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Abstract 

Building advanced Vision and Language (V&L) systems can offer signifcant societal 

benefts. For instance, V&L systems with visual question answering capabilities enable visu-

ally impaired individuals to perform daily tasks more independently; multimodal web agents 

streamline our daily activities, such as booking fights or shopping online; embodied robots 

enhance the effciency and automation of manufacturing systems. However, developing such 

sophisticated V&L models is challenging due to the need for an integrated understanding 

of visual and linguistic information. This integration is particularly complex as it requires 

models not only to recognize and interpret detailed visual cues but also to understand and 

generate contextually relevant text. 

At its core, data plays an essential role in learning such integrated understanding. The 

effectiveness of V&L systems relies on how well data is curated, represented, and utilized 

for learning. In this dissertation, we thus aim to advance V&L systems through the lens 

of data. First, we discuss “data curation” to enrich training materials and benchmarks for 

V&L models. Second, we delve into “data representation” to encode visual and linguistic 

information from data into meaningful representations. Third, we explore “data learning” to 

enable models to acquire V&L knowledge from data. In short, we investigate three different 

aspects (i.e., curation, representation, and learning) of data to improve V&L understanding. 

We believe this comprehensive study greatly contributes to the development of advanced 

V&L models, ultimately providing substantial benefts to our society. 
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Chapter 1: Introduction 

1.1 Motivation and Overview 

Building a highly intelligent machine has long been a dream in Artifcial Intelligence 

(AI). In the past few years, we have witnessed unprecedented progress in Deep Learning and 

its applications, which leads us one step closer to this dream. In Computer Vision (CV), AI 

system has surpassed human-level performance on image classifcation [94, 63] or achieved 

prominent improvements in various vision tasks such as object detection [216] or semantic 

segmentation [93, 136]. Similarly, with the emergence of foundation models [3, 255, 250], 

the feld of NLP has seen notable achievements in multiple tasks, including language 

profciency exams [54, 97], code generation [43, 286], and commonsense reasoning [291]. 

While remarkable progress has been made in both modalities (i.e., vision and language), 

understanding each modality “independently” is not suffcient to build a highly intelligent 

AI system. As humans, we typically develop our intelligence through the “mixture” of 

various resources (e.g., vision, language, and audio), rather than relying on a single source 

of information (Figure 1.1). For instance, when asked questions about images, we utilize 

knowledge from both vision (i.e., images) and language (i.e., questions and answers). 

Similarly, students leverage the integrated understanding of audio (i.e., sound) and language 
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Figure 1.1: Human intelligence developed by multimodal knowledge. 

(i.e., text) to take notes during lectures. Thus, understanding how these modalities integrate 

into knowledge in human cognition is essential for developing human-level AI systems. 

Vision and Language (V&L) is one of the primary research areas to learn such mul-

timodal knowledge. Concretely, it involves the integrated understanding of visual and 

linguistic information from images and text. This integrated understanding requires diverse 

capabilities, such as (i) recognizing objects in images, (ii) comprehending the semantic 

meaning of textual descriptions, (iii) grounding images with text, (iv) answering image-

related questions, (v) reading scene-text and layout structures in images, (vi) learning to 

reason in the context of spatiality, commonsense, and composition, (vii) understanding 

temporal information, such as the agent’s previous actions during navigation, and so on. 

Fundamentally, data is key to learning all these capabilities. Concretely, V&L systems 

can acquire these abilities based on how well the data is curated, represented, and utilized 

for learning. In this dissertation, we thus aim to advance V&L systems through the “lens 

of data”. First, we focus on how to “curate” data for V&L. Data is the fuel of model 

training, and constructing suffcient and high-quality training data is essential for models to 
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Figure 1.2: Overview of dissertation. 

acquire knowledge. Our emphasis is on effciently curating extensive high-quality V&L 

data (e.g., image and text) while minimizing costs and human effort. Additionally, we 

discuss data curation for designing a V&L benchmark, which evaluates various reasoning 

capabilities of recent V&L models. This enables us to gain a deeper understanding of 

their current limitations in V&L tasks. Second, we explore how to “represent” data in 

V&L. For effective model training, data should be transformed into suitable representations. 

V&L involves two input modalities: images and text, each encoded into visual and textual 

representations, respectively. We discuss strategies to align these representations to enhance 

the grounding capabilities of V&L models. Third, we investigate how to “learn” from 

V&L data. Specifcally, we focus on designing learning objectives for pre-training that 

enable models to solve downstream V&L tasks more effectively. 

In summary, we investigate three different aspects of data (i.e., curation, representation, 

and learning) to advance V&L systems (Figure 1.2). This thorough study will greatly 

enhance the development of V&L systems, bringing substantial benefts to our society. 

4 



1.2 Representatives of V&L tasks 

We note that currently, there is no single V&L task that simultaneously evaluates all 

the capabilities of V&L models mentioned in §1.1. Therefore, in this dissertation, we 

explore multiple V&L tasks to cover all these capabilities. For example, zero-shot learning 

(ZSL) in image classifcation involves categorizing images into classes that models have not 

encountered during training by leveraging semantic information about the unseen classes. 

This evaluates the models’ ability to recognize objects, understand text, and ground images 

on text. Visual question answering (VQA) instead asks questions about images: It tests 

not only the capabilities evaluated in ZSL but also the models’ question-answering and 

reasoning abilities, such as composition and commonsense. Scene-text understanding (STU) 

additionally requires scene-text reasoning, which involves interpreting text within images. 

Finally, web navigation requires models to follow language instructions and execute complex 

web-related tasks, necessitating the understanding of temporal information like the history 

of previous actions. In other words, a capability present in one task may be absent in another, 

leading us to investigate multiple V&L tasks to enhance all these abilities (Figure 1.3). We 

believe this multifaceted study will help the V&L community understand these capabilities 

better, ultimately paving the way for more advanced V&L models. 

1.3 Dissertation Outline 

The rest of the dissertation is structured as follows: 

Part II: Related Work. 

Chapter 2 discusses the recent developments in V&L systems. Specifcally, we investigate 

the latest approaches in datasets, architectures, and learning strategies. 
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Figure 1.3: V&L tasks and their focused capabilities. 

Part III: V&L Data Curation. 

Chapter 3 introduces a new data augmentation method for visual question answering 

(VQA) to synthesize VQA data, enhancing the depth of training materials. 

Chapter 4 proposes a novel V&L benchmark designed to understand the comparative 

reasoning capabilities of current V&L models. 

Part IV: V&L Data Representations. 

Chapter 5 introduces new semantic representations that closely align with visual features 

for zero-shot image classifcation. 

Chapter 6 proposes novel HTML representations by contextualizing HTML elements 

through their dual views in webpage screenshots for web navigation. 

Part V: V&L Data Learning. 

Chapter 7 develops new pre-training learning strategies that are essential for solving scene-

text-related V&L tasks. 
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Part VI: Conclusion. 

Chapter 8 concludes this dissertation and remarks on future directions. 

Other Doctoral Work. Besides my research mentioned above, I have worked on other 

V&L domains or techniques to further improve the V&L systems. [239] proposes a new 

planning method for long-horizon V&L navigation. At a high level, our planner monitors 

the embodied agent’s progress step-by-step and determines when to proceed to the next step. 

This enables the agent to reach its fnal destination more effectively. Additionally, [299] eval-

uates whether the current leading V&L models such as GPT4-V [195] or Gemini-pro [251] 

can serve as agents for web navigation. We found that there still exists a performance gap 

between models and humans and thus suggest novel visual prompting approaches to notably 

reduce this gap. Finally, [132] focuses on improving Chain-of-Thought Reasoning (CoT) 

for VQA by leveraging the model’s prediction to guide its reasoning toward answers. 

7 



Part II: Related Work 
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Chapter 2: Recent Developments in V&L systems 

In recent years, we have observed signifcant advancements in Vision-Language (V&L) 

research. Concretely, V&L models have achieved remarkable results across various tasks, 

including visual question answering (VQA) [81, 106], image captioning [46, 7], image-text 

retreival [156, 47], scene-text understanding [237, 235], web navigation [60], expert-level 

multimodal understanding [288], and more. 

In fact, V&L is a unifed framework comprising several components such as dataset, 

architecture, and learning strategy. Numerous different approaches have been proposed to 

improve each of these components. In this chapter, we will explore the recent developments 

in each component to better understand the current trends in V&L. 

2.0.1 Pre-training Dataset 

Pre-training models is now the default paradigm for learning various V&L knowledge 

from data. These pre-trained models can be directly utilized to solve V&L tasks in zero-shot 

or in-context learning fashions, or they can be further trained on downstream datasets to 

perform specifc tasks (i.e., fne-tuning). In either case, learning V&L knowledge from 

pre-training has proven effective and has become the go-to approach in V&L research. 

One crucial aspect of pre-training is constructing a suitable pre-training dataset. There 

exist many different approaches to curating these datasets. 
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Figure 2.1: Examples of interleaved image text pairs from Multimodal C4 [303]. 

Interleaved image-text corpus. One popular format for V&L pre-training datasets is the 

interleaved image-text pairs [303, 143, 187]. This format involves inserting an image before 

or after each corresponding text (Figure 2.1). Interleaved pairs help models learn joint 

representations of visual and textual information more effectively. Furthermore, this format 

enhances robustness in multi-image or in-context learning tasks, where multiple images or 

image-text pairs are given as input. Recently, several leading V&L models [13, 163, 187] 

have shown the effectiveness of this interleaved pre-training corpus on multiple V&L tasks. 

Image-caption pairs. Pairing a caption for the corresponding image [229, 39, 224] is the 

most traditional method for preparing a V&L pre-training dataset. Concretely, this process 

entails gathering pairs from billions of web pages and applying a fltering process to generate 

a large-scale, clean visual-linguistic corpus. Compared to interleaved image-text pairs, this 

approach is more easily scalable as it only requires short captions. However, the simplicity 

of captions might not effectively teach models more complex V&L reasoning, such as 

compositional or spatial reasoning. Thus, the most popular and effective approach today is 
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to use a mixture of interleaved image-text pairs and image-caption pairs [163, 187], aiming 

to increase scalability and enhance reasoning diversity simultaneously. 

Domain-specifc data. Interleaved image-text (or image-caption) pairs may lack suffcient 

domain-specifc knowledge since they are collected from arbitrary websites. This limitation 

can be problematic, particularly if our goal is to solve domain-specifc tasks. Recently, 

several works [85, 146, 75] have addressed this limitation by collecting large-scale domain-

specifc data. One example is the use of HTML content for pre-training. Specifcally, 

[85, 146, 75] gather massive webpage screenshots and their corresponding HTML code 

snippets for pre-training, which signifcantly improves model performance on downstream 

HTML-related tasks, such as web navigation. 

Syntehsized data. Several studies [155, 169] have attempted to automatically augment V&L 

pre-training datasets by using the power of generative AI models [195, 211]. ITIT [155] 

utilizes both image-to-text and text-to-image models to generate text and image, itera-

tively (Figure 2.2). LLaVA [169] synthesizes various instruction-following V&L data for 

conversations and complex reasoning tasks, using the LLM [195] combined with visual 

information such as object labels, bounding boxes, and related captions. This approach is 

advantageous as it can easily transform image-only (or text-only) data into image-text pairs 

without signifcant human effort. 

2.0.2 V&L Architecture 

At a high level, most recent V&L systems [169, 57, 163, 195, 251] adopt an architecture 

comprising three components: a vision encoder, a projector, and a language model (Fig-

ure 2.3). Concretely, the vision encoder extracts visual representations from the image, and 

the projector maps these representations into the language embedding space. The system 
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Figure 2.2: Learning pipeline of ITIT [155]. 

then passes the visual representations, along with textual representations, into the language 

model to solve V&L tasks. 

Vision encoder aims to embed images into visual representations. The most popular 

vision encoder is ViT from CLIP [207], a transformer-based model pre-trained on large-scale 

image-text pairs using contrastive training. Concretely, it learns the visual representations 

by aligning images with the corresponding text. While the CLIP-based vision encoder has 

shown effectiveness in multiple V&L tasks, its representations are primarily encoded with 

“global” associations with the caption. Thus, these representations may have limitations in 

fne-grained V&L tasks, such as phrase grounding, where identifying fne-grained corre-

spondences between phrases in a sentence and objects (or regions) in an image is crucial. In 

contrast, GLIP [154] learns visual representations at a more fne-grained level by aligning 
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tokens in a caption with regions in the image during pre-training and thus shows notable re-

sults on such fne-grained V&L tasks. Besides, since CLIP focuses on image-text alignment, 

its visual representations may cover fewer details about images than those of DINO [196], a 

vision-only self-supervised encoder designed to learn exclusively from images. To address 

this, [254] proposes representing images as a combination of CLIP and DINO features to 

encode both image-text alignment and suffcient image details during V&L pre-training. 

Projector serves as the bridge module between the two modalities, vision and language. 

A crucial aspect of projector design is how to map visual representations into the language 

embedding space. Flamingo [13] utilizes cross-attention layers to provide visual embeddings 

as context to the language model. InstructBLIP [57] instead uses Q-former to represent 

images as a set of object queries, which are then passed along with textual input to the 

language model. More recent V&L models, such as LLaVA [169] and VILA [163], opt for 

a simpler approach by using a few MLP layers as the projector. 

Language model takes projected visual representations along with textual representa-

tions as input and generates textual output for V&L tasks. Nearly all recent leading V&L 

models employ large language models (LLMs) as their language components. Specif-

cally, models like [195, 251, 169, 163] adopts a decoder-only LLM, while others such as 

[45, 44, 150] rely on an encoder-decoder LLM. These models are often enormous, with 

sizes ranging from 13 billion [169] to 540 billion parameters [65]. 

2.0.3 Learning Strategies 

Various learning objectives have been proposed to enable models to learn V&L knowl-

edge from data during pre-training. The most popular method is visual language model-

ing [195, 57, 251, 163, 169, 20], which generates textual tokens sequentially from visual 
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Figure 2.3: LLaVA Architecture. 

and textual inputs. Besides, contrastive learning with image-text pairs [207, 197] has been 

widely used to align visual representations with textual representations. Denoising tasks such 

as span corruption [45], masked language modeling [176], and masked autoencoders [92] 

have been utilized to capture the context among textual or visual tokens. More recently, 

PaLI-X [44] combines all these learning objectives during pre-training to harness their 

collective benefts. 

Instruction-tuning [52], which fne-tunes models on instruction-following data, has 

proven effective in various NLP tasks. Recent V&L works [169] have extended this training 

strategy to V&L domains by leveraging visual instruction-following data. Additionally, 

other studies [245, 34] have explored incorporating Reinforcement Learning from Human 

feedback (RLHF) or Natural Language Explanation Feedback (RLNF) into V&L models to 

enhance their reasoning capabilities. 
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Part III: V&L Data Curation 
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Chapter 3: Enriching V&L training materials with data augmentation 

Our journey starts with data curation, with a particular focus on data augmentation 

for V&L tasks. Data augmentation is an essential technique to enhance training examples, 

especially since gathering these examples manually can be both time-consuming and expen-

sive. In this chapter, we present a novel data augmentation method specifcally designed for 

Visual Question Answering, one of the prominent V&L tasks. Essentially, we harness the 

implicit information within the existing VQA dataset to automatically synthesize VQA data 

and leverage this augmented data to improve model training. 

3.1 Introduction 

“A picture is worth a thousand words,” which tells how expressive an image can be, but 

also how challenging it is to teach a machine to understand an image like we humans do. 

Visual question answering (VQA) [19, 82, 307] is a principled way to measure such an ability 

of a machine, in which given an image, a machine has to answer the image-related questions 

in natural language by natural language. While after years of effort, the state-of-the-art 

machine’s performance is still behind what we expect [103, 287, 16, 177, 107]. 

Several key bottlenecks have been identifed. In particular, a machine (i.e., VQA model) 

learned in the conventional supervised manner using human-annotated image-question-

answer (IQA) triplets is shown to overlook the image or language contents [5, 82, 40], 
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Q: Where are the napkins?
Q: What is the oven made of?
Q: Is the dispenser beneath the microware full?

A: Table
A: Stainless steel

A: No 

Original QA Pairs

Q: How many bottles are visible?
Q: Is this a modern microwave?
Q: What color is the floor?

A: 1
A: Yes

A: Brown

Q: What is the oven made from?

Propagation QA Pairs

Paraphrasing QA Pairs

Q: What is the oven made from? A: Stainless steel

SIMPLEAUG

Figure 3.1: Illustration of our approach SIMPLEAUG. We show a training image and its
corresponding question-answer pairs in VQA v2 [82], and our generated pairs. A VQA model [16]
trained on the original dataset just cannot answer these new questions on the training image correctly,
and we use them to improve model training.

over-fit the language bias [6], or struggle in capturing the diversity of human language [228,

41]. Many recent works thus propose to augment the original VQA task with auxiliary

tasks or losses such as visual grounding [226, 275], de-biasing [32, 53, 210], or (cycle-

)consistency [228, 78] to address these issues.

Intrigued by these findings and solutions, we investigate the bottlenecks further and argue

that they may result from a more fundamental issue — there are simply not enough training

examples (i.e., IQA triplets). Concretely, most of the existing VQA datasets annotate each

image with around ten questions, which are much fewer than what we humans can ask about

an image. Take the popular VQA v2 dataset [82], for instance, the trained VQA model

can answer most of the training examples (on average, six questions per image) correctly.

However, if we ask some more questions about the training images — e.g., by borrowing
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relevant questions from other training images — the same VQA model fails drastically, even 

if the model has indeed seen these images and questions during training (see Figure 3.1). 

Namely, the VQA model just has not learned enough through the human-annotated examples, 

leaving the model unaware of the huge amount of visual information in an image and how it 

can be asked via natural language. 

At frst glance, this seems to paint a grim picture for VQA. However, in this work, we 

propose to take advantage of this weakness to strengthen the VQA model: we turn implicit 

information already in the dataset, such as unique questions and the rich contents in the 

training images, into explicit IQA triplets which can be directly used by VQA models via 

conventional supervised learning. 

We propose a simple data augmentation method SIMPLEAUG, which relies on (i) the 

original image-question-answer triplets in the dataset, (ii) mid-level semantic annotations 

available on the training images (e.g., object bounding boxes), and (iii) pre-trained object 

detectors [218]1. Concretely, we build upon the aforementioned observations — questions 

annotated for one image can be valuable add-ons to other relevant images — and design a 

series of mechanisms to “propagate” questions from one image to the others (Figure 3.2). 

More specifcally, we search images that contain objects mentioned in the question and 

identify the answers using information provided by (ii) and (iii), such as numbers of objects, 

their attributes, and existences. 

SIMPLEAUG requires no question generation step via templates or language mod-

els [122], bypassing the problems of limited diversity or artifacts. Besides, SIMPLEAUG 

is completely detached from the training phase of a VQA model and is therefore model-

agnostic, making it fairly simple to use to improve VQA models. 

1We note that (ii) is commonly provided in existing VQA datasets like VQA v2 [82], and (iii) has been 
widely used in the feature extraction stage of a VQA model [16]. 
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We validate SIMPLEAUG on two datasets, VQA v2 [82] and VQA-CP [6]. The latter 

is designed to evaluate VQA models’ generalizability under language bias shifts. With 

SIMPLEAUG, we can not only achieve comparable gains to other existing methods on 

VQA-CP, but also boost the accuracy on VQA v2, demonstrating the applicability of our 

method. We note that many of the prior works designed for VQA-CP indeed degrade the 

accuracy on VQA v2, which does not have language bias shifts between training and test 

data. SIMPLEAUG further justifes that mid-level vision tasks like object detection can 

effectively beneft high-level vision tasks like VQA. 

In summary, our contributions are three-folded: 

• We propose SIMPLEAUG, a simple and model-agnostic data augmentation method that 

turns information already in the datasets into explicit IQA triplets for training VQA 

models. 

• We show that SIMPLEAUG can notably improve VQA models’ accuracy on both VQA 

v2 [82] and VQA-CP [53]. 

• We provide comprehensive analyses on SIMPLEAUG, including its applicability to weakly-

labeled and unlabeled images. 

3.2 Prior VQA studies 

VQA datasets. More than a dozen datasets have been released [165, 19, 307, 82, 141, 107, 

87]. Most of them use natural images from large-scale image databases, e.g., MSCOCO [165]. 

For each image, human annotators are asked to generate questions (Q) and provide the 

corresponding answers (A). Doing so, however, is hard to cover all the knowledge in the 

visual contents. 
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Leveraging side information for VQA. A variety of side information beyond the IQA 

triplets has been used to improve VQA models. For example, human attentions are used 

to enhance the explainability and visual grounding of VQA models [200, 226, 58, 275]. 

Image captions contain substantial visual information and can be used as an auxiliary task 

(i.e., visual captioning) to strengthen VQA models’ visual and language understanding 

[274, 134, 272, 21, 130]. Several papers leveraged scene graphs and visual relationships as 

auxiliary knowledge for VQA [120, 294, 107, 232]. A few works utilized mid-level vision 

tasks (e.g., object detection and segmentation) to beneft VQA [72, 122]. Most of these 

works use side information by defning auxiliary learning tasks or losses to the original VQA 

task. In contrast, we directly turn the information into IQA triplets for training. 

Data augmentation for VQA. Several existing works investigate data augmentation. One 

stream of works creates new triplets by manipulating images or questions [42, 4, 248, 78]. 

See § 3.4.1.4 for some more details. The other creates more questions by using a learned 

language model to paraphrase sentences [212, 228, 273, 126, 21] or by learning a visual 

question generation model [122, 160, 140]. 

The closest to ours is the pioneer work of data augmentation by [122], which also creates 

new questions by using mid-level semantic information annotated by humans (e.g., object 

bounding boxes). Their question generation relies on either pre-defned templates or a 

learned language model, which may suffer limited diversity or labeling noise. In contrast, 

we directly reuse questions already in the dataset and show that they are suffcient to augment 

high-quality questions for other images. Besides, we further explore machine generated 

annotations (e.g., via an object detector [218]), opening the door to augment triplets using 

extra unlabeled images. Furthermore, we benchmark our method on the popular VQA 

v2 [82] and challenging VQA-CP [6] datasets, which are released after the publication of 
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[122]. Overall, we view our paper as an attempt to revisit simple data augmentation like 

[122] for VQA, and show that it is indeed quite effective. 

Robustness of VQA models. [82, 40, 6] pointed out the existence of superfcial correlations 

(e.g., language bias) in the datasets and showed that a VQA model can simply exploit them 

to answer questions. Existing works to address this can be categorized into three groups. 

The frst group attempts to reduce the language bias by designing new VQA models or 

learning strategies [6, 210, 32, 53, 84, 53, 119, 192, 233, 76]. For example, RUBi and 

Ensemble [32, 53] explicitly modeled the question-answer correlations to encourage VQA 

models to explore other patterns in the data that are more likely to generalize. The second 

group leverages side information to facilitate visual grounding [275, 226, 252]. For example, 

[275] used extra visual or textual annotations to determine important regions where a VQA 

model should focus on. The third group implicitly or explicitly augments the VQA datasets, 

e.g., via self-supervised learning, counterfactual sampling, adversarial training, or image and 

question manipulation [1, 304, 253, 42, 78, 161, 79, 153, 219, 227]. SIMPLEAUG belongs to 

the third group but is simpler in terms of methodology. Besides, SIMPLEAUG is completely 

detached from VQA model training and thus model-agnostic. Moreover, SIMPLEAUG can 

improve on both VQA-CP [6] and VQA v2 [82]. 

3.3 SIMPLEAUG for Data Augmentation 

3.3.1 Implicit information 

SIMPLEAUG leverages three sources of information that implicitly suggest extra IQA 

triplets beyond those provided in a VQA dataset. The frst one is the original IQA triplets in 

the dataset. We fnd that for two similar images that locally share common objects or globally 

share common layouts, their corresponding annotated questions can either be treated as 
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paraphrases or extra questions for each other. The second one is the object instance labels 

like object bounding boxes that are annotated on images, e.g., MSCOCO images [165]. 

These labels provide accurate answers to “how many” or some of the “what” questions, and 

many VQA datasets are built upon MSCOCO images. The third one is an object detector 

pre-trained on an external densely-annotated dataset like Visual Genome (VG) [141]. This 

detector can provide information not commonly annotated on images, such as attributes or 

fne-grained class names. We note that since the seminal work by [16], many following-up 

VQA models use the Faster R-CNN detector [218] pre-trained on VG for feature extraction. 

3.3.2 The SIMPLEAUG pipeline 

SIMPLEAUG processes each annotated IQA triplet (i,q,a) in term, and propagates q 

to other relevant images. To begin with, SIMPLEAUG extract meaningful words from the 

question, similar to [42, 275]. We leverage a spaCy part-of-speech (POS) tagger [100] to 

extract “nouns” and tokenize their singular and plural forms. We remove words such as 

“picture” or “photo”, which appear in many questions but are not informative for VQA2. 

Given the meaningful “nouns” of a question, we then retrieve relevant images and derive 

the answers, using MSCOCO annotations or Faster R-CNN detection. Concretely, we split 

questions into four categories and develop specifc question propagation rules. Figure 3.2 

illustrates the pipeline. 

Yes/No questions. We apply the Faster R-CNN detector trained on VG to each image i′ 

beside image i. The detector returns a set of bounding boxes and their labels. We ignore 

2For example, in a question, “What is the person doing in the picture?”, the word “picture” refers to the 
image itself, not an object within it. We found 8% of the questions like this in VQA v2 [82]. Some questions 
really refer to “pictures” or “photos” within an image (e.g., “How many pictures on the wall?”), but there are 
<1% such questions. 
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images whose object labels have no overlap with the nouns of question q, and assign answer 

“yes” or “no” to the remaining images as follows. 

• “Yes”: if the labels of image i′ cover all nouns of question q, we create (i′ ,q,yes). 

• “No”: if the labels of image i′ only cover some of the nouns of q, we create (i′ ,q,no). For 

instance, if the question is “Is there a cat on the pillow?” but the image only contains 

“pillow” but no “cat”, then the answer is “no”. 

We develop two verifcation strategies at the end of this subsection to flter out outlier 

cases. 

Color questions. To prevent ambiguous cases, we only consider questions with a single 

noun (besides the word “color”). We again apply the Faster R-CNN detector, which returns 

for each image a set of object labels that may also contain attributes like colors. We keep 

images whose labels cover the noun of question q. For each such image i′, we create a triplet 

(i′ ,q, â), where â is the color attribute provided by the detector. As there are likely some 

other object-color pairs in i′ , we investigate replacing the noun in q by each detected object 

name and create some more IQA triplets about colors. 

Number questions. We again focus on questions with a single noun (besides the word 

“number”). We use MSCOCO annotations, which give each image a set of object bounding 

boxes and labels. We fnd all the images whose labels cover the noun of question q. For 

each such image i′ , we derive the answer by counting annotated instances of that noun 

and create a triplet (i′ ,q, â), where â is the count. Some of the nouns (e.g., “animal”) are 

super-categories of sub-category objects (e.g., “dog” or “cat”). Thus, if the noun of q is a 

super-category (e.g., q is “How many animals are there?”), we follow the category hierarchy 

provided by MSCOCO and count all its sub-category instances. 
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Other questions. We focus on “what” questions with a single noun and use MSCOCO 

annotations. We fnd all the images whose labels cover the noun of question q. (We also 

take the super-category cases into account.) For each such image i′ , we check whether its 

MSCOCO labels contain the answer a of question q, i.e., according to the original (i,q,a) 

triplet. For instance, if q is “What animal is this?” and a is “sheep”, then we check if image 

i′’s labels contain “sheep”. If yes, we create a triplet (i′ ,q, â = a). This process essentially 

discovers “what” questions that can indeed be asked about i′ . 

Verifcation. The above rules simplify a question by only looking at its nouns, so they 

may lead to triplets whose answers are incorrect. To mitigate this issue, we develop two 

verifcation strategies. 

The frst strategy performs self-verifcation on the original (i,q,a) triplet, checking if 

our rules can reproduce it. That is, it applies the aforementioned rules to image i to derive 

the new triplet (i,q, â). If â does not match a, i.e., using the rules creates a different answer, 

we skip this question q. 

The second strategy verifes our rules using IQA triplets annotated on retrieved image i′ . 

For example, if image i′ has an annotate triplet (i′ ,q ′ ,a ′ ) whose q ′ has the same category 

and nouns as q, then we compare it to the created triplet (i′ ,q, â). If â does not match a ′ , 

then we disregard (i′ ,q, â). 

3.3.3 Paraphrasing by similar questions 

Besides the four question propagation rules that look at the image contents, we also 

investigate a simple paraphrasing rule by searching similar questions in the dataset. Con-

cretely, we apply the averaged word feature from BERT [62] to encode each question as 

it better captures the object-level semantics for searching questions mentioning the same 

24 



Q: What food is shown? 
A: Donut

Q: What color is the plate? 
A: White

Q: How many donuts are there? 
A: 1

Q: Is fruit on the counter? 
A: Yes

Q: What food is shown? 
A: Donut 

Q: What color is the plate? 
A: White

Q: How many donuts are there? 
A: 3

Q: Is fruit on the counter? 
A: Yes

Augmented QAs

Original QAs

Returned Images

…

…

…

Original Image

Figure 3.2: The SIMPLEAUG pipeline. We show four original question-answer pairs of the image
on the left in VQA v2, and how they are propagated to other images. The green boxes are annotated
in MSCOCO or detected by Faster R-CNN; each of them is associated with an object name and/or
attribute. We only show boxes matched by nouns or used to derive answers.

objects. Two questions are similar if their cosine similarity is above a certain threshold (0.98

in the experiments). If two IQA triplets (i,q,a) and (i′,q′,a′) have similar questions, we

create two extra triplets (i,q′,a) and (i′,q,a′) by switching their questions as paraphrasing.

We choose a high threshold 0.98 to avoid false positives. On average, each question finds

11.4 similar questions, and we only pick the top-3 questions. We found that with this design,

an extra verification step, like checking if the image i′ contains nouns of the paraphrasing

question q, does not further improve the overall VQA accuracy. Thus, we do not include an

extra verification step for paraphrasing.

3.4 Experiments

3.4.1 Experimental setup
3.4.1.1 VQA datasets and evaluation metrics

We validate SIMPLEAUG on two popular datasets.
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VQA v2 [82] collects images from MSCOCO [165] and uses the same training/valida-

tion/testing splits. On average, six questions are annotated for each image. In total, VQA v2 

has 444K/214K/448K training/validation/test IQA triplets. 

VQA-CP v2 [6] is a challenging adversarial split of VQA v2 designed to evaluate the 

model’s capability of handling language bias/prior shifts between training and testing. For 

instance, “white” is the most frequent answer for questions that start with “what color...” in 

the training set whereas “black” is the most common one in the test set. Such prior changes 

also refect in individual questions, e.g., the most common answer for “What color is the 

banana?” changes from “yellow” during training to “green” during testing. VQA-CP v2 has 

438K/220K training/test IQA triplets. 

Evaluation metrics. We follow the standard evaluation protocol [19, 82]. For each test 

triplet, the predicted answer is compared with answers provided by ten human annotators in 

a leave-one-annotator-out fashion for robust evaluation. We report the averaged scores over 

all test triplets as well as over test triplets of Yes/No, number, or other answer types. 

3.4.1.2 Implicit knowledge sources 

MSCOCO annotations [165]. MSCOCO is the most popular benchmark nowadays for 

object detection and instance segmentation, which contains 80 categories (e.g., “cat”) as well 

as the corresponding super categories (e.g., “animal”). Object instances of all 80 categories 

are exhaustively annotated in all images, leading to approximately 1.2 million instance 

annotations. Faster R-CNN detection [16]. We use the object detection results from a 

Faster R-CNN [218] pre-trained with Visual Genome (VG) [141]. This pre-trained detector 

can provide object attributes (e.g., color and material) whereas MSCOCO annotations only 
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contain object names (e.g., “person” and “bicycle”). We use the detector provided by [16], 

which detects 36 objects per image. 

3.4.1.3 Base VQA models 

SIMPLEAUG is model-agnostic, and we evaluate it by using its generated data to augment 

the training set for training three base VQA models. 

Bottom-Up Top-Down (UpDn) [16]. UpDn is a widely used VQA model. It frst detects 

objects from an image and encodes them into visual feature vectors. Given a question, UpDn 

uses a question encoder to produce a set of word features. Both visual and language features 

are then fed into a multi-modal attention network to predict the answer. 

Learned-Mixin+H (LMH) [53]. LMH is a learning strategy to de-bias a VQA model, e.g., 

UpDn. During training, LMH uses an auxiliary question-only model to encourage the VQA 

model to explore visual-question related information. During testing, only the VQA model 

is used. LMH is shown to largely improve the performance on VQA-CP v2 but can hurt that 

on VQA v2. LXMERT [247]. We also study SIMPLEAUG with a stronger, transformer-

based VQA model named LXMERT. LXMERT leverages multi-modal transformers to 

extract multi-modal features, and exploits a masking mechanism to better (pre-)train the 

model. While such a masking mechanism can be viewed as a way of data augmentation, 

SIMPLEAUG is fundamentally different from it in two aspects. First, SIMPLEAUG generates 

new triplets while masking manipulates existing triplets. Second, SIMPLEAUG is detached 

from model training and is therefore compatible with masking. As will be shown in the 

experimental results, SIMPLEAUG can provide solid gains to LXMERT on both VQA v2 

and VQA-CP. 
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3.4.1.4 Compared data augmentation methods 

We compare SIMPLEAUG with three existing data augmentation methods for VQA. 

Template-based augmentation proposed by [122] generates new question-answer pairs 

using MSCOCO annotations. We re-implement the method following the paper. 

Counterfactual Samples Synthesizing (CSS) [42] generates counterfactual triplets by 

masking critical objects in images or words in questions and assigning different answers. 

These new training examples force the VQA model to focus on those critical objects and 

words, improving both visual explainability and question sensitivity. 

MUTANT [78] is a state-of-the-art data augmentation method by manipulating images 

and questions. For example, it applies a GAN-based inpainting network to change the 

object’s color to create extra color questions; it manipulates object numbers using MSCOCO 

annotations; it masks or negates words to mutate questions. 

Comparison. SIMPLEAUG is different from CSS and MUTANT in two aspects. First, CSS 

and MUTANT can only manipulate already annotated questions for an image, while we 

can create new questions for an image by borrowing them from other images. Second, CSS 

needs a pre-trained attention-based VQA model to identify critical objects/words while 

MUTANT’s best version requires additional loss terms for training. In contrast, SIMPLEAUG 

is completely detached from model training. 

3.4.2 Implementation details 

Data augmentation by SIMPLEAUG. We speed up the implementation by grouping IQA 

triplets of the same unique question and only propagating the question once. We remove 

redundant triplets if the retrieved image already has the same question. To prevent creating 

too many triplets from paraphrasing (§3.3.3), for each question q we only search for its 
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Table 3.1: Statistics on VQA-CP v2 training data. Miss-answered: the number of SIMPLEAUG 

examples that a UpDn model trained on the original dataset cannot answer correctly. 

# of samples All Y/N Num Other 

Original 438K 183K 52K 202K 
SIMPLEAUG 5,457K 2,062K 1,937K 1,458K 

Miss-answered 3,081K 974K 1,489K 618K 

top-3 similar questions q ′ and only create (i′ ,q,a ′ ) if a ′ is a rare answer to q — we defne 

a ′ to be a rare answer if there are fewer than fve (q,a ′ ) pairs in the dataset. We emphasize 

that we only apply SIMPLEAUG to IQA triplets in the training set and search images in the 

training set. 

VQA models. For the base VQA models, we use the released code from corresponding 

papers. 

Training with SIMPLEAUG triplets. We explore three ways to train with the original (O) 

triplets and augmented triplets (A). The frst is to train with both from the beginning (A+ O); 

the second is to train with O frst and then with both (O → A + O); the third is to train with 

O frst, then with A, and then with O again (O → A → O). The rationale of training with 

multiple stages is to prevent the augmented data from dominating the training process (see 

Table 3.1 for the statistics). We note that, there is a huge number of SIMPLEAUG examples 

that a VQA model trained with O only cannot answer. Thus, when training with multiple 

stages, we remove SIMPLEAUG examples that the model can already answer. We mainly 

report results using O → A → O, but compare the three ways in §3.4.4. 
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Figure 3.3: Performance on VQA v2 val set and VQA-CP v2 test set. Our method SIMPLEAUG 

(cyan background) consistently improves all answer types for different base models on both VQA 
v2 and VQA-CP. Note that MUTANT (loss) [78] (gray color) applies extra loss terms besides data 
augmentation. 
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3.4.3 Main results on VQA v2 and VQA-CP v2 

Figure 3.3 summarizes the main results on VQA v2 val and VQA-CP v2 test. We 

experiment SIMPLEAUG with different base VQA models and compare it to state-of-the-art 

methods. SIMPLEAUG achieves consistent gains against the base models on all answer 

types (columns). When paired with LXMERT, SIMPLEAUG obtains the highest accuracy on 

both datasets, except MUTANT (loss) which applies extra losses besides data augmentation. 

SIMPLEAUG improves all answer types. On VQA-CP v2, SIMPLEAUG boosts the overall 

accuracy of UpDn from 39.74% to 52.65%, outperforming all but three methods. One key 

strength of SIMPLEAUG is that it improves all the answer types, including a ∼2% gain 

on “Other” where many methods suffer. Specifcally, compared to CF-VQA [192] and 

RandImg [253] which have higher overall accuracy than SIMPLEAUG, SIMPLEAUG outper-

forms them on the challenging “Num” and “Other”. On VQA v2, SIMPLEAUG achieves the 

highest accuracy using UpDn, improving +0.86% on “All”, +0.79% on “Yes/No”, +1.77% 

on “Num”, and +0.69% on “Other”. Other methods specifcally designed for VQA-CP v2 

usually degrade on VQA v2. 

SIMPLEAUG is model-agnostic. SIMPLEAUG can directly be applied to other VQA models. 

Besides UpDn, in Figure 3.3 we show that SIMPLEAUG can lead to consistent gains for two 

additional VQA models. LMH is a de-biasing method for UpDn, which however hurts the 

accuracy on VQA v2. With SIMPLEAUG, LMH can largely improve on VQA v2. LXMERT 

is a strong transformer-based VQA model, and SIMPLEAUG can also improve upon it, 

achieving the highest accuracy on VQA v2 (all answer types) and on VQA-CP v2 (“Other”). 

Comparison to data augmentation baselines. SIMPLEAUG notably outperforms the 

template-based method [122], the closest method to ours. We attribute this to the question 
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Table 3.2: SIMPLEAUG (propagation) w/ or w/o verifcation (§3.3.2) on VQA-CP v2, using the 
UpDn model. 

Method Verifcation All Y/N Num Other 

UpDn – 39.74 42.27 11.93 46.05 

✗ 51.96 64.02 44.44 47.70
SIMPLEAUG 

✓ 52.27 65.15 45.32 47.42 

diversity via question propagation and paraphrasing. Compared to CSS [42, 161], SIM-

PLEAUG performs better on all answer types on both datasets, using UpDn. While CSS 

outperforms SIMPLEAUG on VQA-CP v2 using the de-biasing LMH, its improvement on 

VQA v2 is smaller than SIMPLEAUG. Since LXMERT is a general VQA method like 

UpDn, we expect that SIMPLEAUG will outperform CSS. Finally, compared to MUTANT 

[78], SIMPLEAUG achieves better results on VQA-CP v2 against the version without extra 

loss terms (i.e., MUTANT(plain)). It is worth noting that while CSS and MUTANT both 

generate extra data, they cannot improve but degrade on VQA v2 (when using UpDn or 

LXMERT). In contrast, SIMPLEAUG improves on all cases, suggesting it as a more general 

data augmentation method for VQA. 

3.4.4 Ablation studies of SIMPLEAUG 

Question propagation vs. paraphrasing. SIMPLEAUG leverages the original IQA triplets 

by propagating questions to other images (§3.3.2) or by paraphrasing question using similar 

questions (§3.3.3). Propagation can ask more questions about an image. For example, the 

propagated questions in Figure 3.1 and Figure 3.4 ask about image contents different from 

the original questions. In contrast, paraphrasing only paraphrases the original questions 

of that image. As shown in Figure 3.3, question propagation generally leads to better 
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Table 3.3: A comparison of training strategies on VQA-CP v2 with the UpDn model. O: original 
triplets. A: augmented triplets by SIMPLEAUG. 

Method Strategy All Y/N Num Other 

UpDn 
O 39.74 42.27 11.93 

O → O → O 39.47 43.11 11.75 
46.05 
45.16 

SIMPLEAUG 

A + O 47.50 59.76 38.18 
O → A + O 49.73 59.67 36.58 
O → A → O 52.65 66.40 43.43 

43.63 
48.12 
47.98 

performance, especially on “Num” and “Other” answers, suggesting the importance of 

creating additional questions to cover image contents more exhaustively. 

On verifcation for question propagation. Table 3.2 compares SIMPLEAUG (propagation) 

with and without the verifcation strategies (§3.3.2). Verifcation improves accuracy at nearly 

all cases. 

Multiple-stage training. In Table 3.3, we compare the three training strategies with original 

triplets (O) and augmented triplets (A). We also train on O for multiple stages (i.e., more 

epochs) for a fair comparison. O → A → O in general outperforms others, and we attribute 

this to the clear separation of clean and noisy data — the last training stage may correct 

noisy information learned in early stages [295]. 

Training with SIMPLEAUG triplets alone. We further investigate training the UpDn model 

with augmented triplets alone (A). On VQA-v2, we get 39.62% overall accuracy, worse 

than the baseline trained with original data (63.48%). This is likely due to the noise in the 

augmented data. On VQA-CP, we get 51.60%, much better than the baseline (39.74%) but 

worse than training with both augmented and original triplets (52.65%). We surmise that 

SIMPLEAUG triplets help mitigate the language bias shifts in VQA-CP. 
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Table 3.4: Effects of different augmention types (§3.3.2). We report results on VQA-CP v2, using 
the UpDn model. 

Method Aug Type All Y/N Num Other 

UpDn – 39.74 42.27 11.93 46.05 

SIMPLEAUG 

Y/N 
Num 
Color 
Other 
All 

47.20 
44.62 
40.97 
41.22 
52.65 

68.63 
42.87 
43.11 
43.17 
66.40 

12.12 
43.80 
12.39 
12.19 
43.43 

45.68 
45.77 
47.68 
48.16 
47.98 

Effects of augmentation types. We experiment with propagating each question type alone 

on VQA-CP v2, using UpDn as the base model. In Table 3.4, we show the separate results 

of SIMPLEAUG with different question types. The augmented questions notably improve 

the corresponding answer type. 

3.4.5 SIMPLEAUG in additional scenarios 

We explore SIMPLEAUG in the scenarios where there are (i) limited questions per image, 

and (ii) extra weakly-labeled or unlabeled images. For (ii), both have no IQA triplets but the 

weakly-labeled ones have human-annotated object instances. 

Learning with limited triplets. We randomly keep a fraction of annotated QA pairs for 

each training image on VQA-CP v2. Table 3.5 shows that even under this annotation-

scarce setting (e.g., only 10% of QA pairs are kept), SIMPLEAUG can already be effective, 

outperforming the baseline UpDn model trained with all data. This demonstrates the 

robustness of SIMPLEAUG on dealing with the challenging setting with limited triplets. 

Learning with weakly-labeled or unlabeled images. We simulate the scenarios by keeping 

the QA pairs for a fraction of images (i.e., labeled data) and removing the QA pairs 
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Table 3.5: Learning with limited IQA triplets on VQA-CP v2. We keep a certain fraction of QA 
pairs per image. 

Method Fraction All Y/N Num Other 

UpDn 1.00 39.74 42.27 11.93 46.05 

SIMPLEAUG 

1.00 
0.50 
0.25 
0.10 

52.65 
47.67 
46.03 
42.91 

66.40 
57.65 
52.01 
45.09 

43.43 
37.77 
37.96 
30.24 

47.98 
45.17 
45.12 
45.25 

entirely for the other images. Conventionally, a VQA model cannot beneft from the images 

without QA pairs, but SIMPLEAUG could leverage them by propagating questions to them. 

Specifcally, for images without QA pairs, we consider two cases. We either keep their 

MSCOCO object instance annotations (i.e., weakly-labeled data) or completely rely on 

object detectors (i.e., unlabeled data). Table 3.6 shows the results, in which we only apply 

SIMPLEAUG to the weakly-labeled and unlabeled images. As shown, SIMPLEAUG yields 

consistent improvements, opening up the possibility of leveraging additional images to 

improve VQA. 

3.4.6 Qualitative results 

We show a training image and its augmented QA pairs by SIMPLEAUG in Figure 3.4. A 

VQA model trained on the original IQA triplets cannot answer many of the newly generated 

questions, even if the image is in the training set, showing the necessity to include them for 

training a stronger model. More qualitative results can be found in Figure 3.5. 
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Table 3.6: Learning with weakly-labeled and unlabeled images for VQA v2. Fraction: the 
portion of images with annotated QA pairs. GT: MSCOCO ground truth annotations. OD: Faster 
R-CNN object detection. ✗: supervised training with only labeled VQA training examples. 

Fraction SIMPLEAUG All Y/N Num Other 

1.00 
✗ 
✓ 

63.48 81.18 42.14 
64.34 81.97 43.91 

55.66 
56.35 

0.50 
✗ 

GT 
OD 

60.93 78.45 40.74 
61.47 78.92 41.43 
61.47 78.93 41.42 

52.96 
53.50 
53.50 

0.25 
✗ 

GT 
OD 

56.70 74.02 37.81 
57.54 74.49 39.08 
57.56 74.63 38.67 

48.53 
49.54 
49.57 

0.10 
✗ 

GT 
OD 

51.06 69.18 33.46 
52.18 69.76 35.95 
52.27 69.98 35.07 

41.93 
43.10 
43.34 

Augmented Question Answer

How many baseball bats are in the picture? 
How many baseball gloves are showing? 
What color is the helmet? 
How many people are in the field? 

1
1

Blue
3

✘
✘
✘
✓

Original Question Answer

What color are the empty seats? 
How many people are on the field? 
What team is playing? 

Green
3

Orioles

✘
✓
✓

Figure 3.4: Qualitative results. We show the training image and its QA pairs from VQA-CP, and 
the generated QA pairs by SIMPLEAUG. ✓/✗ indicates if the baseline VQA model (trained without 
SIMPLEAUG) answers correctly/incorrectly. In augmented QA pairs, the frst three are from question 
propagation and the last one is by paraphrasing. 
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3.5 Summary 

We proposed SIMPLEAUG, a data augmentation method for VQA that can turn informa-

tion already in the datasets into explicit IQA triplets for training. SIMPLEAUG is simple 

but by no means trivial. First, it justifes that mid-level vision tasks like object detection 

can effectively beneft VQA. Second, we probably will never be comprehensive enough in 

annotating data, and SIMPLEAUG can effectively turn what we have at hand (i.e., “knowns”) 

to examples a VQA model wouldn’t have known (i.e., “unkowns”). SIMPLEAUG can notably 

improve the accuracy of VQA models on both VQA v2 [82] and VQA-CP v2 [53]. 
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Image
Augmented QA Pairs Original QA Pairs

Question Answer Question Answer

• How many giraffe? 

• What color is his eyes? 

• What color is the giraffe?

• What color is the sign?  

3

Black

Brown

Red

✘
✓
✘
✘

• Are the giraffes resting their heads? 

• Are the humans on the ground? 

• What is the fence made of? 

Yes

Yes

Wood

• How many animals are in this?

• How many cows are visible?

• Are the cows hornless?

• What color is the cow?

• What color are the rocks?

1

1

Yes

White

Gray

✘
✘
✘

✘
✘

• Which animals are seen?

• Is this a farm?

• Is the cow under a tree?

Cow

No

Yes

• How many of these animals are laying down?

• How many cats are pictured?

• What color is the suitcase?

• How many suitcases are they?

1

1

Brown

1

✘
✘
✘

✘

• Is this a good place for the cat to sleep?

• Is this an old suitcase?

• What kind of cat? 

• What are the cats laying on?

Yes

Yes

Black

Suitcase

• How many people are clearly visible in this picture? 

• How many people are standing around? 

• How many people are actually in the photo?

• What color is the sky? 

2

2

2

Blue

✘
✘
✘

✘

• How many tires are there? 

• What sport is the equipment for?

• About what time of day is it?

6

Biking

Daytime

• What color is the elephant?

• What color are his legs?

Gray

Gray

✘
✘

• Are the elephants mad?

• How many animals are here?

• What animals are shown?

Yes

4

Elephant

• What color is the stove? 

• What color is the hair? 

• What color is the pants? 

• What color is the table? 

• How many people are actually in this photo? 

White

Black

Black

Gray

2

✓
✘
✘

✘
✘

• How sanitary does the counter look? 

• How many clear glass bowls are on the counter? 

• What is the counter made of?

Clean

5

Steel

• What color are the leaves on the tree? 

• What color is the field?

• What is the color of the cloud? 

• How many elephants in the picture? 

• How many animals are seen? 

Green

Green

White

4

5

✓
✘
✘

✘
✘

• Sunny or overcast?

• Is the water fresh looking? 

• Is there a man in the picture? 

• Are any of the elephants on the dirt road?

• What is the water on the ground? 

Overcast

No

Yes

Yes

Mud

Figure 3.5: Additional qualitative results on VQA-CP. We show the original image, the generated 
QA pairs by SIMPLEAUG, and the original QA pairs. ✓/✗ indicates if the baseline VQA model 
(trained without SIMPLEAUG) predicts correctly/incorrectly. 
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Chapter 4: Curating data for a V&L benchmark 

Data curation is useful not only for enriching training materials but also for developing 

benchmarks to evaluate the capabilities of V&L models. In this chapter, we explore the 

direction of benchmark development and highlight the strengths and weaknesses of the 

current leading V&L models. 

The ability to compare objects, scenes, or situations is crucial for effective decision-

making and problem-solving in everyday life. For instance, comparing the freshness of 

apples enables better choices during grocery shopping, while comparing sofa designs 

helps optimize the aesthetics of our living space. Despite its signifcance, the comparative 

capability is largely unexplored in recent V&L models. 

In this work, we introduce COMPBENCH, a V&L benchmark designed to evaluate 

the comparative reasoning capability of V&L models, also known as multimodal large 

language models (MLLMs). COMPBENCH mines and pairs images through visually oriented 

questions covering eight dimensions of relative comparison: visual attribute, existence, state, 

emotion, temporality, spatiality, quantity, and quality. We curate a collection of around 

40K image pairs using metadata from diverse vision datasets and CLIP similarity scores. 

These image pairs span a broad array of visual domains, including animals, fashion, sports, 

and both outdoor and indoor scenes. The questions are carefully crafted to discern relative 

characteristics between two images and are labeled by human annotators for accuracy and 
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relevance. We use COMPBENCH to evaluate recent MLLMs, including GPT-4V(ision), 

Gemini-Pro, and LLaVA-1.6. Our results reveal notable shortcomings in their comparative 

abilities. We believe COMPBENCH not only sheds light on these limitations but also 

establishes a solid foundation for future enhancements in the comparative capability of 

MLLMs. 

Q: Which lemon is 
more peeled?

Q: Which coat is 
more floral?

Q: Which bird has more 
grey on its breast?

Q: Which fish has more 
evenly split colors?

Attribute

Q: Which scissor is   
more opened?

Q: Which person
smiles more?

: Right : Left

State

Q: Which person 
feels happier?

Emotion

Q: Which frame 
happened first? 

Q: Which car is newer
by release year?

Temporal Spatial

Q: Which shelves is 
closer to the camera?

Quality

Q: Which image is more   
affected by motion blur?

: Right : Left

Existence

: Baseball bat : None

Q: Which image has 
more elephants?

Q: What is the most obvious 
difference between two images? 

: Right : Left

Quantity

: Right : Left : Right : Left : Right : Left

: Right : Left : Right : Left : Right : Left : Right : Left

: Right: Left

Q: Which image has 
more umbrellas?

: Right : Left: Car : People

: Right: Left

Figure 4.1: COMPBENCH offers diverse triplets comprising two images, a question about their 
relativity, and an answer to cover eight types of relativity (see §4.1). See examples along with 
predictions of GPT-4V [2]. 

4.1 Introduction 

The concept of “relativity” is integral in our daily lives. For example, relative freshness 

affects our decision to purchase fruits; relative spaciousness affects our decision to choose 

living or working space; relative crowdedness indicates which paths to select; (relative) 
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change between two scenes reveals what happened to the environment. In short, the ability 

to compare objects, scenes, or situations and reason about their relativity is vital for us to 

make informed decisions, solve problems effectively, and acquire knowledge effciently, 

enabling us to make sense of the surrounding world. 

The recent advance of multimodal large language models (MLLMs), a.k.a. large multi-

modal models (LMMs), [2, 12, 251, 169, 163, 57, 20] has demonstrated promising progress 

toward artifcial general intelligence (AGI) [288, 179] and achieved unprecedented results 

in a variety of vision and language (V&L) tasks, ranging from free-formed visual recogni-

tion [59, 46, 56] and visual captioning [46, 7] to visual question answering [81, 106, 225]. 

Yet, much less attention has been paid to tasks that involve relativity and comparison be-

tween multiple visual inputs, e.g., two images. In essence, most of the existing datasets for 

visual recognition [59, 46, 56] and V&L tasks [81, 7, 186, 156, 60, 288] comprise examples 

with only single visual inputs (e.g., an image or a video clip), making them infeasible to 

assess MLLMs’ comparative capability. 

In this paper, we introduce COMPBENCH, a V&L benchmark dedicated to evaluating 

the comparative reasoning capabilities of MLLMs (Figure 4.1). COMPBENCH comprises 

39.8K triplets, each containing 1) a pair of visually or semantically relevant images 2) a 

question about their relativity, and 3) a ground-truth answer. We consider a wide range of 

questions categorized into eight aspects of relativity. Attribute Relativity tests the ability 

to recognize relative attributes [199] such as size, color, texture, shape, and pattern. For 

instance, given two images of birds, we ask MLLMs to compare the length of their beaks 

(e.g., “Which bird has longer beaks?”). Existential Relativity assesses the comprehension 

of existence in comparisons, asking questions like “Which trait is in the left butterfy but not 

in the right butterfy?” State/Emotion Relativity examines if MLLMs can identify state 
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variations, such as different degrees of baking and smiling. Temporal Relativity evaluates 

the understanding of time-related changes between two objects or scenes (e.g., “Which 

video frame happens earlier during a free kick?”). Spatial Relativity checks the ability 

to tell spatial differences (e.g., “Which cup looks further?”). Finally, Quantitiy/Quality 

Relativity investigates whether an MLLM understands the relativity of quantity and quality 

(e.g., “Which image contains more animal instances?”). 

We systematically benchmark representative MLLMs on COMPBENCH, including GPT-

4V [2], Gemini1.0-Pro [251], LLaVA-1.6 [169], and VILA-1.5 [163]. Specifcally, we 

concatenate two images horizontally (i.e., left and right) as the visual input. We then prompt 

MLLMs to answer questions about the relativity between these two images. When applicable, 

we also investigate a two-stage reasoning strategy, starting by asking a refned question about 

each image independently (e.g., “How many animal instances are in the image?”), followed 

by a pure language question (e.g., “Based on the descriptions, which image has more animal 

instances?”). Our results reveal notable shortcomings in existing MLLMs’ comparative 

abilities, especially in Existence, Spatiality, and Quantity Relativity. We conduct further 

analyses of error cases, offering insights for future MLLMs’ improvements. 

In sum, COMPBENCH has several advantages: (i) COMPBENCH introduces new per-

spectives to evaluate MLLMs — comparative reasoning capabilities about relativity. (ii) 

COMPBENCH provides extensive coverage across eight relativities and fourteen domains. 

(iii) COMPBENCH benchmarks recent MLLMs, accompanied by detailed analyses and 

insights for future improvement. (iv) COMPBENCH is extensible — we identify multiple 

data sources that can be further incorporated. 
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4.2 Background in Multimodal LLMs 

Multimodal LLMs (MLLMs). Large Language Models (LLMs) [2, 251, 17, 18, 110, 256, 

276] have made signifcant strides in various NLP and AI tasks. Many recent works [2, 

12, 251, 169, 163, 57, 20, 151, 301, 202, 267] have extended LLMs’ capabilities into the 

multimodal domain, particularly for vision and language (V&L) tasks. At a higher level, 

this advancement involves integrating a pre-trained vision encoder (e.g., CLIP [207]) with 

LLMs via a bridge module (e.g., an adaptor [169, 57]). Different strategies are developed 

to pre-train these multimodal LLMs (MLLMs), such as optimizing the LLMs and bridge 

module while keeping the vision encoder frozen [169] or training the bridge part only [57]. 

MLLM benchmarks. Earlier, MLLMs were evaluated on traditional V&L tasks, such 

as visual question answering (VQA) [81, 106, 225], image captioning [46, 7], and image-

text retreival [156, 47]. Recently, a range of new and intriguing V&L tasks [180, 237] 

have emerged to assess MLLMs’ capabilities across various dimensions. These include 

comprehension and reasoning about charts [184], diagrams [185], scene text [235, 186], 

web navigation [60], expert-level multimodal understanding [288], etc. Our COMPBENCH 

complements these efforts by focusing on a new dimension, MLLMs’ comparative reasoning 

capacity on a pair of visually or semantically relevant images. 

Multi-image datasets. Several existing datasets [199, 242, 68, 114, 297, 117] provide multi-

image data (e.g., pairs of images), but they serve different purposes (e.g., not for evaluating 

MLLMs) or have relatively limited scopes. NLVR2 [242] labels each image pair with a 

caption that may or may not be relevant to the images, asking models to predict the caption’s 

relevance (i.e., image-text matching). A few datasets [117, 28, 296] synthesize multi-image 

data for instruction tuning (e.g., image editing). More relevant to ours are [68, 114, 297, 199]. 

Birds-to-Words [68] aims to describe the difference between two birds; Sopt-the-diff [114] 
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focuses on the difference between two outdoor scenes; Q-bench2 [297] compares the quality 

(e.g., blurriness) between two images; Relative Attributes [199] compares the relativeness 

of attributes between two facial or natural images. However, these datasets have limited 

scopes, only targeting specifc domains or questions. In contrast, our COMPBENCH defnes 

eight relative comparisons, covering a wide range of relativities in the real world. Our image 

pairs are curated from fourteen diverse visual domains. We believe this offers the V&L 

community a more comprehensive benchmark to assess the comparative capabilities of 

current leading MLLMs. 

Learning to rank & learning with preference. Several research topics are relevant to ours 

and may beneft from our COMPBENCH. Learning to rank (LTR) [152, 172, 33] aims to 

realize a scoring function that can rank examples (e.g., images) based on certain aspects, such 

as facial ages [193, 35] and degrees of attributes’ presence [199]. Typically, an LTR model 

takes one example as input; the model is trained with pairs of examples such that the output 

scores match the ground-truth orders. Recently, learning with preference information [70] 

has become a mainstream approach to fne-tuning LLMs for alignment [208, 51]. Unlike 

our focus, these works usually collect pairs of outputs (e.g., answers to a question) with 

humans’ preferences to supervise model fne-tuning. 

4.3 Why Do We Study Comparative Reasoning? 

To date, most of the existing visual recognition and V&L benchmarks focus on a sin-

gle visual input (e.g., an image or a video clip), aiming to assess and promote absolute 

inference and reasoning within it, for example, identifying objects, recognizing their prop-

erties/states/actions, and describing and reasoning about their interactions within in the 

scene. 
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In reality, not all the inference and reasoning could be made absolute, or need to 

be absolute. For example, it is hard and ambiguous to describe the absolute degree of 

smiling [199], but it is relatively easy to compare two faces and tell which one smiles more. 

This fact applies to other visual properties like attributes (e.g., length), states (e.g., steps 

in cooking), and spatial locations (e.g., longitude and latitude). Often, comprehending the 

relativity is suffcient for us to make sense of the real world. 

Furthermore, learning to infer and reason about relativity could naturally and more 

effciently facilitate AI models to grasp fne-grained details. For instance, learning to 

describe a complex scene (e.g., captioning) often results in a model mastering common 

objects and properties but missing rare and subtle ones. In contrast, learning to tell the 

difference between two scenes promotes the model to identify subtle changes and describe 

them. 

Last but not least, the ability to perform comparative reasoning is integral to our daily 

decision-making and problem-solving (see §4.1 for some examples). Humans’ comparative 

capability, e.g., providing preferences between instances, has also been widely leveraged to 

supervise foundation models like LLMs to align their outputs with application requirements 

and societal expectations [208, 51]. We thus believe it is crucial to assess and promote 

comparative reasoning about relativity in AGI. 

4.4 COMPBENCH Benchmark 

We introduce COMPBENCH, a multimodal benchmark designed to assess the compar-

ative reasoning abilities of MLLMs across various dimensions. In what follows, we frst 

describe the types of comparative capabilities that COMPBENCH aims to evaluate (§4.4.1). 

Next, we outline our methodology for collecting images, followed by how we annotate 
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Attribute / State / Emotion / Spatiality

…

Data 
Selection

Existence

… …

Temporality / Quantity / Quality

Answer 
Annotation

Which lemon is more peeled? 

Question 
Generation

Verification

CLIP

Answer
Annotation

What’s the main difference?

Question 
Generation

Data 
Selection

Verification Answer
Annotation

Which car is newer? 

Question 
Generation

Data 
Selection

Verification

CLIP

Figure 4.2: COMPBENCH curation pipeline, including data selection, question generation, answer 
annotation, and verifcation. We rely on combinations of humans, computer programs, MLLMs 
(specifcally GPT-4V [2]), and CLIP similarity [207] to select images and generate questions, based 
on relativity types and available metadata. 

associated questions and answers to evaluate these capabilities (§4.4.2). Lastly, we provide 

detailed statistics on COMPBENCH and discuss its data quality (§4.4.3). Figure 4.2 illustrates 

the overall pipeline used to develop COMPBENCH. 

4.4.1 Types of Relativity 

Building upon §4.3, we consider eight comparison categories to evaluate MLLMs’ 

abilities to discern differences between two similar images (Figure 4.1). 

(1) Visual Attribute focuses on fve common visual properties — Size, Color, Texture, 

Shape, and Pattern — and tests whether the model can identify the relative magnitude of 

these attributes between images. (2) Existence assesses the model’s capacity to identify 

fne-grained variations by detecting subtle changes between images. (3) State involves 
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comparing the conditions or status of objects. (4) Emotion assesses the model’s capability 

to interpret degrees of human emotions. (5) Temporality and (6) Spatiality evaluate the 

model’s ability to recognize differences in images caused by temporal or spatial differences. 

These categories require both commonsense and comprehension of the physical world. 

Lastly, (7) Quantity measures the relative counting skills, and (8) Quality compares the 

quality of two images, examining the model’s low-level visual perceptual skills. 

4.4.2 Dataset Curation 

One major challenge in constructing COMPBENCH is mining image pairs that refect 

the aforementioned relativities. Fortunately, many publicly accessible datasets in vision 

and V&L offer detailed annotations and metadata. We carefully investigate these datasets 

and identify a seed set of fourteen datasets that align with the eight relativity types (§4.4.1), 

covering a wide range of domains like open-domain, fashion, animal, sports, automotive, 

facial, and both outdoor and indoor scenes (cf. Right in Table 4.1). Below, we outline the 

datasets for each relativity type and the process for generating triplets of image pairs, a 

question, and an answer. Please see the supplementary material for details. 

4.4.2.1 Visual Attribute 

Data collection. We consider fve visual attribute datasets. MIT-States [111] includes 245 

objects with 115 visual attributes, from online sources such as food or device websites. 

Fashionpedia [115] is tailored to clothing and accessories and contains 27 types of apparel 

along with 294 detailed attributes. VAW [205], similar to MIT-States, offers a large-scale 

collection of 620 unique attributes, including color, shape, and texture. CUB-200-2011 [261] 

and Wildfsh++ [205] specifcally provide attributes for birds and fsh. The former catalogs 

15 bird parts and their attributes (e.g., “notched tail”); the latter details 22 characteristics 
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(e.g., “yellow pelvic fns”) of various fsh species. For each dataset, we cluster images by 

objects or parts with the same attributes (e.g., “round table”, “asymmetrical blouse”, “curved 

bill”, “yellow dorsal fn”) and extract visually similar image pairs from each group. 

Annotation. We apply rule-based approaches to generate questions about relative degrees 

of attributes between objects (e.g., “Which coat is more foral?”). We then pair the questions 

with the corresponding image pairs and present them to six human annotators. The annotators 

are tasked with labeling the correct answers (binary: left/right) and fltering out any irrelevant 

or nonsensical questions about the images. In total, we construct a collection of 5.3K 

triplets. 

4.4.2.2 Existence 

Data collection. We consider datasets for image editing, which provide image pairs with 

similar layouts but subtle changes. We adopt MagicBrush [296], a recently released dataset 

for instruction-guided editing. It consists of (source image, instruction, target image) triplets, 

where the instruction specifes a subtle change between the source and target images. We 

also consider Spot-the-diff [114], which provides image pairs in outdoor scenes, along with 

descriptions of their differences. 

Annotation. We curate multiple-choice questions to ease automatic evaluation. We prompt 

GPT-4V [2] with in-context learning to generate questions; the options are formed by the 

extracted objects and their attributes from images. We then pass the questions (along with 

image pairs) to the annotators to verify the options and label the correct ones. In total, we 

curate 2.2K triplets. 
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4.4.2.3 State 

Data collection. We explore vision datasets covering the condition or status of objects (e.g., 

“pureed tomato” or “mashed potatoes”). Specifcally, we use two large-scale, open-domain 

visual attribute datasets: MIT-States [111] and VAW [205]. They annotate not only the fve 

common visual properties used in Visual Attribute but also some other properties about 

object states. We ask human annotators to manually review the datasets to identify image 

pairs relevant to state attributes. 

Annotation. We follow the annotation protocol in §4.4.2.1 to curate a total of 1.1K triplets. 

4.4.2.4 Emotion 

Data collection. We gather facial images from two publicly available datasets, CelebA [175] 

and FER-2013 [80], focusing on eight annotated human emotional states: smiling, angry, 

disgusted, fearful, happy, neutral, sad, and surprised. We form image pairs from the same 

emotional state. 

Annotation. We follow the annotation protocol in §4.4.2.1 to curate a total of 5.3K triplets. 

4.4.2.5 Temporality 

Data collection. We consider images with time-related tags. One pertinent source is videos. 

Specifcally, we use SoccerNet [77], a dataset for soccer video understanding. It annotates 

various soccer actions (e.g., free-kicks, corner-kicks, etc.) and specifes their exact periods 

(start-end frame indices). Using this temporal metadata, we extract two frames from each 

annotated action, creating an image pair that allows temporal comparison. We also consider 

CompCars [283], a dataset designed for fne-grained categorization of vehicles. This dataset 

offers a detailed ontology of car attributes, such as make, model, and year. We generate 
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image pairs that feature the same car model from different production years, for instance, a 

2017 Honda Civic vs. its 2015 counterpart. 

Annotation. We automatically generate (rule-based) questions and answers about which 

frame or object is associated with an earlier/later time-related tag, for example, “Which 

frame happened frst during the free-kick?” To ensure that the two images are relevant 

enough to offer suffcient temporal cues, we compute the CLIP visual similarity [207], 

selecting only image pairs with similar layouts and object poses. In total, we curate 13.3K 

triplets. 

4.4.2.6 Spatiality 

Data collection. We collect images with spatial tags, e.g., object locations. Specifcally, we 

use NYU-Depth V2 [236], featuring indoor scenes with object segments and depths. Using 

the segmentation maps, we identify objects within each image, and group images containing 

the same objects. 

Annotation. We follow the annotation protocol in §4.4.2.1, leveraging pre-defned templates 

and object information to generate questions about spatial relative comparisons (e.g., “Which 

shelf is closer to the camera?”), followed by human answer annotation. Overall, we curate 

1.9K triplets. 

4.4.2.7 Quantity 

Data collection. We consider images with labels related to object instances. One prominent 

source is object detection datasets. Here, we use VQAv2 [81], which is built upon MSCOCO 

[46] and encompasses a variety of question types, such as object counting and color. We 

focus on the counting questions, grouping images with similar questions and sampling 

image pairs within each group. 
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Annotation. We use GPT-4 [2] to convert original absolute counting questions (e.g., “How 

many elephants are there?”) to relative counting questions (e.g., “Which image has more 

elements?”). The answers are derived automatically from VQAv2’s ground-truth answers. 

We curate 9.8K triplets. 

4.4.2.8 Quality 

Data collection. We use Q-bench2 [297], a recently introduced dataset to evaluate low-level 

visual perception. Concretely, it challenges MLLMs to determine the quality (e.g., blurriness 

or distortion) of a single image or to compare the quality between two images. 

Annotation. Through a meticulous fltering process (cf. §4.4.2.1), we select paired images 

from Q-bench2, along with the annotated multiple-choice questions and answers, resulting 

in 1K triplets. 

4.4.3 Quality Control and Dataset Statistics 

To ensure the integrity of COMPBENCH, we ask annotators to exclude poor-quality 

examples, such as those with low-resolution images or questions that are irrelevant or 

nonsensical about the images. The annotators also flter out image pairs with ambiguous 

relativities, for example, image pairs with indistinguishable smiling degrees. To faithfully 

assess fne-grained capabilities, we also apply the CLIP visual similarity to Existence, 

removing image pairs with salient differences. Additionally, we implement a rigorous 

cross-verifcation process, where each annotator confrms the accuracy of others’ answers. 

Only samples that receive unanimous approval from annotators are kept. Consequently, our 

COMPBENCH benchmark comprises 39.8K diverse triplets (eight relativities from fourteen 

visual domains) with high quality and reliability. Please see Table 4.1 for the statistics. 
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Relativity Dataset Domain 
# our 

samples 

MIT-States [111] Open 0.2K 
Fashionpedia [115] Fashion 2.4K 

Attribute VAW [205] Open 0.9K 
CUB-200-2011 [261] Bird 0.9K 

Wildfsh++ [308] Fish 0.9K 

Existence 
MagicBrush [296] 
Spot-the-diff [114] 

Open 
Outdoor Scene 

0.9K 
1.2K 

State 
MIT-States [111] 

VAW [205] 
Open 
Open 

0.6K 
0.5K 

Emotion 
CelebA [175] 

FER-2013 [80] 
Face 
Face 

1.5K 
3.8K 

Temporality 
SoccerNet [77] 

CompCars [283] 
Sport 
Car 

8.3K 
5K 

Spatiality NYU-Depth V2 [236] Indoor Scene 1.9K 

Quantity VQAv2 [81] Open 9.8K 

Quality Q-Bench2 [297] Open 1K 

Total - - 39.8K 

Attribute
13%

Existence
6%

State
3%

Emotion
13%

Temporality
33%

Spatiality
5%

Quantity
25%

Quality
2%

Table 4.1: Overall statistics of COMPBENCH. 

4.5 Experiments 

4.5.1 Experimental Setup 

Baselines. We use our COMPBENCH to evaluate several leading MLLMs. This includes 

two powerful proprietary models, GPT-4V(ision) [2] and Gemini1.0-Pro3 [251], and two 

open-source alternatives, LLaVA-1.6 [169] and VILA-1.5 [163]. GPT-4V(ision) and Gemini 

excel in various vision and language tasks, such as VQA [81], OCR interpretation [186], 

spatial reasoning [184], and college-level subject knowledge [288]. LLaVA-1.6 and VILA-

1.5 also demonstrate competitive performance against these proprietary giants on some tasks. 

Our focus is to investigate whether these cutting-edge models can extend their capabilities 

to the realm of multi-image relative comparison. We evaluate proprietary models via their 

3Due to limited public testing quota available for Gemini-1.5 during our study, we opted for Gemini-1.0 
Pro. 
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offcial APIs and open-source models using (or fne-tuning on) NVIDIA RTX 6000 Ada 

GPUs. For more details, please refer to the supplementary material. 

Evaluation tasks & metrics. We divide our COMPBENCH into a test split (31.8K) and a 

held-out split (7.9K), using an 80:20 ratio. The latter is reserved for future developments 

(e.g., prompt engineering). By default, we concatenate the image pairs horizontally (i.e., 

left and right) as the visual input to MLLMs, and prompt MLLMs to answer questions 

about the relativity between these images. To facilitate automated evaluation, we include the 

possible answers as options in the questions. For Existence and Quality, there are multiple 

options (typically more than two). For Quantity, there are three options: left/right/same. 

For other types, there are binary options: left/right. We employ the standard accuracy as our 

evaluation metric. A question is answered correctly if the model prediction exactly matches 

the ground-truth answer. Further details are included in the supplementary material. 

4.5.2 Main Results (Table 4.2) 

Overall challenges in COMPBENCH. We observe that current MLLMs face challenges in 

answering relative questions in COMPBENCH (see Table 4.2). All MLLMs achieve averaged 

accuracies over the sixteen tasks (columns) below 80%, with GPT-4V reaching the highest 

accuracy at 74.7%. Further, a human evaluation study on a subset of our examples indicates 

that GPT-4V’s performance remains notably behind human capabilities, highlighting the 

need for substantial improvement (Table 4.4). 

Superiority in State & Emotion. State relativity is an area where MLLMs demonstrate 

strength. For instance, GPT-4V/LLaVA-1.6 achieve 92.2%/89.7%, respectively, on MIT-

states [111] for state relativity. Similarly, they demonstrate impressive performance in 

emotion relativity (91.8%/96.2% on CelebA [175]). Our preliminary analysis suggests that 
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Attribute Exist. State Emot. Temp. Spat. Quan. Qual.
Model Avg 

ST FA VA CU WF MB SD ST VA CE FE SN CC ND VQ QB 

GPT-4V 

Gemini1.0-Pro 

LLaVA-1.6 

VILA-1.5 

91.8 89.0 76.9 71.4 72.1 

71.9 76.3 69.3 59.9 54.9 

84.9 72.1 77.7 72.6 68.7 

69.9 66.2 70.9 55.9 52.0 

58.3 41.9 

53.7 53.0 

26.5 20.7 

49.5 36.8 

92.2 87.8 

81.8 70.7 

89.7 79.3 

71.9 74.5 

91.8 83.4 

60.6 71.2 

96.2 83.5 

57.1 55.6 

71.4 73.7 

55.1 58.2 

51.0 50.2 

51.1 52.9 

56.1 

56.6 

67.2 

51.8 

63.8 

54.6 

50.1 

47.7 

73.0 

59.5 

64.8 

64.8 

74.7 

63.0 

66.0 

58.0 

Chance level 50.0 50.0 50.0 50.0 50.0 8.6 9.7 50.0 50.0 50.0 50.0 50.0 50.0 50.0 33.3 37.4 43.1 

Table 4.2: Overall results on COMPBENCH test split. We evaluate four leading MLLMs across 
eight relative comparisons spanning sixteen tasks. The top-performing model in each task is indicated 
in bold. ST: MIT-States [111], FA: Fashionpedia [115], VA: VAW [205], CU: CUB-200-2011 [261], 
WF: Wildfsh++ [308], MB: MagicBrush [296], SD: Spot-the-diff [114], CE: CelebA [175], FE: FER-
2013 [80], SN: SoccerNet [77], CC: CompCars [283], ND: NYU-Depth V2 [236], VQ: VQAv2 [81], 
QB: Q-Bench2 [297]. 

their capacity to determine the degree of emotion (e.g., smiling) relies on specifc facial 

features such as lip curvature or visible teeth. 

Challenges in Existence. All MLLMs show weak performance in existence relativity 

tasks. We attribute this to the multiple capabilities these tasks demand, including spatial 

understanding and precise object recognition/comparison. For instance, when an object 

in the left image is moved to a different location in the right image, the models need to 

not only recognize the same object in the right image but also understand the relative 

change in its position. This necessitates both robust object recognition and accurate spatial 

reasoning. Given that an image can contain numerous objects, the model should have a deep 

understanding of how the existence of them changes between images. 

Challenges in Temporality and Spatiality. MLLMs encounter diffculties with both 

temporal relativity, which requires commonsense, and spatial relativity, which demands 

comprehension of depth perception between objects. Specifcally, for the spatial task, all 
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MLLMs perform below 70%, and notably, both proprietary models, GPT-4V and Gemini1.0-

Pro, only achieve slightly above chance levels (56.1% and 56.6%, respectively). This 

underscores the need for further research in improving spatial relativity to advance models 

towards artifcial general intelligence (AGI). 

Challenges in Quantity & Quality. We observe the mediocre performance of MLLMs in 

quantity relativity (e.g., GPT-4V: 63.8%, VILA-1.5: 47.7%). We attribute this to the models’ 

weak capability in accurately counting objects in images. Similarly, MLLMs struggle with 

assessing image quality (e.g., 73.0% of GPT-4V’s accuracy). These capabilities are crucial 

for making informed decisions in our daily lives (cf. §4.1), highlighting the need for MLLMs 

to improve in these aspects. 

Variability in performance across domains. The performance of MLLMs varies in differ-

ent domains. For instance, they excel at comparing visual attributes of daily objects [111] 

and clothing [115] while struggling with those of animals (e.g., birds [261], fsh [308]). This 

could be due to the complexity of animal features, such as feathers, scales, or markings, 

which are more challenging for the model to interpret compared to simpler attributes in 

everyday objects. 

4.5.3 Further Analyses 

Two-stage reasoning. What if we frst ask MLLMs to analyze each image in a pair 

separately (e.g., “How far is the table from the camera that took this photo? Return a number 

in feet.”) and use their language responses to answer a follow-up pure language question 

(e.g., “Based on the responses, which object is closer to the camera?”)? We evaluate this 

two-stage reasoning approach on three comparison tasks: Existence, Emotion, and Spatiality. 

We fnd that GPT-4V, using this two-stage reasoning, performs less effectively on all three 
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Model 
Exist. 
MB 

Emot. 
CE 

Spat. 
ND 

Model 
Temp. 

SN 
Quan. 
VQ 

GPT-4V 58.3 91.8 56.1 LLaVA-1.6 51.0 50.1 
GPT-4Vtwo-stage 45.9 90.3 36.3 LLaVA-1.6fne-tuned 93.9 56.6 

Table 4.3: Left: Two-stage reasoning. Analyzing images separately and then comparing them via a 
pure language question reduces performance, due to challenges in absolute inference and reasoning. 
Right: Fine-tuning results. Fine-tuned LLaVA-1.6 excels in temporal relativity but falls short in 
quantity, struggling with counting. 

tasks (Left in Table 4.3). This is likely because analyzing images separately can sometimes 

be more challenging than comparing images directly. For instance, calculating the exact 

distance from an object to the camera may be diffcult, leading to inaccurate numbers. In 

contrast, directly answering a question, “Which object is closer to the camera?” may be 

easier, as models only need to determine the relative closeness between objects. 

Fine-tuning experiments. We conduct a study to see if fne-tuning helps improve the 

comparative capabilities of MLLMs. We focus on Temporality and Quantity and fne-tune 

LLaVA-1.6 separately for each task. Concretely, following LLaVA’s paper [169], we only 

train the bridge and the language modules while keeping the vision encoder frozen. As 

shown in Table 4.3 (Right), fne-tuning signifcantly benefts LLaVA-1.6 in the temporal 

task (SoccerNet). However, interestingly, it only marginal gains in quantity questions. We 

attribute this to its vision encoder, CLIP [207], which may have weak capabilities in counting 

the number of objects, as reported by several prior works [207, 197, 204]. This suggests 

considering new architectures or training strategies to improve its counting capabilities as 

future work. Please see the supplementary material for further details. 

Error Analysis. We analyze error cases by GPT-4V and offer insights to enhance its 

performance (Figure 4.3). First, GPT-4V may not effectively distinguish the color between 
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Q: Which plane is bluer?

: Right : Left

Q: Which image has 
more umbrellas?

: Right : Left

Q: What is the most obvious 
difference between two images?

: Books : None : Waiter : None

Figure 4.3: Error Analysis on COMPBENCH. We observe four types of errors where GPT-4V [2] 
falls short: (i) differentiating colors between objects and backgrounds, (ii) counting small or distant 
objects, (iii) identifying objects within crowded scenes, and (iv) recognizing out-of-focus details. 

Model Accuracy 

GPT-4V 68.6% 
Humans 86.5% 

Table 4.4: Preliminary human evaluation on 140 samples. 

objects and backgrounds. For instance, in the frst example of Figure 4.3, the object — 

a plane — shares a similar color (i.e., blue) with the background, causing GPT-4V to 

fail in selecting the bluer plane. Second, GPT-4V struggles to count accurately for small 

or distant objects (e.g., people further away wearing umbrellas), as shown in the second 

example. Third, GPT-4V fnds it challenging to identify the target object if numerous items 

exist within images. In the third example, both images contain multiple objects, such as 

monitors, laptops, keyboards, desks, and books, and GPT-4V fails to pinpoint the target 

object (i.e., books). Lastly, GPT-4V may overlook details in out-of-focus areas of images. 

For instance, in the fourth example, the camera focuses on a pizza, leaving a waiter out of 

focus. Consequently, GPT-4V fails to detect facial changes in the waiter, highlighting its 

struggle with details in out-of-focus areas. 
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Human evaluation. We investigate how much current MLLMs (e.g., GPT-4V [2]) lag behind 

human performance. We conduct a preliminary human evaluation using 140 examples 

randomly sampled from the sixteen tasks (columns) in Table 4.1. We ask fve human 

evaluators, different from our annotators, to answer these questions and average their 

performance. As shown in Table 4.4, the performance of GPT-4V on these examples is 

approximately 18% below that of humans. This not only highlights the challenge of our 

COMPBENCH but also underscores the limited capabilities of current MLLMs in multi-image 

relative comparison. 

4.6 Summary 

We introduce COMPBENCH, a comprehensive benchmark designed to evaluate compara-

tive reasoning in multimodal LLMs (MLLMs). COMPBENCH offers extensive coverage of 

eight relative comparisons between pairs of images drawn from fourteen diverse domains. 

COMPBENCH evaluates recent MLLMs, offering detailed analyses and insights for future 

advancements. 
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Q: Which branch is thinner?
: Left : Right

Q: Which cake is more ruffled?
: Left : Right

Q: Which hose is more crinkled?
: Left : Right

MIT-
States

Q: Which wheel is more dented?
: Right : Left

Q: Which neckline is 
more square?
: Left : Right

Q: Which coat’s fit is 
more curved?
: Left : Right : Right : Left

Q: Which pants’ fit 
is looser?

: Right : Left

Q: Which dress is 
more symmetrical?

Fashion

VAW

Q: Which clouds is whiter?

: Left : Right

Q: Which dog is more asleep?

: Right : Left : Left : Right

Q: Which cat is staring more 
directly at the camera? Q: Which person is more hugging?

: Left : Right

Figure 4.4: Qualtiative examples on MIT-States [111], Fashionpedia [115], and VAW [205]. 

CUB
Q: Which bird has more orange 

on its throat?

: Left : Right

Q: Which bird has more brown 
on its wings?

: Right : Left

Q: Which bird has a smaller bill 
length to head length ratio?

: Right : Left

Q: Which bird has more grey 
on its breast?

: Left : Right

Wildfish
Q: Which fish has a more 

prominent dark spot on the 
posterior upper side of the body?

: Left : Right

Q: Which fish has a more 
yellow dorsal fin?

: Left : Right

Q: Which fish has a more 
pronounced dark blotch on 

the dorsal fin?

: Right : Left

Q: Which fish has a more 
solid yellow backside with 

two black lines?

: Left : Right

Magic
Brush

: Cup : None : Chair : None : Cup : None: Boat : None

Q: What is the most obvious difference between two images?

Figure 4.5: Qualtiative examples on CUB-200-2011 [261], Wildfsh++ [308], and Mag-
icBrush [296]. 
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Q: What is the most obvious difference between two images?

Spot-
the-diff

: People : None : Man : None : Black car : None : Car : People

CelebA
Q: Which person smiles more?

: Right : Left : Left : Right : Right : Left : Left : Right

FER-
2013

Q: Which person feels 
more sad?

: Right : Left

Q: Which person feels 
more fearful?
: Right : Left : Right : Left

Q: Which person feels 
more neutral?

Q: Which person feels 
more sad?

: Right : Left

Figure 4.6: Qualtiative examples on Spot-the-diff [114], CelebA [175], and FER-2013 [80]. 

SoccerNet

: Left : Right

Q: Which frame occurred first?
: Right : Left : Right : Left

CompCars

: Right : Left : Left : Right: Left : Right

Q: Which car is newer in terms of its model year or release year? 

NYU-
Depth

Q: Which tissue box is closer to the camera?

: Right : Left

Q: Which towel is closer to the camera?

: Left : Right

Q: Which door knob is closer to the camera?

: Left : Right

Figure 4.7: Qualtiative examples on SoccerNet [77], CompCars [283], and NYU-Depth 
V2 [236]. 
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VQAv2

Q: Which image has more dogs?

: Left : Right

Q: Which image has more 
umbrellas pictured?

: Left : Right

Q: Which image has more people 
wearing glasses?

: Left : Same

Q-Bench2
Q: Compared to the first image, 

how is the sharpness of the second image?

: Clearer : More blurry

Q: Compared to the first image, how is 
the sharpness of the second image?

: Sharper : More blurry

Q: Is the first image sharper than 
the second image?

: Yes : No

Figure 4.8: Qualtiative examples on VQAv2 [81] and Q-Bench2 [297]. 
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Part IV: V&L Data Representations 
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Chapter 5: Aligning semantic representations with visual features 

In Part III, we discussed how to curate data effectively for V&L. Now that we have data, 

we need to encode it into representations (or embeddings) to train the models. In V&L, 

aligning visual and linguistic representations is crucial for effective model training. 

In this chapter, we explore new semantic representations for zero-shot image classif-

cation, which align closely with the visual features of images. Concretely, we revisit the 

use of documents as semantic representations. The documents, such as Wikipedia pages, 

contain rich visual information, which, however, can easily be buried by the vast amount 

of non-visual sentences. We thus propose a semi-automatic mechanism for visual sentence 

extraction that leverages the document section headers and the clustering structure of visual 

sentences. The extracted visual sentences essentially form semantic representations like 

visual attributes but need much less human effort. On the ImageNet dataset with over 10,000 

unseen classes, our new representations lead to a 64% relative improvement against the 

commonly used ones, demonstrating their superior alignment with visual features. 

5.1 Introduction 

Algorithms for visual recognition usually require hundreds of labeled images to learn 

how to classify an object [94]. In reality, however, the frequency of observing an object 

follows a long-tailed distribution [305]: many objects do not appear frequently enough 
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Figure 5.1: An illustration of our ZSL approach, which recognizes the input image by comparing it 
to the visual sentences of documents. Here we show two documents, one for “Tiger” and one for 
“Lion”. The gray area highlights the extracted visual sentences (red: by section headers; blue: by 
clustering). 

for us to collect suffcient images. Zero-shot learning (ZSL) [142], which aims to build 

classifers for unseen object classes using their semantic representations, has thus emerged 

as a promising paradigm for recognizing a large number of classes. 

Being the only information of unseen objects, how well the semantic representations 

describe the visual appearances plays a crucial role in ZSL. One popular choice is visual 

attributes [142, 201, 262] carefully annotated by humans. For example, the bird “Red bellied 

Woodpecker” has the “capped head pattern” and “pointed wing shape”. While strictly tied 

to visual appearances, visual attributes are laborious to collect, limiting their applicability to 

small-scale problems with hundreds of classes. 

For large-scale problems like ImageNet [59] that has more than 20,000 classes, existing 

ZSL algorithms [69, 194] mostly resort to word vectors of classes names [188, 203] that are 

automatically extracted from large corpora like Common Crawl. While almost labor free, 

word vectors are purely text-driven and barely aligned with visual information. As a result, 

the state-of-the-art ZSL accuracy on ImageNet falls far behind being practical [37]. 
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Is it possible to develop semantic representations that are as powerful as visual attributes 

without signifcant human effort? A feasibility study by representing a class with its 

Wikipedia page shows some positive signs — Wikipedia pages do capture rich attribute 

information. For example, the page “Red-bellied Woodpecker” contains phrases “red cap 

going from the bill to the nape” and “black and white barred patterns on their back, wings 

and tail” that exactly match the visual attributes mentioned above. In other words, if we can 

identify visual sentences from a document to represent a class, we are likely to attain much 

higher ZSL accuracy4. 

To this end, we present a simple yet effective semi-automatic approach for visual sen-

tence extraction, which leverages two informative semantic cues. First, we leverage the 

section structures of Wikipedia pages: the section header indicates what kind of sentences 

(visual or not) appear in the section. Concretely, we search Wikipedia pages of common 

objects following the synsets in ImageNet (e.g., fsh, room), and manually identify sections 

that contain visual information (e.g., characteristics, appearance). We then apply these visual 

headers to the Wikipedia pages of the remaining ImageNet classes. Second, we observe 

that visual sentences share some common contextual patterns: for example, they contain 

commonly used words or phrases of visual attributes (e.g., red color, furry surface). To lever-

age these patterns, we perform K-means sentence clustering using the BERT features [62] 

and manually select clusters that contain visual information. We keep sentences in these 

clusters and combine them with those selected by section headers to represent a document. 

See Figure 5.1 for an illustration. 

4Representing a class by a document has been studied in [306, 66, 206], but they use all sentences instead 
of extracting the visual ones. 
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To further increase the discriminative ability of the visual sentences between similar 

object classes (e.g., breeds of dogs), we introduce a novel scheme to assign weights to 

sentences, emphasizing those that are more representative for each class. 

We validate our approach on three datasets: ImageNet Fall 2011 dataset [59], which con-

tains 14,840 unseen classes with Wikipedia pages; Animals with Attributes 2 (AwA2) [277], 

which has 50 animal classes; Attribute Pascal and Yahoo (aPY) [67], which has 32 classes. 

Our results are promising: compared to word vectors on ImageNet, we improve by 64% 

using visual sentences. On AwA2 and aPY, compared to visual attributes annotated by 

humans, we improve by 8% and 5%, respectively. 

5.2 Comparsion to existing works 

Semantic representations. Visual attributes are the most popular semantic representations 

[142, 201, 262, 298]. However, due to the need of human annotation, the largest dataset has 

only 717 classes. [214, 213] collect visual sentences for each image, which is not scalable. 

For large-scale recognition, word vectors [188] have been widely used. [182, 124, 268] 

explore the use of WordNet hierarchy [189], which may not be available in other applications. 

Similar to ours, [9, 66, 206, 306] represent classes by documents, by counting word 

frequencies but not extracting visual sentences. [11] extract single word attributes, which 

are not discriminative enough (e.g., “red cap” becomes “red”, “cap”). None of them works 

on ZSL with over 1,000 classes. 

[98, 144] collect images and tags of a class and derives its semantic representation from 

tags, which is not feasible for unseen classes on ZSL. 

Zero-shot learning algorithms. The most popular way is to learn an embedding space 

in which visual features and semantic representations are aligned and nearest neighbor 
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classifers can be applied [38, 221, 8, 137, 223, 302, 280, 238]. These algorithms consistently 

improve accuracy on datasets with attributes. Their accuracy on ImageNet, however, is 

saturated, mainly due to the poor quality of semantic representations [37]. 

5.3 Visual Sentence Extraction 

5.3.1 Background and notation 

ZSL algorithms learn to align visual features and semantic representations using a set of 

seen classes S. The alignment is then applied to the test images of unseen classes U . We 

denote by D = {(xn,yn ∈ S)}N
n=1 the training data (i.e., image feature and label pairs) with 

the labels coming from S. 

Suppose that we have access to a semantic representation ac (e.g., word vectors) for 

each class c ∈ S ∪U , one popular algorithm DeViSE [69] proposes the learning objective 

∑ ∑ max{0,∆ − fθ 
⊤(xn)M gϕ(ayn ) 

n c̸=yn 

+ fθ 
⊤(xn)M gϕ(ac)}, (5.1) 

where ∆ ≥ 0 is a margin. That is, DeViSE tries to learn transformations fθ and gϕ and 

a matrix M to maximize the visual and semantic alignment of the same classes while 

minimizing that between classes. We can then classify a test image x by 

argmaxc∈U fθ 
⊤(x)Mgϕ(ac). (5.2) 

(c) (c)Here, we consider that every class c ∈ S∪U is provided with a document Hc = {h1 , · · · ,h|Hc|} 
(c)rather than ac, where |Hc| is the amount of sentences in document Hc and h is the jthj 

sentence, encoded by BERT [62]. We mainly study DeViSE, but our approach can easily be 

applied to other ZSL algorithms. 
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Section headers 
Characteristics, Description, Appearance, Habitat, Diet, 
Construction and Mechanics, Materials for utensil, 
Design for appliance, Furnishings for room, Fabrication, 
Feature for geological formation, Design, Equipment for sport 

History, Health, Terminology, Mythology, Conservation, Culture, 
References, External links, Further reading 

Table 5.1: Visual (top) & Non-Visual (bottom) sections. 

5.3.2 Visual section selection 

We aim to flter out sentences in Hc that are not describing visual information. We frst 

leverage the section headers in Wikipedia pages, which indicate what types of sentences 

(visual or not) are in the sections. For example, the page “Lion” has sections “Description” 

and “Colour variation” that are likely for visual information, and “Health” and “Cultural 

signifcance” that are for non-visual information. 

To effciently identify these section headers, we use ImageNet synsets [59], which group 

objects into 16 broad categories. We randomly sample 30 ∼ 35 classes per group, resulting 

in a set of 500 classes. We then retrieve the corresponding Wikipedia pages by their names 

and manually identify section headers related to visual sentences. By sub-sampling classes 

in this way, we can quickly fnd section headers that are applicable to other classes within 

the same groups. Table 5.1 shows some visual/non-visual sections gathered from the 500 

classes. For example, “Characteristics” frequently appears in pages of animals to describe 

their appearances. In contrast, sections like “History” or “Mythology” do not contain visual 

information. Investigating all the 500 Wikipedia pages carefully, we fnd 40 distinct visual 

sections. We also include the frst paragraph of a Wikipedia page, which often contains 

visual information. 
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Sentence clusters 
It has large ears that help the fox lower its body temperature. 
It usually has a gray coat, with rusty tones, and a black tip to its tail. 
It has distinct dark patches around the nose. 
It is most recognisable for its dark vertical stripes on orangish-brown fur. 
· · · muscular body with powerful forelimbs, a large head and a tail. 
They have a mane-like heavy growth of fur around the neck and jaws · · · 
The kit fox is a socially monogamous species. 
Male and female kit foxes usually establish monogamous mating · · · 
The average lifespan of a wild kit fox is 5.5 years. 
Tiger mates all year round, but most cubs are born between March · · · 
The father generally takes no part in rearing. 
The mortality rate of tiger cubs is about 50% in the frst two years. 

Table 5.2: Sentence clusters. The top cluster is visual and the bottom one is non-visual. The 
sentences from a class kit-fox are in red and those from a class tiger are in blue. 

5.3.3 Visual cluster selection 

Our second approach uses K-means for sentence clustering: visual sentences often share 

common words and phrases of visual attributes, naturally forming clusters. We represent 

each sentence using the BERT features [62], and perform K-means (with K = 100) over 

all the sentences from Wikipedia pages of ImageNet classes. We then manually check the 

100 clusters and identify 40 visual clusters. Table 5.2 shows a visual (top) and a non-visual 

(bottom) cluster. We highlight sentences related to two classes: “kit-fox” (red) and “tiger” 

(blue). The visual cluster describes the animals’ general appearances, especially about visual 

attributes “dark”, “black”, “tail”, “large”, etc. In contrast, the non-visual cluster describes 

mating and lifespan that are not related to visual aspects. 

5.3.4 Semantic representations of documents 

After we obtain a fltered document Ĥc, which contains sentences of the visual sections 

and clusters, the next step is to represent Ĥc by a vector ac so that nearly all the ZSL 

algorithms can leverage it. 
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A simple way is average, ā c = 1 
∑h∈ ˆ h, where h is the BERT feature. This,|Ĥc| Hc 

however, may not be discriminative enough to differentiate similar classes that share many 

common descriptions (e.g., dog classes share common phrase like “a breed of dogs” and 

“having a coat or a tail”). 

We therefore propose to identify informative sentences that can enlarge the difference of 

ac between classes. Concretely, we learn to assign each sentence a weight λ , such that the 

1resulting weighted average ac = |Ĥc| ∑h∈Ĥc 
λ (h) × h can be more distinctive. We model 

λ (·) ∈ R by a multi-layer perceptron (MLP) bψ 

exp(bψ(h)) 
∑ ˆ′∈h Hc 

λ (h) = . (5.3)
exp(bψ(h ′ )) 

′We learn bψ to meet two criteria. On the one hand, for very similar classes c and c whose 

similarity cos(ac,ac ′ ) is larger than a threshold τ , we want cos(ac,ac ′ ) to be smaller than τ 

so they can be discriminable. On the other hand, for other pair of less similar classes, we 

want their similarity to follow the average semantic representation ā c 
5. 

To this end, we initialize bψ such that the initial ac is close to ā c. We do so by frst 

learning bψ to minimize the following objective 

∑ 
c∈S∪U 

max{0,ε − cos(ac, ā c)}. (5.4) 

We set ε = 0.9, forcing ac and ā c of the same class to have cos(ac, ā c) > 0.9. We then 

fne-tune bψ by minimizing the following objective 

S∪U S∪U 

∑∑ 
c c̸=c ′ 

max{0,cos(ac,ac ′ ) − τ}. (5.5) 

We assign τ a high value (e.g., 0.95) to only penalize overly similar semantic representations. 

5The purpose of introducing λ (·) is to improve ac from the average representation ā c to differentiate 
similar classes. 

70 

https://e.g.,0.95


5.4 Experiments 

5.4.1 Dataset and splits: ImageNet 

We use the ImageNet Fall 2011 dataset [59] with 21,842 classes. We use the 1K classes 

in ILSVRC 2012 [222] for DeViSE training and validation (cf. Equation 5.1), leaving the 

remaining 20,842 classes as unseen classes for testing. We follow [36] to consider three 

tasks, 2-Hop, 3-Hop, and ALL, corresponding to 1,290, 5,984, and 14,840 unseen classes 

that have Wikipedia pages and word vectors and are within two, three, and arbitrary tree hop 

distances (w.r.t. the ImageNet hierarchy) to the 1K classes. On average, each page contains 

80 sentences. For images, we use the 2,048-dimensional ResNet visual features [94] 

provided by [277]. For sentences, we use a 12-layer pre-trained BERT model [62]. We 

denote by BERTp the pre-trained BERT and BERTf the one fne-tuned with DeViSE. 

5.4.2 Baselines, variants, and metrics 

Word vectors of class names are the standard semantic representations for ImageNet. 

Here we compare to the state-of-the-art w2v-v2 provided by [37], corresponding to a skip-

gram model [188] trained with ten passes of the Wikipedia dump corpus. For ours, we 

compare using all sentences (NO), visual sections (Vissec) or visual clusters (Visclu), and 

both (Vissec-clu). On average, Vissec-clu flters out 57% of the sentences per class. We denote 

weighted average (Section 5.3.4) by BERTp-w and BERTf-w. 

The original DeViSE [69] has fθ and gϕ as identity functions. Here, we consider a 

stronger version, DeViSE⋆ , in which we model fθ and gϕ each by a two-hidden layers 

multi-layer perceptron (MLP). We also experiment with two state-of-the-art ZSL algorithms, 

EXEM [37] and HVE [171]. 

We use the average per-class Top-1 classifcation accuracy as the metric [277]. 
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Model Type Filter 2-Hop 3-Hop ALL 
Random - - 0.078 0.017 0.007 

DeViSE 
w2v-v2 - 6.45 1.99 0.78 
BERTp No 6.73 2.23 0.83 
w2v-v2 - 11.55 3.07 1.48 

No 13.84 4.05 1.75 
BERTp Vissec 15.56 4.41 1.82 

DeViSE⋆ 
Visclu 

Vissec-clu 

15.72 
15.86 

4.49 
4.65 

2.01 
2.05 

BERTp-w Vissec-clu 16.32 4.73 2.10 
No 17.70 5.17 2.29 

BERTf Vissec 

Visclu 

Vissec-clu 

19.52 
19.74 
19.82 

5.20 
5.37 
5.39 

2.32 
2.36 
2.39 

BERTf-w Vissec-clu 20.47 5.53 2.42 

EXEM 
w2v-v2 - 16.04 4.54 1.99 
BERTf Vissec-clu 21.22 5.42 2.37 

HVE 
w2v-v2 - 8.63 2.38 1.09 
BERTf-w Vissec-clu 18.42 5.12 2.07 

Table 5.3: Comparison of different semantic representations on ImageNet. We use per-class Top-1 
accuracy(%). The best is in red and the second best in blue. 
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AwA2 aPY 
Model Type 

ZSL 
U 

GZSL 
S H 

ZSL 
U 

GZSL 
S H 

Visual attributes 59.70 17.10 74.70 27.80 37.02 3.54 78.41 6.73 
DeViSE w2v-v2 39.56 2.18 69.29 4.22 27.67 1.68 85.53 3.22 

BERTp + Vissec-clu 64.32 19.79 72.46 31.09 38.79 3.94 71.60 7.51 

Table 5.4: Results on AwA2 and aPY. We compare different semantic representations. Visual 
attributes are annotated by humans. GZSL is the generalized ZSL setting [277]. In GZSL, U, S, H 
denote unseen class accuracy, seen class accuracy, and their harmonic mean, respectively. We use 
per-class Top-1 accuracy (%). 

5.4.3 Main results 

Table 5.3 summarizes the results on ImageNet. In combining with each ZSL algorithm, 

our semantic representations Vissec-clu that uses visual sections and visual clusters for 

sentence extraction outperforms w2v-v2. More discussions are as follows. 

BERT vs. w2v-v2. For both DeViSE⋆ and DeViSE, BERTp by averaging all the sentences in 

a Wikipedia page outperforms w2v-v2, suggesting that representing a class by its document 

is more powerful than its word vector. 

DeViSE⋆ vs. DeViSE. Adding MLPs to DeViSE largely improves its accuracy: from 0.78% 

(DeViSE + w2v-v2) to 1.48% (DeViSE⋆ + w2v-v2) at ALL. In the following, we then focus 

on DeViSE⋆ . 

Visual sentence extraction. Comparing different strategies for BERTp, we see both Visclu 

and Vissec largely improves NO, demonstrating the effectiveness of sentence selection. 

Combining the two sets of sentences (Vissec-clu) leads to a further boost. 

Fine-tuning BERT. BERT can be fne-tuned together with DeViSE⋆ . The resulting BERTf 

has a notable gain over BERTp (e.g., 2.39% vs. 2.05%). 
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Weighted average. With the weighted average (BERTp-w, BERTf-w), we obtain the best 

accuracy. 

ZSL algorithms. EXEM + w2v-v2 outperforms DeViSE⋆ + w2v-v2, but falls behind 

DeViSE⋆ + BERTp-w (or BERTf, BERTf-w). This suggests that algorithm design and seman-

tic representations are both crucial. Importantly, EXEM and HVE can be improved using 

our proposed semantic representations, demonstrating the applicability and generalizability 

of our approach. 

5.4.4 Results on other datasets 

Table 5.4 summarizes the results on AwA2 [277] and aPY [67]. The former has 40 

seen and 10 unseen classes; the latter has 20 seen and 12 unseen classes. We apply 

DeViSE together with the 2,048-dimensional ResNet features [94] provided by [277]. Our 

proposed semantic representations (i.e., BERTp + Vissec-clu) outperform w2-v2 and the 

manually annotated visual attributes on both the ZSL and generalized ZSL (GZSL) settings. 

These improved results on ImageNet, AwA2, and aPY demonstrate our proposed method’s 

applicability to multiple datasets. 

5.4.5 Analysis on ImageNet 

To further justify the effectiveness of our approach, we compare to additional baselines 

in Table 5.5. 

• BERTp-w-direct: it directly learns bψ (Equation 5.3) as part of the DeViSE objective. 

Namely, we directly learn bψ to identify visual sentences, without our proposed selection 

mechanisms, such that the resulting ac optimizes Equation 5.1. 

• Par1st: it uses the frst paragraph of a document. 

• Clsname: it uses the sentences of a Wikipedia page that contain the class name. 
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Model Type Filter 2-Hop 3-Hop ALL 
BERTp No 13.84 4.05 1.75 
BERTp-w-direct No 14.85 4.25 1.79 

Par1st 13.48 4.10 1.78 
DeViSE⋆ 

BERTp 

Clsname 

Vissec 

14.82 
15.56 

3.31 
4.41 

1.40 
1.82 

Visclu 15.72 4.49 2.01 
Vissec-clu 15.86 4.65 2.05 

BERTp-w Vissec-clu 16.32 4.73 2.10 

Table 5.5: The effectiveness of our visual sentence extraction. BERTp-w-direct directly learns visual 
sentences without our sentence selection. Par1st and Clsname use the frst paragraph and sentences 
containing the class name, respectively. 

As shown in Table 5.5, our proposed sentence selection mechanisms (i.e., Vissec, Visclu, and 

Vissec-clu) outperform all the three baselines. 

5.5 Summary 

ZSL relies heavily on the quality of semantic representations. Most recent work, however, 

focuses solely on algorithm design, trying to squeeze out the last bit of information from the 

pre-defne, likely poor semantic representations. [37] has shown that existing algorithms are 

trapped in the plateau of inferior semantic representations. Improving the representations 

is thus more crucial for ZSL. We investigate this direction and show promising results by 

extracting distinctive visual sentences from documents for representations, which can be 

easily used by any ZSL algorithms. 
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Figure 5.2: Qualitative results between BERTf-w and w2v-v2 on ImageNet. For each image, we 
report Top 5 prediction. While w2v-v2 is not able to distinguish similar classes (e.g. Predicting 
“Scooter” as “Tandem bicycle”), our BERTf-w differentiates them. 
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Chapter 6: HTML representations with visual contextualization 

In this chapter, we explore another study to improve representations for V&L tasks. 

Concretely, we focus on HTML representations for web navigation. Automatic web 

navigation aims to build a web agent that can follow language instructions to execute 

complex and diverse tasks on real-world websites. Existing work primarily takes HTML 

documents as input, which defne the contents and action spaces (i.e., actionable elements 

and operations) of webpages. Nevertheless, HTML documents may not provide a clear 

task-related context for each element, making it hard to select the right (sequence of) actions. 

We thus propose to contextualize HTML elements through their “dual views” in webpage 

screenshots: each HTML element has its corresponding bounding box and visual content 

in the screenshot. We build upon the insight—web developers tend to arrange task-related 

elements nearby on webpages to enhance user experiences—and propose to contextualize 

each element with its neighbor elements in the screenshot, using both textual and visual 

features. The resulting representations of HTML elements are more informative for the 

agent to take action during web navigation. 

6.1 Introduction 

We study automatic web navigation with natural language instructions [60, 285]. This 

problem is crucial as it can potentially streamline and automate a wide range of tasks 
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[button] Pick-up Mar22

[combobox]

[button] Return location

[button] Mar23

[searchbox] Code

Encoder

{ele} {ele} {ele} {ele} {ele}HTML Elements

Visual Features

Dual-VCR 
Representation of {ele}

1Positional Embeddings 2 3 4 5

Document
HTML

Screenshot
Webpage

Elements
HTML

Figure 6.1: Overview of our proposed Dual-View Contextualized Representation (DUAL-
VCR). HTML elements (e.g., “[combobox]”) may not have clear contexts for solving web
navigation tasks (e.g., “Find the lowest rent truck with a pick-up time at 11 am on March
27.”). DUAL-VCR contextualizes each element with its neighbors in the screenshot (e.g.,
“[button] Pick-up Mar22”) to obtain more informative representations for decision-making.
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in our increasingly web-centric world, from online shopping to accessing information. 

Successfully solving this problem can also broadly advance artifcial intelligence as it 

requires understanding and executing various tasks by interacting with dynamic and complex 

real-world (web) environments. 

Existing work primarily takes HTML documents as the web agent’s input [86, 60, 240], 

which defne the meaning and layout of webpage content. Written partially in natural 

language, HTML documents enable the use of large language models (LLMs) [52, 195, 30, 

102, 257, 50, 49, 249] to ground language instructions (e.g., “Find one-way fights from 

New York to Toronto.”) in web environments. Moreover, elements in HTML documents 

directly defne the space of actions (e.g., element “[button] Search” with operation “click”), 

preventing the agent from hallucinating infeasible actions. 

With that being said, HTML documents may lack a clear task-related context for each 

element, impeding the agent from selecting the right (sequence of) actions to complete a task. 

HTML is quite fexible for web developers to arrange their code. Even semantically related 

elements, such as an actionable element (e.g., “drop-down box”) and its label element (e.g., 

“Number of Passengers”), may not be located nearby in the document or the DOM tree. 

This problem also applies to elements relevant to solving a task. While LLMs may learn 

to capture the context, a raw HTML document of real-world webpages is often quite huge, 

consisting of tens of thousands of tokens, making it either infeasible or cost-prohibitive to 

be directly fed into LLMs [86, 60, 240]. 

In this paper, we propose to enhance the context of each HTML element by leveraging 

its “dual view” in the screenshot of the rendered webpage: many of the HTML elements 

(including the actionable ones) are visible in the screenshot and have their corresponding 
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bounding boxes6. Taking the insight—semantically related and task-related HTML elements 

are often located nearby on the webpage to facilitate user experiences—we propose to 

contextualize each HTML element with its neighbors in the screenshot. Concretely, when 

encoding each HTML element, we 1) append its spatially adjacent elements with positional 

embeddings and 2) incorporate both the visual and textual features (Figure 6.1). 

While simple, our method, which we name Dual-View Contextualized Representation 

(DUAL-VCR), has several compelling properties that beneft web navigation fundamentally. 

First, DUAL-VCR uses the built-in feature of HTML documents to align textual and 

visual content, making it robust to complex and diverse websites. Second, DUAL-VCR 

effectively leverages visual cues on the webpages, which are designed to ease users’ efforts in 

understanding and completing tasks. Specifcally, DUAL-VCR connects visually proximate 

elements that are often semantically related and task-related, providing the agent with more 

explicit contexts to take not only individual actions but also the sequence of actions. Last 

but not least, DUAL-VCR can potentially be integrated into any web navigation algorithms 

that take HTML documents as input. 

We validate DUAL-VCR on the Mind2Web dataset [60], the largest web navigation 

benchmark with over 2,000 tasks curated from 137 real-world websites across 31 domains, 

including restaurants, airlines, public services, etc. Concretely, we implement DUAL-VCR 

on top of the MindAct algorithm [60], which was proposed to tackle huge HTML documents. 

In short, at each action, MindAct frst applies a small LM to rank each HTML element to 

shrink the document; it then uses an LLM to predict the action. We integrate DUAL-VCR 

into both steps to enhance the context for element ranking and decision-making. DUAL-

VCR consistently improves MindAct across all three scenarios (cross-task, cross-website, 

6These bounding boxes can be directly inferred from the HTML document without the need to detect 
them. 
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and cross-domain), leading to a 3.7% absolute gain on average over nine evaluation metrics. 

Moreover, DUAL-VCR notably outperforms baselines that use entire HTML documents or 

screenshots as input, offering signifcant advantages in computation and accuracy. 

Our contributions are three-folded: 

• We propose DUAL-VCR, a simple and effective dual-view representation of HTML elements 

for web navigation. 

• DUAL-VCR consistently outperforms baselines on the real-world web navigation benchmark 

Mind2Web [60]. 

• We conduct comprehensive analyses to understand the effect of our design choices on web 

navigation performance. 
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t=3

MindAct: 

GT: 

Dual-VCR:

[combobox] SELECT 11:00 am

[button] Vehicles CLICK ✘
[combobox] SELECT 11:00 am ✓

t=4

[button] 03/27/2023 CLICK

[button] 03/27/2023 CLICK

[button] 03/27/2023 CLICK

✓
✓

t=8

[checkbox] 4+ CLICK

[button] Extra 4 CLICK ✘
CLICK[checkbox] 4+ ✓

MindAct: 

GT: 

Dual-VCR:

[button] Review CLICK ✘
[button] Select CLICK

[button] Select CLICK ✓

t=9

Find the lowest rent truck for 4 people, pick up from JFK airport at 11 am on March 27 and return at noon on March 30.

Web Navigation Task

Figure 6.2: Example of real-world web navigation. Top: the web navigation task described
in natural language. Left: the sequence of HTML elements (visualized on webpages, not
HTML documents) to interact with to complete the task. We superimpose bounding boxes
and arrows to locate the target elements and indicate their order. Right: the detail at each
time step (we showed t = {3,4,8,9} for brevity). GT: ground-truth action (Element with
Operation). We compare the predicted actions by MindAct [60] and our DUAL-VCR. The
bounding box and bounding box indicate the target element and one of its neighbors encoded
by DUAL-VCR. As shown, DUAL-VCR correctly predicts the elements and operations
at “all” time steps, taking advantage of the much richer task-related dual-view context it
encodes.
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6.2 Literature survey on web navigation 

Web navigation datasets. Several prior studies [108, 285, 157, 244, 31] have introduced 

promising benchmarks for assessing agents in web navigation tasks. However, these bench-

marks are often limited to a narrow range of website domains or confned to simplifed 

simulated environments. For instance, MiniWob++ [108] and WebShop [285] collected 

a set of websites including daily tasks (e.g., shopping), but each website only has fewer 

than ffty HTML elements on average. Some other studies [157, 244, 31] instead explored 

other domains, including mobile applications, but their action spaces are often simpler than 

web navigation. Recently, Mind2Web [60] released the frst large-scale web navigation 

benchmark consisting of over 2K tasks from various real-world websites. This enables a 

comprehensive understanding of web agent’s behaviors in “real-world” scenarios. 

The use of HTML documents. Most earlier work [108, 285, 166, 116] focused on simple 

navigation scenarios like MiniWob++ [108]. Due to the brevity of its HTML documents, 

they input whole HTML documents into LLMs to complete the web navigation tasks. A 

few studies represented HTML documents in a more dense format. For instance, ASH [240] 

summarized the HTML document using LLMs with hierarchical prompting. DOM-Q-

NET [116] leveraged a graph neural network to represent a document as a graph. For 

real-world web navigation (e.g., Mind2Web), HTML documents are often overly lengthy 

and complex. Thus, recent studies [60, 71, 86] applied text-based fltering to frst identify 

key HTML elements within the document and only used the selected elements to complete 

the task. While all these prior methods are promising, the HTML document alone may not 

provide a clear task-related context for each element, making it challenging to select the 

right actions. Our approach instead enhances the context of each HTML element based on 

their dual view in the screenshot. 
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The use of webpage screenshots. Beyond using HTML documents, several studies [108, 

285, 230, 148, 71, 109, 299, 91, 99] have explored the incorporation of screenshots for web 

navigation. Some of them [108, 71, 109, 91, 99, 299] utilized both screenshots and HTML 

documents to learn their joint representations during decision-making. Some others [230, 

148, 48] solely relied on screenshots, bypassing the use of HTML documents. We note that 

all prior methods primarily focused on utilizing “whole” screenshots. In contrast, we shift 

the focus to neighboring elements within the screenshot, providing signifcant benefts in 

computation and accuracy. 

6.3 Approach: DUAL-VCR 

We introduce Dual-View Contextualized Representation (DUAL-VCR) for enhanced 

web navigation. To begin with, we provide a brief background about web navigation. 

6.3.1 Background: web navigation 

A web navigation task consists of a website S (e.g., an airline website) and an instruction 

q (“Find one-way fights from New York to Toronto.”). Given (S,q), a web agent f needs to 

decide and perform a sequence of actions a = {a1,a2, · · · ,at , · · ·} on the website to complete 

the task. Figure 6.2 (left) gives an illustration. 

At time step t, the website has an HTML document Ht , composed of a list of elements 

Ht = {et,1,et,2, · · · ,et,N}. These HTML elements jointly defne 1) the layout and content on 

the rendered webpage It , and 2) the action space at time t: each candidate action is a pair of 

an actionable element (e.g., “[textbox] To”) and an operation (e.g., “Type Toronto”). After 

taking action at , both the HTML document and webpage will be updated into (Ht+1, It+1). 

For example, clicking the “[checkbox] One way” on the airline webpage removes the 
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“[textbox] Return date” from the webpage. Namely, the web environment is dynamic, and 

the agent must take this into account to decide its actions. 

Because of the rich content in the HTML document Ht , existing work primarily takes it, 

together with the instruction q and the action history (e.g., Type New York in the From box), 

as the agent’s input at time t to decide the next action (e.g., Type Toronto in the To box), 

at+1 = f (q,Ht ,{a1,a2, · · · ,at }). (6.1) 

One excellent candidate for f is LLMs [52, 195, 30, 102, 257, 50, 49, 249], which have 

shown straggering sucesses in question answering [270] and logical reasoning [55]. For 

example, [108, 133] applied LLMs to simplifed web navigation. 

However, for real-world webpages that easily contain thousands of HTML elements 

(amounting to tens of thousands of tokens), directly applying LLMs is neither effcient 

nor effective. As such, recent work [86, 60, 240] employed a two-stage framework: frst 

summarizing the HTML document and then predicting the action. For instance, given the 

instruction q and the action history at time t, the MindAct algorithm [60] frst ranks each 

HTML element using a small LM. Only the top-K HTML elements are fed into an LLM to 

predict the next action. (See Figure 6.3 for an illustration.) 

6.3.2 Context enhancement 

We identify one critical pitfall in the two-stage framework. Since HTML documents may 

not provide a clear context for each element, the element ranker and the subsequent action 

predictor may not perform as effectively as expected. Figure 6.1 illustrates one such issue: 

the element “[combobox]” should be paired with “[button] Pick-up Mar22” to fully describe 

its role, i.e., time for pick-up. However, these two elements are not necessarily nearby in the 

HTML document. 
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Figure 6.3: The web navigation pipeline with DUAL-VCR, built on top of the MindAct
algorithm [60]. MindAct uses a small ranking LM to select candidate HTML elements and
a prediction LLM to decide actions. Blocks and arrows in NavyBlue indicate the insertion
of DUAL-VCR for enhanced element representations.

To resolve this issue, we propose to leverage the “dual view” of each HTML element

et,n ∈ Ht in the rendered webpage It to enhance its context. In essence, many HTML

elements (including the actionable ones) are visible in It . Further, their visual location (e.g.,

bounding boxes) can be inferred from HTML documents. Since a webpage (specifically, its

screenshot) is designed for users to interact with the website visually, we hypothesize that

incorporating the visual cues into HTML element representations would benefit the web

agent in understanding and completing tasks.

To this end, we propose Dual-View Contextualized Representation (DUAL-VCR).

In the screenshot view, we identify the bounding box of each HTML element using a web

automation testing tool7. Taking the insight—web developers tend to arrange semantically

relevant and task-related elements in proximity to each other on the screenshot to enhance

7https://playwright.dev/
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user experiences—we contextualize each element with its “visual” neighbors. Concretely, 

we calculate the center points of all elements using their bounding boxes and measure their 

pairwise distances. For each candidate element to be ranked by MindAct, we search for the 

closest M elements to form its context jointly. 

We consider both the visual and textual information to encode the candidate element and 

its visual neighbors. We extract each element’s visual feature using the Pix2Struct Vision 

Transformer (ViT) [145], which is pre-trained on webpage screenshots. Specifcally, we 

input the whole screenshot It into the ViT and apply ROI Align [93, 159] on top of the 

output embeddings to obtain the feature vector corresponding to each element’s bounding 

box. In the HTML document view, we extract each element’s corresponding “HTML text” 

following MindAct [60]. 

6.3.3 DUAL-VCR-enhanced element ranker 

In MindAct, a small ranking LM is built to predict each element’s importance for action 

prediction. At each time step, the ranking LM takes the element’s HTML text tokens, the 

task description q, and the previous actions as input. 

We propose to expand the ranking LM to integrate 1) both visual features and textual 

features and 2) both the candidate element and its neighbor elements. (See Figure 6.4 for 

an illustration.) We make the following design choices. To align the visual embedding 

and textual embedding, we follow the recent practice of vision-and-language models (e.g., 

BLIP-2 [150], LLaVA [169], LLaVA-1.5 [168]) to learn a linear projection layer to project 

ViT visual features into the same dimensionality as the token embeddings in the ranking 

LM. To pair each of the projected visual vectors with its corresponding text tokens and 

specify each neighbor element in the context, we add positional encoding. Concretely, we 

87 



Webpage 
Screenshot

HTML 
Document

Vision
Model

RoI
Align

Visual feat

Visual feat

Visual feat

Visual feat

Element

Element

Element

Element

1

2

3

4

1

2

3

4

Task 
Description

Previous 
Actions

0

0

R
anking LM

C
lassifier

[0, 1]
Score

Projection

Figure 6.4: DUAL-VCR-enhanced element ranker. We contextualize the candidate
element (denoted by ⋆) with its neighbors in the screenshot, using both the visual features
(by [145]) and textual features (extracted from the HTML document). Positional embeddings
are added to specify neighbor elements, learning their spatial relationships and pairing the
textual features with visual features. This dual-view contextualized representation is used to
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Figure 6.5: DUAL-VCR-enhanced action predictor. Given the top-K candidate elements
(three in the figure, marked with ⋆), DUAL-VCR appends each with its neighbor elements.
The resulting HTML snippet, together with the task description and previous actions, is then
fed into an LLM for predicting the next action.

sort the neighbors based on their spatial distances from the candidate element and add a

learnable positional embedding (unique for each rank) to the neighbor element’s visual

and text token embeddings. These positionally encoded visual and text token embeddings

(of the candidate and the neighbor elements) are fed into the ranking LM; the projected

visual features are prepended to the text embeddings, serving as soft visual prompts. In

training, we only learn the linear projection layer, the positional embeddings, and the LM

while keeping the ViT frozen. This training scheme has been shown to effectively enhance

the alignment between vision and language components and improve the pre-trained LM’s

adaptability to downstream tasks. Please see more details in the supplementary materials.

6.3.4 DUAL-VCR-enhanced action predictor

After obtaining the top-K elements from the ranker (§6.3.3), MindAct combines them

into an HTML snippet as the input to LLMs. The objective is to predict the action for the
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current time step, including the target element (e.g., “[textbox] To”) and its associated opera-

tion (e.g., “Type Toronto”). Specifcally, MindAct converts the target element prediction 

problem into multiple-choice question-answering. 

We apply DUAL-VCR to contextualize each of the answer candidates. Similarly to 

§6.3.3, we fnd the M closest neighbors for each candidate element on the screenshot. We 

then append the HTML text tokens of these M neighbors to the candidate element; we add 

specifc tokens to separate between elements. Figure 6.5 gives an illustration. Please see the 

supplementary material for more details. 

6.3.5 Why DUAL-VCR? 

DUAL-VCR leverages and encodes visual cues on the webpage, offering valuable 

contexts for the HTML elements in element ranking and action prediction. We show two 

cases. 

First, as shown in Figure 6.1, some HTML elements (e.g., “[combobox]”) are quite 

generic and must be paired with spatially nearby elements (e.g., “[button] Pick-up Mar22”) to 

specify their meanings (i.e., time for pick-up). Similar examples can be found in Figure 6.2. 

At t = 8, there are two seemingly similar candidates “[checkbox] 4+” and “[button] Extra 

4”. Nevertheless, the former is spatially closer to the element “Number of passengers”, 

indicating its relatedness to the task “... truck for 4 people ...” (see the top of Figure 6.2). 

At t = 9, two identical “[button] Select” elements exist. The only way to differentiate them 

is through their visual neighbors: one is associated with a lower price than the other. Our 

DUAL-VCR offers an explicit way to enforce these spatial contexts in the screenshots. 

Second, as shown in the left panel of Figure 6.2, consecutive steps to solve a task often 

involve spatially nearby elements. Completing one step thus introduces a prior that its nearby 
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elements may be the next to take action upon. As both the ranking LM and prediction LLM 

take the task description q, past actions, and our DUAL-VCR representation as input, the 

models could potentially capture such prior information to increase the success rate for the 

following action. For example, at t = 4, DUAL-VCR successfully takes the action “Select 

11:30 am”, likely attributing to its capability to recognize that the previously completed task 

was the spatially nearby “Select 03/27/2023”. 

6.4 Experimental Results 

Dataset. We validate DUAL-VCR on Mind2Web [60], a comprehensive benchmark for 

real-world web navigation. Unlike other benchmarks based on simulated websites with only 

a few HTML elements, Mind2Web uses over 100 real-world websites with thousands of 

HTML elements. Concretely, they provide over 2K open-ended tasks collected from 137 

real-world websites across 31 different domains, including travel, shopping, public service, 

etc (Table 6.1). Please see more details in the supplementary material. 

Evaluation Tasks. Followed by Mind2Web [60], we evaluate models at three different test 

splits. In Cross-Domain, we evaluate the model’s generalizability to a new domain where it 

has not seen any websites or tasks associated with that domain during training. This split 

contains 912 tasks in total. In Cross-Website (177 tasks), while the model is not exposed to 

test websites, it is trained on websites from the same domain and potentially with similar 

tasks. This confguration enables us to evaluate the model’s capacity to adapt to entirely 

new websites within familiar domains and tasks. Similar to the conventional training/test 

split, Cross-Task (252 tasks) randomly splits 20% of the data as a test set, regardless of the 

domains and the websites. Please see the supplementary material for more details. 
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Evaluation Metrics. We use the Mind2Web’s offcial metrics. The ranker performance 

is measured by Recall@K, where K is the number of top HTML candidate elements. 

Element Accuracy (Ele. Acc) compares the selected element with the ground-truth elements. 

Operation F1 (Op. F1) calculates the token-level F1 score for the predicted operation. Step 

Success Rate (Step SR) measures the success of each step; A step is considered successful 

only if both the selected element and the predicted operation are correct. For each step, they 

provide previous “ground-truth” actions with the assumption that the model successfully 

completes all previous steps. 

Baselines. DUAL-VCR is based on MindAct [60], which has a ranking LM and a pre-

diction LLM. Our main baselines are thus its ranker and action predictor, denoted by 

MINDACTRANK and MINDACTPRED. MINDACTRANK uses DeBERTabase [95], a small 

encoder-only LM to rank elements. For action prediction, MINDACTPRED uses Flan-

T5base [52], an instruction fne-tuned LLM. 

Our Models. Aligned with MindAct, we use the same DeBERTabase [95] / Flan-T5base [52] 

for our ranker / action predictor, repsectively. For visual features extraction, we utilize 

Pix2Struct [145]’s ViT (pre-trained on screenshots) as the visual backbone and apply ROI 

Align [93] on the element’s region. We use two linear layers to project visual features into 

textual embedding space. Please see the supplementary materials for details on the model 

training. 

Notation of DUAL-VCR. DUAL-VCR has several variations to understand the effect of 

each of its components in detail. We denote them as follows: 
• DUAL-VCRVIS: Ranker w/ candidate’s visual features. 

• DUAL-VCRVNEI-TXT: Ranker w/ neighbors’ HTML text. 

• DUAL-VCRVNEI-TXT+VIS: Ranker w/ candidate’s visual features and its neighbors’ visual features 
and HTML text. 

• DUAL-VCRPRED: Action predictor w/ neighbors’ HTML text. 
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Avg # HTML 
Dataset # Websites Website # Tasks 

Type Elements Tokens 

MiniWoB++ [108] 100 Simplifed 100 28 500 
Mind2Web [60] 137 Real-world 2,350 1,135 44,402 

Table 6.1: Statistics of Mind2Web [60]. Min2Web, the largest web navigation benchmark, collects 
real-world websites across various domains. The signifcant volume of content on the webpage (e.g., 
an average of 1K/44K HTML elements/tokens) poses challenges for LLMs in both computational 
and learning aspects. 

Ranker 
Recall 

@1 @5 @10 @50 

MINDACTRANK 25.4 61.0 73.5 88.9 
DUAL-VCRVNEI-TXT 37.3 70.8 79.3 89.2 
DUAL-VCRVIS 37.1 70.2 79.2 89.1 
DUAL-VCRVNEI-TXT+VIS 38.4 71.6 79.7 90.1 

Table 6.2: Ranking performance. Visual neighbors’ HTML text (DUAL-VCRVNEI-TXT) consistently 
outperforms MINDACTRANK. Moreover, DUAL-VCRVNEI-TXT+VIS, using both visual neighbors’ 
HTML text and visual features, performs best, showing the strength of dual-view contextualization 
in element ranking. 

6.4.1 Effectinvess of DUAL-VCR 

The main goal of our experiments is to show that our dual-view contexutalization is 

benefcial in (i) fnding promising top-K candidates from entire HTML documents (i.e., 

ranking peformance), and (ii) predicting the action, including both element selection and 

operation prediction. 

Ranking performance. Table 6.2 summarizes the ranking results across different top-K 

candidate elements. First, we see that incorporating the visual neighbor elements’ HTML 

text (DUAL-VCRVNEI-TXT) consistently and signifcantly outperforms MINDACTRANK on 

all Recall@Ks (e.g., 37.3% vs. 25.4% on Recall@1, 79.3% vs. 73.5% on Recall@10), 
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Ranker 
Action 
Predictor 

Cross-Task Cross-Website Cross-Domain 

Ele. Op. Step Ele. Op. Step Ele. Op. Step 
Acc F1 SR Acc F1 SR Acc F1 SR 

MINDACTRANK MINDACTPRED 42.0 74.9 41.1 30.7 67.0 30.0 31.5 66.6 31.0 

DUAL-VCRVNEI-TXT 

DUAL-VCRVNEI-TXT+VIS 
DUAL-VCRPRED 

45.3 78.4 44.5 32.0 71.5 31.5 32.4 72.9 32.0 
47.0 78.7 46.0 32.7 72.0 32.5 33.2 73.3 32.5 

Table 6.3: Results of action prediction. Our DUAL-VCRVNEI-TXT → DUAL-VCRPRED, leveraging 
visual neighbors’ HTML text information, notably improves over the baseline (MINDACTRANK 

→MINDACTPRED) on all nine metrics. Adding visual neighbors’ visual features (DUAL-
VCRVNEI-TXT+VIS) leads to further improvements, highlighting the beneft of dual-view context 
on real-world web navigation. 

suggesting that contextualizing the element with its neighbors indeed helps fnd the target 

element. Second, the candidate element’s visual features (DUAL-VCRVIS) lead to notable 

improvements over MINDACTRANK (e.g., 70.2% vs. 61.0% on Recall@5). This implies that 

the visual features offer additional context in differentiating HTML elements, compared 

to using only its HTML text. Lastly, DUAL-VCRVNEI-TXT+VIS achieves a further boost by 

leveraging both visual neighbors’ HTML text and visual features (e.g., 38.4%/90.1% on 

Recall@1/@50). 

Action prediction performance. Table 6.3 shows the results of action prediction. Com-

pared to the baseline (the combination of MINDACTRANK and MINDACTPRED), using the 

visual neighbors’ HTML texts (DUAL-VCRVNEI-TXT → DUAL-VCRPRED) notably improves 

across all metrics. For instance, we achieve gains of 3.4% on Step SR in Cross-Task, 1.3% 

on Ele. Acc in Cross-Webiste, and 6.3% on Op. F1 in Cross-Domain. These consistent 

improvements demonstrate the advantages of incorporating visual neighbor information 

during the model’s decision-making process. Moreover, aligning with the ranking result, 

integrating the visual neighbors’ visual features into the ranker (DUAL-VCRVNEI-TXT+VIS) 
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Cross-Task 
Ranker Action 

Predictor Ele. Acc Op. F1 Step SR 

MINDACTRANK 42.0 74.9 41.1 
DUAL-VCRVIS 42.5 75.1 41.5

MINDACTPRED DUAL-VCRVNEI-TXT 44.6 75.7 43.2 
DUAL-VCRVNEI-TXT+VIS 46.0 78.6 44.8 

MINDACTRANK 44.4 75.2 43.1 
DUAL-VCRVIS 44.6 76.8 43.8

DUAL-VCRPRED DUAL-VCRVNEI-TXT 45.3 78.4 44.5 
DUAL-VCRVNEI-TXT+VIS 47.0 78.7 46.0 

Table 6.4: Ablation studies for validating the importance of each component in DUAL-VCR. See 
§6.4.2 for a detailed discussion. 

shows its effectiveness in action prediction as well. Concretely, it achieves the best perfor-

mance on all nine metrics, along with a 5% maximum gain on each type of metric against 

the baseline (e.g., Ele. Acc: 47.0% vs. 42.0% on Cross-Task, Op. F1: 72.0% vs. 67.0% on 

Cross-Website, Step SR: 46.0% vs. 41.1% on Cross-Task). 

6.4.2 Analysis 

We aim to understand DUAL-VCR in detail. We show a) a more in-depth analysis of the 

main table, b) the interaction between the ranker and the action predictor, c) its effectiveness 

compared to whole input data and random elements, and d) the effect of different sizes of 

visual neighbors. 

Detailed ablation. Table 6.4 provides more details about the main table to better understand 

the impact of each component in DUAL-VCR. First, we keep the action predictor as 

MINDACTPRED and focus on the pure effects of our rankers on the action prediction task 

(i.e., 1st to 4th rows). We see that incorporating the candidate element’s visual features 

(DUAL-VCRVIS) achieves a slight but signifcant improvement over MINDACTRANK across 
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Top-1 Top-5 Top-10 Top-50 
Ranker Action 

Predictor Re- Ele. Op. Re- Ele. Op. Re- Ele. Op. Re- Ele. Op. 
call Acc F1 call Acc F1 call Acc F1 call Acc F1 

MINDACTRANK 25.4 24.0 23.7 61.0 39.2 52.1 73.5 41.4 62.8 88.9 42.0 74.9
MINDACTPRED DUAL-VCRVNEI-TXT 37.3 35.5 33.5 70.8 43.1 54.1 79.3 43.9 63.0 89.2 44.6 75.7 

Table 6.5: Relationship between ranker and action predictor on Cross-Task. The ranker has 
a linear correlation with the action predictor, suggesting the importance of improving its ranking 
capabilities for decision-making. 

all metrics (e.g., 42.5% vs. 42.0% on Ele. Acc). Furthermore, our ranker with the visual 

neighbors’ HTML text (DUAL-VCRVNEI-TXT) outperforms MINDACTRANK by a notable 

margin of +2.6%/+0.8%/+2.1% on Ele. Acc/Op. F1/Step SR, respectively. Besides, DUAL-

VCRVNEI-TXT+VIS, which encodes the visual neighbors’ visual features, further improves 

the model’s decision-making ability (e.g., 46.0% vs. 44.6% on Ele. Acc). In short, we 

consistently demonstrate the effectiveness of each component in our ranker. 

Second, conversely, we fx the ranker and examine the beneft of encoding visual 

neighbors’ HTML text features into the action predictor (DUAL-VCRPRED). Compared 

to MINDACTPRED, DUAL-VCRPRED achieves consistent gains across all rankers. For in-

stance, MINDACTRANK → DUAL-VCRPRED outperforms MINDACTRANK → MINDACTPRED 

(e.g., 44.4% vs. 42.0% on Ele. Acc). Similarly, when fxing the ranker with DUAL-

VCRVNEI-TXT+VIS, DUAL-VCRPRED improves over MINDACTPRED (e.g., 46.0% vs. 44.8% 

on Step SR). This shows directly encoding the visual neighbor’s HTML text into the action 

predictor is benefcial. 

Finally, DUAL-VCRVNEI-TXT+VIS and DUAL-VCRPRED are complementary; we achieve 

the best performance across all metrics when leveraging both (e.g., 47.0%/78.7%/46.0% on 

Ele. Acc/Op. F1/Step SR). Please see more ablation studies in the supplementary materials. 
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Ranker-action predictor relationship. We analyze the relationship between the ranker 

and the action predictor in Table 6.5. We observe a linear connection between the two. 

Concertely, improving the ranker (e.g., 25.4% vs. 37.3% on Recall@1) correlates with 

improved action prediction results (e.g., 24.0% vs. 35.5% on Ele. Acc). Aligned with results 

in §6.4.2, this again highlights the importance of improving the model’s ranking ability in 

web navigation. 

Comparison to whole input data. Since HTML documents contain a signifcant amount of 

content, such as thousands of HTML elements, conducting experiments with whole data is 

computationally challenging. Nevertheless, we do our best to report the associated results 

on Table 6.6 to give more context on the effect of DUAL-VCR. First, instead of asking the 

ranker to prune HTML documents, we directly pass the whole HTML documents into the 

action predictor (WHOLEHTMLPRED). We see that WHOLEHTMLPRED performs notably 

less against the baseline (MINDACTPRED) (i.e., 38.6% vs. 42.0% on Ele. Acc). We attribute 

this to the diffculty of fnding the target element among all thousands of elements. In 

contrast, our DUAL-VCRPRED achieves a much better result (i.e., 44.4%) with signifcantly 

less amount of input elements. 

Second, DUAL-VCR outperforms the utilization of whole images. We frst use the 

entire image for the ranker (WHOLEIMAGERANK). To extract the image features, we use the 

same procedure mentioned in §6.3.2, except for providing the region of the whole image 

instead of that of specifc elements. We then use these whole image features, along with 

the same HTML text input used in MINDACTPRED, to train WHOLEIMAGERANK. Although 

the entire image features are shown effective over the baseline (i.e., 43.9% vs. 42.0%), it 

performs notably less than our approach using the visual neigbhor’s visual information 

(i.e., 46.0% of DUAL-VCRVNEI-TXT+VIS). In addition, we conducted a study applying the 
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Ranker 
Action 
Predictor 

Cross-Task 
Ele. Acc 

MINDACTRANK 

MINDACTPRED 

WHOLEIMAGEPRED 

DUAL-VCRPRED 

42.0 
43.6 
44.4 

WHOLEIMAGERANK 

DUAL-VCRVNEI-TXT 

DUAL-VCRVNEI-TXT+VIS 

MINDACTPRED 

43.9 
44.6 
46.0 

- WHOLEHTMLPRED 38.6 

Table 6.6: Visual neighbor vs. whole input data. Using visual neighbors notably outperforms the 
use of whole data, offering advantages regarding computational effciency and performance. 

whole image to the action predictor. Specifcally, similar to recent vision-and-language 

models [150, 169, 168], we extract whole image features using fne-tuned ViT [145] and 

prepend them to the top-50 candidate elements extracted from MINDACTRANK as the input 

to the LLM (Flan-T5base [52]). Similar to the result of WHOLEIMAGERANK, this action pre-

dictor (WHOLEIMAGEPRED) performs worse than DUAL-VCRPRED, which only uses visual 

neighbors’ HTML text. Overall, this highlights the advantages of our approach in terms 

of computational effciency and performance. See additional results in the supplementary 

materials. 

Visual neighbors offer meaningful contexts. We examine whether visual neighbors provide 

meaningful context for element ranking and action prediction. To assess this, we compare 

visual neighboring elements with random elements (Table 6.7). Specifcally, We randomly 

select (fve) elements from HTML documents and use them to train either the ranker or the 

action predictor. While our ranker (e.g., DUAL-VCRVNEI-TXT) notably improves the ranking 

performance over MINDACTRANK (e.g., 89.2% vs. 88.9%), the “random” ranker performs 

less than MINDACTRANK (e.g., 86.7% vs. 88.9%). This, in turn, leads to a signifcant 
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Cross-Task 
Ranker Recall Action 

@50 Predictor Ele. Acc Op. F1 

MINDACTPRED 42.0 74.9 
MINDACTRANK 88.9 RANDOMPRED 41.5 73.6 

DUAL-VCRPRED 44.4 75.2 

RANDOMRANK 86.7 40.6 72.0
MINDACTPRED DUAL-VCRVNEI-TXT 89.2 44.6 75.7 

Table 6.7: Visual neighbors vs. random elements. Visual neighbors provide meaningful contexts 
for web navigation, notably outperforming elements randomly extracted from HTML documents. 

Ranker Cross-Task 

Method # neighbors Recall@50 Ele. Acc Op. F1 

DUAL-VCRVIS 0 89.1 42.5 75.1 

3 89.7 45.5 77.3 
DUAL-VCRVNEI-TXT+VIS 5 90.1 46.0 78.6 

10 89.5 45.2 77.0 

Table 6.8: Effects of the number of neighbors on ranker. Choosing the right size of visual 
neighbors is important for element ranking, and the size of fve is found to be most effective for 
Mind2Web [60]. We fx the action predictor with MINDACTPRED. 

performance drop in the action prediction (e.g., 42.0% vs. 40.6% on Ele. Acc). Similarly, 

compared to the MINDACTPRED, including random elements in the action predictor hurts 

the action prediction performance (e.g., 74.9% vs. 73.6 on Op. F1) while visual neighbors 

are benefcial (e.g., 75.2%). In sum, we empirically demonstrate the benefts of context in 

visual neighbors for web navigation. 

Effects of the number of visual neighbors. We ablate the impact of varying sizes of visual 

neighbors, starting with Table 6.8, which shows its effect on the ranker while maintaining 

the same action predictor (MINDACTPRED). We observe a linear correlation between the size 

of visual neighbors and their ranking/action prediction performance. For instance, increasing 

99 



Action Predictor Cross-Task 

Method # neighbors Ele. Acc Op. F1 

MINDACTPRED 0 46.0 78.6 

DUAL-VCRPRED 

3 
5 
10 

46.4 
47.0 
46.2 

78.7 
78.7 
78.6 

Table 6.9: Effects of the number of neighbors on action predictor. Similar to Table 6.8, the size 
of fve is most appropriate for the action prediction. We use DUAL-VCRVNEI-TXT+VIS for the ranker. 

the size of neighbors up to fve shows consistent improvements (e.g., 89.1%→90.1% on 

Recall@50 and 75.1%→78.6% on Op. F1). However, considering too many neighbors (e.g., 

the size of ten) hurts the performance. For example, increasing the size from fve to ten 

decreases the element accuracy from 46.0% to 45.2%. We also see a similar pattern when 

ablating the effect of the visual neighbor size on the action predictor (Table 6.9). Concretely, 

while keeping the same ranker (DUAL-VCRVNEI-TXT+VIS), the action performance increases 

up to the size of fve (e.g., 46.0%→47.0% on Ele. Acc) but decreases when the size becomes 

ten (e.g., 46.2% on Ele. Acc). Overall, this suggests that choosing an appropriate number of 

neighbors is necessary for both element ranking and action prediction. 

6.5 Summary 

We introduce DUAL-VCR to effectively represent HTML elements for web navigation. 

DUAL-VCR contextualizes each element with its visual neighbor elements, leveraging both 

textual and visual features. DUAL-VCR consistently improves real-world web navigation in 

the Mind2Web benchmark, supported by comprehensive analyses. 
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Part V: V&L Data Learning 

101 



Chapter 7: Learning from data with appropriate learning objectives 

In Parts II and III, we have discussed data curation and representation, respectively, as 

means to advance vision-language (V&L) systems. This chapter delves into data learning, 

enabling models to acquire V&L knowledge or capabilities from data. 

7.1 Introduction 

Understanding the role of text as it appears in the context of a visual scene is important 

in various real-world applications, e.g., from automatically organizing images of receipts, 

to assisting visually-impaired users in overcoming challenges related to comprehension 

of non-Braille writing in their surroundings, to enabling autonomous robots to make safe 

decisions in environments designed for humans. As a result, scene-text understanding 

(STU) has received increased attention in vision-and-language (V&L) understanding tasks, 

such as visual question answering (VQA) [237, 23, 191, 269, 186, 185, 184] or image 

captioning [235, 89, 158]. Please see Figure 7.1 for an illustration. 

We identify two distinct capabilities that models targeting STU must address: (i) recog-

nizing text in a visual scene and (ii) connecting the text to its context in the scene. Previous 

solutions that target STU tasks [237, 235, 104, 284] often delegate scene-text recognition to 

off-the-shelf OCR (Optical Character Recognition) systems [235, 26] and model the visual 

context using pre-computed object-detection features. These two streams of information 
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TextVQA

what is the title of this book?

Ground-
truth:

the dancers of arun

NoPreSTU
(Baseline):

the berkley fantasy

PreSTU: the dancers of arun

TextCaps

Ground-
truth:

the name nasa is on the back 
of the plane

NoPreSTU
(Baseline):

a nasa 905 airplane is sitting 
on a runway

PreSTU: a nasa jet is flying next to a 
united states space shuttle

Figure 7.1: Example of scene-text understanding (STU) tasks. NOPRESTU (baseline)
and PRESTU share the same V&L model, but PRESTU is pre-trained on our proposed
pre-training objectives. Scene texts are highlighted by bounding boxes. Unlike the baseline,
PRESTU correctly predicts the title of the book on scene-text VQA (TextVQA [237]) and
even generates a more detailed scene-text caption (e.g., “united states space shuttle”) than
the ground-truth annotated by humans (TextCaps [235]).
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(noisy OCR strings and visual features on detected objects) are used as input into a V&L 

model. While achieving decent results, these methods heavily rely on the quality of the 

upstream OCR system and lack a direct connection between the text being recognized and a 

high-fdelity representation of its context. 

More concretely, previous methods have not fully explored pre-training objectives that 

specifcally target STU. In general, V&L pre-training objectives (e.g., masked language 

modeling, image-text matching [176], etc.) have been proven effective for learning and 

became the go-to approach in V&L research. However, these objectives typically do not 

require a model to understand the role of text embedded in a visual context. For instance, 

LaTr [22] ignores the visual context during pre-training and instead focuses on modeling 

the co-occurrence statistics of layout-aware text-only OCR tokens. Even in systems that do 

perform STU pre-training, such as TAP [284], their models are built upon the aforementioned 

pipeline. Specifcally, TAP represents the visual input by a set of object features detected 

and extracted by FRCNN [217]. As a result, it may lose some visual contexts that cannot be 

captured by objectness (e.g., activities) but are relevant to understand the role of recognized 

text. 

In this paper, we address such a challenge by incorporating an OCR-aware learning 

objective in the context of a high-fdelity representation of the image context. We adopt a 

Transformer-based [258] encoder-decoder V&L architecture, using a T5 [209] backbone. 

The model takes both image and text inputs. For the former, we extract fne-tunable visual 

features directly from image pixels using a ViT [64] encoder, rather than adopting frozen 

visual features from pre-detected objects [217]. For the latter, we concatenate task-specifc 

text tokens (e.g., task prompts) with tokens extracted from an off-the-shelf OCR system, in 
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a manner that allows the model to interpret (via the prompt) the OCR tokens in the context 

of the image. 

Building upon this model, we propose PRESTU, a novel recipe for Pre-training for 

Scene-Text Understanding (Figure 7.2). PRESTU consists of two main steps. First, it 

teaches the model to recognize scene text from image pixels8 and at the same time connect 

scene text to the visual context. Specifcally, given an image and the “part” of the scene texts 

in the image, the model is pre-trained to predict the “rest” of the scene texts. We call this 

step SPLITOCR. Second, it teaches the model to further strengthen the connection between 

scene text and visual context by pre-training with OCR-aware downstream tasks (e.g., VQA 

and CAP). For pre-training, we leverage large-scale image-text resources [229, 39, 23], with 

the (noisy) scene text extracted by the off-the-shelf OCR system (Google Cloud OCR9). 

We validate PRESTU on eight VQA (ST-VQA [23], TextVQA [237], VizWiz-VQA [88], 

VQAv2 [83], OCR-VQA [191], DocVQA [186], ChartQA [184], AI2D [131]) and four im-

age captioning (TextCaps [235], VizWiz-Captions [89], WidgetCap [158], Screen2Words [263]) 

benchmarks. Our OCR-aware objectives SPLITOCR, VQA, and CAP are signifcantly bene-

fcial. For instance, compared with strong baselines which take OCR signals as input, we 

observe more than 10% absolute gain on TextVQA and 42 CIDEr point gains on TextCaps 

(Figure 7.1). Finally, we conduct comprehensive experiments to understand which factors 

contribute to effective STU pre-training. In summary, our contributions are as follows: 

• We propose PRESTU, a simple and effective pre-training recipe with OCR-aware objec-

tives designed for scene-text understanding (§7.3). 

8This makes our model more robust to the quality of OCR systems. 
9https://cloud.google.com/vision/docs/ocr 

105 

https://9https://cloud.google.com/vision/docs/ocr


NoPreSTU
(Baseline)

VQA
PreSTU SplitOCR

Pre-Training Downstream

VQA

CAP

VQA

CAP

CAP

scene-text recognition

connecting scene-text to visual context

Objective Text Input Output

SplitOCR Generate ocr_text in en: 
<OCR1> <OCR2>...<OCRm> <OCRm+1>…<OCRN>

VQA Answer in en: <Question> 
<OCR1> <OCR2>...<OCRN> <Answer>

CAP Generate alt_text in en: 
<OCR1> <OCR2>...<OCRN> <Caption>

Figure 7.2: Our proposed pipeline. Left: Comparison between PRESTU and NOPRESTU
(baseline) we want to compare against. Green denotes the PRESTU pre-training phase and
yellow the downstream/fine-tuning phase. SPLITOCR encourages scene-text recognition as
well as the learning of the connection between scene text and its visual context; VQA and
CAP further strengthen that connection. Right: The text input and output for each objective.
All objectives utilize OCR signals. See Figure 7.3 for the architecture of PRESTU.

• We show that our objectives consistently lead to improved scene-text understanding on

twelve diverse downstream VQA / image captioning tasks (§7.4.1) and even on cases

when OCR signals are absent during downstream tasks (§7.4.2).

• We perform detailed analyses to understand the effect of our design choices on STU

performance (§7.4.2).

7.2 Prior STU studies

Scene-Text Understanding. Most early STU works [112, 113, 149, 26, 96, 173] have

merely focused on Optical Character Recognition (OCR). We instead focus on scene-text un-

derstanding (STU) in the context of V&L tasks: VQA [237, 23] and image captioning [235].

The most common approach for these STU tasks is to fuse pre-extracted object detection

features with off-the-shelf OCR signals as additional input [237, 104, 235, 22, 90, 125,

265, 281, 183, 147]. These works often focus on specific challenges in downstream STU
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tasks, including dealing with noisy OCR signals, enabling the generation of rare words, 

or incorporating geometric information of OCR texts. In contrast, our work focuses on 

pre-training general-purpose STU models and shows the effectiveness of our objectives on 

multiple downstream STU tasks (§7.4.1). 

V&L Pre-Training for STU. One line of works incorporates OCR signals explicitly for 

pre-training [284, 22, 181]. TAP proposes an objective to learn the relative spatial position 

of two OCR texts. LOGOS [181] localizes a region that is most related to a given task and 

relies on its OCR text to complete the task. LaTr [22] models the co-occurrence statistics of 

layout-aware OCR tokens. Our pre-training objectives, on the other hand, focus on learning 

both scene-text recognition and the role of scene-text in its visual context. 

The other line of works is OCR-free. Recently, extremely large image-text models have 

shown promising results on STU tasks, despite having no explicit STU objectives (e.g., 

GIT2 [264], Flamingo [13]). However, it would require an analysis of their private data and 

a prohibitive amount of resources to pinpoint what contributes to such strong results. Our 

study offers a complementary perspective to this OCR-free approach by pushing the limit of 

the OCR-heavy approach further than before and conducting more thorough experiments at 

a smaller scale. 

7.3 PreSTU: Pre-Training for Scene-Text Understanding 

Figure 7.2 provides an overview of PRESTU OCR-aware objectives and their input-

output format. In what follows, we frst describe our starting point: model architecture and 

OCR signals (§7.3.1). Then, we describe our recipe for pre-training (§7.3.2), including the 

objectives, SPLITOCR, VQA, and CAP (§7.3.2.1), and data sources (§7.3.2.2). Finally, we 

describe the fne-tuning stage and target benchmarks (§7.3.3). 
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mT5 Decoder

ViT

mT5 Encoder

Text InputImage [GO]

Output

Figure 7.3: V&L model architecture used in all of our experiments. We use a simple 
transformer-based encoder-decoder (pre-trained ViT [64] + mT5 [282]) transforming image 
and text inputs to the text output. Green box: text input/output. Blue box: visual input. 
Yellow box: model blocks. See Figure 7.2 for the input-output pairs for different objectives. 

7.3.1 Setup 

V&L model architecture. Our main architecture is illustrated in Figure 7.3. We start from 

an encoder-decoder V&L architecture which unifes image-to-text (e.g., image captioning) 

and image+text-to-text (e.g., VQA) tasks. The pre-trained vision encoder is ViT-B/16 [64], 

and the pre-trained language encoder-decoder is mT5-Base [282]. Specifcally, ViT is a 

transformer-based encoder that takes a sequence of image patches as input, pre-trained on an 

image classifcation task. mT5 is a multilingual variant of text-to-text transformers T5 [209], 

pre-trained on a massive multilingual text corpus with the span corruption objective. See 

more details in the supplementary material. 

As mentioned in LaTr [22], this starting point leads to modeling advantages over existing 

model architectures for STU tasks. First, we believe that understanding the role of OCR 

text in the visual context is much easier from image pixels, making ViT a natural choice. 

Second, mT5 uses wordpiece vocab to encode and decode text tokens; thus a certain level of 
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robustness to the noise in the input OCR texts comes with it by default. On the other hand, 

M4C [104] and TAP [284] resort to a more complicated solution of using fastText [24] and 

Pyramidal Histogram of Characters features [14]. Third, mT5 is an encoder-decoder model 

which enables to generate the open-ended text. This is suitable for general image captioning 

and scene-text VQA where the answers tend to be out-of-vocab. In contrast, most prior 

works [237, 104, 284, 265, 181] treat VQA as answer vocab-based classifcation. Lastly, our 

model is built upon well-developed vanilla unimodal building blocks in vision and NLP. We 

deliberately choose this general encoder-decoder architecture to push for the applicability of 

our objectives. Such a design choice allows us to develop less model-dependent pre-training 

objectives. 

Image resolution. Unless stated otherwise, we use the image resolution of 640x640 in all 

of our experiments. 

OCR signals. We obtain OCR signals from Google Cloud OCR for all pre-training and 

downstream datasets in our experiments. They come in the form of a set of texts and their 

corresponding box coordinates in the image (i.e., object detection-like). We order OCR 

texts based on their locations, top-left to bottom-right and concatenate them with the T5 

separator </S>. This allows models to implicitly learn the scene text’s spatial information 

and standarize the target output sequence during training. Unless stated otherwise, we use 

these sorted silver OCR texts in all of our experiments. 

7.3.2 Pre-Training Stage 
7.3.2.1 PreSTU Objectives 

We consider two sets of OCR-aware pre-training objectives for scene-text understanding. 

Task-agnostic objective: SplitOCR. Inspired by the impressive performance of the visual 

language modeling pre-training objective for image+text-to-text downstream tasks [271], we 
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propose an OCR-aware pre-training objective called SPLITOCR. This objective is designed 

to be downstream task-agnostic, focusing on teaching the two core capabilities for STU: 

recognizing scene text and connecting it to the visual context. 

We randomly split the OCR texts into two parts and use the frst part as additional 

input and the second part as a target. Recall that we have ordered the OCR texts based on 

their locations such that the model can recognize them in a consistent manner. Note that 

if the splitting point is right at the beginning of the OCR sequence, the model performs a 

simplifed version of the traditional Optical Character Recognition task (i.e., predicting the 

whole OCR tokens). We denote this by OCR in Table 7.6 and also compare it with SPLITOCR 

in our ablation studies. 

Why SPLITOCR? SPLITOCR equips the model with the abilities to recognize scene text 

and connect it to the visual context in a unifed, seamless manner. Specifcally, operating 

SPLITOCR upon the “frst part” of OCR tokens and the image pixels (not pre-extracted global 

or object detection features) and predicting the “second part” of OCR tokens requires the 

model to (i) identify which scene text in the image still needs to be recognized, inherently 

connecting the input scene text to its visual context; (ii) perform the OCR task, inherently 

acquiring the scene-text recognition skill. 

Task-specifc objectives: VQA and CAP. We propose OCR-aware downstream-task-

specifc pre-training objectives on top of SPLITOCR. We consider two objectives based on 

our downstream tasks: (i) VQA which predicts the target answer from the question prompt, 

the visual question, and OCR texts and (ii) CAP which predicts the target caption from the 

caption prompt and OCR texts. This is similar to previous approaches to STU, except that 

we encode the image pixels, not features from pre-detected regions. 
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Why VQA or CAP? Task-specifc objectives aim to achieve two goals. First, they 

further encourage the learning of the relationship between scene text and its visual context 

through direct interaction between input image pixels and input OCR texts. Second, it eases 

the knowledge transfer from pre-training to fne-tuning since task-specifc objectives share 

the same input format as that of the downstream tasks (§7.3.3). See Figure 7.2 for more 

details. 

7.3.2.2 Pre-Training Data 

Our main pre-training data is CC15M, the union of two popular image-text datasets: 

Conceptual Captions (CC3M) [229] and Conceptual 12M (CC12M) [39].10 CC3M consists 

of 3.3M ⟨image,caption⟩ pairs, obtained by processing raw alt-text descriptions from the 

Web. CC12M extends CC3M by relaxing its over-restrictive fltering pipeline. We use 

CC15M for SPLITOCR and CAP pre-training. Note that the captions of CC15M are not used 

for SPLITOCR and their images are not necessarily scene text-related. See more details in 

the supplementary material. 

Since CC15M does not have data in the form of visual questions and their answers for 

us to leverage, we resort to ST-VQA [23]. It is a scene-text VQA dataset whose images are 

collected from 6 diverse data sources (COCO-Text [260], Visual Genome [141], VizWiz [88], 

ICDAR [129, 128], ImageNet [59], IIIT-STR [190]). We use its training set for pre-training. 

We use ST-VQA as pre-training data for other VQA benchmarks as well as a downstream 

benchmark for testing SPLITOCR (§7.3.3). 

10Due to expired URLs, only 13M ⟨image,caption⟩ pairs are used in our experiments. 
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7.3.3 Fine-tuning Stage 

In all of our downstream scene-text V&L tasks, the input-output pairs follow the same 

format as either VQA or CAP ( with OCR text tokens as input.) The only difference from 

the task-specifc pre-training is the training data. 

We validate PRESTU on twelve datasets related to VQA and image captioning tasks. 

ST-VQA, TextVQA, and TextCaps are the main benchmarks for STU. We also consider 

other scene-text domains, including book (OCR-VQA), document (DocVQA), illustration 

(ChartQA), diagram (AI2D), and screenshot domains (WidgetCap and Screen2Words). 

VizWiz-VQA and VizWiz-Captions are for the blind and heavily involve STU. VQAv2 is a 

general VQA dataset. See complete details in the supplementary material. 

7.3.4 Discussion 

We compare PRESTU with two well-known prior STU works TAP [284] and LaTr [22]. 

In terms of modeling, TAP leverages two conventional V&L objectives: visual-region 

masked language modeling and image-text matching, as well as the objective of learning 

the relative spatial position of two OCR text detections. TAP models the image using 

object-based features [217], which we believe is a suboptimal visual context. Besides, 

TAP adopts vocab-based classifcation, less suitable for some STU tasks which are full 

of out-of-vocab words. LaTr overcomes those weaknesses by adopting a similar V&L 

architecture to ours (ViT-B/16 / T5large). However, its pre-training objective does not involve 

the visual component (ViT). Instead, it only pre-trains its language component to learn 

the co-occurrence statistics of layout-aware OCR tokens. As the visual component is 

distorted or absent during pre-training, these models do not inherently learn the two essential 

STU capabilities, and would likely suffer in a case when OCR signals are absent during 
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downstream tasks. In contrast, PRESTU fully embraces the visual component. As shown in 

§7.4.2, this brings a huge beneft especially when OCR signals are not available. See a more 

detailed comparison in §7.4.1.4. 

In terms of pre-training data, TAP aggregates scene-text dedicated downstream data, 

including ST-VQA, TextVQA, TextCaps, and OCR-CC. Thus, while it aligns well with the 

corresponding downstream tasks, it is less generalizable to other V&L tasks. In contrast, 

PRESTU adopts general pre-training data (i.e., CC15M), providing a more fexible interface 

for V&L tasks. Besides, LaTr argues that pre-training on document images is a better 

choice since acquiring large quantities of natural images with scene text for pre-training is 

challenging and hard to scale, and the amount of text is often sparse. Our work challenges 

this assumption and shows that one can pre-train effectively for STU on natural images with 

minimal preprocessing. (i.e., nothing beyond extracting OCR signals). 

Finally, in terms of evaluation as we will show next, our experiments are done on a much 

wider range of benchmarks than before. This is in stark contrast to existing works which 

often focus on three benchmarks at most. 
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Model Pre-training 
Objective ST-VQA 

ANLS 

Test Benchmark 

TextVQA VizWiz-VQA 
Acc Acc 

VQAv2 
Acc 

NOPRESTU - 56.7 44.8 57.7 / 57.2 74.8 / 75.2 

PRESTU 
VQA 

SPLITOCR 

SPLITOCR→VQA 

N/A 
65.5 
N/A 

48.3 
55.2 
56.3 

58.3 / 57.6 
61.9 / 61.3 
62.5 / 62.0 

75.0 / 75.0 
76.0 / 76.2 
76.1 / 76.1 

Table 7.1: Effectiveness of PRESTU objectives on VQA. Our pre-training objectives (VQA, 
SPLITOCR, SPLITOCR→VQA) show consistent gains over the baseline on all VQA benchmarks. We 
use CC15M for SPLITOCR pre-training and ST-VQA for VQA pre-training. Since ST-VQA for VQA 

pre-training, we mark VQA and SPLITOCR→VQA as “N/A”. Results are reported on the test set for 
ST-VQA, test-std for TextVQA, and test-dev/test-std for VizWiz-VQA and VQAv2. 

Model Pre-training 
Objective B 

TextCaps test-std 

M R S C 

VizWiz-Captions test-std 

B M R S C 

NOPRESTU - 23.4 21.0 45.0 13.6 96.9 29.4 22.6 49.9 18.5 87.2 

PRESTU 

CAP 

SPLITOCR 

SPLITOCR→CAP 

31.6 
28.5 
32.8 

25.6 
23.9 
26.2 

51.5 
48.9 
52.2 

18.7 
16.3 
19.1 

133.1 
126.1 
139.1 

33.7 
29.8 
34.3 

24.5 
22.6 
24.7 

52.8 
50.3 
53.4 

20.8 
18.6 
21.1 

103.1 
90.2 
105.6 

Table 7.2: Effectiveness of PRESTU objectives on image captioning. Our pre-training objectives 
(CAP, SPLITOCR, SPLITOCR→CAP) show signifcant gains over the baseline on all image captioning 
benchmarks, with SPLITOCR→CAP performing best. We use CC15M for both SPLITOCR and CAP 

pre-training. B: BLEU@4, M: METEOR, R: ROUGE-L, S: SPICE, C: CIDEr. 

7.4 Experimental Results 

Baselines. We denote by NOPRESTU our main baseline. It is the same pre-trained V&L 

model as PRESTU (i.e., ViT-B/16 / mT5) but not pre-trained with any of our pre-training 

objectives. 

Metrics. For VQA tasks, we use standard VQA accuracy following [237, 284, 264]. It is 

the average score over nine subsets of the ground-truth ten answers, where each score is: 

114 



min(#answer occurrences 
3 ,1). For ST-VQA/DocVQA, we use Average Normalized Levenshtein 

Similarity (ANLS), softly penalizing the model’s mistakes on scene-text recognition. For 

ChartQA, we report its offcial metric, a relaxed accuracy that allows a minor inaccuracy 

for numeric answers. For image captioning tasks, we use their standard evaluation metrics, 

including BLEU [198], METEOR [61], ROUGE-L [162], SPICE [15], and CIDEr [259]. 

7.4.1 Main Results 

The main goal of our experiments is to assess the utility of our pre-training objectives 

SPLITOCR and VQA/CAP in VQA (§7.4.1.1) and image captioning (§7.4.1.2) tasks. 

7.4.1.1 VQA 

Table 7.1 summarizes our main results on VQA tasks, including ST-VQA, TextVQA, 

VizWiz-VQA, and VQAv2. SPLITOCR outperforms the baseline (i.e., without our STU 

pre-training) by a large margin on scene-text-heavy VQA tasks, more than +8.8 ANLS 

on ST-VQA, +10.4% on TextVQA, and +4.1% on VizWiz-VQA. With SPLITOCR→VQA, 

we slightly but signifcantly improve the performance further on TextVQA and VizWiz-

VQA, +1.1% and 0.7%, respectively. These results show the utility and applicability of our 

pre-training objectives for improving scene-text understanding. 

SPLITOCR and VQA are complementary on scene-text-heavy VQA tasks (TextVQA/VizWiz-

VQA), where each of them alone underperforms SPLITOCR→VQA. Additionally, we ob-

serve the frst-stage pre-training via SPLITOCR is more benefcial than the second-stage 

task-specifc pre-training VQA. This could be due to the superiority of SPLITOCR or the lack 

of large-scale scene-text VQA pre-training data, or both. We identify data development for 

scene-text VQA as an open research question. 
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Our results also highlight the importance of STU in general real-world VQA (i.e., 

not specially designed for STU). We observe a slight but signifcant improvement over 

the baseline on VQAv2 and a more signifcant improvement on VizWiz-VQA for blind 

people. We attribute this to a subset of questions that require text recognition and reasoning 

skills [292]. We believe this is an important step since these questions are considered “hard 

to learn” or even “outliers” that work against VQA algorithms [246, 127]. 

7.4.1.2 Image Captioning 

Table 7.2 summarizes our main results on image captioning tasks, TextCaps and VizWiz-

Captions. Aligned with the VQA results, SPLITOCR signifcantly improves over the baseline 

across all evaluation metrics, with SPLITOCR→CAP performing best. The gain is notably 

42.2 CIDEr points on TextCaps, and 18.4 on VizWiz-Captions. Overall, we highlight the 

usefulness of SPLITOCR across V&L tasks with different input-output formats. 

Similar to the VQA results, SPLITOCR and CAP are complementary. However, CAP 

alone is more benefcial than SPLITOCR alone. We attribute this to our large-scale web-based 

image-text data that is already suitable for CAP pre-training. Despite such a strong CAP 

model, SPLITOCR still provides an additional beneft. 

7.4.1.3 Applicability to Other Scene-Text Domains 

Unlike prior STU literature [284, 265, 181, 22, 266, 74], we further explore other scene-

text domains (Table 7.3). We show that PreSTU is also effective on book (OCR-VQA), 

document (DocVQA), illustration (ChartQA), diagram (AI2D), and screenshot domains 

(WidgetCap & Screen2Words). This demonstrates the applicability of PRESTU to many 

different real-world STU problems. 
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Model 
OCR 
VQA 
%Acc 

Doc 
VQA 

%ANLS 

Chart 
QA 

%RelaxedAcc 

AI2D 

%Acc 

Widget 
Cap 

CIDEr 

Screen2 
Words 
CIDEr 

NoPreSTU 71.5 47.5 40.5 64.5 63.9 98.5 

PreSTU-SplitOCR 72.2 50.1 50.7 69.3 125.6 113.8 

Table 7.3: PreSTU on other scene-text domains (Val split). See §7.4.1.3 for a detailed discussion. 

7.4.1.4 Comparison to Prior Works 

So far our results provide strong evidence for the beneft of our proposed objectives. In 

this section, we provide a comparison to prior works as further context. While apples-to-

apples comparison has become increasingly diffcult, we make our best attempt to analyze 

our results in the context of these works. For example, TAP’s objective has coupled the 

use of object detection signals, which we do not resort to. More importantly, many prior 

works [22, 13, 264] do not release code, rely on private data, and/or require too large-scale 

pre-training that is prohibitively costly to reproduce. 

We frst compare PRESTU to recent works focusing on STU tasks (Rows Non-TAP to 

LaTr in Table 7.4). Overall, PRESTU establishes strong results on all tasks. Concretely, 

PreSTU achieves better results than all prior smaller-scale works (i.e., TAP, TAG, LO-

GOS). More interestingly, with much less data, we even outperform two larger models 

ConCap/UniTNT (139.1 vs. 105.6/109.4 in CIDEr) on TextCaps and (56.3% vs. 55.4%) on 

TextVQA. 

PreSTU, however, performs worse than another larger model LaTr on TextVQA/ST-

VQA. We attribute this to the superiority of LaTr’s V&L backbones. As shown in Table 7.5, 

LaTrbase with no pre-training signifcantly outperforms our baseline (NOPRESTU) on 

TextVQA (52.3% vs. 45.2%). LaTr and PRESTU use different scene-text pre-training data: 

LaTr uses fve times larger data than PRESTU (64M vs. 13M in Table 7.4), which covers 
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more diverse scene text. This is particularly benefcial to TextVQA/ST-VQA, which contain 

scene text from multiple domains (e.g., brand, vehicle, etc.) and may explain why LaTr 

outperforms PRESTU. 

In contrast, OCR-VQA [191] only covers book-related scene text. Thus, pre-training 

data becomes less important than pre-training approaches, and PRESTU outperforms LaTr 

(72.2% vs. 67.5% in Table 7.5). Moreover, while LaTr only shows its effectiveness on VQA 

tasks, PreSTU shows on both VQA and image captioning tasks. 

We further compare PRESTU to extremely large-scale V&L models pre-trained on more 

than 2B ⟨image, text⟩ pairs. Interestingly, our best model even outperforms two much larger 

models Flamingo [13] and GIT2 [264] on some tasks; using much less data, we achieve 

better results than Flamingo (56.3% vs. 54.1%, Table 7.4) on TextVQA and than GIT2 

(72.2% vs. 69.9%, Table 7.5) on OCR-VQA. 

Recently, PaLI [45], a large-scale V&L model (ViT-e/mT5-XXL) pre-trained on 10B 

⟨image, text⟩ pairs, reports SOTA results on all major V&L tasks, except for VizWiz-

Captions (Table 7.4). It is worth noting that PRESTU (specifcally, our OCR) was an 

ingredient in the pre-training objective of PaLI to tackle OCR and STU tasks, demonstrating 

OCR’s utility in large-scale SOTA models. 

The closest to PRESTU in terms of model/data sizes is GITL, a smaller-scale version 

of GIT2 (347M parameters and 20M ⟨image, text⟩ pairs). As shown in Table 7.5, PRESTU 

outperforms (or is on par with) GITL on all tasks, demonstrating effciency with respect to 

model/data sizes. See more comparisons in the supplementary material. 
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Test Benchmark Model Data Pre-trainingModel 
Size Size Objective TextCaps VW-Cap ST-VQA TextVQA VW-VQA VQAv2 

CIDEr CIDEr ANLS Acc Acc Acc 

NOPRESTU 473M 0 - 96.9 87.2 56.7 44.8 57.2 75.2 
SPLITOCR 126.1 90.2 65.5 55.2 61.3 76.2PRESTU 473M 13M 

SPLITOCR→VQA/CAP 139.1 105.6 N/A 56.3 62.0 76.1 
Non-TAP [284] 0 - 93.4 - 51.7 44.8 - -

TAP [284] 1.5M* MLM+ITM+RPP 109.7 - 59.7 54.0 - -146MTAG [265] 88K* MLM+ITM+RPP - - 60.2 53.7 - -
LOGOS [181] 88K* ROILOCAL - - 57.9 51.1 - -
ConCap [266] 105.6 - - - - -559M 129M VLM+ITM+ITC UniTNT [74] 109.4 - 66.0 55.4 - 80.1 

LaTr [22] 831M 64M MLM - - 69.6 61.6 - -

Flamingo [13] 80B 2.3B VLM - - - 54.1 65.4 82.1 
GIT2 [264] 5B 12.9B VLM 145.0 120.8 75.8 67.3 70.1 81.9 
PaLI [45]† 16B 10B our OCR w/ others 160.4 - 79.9 73.1 73.3 84.3 

Table 7.4: Comparison to prior works. See §7.4.1.4 for a detailed discussion. VW-Cap: VizWiz-
Captions, VW-VQA: VizWiz-VQA, MLM: Masked Language (visual region) Modeling, ITM: Image-
Text Matching, RPP: Relative Position Prediction, VLM: Visual Language Modeling, ITC: Image-Text 
Contrastive Loss, ROILOCAL: ROI localization. *: dedicated scene-text understanding data, including 
ST-VQA, TextVQA, TextCaps, and OCR-CC. †: our objective OCR is an ingredient in their pre-
training objectives. 

7.4.2 Analysis 

We aim to understand PRESTU in detail. We show (a) the importance of different 

components of our design choice, (b) its zero-shot transferability, (c) the effect of pre-

training image resolution, (d) the effect of pre-training data size, and (e) the effect of 

downstream OCR quality. 

Detailed ablation. As shown in Figure 7.2, our PRESTU consists of two (optional) pre-

training stages, followed by fne-tuning on downstream tasks. Here, we aim to understand 

the gain brought by each component. We consider different combinations of the design 

choices at each stage and organize the results stage-by-stage into Table 7.6. We have the 

following three major observations. 
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Val or test-dev Benchmark Model Data Pre-trainingModel 
Size Size Objective TextCaps ST-VQA TextVQA VW-VQA VQAv2 OCR-VQA 

CIDEr ANLS Acc Acc Acc Acc 

NOPRESTU 473M 0 - 100.0 55.6 45.2 57.7 74.8 71.5 
SPLITOCR 134.6 62.7 55.6 61.9 76.0 72.2PRESTU 473M 13M 

SPLITOCR→VQA/CAP 141.7 N/A 56.7 62.5 76.1 -

LaTrbase [22] 281M 0 - - - 52.3 - - -
LaTrbase [22] 281M 64M MLM - 67.5 58.0 - - 67.5 

GITL [264] 347M 20M VLM 106.3 44.6 37.5 62.5 75.5 62.4 
GIT2 [264] 5B 12.9B VLM 148.6 75.1 68.4 71.0 81.7 69.9 

Table 7.5: Comparison to GITL (similar model/data sizes to PRESTU). PreSTU outperforms (or 
is on par with) GITL on all tasks. GIT2/LaTrbase-64M are for reference to show that PreSTU even 
outperforms these large-scale works on OCR-VQA. 

First, SPLITOCR is signifcantly and consistently better than OCR (Rows with SPLITOCR 

vs. Rows with OCR in their Stage-1). OCR is a “pure” OCR prediction task, a variant of our 

main SPLITOCR (OCR-conditioned OCR prediction) in which the splitting point is always 

at the beginning. At frst glance, such a result may seem counterintuitive: predicting the 

entire scene text is strictly harder than predicting part of the OCR text given the other part. 

When thought of carefully, this result indicates that OCR may put too much emphasis on 

recognizing scene text, at the expense of connecting scene text to its visual context. In other 

words, this highlights how SPLITOCR is able to balance the two capabilities that we identify 

as important for STU (§7.1). 

Second, SPLITOCR (or OCR) makes the visual component (ViT) inherently better at 

recognizing text (gap between “Yes” and “No” Rows with Stage-1 pre-training vs. gap 

between “Yes” and “No” Rows without Stage-1 pre-training). Without Stage-1 (e.g., VQA/-

CAP), removing OCR signals during fne-tuning leads to more than a 33% drop on TextVQA 

and a 49 CIDEr point drop on TextCaps. With Stage-1, these drops become less than 17% 
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and 26 CIDEr points, respectively. For TextCaps, SPLITOCR with “No” OCR input tokens 

during fne-tuning even outperforms the baseline with OCR input (116.6 vs. 100.0 in CIDEr). 

In summary, recognizing scene text via Stage-1 pre-training is important (i.e., cannot be 

achieved via VQA or CAP alone). 

Third, having two sources of OCR signals is benefcial. OCR signals by pre-trained ViT 

(Row SPLITOCR→VQA/CAP with “No”) and OCR signals by the off-the-shelf system (Row 

NOPRESTU "Yes") are complementary; we achieve the best result when leveraging both 

OCR signal sources (Row SPLITOCR→VQA/CAP with “Yes”). See more ablation studies in 

the supplementary material. 

Zero-shot transferability on scene-text VQA. Table 7.7 shows zero-shot transferability 

of SPLITOCR on TextVQA. We observe that performing SPLITOCR and then fne-tuning 

on ST-VQA (SPLITOCR→VQA) already leads to a strong model; SPLITOCR→VQA without 

fne-tuning (44.3%) is competitive to NOPRESTU with fne-tuning on TextVQA training set 

(45.2%), while ST-VQA alone (VQA) only achieves 35.7%. This suggests that SPLITOCR 

enables generalization for STU and may remove the need to collect TextVQA data entirely! 

Effect of image resolutions during pre-training. We hypothesize that pre-training with 

high-resolution images is important for scene-text recognition; Table 7.8 supports this 

argument. Further, pre-training with the 224x224 image resolution (standard resolution for 

many vision tasks) almost does not help; it achieves the accuracy of 47.1%, close to 45.2% 

of NOPRESTU baseline (Table 7.6 Row 2), suggesting non-standard resolution must be 

considered to reap the beneft of STU pre-training. 

Effect of pre-training data scale. How much data do we need to learn to recognize text? 

Table 7.9 shows the performance of TextVQA given checkpoints pre-trained on 1%, 3%, 

10%, and 30% subsets of CC15M. We fnd that the TextVQA performance goes up as more 
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Pre-training 
Stage-1 Stage-2 

Fine-tuning 
OCR input 

TextVQA 
Val Acc 

TextCaps 
Val CIDEr 

- -
No 
Yes 

19.5 
45.2 

40.1 
100.0 

- VQA/CAP 
No 
Yes 

13.7 
47.2 

81.1 
130.2 

OCR -
No 
Yes 

35.8 
49.9 

110.4 
126.7 

OCR VQA/CAP 
No 
Yes 

38.6 
51.9 

108.9 
134.4 

SPLITOCR -
No 
Yes 

39.4 
55.6 

116.6 
134.6 

SPLITOCR VQA/CAP 
No 
Yes 

44.3 
56.7 

118.4 
141.7 

Table 7.6: Main ablation studies for validating the importance of our main components: SPLITOCR, 
VQA/CAP, and having OCR input during fne-tuning. See §7.4.2 for a detailed discussion. OCR refers 
to predicting the entire OCR text. 

pre-training data is included. This highlights the importance of data scale in acquiring 

transferable scene-text recognition skills. 

Effect of downstream OCR systems. We study the effect of different OCR systems during 

fne-tuning (Table 7.10). We observe that the SPLITOCR-pre-trained model is more robust to 

the change in downstream OCR systems than NOPRESTU. Indeed, SPLITOCR + Rosetta 

can even perform better than NOPRESTU + gOCR. This result is consistent with Table 7.6, 

where we experiment with removing OCR texts entirely during fne-tuning. We also fnd that 

gOCR is the most effective. Interestingly, it is even better than human-annotated TextOCR; 

we hypothesize this is because TextOCR only provides word-level annotation whereas gOCR 

provides some grouping. 
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Pre-training TextVQA 
Model Fine-tuning

Objective Val Acc 

- 0.04
NOPRESTU -

TextVQA 45.2 

VQA - 35.7
PRESTU 

SPLITOCR→VQA - 44.3 

Table 7.7: Zero-shot transferability on TextVQA. Our zero-shot SPLITOCR→VQA (without fne-
tuning on TextVQA) is competitive to supervised NOPRESTU (with fne-tuning on TextVQA). 

Pre-training Fine-tuning TextVQA Model 
Objective Resolution Resolution Val Acc 

224 47.1 
384 50.2PRESTU SPLITOCR 640480 53.1 
640 55.6 

Table 7.8: Effects of image resolutions. TextVQA accuracy goes up as the pre-training image 
resolution increases, emphasizing the necessity of high-resolution images during pre-training. 

Pre-training 
TextVQA Model 

Objective Proportion # of Data Val Acc 

1% 130K 42.3 
3% 390K 45.4 

PRESTU SPLITOCR 10% 1.3M 50.6 
30% 3.9M 53.0 
100% 13M 55.6 

Table 7.9: Importance of pre-training data scale. TextVQA performance improves as more pre-
training data, showing the importance of data scale in learning transferable scene-text recognition. 

Model 
Pre-training 
Objective 

Fine-tuning 
OCR System 

TextVQA 
Val Acc 

NOPRESTU -
TextOCR [235] 

Rosetta [26] 
gOCR 

44.0 
36.7 
45.2 

PRESTU SPLITOCR 

TextOCR [235] 
Rosetta [26] 

gOCR 

54.8 
50.7 
55.6 

Table 7.10: Effect of downstream OCR systems on TextVQA. SPLITOCR makes the model more 
robust to the change in OCR systems during fne-tuning. 
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7.5 Summary 

We introduce a simple recipe for scene-text understanding, consisting of OCR-aware 

pre-training objectives operating from image pixels. Our task-agnostic objective SPLITOCR 

teaches the model to recognize scene text and to connect scene text to its visual context. 

Our task-specifc objectives VQA and CAP further strengthen that connection. We conduct 

comprehensive experiments to demonstrate the utility of this recipe. 
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Part VI: Conclusion 
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Chapter 8: Conclusion 

In this dissertation, we advance V&L systems through the lens of data. We explore three 

aspects of V&L data to achieve an integrated understanding of visual and linguistic content. 

V&L Data Curation. We explore a novel data augmentation method to synthesize V&L 

data and enrich resources for model training. This leads to substantial gains in model 

performance without the signifcant costs commonly incurred through manual annotation. 

Additionally, we benchmark the current leading V&L models, evaluating their ability to 

compare objects, scenes, and situations, and identify notable defciencies. Our benchmark 

not only highlights these limitations but also establishes a solid foundation for future 

enhancements in the comparative capabilities of V&L models. 

V&L Data Representations. We propose new V&L representations to enhance alignment 

between images and text. We encode detailed visual information (extracted from the 

document) into semantic representations, facilitating alignment with visual features for 

zero-shot image classifcation. Similarly, we incorporate visual neighboring information 

from screenshots into HTML representations to improve web navigation. 

V&L Data Learning. We introduce a new pre-training learning recipe that encourages 

V&L models to recognize text from an image and connect it to the rest of the image content. 

This results in signifcant performance gains in various visual question answering and image 

captioning tasks. 
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8.0.1 Future for V&L 

We are living in the era of multimodal large language models (MLLMs), which demon-

strate remarkable performance on multiple V&L tasks. Some express concerns about the 

future of research, given the high level of performance already achieved. However, I believe 

that they have not yet reached artifcial general intelligence (AGI), and there is still much to 

explore. Here, I suggest three different routes to further advance V&L systems. 

V&L benchmarks. Several recent works [288, 60, 170, 178] focus on curating new V&L 

benchmarks that could challenge the current leading MLLMs. For instance, MMMU [288] 

introduces a V&L benchmark designed to assess MLLMs on extensive multi-discipline 

tasks that require college-level subject knowledge. Similarly, Mind2Web [60] evaluates 

MLLMs as web agents that are tasked to complete web instructions. All these works fnd 

that there is still a noticeable performance gap between humans and MLLMs. This research 

direction (i.e., buliding V&L benchmarks) thus helps identify the capabilities that current 

MLLMs are missing or need to improve, thereby advancing V&L systems further. 

Capabilities of V&L models. Multiple capabilities have already been reported as weak-

nesses in current V&L models. As mentioned in chapter 4, these models face pronounced 

challenges in comparison tasks such as capturing the fne-grained difference between two 

similar images or understanding spatial proximity and quantity relativity. Furthermore, prior 

studies [289, 174, 123, 25, 167, 105, 251, 195] highlighted their limited abilities in fnding a 

correct caption among similar captions for an image; understanding negation in the prompt; 

being robust against (visual) hallucinations; solving OCR-related V&L tasks; understanding 

spatial relationships among visual objects; counting objects in the image. Thus, our future 

research could focus on enhancing these capabilities to build more advanced V&L systems. 
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V&L + X. V&L has broadened its scope from the traditional combination of image and text 

to include additional modalities, referred to as “Image + Text + X”. For instance, embodied 

AI [234] and web navigation [60] requires models to comprehend an agent’s prior movements 

(i.e., trajectories) beyond the current scene and instruction. Text-to-video generation [29] 

and video question answering [300] emphasize the need to process sequences of images 

(frames), demanding a deeper understanding of object motion and temporal localization. 

The integration of audio into V&L [10] involves the joint learning of raw signals with 

images and text. All these works, which introduce new dimensions beyond V&L, bring 

fresh challenges and opportunities that are worth exploring in the future. 
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Appendix A: Enriching V&L training materials with 

data augmentation 

In this appendix, we provide details and results omitted in chapter 3. 

A.1 Additional Implementation Details 

A.1.1 Baseline VQA models. 

We validate SIMPLEAUG with three VQA models in our experiments: Bottom-Up 

Top-Down (UpDn)11 [16], Learned-Mixin+H (LMH)12 [53], and LXMERT13 [247]. All 

baseline models are implemented using offcially released codebase. More details of code 

and data are publicly available at https://github.com/heendung/simpleAUG. 

A.1.2 Optimization 

UpDn and LMH. We maintain the default settings in UpDn and LMH except for using 

the mini-batch size of 512 on VQA v2 and 1,024 on VQA-CP v2. Following the offcial 

implementations, our visual features are the output of Faster R-CNN [218] object detector 

trained on Visual Genome [141], provided by [16]. We optimize UpDn and LMH using 

stochastic gradient descent (SGD) with Adamax [135] and learning rate 2× 10−4. Training 

11UpDn model implementation: https://github.com/yanxinzju/CSS-VQA. 
12LMH model implementation: https://github.com/chrisc36/bottom-up-attention-vqa. 
13LXMERT model implementation: https://github.com/airsplay/lxmert. 
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a baseline UpDn or LMH model on a single NVIDIA RTX A6000 takes around 2 hours for 

convergence. 

LXMERT. Similar to UpDn and LMH models, LXMERT leverages the object features 

from the Faster R-CNN detection provided by [16]. We train a LXMERT model using the 

mini-batch size of 256. Following [247], we use Adam [135] as the optimizer with a linear 

decayed learning rate schedule. Training a baseline LXMERT model on a single NVIDIA 

RTX A6000 takes around 8 hours for convergence. 

Multi-stage training. As discussed in § 3.4.2 and § 3.4.4 of the main paper, we train the 

VQA models with a three-stage paradigm (O → A → O): frst with original triplets O , then 

with the SIMPLEAUG triplets A , and then with O again. In each of these three stages, we 

follow the same optimization procedures as we train the baseline VQA models in the frst 

stage. We report the best results on VQA v2 validation set [82] and VQA-CP v2 test set [6]. 

A.1.3 Additional details of SIMPLEAUG 

As mentioned in the main paper, for each annotated IQA triplet (i,q,a) in the dataset, 

SIMPLEAUG propagates q to other relevant images. To begin with, we fnd unique questions 

by fltering out any duplicate sentences. We then extract meaningful words from the unique 

questions in line with [42, 275]. Concretely, we remove the question type from q and 

then apply a spaCy part-of-speech (POS) tagger [100] to extract “nouns”. To handle the 

synonyms, we further consider the singular/plural forms and super-categories of nouns14. 

Moreover, we remove non-informative words (e.g., “picture” or “photo”) in the sentence. 

For example, in a question, “What is the man doing in the picture?”, the word “picture” 

refers to an image itself but not any specifc object. There are around 8% of triplets like 

14Paraphrase database [73] or WordNet [189] could be used to handle other synonyms. 

130 



this in VQA v2 [82]. While it is possible that both sentence and image may contain such 

non-informative contents (e.g., “How many pictures on the wall?”), there are <1% such 

questions. 

A.2 Results on GQA Dataset 

We further conduct a preliminary study of SIMPLEAUG on the popular GQA dataset [107], 

which focuses on compositional VQA tasks and consists of 22M questions about various 

day-to-day images. Each image in GQA is associated with a scene graph [121] which 

consists of the objects, attributes, and relationships. 

We focus on binary questions (35% of all questions) and propagate a question q to an 

image i according to the image’s scene graph. Particularly, we leverage the semantic type 

of the question (e.g., “attribute”, “relation”) and the scene graph to generate the answer. 

For example, suppose q asks if an object contains a certain “attribute”, we check the scene 

graph’s node of that object to determine the answer. SIMPLEAUG can improve the accuracy 

of UpDn from 56.06% to 56.52%, justifying its generalizability and applicability. 

A.3 Human Evaluation on SIMPLEAUG Triplets 

SIMPLEAUG requires no sentence/image generation steps, and thus all examples are 

natural annotations from humans, largely alleviating the artifcial noise that the previous 

methods may have. To further evaluate the quality of the augmented triplets, we randomly 

select 500 images and pick 5 augmented QA pairs per image from each type (4 by propa-

gation Y/N, Num, Other, Color and 1 by paraphrasing). For those 2,500 triplets, we ask 

5 different crowd workers to evaluate “relatedness (1/0)” of the augmented questions and 

“correctness (1/0)” of the answer given the question and image. That is, if the question 
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Table A.1: Human evaluation. The Relatedness and Correctness are shown on different types / 
question types. 

SIMPLEAUG Type Relatedness (%) Correctness (%) 

Y/N 82.60 52.20 
Color 87.20 77.20 

Propagation Num 89.20 60.80 
Other 88.00 80.20 

Overall 86.75 67.60 

Paraphrasing Overall 80.80 64.40 

makes sense for the corresponding image, rate 1, otherwise 0; if the answer is correct, rate 

1, otherwise 0 (see Figure A.1). Table A.1 shows the human study results. The average 

relatedness / correctness are 86.75% / 67.60% for propagation and 80.80% / 64.40% for 

paraphrasing. 

We note that these generated data are based on human-annotated questions in the dataset. 

Therefore, there are no artifacts in the questions. Moreover, these generated data are to 

augment the original data. Thus, even if they contain noise, they can consistently improve 

the model’s performance. 
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Image Type Question Answer Relatedness
(1 / 0)

Correctness
(1 / 0)

Y/N

Color

Num

Other

Paraphrasing

• Is the ramp completely covered in snow?

• What color is his shirt?

• How many people are standing on there surfboard?

• What sport is depicted?

• Is this man wearing any safety gear?

No

Blue

1

Skateboarding

yes

Y/N

Color

Num

Other

Paraphrasing

• Are there waves shown in this picture?

• What color is the sky?

• How many people are gathered around?

• What sport is represented in this scene?

• What is the man walking on?

Yes

Blue

1

Surfing

Surfboard

Y/N

Color

Num

Other

Paraphrasing

• Is this photo pulling into a station?

• What color is his shirt?

• How many trains can you see?

• What vehicle is shown?

• Is the boy walking?

Yes

Black

2

Train

Yes

Y/N

Color

Num

Other

Paraphrasing

• Is the water clean and safe?

• What is the color of the grass?

• How many people might live here?

• What are the yellow vehicle?

• Is that the ocean?

Yes

Green

3

Car

No

Y/N

Color

Num

Other

Paraphrasing

• Are these sheep marked?

• What is the color of the grass?

• How many cows are stacked?

• Which animal is it?

• What color is the photo frame?

Yes

Green

2

Cow

Yellow

Y/N

Color

Num

Other

Paraphrasing

• Is the elephant crying?

• What is the color of the grass?

• How many animal is there in the picture?

• What type of animal is behind them?

• Which elephant is bigger?

Yes

Green

2

Elephant

Right

Y/N

Color

Num

Other

Paraphrasing

• Is it on display?

• What color is the button?

• How many cats are in the picture?

• What kind of animal is pictured?

• What color are the cat's eyes?

Yes

Black

1

Cat

Blue

Figure A.1: Examples in human study. For each image, we pick 5 triplets created by SIMPLEAUG 

(4 by propagation Y/N, Num, Other, Color and 1 by paraphrasing) and ask crowd workers to evaluate 
the IQA triplets by the question’s relatedness (1 / 0) to the image and the answer’s correctness (1 / 0) 
to the image and question. 
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Appendix B: Curating data for a V&L benchmark 

In this appendix, we provide details and results omitted in chapter 4. 

All codes, data, and instructions for our COMPBENCH can be found in https:// 

github.com/RaptorMai/CompBenchReview. COMPBENCH is released under a Creative 

Commons Attribution 4.0 License (CC BY 4.0). 

B.1 Discussions 

B.1.1 Limitations 

While we conducted a human evaluation study to establish the upper bound performance 

on COMPBENCH, the study is currently limited to 140 samples assessed by fve evaluators. 

We plan to expand the study to a larger scale in future work. 

B.1.2 Social impacts 

COMPBENCH evaluates the comparative reasoning abilities of MLLMs in images. A 

potential negative impact of our work is that malicious users might exploit our concept (i.e., 

comparison) to compare ethical or offensive content. Therefore, it is essential to incorporate 

effective safeguards in MLLMs to flter out any inappropriate materials. 
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Public 
Dataset 

License 

MIT-States [111] N/A 
Fashionpedia [115] CC BY 4.0 

VAW [205] Adobe Research License 
CUB-200-2011 [261] CC BY 

Wildfsh++ [308] N/A 
MagicBrush [296] CC BY 4.0 
Spot-the-diff [114] N/A 

CelebA [175] Research-only, non-commercial 
FER-2013 [80] N/A 
SoccerNet [77] MIT License 

CompCars [283] Research-only, non-commercial 
NYU-Depth V2 [236] N/A 

VQAv2 [81] CC BY 4.0 
Q-Bench2 [297] N/A 

Table B.1: License of Assets. 

B.1.3 Ethical considerations 

All fourteen datasets that we used to curate COMPBENCH adhere to strict guidelines 

to exclude any harmful, unethical, or offensive content. Additionally, we instruct human 

annotators to avoid generating any personally identifable information or offensive content 

during our annotation process. Finally, we do not conduct any study to compare harmful, 

ethical, or offensive content between the two images. 

B.1.4 License of assets 

All fourteen datasets are publicly available, and Table B.1 details the licensing informa-

tion for the assets in each dataset. We release our COMPBENCH under a Creative Commons 

Attribution 4.0 License (CC BY 4.0) to enhance global accessibility and foster innovation 

and collaboration in research. 
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B.2 COMPBENCH Curation Details 

B.2.1 Annotation Details 

We create UI interfaces for annotation using Python in Jupyter Notebook and store the 

annotations in JSON fles. In the following sections, we provide detailed descriptions of the 

annotation process for each dataset, which are omitted in the main text. 

MagicBrush [296] is a large-scale, manually annotated dataset for instruction-guided 

real image editing. For each image, MagicBrush utilizes DALL-E 2 [211] to generate an 

edited version of the image based on language instructions, such as “let the fowers in the 

vase be blue.” Our goal is to identify pairs of similar images. We thus use CLIP [207] to 

evaluate the visual similarity between the original and edited images. Only pairs exceeding a 

predetermined similarity threshold are selected as candidate samples for our COMPBENCH. 

For each selected pair, we then construct a multiple-choice question to ask the difference 

between two images in the pairs. Concretely, we frst use GPT-4V [2] to extract all relevant 

objects and their attributes from the edited image with the following prompt: 

“Please extract as many components as possible from the provided images. The 
following examples illustrate some potential components, but the list is not 
exhaustive. Only provide the component names, separated by commas. If a 
human or an animal is shown in the images and features such as hair, eyes, 
hands, mouth, ears, and legs are visible, ensure to include them. Similarly, try 
to identify all components in as much detail as possible. 

Examples of components: leg, eye, ear, food, pillow, fower, plate, window, door, 
chair, dining table, sofa, banana, bowl, sugar, blender, berry, lizard, watermelon, 
motorcycle, apple, curtain, cookies, cake, hair, hat, dresses, bacon, butter, jam, 
bread, surfboard, t-shirt, pants, hands, fridge, plants, cabinet, sink, car, girl, 
boy.” 

We treat objects and their attributes (if found) as options for the questions. However, 

GPT-4V [2] may not capture all relevant objects (options) in the images. We thus request 
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human annotators to add as many relevant options as possible. Finally, annotators are 

required to select the obvious difference between two images as the correct answer among 

options and verify the quality of the generated samples (Figure B.1). 

Figure B.1: Annotation Interface for MagicBrush. 

Spot-the-diff [114] offers video-surveillance image pairs from outdoor scenes, along 

with descriptions and pixel-level masks of their differences. Similar to MagicBrush, we 

aim to construct a multiple-choice question to fnd the obvious difference between the two 
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images. We frst prompt the text-only GPT-4 to extract the potentially correct objects from 

the descriptions of the differences using the following prompt: 

“These sentences describe the differences between the two images. Extract 
the objects from these sentences. for example, [“there are more people”, “the 
car moved”], you should return “people, car”. Please only provide the answer 
without any explanation and separate the answer names by commas.” 

Given the extracted objects and the images, GPT-4V is tasked with fnding relevant 

options in the images based on the following prompt: 

“Please list all the objects and attributes associated with the image, for example, 
black cars, people, trees, white trucks, and yellow poles. Only provide one 
attribute (adjective) per object. Please only provide the answer without any 
explanation and separate the answer names with commas. Ensure to include 
these objects: [OBJECTS FROM LAST STEP]” 

We then instruct human annotators to include additional options (if necessary) and 

identify the most evident difference between two images from the available options as the 

correct answer (Figure B.2). 

MIT-States [111] includes 245 objects with 115 visual attributes or states from online 

sources such as food or device websites. Each folder in this dataset is named by (adjective, 

noun), e.g., tall tree, where the adjective describes the state or the attributes and the noun 

is the object. All the images in this folder share the same adjective and noun. We apply 

rule-based approaches to generate questions about relative degrees of attributes or states 

between objects (e.g., “Which tree is taller?”). We then present the questions with the 

corresponding images in this folder to annotators. The annotators are tasked to select pairs 

from all the images, label the correct answers (binary: left/right), and flter out any irrelevant 

or nonsensical questions about the images. In addition, the annotators are required to 

determine the attribute or state types by selecting from the following options: Size, Color, 
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Texture, Shape, Pattern, State, or None. We flter out examples where the type or answer is 

None. The annotation UI interface is shown in Figure B.3. 

VAW [205] provides a large-scale collection of 620 unique attributes, including color, 

shape, and texture. We process VAW in the same manner as MIT-States, as detailed 

in Figure B.3. 

CUB-200-2011 [261] catalogs 15 bird parts and their attributes (e.g., “notched tail”). 

We group images by species with the same attributes (e.g., “curved bill”) and extract visually 

similar image pairs from each group. We then prompt GPT-4 to transform visual attributes 

into questions that compare them using the following in-context prompt: 

“I want to turn some text describing the attributes of birds into a question 
comparing these attributes between birds in two different images. Here are 
some examples: Attribute: has_bill_shape::hooked, Questions: Which bird has 
a more hooked bill? Attribute: has_crown_color::brown, Questions: Which 
bird has more brown on its crown? 

Please turn this list of attributes into these questions in this format or style. I 
want a dictionary format output. [ATTRIBUTE LIST]” 

The annotators receive all images in each group along with corresponding comparative 

questions generated by GPT-4. They are asked to select the pairs from the images and label 

the correct answers (binary: left/right). The annotation interface is shown in Figure B.4. 

Wildfsh++ [308] details 22 characteristics (e.g., “brown pelvic fns”) of various fsh 

species and provides detailed descriptions of the differences between two visually similar 

species. Using the characteristics and the descriptions of difference, we frst ask annotators 

to generate comparative questions (e.g., “Which fsh has lighter brown pelvic fns?”). Sub-

sequently, we pass all images from the two similar species along with the corresponding 

question to the annotators. They select one image from each group to form a pair and label 

the correct answers as either left or right (Figure B.5). 
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Fashionpedia [115] is tailored to clothing and accessories and contains 27 types of 

apparel along with 294 detailed attributes. We group images by (attribute, type), e.g., square 

neckline. We apply rule-based approaches to generate questions about relative degrees of 

attributes (e.g., “Which neckline is more square?”) for each group. We then present images 

of the same type with different attributes, such as “square neckline” and “oval neckline” to 

the annotators. The annotators are required to select one image from each group to form a 

pair, choose one between questions from two attributes, and label the correct answer (binary: 

left/right). The annotation UI interface is shown in Figure B.6. 

NYU-Depth V2 [236] features indoor scenes with object segments and depths. Using 

the segmentation maps, we identify objects within each image and group images containing 

the same objects. We apply rule-based approaches to generate questions about spatial 

relative comparisons (e.g., “Which [OBJECT] is closer to the camera?”). The annotator 

needs to select pairs from all the images in the same group and label the correct answers 

either left or right (Figure B.7). 

CelebA [175] is a large-scale facial attributes dataset featuring over 200K celebrity 

images, each annotated with 40 attributes. We focus on images labeled with the “smiling” 

attribute, as it is the only attribute related to the emotion in the dataset. We generate a 

comparative question such as “Which person smiles more?”. The annotators are tasked with 

selecting pairs from all images with the smiling attribute and labeling the correct answers 

either left or right (Figure B.8). 

FER-2013 [80] contains grayscale images along with categories describing the emotion 

of the person, including Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral. We 

leverage rule-based approaches to generate questions about relative emotional comparisons 

(e.g., “Which person looks more [EMOTIONAL ADJECTIVE]?”). The annotators are 
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required to select pairs from images that share the same emotional attribute and determine 

the correct answers as either left or right (Figure B.9). 

SoccerNet [77], CompCars [283], VQAv2 [81], Q-bench2 [297] are automatically 

processed to generate samples for COMPBENCH using their metadata and CLIP visual 

similarity. 

B.2.2 Language Prompts for MLLMs 

Table B.2 summarizes our language prompts for evaluating MLLMs. We observe that 

in the case of SoccerNet [77], Gemini1.0-pro [251] always predicts the answer “Left” for 

binary questions (e.g., “These are two frames related to [SOCCER_ACTION] in a soccer 

match. Which frame happens frst? Please only return one option from (Left, Right) without 

any other words.”). We thus prompted the Gemini to answer open-ended questions (as shown 

in Table B.2) instead. We then task human evaluators with verifying whether its responses 

(i.e., textual descriptions) match the ground-truth answers to calculate its performance. For a 

fair comparison, we apply the same open-ended questions to other models (i.e., GPT-4V [2], 

LLaVA-1.6 [169], VILA-1.5 [163]) and report their accuracies. 

B.2.3 Model Evaluation 

We use offcial APIs to evaluate proprietary MLLMs, GPT-4V [2] and Gemini [251]. 

For GPT-4V, we use the version of gpt-4-turbo15. For Gemini, we use the Gemini1.0 

15https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4 
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Pro Vision16. For open source models such as LLaVa-1.6-34b [169]17 and VILA-1.5-

40b [163]18, we utilize their offcial source codes and conduct inference on NVIDIA RTX 

6000 Ada GPUs. 

B.2.4 Human Annotators & Evaluators 

We recruited fve in-house human annotators from our research team to work on COMP-

BENCH. The annotators are instructed to avoid generating any personally identifable 

information or offensive content during the annotation process. Furthermore, we recruited 

another fve human evaluators, who were not involved in the annotation, to measure the 

upper bound performance on COMPBENCH. The workloads for annotation and evaluation 

were distributed equally among annotators and evaluators. 

16https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.0-pro-vision 

17https://github.com/haotian-liu/LLaVA 

18https://github.com/Efficient-Large-Model/VILA 
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Figure B.2: Annotation Interface for Spot-the-diff. 
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Figure B.3: Annotation Interface for MIT-States and VAW. 
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Figure B.4: Annotation Interface for CUB-200-2011. 
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Figure B.5: Annotation Interface for Wildfsh++. 
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Figure B.6: Annotation Interface for Fashionpedia. 
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Figure B.7: Annotation Interface for NYU-Depth V2. 
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Figure B.8: Annotation Interface for CelebA. 
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Figure B.9: Annotation Interface for FER-2013. 
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Dataset Model Lagnauge Prompt 

GPT-4V 
LLaVA-1.6 

ST, FA, VA, CU, VILA-1.5 
WF, CE, FE, ND 

Gemini1.0-pro 

“[QUESTION] If you choose the frst image, return Left, 
and if you choose the second image, return Right.” 

“[QUESTION] If you choose the frst image, return First, 
and if you choose the second image, return Second. Please 
only return either First or Second without any other words, 
spaces, or punctuation.” 

GPT-4V “What is the most obvious difference between the two im-

MB, SD 
LLaVA-1.6 ages? Choose from the following options. If there is no 
VILA-1.5 obvious difference, choose None. Options: None, [OP-

Gemini1.0-pro TIONS].” ” 

GPT-4V 

SN 
LLaVA-1.6 “These are two frames related to [SOCCER_ACTION] in a 
VILA-1.5 soccer match. Which frame happens frst?” 

Gemini1.0-pro 

GPT-4V 

LLaVA-1.6 
CC 

VILA-1.5 

“Based on these images, which car is newer in terms of its 
model year or release year? Note that this question refers 
solely to the year each car 
was frst introduced or manufactured, not its current condi-
tion or usage. If you choose the frst image, return Left, and 
if you choose the second
image, return Right. Please only return either Left or Right 
without any other words, spaces, or punctuation.” 

Gemini1.0-pro 

Based on these images, which car is newer in terms of 
its model year or release year? Note that this question 
refers solely to the year each car was frst introduced or 
manufactured, not its current condition or usage. If you 
choose the frst image, return First, and if you choose the 
second image, return Second. Please only return either First 
or Second without any other words, spaces, or punctuation.” 

VQ 

GPT-4V 
“[QUESTION] If the second image has more, return Right. 

LLaVA-1.6 
If the frst image has more, return Left. If both images have 

VILA-1.5 
the same number, return Same.” 

Gemini1.0-pro 

GPT-4V 

QB 
LLaVA-1.6 
VILA-1.5 

“[QUESTION] Options: [OPTIONS]” 

Gemini1.0-pro 

Table B.2: Language prompts for evaluating MLLMs. ST: MIT-States [111], FA: Fash-
ionpedia [115], VA: VAW [205], CU: CUB-200-2011 [261], WF: Wildfsh++ [308], MB: Mag-
icBrush [296], SD: Spot-the-diff [114], CE: CelebA [175], FE: FER-2013 [80], SN: SoccerNet [77], 
CC: CompCars [283], ND: NYU-Depth V2 [236], VQ: VQAv2 [81], QB: Q-Bench2 [297]. 
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B.3 Training details on LLaVA-1.6 

We conduct a study to evaluate whether fne-tuning enhances the comparative capabilities 

of MLLMs. Concretely, we focus on two relativities: Temporality and Quantity. For 

temporality, we construct a total of 20.6K training examples from SoccerNet [77], following 

the similar data collection and annotation protocol described in the main text. For quantity, 

we curate a total training set of 20.9K samples from VQAv2 [81], based on the similar data 

collection and annotation pipeline in the main text. We fne-tune LLaVA-1.6-34b [169] 

on each of these training datasets separately, using LoRA techniques. We follow similar 

hyperparameter settings as those provided in the offcial LLaVA source codes. For instance, 

batch size/the number of epochs/learning rate are 16/3/2e-5, respectively. See the training 

script in our GitHub repository for the complete confguration. All models are fne-tuned on 

four NVIDIA RTX 6000 Ada GPUs. 
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Appendix C: Aligning semantic representations 

with visual features 

In this appendix, we provide details omitted in chapter 5. 

C.1 Contribution 

Our contribution is not merely in the method we developed, but also in the direction 

we explored. Most of the efforts in ZSL have focused on algorithm design to associate 

visual features and pre-defned semantic representations. Yet, it is also important to improve 

semantic representations. Indeed, one reason that ZSL performs poorly on large-scale 

datasets is the poor semantic representations [37]. We therefore chose to investigate this 

direction by revisiting document representations, with the goal to make our contributions 

widely applicable. To this end, we deliberately kept our method simple and intuitive, but also 

provided insights for future work to build upon. Our manual inspection identifed important 

properties of visual sentences like the clustering structure, enabling us to effciently extract 

them. We chose to not design new ZSL algorithms but make our semantic representations 

compatible with existing ones to clearly demonstrate the effectiveness of improving semantic 

representations. 
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C.2 More Related Work 

Zero-shot learning (ZSL) algorithms construct visual classifers based on semantic repre-

sentations. Some recent work applies generative models to generate images or visual features 

of unseen classes [279, 278, 306], so that conventional supervised learning algorithms can 

be applied. 

Knowledge bases usually contain triplets of entities and relationships. The entities are 

usually objects, locations, etc. For ZSL, we need entities to be fne-grained (e.g., “beaks”) 

and capture more visual appearances. YAGO [241] and DBpedia [290] leverage Wikipedia 

infoboxes to construct triplets, which is elegant but not suitable for ZSL since Wikipedia 

infoboxes contain insuffcient visual information. Thus, these datasets and construction 

methods may not be directly applicable to ZSL. Nevertheless, the underlying methodologies 

are inspiring and could serve as the basis for future work. The datasets also offer inter-class 

relationships that are complementary to visual descriptions, and may be useful to establish 

class relationships in ZSL algorithms like SynC [36]. 

C.3 Statistics of Wikipedia Pages 

We use a Wikipedia API to extract pages from Wikipedia for ImageNet 21,842 classes. 

Among 21,842 classes, we fnd that some classes have multiple Wikipedia pages because 

of their ambiguous class names. For example, a class “black widow” in ImageNet refers 

to a spider with dark brown or a shiny black in colour, but it also refers to the name of a 

“Marvel Comics” character in Wikipedia. We therefore exclude such classes and also classes 

that do not have word vectors, resulting in 15,833 classes. The Wikipedia pages of the 15K 

classes contain 1,260,889 sentences where each class has 80 sentences on average. We also 

investigate the number of sentences by our flters (i.e. Vissec, Viscls, Vissec-clu). As a result, 
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Figure C.1: Statistics of Wikipedia pages. 

we correspondingly fnd 213,585, 534,852, 542,645 sentences, which are 16%, 42%, 43% 

of all sentences in 15K classes, respectively (See Figure C.1). 

C.4 Weighted Average Representations 

C.4.1 Observation 

Two similar classes may have similar averaged visual sentence embeddings since they 

share many common descriptions. For example, Figure C.2 shows that the averaged 

embedding (i.e., BERTp and BERTf) between “Kerry Blue Terrier” and “Soft-coated Terrier” 

are overly similar since they share a number of sentences containing the common dog 
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features such as “a breed of dog” or “having a coat or a tail”. Thus, if we represent their 

semantic representations ac as the averaged embeddings, ZSL models may not differentiate 

them. 

C.4.2 Algorithm 

In Section 5.3.4 of the main text, we introduce λ (·) to give each sentence h of a document 

a weight. We note that, while learning λ (·) can enlarge the distance of ac between similar 

classes, we should not overly maximize the distance to prevent semantically similar classes 

(e.g., different breed of dogs) end up being less similar than dissimilar classes (e.g., dogs and 

cats). To this end, we introduce a margin loss with τ in Equation 5.5, which only penalize 

overly similar semantic representations. 

We also note that, the purpose of λ (·) is to improve ac from the simple average 

embedding ā c. We therefore initialize λ (·) such that the initial ac is similar to ā c. We do so 

by frst learning bψ with the following objective: 

∑ max{0,ε − cos(ac, ā c)}. (C.1) 
c∈S∪U 

We set ε = 0.9, forcing ac and ā c to have a similarity larger than 0.9. 

C.4.3 Results 

Figure C.2 demonstrates the effectiveness of the weighted average embedding BERTf-w. 

While other semantic representations predict “Kerry Blue Terrier” as other similar dog, 

“soft-coated Terrier”, BERTf-w is able to classify the image correctly. In addition, based on 

the attention weights, we report the Top 3 sentences and the Bottom 3 sentences. The Top 

1st sentence contains the inherent features for “Kerry Blue Terrier” such as long head or 
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Figure C.2: Qualitative analysis of a class Kerry Blue Terrier. w2v-v2, BERTp, and BERTf can not 
distinguish between Kerry Blue Terrier and Soft-coated Terrier since two classes share the common 
features of dogs such as “a breed of dog” or “having a coat or a tail”. On the other hand, our weighted 
average BERTf-w is able to differentiate them by weighting on the sentences. We report the Top 3 
sentences and the Bottom 3 sentences based on the attention weights. 

soft-to-curly coat while the Top 2nd and 3rd sentences describe general features of dogs. 

On the other hand, the Bottom 3 sentences do not have visual appearance of the object. This 

suggest that our weighted representation BERTf-w is more representative to “Kerry Blue 

Terrier” than other semantic representations. 

C.5 Dataset, Features, Metrics, and ZSL Algorithm 

For visual features, we use the 2,048-dimensional ResNet visual features [94] provided 

by [277]. Word vectors can be found in [37]. Followed by [277], we use the average 

per-class Top-1 accuracy as our metric. Instead of simply averaging over all test images (i.e. 

the average per-sample Top-1 accuracy), this accuracy is obtained by frst taking average 

over all images in each test class independently and then taking average over all test classes. 

Compared to the average per-sample accuracy, the per-class accuracy is a more suitable for 

ImageNet since the dataset is highly imbalanced [37]. The state-of-the-art algorithms in ZSL 

are EXEM and HVE proposed by [37] and [171], respectively. To make fair comparison 
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with our models, we evaluate their algorithms on the same number of our test classes using 

their offcial codes. 

C.5.1 ImageNet 

We follow [277, 36] to consider three tasks, 2-Hop, 3-Hop, and ALL, corresponding to 

1,509,7,678 and 20,345 unseen classes that have word vectors and are within two, three, 

and arbitrary tree hop distances to the 1,000 seen classes. 

We search Wikipedia and successfully retrieve pages for 15,833 classes, of which 1,290, 

5,984, and 14,840 are for 2-Hop, 3-Hop, and ALL. 

C.5.2 AwA2 

Animals with Attributes2 (AwA2) provides 37,322 images of 50 animal classes. On 

average, each class includes 746 images. It also provides 85 visual attributes that are 

manually annotated by humans. In AwA2, classes are split into 40 seen classes and 10 

unseen classes. For GZSL, a total of 50 classes is used for testing. 

C.5.3 aPY 

Attribute Pascal and Yahoo (aPY) contains 15,339 images of 32 classes with 64 attributes. 

The classes are split into 20 seen classes and 12 unseen classes. A total of 32 classes is used 

for testing on GZSL. 

C.5.4 DeViSE [69] vs. EXEM [37] vs. HVE [171] 

All algorithms learn feature transformations to associate visual features x and semantic 

representations ac. The key differences are what and how to learn. DeViSE⋆ learns two 

MLPs fθ and gϕ to embed x and ac into a common space, while HVE embeds them into a 
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hyperbolic space. EXEM learns kernel regressors to embed ac into the visual space. On 

how to learn, DeViSE⋆ and HVE force each image x to be similar to the true class ac by 

a margin loss and a ranking loss respectively, while EXEM learns to regress the averaged 

visual features of a class from ac. 

C.6 Implementation Details 

C.6.1 Sentence representations from BERT 

Sentence representations can be defned in multiple ways such as a [CLS] token embbed-

ding or an average word embedding from different layers in BERT [215]. In our experiments, 

the average word embedding from the second last layer of BERT achieve the best results in 

all cases. 

C.6.2 Hyperparameters 

DeViSE [69] has a tunable margin ∆ ≥ 0 (cf. Section 5.3.1 in the main text) which its 

default value is 0.1. We try multiple values 0.1, 0.2, 0.5, and 0.7 to fnd the best setting. 

DeViSE uses Adam optimizer which its learning rate is 1e−3 by default. We try different 

−3 −4 −4 −4possible values, 1e , 5e , 2e , and 1e . Among all 16 possible combination of the 

margin and learning rate, we fnd that margin of 0.2 and learning rate of 2e−4 achieve the 

best results on all our cases. 

C.6.3 Fine-tuned models 

For fne-tuning, DeViSE⋆ is frst attached to a BERT model. Then, we train the model 

with jointly fne-tuning BERT parameters based on the DeViSE⋆ objective. Regards to 

BERT training, [101] demonstrates that fne-tuning only last few n layers (e.g. 2 or 4) 
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Model Type Filter Threshold τ 2-Hop 
0.98 15.97 

BERTp-w Vissec-clu 0.97 
0.96 

16.09 
16.32 

DeViSE⋆ 0.95 16.13 
0.88 20.34 

BERTf-w Vissec-clu 0.86 
0.82 

20.44 
20.33 

0.80 20.47 

Table C.1: Results of per-class Top-1 accuracy(%) on 2-Hop with different thresholds τ and semantic 
representation types. The best is in red and the second best in blue. 

can outperform fne-tuning all layers in some NLP tasks. [138] also shows that the fne-

tuning procedure is more effective to the last few layers than earlier layers. Considering the 

computational resources and time, we therefore set n equal to 2. After fne-tuning, we freeze 

BERT parameters and further train DeViSE⋆ . 

C.7 Ablation Study 

Table C.1 shows the results on 2-Hop with different thresholds τ introduced in Equa-

tion 5.5. We obtain the weighted average BERTp-w by taking an input h from BERTp and 

learning MLP bψ with different τ (similar for BERTf-w). Then, we measure 2-Hop accuracy 

based on BERTp-w (or BERTf-w ). Note that BERTp and BERTf have different ranges of τ , 

since BERTf already has lower similarity between classes. This is because BERTf is trained 

with images (from seen classes) during fne-tuning, which makes BERTf more aligned 

with visual features and thus is more representative. We choose τ based on the ImageNet 

validation set of the seen classes. 

Table C.2 shows that the weighted average embedding BERTp-w makes similar classes 

less similar. Originally, a class “Sea boat” has overly similar semantic representations with 
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Class 
Top3 Similar 

Classes 
Similarity 

BERTp BERTp-w 

Scow 0.94 0.91 
Sea boat Row boat 0.93 0.91 

Canoe 0.93 0.91 

Table C.2: Similarity of Top 3 similar classes with Sea boat drops after applying the weighting 
approach. 

other type of boats (i.e. BERTp). After applying our weighting approach, the classes become 

less similar (e.g. 0.94 to 0.91 between “Sea boat” and “Scow”). 

C.8 Qualitative Results 

C.8.1 Visual sections and clusters 

We provide additional illustrations of visual sections and clusters of Section 5.3 in the 

main text. 

Figure C.3 shows visual and non-visual sections in a Wikipedia page Siberian Husky. 

We note that the summary paragraph and sections such as Description contain visual 

sentences while sections such as Health or History do not. Similarly, Table C.3 shows 

two clusters: the top cluster is visual, consisting of information about hunting and preys of 

animals while the bottom cluster includes mythology sentences not visually related. 
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Clusters 
· · ·hunt shortly after sunset, eating small animals · · · 
· · · if food is scarce, it has been known to eat tomatoes · · · 
Tigers are capable of taking down larger prey like adult gaur · · · 
Tigers will also prey on such domestic livestock as cattle, horses, · · · 
Panda is a Roman goddess of peace and travellers · · · 
The Ibex is also a national emblem of the great ancient Axum empire. 
In Aztec mythology, the jaguar was considered to be the totem animal of · · · 
It is the national animal of Guyana, and is featured in its coat of arms · · · 

Table C.3: K-means sentence clusters. The top cluster has visual information about hunting and 
preys while the bottom one contains non-visual description such as mythology. 

Figure C.3: Visual sections on Siberian Husky. 
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Appendix D: HTML representations with visual contextualization 

In this appendix, we provide details omitted in chapter 6. 

D.1 Model implementation & training details 

As mentioned in the main text, we implement DUAL-VCR on top of MindAct algo-

rithm [60]. We exactly follow its implementation19 but provide the details for reference. 

D.1.1 DUAL-VCR-enhanced element ranker 

MindAct utilizes a small ranking LM to measure the importance of each element et for 

action prediction. Concretely, at each time step t, the ranking LM takes the element’s HTML 

text tokens het , the task description q, and the previous actions {a1,a2, · · · ,at−1} as input 

and outputs its importance, 

set = f (q,het ,{a1,a2, · · · ,at−1}) (D.1) 

DUAL-VCR aims to expand this ranking LM to integrate (i) each element’s visual 

features and textual features and (ii) both the candidate element and its neighbor elements. 

(See Figure 6.4 of the main text for an illustration.) 

19https://github.com/OSU-NLP-Group/Mind2Web 
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Integrating visual and textual features. We frst extract each element’s visual features from 

the Pix2Struct Vision Transformer (ViT) [145], pre-trained on webpage screenshots. Con-

cretely, Pix2Struct learns rich representations of webpages by asking to predict an HTML-

based parse from a masked screenshot. We input the whole screenshot It to Pix2Structbase 

and apply RoIAlign [93] on its output embeddings to obtain the element’s visual features vet 

based on its bounding box. On the HTML document side, we extract the element’s HTML 

text het , using the triplet of its ID, HTML text, and bounding box provided in the HTML 

document. 

Intergrating visual neighbor elements. Based on our key insight on webpages—web 

developers tend to arrange semantically relevant and task-related elements in proximity to 

each other on the screenshot to enhance user experiences—we contextualize each element et 

with its “visual” neighboring elements Met . We measure the center points of all elements in 

the screenshot using their bounding boxes and calculate their pairwise Euclidean distances20. 

For each candidate element to be ranked by MindAct, we search for the closest M elements 

to form its context jointly. 

Aligning visual and textual embedding spaces. After obtaining each element’s visual 

features vet and textual features het , we align them in the same embedding space. Following 

the recent practice of vision-and-language models (e.g., BLIP-2 [150], LLaVA-1.5 [168]), 

we apply two linear projection layers W to map visual features into the textual embedding 

space. We then introduce a learnable positional embedding to (i) pair each projected visual 

feature uet with its associated text tokens het and (ii) encode the relative distance between 

the candidate element et and its neighboring elements Met . Concretely, we add the same 

positional embedding pet to the candidate element’s (projected) visual feature uet and textual 

20https://scikit-learn.org 
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Avg # HTML 
Dataset # Domains # Websites Website # Tasks Avg # 

Type Actions Elements Tokens 

MiniWoB++ [108] - 100 Simplifed 100 3.6 28 500 
Mind2Web [60] 31 137 Real-world 2,350 7.3 1,135 44,402 

Table D.1: Detailed Statistics of Mind2Web [60]. Min2Web is the frst real-world web navigation 
benchmark, collecting over 100 real-world websites across various domains. Unlike previous 
benchmarks [108, 285], Mind2Web provides an extensive amount of real-world webpage content, 
including over 1K/44K HTML elements/tokens on average. 

feature het . Besides, we sort the neighbors Met based on their spatial distances from the 

candidate element et . We then encode the relative positional embedding pmk (based on 
et 

the spatial distance from the candidate) to each neighbor element’s visual features umk and 
et 

corresponding text tokens hmk . We denote the set of the neighbors’ visual features by UMet 
. 

et 

Similarly, HMet 
and PMet 

represent the set of their textual features and that of their positional 

embeddings, respectively. These positionally encoded visual and textual token embeddings 

(of the candidate and the neighbor elements) are passed into the ranking LM f ; the visual 

features are prepended to the textual embeddings, serving as soft visual prompts, 

set = f (q,Ret ,{a1,a2, · · · ,at−1}), 
(D.2) 

Ret = [uet + pet ;UMet 
+ PMet 

;het + pet ;HMet 
+ PMet 

] 

Training Details. In training, we only learn the projection layer W , the positional embed-

dings P, and the ranking LM f while keeping the ViT frozen. For the ranking LM, we 

use DeBERTabase [95], a small encoder-only LM. We exactly follow the confguration of 

MindAct. Specifcally, we train the LM (together with a linear classifer) with a batch size of 

32 and a learning rate of 3e-5 for 5 epochs. The LM outputs the element’s importance score 

through a sigmoid activation function. The score is optimized with a binary cross-entropy 

loss, where the ground-truth element serves as a positive example, and elements randomly 

165 



sampled from the webpage are considered negative examples. The LM is trained on a 

single Nvidia A6000 48GB GPU. During inference, we score all candidate elements in the 

webpage and select top-K elements for the action predictor. 

D.1.2 DUAL-VCR-enhanced action predictor 

Due to the high computational cost of directly passing an entire HTML document into 

LLMs, MindAct [60] restricts its input to only the top-K candidate elements selected from 

the ranking LM. Concretely, MindAct combines the selected elements into an HTML snippet 

Ht and feeds it into an LLM g, along with the task description q (“Find one-way fights from 

New York to Toronto.”) and the previous actions {a1,a2, · · · ,at−1} (“Type New York in the 

From box”). At each time step t, the objective is to predict an action at , composing of the 

target element et (e.g., “[textbox] To”) and its associated operation ot (e.g., “Type Toronto”), 

at = g(q,Ht ,{a1,a2, · · · ,at−1}), 
(D.3) 

at : {et ,ot} 

We note that MindAct converts the target element prediction problem into multiple-choice 

question-answering. Instead of directly generating the target element, they split top-K 

candidates into multiple clusters of fve element options (including the “None” option) and 

ask the LLM to pick one element from each cluster. If more than one element is selected, 

they form a new group with the chosen ones and iterate this process until a single element is 

selected. 

The action predictor of DUAL-VCR takes the same input as MindAct, except for 

appending each candidate element with its neighboring elements. We generate an HTML 

snippet St based on the top-K candidate elements and their adjacent elements, and input the 

snippet (with the task description and the previous actions) to the LLM g and predict the 
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action at , 

at = g(q,St ,{a1,a2, · · · ,at−1}) (D.4) 

Training Details. We again adopt the confguration from MindAct. We train Flan-

T5base [52], an instruction fne-tuned encoder-decoder LLM, with a batch size of 32 and a 

learning rate of 5e-5 for 5 epochs. We optimize its parameters with the language modeling 

loss on a single Nvidia A6000 48GB GPU. 

D.2 Dataset Details 

Mind2Web [60] recently proposed the frst real-world web navigation benchmark, con-

sisting of over 2,000 open-ended tasks from more than 100 real-world websites. They 

collect the websites across 31 diverse domains, including travel, shopping, entertainment, 

public service, etc. Unlike other existing benchmarks [108, 285] limited to simulated 

environments, Mind2Web instead focuses on real-world environments (Table D.1). For 

instance, Mind2Web provides real-world websites with rich content, including thousands of 

HTML elements, tens of thousands of HTML tokens, and 7.3 web-related actions per task 

on average. 

Data Collection. Given a real-world website (e.g., an airline website), Mind2Web frst asks 

annotators to write open-ended realistic tasks (e.g., “Find one-way fights from New York to 

Toronto.”) relevant to the website. The workers are then required to complete the defned 

task with a sequence of actions. Specifcally, each action is composed of element selection 

and operation selection. The annotators should frst fnd an element (e.g., “[textbox] From”) 

relevant to the task on the webpage and perform an operation (e.g., “Type New York”) on 

the element. 
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Dataset Split. The Mind2Web dataset provides a training split with 1,009 real-world tasks 

collected from 73 websites. Each task consists of a sequence of action samples. In total, 

there exist 7,775 samples in the training split. Mind2Web evaluates a web agent on three 

different test splits. TestCross-Domain measures the agent’s generalizability to a new domain 

where it has not seen any websites or tasks associated with that domain during training. The 

split contains 912 tasks with 5,911 samples from 73 real-world websites. In TestCross-Website, 

while the agent is not exposed to test websites, it is trained on websites from the same 

domain and potentially with similar tasks. This confguration enables us to evaluate the 

agent’s capacity to adapt to entirely new websites within familiar domains and tasks. This 

split consists of 177 tasks, along with 1,373 samples obtained from 10 websites. Cross-Task 

is a conventional test split, which is the random 20% of the dataset. The split has 252 tasks 

with 2,094 samples from 69 websites. 

Task Details. The Mind2Web task consists of a sequence of actions, each comprising a 

pair of an actionable HTML element (e.g., “[textbox] To”) and an operation (e.g., “Type 

Toronto”). Mind2Web provides three common operations: Click, Type, and Select. For 

Type and Select operations, an additional argument (e.g., “Toronto”) is required. 

D.3 Additional Experiments 

More powerful action predictor. We scale up the predictor from Flan-T5base to Flan-

T5large to check whether our visual neighbors are still benefcial with the larger model. As 

shown in Table D.2, DUAL-VCR still achieves notable gains, suggesting the complementary 

capabilities of LLMs and our visual neighbors. 

Neighbors from an HTML tree. An HTML document can be represented as a DOM tree, 

a hierarchical tree of HTML objects (e.g., Element: <head>). Thus, we can also extract 
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Ranker Action 
Cross-Task 

Predictor Ele. Acc Op. F1 Step SR 

MINDACTRANK 
MINDACTPRED-LARGE 

DUAL-VCRPRED-LARGE 

51.4 
54.2 

75.6 
79.5 

48.7 
50.9 

Table D.2: DUAL-VCR with a larger predictor. We increase the size of the predictor from 
Flan-T5base to Flan-T5large. Even with the larger predictor, DUAL-VCR notably outperforms the 
baseline, showing the complementarity of DUAL-VCR and LLMs. 

each element’s neighbors from the HTML tree. We compare the tree-based neighbors with 

our neighbors obtained from the screenshot (Table D.3). Our visual neighbors (DUAL-

VCRPRED) signifcantly outperform those defned by the HTML tree (HTMLTREENEIPRED), 

suggesting that visual-spatial context is more benefcial. 

Ranker with whole visual tokens. In the main text, we show that DUAL-VCR (i.e., the use 

of visual neighbors) is more effective than the use of the entire image for web navigation (e.g., 

DUAL-VCRPRED vs. WHOLEIMAGEPRED, DUAL-VCRVNEI-TXT+VIS vs. WHOLEIMAGERANK). 

To further substantiate the effcacy of DUAL-VCR over using the whole image, we conduct 

additional experiments (Table D.3). Specifcally, we train a ranker (WHOLEVISTOKRANK) 

using all visual tokens extracted from the whole image based on the Pix2Struct ViT [145]. 

Like the previous results in the main text, WHOLEVISTOKRANK outperforms the baseline 

(e.g., 44.1% vs. 42.0%), suggesting the beneft of utilizing the entire image. However, 

WHOLEVISTOKRANK falls short of DUAL-VCRVNEI-TXT+VIS (46.0%), which uses signif-

cantly fewer inputs (i.e., only neighboring elements). This again supports the advantages of 

DUAL-VCR over the whole image regarding computational effciency and performance. 

Type of pre-trained visual features. Table D.4 summarizes the importance of the type 

of pre-trained visual features on web navigation. As discussed in the main text, to train 
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Ranker 
Action 
Predictor 

Cross-Task 
Ele. Acc 

MINDACTRANK 

MINDACTPRED 

WHOLEIMAGEPRED 

HTMLTREENEIPRED 

DUAL-VCRPRED 

42.0 
43.6 
43.8 
44.4 

WHOLEIMAGERANK 

WHOLEVISTOKRANK 

DUAL-VCRVNEI-TXT 

DUAL-VCRVNEI-TXT+VIS 

MINDACTPRED 

43.9 
44.1 
44.6 
46.0 

- WHOLEHTMLPRED 38.6 

Table D.3: Additional results for Table 6.6 in the main text. Our neighbors defned 
by a screenshot (DUAL-VCRPRED) notably outperform the neighbors defned by an HTML 
tree (HTMLTREENEIPRED). Moreover, DUAL-VCRVNEI-TXT+VIS is signifcantly better than 
WHOLEVISTOKRANK, which uses all visual tokens of the entire image. This again highlights 
the beneft of DUAL-VCR in both computational effciency and performance. 

the ranker, we extract the element’s visual features using Pix2Struct [145]’s VIT, pre-

trained on webpage screenshots. We investigate if these pre-trained “screenshot” visual 

features (DUAL-VCRVNEI-TXT+VIS-WEB) indeed contain meaningful HTML context for down-

stream web navigation tasks. Concretely, we compare them with features extracted from 

ViT pre-trained on COCO [164], an object recognition benchmark containing common 

objects in “natural images”. We denote a ranker using the COCO visual features by DUAL-

VCRVNEI-TXT+VIS-COCO. We frst observe that DUAL-VCRVNEI-TXT+VIS-COCO outperforms 

DUAL-VCRVNEI-TXT that only leverages elements’ HTML text features to train the ranker 

(e.g., 45.2% vs. 44.6% on Ele. Acc). This implies that even if visual features are from a 

different domain (i.e., natural images), incorporating them is still helpful in web navigation 

tasks. However, compared to DUAL-VCRVNEI-TXT+VIS-WEB, which uses both HTML visual 

and textual features, DUAL-VCRVNEI-TXT+VIS-COCO performs less (e.g., 46.0% vs. 45.2% on 

Ele. Acc). This highlights that the pre-trained “screenshot” visual features indeed contain 
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Cross-Task 
Ranker 

Ele. Acc Op. F1 Step SR 

DUAL-VCRVNEI-TXT 44.6 75.7 43.2 
DUAL-VCRVNEI-TXT+VIS-COCO 45.2 76.3 43.4 
DUAL-VCRVNEI-TXT+VIS-WEB 46.0 78.6 44.8 

Table D.4: Effects of different types of pre-trained visual features. The pre-trained screenshot 
visual features [145] are more benefcial on the downstream web navigation than those extracted 
from ViT pre-trained on natural images of COCO [164]. 

HTML-related context, which benefts more in completing the downstream web navigation 

tasks. 

Existing/Concurrent Works. A number of previous studies [108, 285, 157, 244, 31, 166, 

116, 240, 230] have explored web navigation but mainly worked on simplifed websites [108, 

285], which deviate from the focus of our study. Our attention is instead directed towards 

real-world scenarios involving various real-world websites with extensive raw HTML 

documents (e.g., Mind2Web). We have identifed a few concurrent works [71, 86, 299, 91, 

99, 48] exploring Mind2Web, but they mostly focus on (i) large-scale pre-training, requiring 

substantial amounts of pre-training HTML data, or (ii) evaluating the potential of recent 

vision-and-language models (e.g., GPT4-V [195]) as a web agent. As their codes or pre-

training datasets have not been released yet, replicating their work would be prohibitively 

costly. We thus do not consider them in our studies. 
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Appendix E: Learning from data with appropriate learning objectives 

In this appendix, we provide details omitted in chapter 7. 

E.1 V&L model implementation details 

Our model is an encoder-decoder V&L architecture consisting of ViT-B/16 [64] as a 

visual module and mT5-Base [282] as a language module. For the vision module, we adopt a 

transformer-based vision model ViT [64] pre-trained on JFT-3B dataset [293], the extension 

of JFT-300M [243], with 3 billion images collected from the web. Our language module is 

initialized from mT5-Base [282], a multilingual variant of T5 [209], pre-trained on a new 

Common Crawl-based dataset with 101 different languages. 

During training, all parameters in vision and language blocks are updated simultaneously. 

We choose Adafactor [231] as an optimizer with β1 = 0 and second-moment exponential 

decay = 0.8. For a learning rate, we schedule a linear warmup for 1K steps with inverse 

square-root decay. Our V&L architecture is implemented in Jax/Flax [27] based on the 

open-source T5X [220] framework. 

We have done extensive hyperparameter tuning for our experiments. For instance, we 

fnd that the best hyper-parameter confguration for SPLITOCR pre-training is — initial (peak) 

learning rate: 1e-3, batch size: 256, image resolution: 640x640, the length of input/target 

text tokens: 40/26, and dropout: 0.1. For TextVQA, we achieve the best result with initial 
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Pre-training Downstream 
Hyper-parameter 

SPLITOCR ST-VQA TextVQA VW-VQA VQAv2 TextCaps VW-Cap 

Initial (peak) learning rate 1e-3 9e-4 2e-4 9e-4 1e-3 2e-4 2e-4 
Batch size 256 256 256 256 512 256 256 

Image resolution 640x640 640x640 640x640 640x640 640x640 640x640 640x640 
Length of input text tokens 40 72 72 72 72 56 56 
Length of target text tokens 26 8 8 8 8 64 64 

Dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Table E.1: Best hyper-parameters for our experiments. Among hyper-parameters of our V&L 
model, we fnd that initial (peak) learning rate, batch size, image resolution, length of input/target 
text tokens, and dropout are major components affecting the performance of our tasks. VW-VQA: 
VizWiz-VQA, VW-Cap: VizWiz-Captions 

learning rate: 2e-4 and the length of input/target text tokens: 72/8 (See Table E.1 for more 

details). 

E.2 Pre-training & Scene-text V&L datasets 

We provide more details about pre-training and scene-text V&L datasets used in our 

experiments. 

Scene-Text on CC15M. We estimate the portion of scene text on CC15M with a study on 

300 randomly sampled images. We manually check each image and found: 59% (177/300) 

have scene text; only 13% (38/300) are watermark-only images. This aligns with TAP’s 

report [284] on CC3M (scene-text: 42%, watermark-only: 5%). Note that TAP mentioned 

“only the CC dataset contains a reasonable portion of images with meaningful scene text 

regions”, suggesting CC15M is suitable for STU pre-training. 

ST-VQA [23] is for scene-text VQA dataset. Its images are collected from various 

resources: COCO-Text [260], Visual Genome [141], VizWiz [88], ICDAR [129, 128], 
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ImageNet [59], and IIIT-STR [190]. Since there is no offcial validation set, we follow the 

split provided by M4C [104], resulting in 23K/26K training/validation VQA examples. 

TextVQA [237] for scene-text VQA. It is a subset of Open Images [139] with scene-text 

related QA pairs from human annotators with ten ground-truth answers. It has 34K/5K 

training/validation VQA examples from 21K/3K images. 

VizWiz-VQA [88]. The dataset contains 20K/3K training/validation VQA examples 

collected from blind users. Due to the nature of the questions asked by blind people, we 

identify this benchmark as a candidate to beneft from scene-text understanding, even though 

it was not directly designed for scene-text VQA. 

VQAv2 [81]. We further evaluate PRESTU on standard VQA benchmark to check if the 

scene-text recognition can also help on general VQA tasks. Following [118], we use the 

VQAv2 train/dev splits of *train2014/minival2014, which are 592K/65K VQA examples in 

total. 

TextCaps [235] for scene-text image captioning task. It uses the same subset of OpenIm-

ages images with TextVQA. Each image has fve ground-truth captions, totaling 100K/15K 

training/validation captions. 

VizWiz-Captions [89]. Like Vizwiz-VQA, this benchmark was generated by blind 

users to solve their daily visual challenges. It contains 23.4K/7.7K training/validation 

images, where each image is paired with fve captions. In total, there are 117K/38K 

training/validation image captions. 

OCR-VQA [191] is an OCR-based VQA dataset about images of book covers. Con-

cretely, it requires models to answer visual questions by reading/interpreting the text on the 

book covers (e.g., author, title). In summary, OCR-VQA provides 207K images of book 

covers and more than 1 million VQA examples. 

174 

https://23.4K/7.7K


DocVQA [186] asks for the textual (handwritten, typewritten, printed) content on the 

document images. In contrast with general VQA [81], models should understand additional 

visual cues, including layout (e.g., tables), style (e.g., font, color), and non-textual elements 

(e.g., tick boxes). In total, DocVQA contains 50K VQA examples with more than 12K 

document images. 

ChartQA [184] is a VQA benchmark based on charts. Specifcally, it covers more 

than 23K VQA examples from 17K charts. In ChartQA, models are required to perform 

complex reasoning (e.g., logical and arithmetic operations) to understand charts and the 

corresponding questions. 

AI2D [131] is a VQA dataset of illustrative diagrams. The task of AI2D is to answer 

diagram-related questions by analyzing the diagram structure and identifying its visual 

entities and their semantic relationships. AI2D provides 5K diagrams with 15K VQA 

examples in total. 

WidgetCap [158] aims to generate language descriptions for UI elements (widgets) 

in the mobile interface. Mobile apps often lack widget captions in their interfaces, which 

recently becomes a primary issue for mobile accessibility. WidgetCap attempts to solve 

this challenge by providing an evaluation benchmark containing more than 162K language 

phrases (i.e., captions) with 61K UI elements. 

Screen2Words [263] is an image captioning task to generate a short summary of the 

mobile screen. To complete the task, models should have the capability of understanding 

the screen and conveying its content and functionalities in a concise language phrase. 

Screen2Words consists of 112K captions for 22K mobile screens in total. 
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E.3 More comparisons to prior works 

Comparison to TAP. While PRESTU adopts a general pre-training dataset (i.e., 

CC15M), TAP’s pre-training data aggregates scene-text dedicated downstream data, in-

cluding ST-VQA, TextVQA, TextCaps, and OCR-CC. Thus, even if the size of TAP’s 

pre-training data (1.5M) is smaller, it may align better with the downstream tasks. However, 

since TAP’s approach focuses on the specifc downstream tasks, it is less applicable to other 

V&L tasks, whereas PRESTU provides a more fexible interface. 

Moreover, TAP adopts closed-set prediction by training an answer classifer based on the 

dataset-specifc vocabulary. This may beneft the accuracy of the corresponding downstream 

task. In contrast, PRESTU chooses open-ended prediction as it is more generalizable in 

practice and is adopted by many recent works (e.g., PaLI, GIT). 
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Image gOCR token PreSTU OCR token prediction

panera bread drive thru panera bread drive thru

north course par 4 353 333 287 
hdcp - 13-15 north course par 4 333 333 287

a 4005 ealing a 4005 ealing

sk - ii facial treatment essence sk - ii facial treatment essence

Figure E.1: PRESTU’s OCR token prediction. The quality of OCR tokens generated by 
SPLITOCR is comparable to that of gOCR system. This shows the possibility of leveraging 
SPLITOCR as an alternative OCR system when other systems are not available. 

177 



TextVQA

what player number is the 
runner sliding under?

Ground-truth: 13

NoPreSTU
(Baseline): 5

PreSTU: 13

machadengOCR tokens:

TextVQA

what is the make of car?

Ground-truth: lexus

NoPreSTU
(Baseline): cooper

PreSTU: lexus

gOCR tokens: cooper stu
lexue ecnk-06n

Figure E.2: gOCR tokens vs. PRESTU prediction on TextVQA. gOCR system does not
detect some OCR tokens in the image (e.g., “13”) or detects them incorrectly (e.g., “lexue”).
This leads NOPRESTU to predict wrong answers (e.g., “5” or “cooper”). On the other hand,
SPLITOCR with gOCR tokens as input predicts the answers correctly with correct OCR
tokens (e.g., “13” or “lexus”).
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E.4 More ablation studies 

SPLITOCR vs. CAP. Table 7.1 of the main text shows the effectiveness of SPLITOCR 

against VQA on VQA tasks. We further check its beneft over CAP on VQA tasks. As 

shown in Table E.2, SPLITOCR consistently improves over CAP (e.g., 53.2% vs. 49.3%) on 

TextVQA, further supporting that SPLITOCR is important for higher accuracy. 

We also investigate the effect of the order of pre-training stages. Concretely, we switch 

the order between SPLITOCR and CAP and demonstrate that applying SPLITOCR frst (i.e., 

default setting) is better (Table E.3). 

Order of OCR. PRESTU uses the fxed OCR order to standardize the target output 

sequence during pre-training. Compared to the random order, we see its advantage with 

consistent improvements (e.g., 132.4 vs. 134.6 on TextCaps CIDEr / 55.3% vs. 55.6% on 

TextVQA). 

OCR System. We note that different prior works often use different commercial OCR 

engines to obtain their best results. Thus, it is hard to perform a fair comparison without 

extra costs. That said, we did evaluate PRESTU with different OCR engines (including 

Rosetta-en) at the downstream stage (Table 7.10 of the main text). A similar setup is used in 

LaTr [22]: Rosetta-en/Amazon-OCR for downstream TextVQA/pre-training, respectively. 

In this setup, PRESTU outperforms LaTr on TextVQA Val (50.7% vs. 48.4%). 
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Model Pre-training
Objective 

TextVQA 
Val Acc 

PRESTU 

CAP 

SPLITOCR→CAP 

CAP→VQA 

SPLITOCR→CAP→VQA 

49.3 
53.2 
50.0 
55.0 

Table E.2: SPLITOCR vs. CAP on VQA tasks. SPLITOCR is crucial for higher accuracy. 

Pre-training TextCaps Model 
Objective Val CIDEr 

SPLITOCR→CAP 141.7
PRESTU 

CAP→SPLITOCR 135.4 

Table E.3: Effect of switching pre-training stages. Applying SPLITOCR frst (i.e., default setting) 
is more effective. 

E.5 Qualitative results 

Figure E.1 shows some examples of OCR tokens generated by SPLITOCR. Our SPLITOCR 

detects all (or almost all) OCR tokens in the images correctly, competitive to the gOCR 

system. 

In §7.4.2 of the main text, we demonstrate that having two sources of OCR signals is 

benefcial (OCR signals by pre-trained ViT with SPLITOCR and OCR signals by gOCR 

system). Figure E.2 further supports this fnding qualitatively. For instance, gOCR alone 

does not detect some OCR tokens in the image (e.g., “13”) or detects them incorrectly (e.g., 

“lexue”). This leads NOPRESTU to predict wrong answers (e.g., “5” or “cooper”). On 

the other hand, SPLITOCR with gOCR tokens as input predicts the answers correctly with 
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VizWiz-VQA

what three letter do i type 
to win the prize?

Ground-
truth: mvg

NoPreSTU
(Baseline):

unanswerable

PreSTU: mvg

VizWiz-Captions

Ground-
truth:

a asus pc laptop with a dark screen 
with a small black box with writing

NoPreSTU
(Baseline):

a laptop is open and is turned on

PreSTU: a black asus laptop with a black screen

Figure E.3: Qualitative results on VizWiz-VQA [88] and VizWiz-Captions [89].

correct OCR tokens (e.g., “13” or “lexus”), demonstrating that two sources of OCR signals

(i.e., ViT and gOCR) are complementary.

Figure E.3 provides qualitative results for VizWiz-VQA and VizWiz-Captions, demon-

strating the applicability of PRESTU to different VQA and image captioning tasks.

E.6 Contributions

While our SPLITOCR is inspired by SimVLM [271], the motivation is fundamentally

different and it is not trivial to apply the prefix idea in the first place for OCR-aware

pre-training. Concretely, SimVLM aims to serve downstream tasks that generate text like
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captions or answers (with optional text input). Thus, it is understandable why SimVLM 

could help. In contrast, for downstream STU tasks, OCR strings often serve only as the text 

input. Therefore, while it makes sense to apply our second stage pre-training (CAP & VQA) 

with OCR strings as the input, it is not intuitive to develop a separate OCR-only pre-training 

stage (SPLITOCR) that leverages the idea of SimVLM. We came up with SPLITOCR purely 

from the two essential STU capabilities: (i) recognizing text in an image, (ii) connecting the 

text to its visual context. Our contribution thus lies in how to fulfll the two requirements via 

a unifed manner, which turns out to be a SimVLM-like objective. 

Besides SPLITOCR, another key contribution of our work is the comprehensive investiga-

tion of pre-training STU capabilities using a combination of easily reproducible objectives 

and a standard network architecture, on domains much more diverse than in previous works. 

Thus, we believe that our extensive analysis is valuable to the community. 

Finally, we demonstrate the effectiveness of our OCR-aware method in large-scale 

settings. We choose CC15M as the pre-training dataset, which is often considered large-

scale, and PaLI [45], an extremely large-scale model (with 10B data), utilizes our objective 

to achieve SOTA results on nearly all STU tasks (cf. §7.4.1.4 of the main text). This shows 

the utility of our pre-training objectives even in SOTA large-scale models. 
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