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Abstract 

The urinary tract contains a distinct and diverse set of microbiota (urobiome). Important 

work has established links between the composition of the urobiome and various diseases of the 

urinary tract, including bladder cancer, urolithiasis, incontinence, and recurrent urinary tract 

infection. However, efforts to characterize the urobiome and assess its functional potential have 

been limited due to technical challenges including low microbial biomass and high host cell 

shedding in urine. To begin addressing these challenges, we evaluate urine sample volume (100 

µl – 5 mL), and host DNA depletion methods and their effects on urobiome profiles in healthy 

dogs, which are a robust large animal model for the human urobiome. We collected urine from 

seven dogs and fractionated samples into multiple aliquots. One set of samples was additionally 

spiked with host (canine) cells to model a biologically relevant host cell burden in urine. Samples 

then underwent DNA extraction followed by 16S and shotgun metagenomic sequencing. We 

tested six methods of DNA extraction: QIAamp BiOstic Bacteremia (no host depletion), 

QIAamp DNA Microbiome, Molzym MolYsis, NEBNext Microbiome DNA Enrichment, 

Zymo HostZERO, and Propidium Monoazide. Sequences were processed and analyzed using 

QIIME2 and MetaPhlAn4. Metagenome assembled genomes (MAGs) were generated using 

MEGAHIT and MetaWRAP pipelines. Statistical analysis were performed in R. In relation to 

urine sample volume, ≥ 3.0 mL resulted in the most consistent urobiome profiling. In relation to 

host depletion, individual (dog) but not extraction method drove overall differences in microbial 

composition. DNA Microbiome yielded the greatest microbial diversity in 16S (p=0.0025) and 

shotgun metagenomic data (p=0.01), and maximized MAG recovery while effectively depleting 

host DNA (p=0.0039) in host-spiked urine samples. As proof-of-principle, we then mined MAGs 

for core metabolic functions and environmental chemical metabolism. We identified long chain 
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alkane utilization in two of the urine MAGs. Long chain alkanes are common pollutants that 

result from industrial combustion processes and end up in urine. This is the first study, to our 

knowledge, to demonstrate environmental chemical degradation potential in urine microbes 

through genome-resolved metagenomics. These findings lay the foundation for future evaluation 

of urobiome function in relation to health and disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v 

 

Acknowledgements 

 Many thanks to the Hale Lab: Angela Scott, for her assiduous management of the 

laboratory, as well as assistance at the benchtop and with data analysis; Dr. Christopher Madden, 

for benchtop and methodological assistance; Dr. Tessa Cannon, Danielle Curcio, Dr. Andrew 

McGlynn, Dr. Emily Coffey, Jordan Mason, and Madison Griffin, for feedback and support.  

 To my committee members, Dr. Virginia Rich and Dr. Brian Husbands, for support and 

knowledge throughout my degree.  

 To the Center of Microbiome Science and Infectious Disease Institute Genomics and 

Microbiology Solutions Laboratory, including Dr. Dean Vik, Shashanka Murthy, and Dr. Michael 

Sovic for significant metagenomics support.  

 To my advisor, Dr. Vanessa Hale, for her indispensable guidance, teaching, and support, 

without whom I could not succeed as I have.  

 To Dad, Mom, Samuel, Nathaniel, and Abigail, for everything. 

Funding for this research was provided through the Ohio State University College of 

Veterinary Medicine Canine Funds and the Duncan Alexander Advisory Fund.  

 

 

 

 

 

 

 



 vi 

 

Vita 

2018-2022, BA, Biology (biochemistry minor), Carleton College, Northfield, MN 

Magna Cum Laude, Distinction in major and thesis 

2022-2024, Graduate Research Associate, The Ohio State University, Columbus, OH 

2022-2024, MS, Comparative Biomedical Sciences, The Ohio State University, Columbus, OH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fields of Study 

 

Major Field: Comparative Biomedical Sciences 



 vii 

Table of Contents 

Abstract .................................................................................................................................. iii 

Acknowledgements ................................................................................................................. v 

Vita ........................................................................................................................................ vi 

List of Figures ........................................................................................................................ viii 

List of Tables ............................................................................................................................ix 

Chapter 1 – Literature Review .................................................................................................. 1 

Sec�on 1 – Urobiome in Health & Disease ....................................................................................... 1 
Urobiome – Introduc�on, Misunderstandings, and Poten�al .............................................................................. 1 
What do we know about the healthy urobiome in humans and dogs? ............................................................... 3 
Dogs as models for the human urinary tract: microbiome, urinary tract disease ............................................... 8 
Microbiome and cancer ....................................................................................................................................... 9 
Urobiome and bladder cancer in dogs and humans – What do we know? ....................................................... 10 
The state of urobiome research ......................................................................................................................... 13 

Sec�on 2 – Urobiome Challenges ................................................................................................... 14 
Technical Difficul�es: Urobiota are elusive ........................................................................................................ 14 
Low microbial biomass and associated challenges ............................................................................................ 14 
An addi�onal ripple: poten�al for high host biomass in urine samples and the quest for genomes ................ 20 
Next steps for the urobiome .............................................................................................................................. 24 

Chapter 2 - Evaluating urine volume and host depletion methods to enable genome-resolved 
metagenomics of the urobiome ............................................................................................. 26 

References ............................................................................................................................. 92 
 

 

  



 viii 

List of Figures 

Figure i. Loss of sparse microbes at threshold sample volumes of urine......................................69 

Figure 1. Urine sample volume influences contaminant abundance and microbial diversity.......70 

Figure 2. Urine sample volume and microbial composition.........................................................72 

Figure 3. Total and bacterial DNA recovery differed by extraction method.................................73 

Figure 4. Microbial diversity and composition by extraction method..........................................74 

Figure 5. Extraction method impacted host and microbial read abundances................................75 

Figure 6. Extraction method and microbial diversity and composition........................................76 

Figure 7. Top 20 microbial genera represented in urine samples..................................................77 

Figure 8. Metabolic potential of urine-associated MAGs.............................................................78 

Figure S1. Experimental Design for Urine Volume Experiment...................................................80 

Figure S2. Experimental design for Host Cell Removal Experiments..........................................81 

Figure S3. Cross contamination from positive control..................................................................82 

Figure S4. Comparing 9 and 12 PCR amplification cycles for shotgun metagenomics of low 

biomass samples.............................................................................................................................83 

Figure S5. Urine sample volume and microbial diversity and composition..................................84 

Figure S6. Microbial composition was more variable in urine samples of lower volume............85 

Figure S7. Total and Bacterial DNA recovery did not differ by dog.............................................86 

Figure S8. Microbial diversity and composition by extraction method.........................................87 

Figure S9. Metagenomic marker gene profiling using SingleM and SingleM “condense” was 

largely congruent with MetaPhlAn4-based profiling of spiked urine samples..............................88 

Figure S10. Assembly metrics of all sequenced samples, including spiked urine, spiked 

ZymoBIOMICs Gut Microbiome Standards.................................................................................89 



 ix 

Figure S11. Metagenome-assembled genome (MAG) counts by extraction method....................90 

Figure S12. The expected and actual composition of the ZymoBIOMICs Gut Microbiome 

Standard (positive control) across extraction methods..................................................................91 

Figure S13. Metabolic potential of urine-associated MAGs.........................................................92 

List of Tables 
 
Table S1. Demographics of dogs enrolled in this study.................................................................56 

Table S2. Putative microbial contaminants in Urine Volume Experiment.....................................57 

Table S3. Taxa present in the ZymoBIOMICS Gut Microbiome Standard...................................59 

Table S4. Putative microbial contaminants in Host Cell Removal – 16S Experiment..................60 

Table S5. Putative microbial contaminants in shotgun metagenomic data....................................63 

Table S6. Pairwise comparisons of contaminant abundance by urine sample volume..................66 

Table S7. Pairwise comparisons of microbial richness by urine sample volume..........................66 

Table S8. Pairwise comparisons of microbial diversity by extraction method..............................67 

Table S9. Pairwise comparisons of diversity metric distances to Bacteremia-extracted 

samples...........................................................................................................................................68 

 



 1 

Chapter 1 – Literature Review 

Section 1 – Urobiome in Health & Disease 

Urobiome – Introduction, Misunderstandings, and Potential  

Over the last two decades, scientists have made extensive effort to study, understand, and 

engineer host-associated microbiota, beginning with the Human Microbiome Project (HMP) and 

spurred by advances in molecular sequencing and bioinformatic technology.1 Causal 

relationships between the host-associated microbiota and various health outcomes and diseases 

have been established, including obesity, inflammatory bowel disease, and cancer.2 The 

importance of the microbiota across body sites, including the urinary tract, is clear; however, 

clinical dogma that the urine of healthy individuals is sterile4 led to the exclusion of the urinary 

tract from the first phase of the HMP. Indeed, clinical testing of urinary tract microbes is 

primarily focused on identifying and treating urinary tract infection (UTI), with commensurate 

methods: simple aerobic culture, microscopy, and cytology.6,7 This limited understanding of the 

urobiome has real effects; clinicians may treat asymptomatic bacteriuria (the presence of bacteria 

>105 colony-forming-units/mL (CFU/mL) in urine) with antibiotics, which may increase the 

likelihood of progression to symptomatic or recurrent UTI (rUTI) and promote antimicrobial 

resistance (AMR).6,8,9 Similarly, urolithiasis (bladder/kidney stones) was thought to be of 

spontaneous, dietary, or UTI-related origin, but new work has revealed the potential for 

contributions of the urobiome to stone formation.10,11 Researchers’ ability to understand possible 

functions of the urobiome, such as nutrient utilization, metabolite production, xenobiotic 

degradation, and virulence, is likewise limited.  
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Though a vaginal microbiome, which may be considered part of a broader “urogenital 

microbiome,” was included in the HMP,1 the first notion of a urobiome came in 2012 with the 

molecular characterization of microbes in the urine of adolescent male humans by Nelson et al.12 

Four notable genera of the newly-characterized community, identified via 16s rRNA amplicon 

sequencing, include Corynebacteria, Staphylococcus, Lactobacillus, and Anaerococcus, which 

are frequently detected in urine samples across studies and species.13,14 Because voided urine 

may contain bacterial cells from any part of the urinary tract (kidney, ureter, bladder, urethra) as 

well as from the skin near the urethral opening, Wolfe et al. (2012) used transurethral 

catheterization and suprapubic aspiration to collect urine directly from the bladders of healthy 

women; 16S rRNA Sanger and pyrosequencing revealed the presence of bacteria that had not 

been cultured from urine using conventional methods.14 Hilt et al. (2014) developed an expanded 

quantitative culturing method (EQUC) that included longer incubation, aerobic, anaerobic, and 

facultative conditions, and higher-sensitivity plating, to show that many of the bacteria whose 

genomes could be detected from bladder samples were indeed viable.4  

Following these landmark results, it is now well established that the urinary tract 

microbiota (kidney, ureter, bladder, urethra, “urobiome”) are viable and diverse,4,11,13,15–24 but the 

urobiome remains understudied compared to other host-associated ecosystems, such as the gut 

microbiome. Experimental methods and models allowing the manipulation of the gut microbiota, 

such as fecal microbiota transplantation and germ-free mice, have allowed researchers to 

perform controlled, hypothesis-driven experiments to establish mechanistic links between the gut 

microbiome, health, and disease. Efforts are underway to reach this level of rigor in urobiome 

study.  
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What do we know about the healthy urobiome in humans and dogs? 

The normal microbiota of the gut are essential for many basic physiological processes in 

the host, including nutrient extraction and biosynthesis, innate and adaptive immunity, mucosal-

barrier homeostasis, and colonization resistance to pathogens.2 Undesirable changes to the gut 

microbial community (dysbiosis) can cause disruptions to these critical functions that lead to 

disease in some settings. 

The urinary tract lumen, like other mucosal body sites, comprises specialized epithelial 

cells (urothelium) beneath a mucosal layer.25 Though urinary lumen is biochemically and 

structurally different from other mucosal sites, there is an intense interest in understanding how 

the urinary tract microbiota may interact with the mucosa and underlying cells in the setting of 

various urinary tract diseases, including urinary incontinence, UTI, urolithiasis, and bladder 

cancer, similar to how such functions have been discovered at mucosal sites like the gut.11,20,26–28 

However, urobiome study has largely been limited to case-control, hypothesis-generating 

work comparing the microbiota of healthy individuals to those in cases of various diseases. 

Meta-analyses of such studies are difficult because research groups vary in their approaches to 

urine collection, DNA extraction, primer choices, sequencing platform, and bioinformatic 

pipelines, all of which can influence urobiome results.23,29–31 

Still, limited analyses of the healthy control groups across studies, as well as a few 

health-focused urobiome studies hint at a “core” healthy urobiome. In a study of 1600 

postmenopausal women, Adebayo et al. (2020) identified 61 taxa that were present in >20% of 

samples, with notable genera including Corynebacterium, Arcanobacterium, Anaerococcus, 

Actinomyces, Escherichia, Prevotella, Fusobacterium, Bacteroides, Enterococcus, Gardnerella, 

and Lactobacillus.32 In the same year, Pohl et al. reported female urobiota dominated by 



 4 

Lactobacillus and Prevotella, while male urobiome samples had higher proportions of 

Streptococcus, Staphylococcus, Veillonella, and Gardnerella.31 Other studies have reported high 

proportions of Prevotella and Lactobacillus in male urobiota, as well as Staphylococcus, 

Streptococcus, and Veillonella, but do not report Gardnerella in males.33,34  

Sex differences in urobiota may reflect differences in anatomy, different “sources” of 

urobiota, and differential risks for disease; Gardnerella and Prevotella spp. are associated with 

the vaginal microbiome and can be causative agents of bacterial vaginosis, while Lactobacillus 

spp., which are common urine and vaginal microbiota, appear to be protective against both 

vaginosis and UTI.19,35–37 Thomas-White et al. (2018) show overlap between vaginal and bladder 

isolates in adult human women, suggesting that the vagina may be a source of microbes for the 

bladder.19 Komesu et al. (2020) confirm 60% overlap between vaginal and bladder microbiota by 

comparing 16S profiles between vaginal swabs and catheterized urine samples from the same 

patient.38 In the context of rUTI dynamics, where patients undergo periods of infection latency 

and reemergence, vaginal colonization followed by ascension of the urethra to the bladder of 

pathogens is a proposed route of infection/colonization.39 For example, sexual activity and  

bacterial vaginosis are both associated with UTI.9 Further, intravaginal administration of L. 

crispatus following antibiotic administration for acute UTI episodes in women with a history of 

rUTI reduces recurrence.40 These urobiome, vaginosis, and UTI data collectively implicate the 

vagina as a source of urinary tract microbes. Once in the bladder, some uropathogens, named 

uropathogenic E. coli strains (UPEC) are able to establish quiescent, intracellular colonies in 

transitional cells of the bladder epithelium that can be a source of future infection.41 In studies 

utilizing a 3D model of human bladder epithelia (7-8 cell layers including all sublayers, as well 

as the thin glycosaminoglycan layer at the lumen surface), Flores et al. (2023) were able to show 
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that both UPEC and commensal E. coli were able to adhere extracellularly to urothelial cells at 

multiple layers of epithelium (in addition to canonical, intracellular invasion of urothelial cells), 

causing variable amounts of cytotoxicity and exfoliation according to pathogenicity.42 

Commensal E. coli also demonstrated aggregate formation on the underside of actively 

exfoliating urothelial cells, a novel niche that may protect commensals from shear stress during 

bladder filling and emptying and allow persistence in the bladder.42  

In males, the source of urinary tract microbes is less clear, though a study by Dubourg et 

al. (2020) comparing the gut and urine microbiota via culturomics and Matrix Assisted Laser 

Desorption Ionization-Time of Flight Mass Spectrometry (MALDI) suggested that the gut may 

be a major source of urine anaerobes in both sexes. In this study, 64% of isolated urobiota 

species had previously been isolated from the gut, while 32% had been previously isolated from 

the vagina.43 Worby et al. (2022), in a longitudinal study of the gut microbiota of women 

experiencing rUTI, showed that most episodes of infection were preceded by a bloom of the 

culprit E. coli strain in the gut, strongly suggesting the gut as a source of urinary tract microbes, 

but the actual route of translocation (i.e. ascension, hematogenous spread) was not established.44 

Some researchers have proposed that a more permeable gut epithelium (as results from 

inflammation in the gut) may allow bacteria to translocate from gut to bladder via the blood or 

viscera, and indeed, there are associations between gastrointestinal permeability and urinary tract 

infection, but direct evidence for such a process has not been demonstrated.45 

 Whether or not the urobacteria consistently associated with health are depleted or 

missing in the setting of specific diseases, except in the case of Lactobacillus, remains an open 

question. Many normal members of the urobiome are also common opportunistic uropathogens 

in humans and dogs, including Enterococcus spp. and E. coli,46 and variability in what is normal 
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makes it difficult to define an abnormal: several studies of the human female urobiome report 

“urotypes,” urobiome community composition that are dominated by one or two of the most 

common taxa, generally Lactobacillus, Gardnerella, or Enterobacteriaceae, with urotype 

sometimes associating with clinical factors like body mass index, previous UTI, and age.20,47,48 

Notably, a similar concept was proposed for gut microbiota variation – “enterotypes” – but has 

been subject to debate given the vast diversity of gut microbiota and the observation of gradient-

like, rather than discrete, variation in composition.49 Additionally, strain-level variation in urine 

isolates (and microbiome consituentsconstituents generally) can be ecologically important: some 

E. coli are pathogenic, while others can be pathogen-competitive.21,50,51 It is likely that, as more 

urobiomes are sequenced, researchers will appreciate greater diversity in composition, though 

stratification of urobiomes by urotype may still be clinically or theoretically useful.  

The human urobiome literature landscape is generally biased towards two demographics: 

female sex and older age. Both biases are attributable to the clinical landscape; women are much 

more likely than men to suffer from infectious urinary tract disease,52 and declining bladder 

function and structural changes to the urinary tract with aging are well-documented.53 However, 

urinary tract neoplasms are more common in human males than females, and this is reflected in 

the bladder-cancer-specific urobiome literature.29 The age bias is particularly important, as some 

urobiome work suggests that urobiome diversity and composition are related to aging,32,47 and 

such changes could be related to the changing immune state in aging patients, i.e., 

“inflammageing,” and affect health outcomes, particularly in the context of age-associated 

diseases including neoplasms.28 The relationship between age, inflammation, and increased 

urobiome diversity is suggestive also of potential hematogenous spread of microbes as a result of 

increased epithelial permeability.  
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There is a relative paucity of data on the canine urobiome, though available data suggest 

some similarities to the patterns seen in human samples. Burton et al. (2017) collected urine via 

cystocentesis from 24 dogs and submitted the samples for 16s rRNA sequencing.46 Only five 

taxa were present in any sample at >1% abundance: Pseudomonas, Sphingobium, Acinetobacter, 

and unclassified Bradyrhizobiaceae and Xanthomonadaceae. However, other notable members 

detected with high prevalence include Staphylococcus and Bacteroides, two common human 

urobiota.32 This study had neither negative controls nor methods to bioinformatically 

decontaminate samples, which may account for the dominance of common reagent contaminants 

like Bradyrhizobiaceae and Xanthomonadaceae; without such controls, it is impossible to know 

the true source of such taxa, which are often contested.54–56 The authors noted no sex differences 

in canine urobiome.  

Melgarejo et al. (2021) performed a similar study with 50 animals, and the six most 

prevalent genera were Streptococcus, Sphingomonas, Pseudomonas, Corynebacterium, 

Staphyloccocus, and Actinomyces, which represents considerable overlap with human urobiota. 

This study employed negative controls and adjusted true samples by subtracting absolute read 

counts of sequence variants in negatives from true samples. This increases the confidence that 

leftover variants are truly host-associated.57 A small number of case-control and methodological 

studies with healthy controls have also been performed in companion dogs.11,13,22,23 Mrofchak et 

al. (2023), in a study comparing the urobiota of healthy dogs and dogs with urothelial carcinoma, 

note high abundances of Staphylococcus, Streptococcus, Corynebacterium, and 

Sphingomonadaceae.13 
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Dogs as models for the human urinary tract: microbiome, urinary tract disease 

 Dogs have been proposed as a suitable model for the human microbiome58,59 and several 

urinary tract diseases, including induced stress urinary incontinence60 and spontaneous urothelial 

carcinoma.61 The canine gut microbiota are generally more similar, in both taxonomic and gene 

composition, to those of humans than are the microbiota of pigs or rodent models.58 This 

similarity is thought to arise from the shared environment between companion dogs and their 

human families. Early urobiome work as well as UTI strain-tracking suggests that this similarity 

may extend to a shared urobiome between dogs and humans as well. In a three-year study of a 

six-member family (5 humans and a dog), clones of UTI-causing E. coli circulated between the 

feces and urine of all members, resulting in UTI in two members, including the dog.62 Mrofchak 

et al. (2023) compared, via Weighted UniFrac, the overall composition of human and canine 

urobiome samples using publicly available data; though human and canine urobiome 

compositions were statistically different, there was considerable, visualizable, phylogenetic 

overlap between communities.13 

 Dogs are increasingly seen as an important model for muscle invasive urothelial 

carcinoma.61 The disease occurs spontaneously in immunocompetent animals and proceeds 

through similar histopathology and genetic subtypes as human disease61,63 It is associated with 

similar exposures in both dogs and humans, including pesticides and cigarette smoke.64,65 Rodent 

models of bladder cancer, in contrast, must be immunocompromised, have tumors chemically 

induced or implanted, and do not share passive exposures or cohabitate with humans.66 There is a 

breed bias for bladder cancer in dogs, with Scottish Terriers and Shetland Sheepdogs being 

“high-risk,” and this breed disparity represents an opportunity to parse genomic, microbiome, 

and environmental contributions.61,64 Given the similarities between dogs and humans in bladder 
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cancer, microbiome, and environment, companion dogs are primed to be valuable models for this 

disease. Additionally, translational research performed using spontaneous animal models 

benefits both the model animal and humans.  

 

Microbiome and cancer  

 An important driver for urobiome research is the potential to unearth interactions between 

bladder tumors and urobiota,29 because the discovery important relationships between the 

microbiota of other body sites and various cancers continues.67 Such relationships can exist on 

the level of specific microbial strains: Rubinstein et al. (2013) showed that Fusobacterium 

nucleatum adheres directly to colorectal cancer cells via FadA, producing an intratumoral 

inflammatory state that results in tumorigenesis, driving disease.68 Whole microbial communities 

and specific microbes can impact the response to cancer treatment: 30% of non-responders to 

immune checkpoint blockade therapy for metastatic melanoma became responsive after 

receiving a transplant of fecal microbiota from responsive donors,69 while in another study on 

metastatic renal cell carcinoma, a single-agent Clostridium probiotic extended progression free 

survival by twelve months when combined with immune blockade.70  

A host of studies demonstrate extensive microbial involvement in therapy response, 

chemotherapy pharmacokinetics, antitumor immune response, tumor microenvironment, and 

cancer therapy side effects.67 Even the skin microbiome has proven important in cancer treatment 

– presenting tumor antigens in an engineered S. epidermidis inoculated onto the skin of tumor-

bearing mice induced a strong and enduring T-cell response to the tumors.71 The gut microbiome 

may indeed be related to bladder cancer as well: in a multicenter observational study of 

neoadjuvant chemotherapy for muscle-invasive bladder cancer, distinct clustering of the gut 
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microbiota was observed between bladder cancer patients and healthy controls, and machine 

learning models trained on microbiota were better at predicting response outcomes than when 

trained on clinical variables.72 Given these strong associations between the gut microbiota and 

cancer, especially those involving direct tumor-microbe interactions, the importance of 

understanding the urobiome in the context of bladder tumors is clear.  

 

Urobiome and bladder cancer in dogs and humans – What do we know?  

 Several studies have investigated the urobiome or bladder tissue microbiome in human 

bladder cancer patients, and a single study, from our lab, has investigated the urobiome in canine 

bladder cancer patients.13,16,34,73–84 These studies vary significantly in methodology, making 

direct comparisons of results difficult, though all utilized 16S rRNA sequencing with various 

primers. Indeed, there are few identifiable trends. Chorbińska et al. (2023) compared the urine 

and gut microbiota of 25 cancer patients (four women) to those of 7 controls (2 women), and 

found no differences in alpha or beta diversity according cancer status; nor were any individual 

taxa differentially abundant according to group.84 The highest-quality evidence for bladder 

cancer-associated changes to the urobiota is contained in a global meta-analysis by Bukavina et 

al. (2023),16 which combines the raw sequencing data from three other studies, in addition to a 

new cohort of patients and controls from the United States: Bučević Popović et al. (2018, 

Croatia),74 Zeng et al. (2020, China),80 and Mansour et al. (2020, Hungary).78 All included 

studies amplified and sequenced the V1-V3 region of the 16s rRNA gene, but utilized a mix of 

extraction and sequencing methods (Illumina or Ion Torrent sequencing). The combined dataset 

compares the urobiota of 129 patients with bladder cancer, mostly male, to 60 healthy controls, 

using a mix of catheter-collected and free catch urine samples. Despite strong effects of 



 11 

geography and collection method, there were identifiable discrepancies between cancer urobiota 

and healthy urobiota. Alpha diversity did not differ according to health studies across all cohorts, 

but US bladder cancer patients had reduced richness and Shannon diversity compared to US 

healthy controls. This seems to be in line with some studies not included in the meta-

analysis,73,77 but contrasts with others that report increased diversity in cancer-associated 

urobiota82,85 and others that report no differences in diversity.76,79  

 However, most compelling from this meta-analysis were the differentially abundant taxa 

between bladder cancer and healthy urobiota. Bladder cancer urobiota, across cohorts, were 

enriched for Enterococcus, Acinetobacter, Pseudomonas, Micrococcus, Ralstonia, Escherichia, 

Streptococcus, and Gardnerella. These genera tend to agree with studies not including in the 

meta-analysis, which have also identified Micrococcus Pseudomonas as bladder cancer 

biomarkers in the urobiome.83,85 And this is a broadly interesting cadre: Bukavina et al. note that 

the first five genera all have constituent species capable of degrading polycyclic aromatic 

hydrocarbons (PAHs), which are carcinogenic byproducts of combustion associated with bladder 

cancer and found in cigarette smoke and occupational exposures.16,65,86,87 Such a finding suggests 

that the urobiome could have an impact on how PAHs interact with bladder cancer – in vitro 

work has shown that microbial metabolites of PAHs such as benzo[a]pyrene can be 

tumorigenic.88–90 Using a gut simulator, Van de Wiele showed that consortia of human colon 

microbiota could transform benzo[a]pyrene and other PAHs into estrogenic metabolites.90 A 

detailed discussion of the estrogen receptor and its contribution to bladder cancer is beyond the 

scope of this review; briefly, in vitro research with bladder cancer cell lines has shown the 

estrogen receptor to be tumorigenic and inductive of chemoresistance,91 a pathway observed in 

multiple cancers.92 Additionally, hydroxylated metabolites of PAHs can be carcinogenic in their 
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own right, typically forming mutagenic DNA adducts.93 Because Bukavina et al.’s work was 

based in 16S amplicon sequencing, the strain and functional resolution of these putative PAH-

degrading microbes are unconfirmed, and improvements to metagenomic urobiome sequencing 

that allow metabolic reconstruction are necessary to establish mechanistic links between 

microbial metabolism and cancer.  

 Enterococcus, Escherichia, and Gardnerella are all associated with rUTI, either as 

causative agents or as biomarkers of potential bladder dysbiosis.51,94,95 Their concurrent 

association with bladder cancer in this study suggests a possible relationship between UTI and 

bladder cancer; this meta-analysis did not assess UTI history, but there is a well-documented link 

between bladder cancer and history of UTI or rUTI: in a cohort of 1809 bladder cancer cases and 

4370 controls, bladder cancer patients were more likely to have a history of rUTI (odds ratio = 

6.6 males, 2.7 females).96  

One study, from our lab, assessed differences in urobiota and fecal microbiota according 

to bladder cancer status in companion dogs using 16S rRNA sequencing. The study cohort was 

small (n=7 dogs with bladder cancer, n=7 age-, sex-, breed-matched controls) but used extremely 

strict exclusion criteria (recent antibiotics, history of chemotherapy, low read depth) to ensure 

high-quality samples and data.13 In line with some human studies,16 urobiome alpha diversity 

was decreased in dogs with cancer. The urobiota were also different in composition between 

healthy and bladder cancer samples according to the unweighted UniFrac beta-diversity metric, 

suggesting that the cancer-affected urinary tract has a urobiome with altered phylogenetic 

makeup compared to healthy urinary tracts. Most interestingly, the genus Fusobacterium, 

constituent strains of which are known tumor promoters,68 was present in urine samples from 

cancer-affected dogs but not those from healthy dogs. 
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Three studies have assessed bladder tissue microbiota, as opposed to urine samples that are 

surmised to contain tissue-colonizing microbes. Pederzoli et al. (2020) found, via 16S 

sequencing of the tissues, no difference between cancer and healthy tissue.79 Liu et al. (2019) 

report an increased abundance of Acinetobacter, Escherichia, and Sphingomonas in cancer 

tissue, as well as a depletion of health-associated Lactobacillus.77 Mansour et al. (2020) 

compared tumor microbiota to urine microbiota on a within-patient basis, using a small (n=4) 

cohort and found little overlap between the two sample types, a finding that runs directly counter 

to supplementary analyses from Pederzoli et al., which found 80% overlap of ASVs within 

patients across sample types.78,79 Tumor-associated microbiota may be deeply involved with the 

immune microenvironment of the tumor, and may vary according to tumor type,67,97 so this line 

of work warrants further study with larger cohorts and optimized protocol. 

 

The state of urobiome research  

Despite extremely important advances in our understanding of the urobiome, the state of the 

research can be broadly delineated into two methodological disciplines, each with overlapping 

but unique limitations. There are mechanistic, in vitro studies that reveal and recapitulate 

important processes but are limited in terms of the diversity they can capture, which may rely on 

cultures of urine isolates or use in vitro models;19,41,42 and there are sequencing based studies, 

which, with few exceptions, are largely 16S rRNA amplicon studies of DNA extracted from 

urine samples or whole genome sequencing of cultured isolates, stratified by some clinical factor 

of interest.18,21,39,94 These studies are generally limited to correlational, rather than mechanistic, 

conclusions, though sequencing of isolates does provide functional insight into disease-

associated genomes.94 Shotgun metagenomic sequencing and metabolic reconstruction of urinary 
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microbes can begin bridging the gap between microbes correlated with urinary tract states and 

the functions of those microbes and can better guide in vitro studies on microbes of interest based 

on their functions. Efforts to optimize shotgun metagenomic sequencing of urine are limited by 

characteristics of the urinary tract.  

 

Section 2 – Urobiome Challenges 

Technical Difficulties: Urobiota are elusive 

 While it is true that urobiome research has lagged that of the microbiota of other body 

sites because of clinical dogma, work characterizing the urobiome is also hampered by aspects of 

the urinary tract that affect microbial DNA extraction, sequencing, and bioinformatic processing. 

The urinary tract has a distinct and diverse microbiota, but microbial biomass is low overall and 

may often be overwhelmed by biomass from shed host cells.  

 

Low microbial biomass and associated challenges 

 A urine sample from a healthy individual may contain fewer than 100 CFU and up to 

10,000 CFU per milliliter of urine.39 In comparison, a gram of feces may contain 10-100 billion 

CFU,98 a difference of at least five orders of magnitude. This low relative microbial biomass  

requires special considerations for the identification of contaminant sequences, sample 

collection, and DNA extraction.  

 Contaminants are sequences – metagenomic or amplicon – in a given dataset that were 

sequenced with a sample but are not truly from the source community.57 Such contaminants can 

be stray DNA or bacterial cells present in laboratory reagents, surfaces, and supplies that are 
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introduced to a sample during any step of sample collection and processing.56 Contaminants may 

also include mis-assigned nonmicrobial sequences resulting from mis-mapping to references or 

the inclusion of contaminant sequences in reference databases.99,100 In a fecal sample containing 

the DNA of 100 billion bacterial cells, the DNA content of a stray reagent contaminant is 

relatively negligible and unlikely to influence the resultant profile post-sequencing, though it 

may lead to false conclusions about constituent microbes.57 However, in low microbial biomass 

environments, such as the urinary tract, vagina, breast milk, and respiratory passages, such 

contaminant sequences may constitute a large fraction of the sequenced DNA and lead to 

completely spurious results.99 To characterize this problem, Salter et al. (2014), noting that their 

sequenced negative controls often contain bacterial diversity despite having no template, used 

16S rRNA amplicon sequencing on pure Salmonella bongori cultures.56 They sequenced serial 

dilutions of culture (108-103 cells/input) at multiple sequencing sites; across sites, non-S. bongori 

sequences (contaminants) increased in abundance and diversity with each successive dilution. 

Contaminating sequences became dominant at 103 cells of input DNA, and contaminant 

sequences common across sequencing sites were presumed to be from DNA extraction reagents 

and supplies; site-specific contaminants were presumed to be introduced from library preparation 

and sequencing centers, highlighting the multiple sources of contaminants. They further 

extracted pure samples using different production lots of the same supplies and different 

commercially available extraction kits, and contaminants were not consistent or predictable 

across these variables.56 

 The identification and treatment of contaminants has been subject to significant debate 

among researchers. In 2014, Aagard et al. identified a placental microbiome, albeit low biomass, 

and associated compositional differences with pre-term birth rates.101 Follow up studies 
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comparing negative controls to placental samples found extreme biases introduced by extraction 

kit and batch, and could not distinguish placental microbiota from negatives, suggesting that 

Aagard et al. identified solely contaminant microbiota.102,103 And there is ongoing debate about 

the presence of blood microbiome, and whether blood microbiota may be used to identify cancer 

signatures, or whether these signals are simply contamination.104,105 Notably, many of these 

signals depend on how researchers bioinformatically handle putative contaminating sequences. 

In the case of microbial biomarkers of cancer in the blood, criticism of the original paper 

establishing those biomarkers identified several cases where microbial reads associated with 

cancer came from putative extremophiles, which are unlikely to be present in human tumors but 

are somewhat common as contaminants.105  

 Several strategies for the identification and filtering of contaminating sequences have 

been proposed, relying on a mix of statistical methods and biological inference. Some 

researchers simply subtract reads sequenced in negative controls from all other samples,106 while 

others remove reads that are assigned to taxa commonly found in reagents.104 However, a 

number of software tools based on statistical patterns of contaminating sequences have been 

released and variably utilized. Karstens et al. (2019)107 compared four different strategies for 

handling contaminants using 16S sequencing of mock communities that were serially diluted to 

progressively increase the proportion of contaminants: directly filtering those sequences found in 

negative controls; filtering based on an abundance threshold; filtering using Decontam,57 which 

identifies contaminants statistically based on the inverse relationship between sample DNA 

concentration and the relative abundance of putative contaminants as well as the prevalence of 

contaminants in negative controls; and SourceTracker,108 software that predicts the proportion of 

a sample arising from a known contaminant source. Decontam removed the greatest proportion 
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of contaminants, and when combined with abundance filtering, was most effective at restoring 

the expected mock community by removing contaminant sequences,107 though the authors note 

that SourceTracker may work more effectively when working in well-defined microbial 

communities. Decontam remains field standard and is used in urobiome studies from our lab. In 

urine samples, common soil microbes and kit contaminants are often identified as putative urine 

microbes, such as Sphingomonas and Ralstonia.13,16 However, these microbes often also have 

clinical relevance as opportunistic pathogens,109 may or may not appear in negative controls, and 

could plausibly be present in the urine or on skin. Microbiome research with low biomass 

substrates, therefore, requires careful consideration of the substrate environment as well as 

thorough negative controls. 

 Contamination aside, one might also attempt to address the low microbial biomass in two 

ways: 1) by optimizing DNA extraction to maximize bacterial DNA yield,22,110 or, 2) by 

collecting more sample. Multiple commercial DNA extraction kits are available that are designed 

to allow convenient processing of multiple small samples at once, and theoretically can be used 

for multiple sample types. The basic steps of microbial DNA extraction are as follows: 1) 

removal of extracellular DNA and PCR inhibitors (proteins, minerals, fatty acids, etc.) from the 

samples, 2) lysis of bacterial cells, 3) purification of microbial nucleic acids.111 Protocols may 

vary in how they approach each step: lysis may be achieved chemically or mechanically, or both, 

and purification can be achieved using magnetic beads, silica-based columns, or via ethanol 

precipitation.111 The choice of extraction method introduces bias; methods may variably 

preferentially lyse certain clades, introduce variable amounts of contaminants, or perform 

differently on different substrates.112 The Microbiome Quality Control Project assessed this by 

extracting replicate samples of stool, simulated stool, chemostat, and negative controls via 
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multiple commercial kits at multiple sites before submitting to amplicon sequencing with a 

variety of sequencing platforms and primer protocols.112 Sample handling (i.e., extraction) 

introduced the largest variation between replicates, while bioinformatic protocols and sequencing 

platform were less important, though significant. This variation reduces inter-study 

comparability and necessitates the field moving to standardized extraction protocols. We expect 

that this inter-study variability is amplified in low microbial biomass substrates like urine.  

 Commercial DNA extraction kits are often designed specifically for high or low biomass 

substrates, or even for specific microbial environments (e.g. Qiagen PowerFecal specifically for 

stool samples).113–116 However, they perform variably well within a given substrate, and 

differently between substrates. Knudsen et al. (2016) extracted DNA from human feces, pig 

feces, and sewage (all extremely high biomass) using seven different commercially available 

kits. Extraction method impacted the amount of DNA extracted, the alpha diversity of the 

samples, and the overall composition of samples within and between sample types. For example, 

one procedure (Easy-DNA) preferentially lysed gram-positive bacteria in human waste and 

sewage, but not in pig feces.113 Similar results were shown in a study optimizing DNA extraction 

from samples of first-pass meconium, a low microbial biomass environment.114 It is therefore 

clear that DNA extraction protocols must be optimized on a per-substrate, per-situation basis, 

and the field has not yet met this standard. 

 Initial work to do so for urobiome research is ongoing in our lab and others. Mrofchak et 

al. (2021) extracted DNA from 3mL replicate aliquots of canine urine using five different 

commercial methods, including the four most commonly used in published urobiome research, 

designed for substrates of different levels of biomass.22 The Qiagen QIAamp BiOstic Bacteremia 

Kit (Bacteremia), which uses chemical, mechanical, and thermal lysis and isolates DNA using a 
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silica-based column, is designed for DNA extraction from potentially low microbial biomass 

substrates like blood and urine.117 This kit maximized the total bacterial DNA that could be 

extracted from urine based on a 16S gene qPCR,118  as well as the number of samples overall that 

had quantifiable bacterial DNA and the number of 16S reads per sample. There was no 

difference in diversity or composition according to extraction method; the authors recommend 

Bacteremia for urine samples but note that the choice of kit did not broadly impact the 16S 

profiles generated.  

 Karstens et al. (2021) performed a nearly identical experiment using human urine, and 

included two of the kits (Bacteremia, Blood & Tissue) assessed in Mrofchak et al.110 This study 

found that Blood & Tissue maximized total DNA yield, but did not assess bacterial DNA 

specifically, and Blood & Tissue samples did not have significantly different DNA 

concentrations from Bacteremia samples in pairwise comparisons. They found no difference in 

any other variable (sequencing depth, diversity, composition), suggesting that Bacteremia 

performs at least as well as other extraction methods in both human and canine urine for 16S 

rRNA profiling of the urobiome.  

 Simple reasoning suggests that urine samples of greater volume will contain greater 

absolute counts of bacterial cells, and that extracting DNA from larger volume samples might 

result in higher bacterial DNA yield. Given the sparsity of cells in urine (100-10,000CFU/mL), it 

is possible too that there exists a threshold volume of urine at which a true replicate of the overall 

community is represented. Collecting and sequencing a volume below such a threshold would 

subject the resulting profile to stochasticity as low abundance microbes are excluded or included 

randomly (Fig 1). In a high biomass environment like feces, this threshold is likely to be so small 

as to be unimportant in the overall sampling process. However, in urobiome studies, there is high 
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variability in the volume of urine that is collected and pelleted for DNA extraction: some studies 

use as little as 0.5mL17 of initial sample, and some use as much as 50mL.119 Karstens et al. 

(2018) report different rates of samples having nonzero sequencing depths according to sample 

volume.55 Additionally, observations that diversity and nonzero sequencing rates may be 

decreased in samples collected via suprapubic aspiration or transurethral catheterization 

compared to free catch samples suggest that sample volume threshold may be different according 

to collection method.16 However, the relationship between sample volume, sequencing depth, 

contamination, and community stochasticity has not been thoroughly investigated.  In Chapter 2, 

new data addressing these relationships using canine urine collected via free catch are presented.  

 

An additional ripple: potential for high host biomass in urine samples and the quest for genomes 

In 16S amplicon studies, host biomass is relatively unimportant; primers targeting 

bacterial sequences with high specificity and well-characterized off-target effects (such as 

amplification of mtDNA) make host nucleic acids generally unproblematic.30,39 However, 

shotgun metagenomic strategies sequence all of the DNA in a sample in an untargeted manner.30 

In high host biomass, low microbial biomass substrates like urine, tissue, breast milk, and 

respiratory passages, host biomass represents an extremely high barrier to reconstruction and 

analysis of microbial genomes.120–127 For example, metagenomic sequencing of lung sputum 

samples resulted in 99.2% of reads assigning to the host (human),120  and 95.9% host in vaginal 

samples.127 In one of two studies using shotgun metagenomics to characterize the urobiome, 

human reads were reported to comprise 1.3%-99.9% of the sequencing depth in samples from 

patients with UTI;27 in this scenario, the expected proportion microbial biomass would vary: 

microbial biomass is presumed to increase due to overgrowth of a single pathogen or 
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polymicrobial overgrowth, but increased host shedding is also expected due to upregulation of 

urothelial exfoliation during UTI.9,128,129 Normal urine may contain 0-100,000 host cells/mL,130 

and shedding is expected to be increased in certain health states including incontinence and 

bladder cancer.128 

Metagenome-assembled genomes (MAGs) cannot be assembled and analyzed with 

confidence without adequate microbial sequencing depth, and even read- or gene-level analysis 

of microbial metagenomes are limited by sequencing depth.131 Construction of MAGs is critical 

for tying specific microbiome constituents to specific functions in silico, and high quality MAGs 

have high degrees of coverage (multiple sequenced copies of the genome).131 If a metagenome of 

10 million reads is 99.9% host, only 10,000 reads of 150-250 base pairs may be microbial, 

spread across multiple taxa; MAG assembly in this scenario is impossible, and read-based 

profiling, which relies on marker genes, is likely to be extremely limited, representing a wasted 

sequencing effort if microbial sequence information was the target.132 

Inferring metabolic potential from sequence information is useful for characterizing the 

putative functional abilities of metagenomes and is achieved through read- or contig- level 

annotation. Lloyd-Price et al. (2019) used HUMAnN2 to functionally profile fecal metagenomes 

in patients with and without inflammatory bowel disease and were able to link functional 

enrichments to changes in the abundances of specific taxa and metabolites using multi-omics.133 

However, MAG-resolved metagenomics allows critical insight into microbiome functions 

and strain variation and the impacts they can have on host health. Genome-resolved 

metagenomics revealed that the gut microbiota of humans exposed to high levels of 

environmental contaminants (xenobiotics) were enriched not only for specific taxa, but also for 

specific xenobiotic-degrading genes.134 Because microbial sequences had been assembled into 
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MAGs, the xenobiotic functions could be traced to specific genomes – directly linking 

taxonomic enrichment to putative functional ability to degrade the contaminants. Such links can 

guide future in vitro work that can experimentally verify and characterize microbial functions, 

and generate druggable targets, identify toxifying or detoxifying pathways, and elucidate 

mechanisms by which xenobiotics might promote disease.67,134 Urobiome researchers are 

especially interested in reconstructing such microbial mechanisms, given early indications that 

bladder cancer associated microbiota may be enriched for PAH degraders.16 Additionally, these 

metabolisms have high translational relevance when considering companion dogs as a model 

system. As members of the household, dogs share similar exposure and cancer-risk profiles to 

their owners, including cigarette smoke (secondhand) and diesel exhaust, and may have higher 

exposure rates to other cancer-associated contaminants like pesticides, with which they come 

into greater contact than humans (dogs roll in, lick, and step on many more substances than most 

humans).64 However, resolution of the host biomass problem is necessary to achieve the 

sequencing depth for MAG assembly and metabolic profiling. One small study by Kochroo et al. 

(2022) attempted to assess functional urobiome differences between kidney stone human patients 

and healthy controls via shotgun sequencing.135 They assembled 17 draft microbial genomes 

with median completeness of 36.7% and performed gene-level metabolic profiling by annotating 

contigs, rather than the draft genomes. This allowed them to partially attribute an enrichment for 

oxalate-degrading genes in healthy controls to the uroprotective L. crispatus; however, this 

analysis is limited by the relatively low completion of the MAGs, which may stem from high 

proportions of host sequences (and therefore low microbial sequencing depth) and prevented a 

top-down approach of annotating MAGs directly to identify full pathways. 
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 Deeper sequencing can improve microbial sequencing depth through “brute force” 

without changing the proportion of host to microbial reads, but this method is costly and suffers 

from diminishing returns in microbial depth.132 Instead, focus has shifted to benchtop methods 

for depleting host biomass and nucleic acids prior to extracting and sequencing microbial DNA. 

A variety of commercial and laboratory methods for depleting host biomass are available and 

have variable efficacy in various substrates.120,122,124,126,136 Similar to basic DNA extraction, there 

is evidence that host depletion steps may amplify community bias prior to sequencing.137 There 

are two available “types” of host depletion. Some methods take advantage of the fact that 

mammalian cells are more vulnerable to osmotic stress than prokaryotic cells, and preferentially 

lyse mammalian cells in the sample using hypotonic or chaotropic buffers.124 The resulting free 

host DNA can be degraded using Benzonase (a DNase) or light-activated propidium monoazide 

(PMA, which covalently bonds and cleaves DNA).124,138 The resulting partial-lysate can then be 

processed through basic DNA extraction and cleaved DNA is removed along with other PCR 

inhibitors. This type of host depletion has been reported to introduce artificial enrichment for 

gram positive bacteria,137 whose cell walls render them less susceptible to osmotic lysis than 

gram negatives, though at least one study has reported the opposite effect.127  

 The other “type” of host depletion targets CpG methylation, a pattern seen in 

mammalian, but not prokaryotic DNA. The NEBNext Microbiome DNA Enrichment Kit uses 

methylation-binding protein bound to magnetic beads to remove mammalian DNA and leave 

prokaryotic DNA in solution.139 

There is broad variability in which host depletion method appears optimal according to 

substrate. In bovine milk, CpG targeting methods appear to work moderately well for 

maximizing bacterial DNA yield, and alpha diversity, and can be combined with pre-extraction 
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host depletion methods, though a host depletion kit (via preferential lysis) from Molzym 

(Germany) appears to work just as well. However, the NEBNext kit appears to be the only 

readily available CpG-methylated-DNA targeting method and is not frequently used across 

studies. In human respiratory tract samples, the methods using DNase to cleave extracellular 

DNA appears to be more effective methods at reducing the proportion of host reads than PMA-

based methods.120,140 In a study comparing host depletion methods (two lysis with DNase, and 

one lysis with PMA) in skin, vaginal, and oral swabs, osmotic lysis with DNase treatment was 

extremely effective at depleting host reads in vaginal samples.127 However, the authors cautioned 

against host depletion in skin and saliva samples, which showed significant depletions of gram 

negative microbes. However, Marotz et al. (2018) designed a protocol that used PMA cleavage 

of extracellular DNA and found it was more effective at reducing host read proportions than 

commercially available kits in saliva samples.124 

No study has assessed the efficacy or impact of host depletion methods in studies of the 

urobiome, though it is clear that methods must be tested on a per-substrate basis. In Chapter 2, 

we present data on the impact of host depletion of six different extraction methods on both 16S 

and shotgun metagenomic sequencing of the canine urobiome.  

 

Next steps for the urobiome 

 Study of the urobiome will reveal insights on how microbes in the urinary tract interact 

with host health in a variety of urinary tract diseases of high burden, including UTI and bladder 

cancer. The functions of urobiome constituents are especially important to characterize to begin 

investigating mechanistic links between these constituents and health. The urobiome field must, 

therefore, answer critical questions to enable such characterization: 1) How much urine sample 
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should be collected for accurate, replicable, and low-contamination urobiome samples? 2) How 

does host depletion bias microbial communities pre-sequencing? 3) Are genome-resolved 

metagenomics and functional analyses of the urobiota possible? In Chapter 2, we present new 

data addressing and extending these three questions. 
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Chapter 2 - Evaluating urine volume and host depletion methods to enable genome-resolved 

metagenomics of the urobiome 

Abstract  

The gut microbiome has emerged as a clear player in health and disease, in part by mediating 

host response to environment and lifestyle. The urobiome (microbiota of the urinary tract) likely 

functions similarly. However, efforts to characterize the urobiome and assess its functional 

potential have been limited due to technical challenges including low microbial biomass and 

high host cell shedding in urine. Here, to begin addressing these challenges, we evaluate urine 

sample volume (100 µl – 5 mL), and host DNA depletion methods and their effects on urobiome 

profiles in healthy dogs, which are a robust large animal model for the human urobiome. We 

collected urine from seven dogs and fractionated samples into multiple aliquots. One set of 

samples was additionally spiked with host (canine) cells to model a biologically relevant host 

cell burden in urine. Samples then underwent DNA extraction followed by 16S rRNA gene 

amplicon and shotgun metagenomic sequencing. We tested six methods of DNA extraction: 

QIAamp BiOstic Bacteremia (no host depletion), QIAamp DNA Microbiome, Molzym 

MolYsis, NEBNext Microbiome DNA Enrichment, Zymo HostZERO, and Propidium 

Monoazide. In relation to urine sample volume, ≥ 3.0 mL resulted in the most consistent 

urobiome profiling. In relation to host depletion, individual (dog) but not extraction method 

drove overall differences in microbial composition. DNA Microbiome yielded the greatest 

microbial diversity in 16S rRNA gene sequencing data (p=0.0025) and shotgun metagenomic 

sequencing data (p=0.01), and maximized MAG recovery while effectively depleting host DNA 

(p=0.0039) in host-spiked urine samples. As proof-of-principle, we then mined MAGs for core 

metabolic functions and environmental chemical metabolism. We identified long chain alkane 
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utilization in two of the urine MAGs. Long chain alkanes are common pollutants that result from 

industrial combustion processes and end up in urine. This is the first study, to our knowledge, to 

demonstrate environmental chemical degradation potential in urine microbes through genome-

resolved metagenomics. These findings lay the foundation for future evaluation of urobiome 

function in relation to health and disease. 

 

Introduction 

Alterations in the urobiome (microbiota of the urinary tract) have been associated with 

bladder cancer,13,16 incontinence,20 urinary tract infection,18,44 and urolithiasis,11,141 but the study 

of the urobiome remains fraught with technical challenges. Historicaly, culturing was employed 

to identify microbes and microbial functions (e.g., antimicrobial resistance) present in urobiome. 

However, standard urine culture captures very few members of the urobiota.142  Expanded 

quantitative urine culturing methods (EQUC) have improved culture resolution to > 80% of taxa 

identified via 16S sequencing, but many urobiota remain uncultured, highlighting the need for 

effective culture-independent methods to profile urine microbes.142 Thus, more recent research 

has focused on molecular techniques for higher resolution and more comprehensive evaluation of 

the urobiome.  

Molecular methods for analyzing the urobiome remain challenging and have critical need 

for foundational technical research in the urobiome to overcome specific problems. First, urine 

generally contains low microbial biomass,55 making urine samples vulnerable to contamination 

by microbes or microbial DNA introduced during extraction or sequencing.54,107  Additionally, 

there are no evidence-based guidelines on minimum urine volumes for microbiome research, and 

studies on the urobiome range from using 0.5 mL17 to 50 mL of urine.119 Critically, there are 
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conditions (e.g., urinary tract inflammation), populations (e.g., pediatric), and model species (e.g, 

dogs, rodents) for which collecting 10 mL of urine or more in a single void may be infeasible. 

Finally, urine can contain a high burden of host cells, especially in diseased states such as urinary 

tract infection or bladder cancer,42,52,128 which can complicate DNA extraction, introduce noise in 

16S rRNA profiling,143 and overwhelm shotgun sequencing attempts with host reads rather than 

microbial reads. This then limits our ability to understand the functional potential of the 

urobiome and how these functions drive health and disease.  

Commercial DNA extraction methods and pubished protocols that include host cell and 

DNA depletion are available, but these methods have not been comparatively evaluated in urine. 

In this study, we assess four commercially available DNA extraction kits with host cell depletion 

(MolYsis Complete5; NEBNext Microbiome DNA Enrichment Kit; QIAamp DNA Microbiome 

Kit; and Zymo HostZERO) as well as a protocol using light-activated propidium monoazide, and 

compare them to a method with no host depletion (BiOstic Bacteremia). Host depletion has been 

successful in other low-microbial-biomass, high-host-biomass substrates including breast milk, 

oral, respiratory tract, and tumor samples.110,122,124,136,144 For example, in saliva samples, two host 

depletion methods reduced the host read proportion from 95% to < 30%, thereby improving the 

microbial resolution of shotgun metagenomics.124  Host depletion methods offer promise for 

improving characterization of urobiome structure and function, but require evaluation for 

efficacy in urine samples.  

The urobiome has been characterized via culture, whole genome sequencing of urine 

isolates, 16S rRNA sequencing, and shotgun metagenomic sequencing. However, few studies  

have reported metagenome-assembled microbial genomes (MAGs) and genome-resolved 

community analyses of the urobiota.21,27,94,135 Bioinformatic construction of MAGs from urine 
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would allow for more thorough functional reconstruction of the urobiome, including rare and 

unculturable taxa, revealing potentially important mechanistic links between the urobiome and 

disease in a genome-resolved fashion.30,145 

In this study, we tested several approaches for studying the urobiome using urine from 

healthy dogs. Dogs are a robust translational model for the human urobiome13,62,146,147 and for 

urinary tract diseases, including bladder cancer61 and urinary tract infection.62,146,147 We 

specifically set out to i) assess the impact of urine sample volume on urine microbial community 

profiles (Fig. S1), ii) determine how DNA extraction methods that include host depletion affect 

urobiome profiles (16S and shotgun metagenomics) (Fig. S2), iii) determine if we could 

sufficiently reconstruct metagenome assembled genomes (MAGs) of urine microbes from 

shotgun metagenomic data to then mine them for relevant microbial functions, and iv) assess if 

and how urine microbes metabolize environmental chemicals linked with urinary tract diseseases 

like bladder cancer.  

 

Methods 

Urine Volume Experiment 

The goal of this first experiment was to determine if microbial community profiles and 

the presence/abundance of microbial contaminants (e.g. from reagents, kits, etc.) differed by 

urine sample volume (Experimental Design: Fig. S1). 

 

Subject Recruitment 

Healthy dogs were recruited through the Ohio State University Veterinary Medical Center 

(IACUC: 2020A00000050). Each dog underwent a comprehensive, physical exam, blood work 
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(serum chemistry, complete blood count), urinalysis, and urine culture. All dogs were between 

one and ten years of age, weighed at least 20 lb with a body condition score of 4 or 5 (out of 9) 

and normal muscle condition. Dogs with a history, physical examination findings, clinical signs, 

or laboratory abnormalities consistent with  urinary tract, liver, kidney, or gastrointestinal disease 

were excluded. Dogs with any history of antibiotic use, chemotherapy, or radiation in the past 

three months were also excluded (Table S1). 

 

Urine Sample Collection & Preparation 

 Midstream, free-catch urine was collected and stored from 5 healthy dogs as described 

previously.148  Urine samples were fractionated into 0.1, 0.2, 0.5, 1.0, 3.0, and 5.0 mL aliquots 

prior to DNA extraction. Samples were centrifuged at 4°C and 20,000g for 30 minutes. 

Following centrifugation, supernatant was discarded, and the pellet was saved. The pellets were 

then used for DNA extractions. 

 

DNA Extraction & Quantification 

DNA was extracted using the QIAamp BiOstic Bacteremia DNA Kit (Bacteremia; 

Qiagen, Hilden, Germany), as described previously.22 This kit does not include host depletion 

steps. Briefly: pellets were resuspended in a lysis buffer and underwent two rounds of bead 

beating at 6m/s for 60s in an MP FastPrep-24 5G (MP Biomedicals, Solon, OH). Following bead 

beating, samples were cleaned using the kit’s inhibitor removal solution and processed according 

to manufacturer protocol. All centrifugation steps were conducted at 13,000 x g and, in the final 

step, samples were eluted twice through the silica membrane to maximize DNA yield. DNA 
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concentrations were quantified using a Qubit Fluorometer (ThermoFisher Scientific, Waltham, 

MA).  

 

16S rRNA Gene Amplicon Library Preparation and Sequencing 

DNA then underwent library preparation and sequencing at Argonne National Laboratory 

(Lemont, IL), as described previously.22 Briefly: we used primers 515F and 806R to amplify the 

V4 region of the 16S rRNA gene, followed by paired-end amplicon sequencing via Illumina 

Miseq (2x250). Sequences are available at NCBI Bioproject PRJNA1109516. 

 

16S rRNA Gene Amplicon Sequence Processing and Statistical Analyses 

Raw sequences were processed using QIIME2 v.2023-5. Reads were denoised and 

clustered into amplicon sequence variants (ASVs) using DADA2149 with the following 

parameters: 5 base pairs (bp) were trimmed from the 5’ end of each read and forward reads were 

truncated at 225 bp while reverse reads were truncated at 220 bp. Putative contaminant reads 

were identified and removed using the R package decontam57 with prevalence-based filtering 

(threshold = 0.5) (Table S2). Microbial contaminants are microbes or microbial sequences that 

get introduced during the extraction, library preparation, or sequencing process. These 

contaminants are putatively identified based on their tendency to be more prevalent or abundant 

in negative (n=6) control samples. Contaminant read counts were exported into a new table for 

analysis. Contaminant abundances were calculated by dividing each count by the total number of 

16S reads in each sample, and contaminant abundances between groups were statistically 

compared using the Friedman test. Taxonomy was assigned using the Silva 138 99% OTU 

515F/806R classifier. Sequences assigning to mitochondria or eukaryotes and unassigned 
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sequences were removed. A total of 37 samples were sequenced, and sequencing depth ranged 

from 1-30,408 reads. Samples with fewer than 4,125 reads were excluded from analyses, and 

remaining samples were sampled to even depth. This excluded all negative controls and 6 true 

samples which were largely low volume samples (3 samples from dog ArB (0.1 ml, 0.5 ml, 3 

ml), 1 sample from dog MS (0.1 ml), and two samples from dog FC (0.1 ml, 0.5 ml).   

 For all analyses, statistical significance was set at p<0.05. Microbial diversity (Shannon 

Index, Observed Features, and Faith’s Phylogenetic Diversity) and distance metrics (Bray Curtis, 

Jaccard, and UniFrac) were calculated and tested using QIIME2 and the R packages phyloseq 

and vegan.  Differences in bacterial diversity were assessed via t-test, Friedman test, or Kruskal-

Wallis test depending on the normality and pairing of the data, and pairwise comparisons were 

conducted using the Benjamini, Krieger, and Yekutieli procedure for controlling the false 

discovery rate (FDR) at Q=0.05.150 Differences in microbial composition were assessed via 

PERMANOVA, with Q=0.05 for FDR adjustments in pairwise comparisons.  

 

Host Depletion – 16S 

The goal of this experiment was to evaluate how DNA extraction methods that include 

host depletion steps affected bacterial DNA recovery and microbial community profiles 

(Experimental Design: Fig. S2). Subject recruitment occurred as described above.  

 

Urine Sample Collection, Host Cell Spiking, & DNA Extraction 

We collected mid-stream free catch urine from seven healthy dogs (Table S1). Urine was 

then aliquoted into two batches: one batch was spiked with canine cells (canine thyroid 

adenocarcinoma cells151 – CTAC) to a concentration of 75,000 cells/mL, to model a biologically 
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relevant host cell concentration in urine from healthy dogs.130 The other batch remained 

unspiked. Urine samples were then pelleted as described above. All urine samples then 

underwent DNA extraction using six different extraction methods: QIAamp BiOstic Bacteremia 

DNA Kit (Bacteremia; Qiagen, Hilden, Germany); MolYsis Complete5 (Molzym, Bremen, 

Germany); NEBNext Microbiome DNA Enrichment Kit (New England Biolabs, Ipswich, MA); 

QIAamp DNA Microbiome Kit (Qiagen, Hilden, Germany); HostZERO Microbial DNA Kit 

(Zymo Research, Irvine, CA); and a protocol using light-activated propidium monoazide 

described in Marotz et al., 2018.124 All of these methods except QIAamp Bacteremia included 

host depletion steps. In addition to urine samples, we also included a positive control sample 

(ZymoBIOMICS Gut Microbiome Standard, Zymo Research, Irvine, CA, Table S3) that we 

extracted with each method. The ZymboBIOMICS gut microbiome standard contains 21 

microbial strains, including 18 bacteria, 2 microbial eukaryotes, and one archaeaon. Samples 

were extracted according to the respective manufacturers’ protocol, with modifications described 

below. Each extraction run included a negative control that was sequenced along all samples 

(n=5). All extracted DNA was stored at -80°C until library preparation and sequencing. Unspiked 

samples underwent 16S rRNA gene amplicon sequencing; spiked samples underwent shotgun 

metagenomic sequencing (described under Host Depletion – Shotgun Metagenomics). Because 

16S rRNA gene amplicon sequencing targets bacterial sequences, host spiking would not reveal 

additional information in that setting. 

 

DNA Extraction Methods  

QIAamp BiOstic Bacteremia (Qiagen) 



 34 

 No host depletion is included in this protocol. Protocol is detailed above under Urine 

Volume Experiment. Prior to extraction, the ZymoBIOMICS Gut Microbiome Standard was 

centrifuged at 20,000g and the supernatant was saved. To maximize DNA recovery per 

recommendations from Zymo, the pellet was processed through the kit, and the supernatant was 

added to the MB spin column and centrifuged at 13,000g for 1 minute. The flow-through was 

discarded, and lysate from the pellet was added per the manufacturer’s protocol. 

 

Molzym MolYsis Complete 5 (Molzym MoYsis) 

This method uses a chaotropic buffer to selectively lyse host cells then removes host 

DNA using a DNAase prior to extracting microbial DNA. Samples were extracted following the 

manufacturer’s protocol.  

 

NEBNext Microbiome DNA Enrichment Kit (NEBNext) 

This method uses nonselective lysis followed by selective binding and depletion of CpG-

methylated host DNA in order to enrich microbial DNA recovery. Samples were first extracted 

using the QIAamp BiOstic Bacteremia DNA Kit and frozen at -80°C. Samples were defrosted 

and further extraction was performed according to the NEBNext manufacturer’s protocol. For 

samples that did not have detectable DNA after the initial extraction, a threshold of 0.05 ng/µL 

was used to calculate the MBD2-Fc Protein to Protein A magnetic bead value. A solution of 

MBD2-FC Protein and Protein A magnetic beads was prepared and aliquoted into each sample 

accordingly. To avoid DNA loss, purification was not performed at the end of the protocol 

(neither option A nor B). 
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QIAamp DNA Microbiome Kit (DNA Microbiome) 

This method uses selective osmotic lysis and Benzonase to degrade host cells and digest 

host DNA prior to extraction of microbial DNA. A Thermomixer at 600 rpm was used instead of 

end-over-end rotation. Prior to extraction, the ZymoBIOMICS Gut Microbiome Standard was 

centrifuged at 20,000g and the supernatant was saved. To maximize DNA recovery per 

recommendations from Zymo, the pellet was processed through the kit, and the supernatant was 

added to the MB spin column and centrifuged at 13,000g for 1 minute. The flow-through was 

discarded, and lysate from the pellet was added per the manufacturer’s protocol at step 12.  

 

Zymo HostZERO Microbial DNA Kit (Zymo) 

This method uses selective osmotic lysis followed by enzymatic degradation of DNA to 

degrade host cells and host DNA prior to extraction of microbial DNA. A FastPrep-24 5G bead 

beater was used for optimized lysis (Appendix D of manufacturer’s protocol). Extraction 

proceeded  following the manufacturer’s protocol. Samples were eluted with 20-26 uL 

ZymoBIOMICs DNase RNase-Free Water.  

 

Propidium Monoazide (PMA) 

This method uses PMA to intercalate the DNA of membrane-disrupted host cells, and 

light activation triggers covalent bonding between dsDNA and PMA, fragmenting the DNA. 

Samples were pretreated with 10uM PMA as described in Marotz et al. (2018), beginning with 

resuspending urine pellets in 200uL sterile water. After PMA treatment, samples were stored at -

20°C and then extracted using the Qiagen QIAamp BiOstic Bacteremia kit.  
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DNA Quantification and 16S rRNA Gene Amplicon Sequencing 

In both spiked and unspiked samples, we quantified total DNA via Qubit fluorometer and 

bacterial DNA via qPCR using universal 16S bacterial primers as described previously.22,118 

Bacterial concentrations were compared between groups using either Friedman tests or Kruskal-

Wallis tests. Finally, we analyzed microbial community profiles (16S rRNA sequencing) in each 

sample. Library preparation, sequencing, decontamination (Table S4), and analysis were 

conducted as described above in the Urine Volume Experiment with the following DADA2 

parameters: 5 bp were trimmed from the 5’ end of each read and forward reads were were 

truncated at 250 bp while reverse reads were truncated at 231 bp.  One urine sample (Dog SJ, 

Extraction Method: Molzym Molysis) appeared to be cross-contaminated with DNA from the 

ZymoBIOMICS Gut Microbiome Standard and was excluded from analysis (Fig S3). Statistical 

analyses were performed as described above (see Urine Volume Experiment) to assess 

differences by extraction method. 

 

16S rRNA Gene Amplicon Sequence Processing and Statistical Analyses 

16S sequencing processing and statistical analyses were performed as described above (see Urine 

Volume Experiment) to assess differences in microbial community diversity and composistion by 

extraction method. 

 

 

Host Depletion – Shotgun Metagenomics 

The goal of this experiment was to assess the efficacy of host depletion by extraction 

method and the viability of performing genome-resolved metagenomics on low biomass urine 
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samples. To do this, we used the same urine samples and the ZymoBIOMICs Gut Microbiome 

Standard positive control from the Host Depletion – 16S experiment described above and spiked 

them with host (canine) cells (Experimental Design: Fig. S2). DNA was extracted using the same 

6 methods as described above under Host Depletion -16S.  

 

Shotgun Metagenomic Library Preparation and Sequencing 

Samples underwent shotgun metagenomic sequencing at the Ohio State University 

Infectious Diseases Institute – Genomics and Microbiology Solutions  (IDI-GEMS) Laboratory. 

Metagenomic libraries were prepared following the Illumina (San Diego, CA) DNA Library Prep 

protocol with the following modifications: 1) Illumina’s (M) beads were substituted with (L) 

beads to obtain larger insert sizes, 2) 9 or 12 PCR amplification cycles were used based on 

sample DNA concentration (Qubit) (Fig. S4), and 3) library purification was performed using a 

1:1 sample to bead ratio. Samples were barcoded using IDT for Illumina UD Indexes. 

Tagmentation-based library construction has been validated and adopted as a standard operating 

procedure within the IDI-GEMS Laboratory to characterize the presence of microbes in samples 

and was recently shown to be an effective repeatable method for microbiome analysis of the 

human gut.152 Metagenomic libraries were sequenced targeting a minimum of 50 million 2x150 

base pair paired-end reads using an Illumina NextSeq2000. Negative extraction (n=5) and 

sequencing (n=2) controls were sequenced along with samples. Sequences were processed using 

the Ohio Supercomputer.153 Sequences are available at NCBI Bioproject PRJNA1123238. 

 

Metagenomic Sequence Processing and Statistical Analyses 
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Raw reads from the Illumina sequencer were quality filtered and trimmed of adapters 

using Trimmomatic.154 Host reads were quantified by mapping to a concatenated canine and 

feline genome with CoverM.155 Reads not assigned host were assumed microbial. Read counts 

were compared across extraction methods using the Friedman test. Taxonomy and abundance 

tables for microbial community profiling of metagenomes were generated using 

MetaPhlAn4.0156 and SingleM157 and SingleM condense. Metagenomes were de novo assembled 

into contigs using MEGAHIT158 and quality assessed with QUAST.159 Contigs were binned into 

metagenome-assembled genomes (MAGs) using portions of the MetaWRAP160 pipeline, which 

combines the binning methods MetaBat2,161 MaxBin2,162 and CONCOCT,163  and chooses the 

highest-quality representative of each bin from across these automated methods. dRep164 was 

used to dereplicate MAGs at 99% average nucleotide identity, and CheckM165 was used to 

evaluate MAGs for completeness and contamination. Only medium (>70% completion and 

<10% contamination) and high ( >95% completion and <5% contamination) quality MAGs were 

retained for analysis. GTDB-Tk166 was used to assign taxonomy to MAGs according to the 

Genome Taxonomy Database. Abundance tables of MetaPhlAn, SingleM, and MAG profiles 

were processed using decontam to identify putative contaminants. Because MetaPhlAn generates 

species-level taxonomic assignments, genera were also manually filtered: taxa commonly 

identified as kit contaminant genera56 present in at least one negative control sample were 

bioinformatically removed, even if they were not filtered by decontam (Table S5). Additionally, 

reads assigned to taxa from the Zymo Gut Microbiome Standard in urine samples profiled with 

MetaPhlAn or GTDB-Tk were considered putative cross-contaminants and were removed from 

those samples. Diversity and community composition metrics from metagenomic data as well as 

read-level statistics were analyzed using the R packages phyloseq,167 vegan,168 and tidyverse.169 

https://bitbucket.org/berkeleylab/metabat/src/master/
https://sourceforge.net/projects/maxbin/
https://github.com/BinPro/CONCOCT
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Alpha diversity was compared between kits using Friedman tests, and comparisons between dogs 

were performed using Kurskal-Wallis. Pairwise comparisons were conducted using the 

Benjamini, Krieger, and Yekutieli procedure for controlling the false discovery rate (FDR) at 

Q=0.05. Differences in microbial composition were assessed via PERMANOVA, with Q=0.05 

for FDR adjustments in pairwise comparisons. Genes in MAGs were annotated using DRAM.145 

 

Hydrocarbon Degradation Profiing 

As a proof-of-principal test, we then mined the MAGs for microbial functions of interest 

including urea utilization and environmental chemical degradation. These functions are relevant 

as urine is a urea rich environment, and environmental chemicals, such as polycyclic aromatic 

hydrocarbons have been associated with urinary tract diseases like bladder cancer. Urea 

utilization was identified by searching within the DRAM output. To idenitfy putative 

hydrocarbon degrading genes, we queried custom, curated, published Hidden Markov Model 

(HMM) profile databases: aerobic degradation of polycyclic aromatic hydrocarbon pathways 

(PAHp),170 and markers for the activation of various hydrocarbons (CANT-HYD).171 Coding 

genes called by DRAM were queried against these databases using the hmmsearch function of 

HMMER (version 3.3)172 and filtered to a maximum expect-value (e-value) of 1e-10. The full 

scores were compared to the score cutoffs specific to each gene in the database, i.e., gather 

cutoffs for PAHp and noise or trusted cutoffs implemented by CANT-HYD. Given the potential 

for high stringency in profiles generated largely from a few well-characterized model organisms, 

these cutoffs were relaxed to a minimum of 80% of the gather cutoff and 90% of the noise and 

trusted cutoffs for the respective databases. 
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Results   

Urine Volume Influences Contamination, Diversity, and Composition  

Current urobiome studies vary widely in the volume of urine used for profiling microbial 

communities. Moreover, low biomass samples, like urine, are highly susceptible to 

contamination by microbes or microbial DNA (hereafter referred to as “contaminants”) that can 

be introduced during the DNA extraction and sequencing process. As such, in this experiment, 

we first assessed the relationship between urine sample volume and microbial contaminant load. 

Contaminants, as identified by decontam (Table S2), were at significantly lower relative 

abundances in urine samples of greater volume (Fig. 1A, Table S6, p = 0.026, Friedman).  

We then evaluated bacterial diversity and composition by urine sample volume. 

Microbial richness, or the total number of unique ASVs in each sample, increased significantly 

with sample volume (Fig. 1B, S5, Table S7,  p = 0.015, Friedman). Sequencing reads also 

increased with urine sample volume; although, this difference was not significant (Fig. 1C, 

p=0.075, Friedman). 

Bacterial composition, however, did not differ significantly by urine sample volume but  

did differ significantly between dogs (Fig. 2A, S5, between dogs: p = 0.001, by urine sample 

volume: 0.98, Bray-Curtis, PERMANOVA), indicating that inter-dog differences overwhelmed 

differences based on sample volume. We next evaluated within-dog microbial composition by 

sample volume. Within each dog, the 3 mL and 5 mL samples were more consistent in microbial 

composition, while the 0.1, 0.2, 0.5 and 1 mL samples were more variable (Fig. 2B, S6). Based 

on this pattern, we grouped 3 mL and 5 mL urine samples into a “High” volume group, and the 

remaining urine volumes into a “Low” volume group. There was no significant difference in 

microbial composition between the High and Low groups (p=0.6, PERMANOVA); however, 
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High volume samples had significantly less variable microbial communities than Low volume 

samples, indicating that Low volume samples are more subject to stochasticity (Fig. 2C, S6; p = 

0.0017, PERMDISP). Based on these results, we proceeded to use 3 mL urine samples for 

subsequent experiments.  

 

Host Depletion – 16S 

 Healthy urine contains shed host epithelial cells at a relatively low abundance. However, 

in the presence of urinary tract disease (e.g., urinary tract infection, bladder cancer, bladder 

stones), host cell shedding can dramatically increase. There are multiple DNA extraction 

methods that incorporate host cell / host DNA depletion steps to facilitate microbial DNA 

recovery. In this experiment, we evaluated how six different extraction methods affected DNA 

concentrations and microbial community profiles. Extraction methods included: 

QIAamp BiOstic Bacteremia DNA Kit (Bacteremia); MolYsis Complete5 (Molzym); NEBNext 

Microbiome DNA Enrichment Kit; QIAamp DNA Microbiome Kit (DNA Microbiome) 

HostZERO Microbial DNA Kit (Zymo HostZERO); and a protocol using light-activated 

propidium monoazide described in Marotz et al., 2018.124 All methods except Bacteremia 

included host depletion steps. The Bacteremia extraction method was included for reference here 

because this method has already been validated as an optimal method for profiling canine urine 

microbial communitites,22 and it has been applied across multiple urobiome studies in humans 

and animals.13,18 However, it has not been tested against extraction methods that include host 

depletion steps, which we did here. 

We first compared how each extraction method impacted total and bacterial DNA 

concentrations derived from urine samples. We also compared DNA concentrations in urine 
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samples that were unspiked versus those spiked with host (canine) cells. While healthy mid-

stream free-catch urine contains a low abundance of host cells, we opted to spike additional 

canine cells into urine at biologically relevant concentrations to best assess the host depletion 

capabilities of each extraction method. In unspiked samples, Bacteremia and NEBNext 

recovered the greatest total DNA concentrations (host + microbial); although, this result was not 

significant (p=0.62, Friedman, Fig. 3A). Bacteremia, DNA Microbiome, and Molzym MolYsis 

demonstrated significantly greater bacterial DNA recovery than propidium monazide, Zymo 

HostZERO, and NebNEXT; although no pairwise comparisons were significant (overall 

p=0.014, Friedman) (Fig 3B).  In spiked urine samples, Bacteremia and NebNEXT recovered 

significantly greater total DNA than all other extraction methods (Fig. 3C, overall p<0.0001, 

Friedman, pairwise p between Bacteremia or NebNEXT and all other methods <0.05), while 

DNA Microbiome recovered the most bacterial DNA; although, overall differences in bacterial 

DNA concentrations by extraction method were only marginally significant (Fig. 3D, overall p = 

0.051, Friedman). There was no significant difference in total or bacterial DNA recovery by dog 

in unspiked or spiked samples (Fig. S7) 

We next assessed urine microbial diversity (16S) of unspiked urine samples by extraction 

method. Sequencing data from all samples extracted using NEBNext did not pass quality control 

steps149 and, as such, were excluded from analysis. Urine microbial diversity varied significantly 

by extraction method (Fig. 4, S8, Table S8, Microbial richness p = 0.0018, Shannon Entropy p = 

0.0091, Friedman). Specifically, urine samples extracted using Bacteremia and DNA 

Microbiome contained the greatest micobial richness (unique ASVs) and significantly greater 

microbial richness than samples extracted using Zymo HostZERO (Fig. 4A, Table S8, overall 

p=0.0018,  pairwise p=0.0041). Samples extracted via Bacteremia, DNA Microbiome, or 
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propidium monoazide also exhibited the greatest microbial diversity (Shannon Entropy), all three 

showing significantly greater microbial diversity than samples extracted via Molzym MolYsis 

(Fig 4B, Table S8, pairwise p=0.025, 0.028, and 0.017, respectively).  

Finally, we assessed urine microbial composition (16S) of unspiked urine samples by 

extraction method. Microbial composition (Bray-Curtis) differed significantly by dog but not by 

extraction method (Fig 4C, S8, Bray-Curtis, p=0.001, PERMANOVA). When composition was 

weighted by phylogeny (relatedness of microbes between samples; Unweighted UniFrac), 

composition differed significantly by both extraction method and by dog (Fig 4D, S8, 

Unweighted UniFrac, extraction method p=0.002, dog p=0.001, PERMANOVA). Urine samples 

extracted using Bacteremia, DNA Microbiome, and Molzym MolYsis exhibited more similar 

microbial composition as compared to samples extracted with propidium monoazide or Zymo 

HostZERO (Fig. 4E, F, G, Table S9, Bray-Curtis p=0.037, Jaccard p=0.034, Unweighted 

UniFrac p=0.0071, Friedman).  

 

Host Depletion – Shotgun Metagenomics 

 We next assessed host depletion efficacy of each extraction method using shotgun 

metagenomic sequencing performed on urine samples spiked with host (canine) cells. Samples 

averaged 28.2 million paired-end reads per sample (range: 1399-80 million reads, SD: 16.7 

million reads). There was no significant difference in the total number of reads obtained per 

sample by extraction method (Fig. 5A p=0.12, Friedman). However, the total number of 

microbial reads did vary significantly by extraction method (Fig. 5B, p=0.0039, Friedman), with 

DNA Microbiome, Molzym MolYsis, and Zymo HostZERO yielding a significantly greater 

number of microbial reads compared to Bacteremia, which includes no host depletion steps (all 
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pairwise p=0.01). The proportion of total microbial reads also varied significantly by extraction 

method with Molzym MolYsis and ZymoHostZERO yielding the greatest proportion of 

microbial reads (Fig. 5C, overall p<0.0001, pairwise p<0.02, Friedman). In terms of host reads, 

each method yielded the following (on average): Bacteremia, 82% host reads; DNA Microbiome, 

78%;  Molzym MolYsis, 29%; PMA, 81%; Zymo HostZERO, 30%. Finally, we quantified the 

abundance of contaminant reads by extraction method and found that DNA Microbiome samples 

contained the lowest abundance of contaminant reads (Fig 5D, overall p=0.014, Friedman), 

although contaminant data ranges from zero to 100 percent. 

 To determine whether efficacy in host depletion translated to improved capture of the 

urobiome, we employed MetaPhlaAn4 and SingleM - computational tools used for profiling 

microbial communities from marker genes found in metagenomes. Urine microbial diversity 

varied significantly by extraction method (Fig. 6A, B, MetaPhlAn, Observed Species p=0.011, 

Shannon entropy p=0.002, Friedman), with DNA Microbiome yielding the greatest number of 

observed microbial species and significantly more species than all other extraction methods (all 

pairwise p=0.015) except Molzym MolYsis. Urine microbial composition did not differ 

significantly by extraction method but did differ significantly by dog (Fig. 6C, D, MetaPhlAn4, 

By extraction method: Jaccard p=0.67, Bray-Curtis p=0.96; By dog: Jaccard p=0.001, Bray 

Curtis p=0.001, PERMANOVA), indicating that interindividual variation overwhelmed 

microbial community differences due to extraction method. SingleM largely recapitulated the 

MetaPhlAn results (Fig. S9).  

 We then assessed the viability of performing genome-resolved metagenomics on low 

biomass urine samples. To do this, we assembled metagenome-assembled genomes (MAGs) 

within each sample (Assembly metrics for each sample: Fig. S10). We generated a total of 26 
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unique MAGs: 11 were bacteria found in the ZymoBIOMICs Gut Microbiome Standard (Table 

S3), and five were derived from urine samples (Fig. 7); 10 were probable contaminants (Table 

S5). The five E. coli strains present in the standard assembled into a single MAG. The greatest 

number of urine-derived MAGs (n=4) were identified in DNA Microbiome samples while three 

or fewer MAGs were identified in all other extraction methods. The total number of MAGs did 

not vary by extraction method (Fig. S11, p=0.3, Friedman); although, fewer contaminant MAGs 

arose from DNA Microbiome samples as compared to other extraction methods (Fig. S11, 

overall p=0.018, Friedman, no pairwise significant). 

 Next, we compared the microbial taxonomic profiles generated by 16S rRNA sequencing, 

shotgun metagenomic sequencing (MetaPhlAn4), and genome-resolved metagenomics (MAGs) 

(Fig. 7). Each method is fundamentally different and employs different reference databases for 

taxonomy assignment. However, all five urine-derived MAGs also appeared in the top twenty 

most abundant taxa in the shotgun metagenomics and 16S datasets. Notably, Arcanobacterium is 

not present in the MetaPhlAn4 reference database, but was identified in the shotgun 

metagenomic data through the SingleM reference database (Fig S9). Additional top 20 genera 

common between the metagenomics and 16S datasets include: Peptacetobacter/Peptoclostridium 

spp. and Blautia spp.  

 Finally, we compared our capture of the ZymoBIOMICs Gut Microbiome Standard 

community across extraction, sequencing, and bioinformatic methods. The Standard contained 

21 microbial taxa including 18 bacterial strains, 1 Archaea, and 2 microbial eukaroyotes at 

differing and biologically relevant abundances. Amongst the bacterial strains, there were 5 

closesly related strains of E. coli. In the 16S dataset, we were able to detect a total of 12/21 taxa, 

all of which were present at ≥0.1% abundance in the Standard. Expectedly, we did not detect the 
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2 microbial eukaryotes (which do not encode a 16S rRNA gene). We were also unable to 

differentiate the 5 E. coli strains in the Standard as this is not feasible with amplicon sequencing. 

We also did not detect the 4 taxa found at ≤0.01% abundance in the Standard 

(Methanobrevibacter smithii, Salmonella enterica, Enterococcus faeecalis, Clostrdium 

perfringens). In the shotgun metagenomic data profiled using MetaPhlAn4, we detected a total of 

14/21 taxa in the Standard including the 2 microbial eukaryotes. As with with 16S sequencing, 

we were able to detect all taxa present at ≥0.1% abundance in the Standard and not able to detect 

the 4 taxa found at ≤0.01% abundance in the Standard. MetaPhlan4 did not distinguish the 5 E. 

coli strains. We were further able to assemble a total of 11 MAGs from the shotgun metagenomic 

data. This included all taxa at ≥1.5% abundance, excluding the eukaryote Candida albicans, 

which was found at 1.5% abundance but for which we were not able to assemble a MAG. We 

assembled a single E. coli MAG (rather than the expected 5 unique E. coli strains). The threshold 

we employed for MAG dereplication (99% ANI) did not allow us to distinguish between the 5 E. 

coli strains; therefore, as with our 16S data, we only detected “one” E. coli taxon. A higher ANI 

(99.9%) and a tool other than dRep would be required for strain differentiation. We were not able 

to assemble a MAG for M. smithii which was present at 0.1% abundance and detected in 16S and 

shotgun metagenomic sequencing. Across methods (16S, shotgun metagenomics, MAGs), 

samples extracted using Bacteremia and DNA Microbiome most closely matched the expected 

microbial taxonomic composition of the Standard (Fig S12).  

 

Functional Profiling of Urine Microbes 

Relatively few studies have performed shotgun metagenomics in urine, and one, to our 

knowledge, has generated MAGs, which has limited our understanding of the functional 
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potential of the urobiome. In this study, as proof-of-concept, we mined the urine-derived MAGs 

for key functions. We first identified core metabolic pathways (e.g., glycolysis, citrate cycle) 

across all MAGs (Fig. S13A). Then we identified core pathways associated with carbohydrate, 

nitrogen, acid, and alcohol metabolism and searched for pathways that could indicate host 

adaptation, including urease degradation. (Fig. S13B). 

Next, we looked for microbial metabolic pathways associated with environmental 

chemical metabolism. There are a number of environmental chemicals (e.g., arsenic, polycyclic 

aromatic hydrocarbons) that have been linked to urinary tract diseases like bladder cancer.173 The 

kidney filters many of these toxicants out of the blood and into the urine. Therefore, it is 

important to understand if and how urine microbes metabolize these chemicals and how that 

could impact disease risk. As such, we mined the urine MAGs for pathways associated with 

polycyclic aromatic hydrocarbon (PAH) and long-chain alkane degradation. PAHs and long-

chain alkanes are common environmental pollutants produced during the combustion process 

and found in vehicle exhaust and industrial output.175–177 We did not identify genes (>80% gather 

cutoff) associated with PAH degradation but we did identify genes for long chain alkane 

utilization: ladB (91% of noise cutoff) in Bacillus_A cereus and ladA alpha (97% of trusted 

cutoff) in Staphylococcus pseudintermedius. Moreover, in B. cereus, we identified a full 

metabolic pathway starting with an alkanesulfonate monooxygenase (ssuD) that desulfonates 

organosulfonates to yield sulfite and an aldehyde (Fig. 8A). The presence of this pathway 

supports the possibility that B. cereus may be capable of utilizing a variety of hydrocarbons as 

potential carbon sources or electron donors. In S. pseudintermedius, we did not identify a 

complete metabolic pathway for long-chain alkane degradation but the presence of alcohol and 

aldehyde dehydrogenase protein families suggest that long chain alkanes activated by ladA may 
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be further oxidized by this organism (Fig. 8B). Taken together, these results suggest that urine-

derived microbes can metabolize environmental chemicals, and that microbial metabolism merits 

further investigation in relation to urinary tract disease risk.  

 

Discussion  

Studies of the urobiome are poised to reveal key insights in urinary tract health and 

disease; however, validation of approaches to profiling the urine microbial community are 

urgently needed. Here, we tested urine sampling volume and DNA extraction methods with host 

depletion using urine from healthy dogs. We identified a minimum urine volume threshold for 

for 16S and shotgun metagenomic sequencing, and we report on best host depletion methods for 

obtaining representative and reproducible microbial profiles. Finally, we demonstrate that MAG 

assembly is feasible in low-microbial, high-host biomass urine samples, and that even in this 

limited study, we were able to gain novel functional insights into urine-associated microbes. 

In relation to urine volume, we observed that greater urine volumes (≥ 3 mL) resulted in 

improved microbial community capture, increased read depth (although not significant), reduced 

stochastisticity / variability between samples, and reduced contaminant abundance (Fig. 1, 2, S5, 

S6). The largest urine volume tested in this study was 5 mL. It is possible that urine volumes >5 

mL may further increase recovery of rare taxa, though previous work has suggested that urine 

sample volume does not necessarily influence total biomass or sequencing depth.110 Notably, one 

recent review anectodally reccomended 30 mL-50 mL of catheter-collected urine for 16S 

profiling.29 Our study focused on mid-stream free catch urine, which can include microbes from 

the urethra or skin in addition to the bladder, and would therefore contain a higher microbial 

biomass than catheter-collected samples,55 which would be more representative of the bladder 



 49 

microbiota alone. Thus, it is reasonable to suggest that greater urine volumes would be advisable 

for urobiome studies that utilize catheter-collected urine; although further study is warranted. 

We next assessed the impact of DNA extraction methods with and without host depletion 

on multiple sample types (unspiked and host-spiked urine) and sequencing platforms (16S 

rRNA, shotgun metagenomics). In unspiked (low host biomass) urine, Bacteremia (no host 

depletion) and DNA Microbiome (host depletion) consistently yielded the greatest DNA 

concentrations and highest microbial diversity (16S) (Fig. 3, 4). Additionally, DNA Microbiome 

and Bacteremia-extracted samples were the most similar compositionally, and both of these 

methods most accurately captured the taxa and abudances of the ZymoBIOMICs Gut 

Microbiome Standard (Fig. S12). Notably, we were only able to reliably capture taxa that were 

found at ≥0.1% abundance in 16S and shotgun metagenomic data, and generate MAGs from taxa 

found at ≥1.5% abundance. As observed in other studies, interindividual variation (between 

dogs) generally outweighed differences due to extraction method.22,110 However, when we 

employed phylogeny-aware metrics (Unweighted UniFrac), we saw significant differences in 

microbial composition by extraction method and by dog, suggesting that some host depletion 

methods bias microbial community profiles through preferential lysis of specific bacterial clades. 

Importantly, Bacteremia and DNA Microbiome have been identified as accurate and effective 

DNA extraction methods in other high-host, low-microbial biomass substrates (i.e., nasal swabs, 

vaginal swabs, urine, biopsies).110,125,127,178 

In host-spiked (high host biomass) urine samples, DNA Microbiome, Zymo and Molzym 

yielded the greatest percent of microbial reads (22, 70, and 71% respectively) (shotgun 

metagenomics, Fig. 5). DNA Microbiome also recovered the greatest microbial diversity 

(MetaPhlAn4, Fig. 6). Notably, Bacteremia, with no host depletion, was not effective in 
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capturing the microbial community in high host biomass urine. As in our 16S analysis, 

interindividual variation (between dogs) overwhelmed differences by extraction method, though 

we did not assess the MetaPhlAn4-profiled communities according to phylogenetic differences in 

composition. The Zymo HostZERO kit did not perform as well in this study as it has in studies 

on other substrates (respiratory, intestinal biopsy), suggesting that certain host depletion 

strategies may be differentially effective by substrate.144,178 Other technologies, not tested in this 

study, may also prove effective at microbial enrichment, including adaptive sequencing179 and 

selective mechanical lysis.136 

Important insights have been revealed via read-level analysis of shotgun-sequenced 

urobiota. For example, in one study, shifts in microbial functional potential were observed in 

longitudinally collected urine samples of individuals with and without urinary tract symptoms.4 

In another study, microbial virulence factor genes were linked to a distinct subset of individuals 

with urinary tract infections.25 Whole-genome sequencing of cultured urine isolates has also 

revealed key insights: For example, genes enriched in strains of E. faecalis isolated from urine, 

were not found in gut or blood isolates, suggesting unique adaptations for the urinary tract 

niche.94 MAG generation offers advantages over read-level analyses and culture as it uniquely 

provides critical, high-resolution information on specific microbes and their potential functions, 

without a dependence on culture.180 Thus, we attempted de novo assembly of MAGs from our 

urine samples as proof-of-concept for genome-resolved metagenomics in urine. We assembled a 

total of five high quality (>90% complete, <10% contaminated), urine-derived microbial 

genomes: B. cereus, S. pseudintermedius, S. canis, and two unassigned Arcanobacterium spp. 

Notably, this study focused on mid-stream free catch urine samples which includes microbes 

from the bladder, urethra, and skin. Additionally, this study only included a small number of 
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healthy individuals and was not designed to capture the breadth of urobiome diversity. To our 

knowledge, this is among the first reports of MAGs assembled from urine. The MAGs we 

assembled have all been identified as members of the urobiota (or as potential uropathogens) in 

other studies.16,22,181 One other group reports draft genomes of urine-associated microbes from 

voided human urine samples ranging in completeness from 17-98% (median 36.7%).135 They 

assessed genomic functional potential in urolithiasis- or health-associated urine samples by 

annotating assemblies at the contig level, followed by mapping called genes to both the study’s 

draft genomes and a reference database. This allowed for some of the genes that were 

differentially abundant in the metagenomes to be attributed to specific taxa but differs from our 

strategy of directly annotating MAGs for functional potential.  

Although the overall number of MAGs we recovered was low, we note that DNA 

Microbiome yielded a greater number of urine-derived MAGs and generally fewer contaminant 

MAGs as compared to all other extraction methods. Importantly, the fact that we were able to 

assemble 11 MAGs from contaminants (i.e. microbial DNA present in reagents and identifiable 

in negative control samples) highlights the need for rigorous negative controls as well as 

thorough bioinformatic decontamination to avoid spurious results. Well validated tools such as 

decontam57,107 as well as an awareness of common “kit-ome” taxa56 are critical for microbiome 

studies of low biomass substrates.  

After assembling MAGs, we went on to identify key functions in each MAG including 

core carbon and nitrogen metabolic pathways, urea metabolism, and environmental chemical 

degradation. As urea is a major component of urine,182 the identification of full urea-degrading 

complexes (ureABCEFGD) in 2 MAGs (B. cereus and S. pseudintermedius) in 3 the 7 dogs via 

MAG-mapping (Fig. S13) indicates that urea is a likely nitrogen source for host-adapted 
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urobiota. As for environmental chemical degradation, there are well-established links between 

environmental chemical exposures and urinary tract diseases like bladder cancer.64,173 In fact, a 

recent meta-analysis reported that bacteria associated with polycyclic aromatic hydrocarbon 

(PAH) degradation were found at increased abundances in the urine of individuals with bladder 

cancer.16 While we did not find evidence for microbial PAH degradation in this limited study on 

healthy dogs, we did find evidence for long-chain alkane degradation in 2 urine-derived MAGs 

(B. cereus and S. pseudintermedius) found in 3 of the 7 dogs. Long-chain alkanes are common 

environmental pollutants that result from industrial combustion processes 175,183 and can be found 

in urine.184,185 Our findings novelly demonstrate that 2 urine-derived MAGs may utilize long-

chain alkanes as a substrate for metabolism. This proof-of-concept study highlights the 

importance of understanding if and how host-associated microbes may be metabolizing 

environmental chemicals, and the potential impacts of this metabolism on host health or in 

diseases like bladder cancer.88–90 

 

 

Conclusions 

Key takeaways from this study: 

1. Urine sample volumes of ≥ 3 mL produced the most consistent urobiome profiles in dogs, 

which are a robust model for the human urobiome.  

2. Microbial taxa found at ≥ 0.1% abundance were reliably detected via 16S and shotgun 

metagenomic sequencing, but MAG assembly was only feasible at greater abundances (≥ 

1.5%), and strain differentiation in metagenomic data may require a higher ANI threshold 

than employed in this study (99% ANI was used in this study).  
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3. Generally, interindividual differences in urobiome profiles overwhelmed differences due to 

DNA extraction method. 

4. In urine samples with low host biomass (unspiked), the QIAamp BiOstic Bacteremia kit 

(with no host depletion) yielded the greatest microbial DNA concentrations and highest 

microbial diversity (e.g. captured more / rarer urine taxa).  

5. In urine samples with high host biomass (host-spiked), the QIAamp DNA Microbiome kit 

yielded the greatest microbial DNA concentrations, highest microbial diversity, and greatest 

number of identified metagenome-assembled genomes (MAGs), while effectively depleting 

host DNA.  

6. MAG assembly is feasible but limited in urine samples. Maximizing urine volume to increase 

microbial reads would likely improve MAG recovery. Gene-based queries to assess 

functional potential of the urobiome are feasible with shotgun metagenomic data in the 

absence of MAG assembly; although, linking function (genes) to microbial species is more 

challenging with this approach. 

7. Urine derived MAGs revealed evidence of urea and environmental chemical (long chain 

alkane) degradation, both of which are relevant for understanding how microbes live and 

adapt to the urine environment, as well as how they can potentially modulate environmental 

exposures in a way that could impact host health.  

Urobiome research trails the study of other host-associated microbiomes,142 and continued 

optimization of urobiome profiling is critical to enable the mechanistic and functional insights 

necessary for understanding how these microbes impact host health.  
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Data Availability Statement 

Raw 16S rRNA gene amplicon sequences are available on the Sequence Read Archive via 

BioProject accession number PRJNA1109516. Shotgun metagenomic sequences are likewise 

available via PRJNA1123238. Sequence processing scripts are available on Github. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://github.com/zjlewis19/Evaluating-Urine-Volume-and-Host-Depletion-to-Enable-Shotgun-Metagenomics-of-the-Urobiome/blob/main/README.md
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Table S1. Demographics of dogs enrolled in this study. MN = male neutered, FS = female 
spayed. Experiment 1: Urine Volume Experiment; Experiment 2: Host Cell Removal - 16S; 
Experiment 3: Host Cell Removal - Shotgun Metagenomics. 
 

Demographics of Dogs Enrolled in this Study 

Dog ID Sex Age (years) Breed Experiments 

ArB MN 5 Australian Shepherd 1,2,3 

FC MN 1 Mixed Breed 1 

HF FS 6 Borzoi 1,2,3 

IO FS 3 Dalmatian 2,3 

KH FS 5 Mixed Breed 1,2,3 

LM FS 1.5 Dalmatian 2,3 

MS FS 4 Mixed Breed 1,2,3 

SJ FS 5 Mixed Breed 2,3 
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Table S2. Putative microbial contaminants in Urine Volume Experiment (16S). 
Contaminants were identified using the R package decontam and bioinformatically removed 
from the dataset. 
Feature ID Contaminant taxa 

1c400e9dc5ae955f121df5ba8bac63a1 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Xanthomonadales; Family: 
Xanthomonadaceae; Genus: Stenotrophomonas; Species: uncultured_organism 

df417ebb162691a49c1c89d12423aea2 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Enterobacterales; Family: 
Enterobacteriaceae 

f9a27fcf92575fe1239dbef43e15b33f 
Phylum: Firmicutes; Class: Bacilli; Order: Staphylococcales; Family: Staphylococcaceae; 
Genus: Staphylococcus 

6424b515572ba4888d5df4d898783859 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Burkholderiales; Family: 
Burkholderiaceae; Genus: Burkholderia-Caballeronia-Paraburkholderia 

40dd68437b49789dd596779921fe6e72 
Phylum: Proteobacteria; Class: Alphaproteobacteria; Order: Sphingomonadales; Family: 
Sphingomonadaceae; Genus: Sphingomonas 

8e825741e31f18ea748eb119ece60cca 
Phylum: Actinobacteriota; Class: Actinobacteria; Order: Micrococcales; Family: 
Micrococcaceae; Genus: Micrococcus 

6ccc82f2cdebff500a2835667202c23a 
Phylum: Actinobacteriota; Class: Actinobacteria; Order: Corynebacteriales; Family: 
Corynebacteriaceae; Genus: Corynebacterium 

9cc98843fbce7f87c738e44318be4a41 
Phylum: Firmicutes; Class: Bacilli; Order: Lactobacillales; Family: Streptococcaceae; Genus: 
Streptococcus 

40e0477d5940487d1bb061ae4008820f 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Pseudomonadales; Family: 
Moraxellaceae; Genus: Acinetobacter 

134e1c859ff430e9a868dde840931a76 
Phylum: Proteobacteria; Class: Alphaproteobacteria; Order: Rhizobiales; Family: 
Xanthobacteraceae; Genus: Bradyrhizobium 

28699416c0922cac60ff5c0a536cc0d1 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Xanthomonadales; Family: 
Xanthomonadaceae; Genus: Stenotrophomonas 

bbcd46ffae7d50084e7e4872d96f4635 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Burkholderiales; Family: 
Burkholderiaceae; Genus: Ralstonia 

cb8b7b696bdf8544a1fe364c97f20f7e 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Pseudomonadales; Family: 
Pseudomonadaceae; Genus: Pseudomonas 

6200b82e17a325c07de4aff7539aa429 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Pseudomonadales; Family: 
Moraxellaceae; Genus: Acinetobacter 

0f8d1a9bf26751d9354af3481d68ff3b 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Enterobacterales; Family: 
Enterobacteriaceae 

7cab79099421ae87e9e9377e8c8e3865 
Phylum: Firmicutes; Class: Bacilli; Order: Lactobacillales; Family: Carnobacteriaceae; Genus: 
Atopostipes; Species: uncultured_bacterium 

3db347c9182e9467089c6e3ef7f0ee30 
Phylum: Firmicutes; Class: Bacilli; Order: Lactobacillales; Family: Streptococcaceae; Genus: 
Streptococcus 

fda6f6480bbcd0b84dc2e305071f386f 
Phylum: Actinobacteriota; Class: Actinobacteria; Order: Corynebacteriales; Family: 
Corynebacteriaceae; Genus: Corynebacterium 

6e2d8a4dc9fb4ea123accb37580db227 
Phylum: Actinobacteriota; Class: Actinobacteria; Order: Micrococcales; Family: 
Micrococcaceae; Genus: Kocuria 

2821459d1c7f745877ba92aeac150396 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Aeromonadales; Family: 
Aeromonadaceae; Genus: Aeromonas 

47ee71a277a3cfc3e9d45f014967e996 
Phylum: Actinobacteriota; Class: Thermoleophilia; Order: Solirubrobacterales; Family: 
Solirubrobacteraceae; Genus: Solirubrobacter 

c68f1f38b3805f6b2d15d9c1e98f9eba 
Phylum: Proteobacteria; Class: Alphaproteobacteria; Order: Rickettsiales; Family: 
Mitochondria; Genus: Mitochondria; Species: Fusarium_circinatum 

63031312963d7d298d51d23cd2d73b48 
Phylum: Bacteroidota; Class: Bacteroidia; Order: Chitinophagales; Family: Chitinophagaceae; 
Genus: uncultured 

c86f2e387e9b317f9870c291a94eb8ee 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Pseudomonadales; Family: 
Pseudomonadaceae; Genus: Pseudomonas 

10b841456150ed0fd1db7159bea33075 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Pseudomonadales; Family: 
Pseudomonadaceae; Genus: Pseudomonas 

6ddfb30a4e08d68496956b75ec1d0fc8 
Phylum: Actinobacteriota; Class: Actinobacteria; Order: Propionibacteriales; Family: 
Propionibacteriaceae; Genus: Cutibacterium 

52bdaafae05f38d1f2fed2ede1bd9f48 
Phylum: Proteobacteria; Class: Alphaproteobacteria; Order: Sphingomonadales; Family: 
Sphingomonadaceae; Genus: Sphingopyxis 

bfdb053fde342059816bd87ae6bb0b06 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Burkholderiales; Family: 
Comamonadaceae 

ed0f768bfe644821ddd8c793eb0abbf6 
Phylum: Firmicutes; Class: Clostridia; Order: Clostridiales; Family: Clostridiaceae; Genus: 
Clostridium_sensu_stricto_1; Species: uncultured_Firmicutes 

ad7a2fa1cf79ee2e2023b0441a2cd776 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Burkholderiales; Family: 
Comamonadaceae 
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0a31ab523c43d207ae43623ee8505cc5 
Phylum: Actinobacteriota; Class: Actinobacteria; Order: Micrococcales; Family: 
Promicromonosporaceae; Genus: Cellulosimicrobium 

0fdbbedd6cef715fe7af5822ac39b371 
Phylum: Actinobacteriota; Class: Actinobacteria; Order: Corynebacteriales; Family: 
Corynebacteriaceae; Genus: Corynebacterium; Species: Corynebacterium_amycolatum 

af754e7ad6102e759210305b677c0a34 
Phylum: Proteobacteria; Class: Gammaproteobacteria; Order: Burkholderiales; Family: 
Comamonadaceae; Genus: Schlegelella; Species: uncultured_bacterium 

5e47104de80af59694f2b6672be66b63 
Phylum: Acidobacteriota; Class: Acidobacteriae; Order: Subgroup_2; Family: Subgroup_2; 
Genus: Subgroup_2; Species: uncultured_bacterium 

1228e61c5252626be981be89429855ed 
Phylum: Chloroflexi; Class: AD3; Order: AD3; Family: AD3; Genus: AD3; Species: 
uncultured_bacterium 

b5a5ff4ff80d50e34212a89a08f0ba7c Domain: Bacteria 

4875adab4a0fb1d62106f2e927583028 
Phylum: Firmicutes; Class: Clostridia; Order: Peptostreptococcales-Tissierellales; Family: 
Anaerovoracaceae; Genus: Family_XIII_AD3011_group 

dfdc712087293952b718d5e554968ed5 
Phylum: Firmicutes; Class: Bacilli; Order: Erysipelotrichales; Family: Erysipelotrichaceae; 
Genus: Dubosiella; Species: uncultured_bacterium 
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Table S3. Taxa present in the ZymoBIOMICS Gut Microbiome Standard. Bold indicates 
that we were able to assemble a MAG for that taxon. 5 E. coli strains are in the standard, but our 
methods assembled them into a single MAG.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxon Expected Abundance (%) 
Bacteroides_fragilis 14 
Faecalibacterium_prausnitzii 14 
Roseburia_hominis 14 
Veillonella_rogosae 14 
Bifidobacterium_adolescentis 6 
Fusobacterium_nucleatum 6 
Limosilactobacillus_fermentum 6 
Prevotella_corporis 6 
Akkermansia_muciniphila 1.5 
Candida_albicans (microbial eukaryote) 1.5 
Clostridioides_difficile 1.5 
Saccharomyces_cerevisiae (microbial eukaryote) 1.4 
Methanobrevibacter_smithii (Archaea) 0.1 
Salmonella_enterica 0.01 
Enterococcus_faecalis 0.001 
Clostridium_perfringens 0.0001 
Escherichia_coli (JM109) 2.8 
Escherichia_coli (B-3008) 2.8 
Escherichia_coli (B-2207) 2.8 
Escherichia_coli (B-766) 2.8 
Escherichia_coli (B-1109) 2.8 
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Table S4. Putative microbial contaminants in Host Cell Removal – 16S experiment. 
Contaminants were identified using the R package decontam and bioinformatically removed 
from the dataset. 
 
Feature ID Contaminant Taxa 

17e5d4820ffb665283773524f5d33c47 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Burkholderiales;   Family: 
Neisseriaceae;   Genus: uncultured;   Species: uncultured_rumen 

29dcc2501cb455324526f383a42716d6 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Moraxellaceae;   Genus: Acinetobacter 

5ce05abbdd174f9ba4373413e4946749 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Lactobacillales;   Family: Lactobacillaceae;   Genus: 
Lactobacillus;   Species: Lactobacillus_fermentum 

ccc22cbde967b46c238aa946097cf3bb 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Pseudomonadaceae;   Genus: Pseudomonas 

f65b0d716de2efe63a6552a7971aa5d2 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Moraxellaceae;   Genus: Acinetobacter 

622f6bc41a295acae9e913220085723a 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Staphylococcales;   Family: Staphylococcaceae;   Genus: 
Staphylococcus 

207b76aa7c4003ee7d1dab5ad6cd27b0 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Aeromonadales;   Family: 
Aeromonadaceae;   Genus: Aeromonas 

c02b86c7007265d5042b2c6acc0a414c 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Xanthomonadales;   Family: 
Xanthomonadaceae;   Genus: Stenotrophomonas;   Species: uncultured_organism 

6c5c6a22330a148d44274346605dd3a5 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Enterobacterales;   Family: 
Yersiniaceae 

b3822a12e68e84e0d10cb53ccedcfae3 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Enterobacterales;   Family: 
Enterobacteriaceae 

2d4a85134826aec743e9f9305a4d6910 
  Phylum: Bacteroidota;   Class: Bacteroidia;   Order: Flavobacteriales;   Family: Weeksellaceae;   Genus: 
Empedobacter 

e8ac76b63bdef3a480011a9e653fb8e4 
  Phylum: Actinobacteriota;   Class: Actinobacteria;   Order: Micrococcales;   Family: Micrococcaceae;   
Genus: Glutamicibacter 

28ff515b3e10dfeb248ea2c7ffc3e304 
  Phylum: Bacteroidota;   Class: Bacteroidia;   Order: Flavobacteriales;   Family: Weeksellaceae;   Genus: 
Empedobacter;   Species: Wautersiella_falsenii 

37550dffd56e370f65376f114b0030ce 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Xanthomonadales;   Family: 
Xanthomonadaceae;   Genus: Stenotrophomonas 

586e552517834804774f5130ef9dfdce 
  Phylum: Proteobacteria;   Class: Alphaproteobacteria;   Order: Rhizobiales;   Family: Beijerinckiaceae;   
Genus: Methylobacterium-Methylorubrum 

444365067d3dd46681d9bb2cbc4e23cb 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Pseudomonadaceae;   Genus: Pseudomonas 

a6780dab721cda3bec0d4caa07af1687 
  Phylum: Proteobacteria;   Class: Alphaproteobacteria;   Order: Rhizobiales;   Family: Rhizobiaceae;   
Genus: Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium 

eef0a22ea2ba0f3c3f1d5cee3499e583 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Lactobacillales;   Family: Streptococcaceae;   Genus: 
Streptococcus 

de9c3c38a0a1aa5fac7d0fe8b73c42d8 
  Phylum: Proteobacteria;   Class: Alphaproteobacteria;   Order: Caulobacterales;   Family: 
Caulobacteraceae;   Genus: Brevundimonas 

4c5fb2a0a2fa32362a103ed4741de4fa 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Enterobacterales;   Family: 
Morganellaceae;   Genus: Providencia 

a3aa427840fdac7d5c02cc7b8b447c6f 
  Phylum: Actinobacteriota;   Class: Actinobacteria;   Order: Micrococcales;   Family: Micrococcaceae;   
Genus: Micrococcus 

6481d93cfe4f3bf9e3872476b47b8eea 
  Phylum: Bacteroidota;   Class: Bacteroidia;   Order: Flavobacteriales;   Family: Weeksellaceae;   Genus: 
Chryseobacterium 

9859ab1943a57665f998be2fe395cd01 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Moraxellaceae;   Genus: Enhydrobacter 

4b95e337657bf8abde13284efb6dd70a 
  Phylum: Bacteroidota;   Class: Bacteroidia;   Order: Sphingobacteriales;   Family: Sphingobacteriaceae;   
Genus: Sphingobacterium 

c42580510207ac58d658be982db08efa 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Bacillales;   Family: Planococcaceae;   Genus: 
Lysinibacillus 

3bee722e683391eb0cfa1e54850459b3 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Burkholderiales;   Family: 
Comamonadaceae;   Genus: Aquabacterium 

46de671ffb57bc8c131a7619ab2f1f83 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Pseudomonadaceae;   Genus: Pseudomonas 

4336d36fe7a1fbfd6401d14b61703af7 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Moraxellaceae;   Genus: Acinetobacter 

d677e3fb1354dadf011e07609e5d704e 
  Phylum: Bacteroidota;   Class: Bacteroidia;   Order: Cytophagales;   Family: Spirosomaceae;   Genus: 
Flectobacillus 
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7430c930ced8e580bc67f426d2d15d1d 
  Phylum: Cyanobacteria;   Class: Cyanobacteriia;   Order: Chloroplast;   Family: Chloroplast;   Genus: 
Chloroplast 

acac322a57b2e28c36ecbec06b12ab56 
  Phylum: Proteobacteria;   Class: Alphaproteobacteria;   Order: Sphingomonadales;   Family: 
Sphingomonadaceae;   Genus: Sphingobium 

ee2d53f46d88723b6e8dfbe63af874b0 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Pseudomonadaceae;   Genus: Pseudomonas 

d19d6c436c77e541c473f2f8b63af36a 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Lactobacillales;   Family: Leuconostocaceae;   Genus: 
Leuconostoc 

619e7874a6e17567151a63395eaf20a4 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Pseudomonadaceae;   Genus: Pseudomonas 

0cdba9ac4d15a03bff3c0b52dbdd60f8 
  Phylum: Actinobacteriota;   Class: Actinobacteria;   Order: Corynebacteriales;   Family: 
Corynebacteriaceae;   Genus: Corynebacterium 

76c611ccff665bc9f26eb018ada4fe53 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Pseudomonadaceae;   Genus: Pseudomonas 

e18be3beff7df2c2d6f3dec3309be8d9 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Pseudomonadaceae;   Genus: Pseudomonas;   Species: Pseudomonas_caeni 

ac4879c1409c4ab336b61171d37c9e2e 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Pseudomonadaceae;   Genus: Pseudomonas 

293ddf5cc8aa885cae617751ea7d93bc 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Enterobacterales;   Family: 
Enterobacteriaceae 

ce62d3d55490378ba7015b76aa3d8343 
  Phylum: Actinobacteriota;   Class: Actinobacteria;   Order: Frankiales;   Family: Geodermatophilaceae;   
Genus: Blastococcus 

61d6d8e9852b837b524821060be0e68c 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Burkholderiales;   Family: 
Burkholderiaceae;   Genus: Ralstonia 

0ab346c22567d9bb8fe93678a793c399 
  Phylum: Proteobacteria;   Class: Alphaproteobacteria;   Order: Sphingomonadales;   Family: 
Sphingomonadaceae;   Genus: Sphingomonas 

e5493a4b94599cbf91a4661be985eeb7 
  Phylum: Proteobacteria;   Class: Alphaproteobacteria;   Order: Acetobacterales;   Family: 
Acetobacteraceae;   Genus: Acetobacter 

220a7ddaa9be42548fc3efa0e12ed50c 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Burkholderiales;   Family: 
Burkholderiaceae;   Genus: Burkholderia-Caballeronia-Paraburkholderia 

6fa3e8a661f4a107aedb46a42e2656e5 
  Phylum: Proteobacteria;   Class: Alphaproteobacteria;   Order: Acetobacterales;   Family: 
Acetobacteraceae;   Genus: Acetobacter 

c215a76fac3a604bfe62847f46061693 
  Phylum: Proteobacteria;   Class: Alphaproteobacteria;   Order: Rhizobiales;   Family: Beijerinckiaceae;   
Genus: Methylobacterium-Methylorubrum 

86da2134ed434b31365a48561727a1bf 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Burkholderiales;   Family: 
Comamonadaceae 

57d15a1e1b2e65d89005243403cf5dec 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Lactobacillales;   Family: Aerococcaceae;   Genus: 
Aerococcus 

f6384eb225e15674b7bd55958649ce75   Phylum: Firmicutes;   Class: Bacilli;   Order: Bacillales;   Family: Planococcaceae 

dc0397419585d848825320e0ea9b86c4 
  Phylum: Firmicutes;   Class: Clostridia;   Order: Oscillospirales;   Family: 
[Eubacterium]_coprostanoligenes_group;   Genus: [Eubacterium]_coprostanoligenes_group 

afe3a919262ff8ebdb4a7f66df7a8aeb 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Lactobacillales;   Family: Streptococcaceae;   Genus: 
Streptococcus;   Species: Streptococcus_salivarius 

ba628f9a7dc4737274badc88a5968b49 
  Phylum: Bacteroidota;   Class: Bacteroidia;   Order: Flavobacteriales;   Family: Weeksellaceae;   Genus: 
Empedobacter 

1eeb945228d12251e95d102a2cbe8d9d 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Lactobacillales;   Family: Enterococcaceae;   Genus: 
Enterococcus;   Species: Enterococcus_cecorum 

94a0f635134e2c318274dd0fdf1bc385 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Pseudomonadaceae;   Genus: Pseudomonas 

9a66b182a468e6a3e12bb3109f2cbdca 
  Phylum: Proteobacteria;   Class: Alphaproteobacteria;   Order: Sphingomonadales;   Family: 
Sphingomonadaceae;   Genus: Qipengyuania;   Species: uncultured_bacterium 

ad1b73be285f3c10a5568d1a2c927dfc 
  Domain: Archaea;   Phylum: Crenarchaeota;   Class: Nitrososphaeria;   Order: Nitrososphaerales;   
Family: Nitrososphaeraceae;   Genus: Nitrososphaeraceae 

6ffb110ff6598392f9c8baed2fbbf2d0 
  Phylum: Bacteroidota;   Class: Bacteroidia;   Order: Sphingobacteriales;   Family: Sphingobacteriaceae;   
Genus: Sphingobacterium;   Species: Sphingobacterium_psychroaquaticum 

da5af0e5a7c0ea0603c6ac70888877d6 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Pseudomonadales;   Family: 
Pseudomonadaceae;   Genus: Pseudomonas 

83711d11b4caed655cb19233c471604a 
  Phylum: Proteobacteria;   Class: Alphaproteobacteria;   Order: Acetobacterales;   Family: 
Acetobacteraceae;   Genus: Acetobacter 

4dc50e8dc3e44a87d99578358fd7a272 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Burkholderiales;   Family: 
Oxalobacteraceae;   Genus: Herbaspirillum 

aa0b6139a4b342def4050014e8f23047 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Lactobacillales;   Family: Lactobacillaceae;   Genus: 
Lactobacillus;   Species: Lactobacillus_salivarius 

f9e9654f45fb5ae1d7259333ea3eb902 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Bacillales;   Family: Bacillaceae;   Genus: Bacillus;   
Species: Bacillus_thermoamylovorans 
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eb6c0edfe9b013aaa4f0a6779a66f37c 
  Phylum: Actinobacteriota;   Class: Actinobacteria;   Order: Corynebacteriales;   Family: 
Corynebacteriaceae;   Genus: Corynebacterium 

d978d8f907b58e5499c3f52d23eedc8e 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Lactobacillales;   Family: Carnobacteriaceae;   Genus: 
Atopostipes;   Species: uncultured_bacterium 

cabc84505d63e214d45d53246018081d 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Enterobacterales;   Family: 
Enterobacteriaceae 

8e9155bdf3e7d9a42b8ce76849122bd2 
  Phylum: Firmicutes;   Class: Clostridia;   Order: Peptostreptococcales-Tissierellales;   Family: 
Peptostreptococcales-Tissierellales;   Genus: Fenollaria;   Species: uncultured_bacterium 

febba0f8d4a2e1c9b8c31373cc35f418 
  Phylum: Proteobacteria;   Class: Gammaproteobacteria;   Order: Burkholderiales;   Family: 
Comamonadaceae 

e3beb290843cb1c4220cb340329517b9 
  Phylum: Actinobacteriota;   Class: Actinobacteria;   Order: Corynebacteriales;   Family: 
Corynebacteriaceae;   Genus: Corynebacterium;   Species: Corynebacterium_kroppenstedtii 

561944bb25b498c8a8e1ac03d213629b 
  Phylum: Actinobacteriota;   Class: Actinobacteria;   Order: Bifidobacteriales;   Family: 
Bifidobacteriaceae;   Genus: Bifidobacterium 

6326f1d853ad013f5d35af902310c798 
  Phylum: Actinobacteriota;   Class: Actinobacteria;   Order: Propionibacteriales;   Family: 
Propionibacteriaceae;   Genus: Cutibacterium 

a3ddb44d01a2bbd4182098679a2a42a3 
  Phylum: Firmicutes;   Class: Bacilli;   Order: Lactobacillales;   Family: Streptococcaceae;   Genus: 
Streptococcus;   Species: Streptococcus_agalactiae 
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Table S5. Putative microbial contaminants in shotgun metagenomic data. Contaminants 
were identified manually or by the R package decontam and bioinformatically removed from 
MetaPhlAn, MAG, and SingleM abundance tables. 
 

Putative Contaminant Taxa in Metagenomic Data 

Removed from MetaPhlAn abundance table 

s__Corynebacterium_accolens s__Sphingobium_yanoikuyae 

s__Corynebacterium_aurimucosum s__Sphingomonas_ursincola 

s__Corynebacterium_otitidis s__Cupriavidus_gilardii 

s__Gordonia_paraffinivorans s__Paraburkholderia_fungorum 

s__Micrococcus_luteus s__Aquabacterium_parvum 

s__Cutibacterium_acnes s__Tepidimonas_fonticaldi 

s__GGB2722_SGB3663 s__Acidovorax_temperans 

s__GGB43920_SGB61282 s__Herminiimonas_contaminans 

s__Hydrotalea_flava s__Acinetobacter_johnsonii 

s__Cloacibacterium_caeni s__Acinetobacter_junii 

s__Staphylococcus_epidermidis s__Pseudomonas_aeruginosa 

s__Streptococcus_thermophilus s__Pseudomonas_putida 

s__Brevundimonas_nasdae s__Pseudomonas_stutzeri 

s__Caulobacter_sp_3R27C2_B s__Malassezia_restricta 

s__Afipia_birgiae s__Bradyrhizobium_diazoefficiens 

s__Bradyrhizobium_sp_CCH5_F6 s__Bradyrhizobium_viridifuturi 

s__Methylobacterium_sp_B4 s__Sphingomonas_echinoides 

s__Methylorubrum_extorquens s__Acinetobacter_ursingii 

s__Reyranella_soli s__Herbaspirillum_huttiense 

s__Agrobacterium_tomkonis s__Xanthomonas_massiliensis 

Removed from the MAG abundance table 

s__Bradyrhizobium_sp003020075 g__U87765 

s__Cutibacterium_acnes g__DSPG01 

s__Sphingomonas_echinoides s__Gemmatimonas_sp016741895 

s__Bradyrhizobium_diazoefficiens_A g__Qipengyuania 

g__Lacibacter s__Cupriavidus_gilardii 

Removed from the SingleM abundance table 

f__Lactobacillaceae g__Hydrotalea 
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s__Bifidobacterium_adolescentis s__Methylobacterium_extorquens 

d__Archaea s__Reyranella_sp009377525 

c__Gammaproteobacteria c__Bacilli 

c__Alphaproteobacteria o__Lactobacillales 

o__Burkholderiales f__Mycobacteriaceae 

o__Rhizobiales s__Cutibacterium_acnes 

f__Burkholderiaceae s__Lawsonella_clevelandensis_A 

f__Sphingomonadaceae g__Corynebacterium 

f__Rhodobacteraceae o__Pseudomonadales 

f__Xanthobacteraceae f__Pseudomonadaceae 

f__Chitinophagaceae g__Pseudomonas_E 

g__Ga0077523 p__Chloroflexota 

g__Erythrobacter c__Thermoleophilia 

g__Qipengyuania f__Solirubrobacteraceae 

g__Novosphingobium g__Cutibacterium 

g__Tsuneonella s__Pseudomonas_A_stutzeri 

g__Hyphomicrobium_A g__Streptococcus 

g__Methylobacterium s__Sphingomonas_echinoides 

g__Reyranella g__SCUB01 

g__Lacibacter f__Rhizobiaceae 

s__Cupriavidus_gilardii f__Acetobacteraceae 

s__Ga0077523_sp001464695 f__Micrococcaceae 

s__Blastomonas_ursincola s__Micrococcus_luteus 

s__Afipia_birgiae g__Nitrobacter 

s__Hydrotalea_flava g__Rhodopseudomonas 

s__Gemmatimonas_sp016741895 g__Afipia 

c__Bacteroidia g__Agrobacterium 

c__Actinomycetia f__Acetobacteraceae 

g__Blastomonas f__Micrococcaceae 

g__Pelagerythrobacter s__Micrococcus_luteus 
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Table S6. Pairwise comparisons of contaminant abundance by urine sample volume (16S). 
FDR-corrected (q=0.05) multiple comparisons (Friedman) of microbial contaminant abundance 
across different urine sample volumes. The overall test was significant (p=0.026) with no 
significant pairwise comparisons.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pairwise Comparisons of  
Contaminant Abundance 
by Urine Sample Volume q-value 

0.1mL vs. 0.2mL 0.5448 
0.1mL vs. 0.5mL 0.8926 
0.1mL vs. 1.0mL 0.2002 
0.1mL vs. 3.0mL 0.0642 
0.1mL vs. 5.0mL 0.1543 
0.2mL vs. 0.5mL 0.4936 
0.2mL vs. 1.0mL 0.4936 
0.2mL vs. 3.0mL 0.1543 
0.2mL vs. 5.0mL 0.4936 
0.5mL vs. 1.0mL 0.1543 
0.5mL vs. 3.0mL 0.0642 
0.5mL vs. 5.0mL 0.1543 
1.0mL vs. 3.0mL 0.4936 
1.0mL vs. 5.0mL 0.8926 
3.0mL vs. 5.0mL 0.5448 
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Table S7. Pairwise comparisons of microbial richness by urine sample volume (16S). FDR-
corrected (q=0.05) multiple comparisons (Friedman) of microbial richness (unique ASVs) across 
different urine sample volumes. The overall test was significant (p=0.011). Significant pairwise 
comparisons are denoted in bold. 

Pairwise Comparisons of 
Microbial Richness by 
Urine Sample Volume 

q-value 

0.1mL vs. 0.2mL 0.6349 
0.1mL vs. 0.5mL 0.8400 
0.1mL vs. 1.0mL 0.1828 
0.1mL vs. 3.0mL 0.1481 
0.1mL vs. 5.0mL 0.0157 
0.2mL vs. 0.5mL 0.6349 
0.2mL vs. 1.0mL 0.2942 
0.2mL vs. 3.0mL 0.1828 
0.2mL vs. 5.0mL 0.0342 
0.5mL vs. 1.0mL 0.1828 
0.5mL vs. 3.0mL 0.1481 
0.5mL vs. 5.0mL 0.0157 
1.0mL vs. 3.0mL 0.6349 
1.0mL vs. 5.0mL 0.1828 
3.0mL vs. 5.0mL 0.2942 
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Table S8. Pairwise comparisons of microbial diversity by extraction method (16S). FDR-
corrected (q=0.05) pairwise comparisons (Friedman) of microbial richness (Unique ASVs) 
(overall p=0.0025) and Shannon entropy (overall p=0.0075) by extraction method. Significant 
pairwise comparisons are denoted in bold. 

Extraction Methods Unique ASVs 
q-value 

Shannon entropy 
q-value 

Bacteremia vs. DNA Microbiome 0.8400 0.6177 

Bacteremia vs. Molzym MolYsis 0.0714 0.0287 

Bacteremia vs. Propidium Monoazide 0.1851 0.5713 

Bacteremia vs. Zymo HostZERO 0.0030 0.1528 

DNA Microbiome vs. Molzym MolYsis 0.0714 0.0503 

DNA Microbiome vs. Propidium Monoazide 0.1851 0.4179 

DNA Microbiome vs. Zymo HostZERO 0.0030 0.2468 

Molzym MolYsis vs. Propidium Monoazide 0.4657 0.0111 

Molzym MolYsis vs. Zymo HostZERO 0.1851 0.3726 

Propidium Monoazide vs. Zymo HostZERO 0.0714 0.0588 
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Table S9. Pairwise comparisons of diversity metric distances to Bacteremia-extracted 
samples (16S). FDR-corrected (Q=0.05) pairwise comparisons (Friedman) of distances to 
Bacteremia-extracted samples by extraction method. The overall tests were significant (p=0.037, 
0.0342, 0.007, respectively). Significant pairwise comparisons are denoted in bold. 

Pairwise Comparison of 
Microbial Composition by 

Extraction Method 

Bray Curtis 
q value 

Jaccard 
q value 

Unweighted Unifrac 
q value 

DNA Microbiome vs. 
Molzym MolYsis 0.1799 0.7128 0.2249 

DNA Microbiome vs. 
Propoidium Monoazide 0.7000 0.7016 0.5852 

DNA Microbiome vs. Zymo 
HostZERO 0.0273 0.0374 0.0079 

Molzym MolYsis vs. 
Propoidium Monoazide 0.1799 0.7315 0.2525 

Molzym MolYsis vs. Zymo 
HostZERO 0.1799 0.0598 0.0874 

Propoidium Monoazide vs. 
Zymo HostZERO 0.0273 0.0673 0.0079 
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Figure i. Loss of sparse microbes at threshold sample volumes of urine. Image generated 
using Biorender. 
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Figure 1. Urine sample volume influences contaminant abundance and microbial diversity 
(16S). A) The abundance of contaminants (contaminating microbial sequences) decreased 
significantly as sample volume increased (overall p=0.026, Friedman, no pairwise comparisons 
were significant, Table S6). B) Microbial richness, or the number of unique amplicon sequence 
variants (ASVs), increased significantly with increased sample volume (p=0.015, Friedman) and 
5.0mL samples had significantly greater numbers of unique ASVs compared to 0.5mL (p=0.031), 
0.2mL (p=0.031), and 0.1mL samples (p=0.048), (multiple comparisons were FDR-corrected at 
0.05, Table S7). C) Sequencing depth (reads) was increased at greater urine sample volumes 
although this difference was not significant (p=0.075, Friedman). Box and whisker plots show 
the median, IQR, and min/max.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 71 

 

Figure 2. Urine sample volume and microbial composition (16S). A) Microbial composition 
(Bray-Curtis) of urine samples differed significantly by dog but not by sample volume 
(PERMANOVA: by dog p = 0.001; by sample volume p = 0.98). B) Representative Bray-Curtis 
plot of a single dog’s (Dog = MS) urine samples. C) High volume (≥ 3 mL) samples were 
significantly less variable (shorter distance to centroid) than low volume (≤ 1 mL) samples (Bray 
Curtis, p = 0.0017, PERMDISP).   
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Figure 3. Total and bacterial DNA recovery differed by extraction method. A) Total DNA 
concentrations (ng/ul, Qubit fluorometry) did not differ by extraction method (p=0.62, 
Friedman). B) Bacterial DNA concentrations (qPCR) differed significantly by extraction method 
(overall p=0.014, Friedman); although no pairwise comparisons were significant. C) Total DNA 
concentrations recovered from urine samples spiked with canine (CTAC) cells varied 
significantly by extraction method (p<0.0001, Friedman). Pairwise comparisons are indicated by 
letter above each bar. Bars with differing letters were significantly different (p<0.05, FDR 0.05).  
D) Bacterial DNA concentration from spiked urine samples marginally differed by extraction 
method (p=0.051, Friedman). Bars represent the mean with standard error. Pipettor icon in C) 
and D)  indicates that all samples shown in these graphs were spiked with canine thyroid 
adenocarcinoma cells (CTAC). 
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Figure 4. Microbial diversity and composition by extraction method (16S). A) Microbial 
richness, or number of unique ASVs, and B) Microbial diversity (Shannon entropy) differed 
significantly by extraction method (Richness p=0.0018, Shannon p=0.0091, Friedman, multiple 
comparisons with FDR at 0.05, Table S8). Whiskers represent minimum, maximum, and median. 
*p<0.05. C) Microbial composition (Bray-Curtis) differed significantly by dog (PERMANOVA 
p=0.001), but not extraction method (PERMANOVA p=0.92) D) When microbial composition 
was weighted by phylogeny (Unweighted UniFrac), composition differed significantly by both 
extraction method (PERMANOVA p=0.002), and by dog (PERMANOVA p=0.001). E) Bray-
Curtis, F) Jaccard, and G) Unweighted UniFrac distances from Bacteremia-extracted samples to 
samples of the same dog extracted via other extraction methods. E) Bray-Curtis distances 
differed significantly (p=0.034, Friedman) with DNA Microbiome samples being the most 
similar shortest distance) to Bacteremia-extracted samples. F) Jaccard distances to Bacteremia-
extracted samples differed significantly (p=0.0342) following the same pattern. G) Unweighted 
UniFrac distances to Bacteremia-extracted samples differed significantly (p=0.0071), again 
following the same pattern.  Pairwise comparison p-values are outlined in Table S9. *p<0.05. 
Bar represents median.  
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Figure 5. Extraction method impacted host and microbial read abundances (Shotgun 
metagenomics).  A) Total sequencing reads did not vary by extraction method (p=0.12, 
Friedman). B) However, microbial reads did vary significantly by extraction method (p=0.0039, 
Friedman), with DNA Microbiome, Molzym MolYsis, and Zymo HostZERO exhibiting a greater 
number of microbial reads compared to Bacteremia (all pairwise p=0.01). C) The proportion of 
microbial reads also varied significantly by extraction method with Molzym MolYsis and Zymo 
HostZERO yielding the greatest proportion of microbial reads (overall p<0.0001, all pairwise 
p<0.02, Friedman). D) The abundance of contaminant reads also differed significantly by 
extraction method (overall Friedman p=0.014) and was lowest in DNA Microbiome (DNA 
microbiome vs. Zymo HostZERO pairwise p=0.01). (See Table S5 for a list of contaminants). 
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Figure 6. Extraction method and microbial diversity and composition (Shotgun 
metagenomics). Microbial diversity as measured by A) Observed Species (richness) and B) 
Shannon Entropy varied significantly by extraction method (Observed Species p=0.011, Shannon 
entropy, p=0.002, Friedman) with DNA Microbiome yielding significantly greater microbial 
diversity than other extraction methods (Observed Species DNA Microbiome vs. Bacteremia 
pairwise p=0.014, Shannon DNA Microbiome vs. all other methods (except Molzym MolYsis) 
pairwise p=0.014). Microbial species were identified via MetaPhlAn4. C) Microbial composition 
as measured by Jaccard or D) Bray-Curtis differed significantly by dog (Jaccard p=0.001, Bray-
Curtis p=0.001, PERMANOVA), but not extraction method (Jaccard p=0.67, Bray-Curtis 
p=0.96, PERMANOVA). Urine samples extracted with Bacteremia contained little microbial 
DNA and did not produce reads that were assignable to a taxa by MetaPhlAn4. As such, 
Bacteremia samples were excluded from C) and D) and beta diversity testing. 
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Figure 7. Top 20 microbial genera represented in urine samples. Relative abundances of the 
top 20 microbial genera identified in A) 16S rRNA sequencing of unspiked urine samples B) 
Shotgun metagenomic sequencing (MetaPhlAn4) of spiked urine samples, C) Metagenome-
assembled-genomes (MAG) generated from spiked urine samples. The same urine samples were 
used for 16S and shotgun metagenomic sequencing. Across methods, Staphylococcus 
(pseudintermedius), Bacillus (cereus), Streptococcus (canis), and Arcanobacterium  repeatedly 
emerge as abundant taxa. For 16S samples, ASVs were filtered to a minimum 0.5% abundance in 
at least 10% of samples.  
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Figure 8. Metabolic potential of urine-associated MAGs. A) and B) feature reconstructed 
alkane metabolism in urine-associated MAGs. Shown are the regulon in which the predicted 
alkane metabolism gene occurs, as well as the reconstructed relevant pathway. For the depiction 
of the regulon, only up to ten neighboring genes on each side were included, and the coloring 
denotes arbitrary groupings with the gene responsible for alkane activation the darkest (i.e., ssuD 
and ladB), and genes that weren’t directly related to the predicted alkane metabolism colored 
grey. The numbers below the arrows indicate the gene number on the contig. For the depiction of 
the reconstructed alkane metabolism pathways, colors denote the number of genes that may be 
involved at each reaction, noting that for simplicity beta-oxidation has been summarized in one 
ellipse broken into five pieces. Annotation of the Bacillus_A ladB relative indicated that it is an 
alkanesulfonate monooxygenase (ssuD), which desulfonates organosulfonates to yield sulfite and 
an aldehyde. Depending on the downstream pathways available, organosulfonates degraded in 
this manner may be used as carbon, sulfur, or electron sources (Reichenbecher & Murrell, 1999). 
This ssuD was on a fractured contig (~5k bp) containing only genes relevant for the uptake of 
sulfonates (ssuCAB,). However, annotations from other contigs in the Bacillus_A bin suggest that 
the remaining long-chain aldehyde may be used as a carbon source via two members of the 
aldehyde dehydrogenase protein family (PF00171) that would produce fatty-acid resembling 
molecules capable of proceeding to beta-oxidation. The bin contained multiple genes for fatty 
acid degradation, acetyl-CoA sythetases, and acyl-CoA dehydrogenases, suggesting an ability to 
utilize multiple alkane groups (Jimenez-Diaz et al., 2017).  Further supporting the possibility of 
utilizing a variety of hydrocarbons as potential carbon sources or electron donors was the 
recovery of 3 cytochrome p450 family genes as well as 4 divergent zinc- or iron-dependent 
alcohol dehydrogenases (PF00465, PF13685, PF00107, PF13602). Annotation of the ladA in 
Staphylococcus was less certain, as the neighboring genes in well-assembled contigs (>20 Kbp) 
did not reveal genes relevant for downstream pathways. However, several genes in the regulon 
were unable to be annotated but may be relevant. Additionally, reconstruction of degradation 
pathways among the rest of the contigs suggested that long-chain alkanes activated by ladA 
could be further oxidized by divergent members of the alcohol dehydrogenase protein family 
(PF08240, PF00107, PF13602) to an aldehyde, and then oxidized to a carboxylic acid using up to 
two divergent members of the aldehyde dehydrogenase protein family (PF00171) (Jimenez-Diaz 
et al., 2017).  The fate of this carboxylic acid is uncertain -- genes for the first or third steps of 
beta-oxidation were not found in this bin, but there were candidate genes for the other three steps 
that would yield acetyl-CoA for complete oxidation or assimilation – up to two members of the 
acyl-CoA dehydrogenase protein family (PF08028, PF02770, PF00441, PF02771), 3-
hydroxyacyl-CoA dehydrogenase, and up to two acetyl-CoA C-acetyltransferases. In the setting 
of odd-chain alkane activation by Staphylococcus, propionate secretion is likely, given the 
inability to introduce the 3-carbon carboxylic acid into central carbon metabolism and the 
presence of a propionate CoA-transferase to retain the CoA molecule. 
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Figure S1. Experimental Design for Urine Volume Experiment. Figure generated using 
BioRender. 
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Figure S2. Experimental design for Host Cell Removal Experiments. Figure generated using 
BioRender. 
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Figure S3. Cross contamination from positive control (16S). One urine sample (Dog SJ, 
Extraction Method Molzym MolYsis, see red arrow) exhibited a microbial composition similar 
to that of the ZymoBIOMICS Gut Microbiome Standard (Zymo Pos Control, pink) and was 
excluded from analysis for possible cross contamination.  A) Bray-Curtis and B) weighted 
UniFrac PCoAs showing microbial composition of urine samples in relation to the Zymo Gut 
Microbiome Standard. Urine sample denoted by red arrow was removed from further analysis. 
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Figure S4. Comparing 9 and 12 PCR amplification cycles for shotgun metagenomics of low 
biomass samples. DNA from the ZymoBIOMICS Gut Microbiome Standard (n=21 microbial 
taxa at known relative abundances; Zymo Research, Tustin, CA) was extracted and sequenced at 
3 ten-fold dilutions (D1 = 0.07 ng/uL, D2 = 0.7 ng/uL, D3 = 7 ng/uL). These dilutions were 
selected due to their relevance to healthy urine DNA concentrations. DNA was then amplified 
with 9 or 12 PCR cycles and sequenced to a depth of 50 million reads. A) Taxonomic profile 
assigned using microbial marker genes via SingleM. B) Metagenome assembled genome (MAG) 
abundances across samples assigned using the Genome Taxonomy Database.  In A) and B) “9” 
or “12” indicates amplification cycles. Similar microbial profiles were observed at all dilutions 
and using 9 or 12 amplification cycles. NC, Negative Control. MAGs, metagenome-assembled 
genomes.  
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Figure S5. Urine sample volume and microbial diversity and composition. A) Average 
species accumulation, saturation, and achievable sequencing depth were greater in higher-
volume samples. B) Microbial diversity (Shannon Entropy) modestly increased with urine 
sample volume, although this difference was not significant (p=0.366, Friedman). C) Urine 
microbial composition (Jaccard) differed significantly by dog (p=0.001, PERMANOVA) but not 
by sample volume (p=0.99, PERMANOVA). 
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Figure S6. Microbial composition was more variable in urine samples of lower volume. A) - 
I) Microbial composition of urine samples of varying volumes within a single dog. A) - D) are 
based on Bray-Curtis distances. E) – I) are based on Jaccard distances. A), F) are dog HF. B), D) 
are dog FC. C), H) are dog ArB. D), I) are dog KH. E) is dog MS. Within dogs, microbial 
composition varied by sample volume with High volume samples (dark blue, 3mL, 5mL) 
clustering more closely (showing more similar microbial communities) than Low volume 
samples (light blue, 0.1, 0.2, 0.5, 1.0 mL). J) The microbial composition (Jaccard) of low volume 
samples was significantly more variable (greater distance to the centroid) than that of high 
volume samples (p=0.0006, PERMDISP).  
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Figure S7. Total and Bacterial DNA recovery did not differ by dog. Neither A) Total DNA 
concentrations (ng/ul, Qubit fluorometry; p=0.15, Kruskal-Walis) nor B) bacterial DNA 
concentrations (qPCR; p=0.09, Kruskal-Walis) differed by dog. Neither C) Total DNA 
concentrations nor D) bacterial DNA concentrations from urine samples spiked with canine cells 
differed by dog (Total DNA: p=0.99, Bacterial DNA: p=0.28, Kruskal-Wallis). Bars represent the 
mean with standard error. Pipettor icon in C) and D)  indicates that all samples shown in these 
graphs were spiked with canine thyroid adenocarcinoma (CTAC) cells. 
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Figure S8. Microbial diversity and composition by extraction method (16S). A) Microbial 
diversity (Faith’s phylogenetic diversity) differed significantly by extraction method (p=0.0004, 
Friedman, multiple comparisons with FDR q=0.05).  *p<0.05, **p<0.01 B) Microbial 
composition (Jaccard) differed significantly by dog (p=0.001) but not by kit (p=0.72, 
PERMANOVA). C) When weighted by microbial phylogeny (unweighted UniFrac), microbial 
composition differed significantly both by dog (p=0.005) and kit (p=0.005, PERMANOVA). 
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Figure S9. Metagenomic marker gene profiling using SingleM and SingleM “condense” 
was largely congruent with MetaPhlAn4-based profiling of spiked urine samples. A) 
Microbial richness (unique taxa) differed significantly by extraction method (p=0.017, 
Friedman), with DNA Microbiome generally recovering the greatest number of taxa. B) 
Microbial composition also differed significantly by dog (Bray Curtis, p=0.001, PERMANOVA) 
but not by extraction method (Bray Curtis, p=0.1, PERMANOVA). C) Top 20 taxa represented 
in the SingleM dataset. Bolded taxa indicate taxa that were also identified as “Top 20” taxa by 
MetaPhlAn4. 
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Figure S10. Assembly metrics of all sequenced samples, including spiked urine, spiked 
ZymoBIOMICs Gut Microbiome Standards. A) All bases assembled into contigs by sample 
(assembled bases), B) bases assembled into contigs of 1kb or greater (1kb+), C) assembled bases 
5kb+, D) assembled bases 25kb+, E) assembled bases 50kb+, F) All assembled contigs by 
sample (contigs), G) contigs 1kb+, H) contigs 5kb+, I) contigs 25kb+, J) contigs 50kb+, K) 
percent of reads mapping to MAGs within each sample.  
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Figure S11. Metagenome-assembled genome (MAG) counts by extraction method. A total of 
26 MAGs were generated across the entire dataset: 11 were assembled from the the Zymo Gut 
Microbiome Standard, 5 were urine-derived, and 10 were identified as contaminants and were 
assembled from negative controls or urine samples. A) There was no significant difference in the 
number of non-contaminant MAGs by extraction method (p=0.3, Friedman). B) Contaminant 
MAG counts varied significantly by extraction method (overall p=0.018, Friedman, no pairwise 
significant) with DNA Microbiome producing fewer contaminant MAGs as compared other 
extraction methods. Contaminant MAGs were identified using decontam.  
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Figure S12. The expected and actual composition of the ZymoBIOMICs Gut Microbiome 
Standard (positive control) across extraction methods. Taxa bar plots of expected and actual 
profiles of the ZymoBIOMICs Gut Microbiome Standard based on A) 16S rRNA sequencing 
(unspiked), B) shotgun metagenomic sequencing (MetaPhlAn4, samples spiked with canine 
cells), and C) MAG assembly from shotgun metagenomic sequencing (spiked). Bacteremia and 
DNA Microbiome yielded taxonomic profiles and abundances most similar to expected. 
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Figure S13. Metabolic potential of urine-associated MAGs. A) Core metabolic pathways and 
B) additional metabolic pathways identified in urine-associated metagenome assembled genomes 
(MAGs). Genomic potential from dereplicated genomes are shown. Functions absent across 
dataset (e.g., starch degradation) have been removed for clarity.  
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