
Statistical Methods for Generalized Integer Autoregressive

Processes

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

Pashmeen Kaur, B.Sc., M.S.

Graduate Program in Department of Statistics

The Ohio State University

2024

Dissertation Committee:

Peter F Craigmile, Co-Advisor

Christopher Hans, Co-Advisor

Yoonkyung Lee



© Copyright by

Pashmeen Kaur

2024



Abstract

A popular and flexible time series model for counts is the generalized integer autore-

gressive process of order p, GINAR(p). These Markov processes are defined using thinning

operators evaluated on past values of the process along with a discretely-valued innovation

process. This class includes the commonly used INAR(p) process, defined with binomial

thinning and Poisson innovations. GINAR processes can be used in a variety of settings,

including modeling time series with low counts, and allow for more general mean-variance

relationships, capturing both over- or under-dispersion.

While there are many thinning operators and innovation processes given in the literature,

less focus has been spent on comparing statistical inference and forecasting procedures over

different choices of GINAR process. We provide an extensive study of exact and approxi-

mate inference and forecasting methods that can be applied to a wide class of GINAR(p)

processes with general thinning and innovation parameters. We discuss the challenges of

exact estimation when p is larger. We summarize and extend asymptotic results for estima-

tors of process parameters, and present simulations to compare small sample performance,

highlighting how different methods compare.

GINAR processes assume stationarity of the process, which may not be an appropri-

ate assumption for many real-world applications. Hence, we introduce a process for non-

stationary count time series called the time-varying generalized integer autoregressive process

(TV-GINAR(p)), which allows for time-varying parameters modeled via basis functions. We

ii



introduce statistical properties, discuss estimation strategies, and statistical inference for this

class of processes. We present simulation studies for the TV-GINAR(p) process and illus-

trate this methodology by fitting GINAR and TV-GINAR processes to a disease surveillance

series and patient scores dataset.
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Chapter 1: Introduction

Discrete-valued time series appear in many settings such as epidemiology, social science,

and finance. Example count series include the number of patients admitted in a hospital

every day, the daily cases of a rare infectious disease, the monthly number of car accidents

in a region, and yearly insurance claims. While traditional time series models such as the

autoregressive integrated moving average (ARIMA) processes can approximately explain

such data, they do not preserve discreteness and accurately fail to capture different mean-

variance relationships. Also, when counts are low (e.g., when dealing with incidence of rare

diseases and events) or depict zero-inflation, ARIMA processes provide a poor approximation

to the distribution of the data. Further, processes for continuous-valued time series fail

to produce integer forecasts, leading to the creation of arbitrary forecasting methods for

discrete-valued series.

One popular class of processes for non-negative discrete-valued series, the integer autore-

gressive process of order one (INAR(1)), was introduced independently by McKenzie [1985]

and Al-Osh and Alzaid [1987]. The INAR(1) process can be considered the integer-valued

analogue of the AR(1) process because they have a matching autocorrelation structure. This

process was later extended to the order p case by Alzaid and Al-Osh [1990] and Jin-Guan and

Yuan [1991], who defined the process using different dependence structures for the counting
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series. INAR(p) processes are defined using a binomial thinning operation and a discretely-

valued usually Poisson distributed innovation sequence, which guarantees that the series is

discretely-valued. There are various other models for modeling time series of counts, for

example, generalized state space models, observation driven models like, and hidden Markov

models. For a review refer to Davis et al. [2021].

While it is possible to generalize INAR(p) processes to capture other marginal distribu-

tions (see e.g., McKenzie [1985], Al-Osh and Aly [1992], and Ristić et al. [2012] for extensions

to negative binomial marginal distributions), we can generalize further. In this dissertation

we focus our attention on generalized integer autoregressive models (GINAR(p)), introduced

by Latour [1998]. This class of models extends the INAR(p) process by allowing for different

thinning operators. The inclusion of these thinning operators allows for more general time

series structure: we can further vary the choice of marginal distributions, and can vary over-

and under-dispersion structures (e.g., Jung et al. [2005], Weiß [2013], Bourguignon and Vas-

concellos [2015b], Huang and Zhu [2021]). Estimation of these GINAR(p) processes can be

carried out in a variety of ways, including conditional maximum likelihood, conditional least

squares and Yule-Walker, to name a few. We discuss estimation, forecasting and inference

for these processes in later chapters.

1.1 Research Problem and Contributions

In this section we discuss the contributions of this dissertation. In the literature for integer

autoregressive time series processes, many variations of the process have been introduced by

varying the two main components of the process: the thinning operation and the innovation

distribution. Subsequently, estimation methods, asymptotic theory and applications are

presented for these individual processes. In this dissertation, our focus is on the generalized
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INAR(p) process that can allow for general thinning and innovation distributions. We present

statistical properties of this process, and computationally efficient methods for obtaining

transition probabilities. We also study a variety of different estimation methods and show

how to extend those to the GINAR(p) process. We also present asymptotic theory for the

conditional maximum likelihood estimator of a GINAR(p) process.

Another contribution of the dissertation is that we provide extensive simulation studies

comparing the various estimation methods for larger model orders and different thinning and

innovation distributions. In the literature we did not find such an extensive comparison. Our

goal for these simulation studies is to understand any patterns in the performance of esti-

mation methods for the GINAR(p) process parameters. For instance, does the small sample

performance of an estimation method stay consistent when we change the process order or

change the innovation distribution? These simulations provide a clearer understanding of

the advantages and disadvantages of different estimation methods and help us understand

cases where they perform well or not. We also provide R code that can be used to easily

implement these estimation methods for GINAR(p) processes. R code that accompanies

this dissertation can be downloaded from https://github.com/petercraigmile/GINAR/

[R Core Team, 2024]. Furthermore, we also present a discussion of methodologies for fore-

casting GINAR(p) processes and discuss methods for model selection.

We further study a new class of GINAR(p) processes, called the time-varying GINAR(p)

process (TV-GINAR(p)) to model non-stationary processes. The GINAR(p) processes dis-

cussed thus far assume stationarity, however in many time series applications this assumption

is not valid. Research in modeling non-stationary count time series using GINAR processes

has involved allowing for a time-varying innovation mean parameter, varying the thinning

distribution and accommodating structural breaks. However, we want to focus on allowing
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the dependence parameter to change with time as well via generalized linear functions of

basis vectors. The use of these basis vectors gives the TV-GINAR(p) process additional flex-

ibility to model a wide variety of non-stationary processes. We present statistical properties

for this time-varying class of stochastic processes, discuss estimation methods, and provide

simulations to study small sample performance. We also discuss techniques for forecasting

and model selection.

To illustrate these time series processes and statistical inference methodology we present

applications in disease surveillance and a schizophrenic patient scores dataset.

1.2 Dissertation Structure

The outline of the dissertation is as follows. In Chapter 2 we begin by defining the

thinning operator and introduce GINAR(p) processes. We present a literature review of

processes that fit in this GINAR(p) framework. Next, we present statistical properties of

this process along with defining the transition probabilities. In particular, we present an

efficient way for the calculation of transitional probabilities.

In Chapter 3, we discuss the estimation and inference for GINAR(p) processes. We

present the following estimation methods: conditional maximum likelihood (CML), Yule-

Walker (Y-W), conditional least squares (CLS), pseudo maximum likelihood, spectral-based

Whittle estimation and saddlepoint methods. We show how to extend these methods to

estimating the parameters of GINAR(p) processes and present asymptotic theory for the

CML and pseudo maximum likelihood estimator. We also discuss inference methodologies

like building confidence intervals and model selection.

In Chapter 4, we present extensive simulation studies for the GINAR(1), GINAR(2) and

GINAR(4) processes. Our contribution lies in the extensive range of simulations we conduct,
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along with the diverse array of estimation methods we consider. We consider different

thinning and innovation distributions to understand how the aforementioned estimation

methods perform under changing parameters, model order, and model specification. We also

present coverage simulations using the confidence interval methods proposed in Chapter 3.

In Chapter 5, we provide a literature review of current methods for modeling non-

stationary discrete-valued time series and introduce the TV-GINAR(p) process. We present

statistical properties and transition probabilities for the TV-GINAR(p) process. In Chapter

6 we discuss estimation of parameters and statistical inference for these processes. In par-

ticular, we present the following estimation methods: CML, pseudo maximum likelihood,

and CLS. We further show how to use the Delta method to build confidence intervals for the

process parameters and present simulation studies for the TV-GINAR(1) and TV-GINAR(2)

processes. We consider different series lengths and consider two cases. In the first case, we

allow for time-varying dependence parameters while the innovation sequence parameters are

constant over time. In the second case, we allow both, the dependence parameter and innova-

tion sequence parameters, to vary with time. Lastly, we present model selection simulations

for these two processes.

In Chapter 7 we apply these class of processes (GINAR(p) and TV-GINAR(p)) to mod-

eling a disease surveillance series and a schizophrenic patient scores dataset. Lastly, in

Chapter 8 we summarize the findings of this dissertation and outline possible future work.
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Chapter 2: GINAR(p) Processes

In this chapter we give a formal definition of generalized integer autoregressive processes

of order p, GINAR(p) for short. We begin by defining the thinning operator and providing

examples of commonly used thinning operators. We then define the GINAR(p) process and

provide a literature review of the different examples of processes that fit under this GINAR(p)

framework. We further derive statistical properties of the thinning operator and GINAR(p)

process and discuss two methods for calculating transition probabilities.

2.1 Defining Thinning Operators

We begin by defining the generalized thinning operator which is an immediate ex-

tension of the binomial thinning operator introduced by Steutel and van Harn [1979] (we

introduce binomial thinning as a special case below). A thinning operation is a probabilistic

operations that can be applied to random integer values, that always lead to integer values.

They circumvent the scalar multiplication of the ARIMA models, ensuring we always have

integer values. As we will see later, these thinning operators allow for autoregressive (AR)

correlation structures but generate count time series, while allowing for different distribu-

tional relationships and possible over-dispersion or under-dispersion.
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Definition 2.1.1 Let X be a non-negative integer-valued random variable (RV) with α ∈

[0, 1]. Then the generalized thinning operator, ⊙, is defined by

α⊙X =
X∑
k=1

Yk, (2.1)

where {Yk : k ∈ N} are a set of independent and identically distributed (IID) RVs from some

count distribution with mean α and variance β [Latour, 1998]. In (2.1) when X = 0, the

sum is assumed to be 0.

Before we discuss other thinning operators, we define the probability generating function

of a discrete RV, which will be used at various points throughout this dissertation.

Definition 2.1.2 Let X be a discrete RV taking values in N0, the set of non-negative inte-

gers. Then the probability generating function (pgf) of X is defined as,

ΦX(z) = E(zX) =
∞∑
x=0

P (X = x)zx.

Using Definition 2.1.2, we can further define the general form of the pgf for the generalized

thinning operator as follows,

Lemma 2.1.3 The pgf of α⊙X, as defined in Definition 2.1.1, is

Φα⊙X(z) = ΦX(ΦY (z)),

where Y represents the distribution of Yk in (2.1) which are IID RVs.

Zhu and Joe [2010b] prove this lemma using the law of iterated expectations with

Φα⊙X(z) = E
[
E
(
z
∑X

k=1 Yk |X
)]

= E
[
(ΦY (z))

X
]

= ΦX(ΦY (z)).
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The second step follows from the property of pgfs; i.e., ΦX1+...+XN
(z) =

∏N
j=1ΦXj

(z). □

Some thinning operators used in the literature that follow Definition 2.1.1 are discussed

below.

Binomial thinning: Suppose Z = {Yk : k ∈ N} is a set of IID Bernoulli RVs with

success probability α, Bern(α). Then α ⊙ X given X = x follows a binomial distribution

with size x and success probability α, Binomial(x, α), with a probability mass function (pmf)

evaluated at z of (
x

z

)
αz(1− α)(x−z)I{0 ≤ z ≤ x}.

Negative binomial thinning: Let {Yk : k ∈ N} be a set of IID Geometric(1/(1 + α))

RVs, with pmf given by P (Yk = y) = αy/(1 + α)y+1I{y ≥ 0}. Then α⊙X given X = x has

a negative binomial distribution with size x and success probability 1/(1 + α) when x > 0,

and is 0 with probability 1 when x = 0 [Ristić et al., 2009].

ρ-Binomial thinning: In this thinning operation, the {Yk : k ∈ N} are a set of IID

ρ-Bernoulli RVs, with pmf given as follows

P (Yk = y) =

1− α if y = 0;

α
(

ρ
1+ρ

)y−1 (
1

1+ρ

)
if y = 1, 2, . . . .

(2.2)

where α ∈ [0, 1] is the success probability and ρ ∈ [0, 1) is the dispersion parameter [Kolev

et al., 2000].

Modified negative binomial thinning: As compared with negative binomial thinning,

this thinning operator has slightly modified bounds given by

α⊙X =
X+1∑
k=1

Yk,

where Yk ∼ Geometric(1/(1+α)). This modified definition was introduced to circumvent the

problem of having constant zeroes over time since α⊙ 0 = 0, and is used in the definition of
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minifaction INAR(1) models which are not themselves a GINAR process [Aleksić and Ristić,

2021]. Regardless we can still use the modified negative binomial thinning operator to define

GINAR processes.

There are other thinning operators defined in the literature that do not fit into the form

given by Definition 2.1.1. See, for example, Zhang et al. [2010], Ristić et al. [2013], and Weiß

[2008] for a survey.

2.2 Defining GINAR(p) Processes

We can now define the class of GINAR(p) processes.

Definition 2.2.1 The GINAR(p) process [Latour, 1998] {Xt : t ∈ Z} is the non-negative

integer-valued stationary and ergodic process defined by

Xt =

p∑
j=1

αj ⊙Xt−j + ϵt, t ∈ Z. (2.3)

In the above definition, αj ∈ [0, 1) for each j = 1, . . . , p with
∑p

j=1 αj < 1, and the innovation

process {ϵt : t ∈ Z} is a set of IID non-negative integer-valued RVs with µϵ > 0 and variance

σ2
ϵ > 0. Also, the {Yk} associated with each thinning operation (see (2.1)) are mutually

independent and independent of {ϵt}, and ϵt is independent of Xt−j for all t ∈ Z and j ≥ 1.

When we use binomial thinning in (2.3), we obtain the INAR(p) process of Jin-Guan and

Yuan [1991] with the INAR(1) process of Al-Osh and Alzaid [1987] and McKenzie [1985]

when p = 1. The less commonly used INAR(p) process of Al-Osh and Aly [1992] cannot be

written in this form.

Note that in the Jin-Guan and Yuan [1991] definition of the GINAR(p) model with

binomial thinning and Poisson innovations, all counting series are mutually independent and

independent of ϵt; i.e., the variables αj ⊙ Xt−j, j = 1, 2, . . . , p, conditional on Xt−j, j =
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1, 2, . . . , p, are mutually independent; and ϵt is independent of Xt−j for all j ≥ 1. This is

not the case in Alzaid and Al-Osh [1990] definition where the assumption is that that the

conditional distribution of (α1 ◦Xt, α2 ◦Xt, ..., αp ◦Xt)
T given Xt = xt is multinomial with

parameters (α1, α2, ..., αp, xn). Unsurprisingly the Al-Osh and Alzaid [1987] definition of

GINAR(p) processes leads to processes with very different properties to those in Definition

2.2.1. We do not consider this process further in this dissertation.

As we will see in Section 2.4, the GINAR(p) process defined by Definition 2.2.1 has the

same the correlation structure as the stationary AR(p) process. Recall, the definition of the

AR(p) process as follows,

Xt =

p∑
j=1

ϕjXt−j + ϵt, t ∈ Z,

where {ϵt} is a white noise process; i.e., {ϵt} ∼ WN(0, σ2), that is uncorrelated with Xs for

s < t. In the AR(p) process, ϕj, j = 1, 2, . . . , p are the model coefficients with the constraint

that all roots of the characteristic polynomial lie outside the unit circle. The characteristic

polynomial for the AR(p) process is defined as

Φ(B) = 1−
p∑

j=1

ϕjB
j,

where B is the backshift operator [Brockwell and Davis, 2016]. Note that a key difference in

the GINAR(p) and AR(p) models is that the AR(p) model has one random component in

the model (white noise), whereas the GINAR(p) has added randomness components due to

the thinning operations.

One way of obtaining the marginal distribution of the process is through calculations

involving pgfs. This method has been used for deriving marginal distributions of GINAR(1)

processes; see, for example, Al-Osh and Aly [1992] and Aleksić and Ristić [2021]. For higher

order models obtaining marginal distributions may not be feasible. Joe [2019] shows that
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the stationary marginal distribution of a GINAR(p) process can be obtained through

ΦX(z) =

p∏
j=1

ΦX{ΦYj
(z)}Φϵt(z).

2.3 Example GINAR(p) Processes

This is a more focused literature review of the different variations of the INAR process

that fit under the GINAR(p) framework. The most widely studied is the INAR(1) process

with Poisson innovations and binomial thinning introduced by Al-Osh and Alzaid [1987].

Research in the area has looked at extensively at varying either one of the components of

the GINAR(p) process; i.e., the thinning operator and innovation sequence. A list of different

innovation distribution and thinning operators is shown in Table 2.1. Varying the thinning

operator allows to capture different dependence structure in the process. Zhu and Joe [2010a]

provide three new thinning operators that generate a negative binomial marginal model, but

have different conditional heteroskedasticities. Ristić et al. [2012] introduce a negative-

binomial thinning operator where the counting series follows a geometric distribution, this

was also presented in Wang et al. [2021]. Weiß [2015] introduce a binomial-Poisson thinning

operator to capture different dependencies in data and Ristić et al. [2013] introduce the

generalized binomial thinning operator where the counting series is a sequence of dependent

Bernoulli counting series. They also derive the distributional properties of the innovation

sequence that give geometric marginals. Aleksić and Ristić [2021] introduce a modified

negative binomial thinning operator to avoid issues with constant zero behavior over time.

Borges et al. [2016] introduce the ρ-binomial thinning operator, where the counting series

follows a ρ-Bernoulli distribution described in Section 2.1. Weiß [2008] further provides an

extensive review of different thinning operators used for GINAR models.
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The other component of the model is the innovation sequence, which can easily be varied.

Bourguignon and Vasconcellos [2015b] introduces the power series INAR(1) (PSINAR(1))

model with power series innovations, which are a flexible innovation distribution to model

under dispersion, equidispersion, and over dispersion. Recall that under dispersion is when

observed variability is lower than expected variability, overdispersion is when observed vari-

ability is greater than expected, and equidispersion is when they are equal [Kokonendji,

2014]. Some distributions in the power series distributional family include Bernoulli, bi-

nomial, geometric, Poisson, negative binomial and logarithmic. Other examples of innova-

tion distributions include, double Poisson and generalized Poisson innovations [Bourguignon

et al., 2019], Bell [Huang and Zhu, 2021], Poisson-Lindley [Ĺıvio et al., 2018], Lerch, good,

weighted Poisson (WP), power-law WP, Poisson polynomial [Weiß, 2013], Katz family [Kim

and Lee, 2017], zero-inflated Poisson [Jazi et al., 2012], geometric [Aleksić and Ristić, 2021].

Hence, modifying the thinning and/or innovation distribution gives us flexible and simple

processses for count time series that can account for different features that we observe in the

data. All these variations fit into the GINAR(p) process framework.

2.4 Statistical Properties

In this section we present important statistical properties of the GINAR(p) process and

the generalized thinning operator, that will be useful throughout this dissertation.

Lemma 2.4.1 The thinning operator defined by Definition 2.1.1 has the following properties.

a) 0⊙X = 0;

b) 1⊙X = X;

c) E(α⊙X) = αE(X);

d) E(α⊙X)2 = α2E(X2) + βE(X).
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Table 2.1: Examples of GINAR processes found in literature. NA values indicate that a
closed form expression for the marginal distribution does not exist.

Process Thinning Innovation Marginal Reference
Operator Dist. Dist.

PSINAR(1) Binomial Power Series NA Bourguignon
and Vasconcel-
los [2015b]

DP INAR(1) Binomial double Poisson NA Bourguignon
et al. [2019]

GP INAR(1) Binomial Generalized
Poisson

NA Bourguignon
et al. [2019]

BL-INAR(1) Binomial Bell NA Huang and Zhu
[2021]

PL-INAR(1) Binomial Poisson-Lindley NA Ĺıvio et al.
[2018]

INARKF(1) Binomail Katz family NA Kim and Lee
[2017]

ZP-INAR(1) Binomial zero-inflated
Poisson

NA Kim and Lee
[2017]

INAR(1) Binomial Lerch, good,
weighted Pois-
son (WP),
power-law WP,
Poisson polyno-
mial

NA Weiß [2013]

DCINAR(1) Generalized Bi-
nomial

Mixture of zero
and Geometric
RVs

Geometric Ristić et al.
[2013]

ρ-GINAR(1) ρ-Binomial Derived to sat-
isfy marginal

Geometric Borges et al.
[2016]

Geometric
Minifaction
INAR(1)

Neg. Binomial Geometric Geometric Aleksić and
Ristić [2021]
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Table 2.2: Examples of GINAR processes found in literature. NA values indicate that a
closed form expression for the marginal distribution does not exist (continued).

Process Thinning Innovation Marginal Reference
Operator Dist. Dist.

NBTINAR(1) Neg. Binomial non-negative RV NA Wang et al.
[2021]

NonLINAR(1) Geometric non-negative RV NA Barreto-Souza
et al. [2023]

Extended
Poisson
INAR(1)

Bernouili-
Poisson Convo-
lution

Poisson NA Weiß [2015]

GINARS(p) Non-negative
RV

Signed general-
ized power series

NA Zhang et al.
[2010]

Proof: For property (c) the result follows from iterated expectations and the mean property

of the thinning operator where

E(α⊙X) = E {E (α⊙X|X)}

= E {αX}

= αE(X).

Property (d) also follows from the law of iterated expectation and the mean and variance

properties of the thinning operator given by

E(α⊙X)2 = var(α⊙X) + (E(α⊙X))2

= E(var(α⊙X)|X) + var(E(α⊙X|X)) + α2(E(X))2

= E(Xβ) + var(αX) + α2(E(X))2

= βE(X) + α2E(X2)− α2(E(X))2 + α2(E(X))2

= α2E(X2) + βE(X).
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It can be shown that for binomial and negative binomial thinning that β = α(1 − α) and

β = α(1 + α), respectively. □

Lemma 2.4.2 Let {Xt : t ∈ Z} be a GINAR(p) process of Definition 2.2.1. Then for each

t ∈ Z, the conditional mean is

µXt|Xt−1,...,Xt−p = E(Xt|Xt−1, ..., Xt−p) =

p∑
j=1

αjXt−j + µϵ,

and the conditional variance is

σ2
Xt|Xt−1,...,Xt−p

= var(Xt|Xt−1, ..., Xt−p) =

p∑
j=1

βjXt−j + σ2
ϵ .

Further, the marginal mean and variance are respectively

µX =
µϵ

1−
∑p

j=1 αj

and var(Xt) =

p∑
j=1

βjµX +
σ2
ϵ

1−
∑p

j=1 αjρX(j)
,

where {ρX(k) : k ∈ Z} is the autocorrelation sequence for {Xt}. The autocovariance sequence

{γX(k) : k ∈ Z} satisfies the following for all lags k ̸= 0:

γX(k) = α1γX(|k| − 1) + α2γX(|k| − 2) + ...+ αpγX(|k| − p).

Similarly, the autocorrelation sequence satisfies for all lags k ̸= 0:

ρX(k) = α1ρX(|k| − 1) + α2ρX(|k| − 2) + ...+ αpρX(|k| − p).

The spectral density function, fX(·), of the process is

fX(ν) =
σ2
ϵ + µX

∑p
j=1 βj

2π|α(e−iν)|2
, ν ∈ [−π, π],

where α(B) = 1−
∑p

j=1 αjB
j is a transfer function and B is the backshift operator.
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Proof: The conditional expectation and variance property can be derived as follows:

E(Xt|Xt−1, ..., Xt−p) =

p∑
j=1

E(αj ⊙Xt−i|Xt−1, ..., Xt−p) + E(ϵt|Xt−1, ..., Xt−p)

=

p∑
j=1

E(αj ⊙Xt−j|Xt−j) + E(ϵt)

=

p∑
j=1

αjXt−j + µϵ,

and

var(Xt|Xt−1, ..., Xt−p) =

p∑
j=1

var(αj ⊙Xt−i|Xt−1, ..., Xt−p) + var(ϵt|Xt−1, ..., Xt−p)

=

p∑
j=1

βjXt−j + σ2
ϵ .

The marginal mean is obtained through the law of iterated expectations and stationarity

of the process as follows:

µX = E (E(Xt|Xt−1, . . . , Xt−p))

= E

(
p∑

j=1

αjXt−j + µϵ

)

= µX

p∑
j=1

αj + µϵ.

Rearranging we get

µX =
µϵ

1−
∑p

j=1 αj

.
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The marginal variance of the process is obtained as follows:

var(Xt) = var(E(Xt|Xt−1, ..., Xt−p)) + E(var(Xt|Xt−1, ..., Xt−p))

= E

(
p∑

j=1

βjXt−j + σ2
ϵ

)
+ var

(
p∑

j=1

αjXt−j + µϵ

)

= µX

p∑
j=1

βj + σ2
ϵ +

p∑
j=1

p∑
k=1

αkαjρX(j − k)var(Xt)

= µX

p∑
j=1

βj + σ2
ϵ +

p∑
j=1

αjρX(j)var(Xt).

Note that the last step follows from:

var(Xt)

p∑
j=1

αjαkρX(j) = var
(
αTX

)
= var(Xt)α

TRα

= var(Xt)α
Tr,

where R = [ρX(|i− j|)]p×p, r = (ρX(1) . . . ρX(p))
T , and α = (α1, . . . , αp)

T . Thus

var(Xt) =
µX

∑p
j=1 βj + σ2

ϵ

1−
∑p

j=1 αjρX(j)
.

Next, we present a proof for the autocorrelation and autocovariance properties of the

process. To derive the autocovariance structure we present the GINAR(p) process in a

matrix form similar to Jin-Guan and Yuan [1991]. Let Xt = (Xt, Xt−1, ..., Xt−p+1)
T and let

A and ϵt be defined as

A =


α1 α2 . . . αp−1 αp

1 0 . . . 0 0
...

...
...

...
0 0 . . . 1 0

with ϵt =


ϵt
0
...
0

 , t ∈ Z.

Then the GINAR(p) process is given by

X t = A⊙X t−1 + ϵt, t ∈ Z.
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We define the multivariate autocovariance sequence {Γ(k) : k ∈ Z} by

Γ(k) = E
[
(X t − E(X t))(X t−k − E(X t−k))

T
]
, k ∈ Z.

Then for k ≥ 0

Γ(k) = E(X tX
T
t−k)− E(X t)E(X t−k)

T

= E((A⊙X t−1 + ϵt)X
T
t−k)− E(X t)E(X t−k)

T

= AE(X t−1X
T
t−k) + E(ϵt)E(X t−k)

T − E(X t)E(X t−k)
T

= AE(X t−1X
T
t−k)− {E(X t)− E(ϵt)}E(X t−k)

T

= A{E(X t−1X
T
t−k)− E(X t−1)E(X t−k)

T}

= AΓ(k − 1),

where we are using the property that E(Xt) = AE(Xt−1) + E(ϵt) and the shift invariant

property of the autocovariance function. We can then get the univariate autocovariance at

lag k (k ≥ 0) as

γX(k) = α1γX(k − 1) + α2γX(k − 2) + ...+ αpγX(k − p),

and consequently the autocorrelation at lag k is

ρX(k) = α1ρX(k − 1) + α2ρX(k − 2) + ...+ αpρX(k − p).

For a proof of the spectral density function property refer to Silva and Oliveira [2005, pages

30-31]. □

2.5 Transition Probabilities

In this section we discuss the calculations for obtaining transition probabilities of the

GINAR(p) process. Following Definition 2.2.1, the GINAR(p) process is a Markov chain.

The transition probabilities are given in the next theorem.
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Theorem 2.5.1 [Hadri, 2009, Theorem 1] For {Xt : t ∈ Z}, a GINAR(p) process as defined

in Definition 2.2.1, the transition probabilities are given by

P (Xt = x|Xt−1 = xt−1, ..., Xt−p = xt−p)

=
x∑

i1=0

P (α1 ⊙ xt−1 = i1|Xt−1 = xt−1)×

x−i1∑
i2=0

P (α2 ⊙ xt−2 = i2|Xt−2 = xt−2)× . . .×

x−(i1+i2+...+ip−1)∑
ip=0

P (αp ⊙ xt−p = ip|Xt−p = xt−p)×

P (ϵt = x− (i1 + i2 + ...+ ip)).

The proof of Theorem 2.5.1 follows directly by considering the convolutions that define

the process. Below we show an example calculation for obtaining the transition probabilities.

GINAR(1) Example: Here we look at the example of a GINAR(1) process with bino-

mial thinning and Poisson innovations expressed as

Xt = α⊙Xt−1 + ϵt

where, ϵt ∼ Poisson(λ) and α ◦ Xt−1 =
∑Xt−1

k=1 Yk, where Yk are IID Bernouilli(α) RVs.

Hence, α⊙Xt−1 given Xt−1 = xt−1 follows a Binomial distribution with size xt−1 and success

probability α, Binomial(xt−1, α). As mentioned earlier, this is the most widely studied class

of GINAR processes, called the Poisson INAR(1) process, and was introduced first by Al-Osh

and Alzaid [1987] and McKenzie [1985] independently. This process can be interpreted as a

birth and death process, where the process at time t depends on the survivors of the process

at time t− 1 (with survival probability α), and the elements that entered the system during

(t− 1, t] are denoted by the innovation sequence.

To calculate the transition probabilities for the Poisson INAR(1) process, we first note

the following lemma.
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Lemma 2.5.2 Let X and Y be two independent RVs from some discrete distribution. Then

the distribution of their sum, Z = X+Y is given by

P (Z = z) =
∞∑

s=−∞

P (X = s)P (Y = z − s)

Then, using Lemma 2.5.2 we can calculate the transition probabilities of the Poisson INAR(1)

process as follows:

P (Xt = x|Xt−1 = xt−1) =
s=∞∑
s=−∞

P
( xt−1∑

j=1

Yj = s|Xt−1 = xt−1

)
P
(
ϵt = x− s|Xt−1 = xt−1

)

=

min(x,xt−1)∑
s=0

(
xt−1

s

)
αs(1− α)xt−1−sP (ϵt = x− s)

=

min(x,xt−1)∑
s=0

(
xt−1

s

)
αs(1− α)xt−1−s λx−se−λ

(x− s)!

Note that the bounds follow due to the constraint that s ≥ 0 and s ≤ xt−1. Also, x− s ≥ 0

since ϵt follows a Poisson distribution. Combining all the inequalities we have the bound,

0 ≤ s ≤ min(x, xt−1).

Furthermore, in this Poisson INAR(1) process, when the starting value X0 is Poisson

with mean λ/(1 − α), the marginal distribution of the process is also Poisson(λ/(1 − α)).

For a formal proof refer to Freeland [1998].

For larger values of p the calculation of these convolutions become computationally bur-

densome (on average O(µp
X), where µX is the mean of the process). Instead, noticing that

convolutions can be rewritten as products in the Fourier domain, Joe [2019] proposes calcu-

lating the transition probabilities by integrating the characteristic function (chf) (e.g., Davies

[1973]). This leads to a more computationally efficient algorithm for calculating transition

probabilities, as demonstrated in the next proposition.
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Proposition 2.5.3 For {Xt : t ∈ Z} a GINAR(p) process as defined in Definition 2.2.1,

suppose that ϕXt|Xt−1,...,Xt−p(u) is the chf for the transition probability defined in Theorem

2.5.1. Then the cumulative distribution function is

a(x) = P (Xt < x|Xt−1, . . . , Xt−p) =
1

2
− 1

2π

∫ π

−π

Re

(
ϕXt|Xt−1,...,Xt−p(u)e

−iux

1− e−iu

)
du, (2.4)

where

ϕXt|Xt−1,...,Xt−p(u) = ϕϵt(u)

p∏
j=1

[ϕY (j)(u)]
Xt−j .

Then the transition probabilities can be calculated

b(x) = P (Xt = x|Xt−1, . . . , Xt−p) =

{
a(1), x = 0;
a(x+ 1)− a(x), x = 1, 2, . . . ,

where

b(x) =
1

π

∫ π

0

Re
(
ϕXt|Xt−1,...,Xt−p(u) e

−iuxt
)
du, x = 1, 2, . . . .

Through Proposition 2.5.3 one can obtain transition probabilities for a non-negative

integer valued random variable based on the chf. For this method, we only need the process

to have a closed form pgf. Hence this proposition is particularly useful when the innovation

distribution or thinning operator distribution has a simple form of the pgf but not the pmf.
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Chapter 3: Estimation of GINAR(p) Processes

In Section 3.1 we discuss various estimation methods for parameter estimation of

GINAR(p) processes like conditional maximum likelihood (CML), pseudo maximum like-

lihood, Whittle likelihood, Yule-Walker, conditional least squares, and saddlepoint approxi-

mation. We also present asymptotic theory for these estimation methods when available, in

particular we prove asymptotic normality for the CML estimates for the GINAR(p) process.

In Section 3.2 we discuss statistical inference procedures, in particular we investigate the

construction of confidence regions for parameters and highlight methods for model selection.

Lastly in Section 3.3 we discuss forecasting methods for GINAR(p) processes.

3.1 Estimation Methods

Let X = (X1, . . . , Xn)
T be observations from a GINAR(p) process where the thinning

operator and innovation process is known. We are interested in estimation of the parameter

vector θ = (α1, α2, ..., αp, µϵ, σ
2
ϵ )

T , where
∑p

j=1 αj < 1 and the constraints on µϵ and σ2
ϵ

depend on the form of the innovation distribution. Let Θ be the resulting parameter space

for θ, which we assume to be compact. We further assume that our GINAR(p) process is

identifiable; we can tell apart different values of the parameter vector on the basis of the

transition probabilities.
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In this section we discuss the following methods for parametric estimation: conditional

maximum likelihood (CML), Yule-Walker (Y-W), pseudo maximum likelihood, conditional

least squares (CLS), Whittle likelihood, and saddlepoint methods. We introduce each esti-

mator and when possible provide asymptotic theory for the distribution of each estimator.

3.1.1 Conditional maximum likelihood

Conditioning on the first p observations, conditional maximum likelihood (CML) calcu-

lates the conditional log likelihood using

ℓ(θ) =
n∑

t=p+1

logP (Xt = xt|Xt−1, ..., Xt−p) =
n∑

t=p+1

log b(xt), (3.1)

where b(·) is defined in Proposition 2.5.3. The CML-based parameter estimates of θ can

then be computed as

θ̂CML = argmax
θ∈Θ

ℓ(θ). (3.2)

Numerical optimization techniques are typically used to maximize (3.2). As discussed in

Section 2.4, the form of the transition probabilities will depend on the thinning operation

and marginal distribution of innovation. We know the computational complexity of CML

increases with p, and a brute force method of coding the transition probabilities is not

efficient. Thus we use Proposition 2.5.3 to efficiently evaluate transition probabilities using

numerical quadrature techniques.

We provide a proof for the consistency of θ̂CML in the following theorem.

Theorem 3.1.1 Let {Xt : t ∈ Z} be a GINAR(p) process. Then,

θ̂CML → θ0

in probability as n → ∞.
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Proof: We will show that the conditions of Theorem 4.1.2 in Amemiya [1985] are satisfied,

giving us consistency of the estimator.

(i) By assumption and properties of the GINAR(p) process, the parameter space

Θ = {θ : θ = (α1, α2, . . . , αp, λϵ, σ
2
ϵ )

T} is compact. All elements of θ are bounded by positive

constants and θ0 is an interior point of Θ. Therefore, the parameter space Θ is an open

subset of Rk.

(ii) Let Pθ be the probability measure under the parameter θ and assume the following

notation:

Ut(θ) = logPθ(Xt|Xt−1, Xt−2, . . . , Xt−p);

Qn(θ) =
1

n

n∑
t=p+1

logPθ(Xt|Xt−1, . . . , Xt−p) =
1

n

n∑
t=p+1

Ut(θ).

Note that Ut(θ) is continuous for all θ ∈ Θ and hence is a measurable function of the data

for all θ ∈ Θ. Also note that

∂Ut(θ)

∂θ
=

n∑
t=p+1

∂Pθ(Xt|Xt−1, Xt−2, . . . , Xt−p)/∂θ

Pθ(Xt|Xt−1, Xt−2, . . . , Xt−p)

is clearly continuous in an open neighborhood of θ0.

(iii) First, note that Ut(θ) is continuous in an open and convex neighborhood of θ0,

denoted by N(θ0) = (θ0 − ϵ,θ0 + ϵ), for all ϵ > 0. This implies the existence of at least one

point such that

Ut(θ̃) = argmax
θ∈Θ

Ut(θ).

Then using Jensen’s inequality we can get the following result:

E

(
sup

θ∈N(θ0)

Ut(θ)

)
= E

(
logUt(θ̃)

)
= E (logPθ̃(Xt|Xt−1, . . . , Xt−p))

≤ logE (Pθ̃(Xt|Xt−1, . . . , Xt−p)) < ∞.
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Thus, the conditions for the Uniform Law of Large Numbers (ULLN) [Andrews, 1987] is

satisfied and we get

1

n

n∑
t=p+1

Ut(θ)
i.p.→ E(Ut(θ)) ≡ Q0(t),

as n → ∞.

Next, we want to show that Q0(t) attains a local maximum at θ0. We can show that θ0

uniquely maximizes E(Ut(θ)) by

E(Ut(θ)) = E (logPθ(Xt|Xt−1, . . . , Xt−p))

= E (logPθ0(Xt|Xt−1, . . . , Xt−p))− E

(
log

Pθ0(Xt|Xt−1, . . . , Xt−p)

Pθ(Xt|Xt−1, . . . , Xt−p)

)
≤ E (logPθ0(Xt|Xt−1, . . . , Xt−p)) = E(Ut(θ0)).

Hence, because we have assumed identifiability and given the argument above, we have

that θ0 uniquely maximizes E(Ut(θ)).

The assumptions of Theorem 4.1.2 of Amemiya [1985] are satisfied, implying that the

roots of
∂Qn(θ)

∂θ
are consistent for θ0. □

Next, we prove asymptotic normality of θ̂CML.

Theorem 3.1.2 Let {Xt : t ∈ Z} be a GINAR(p) process. Then the conditional maximum

likelihood estimator, θ̂CML, has the following asymptotic distribution

√
n(θ̂CML − θ)

d−→ N(0,ΣCML), (3.3)

as n → ∞, where

ΣCML = J(θ)−1K(θ)J(θ)−1,

K(θ) = lim
n→∞

1

n
E

(
∂ℓ(θ)

∂θ

(
∂ℓ(θ)

∂θ

)T
)
,
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and

J(θ) = lim
n→∞

1

n
E

(
∂2ℓ(θ)

∂θ∂θT

)
.

Proof: We show that the conditions of Theorem 4.1.3 of Amemiya [1985] are satisfied,

giving asymptotic normality of the CML estimator, θCML. We have already shown that

assumptions of Theorem 4.1.2 of Amemiya [1985] are fulfilled which is also a requirement

for Theorem 4.1.3.

(i) Note that Qn(θ) is a measurable function of Xt for all θ ∈ Θ and is open and

continuous in an open and convex neighborhood, N(θ0), of θ0.

(ii) Let

ℓ(θ) =
n∑

t=p+1

Ut(θ).

We want to show that

n−1∂
2ℓ(θ∗

n)

∂θ∂θT

converges to a finite non-singular matrix

J(θ0) = lim
n→∞

n−1E

(
∂2ℓ(θ0)

∂θ∂θT

)
in probability for any sequence θ∗

n such that θ∗
n → θ0 as n → ∞. Note that θ∗

n lies in

between θ0 and θCML.

In Proposition 2.5.3 we represent the transition probability using characteristics func-

tions, which are three times differentiable. Hence, we have that all partial derivatives of

∂Ut(θ)

∂θi
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exist and are three times continuously differentiable in a neighborhood of θ0, N(θ0). Then,

similar to step (iii) in the proof of Theorem 3.1.1 we have

E

(
sup

θ∈N(θ0)

∂2Ut(θ)

∂θi∂θj

)
= E

(
∂2Ut(θ̃)

∂θiθj

)
< ∞,

where θ̃ ∈ N(θ0). This is because

∂Ut(θ)

∂θi∂θj

exists and is continuous in N(θ0) for all i = 1, 2, . . . and j = 1, 2, . . ..

The conditions for ULLN is satisfied and we get

1

n

n∑
t=p+1

∂ℓ(θ)

∂θ∂θT

i.p.→ E

(
∂ℓ(θ)

∂θ∂θT

)
,

as n → ∞ uniformly in θ ∈ N(θ0). And by ULLN we have

1

n

n∑
t=p+1

∂ℓ(θ∗
n)

∂θ∂θT

i.p.→ E

(
∂ℓ(θ∗

n)

∂θ∂θT

)
,

when θ∗
n → θ0 as n → ∞.

(iii) We have the covariance matrix given by

cov

(
∂Ut(θ0)

∂θ

)
= E

[(
∂Ut(θ0)

∂θ

)(
∂Ut(θ0)

∂θ

)T
]
,

since

E

(
∂Ut(θ0)

∂θ

)
= 0.

Also, because of the ergodicity we have

n−1∂ℓ(θ0)

∂θ

i.p.→ E

(
∂Ut(θ0)

∂θ

)
as n → ∞. Then, using the martingale CLT and Cramer-Wold device we get

n−1∂ℓ(θ0)

∂θ

d→ N (0,K(θ0)) ,
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as n → ∞, where

K(θ0) = lim
n→∞

E

(
∂ℓ(θ0)

∂θ

(
∂ℓ(θ0)

∂θ

)T
)
.

(iv) We note from Latour [1998] that the kth order moment of Xt is finite for all t. Thus

there exists W (Xt) such that E(W (Xt)) < ∞ and∣∣∣∣ ∂3 ln l(θ)

∂θi∂θj∂θk

∣∣∣∣ < W (Xt).

Then, taking a Taylor expansion we get

∂ℓ(θCML)

∂θ
=

∂ℓ(θ0)

∂θ
+

∂ℓ(θ∗
n)

∂θ∂θT
(θ̂CML − θ0).

Then

√
n(θ̂CML − θ0) = −

[
n−1∂

2ℓ(θ∗
n)

∂θ∂θT

] [
n−1/2∂ℓ(θ0)

∂θ

]
.

Hence, the conditions of Theorem 4.1.3 of Amemiya [1985] are fulfilled. This proof is adapted

from Liu et al. [2021]. □

Hadri [2009, Theorem 2 and Theorem 3] provide expressions for first and second deriva-

tives of the log likelihood function for a GINAR(p) process and show calculations for the

expectations of derivatives for the GINAR(2) process with binomial thinning and Poisson

innovations. Alternatively, we can calculate these quantities using the chf, as follows.

Proposition 3.1.3 In Proposition 2.5.3 we defined the transition probability b(x) =

P (Xt|Xt−1, . . . , Xt−p) for x = 0, 1, . . .. Fixing x, let b(j)(x) denote the partial derivative of

b(x) with respect to θj and b(j,k)(x) denote the second partial derivative of b(x) with respect

to θj and θk. Then

∂

∂θj
ℓ(θ) =

n∑
t=p+1

b(j)(xt)

b(xt)
,
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with

∂2

∂θj∂θk
ℓ(θ) =

n∑
t=p+1

b(xt) b
(j,k)(xt)− b(j)(xt) b

(k)(xt)

b2(xt)
.

Proof: Note that for x = 1, 2, . . .

b(x) =
1

2π

∫ π

−π

Re

(
ϕXt|Xt−1,...,Xt−p(u)

[
e−iuxt − e−iu(xt+1)

]
1− e−iu

)
du

=
1

2π

∫ π

−π

Re

(
ϕXt|Xt−1,...,Xt−p(u)e

−iuxt(1− e−iu)

1− e−iu

)
du

=
1

2π

∫ π

−π

Re
(
ϕXt|Xt−1,...,Xt−p(u)e

−iuxt
)
du

=
1

π

∫ π

0

Re
(
ϕXt|Xt−1,...,Xt−p(u)e

−iuxt
)
du.

Then

ℓ(θ) =
n∑

t=p+1

log b(x).

The result of the proposition follows directly by taking partial derivatives of ℓ(θ) with respect

to θj. □

3.1.2 Yule-Walker

Yule-Walker (Y-W) estimation [e.g., Brockwell and Davis, 2016, Section 5.1.1] is a method

of moments approach. From Proposition 2.4, we see that the GINAR(p) and AR(p) processes

have the same autocorrelation structure. Consequently the Y-W equations hold for the

GINAR(p) process:

Γα = γ, (3.4)

where Γ = [γX(|i − j|)]p×p, α = [α1, ..., αp]
T , and γ = [γX(1), ..., γX(p)]

T . Replacing the

quantities in (3.4) with the corresponding sample estimates, i.e. Γ̂α̂YW = ρ̂, provides the
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Y-W estimate for α. Here the sample autocovariance, γ̂X(k), is

γ̂X(k) =
1

n

n−|k|∑
t=1

(Xt −X)(Xt+|k| −X), k ∈ Z.

The Y-W estimates of µϵ and σ2
ϵ are [Silva and Silva, 2006]

µ̂ϵ =

(
1−

p∑
j=1

α̂j

)
X

and

σ2
ϵ = V̂p −X

p∑
j=1

β̂j,

where V̂p = γ̂X(0)−
∑p

j=1 α̂j γ̂X(j). The asymptotic distribution of α̂YW is as follows.

Theorem 3.1.4 [Silva and Silva, 2006, Theoreom 2] Let {Xt : t ∈ Z} be a GINAR(p)

process. Assume that for {Yk : k ∈ Z} defined in Definition 2.1.1, that E(Y 3
k ) and E(Y 4

k )

are finite for all k. Let α̂YW be the Y-W estimator of α. Then,

√
n (α̂YW −α)

d−→ N (0,ΣYW )

as n → ∞, where ΣYW = DTQD. In the definition of ΣYW ,

DT = −[γX(1)Ip . . . γX(p)Ip](Γ
T ⊗ Γ−1)[Ip2 0p2×p] + [0p2×p Γ−1]

and Q is the p(p+ 1)× p(p+ 1) covariance matrix defined by

Q = cov(V̂ (j), V̂ (k)), where

V̂ (j) =

{
γ̂X(|(j − 1) mod p− [(j − 1)/p]|) if j ≤ p2;

γ̂X(|j mod p|) if j > p2.

for p > 1, and V̂ (j) = [γ̂X(0) γ̂X(1)]
T for p = 1. Note that [r] represents the integer part of

r ∈ R and ⊗ is the Kronecker product [Graham, 1981].

The asymptotic distribution for σ̂2
ϵ and µ̂ϵ follows from Silva and Silva [2006, Theorem 1,

Theorem 2] and the Delta method.
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3.1.3 Conditional least squares

The conditional least squares (CLS) method for estimation of parameters of GINAR(p)

processes was proposed by Klimko and Nelson [1978]. We first define the modified parameter

space which leaves out σ2
ϵ from θ. Let η = (α1, α2, . . . , µϵ)

T . Then define

Un(η) =
n∑

t=p+1

{Xt − µXt|Xt−1,...,Xt−p}2. (3.5)

The CLS estimator, η̂CLS, satisfies

η̂CLS = argmin
η∈Θ

UN(η). (3.6)

The following is due to Latour [1998, Proposition 6.1].

Theorem 3.1.5 Let {Xt : t ∈ Z} be a GINAR(p) process such that E(ϵ3t ) < ∞ for all

t ∈ Z. Let {Y (j)
k } be as Definition 2.1.1 where j indicates that it is associated with the jth

thinning operator αj⊙, and E{(Y (j)
k )3)} < ∞, for all j = 1, . . . , p and k ≥ 1. Then the CLS

estimator, η̂CLS, has the following asymptotic distribution

√
n (η̂CLS − θ)

d−→ N (0,ΣCLS)

as n → ∞, where ΣCLS = V−1WV. In the definition of ΣCLS,

V =

[
Γ+ µ2

X1p1
T
p µX1p

µX1
T
p 1

]
,

and

V −1 =

[
Γ−1 −µXΓ

−11p

−µX1
T
pΓ

−1 1 + µ2
X1

T
pΓ

−11p

]
,

where 1p is a p× 1 matrix of ones. The elements of the W matrix are

Wlj =

p∑
k=1

βkE (Xp−l+1Xp−j+1Xp−k+1) + σ2
ϵVlj, 1 ≤ l, j ≤ p.
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This method is computationally more tractable than CML, however it does not take into

account other conditional moment restrictions, like the conditional heteroscedasticity, leading

to a possible loss of efficiency in comparison to CML estimation [Hadri, 2009].

We can estimate the innovation variance σ2
ϵ using a two-step CLS method [Karlsen and

TjøStheim, 1988, Ristić et al., 2012, Bourguignon et al., 2019] – we minimize

Sn(η) =
n∑

t=p+1

[
{Xt − µXt|Xt−1,...,Xt−p}2 − σ2

Xt|Xt−1,...,Xt−p
}
]2

,

with respect to σ2
ϵ , while replacing α and µϵ with the CLS estimates from (3.6). (Also see

Freeland [2010], Bourguignon and Vasconcellos [2015b], and Huang and Zhu [2021].)

3.1.4 Pseudo maximum likelihood

For the pseudo maximum likelihood method we approximate the transition probability

using normal distribution with mean and variance equal to the conditional mean and variance

presented in Lemma 2.4. Let

ℓP (θ) = −1

2

n∑
t=p+1

log
(
2πσ2

Xt|Xt−1,...,Xt−p
(θ)
)
+

n∑
t=p+1

(
xt − µXt|Xt−1,...,Xt−p(θ)

)2
2σ2

Xt|Xt−1,...,Xt−p
(θ)

.

Then the pseudo maximum likelihood estimator θ̂P is

θ̂P = argmax
θ∈Θ

ℓP (θ).

Theorem 3.1.6 Let {Xt : t ∈ Z} be a GINAR(p) process. The pseudo maximum likelihood

estimator, θ̂P , has the asymptotic distribution

√
n
(
θ̂P − θ

)
d−→ N (0,ΣP ) , (3.7)

as n → ∞, where

ΣP = U(θ)−1Z(θ)U(θ)−1,

Z(θ) = lim
n→∞

1

n
E

(
∂ℓP (θ)

∂θ

(
∂ℓP (θ)

∂θ

)T
)
,
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and

U(θ) = lim
n→∞

1

n
E

(
∂2ℓP ((θ))

∂θ∂θT

)
.

This method is computationally much more tractable compared to CML, and also has a

relatively simple implementation.

3.1.5 Saddlepoint methods

Saddlepoint approximation techniques were introduced by Daniels [1954], and are used

in a wide range of applications. An advantage of these methods is that they tend to pro-

vide accurate approximations even for small sample sizes, and is often believed to be more

accurate than using a normal approximation [e.g., Reid, 1988, Davison, 2003]. Pedeli et al.

[2015] propose the saddlepoint approximation method for the GINAR(p) case with bino-

mial thinning. Their main idea is that the convolutions in the likelihood expression can be

removed by considering the corresponding moment-generating functions. First, they note

that the conditional cumulant generating function for the GINAR(p) process with binomial

thinning and a general innovation distribution is

Kt(u) = logE[exp(uXt)|Xt−1, ..., Xt−p]

=

p∑
j=1

xt−j log(1− αj + αj exp(u)) +Kϵt(u).

Generalizing to other thinning operators we get

Kt(u) =

p∑
j=1

Kα⊙Xt−j
(u) +Kϵt(u).

Then, an approximation to the true conditional log likelihood is provided by the saddle-

point approximation is

ℓS(θ) =
n∑

t=p+1

(
1

2πK
′′
t (ũt)

)1/2

exp (Kt(ũt)− ũtxt) ,
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where ũt is found by solving K ′
t(u) = xt, and the derivatives are taken with respect to

u. Pedeli et al. [2015] propose using a quasi-likelihood based approach to show that the

resulting estimator is asymptotically normal for the binomial thinning case, however they

remark that the estimator is not consistent. They posit that the saddlepoint method is more

computationally efficient than the CML method with transition probabilities calculated using

the inefficient equation in Theorem 2.5.1, especially for cases where observed counts are large.

3.1.6 Spectral-based Whittle estimation

We can also consider estimating the parameters on the basis of a spectral analysis of the

process. The Whittle criterion is

ℓW (θ) =
1

N

⌊N/2⌋∑
j=1

(
log f(νj,θ) +

IN(νj)

f(νj,θ)

)
, (3.8)

where f(νj,θ) is the spectral density function and IN(νj) is the periodogram at frequency

νj = 2πj/N [Silva and Oliveira, 2005]. The periodogram is defined as follows:

IN(νj) = (2πN)−1

∣∣∣∣∣
N∑
t=1

Xt exp (iωt)

∣∣∣∣∣
2

, j = 1, . . . , ⌊N/2⌋.

The Whittle estimate of θ, θ̂W , is

θ̂W = argmin
η∈Θ

ℓW (θ).

Rice [1979] showed that the Whittle estimator for a non-Gaussian series is also asymptotically

normally distributed. However, the asymptotic variance depends on the fourth order spectra

of the process, which is difficult to obtain for the case of a GINAR process.

For a large class of processes the Whittle likelihood is known to provide biased estimates.

Hence, Sykulski et al. [2019] propose the debiased Whittle likelihood which replaces the

spectral density with the expected value of the periodogram while still being computationally
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efficient with O(n log n) efficiency. The authors show that employing this method leads to

less biased estimates compared to using the Whittle likelihood. However this has not been

investigated for the analysis of count time series.

3.1.7 Other methods

Other estimation methods have also been proposed. For instance, the squared difference

(SD) estimator is proposed for the GINAR(1) process with binomial thinning and Poisson

innovations have, which provides bias reduced estimates using a method of moments ap-

proach [Bourguignon and Vasconcellos, 2015a]. Bootstrap based techniques have also been

studied. For instance, Jentsch and Weiß [2019] and Weiß and Jentsch [2019] propose some

flexible bootstrap techniques for the GINAR(p) process with binomial thinning which could

be extended to a generalized thinning case. Lu and Wang [2022] propose a new parameter

estimator based on empirical likelihood for the GINAR(1) process with binomial thinning

and Poisson innovations which has a small bias and is efficient as shown by simulation stud-

ies. Generalized method of moments have also been used for estimation for different models

under the GINAR(p) class; some examples are Brannas [1993] and Zhang et al. [2010].
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3.2 Inference

In this section we discuss methods of inference for GINAR(p) processes, in particular

building confidence intervals, and provide a discussion of model selection methodologies for

these processes.

3.2.1 Confidence regions

We can calculate confidence intervals for the model parameters based on the asymptotic

theory given in Section 3.1. An estimate of the asymptotic variance for methods such as

CML, CLS, Yule-Walker and pseudo maximum likelihood can be obtained by substituting

the appropriate estimate into the expression for the asymptotic covariance matrix. We

can also estimate the covariance matrix using the Hessian, calculated numerically from the

optimization algorithm that generates the estimator.

For example, with an estimated covariance matrix for the parameters of Σ, an approxi-

mate (1− ν)100% confidence interval for θj is

θ̂j ± z1−ν/2 [Σ]jj ,

and a 100(1− ν)% simultaneous confidence region for θ is{
θ : (θ̂ − θ)Σ−1(θ̂ − θ)T ≤

χ2
p,1−ν

n

}
.

Weiß [2011] use simulations to compare the confidence interval coverage for the CLS and

CML methods for a GINAR(1) process with binomial thinning and Poisson innovations.

They indicate that the CML method has better coverage properties. The CLS method has

lower coverage when the dependence parameter α1 is large for shorter time series.
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3.2.2 Model selection

Model selection for GINAR(p) processes includes selection of the model order p, thinning

operator, and innovation distribution. There are many techniques discussed in the literature

to make these choices which are discussed in this section.

Weiß and Feld [2020] carry out a comprehensive simulation study on the performance of

AIC and BIC for model selection in the context of count time series models. The authors

choose candidate models to provide insight into tasks such as identifying serial correlation,

overdispersion or zero-inflation, order selection, and non-nested model families. Their find-

ings show that both AIC and BIC are generally successful model selection criteria – for

shorter series, AIC is recommended, while BIC outperforms AIC for longer series.

Alzahrani et al. [2018] discuss other methods for model selection which are useful when

the competing models are non-nested, which is usually the case. They develop an effective

algorithm in the Bayesian framework, implementing direct computation of the marginal

likelihood and using the deviance information criteria (DIC). Other than information criteria

methods, the forecasting potential of different models can also be used as a method of model

selection. For example, Cardinal et al. [1999] propose the relative forecast error (RFE) to

measure the forecasting performance of a model which can then be used to select the optimal

model. da Silva [2005] also propose to use the final prediction error to choose model order,

among other metrics.

Bu and McCabe [2008] propose that model order can be selected sample autocorrela-

tion/partial autocorrelation functions. They also present a model selection approach using a

new residual process which is defined for each of the p+1 model components (the p thinning

operations of past values and the innovation sequence). Here they look at the residuals of

each model component, in addition to residuals of the fitted model. They posit that this

37



allows for a more robust analysis into the goodness of fit of the model. Freeland and McCabe

[2004a] also suggest defining two sets of residuals for the GINAR(1) process with binomial

thinning, one for each random component part of the model. However, the challenge here

is interpreting these residuals when the lags are higher. Park and Kim [2012] present two

new expected residual calculations for the GINAR(p) process with binomial thinning, and

demonstrate its usage in assessing model adequacy and predictive performance. They show

that these residuals can be useful in model selection, identifying overdispersion and correla-

tion arising from incorrect parameter estimates or choice of model order p. These residuals

require that the conditional probabilities, P (Xt|Xt−1, . . . , Xt−p) and P (ϵt|Xt−1, . . . , Xt−p) are

specified, hence this method can be extended to the GINAR(p) case whenever the conditional

distributions are available, or alternatively we can use the Davies approach to calculate the

transition probabilities. Forughi et al. [2022] develops some portmanteau test statistics to

check goodness of fit for GINAR(p) processes and derive asymptotic distributions of the test

statistics.

3.3 Forecasting for GINAR(p) processes

We next discuss forecasting strategies for the GINAR(p) process. We first start with a

summary of different methodologies used in the literature and then present the methodology

used in this dissertation.

3.3.1 Literature Review

When it comes to forecasting GINAR(p) processes, we ideally want a method that pro-

duces integer-valued forecasts. Jin-Guan and Yuan [1991] propose the minimum variance

predictor of Xn+1, denoted X̂n(1), to be the conditional expectation, E(Xn+1|Xn, .., Xn+1−p).
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Similarly then, the k -step ahead prediction is given by,

X̂n(k) = E(Xn+k|X1, ..., Xn) =

p∑
j=1

E(αj ⊙Xn+k−j) + µϵ

=

p∑
j=1

αjE(XN+k−j|X1, ..., Xn) + µϵ

=

p∑
j=1

αjX̂n(k − j) + µϵ.

Although, this method produces forecasts with minimum mean square errors, it this has the

disadvantage of producing non-integer forecasts due to the multiplications involved. Hence,

various other methods have been proposed in the literature. Freeland and McCabe [2004b],

present the k -step ahead predictive distribution for the GINAR(1) process with binomial

thinning and Poisson innovations, but analytical solutions are not easily derived for higher

order lags and other innovation distributions. They provide the asymptotic distribution of

the k -step ahead pmf which can be used to construct confidence intervals for the probability

associated with any value of x in the forecast distribution. Bu and McCabe [2008] propose

a forecasting methodology for the GINAR(p) process with binomial thinning and Poisson

innovations, using the transition probability function of the process. They treat the model

as a Markov chain, where they assume a maximum count of M , and obtain forecasts using

the transition matrix. They also posit a methodology for calculating confidence intervals for

these forecast probabilities.

Other commonly used forecasting approach uses bootstrap based prediction methods,

which allow for a distribution free approach, making them more flexible to incorporate higher

order lags, and different thinning and innovation distributions. Bisaglia and Gerolimetto

[2019], Kim and Park [2008], Cardinal et al. [1999] implement bootstrap based prediction

methods. Bisaglia and Gerolimetto [2019] propose a model-based bootstrap approach to
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estimate the probability mass function conditional on the data available at the time the

forecast is made. They propose a new approach based on the autoregressive nature of INAR

model that allows for the integer nature of the data. They propose a model-based bootstrap

approach to estimate the pmf, conditional on the data available at the time the forecast is

made. They also carry out an extensive simulation study comparing their proposed method

to that of Cardinal et al. [1999] and Kim and Park [2008] show that their method is either

better or comparable.

Jung and Tremayne [2006] propose a simulation based approach which is easily extendable

to higher order lags and other innovation distributions and thinning operations.

Bayesian methods to forecast GINAR processes have also been studied in the literature.

McCabe and Martin [2005] introduced a Bayesian method to produce coherent forecasts

for low-count time series data, and specifically look at GINAR(1) processes with binomial

thinning and any innovation distribution. They produce forecasts using a p-step ahead

predictive probability mass function (pmf) defined as follows:

P (Xn+p = xn+p|x) =
K∑
k=1

P (Xn+p = xn+p|x,Mk)P (Mk|x),

where {Xt : t ∈ Z} is as defined in Definition 2.2.1. The process generating Xt is assumed

to be within a set of pre-defined K processes denoted Mk for k = 1, 2, . . . , K, and x =

(x1, x2, . . . , xn)
T , the vector of observed data. Note that P (Xn+p = xn+p|x,Mk) is the

p-step ahead predictive pmf for the kth process considered and P (Mk|x) is the posterior

probability of process Mk. McCabe and Martin [2005] use Bayesian methods to simplify

this equation and use numerical approaches for the evaluation. This approach relies on

parametric assumptions for the innovation distribution, and also, if the true distribution is

not included in the set of processes considered it could lead to misspecification errors and

poor performance. To circumvent the need for parametric assumptions on the innovation
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distribution, Bisaglia and Canale [2016] propose Bayesian nonparametric forecasting methods

for INAR models. For the innovation distribution they use a Dirichlet process mixture of

rounded Gaussians which allows for a large support on the space and pmf, and allows to

model various count distributions. Another non-parametric approach is proposed by McCabe

et al. [2011]; they estimate the forecast distribution of the discrete random variable non-

parametrically. For the broad INAR class they develop an asymptotically efficient estimator

of the forecast distribution using non-parametric maximum likelihood. They show the merits

of their methodology by comparing performance to misspecificed parametric models.

3.3.2 A simulation-based forecasting method

In the previous section we provided a discussion on the various forecasting methods

studied in the literature. In this section we describe the forecasting methodology used for

the simulations and applications in this dissertation.

We use a simulation based approach for forecasting so that it can easily be extended to

higher-order lags and other innovation distributions and thinning operators. The prediction

distribution is calculated by means of a Monte Carlo procedure. Then, the median of this

distribution can be used as a point estimate and a confidence interval can be obtained from

the quantiles. This ensures that we always obtain an integer-valued forecast. Then for a

positive integer n the steps for calculating the h-step ahead forecast distribution, denoted

Xn+h, for a GINAR(p) process is as follows:

1. Generate one realization of α̂j ⊙ Xb
n+h−j =

∑Xb
n+h−j

j=1 Y j
k where {Y j

k } are IID RVs as

described in Definition 2.1.1, for j = 1, 2, . . . , p;

2. Generate one realization of {ϵbn+h} which are IID RVs from a pre-specified non-negative

distribution with parameters µ̂ϵ and σ̂2
ϵ ;
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3. Set Xb
N+h =

∑p
j=1 α̂j ⊙Xb

n+h−j + ϵbn+h;

4. Repeat steps 1-3, b times, for large b.

Then we can estimate a percentile-based 100(1− ν)% forecast interval for the prediction.
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Chapter 4: Simulation Studies for GINAR(p) Processes

Up to this point we have reviewed and discussed a number of different estimation, infer-

ence, and forecasting methods that can be applied to the statistical analysis of GINAR(p)

processes. Now we compare the performance of different estimation methods for finite sam-

ples, taking time to compare the performance as we vary the order p, as well as the thinning

operator and innovation process used to define the GINAR process.

Throughout, Po-INAR refers to a GINAR process with binomial thinning and Poisson

innovations, NB-INAR refers to binomial thinning and negative binomial innovations, and

Geom-INAR refers to negative binomial thinning defined with geometric random variables

along with Poisson innovations. In all simulations we estimate each quantity of interest (the

bias, standard deviation (SD), root mean squared error (RMSE), or coverage) using 10,000

replicates, and estimate standard errors for each quantity using 10,000 bootstrap samples.

We present GINAR(1) simulations in Section 4.1, GINAR(2) simulations in Section 4.2 and

GINAR(4) simulations in Section 4.3. In Section 4.4 we present coverage simulation for some

estimation methods for the Po-INAR(1) and Po-INAR(2) processes.
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4.1 Estimating GINAR(1) process parameters

In this section we look at simulation studies for the estimation of GINAR(1) process

parameters. In particular we consider the estimation of parameters of the Po-INAR(1),

Geom-INAR(1) and NB-INAR(1) processes.

Varying the Sample Size

In our first simulation we estimate the parameters of the most commonly used Po-

INAR(1) process when α1 = 0.5 and µϵ = 1. Table 4.1 shows estimates of the bias, SD, and

RMSE for both parameters of the process using different estimation methods as we vary the

sample length n, with n = 100, 500 and 1, 000. For most estimation methods, we learn that

the bias tends to get closer to zero as we increase n, and that naturally the SD and RMSE

gets smaller as n is increased. However, due to the lack of consistency discussed in Section 3,

the bias of the saddlepoint estimator does not go to zero. For longer sample lengths the CML

methods tends to do best in terms of bias, SD, and RMSE, although the pseudo-likelihood

method is comparable in performance.

There is a loss of efficiency for other estimators. For the CML method we found no

difference in the results when using the slow transition probability calculation given by

Theorem 2.5.1 and the much faster chf-based calculation in Proposition 2.5.3, evaluating the

integrals using Gauss quadrature with 300 weights.

In Table 4.2 we move to using a NB-INAR(1) process instead of the Po-INAR(1) pro-

cess. Both processes are defined with binomial thinning but we now use negative binomial

innovations with mean µϵ and variance σ2
ϵ = µϵ + rµ2

ϵ with r = 1 for the NB-INAR(1)

process, generating more overdispersion as compared to Po-INAR(1) process. In general the
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Table 4.1: Estimated bias, SD, and RMSE when estimating the parameters of a Po-INAR(1)
process with α1 = 0.5 and µϵ = 1. The number of replicates is 10,000. The maximum
standard error for each quantity is 0.002 for estimating α1 and 0.004 for estimating µϵ.

n = 100 n = 500 n =1,000
Method α̂1 µ̂ϵ α̂1 µ̂ϵ α̂1 µ̂ϵ

CML Bias -0.009 0.013 -0.002 0.003 -0.001 0.001
SD 0.076 0.166 0.032 0.073 0.023 0.051
RMSE 0.076 0.166 0.033 0.073 0.023 0.051

CLS Bias -0.026 0.049 -0.006 0.011 -0.002 0.004
SD 0.093 0.203 0.042 0.089 0.030 0.063
RMSE 0.097 0.209 0.043 0.090 0.030 0.063

YW Bias -0.032 0.059 -0.006 0.012 -0.003 0.005
SD 0.093 0.206 0.042 0.089 0.029 0.063
RMSE 0.099 0.215 0.042 0.090 0.029 0.063

Pseudo Bias -0.011 0.008 -0.002 0.002 -0.001 0.001
SD 0.083 0.176 0.035 0.077 0.025 0.055
RMSE 0.083 0.176 0.035 0.077 0.025 0.055

Whittle Bias -0.017 0.012 -0.003 0.003 -0.002 0.000
SD 0.094 0.187 0.042 0.083 0.030 0.058
RMSE 0.096 0.187 0.042 0.083 0.030 0.058

Saddle Bias -0.045 0.086 -0.037 0.073 -0.036 0.071
SD 0.075 0.169 0.033 0.073 0.023 0.052
RMSE 0.087 0.189 0.049 0.103 0.043 0.088
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Table 4.2: Estimated bias, SD, and RMSE when estimating the parameters of a NB-INAR(1)
process with α1 = 0.5, r = 1 and µϵ = 1. The number of replicates is 10,000. The maximum
standard error for each quantity is 0.006 for estimating α1, 0.05 for estimating r, and 0.05
for estimating µϵ.

n = 100 n = 500 n = 1,000
Method α̂1 µ̂ϵ r̂ α̂1 µ̂ϵ r̂ α̂1 µ̂ϵ r̂
CML Bias -0.013 0.021 -0.014 -0.002 0.003 -0.005 -0.002 0.002 -0.001

SD 0.068 0.184 0.505 0.028 0.079 0.216 0.020 0.055 0.151
RMSE 0.069 0.186 0.505 0.029 0.079 0.216 0.020 0.055 0.151

CLS Bias -0.030 0.054 -0.071 -0.006 0.011 -0.013 -0.003 0.004 -0.006
SD 0.095 0.233 0.713 0.043 0.101 0.315 0.030 0.072 0.225
RMSE 0.099 0.239 0.716 0.043 0.102 0.315 0.031 0.072 0.225

YW Bias -0.031 0.057 -0.058 -0.006 0.011 -0.010 -0.003 0.008 -0.004
SD 0.094 0.233 0.705 0.042 0.103 0.316 0.030 0.073 0.224
RMSE 0.098 0.240 0.708 0.043 0.103 0.316 0.031 0.073 0.224

Pseudo Bias -0.029 0.053 -0.084 -0.006 0.011 -0.024 -0.003 0.005 -0.009
SD 0.098 0.240 0.578 0.043 0.102 0.267 0.030 0.071 0.190
RMSE 0.103 0.245 0.584 0.043 0.102 0.268 0.030 0.071 0.190

Whittle Bias -0.013 0.053 -0.040 -0.001 0.008 0.002 0.000 0.000 0.016
SD 0.094 0.227 0.690 0.043 0.101 0.318 0.030 0.070 0.217
RMSE 0.095 0.233 0.691 0.043 0.102 0.318 0.030 0.069 0.217

Saddle Bias -0.075 0.147 -0.490 -0.064 0.127 -0.468 -0.063 0.123 -0.466
SD 0.074 0.208 0.318 0.034 0.146 0.142 0.028 0.066 0.099
RMSE 0.105 0.254 0.584 0.072 0.193 0.489 0.069 0.140 0.477
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Table 4.3: Estimated bias, SD, and RMSE when estimating the parameters of a Geom-
INAR(1) process with α1 = 0.5 and µϵ = 1. The number of replicates is 10,000. The
maximum standard error for each quantity is 0.002 for estimating α1 and 0.007 for estimating
µϵ.

n = 100 n = 500 n = 1,000
Method α̂1 µ̂ϵ α̂1 µ̂ϵ α̂1 µ̂ϵ

CML Bias -0.027 0.041 -0.006 0.010 -0.003 0.004
SD 0.096 0.182 0.042 0.079 0.029 0.055
RMSE 0.100 0.186 0.042 0.080 0.029 0.055

CLS Bias -0.040 0.066 -0.009 0.014 -0.004 0.007
SD 0.109 0.212 0.051 0.098 0.036 0.069
RMSE 0.116 0.222 0.052 0.099 0.037 0.069

YW Bias -0.042 0.073 -0.009 0.015 -0.004 0.008
SD 0.106 0.209 0.051 0.097 0.036 0.069
RMSE 0.114 0.221 0.051 0.098 0.036 0.070

Pseudo Bias -0.022 0.022 -0.005 0.006 -0.002 0.001
SD 0.106 0.210 0.045 0.091 0.032 0.063
RMSE 0.108 0.211 0.046 0.091 0.032 0.063

Whittle Bias -0.029 0.060 -0.006 0.014 -0.003 0.006
SD 0.109 0.338 0.050 0.151 0.036 0.107
RMSE 0.113 0.344 0.051 0.152 0.036 0.107

results stay consistent with the results to the Po-INAR(1) simulation. However, the pseudo-

likelihood estimator does worse in comparison to CML and the saddlepoint estimator also

performs much worse, in terms of bias, SD and RMSE. Also, it is much harder to estimate r

compared to the other parameters of the model. In particular, for the saddlepoint estimation

method we had to restrict r values to be between zero and five in the optimization step to

obtain reasonable results. One can clearly see the merits of using CML here as it tends to

do best in terms of bias, SD and RMSE.

Table 4.3 compares the performance of different estimators when we simulate Geom-

INAR(1) processes with α1 = 0.5 and µϵ = 1, at the same sample lengths n. For this process
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we have negative binomial thinning and Poisson innovations, leading to overdispersion that

varies over time. Also for the Geom-INAR(1) case the saddlepoint method is not available,

and thus is not shown. The simulation results in Table 4.3 show that CML and pseudo-

likelihood are comparable in terms of Bias, SD and RMSE. We see that Whittle likelihood

estimates perform much worse as compared to the Po-INAR(1) simulation, especially for

smaller sample lengths with the RMSE for µϵ being almost two times larger than that of

CML.

Varying the Innovation Mean

We now estimate the parameter for the Po-INAR(1), NB-INAR(1) and Geom-INAR(1)

processes when varying the innovation mean. We consider values µϵ = 5, 10, and 20 for the

innovation mean.

When varying the innovation mean, we see that the saddlepoint estimate of all parameters

except µϵ improves in terms of RMSE for larger values of µϵ for all three processes. However,

it has much worse bias properties than all other estimation methods for smaller values of µϵ,

for both NB-INAR(1) and Po-INAR(1) processes. A large bias and small RMSE suggests

that saddlepoint estimator is consistently producing estimates that are far off from the true

values, which is not desirable.

The simulation results in Table 4.4 show that the CML estimation outperforms most

methods, however for the Po-INAR(1) process the pseudo maximum likelihood estimator is

comparable to CML as we increase the innovation mean. This is not the case for NB-INAR(1)

as pseudo performs worse, with larger RMSE and bias, as the innovation mean increases. We

know the marginal distribution of the Po-INAR(1) process to be Poisson(µϵ/(1 − α)), and

theoretically a Poisson(λ) random variable approaches a normal distribution as λ goes to

infinity. This is the mathematical intuition for the pseudo estimator performing well when we
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increase the innovation mean for the Po-INAR(1) case, but not NB-INAR(1). The results of

the Geom-INAR(1) process as seen in Table 4.6 are also consistent with Po-INAR(1) results.

Varying the Dependence Parameter

We consider varying the dependence parameter of the Po-INAR(1), Geom-INAR(1), and

NB-INAR(1) processes. We consider the values α1 = 0.2, 0.5, and 0.8. Varying the values

of the dependence parameter shows that the CML method has the lowest RMSE for all

parameters estimated for all three processes and most methods have large bias, SD and

RMSE as α1 gets close to the boundary point of α1 = 1, as seen in Tables 4.7, 4.8, and 4.9.

When the dependence parameter is closer to the boundary point; i.e. the simulations

where α1 = 0.8, CML outperforms other methods by a much larger factor. For instance, in

the NB-INAR(1) simulation, the RMSE for µ̂ϵ is almost 40% smaller than the next best esti-

mator - pseudo maximum likelihood. Note that for this simulation the saddlepoint estimator

has a RMSE almost 57 times larger than CML, this is clearly not a desirable estimator to

use when the dependence parameter is believed to be large.
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Table 4.4: Estimated bias, SD, and RMSE when estimating the parameters of a Po-INAR(1)
process with α1 = 0.5 and n = 500. The number of replicates is 10,000. The maximum
standard error for each quantity is 0.001 for estimating α1 and 0.031 for estimating µϵ.

µϵ = 5 µϵ = 10 µϵ = 20
Method α̂1 µ̂ϵ α̂1 µ̂ϵ α̂1 µ̂ϵ

CML Bias -0.001 0.011 -0.002 0.029 -0.001 0.029
SD 0.031 0.314 0.031 0.625 0.030 1.224
RMSE 0.031 0.314 0.031 0.626 0.030 1.224

CLS Bias -0.005 0.051 -0.005 0.106 -0.005 0.189
SD 0.039 0.399 0.040 0.800 0.039 1.554
RMSE 0.040 0.403 0.040 0.807 0.039 1.565

YW Bias -0.006 0.060 -0.006 0.118 -0.007 0.268
SD 0.040 0.405 0.039 0.796 0.039 1.555
RMSE 0.040 0.409 0.040 0.805 0.039 1.578

Pseudo Bias -0.001 0.012 -0.001 0.025 -0.001 0.052
SD 0.031 0.320 0.031 0.621 0.030 1.224
RMSE 0.031 0.320 0.031 0.622 0.030 1.225

Whittle Bias -0.003 0.005 -0.004 0.018 -0.004 0.037
SD 0.039 0.363 0.040 0.709 0.039 1.390
RMSE 0.040 0.363 0.040 0.709 0.039 1.391

Saddle Bias -0.011 0.111 -0.007 0.129 -0.004 0.161
SD 0.031 0.313 0.030 0.613 0.031 1.226
RMSE 0.033 0.332 0.031 0.626 0.031 1.237
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Table 4.5: Estimated bias, SD, and RMSE when estimating the parameters of a NB-INAR(1)
process with α1 = 0.5, r = 1 and n = 500. The number of replicates is 10,000. The maximum
standard error for each quantity is 0.001 for estimating α1, 0.004 for estimating r and 0.036
for estimating µϵ.

µϵ = 5 µϵ = 10 µϵ = 20
Method α̂1 µ̂ϵ r̂ α̂1 µ̂ϵ r̂ α̂1 µ̂ϵ r̂
CML Bias -0.002 0.020 -0.002 -0.001 0.009 0.000 0.000 0.025 0.000

SD 0.021 0.314 0.136 0.017 0.574 0.118 0.014 1.062 0.105
RMSE 0.021 0.314 0.136 0.017 0.574 0.118 0.014 1.062 0.105

CLS Bias -0.006 0.055 -0.010 -0.005 0.104 -0.009 -0.005 0.227 -0.011
SD 0.040 0.465 0.210 0.039 0.922 0.192 0.039 1.796 0.186
RMSE 0.040 0.468 0.210 0.040 0.928 0.192 0.039 1.811 0.186

YW Bias -0.007 0.067 -0.014 -0.007 0.130 -0.013 -0.006 0.242 -0.009
SD 0.040 0.475 0.205 0.039 0.914 0.192 0.039 1.797 0.187
RMSE 0.041 0.480 0.206 0.040 0.923 0.193 0.039 1.813 0.187

Pseudo Bias -0.005 0.049 -0.009 -0.006 0.115 -0.010 -0.005 0.200 -0.008
SD 0.040 0.462 0.196 0.039 0.919 0.188 0.039 1.815 0.184
RMSE 0.040 0.464 0.196 0.040 0.926 0.188 0.039 1.826 0.184

Whittle Bias -0.003 -0.012 0.023 -0.003 -0.060 0.031 -0.003 -0.269 0.044
SD 0.040 0.462 0.212 0.040 0.893 0.200 0.040 1.798 0.200
RMSE 0.040 0.462 0.213 0.040 0.895 0.202 0.040 1.818 0.205

Saddle Bias -0.024 0.242 -0.101 -0.009 0.182 0.013 0.000 -0.023 0.093
SD 0.022 0.322 0.124 0.018 0.572 0.123 0.014 1.045 0.119
RMSE 0.033 0.403 0.160 0.020 0.600 0.123 0.014 1.046 0.151
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Table 4.6: Estimated bias, SD, and RMSE when estimating the parameters of a Geom-
INAR(1) process with α1 = 0.5 and n = 500. The number of replicates is 10,000. The
maximum standard error for each quantity is 0.001 for estimating α1 and 0.050 for estimating
µϵ.

µϵ = 5 µϵ = 10 µϵ = 20
Method α̂1 µ̂ϵ α̂1 µ̂ϵ α̂1 µ̂ϵ

CML Bias -0.005 0.048 -0.006 0.118 -0.006 0.238
SD 0.036 0.353 0.036 0.712 0.036 1.411
RMSE 0.037 0.356 0.036 0.721 0.036 1.431

CLS Bias -0.006 0.057 -0.005 0.099 -0.006 0.222
SD 0.042 0.415 0.040 0.798 0.040 1.588
RMSE 0.042 0.418 0.041 0.804 0.040 1.604

YW Bias -0.006 0.061 -0.007 0.129 -0.006 0.229
SD 0.041 0.409 0.040 0.793 0.040 1.587
RMSE 0.042 0.413 0.041 0.804 0.040 1.603

Pseudo Bias -0.006 0.053 -0.006 0.109 -0.006 0.236
SD 0.038 0.379 0.037 0.729 0.036 1.415
RMSE 0.039 0.383 0.037 0.737 0.036 1.435

Whittle Bias -0.004 0.058 -0.004 0.097 -0.003 0.187
SD 0.042 0.663 0.041 1.287 0.040 2.567
RMSE 0.042 0.665 0.041 1.290 0.040 2.574
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Table 4.7: Estimated bias, SD, and RMSE when estimating the parameters of a Po-INAR(1)
process with µϵ = 1 and n = 500. The number of replicates is 10,000. The maximum
standard error for each quantity is 0.002 for estimating α1 and 0.011 for estimating µϵ.

α1 = 0.2 α1 = 0.5 α1 = 0.8
Method α̂1 µ̂ϵ α̂1 µ̂ϵ α̂1 µ̂ϵ

CML Bias -0.002 0.002 -0.001 0.002 -0.001 0.004
SD 0.045 0.069 0.032 0.073 0.014 0.074
RMSE 0.045 0.069 0.032 0.073 0.014 0.075

CLS Bias -0.003 0.003 -0.006 0.011 0.064 -0.330
SD 0.047 0.071 0.041 0.089 0.111 0.552
RMSE 0.047 0.071 0.042 0.090 0.128 0.643

YW Bias -0.004 0.004 -0.006 0.010 -0.009 0.042
SD 0.047 0.071 0.042 0.089 0.028 0.145
RMSE 0.047 0.071 0.043 0.090 0.030 0.151

Pseudo Bias -0.002 0.002 -0.002 0.003 -0.001 0.003
SD 0.050 0.074 0.035 0.078 0.015 0.078
RMSE 0.050 0.074 0.035 0.078 0.015 0.078

Whittle Bias -0.001 0.000 -0.003 0.002 -0.005 0.007
SD 0.047 0.085 0.042 0.082 0.029 0.081
RMSE 0.047 0.085 0.042 0.082 0.029 0.081

Saddle Bias -0.022 0.027 -0.037 0.072 -0.012 0.059
SD 0.039 0.064 0.033 0.072 0.016 0.079
RMSE 0.045 0.070 0.049 0.102 0.020 0.099

4.2 Estimating GINAR(2) process parameters

In this section we consider estimation of GINAR processes when the order of the process,

p, is higher, with p = 2. We estimate the parameters of Po-INAR(2), Geom-INAR(2), and

NB-INAR(2) processes.

Varying the Sample Size

We estimate the parameters of Po-INAR(2), Geom-INAR(2), and NB-INAR(2) processes

when α = (0.2, 0.4)T with µϵ = 1 when the sample length is n = 100 and n = 500. We
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Table 4.8: Estimated bias, SD, and RMSE when estimating the parameters of a NB-INAR(1)
process with µϵ = 1, n = 500 and r = 1. The number of replicates is 10,000. The maximum
standard error for each quantity is 0.005 for estimating α1, and 0.012 for estimating r, and
2.665 for estimating µϵ.

α = 0.2 α = 0.5 α = 0.8
Method α̂1 µ̂ϵ r̂ α̂1 µ̂ϵ r̂ α̂1 µ̂ϵ r̂
CML Bias -0.002 0.002 -0.003 -0.002 0.003 -0.007 -0.001 0.004 -0.008

SD 0.036 0.075 0.192 0.029 0.080 0.214 0.014 0.083 0.238
RMSE 0.036 0.075 0.192 0.029 0.080 0.214 0.014 0.084 0.238

CLS Bias -0.003 0.005 -0.011 -0.005 0.010 -0.004 -0.007 0.035 -0.026
SD 0.048 0.084 0.231 0.043 0.103 0.322 0.029 0.155 0.542
RMSE 0.048 0.084 0.231 0.043 0.103 0.322 0.030 0.159 0.543

YW Bias -0.004 0.004 -0.008 -0.007 0.014 -0.018 -0.009 0.044 -0.033
SD 0.048 0.085 0.231 0.042 0.102 0.308 0.029 0.155 0.541
RMSE 0.048 0.085 0.231 0.043 0.103 0.308 0.030 0.161 0.542

Pseduo Bias -0.005 0.006 -0.018 -0.006 0.011 -0.017 -0.005 0.025 -0.032
SD 0.059 0.094 0.230 0.043 0.102 0.275 0.024 0.130 0.410
RMSE 0.059 0.094 0.231 0.044 0.103 0.276 0.024 0.132 0.411

Whittle Bias -0.001 -0.004 0.021 -0.004 0.011 -0.006 -0.005 0.035 0.002
SD 0.048 0.083 0.234 0.043 0.102 0.321 0.029 0.154 0.552
RMSE 0.048 0.083 0.235 0.043 0.102 0.321 0.029 0.158 0.552

Saddle Bias -0.075 0.095 -0.145 -0.064 0.129 -0.468 -0.041 0.317 -0.726
SD 0.039 0.082 0.157 0.036 0.191 0.142 0.030 4.850 0.132
RMSE 0.085 0.125 0.214 0.073 0.230 0.489 0.051 4.859 0.738

see that for the Po-INAR(2) and Geom-INAR(2) processes the CML, pseudo, and Whittle

estimation methods have comparable performance with low bias, SD and RMSE (Tables

4.10 and 4.12). CML has a lower RMSE when estimating α1 and α2 for both n = 100 and

n = 500. It also seems easier for almost all estimation methods in the Po-INAR(1) case to

estimate α2 as compared to α1.

For the NB-INAR(2) process, the Whittle and pseudo estimators are no longer compa-

rable to CML. Here CML has the best performance in terms of bias, SD and RMSE (Table

4.11). Also note that in order for the optimization to run for the Whittle and saddlepoint
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Table 4.9: Estimated bias, SD, and RMSE when estimating the parameters of a Geom-
INAR(1) process with µϵ = 1 and n = 500. The number of replicates is 10,000. The
maximum standard error for each quantity is 0.001 for estimating α1 and 0.004 for estimating
µϵ.

α1 = 0.2 α1 = 0.5 α1 = 0.8
Method α̂1 µ̂ϵ α̂1 µ̂ϵ α̂1 µ̂ϵ

CML Bias -0.005 0.005 -0.006 0.008 -0.007 0.017
SD 0.045 0.068 0.042 0.078 0.031 0.105
RMSE 0.045 0.069 0.042 0.078 0.032 0.106

CLS Bias -0.003 0.003 -0.008 0.014 -0.015 0.058
SD 0.048 0.071 0.050 0.095 0.040 0.170
RMSE 0.048 0.071 0.051 0.096 0.043 0.179

YW Bias -0.005 0.006 -0.010 0.016 -0.016 0.062
SD 0.048 0.071 0.051 0.096 0.041 0.170
RMSE 0.049 0.072 0.052 0.098 0.044 0.181

Pseudo Bias -0.004 0.002 -0.004 0.004 -0.005 0.012
SD 0.049 0.076 0.045 0.090 0.034 0.126
RMSE 0.049 0.076 0.046 0.090 0.034 0.127

Whittle Bias -0.002 -0.001 -0.007 0.017 -0.011 0.062
SD 0.049 0.106 0.050 0.152 0.041 0.228
RMSE 0.049 0.106 0.051 0.153 0.042 0.237

55



Table 4.10: Estimated bias, SD, and RMSE when estimating the parameters of a Po-INAR(2)
process with α1 = 0.2, α2 = 0.4 and µϵ = 1. The number of replicates is 10,000. The
maximum standard error for each quantity is 0.002 for estimating α1, 0.002 for estimating
α1 and 0.006 for estimating µϵ.

n = 100 n = 500
Method α̂1 α̂2 µ̂ϵ α̂1 α̂2 µ̂ϵ

CML Bias -0.011 -0.022 0.071 -0.002 -0.004 0.014
SD 0.099 0.093 0.266 0.042 0.039 0.112
RMSE 0.100 0.095 0.275 0.042 0.039 0.113

CLS Bias 0.130 -0.005 0.137 0.129 0.000 0.027
SD 0.029 0.030 0.312 0.013 0.013 0.130
RMSE 0.134 0.030 0.341 0.130 0.013 0.133

Y-W Bias -0.017 -0.049 0.155 -0.004 -0.010 0.033
SD 0.100 0.097 0.307 0.044 0.044 0.131
RMSE 0.101 0.109 0.344 0.044 0.045 0.135

Pseudo Bias -0.009 -0.024 0.061 -0.002 -0.005 0.012
SD 0.105 0.100 0.275 0.044 0.041 0.115
RMSE 0.105 0.102 0.282 0.044 0.041 0.115

Whittle Bias 0.000 -0.036 0.044 0.000 -0.007 0.009
SD 0.098 0.101 0.266 0.043 0.044 0.116
RMSE 0.098 0.107 0.269 0.043 0.045 0.117

Saddle Bias -0.002 -0.040 0.091 0.009 -0.022 0.027
SD 0.094 0.083 0.287 0.040 0.035 0.121
RMSE 0.094 0.092 0.301 0.041 0.041 0.124
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Table 4.11: Estimated bias, SD, and RMSE when estimating the parameters of a NB-
INAR(2) process with α1 = 0.2, α2 = 0.4, r = 1 and µϵ = 1. The number of replicates is
10,000. The maximum standard error for each quantity is 0.002 for estimating α1, 0.002 for
estimating α2, 0.007 for estimating µϵ and 0.039 for estimating r.

n = 100 n = 500
Method α̂1 α̂2 µ̂ϵ r̂ α̂1 α̂2 µ̂ϵ r̂
CML Bias -0.011 -0.027 0.087 -0.069 -0.003 -0.004 0.015 -0.011

SD 0.090 0.085 0.282 0.699 0.038 0.036 0.112 0.290
RMSE 0.090 0.089 0.295 0.703 0.038 0.036 0.113 0.290

CLS Bias -0.018 -0.039 0.130 -0.155 -0.003 -0.008 0.029 -0.033
SD 0.099 0.100 0.329 0.805 0.044 0.044 0.139 0.382
RMSE 0.101 0.107 0.354 0.820 0.044 0.045 0.142 0.383

Y-W Bias -0.017 -0.048 0.153 -0.146 -0.003 -0.010 0.031 -0.024
SD 0.100 0.098 0.328 0.816 0.044 0.045 0.140 0.395
RMSE 0.102 0.109 0.362 0.829 0.044 0.046 0.143 0.396

Pseudo Bias -0.017 -0.041 0.134 -0.144 -0.004 -0.008 0.028 -0.033
SD 0.109 0.110 0.353 0.756 0.051 0.048 0.150 0.352
RMSE 0.111 0.117 0.378 0.769 0.051 0.048 0.152 0.353

Whittle Bias 0.000 -0.033 0.055 -0.026 -0.001 -0.007 -0.067 0.792
SD 0.100 0.102 0.301 0.585 0.044 0.045 0.264 1.136
RMSE 0.100 0.107 0.306 0.585 0.044 0.046 0.272 1.385

Saddle Bias -0.036 -0.075 0.269 -0.639 -0.028 -0.056 0.209 -0.604
SD 0.085 0.078 0.297 0.280 0.038 0.034 0.128 0.127
RMSE 0.092 0.108 0.401 0.698 0.047 0.065 0.245 0.617

likelihood methods we had to constrain the r parameter to be in between one and five. This

is already a drawback of these two methods as we need to decide on a range for r, which

may not be appropriate for real-world applications. Note that Pedeli et al. [2015] fixed the r

parameter in their simulations for the saddlepoint method and thus we cannot compare our

results to theirs.
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Table 4.12: Estimated bias, SD, and RMSE when estimating the parameters of a Geom-
INAR(2) process with α1 = 0.2, α2 = 0.4 and µϵ = 1. The number of replicates is 10,000.
The maximum standard error for each quantity is 0.002 for estimating α1, 0.003 for estimating
α2 and 0.008 for estimating µϵ.

n = 100 n = 500
Method α̂1 α̂2 µ̂ϵ α̂1 α̂2 µ̂ϵ

CML Bias -0.014 -0.042 0.119 -0.002 -0.009 0.024
SD 0.095 0.102 0.285 0.042 0.044 0.115
RMSE 0.096 0.110 0.309 0.042 0.045 0.118

CLS Bias -0.017 -0.044 0.135 -0.004 -0.010 0.030
SD 0.107 0.120 0.335 0.047 0.050 0.138
RMSE 0.109 0.128 0.361 0.047 0.051 0.141

Y-W Bias -0.018 -0.056 0.169 -0.003 -0.012 0.034
SD 0.104 0.104 0.305 0.046 0.049 0.133
RMSE 0.105 0.118 0.349 0.046 0.050 0.137

Pseudo Bias -0.012 -0.037 0.089 -0.002 -0.007 0.014
SD 0.104 0.110 0.326 0.047 0.047 0.131
RMSE 0.105 0.116 0.338 0.047 0.047 0.132

Whittle Bias -0.004 -0.043 0.102 -0.001 -0.009 0.022
SD 0.103 0.109 0.409 0.047 0.049 0.180
RMSE 0.103 0.117 0.422 0.047 0.050 0.181
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Table 4.13: Estimated bias, SD, and RMSE when estimating the parameters of a Po-INAR(2)
process with α1 = 0.2, α2 = 0.4 and n = 500. The number of replicates is 10,000. The
maximum standard error for each quantity is 0.001 for estimating α1, 0.001 for estimating
α1 and 0.024 for estimating µϵ.

µϵ = 5 µϵ = 10
Method α̂1 α̂2 µ̂ϵ α̂1 α̂2 µ̂ϵ

CML Bias -0.002 -0.003 0.070 -0.001 -0.004 0.137
SD 0.042 0.038 0.538 0.042 0.037 1.053
RMSE 0.042 0.038 0.542 0.042 0.038 1.063

CLS Bias 0.129 0.000 0.139 0.129 0.000 0.301
SD 0.012 0.013 0.615 0.012 0.013 1.221
RMSE 0.130 0.013 0.631 0.130 0.013 1.258

Y-W Bias -0.003 -0.010 0.152 -0.003 -0.009 0.278
SD 0.042 0.042 0.619 0.042 0.041 1.218
RMSE 0.042 0.043 0.637 0.042 0.042 1.249

Pseudo Bias -0.003 -0.003 0.077 -0.002 -0.003 0.138
SD 0.042 0.038 0.550 0.042 0.038 1.070
RMSE 0.043 0.038 0.555 0.042 0.038 1.079

Whittle Bias 0.000 -0.007 0.049 0.000 -0.007 0.099
SD 0.042 0.042 0.545 0.042 0.042 1.080
RMSE 0.042 0.042 0.547 0.042 0.042 1.084

Saddle Bias 0.000 -0.010 0.116 -0.001 -0.007 0.197
SD 0.042 0.037 0.545 0.041 0.037 1.070
RMSE 0.042 0.038 0.558 0.041 0.037 1.088

Varying the Innovation Mean

We estimate the parameters of Po-INAR(2), Geom-INAR(2), and NB-INAR(2) processes

when α = (0.2, 0.4)T with n = 500 when the innovation mean is µϵ = 5 and µϵ = 10. For

the Po-INAR(2) process we see that CLS has a low bias, SD, and RMSE when estimating

α2 but has the worst performance in terms of bias, SD, and RMSE for α1 when compared

to all the other estimation methods (Table 4.13). This indicates that the CLS estimator is

not consistent in its performance for all the parameters. When µϵ is larger we clearly see
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Table 4.14: Estimated bias, SD, and RMSE when estimating the parameters of a NB-
INAR(2) process with α1 = 0.2, α2 = 0.4, r = 1 and n = 500. The number of replicates is
10,000. The maximum standard error for each quantity is 0.001 for estimating α1, 0.001 for
estimating α2, 0.135 for estimating µϵ and 0.012 for estimating r.

µϵ = 5 µϵ = 10
Method α̂1 α̂2 µ̂ϵ r̂ α̂1 α̂2 µ̂ϵ r̂
CML Bias -0.001 -0.002 0.043 -0.004 0.000 -0.001 0.041 -0.001

SD 0.030 0.028 0.414 0.182 0.025 0.024 0.709 0.154
RMSE 0.030 0.028 0.416 0.182 0.025 0.024 0.710 0.154

CLS Bias -0.002 -0.008 0.133 -0.024 -0.003 -0.007 0.249 -0.021
SD 0.042 0.042 0.660 0.275 0.042 0.042 1.288 0.265
RMSE 0.042 0.043 0.674 0.276 0.042 0.043 1.312 0.265

Y-W Bias -0.003 -0.010 0.161 -0.030 -0.003 -0.009 0.303 -0.026
SD 0.042 0.042 0.661 0.274 0.042 0.041 1.306 0.262
RMSE 0.042 0.043 0.681 0.276 0.042 0.043 1.340 0.264

Pseudo Bias -0.003 -0.008 0.135 -0.017 -0.003 -0.008 0.253 -0.016
SD 0.045 0.044 0.693 0.282 0.043 0.043 1.323 0.266
RMSE 0.046 0.044 0.706 0.282 0.043 0.043 1.347 0.266

Whittle Bias 0.000 -0.006 1.606 -0.264 0.000 -0.007 2.950 -0.247
SD 0.042 0.043 2.109 0.586 0.042 0.042 4.438 0.453
RMSE 0.042 0.043 2.651 0.643 0.042 0.043 5.328 0.516

Saddle Bias -0.034 -0.026 0.744 -0.297 -0.022 -0.010 0.819 -0.156
SD 0.031 0.029 0.439 0.119 0.026 0.025 0.727 0.125
RMSE 0.046 0.039 0.864 0.320 0.035 0.027 1.095 0.200

the merits of CML as it overall has the lowest RMSE. The Whitte and pseudo estimators

are comparable for µϵ estimates but not for α1 and α2. For the Geom-INAR(2) process we

too see that CML, Whittle and pseudo are comparable and have a low bias, SD, and RMSE

(Table 4.15). For the NB-INAR(2) process CML outperforms all other estimation methods

in terms of bias, SD, and RMSE (Table 4.14).
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Table 4.15: Estimated bias, SD, and RMSE when estimating the parameters of a Geom-
INAR(2) process with α1 = 0.2, α2 = 0.4 and n = 500. The number of replicates is
10,000. The maximum standard error for each quantity is 0.002 for estimating α1, 0.006 for
estimating α2, and 0.104 for estimating µϵ.

µϵ = 5 µϵ = 10
Method α̂1 α̂2 µ̂ϵ α̂1 α̂2 µ̂ϵ

CML Bias -0.004 -0.005 0.109 -0.003 -0.008 0.295
SD 0.044 0.062 0.702 0.041 0.040 1.132
RMSE 0.045 0.063 0.710 0.041 0.041 1.169

CLS Bias -0.013 0.016 -0.037 -0.061 0.190 -3.256
SD 0.060 0.130 1.230 0.116 0.288 5.319
RMSE 0.061 0.131 1.231 0.131 0.345 6.236

Y-W Bias -0.003 -0.009 0.156 -0.002 -0.010 0.293
SD 0.042 0.043 0.620 0.042 0.042 1.204
RMSE 0.042 0.044 0.639 0.042 0.043 1.239

Pseudo Bias -0.003 -0.009 0.138 -0.003 -0.008 0.274
SD 0.043 0.042 0.588 0.042 0.040 1.151
RMSE 0.043 0.043 0.604 0.042 0.040 1.183

Whittle Bias -0.001 -0.007 0.105 0.000 -0.007 0.214
SD 0.043 0.043 0.812 0.042 0.042 1.605
RMSE 0.043 0.044 0.819 0.042 0.043 1.619
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4.3 Estimating GINAR(4) process parameters

In this section we consider estimation of GINAR processes when the order of the process,

p, is higher, with p = 4. We estimate the parameters of Po-INAR(4), Geom-INAR(4),

and NB-INAR(4) processes. Note that we no longer consider the saddlepoint estimator

due to its poor performance in previous simulations. We only include methods for which

we can estimate all parameters without imposing additional constraints. Thus, we do not

include results for the Whittle likelihood estimator for NB-INAR(4) simulations as we had to

constrain the bounds of the r parameter (like NB-INAR(2) simulations) which is not ideal.

Varying the Sample Size

We estimate the parameters of Po-INAR(4), Geom-INAR(4), and NB-INAR(4) processes

when α = (0.1, 0.2, 0.1, 0.3)T with µϵ = 1 when the sample length is n = 100 and n = 500.

The saddlepoint method is not available in this case.

Table 4.16 and 4.20 show the results for the Geom-INAR(4) simulations, Table 4.17 and

4.19 show the results for the Po-INAR(4) simulations, and Tables 4.18 and 4.21 show the

results for the NB-INAR(4) simulations. As expected, increasing sample size leads to lower

RMSE, SD, and a smaller bias. Across both processes, the CML method tends to perform the

best with respect to bias, SD, and RMSE. For the Po-INAR(4) process the pseudo likelihood

and Whittle methods do comparably well as compared to the CML method, whereas for the

Geom-INAR(4) process the Yule-Walker and pseudo methods are comparable to the CML

method.

The CLS method for NB-INAR(4) process had some issues in terms of estimating the

r parameter. In particular for the n = 100 simulation, there were 11 simulations with

estimated values of r over 100. These were discarded for the results presented however it is
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Table 4.16: Estimated bias, SD, and RMSE when estimating the parameters of a Geom-
INAR(4) process with α1 = 0.1, α2 = 0.2, α3 = 0.3, α4 = 0.1, and µϵ = 1. The number of
replicates is 10,000. The maximum standard error for each quantity is 0.002 for estimating
α1, 0.002 for estimating α2, 0.002 for estimating α3, 0.003 for estimating α4 and 0.014 for
estimating µϵ.

n =100
Method α̂1 α̂2 α̂3 α̂4 µ̂ϵ

CML Bias -0.008 -0.032 -0.010 -0.049 0.310
SD 0.082 0.096 0.078 0.099 0.482
RMSE 0.082 0.102 0.079 0.110 0.573

CLS Bias -0.009 -0.032 -0.009 -0.043 0.286
SD 0.087 0.110 0.083 0.115 0.500
RMSE 0.087 0.115 0.084 0.123 0.576

Y-W Bias -0.016 -0.035 -0.023 -0.059 0.416
SD 0.105 0.106 0.098 0.101 0.546
RMSE 0.106 0.112 0.101 0.117 0.686

Pseudo Bias -0.008 -0.030 -0.010 -0.044 0.261
SD 0.085 0.102 0.083 0.106 0.522
RMSE 0.086 0.106 0.084 0.115 0.583

Whittle Bias 0.011 -0.018 0.003 -0.044 0.128
SD 0.092 0.104 0.087 0.105 0.584
RMSE 0.092 0.106 0.087 0.114 0.598

safe to assume that this method should be avoided when we want to estimate the r parameter

as well. We also note that most methods have issues estimating r, with a larger absolute

bias, larger SD, and larger RMSE.
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Table 4.17: Estimated bias, SD, and RMSE when estimating the parameters of a Po-INAR(4)
process with α1 = 0.1, α2 = 0.2, α3 = 0.3, α4 = 0.1, and µϵ = 1. The number of replicates is
10,000. The maximum standard error for each quantity is 0.002 for estimating α1, 0.003 for
estimating α2, 0.002 for estimating α3, 0.003 for estimating α4 and 0.014 for estimating µϵ.

n = 100
Method α̂1 α̂2 α̂3 α̂4 µ̂ϵ

CML Bias 0.001 -0.017 0.003 -0.024 0.118
SD 0.089 0.104 0.089 0.104 0.493
RMSE 0.089 0.105 0.089 0.106 0.507

CLS Bias -0.009 -0.032 -0.009 -0.038 0.277
SD 0.085 0.107 0.084 0.114 0.506
RMSE 0.085 0.111 0.084 0.120 0.576

Y-W Bias -0.012 -0.033 -0.024 -0.058 0.405
SD 0.104 0.104 0.097 0.097 0.545
RMSE 0.105 0.109 0.100 0.114 0.679

Pseudo Bias -0.002 -0.025 -0.003 -0.031 0.175
SD 0.091 0.107 0.088 0.106 0.448
RMSE 0.091 0.109 0.088 0.111 0.481

Whittle Bias 0.010 -0.016 0.003 -0.043 0.099
SD 0.090 0.102 0.088 0.102 0.459
RMSE 0.091 0.103 0.088 0.111 0.469
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Table 4.18: Estimated bias, SD, and RMSE when estimating the parameters of a NB-
INAR(4) process with α1 = 0.1, α2 = 0.2, α3 = 0.3, α4 = 0.1, and µϵ = 1. The number of
replicates is 10,000. The maximum standard error for each quantity is 0.002 for estimating
α1, 0.002 for estimating α2, 0.002 for estimating α3, 0.003 for estimating α4 and 0.014 for
estimating µϵ, and 0.681 for estimating r.

n = 100
Method α̂1 α̂2 α̂3 α̂4 µ̂ϵ r̂
CML Bias -0.005 -0.026 -0.007 -0.034 0.230 -0.017

SD 0.084 0.098 0.080 0.096 0.473 1.710
RMSE 0.084 0.101 0.080 0.102 0.526 1.710

CLS Bias -0.009 -0.030 -0.010 -0.038 0.272 -0.142
SD 0.085 0.106 0.083 0.114 0.521 1.964
RMSE 0.085 0.110 0.084 0.120 0.588 1.964

Y-W Bias -0.013 -0.034 -0.022 -0.057 0.401 -0.292
SD 0.102 0.104 0.098 0.098 0.557 0.992
RMSE 0.103 0.109 0.100 0.113 0.687 0.992

Pseudo Bias -0.004 -0.031 -0.008 -0.045 0.280 -0.175
SD 0.091 0.109 0.086 0.109 0.534 1.690
RMSE 0.091 0.113 0.086 0.118 0.603 1.690
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Table 4.19: Estimated bias, SD, and RMSE when estimating the parameters of a Po-INAR(4)
process with α1 = 0.1, α2 = 0.2, α3 = 0.3, α4 = 0.1, and µϵ = 1. The number of replicates is
10,000. The maximum standard error for each quantity is 0.001 for estimating α1, 0.001 for
estimating α2, 0.001 for estimating α3, 0.001 for estimating α4 and 0.004 for estimating µϵ.

n = 500
Method α̂1 α̂2 α̂3 α̂4 µ̂ϵ

CML Bias -0.003 -0.004 -0.003 -0.005 0.047
SD 0.043 0.044 0.043 0.042 0.181
RMSE 0.043 0.044 0.043 0.043 0.187

CLS Bias -0.003 -0.006 -0.004 -0.008 0.066
SD 0.045 0.047 0.044 0.046 0.216
RMSE 0.045 0.048 0.044 0.046 0.225

Y-W Bias -0.003 -0.006 -0.004 -0.011 0.078
SD 0.045 0.045 0.044 0.045 0.205
RMSE 0.045 0.046 0.044 0.046 0.219

Pseudo Bias -0.002 -0.005 -0.003 -0.005 0.042
SD 0.045 0.045 0.045 0.044 0.188
RMSE 0.045 0.046 0.045 0.044 0.192

Whittle Bias 0.000 -0.004 -0.001 -0.009 0.034
SD 0.044 0.045 0.044 0.045 0.188
RMSE 0.044 0.045 0.044 0.046 0.191
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Table 4.20: Estimated bias, SD, and RMSE when estimating the parameters of a Geom-
INAR(4) process with α1 = 0.1, α2 = 0.2, α3 = 0.3, α4 = 0.1, and µϵ = 1. The number of
replicates is 10,000. The maximum standard error for each quantity is 0.001 for estimating
α1, 0.001 for estimating α2, 0.001 for estimating α3, 0.001 for estimating α4 and 0.004 for
estimating µϵ.

n = 500
Method α̂1 α̂2 α̂3 α̂4 µ̂ϵ

CML Bias -0.003 -0.007 -0.002 -0.008 0.066
SD 0.043 0.044 0.042 0.044 0.189
RMSE 0.043 0.045 0.042 0.045 0.200

CLS Bias -0.003 -0.007 -0.003 -0.009 0.067
SD 0.045 0.048 0.045 0.048 0.213
RMSE 0.045 0.049 0.045 0.049 0.223

Y-W Bias -0.001 -0.007 -0.005 -0.014 0.081
SD 0.046 0.047 0.045 0.047 0.207
RMSE 0.046 0.047 0.045 0.049 0.222

Pseudo Bias -0.002 -0.006 -0.004 -0.008 0.054
SD 0.046 0.048 0.046 0.047 0.209
RMSE 0.046 0.048 0.046 0.048 0.216

Whittle Bias 0.001 -0.005 -0.001 -0.010 0.039
SD 0.045 0.048 0.045 0.048 0.236
RMSE 0.045 0.048 0.045 0.049 0.239
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Table 4.21: Estimated bias, SD, and RMSE when estimating the parameters of a NB-
INAR(4) process with α1 = 0.1, α2 = 0.2, α3 = 0.3, α4 = 0.1, and µϵ = 1. The number of
replicates is 10,000. The maximum standard error for each quantity is 0.001 for estimating α1,
0.001 for estimating α2, 0.001 for estimating α3, 0.001 for estimating α4, 0.005 for estimating
µϵ and 0.015 for estimating r.

n = 500
Method α̂1 α̂2 α̂3 α̂4 µ̂ϵ r̂
CML Bias -0.002 -0.004 -0.002 -0.006 0.047 -0.038

SD 0.041 0.042 0.041 0.040 0.181 0.416
RMSE 0.041 0.042 0.041 0.041 0.187 0.416

CLS Bias -0.003 -0.006 -0.003 -0.009 0.066 -0.050
SD 0.044 0.047 0.044 0.047 0.215 0.535
RMSE 0.044 0.047 0.044 0.048 0.225 0.535

Y-W Bias -0.002 -0.006 -0.005 -0.012 0.079 -0.073
SD 0.045 0.046 0.045 0.046 0.208 0.503
RMSE 0.045 0.046 0.045 0.047 0.222 0.503

Pseudo Bias -0.004 -0.007 -0.003 -0.009 0.071 -0.065
SD 0.049 0.050 0.049 0.048 0.229 0.501
RMSE 0.049 0.050 0.049 0.049 0.239 0.501
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Table 4.22: Estimated bias, SD, and RMSE when estimating the parameters of a Po-INAR(4)
process with α1 = 0.1, α2 = 0.2, α3 = 0.3 and α4 = 0.1 and µϵ = 10. The number of replicates
is 10,000. The maximum standard error for each quantity is 0.002 for estimating α1, 0.003
for estimating α2, 0.001 for estimating α3, 0.006 for estimating α4, and 0.102 for estimating
µϵ.

n = 500
Method α̂1 α̂2 α̂3 α̂4 µ̂ϵ

CML Bias 0.002 -0.004 -0.001 -0.008 0.287
SD 0.043 0.043 0.042 0.044 1.830
RMSE -0.004 0.043 0.042 0.044 1.853

CLS Bias -0.022 0.006 -0.023 0.082 -1.440
SD 0.062 0.121 0.061 0.217 5.136
RMSE 0.006 0.122 0.066 0.232 5.334

YW Bias -0.001 -0.008 -0.005 -0.010 0.774
SD 0.043 0.043 0.044 0.042 1.963
RMSE -0.008 0.044 0.044 0.044 2.110

Pseduo Bias -0.003 -0.006 -0.003 -0.005 0.526
SD 0.044 0.043 0.043 0.042 1.849
RMSE -0.006 0.044 0.043 0.042 1.923

Whittle Bias 0.002 -0.004 -0.001 -0.008 0.287
SD 0.043 0.043 0.042 0.044 1.830
RMSE -0.004 0.043 0.042 0.044 1.853

Varying the Innovation Mean

We estimate the parameters of Po-INAR(4), NB-INAR(4), and Geom-INAR(4) processes

when

α = (0.1, 0.2, 0.1, 0.3)T with µϵ = 1 and µϵ = 10 when the sample length is n = 500.

We see that for all methods, estimating the thinning probability parameters α tends to be

easier than estimating the innovation mean µϵ and this is especially true as the innovation

mean increases (Tables 4.22, 4.23 and 4.24). Overall the results are consistent with the
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Table 4.23: Estimated bias, SD, and RMSE when estimating the parameters of a Geom-
INAR(4) process with α1 = 0.1, α2 = 0.2, α3 = 0.3 and α4 = 0.1 and µϵ = 10. The number
of replicates is 10,000. The maximum standard error for each quantity is 0.001 for estimating
α1, 0.003 for estimating α2, 0.001 for estimating α3, 0.006 for estimating α4, and 0.102 for
estimating µϵ.

n = 500
Method α̂1 α̂2 α̂3 α̂4 µ̂ϵ

CML Bias -0.002 -0.007 -0.003 -0.009 0.700
SD 0.043 0.043 0.042 0.042 1.928
RMSE 0.043 0.044 0.042 0.043 2.051

CLS Bias -0.022 0.006 -0.023 0.082 -1.440
SD 0.062 0.121 0.061 0.217 5.136
RMSE 0.066 0.122 0.066 0.232 5.334

YW Bias -0.002 -0.006 -0.004 -0.011 0.727
SD 0.044 0.044 0.043 0.043 1.978
RMSE 0.044 0.044 0.043 0.045 2.108

Pseudo Bias -0.002 -0.007 -0.003 -0.010 0.687
SD 0.043 0.044 0.043 0.042 1.944
RMSE 0.043 0.044 0.043 0.043 2.062

Whittle Bias 0.001 -0.004 -0.001 -0.008 0.365
SD 0.044 0.043 0.043 0.044 2.247
RMSE 0.044 0.044 0.043 0.044 2.277
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Table 4.24: Estimated bias, SD, and RMSE when estimating the parameters of a NB-
INAR(4) process with α1 = 0.1, α2 = 0.2, α3 = 0.3 and α4 = 0.1 and µϵ = 10. The
number of replicates is 10,000. The maximum standard error for each quantity is 0.001 for
estimating α1, 0.001 for estimating α2, 0.001 for estimating α3, 0.001 for estimating α4, 0.042
for estimating µϵ and 0.009 for estimation r.

n = 500
Method α̂1 α̂2 α̂3 α̂4 µ̂ϵ r̂
CML Bias 0.001 -0.001 0.000 -0.002 0.067 0.005

SD 0.030 0.030 0.030 0.030 0.944 0.209
RMSE 0.030 0.030 0.030 0.030 0.947 0.209

Y-W Bias -0.001 -0.006 -0.004 -0.011 0.767 -0.054
SD 0.044 0.043 0.043 0.043 2.022 0.390
RMSE 0.044 0.044 0.043 0.044 2.163 0.390

Pseudo Bias -0.003 -0.007 -0.003 -0.008 0.682 -0.040
SD 0.044 0.045 0.045 0.044 2.092 0.396
RMSE 0.045 0.045 0.045 0.045 2.201 0.396

previous section, where the CML method tends to perform the best with respect to bias,

SD, and RMSE.

Note that for the NB-INAR(4) process, the CLS method starts failing in almost 200

cases out of 10,000 when µϵ = 10, and hence the results are not shown. The results are not

comparable to the CML, Yule-Walker or pseudo estimation methods.

4.4 Coverage Simulations

In this section we provide a simple coverage simulation for the GINAR(1) processes

studied in Section 4.1 for varying sample sizes. We calculate confidence intervals for the

parameters in R using the Hessian calculated as part of the optimization used to calculate

each parameter estimate.
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Table 4.25: A comparison of the estimated coverages for a 95% confidence interval for µϵ and
α1 in the Po-INAR(1) model, as n is varied, for select estimation methods. The number of
replicates is 10,000. The maximum standard error for µϵ and α1 is 0.43 and 0.45 respectively.
The bold values indicate coverage probabilities no different than 0.95, on the basis of a
significance test with level 0.05.

n = 500 n = 1, 000

Method µϵ α1 µϵ α1

CML 94.6% 95.0% 94.8% 94.6%
Pseudo 87.7% 93.7% 88.5% 94.2%
Saddlepoint 88.1% 84.5% 77.7% 71.0%
Whittle 75.0% 80.2% 75.8% 79.6%

Table 4.26: A comparison of the estimated coverages for a 95% confidence interval for µϵ and
α1 in the NB-INAR(1) model, as n is varied, for select estimation methods. The number of
replicates is 10,000. The maximum standard error for µϵ and α1 is 0.43 and 0.45 respectively.
The bold values indicate coverage probabilities no different than 0.95, on the basis of a
significance test with level 0.05.

n = 500 n = 1, 000

Method µϵ α1 r µϵ α1 r

CML 94.9% 95.2% 95.4% 95.0% 95.0% 95.1%
Pseudo 94.2% 95.1% 98.5% 95.0% 95.1% 98.5%
Saddlepoint 64.0% 52.2% 15.5% 41.5% 22.1% 1.8%
Whittle 100.0% 79.7% 100.0% 100.0% 78.9% 100.0%

Table 4.27: A comparison of the estimated coverages for a 95% confidence interval for µϵ

and α1 in the Geom-INAR(1) model, as n is varied, for select estimation methods. The
number of replicates is 10,000. The maximum standard error for µϵ and α1 is 0.43 and 0.45
respectively. The bold values indicate coverage probabilities no different than 0.95, on the
basis of a significance test with level 0.05.

n = 500 n = 1, 000

Method µϵ α1 µϵ α1

CML 94.9% 95.4% 94.6% 94.8%
Pseudo 85.9% 85.8% 86.2% 85.8%
Whittle 74.8% 71.5% 75.1% 71.3%
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We use the Hessian since calculating the asymptotic variance for each estimator from

the asymptotic theory provided in Section 3 is not straightforward for larger model orders.

Tables 4.25, 4.26, and 4.27 give the coverage of Po-INAR(1), NB-INAR(1), and Geom-

INAR(1) process parameters for the given estimation methods when n = 500 and n = 1, 000

respectively. First, 95% confidence intervals were built for the parameter estimates, and the

coverage was calculated as the proportion of these confidence intervals that had the true

parameter value. The true values for all simulations are µϵ = 1, α1 = 0.5, and r = 1.

Furthermore, in Tables 4.25, 4.26, and 4.27 we test whether or not the population coverages

are equal to 95% for each method and sample size. In particular, we carry out a two-sided

test for a proportion that each true coverage is equal to 95% or not. For an 0.05 level test,

we fail to reject the test when the observed proportions lie between 94.6% and 95.4%, and

denote such cases in Tables 4.25, 4.26, and 4.27 in bold.

The CML method has the best coverage performance for all parameters for all processes

considered since the coverage probabilities are no different that 95%. In Table 4.25 we see

that the Whittle estimator has poor coverage for both parameters, even though it had good

bias, SD, and RMSE performance in Section 4.1. For the NB-INAR(1) process coverage

probabilities presented in Table 4.26, we see again that only the CML method has appropri-

ate performance with coverage no different than 95%, although pseudo does depict similar

performance for the µϵ and α1 parameters when n = 1, 000.

Similarly, for the Geom-INAR(1) process in Table 4.27 we see that the CML estimation

method has the best performance compared to the other methods, with coverage values no

different than 95%.
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4.5 Conclusions

In this chapter we presented various simulations demonstrating the small sample perfor-

mance of different estimation methods for GINAR(p) processes. We looked at metrics like

bias, SD, RMSE, and coverage probabilities. We studied the performance of these methods

for two different thinning operators and innovation distributions, three model orders, and

varying parameter and sample size values.

The main takeaway from these simulations is that CML performs well over all other

methods, even when changing the model order p, the values of the parameters, thinning

operation, and innovation distribution. Our simulations over different GINAR processes

show that some methods are competitive to conditional maximum likelihood (CML) for

some processes (e.g. psuedo likelihood estimator for Geom-INAR processes), however the

overall best choice is CML, especially for longer sample sizes. CML also tends to do better

compared to other methods for overdispersed processes and when the processes is close to

being nonstationary (i.e., when the sum of the αj dependence parameters is close to one).

Therefore, for applications where we have an overdispersed or highly dependent series we

should be using CML to estimate the parameters. This is further supported by the coverage

simulations in Section 4.4 where the CML method consistently outperformed other methods

for all three processes as it had coverage probabilities no different than 95%. The only other

method with comparable performance was the pseudo likelihood estimation method, but this

was only true for the NB-INAR(1) process with n = 1, 000.

When calculating the transition probabilities the Davies method using Gauss quadrature

yields the same results as the convolution calculation and is computationally more efficient.

Hence, we recommend using the Davies method for CML estimation of GINAR(p) process

parameters. It is important to note that even with this faster implementation, CML can be
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computationally costly as compared to other estimation methods especially when the model

order p is large. In cases where computational complexity is an issue, methods like pseudo

maximum likelihood can be used for certain processes like GINAR(1) processes with binomial

thinning and Poisson innovations, as their performance is comparable to CML. However,

caution should be taken when varying the thinning operator and innovation process. Varying

the type of GINAR process, the Yule-Walker method used extensively in the literature may

not be an ideal choice for estimation of model parameters. Similarly the performance of other

(non-CML) estimators are more mixed. In particular, saddlepoint methods have issues, and

thus are less effective for estimating GINAR process parameters.
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Chapter 5: Time Varying GINAR(p) Processes

5.1 Introduction

The stationarity assumption has been an important part of time series analysis as there

exists a large variety of models and methods for stationary processes, and important math-

ematical theorems like ergodic theorem and various central limit theorems rely on the as-

sumption of stationarity. Up until now in this dissertation we have assumed stationarity of

GINAR(p) processes. Although stationarity offers us convenient and well-defined mathemat-

ical properties, it is not always applicable or possible in the real-world setting. Hence, a lot

of attention has been focused on non-stationary time series. The biggest challenge is deriv-

ing meaningful asymptotic properties when we no longer have the stationarity assumption.

In the continuous time series domain, there exists well defined theory surrounding locally

stationary processes (e.g. Dahlhaus [2012]), but this is not available for count-time series

processes like the GINAR(p) process and the theory does not extend naturally to this class

of processes.

In an attempt to capture non-stationarity in count-time series researchers in the field have

studied variations of GINAR(p) processes. For instance, Kim and Park [2008] introduce

a INAR(p) model with signed binomial thinning to account for non-stationarity in time

series with large dispersion. Their process allows for negative autocorrelations, whereas
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the GINAR(p) process we have defined thus far can only work with non-negative counts.

They show the application and merit of their model to an AIDS disease dataset which

depicts large variability. Nastić et al. [2016] introduce a random environment integer-valued

autoregressive process where the marginal distribution of the parameters can take different

values that correspond to finite possible states of the environment.

Introducing structural breaks in a process is another way to capture non-stationary. For

example, Kashikar et al. [2013] introduce a non-stationary INAR process with structural

breaks to capture situations where the parameters of the process are not constant over time.

They define the process with m break points and a different INAR process is used to define

these m+1 sections; their process is essentially a state-space model. Their methodology for

the selection of the number of breakpoints involves comparing multiple models with different

values of m based on model selection criteria like AIC, BIC, and forecast error metrics. They

apply their new process to a rare disease application of H1N1 cases in India and show that

their non-stationary process outperforms stationary processes.

Researchers like Joe [1996] and Freeland and McCabe [2004a] have briefly discussed how

to allow for time-varying parameters for the GINAR processes with binomial thinning and

Poisson innovations. Brannas [1995] and Enciso-Mora et al. [2009] incorporated explana-

tory variables into the dependence and innovation parameters of the GINAR(1) process

with binomial thinning and Poisson innovations. The majority of the research in this area

has focused on modifying the GINAR(p) process to allow for a time-varying innovation

parameter, for example, Böckenholt [1998] introduces a mixture version of integer-valued

autoregressive Poisson regression models where the rate parameter is expressed as a function

of non-negative covariates. Roy and Karmakar [2021] propose a semiparametric time-varying

autoregressive process and propose a Bayesian framework to study it. They introduce the

77



time-varying Bayesian integer valued generalized autoregressive conditional heteroscedastic

(TVBINGARCH) model, where the mean of the process varies with time. They also consider

a simplified version of this model called the time-varying Bayesian autoregressive model for

counts (TVBARC). They study the spread of COVID-19 in NYC for a specific time period

with the aim to determine which lags are significant so that it can be used to determine the

incubation period for symptoms to show up. Pedeli et al. [2015] use a time-varying innova-

tion mean that to account for the seasonality in meningoccal disease cases in Germany. This

dataset is explored further in Chapter 7.

There has not been much research carried out in allowing for a time-varying dependence

parameter which is what we want to focus our attention on. We introduce a new GINAR(p)

process, called the time-varying GINAR(p) process, for non-stationary count time series.

In particular, we allow both the dependence and parameters characterizing the innovation

process, such as innovation mean and innovation variance, to vary with time. The time-

varying innovation and dependence parameters are parameterized by a transformation of

basis functions. These smooth functions of the process parameters are able to capture

changes in the time-varying parameters. We discuss parameter estimation for this process

using conditional maximum likelihood, pseudo maximum likelihood, and conditional least

squares, and investigate the construction of confidence regions for parameters. We further

present simulations and show the application of our model to a disease dataset and a patient

scores dataset.
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5.2 Defining TV-GINAR(p) Processes

We define the time-varying GINAR(p) (TV-GINAR(p)) process using the thinning op-

erator defined in Definition 2.1 and following the ideas from Dahlhaus [2012] on locally sta-

tionary processes. We define these processes using triangular arrays {(t, T ) : t = 1, 2, . . . , T}

for positive integers T = 1, 2, . . .. Our parameter curves are then modeled in local time

u = t/T , t = 1, 2, . . . , T for a given T . As T increases we are able to learn more about the

parameter curves over [0, 1].

Definition 5.2.1 The TV-GINAR(p) process {Xt,T : t = 1, 2, . . . , T} for a positive integer

T , is the non-negative integer-valued process defined by

Xt,T =

p∑
j=1

αj,t,T ⊙Xt−j,T + ξt,T . (5.1)

Let u = t/T be the rescaled time unit. In the definition above, the dependence parameter

αj,t,T can be represented using the parameter curve {αj(u) : u ∈ [0, 1]}, where j = 1, . . . , p

and
∑p

j=1 αj(u) < 1 for all u ∈ [0, 1]. Also 0 < αj(u) < 1 for all u ∈ [0, 1] and j = 1, 2, . . . , p.

The innovation process {ξt,T} is a set of IID non-negative integer-valued RVs with mean

µξ(u) > 0 and variance σ2
ξ (u) > 0, which again depends on the local time unit u ∈ [0, 1].

Also, the {Yk,t} associated with each thinning operation (see (2.1)) are mutually independent

and independent of {ξt,T}, and {ξt,T} is independent of Xt−j for all t ∈ T and j ≥ 1.

For local stationarity we assume that there exists a positive constant K and dependence

parameter αj(u) such that,

sup
t
|αj,t,T − αj(u)| ≤ K/T, (5.2)

for all T . The functions αj(u) (j = 1, 2, . . . , p), µϵ(u), and σ2
ϵ (u) are assumed to be contin-

uous over u ∈ [0, 1].
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Note that in the above definition, (5.2) gives us a locally stationary type representation

(e.g. Dahlhaus [2012]) for an integer time series. However, rather than using linear filtering

this process is defined through thinning operations.

Each dependence parameter curve {αj(u) : u ∈ [0, 1]} is defined via generalized linear

functions of basis vectors as follows:

αj(u) =
exp

(
vT
j (u)ηj

)
1 +

∑p
k=1 exp (v

T
k (u)ηk)

, u ∈ [0, 1],

where {vj(u)} is a vector of mj smooth basis functions and ηj is a mj dimensional vector of

model coefficients for j = 1, 2, . . . , p. Note that this transformation was chosen to ensure that

the constraints on parameter curves (i.e.
∑p

j=1 αj(u) < 1 for all u ∈ [0, 1] with 0 < αj(u) < 1

for all u), as described in Definition 5.2.1, are satisfied.

Similarly, the innovation mean parameter curves {µξ(u) : u ∈ [0, 1]} and the innovation

variance parameter curve {σ2
ξ (u) : u ∈ [0, 1]} are defined via generalized linear functions of

basis vectors as follows:

µξ(u) = exp
(
vT
p+1(u)ηp+1

)
, u ∈ [0, 1],

and

σ2
ξ (u) = exp

(
vT
p+2(u)ηp+2

)
, u ∈ [0, 1],

where {vp+1(u)} is a vector of mp+1 smooth basis functions and ηp+1 is a mp+1 dimensional

vector of model coefficients. Lastly, {vp+2(u)} is a vector of mp+2 smooth basis functions

and ηp+2 is a mp+2 dimensional vector of model coefficients.

Note that we choose basis functions to model the time-varying parameter curves due to

the flexibility in choice of basis functions, for example b-splines, polynomials, and Fourier
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basis functions. This allows flexibility in modeling a variety of different time-varying pro-

cesses. We mainly focus on b-spline basis functions in this dissertation (e.g. Piegl and Tiller

[1995]).

5.3 Statistical properties of TV-GINAR(p) processes

In this section we present useful statistical properties of both the generalized thinning

operator and the TV-GINAR(p) process.

Lemma 5.3.1 Let {Xt,T : t = 1, 2, . . . , T} for a positive integer T be a TV-GINAR(p)

process of Definition 5.2.1. Then for each t = 1, 2, . . . , T , the conditional mean is

µXt,T |Xt−1,T ,...,Xt−p,T
= E(Xt,T |Xt−1,T , ..., Xt−p,T ) =

p∑
j=1

αj,t,TXt−j + µξ(t/T ),

and the conditional variance is

σ2
Xt,T |Xt−1,T ,...,Xt−p,T

= var(Xt,T |Xt−1,T , ..., Xt−p,T ) =

p∑
j=1

βj,t,T + σ2
ξ (t/T ).

Further, the marginal mean is

E(Xt,T ) =

p∑
j=1

αj,t,TE(Xt−j,T ) + µξ(t/T ),

and the marginal variance is

var(Xt,T ) =

p∑
j=1

α2
j,t,T var(Xt−j,T ) +

p∑
j=1

βj,t,TE(Xt−j,T ) + σ2
ξ (t/T ).

The autocovariance sequence {γX(t, k) : k ∈ Z, t = 1, 2, . . . , T} satisfies the following for all

lags k ̸= 0:

γX(t, k) =

p∑
j=1

αj,t,T γX(t− j, k − j).

Similarly, the autocorrelation sequence satisfies for all lags k ̸= 0:

ρX(t, k) =
γX(t, k)√

var(Xt,T )var(Xt−k,T )
.
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Proof: The conditional expectation and variance property can be derived as follows:

µXt,T |Xt−1,T ,...,Xt−p,T
=

p∑
j=1

E(αj,t,T ⊙Xt−j,T |Xt−j,T ) + E(ξt,T )

=

p∑
j=1

αj,t,TXt−j,T + µξ(t/T ),

with

σ2
Xt,T |Xt−1,T ,...,Xt−p,T

=

p∑
j=1

var(αj,t,T ⊙Xt−j,T |Xt−j,T ) + var(ξt,T )

=

p∑
j=1

βj,t,T + σ2
ξ (t/T ).

The marginal mean and variance is obtained using law of iterated expectations as follows:

E(Xt,T ) =

p∑
j=1

αj,t,TE(Xt−j,T ) + µξ(t/T ), and

var(Xt,T ) =

p∑
j=1

α2
j,t,Tvar(Xt−j,T ) +

p∑
j=1

βj,t,TE(Xt−j,T ) + σ2
ξ (t/T ).

Next, we present a proof for the autocorrelation and autocovariance properties of the

process. To derive the autocovariance structure we present the TV-GINAR(p) model in

matrix form. Let X t,T = (Xt,T , Xt−1,T , ..., Xt−p+1,T )
T , and let At,T and ξt,T be defined as

At,T =


α1,t,T α2,t,T . . . αp−1,t,T αp,t,T

1 0 . . . 0 0
...

...
...

...
0 0 . . . 1 0

 ξt,T =


ξt
0
...
0

 .

Then the TV-GINAR(p) process can be expressed as

X t,T = At,T ⊙X t−1,T + ξt,T .

We define the multivariate autocovariance sequence {Γ(k, t) : k ∈ Z, t = 1, 2, . . . , T} by

Γ(k, t) = E
[
(X t,T − E(X t,T ))(X t−k,T − E(X t−k,T ))

T
]
, k ∈ Z.
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Then

Γ(k, t) = E(X t,TX
T
t−k,T )− E(X t,T )E(X t−k,T )

T

= E((At,T ⊙X t−1,T + ξt,T )X
T
t−k,T )− E(X t,T )E(X t−k,T )

T

= At,TE(X t−1,TX
T
t−k,T ) + E(ξt,T )E(X t−k,T )

T − E(X t,T )E(X t−k,T )
T

= At,TE(X t−1,TX
T
t−k,T )− {E(X t,T )− E(ξt,T )}E(X t−k,T )

T

= At,T{E(X t−1,TX
T
t−k,T )− E(X t−1,T )E(X t−k,T )

T}

= At,TΓ(k − 1, t− 1),

where we are using the property that E(X t,T ) = At,TE(X t−1,T )+E(ξt,T ). Then we can get

the univariate autocovariance at lag k and time t as

γX(t, k) =

p∑
j=1

αj,t,T γ(t− j, k − j),

and consequently the autocorrelation at lag k and time t is

ρX(t, k) =
γ(t, k)√

var(Xt,T )var(Xt−k,T )
.

As an example, the ACVF for the TV-GINAR(1) process with binomial thinning and

Poisson innovations can be obtained recursively as follows.

γ(t, k) = α1,t,T γX(t− 1, k − 1)

= α1,t,T (α1,t−1,T γX(t− 2, k − 2))

=

[
k−1∏
l=0

α1,t−l,T

]
var(Xt−k,T ),

which is the same expression obtained by Brannas [1995]. Note that the last equality is

obtained recursively. □

The time-varying transition probabilities follows similarly as that of the GINAR(p) pro-

cess and is shown in Theorem 5.3.2.
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Theorem 5.3.2 Let {Xt,T : t = 1, 2, . . . , T} for a positive integer T be a TV-GINAR(p)

process of Definition 5.2.1. The transition probabilities of this process are given by

P (Xt,T = x|Xt−1,T = xt−1, ..., Xt−p,T = xt−p)

=
x∑

i1=0

P (α1,t,T ⊙ xt−1 = i1|Xt−1,T = xt−1)×

x−i1∑
i2=0

P (α2,t,T ⊙ xt−2 = i2|Xt−2,T = xt−2)× . . .×

x−(i1+i2+...+ip−1)∑
ip=0

P (αp,t,T ⊙ xt−p = ip|Xt−p,T = xt−p)×

P (ξt,T = x− (i1 + i2 + ...+ ip)).

We also have a Fourier domain representation, similar to the GINAR(p) case, which leads

to a more computationally efficient algorithm as shown in Proposition 5.3.3.

Proposition 5.3.3 Let {Xt,T : t = 1, 2, . . . , T} for a positive integer T be a TV-GINAR(p)

process of Definition 5.2.1. Suppose that ϕXt,T |Xt−1,T ,...,Xt−p,T
(w) is the characteristic function

for the transition probability defined in Theorem 5.3.2. Then the cumulative distribution

function is

at(x) = P (Xt,T < x|Xt−1,T , . . . , Xt−p,T )

=
1

2
− 1

2π

∫ π

−π

Re

(
ϕXt,T |Xt−1,T ,...,Xt−p,T

(w)e−iux

1− e−iw

)
dw,

where

ϕXt,T |Xt−1,T ,...,Xt−p,T
(w) = ϕξt,T (w)

p∏
j=1

[
ϕ
Y

(j)
t,T

(w)
]Xt−j,T

.

Then the transition probabilities can be calculated as

bt(x) = P (Xt,T = x|Xt−1,T , . . . , Xt−p,T ) =

{
at(1), x = 0;
at(x+ 1)− at(x), x = 1, 2, . . . ,
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where

bt(x) =
1

π

∫ π

0

Re
(
ϕXt,T |Xt−1,T ,...,Xt−p,T

(u) e−iux
)
du, x = 1, 2, . . . .

In this chapter we defined a new class of processes for nonstationary count time series

called TV-GINAR(p) processes and presented their statistical properties. We next discussed

two methods of calculating the transition probabilities for these processes, which were an

extension of the methods presented in Chapter 2 for stationary GINAR(p) processes. We

also introduced possible basis functions we can use for modeling time-varying parameter

curves in TV-GINAR processes. We will show further examples of defining time-varying

parameter curves in later chapters.
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Chapter 6: Estimation for TV-INAR(p) Processes

In this chapter we present estimation methods for TV-GINAR(p) processes. In particular

we extend the CML, CLS and pseudo likelihood estimation methods from Section 3 to TV-

GINAR(p) processes. We further present the construction of confidence intervals using the

Delta method and discuss model selection. Lastly, we present simulations comparing the

performance of the aforementioned estimation methods for finite samples.

6.1 Estimation Methods

In this section we discuss parameter estimation for the TV-GINAR(p) model using con-

ditional maximum likelihood (CML), conditional least squares (CLS) and pseudo maxi-

mum likelihood estimator. We are interested in estimation of the parameter vector η =

(η1,η2, . . . ,ηp+2)
T . Let Θ ⊆ Rp+2 be the resulting parameter space for η, which we assume

to be compact. We further assume that our TV-GINAR(p) process is identifiable; we can

tell apart different values of the parameter vector on the basis of the transition probabilities.

6.1.1 Conditional Maximum Likelihood (CML)

Conditioning on the first p observations, CML calculates the conditional log likelihood

using

ℓ(η) =
T∑

t=p+1

logP (Xt,T = xt,T |Xt−1,T , ..., Xt−p,T ), (6.1)
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where the transition probabilities are defined in Theorem 5.3.2. Then CML-based parameter

estimates of η can then be computed as

η̂CML = argmax
η∈Θ

ℓ(η). (6.2)

Numerical optimization techniques are typically used to maximize (6.2), and the form of

the transition probabilities will depend on the thinning operator and innovation distribution.

The complexity of the optimization will depend on p, like the stationary GINAR(p) process

case, but also the complexity of the basis functions used to model the dependence and

innovation parameters.

6.1.2 Conditional Least Squares (CLS)

The CLS method for estimation of parameters of TV-GINAR(p) processes is a natural

extension of the CLS method for GINAR(p) processes. We first define the modified parameter

space which leaves out the innovation variance parameter vector ηp+2 from η. Let η̃ =

(η1,η2, . . . ,ηp,ηp+1)
T . Define

UT (η̃) =
T∑

t=p+1

{Xt,T − µXt,T |Xt−1,T ,...,Xt−p,T
}2, (6.3)

where µXt,T |Xt−1,T ,...,Xt−p,T
) is defined in Lemma 5.3.1. Then the CLS estimator, ̂̃ηCLS, satisfies

̂̃ηCLS = argmin
η̃∈Θ

UT (η̃). (6.4)

Similar to the stationary GINAR(p) process case we can estimate the innovation variance

parameter vector, ηp+2, using a two-step CLS method – we minimize

ST (η̃) =
T∑

t=p+1

[
{Xt,T − µXt,T |Xt−1,T ,...,Xt−p,T

}2 − σ2
Xt,T |Xt−1,T ,...,Xt−p,T

}
]2

,

with respect to ηp+2, while replacing {αj(u) : u ∈ [0, 1], j = 1, 2, . . . , p} and {µξ(u) : u ∈

[0, 1]} with the CLS estimates obtained from (6.4). The equation for σ2
Xt,T |Xt−1,T ,...,Xt−p,T

is

also given in Lemma 5.3.1.
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6.1.3 Pseudo Maximum Likelihood

For the pseudo maximum likelihood method we approximate the transition probability

using a normal distribution with mean and variance equal to the conditional mean and

variance presented in Lemma 5.3.1. Let

ℓP (η) = −1

2

T∑
t=p+1

log
(
2πσ2

Xt,T |Xt−1,T ,...,Xt−p,T
(η)
)
+

T∑
t=p+1

(
xt,T − µXt,T |Xt−1,T ,...,Xt−p,T

(η)
)2

2σ2
Xt,T |Xt−1,T ,...,Xt−p,T

(η)
.

Then the pseudo maximum likelihood estimator η̂P is

η̂P = argmax
η∈Θ

ℓP (η).

6.2 Confidence Intervals

In this section, we derive confidence intervals for the TV-GINAR(p) process parameters.

We make normality assumptions about the estimated process vectors and then use the Delta

method to obtain the form of the pointwise confidence intervals. We assume the following

asymptotic distribution for η̂:

√
T (η̂ − η)

d−→ Nm (0, V (η)) (6.5)

as T → ∞ where V (η) = [Vjk(η) : j, k = 1, 2, . . . , p+ 2] and m =
∑p+2

j=1 mj (mj was defined

in Section 5.2). Note that Vjk(η) are block covariance matrices. In practice, we estimate

Vjk(η) using the Hessian, calculated numerically from the optimization algorithm that gen-

erates the estimator.

We first define the following notation:

vT
j (u) =


vT
j,1(u)

vT
j,2(u)
...

vT
j,T (u)


T×mj

and ηj =


ηj,1
ηj,2
...

ηj,mj


mj×1

,
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where j = 1, 2, . . . , p+2 and u ∈ [0, 1]. Hence, vT
j (u) represents the j

th matrix of mj smooth

basis functions, ηj is the corresponding mj dimensional vector of coefficients, and vT
j,t is

the tth row of vT
j (u) for t = 1, 2, . . . , T . We represent the elements of this row vector as

vT
j,t = (vj,t,1, vj,t,2, . . . , vj,t,mj

).

Using the above notation, we define the following:

hq,t(η;u) =
exp

(
vT
q,t(u)ηq

)
1 +

∑p
k=1 exp

(
vT
k,t(u)ηk

) , u ∈ [0, 1], (6.6)

where t = 1, 2, . . . , T and q = 1, 2, . . . , p. This represents the tth element of the autocorre-

lation parameter curve {αq(u) : u ∈ [0, 1]}. We now derive the asymptotic distribution of

(6.6).

Assume that (6.5) is true. Then by the Delta method we have the following:

√
T (hq,t(η̂;u)− hq,t(η;u))

d−→ N
(
0, τ 2q,t(u)

)
, u ∈ [0, 1],

as T → ∞ where τ 2q,t(u) = Sq,tV (η)ST
q,t. We next derive the components of the asymptotic

variance τ 2q,t(u).

First let dq,t(u) = exp(vT
q,t(u)ηq). Let r = 1, 2, . . . , p + 2, and s = 1, 2, . . . ,mr, and note

that Sq,t is a 1×m vector whose elements can be obtained as follows:

∂hq,t(η, u)

∂ηrs
=

∂hq,t(η, u)

∂dr,t(u)
× ∂dr,t(u)

∂ηr,s
. (6.7)

The components of (6.7) are derived as follows:

∂hq,t(η, u)

∂dr,t(u)
=



1 +
∑p

k=1 dk,t(u)− dq,t(u)

(1 +
∑p

k=1 dk,t(u))
2 , if r = q;

−dq,t(u)

(1 +
∑p

k=1 dk,t(u))
2 , if r ̸= q and r ≤ p;

0, if r > p.
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and

∂dr,t(u)

∂ηrs
=

∂ exp (
∑mr

w=1 vr,t,wηr,w)

∂ηrs
= vr,t,s dr,t(u).

Next, we show the asymptotic distribution for the innovation mean and variance. First,

define the following:

wa,t(ηa, u) = exp
(
vT
a,t(u)ηa

)
,

where a = p + 1, p + 2. Then again assuming that (6.5) is true, by the Delta method, as

T → ∞,

√
T (wa,t(η̂a, u)− wa,t(ηa, u))

d−→ N(0, ζ2a,t(u)), u ∈ [0, 1],

where ζ2a,t(u) = Rq,tV (η)RT
q,t. Here Rq,t is a 1×m vector with elements:

∂wa,t(ηa, u)

∂ηrs
=



vp+1,t,s wp+1,t(ηp+1, u), if r = p+ 1;

vp+2,t,s wp+2,t(ηp+2, u), if r = p+ 2;

0, otherwise.

We can utilize the covariance matrices derived in this section to construct pointwise

confidence intervals for the parameters of the TV-GINAR(p) process, as we will demonstrate

in the applications presented in Chapter 7.

As an example, consider a TV-GINAR(1) process with binomial thinning and Poisson

innovations. Assume that the innovation mean is constant and the dependence parameter

curve is defined as follows:

α1(u) =
exp(η1,1 + η1,1u)

1 + exp(η1,0 + η1,1u)
, u ∈ [0, 1].
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To express this dependence curve in terms of the notation of (6.6) we define the following

components:

vT
1 (u) =


vT
1,1(u)

vT
1,2(u)
...

vT
1,T (u)


T×2

and η1 =

[
η1,1
η1,2

]
2×1

.

Note that vT
1,t = (1, t/T ), for t = 1, 2, . . . , T . Then

h1,t(η, u) =
exp(vT

1 (u)η1)

1 + exp(vT
1 (u)η1)

, u ∈ [0, 1].

Also, since the innovation mean is constant we express it as follows:

vT
2 (u) =


vT
2,1(u)

vT
2,2(u)
...

vT
2,T (u)


T×1

and η2 =
[
η2,1
]
1×1

,

where vT
2,t = 1, for t = 1, 2, . . . , T . Then the full parameter vector is η =

(
ηT
1 ,η

T
2

)
=

(η1,1, η1,2, η2,1)
T .

Consider fixed t, we can build an approximate (1 − ν)100% confidence interval for

h1,1(η, u) as follows:

h1,1(η̂, u)± z1−ν/2 τ1,1(u), (6.8)

where u = t/T . To calculate τ1,1(u) we use (6.7). First note that for this example r = 1, 2,

with m1 = 2 and m2 = 1. Then

∂h1,1(η, u)

∂η1,1
=

exp(vT
1,1(u)η1)(

1 + exp(vT
1,1(u)η1)

)2 ,
∂h1,1(η, u)

∂η1,2
=

exp(vT
1,1(u)η1)

T
(
1 + exp(vT

1,1(u)η1)
)2 ,
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and

∂h1,1(η, u)

∂η2,1
= 0.

Thus S1,1 =

(
∂h1,1(η, u)

∂η1,1
,
∂h1,1(η, u)

∂η1,2
,
∂h1,1(η, u)

∂η2,1

)
and V (η) is obtained using the estimated

Hessian. Hence, we have all the components to calculate τ 21,1(u) and consequently evaluate

(6.8).

6.3 Model Selection

In this section, we discuss model selection for TV-GINAR(p) processes. In particular,

we discuss how to determine if a process is time-varying or not. We can do this via the

model selection techniques already discussed in Section 3.2 using the AIC. In the case of a

stationary process, we can estimate the process parameters using CML and then calculate

the AIC based on the conditional likelihood from Section 2.5. For the non-stationary TV-

GINAR(p) process we can use the CML method described in Chapter 6 and calculate the

AIC. By comparing the AIC values from these two CML methods we can determine which

process is a better fit. We investigate the performance of these methods in the simulations

presented in Section 6.4.

As an example, consider the following TV-GINAR(1) process with binomial thinning

and Poisson innovations. We let the innovation mean parameter be constant in time and

characterize the time-varying dependence parameter as follows:

α1(u) =
exp(η1,0 + η1,1u)

1 + exp(η1,0 + η1,1u)
, u ∈ [0, 1],

where η1,0 and η1,1 are constant and do not vary with time. Note that the stationary

GINAR(p) process is a special case of this process when η1,1 = 0. Then the AIC for the two
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models is calculated as follows:

AICTV−GINAR(1) = 2kTV − 2ℓ(η̂CML), and

AICGINAR(1) = 2kG − 2ℓ(θ̂CML),

where kTV and kG are the number of parameters in the TV-GINAR(1) and GINAR(1) process

respectively. For this example, kTV = 3 and kG = 2. Also, η̂CML and θ̂CML are the CML

estimates described in Chapter 6 and Chapter 3 respectively. We can then decide which

model is appropriate, i.e. stationary or non-stationary, based on which one has a lower AIC

value.

6.4 Simulation Studies for TV-GINAR(p) Processes

In this section, we compare the performance of the CML, CLS, and pseudo likelihood

estimation methods for finite samples for the TV-GINAR(p) process with binomial thinning

and Poisson innovations. We consider TV-GINAR(1) and TV-GINAR(2) processes.

In all simulations, we estimate each quantity of interest (the bias, standard deviation

(SD), root mean squared error (RMSE), or coverage) using 10,000 replicates, and estimate

standard errors for each quantity using 10,000 bootstrap samples.

6.4.1 Estimating TV-GINAR(1) process parameters

We start by considering the estimation of a TV-GINAR(1) process. In particular, we

consider two cases. In the first case, we allow for time-varying dependence parameters while

the innovation sequence parameters are held constant over time. In the second case we allow

both the dependence parameter and innovation sequence parameters to vary with time. The
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Figure 6.1: (a) Marginal mean as a function of time for the 10,000 realizations in gray and
the smoothed result over time, using loess smoothing, shown in black. (b) Marginal variance
as a function of time for the 10,000 realizations in gray and the smoothed result over time
shown in black.

time-varying dependence parameter, {α1(u) : u ∈ [0, 1]}, curve is defined as follows:

α1(u) =
exp(η1,0 + η1,1u)

1 + exp(η1,0 + η1,1u)
(6.9)

where η1,0 = 0.1, η1,1 = 0.8 and u ∈ [0, 1].

The time-varying innovation mean parameter curve, {µξ(u) : u ∈ [0, 1]}, is defined as

follows:

µξ(u) = exp(η2,0 + η2,1u), (6.10)

where η2,0 = 0, η2,1 = 0.5 and u ∈ [0, 1]. In the case that the innovation mean is not

time-varying we set µξ(u) = 1 for all u.

Note that in the case while the innovation mean and variance parameter are constant

over time, the marginal mean and variance of the process are not constant over time. To see

this, consider 10,000 realizations of this TV-GINAR(1). We calculate the mean and variance

of each of the 10,000 realizations for each time point t, where t = 1, 2, . . . , 1000. Figure 6.1

shows the marginal mean and variance with respect to time, and we can clearly see that
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Figure 6.2: (a) Parametrization of {α1(u) : u ∈ [0, 1]} for TV-GINAR(1) process simulation.
(b) Parametrization of {µξ(u) : u ∈ [0, 1]} for TV-GINAR(1) process simulation.

neither is constant over time. Note that the marginal mean and variance derived in Section

5.3.1 are not constant over time either.

For a process of length 500, the time-varying parameter curves are depicted in Figure 6.2.

This representation allows for a series with increasing dependence and increasing innovation

mean parameters over time.

Table 6.1 shows the simulation results for the estimation of parameters in the first case

(constant innovation parameters over time and time-varying dependence parameter). We see

that the SD and RMSE for estimating the constant over time innovation mean parameter,

µξ, is smaller compared to estimating η1,0 and η1,1. When the series length is T = 500,

the RMSE of both CLS and pseudo estimation methods are much larger than the CML

method for all parameters. When T = 1,000, the CML method still has the lowest bias,

SD, and RMSE, with pseudo likelihood method being comparable to the CML method. In

comparison to the T = 500 simulation, the T =1,000 simulation results have biases closer to

zero, as well as smaller SD and RMSE. This is to be expected as the sample size increases.

Table 6.2 shows the simulation results for the estimation of parameters in the second case

(time-varying innovation and dependence parameters). The parameters associated with the
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Table 6.1: Estimated bias, SD, and RMSE when estimating the parameters of a TV-
PoINAR(1) process with η1,0 = 0.1, η1,1 = 0.8 and µξ = 1. The number of replicates is
10,000. The maximum standard error for each quantity is 0.002 for estimating µξ, 0.005 for
estimating η1,0, and 0.006 for estimating η1,1.

T = 500 T = 1,000
Method µ̂ξ η̂1,0 η̂1,1 µ̂ξ η̂1,0 η̂1,1
CML Bias -0.004 -0.006 0.002 -0.003 -0.001 -0.001

SD 0.073 0.193 0.284 0.052 0.137 0.202
RMSE 0.073 0.193 0.284 0.052 0.137 0.202

CLS Bias 0.019 -0.040 -0.001 0.009 -0.021 0.003
SD 0.101 0.238 0.316 0.072 0.169 0.221
RMSE 0.103 0.241 0.316 0.073 0.171 0.221

Pseudo Bias 0.001 -0.017 0.006 0.000 -0.009 0.002
SD 0.078 0.207 0.303 0.055 0.142 0.208
RMSE 0.078 0.207 0.303 0.055 0.142 0.208

Table 6.2: Estimated bias, SD, and RMSE when estimating the parameters of a TV-
PoINAR(1) process with η1,0 = 0.1, η1,1 = 0.8, η2,0 = 0 and η2,1 = 0.5. The number of
replicates is 10,000. The maximum standard error for each quantity is 0.004 for estimating
η̂2,0, 0.007 for estimating η̂2,1, 0.006 for estimating η1,0 and 0.011 for estimating η1,1.

T = 500 T = 1,000
Method η̂2,0 η̂2,1 η̂1,0 η̂1,1 η̂2,0 η̂2,1 η̂1,0 η̂1,1
CML Bias -0.017 0.025 0.009 -0.026 -0.010 0.015 0.005 -0.012

SD 0.141 0.141 0.228 0.372 0.101 0.101 0.163 0.268
RMSE 0.142 0.142 0.229 0.373 0.101 0.101 0.164 0.268

CLS Bias -0.004 0.051 -0.014 -0.066 -0.001 0.021 -0.008 -0.027
SD 0.203 0.203 0.334 0.571 0.140 0.140 0.232 0.399
RMSE 0.203 0.203 0.334 0.575 0.140 0.140 0.232 0.400

Pseudo Bias -0.005 0.006 -0.010 0.003 -0.001 0.002 -0.006 0.001
SD 0.151 0.151 0.248 0.397 0.108 0.108 0.174 0.279
RMSE 0.151 0.151 0.248 0.397 0.108 0.108 0.174 0.280

96



innovation mean parameter curve, η2,0 and η2,1, have larger bias, SD, and RMSE as compared

to the constant in time innovation mean simulation (Table 6.1) for all estimation methods.

The RMSE for the dependence parameter curve parameters is also larger compared to those

in Table 6.1. Overall, the CML method has the lowest bias, SD, and RMSE for both values

of T considered. Again for larger sample length of T = 1, 000 we see that the bias is closer

to zero, and the SD and RMSE are smaller, as compared to a sample length of T = 500. In

terms of time complexity, the CML method performs well too. For the simulation in Table 6.2

(T = 500), 100 simulations using the CML method take approximately 0.03 seconds, whereas

CLS and pseudo likelihood estimators take an average of 1.35 seconds. Note that the CML

method estimation code was run in C++ which explains the faster performance compared

to CLS and pseudo likelihood estimation methods.

Lastly, we consider model selection for this TV-GINAR(1) process using the technique

described in Section 6.3. The true process is a TV-GINAR(1) process of length T = 1, 000

defined with binomial thinning and Poisson innovations. Our goal is to determine if we can

correctly identify if the process is time-varying or not. For this, we compare the AIC calcu-

lated using the true TV-GINAR(1) conditional maximum likelihood and the AIC calculated

assuming the process is GINAR(1). The true process is the TV-GINAR(1) process described

in this section with the dependence and innovation parameter curves as described in (6.9)

and (6.10). We carried out 10, 000 simulations comparing the two AICs, and then calculated

the win rates. The win rate is defined as the percentage of times the TV-GINAR(1) model

AIC value is less than the GINAR(1) AIC value. The true TV-GINAR(1) AIC had a win

rate of 97.8% in the first case and a win rate of 100% in the second case. This shows that

we are able to correctly identify a time-varying process using this method.
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6.4.2 Estimating TV-GINAR(2) process parameters

In this section, we consider the estimation of the parameter curves of TV-GINAR(2)

processes. Like the TV-GINAR(1) simulations, we consider two cases. In the first case, we

allow for time-varying dependence parameters while the innovation sequence parameters are

held constant over time. In the second case, we allow both the dependence parameter and

innovation sequence parameters to vary with time. The time-varying dependence parameter

curves, {α1(u) : u ∈ [0, 1]} and {α2(u) : u ∈ [0, 1]}, used for the simulations are defined as

follows:

α1(u) =
exp(η1,0 + η1,1u)

1 +
∑2

k=1 exp(ηk,0 + ηk,1u)
(6.11)

and

α2(u) =
exp(η2,0 + η2,1u)

1 +
∑2

k=1 exp(ηk,0 + ηk,1u)
, u ∈ [0, 1], (6.12)

where η1,0 = −0.1, η1,1 = −0.8, η2,0 = 0.1, and η2,1 = 0.6. The time-varying innovation mean

parameter curve, {µξ(u) : u ∈ [0, 1]}, is defined as follows:

µξ(u) = exp(η3,0 + η3,1u), u ∈ [0, 1], (6.13)

where η3,0 = 0 and η3,1 = 0.5. In the simulations where the innovation mean is constant over

time we set µξ(u) = 1 = µξ, say, for all u ∈ [0, 1]. Similar to the TV-GINAR(1) simulations,

even when the innovation sequence parameters are constant over time, the marginal mean

and variance are not.

For a process of length T = 500, the time-varying dependence parameter curves and their

spectral density for certain time points are depicted in Figures 6.3 and 6.4 respectively. With

this choice of dependence parameters, we have a representation where {α1(u) : u ∈ [0, 1]} is

gradually decreasing and {α2(u) : u ∈ [0, 1]} is increasing over time. Also, Figure 6.4 shows
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Figure 6.3: Parametrization of {α1(u) : u ∈ [0, 1]} and {α2(u) : u ∈ [0, 1]} for TV-GINAR(2)
process simulation.

the spectral density for certain time points, showing how the spectral properties change over

time. At larger time points we see more prominent peaks developing.

Tables 6.3 and 6.4 show the simulation results for the estimation of model parameters

when the series length is 500 and 1,000 respectively and the innovation mean is constant

over time. We see that when T = 500, all estimation methods have the largest absolute bias,

SD, and RMSE when estimating the parameters as compared to T = 1, 000. In this case,

CLS and pseudo have much larger RMSE than CML. The performance for all estimation

methods improves with the longer T = 1, 000 as compared to T = 500, as seen in Table 6.6,

which is expected as sample size increases. Similar to the TV-GINAR(1) simulation results,

in terms of bias closest to zero, smaller SD, and smaller RMSE, CML outperforms both CLS

and pseudo estimation methods.

Tables 6.5 and 6.6 show the simulation results for the estimation of model parameters

when the series length is 500 and 1,000 respectively, and both the innovation and dependence

parameters are time-varying. We see that the SD and RMSE for all estimation methods

has increased compared to the constant innovation mean simulations. Overall, compared

to the CLS and pseudo likelihood estimation methods, CML has the lowest absolute bias,
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Table 6.3: Estimated bias, SD, and RMSE when estimating the parameters of a TV-
PoINAR(2) process with η1,0 = −0.1, η1,1 = −0.8, η2,0 = 0.1, η2,1 = 0.6 and µξ = 1.
The number of replicates is 10,000. The maximum standard error for each quantity is 0.003
for estimating µξ, 0.152 for estimating η1,0 and 1.613 for estimating η1,1, 0.006 for estimating
η2,0 and 0.009 for estimating η2,1.

T = 500
Method µ̂ξ η̂1,0 η̂1,1 η̂2,0 η̂2,1
CML Bias 0.021 -0.040 -0.126 -0.055 0.022

SD 0.120 0.437 0.883 0.295 0.404
RMSE 0.122 0.439 0.893 0.300 0.404

CLS Bias 0.050 -0.093 -0.144 -0.110 0.028
SD 0.143 0.449 2.678 0.334 0.437
RMSE 0.152 0.458 2.678 0.352 0.438

Pseudo Bias 0.018 -0.058 -0.103 -0.059 0.021
SD 0.124 0.560 1.134 0.304 0.419
RMSE 0.126 0.563 1.139 0.309 0.420

Table 6.4: Estimated bias, SD, and RMSE when estimating the parameters of a TV-
PoINAR(2) process with η1,0 = −0.1, η1,1 = −0.8, η2,0 = 0.1, η2,1 = 0.6 and µξ = 1.
The number of replicates is 10,000. The maximum standard error for each quantity is 0.002
for estimating µξ, 0.006 for estimating η1,0 and 0.011 for estimating η1,1, 0.005 for estimating
η2,0 and 0.005 for estimating η2,1.

T = 1,000
Method µ̂ξ η̂1,0 η̂1,1 η̂2,0 η̂2,1
CML Bias 0.010 -0.024 -0.041 -0.026 0.009

SD 0.085 0.284 0.526 0.200 0.276
RMSE 0.086 0.285 0.528 0.201 0.276

CLS Bias 0.025 -0.052 -0.031 -0.050 0.009
SD 0.101 0.308 0.576 0.227 0.298
RMSE 0.104 0.312 0.576 0.233 0.298

Pseudo Bias 0.009 -0.029 -0.037 -0.032 0.016
SD 0.088 0.297 0.554 0.210 0.286
RMSE 0.089 0.299 0.556 0.212 0.286
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Table 6.5: Estimated bias, SD, and RMSE when estimating the parameters of a TV-
PoINAR(2) process with η1,0 = −0.1, η1,1 = −0.8, η2,0 = 0.1, η2,1 = 0.6, η3,0 = 0 and
η3,1 = 0.5. The number of replicates is 10,000. The maximum standard error for each quan-
tity is 0.006 for estimating η3,0, 0.010 for estimating η3,1, 0.082 for estimating η1,0 and 1.615
for estimating η1,1, 0.008 for estimating η2,0 and 0.015 for estimating η2,1.

T = 500
Method η̂3,0 η̂3,1 η̂1,0 η̂1,1 η̂2,0 η̂2,1
CML Bias 0.023 -0.008 -0.060 -0.115 -0.058 0.027

SD 0.241 0.423 0.596 1.398 0.371 0.602
RMSE 0.242 0.423 0.598 1.402 0.376 0.603

CLS Bias 0.037 0.022 -0.102 -0.165 -0.083 -0.027
SD 0.291 0.513 0.705 3.118 0.450 0.756
RMSE 0.293 0.514 0.712 3.120 0.457 0.756

Pseudo Bias 0.022 -0.007 -0.065 -0.128 -0.060 0.026
SD 0.244 0.431 0.611 1.443 0.381 0.619
RMSE 0.245 0.431 0.614 1.450 0.386 0.620

Table 6.6: Estimated bias, SD, and RMSE when estimating the parameters of a TV-
PoINAR(1) process with η1,0 = 0.1, η1,1 = 0.8 and µξ = 1. The number of replicates is
10,000. The maximum standard error for each quantity is 0.004 for estimating η3,0, 0.007 for
estimating η3,1, 0.013 for estimating η1,0, 0.017 for estimating η1,1, 0.006 for estimating η2,0
and 0.010 for estimating η2,1.

T = 1,000
Method η̂3,0 η̂3,1 η̂1,0 η̂1,1 η̂2,0 η̂2,1
CML Bias 0.010 0.000 -0.023 -0.062 -0.029 0.015

SD 0.163 0.288 0.370 0.776 0.252 0.410
RMSE 0.163 0.288 0.371 0.778 0.253 0.410

CLS Bias 0.018 0.015 -0.044 -0.063 -0.041 -0.015
SD 0.203 0.359 0.421 0.847 0.315 0.525
RMSE 0.204 0.359 0.423 0.849 0.318 0.526

Pseudo Bias 0.007 0.002 -0.021 -0.058 -0.027 0.009
SD 0.172 0.302 0.397 0.818 0.265 0.428
RMSE 0.172 0.302 0.397 0.821 0.266 0.428
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Figure 6.4: Spectral density for specified t values for TV-GINAR(2) process when innovation
parameter is constant.

SD, and RMSE for these simulations as well. We look at the computational time for the

simulation in Table 6.4. For 100 simulations, CML takes approximately 5 seconds, whereas

CLS and pseudo estimators take an average of 3.5 seconds. Note that the CML method was

implemented in C++ and CLS was implemented in R.

Lastly, we consider model selection for the TV-GINAR(2) process using the technique

described in Section 6.3. The true process is a TV-GINAR(2) process with binomial thinning

and Poisson innovations and T = 1, 000. The dependence and innovation parameter curves

are as described in (6.11), (6.12) and (6.13). Similar to the TV-GINAR(1) simulation we

want to be able to determine if we can tell apart whether the model is time-varying or

not. For this, we compare the AIC calculated using the true TV-GINAR(2) likelihood and

the AIC calculated assuming the process is GINAR(2), both using CML. We carried out

10, 000 simulations comparing the two AICs, and then calculated the win rates. The win

rate is defined as the percentage of times the TV-GINAR(2) model AIC value is less than
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the GINAR(2) AIC value. The true TV-GINAR(2) AIC had a win rate of 100% in both

cases: when only the dependence parameter is time-varying and when both the dependence

and innovation parameters are time-varying. Hence, we are correctly able to identify the

time-varying process.

6.4.3 Conclusions

In conclusion, from the simulation presented in Sections 6.4.1 and 6.4.2 we see that

the CML estimation method outperforms the CLS method and pseudo likelihood method

in almost all simulations, especially in cases when all parameters of the process are time-

varying. The merits of CML are even more pronounced when we increase model order from

p = 1 to p = 2, as the difference in absolute bias, SD, and RMSE of the CML estimation

method compared to CLS and pseudo likelihood estimation methods gets larger. Also, it is

harder to estimate the process parameters when we vary both the dependence and innovation

parameters over time as compared to when only the dependence parameter is time-varying.

Lastly, we also discussed model selection techniques for these processes, and showed that

AIC can be used as a tool to determine if a process is time-varying or not since the win rates

for the true time-varying model were approximately 100% for all cases studied.
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Chapter 7: Applications

In this chapter, we use GINAR(p) and TV-GINAR(p) processes to model, infer, and

forecast a disease surveillance series and a time series of perceptual speed scores for a

schizophrenic patient. A count time series model, and in particular GINAR(p) processes,

are appropriate for these applications because they are low-count data and show evidence

of a mean-variance relationship, and thus the Gaussianity assumption is not appropriate.

Furthermore, GINAR models have been considered for applications in the medical sciences

and shown successful performance (e.g. Franke and Seligmann [1993], Cardinal et al. [1999]).

A recent paper by Khan et al. [2022] even applied INAR models to a COVID-19 death series.

We consider various models for each application, with varying orders, innovation distribu-

tions, thinning operators, and model assumptions. We compare these models with each other

based on AIC, root mean squared error, forecast coverage, and goodness of fit and interpret

the time-varying parameter curves for the two applications.

7.1 Disease Surveillance

In this section we consider a disease surveillance series. Modeling disease counts is crucial

in understanding disease dynamics like incubation period, and is important for allowing

timely interventions and resource allocations to curb the spread of a disease [McCleary et al.,

1980]. As such, we use GINAR(p) and TV-GINAR(p) processes to study meningococcal
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Figure 7.1: (a) Time series plot of the weekly meningococcal disease cases; (b) sample ACF
and (c) sample PACF of residuals after removing a yearly sinusoidal seasonality term.

disease cases in Germany, as it is a low-count time series dataset depicting overdispersion.

Figure 7.1 shows a summary of a time series of n = 313 weekly meningococcal disease cases

in Germany, over the period 2001–2006. The data was studied by Pedeli et al. [2015].

Examining the time series plot in Figure 7.1(a) we see a strong yearly seasonal component,

but also evidence of a mean-variance relationship with possible overdispersion over time.

Ignoring possible serial dependence, we remove the seasonal component by fitting a linear

model with a yearly sinusoidal term. Figure 7.1(b) and (c) shows plots of the sample ACF

and sample partial ACF up to lags 25 for the residuals, indicating that there is indeed time

series dependence data after we account for this seasonal term. Using standard diagnostics for
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Table 7.1: A comparison of different model selection and diagnostic criteria for different
GINAR processes fit to the meningococcal disease series. All fitted processes contain a
yearly seasonality component. Values in bold indicate the processes for which the AIC and
RMSE values are the smallest.

GINAR process AIC RMSE Forecast coverage Ljung-Box P-value

Po-INAR(1) 1857.9 4.72 90.0% < 0.0001

NB-INAR(1) 1814.9 4.68 96.5% < 0.0001

Geom-INAR(1) 1825.2 4.65 93.3% 0.003

Po-INAR(2) 1837.7 4.62 90.4% 0.019

NB-INAR(2) 1800.1 4.77 95.5% 0.368

Geom-INAR(2) 1806.9 4.57 93.0% 0.331

Po-INAR(3) 1817.2 4.60 90.6% 0.172

NB-INAR(3) 1788.9 4.58 96.8% 0.370

Geom-INAR(3) 1799.3 4.55 92.3% 0.589

Po-INAR(4) 1818.5 4.58 88.3% 0.130

NB-INAR(4) 1782.0 4.56 96.8% 0.226

Geom-INAR(4) 1792.4 4.53 90.0% 0.455

autoregressive moving average processes [e.g. Brockwell and Davis, 2016] an autoregressive

process of order 2 or 3 might be reasonable this time series. However, autoregressive processes

are a poor approximation for count series, and fail to account for possible overdispersion in

the series. Instead, we fit a number of different GINAR(p) processes to the series, accounting

for a time-varying seasonality using the following model for the time-varying log innovation

mean:

log µϵ,t = b0 + b1 sin(2πt/52) + b2 cos(2πt/52).

Table 7.1 shows a summary of different GINAR(p) processes fit to the count series,

where we let p = 1, 2, 3, and 4. We choose p = 4 as the maximum order as that suggests
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Table 7.2: Parameter estimates and 95% confidence intervals for the NB-INAR(4) model
shown in Table 7.1.

Parameter Estimate Confidence Interval

α1 0.19 (0.05, 0.34)

α2 0.15 (-0.01, 0.30)

α3 0.11 (-0.05, 0.26)

α4 0.04 (-0.17, 0.20)

β0 1.88 (1.60, 2.15)

β1 0.34 (0.24, 0.44)

β2 0.24 (0.13, 0.35)

r 0.15 (0.04, 0.26)

a maximum of a four week or approximately one month dependence. As in the simulation

study, we consider Po-INAR processes (binomial thinning with Poisson innovations), NB-

INAR processes (binomial thinning with negative binomial innovations), and Geom-INAR

processes (negative binomial thinning with Poisson innovations). We fit each process using

the CML method, with the Davies method to calculate the transition probabilities. For each

process we tabulate the AIC, root mean squared error, one step ahead forecast coverage

(using the Monte Carlo method described in Section 3.3 and averaged over all time points),

and the P-value of Ljung-Box test to examine whether or not the estimated innovations are

a sample of IID noise (we use 20 lags for each test).

Table 7.1 indicates that the NB-INAR(4) process is preferred with reference to minimizing

the AIC and achieving good forecast coverage, whereas the Geom-INAR(4) process yields a

slightly smaller RMSE value. On balance the NB-INAR(4) process is preferable. All these

processes give a better goodness of fit relative to using processes of order 3, as Pedeli et al.
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[2015] considered – it is worth noting however that they preferred the NB-INAR process

as we do. In Table 7.2 we show the parameter estimates and 95% confidence intervals for

this NB-INAR(4) model. We see that among the dependence parameters only α1 does not

have zero in the confidence interval. The overdispersion parameter, r, does not have zero

in the 95% confidence interval implying that it is significant and that a negative binomial

assumption on the innovation sequence is appropriate. The intervals for α2, α3, and α4

contain zero, implying that the model could possibly be simplified to have a smaller model

order, however in terms of AIC this NB-INAR(4) model is preferred. Considering GINAR(p)

processes with p = 5, 6, 7 and 8 did not greatly improve the fit and seemed to suggest we

were overfitting to the data – the confidence intervals for model parameters were too wide,

as compared to using simpler processes. In summary, we learn that meningococcal disease

cases in Germany from 2001–2006 exhibit strong dependencies over four-weekly (monthly)

and yearly scales, and that there is significant overdispersion that should be accounted for.

We next consider weekly meningococcal disease cases from 2001–2017. We look at a

longer time series to study long-term changes in the weekly counts of this disease. A TV-

GINAR(p) process with both the dependence and innovation mean parameter time-varying

could potentially better capture these long-term changes. Figure 7.2 shows a summary of a

time series of n = 887 weekly meningococcal disease cases in Germany, over the period 2001–

2017. Examining this time series plot in Figure 7.2(a) we see evidence of a mean-variance

relationship and also a decaying number of weekly counts - the peaks keep getting smaller,

with a downward trend overall. Figure 7.2(b) and (c) show the sample ACF and PACF for

25 lags for the residuals after we account for seasonality and trend, indicating that there is

indeed time series dependence. These plots also suggest that an autoregressive process of
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Figure 7.2: (a) Time series plot of the weekly meningococcal disease cases; (b) sample ACF
and (c) sample PACF of residuals after removing a yearly sinusoidal seasonality and trend
term.

order 2 or 3 might be reasonable. Although we are not using autoregressive processes these

plots give us a good sense of potential model orders to consider.

Furthermore, we only consider processes with binomial thinning and negative binomial

innovations since that was preferred for the shorter time series of these meningococcal disease

counts, and because some overdispersion is evident through Figure 7.2(a). For all models

considered we account for the time-varying seasonality and trend using the following model

for the time-varying log innovation mean:

log µξ,t = b0 + b1 sin(2πt/52) + b2 cos(2πt/52) + b3t. (7.1)

For the time-varying dependence parameter, we consider two variations. The first uses a

polynomial basis and the second uses a b-spline basis function. A polynomial basis gives us
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Table 7.3: A comparison of different model selection and diagnostic criteria for different
GINAR processes fit to the meningococcal disease series. All fitted processes contain a
yearly seasonality component and trend. Values in bold indicate the processes for which the
AIC and RMSE values are the smallest.

Process AIC RMSE Forecast coverage Ljung-Box P-value

NB-INAR(2) 4620.9 3.65 96.4% 0.562

TV-NBINAR(2)-Poly 4616.0 3.64 96.4% 0.554

TV-NBINAR(2)-Basis 4617.4 3.62 96.2% 0.550

NB-INAR(3) 4612.6 3.64 96.7% 0.401

TV-NBINAR(3)-Poly 4608.1 3.60 96.2% 0.674

TV-NBINAR(3)-Basis 4612.6 3.61 96.5% 0.660

a flexible model to study non-linear relationships. Higher-degree polynomials could fit more

complex data. While a b-spline basis allows even greater flexibility and can better fit data

with varying local behavior.

The polynomial basis used for the models presented here is of degree two as follows:

αj(u) =
exp(ηj,0 + ηj,1u+ ηj,2u

2)

1 +
∑p

k=1 exp(ηk,0 + ηk,1u+ ηk,2u2)
, u ∈ [0, 1], (7.2)

for j = 1, 2, . . . , p. Note that we tried higher-order polynomials however those models had

larger AIC values and we do not consider them for this application. For the second case of

the time-varying dependence parameter curve, we consider a cubic b-spline design matrix

with three degrees of freedom. The degrees of freedom were again chosen using the AIC.

Table 7.3 shows a summary of the different models fit to this dataset. We consider p = 2

and 3, and consider processes with binomial thinning and negative binomial innovations.

We fit each process using the CML method. For each process we show the AIC, root mean

squared error, one step ahead forecast coverage, and P-value of Ljung-Box test (we use 20
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lags for each test). In Table 7.3, TV-NBINAR(3)-Poly refers to a time-varying NB-INAR(3)

process with the polynomial basis for the dependence parameter curve, and TV-NBINAR(3)-

Basis refers to a time-varying NB-INAR(3) process with the b-spline basis for the dependence

parameter curve. The models NB-INAR(2) and NB-INAR(3) have constant dependence

parameters with a time-varying innovation mean as described in (7.1). The results indicate

that the TV-NBINAR(3)-Poly model is preferred with reference to minimizing the AIC,

lowest RMSE, and achieving good forecast coverage. All processes considered do not have

issues with goodness of fit, as shown by the Ljung-Box test P-values. Note that we did

not show models of order p = 4 because the AIC was almost the same as that of TV-

NBINAR(3)-Poly (less than a point difference), and the estimate for {α4(u) : u ∈ [0, 1]} was

approximately zero for both the time-varying and constant dependence parameter models.

Figure 7.3 shows the dependence parameter curves for the TV-NBINAR(3)-Poly model

along with the 95% confidence intervals calculated using the method described in Section 6.2,

along with the estimates of the NB-INAR(3) model. We see evidence that the {α1(u) : u ∈

[0, 1]} curve may be decreasing with time, and its confidence interval gets narrower for later

time points. The {α2(u) : u ∈ [0, 1]} parameter curve also seems to be decreasing but has

much larger confidence interval bands. This possibly suggests that this parameter may not

benefit from being time-varying, and is constant as the larger confidence interval widths

suggest that there is a lot of uncertainty in this relationship over time. This makes it hard

to conclude whether or not you can tell apart a constant term from a time-varying curve.

Also, the constant α2 estimate from the NB-INAR(2) model is approximately equal to the

{α2(u) : u ∈ [0, 1]} parameter curve for most time points, again suggesting that a constant

model for this parameter could be more appropriate. The {α3(u) : u ∈ [0, 1]} parameter

curve has a lot of uncertainty in the beginning and then is nearly zero, eventually increasing

111



2005 2010 2015

−
0.

2
0.

0
0.

2
0.

4

Year

α̂ 1
(u

)

2005 2010 2015

−
0.

2
0.

0
0.

2
0.

4

Year

α̂ 2
(u

)

2005 2010 2015

−
0.

2
0.

0
0.

2
0.

4

Year

α̂ 3
(u

)

Figure 7.3: The estimated dependence parameter curves, with their 95% confidence inter-
vals, for the TV-NBINAR(3)-Poly model fit to the meningococcal disease cases in Germany
from 2001–2017. The dashed line represents the constant dependence parameter estimates
from the NB-INAR(3) model.

112



0.0 0.1 0.2 0.3 0.4 0.5

11
12

13
14

15
16

17
18

Frequency

S
D

F

t=1
t=200
t=400
t=600
t=880

Figure 7.4: Spectral density for specified t values for TV-NBINAR(3)-Poly process not
accounting for trend and seasonality.

sharply towards the last few weeks. This could suggest that the third-week lag becomes

more prominent after 2015.

Furthermore, Figure 7.4 shows the spectral density of the TV-NBINAR(3)-Poly process

for different time points; we see that spectral density at t = 880 (one of the last time points

in the series) is completely different from all other time points shown. This again suggests a

shift in the dependence structure of the disease towards the last few weeks of the dataset, in

particular, we see quasi-periodicity with period between 2 and 3 weeks. Lastly, Figure 7.5

shows the innovation mean parameter curve for the TV-NBINAR(3)-Poly model which is

trying to capture the seasonality and trend; we also see that the confidence intervals get

narrower as a function of time.

In summary, we learn that the meningococcal disease cases in Germany from 2001–

2015 had some time-varying behavior and had strong dependencies over three-weekly and

yearly scales. In the previous series from 2001–2006, we learned that the data showed
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Figure 7.5: The estimated innovation mean parameter curve, with their 95% confidence
intervals, for the TV-NBINAR(3)-Poly model fit to the meningococcal disease cases in Ger-
many from 2001–2017.

strong dependencies over four-weekly scales. It is interesting that a model of order p = 4 is

not appropriate for the longer time series and perhaps suggesting a change in dependence

structure as the rate of infections decreases.

7.2 Schizophrenic Patient Data

In this section, we consider a time series of perceptual speed scores for a schizophrenic

patient. Modeling such time series can help diagnose the severity of a disorder and under-

stand its progression. It can also help plan treatment and monitor how certain treatments

affect perceptual speed. Also, accounting for a time series dependence parameter is im-

portant because a patient’s score is likely to be correlated to the score from previous days

and the effects of certain medications also manifest over time. For these reasons, and given

that the dataset is low-count, we consider GINAR(p) and TV-GINAR(p) processes to study

the dataset. The time series dataset contains the daily observations (n = 120) of the score
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Figure 7.6: (a) Time series plot of the daily score achieved by the patient with a dashed line
at day 61, when the patient received the treatment; (b) sample ACF and (c) sample PACF
of residuals after removing the polynomial trend.

achieved by a schizophrenic patient on a test of perceptual speed [McCleary et al., 1980]. At

day 61 the patient received a strong tranquilizer which could affect perceptual speed. This

dataset was studied in Neal and Subba Rao [2007] and Kashikar et al. [2013].

Figure 7.6(a) shows a summary of the time series plot of this dataset, where we see a

significant drop in scores around day 61. We fit a linear model to this series with a cubic

b-spline design matrix with three degrees of freedom, ignoring possible serial dependence.

The sample ACF and sample PACF up to 25 lags for the residuals are shown in Figure 7.6(b)

and (c) respectively. These plots show that after accounting for the polynomial trend we

still have time-series dependence, and from the plots an autoregressive process of order 1 or

2 seems appropriate. Also, note that both, Neal and Subba Rao [2007] and Kashikar et al.
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[2013], used GINAR(1) processes. Hence, we consider processes of order p = 1 only in this

section. We also see that there is evidence of a mean-variance relationship – the series has

a mean of 56.3 and a variance of 402.6. This overdispersion suggests that a process with

negative binomial innovations is appropriate, and this is what we use in the models presented

in this section. Also, we use binomial thinning as the thinning operator.

For the time-varying models, we consider processes where both the innovation mean and

dependence parameter are time-varying and when only the innovation mean parameter is

time-varying. For the innovation mean parameter curve, we consider a cubic b-spline design

matrix with three and four degrees of freedom. For the time-varying dependence parameter

curve, we again consider three variations. The first is a polynomial basis of degree two as

shown in (7.2), the second is a cubic b-spline basis with four and six degrees of freedom, and

the third is defined as follows:

α1(u) =
exp(η1,0 + η1,11t≥61)

1 + exp(η1,0 + η1,11t≥61)
, u ∈ [0, 1].

This basis function has an indicator variable based on the day the patient received the

treatment. Note that the choices of degrees of freedom were made based on the model AIC.

We chose four degrees of freedom for the b-spline basis for the dependence parameter curve

because using that we obtained a lower AIC as compared to two, three, and five degrees of

freedom. Similarly, for the polynomial basis, we considered degrees two, three, and four, and

a polynomial basis of degree two had the lowest AIC.

In Table 7.4 we present six models, each fit using the CML method. For each process we

show AIC, root mean squared error, one step ahead forecast, and P-value of Ljung-Box test

(20 lags for each test). For all models shown in Table 7.4 we assume a constant overdispersion

parameter. The NB-INAR(1) model refers to a stationary GINAR(1) process with binomial

thinning and negative binomial innovations. This is the only stationary model considered and
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Table 7.4: A comparison of different model selection and diagnostic criteria for different
GINAR processes fit to the perceptual score series. Values in bold indicate the processes for
which the AIC and RMSE values are the smallest.

Process AIC RMSE Forecast coverage Ljung-Box P-value

NB-INAR(1) 957.0 12.48 94.1% < 0.0001

TV-NBINAR(1)-1 880.8 9.60 95.8% 0.290

TV-NBINAR(1)-2 870.4 9.10 96.6% 0.494

TV-NBINAR(1)-Poly 872.7 9.22 96.6% 0.485

TV-NBINAR(1)-Basis 870.5 9.00 95.8% 0.381

TV-NBINAR(1)-Ind 878.5 9.37 95.8% 0.365

TV-NBINAR(1)-Basis-6 874.6 9.00 95.8% 0.381

from the results in Table 7.4 we see that it has the largest AIC, RMSE, and significant Ljung-

Box p-value and is therefore not a good model for this dataset. The TV-NBINAR(1)-Poly,

TV-NBINAR(1)-Basis, TV-NBINAR(1)-Basis-6, and TV-NBINAR(1)-Ind models assume a

time-varying dependence parameter curve, modeled via a polynomial basis of degree two,

cubic b-spline basis of degree four, cubic b-spline basis of degree six, and a basis with an

indicator variable for the treatment period (day 61 onwards) respectively. These four models

have a time-varying innovation mean parameter modeled via a cubic b-spline basis function

of degree three. As mentioned earlier, choices of degrees of freedom for the b-spline basis and

the degree of the polynomial basis were based on the AIC. Although TV-NBINAR(1)-Basis-6

did not have the lowest AIC, it was included because a cubic b-spline with six degrees of

freedom was able to capture the period when the patient received the treatment. Models

with increasing either of these hyperparameters saw increasing AIC as well. Lastly, the

TV-NBINAR(1)-1 and TV-NBINAR(1)-2 models assume a constant dependence parameter
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and a time-varying innovation mean parameter curve. The TV-NBINAR(1)-1 and TV-

NBINAR(1)-2 processes model the time-varying innovation mean using a cubic b-spline

basis with three and four degrees of freedom respectively (at five degrees of freedom the

AIC started to increase hence we did not consider higher degrees). We see that both TV-

NBINAR(1)-2 and TV-NBINAR(1)-Basis are almost identical in their performance and can

both be considered the best models out of all the ones considered. Both these models have

the lowest AIC and RMSE, preferred goodness of fit measures, and forecast coverages.

Let us consider the dependence parameter curve of the TV-NBINAR(1)-Basis, TV-

NBINAR(1)-Basis-6, TV-NBINAR(1)-Poly, TV-NBINAR(1)-Ind, and TV-NBINAR(1)-2

models shown in Figure 7.7. The TV-NBINAR(1)-Basis and TV-NBINAR(1)-Poly mod-

els both suggest similar behavior of the dependence parameter curve as seen in Figure 7.7(a)

and (c) – dependence on the past lag seems to be nearly 0 with high confidence between

days 40–90, as suggested by the narrow confidence intervals. The dependence seems to be

decreasing until day 40 and then increasing after day 90. Recall that day 61 is when the

patient received the tranquilizer, so having a time-series dependence of approximately 0 for

some days following the treatment and then a sudden spike can give insight into the ef-

fectiveness of the treatment. Also, Figure 7.9 shows the spectral density for the preferred

TV-NBINAR(1)-Basis model at different time points, depicting the change in spectral prop-

erties over time. We see how the spectral density flattens for days t = 30 suggesting a white

noise process. Figure 7.7(g) shows the dependence parameter curve for the TV-NBINAR(1)-

Ind model and we clearly see a drop in the dependence parameter curve after the patient

received the treatment at day 61. Figure 7.8(a) shows the dependence parameter curve for

the TV-NBINAR(1)-Basis-6 model which seems to start gradually increasing around day
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Figure 7.7: (a), (b) The estimated α1(u) and µξ(u) parameter curve for the TV-NBINAR(1)-
Basis model respectively; (c), (d) The estimated α1(u) and µξ(u) parameter curve for the
TV-NBINAR(1)-Poly model respectively ; (e), (f) The estimated α1(u) and µξ(u) parameter
curve for the TV-NBINAR(1)-2 model respectively; (g), (h) The estimated α1(u) and µξ(u)
parameter curve for the TV-NBINAR(1)-Ind model respectively.
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Figure 7.8: (a), (b) The estimated α1(u) and µξ(u) parameter curve for the TV-NBINAR(1)-
Basis-6 model respectively.

80, after the treatment is administered. Figure 7.7(b) and (f) show the time-varying in-

novation mean for the TV-NBINAR(1)-Basis and TV-NBINAR(1)-2 models. We see that

TV-NBINAR(1)-Basis has a much narrower confidence interval suggesting a better fit as

compared to TV-NBINAR(1)-2. For all innovation mean parameter curves shown in Fig-

ure 7.7 we see that the innovation mean goes down after the treatment at day 61 indicating

a drop in scores on average.

In summary, we learn that the perceptual speed scores for a schizophrenic patient had

some time-varying behavior and strong dependencies over one-day periods. We see the merits

of using a time-varying GINAR(p) process as compared to the stationary GINAR(p) process

as all the time-varying models had much better performance in terms of AIC, RMSE, forecast

coverage, and goodness of fit measures. We are also able to use these parameter curves for

further inference. For instance, the dependence parameter curves for this application can be

useful in understanding the effect of the tranquilizer or other dynamics about the patient.
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Figure 7.9: Spectral density for specified days values for TV-NBINAR(1)-Basis process not
accounting for polynomial trend.

7.3 Conclusions

In this chapter we explored two applications of GINAR(p) and TV-GINAR(p) processes

– a disease surveillance series and a series pertaining to a schizophrenic patient’s perceptual

speed scores. Both series had characteristics like low-count values and overdispersion which

violated the Gaussianity assumption. Hence, models like GINAR(p) and TV-GINAR(p) are

more appropriate and also respect the integer nature of the data.

We explored many models for the disease surveillance series, with varying thinning op-

erators and innovation distributions, eventually deciding on a NB-INAR(4) model as the

best one. From this, we also see how GINAR(p) models are flexible enough to allow for

different data structures simply by changing the thinning operator and/or innovation dis-

tribution. Furthermore, we also showed the merits of the new TV-GINAR(p) process for

a longer series of meningococcal disease cases which is better able to capture time-varying

trends in the dataset. We also see that models that have both the dependence and innovation
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mean parameter curve time-varying perform better than models where only the innovation

mean parameter curve is time-varying, suggesting that the model benefits from having a

time-varying dependence structure.

In the second application studying the time series of perceptual speed scores for a

schizophrenic patient we explored a range of stationary GINAR(p) and TV-GINAR(p) mod-

els as well. The patient received a treatment at day 61 leading to changes in the perceptual

speed scores after the treatment. Therefore, a stationary GINAR(p) model does not per-

form well compared to the time-varying models. The time-varying models show how the

dependence structure of the process changes with time which can particularly be useful in

understanding the effects of a treatment.

In conclusion, through these applications, we are able to see the merits of the time-varying

process which gives us much more flexibility in modeling different non-stationary count time

series processes.
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Chapter 8: Discussion and Future Work

8.1 Discussion

In this dissertation, we focused on the modeling of discrete-values time series processes.

In particular, we focused our attention on generalized integer autoregressive processes. While

these processes share many characteristics with non-integer autoregressive processes, such

as being a Markov process of a given order, through the selection of the thinning operator

and innovation, we can accurately model positively valued count series with a variety of

distributional and dispersion properties.

We first introduced these processes in Chapter 2 and provided a literature review of

different examples of these processes, demonstrating their flexibility for a wide range of

applications. We further derived the statistical properties and presented two methods for

calculating the transition probabilities.

In Chapter 3 we presented various estimation methods that have been used for specific

examples of these GINAR(p) processes and extended them to the class of GINAR(p) pro-

cesses; we also proposed a simple estimation method called the pseudo maximum likelihood

which approximates the transition probabilities using a normal distribution. We extended

the asymptotic results for different estimators of the process parameters to apply to GINAR

processes, not just INAR processes defined with binomial thinning, as is commonplace in the
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literature. Note that we do not have asymptotic results for the saddlepoint approximation

technique or the Whittle likelihood estimate which can be a potential area of future research.

We studied the small sample performance of these estimation methods in Chapter 4, our goal

was to understand the performance of these estimation methods under varying conditions. In

the literature, the performance for some of these estimation methods is provided for certain

examples only – for example, processes with binomial thinning and/or Poisson innovation,

low model orders, or not a wide range of parameter values. We presented simulations for dif-

ferent thinning operators and innovation distributions, varying parameter values, and higher

model orders. The main takeaway from these simulations was that CML performs well over

all other methods, even when changing the model order p, the values of the parameters,

thinning operation, and innovation distribution. However, it is the most computationally

intensive. If further speed increases are desired we can refer to the simulations as a guide

to decide which estimation method to use. For instance, a comparable estimation method

to CML is pseudo maximum likelihood when the innovation distribution is Poisson, but not

so much when the innovation distribution is negative binomial. We also presented coverage

simulations to better understand the performance of these estimation methods.

GINAR(p) processes assume stationarity, which is not always possible or applicable in

real-world settings. Hence, we turned our attention to modeling non-stationary discrete-

valued time series for which we introduced the time-varying generalized integer autoregres-

sive process (TV-GINAR(p)) in Chapter 5. We allowed the parameter curves to vary with

time via generalized functions of basis vectors. This gives us more flexibility in modeling dif-

ferent types of non-stationary processes. We derived the statistical properties and transition

probabilities of this process. In Chapter 6 we showed how to extend three estimation meth-

ods, including CML, from Chapter 3 to the TV-GINAR(p) process. The biggest challenge
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here is the asymptotic theory for these estimation methods, which is no longer straight-

forward without the assumptions of stationarity and ergodicity. Hence, we showed how to

derive the confidence intervals using the Delta method assuming asymptotic normality of the

estimators. We also presented simulation studies to study finite sample performance of the

estimation methods and consistent with the GINAR(p) simulations, we see that the CML

method outperforms both the pseudo likelihood and CLS estimation methods. We further

provided a discussion of model selection techniques and showed that the AIC could be used

as a metric to decide whether a process is TV-GINAR(p) or not.

Lastly, in Chapter 7 we presented two applications, a disease surveillance series, and

a schizophrenic patient scores dataset, to demonstrate the merits of GINAR(p) and TV-

GINAR(p) processes. We particularly showed the advantages of using a time-varying process

as TV-GINAR(p) processes outperform stationary GINAR(p) processes in both applications.

8.2 Future Work

In this section we provide a discussion of areas of future research. In particular we dis-

cuss forecasting for TV-GINAR(p) processes, extensions of this dissertation to multivariate

processes, and model selection.

8.2.1 Forecasting

An area of future research is forecasting. For the TV-GINAR(p) process, we have

not spent much time discussing forecasting strategies. The techniques described for the

GINAR(p) process do not apply naturally to the TV-GINAR(p) situation because we have

time-varying parameters and do not necessarily know the future parameter values. In the sta-

tionary case, forecasting has been extensively studied as discussed in Section 3.3. Forecasting

for non-stationary time series has been discussed in Whittle [1965], Abdrabbo and Priestley
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[1967], and Fryzlewicz et al. [2003] among others. (Although these do not specifically deal

with GINAR processes or discrete-valued time series.)

Hence, we need a way of determining or approximating the future parameters which can

then be used for forecasting. Some naive approaches could be to use the parameter values at

time T for parameter values at T + 1, T + 2, . . . , T + h, where h is the forecast horizon. We

could also use the mean or median of the parameters at all time points. These approaches

are simple, however they do not take into account the time-varying nature of the parameters.

Another possible strategy is local modeling of the parameter estimates. For example, one

possibility is to choose a time window for the parameter estimates, W , and then fit a low

order polynomial model to the parameter values. The results can then be used to forecast

future parameter values for the forecast horizon h. We can use cross-validation strategies or

AIC for choosing the window length. A drawback of this approach is that for more complex

trends this methodology might be too simplistic. This can be investigated further in future

research.

Palma et al. [2013] suggest redefining the sample size to T ∗ = T + h, where h is the

desired forecast horizon. The observations, T+1, T+2, . . . , T ∗ can then be treated as missing

values. They propose using the Kalman filter equations, but for our purposes we can use

the forecasting methodology defined in Section 3.3 or the minimum variance predictor.

8.2.2 Time-varying parameter curves

In this dissertation, we have carried out model selection for TV-GINAR(p) processes

using AIC, which has been proposed as a viable model selection technique for GINAR(p)

processes (e.g. Weiß and Feld [2020]) and locally stationary processes (e.g. Dahlhaus [1996]

and Dahlhaus [2012]). Dahlhaus [1996] also propose a non-stationary information criteria
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defined as follows:

NIC(k) = − 1

T
ℓT (η̂T ) +

k

T
,

where ℓT (η̂T ) is the likelihood function evaluated at the estimated parameter values for a

sample of size T , and k is the total number of parameters in the model. Note that the TV-

GINAR(p) process does not satisfy all the assumptions described in Dahlhaus [1996] to derive

this NIC criterion. However, this can be a starting point to develop similar methodology for

the TV-GINAR(p) process.

In Chapter 7 when introducing time-varying parameter curves for the application we allow

all the dependence parameter curves to vary. For example, when the order of the model was

p = 4 we let all four dependence parameter curves have the same time-varying structure,

i.e. same basis function definition, for simplicity. This may not always be appropriate as

each dependence parameter could have a different time-varying structure with varying basis

functions. For instance, in Figure 7.3, it seems as though {α2(u) : u ∈ [0, 1]} does not change

much over time and could have been modeled using a simple intercept only basis function.

This is an observation after we have already fit the model and looked at the parameter

curve estimates. We could also perform exploratory analysis to determine appropriate basis

functions for the parameter curves, for example, calculating windowed statistics for the

process, such as sample autocorrelation or partial autocorrelation. However, the potential

issue here is determining the time window length and we would have to experiment with a

few different values. All these methods rely on exploratory analysis which may not always

be feasible for larger model orders or more model variations to consider. Hence, another

methodology is employing grid search techniques over a range of basis functions for each

parameter curve and choose the basis function and/or model order which minimizes the

AIC. However, this does have the disadvantage of being computationally intensive.
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Another promising method for model selection for these parameter curves is penalized

regression. Lin and Guo [2020] introduce lasso for model selection and estimation in the

GINAR(p) model with binomial thinning and Poisson innovation. They argue that adaptive

lasso, introduced by Zou [2006], is more suitable. They propose getting the estimate of the

θ = (α1, α2, . . . , αp, µϵ)
T through the following optimization:

θ̂ = argmax

(
− 1

n
ℓ(θ) + λ

p∑
j=1

|θj|τj

)
,

where ℓ(θ) is the conditional log likelihood of the process, and λ is a tuning parameter that

can be chosen through AIC or cross-validation. Lin and Guo [2020] discuss different choices

of τj. Another method was proposed by Wang [2020] which uses a penalized conditional

least squares approach for the GINAR(1) process with binomial thinning and Poisson inno-

vations and with covariates. They consider two penalty functions for the estimation, and

show how this aids in deleting insignificant covariates. Considering such extensions for the

TV-GINAR(p) process would be interesting, as it could help solve the issue of determin-

ing what basis function is suitable for which parameter curve and has a relatively simple

implementation.

8.2.3 Multivariate Processes and Other Extensions

In this dissertation, we only considered univariate GINAR(p) processes. A natural ex-

tension is multivariate GINAR(p) and TV-GINAR(p) processes. Multivariate processes are

useful when we observe several related features simultaneously over time. The main differ-

ence when discussing multivariate processes lies in the definition of a multivariate thinning

operator. The most widely used approach is matrix-binomial thinning introduced by Franke

and Rao Subba [1995]. A generalized version of this operator which uses generalized thin-

ning (rather than binomial thinning) was introduced by Latour [1997]. Other definitions
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of the multivariate INAR process have been considered, e.g. Heinen and Rengifo [2007],

Pedeli and Karlis [2011], Pedeli and Karlis [2013], among others. Given that we have used

Latour [1998]’s definition of the GINAR(p) process in this dissertation, we present their

representation of the multivariate GINAR(p) process as follows:

Definition 8.2.1 Let X be a non-negative integer-valued random r-vector, and let A be an

r × r matrix of the generalized thinning operators with independent elements {αj,k}1≤j,k≤r.

Then the MGINAR(p) process can be defined as

X t =

p∑
j=1

Aj ⊙X t−j + ϵt, t ∈ Z

where the elementwise thinning operation is defined as follows:

A⊙X = A⊙


X1

X2
...
Xr

 =


∑r

k=1 α1,k ⊙Xk∑r
k=1 α2,k ⊙Xk

...∑r
k=1 αr,k ⊙Xk

 .

Let {Aj⊙} for j = 1, 2, . . . , p, be p mutually independent operators and the innovation process

{ϵt : t ∈ Z} be a set of IID non-negative integer-valued RVs with finite mean vector µϵ =

(µ1,ϵ, µ2,ϵ, . . . , µt,ϵ)
T and finite variance vector Σϵ =

(
σ2
1,ϵ, σ

2
2,ϵ, . . . , σ

2
t,ϵ

)T
. Also, {ϵt : t ∈ Z}

is assumed independent of the thinning operators. A strictly stationary solution exists when

det(I −A1z − . . .−Apz
p) = 0 has all its roots outside the unit circle.

It would be interesting to consider this MGINAR(p) process and its parameter estimation

for future research, like we did in this dissertation for the GINAR(p) process. It is important

to note that likelihood theory even for the univariate case is cumbersome, and even more so

for the multivariate case leading to prediction and estimation challenges [Davis et al., 2021].

Future research can consider extensions of the MGINAR(p) process to the TV-

MGINAR(p) process. In particular, studying estimation and forecasting procedures for the
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TV-MGINAR(p) process and considering applications. Multivariate INAR processes models

have already been used for various applications ranging from modeling hurricane and earth-

quake counts to mutual fund purchase and redemption order counts (e.g., Boudreault and

Charpentier [2011], Livsey et al. [2018], Darolles et al. [2019]). Non-stationarity is prevalent

in these applications, and hence research in non-stationary models will be relevant. Some

recent research in the field has already looked at incorporating non-stationarity into these

multivariate INAR processes, for example, Bakouch et al. [2020], Santos et al. [2021], Yang

et al. [2023], Sunecher et al. [2024]. Hence, it would be worthwhile to see how a time-varying

multivariate GINAR process, using the time-varying structure defined in this dissertation,

might perform in comparison to the models introduced in the aforementioned research.

Other extensions to the GINAR(p) process can also be considered for future research.

Inspired by time series processes for non-count series, we can introduce dependence in the

innovations or in the variance structure to obtain the INARMA and INGARCH processes,

respectively [see e.g., Weiß, 2018, Chapters 3 and 4, for definitions]. Due to the extra latent

structure that is introduced to define these processes, estimating parameters is more involved.

It would be interesting to learn how the different estimation and forecasting methods perform,

especially with other thinning operators and more complicated model orders.
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U. Böckenholt. Mixed INAR(1) Poisson regression models: Analyzing heterogeneity and serial

dependencies in longitudinal count data. Journal of Econometrics, 89:317–338, 1998.

P. Borges, F. F. Molinares, and M. Bourguignon. A geometric time series model with inflated-

parameter bernoulli counting series. Statistics & Probability Letters, 119:264–272, 2016.

M. Boudreault and A. Charpentier. Multivariate integer-valued autoregressive models applied to

earthquake counts. arXiv preprint arXiv:1112.0929, 2011.

131



M. Bourguignon and K. L. Vasconcellos. Improved estimation for Poisson INAR(1) models. Journal

of Statistical Computation and Simulation, 85:2425–2441, 2015a.

M. Bourguignon and K. L. P. Vasconcellos. First order non-negative integer valued autoregressive

processes with power series innovations. Brazilian Journal of Probability and Statistics, 29:71 –

93, 2015b.

M. Bourguignon, J. Rodrigues, and M. Santos-Neto. Extended Poisson INAR(1) processes with

equidispersion, underdispersion and overdispersion. Journal of Applied Statistics, 46:101–118,

2019.

K. Brannas. Estimation and testing in integer-valued AR(1) models. University of Ume̊a, Ume̊a,

Sweden, 1993.

K. Brannas. Explanatory variables in the AR(1) count data model. Technical report, Umea

University, Umea Economics Studies 381, Umea, Sweden, 1995.

P. Brockwell and R. Davis. Introduction to Time Series and Forecasting (Third Edition). Springer,

New York, NY, 2016.

R. Bu and B. McCabe. Model selection, estimation and forecasting in INAR(p) models: A

likelihood-based Markov chain approach. International Journal of Forecasting, 24:151–162, 2008.

M. Cardinal, R. Roy, and J. Lambert. On the application of integer-valued time series models for

the analysis of disease incidence. Statistics in Medicine, 18:2025–2039, 1999.

I. M. M. da Silva. Contributions to the analysis of discrete-valued time series. PhD thesis, Univer-

sidade do Porto. Reitoria, Portugal, 2005.

R. Dahlhaus. Maximum likelihood estimation and model selection for locally stationary processes.

Journal of Nonparametric Statistics, 6:171–191, 1996.

R. Dahlhaus. Locally stationary processes. In T. Subba Rao, S. Subba Rao, and C. Rao, editors,

Handbook of Statistics, volume 30, pages 351–413. Elsevier, Heidelberg, Germany, 2012.

H. E. Daniels. Saddlepoint approximations in statistics. The Annals of Mathematical Statistics,

25:631–650, 1954.

S. Darolles, G. Le Fol, Y. Lu, and R. Sun. Bivariate integer-autoregressive process with an appli-

cation to mutual fund flows. Journal of Multivariate Analysis, 173:181–203, 2019.

R. B. Davies. Numerical inversion of a characteristic function. Biometrika, 60:415–417, 1973.

R. A. Davis, K. Fokianos, S. H. Holan, H. Joe, J. Livsey, R. Lund, V. Pipiras, and N. Ravishanker.

Count time series: A methodological review. Journal of the American Statistical Association,

116:1533–1547, 2021.

A. C. Davison. Statistical Models. Cambridge University Press, Cambridge, England, 2003.

V. Enciso-Mora, P. Neal, and T. S. Rao. Integer valued AR processes with explanatory variables.
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