW-MT-CC-Conv(-)…  Conventional with Reduced Input (30% less N) with Cover Crops 
CSW-MT-CC-Org …        Biologically Based with Cover Crops 

b)  Percentage difference in soybean yield between T4 and the other three treatment designs  
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Figure 3.1. Flowchart for the determination of the most reliable multi-linear soybean prediction model 
including model optimization steps and computation steps to determine the positive, 
negative, and fitted Soil Health Scores.
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Figure 3.2. Shifts in soybean yields over the past 10 growing seasons at the KBS Long-Term Field Site in Michigan 
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Figure 3.3. Relationship between actual soybean yields and predicted soybean yields of the  best model. The gray band around the blue fitted 
line represents the 95 % confidence interval for the fitted values. The red dashed line represents the 95 % prediction interval. 
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 Figure 3.4. Soil texture triangle with all soil types (red cross) used in this study. 
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Figure 3.5. Correlation Matrix for all relevant variables in Chapter 3.4 (n=153) 
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 Figure 3.6. Scatter plot for Soil org. Carbon and Total Nitrogen including the linear correlation between them (n=153). 
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3.7 Supplementary Information 
 

Supp. Table 3.1 List of all agricultural on-farm sites in the study. Information related to organic and conventional management practices are provided. 
Additionally, information related to location, seasonal soybean growing time, seasonal crop that was planted, soil texture, and soil series is 
provided. 

ID 
Farming 

Type 

Site 

ID 

Field 

ID 
Elevation State County 

Growing Period (days) Planted Crop Soil Texture 

Soil Series 

year 1 year 2 year 3 year 1 year 2 year 3 
Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

1 Org VY 
F1 

HE OH Madison 123 - - Soy Wheat Corn 18 64 18 
Crosby-Lewisburg 

silt loams 
2 Org VY LE OH Madison 123 - - Soy Wheat Corn 18 64 18 

3 Org VY 
F2 

HE OH Madison - 137 - Corn Soy Wheat 18 64 18 
Crosby-Lewisburg 

silt loams 
4 Org VY LE OH Madison - 137 - Corn Soy Wheat 18 64 18 

5 Org LM 
F1 

HE OH Madison 122 - - Soy Wheat Corn 18 64 18 
Crosby-Lewisburg 

silt loams 
6 Org LM LE OH Madison 122 - - Soy Wheat Corn 18 64 18 

7 Org LM 
F2 

HE OH Madison - 128 - Corn Soy Wheat 18 64 18 
Crosby-Lewisburg 

silt loams 
8 Org LM LE OH Madison - 128 - Corn Soy Wheat 18 64 18 

9 Org JK 
F1 

HE OH Madison 120 - - Soy Wheat Corn 22 58.5 19.5 
Crosby-Lewisburg 

silt loams 
10 Org JK LE OH Madison 120 - - Soy Wheat Corn 18 64 18 

11 Org JK 
F2 

HE OH Madison - - 132 Wheat Corn Soy 18 64 18 
Crosby-Lewisburg 

silt loams 
12 Org JK LE OH Madison - 125 - Corn Soy Wheat 18 64 18 

13 Org DB 
F1 

HE OH Hancock 160 - - Soy Corn Wheat 15 50 35 
Pewamo silty clay 

loam 

14 Org DB LE OH Hancock 160 - - Soy Corn Wheat 22 56 22 Blount silt loam 

15 Org DB 
F2 

HE OH Hancock - 132 - Corn Soy Wheat 39 37 24 
Blount-Houcktown 

complex 

16 Org DB LE OH Hancock - 132 - Corn Soy Wheat 22 56 22 Blount silt loam 
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                continues 

17 Org RA 

F1 

HE OH Clinton - 131 - 
Oats / 

Forage 
Soy 

Hay / 

Alfalfa 
17 56 27 

Treaty silty clay 

loam 
18 Org RA LE OH Clinton - 131 - 

Oats / 

Forage 
Soy 

Hay / 

Alfalfa 
17 56 27 

19 Org RA 

F2 

HE OH Clinton - - - Soy 
Oats / 

Forage 
Forage 17 56 27 

Treaty silty clay 

loam 
20 Org RA LE OH Clinton - - - Soy 

Oats / 

Forage 
Forage 17 56 27 

21 Conv BH 
F1 

HE OH Fulton - - 141 Bare Corn Soy 25 39 36 
Hoytville clay loam 

22 Conv BH LE OH Fulton - - 141 Bare Corn Soy 25 39 36 

23 Conv BH 
F2 

HE OH Fulton - - 141 Bare Corn Soy 25 39 36 
Hoytville clay loam 

24 Conv BH LE OH Fulton - - 141 Bare Corn Soy 25 39 36 

25 Conv PD 
F1 

HE OH Fulton - 156 - Rye Soy Corn 14 51 35 
Lenawee silty clay 

loam 
26 Conv PD LE OH Fulton 141 - 151 Soy Corn Soy 14 51 35 

27 Conv PD 
F2 

HE OH Fulton 134 149 - Soy Soy Corn 18 49 33 
Fulton silty clay 

loam 
28 Conv PD LE OH Fulton 134 149 - Soy Soy Corn 18 49 33 

29 Conv PD 
F3 

HE OH Fulton 118 - - Soy Bare Corn 25 39 36 
Hoytville clay loam 

30 Conv PD LE OH Fulton 118 133 - Soy Soy Corn 25 39 36 

31 Conv PD 
F4 

HE OH Fulton 132 136 - Soy Soy Corn 25 39 36 
Hoytville clay loam 

32 Conv PD LE OH Fulton 132 136 - Soy Soy Corn 25 39 36 

33 Conv PD 
F5 

HE OH Fulton 135 - 129 Soy Corn Soy 22 55 23 
Del Rey silt loam 

34 Conv PD LE OH Fulton 135 - 129 Soy Corn Soy 22 55 23 

35 Conv PD 
F6 

HE OH Fulton 121 132 - Soy Soy Corn 25 39 36 
Hoytville clay loam 

36 Conv PD LE OH Fulton 121 - 136 Soy Corn Soy 25 39 36 

                continues 
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37 Conv PD 
F7 

HE OH Fulton 142 - 130 Soy Corn Soy 22 55 23 
Del Rey silt loam 

38 Conv PD LE OH Fulton 142 - 130 Soy Corn Soy 22 55 23 

39 Conv TL 
F1 

HE OH Morrow 134 138 - Soy Soy Corn 21 63 16 
Centerburg silt 

loam 
40 Conv TL LE OH Morrow 134 138 - Soy Soy Corn 21 59 20 

41 Conv TL 
F2 

HE OH Morrow 134 - 139 Soy Corn Soy 21 63 16 
Centerburg silt 

loam 
42 Conv TL LE OH Morrow 134 - 139 Soy Corn Soy 21 63 16 

43 Conv JM 
F1 

HE OH Hancock - - 152 Bare Corn Soy 22 56 22 
Blount silt loam, 

ground moraine 
44 Conv JM LE OH Hancock - - 152 Bare Corn Soy 22 56 22 

45 Conv JM 
F2 

HE OH Hancock - 140 - Bare Soy Corn 22 56 22 
Blount silt loam, 

ground moraine 
46 Conv JM LE OH Hancock - 140 - Bare Soy Corn 22 56 22 

47 Conv BG 
F1 

HE OH Hancock - 168 - Bare Soy Corn 19 42 39 
Hoytville clay loam 

48 Conv BG LE OH Hancock - 168 - Bare Soy Corn 19 42 39 

49 Conv BG 
F2 

HE OH Hancock - - 154 Bare Corn Soy 19 42 39 
Hoytville clay loam 

50 Conv BG LE OH Hancock - - 154 Bare Corn Soy 19 42 39 

51 Conv RB 
F1 

HE OH Darke 126 163 - Soy Soy Corn 18 64 18 
Crosby silt loam 

52 Conv RB LE OH Darke 126 163 - Soy Soy Corn 18 64 18 

53 Conv AO 
F1 

HE OH Darke 120 123 - Soy Soy Corn 18 64 18 
Crosby silt loam 

54 Conv AO LE OH Darke 120 123 - Soy Soy Corn 18 64 18 

55 Conv AO 
F2 

HE OH Darke 114 - 145 Soy Corn Soy 18 64 18 
Crosby silt loam 

56 Conv AO LE OH Darke 114 - 145 Soy Corn Soy 18 64 18 

                continues 
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57 Conv BM 
F1 

HE OH Madison 156 - 151 Soy Corn Soy 24 55 21 Miamian-

Lewisburg silt 

loams 58 Conv BM LE OH Madison 156 - 151 Soy Corn Soy 24 55 21 

59 Conv BM 
F2 

HE OH Madison - 164 - Corn Soy Corn 24 55 21 Miamian-

Lewisburg silt 

loams 60 Conv BM LE OH Madison - 164 - Corn Soy Corn 24 55 21 

61 Conv CO 
F1 

HE OH Pickaway 123 135 - Soy Soy Corn 18 64 18 
Crosby silt loam 

62 Conv CO LE OH Pickaway 123 135 - Soy Soy Corn 18 64 18 

63 Conv CO 
F2 

HE OH Pickaway - 126 145 Corn Soy Soy 18 64 18 
Crosby silt loam 

64 Conv CO LE OH Pickaway - 126 145 Corn Soy Soy 18 64 18 

65 Conv CHA 
F1 

HE OH Pickaway - 134 - Corn Soy Corn 26 53 21 Miamian-

Lewisburg silt 

loams 66 Conv CHA LE OH Pickaway - 134 - Corn Soy Corn 26 53 21 

67 Conv CHA 
F2 

HE OH Pickaway - 134 - Corn Soy Corn 21 59.5 19.5 
Crosby silt loam 

68 Conv CHA LE OH Pickaway - 134 - Corn Soy Corn 18 64 18 

69 Conv LM 
F1 

HE OH Tuscarawas 173 - 140 Soy Corn Soy 39 45 16 
Wheeling loam 

70 Conv LM LE OH Tuscarawas 173 - 140 Soy Corn Soy 39 45 16 

71 Conv LM 
F2 

HE OH Tuscarawas - 131 - Corn Soy Corn 39 45 16 
Wheeling loam 

72 Conv LM LE OH Tuscarawas - 131 - Corn Soy Corn 39 45 16 

73 Conv JH 
F1 

HE OH Madison - 138 - Corn Soy Corn 18 64 18 
Crosby-Lewisburg 

silt loams 
74 Conv JH LE OH Madison - 138 - Corn Soy Corn 18 64 18 

75 Conv JH 
F1 - 

Tra 

HE OH Madison - 138 - Corn Soy Corn 18 64 18 
Crosby-Lewisburg 

silt loams 
76 Conv JH LE OH Madison - 138 - Corn Soy Corn 18 64 18 

                continues 
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77 Conv JH 

F2 

HE1 OH Madison - - 138 Soy Corn Soy 18 64 18 

Crosby-Lewisburg 

silt loams 
78 Conv JH HE2 OH Madison - - 138 Soy Corn Soy 18 64 18 

79 Conv JH LE OH Madison - - 138 Soy Corn Soy 18 64 18 

80 Conv BP 
F1 

HE OH Madison - - 154 Soy Corn Soy 18 64 18 
Crosby-Lewisburg 

silt loams 
81 Conv BP LE OH Madison - - 154 Soy Corn Soy 18 64 18 

      Mean: 133 140 143    21.3 55.2 23.5  
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Suppl. Table 3.2. List of FAME biomarkers organized by taxonomic microbial group designation and fatty acid structure. Biomarkers that were used in this 

study are highlighted. Furthermore, information regarding their number of observations and detection is provided. 
 

Fatty Acid Taxonomic Group Biomarker References Detected Nr. of obs. 

Saturated 

- 14:0 - Yes n=153 (100 %) 

Gram (+); Gram (-); 

Fungi; Eukaryotes 
16:0 / 18:0 Zelles, 1997; Kerger, 1986 Yes n=153 (100 %) 

Generally considered 

Bacteria 
15:0 / 17:0  

Federle, 1986; Tunlid et al., 1989; 

Forstegard and Baath, 1996 
Yes n=153 (100 %) 

Mid-Chain Branched 

G
ra

m
 P

o
si

ti
v

e
 (

+
) 

B
a

ct
e

ri
a

 

Actinomycetes 

(Actinobacteria) 

10Me16:0 / 10Me17:0 / 10Me18:0 / 

10Me19:1w7c 

Fisher et al., 1983; Kroppenstedt, 1985;  

Zelles, 1997; Forstegard et al., 1993, 

Veum et al. 2021 

Yes n=153 (100 %) 

Terminally 

Branched 
Gram (+) 

i14:0 * Zelles, 1999 Yes n=132 (86.3 %) 

a15:0 / i15:0 / i16:0 / a17:0 / i17:0 O’Leary and Wilkinson, 1988 Yes n=153 (100 %) 

Mid-Chain Branched 

/ Monounsaturated 

G
ra

m
 N

e
g

a
ti

v
e

 (
-)

 B
a

ct
e

ri
a

 Sulfate red. 

Bacteria * 

10Me16:0 / cy17:0 * 

anoxic and anaerobic conditions 

Dowling et al., 1985, 1988;  

Parkes et al. 1993 
- - 

Hydroxy-substituted 

Gram (-) 

2OH 12:0 / 3OH 12:0 / 2OH 14:0 / * 

3OH 14:0 / 2OH 16:0 / 2OH 18:0 
Parker et al., 1982 No n=0 (0 %) 

Monounsaturated 

17:1 w8c Zelles, 1999 Yes n=153 (100 %) 

16:1ω7c / 18:1ω7c  Wilkinson, 1988; Tunlid et al., 1989; Yes n=153 (100 %) 

cy17:0 / cy19:0 Wilkinson, 1988; Kerger, 1986 Yes n=153 (100 %) 

Methanogens * 

(anaerobic conditions) 

Type I: 16:1ω5t / 16:1ω7c / 16:1ω8c / 3OH 16:0 * Nichols et al. 1985; 

Bowman et al. 1991, 1993 

- - 

Type II: 18:1ω8c / 18:1ω7c * - - 

     continues 
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Monounsaturated 

F
u

n
g

i 

Fungi; Plants * 20:1ω9c * Madan et al., 2002 Yes n=92 (60.1 %) 

Arbuscular 

Mycorrhizal Fungi 

(AMF); Plants 

16:1ω5c 
Olsson et al., 1995; Olsson, 1999; 

Madan et al., 2002 
Yes n=153 (100 %) 

Saprophytic Fungi; 

Plants 

18:1ω9c 
Vestal and White, 1989; 

Wallis et al. 2021 
Yes n=153 (100 %) 

Polyunsaturated 

18:2ω6c 
Federle, 1986; Zelles, 1997;  

Forstegard and Baath, 1996 
Yes n=153 (100 %) 

18:3ω6c * Federle, 1986; Klug, 1996 Yes n=140 (91.5 %) 

Fungi; Plants * 18:3ω3c * Zelles, 1997 No n=0 (0 %) 

Fungi; Plants * 20:5ω3c * Nordby et al., 1981; Olsson et al., 1995 Yes n=109 (71.2 %) 

Protozoa 
20:3ω6c 

Nordby et al., 1981; Guckert et al., 1985 
Yes n=13 (8.5 %) 

20:4ω6c Yes n=153 (100 %) 

Saturated (Long 

Chain) 
Eukaryotes 

21:0 / 22:0 / 24:0 
Zelles, 1999 

Yes n=153 (100 %) 

23:0 Yes n=98 (64.1 %) 

* Biomarkers were not classified in this study as such due to different environmental conditions or number of observations   
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Suppl. Table 3.3. Enzyme Activity Assay protocols for the individual enzymes (β-GLU, AS, NAG). 
  
            

Enzyme Assay description and 

ecological role 

Incubation step (37 °C for 1h) 
 

After Incubation 

Buffer Substrate a) 
  

CaCl2 

(0.5 M) 
Stop solution 

β-glucosidase (C cycling) MUB pH 6.0; 4 mL 
p-Nitrophenyl-β-D-glucopyranoside (0.05 M); 1 mL 

Sigma N7006 
 1 mL 

THAM pH 12 (0.1 M);  

4 mL 

Arylsulfatase (S cycling) 
0.5 M Acetate Buffer 

pH 5.8; 4 mL 

p-Nitrophenyl sulfate (0.05 M); 1 mL; 

Sigma N3877 
 1 mL 

THAM pH 12 (0.1 M);  

4 mL 

β-glucosaminidase (C and N cycling) 
0.1 M Acetate Buffer 

pH 5.5; 4 mL 

p-Nitrophenyl-N-acetyl-β-D-glucosaminide (0.01 M); 

1 mL; Sigma N9376 
  1 mL 

THAM pH 12 (0.1 M);  

4 mL 

a) Substrates were prepared by using the corresponding incubation buffer (Tabatabai, 1994).    
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Suppl. Table 3.4. Variables used in the multivariate model analysis runs. Variables are grouped into predefined 
classifications. These classifications are separated into groups like environmental factors, 
agricultural land management factors, and groups related to soil specific properties. 

 

Basic Factors 
 

Land Management Factors 

    Classification Variable (xi ) Unit 
    Classification Variable (xi ) Unit 

B
a

si
c 

F
a

ct
o

rs
 

T
y

p
e

 

Organic or 

Conventional Farming 
isOrganic 1 or 0 

 

A
g

ri
cu

lt
u

ra
l 

La
n

d
 M

a
n

a
g

e
m

e
n

t 
F

a
ct

o
rs

 

C
o

v
e

r 
C

ro
p

 

u
sa

g
e

 

CC usage once in 3 years CC13y 1 or 0 

T
e

x
tu

re
 Sand (0.05 - 0.002 mm) Sand % 

 
CC usage twice in 3 years CC23y 1 or 0 

Silt (0.05 - 2 mm) Silt %  CC usage every year CC33y 1 or 0 

Clay (<0.002 mm) Clay % 
 

No CC was planted No CC 1 or 0 

       

P
e

st
ic

id
e

 u
sa

g
e

 No Herbicide (primarily org. 

Farming) 
HerbNo 1 or 0 

Tier 1 Soil Health Indicators 
 Only Glyphosate HerbGlyp 1 or 0 

    Classification Variable (xi ) Unit  Glyph. Mix HerbMix 1 or 0 

Tier 1 

Indicator 

(Core) 

Soil Organic Carbon SOC N % 
 

Glyph. Mix + Dicamba HerbDicamba 1 or 0 

Total Nitrogen TN C % 
 

Fungicide (Yes or No) Fungicide 1 or 0 

 
      

M
a

n
u

re
 u

sa
g

e
 Manure usage once in 3 years Manure13y 1 or 0 

Soil Chemical Factors 
 

Manure usage twice in 3 years Manure23y 1 or 0 

  Classification Variable (xi ) Unit 
 

Manure usage every year Manure33y 1 or 0 

T
ie

r 
1

 I
n

d
ic

a
to

r 

(C
h

e
m

ic
a

l)
 

p
H

 

pH pH -  No Manure was used No-Manure 1 or 0 

p
H

 R
a

n
g

e
 

6.0 – 7.0 pH ideal 1 or 0 
 

Chicken Manure usage usesChM 1 or 0 

5.8 - 6.0 7.0 -7.4 pH very good 1 or 0  Cattle Manure usage usesCM 1 or 0 

5.4 - 5.8 7.4 - 7.8 pH good 1 or 0       
5.0 - 5.4 7.8 - 8.2 pH ok 1 or 0 

 
Land Management Factors 

< 5.0 > 8.2 pH bad 1 or 0 
     Classification Variable (xi ) Unit 

       

A
g

ri
cu

lt
u

ra
l 

La
n

d
 M

a
n

a
g

e
m

e
n

t 
F

a
ct

o
rs

 

P
la

n
ti

n
g

 

d
a

te
 

April date Early 1 or 0 

Environmental Factors 
 May date Common 1 or 0 

   Classification Variable (xi ) Unit 
 

June date Late 1 or 0 

E
n

v
ir

o
n

m
e

n
ta

l 

F
a

ct
o

rs
 

G
ro

w
in

g
 

C
y

cl
e

 

Precipitation during 

growth season 
Precip mm  

C
ro

p
 

R
o

ta
ti

o
n

 

Corn-Soybean RotCS 1 or 0 

Growing Time 

(planting to harvest) 
Time days  Corn-Soybean-Wheat RotCSW 1 or 0 

S
o

il
 

O
rd

e
r 

Mollisol or Alfisol Mollisol 1 or 0  

T
il

la
g

e
 P

ra
ct

ic
e

 No-Tillage TillNT 1 or 0 

       
Chisel Tillage TillChis 1 or 0 

       
Chisel + Field Cultivator TillChFC 1 or 0 

       
Disk Tillage TillDisk 1 or 0 

       
Moldboard Plow TillMBplow 1 or 0 

       

S
u

rf
a

ce
 R

e
si

d
u

e
 C

o
v

e
ra

g
e

 Residue Coverage Residue % 

       
> 60% Coverage ResHigh 1 or 0 

       
30 - 60 % Coverage ResMid_Plus 1 or 0 

       
15 - 30 % Coverage ResMid 1 or 0 

       
  6 - 15 % Coverage ResLow Plus 1 or 0 

       
< 6% Coverage ResLow 1 or 0 

continues 
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Soil Biochemical / Biological Factors 

    Classification Variable (xi ) Unit 

Enzyme 

E
n

zy
m

e
 A

ct
iv

it
y

 

β-Glucosidase (GLU) GLU mg PNP / kg- dry soil * h 

N-Acetyl Glutamate synthase (NAG) NAG mg PNP / kg- dry soil * h 

Arylsulfatase (AS) AS mg PNP / kg- dry soil * h 

GLU + AS GLUAS mg PNP / kg- dry soil * h 

GLU + NAG GLUNAG mg PNP / kg- dry soil * h 

NAG + AS NAGAS mg PNP / kg- dry soil * h 

GLU + NAG + AS GLUNAGAS mg PNP / kg- dry soil * h 

E
n

zy
m

e
 R

a
ti

o
s 

Enzyme Ratio GLU / AS - 

Enzyme Ratio GLU / NAG - 

Enzyme Ratio NAG / AS - 

Enzyme Ratio (GLU + AS) / NAG - 

Enzyme Ratio (GLU + NAG) / AS - 

Enzyme Ratio (AS + NAG) / GLU - 

          

EL-FAME 

F
A

M
E

 B
io

m
a

rk
e

rs
 

Only measurable and reappearing FAME biomarkers were used in the 

Model development (32 biomarker variables) 
nmol / g- dry soil 

 

Summation Actinobacteria nmol / g- dry soil  

Summation Eukaryotes nmol / g- dry soil  

Summation Fungi nmol / g- dry soil  

Summation Gram- bacteria nmol / g- dry soil  

Summation Gram+ bacteria nmol / g- dry soil  

Summation Protozoa nmol / g- dry soil  

Summation Total Biomarker nmol / g- dry soil  

Summation Total Fungi nmol / g- dry soil  

F
A

M
E

 R
a

ti
o

 

 FAME Ratio Bacteria / Total FAME -  

 FAME Ratio Fungi / Total FAME -  

 FAME Ratio Fungi / Bacteria -  

 FAME Ratio AMF / Bacteria -  

 FAME Ratio SAT / MONOSAT -  

 FAME Ratio Gram+ / Gram- -  

 FAME Ratio cy17:0 / Precursor (16:1ω7c) -  

 FAME Ratio cy19:0 / Precursor (18:1ω7c) -  
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731 PLOT TILL ROT. CROP 732 PLOT TILL ROT. CROP

101 CH CAA ALFALFA 2 110 PL CC CORN

102 CH CAA ALFALFA 1 111 PL CAA ALFALFA 1

103 CH CAA CORN 112 PL CAA CORN

104 CH CS CORN 113 PL CAA ALFALFA 2

105 CH CS SOYBEAN 114 PL CS SOYBEAN

106 CH CC CORN 115 PL CS CORN 741

107 NT CAA ALFALFA 1 116 NT CS SOYBEAN CC

108 NT CAA CORN 117 NT CS CORN PLOT TILL

109 NT CAA ALFALFA 2 118 NT CC CORN 401 NT

201 NT CS CORN 210 CH CS SOYBEAN 402 CH

202 NT CS SOYBEAN 211 CH CS CORN 403 PL

203 NT CAA ALFALFA 2 212 CH CC CORN 501 CH

204 NT CAA CORN 213 CH CAA CORN 502 NT

205 NT CAA ALFALFA 1 214 CH CAA ALFALFA 2 503 PL

206 NT CC CORN 215 CH CAA ALFALFA 1 601 NT

207 PL CAA CORN 216 PL CC CORN 602 CH

208 PL CAA ALFALFA 2 217 PL CS CORN 603 PL

209 PL CAA ALFALFA 1 218 PL CS SOYBEAN 701 PL

301 PL CS SOYBEAN 310 NT CC CORN 702 NT

302 PL CS CORN 311 NT CAA CORN 703 CH

303 PL CC CORN 312 NT CAA ALFALFA 1

304 PL CAA ALFALFA 2 313 NT CAA ALFALFA 2

305 PL CAA ALFALFA 1 314 NT CS SOYBEAN Plot Dimensions

306 PL CAA CORN 315 NT CS CORN 731/732:

307 CH CC CORN 316 CH CAA ALFALFA 1 75' L x 14' W

308 CH CS CORN 317 CH CAA CORN

309 CH CS SOYBEAN 318 CH CAA ALFALFA 2 741:

120' L x 21' W

KEY: CC = CONTINUOUS CORN NT = NO TILL

CS = CORN/SOYBEAN CH = CHISEL

CAA = CORN/ALFALFA 1/ALFALFA 2 PL = PLOW (MOLDBOARD)

TRIPLETT-VAN DOREN LONG-TERM NO-TILL PLOTS (2021)

SNYDER FARM (WOOSTER, OH): 731, 732, AND 741

GRAVEL ROAD LEADING TO FARM BUILDINGS

 
Suppl. Figure 1.  2021 Plot map for the Triplett-Van Doren Long-Term Field Site in Wooster, Ohio.
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Suppl. Figure 2.  2021 Plot map for the Northwest Research Station in Hoytville, Ohio. 

 

PLOT TILL ROT. CROP PLOT TILL ROT. CROP PLOT TILL ROT. CROP

101 CH CAA CORN 201 PL CS CORN 301 NT CC CORN

102 CH CAA ALFALFA 2 202 PL CS SOYBEAN 302 PL CC CORN

103 CH CAA ALFALFA 1 203 CH CC CORN 303 NT CS SOYBEAN

104 NT CS SOYBEAN 204 NT CAA ALFALFA 2 304 NT CS CORN

105 NT CS CORN 205 NT CAA CORN 305 CH CAA ALFALFA 1

106 PL CAA CORN 206 NT CAA ALFALFA 1 306 CH CAA CORN

107 PL CAA ALFALFA 2 207 PL CC CORN 307 CH CAA ALFALFA 2

108 PL CAA ALFALFA 1 208 CH CS CORN 308 PL CS SOYBEAN

109 PL CC CORN 209 CH CS SOYBEAN 309 PL CS CORN

110 CH CS SOYBEAN 210 CH CAA ALFALFA 2 310 CH CC CORN

111 CH CS CORN 211 CH CAA CORN 311 PL CAA ALFALFA 1

112 NT CC CORN 212 CH CAA ALFALFA 1 312 PL CAA CORN

113 NT CAA CORN 213 NT CC CORN 313 PL CAA ALFALFA 2

114 NT CAA ALFALFA 2 214 NT CS CORN 314 CH CS SOYBEAN

115 NT CAA ALFALFA 1 215 NT CS SOYBEAN 315 CH CS CORN

116 PL CS SOYBEAN 216 PL CAA ALFALFA 2 316 NT CAA ALFALFA 1

117 PL CS CORN 217 PL CAA CORN 317 NT CAA CORN

118 CH CC CORN 218 PL CAA ALFALFA 1 318 NT CAA ALFALFA 2

KEY: CC = CONTINUOUS CORN NT = NO TILL PLOTS: 20' W x 90' L

CS = CORN/SOYBEAN CH = CHISEL

CAA = CORN/ALFALFA 1/ALFALFA 2 PL = PLOW (MOLDBOARD)

LONG-TERM TILLAGE PLOTS (2021) 
 NORTHWEST RESEARCH STATION (Hoytville, OH): FieldTA - 3
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Suppl. Figure 3.  2021 Plot map for the East Straw Mulch Experiment in Columbus, Ohio.  
 

 

                                        N   

        East Straw Mulch Experiment       
W 

    
E 

                                      

                                         

Rep 1 

                                      S   

16 13 10 7 4 1         

M8F0 M0F1 M16F1 M8F1 M0F0 M16F0 
        

                                            

Rep 2 

                                            

17 14 11 8 5 2         

M0F1 M8F0 M0F0 M16F1 M16F0 M8F1 
        

                                            

Rep 3 

                                    

5
m

 (
1

6
.4

 f
t)

       

18 15 12 9 6 3       

M16F0 M0F0 M8F0 M8F1 M16F1 M0F1 
      

                                          

                                
5m (16.4 ft) 

        

  Fertilizer                 Straw Mulch                   

  F0 - No Fertilizer             M0 - No Mulch                   

  F1 - 244 kg/ha N (184kg as Urea, 60 kg as NPK)   M8 - 8 Mg/ha mulch (20kg/plot)             

                      M16 - 16 Mg/ha mulch (40kg/plot)           

                                              



- 142 -  

 
 Suppl. Figure 4.  Example of a soil map overlayed on top of an elevation heat map created with LIDAR data 
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Suppl. Figure 3.5. Flow Chart of the experimental study design representing soil related measurements 
in spring and soybean yield related measurement steps in fall. 
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Chapter 4: The Ability of Soil Properties and the Novel Biochemical Soil 
Health Scores to Differentiate between Agricultural Management Systems 

 
4.1 Abstract 

Soil Health (SH) indicators need to be identified that can quantitatively 

detect effects of agricultural systems and guide sustainable management of soils. 

Roper et al. (2017) showed that existing SH tests and scores had limited ability to 

distinguish sustainable soil management systems (e.g. no-till, organic amendments) 

from systems that degrade soils (e.g. moldboard plowing). Therefore, the objective 

was to investigate the potential of soil microbial indicators, enzyme assays, soil 

organic carbon (SOC), and total nitrogen (TN) to differentiate among agricultural 

management systems at on-farm sites in Ohio, and four long-term field sites. Practices 

varied in crop rotation, tillage, cover cropping, and manure amendments. Additionally, 

over two years, non-agricultural soil samples were taken once/year at restored prairies 

and unmanaged, virgin soil sites. Soil samples (0-15 cm) were measured once/year 

over three growing seasons at the agricultural sites. A sensitivity analysis of the 521 

variables identified 30 SH indicators. A secondary correlation analysis between SOC 

reduced the number of SH indicators to eight. Two of them were ester linked fatty acid 

methyl ester (EL-FAME) biomarkers (16:0 iso, 18:0 10-ME). The remaining ones 

were the EL-FAME marker for the soil bacterial community (sum of 11 biomarkers), 

three SH score variables based on EL-FAME variables, and two SH scores based on 

EL-FAME and enzyme activity variables. An analysis of the 8 SH indicators showed 

that non-agricultural systems had significantly greater EL-FAME concentrations and 

SH scores than soils from agricultural sites with corn-soy (CS) and corn-soy-wheat 
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(CSW) rotations. Significantly greater EL-FAME concentrations and SH scores were 

determined for cover cropping, and manure amendment. Intensive (PT), chisel 

(minimal) (MT), and no-tillage (NT) practices could not be differentiated by the 8 SH 

indicators even at low, medium, or high SOC concentrations. A deeper analysis when 

crop rotation, cover cropping and manure amended systems were combined with 

tillage showed that PT without cover cropping and manure in a CS rotation resulted in 

the lowest SH scores. NT with cover cropping and manure in a CSW rotation resulted 

in the highest SH scores. The results for the Michigan LTES had SH scores that, on 

average, were comparatively lower than the Ohio sites. This observation provides 

evidence that biological soil properties vary as function of soil type and the local 

climate environment. This confounds the potential of SH indicators to have absolute 

SH indicators that are universally interpretable across different regions and soil types. 

This in part can account for the inconsistent results found in previous studies on SH 

indicators. 

 

4.2 Introduction 
 

The health of a soil has a significant influence on the productivity and 

ecological health of a given ecosystem. Soil is a nonrenewable natural resource that 

must be protected to ensure food security for existing and future generations. 

However, quantifying soil health (SH) and identifying SH indicators has not been 

successfully accomplished. Previous studies have shown that several widely promoted 

SH tests or scores had limited ability to detect agricultural management effects, and 

correlated fair to poorly with crop yields (Roper et al., 2017, for three SH tests and 
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crop yield; Chu et al., 2019, for the Haney SH test; Chahal and Eerd, 2018, for the 

Haney SH test and crop yield; Faé et al., 2020, CASH SH test and soybean yield). The 

Soil Health Institute conducted a massive study in 2019 that involved 124 long-term 

experimental research sites (LTES) around North America (Norris, et al 2020). After 

the study was evaluated, the Soil Health Institute has recommended three SH 

indicators, which are soil organic carbon (SOC), carbon mineralization potential, and 

aggregate stability (Liptzin et al., 2022; Liptzin et al., 2023). In Chapter 3 a 

multivariate soybean yield prediction model, and two SH indicators that could detect 

soil management effects at four LTES were successfully identified. However, 

identifying SH indicators to soil management effects at on-farm fields are relatively 

few.  

A meta-analysis study indicated that biological soil properties like fungal 

biomass, soil microbial biomass, and enzyme activities are temporally sensitive (1 to 3 

years) to land management at a short time scale (Stewart et al., 2018). Studies have 

also shown that enzyme activities and the microbial indicators are affected by cover 

cropping (Bandick and Dick, 1999; Schutter and Dick, 2002), organic amendments 

(Carlson et al., 2015; Dick et al., 1988), climate effects (Acosta-Martínez et a., 2014 a, 

b), and tillage (Lorenz et al. 2020; Montero et al., 2004; Acosta-Martínez et al., 2003; 

Frey et al., 1999; Deng and Tabatabai, 1997; Dick, 1986a; Dick, 1986b; Dick, 1984; 

Doran, 1980).  

Mechanistically enzymes are important in driving the carbon, nitrogen, and 

sulfur nutrient cycles in soils. The β-glucosidase (GLU) enzyme hydrolyzes cellulose 

to produce glucose, a critical energy source for the microbial community in the soil 
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(Tabatabai, 1994). The enzyme arylsulfatase (AS) is involved in the sulfur cycle by 

releasing plant available SO4
2-. Because fungal communities contain ester sulfate 

compounds AS is highly correlated with fungal biomass (Miller et al., 1998, Bandick 

and Dick, 1999). 

These studies have mostly been conducted on long-term experimental 

research plots and not soils from farmer fields. On-farm research of SH indicators is 

confounded by each farm site having unique management practices, that additionally 

may vary over time, which complicates replication across farms. Furthermore, 

activities of specific enzymes or microbial indicators may change depending on the 

composition of amendments, the relative availability of nutrients, as well as other 

factors, such as soil type and other physiochemical characteristics (Acosta-Martínez et 

al., 2007 a, b; Huang et al., 2022).  

In these situations, clay content becomes important because for certain 

enzymes a significant amount of their activities is coming from the abiontic enzyme 

fraction which are enzymes stabilized in the soil matrix (clays in particular) that 

catalytically are no longer under the control of soil microorganisms (Skujiņš, 1978). 

Mandal et al. (2022) reported on the role of clays and other colloids the persistence 

and stability of enzymes by showing that adsorption of several enzymes (including β-

glucosidase) on clay increased their activities. Other studies have shown that β-

glucosidase and arylsulfatase have a significant amount of abiontic enzyme activity 

(Klose et al., 1999, for arylsulfatase; Knight and Dick, 2004, for β-glucosidase). 

Knight and Dick (2004) reported that activity from the abiontic fraction of β-

glucosidase was affected by the soil management system, but this was not the case for 
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the activity associated with viable cells. This is an important finding, in that 

normalizing for clay content enables an SH assessment independent of soil type; 

overcoming the limits of nearly or likely all, potential chemical, physical and 

biological measures of SH, where soil type varies more than the more subtle effects of 

soil/crop management. However, this needs to be tested on a much wider range of 

soils, environments, and land management systems, and on soils under farmer 

management. 

Therefore, the objectives of this study were: 1) determine the sensitivity of 

521 soil variables for detecting crop/soil management using a multi-level sensitivity 

test in which the level of subcategories increases; 2) to compare SH indicator analyses 

of farm fields with the unmanaged ecosystem soils of converted conservation reserve 

program (CRP) sites, restored prairies (P) and untouched virgin soils; and 3) to rate the 

soil health of various soil/crop farmer practices based on the most sensitive SH 

indicators identified in this research. To identify the most sensitive SH indicators, it 

was hypothesized that an indicator could differentiate between non-agricultural and 

agricultural management effects, is temporarily sensitive, and has a correlation 

coefficient (r) with SOC that is greater than 0.5. To identify beneficial soil 

management practices, it was hypothesized that a sensitive SH indicator would result 

in statistically significant higher enzyme activities, C and N concentrations, or SH 

scores due to crop rotation, cover cropping, manure amendments, or tillage practices. 
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4.3 Material and Methods 
 
4.3.1 Study Sites 

 
A total of 301 soil samples were collected. One hundred and seventy-six 

originated from conventionally managed on-farm sites (~58.5%), 52 from organically 

managed on-farm sites (~17%), 48 from long-term field sites (LTFS) (~16%), 16 from 

restored prairie sites (~5.5%), and the remaining 9 (~3%) were collected at two separate 

virgin soil sites (untouched soils). On-Farm soil sampling occurred each spring in a period 

of three years (2019-2021). For restored prairies and virgin soils sampling was done for 

two years (2020-2021), and in 2021 soil samples were collected at the four LTES. Three 

of the LTES are located in Ohio and one in Michigan. The restored prairies and two virgin 

soils sites are located in Madison county, Ohio (Suppl. Figure 7). Each sample site was 

GPS-tracked. Most samples were collected at on-farm sites (n=228, ~76%). These samples 

are connected to 18 farmers, which were located throughout eight counties in Ohio 

(Clinton, Darke, Fulton, Hancock, Madison, Morrow, Pickaway, and Tuscarawas). From 

the 176 original conventionally managed on-farm sites 6 were classified as conservation 

reservation program (CRP) sites. These sites were in the CRP for close to 25 years and 

were turned back into agricultural farmland sometime between 2019 to 2020.  

 

4.3.2 Farm Study Sites 

 

4.3.2.1 Organic Farm Sites 

 

Fifty-two soil samples originated from certified organically managed farm field 

sites in Ohio. The organic farm fields were in Madison, Handcock, and Clinton county 

and have been under agricultural practices for 50 to more than 100 years. Fields under 
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organic management had been in place from to one to 20 years and range in size from 5 

to 47 ha. Precipitation for each site ranged from 244 to 553 mm (Climate Fieldview, 

n.d). The growing period from planting to harvest ranged from 120 to 160 days. Most 

organically managed soils were a Crosby-Lewisburg silt loams (mesic Aeric Epiaqualfs 

/ shallow Aquic Hapludalfs) and four were Mollisols (Soil Survey Staff, 2019). 

Furthermore, the only four Mollisols in the study were identified at two separate organic 

farm field locations. All organic farm sites used organic seeds, had a soybean-corn-

wheat rotation, a 30-inch (76 cm) row spacing, and no synthetic inputs to meet certified 

organic standards. However, across the organically, managed fields there was variation 

in tillage manure applications, and cover cropping. 

 

4.3.2.2 Conventional Farm Sites 

 

The 13 conventionally managed fields ranged in size from 4 to 77 ha. 

Twenty-eight (~ 16%) had a soybean-corn-wheat rotation and 148 (~ 84%) a soy-corn 

rotation. All conventional farmers used synthetic fertilizers and herbicides. Herbicide 

management was divided in three application categories: only glyphosate (N-

(phosphonomethyl) glycine), glyphosate with a secondary herbicide, and dicamba (3,6-

dichloro-2-methoxybenzoic acid). All conventionally managed fields had Alfisols (Soil 

Survey Staff, 2019). The soil samples came from Darke, Fulton, Hancock, Madison, 

Morrow, Pickaway, and Tuscarawas counties. The agricultural fields ranged usage 

from 1 to 100 years. One field was converted from native land to farmland. 
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4.3.3 Long Term Field Sites 

 

4.3.3.1 Wooster - Triplett-Van Doren Site 

 
The LTES in Wooster, OH (40.764° N, -81.906° W) was established in 1962 by 

Glover B. Triplett and David M. Van Doren. The primary soil series is a Wooster silt 

loam (fine-loamy, mixed, active, mesic Oxyaquic Fragiudalfs) with a 2-6 % slope. For 

the first 15 cm the soil particle size distribution (texture) ranges between 25-30 % for 

sand, 55-60 % for silt and 15% for clay (Dick and Van Doren Jr., 1985; Dick et al., 

1986a; Soil Survey Staff, 2019). Deiss et al. (2021) reported a range of 5.4 to 6.8 for soil 

pH. 

The experimental has a two-way factorial randomized complete block design 

with three replications with three tillage treatments, and three crop rotations (Dick and 

Van Doren Jr., 1985; Deiss et al., 2021). Plot size is 22.3 m by 4.3 m. 

The three tillage treatments are: (1) no-tillage (NT); (2) chisel (minimum) tillage 

(CT); or (3) moldboard plow (MP). The minimum tillage treatment had a para plow 

from 1962 to 1984, after which a chisel cultivator was used. The chisel tillage loosen the 

soil and allows up to 30% litter retention on the soil surface. Moldboard tillage inverts 

soil to a depth of 20 cm and buries the litter, leaving 5 % or less on the soil surface 

(Dick et al., 2013).  

The three crop rotation treatments on the site are: (1) continuous corn (Zea mays 

L.) (CC); (2) corn and soybean (Glycine max L.) (CS); and (3) corn and oat (Avena 

sativa L.) and/or alfalfa (Medicago sativa) or clover (Trifolium repens L.) (CFF). Nine 

soil samples were collected in 2021 from the CS rotation plots that grew soybeans 

(Suppl. Fig. 1.). 
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4.3.3.2 Hoytville - Triplett-Van Doren Site 

 
The LTES in Hoytville, OH (41.222 ° N, -83.762° W) was established in 1963 

by Glover B. Triplett and David M. Van Doren. The primary soil series is a Hoytville 

clay loam (fine, illitic, mesic Mollic Epiaqualfs) with a 0-1 % slope. For the first 15 cm 

the soil particle size distribution (texture) ranges between 25 % for sand, 39 % for silt 

and 36 % for clay (Dick and Van Doren Jr., 1985; Dick et al., 1986a; Soil Survey Staff, 

2019). In contrast to the Wooster soil, The Hoytville soil has a poor surface and internal 

drainage, and it cracks when dry. In 1952 a subsurface tile drainage was installed at a 

depth of 1.2 - 1.4 m (Dick et al., 1986b; Deiss et al., 2021). Deiss et al. (2021) reported a 

range of 4.3 to 7.5 for soil pH.  

It has a two-way factorial randomized complete block design with three 

replications, and the identical three tillage treatments, and three crop rotations as the 

Wooster LTES (Dick and Van Doren Jr., 1985; Deiss et al., 2021). The plot size is 30.5 

m by 6.4 m. Nice soil samples were collected in 2021 from the CS rotation plots that 

grew soybeans (Suppl. Fig. 2.). 

 

4.3.3.3 Columbus - Straw Mulch Experiment 

 
The Straw Mulch Experiment (40.017° N, -83.0395° W) was established in 

1996 by the Carbon Management and Sequestration Center (CMASC) at the Ohio State 

University. The objective of this LTES is to determine the effect of wheat straw 

(Triticum aestivum L.) mulching on soil quality, soil organic carbon (SOC) 

sequestration and dynamics, and greenhouse gas emissions (Blanco-Canqui and Lal, 

2007). No mechanical tillage is used, and glyphosate (N-Phosphonomethyl glycine) is 
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used to control weeds. The primary soil series is a Crosby silt loam (fine, mixed, active, 

mesic Aeric Epiaqualfs) with a 2-6 % slope (Soil Survey Staff, 2019). For the top 15 cm 

the soil particle size is 22-23 % for sand, 53-56 % for silt, and 22-24 % for clay (Soil 

Survey Staff, 2019; Nawaz et al., 2016; Saroa and Lal, 2003). Measured soil pH at a 

depth of 0 to 15 cm ranged from 5.7 to 7.1. 

The experimental design is a two-way factorial completely randomized block 

design (3 replications) with three mulch rates and two fertilizer rates. The fry mulch 

treatments are: (1) no mulch (control), (2) 8 Mg ha-1 yr-1, and (3) 16 Mg ha-1 yr-1. The 

fertilizer treatments are: (1) no fertilizer application (control), or (2) annual broadcast 

fertilizer application with a rate of 244 kg N ha-1 (184 kg N ha-1 as Urea) and 60 kg ha-1 

of NPK). Each year, the wheat straw is applied in the spring followed by fertilizer 

application in the late spring to early summer. Until 2020 no crops were grown on the 

plots after which for two years corn and soybean were grown on them. Plot size is 5 by 

5 m. Each plot on which the crop experiment took place was separated into two halves 

(2.5 by 5 m) with a corn-corn and soybean-soybean rotation. For this study only six soil 

samples were collected originating from plots with no fertilizer application and low (0 

Mg/ha) and high (16 Mg/ha) mulch rates that had soybeans grown on them (Suppl. Fig. 

3.). 

 

4.3.3.4 Michigan - KBS Long-Term Ecological Research Station 

 
The Kellogg Biological Station Long-Term Ecological Research project was 

established in 1987 by Michigan State University and is funded by the National Science 

Foundation and by the Michigan State University AgBioResearch program. Soil 
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samples were collected from the Main Cropping System Experiment (42.410° N, -

85.373° W) which was completed in 1989. The primary soil series is a Kalamazoo loam 

(fine-loamy, mixed, active, mesic Typic Hapludalfs) with a 2-6 % slope. For the top 15 

cm the soil particle size distribution is 32 - 50 % for sand, 34 - 39 % for silt and around 

11-19 % for clay (Robertson et al., 2020; Soil Survey Staff, 2019). The soil pH in the 0 

to 15 cm ranges from 5.7 to 6.5. The plot size is 87 by 105 m.  

It has a factorial randomized complete block design with six replications. The 

tillage treatments are: (1) conventional chisel (minimum) tillage (MT-Conv); (2) 

conventional no-tillage (NT-Conv); (3) chisel tillage with reduced- N input (MT-Conv(-

N)); and (4) biologically (organic) based system with chisel tillage (MT-Org) (Martin 

and Sprunger, 2022; Naasko et al. 2024). The four tillage treatments follow a corn-

soybean-wheat rotation, but winter cover crops are incorporated in the reduced input 

(MT-Org) and biologically based systems (MT-Org) following corn and soybean harvest 

(corn–ryegrass (Lolium multiflorum)–soybean–winter wheat–red clover (Trifolium 

pratense)). Twenty-four soil samples were collected from the four tillage treatments in 

2021. 

 

4.3.4 Restored Prairies and Virgin Soil Sites 

 

4.3.4.1 Restored Prairies 

 

In 2020 and 2021 soil samples were collected at two restored prairie sites. These 

sites are part of the Battelle Darby Creek park which is managed by the Metro Park 

organization. The park features 7,196 acres of forest, prairies, and wetlands (Metroparks, 

n.d.). Soil samples were taken at two enclosed pastures, which are close to each other and 
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that are used by a bison herd throughout the seasons. 

The second restored prairie site is known as the Indiana Ridge Prairies. It is a 

restored prairie on which purple coneflower, royal catchfly, prairie dock, big bluestem and 

other wildflowers and grasses are growing. The soils were identified as Celina silt loam 

(mesic Aquic Hapludalfs), Ockley silt loam (mesic Typic Hapludalfs), Kokomo silty clay 

loam (mesic Typic Argiaquolls), and Crosby silt loam (mesic Typic Hapludalfs) (Soil 

Survey Staff, 2019). 

 

4.3.4.2 Virgin Soil Sites 
 

Virgin Soil sites were defined as sites that have not been disturbed by 

anthropogenic activities since the first European settlers arrived in Ohio. The two sites that 

were included in this study are known as the W. Pearl King Prairie Savanna, which is 

managed by MetroParks, and the Smith Cemetery, which is managed by Ohio Department 

of Natural Resources. Both sites are nature preserves and provide habitat for native 

tallgrasses and oak groves. The soils were identified as Crosby-Lewisburg silt loam (mesic 

Aeric Epiaqualfs / shallow Aquic Hapludalfs). 

 

4.3.5 Soil Sampling and Processing 

 
Sampling sites were determined based on a soil heat map, which included 

LIDAR elevation information and information from the US Soil Survey website. An 

elevation heatmap was created using a 3D point cloud and mesh processing software 

CloudCompare. The soil map was overlayed with the elevation heatmap to identify a 

low and high elevation soil sampling site. On-farm soil sampling sites were selected 
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based on farmer survey information and the premise that the soil units would be 

identical. The GPS coordinates were recorded, and the texture specific information was 

obtained from the US Soil Survey website. For the restored prairies and virgin sites, the 

same procedure was carried out.  

Six to eight soil (0-15 cm depth) cores (2.54 cm dia.) were taken and 

homogenized to form a composite sample (~1 kg). All cores were taken within a 5 m 

radius. For the Ohio LTES a randomized soil core sampling was done in a w-shaped 

pattern. For the Michigan LTES it was required to sample five predetermined soil 

sampling subplots. At each subplot two cores (0-15 cm depth; 2.54 cm dia.) were 

collected and composited. Soil samples were stored as soon as possible in a cooler with 

ice and transferred to a -20 °C freezer (Lee et al., 2007; Veum, 2019). 

After thawing the soil samples in the 4 °C fridge, the wet soil was sieved to 

pass a 2 mm mesh size and all organic material, or mineral fragments were removed. A 

300 to 500g subsample was air dried for 24 to 48 hours at room temperature, then 

stored in the 4 °C fridge and used to measure pH, Total C (TC), Total N (TC), soil 

organic carbon (SOC), and the enzyme activity of β-Glucosidase (GLU), N-Acetyl 

Glutamate synthase (NAG), and Arylsulfatase (AS). The remaining field moist 

subsample was stored at -20 ˚C and used for EL-FAME analysis work (Suppl. Fig. 7.). 

Gravimetric water content was determined by weighing before and after a placing a soil 

subsample in an oven set at 105 ˚C for 24 hours. 
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4.3.6 Total Nitrogen, Total Carbon, Soil Organic Carbon, and pH 

 
 

Soil pH was measured with air-dried soils using a 1:1 mixture of soil and 

deionized water followed by measurement with a glass membrane electrode (Accumet 

Model 15 pH meter). 

Total nitrogen (TN) and total carbon TC was determined on sieved air-dried 

soil samples that had been crushed with a pestle and mortar to pass a 106 μm sieve 

(USA Standard Test Sieve Number 104). This subgroup was then used in an elemental 

analyzer system (Carlo Erba CHN EA 1108, now Thermo Fisher Scientific, Waltham, 

MA) (Nelson & Sommers, 1996, Matejovic, 1997).  

Inorganic carbon (SIC) was determined by placing the half of the subsample 

into a furnace for 16 hours at 450 ˚C (Ball, 1964; Davies, 1974; Ben-Door & Banin, 

1989; Soon and Abboud, 1991; Nelson & Sommers, 1996). Past publications 

determined that organic matter content by loss-on-ignition at this 400 ˚C temperature 

resulted in a strong correlation with soil organic carbon content that was determined via 

wet-oxidation (dichromate) (Ben-Door & Banin, 1989, Nelson & Sommers, 1996). The 

heating regime of 375 ˚C to 450 ˚C oxidizes all organic matter without creating 

significant errors due to losses by crystal water or hydroxyl groups from minerals 

(Davies, 1974; Nelson & Sommers, 1996). After the furnace treatment the subsamples 

were dry combusted a second time in the elemental analyzer system. SOC was 

calculated by subtracting the recorded SIC concentration from the TC concentration. In 

the final step, TN, TC, and the SOC variable, were divided and multiplied by the 

percentage of clay and separately by the percentage of sand. 
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4.3.7 EL-FAME 

 
The soil microbial community composition was obtained by running the 

Ester-Linked Fatty Acid Methyl Ester method (EL-FAME) which was described by 

Schutter and Dick (2000) and is based on a method developed by Dr. Rhae Drijber.  

Three g of field moist soil was extracted with a 1:1 hexane/methyl-tert butyl 

ether and Methyl Nonadecanoate mixture that was then vortexed with a 0.2 M 

methanolic KOH solution. The tube was placed into a water bath at 37 ˚C and incubated 

for 1h. During this incubation phase the sample was vortexed for 10 seconds every 10 

minutes. Afterwards 1.0 M acetic acid is added to establish a pH of 7. In the next step, 

10 ml of hexane is added, and the tube is vortex for 60 seconds followed by 

centrifuging (1600 rpm for 20 minutes) that partitioned the EL-FAMEs were into the 

organic phase. The upper, organic phase was removed and evaporated under a stream of 

N2 gas. The dried EL-FAME film was dissolved in 1 ml of the internal standard mixture 

and transferred into a gas chromatograph (GC) for analysis on the 6890N GC (Agilent 

Technologies). 

The GC was equipped with a flame ionization detector that used a fused 

silica capillary column (25 m × 0.20 mm × 0.33 μm). The system used ultra-high purity 

H2 as the carrier gas and the temperature program was ramped from 190 to 285 ˚C at 10 

˚C per minute. The Microbial ID PLFA identification software (MIDI ver.6.2) was used 

to identify the biomarker and their relative peak areas. The individual biomarkers 

concentrations (nmol g−1 dry soil) were calculated and categorized based on described 

procedures in the literature (Olsson, et al., 1995; Frostegård & Bååth, 1996; Zelles, 

1999; Schutter and Dick, 2002).  
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Each EL-FAME is described with a nomenclature. The first number clarifies 

the number of carbon atoms of the fatty acid molecules. It is followed by a colon and a 

second number which explains the number of double bonds within the molecule. The 

suffixes “c” and “t” are used to indicate Cis and trans isomers. Branched fatty acids are 

indicated by the prefixes i (iso) and a (anteiso). Other notations like “Me”, “OH”, “cy” 

 are used to describe methyl, hydroxy, and cyclopropane groups. 

The total FAME concentration (nmol g−1 dry soil) was determined by the 

sum of all identified EL-FAME biomarkers in a soil sample. The sums of individual 

EL-FAME biomarkers were used to compute broad taxonomic microbial groups such 

as Gram-positive bacteria (a15:0, i15:0, i16:0, a17:0, i17:0) (O’Leary and Wilkinson, 

1988; Zelles, 1999), Gram-negative bacteria (cy17:0, cy19:0, 16:1ω7c, 17:1ω8c, 

18:1ω7c) (Wilkinson, 1988; Tunlid et al., 1989; Kerger, et al., 1986; Haack, et al., 

1994, Zelles, 1999), Actinobacteria (10Me16:0, 10Me17:0, 10Me18:0, 10Me19:1ω7c) 

(Fischer et al., 1983; Kroppenstedt, 1985; Zelles, 1997; Frostegård et al., 1993, Veum et 

al. 2021), arbuscular mycorrhizal fungi (AMF; 16:1 ω5c) (Nordby et al., 1981; Olsson 

et al., 1995; Olsson, 1999; Madan et al., 2002),  Protozoa (20:3ω6c, 20:4ω6c) (Guckert 

et al., 1985), and Eukaryotes (21:0, 22:0, 23:0, and 24:0) (Zelles, 1999) (Appendix 

Table 2).  

Additionally soil microbial ratios were calculated, which included the total 

fungal/bacterial ratio (tFU/BA), fungal/bacterial ration (FU/BA), gram-positive 

bacteria/gram-negative bacteria ratio (GP/GN), saturated/monounsaturated fatty acid 

ratio (SAT/MONO), bacterial/total FAME (BA/ToF), cyclopropane fatty acid 17/ 16:1 

precursor ratio (Cy17/16; cy17:0/16:1ω7c), and cyclopropane fatty acid 19/ 18:1 
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precursor ratio (Cy19/18; cy19:0/18:1ω7c). In published studies these ratios were used 

to interpret microbial community shifts due to stress related conditions (McKinley et 

al., 2005; Taguchi et al., 1980; Guckert et al., 1986; Kieft et al., 1994, Bossio and 

Scow, 1998; Moore-Kucera and Dick, 2007).  

The tFU/BA ratio was determined with the sum of the saprotrophic fungal 

and the arbuscular mycorrhizal fungi (AMF) marker (18:1ω9c, 18:2ω6c, and 16:1ω5c) 

divided by the sum of 11 bacterial markers (15:0, 17:0, i15:0, a15:0, i16:0, i17:0, a17:0, 

cy17:0, cy19:0, 16:1ω7c, and 18:1ω7c). The FU/BA ratio is calculated in a very similar 

way with the exception that the AMF biomarker is removed (Frostegård & Bååth, 

1996). The GP/GN ratio is calculated with the sum of 5 Gram-positive bacteria divided 

by 5 Gram-negative bacteria (Frostegård et al., 1993; Zelles et al., 1994). The 

SAT/MONO ratio was calculated with the sum of 5 saturated fatty acids (14:0, 15:0, 

16:0, 17:0, and 18:0) divided by the sum of 7 monounsaturated fatty acids (16:1ω5c, 

16:1ω7c, 17:1ω8c, 18:1ω7c, 18:1ω9c, cy17:0, and cy19:0) (McKinley et al., 2005). To 

determine the BA/ToF ratio the sum of 11 bacterial markers (15:0, 17:0, i15:0, a15:0, 

i16:0, i17:0, a17:0, cy17:0, cy19:0, 16:1ω7c, and 18:1ω7c) was divided by the total 

FAME concentration. For the GP/ToF ratio the sum of 5 Gram-positive bacteria was 

divided by the total FAME concentration. In the final step, all recorded EL-FAME 

variables, were divided and multiplied by the percentage of clay and additional by the 

percentage of sand to determine a possible relationship between soybean yields. 
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4.3.8 Enzyme Activity  

 

The potential enzyme activity of β-glucosidase (B-GLU), Arylsulfatase 

(AS), and N-Acetyl-β-glutamate synthase (NAG; also known as β-glucosaminidase) 

were measured for each dry soil sample. These three enzyme activities are involved in 

the C cycle (B-GLU, NAG), S cycle (AS), and N cycle (NAG) and were determined 

by conducting well known enzyme assays. The assay procedures have been described 

elsewhere: B-GLU (Tabatabai, 1994; Dick, 2011), NAG (Parham and Deng, 2000; 

Dick, 2011), and AS (Tabatabai, 1994; Dick, 2011). For each enzyme assay three 

replicate samples and one control of 1g of air-dried soil was prepared. Each sample 

received the corresponding substrate based on the assay protocol before the 1-hour 

incubation at 37 ˚C started (Table 2.3). For the control the corresponding substrate was 

added after the reaction was stopped. Enzyme activities are expressed as mg of p-

nitrophenol (PNP) kg−1 dry soil h−1.  

Additionally, the sum of B-GLU + AS, B-GLU + NAG, AS + NAG, and B-

GLU +AS + NAG was determined. Recent studies determined that multi-assay 

combinations of enzymes are possible and thereby could be used as a new soil health 

assessment tool across agroecosystems (Acosta-Martínez et al., 2019). Additionally, 

the ratio of B-GLU / AS, B-GLU / NAG, AS / NAG, (B-GLU +AS) / NAG, (B-GLU 

+ NAG) / AS, and (AS + NAG) / B-GLU were determined. In the final step, all 

recorded enzyme variables, were divided and multiplied by the percentage of clay and 

additional by the percentage of sand to determine a possible relationship between 

soybean yields. 
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4.3.9    Statistical Analysis 
 

Statistical analyses were performed using RStudio, which is an integrated 

development environment that uses the R programming language and software 

environment for statistical computing and graphics (R Core Team, 2022; RStudio, 

2018). To determine the weighted biochemical SHS variables the computational 

algorithm was used which is based on the optimized soybean yield model described in 

section 3.4.2. A list of 77 variables and their corresponding regression coefficients was 

used in this algorithm (Suppl. Table 4). The specific regression coefficients to calculate 

the SH scores in this case belonged to enzyme assay, enzyme ratio, and EL-FAMA 

biomarker variables. 

In the next step 521 variables (included SHS) were statistically analyzed and 

scored for their ability to detect soil/crop management effects using a multi-level 

sensitivity test (Figure 4.1). Such a test does not exist in statistics and the term is used 

to describe the statistical analysis process. In this multi-level sensitivity test the 

complexity of categories is systematically increasing. In the first statistical runs each of 

the 521 variable is analyzed and scored for its ability to detect crop/soil management 

effects for cover cropping, manure amendments, and crop rotation by running t-tests (α 

= 0.05). Additionally, Tukey-Kramer post hoc tests (α = 0.05) are run for all variables 

where agricultural crop rotation systems are compared with natural ecosystems, and 

separately for the three tillage systems. These results are again scored and analyzed. 

These tests complete the first level of the multi-level sensitivity test. In the remaining 

tests the level of agricultural subgroups is increased each time by a crop/soil 

management system. Starting with tillage and crop rotation (e.g. corn-soy (CS), corn-



- 163 -  

soy-wheat (CSW)), followed by cover cropping (binary numerical response of either 

yes or no) and last by manure (binary numerical response of either yes or no). At each 

level the post hoc results are analyzed and scored for all 521 variables (Figure 4.1). The 

same statistical analysis tests were carried for each of the three growing seasons. The 

process of determining the sensitivity score was described in section 3.3.11.  

In total 16672 sensitivity scores were determined (521 variables * 8 

categorical variable combinations * 4 years). In the next step an elimination process  

was used to identify the most temporarily robust, and sensitive SH indicators. The 

relationship between those identified SH indicators and SOC was determined and those 

indicators with correlation coefficients lower than 0.5 or greater than -0.5 were 

removed. 

Furthermore, the identified SH indicators were tested for their sensitivity to 

detect cover cropping, manure amendments, crop rotation, and tillage effects under 

three SOC ranges low (<10.1 g kg-1), medium (10.1 g kg-1 ≥ 16.2 g kg-1), and high 

(>16.2 g kg-1). 

In the final statistical analysis, the identified SH indicators were used to 

identify detrimental and beneficial soil management practices. 

 

4.4 Results and Discussion 
 

4.4.1 Identification of the most reliable and sensitive SH indicators 

The multi-level sensitivity analysis of 521 variables identified 30 temporarily 

robust and sensitive SH indicators (Table 4.1). The number was further reduced, to only 

include the 8 indicators that were significantly correlated with SOC, having r value 
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greater than 0.5 (Figure 4.3, Figure 4.4, Table 4.2, Table 4.3). Three of the 8 SH 

indicators were the EL-FAME biomarkers (total bacteria, (r = 0.57); 18:0 10-ME, (r = 

0.55); 16:0 iso, (r = 0.51)). The remaining 5 indicators were SH score variables that 

were calculated based on the corresponding computational algorithm SHS (negative) 

[FAME], (r = 0.54); SHS (positive) [FAME], (r = 0.50); SHS (fitted) [FAME], (r = 

0.52); SHS (fitted) [Enz+FAME], (r = 0.57); or SHS (positive) [Enz+FAME], (r = 

0.54)). 

 

4.4.2 Agricultural Crop Rotation and Natural Soil Ecosystems 

 

The statistical analysis found that the EL-FAME total bacteria, 16:0 iso 

biomarker, SHS (fitted) [Enz+FAME], and SHS (positive) [Enz+FAME] variables 

followed the order VS=CRP>P>CSW>CS>CSW-Michigan. For the 18:0 10-ME 

biomarker the CRP site resulted in the highest concentrations, and the Ohio CS sites 

were determined to be equal to the CSW-Michigan sites resulting in the following order 

CRP >VS>P>CSW>CS=CSW-Michigan. For the SHS (-) [FAME] variable it was 

determined that P and CRP were equal in their SH scores resulting in the following 

order VS>CRP=P>CSW>CS>CSW-Michigan. For the SHS (+) [FAME] variable the 

Ohio CS sites were determined to be equal to the CSW-Michigan, and the CRP sites 

could not clearly be separated from the P or the VS sites resulting in the following order 

VS ≥CRP ≥P>CSW>CS=CSW-Michigan. If we assume that the CSW-Michigan sites 

resulted in the overall lowest EL-FAME concentrations and SH scores the average 

relative magnitude would be 4.04: 3.95: 3.08: 1.56: 1.32: 1 (VS : CRP : P : CSW : CS : 
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CSW-Michigan). Overall, it can be concluded that the CRP sites were identical to 

virgin soils and restored prairies were significantly higher than agricultural fields but 

significantly lower than CRP and virgin soils. CSW sites were statistically greater than 

Ohio and Michigan CS sites. Michigan CS sites were the lowest. 

These results provide evidence that the 1985 USDA Farm bill that created the 

conservation reserve program (CRP) was successful in restoring agricultural soil to SH 

levels equal to virgin soils. Furthermore, the restored prairies resulted in EL-FAME 

concentrations and SH scores that were about two times higher than the ones measured 

on Ohio farm fields with a CSW rotation. These observations provide evidence that the 

four principal of soil health (maximizing continues living roots, minimizing 

disturbance, maximizing biodiversity, and maximizing soil cover) are beneficial for the 

health of a soil and that it can be quantified with the eight identified SH indicators. 

The observation that the Michigan soil samples had the lowest EL-FAME 

concentrations and SH scores suggests there is a regional effect on the microbial 

community that is likely related to differences in soil type and climate. These climate 

effects have been noted in other investigations (Acosta-Martínez et a., 2014 a, b, Roper 

et al., 2017). The formation factors that specifically control the evolution of a given 

soil, which is parent material, climate, biota, topography, and time must be considered 

(Buol et al., 2011). Additionally, the significant difference between Michigan and Ohio 

soil microbial properties provides evidence for why the existing Soil Health tests (e.g. 

Haney and CASH tests) may be effective in one region but not another in detecting and 

quantifying SH. Furthermore, it seems likely that the development of reliable and 

sensitive SH indicators will require vetting them within relatively uniform agro-
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ecosystems with a state or across state boundaries.  

 

4.4.3 Cover Crops 

 

Total Bacteria, 16:0 iso, 18:0 10-ME and all eight SH score variables were 

significantly greater cover cropping over no-cover cropping (Table 4.5).  Fig. 4.6 shows 

that for seven of the eight SH indicators at the medium, and high SOC range were 

significantly affected by cover cropping. The only exception for this was determined for 

the 16:0 iso variable that was not affected by cover cropping at the high SOC level.   

Under low SOC levels there was a significant effect due to cover cropping on 

total bacteria, SHS (fitted) [Enz+FAME], and SHS (positive) [Enz+FAME] variables. The 

reason that the other five SH indicators were not affected could be the explained by the 

sample size between cover cropping (n=36) and no cover cropping (n=9) systems. 

However, these results clearly suggests that cover crops have a significant 

positive effect on the health of a soil, which links them to three of the four soil health 

principles (maximizing continues living roots, maximizing biodiversity, and maximizing 

soil cover). 

 

4.4.4 Manure 

 

Like cover crops total bacteria, 16:0 iso, 18:0 10-ME and all five SH score 

variables were significantly greater in manure amended soils (Table 4.6). When the data 

was separated into the three SOC ranges, the significant effects of manure were found for 

seven out of the eight SH indicators (16:0 iso being the exception) only at the highest SOC 
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level (Figure 4.7). Only total bacteria could detect difference at all three SOC ranges. The 

results suggest that manure amendments may take more time of repeated applications than 

what occurred in this study (< 3 years) to significantly EL-FAME biomarkers or SH 

scores. This is supported by Huang et al., (2022) who reported microbial shifts on due to 

manure amendments on a long-term field site. 

 

4.4.5 Tillage 

 

Surprisingly, none of the 8 SH variables could determine significant differences 

between the three tillage systems (Table 4.7), even when the data was separated into the 

three SOC ranges (Figure 4.8). These results are contradictory to many studies where NT 

over  PT soils has higher: enzyme activities (Lorenz et al., 2020; Balota et al., 2004, 2014; 

Montero et al., 2004; Acosta-Martínez et al., 2003; Bergstrom et al., 2000; Frey et al., 

1999; Deng and Tabatabai, 1997; Dick, 1986a; Dick, 1986b Dick, 1984; Doran, 1980) 

mycorrhizal fungi biomass (Drijber et al., 2000; McGonigle et al., 1999), macro 

aggregation (Kumar et al., 2012a; Six et al., 2000b), TC and TN concentrations (Feng et 

al., 2003; Hendrix et al., 1986), SOC concentrations (Kumar et al., 2012a; Dick, 1986a; 

Dick, 1986b) and water holding capacity (Kumar et al., 2012a, Kumar et al., 2012b). 

Other studies also showed changes in the composition of microbial communities in the 

soils due to the tillage intensity (Jackson et al., 2003; Drijber et al., 2000; Frey et al., 1999; 

Doran, 1980). 

These divergent results from the current study could be because most of the 

previous research was done LTES. Each of these sites have more or less the same soil type 
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where each management treatment is carefully and consistently followed over long 

periods. This stands in contrast to the current study which was done on farmer managed 

fields where there is variation in the exact management, weather conditions, and soil type 

among the field sites (Suppl. Fig. 5). 

Because of this, the tillage data was further divided into 4 subcategories to 

account for differences in crop rotation, cover cropping, and manure amendment (Figure 

4.9). The separation of the data into 4 subgroups now showed tillage treatment effects 

which follow previous research results. The no-till farms fields that practiced a corn-soy-

wheat rotation, planted cover crops, and applied manure had the highest EL-FAME 

concentrations and SH scores for all 8 SH indicators (Table 4.8, Table 4.9, Table 4.10). 

The lowest concentrations and scores were determined for PT and NT farm sites with a 

corn-soy rotation, and no cover cropping or manure. 

For the PT subgroup for the total bacteria, SHS (fitted) [Enz+FAME], and SHS 

(positive) [Enz+FAME] variable a significant effect was found when a corn-soy-wheat 

crop rotation was practiced (Table 4.8, Table 4.10). The next significant difference of PT 

could be detected when cover crops and manure were used resulting in the following order 

of: PT [CS-CCno-Mno < CSW-CCno-Mno = CSW-CCno-Myes = CSW-CCyes-Mno  < 

CSW-CCyes-Myes]. Furthermore, the trajectory in Figure 4.9 implied that farms with 

intensive tillage seem to reach a SH plateau where adopting more practices that should 

improve soil health did not happen under this regime. The remaining 5 SH indicators 

could not differentiate between management systems.  

For the MT subgroup 5 SH indicators (total bacteria, 18:0 10-ME, SHS 

(negative) [FAME], SHS (fitted) [Enz+FAME], and SHS (positive) [Enz+FAME]) lowest 
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EL-FAME concentrations and SH scores were the corn-soy rotation, no cover crops and 

manure amendment (Table 4.8, Table 4.9, Table 4.10). This observation revealed that 

manure amendments most likely only provided an improvement for the health of a soil 

under ideal conditions or long-term application if we assume that the 4-Rs for nutrient 

management were followed (Right Source, Right Rate, Right Time, and Right Place). The 

next significant difference in the MT subgroups was found when cover crops were used. 

After a CSW crop rotation was the only management practice that resulted in significantly 

greater concentration and scores. This observation provided evidence that the MT similar 

to the PT subgroup was reaching its SH plateau, resulting in a final order of: MT [CS-

CCno-Myes <= CS-CCno-Mno <= CS-CCyes-Mno < CSW-CCno-Mno >= CSW-CCno-

Myes = CSW-CCyes-Myes]. 

For NT all 5 SH score variables were determined to be the most sensitive 

variables (Table 4.9, Table 4.10). The soil health scores showed a small increase for CS 

farm sites that used manure. But the statistical increase was significantly higher for CS 

farm sites that used cover crops. CS farm sites that used manure and cover crops matched 

those that followed a CSW crop rotation with cover cropping and no manure amendment. 

Overall, the NT subgroup was the only one that displayed a steady increase with the 

introduction of soil amendments, and biodiversity maximization resulting in this final 

order of: NT [CS-CCno-Mno <= CS-CCno-Myes <= CS-CCyes-Mno <= CS-CCyes-Myes 

= CSW-CCyes-Mno < CSW-CCyes-Myes]. 

Overall, the data analysis suggested that regardless of tillage system, a CSW 

rotation was preferable for increasing SH, followed by cover cropping, and manure 

amendments having the smallest effect on SH. The statistical analysis also found that a PT 
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in combination with CSW- CCyes-Myes had a similar SH score to MT with CSW-CCno-

Myes and NT with CS-CCyes-Mno (Figure 4.9). Furthermore, the four principles of SH 

are met by the management system that received a high SH score. 

 

4.4.6  Interpreting the optimized Multivariate Soybean prediction model 

 

A simulation modeling experiment was done using the optimized soybean 

prediction model (Table 4.11). The objective was to determine the highest theoretical 

soybean yield. This model assumes the following conditions were met: (1) conventional 

management, (2) corn-soy-wheat rotation, (3) applied cattle manure once every 3 years, 

(4) cover crops grown once every 3 years, (5) chisel tilled (MT), (6) a pH 6 to 7, (7) 

planting in April, (8) weed control with glyphosate, (9) no fungicide, (10) a high soil 

surface residue coverage. Additionally, it was assumed that the soil was a Mollisol, and 

it has the highest recorded SOC and TN concentrations, and it has a Soil Health Score 

of 1. With these assumptions a theoretical soybean yield of 16025 kg/ha (238 bsh/ac) 

would be possible. Surprisingly, this number came close to the soybean world record of 

206 bsh/ac grown in 2019 by Randy Dowdy in Georgia (Bennet, 2023).  

On the other hand, the model predicted that if the following conditions were 

met for a conventional managed field with: (1) corn-soy rotation, (2) no manure 

amendments, (3) no cover cropping, (4) intensive tillage (PT),  (5) pH  ≥ 8, (6) planting 

in May, (7) weed control with glyphosate dicamba, (8) fungicide treatment, (9)  residue 

cover below 6 %, and (10) soil health scores at 0.2 the theoretically soybean yield 

would be at 0 kg/ha. 

This exercise demonstrates that these models are often only approximations 
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and that predicted yields might not occur for given field or cropping year – due 

extraneous factors such as extreme weather, pest/disease infestations or negative 

management for which SH has limited control to mitigate. However, models showed 

that biological soil properties are important or related to soil health and sustainable soil 

management.  

The simulated experiment showed that the SHS was a significant factor in 

predicting yield. The SHS influenced 53 to 88% of the theoretical soybean yields 

(Figure 4.10). Furthermore, this connects healthy soils to optimized agriculture 

productivity. 

The model showed the importance of soil texture for soybean yields. The 

information from the optimized model predicted that 50 kg/ha (0.74 bsh/ac) would be 

lost for each percentage point reduction in clay content (Figure 4.11). 

 

4.5 Conclusions 
 

A multi-level sensitivity assessment of 521 soil properties, under various 

agricultural and non-agricultural management systems, identified 30 robust and 

sensitive Soil Health (SH) indicators. Selection of indicators that had a significant 

correlation with SOC reduced the number of sensitive SH indicators to eight. The 

statistical analysis of the final 8 SH indicators showed that they are significantly 

influenced by regional conditions, and that the comparison between agricultural and 

non-agricultural results confirm the four principal of soil health (maximizing continues 

living roots, minimizing disturbance, maximizing biodiversity, and maximizing soil 

cover). This study, therefore, represents an important role that microbial and 
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enzymatic ecology components for detecting and quantifying management effects on 

SH.  

A separate analysis of the 8 SH indicators focused on agricultural 

management systems in Ohio, showed that corn-soybean-wheat crop rotation, cover 

cropping, and manure had a significantly effect on all 8 SH indicators.  

Pairwise analysis of tillage systems revealed no significant effects for all 8 

SH indicators. The analysis of tillage systems under the low, medium, or high SOC 

levels did not change this result. Because of the significant effects of crop rotation, 

cover crops and manure, a follow-up analysis was conducted. Tillage systems were 

divided into subcategories that were based on other land management practices. The 

statistical subcategory analysis allowed the identification of detrimental or beneficial 

agricultural management systems for the health of a soil. It confirmed that the four 

principles of SH were applicable at the farm field scales and suggested that intensive 

tillage and minimal tillage there is no adding more than one management system that 

should improve SH did not happen. The post-hoc Tukey was used to rank the 8 SH 

indicators for tillage regime from the most sensitive to least sensitive with a final order 

of: SHS (fitted) [Enz+FAME], SHS (positive) [Enz+FAME], total bacteria, SHS 

(negative) [FAME], 18:0 10-ME, SHS (positive) [FAME], SHS (fitted) [FAME], 16:0 

iso. 
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Table 4.1. 30 SH indicators identified by the multi-level sensitivity test and their sensitivity scores (max = 20). 
  

EL-FAME Sensitivity Score Enzyme Assays Sensitivity Score SHS Variable Sensitivity Score 

Eukaryotes / Clay % 9.84 NAG / (1 - Sand %) 9.00 SHS.FAME.neg / Clay % 9.34 

Total Fungi 9.25 NAG / Clay % 8.95 SHS.FAME.pos / Clay % 9.34 

Gram (-) / Clay % 9.53 NAG / Sand % 8.65 SHS.FAME.fit / Clay % 9.11 

22:0 / Clay % 9.46 NAG 8.50 SHS.Enz.FAME.neg / Clay % 8.50 

18:0 10-ME / Clay % 9.04   SHS.Enz.FAME.pos / Clay % 8.41 

17:0 cyclo w7c / Clay % 8.30   SHS.Enz.FAME.fit / Clay % 8.41 

Total FAME / Clay % 8.60   SHS.FAME.neg 7.86 

17:0 10-ME / Clay % 8.02   SHS.FAME.pos 8.09 

20:4 w6c 8.16   SHS.FAME.fit 7.78 

Gram (-) Bacteria 8.11   SHS.Enz.FAME.fit 6.73 

Eukaryotes 7.69   SHS.Enz.FAME.pos 6.57 

18:0 10-methyl 7.64     

Total Bacteria 7.55     

16:0 / Clay % 7.68     

16:0 iso 7.34     
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Table 4.2. Correlation Matrix of 13 SH indicators identified in the multi-level sensitivity test which were used for developing differentiation scores from the 
LTES ( Michigan LTES data was excluded). 

 

  TN 
Total 

Fungi 
20:4 w6c 

Gram (-) 

Bacteria 
Eukary. 

18:0 10-

ME 

Total 

Bacteria 
16:0 iso NAG 

SHS_ 

FAME (-) 

SHS_ 

FAME (+) 

SHS_ 

FAME (fit) 

SHS_ 

All (fit) 

SHS_ 

All (+) 

SOC 0.90*** 0.15 * 0.12 n.s. 0.41*** 0.37*** 0.55*** 0.57*** 0.51*** 0.26*** 0.54*** 0.50*** 0.52*** 0.57*** 0.54*** 

TN  0.18 ** 0.14 * 0.41*** 0.35*** 0.52*** 0.56*** 0.49*** 0.33*** 0.53*** 0.49*** 0.51*** 0.57*** 0.54*** 

Total Fungi   0.42*** 0.81*** 0.47*** 0.56*** 0.61*** 0.57*** 0.47*** 0.59*** 0.62*** 0.61*** 0.58*** 0.59*** 

20:4 w6c    0.43*** 0.15 * 0.35*** 0.45*** 0.32*** 0.43*** 0.37*** 0.35*** 0.36*** 0.38*** 0.37*** 

Gram (-) Bac     0.61*** 0.81*** 0.90*** 0.84*** 0.62*** 0.82*** 0.84*** 0.83*** 0.84*** 0.84*** 

Eukaryotes      0.59*** 0.56*** 0.60*** 0.46*** 0.88*** 0.90*** 0.90*** 0.80*** 0.82*** 

18:0 10-ME       0.90*** 0.91*** 0.51*** 0.82*** 0.82*** 0.82*** 0.84*** 0.84*** 

Total Bacteria        0.92*** 0.64*** 0.87*** 0.86*** 0.86*** 0.90*** 0.89*** 

16:0 iso         0.55*** 0.85*** 0.83*** 0.84*** 0.84*** 0.83*** 

NAG          0.63*** 0.63*** 0.63*** 0.68*** 0.69*** 

SHS_FAME (-)           0.99*** 1.00*** 0.96*** 0.96*** 

SHS_FAME (+)            1.00*** 0.96*** 0.97*** 

SHS_FAME (fit)             0.96*** 0.97*** 

SHS_All (fit)              1.00*** 

 

***  Signifies a model with a P-value <0.001. 

**  Signifies a model with a P-value <0.01. 

*  Signifies a model with a P-value <0.05. 

n.s. not significant (P > 0.05) 

 

 

 

 

 



- 184 -  

 

 

Table 4.3. 30 Soil Health indicators organized by their ability to differentiate between agricultural management systems and their 
corresponding differentiation scores determined in Chapter 3. Highlighted variables in green were fair correlations (r 
>= 0.5) with soil organic carbon (SOC) and represent the most reliable SH indictors (Figure.4.3, Table 4.4). 

 

High Potential Diff. Score [LTES] Some Potential Diff. Score [LTES] More Data required Diff. Score [LTES] 

Total Fungi 2.25 NAG 1.5 Eukaryotes / Clay % N/A 

Eukaryotes 2.75 20:4 w6c 1.5 Gram(-) / Clay % N/A 

Total Bacteria 2.25 Gram (-) Bacteria 1.5 22:0 / Clay % N/A 

16:0 iso 3.25 18:0 10-ME 1.75 18:0 10-ME / Clay % N/A 

SHS.FAME.neg 2.5   17:0 cyclo w7c / Clay % N/A 

SHS.FAME.pos 2.5   Total FAME / Clay % N/A 

SHS.FAME.fit 2.5   17:0 10-ME / Clay % N/A 

SHS.Enz.FAME.fit 3.25   16:0 / Clay % N/A 

SHS.Enz.FAME.pos 2.75   NAG / (1 - Sand %) N/A 

    NAG / Clay % N/A 

    NAG / Sand % N/A 

    SHS.FAME.neg / Clay % N/A 

    SHS.FAME.pos / Clay % N/A 

    SHS.FAME.fit / Clay % N/A 

    SHS.Enz.FAME.neg / Clay % N/A 

    SHS.Enz.FAME.pos / Clay % N/A 

    SHS.Enz.FAME.fit / Clay % N/A 
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Table 4.4. Results a for 8 SH indicators under agricultural crop rotations, previous CRP conditions, and natural conditions in Ohio and Michigan. 
  

Crop 

Rotation 
n Total Bacteria c 16:0 iso 18:0 10-ME 

SHS (-)  

[FAME] 

SHS (+)  

[FAME] 

SHS (Fitted) 

[FAME] 

SHS (Fitted) 

[Enz+FAME] 

SHS (+) 

[Enz+FAME] 

  ______________ nmol g-1 soil   ______________ ________________________________   -  ________________________________ 
          

CS b 166 54.0 (±1.21) d d 4.76 (±0.113) d 2.86 (±0.064) e 0.383 (±0.007) d 0.374 (±0.007) d 0.379 (±0.007) d 0.404 (±0.006) d 0.409 (±0.006) d 

CSW 80 63.1 (±1.43) c 5.66 (±0.160) c 3.38 (±0.084) d 0.461 (±0.011) c 0.458 (±0.011) c 0.460 (±0.011) c 0.466 (±0.010) c 0.469 (±0.009) c 

CSW -

Michigan 
24 33.8 (±1.49) e 3.17 (±0.131) e 2.45 (±0.115) e 0.308 (±0.012) e 0.307 (±0.013) d 0.308 (±0.012) e 0.305 (±0.010) e 0.320 (±0.010) e 

P 16 121 (±7.45) b 11.1 (±0.651) b 6.09 (±0.543) c 0.989 (±0.068) b 0.960 (±0.063) b 0.975 (±0.065) b 0.886 (±0.047) b 0.844 (±0.042) b 

CRP 6 178 (±17.4) a 17.8 (±1.53) a 9.84 (±0.737) a 1.02 (±0.072) b 1.07 (±0.075) ab 1.04 (±0.073) b 1.03 (±0.059) a 1.01 (±0.052) a 

VS 9 157 (±14) a 17.0 (±1.72) a 8.31 (±0.601) b 1.24 (±0.075) a 1.19 (±0.053) a 1.21 (±0.062) a 1.13 (±0.062) a 1.07 (±0.051) a 

a ... Mean data observations and standard error values 

b ... CS…Corn/Soy crop rotation; CSW…Corn/Soy/Wheat crop rotation; P… Prairies, CRP… Cons. Reserve Prog., VS… Virgin Soil 
c ... Sum of 15:0, 17:0, a15:0, i15:0, i16:0, a17:0, i17:0, cy17:0, cy19:0, 16:1 w7c, 18:1 w7c 

d ... Values within a column followed by the same lower-case letter are not significantly different at P< 0.05 
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Table 4.5. Results 
a

 for 8 SH indicators with or without cover cropping in Ohio. 
 

Cover Crop 

usage 
n Total Bacteria c 16:0 iso 18:0 10-ME SHS (-) [FAME] SHS (+) [FAME] 

SHS (Fitted) 

[FAME] 

SHS (Fitted) 

[Enz+FAME] 

SHS (+) 

[Enz+FAME] 

  ______________ nmol g-1 soil   ______________ _________________________________ - _________________________________ 
 

CC (No) b 156 52.4 (±1.08) a d 4.69 (±0.112) a 2.82 (±0.060) a 0.376 (±0.007) a 0.368 (±0.007) a 0.372 (±0.007) a 0.395 (±0.006) a 0.402 (±0.005) a 

CC (Yes) 90 64.8 (±1.58) b 5.67 (±0.157) b 3.39 (±0.091) b 0.464 (±0.011) b 0.460 (±0.011) b 0.462 (±0.011) b 0.474 (±0.009) b 0.475 (±0.008) b 

a ... Mean data observations and standard error values 

b ... CS…Corn/Soy crop; CSW…Corn/Soy/Wheat  
c ... Sum of 15:0, 17:0, a15:0, i15:0, i16:0, a17:0, i17:0, cy17:0, cy19:0, 16:1 w7c, 18:1 w7c 

d ... Values within a column followed by the same lower-case letter are not significantly different at P< 0.05 
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Table 4.6. Results 
a

 for 8 SH indicators with or without manure in Ohio 

Manure 

usage 
n Total Bacteria c 16:0 iso 18:0 10-ME SHS (-) [FAME] SHS (+) [FAME] 

SHS (Fitted) 

[FAME] 

SHS (Fitted) 

[Enz+FAME] 

SHS (+) 

[Enz+FAME] 

  ______________ nmol g-1 soil   ______________ _________________________________ - _________________________________ 
 

Man (No) b 152 53.3 (±1.19) a d 4.77 (±0.12) a 2.87 (±0.062) a 0.387 (±0.007) a 0.38 (±0.008) a 0.384 (±0.007) a 0.408 (±0.007) a 0.413 (±0.006) a 

Man (Yes) 94 62.8 (±1.49) b 5.5 (±0.15) b 3.28 (±0.091) b 0.442 (±0.011) b 0.436 (±0.011) b 0.439 (±0.011) b 0.451 (±0.009) b 0.453 (±0.008) b 

a ... Mean data observations and standard error values 

b ... CS…Corn/Soy crop; CSW…Corn/Soy/Wheat  
c ... Sum of 15:0, 17:0, a15:0, i15:0, i16:0, a17:0, i17:0, cy17:0, cy19:0, 16:1 w7c, 18:1 w7c 

d ... Values within a column followed by the same lower-case letter are not significantly different at P< 0.05 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



- 188 -  

 
 
 
 
 
 
 

Table 4.7. Results 
a

 for 8 SH indicators under various tillage systems in Ohio 

Tillage 

system 
n Total Bacteria c 16:0 iso 18:0 10-ME SHS (-) [FAME] SHS (+) [FAME] 

SHS (Fitted) 

[FAME] 

SHS (Fitted) 

[Enz+FAME] 

SHS (+) 

[Enz+FAME] 

  ______________ nmol g-1 soil   ______________ ____________________________ - ____________________________ 
 

PT b 39 56 (±1.84) a d 4.94 (±0.195) a 2.98 (±0.107) a 0.411 (±0.013) a 0.408 (±0.013) a 0.409 (±0.013) a 0.421 (±0.011) a 0.426 (±0.01) a 

MT 83 56.5 (±1.2) a 5.05 (±0.125) a 3.04 (±0.07) a 0.393 (±0.008) a 0.386 (±0.008) a 0.39 (±0.008) a 0.411 (±0.007) a 0.417 (±0.006) a 

NT 124 57.6 (±1.67) a 5.09 (±0.16) a 3.03 (±0.089) a 0.417 (±0.011) a 0.41 (±0.011) a 0.414 (±0.011) a 0.434 (±0.01) a 0.438 (±0.009) a 

a ... Mean data observations and standard error values 

b ... CS…Corn/Soy crop; CSW…Corn/Soy/Wheat  
c ... Sum of 15:0, 17:0, a15:0, i15:0, i16:0, a17:0, i17:0, cy17:0, cy19:0, 16:1 w7c, 18:1 w7c 

d ... Values within a column followed by the same lower-case letter are not significantly different at P< 0.05 
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Table 4.8. Total Bacteria, 16:0 iso, 18:0 10-Me results a of farm fields with different management practices taken at a soil depth of 15 cm in 

Ohio.  

Tillage 

practice 

Crop 

Rotation 

Cover Crop 

usage 

Manure 

usage 
n Total Bacteria d 16:0 iso 18:0 10-ME 

     _________________________ nmol g-1 soil   _________________________ 
 

PT b CS c No No 6 43.8 (±1.73) CD e b f 3.79 (±0.130) CD a 2.46 (±0.070) BCD a 

CSW No No 8 56.7 (±3.35) ABCD ab 4.65 (±0.199) ABCD a 2.87 (±0.161) ABCD a 

Yes 9 57.3 (±4.26) ABCD ab 5.46 (±0.584) ABCD a 3.01 (±0.277) ABCD a 

Yes No 2 60.1 (±0.90) ABCD ab 5.29 (±0.254) ABCD a 2.96 (±0.005) ABCD a 

Yes 14 59.4 (±3.22) ABC a 5.20 (±0.305) ABCD a 3.25 (±0.197) ABC a 
           

MT CS No No 34 52.6 (±1.61) CD c 4.74 (±0.135) BCD b 2.99 (±0.080) BC bc 

Yes 18 53.3 (±2.44) CD c 4.54 (±0.292) BCD b 2.65 (±0.174) CD c 

Yes No 6 51.7 (±4.45) BCD bc 4.57 (±0.467) ABCD b 2.70 (±0.257) BCD bc 

CSW No No 10 66.7 (±2.48) ABC a 6.65 (±0.291) A a 3.66 (±0.162) AB a 

Yes 13 63.6 (±2.72) ABC ab 5.50 (±0.222) ABC ab 3.32 (±0.150) ABC ab 

Yes Yes 2 67.3 (±1.08) ABCD abc 5.45 (±0.162) ABCD ab 3.58 (±0.027) ABCD abc 
           

NT CS No No 52 44.8 (±2.02) D b 4.01 (±0.211) D b 2.41 (±0.104) D b 

Yes 6 61.5 (±5.97) ABCD ab 5.58 (±0.593) ABCD ab 3.43 (±0.355) ABCD ab 

Yes No 20 64.3 (±2.80) ABC a 5.59 (±0.271) ABC a 3.20 (±0.175) ABC a 

Yes 24 68.8 (±3.49) AB a 5.94 (±0.311) AB a 3.53 (±0.192) AB a 

CSW Yes No 14 63.2 (±4.62) ABC a 5.69 (±0.514) ABC a 3.49 (±0.217) ABC a 

Yes 8 77.0 (±4.04) A a 6.82 (±0.617) A a 4.10 (±0.364) A a 

a ... Data are means and standard error values 

b ... PT…Plow Till; MT…Minimal-Till; NT…No-Till 

c ... CS…Corn/Soy crop rotation; CSW…Corn/Soy/Wheat crop rotation 

d ... Sum of 15:0, 17:0, a15:0, i15:0, i16:0, a17:0, i17:0, cy17:0, cy19:0, 16:1 w7c, 18:1 w7c 

e ... Values followed by the same uppercase letters across all management systems are not significantly different at P< 0.05. 

f ... Values within a column and tillage group followed by the same lower case letter are not significantly different at P<0.05. 
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Table 4.9. The Soil Health Scores a calculated using key EL-FAME variables. The classification of agricultural management systems is based 

on farm survey data. The total number of 246 observations represents soil samples (0-15 cm) that were collected from  farm 

fields in Ohio. 

Tillage 

practice 

Crop 

Rotation 

Cover 

Crop 

usage 

Manure 

usage 
n SHS (-) [FAME] SHS (+) [FAME] SHS (Fitted) [FAME] 

     ________________________________   -   _________________________________ 
 

PT b CS c No No 6 0.335 (±0.012) CDE d a e 0.339 (±0.015) CDE a 0.337 (±0.013) CDE a 

CSW No No 8 0.383 (±0.018) BCDE a 0.378 (±0.019) BCDE a 0.381 (±0.018) BCDE a 

Yes 9 0.430 (±0.030) BCDE a 0.425 (±0.029) BCDE a 0.428 (±0.029) BCDE a 

Yes No 2 0.455 (±0.053) ABCDE a 0.440 (±0.043) ABCDE a 0.448 (±0.048) ABCDE a 

Yes 14 0.440 (±0.024) BCD a 0.439 (±0.023) BCD a 0.440 (±0.023) BCD a 
           

MT CS No No 34 0.374 (±0.010) DE bc 0.368 (±0.010) DE b 0.371 (±0.010) CDE b 

Yes 18 0.355 (±0.018) DE c 0.343 (±0.018) DE b 0.349 (±0.018) DE b 

Yes No 6 0.383 (±0.020) BCDE abc 0.375 (±0.019) BCDE ab 0.379 (±0.019) BCDE ab 

CSW No No 10 0.477 (±0.021) ABC a 0.452 (±0.019) ABCD a 0.465 (±0.020) ABC a 

Yes 13 0.433 (±0.021) BCD ab 0.439 (±0.02) BCD a 0.436 (±0.021) BCD a 

Yes Yes 2 0.425 (±0.011) ABCDE abc 0.445 (±0.011) ABCDE ab 0.435 (±0.011) ABCDE ab 
           

NT CS No No 52 0.343 (±0.012) E c 0.331 (±0.012) E c 0.337 (±0.012) E c 

Yes 6 0.405 (±0.035) BCDE bc 0.400 (±0.034) BCDE bc 0.402 (±0.034) BCDE bc 

Yes No 20 0.422 (±0.017) BCD b 0.416 (±0.019) BCD b 0.419 (±0.018) BCD b 

Yes 24 0.477 (±0.019) B b 0.468 (±0.019) ABC b 0.473 (±0.019) AB b 

CSW Yes No 14 0.490 (±0.028) AB ab 0.502 (±0.030) AB ab 0.496 (±0.029) AB ab 

Yes 8 0.594 (±0.043) A a 0.579 (±0.044) A a 0.587 (±0.043) A a 

a ... Data are means and standard error values 

b ... PT…Plow Till; MT…Minimal-Till; NT…No-Till 

c ... CS…Corn/Soy crop rotation; CSW…Corn/Soy/Wheat crop rotation 

e ... Values followed by the same uppercase letters across all management systems are not significantly different at P< 0.05. 

f ... Values within a column and tillage group followed by the same lower case letter are not significantly different at P<0.05. 
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Table 4.10. The Soil Health Scores a calculated using key Enzyme and EL-FAME variables. The classification of agricultural 

management systems is based on farm survey information. The total number of 246 observations represents soil 

samples (0-15 cm) that were collected at farm fields throughout Ohio. 

 

Tillage 

practice 
Crop Rotation 

Cover Crop 

usage 

Manure 

usage 
n SHS (Fitted) [Enz+FAME] SHS (+) [Enz+FAME] 

 

     ____________________   -   ____________________  
  

PT b CS c No No 6 0.355 (±0.009) CD d b e 0.366 (±0.010) CD b 

CSW No No 8 0.426 (±0.021) BCD ab 0.426 (±0.018) BCD ab 

Yes 9 0.415 (±0.026) BCD ab 0.423 (±0.023) BCD ab 

Yes No 2 0.444 (±0.022) ABCD ab 0.446 (±0.014) ABCD ab 

Yes 14 0.446 (±0.018) BC a 0.451 (±0.017) BC a 
         

MT CS No No 34 0.394 (±0.009) CD bc 0.403 (±0.008) CD bc 

Yes 18 0.382 (±0.016) CD c 0.388 (±0.014) CD c 

Yes No 6 0.414 (±0.028) BCD abc 0.417 (±0.024) BCD abc 

CSW No No 10 0.457 (±0.016) ABC a 0.453 (±0.014) BCD ab 

Yes 13 0.450 (±0.020) BC ab 0.456 (±0.018) BC a 

Yes Yes 2 0.456 (±0.003) ABCD abc 0.461 (±0.004) ABCD abc 
         

NT CS No No 52 0.367 (±0.012) D c 0.375 (±0.011) D c 

Yes 6 0.430 (±0.026) BCD bc 0.437 (±0.024) BCD bc 

Yes No 20 0.447 (±0.015) BC b 0.449 (±0.014) BC b 

Yes 24 0.482 (±0.018) AB ab 0.478 (±0.016) AB ab 

CSW Yes No 14 0.501 (±0.027) AB ab 0.510 (±0.026) AB ab 

Yes 8 0.578 (±0.033) A a 0.569 (±0.030) A a 

a ... Data are means and standard error values  

b ... PT…Plow Till; MT…Minimal-Till; NT…No-Till  

c ... CS…Corn/Soy crop rotation; CSW…Corn/Soy/Wheat crop rotation  

e ... Values followed by the same uppercase letters across all management systems are not significantly different at P< 0.05. 

f ... Values within a column and tillage group followed by the same lower case letter are not significantly different at P<0.05. 
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Statistical 

Analysis Design 

Data organization 

and sorting  

  
Figure 4.1. Flow chart of the multi-level sensitivity test and the calculation of differentiation power scores for 521 variables used to identify the most 

sensitive SH indicators. Light blue describes the 8 categorical classifications that were used. 
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Figure 4.2. Effect of crop rotations, prairie, Conservation Reserve Program, and virgin Soil sites on Soil Health Scores (Fitted) [Enz + EL-

FAME] variable)  
  CS... corn/soy,   CSW...corn/soy/wheat,     CSW-Michigan ... LTES in Michigan,  
  P... prairies,   CRP... Conservation Reservation Program,  VS... virgin soil. 

Bars with the same lower-case letter are not significantly different at P<0.05 
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Figure 4.3. Correlation Matrix of 13 SH indicators identified in the multi-level sensitivity test that were 

used for develop  differentiation scores (Chapter 3). Michigan LTES data excluded. 
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Figure 4.4. Correlation Matrix of the remaining 17 potential SH indicators identified in the multi-level 

sensitivity test. All LTES observations were excluded.
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Figure 4.5. Eight SH indicator t-test results under corn-soy and corn-soy-wheat crop rotation conditions. The first graph for each variable represents 
the total number of observations. The next three graphs separate these observations into three SOC ranges [Low (<10.88g/kg), Medium 
(10.88g/kg ≥ 16.20g/kg), and High (>16.20g/kg)]. Michigan LTES observations were excluded (outlier). 
Horizontal brackets over plots indicate statistical significance; *p < 0.05, **p < 0.01, and ***p < 0.001. ns=not significant.  

               continues  
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Figure 4.6. Eight SH indicator t-test results under cover cropping conditions. The first graph for each variable represents the total number of 
observations. The next three graphs separate these observations into three SOC ranges [Low (<10.88g/kg), Medium (10.88g/kg ≥ 
16.20g/kg), and High (>16.20g/kg)]. Michigan LTES observations were excluded (outlier). 

 Horizontal brackets over plots indicate statistical significance; *p < 0.05, **p < 0.01, and ***p < 0.001. ns=not significant.        continues   
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Figure 4.7. Eight SH indicator t-test results under manure conditions. The first graph for each variable represents the total number of 
observations. The next three graphs separate these observations into three SOC ranges [Low (<10.88g/kg), Medium (10.88g/kg ≥ 
16.20g/kg), and High (>16.20g/kg)]. Michigan LTES observations were excluded (outlier). 

     Horizontal brackets over plots indicate statistical significance; *p < 0.05, **p < 0.01, and ***p < 0.001. ns=not significant.       continues  
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Figure 4.8. Eight SH indicator t-test results under various  tillage systems. The first graph for each variable represents the total number of 
observations. The next three graphs separate these observations into three SOC ranges [Low (<10.88g/kg), Medium (10.88g/kg ≥ 
16.20g/kg), and High (>16.20g/kg)]. Michigan LTES observations were excluded (outlier). 

                   Horizontal brackets over plots indicate statistical significance; *p < 0.05, **p < 0.01, and ***p < 0.001. ns=not significant.       continues  
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Figure 4.9. Shifts in SH Scores [Enzyme + EL-FAME] due to agricultural management systems. The graphs are separated by tillage systems (PT, MT, 
NT) and observations are categorized by crop rotation (CS, CSW) and further separated by cover crop usage (CC(No), CC(Yes)) and by 
manure usage (M(No), M(Yes)). Bars across all graphs followed the same uppercase letters are not significantly different at P<0.05.  

   Bars within a graph with the same lowercase letter are not significantly different at p<0.05.
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Figure 4.10. Percentage distribution of the absolute coefficient values based on the best and worst land 
management and soil health scenario. 

  
SHS... Soil Health Score 
LM... Land Management Practices 
TN... Total Nitrogen  
SOC... Soil organic Carbon 
pH characteristics 
Texture characteristic 
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    Figure 4.11. Soil texture triangle that describes the soybean yield starting conditions based on texture 

composition. The soybean yield distribution is based on the regression coefficients of the 

final soybean yield prediction model. The unit for the black lines is kg/ha.     
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4.7 Supplementary Information 
 

Suppl. Table 2. FAME biomarkers organized by taxonomic microbial group designation and fatty acid structure. Biomarkers that were used in this 
study are highlighted. Furthermore, information regarding their number of observations and detection is provided. 

 

Fatty Acid Taxonomic Group Biomarker References Detected Nr. of obs. 

Saturated 

- 14:0 - Yes n=153 (100 %) 

Gram (+); Gram (-); 

Fungi; Eukaryotes 
16:0 / 18:0 Zelles, 1997; Kerger, 1986 Yes n=153 (100 %) 

Generally considered 

Bacteria 
15:0 / 17:0  

Federle, 1986; Tunlid et al., 1989; 

Forstegard and Baath, 1996 
Yes n=153 (100 %) 

Mid-Chain Branched 

G
ra

m
 P

o
si

ti
v

e
 (

+
) 

B
a

ct
e

ri
a

 

Actinomycetes 

(Actinobacteria) 

10Me16:0 / 10Me17:0 / 10Me18:0 / 

10Me19:1w7c 

Fisher et al., 1983; Kroppenstedt, 1985;  

Zelles, 1997; Forstegard et al., 1993, 

Veum et al. 2021 

Yes n=153 (100 %) 

Terminally 

Branched 
Gram (+) 

i14:0 * Zelles, 1999 Yes n=132 (86.3 %) 

a15:0 / i15:0 / i16:0 / a17:0 / i17:0 O’Leary and Wilkinson, 1988 Yes n=153 (100 %) 

Mid-Chain Branched 

/ Monounsaturated 

G
ra

m
 N

e
g

a
ti

v
e

 (
-)

 B
a

ct
e

ri
a

 Sulfate red. 

Bacteria * 

10Me16:0 / cy17:0 * 

anoxic and anaerobic conditions 

Dowling et al., 1985, 1988;  

Parkes et al. 1993 
- - 

Hydroxy-substituted 

Gram (-) 

2OH 12:0 / 3OH 12:0 / 2OH 14:0 / * 

3OH 14:0 / 2OH 16:0 / 2OH 18:0 
Parker et al., 1982 No n=0 (0 %) 

Monounsaturated 

17:1 w8c Zelles, 1999 Yes n=153 (100 %) 

16:1ω7c / 18:1ω7c  Wilkinson, 1988; Tunlid et al., 1989; Yes n=153 (100 %) 

cy17:0 / cy19:0 Wilkinson, 1988; Kerger, 1986 Yes n=153 (100 %) 

Methanogens * 

(anaerobic conditions) 

Type I: 16:1ω5t / 16:1ω7c / 16:1ω8c / 3OH 16:0 * Nichols et al. 1985; 

Bowman et al. 1991, 1993 

- - 

Type II: 18:1ω8c / 18:1ω7c * - - 

                  
 continues 
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Monounsaturated 

F
u

n
g

i 

Fungi; Plants * 20:1ω9c * Madan et al., 2002 Yes n=92 (60.1 %) 

Arbuscular 

Mycorrhizal Fungi 

(AMF); Plants 

16:1ω5c 
Olsson et al., 1995; Olsson, 1999; 

Madan et al., 2002 
Yes n=153 (100 %) 

Saprophytic Fungi; 

Plants 

18:1ω9c 
Vestal and White, 1989; 

Wallis et al. 2021 
Yes n=153 (100 %) 

Polyunsaturated 

18:2ω6c 
Federle, 1986; Zelles, 1997;  

Forstegard and Baath, 1996 
Yes n=153 (100 %) 

18:3ω6c * Federle, 1986; Klug, 1996 Yes n=140 (91.5 %) 

Fungi; Plants * 18:3ω3c * Zelles, 1997 No n=0 (0 %) 

Fungi; Plants * 20:5ω3c * Nordby et al., 1981; Olsson et al., 1995 Yes n=109 (71.2 %) 

Protozoa 
20:3ω6c 

Nordby et al., 1981; Guckert et al., 1985 
Yes n=13 (8.5 %) 

20:4ω6c Yes n=153 (100 %) 

Saturated (Long 

Chain) 
Eukaryotes 

21:0 / 22:0 / 24:0 
Zelles, 1999 

Yes n=153 (100 %) 

23:0 Yes n=98 (64.1 %) 

* Biomarkers were not classified in this study as such due to different environmental conditions or number of observations   
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Suppl. Table 3. Enzyme Activity Assay protocols for the individual enzymes (β-GLU, AS, NAG) when 1 g of soil is used. 
  
            

Enzyme Assay Description and 

ecological role 

Incubation step (37 °C for 1h) 
 

After Incubation 

Buffer Substrate a) 
  

CaCl2 

(0.5 M) 
Stop solution 

β-glucosidase (C cycling) MUB pH 6.0; 4 mL 
p-Nitrophenyl-β-D-glucopyranoside (0.05 M); 1 mL 

Sigma N7006 
 1 mL 

THAM pH 12 (0.1 M);  

4 mL 

Arylsulfatase (S cycling) 
0.5 M Acetate Buffer 

pH 5.8; 4 mL 

p-Nitrophenyl sulfate (0.05 M); 1 mL; 

Sigma N3877 
 1 mL 

THAM pH 12 (0.1 M);  

4 mL 

β-glucosaminidase (C and N cycling) 
0.1 M Acetate Buffer 

pH 5.5; 4 mL 

p-Nitrophenyl-N-acetyl-β-D-glucosaminide (0.01 M); 

1 mL; Sigma N9376 
  1 mL 

THAM pH 12 (0.1 M);  

4 mL 

a) Substrates were prepared by using the corresponding incubation buffer (Tabatabai, 1994).    
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Suppl. Table 4. List of all variables used in the multivariate optimized model including the corresponding regression coefficients. Each 
variable was placed into a predetermined group descriptor. 

 
 

Basic Factors 
 

Land Management Factors 

    Classification Reg. Coef. (βp) Var. Unit 
    

Classification Reg. Coef. (βp) Var. Unit 

B
a

si
c 

F
a

ct
o

rs
 

T
y

p
e

 

Organic or Conventional 

Farming 
-2899.762630 1 or 0 

 

A
g

ri
cu

lt
u

ra
l 

La
n

d
 M

a
n

a
g

e
m

e
n

t 
F

a
ct

o
rs

 

C
o

v
e

r 
C

ro
p

 u
sa

g
e

  CC usage once in 3 

years 
447.324475 1 or 0 

T
e

x
tu

re
 Sand (0.05 - 0.002 mm) -201.953858 % 

 

CC usage twice in 3 

years 
294.184 1 or 0 

Silt (0.05 - 2 mm) 3525.740853 % 
 

CC usage every years 136.62392 1 or 0 

Clay (<0.002 mm) 0 % 
 

No CC was planted 0 1 or 0 

       

P
e

st
ic

id
e

 u
sa

g
e

 

No Herbicide 

(primarily org. 

Farming) 

1741.8904 1 or 0 

Tier 1 Soil Health Indicators 
 

Only Glyphosate 0 1 or 0 

    Classification Reg. Coef. (βp) Var. Unit 
 

Glyph. Mix -394.55962 1 or 0 

Tier 1 

Indicator 

(Core) 

Soil Organic Carbon 782.859081 C % 
 

Glyph. Mix + Dicamba -563.507867 1 or 0 

Total Nitrogen 3223.775072 N % 
 

Fungicide (Yes or No) -157.22929 1 or 0 

 

      

M
a

n
u

re
 u

sa
g

e
  

Manure usage once 

in 3 years 
666.340197 1 or 0 

Soil Chemical Factors 
 

Manure usage twice 

in 3 years 
-11.737454 1 or 0 

  
Classification Reg. Coef. (βp) Var. Unit 

 

Manure usage every 

years 
-2793.7547 1 or 0 

T
ie

r 
1

 I
n

d
ic

a
to

r 
(C

h
e

m
ic

a
l)

 

p
H

 

pH -561.551404 - 
 

No Manure was used 0 1 or 0 

p
H

 R
a

n
g

e
 

6.0 – 7.0 -44.7383024 1 or 0 
 

Chicken Manure 

usage 
136.036874 1 or 0 

5.8 - 6.0 7.0 -7.4 0 1 or 0 
 

Cattle Manure usage 2317.01089 1 or 0 

5.4 - 5.8 7.4 - 7.8 256.243034 1 or 0 
      

5.0 - 5.4 7.8 - 8.2 197.700105 1 or 0 
      

< 5.0 > 8.2 368.6723965 1 or 0 
      

         continues  
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Environmental Factors 
 

Land Management Factors 

   
Classification Reg. Coef. (βp) 

Var. 

Unit      
Classification Reg. Coef. (βp) Var. Unit 

E
n

v
ir

o
n

m
e

n
ta

l 
F

a
ct

o
rs

 

G
ro

w
in

g
 P

h
a

se
 

Precipitation during growth 

season 
908.9363344 mm  

A
g

ri
cu

lt
u

ra
l 

La
n

d
 M

a
n

a
g

e
m

e
n

t 
F

a
ct

o
rs

 

P
la

n
ti

n
g

 d
a

te
 April date 46.3076002 1 or 0 

Growing Time (planting to 

harvest) 
-256.738567 days  May date -25.132364 1 or 0 

S
o

il
 

O
rd

e
r 

Mollisol or Alfisol 961.3298207 1 or 0  June date 0 1 or 0 

       

C
ro

p
 

R
o

ta
ti

o
n

 

Corn-Soybean -9.197E-10 1 or 0 

       
Corn-Soybean-Wheat 386.109727 1 or 0 

Enzymatic Factors 
 

T
il

la
g

e
 P

ra
ct

ic
e

 

No-Tillage 0 1 or 0 

   
Classification Reg. Coef. (βp) 

Var. 

Unit 
 

Chisel Tillage 360.329681 1 or 0 

E
n

zy
m

e
 

E
n

zy
m

e
 A

ct
iv

it
y

 

GLU 0 

m
g

 P
N

P
 k

g
-1

 s
o

il
 h

-1
 

 
Chisel + Field Cultivator 65.0503949 1 or 0 

NAG 97.01485 
 

Disk Tillage -176.45816 1 or 0 

AS -24.81355 
 

Moldboard Plow -260.56456 1 or 0 

GLUAS -82.64762 
 

S
u

rf
a

ce
 R

e
si

d
u

e
 C

o
v

e
ra

g
e

 Residue Coverage 1026.79374 % 

GLUNAG 0 
 

> 60% Coverage -187.39399 1 or 0 

NAGAS 0 
 

30 - 60 % Coverage 10.7071975 1 or 0 

GLUNAGAS 0 
 

15 - 30 % Coverage 0 1 or 0 

E
n

zy
m

e
 R

a
ti

o
s 

GLU / AS 25.25456 -    6 - 15 % Coverage 194.79937 1 or 0 

GLU / NAG -33.15335 -  < 6% Coverage -638.59513 1 or 0 

NAG / AS 0 -       
(GLU + AS) / NAG 95.10662 -       
(GLU + NAG) / AS 0 -     continues  
(AS + NAG) / GLU 37.52667 -       
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Soil Biological Factors 
 

Soil Biological Factors 

    Classification Reg. Coef. (βp) 
Var. 

Unit 
 

    Classification Reg. Coef. (βp) 
Var. 

Unit 

E
L-

FA
M

E
 

F
A

M
E

 B
io

m
a

rk
e

rs
 

15:0 -3.564598731 

n
m

o
l 
/ 

g
- 

d
ry

 s
o

il
 

 

E
L-

FA
M

E
 

F
A

M
E

 B
io

m
a

rk
e

rs
 

Actinobacteria 0 

n
m

o
l 
/ 

g
- 

d
ry

 s
o

il
 

17:0 -479.0980938 
 

Eukaryotes 15056.97471 

16:0 10-methyl 319.9718984 
 

Fungi -4.517994941 

17:0 10-methyl 
-710.5528935 

 

Arbuscular Mycorrhizal 

Fungi 
0 

18:0 10-methyl 1293.0878 
 

Gram- bacteria 1123.848558 

15:0 iso -2975.468094 
 

Gram+ bacteria -854.2835212 

15:0 anteiso 2311.285751 
 

Protozoa 0 

16:0 iso -1639.354119 
 

Total Biomarker 0 

17:0 iso 0 
 

Total Fungi 0 

17:0 anteiso 0 
 

 

    

16:1 w7c 1257.409324 
 

 

    

17:0 cyclo w7c 3484.17086 
      

19:0 cyclo w7c -3.114772268 
      

18:1 w7c -50.57138302 
      

16:1 w5c 0 
      

18:2 w6c -173.5713654 
      

18:1 w9c 445.2915434 
      

20:4 w6c -800.8416487 
      

14:0 -1667.600833 
      

16:0 298.3428361 
      

18:0 602.7170674 
      

20:0 -898.5643857 
      

17:1 w8c -1912.408918 
      

17:1 w7c 10-methyl -18.08884181 
      

19:1 w7c 10-methyl 0 
      

new 21:0 540.1253847 
      

21:0 -6157.119087 
      

22:0 -7158.579225 
      

22:0 iso 316.7550042 
      

24:0 -4265.224602 
      

Total Biomarker 0 
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731 PLOT TILL ROT. CROP 732 PLOT TILL ROT. CROP

101 CH CAA ALFALFA 2 110 PL CC CORN

102 CH CAA ALFALFA 1 111 PL CAA ALFALFA 1

103 CH CAA CORN 112 PL CAA CORN

104 CH CS CORN 113 PL CAA ALFALFA 2

105 CH CS SOYBEAN 114 PL CS SOYBEAN

106 CH CC CORN 115 PL CS CORN 741

107 NT CAA ALFALFA 1 116 NT CS SOYBEAN CC

108 NT CAA CORN 117 NT CS CORN PLOT TILL

109 NT CAA ALFALFA 2 118 NT CC CORN 401 NT

201 NT CS CORN 210 CH CS SOYBEAN 402 CH

202 NT CS SOYBEAN 211 CH CS CORN 403 PL

203 NT CAA ALFALFA 2 212 CH CC CORN 501 CH

204 NT CAA CORN 213 CH CAA CORN 502 NT

205 NT CAA ALFALFA 1 214 CH CAA ALFALFA 2 503 PL

206 NT CC CORN 215 CH CAA ALFALFA 1 601 NT

207 PL CAA CORN 216 PL CC CORN 602 CH

208 PL CAA ALFALFA 2 217 PL CS CORN 603 PL

209 PL CAA ALFALFA 1 218 PL CS SOYBEAN 701 PL

301 PL CS SOYBEAN 310 NT CC CORN 702 NT

302 PL CS CORN 311 NT CAA CORN 703 CH

303 PL CC CORN 312 NT CAA ALFALFA 1

304 PL CAA ALFALFA 2 313 NT CAA ALFALFA 2

305 PL CAA ALFALFA 1 314 NT CS SOYBEAN Plot Dimensions

306 PL CAA CORN 315 NT CS CORN 731/732:

307 CH CC CORN 316 CH CAA ALFALFA 1 75' L x 14' W

308 CH CS CORN 317 CH CAA CORN

309 CH CS SOYBEAN 318 CH CAA ALFALFA 2 741:

120' L x 21' W

KEY: CC = CONTINUOUS CORN NT = NO TILL

CS = CORN/SOYBEAN CH = CHISEL

CAA = CORN/ALFALFA 1/ALFALFA 2 PL = PLOW (MOLDBOARD)

TRIPLETT-VAN DOREN LONG-TERM NO-TILL PLOTS (2021)

SNYDER FARM (WOOSTER, OH): 731, 732, AND 741

GRAVEL ROAD LEADING TO FARM BUILDINGS

Suppl. Figure 1.  2021 Plot map for the Triplett-Van Doren Long-Term Field Site in Wooster, Ohio.
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PLOT TILL ROT. CROP PLOT TILL ROT. CROP PLOT TILL ROT. CROP

101 CH CAA CORN 201 PL CS CORN 301 NT CC CORN

102 CH CAA ALFALFA 2 202 PL CS SOYBEAN 302 PL CC CORN

103 CH CAA ALFALFA 1 203 CH CC CORN 303 NT CS SOYBEAN

104 NT CS SOYBEAN 204 NT CAA ALFALFA 2 304 NT CS CORN

105 NT CS CORN 205 NT CAA CORN 305 CH CAA ALFALFA 1

106 PL CAA CORN 206 NT CAA ALFALFA 1 306 CH CAA CORN

107 PL CAA ALFALFA 2 207 PL CC CORN 307 CH CAA ALFALFA 2

108 PL CAA ALFALFA 1 208 CH CS CORN 308 PL CS SOYBEAN

109 PL CC CORN 209 CH CS SOYBEAN 309 PL CS CORN

110 CH CS SOYBEAN 210 CH CAA ALFALFA 2 310 CH CC CORN

111 CH CS CORN 211 CH CAA CORN 311 PL CAA ALFALFA 1

112 NT CC CORN 212 CH CAA ALFALFA 1 312 PL CAA CORN

113 NT CAA CORN 213 NT CC CORN 313 PL CAA ALFALFA 2

114 NT CAA ALFALFA 2 214 NT CS CORN 314 CH CS SOYBEAN

115 NT CAA ALFALFA 1 215 NT CS SOYBEAN 315 CH CS CORN

116 PL CS SOYBEAN 216 PL CAA ALFALFA 2 316 NT CAA ALFALFA 1

117 PL CS CORN 217 PL CAA CORN 317 NT CAA CORN

118 CH CC CORN 218 PL CAA ALFALFA 1 318 NT CAA ALFALFA 2

KEY: CC = CONTINUOUS CORN NT = NO TILL PLOTS: 20' W x 90' L

CS = CORN/SOYBEAN CH = CHISEL

CAA = CORN/ALFALFA 1/ALFALFA 2 PL = PLOW (MOLDBOARD)

LONG-TERM TILLAGE PLOTS (2021) 
 NORTHWEST RESEARCH STATION (Hoytville, OH): FieldTA - 3

 

Suppl. Figure 2.  2021 Plot map for the Northwest Research Station in Hoytville, Ohio. 



- 219 -  

Suppl. Figure 3.  2021 Plot map for the East Straw Mulch Experiment in Columbus, Ohio.  
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5m (16.4 ft) 

        

  Fertilizer                 Straw Mulch                   

  F0 - No Fertilizer             M0 - No Mulch                   

  F1 - 244 kg/ha N (184kg as Urea, 60 kg as NPK)   M8 - 8 Mg/ha mulch (20kg/plot)             

                      M16 - 16 Mg/ha mulch (40kg/plot)           
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 Suppl. Figure 4.  Example of a soil map overlayed on top of an elevation heat map created with LIDAR data 
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Suppl. Figure 5.  Simplified representation of the interactions between physical, chemical, and biological factors which influence and define Soil 

Health including the overreaching factors that can influence soil health indicators. 
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Suppl. Figure 6.  Ohio map depicting all study site locations separated into farm (black circle), 

long-term field (red circle), restored prairie (green X symbol), and virgin soil 

sites (red cross).  The Kellogg Long-Term Ecological Research site located in 

Michigan is not depicted.
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Suppl. Figure 7.  Flow Chart of the experimental study design representing soil related measurements 

in spring and soybean yield related measurement steps in fall. 
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Suppl. Figure 8.  Soil texture triangle with all soil types (red cross) used in this study. 
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Suppl. Figure 9. Scatter plot for Soil org. Carbon and Total Nitrogen (n=301). 
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5. Appendix 
 

Appendix Tab.1) List of all agricultural farm sites in the study. Separated into organic and conventional farm types. Basic location description, soil organic 

carbon, planted crop, soil texture, and soil series information is included.  

ID 
Farming 

Type 

Site 

ID 

Field 

ID 
Elevation State County 

Growing Period (days) Planted Crop Soil Texture 

Soil Series 

year 1 year 2 year 3 year 1 year 2 year 3 
Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

1 Org VY 
F1 

HE OH Madison 123 - - Soy Wheat Corn 18 64 18 
Crosby-Lewisburg 

silt loams 
2 Org VY LE OH Madison 123 - - Soy Wheat Corn 18 64 18 

3 Org VY 
F2 

HE OH Madison - 137 - Corn Soy Wheat 18 64 18 
Crosby-Lewisburg 

silt loams 
4 Org VY LE OH Madison - 137 - Corn Soy Wheat 18 64 18 

5 Org LM 
F1 

HE OH Madison 122 - - Soy Wheat Corn 18 64 18 
Crosby-Lewisburg 

silt loams 
6 Org LM LE OH Madison 122 - - Soy Wheat Corn 18 64 18 

7 Org LM 
F2 

HE OH Madison - 128 - Corn Soy Wheat 18 64 18 
Crosby-Lewisburg 

silt loams 
8 Org LM LE OH Madison - 128 - Corn Soy Wheat 18 64 18 

9 Org JK 
F1 

HE OH Madison 120 - - Soy Wheat Corn 22 58.5 19.5 
Crosby-Lewisburg 

silt loams 
10 Org JK LE OH Madison 120 - - Soy Wheat Corn 18 64 18 

11 Org JK 
F2 

HE OH Madison - - 132 Wheat Corn Soy 18 64 18 
Crosby-Lewisburg 

silt loams 
12 Org JK LE OH Madison - 125 - Corn Soy Wheat 18 64 18 

13 Org DB 
F1 

HE OH Hancock 160 - - Soy Corn Wheat 15 50 35 
Pewamo silty clay 

loam 

14 Org DB LE OH Hancock 160 - - Soy Corn Wheat 22 56 22 Blount silt loam 

15 Org DB 
F2 

HE OH Hancock - 132 - Corn Soy Wheat 39 37 24 
Blount-Houcktown 

complex 

16 Org DB LE OH Hancock - 132 - Corn Soy Wheat 22 56 22 Blount silt loam 

                continues 
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17 Org RA 

F1 

HE OH Clinton - 131 - 
Oats / 

Forage 
Soy 

Hay / 

Alfalfa 
17 56 27 

Treaty silty clay 

loam 
18 Org RA LE OH Clinton - 131 - 

Oats / 

Forage 
Soy 

Hay / 

Alfalfa 
17 56 27 

19 Org RA 

F2 

HE OH Clinton - - - Soy 
Oats / 

Forage 
Forage 17 56 27 

Treaty silty clay 

loam 
20 Org RA LE OH Clinton - - - Soy 

Oats / 

Forage 
Forage 17 56 27 

21 Conv BH 
F1 

HE OH Fulton - - 141 Bare Corn Soy 25 39 36 
Hoytville clay loam 

22 Conv BH LE OH Fulton - - 141 Bare Corn Soy 25 39 36 

23 Conv BH 
F2 

HE OH Fulton - - 141 Bare Corn Soy 25 39 36 
Hoytville clay loam 

24 Conv BH LE OH Fulton - - 141 Bare Corn Soy 25 39 36 

25 Conv PD 
F1 

HE OH Fulton - 156 - Rye Soy Corn 14 51 35 
Lenawee silty clay 

loam 
26 Conv PD LE OH Fulton 141 - 151 Soy Corn Soy 14 51 35 

27 Conv PD 
F2 

HE OH Fulton 134 149 - Soy Soy Corn 18 49 33 
Fulton silty clay 

loam 
28 Conv PD LE OH Fulton 134 149 - Soy Soy Corn 18 49 33 

29 Conv PD 
F3 

HE OH Fulton 118 - - Soy Bare Corn 25 39 36 
Hoytville clay loam 

30 Conv PD LE OH Fulton 118 133 - Soy Soy Corn 25 39 36 

31 Conv PD 
F4 

HE OH Fulton 132 136 - Soy Soy Corn 25 39 36 
Hoytville clay loam 

32 Conv PD LE OH Fulton 132 136 - Soy Soy Corn 25 39 36 

33 Conv PD 
F5 

HE OH Fulton 135 - 129 Soy Corn Soy 22 55 23 
Del Rey silt loam 

34 Conv PD LE OH Fulton 135 - 129 Soy Corn Soy 22 55 23 

35 Conv PD 
F6 

HE OH Fulton 121 132 - Soy Soy Corn 25 39 36 
Hoytville clay loam 

36 Conv PD LE OH Fulton 121 - 136 Soy Corn Soy 25 39 36 

                continues 
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37 Conv PD 
F7 

HE OH Fulton 142 - 130 Soy Corn Soy 22 55 23 
Del Rey silt loam 

38 Conv PD LE OH Fulton 142 - 130 Soy Corn Soy 22 55 23 

39 Conv TL 
F1 

HE OH Morrow 134 138 - Soy Soy Corn 21 63 16 
Centerburg silt 

loam 
40 Conv TL LE OH Morrow 134 138 - Soy Soy Corn 21 59 20 

41 Conv TL 
F2 

HE OH Morrow 134 - 139 Soy Corn Soy 21 63 16 
Centerburg silt 

loam 
42 Conv TL LE OH Morrow 134 - 139 Soy Corn Soy 21 63 16 

43 Conv JM 
F1 

HE OH Hancock - - 152 Bare Corn Soy 22 56 22 
Blount silt loam, 

ground moraine 
44 Conv JM LE OH Hancock - - 152 Bare Corn Soy 22 56 22 

45 Conv JM 
F2 

HE OH Hancock - 140 - Bare Soy Corn 22 56 22 
Blount silt loam, 

ground moraine 
46 Conv JM LE OH Hancock - 140 - Bare Soy Corn 22 56 22 

47 Conv BG 
F1 

HE OH Hancock - 168 - Bare Soy Corn 19 42 39 
Hoytville clay loam 

48 Conv BG LE OH Hancock - 168 - Bare Soy Corn 19 42 39 

49 Conv BG 
F2 

HE OH Hancock - - 154 Bare Corn Soy 19 42 39 
Hoytville clay loam 

50 Conv BG LE OH Hancock - - 154 Bare Corn Soy 19 42 39 

51 Conv RB 
F1 

HE OH Darke 126 163 - Soy Soy Corn 18 64 18 
Crosby silt loam 

52 Conv RB LE OH Darke 126 163 - Soy Soy Corn 18 64 18 

53 Conv AO 
F1 

HE OH Darke 120 123 - Soy Soy Corn 18 64 18 
Crosby silt loam 

54 Conv AO LE OH Darke 120 123 - Soy Soy Corn 18 64 18 

55 Conv AO 
F2 

HE OH Darke 114 - 145 Soy Corn Soy 18 64 18 
Crosby silt loam 

56 Conv AO LE OH Darke 114 - 145 Soy Corn Soy 18 64 18 
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57 Conv BM 
F1 

HE OH Madison 156 - 151 Soy Corn Soy 24 55 21 Miamian-

Lewisburg silt 

loams 58 Conv BM LE OH Madison 156 - 151 Soy Corn Soy 24 55 21 

59 Conv BM 
F2 

HE OH Madison - 164 - Corn Soy Corn 24 55 21 Miamian-

Lewisburg silt 

loams 60 Conv BM LE OH Madison - 164 - Corn Soy Corn 24 55 21 

61 Conv CO 
F1 

HE OH Pickaway 123 135 - Soy Soy Corn 18 64 18 
Crosby silt loam 

62 Conv CO LE OH Pickaway 123 135 - Soy Soy Corn 18 64 18 

63 Conv CO 
F2 

HE OH Pickaway - 126 145 Corn Soy Soy 18 64 18 
Crosby silt loam 

64 Conv CO LE OH Pickaway - 126 145 Corn Soy Soy 18 64 18 

65 Conv CHA 
F1 

HE OH Pickaway - 134 - Corn Soy Corn 26 53 21 Miamian-

Lewisburg silt 

loams 66 Conv CHA LE OH Pickaway - 134 - Corn Soy Corn 26 53 21 

67 Conv CHA 
F2 

HE OH Pickaway - 134 - Corn Soy Corn 21 59.5 19.5 
Crosby silt loam 

68 Conv CHA LE OH Pickaway - 134 - Corn Soy Corn 18 64 18 

69 Conv LM 
F1 

HE OH Tuscarawas 173 - 140 Soy Corn Soy 39 45 16 
Wheeling loam 

70 Conv LM LE OH Tuscarawas 173 - 140 Soy Corn Soy 39 45 16 

71 Conv LM 
F2 

HE OH Tuscarawas - 131 - Corn Soy Corn 39 45 16 
Wheeling loam 

72 Conv LM LE OH Tuscarawas - 131 - Corn Soy Corn 39 45 16 

73 Conv JH 
F1 

HE OH Madison - 138 - Corn Soy Corn 18 64 18 
Crosby-Lewisburg 

silt loams 
74 Conv JH LE OH Madison - 138 - Corn Soy Corn 18 64 18 

75 Conv JH 
F1 - 

Tra 

HE OH Madison - 138 - Corn Soy Corn 18 64 18 
Crosby-Lewisburg 

silt loams 
76 Conv JH LE OH Madison - 138 - Corn Soy Corn 18 64 18 
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77 Conv JH 

F2 

HE1 OH Madison - - 138 Soy Corn Soy 18 64 18 

Crosby-Lewisburg 

silt loams 
78 Conv JH HE2 OH Madison - - 138 Soy Corn Soy 18 64 18 

79 Conv JH LE OH Madison - - 138 Soy Corn Soy 18 64 18 

80 Conv BP 
F1 

HE OH Madison - - 154 Soy Corn Soy 18 64 18 
Crosby-Lewisburg 

silt loams 
81 Conv BP LE OH Madison - - 154 Soy Corn Soy 18 64 18 

      Mean: 133 140 143    21.3 55.2 23.5  
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Appendix Tab.2) List of FAME biomarkers organized by taxonomic microbial group designation and fatty acid structure. Biomarkers that were 

used in this study are highlighted. Furthermore, information regarding their number of observations and detection is provided. 

 

Fatty Acid Taxonomic Group Biomarker References Detected Nr. of obs. 

Saturated 

- 14:0 - Yes n=153 (100 %) 

Gram (+); Gram (-); 

Fungi; Eukaryotes 
16:0 / 18:0 Zelles, 1997; Kerger, 1986 Yes n=153 (100 %) 

Generally considered 

Bacteria 
15:0 / 17:0  

Federle, 1986; Tunlid et al., 1989; 

Forstegard and Baath, 1996 
Yes n=153 (100 %) 

Mid-Chain Branched 

G
ra

m
 P

o
si

ti
v

e
 (

+
) 

B
a

ct
e

ri
a

 

Actinomycetes 

(Actinobacteria) 

10Me16:0 / 10Me17:0 / 10Me18:0 / 

10Me19:1w7c 

Fisher et al., 1983; Kroppenstedt, 1985;  

Zelles, 1997; Forstegard et al., 1993, 

Veum et al. 2021 

Yes n=153 (100 %) 

Terminally 

Branched 
Gram (+) 

i14:0 * Zelles, 1999 Yes n=132 (86.3 %) 

a15:0 / i15:0 / i16:0 / a17:0 / i17:0 O’Leary and Wilkinson, 1988 Yes n=153 (100 %) 

Mid-Chain Branched 

/ Monounsaturated 

G
ra

m
 N

e
g

a
ti

v
e

 (
-)

 B
a

ct
e

ri
a

 Sulfate red. 

Bacteria * 

10Me16:0 / cy17:0 * 

anoxic and anaerobic conditions 

Dowling et al., 1985, 1988;  

Parkes et al. 1993 
- - 

Hydroxy-substituted 

Gram (-) 

2OH 12:0 / 3OH 12:0 / 2OH 14:0 / * 

3OH 14:0 / 2OH 16:0 / 2OH 18:0 
Parker et al., 1982 No n=0 (0 %) 

Monounsaturated 

17:1 w8c Zelles, 1999 Yes n=153 (100 %) 

16:1ω7c / 18:1ω7c  Wilkinson, 1988; Tunlid et al., 1989; Yes n=153 (100 %) 

cy17:0 / cy19:0 Wilkinson, 1988; Kerger, 1986 Yes n=153 (100 %) 

Methanogens * 

(anaerobic conditions) 

Type I: 16:1ω5t / 16:1ω7c / 16:1ω8c / 3OH 16:0 * Nichols et al. 1985; 

Bowman et al. 1991, 1993 

- - 

Type II: 18:1ω8c / 18:1ω7c * - - 
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Monounsaturated 
F

u
n

g
i 

Fungi; Plants * 20:1ω9c * Madan et al., 2002 Yes n=92 (60.1 %) 

Arbuscular 

Mycorrhizal Fungi 

(AMF); Plants 

16:1ω5c 
Olsson et al., 1995; Olsson, 1999; 

Madan et al., 2002 
Yes n=153 (100 %) 

Saprophytic Fungi; 

Plants 

18:1ω9c 
Vestal and White, 1989; 

Wallis et al. 2021 
Yes n=153 (100 %) 

Polyunsaturated 

18:2ω6c 
Federle, 1986; Zelles, 1997;  

Forstegard and Baath, 1996 
Yes n=153 (100 %) 

18:3ω6c * Federle, 1986; Klug, 1996 Yes n=140 (91.5 %) 

Fungi; Plants * 18:3ω3c * Zelles, 1997 No n=0 (0 %) 

Fungi; Plants * 20:5ω3c * Nordby et al., 1981; Olsson et al., 1995 Yes n=109 (71.2 %) 

Protozoa 
20:3ω6c 

Nordby et al., 1981; Guckert et al., 1985 
Yes n=13 (8.5 %) 

20:4ω6c Yes n=153 (100 %) 

Saturated (Long 

Chain) 
Eukaryotes 

21:0 / 22:0 / 24:0 
Zelles, 1999 

Yes n=153 (100 %) 

23:0 Yes n=98 (64.1 %) 

* Biomarkers were not classified in this study as such due to different environmental conditions or number of observations   
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Appendix Tab.3) Enzyme Activity Assay protocols for the individual enzymes (β-GLU, AS, NAG) when 1g of soil is used. 
     
            

Enzyme Assay Description and 

ecological role 

Incubation step (37 °C for 1h) 
 

After Incubation 

Buffer Substrate a) 
  

CaCl2 

(0.5 M) 
Stop solution 

β-glucosidase (C cycling) MUB pH 6.0; 4 mL 
p-Nitrophenyl-β-D-glucopyranoside (0.05 M); 1 mL 

Sigma N7006 
 1 mL 

THAM pH 12 (0.1 M);  

4 mL 

Arylsulfatase (S cycling) 
0.5 M Acetate Buffer 

pH 5.8; 4 mL 

p-Nitrophenyl sulfate (0.05 M); 1 mL; 

Sigma N3877 
 1 mL 

THAM pH 12 (0.1 M);  

4 mL 

β-glucosaminidase (C and N cycling) 
0.1 M Acetate Buffer 

pH 5.5; 4 mL 

p-Nitrophenyl-N-acetyl-β-D-glucosaminide (0.01 M); 

1 mL; Sigma N9376 
  1 mL 

THAM pH 12 (0.1 M);  

4 mL 

a) Substrates were prepared by using the corresponding incubation buffer (Tabatabai, 1994).    
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Appendix Fig.1 Example of a soil map overlayed on top of an elevation heat map created with LIDAR data. 




