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Abstract 

The human-induced increase in greenhouse gas (GHG) concentrations is the primary 

driver of recent global warming, leading to a series of climate changes, including sea 

level rise, ocean acidification, and more frequent and severe weather extremes. These 

changes have profound impacts on global ecosystems and human societies. 

The world has recognized the necessity for countries to cooperate in combating climate 

change, resulting in international treaties such as the Kyoto Protocol and the Paris 

Agreement. The success of international cooperation depends on a portfolio of various 

approaches to eliminate, reduce, substitute, and compensate for GHG emissions. 

The transition from fossil fuels to renewable energy can effectively mitigate GHG 

emissions. Wind and solar energy have experienced substantial growth over the past 

decade, yet the development of geothermal energy remains stagnant despite its immense 

potential. Considering its additional advantages, such as the dual benefits of generating 

both electricity and heat, the stability of energy generation, and the synthesis with carbon 

capture and storage, more focus should be placed on geothermal energy. Meanwhile, 

most efforts to address climate change have focused on mitigating carbon dioxide (CO2) 

emissions and removing their accumulation from the atmosphere. While there is ~210x 

more CO2 than methane (CH4) in the atmosphere, the atmospheric concentration of CH4 

has increased faster and alone contributes an amount of radiative forcing that is about 
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30% of the contribution from CO2. With positive temperature-driven feedbacks that 

release CH4 to the atmosphere as temperatures rise, a shorter atmospheric lifetime than 

CO2, and continued reliance on natural gas, a portfolio approach is urgently needed to 

slow, stop, and reverse the accumulation of CH4 in the atmosphere. To provide insights to 

address the above issues, this dissertation focuses on optimizing strategies for geothermal 

heat mining and CH4 control. 

Chapter 2 explored the optimal geothermal heat mining (OGHM) problem at the facility 

level, which aims at maximizing profit within a time horizon for a site. The problem is 

formulated as an optimal control model, which is solved by a proposed analytical 

algorithm. Solutions to the OGHM problem can be categorized into four situations: 1) the 

mass flow rate keeps the maximum; 2) the mass flow rate keeps as 0; 3) the mass flow 

rate starts as the maximum, decreases to a constant value, and finally recovers to the 

maximum; and 4) the mass flow rate starts as 0, and changes to the maximum. Further 

based on analysis from an economic view, for the cases that have positive optimal profits, 

the solutions of finite-time OGHM problems can be considered as a combination of the 

solution of the infinite-time problem and one final stage with a maximum mass flow rate. 

Results show that surrounding media temperature, efficiency, and compression cost have 

significant influences on the optimal profit, and CO2 geothermal systems perform better 

for shallow, low-grade heat sources when compared to water geothermal systems. 

Chapter 3 investigates pathways for CH4 control in a top-down system view, including 

mitigation to avoid CH4 emissions and removal of CH4 that is in the atmosphere. We 

develop and implement the Model for Optimization of Methane Emissions and removal 
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with Negative Technologies Under climate Mitigation (MOMENTUM) that determines 

cost-effective pathways for CH4 emissions mitigation in energy, agriculture, and waste 

sectors, and atmospheric CH4 removal amid trajectories for mitigation and removal of 

CO2. Results indicate that relying solely on mitigating CH4 emissions is not feasible to 

meet climate goals, and it is imperative that CH4 removal technologies are developed and 

deployed at a substantial scale. Initial CH4 removal cost and CH4 removal learning rate 

have more impact on the total cost of CH4 control than the maximum CH4 removal 

potential or the maximum CH4 removal growth rate, and when CH4 removal needs to 

begin is influenced by scale-related parameters much more than by cost-related 

parameters. In addition, if societal influences are considered, the avoided social cost 

always outweighs the optimal CH4 control cost, which indicates a net benefit to 

controlling CH4 emissions. 

Chapter 4 establishes an agent-based model in a bottom-up system view to simulate the 

interactions among the government, suppliers, and consumers, which considers the 

introduction of a CH4 emission market to initial commodity/service markets. Three 

sectors are analyzed, including agriculture, energy, and waste sectors, accounting for 

~90% of CH4 emissions in the US. The suppliers and consumers in each sector are 

modeled with heterogeneity, local interactions, and adaptations. Case studies on Ohio, 

US indicate that the emission cap is the main factor influencing CH4 control, which 

should be established in the most efficient way (reduced by 3% per year). The emission 

market penalty price has a minimal effect on the amount of CH4 reduction. Moreover, 

CH4 control always leads to a net benefit, and the government should implement more 
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incentives to encourage earlier deployments of negative-cost CH4 mitigation techniques. 

Meanwhile, the government should pay more attention to the waste sector, especially the 

landfill source, which is faced with the most difficulties in mitigating CH4 emissions. 
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Chapter 1. Introduction 

1.1. Background 

As early as 1856, Eunice Foote suggested, based on her experiments, that a higher 

proportion of carbon dioxide (CO2) in the atmosphere would increase the global 

temperature (Foote, 1856). However, the significance of this effect did not become 

prominent until approximately one hundred years later. Since 1970, the global average 

temperature has been increasing at a rate of 1.7°C per century, in contrast to the long-

term decline of 0.01°C per century over the past 7,000 years (IPCC, 2022; Marcott et al., 

2013; NOAA, 2016). Concurrently, there has been a surge in atmospheric concentrations 

of greenhouse gases (GHGs). As the two most potent GHGs, CO2 reached a global mean 

concentration of 419 parts per million (ppm) in 2023 (Lan et al., 2024), and methane 

(CH4) reached 1923 parts per billion (ppb) (Thoning et al., 2024), which are 147% and 

240% of the values in 1850, respectively. These trends far exceed the historical natural 

changes and are caused by human activities (IPCC, 2023b). 

The human-caused global warming triggers systematic climate change, which has far-

reaching influences on the global environment, ecosystems, and human societies. One 

significant impact is the rise in sea levels, driven by the melting of polar ice caps and 

glaciers, which poses a threat to coastal communities and ecosystems (Cinner et al., 2012; 

Mousavi et al., 2011; K. Zhang et al., 2004). Another is the acidification of the surface 
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open ocean, a result of increased CO2 absorption, adversely impacts marine biodiversity 

and fisheries (Doney et al., 2009, 2020; Wilson et al., 2020). Climate change also 

exacerbates weather and climate extremes, with increased frequency and intensity of 

heatwaves, heavy precipitation, droughts, and tropical cyclones observed in various 

regions across the globe (AghaKouchak et al., 2014, 2020; Easterling et al., 2000). These 

extreme weather events pose substantial threats to food security (Myers et al., 2017), 

water security (Eekhout et al., 2018), key infrastructure (Forzieri et al., 2018), and human 

physical and mental health (Cianconi et al., 2020; Ebi et al., 2021), causing wide 

economic and societal impacts in all regions (IPCC, 2023b).  

As people become more aware of global warming and climate change, international 

efforts to address these issues have made important progress. The United Nations 

Framework Convention on Climate Change (UNFCCC), established in 1992, set the 

stage for international negotiation and cooperation to achieve “stabilization of greenhouse 

gas concentrations in the atmosphere at a level that would prevent dangerous 

anthropogenic interference with the climate system” (UNFCCC, 1992). This led to the 

Kyoto Protocol in 1997, the first legally binding treaty which requires developed 

countries to cut GHG emissions by around 5% below 1990 levels between 2008 and 2012 

(UNFCCC, 1998). The Paris Agreement of 2015, building on the UNFCCC and lessons 

from the Kyoto Protocol, marked a major advance in global climate efforts. Unlike the 

Kyoto Protocol, the Paris Agreement requires all countries to submit nationally 

determined contributions (NDCs) to limit global temperature rise to well below 2°C, 
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aiming for 1.5°C (UNFCCC, 2015). These agreements have significantly shaped 

international climate policy, driving national and global efforts to address climate change. 

The implementation of the policy requires specific technical approaches as a foundation. 

The Institute of Environmental Management and Assessment (IEMA) suggests an IEMA 

GHG Management Hierarchy to systematically address GHG emissions, which consists 

of four key components: Eliminate, Reduce, Substitute, and Compensate (IEMA, 2020).  

First, the Eliminate component focuses on preventing GHG emissions at the source by 

influencing business decisions that impact the entire lifecycle of products and services. 

For instance, companies can create new business modes for a circular economy, which 

involves sharing, leasing, reusing, repairing, refurbishing and recycling materials and 

products as long as possible (Bocken et al., 2017; Velenturf & Purnell, 2021). Second, 

the Reduce component aims to reduce energy use which results in the reduction of GHG 

emissions. This can be accomplished through efficiency improvements, which are highly 

various across different sectors, such as those in agricultural (Engler & Krarti, 2021; 

Smith et al., 2015), industrial (Malinauskaite et al., 2020; Zuberi et al., 2020), and 

residential (De Boeck et al., 2015; Ramos et al., 2015) sectors. Third, the Substitute 

component involves replacing high-carbon energy sources with low-carbon or renewable 

alternatives. Examples include adopting on-site renewable energy generation (Al-Ghamdi 

& Bilec, 2016), switching to lower-carbon fuels (Van Dyk et al., 2022), purchasing green 

tariffs for electricity (MacDonald & Eyre, 2018), etc. Finally, the Compensate component 

addresses residual emissions that cannot be eliminated, reduced, or substituted. This 

involves investing in carbon offset projects, such as reforestation, carbon capture and 
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storage (CCS), and carbon mineralization (Minx et al., 2018). Compensation makes it 

possible to counterbalance unavoidable emissions, supporting broader climate goals. 

In summary, to effectively control GHG emissions and address climate change, it is 

crucial to develop and optimize a portfolio of various technologies and policies based on 

current efforts. 

1.2. Motivation 

The renewable energy is a key factor to reduce GHG emissions through the Substitute 

component in the IEMA GHG Management Hierarchy. Renewable energy capacity has 

seen substantial growth over the past decade, with solar and wind energy leading the 

charge. According to the International Renewable Energy Agency (IRENA, 2018, 2024), 

global solar energy capacity reached approximately 1,419 GW in 2023, up from just 40 

GW in 2010. Similarly, wind energy capacity expanded to about 1,017 GW in 2023, 

compared to 181 GW in 2010. The capacity growth is accompanied by significant cost 

reductions: from 2010 to 2022, the levelized cost of electricity (LCOE) for utility-scale 

solar photovoltaics (PV), concentrating solar power (CSP), onshore wind, and offshore 

wind decreased by 89%, 69%, 69%, and 59%, respectively (IRENA, 2023b). 

In contrast to the rapid expansion of solar and wind, geothermal energy development has 

progressed at a slower pace. As of 2023, global geothermal power capacity was 

approximately 14.8 GW, a modest increase from 10.1 GW in 2010 (IRENA, 2018, 2024). 

Such a scale is disproportionate to the technical potential of geothermal resources, which 

is estimated at about 200 GW for electricity and more than 5000 GW for thermal use 
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(IRENA, 2023a). Indeed, geothermal energy has the potential to and should take on a 

larger role in renewable energy development. 

First, geothermal energy has a unique role among renewable energy resources. Unlike 

other renewable sources, it offers the dual benefits of generating both electricity and heat, 

along with the added value of mineral extraction. Second, geothermal energy provides a 

continuous and reliable source of power, unlike wind and solar, which are intermittent. 

This makes geothermal energy more stable and capable of providing base-load power 

without the need for additional storage devices. Moreover, one of the most promising 

advancements in geothermal technology is the synergy with carbon capture and storage 

(CCS). The captured CO2 can not only be injected into the geothermal reservoir for 

permanent storage, but also can be employed as the working fluid for the geothermal 

energy system. For example, CO2 can be used in enhanced geothermal systems (EGSs), 

which are engineered reservoirs created to extract heat from low-permeability, hot rock 

formations by injecting fluid to enhance permeability and enable geothermal energy 

production (Pruess, 2006). In another type of geothermal system, the CO2 plume 

geothermal (CPG) system, supercritical CO2 is used as the primary working fluid 

circulated through naturally-permeable formations (Randolph & Saar, 2011). In 

summary, geothermal energy should be paid more attention to in research and practice. 

Just as geothermal energy needs more development in the renewable energy ecosystem, 

the importance of CH4 has also been underestimated. People have been concentrating on 

CO2, since it is widely recognized as the GHG driving climate change, contributing the 

most to the greenhouse effect due to its high atmospheric concentration and long lifetime. 
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In contrast, CH4 has a much lower atmospheric concentration than CO2, but its impact on 

climate change is disproportionately large. CH4 is over 25 times more effective than CO2 

at trapping heat in the atmosphere over a 100-year period, making it a potent climate 

pollutant (IPCC, 2023b). This property potentially poses a greater threat to global 

warming, as the atmospheric concentration of CH4 is increasing faster now than at any 

time since the 1980s. CH4 also plays a role in the creation of ground-level ozone, which 

is responsible for around 500,000 premature deaths annually worldwide. Fortunately, 

CH4 has a short atmospheric lifetime (~10 years), which indicates that immediate action 

on CH4 control can swiftly lower its concentrations in the atmosphere, leading to rapid 

decreases in climate forcing and ozone pollution (UNEP & CCAC, 2021). In conclusion, 

we should address it specifically and focus more on controlling it to expand our 

opportunities to combat global warming. 

As previously analyzed, geothermal energy and CH4 control are crucial components in 

the effort to mitigate climate change. However, both are currently hindered by a lack of 

concentrated efforts and insufficient development. Therefore, this dissertation focuses on 

optimizing strategies for geothermal heat mining and CH4 control, and aims to provide 

valuable insights that can enhance the future development of geothermal energy and 

methane control, ultimately contributing to the global effort to address climate change. 
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1.3. Dissertation Overview 

This dissertation studies the problems of geothermal heat mining and CH4 control 

through the lens of optimization. The geothermal heat mining problem is examined at the 

facility level, with the objective of determining the optimal strategy for dynamic heat 

mining to maximize profit (Chapter 2). This problem is formulated as an optimal control 

model, solved using a fully analytical algorithm, and further analyzed from an economic 

perspective. The CH4 control problem is addressed at the system level from both a top-

down (Chapter 3) and bottom-up (Chapter 4) perspective. Chapter 3 develops a 

comprehensive model called “Model for Optimization of Methane Emissions and 

removal with Negative Technologies Under climate Mitigation (MOMENTUM)”. This 

model provides the optimal pathways for CH4 mitigation (control before emissions) and 

atmospheric removal (control after emissions) under various climate-technology 

scenarios. Chapter 4 establishes an agent-based model to simulate the interactions among 

the government, suppliers, and consumers following the introduction of a CH4 emission 

market to initial commodity/service markets. The simulation offers insights into the 

optimal design of the CH4 emission market. 
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Chapter 2. An Analytic Approach to Optimal Geothermal Heat Mining 

2.1. Introduction 

The surge of anthropogenic emissions of greenhouse gases (GHGs) is one of the main 

reasons of current concerning climate change. In order to mitigate GHG emissions, the 

energy production which is dominated by fossil fuels has been gradually converted to one 

accommodating more renewable energy sources (RESs), e.g., wind energy, solar 

radiation, hydropower, and geothermal energy. 

From the perspective of “stock”, i.e., the energy stored in the initial form, geothermal 

energy is different from other RESs. Wind energy, solar radiation, and run-of-the-river 

hydropower do not have obvious stock attributes, which are not naturally stored and can 

only be instantly used, otherwise wasted. Reservoir-based hydropower has a clear stock 

attribute, as the water is stored in the reservoir, and the recharging speed of the stock is 

determined by inflows, which is not much related to the stock level. However, the 

recharging speed of geothermal energy stock, which is stored in underground reservoir, is 

largely determined by the temperature difference between interior of the reservoir and the 

surrounding media. Thus, from the perspective of stock recharging, geothermal energy is 

less uncertain than other RESs. 

Moreover, geothermal energy is also different from some other natural resources like 

forests and fish. Without considering environmental limitation, the recharging rate of the 
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stock of forest or fish is positively correlated to the stock level, i.e., a larger forest or fish 

group increases faster. On the contrary, less geothermal stock level means lower 

temperature in the reservoir, which leads to faster recharging speed. Such an opposite 

recharging mode will lead to many differences in the exploitation of geothermal energy 

compared with forestry and fishery. 

Given the special stock attribute of geothermal energy, its optimal exploitation strategy 

needs to be separately analyzed. Several studies were focused on this topic. As early in 

1980s, Golabi et al. established optimization model with closed expressions to determine 

some important variables in geothermal extraction, such as optimal starting time and 

optimal extraction rate (Golabi et al., 1981; Golabi & Scherer, 1981). However, they 

didn’t explicitly consider the recharging process in the model. Moreover, despite they 

gave some analytical analyses, the algorithm for obtaining final results was numerical, 

and the results were only for limited combinations of discount rate and real energy 

increasing rate. Sigurdardottir et al. applied the lumped parameter modelling with mixed 

integer linear programming and proposed a semi-analytical optimal model for geothermal 

utilization (Sigurdardottir et al., 2015). Yet the algorithm was also numerical with the 

help of a optimization solver, and only two scenarios were studied. Malafeh and Sharp 

discussed the influences from different royalties on the geothermal extraction, but the 

numerical results were limited within several situations of royalty choices (Malafeh & 

Sharp, 2015). Liang et al. drew detailed sensitivity analyses on technological parameters 

and natural conditions, yet relying on complex simulation software, TOUGH2 (Liang et 

al., 2018). Júlíusson et al. explored different types of geothermal stock models, which 
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were given in simple closed forms, and gave some representative analytical solutions of 

those models (Júlíusson & Axelsson, 2018). However, since the extraction rates were 

predefined as functions of geothermal stock, these solutions didn’t involve optimality. 

Based on the above paper, Júlíusson et al. further developed a discrete optimization 

model for geothermal energy production, which was linked to different market price 

models for deeper analysis, but only one set of geothermal parameters was considered 

(Juliusson & Bjornsson, 2021). Spittler et al. utilized system dynamic approach to 

analyze the capacity expansion of a geothermal power plant, but the study depended on 

STELLA Architect software, resulting in representative but not transferable results 

(Spittler et al., 2020). 

In conclusion, historical references have focused on the numerical analysis, which can 

simulate models with complex expression. However, compared with analytical methods, 

numerical methods are often computationally expensive, and thus hard to use for 

exploring large parameter space. More importantly, they cannot provide insight of 

solution structure for all possible parameters, which can be achieved through the 

analytical method. 

To compensate for the disadvantages of numerical methods, a totally analytical method 

for the optimal geothermal heat mining (OGHM) problem is proposed in this paper. 

Specifically, this paper contributes in 

1) Establishing an optimal control formulation of the OGHM problem. The formulation 

is simple enough for analytical algorithm, while not missing the most important 

details of geothermal power plants and reservoirs. 
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2) Proposing a totally analytical algorithm for solving the OGHM problem. The 

algorithm does not rely on any additional software, and can be realized by any 

programming languages. Four situations of optimal mass flow rates are given, which 

conclude the results under any possible combinations of input parameters. 

3) Giving detailed economic interpretation for the results. By using the concept of 

“stationary rate of return on capital”, economic explanations are drawn for all 

possible combinations of input parameters under infinite horizon, which are further 

extended to finite horizons. 

2.2. Methods 

In this section, the OGHM problem is modelled as an optimal control problem, and an 

algorithm is proposed to solve it by utilizing the maximum principle (Weitzman, 2003). 

2.2.1. Model 

 

 

 
Figure 2-1. Geothermal Heat Mining and Energy Conversion 
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The objective is to maximize total profit, which is expressed as the present value of all 

net generated energy (𝑊). At any point in time, the value of the objective function equals 

the useful produced energy less the energy needed to compress the fluid for injection. Let 

ℎ be the specific enthalpy, and �̇� the mass flow rate. The useful energy is the difference 

in enthalpy flow between the inlet to the production well in the reservoir (ℎ1�̇�) and the 

injection wellhead (ℎ3�̇�) with an accommodation for an efficiency (𝜂) penalty: 

𝜂(ℎ1 − ℎ3)�̇�. This general framework allows for 𝜂 to represent the efficiency in the 

production well and the use of the produced heat, regardless of the specific application 

(e.g., direct-use, electricity). 

The energy for compression is estimated as the change in enthalpy flow of the fluid being 

injected by the compressor, i.e., (ℎ4 − ℎ3)�̇�. The objective function is the net present 

energy, which considers the discounts energy production over time back to the present. 

Moreover, it is assumed that the mass flow rate in the production well equals the mass 

flow rate in the injection well. As such, the objective function as 

max𝑊 = ∫ [𝜂(ℎ1 − ℎ3)�̇�(𝑡) − (ℎ4 − ℎ3)�̇�(𝑡)]𝑒
−𝛿𝑡𝑑𝑡

𝑡=𝜏

𝑡=0

 (2-1) 

where 𝑡 is the time index starting from 0 and ended at 𝜏, 𝑒 is the base of the natural 

logarithm function, and 𝛿 is the discount rate. 

Since we only care about the change of reservoir stored heat, i.e., how much is extracted 

or recharged, we use “the change of reservoir stored heat (Δ𝑄𝑟)” throughout the model, 

which is defined as  

Δ𝑄𝑟(𝑡) = 𝑄𝑟(𝑡) − 𝑄𝑟(0) (2-2) 
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where 𝑄𝑟 is the reservoir stored heat. 

Before heat is extracted (i.e., 𝑡 = 0), the reservoir temperature (𝑇𝑟) is in equilibrium with 

the surrounding media temperature (𝑇𝑒) in the aquifer, which we assume is constant over 

the relevant lifetime of geothermal heat extraction. We also assume that the contact 

conductance between the reservoir and surrounding media (𝐻𝑟−𝑒) is constant over time. 

When heat is extracted from the reservoir, 𝑇𝑟 decreases below 𝑇𝑒. This difference in 

temperature results in heat flow from the surrounding media into the reservoir, which 

increases the reservoir temperature. As such, there are two competing factors (heat 

extraction rate, �̇�𝑒𝑥𝑡𝑟, and heat recharge rate, �̇�𝑟𝑒𝑐ℎ) that affect the reservoir temperature. 

These factors are modeled by the dynamic change in reservoir stored heat: 

𝑑𝑄𝑟(𝑡)

𝑑𝑡
=
𝑑Δ𝑄𝑟(𝑡)

𝑑𝑡
= �̇�𝑟𝑒𝑐ℎ(𝑡) − �̇�𝑒𝑥𝑡𝑟(𝑡) (2-3) 

Through a simple representation of heat transfer due to conduction, 

�̇�𝑟𝑒𝑐ℎ = [𝑇𝑒 − 𝑇𝑟(𝑡)]𝐻𝑟−𝑒 (2-4) 

The heat extraction rate �̇�𝑒𝑥𝑡𝑟 is calculated by the difference in the enthalpy flow of heat 

extraction fluid between downhole of production well (ℎ1) and downhole of the injection 

well (ℎ5): 

�̇�𝑒𝑥𝑡𝑟(𝑡) = �̇�(𝑡)(ℎ1 − ℎ5) (2-5) 

The reservoir temperature depends on the change of reservoir stored heat, 

𝑄𝑟(𝑡) = 𝑀𝑟𝑐𝑝,𝑒𝑓𝑓[𝑇𝑟(𝑡) − 𝑇𝑒] (2-6) 
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where 𝑀𝑟 is the mass of reservoir, and 𝑐𝑝,𝑒𝑓𝑓 is the effective specific heat of reservoir 

(fluid/rock mixture). 

The specific enthalpy of fluid downhole of production well, ℎ1, depends on the change in 

𝑇𝑟. Under isobaric conditions (constant pressure), the relationship between fluid enthalpy 

and temperature can be approximated as linear regarding the temperature. 

ℎ1 = 𝑐𝑝,1𝑇𝑟 + ℎ1,𝑖𝑐 (2-7) 

in which the slope is the specific heat of production fluid, 𝑐𝑝,1, and the intercept is ℎ1,𝑖𝑐. 

The mass flow rate, �̇�, must be between 0 and a maximum value, �̇�𝑚𝑎𝑥, 

0 ≤ �̇�(𝑡) ≤ �̇�𝑚𝑎𝑥 (2-8) 

yet Δ𝑄𝑟 does not need to be constrained: when Δ𝑄𝑟 = 0, the heat recharge rate (�̇�𝑟𝑒𝑐ℎ) is 

0, which means the reservoir stored heat cannot increase anymore, i.e., the upper bound 

of Δ𝑄𝑟 is naturally 0. As heat is extracted from the reservoir, 𝑇𝑟 decreases, which reduces 

the heat extraction rate (�̇�𝑒𝑥𝑡𝑟) and increases the heat recharge rate (�̇�𝑟𝑒𝑐ℎ). At some 

point, the maximum extraction rate and recharge rate will be equal, i.e., �̇�𝑒𝑥𝑡𝑟 with �̇�𝑚𝑎𝑥 

equals �̇�𝑟𝑒𝑐ℎ, and the reservoir heat cannot be reduced anymore. As a result, the lower 

bound of Δ𝑄𝑟,𝑡−0 is 
�̇�𝑚𝑎𝑥(ℎ5−ℎ1,𝑖𝑐)+𝐻𝑟−𝑒𝑇𝑒

�̇�𝑚𝑎𝑥𝑐𝑝,1+𝐻𝑟−𝑒
. These two natural bounds (i.e., not additionally 

constrained) of Δ𝑄𝑟 avoid the situation where net negative heat is extracted from the 

reservoir (or net positive heat is injected into the reservoir). 

Finally, the initial condition of the change of reservoir stored heat is 

Δ𝑄𝑟(0) = 0 (2-9) 



15 

 

Equations (2-1), (2-3)-(2-9) can comprise the full model, which has two state variables 

(Δ𝑄𝑟 and 𝑇𝑟) and two control variables (�̇� and 𝑞). Since one stable variable or control 

variable can be determined by another, the current formulation is redundant. By 

substituting Equations (2-4)-(2-7) into (2-1) and (2-3), Δ𝑄𝑟 is left as the only state 

variable, and 𝑚(𝑡)̇  is the only control variable. The final model is listed as follows:  

max𝑊 = ∫ {𝜂 [𝑐𝑝,1 (
Δ𝑄𝑟(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ3]⏟                      

𝑅𝑒𝑣𝑒𝑛𝑢𝑒

− (ℎ4 − ℎ3)⏟      
𝐶𝑜𝑠𝑡

} �̇�(𝑡)𝑒−𝛿𝑡𝑑𝑡
𝑡=𝜏

𝑡=0
  (2-10a) 

subject to 

𝑑Δ𝑄𝑟(𝑡)

𝑑𝑡
= −

𝐻𝑟−𝑒
𝑀𝑟𝑐𝑝,𝑒𝑓𝑓

Δ𝑄𝑟(𝑡) − �̇�(𝑡) [𝑐𝑝,1 (
Δ𝑄𝑟(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ5] (2-10b) 

0 ≤ �̇�(𝑡) ≤ �̇�𝑚𝑎𝑥 (2-10c) 

Δ𝑄𝑟(0) = 0 (2-10d) 

2.2.2. Algorithm 

Model (2-10) is an optimal control problem, which can be solved by the maximum 

principle (Weitzman, 2003). The first step is to construct the current-value Hamiltonian 

(𝐻𝑐), which is the profit at a single point in time plus the product of an additional costate 

variable and dynamic change function of the state variable (right-hand side of Equation 

(2-10b)): 
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𝐻𝐶 = {𝜂 [𝑐𝑝,1 (
Δ𝑄𝑟(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3)} �̇�(𝑡) +

           𝜇(𝑡) {−
𝐻𝑟−𝑒

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
Δ𝑄𝑟(𝑡) − �̇�(𝑡) [𝑐𝑝,1 (

Δ𝑄𝑟(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ5]}  

       = {𝜂 ⋅ [𝑐𝑝,1 (
Δ𝑄𝑟(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3) − 𝜇(𝑡) [𝑐𝑝,1 (

Δ𝑄𝑟(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+

            𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ5]} �̇�(𝑡) − 𝜇(𝑡)
𝐻𝑟−𝑒

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
Δ𝑄𝑟(𝑡)  

(2-11) 

where 𝜇 is the costate variable for constraint (2-10b). 𝐻𝐶 is a linear function regarding �̇�, 

and denote the coefficient of �̇� as 

𝜉(𝑡) = 𝜂 ⋅ [𝑐𝑝,1 (
Δ𝑄𝑟(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3) − 𝜇(𝑡) [𝑐𝑝,1 (

Δ𝑄𝑟(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+

              𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ5]  

(2-12) 

According to the maximum principle, the control variable �̇� must maximize the 

Hamiltonian at any time. Thus 

�̇�(𝑡) = {

�̇�𝑚𝑎𝑥,                          𝑖𝑓 𝜉(𝑡) > 0

𝑎𝑟𝑏𝑖𝑡𝑎𝑟𝑦,                   𝑖𝑓 𝜉(𝑡) = 0

0,                                   𝑖𝑓 𝜉(𝑡) < 0

 (2-13) 

Further the motion equation of the costate variable is 

𝑑𝜇(𝑡)

𝑑𝑡
= 𝛿𝜇(𝑡) −

𝜕𝐻𝑐

𝜕Δ𝑄𝑟(𝑡)
= (

𝑐𝑝,1

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
�̇�(𝑡) + 𝛿 +

𝐻𝑟−𝑒

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
) 𝜇(𝑡) −

𝜂𝑐𝑝,1

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
�̇�(𝑡)  (2-14) 

Finally the transversality condition is 

𝜇(𝜏) = 0 (2-15) 

Equations (2-10b), (2-10d) and (2-12)-(2-15) are necessary and sufficient conditions to 

solve problem (2-10). Due to the “if” branches in Equation (2-13), it’s difficult to directly 

obtain the solution from these conditions. Thus alternatively, we construct solutions (of 
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the mass flow rate �̇�) that satisfy these conditions. A qualitative summary of all possible 

solutions is given in Figure 2-2, followed by the complete algorithm in Figure 2-3. 

 

 
Figure 2-2. Situations of Mass Flow Rate Solutions for the OGHM Problem 

 

 

 

All possible solutions can be categorized into four situations (Figure 2-2). In situation 1, 

the mass flow rate keeps the maximum through all the time, in contrast to, in situation 2, 

that the mass flow rate keeps as 0. In situation 3, the mass flow rate has three stages and 

two steps, distinguished by two time points, 𝑡1 and 𝑡2. The mass flow rates of stages 1 

and 3 are both the maximum, and of stage 2 is a balanced constant �̇�𝑏𝑎𝑙 that needs to be 

solved. In situation 4, the mass flow rate has two stages and one step, distinguished by 

time point 𝑡1. The mass flow rate starts as 0, and after some time changes to the 

maximum and keeps to the end. 
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Figure 2-3. Flow Chart of Algorithm on Solving the Mass Flow Rate 
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Figure 2-3 shows the flow chart of the algorithm for solving the mass flow rate, in which 

formulas (A)-(E) are listed as follows. The subscript 𝑏 means “base” functions obtained 

amid the algorithm, and 𝑓 means “flag” values that are essential to determine the final 

solution. 

𝑑Δ𝑄𝑟,𝑏(𝑡)

𝑑𝑡
= −

𝐻𝑟−𝑒
𝑀𝑟𝑐𝑝,𝑒𝑓𝑓

Δ𝑄𝑟,𝑏(𝑡) − �̇�𝑚𝑎𝑥 [𝑐𝑝,1 (
Δ𝑄𝑟,𝑏(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ5] 

Δ𝑄𝑟𝑏(0) = 0 

(A) 

𝜂 ⋅ [𝑐𝑝,1 (
Δ𝑄𝑟,𝑓

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3)

− 𝜇𝑓 [𝑐𝑝,1 (
Δ𝑄𝑟,𝑓

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ5] = 0 

𝛿

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
𝜇𝑓Δ𝑄𝑟,𝑓 + (𝛿 +

𝐻𝑟−𝑒
𝑀𝑟𝑐𝑝,𝑒𝑓𝑓

)(𝑇𝑒 +
ℎ1,𝑖𝑐 − ℎ5
𝑐𝑝,1

)𝜇𝑓 +
𝜂𝐻𝑟−𝑒

(𝑀𝑟𝑐𝑝,𝑒𝑓𝑓)
2 Δ𝑄𝑟,𝑓 = 0 

(B) 

𝑑𝜇𝑏(𝑡)

𝑑𝑡
= (

𝑐𝑝,1

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
�̇�𝑚𝑎𝑥 + 𝛿 +

𝐻𝑟−𝑒
𝑀𝑟𝑐𝑝,𝑒𝑓𝑓

)𝜇𝑏(𝑡) −
𝜂𝑐𝑝,1

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
�̇�𝑚𝑎𝑥 

𝜇𝑏(𝑡1) = 𝜇𝑓 

(C) 

𝑑𝜇𝑏(𝑡)

𝑑𝑡
= (

𝑐𝑝,1

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
�̇�𝑚𝑎𝑥 + 𝛿 +

𝐻𝑟−𝑒
𝑀𝑟𝑐𝑝,𝑒𝑓𝑓

)𝜇𝑏(𝑡) −
𝜂𝑐𝑝,1

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
�̇�𝑚𝑎𝑥 

𝜇𝑏(0) = 𝜇𝑓 

(D) 

where Formula (B) is made of two quadratic algebra equations and easy to solve. It is 

possible that Formula (B) has no real-number solutions. Formulas (A), (C) and (D) are all 

simple first-order linear differential equations, with the same mathematical form as 
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𝑑𝑦(𝑡)

𝑑𝑡
= 𝛼𝑦(𝑡) + 𝛽 

𝑦(𝑡𝛾) = 𝑦𝛾 

(2-16) 

where 𝑦(𝑡) is the variable dependent on 𝑡, 𝛼 and 𝛽 are constant coefficients of the 

differential equation, and 𝑡𝛾 and 𝑦𝛾 are constants in the initial condition. Equation (2-16) 

has a solution as follows, which can be used for solving Formulas (A), (C), and (D). 

𝑦(𝑡) = (𝑦𝛾 +
𝛽

𝛼
) 𝑒𝑎(𝑡−𝑡𝛾) −

𝛽

𝛼
 (2-17) 

2.3. Economic Interpretation 

The above algorithm and solutions are purely mathematical which cannot provide an 

intuitive understanding of the solution. To better interpret the solutions, some economic 

concepts and methods are utilized in this section to solve the OGHM problem with an 

infinite time horizon, which is further compared with the finite-time situations shown in 

Figure 2-2. 

2.3.1. Stationary Rate of Return on Reservoir Stored Heat 

The concept of “stational rate of return on capital” is essential for solving economic 

control problems (Weitzman, 2003). Here we employ this concept to analyze the OGHM 

problem, and since the “capital” in the problem is reservoir stored heat, it is renamed as 

“stationary rate of return on reservoir stored heat”. 

Denote 𝐺(Δ𝑄𝑟(𝑡), �̇�(𝑡)) as the current value of net generated energy at time 𝑡, which is 

extracted from Equation (2-10b): 

𝐺(Δ𝑄𝑟(𝑡), �̇�(𝑡)) = {𝜂 [𝑐𝑝,1 (
Δ𝑄𝑟(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3)} �̇�(𝑡) (2-18) 



21 

 

By substituting Equation (2-10b) into (2-18), convert 𝐺 from a function of Δ𝑄𝑟(𝑡) and 

�̇�(𝑡) to a function of Δ𝑄𝑟(𝑡) and 
𝑑Δ𝑄𝑟(𝑡)

𝑑𝑡
: 

𝐺 (Δ𝑄𝑟(𝑡),
𝑑Δ𝑄𝑟(𝑡)

𝑑𝑡
) =  

{𝜂 [𝐶𝑝,1 (
Δ𝑄𝑟(𝑡)

𝑀𝑟𝐶𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3)}

−
𝐻𝑟−𝑒

𝑀𝑟𝐶𝑝,𝑒𝑓𝑓
Δ𝑄𝑟(𝑡)−

𝑑Δ𝑄𝑟(𝑡)

𝑑𝑡

𝐶𝑝,1(
Δ𝑄𝑟(𝑡)

𝑀𝑟𝐶𝑝,𝑒𝑓𝑓
+𝑇𝑒)+ℎ1,𝑖𝑐−ℎ5

  

(2-19) 

where Δ𝑄𝑟(𝑡) and 
𝑑Δ𝑄𝑟(𝑡)

𝑑𝑡
 are considered as mutually independent variables. 

Consider a stationary state, where reservoir stored heat remains constant, i.e., 

𝐺 (Δ𝑄𝑟(𝑡),
𝑑Δ𝑄𝑟(𝑡)

𝑑𝑡
) = 𝐺(Δ𝑄𝑟, 0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2-20) 

Define partial derivatives as 

𝐺1 (Δ𝑄𝑟(𝑡),
𝑑Δ𝑄𝑟(𝑡)

𝑑𝑡
) =

𝜕𝐺 (Δ𝑄𝑟(𝑡),
𝑑Δ𝑄𝑟(𝑡)
𝑑𝑡

)

𝜕Δ𝑄𝑟(𝑡)
 

𝐺2 (Δ𝑄𝑟(𝑡),
𝑑Δ𝑄𝑟(𝑡)

𝑑𝑡
) =

𝜕𝐺 (Δ𝑄𝑟(𝑡),
𝑑Δ𝑄𝑟(𝑡)
𝑑𝑡

)

𝜕
𝑑Δ𝑄𝑟(𝑡)
𝑑𝑡

 

(2-21) 

If we transfer the stationary state from (Δ𝑄𝑟 , 0) to (Δ𝑄𝑟 + 𝜖, 0), the current value of net 

generated energy at time 𝑡 will increase by 𝐺1(Δ𝑄𝑟 , 0)𝜖, and the total present-value of net 

generated energy will increase by ∫ 𝐺1(Δ𝑄𝑟 , 0)𝜖𝑒
−𝛿𝑡𝑑𝑡

∞

𝑡
= 𝐺1(Δ𝑄𝑟 , 0)𝜖 ∫ 𝑒−𝛿𝑡𝑑𝑡

∞

𝑡
=

𝐺1(Δ𝑄𝑟,0)𝑒
−𝛿𝑡𝜖

𝛿
. However, in order to have such a profit increase, we must temporarily put 𝜖 

of heat into the reservoir, which causes a temporary loss of profit at the point of time 𝑡 as 

−𝐺2(Δ𝑄𝑟 , 0)𝑒
−𝛿𝑡𝜖.  
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When the profit is more than the loss, the tiny increase of Δ𝑄𝑟 is beneficial and we want 

to increase Δ𝑄𝑟 until the profit equals the loss. In contrast, when the profit is less than the 

loss, the tiny increase of Δ𝑄𝑟 is harmful and we want to decrease Δ𝑄𝑟 until the profit 

equals the loss. If the profit equals the loss, we maintain the state. 

Now introduce the concept of stationary rate of return on reservoir stored heat to describe 

the above relationships in another manner, which is defined as 

𝑅(Δ𝑄𝑟) =
𝐺1(Δ𝑄𝑟 , 0)

−𝐺2(Δ𝑄𝑟, 0)
 (2-22) 

When 𝑅 > 𝛿, we want to increase Δ𝑄𝑟 until 𝑅 = 𝛿; When 𝑅 < 𝛿, we want to decrease 

Δ𝑄𝑟  until 𝑅 = 𝛿; When 𝑅 = 𝛿, we maintain the state. Moreover, because the objective 

function is linear regarding 
𝑑Δ𝑄𝑟(𝑡)

𝑑𝑡
, the change towards 𝑅 = 𝛿 should be the most rapid 

approach (MRA), i.e., in the optimal solution 𝑅 should follow the trajectory with the 

fastest speed towards 𝛿 (Weitzman, 2003). 

2.3.2. Solutions to Infinite-Time OGHM Problems 

By using stationary rate of return on reservoir stored heat, the OGHM problem with an 

infinite time horizon is solved as follows. 
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Figure 2-4. Solutions to Infinite OHM Problem Under Different Situations. 

(a) 𝜂[𝑐𝑝,1𝑇𝑒 + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3) > 0 (can make positive profit), 𝛿𝑀𝑟𝑐𝑝,𝑒𝑓𝑓 +

𝐻𝑟−𝑒 > 0 (𝑅(Δ𝑄𝑟 = 0) > 𝛿), can reach where 𝑅 = 𝛿. (b) 𝜂[𝑐𝑝,1𝑇𝑒 + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 −

ℎ3) > 0 (can make positive profit), 𝛿𝑀𝑟𝑐𝑝,𝑒𝑓𝑓 + 𝐻𝑟−𝑒 > 0 (𝑅(Δ𝑄𝑟 = 0) > 𝛿), cannot 

reach where 𝑅 = 𝛿. (c) 𝜂[𝑐𝑝,1𝑇𝑒 + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3) > 0 (can make positive 

profit), 𝛿𝑀𝑟𝑐𝑝,𝑒𝑓𝑓 +𝐻𝑟−𝑒 ≤ 0 (𝑅(Δ𝑄𝑟 = 0) ≤ 𝛿) 
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As shown in Equation (2-18), if the coefficient 𝜂 [𝑐𝑝,1 (
Δ𝑄𝑟(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) + ℎ1,𝑖𝑐 − ℎ3] −

(ℎ4 − ℎ3) is non-positive, the best strategy is extracting no fluid to make a zero profit, 

otherwise the profit will be non-positive. Given that Δ𝑄𝑟 ≤ 0 for all the time, the largest 

value of this coefficient is 𝜂[𝑐𝑝,1𝑇𝑒 + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3), when Δ𝑄𝑟 = 0. If 

𝜂[𝑐𝑝,1𝑇𝑒 + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3) ≤ 0, the optimal strategy will be extracting no fluid 

through all the time. The situation where 𝜂[𝑐𝑝,1𝑇𝑒 + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3) > 0 is 

discussed in the following part. 

The solid black curves in Figure 2-4 show the relationship between the stationary rate of 

return on reservoir stored heat (𝑅) and reservoir stored heat (Δ𝑄𝑟). It can be proven that 

the initial value of 𝑅, i.e., 𝑅(Δ𝑄𝑟 = 0), is always negative. As Δ𝑄𝑟 decreases, 𝑅 

increases to positive infinity, then jumps down to negative infinity and stays negative. 

For the left part of 𝑅 (gray box), the aforementioned coefficient 𝜂 [𝑐𝑝,1 (
Δ𝑄𝑟(𝑡)

𝑀𝑟𝑐𝑝,𝑒𝑓𝑓
+ 𝑇𝑒) +

ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3) is always negative, i.e., the profit is negative, so the left part of 𝑅 

will not be reached in the OGHM solutions. 

When the initial value of 𝑅, 𝑅(Δ𝑄𝑟 = 0), is lower than the discount rate 𝛿 [Figure 2-4(a) 

and (b)], according to the MRA (see at the end of Section 2.3.1), the mass flow rate 

should be the maximum so that Δ𝑄𝑟 can decrease as fast as possible, i.e., 𝑅 increase as 

fast as possible towards 𝛿. As Δ𝑄𝑟 decreases, the heat extraction rate decreases while the 

heat recharge rate increases. In Figure 2-4(a), the maximum heat extraction rate is always 

higher than the recharge rate before 𝑅 reaches 𝛿, so Δ𝑄𝑟 keeps decreasing. Once reaching 
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𝛿, 𝑅 should be unchanged to make the maximum profit, i.e., the heat extraction rate 

should immediately be adjusted to what equals the heat recharge rate and keep this 

balance forever. In contrast, as shown in Figure 2-4(b), it is also possible that the heat 

recharge process is so significant that the maximum heat extraction rate cannot keep 

higher than the recharge rate before 𝑅 reaches 𝛿. In this situation, at somewhere 𝑅 < 𝛿, 

the maximum heat extraction rate equals the heat recharge rate, and Δ𝑄𝑟 cannot decrease 

any more. Thus, the mass flow rate will be the maximum forever toward the unreachable 

point where 𝑅 = 𝛿, and 𝑅 will be stagnant at some value smaller than 𝛿. 

When the initial value of 𝑅 is higher than the discount rate 𝛿 (Figure 2-4(c)), Δ𝑄𝑟 should 

not decrease. Otherwise 𝑅 will increase and have a large gap with 𝛿, which violates the 

MRA. As a result, no heat will be extracted and Δ𝑄𝑟 keeps zero forever. In other words, 

the discount rate is so negative that the optimal heat mining strategy is reserving the heat 

for the future forever. 

2.3.3. Relationship Between Finite-Time and Infinite-Time OGHM problems 

Figure 2-5 shows the solutions of the mass flow rate for OGMH problems, where the 

infinite-time problems are solved by using the stationary rate of return on reservoir stored 

heat (Section 2.3.2), and the finite-time problems are solved by the proposed 

mathematical algorithm (Section 2.2.2). In each sub-figure, there is one infinite-time case 

and four finite-time cases, of which all the input parameters are the same except for the 

time horizon (infinite time horizon vs. finite time horizons from 𝜏1 to 𝜏4). 
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Figure 2-5. Relationship Between Finite-Time and Infinite-Time OGHM problems 

 

 

 

In Figure 2-5(a), when the time horizon is infinite, the mass flow rate starts with the 

maximum value and keeps until reaching where 𝑅 = 𝛿 [see Figure 2-4(a)]. Then the mass 

flow rate will forever keep the value which maintains 𝑅 = 𝛿. However, for the finite-time 

cases, when close to the end, the mass flow rate goes back to the maximum and last to the 

end. This means that for finite-time cases, when there is not much time left, it is not 
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optimal to reserve any heat for the future, and the best strategy is extracting heat with the 

maximum mass flow rate until the end. Here we name this final stage where the mass 

flow rate goes back to the maximum, which is unique in finite-time OGHM problems, as 

the “Finite-Time Final Maximum (FTFM) stage”. Thus the mass flow rate solutions of 

finite-time OGHM problems can be considered as a combination of the solution of the 

infinite-time problem and one FTFM stage. Moreover, for finite-time OGHM problems 

with the same parameters except for the time horizon, the FTFM stage is the same, which 

is drawn as blue belts in Figure 2-5. 

Such a combination varies with different finite-time horizons. In Figure 2-5(a), for the 

finite-time cases with time horizons as 𝜏1 and 𝜏2, the FTFM stage is shorter than the stage 

where 𝑅 = 𝛿 (i.e., the stage that keeps forever in the infinite-time case), and the 

combination of the infinite-time solution and the FTFM stage results in a “two-step” 

situation (situation 3 in Figure 2-2). However, when the time horizon decreases (𝜏3 

and 𝜏4), the FTFM stage becomes longer than and fully covers the stage where 𝑅 = 𝛿. In 

other words, the mass flow rate starts as the maximum, and reaches the FTFM stage 

before reaching where 𝑅 = 𝛿. As a result, the mass flow rate is always the maximum, and 

the two-step situation degrades to the maximum situation (situation 1 in Figure 2-2). In 

addition, if the FTFM stage is longer than the total time horizon (e.g., 𝜏4), all stages are 

covered by the FTFM stage, and the mass flow rate keeps maximum throughout the time 

horizon. 

Similar to Figure 2-5(a), Figure 2-5(b) shows how the combination of the infinite-time 

solution and the FTFM stage leads to finite-time solutions. In Figure 2-5(b), the optimal 
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solution for the infinite-time OGHM problem is keeping zero mass flow rate, i.e., always 

reserving heat to the unreachable points where 𝑅 = 𝛿 [see Figure 2-4(c)]. For the finite-

time cases with time horizons as 𝜏1, 𝜏2, and 𝜏3, the introduction of FTFM stage creates a 

“one-step” situation (situation 4 in Figure 2-2), where the mass flow rate starts as 0, 

changes to the maximum, and keeps the maximum to the end. In other words, it is 

optimal to reserve all heat for the future until reaching the FTFM stage, where the mass 

flow rate rises to the maximum. For finite-time horizon 𝜏4, where the FTFM stage is 

longer than the total time horizon, the mass flow rate is always maximum, and the one-

step situation is degraded to the maximum situation (situation 1 in Figure 2-2). 

In Figure 2-5(c), for the infinite-time problem, the optimal solution always keeps the 

maximum mass flow rate [see Figure 2-4(b)]. In this case, the introduction of the FTFM 

stage makes no difference, since the mass flow rate is also the maximum in the FTFM 

stage. All finite-time cases in Figure 2-5(c) belong to the maximum situation (situation 1 

in Figure 2-2). 

Figure 2-5 (d) corresponds to the situation where extracting any amount of heat at any 

time cannot make positive profits, i.e., 𝜂[𝑐𝑝,1𝑇𝑒 + ℎ1,𝑖𝑐 − ℎ3] − (ℎ4 − ℎ3) ≤ 0 (see 

Section 2.3.2). Thus, whether for the finite-time or the infinite-time problem, the optimal 

strategy is keeping the mass flow rate at zero, and there is no FTFM stage. 
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2.4. Results 

Table 2-1: Baseline Parameters 

Parameter Value 

Efficiency 𝜂 10% 

Compression cost ℎ4 − ℎ3 12 J/g 

ℎ3 262.93 J/g 

ℎ5 287.93 J/g 

ℎ1,𝑖𝑐 184.08 J/g 

𝑐𝑝,1 2.20 J/g-K 

𝑐𝑝,𝑒𝑓𝑓 0.92 J/g-K 

𝐻𝑟−𝑒 2.5×105 W/K 

𝑀𝑟 1.5×1015 g 

𝑇𝑒 100 ℃ 

𝑇3 22 ℃ 

�̇�𝑚𝑎𝑥 100 kg/s 

Discount rate 𝛿 5% 

 

 

 

 
Figure 2-6: Numerical results from discretized models with different discretization 

numbers and analytical results from the continuous model. 

 

 

 

Profit (1012 J)

Discretization number100 1000 10000 ∞ (continuous)

70

80

74.4058 78.2834 78.3504 78.3584
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To verify the analytical algorithm, the time-continuous optimal control problem (2-10) is 

discretized in time and solved numerically by using MATLAB 2021b with optimization 

toolbox YALMIP (Lofberg, 2004) and optimization solver IPOPT (Bertolazzi, 2022; 

Wächter & Biegler, 2006). By using the baseline parameters listed in Table 2-1, the 

numerical results are compared with the analytical result obtained by the algorithm 

proposed in this study (Section 2.2.2). As shown in Figure 2-6, the value of optimal profit 

shows good convergence as the discretization number increases, which gradually rises to 

the limit (infinite discretization number, i.e., continuous) as 78.3584×1012 J. Moreover, 

the shape of the optimal mass flow rate also “converges” as the discretization number 

increases, which becomes more similar to the two-step situation (situation 3 in Figure 

2-2) that is solved by the analytical algorithm. In addition, the analytical algorithm does 

not rely on any other software and can be easily realized by any programming language, 

which makes the results more accurate and the computation speed faster. In conclusion, 

the comparison with numerical results verifies the correctness and shows the advantages 

of the analytical algorithm. 
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Figure 2-7: Sensitivity analysis of different techno-economic parameters on the optimal 

solution of mass flow rate 
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By using the parameter settings in Table 2-1 as the baseline case, different parameters are 

varied respectively to analyze the impact on the optimal solution of the mass flow rate. 

Only scenarios resulting in a positive profit are considered. In Figure 2-7(a)–(e), the 

change of the parameter (including efficiency, compression cost, contact conductance, 

reservoir mass, and surrounding media temperature) has similar influences [take Figure 

2-7(a) as an example]. As the parameter value increases, 1) the time at which the mass 

flow rate decreases from the maximum to the value where 𝑅 = 𝛿 occurs later (e.g., at 

~year 12 when 𝜂 = 9%, and at ~year 41 when 𝜂 = 10%), 2) the time at which the mass 

flow rate recovered from the value where 𝑅 = 𝛿 to the maximum occurs earlier (e.g., at 

~year 98 when 𝜂 = 9%, and in ~year 95 when 𝜂 = 10%), and 3) the value of mass flow 

rate where 𝑅 = 𝛿 becomes greater (e.g.,~8 kg/s when 𝜂 = 9%, and ~21 kg/s when 𝜂 =

10%). For convenience, name the time described in 1) as “mass flow rate dropping 

time”, the time in 2) as “mass flow rate recovering time”, and the value in 3) as “mass 

flow rate balancing value”. Specially, in Figure 2-7(b), when the compression cost is 14 

J/g, the mass flow rate dropping time and recovering time overlap and the mass flow rate 

balancing value equals the maximum, leading to degradation from the two-step situation 

into the maximum situation (situation 3 and 1 in Figure 2-2). Additionally, changing the 

reservoir mass has little effect on the mass flow rate recovering time and balancing value, 

yet has a significant impact on the mass flow rate dropping time. 

When the maximum mass flow rate decreases, as shown in Figure 2-7(f), the mass flow 

rate dropping time is delayed, the mass flow rate recovering time is advanced, but the 

mass flow rate balancing value remains unchanged. Specially, when the maximum mass 
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flow rate is 50 kg/s, it is so small that the heat extraction rate is not large enough to reach 

where 𝑅 = 𝛿 before the FTFM stage. As a result, the mass flow rate keeps the maximum 

throughout the time horizon, and the two-step situation degrades into the maximum 

situation (situations 3 and 1 in Figure 2-2). 

Figure 2-7(g) shows cases with varying discount rates that are non-negative. When the 

discount rate goes higher, the mass flow rate balancing value becomes greater, yet in 

contrast to the cases in Figure 2-7(a)-(f), the mass flow rate dropping time and recovering 

time are both postponed. Moreover, the lasting time of the mass flow rate balancing value 

remains almost the same (~55 years) regardless of the discount rate. In addition, when the 

discount rate is high enough (e.g., 5% and 10%), changing it will not have a significant 

influence on the mass flow rate solution. 

Cases with different negative discount rates are tested as shown in Figure 2 7(h). when 

the discount rate is -0.55%, the mass flow rate solution shows a two-step situation 

(situation 3 in Figure 2-2). When the discount rate is reduced to -5% or -10%, the two-

step situation changes to a one-step situation (situation 4 in Figure 2-2), where the mass 

flow rate starts with 0 and recovers to the maximum. The lower the discount rate, the 

later the mass flow rate jumps from 0 to the maximum. Further calculation shows that the 

threshold discount rate is about -0.5713%: if the discount rate is higher than the 

threshold, the solution is two-step; otherwise, the solution is one-step. 
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Using parameters in Table 2-1 as a benchmark, different parameters are varied from 90% 

to 110%, respectively, and their impacts on the optimal profit are shown in Figure 2-8. 

The parameters are distinctly separated into two groups: the optimal profit is highly 

sensitive to three parameters, including surrounding media temperature, efficiency, and 

compression cost, whereas the other three, reservoir mass, maximum mass flow rate, and 

contact conductance, barely show influences on the optimal profit. Among all tested 

parameters, surrounding media temperature has the most significant influence on the 

optimal profit, and contact conductance has the least. 

 
Figure 2-8: Sensitivity analysis of different techno-economic parameters on the optimal 

profit 

 

 

 

Under a constant surface temperature, the surrounding media temperature is decided by 

the depth and the thermal gradient. The following case studies compare the optimal 
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profits of using CO2 and water as the working fluid, under different depths and thermal 

gradients, with a surface temperature set as 15℃. 

 
Figure 2-9: Profits of Using CO2 and Water as the Working Fluid Under Different Depths 

and Thermal Gradients (Thermosiphon effect is not considered) 

 

 

 

 
Figure 2-10: Minimum Required Thermosiphon Effect (J/g) for CO2 to Be Same 

Profitable as Water. 
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The density of CO2 is highly sensitive to temperature change, which results in a 

buoyancy-driven convection between the reservoir and wellheads, i.e., the thermosiphon 

effect. Such an effect can reduce or even eliminate the pumping energy needs. In 

contrast, since the density of water is almost constant with the fluid phase, its 

thermosiphon effect is negligible. In Figure 2-9, where the thermosiphon effect is not 

considered, using water as the working fluid can make more profits than using CO2 under 

almost all situations of different combinations of depths and thermal gradients. However, 

the thermosiphon effect of CO2 can possibly make CO2 profit-competitive with water. 

Figure 2-10 shows the minimum thermosiphon effect required for CO2 as the working 

fluid to make the same profit as water. When the depth is 5 km and the thermal gradient 

is 50 ℃/km, the required thermosiphon effect is higher than 50 J/g. As the depth becomes 

shallower and the thermal gradient becomes smaller, CO2 needs less thermosiphon 

energy to be the same profitable as water. In some cases where depth < 1.5km, even no 

thermosiphon energy is needed. In addition, the deeper the depth is, the more sensitive 

the required thermosiphon energy is to the thermal gradient. For example, when the depth 

is 2 km, the required thermosiphon energy ranges within 5-15 J/g for different thermal 

gradients, and that range is much larger (15-45 J/g) under a 4 km depth. 

2.5. Conclusions 

In this study, we formulated the optimal geothermal heat mining problem as an optimal 

control model, which is solved by a proposed analytical algorithm. Economic 

explanations are further developed to address the problem with infinite horizons and the 
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relationship with those under finite horizons. Cases with varying parameters are studied, 

and the main conclusions are listed as follows: 

1) Solutions to the OGHM problem can be categorized into four situations. In situation 

1, the mass flow rate keeps the maximum; In situation 2, the mass flow rate keeps as 

0; In situation 3, the mass flow rate starts as the maximum, decreases to a constant 

value, and finally recovers to the maximum; In situation 4, the mass flow rate starts as 

0, and changes to the maximum. 

2) For the cases that have positive optimal profits, the solutions of finite-time OGHM 

problems can be considered as a combination of the solution of the infinite-time 

problem and one final stage with a maximum mass flow rate. 

3) Surrounding media temperature, efficiency, and compression cost have significant 

influences on the optimal profit, and surrounding media temperature has the most. 

4) Compared with water geothermal systems, CO2 geothermal systems performs better 

for shallow, low-grade heat sources due to less requirement for the thermosiphon 

effect. 
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Chapter 3. Pathways of Methane Control to Address Climate Change 

3.1. Introduction 

Climate change is a result of human activities that emit carbon dioxide (CO2), methane 

(CH4), and other greenhouse gases (GHGs) to the atmosphere, where they accumulate 

and alter the energy balance of the earth by contributing to the radiative forcing that 

increases surface temperatures (IPCC, 2023b). Most efforts to date focus on slowing, 

stopping, and reversing CO2 emissions by switching fuels, increasing renewable 

utilization, implementing CO2 capture with geologic CO2 storage (CCS), and deploying 

direct air CO2 capture (DACC) and bioenergy with CCS (BECCS) (Boucher et al., 2014; 

Fawzy et al., 2020; Minx et al., 2018). The emphasis on CO2 is understandable because it 

accounts for 64% (2.170 W/m2) of the total radiative forcing in the atmosphere (NOAA, 

2023), and modern economies are organized around fuels and processes that produce CO2 

as a byproduct of using them.  Yet while there is ~210x less CH4 in the atmosphere than 

CO2 (~1.8 ppm vs. ~420 ppm) (USEPA, 2021), addressing CH4 should be a high priority 

as well: (a) since the beginning of the Industrial Revolution, the amount of CH4 in the 

atmosphere has increased faster than the amount of CO2 (~2.5x vs. ~1.5x) (USEPA, 

2021); (b) CH4 has radiative efficiency that is an order of magnitude greater than CO2 

(Myhre et al., 2013), (c) CH4 presently contributes ~0.65 W/m2 of radiative forcing 

(NOAA, 2023); (d) unlike with CO2, there are worrisome temperature-driven positive 
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feedbacks that release CH4 to the atmosphere (e.g., from permafrost, hydrates, clathrates) 

as temperatures increase (Cheng & Redfern, 2022; Dean et al., 2018; Matthews & Fung, 

1987); and (e) the broad reliance on natural gas – the primary component of which is CH4 

– in energy and industrial systems is difficult to change (Ritchie et al., 2023b). While 

CH4 control may not appear to be as important as addressing CO2 because it has a shorter 

average lifetime in the atmosphere than CO2 (~10 years vs. ~100 years), the 

concentration of CH4 in the atmosphere is accelerating faster than that of CO2 (UNEP & 

CCAC, 2021), and concern about CH4 will likely increase as, (i) natural gas continues to 

displace coal in electricity generating systems (Ritchie et al., 2023a), and (ii) natural gas 

continues to be relied upon for heating (~40% of the primary energy for building heating) 

(IEA, 2023) with (iii) infrastructure that leaks fugitive CH4 (Brandt et al., 2014; Weller et 

al., 2020); (iv) assets and geopolitical influences embedding natural gas (Osička & 

Černoch, 2022; Szabo, 2022); and (v) increasing meat production and associated CH4 

emissions from ruminants are contributing more CH4 to the atmosphere (Ritchie et al., 

2023c).  Altogether, immediate near-term action to control the accumulation of CH4 in 

the atmosphere could rapidly reduce the pace of global climate change.   

A portfolio approach is urgently needed to slow, stop, and reverse the emissions of CH4 

to the atmosphere. While there are some early actions, such as the proposed CH4 rules 

from the Biden Administration (The White House, 2021) followed by a $350M grant 

(USEPA, 2023) and a Waste Emissions Charge (USEPA, 2024) for CH4 emission 

reduction in oil and gas sector, there is relatively scant attention to addressing CH4 

emissions – especially with respect to the understanding that it will be essential to remove 
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GHGs from the atmosphere in order to have a chance at stabilizing climate change at 

levels that preserve the environmental envelope in which societies evolved and to which 

they are adapted (J. Forster et al., 2020; Waller et al., 2020). Some studies have focused 

on assessing the potentials and costs of CH4 emissions abatement and begun to 

incorporate those assessments into integrated assessment models for scenario-based 

simulations (Harmsen et al., 2019; Höglund-Isaksson et al., 2020; Lucas et al., 2007; 

Staniaszek et al., 2022). But CH4 removal, especially from the atmosphere, has hardly 

been considered in those scenario-based simulations. While there is debate on the 

viability of atmospheric CH4 removal, the possibility is receiving attention as one of 

potential options for CH4 control (Jackson et al., 2019, 2020; Lackner, 2020; Nisbet-

Jones et al., 2022). Some potentially viable CH4 removal technologies have been 

proposed (Abernethy et al., 2023; Jackson et al., 2021), including biological (Majdinasab 

& Yuan, 2017), heat-based (Brenneis et al., 2022), and light-based (Chen et al., 2016) 

approaches. Nevertheless, CH4 removal approaches will be more difficult to realize than 

existing CO2 abatement methods. Almost a generation elapsed between DACC being 

proposed and the first industrial-scale facility (IEA, 2020; Keith et al., 2006; Lackner et 

al., 1999; Sanz-Pérez et al., 2016), and the chemistry of removing CH4 from dilute gasses 

is more complicated and less certain than for removing CO2. As such, while there is some 

emerging research on specific approaches to separate CH4 from dilute gas streams (Hu, 

May, et al., 2022; Hu, Zhao, et al., 2022), it will likely take longer to research, develop, 

and demonstrate CH4 removal at the time where the effects of its increasing presence in 

the atmosphere are accelerating. 
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There are three main options to address the GHG pre-cursors to climate change: 

mitigation to avoid emissions, removal of what is in the atmosphere, and solar radiation 

management (SRM) to reduce the amount of energy from the sun that reaches the Earth’s 

surface (Drake et al., 2021). Setting aside SRM because of its ethical conundrums 

(Preston, 2017; Svoboda & Irvine, 2014), this paper develops the Model for Optimization 

of Methane Emissions and removal with Negative Technologies Under climate Mitigation 

(MOMENTUM) to investigate pathways for CH4 control.  These pathways depend on the 

radiative forcing of all GHGs in the atmosphere, and thus the model incorporates 

trajectories for CO2 and other emissions over several scenarios (Byers et al., 2022) in 

order to determine when society needs to mitigate or remove CH4 emissions.  

3.2. The MOMENTUM for Optimal CH4 Control 

The goal of the MOMENTUM is to provide insights for CH4 control, particularly in the 

context of CH4 atmospheric removal, through effective quantitative calculations.  The 

MOMENTUM contains a climate model and a technology model (Figure 3-1) that are 

linked by two decision variables that determine the amount of CH4 emissions to (1) 

mitigate or (2) remove each year.  The objective function minimizes the total discounted 

cost each year, which is formulated from cost parameters in marginal cost curves for CH4 

mitigation and learning curves for CH4 removal. 
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Figure 3-1: The Model for Optimization of Methane Emissions and removal with 

Negative Technologies Under Climate Mitigation (MOMENTUM) for Methane 

Pathways 

 

 

 

3.2.1. MOMENTUM: The Global Climate Component 

The global climate component of the MOMENTUM incorporates two ways in which CH4 

is treated differently than CO2: 1) mitigation and removal technologies can be deployed 

to control net CH4 emissions; and 2) there is positive feedback from CH4 emissions that 

increase global mean surface temperatures that lead to more CH4 emissions. In contrast to 

how CH4 is incorporated, CO2 emissions control is assumed to be implicitly included in 

input trajectories for CO2 emissions and there are no temperature-related feedbacks. 

1) Emissions and Concentrations 

The global climate component of the MOMENTUM uses CO2 emissions and CH4 

emissions as inputs to determine their accumulation and concentrations in the atmosphere 
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and their resulting contributions to total radiative forcing. Other GHGs and constituents 

in the atmosphere add a small amount to the total radiative forcing (<10%), and are 

directly used (i.e., are not estimated from emissions) with the radiative forcing from CO2 

and CH4 to estimate the global mean surface temperature.   

The net amount of CH4 emitted to the atmosphere [Mt/yr] at a point in time (�̇�𝐶𝐻4(𝑡)) 

equals the sum of (a) the CH4 emissions from anthropogenic sources without any control 

(�̇�𝐶𝐻4,𝑎(𝑡)) and (b) the CH4 emissions from natural sources (�̇�𝐶𝐻4,𝑛(𝑡)), less (c) the CH4 

emissions that would be emitted but are instead mitigated (�̇�𝑀(𝑡)) and (d) removal of 

accumulated emissions from the atmosphere (�̇�𝑅(𝑡)): 

�̇�𝐶𝐻4(𝑡) = �̇�𝐶𝐻4,𝑎(𝑡) + �̇�𝐶𝐻4,𝑛(𝑡) − �̇�𝑀(𝑡) − �̇�𝑅(𝑡) (3-1) 

Natural CH4 emissions are assumed to be determined by the global mean surface 

temperature. For example, rising temperatures enhance archaeal CH4 production in 

wetlands, which is one of the major sources of �̇�𝐶𝐻4,𝑛(𝑡) (Dean et al., 2018). The 

relationship between �̇�𝐶𝐻4,𝑛(𝑡) and global mean surface temperature [C, relative to the 

mean between 1850 and 1900] is formulated as a 𝑄10 relationship, which describes the 

exponential temperature sensitivity of CH4-related chemical and biological processes 

(Delwiche et al., 2021; Mundim et al., 2020), 

�̇�𝐶𝐻4,𝑛(𝑡) = �̇�𝐶𝐻4,𝑛,0 × 𝑄10

𝑇(𝑡)−𝑇𝐶𝐻4,𝑛,0
10  (3-2) 

where 𝑄10 is 2.57 (Delwiche et al., 2021), �̇�𝐶𝐻4,𝑛,0 is 215 Mt/yr (Saunois et al., 2020), 

𝑇𝐶𝐻4,𝑛,0 is 0.841 C (Fyfe et al., 2021).  These values for �̇�𝐶𝐻4,𝑛,0 and 𝑇𝐶𝐻4,𝑛,0 are the 
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averages between 2000 and 2009. The concentration of CH4 in the atmosphere (Boucher 

et al., 2009) is 

𝐶𝐶𝐻4(𝑡) = 𝐶𝐶𝐻4(𝑡0) +
1

2.85
∫ �̇�𝐶𝐻4(𝜏) ∙ 𝐼𝑅𝐹𝐶𝐻4(𝑡 − 𝜏)𝑑𝜏

𝑡

𝑡0

 (3-3) 

where 𝐼𝑅𝐹𝐶𝐻4 is the impulse response function of CH4, which characterizes how an 

impulse of CH4 emitted to the atmosphere decays over time, beginning at time t0. The 

integral in Equation (3-3) gives the increase of the mass of CH4 in the atmosphere [Mt], 

which is converted to the increase in atmospheric concentration [ppb] by dividing by 

2.85, which is the product of mass of the atmosphere (5.1480 × 1018 kg),and the 

molecular weight of CH4 (16.04 g/mol) divided by the molecular weight of air (28.96 

g/mol). With the average lifetime of CH4 in the atmosphere as 𝐿𝐶𝐻4, 

𝐼𝑅𝐹𝐶𝐻4(𝑡) = 𝑒
−

𝑡
𝐿𝐶𝐻4  (3-4) 

Similarly, the concentration of CO2 in the atmosphere (Joos et al., 2013) is, 

𝐶𝐶𝑂2(𝑡) = 𝐶𝐶𝑂2(𝑡0) +
1

7.82
∫ �̇�𝐶𝑂2(𝜏) ∙ 𝐼𝑅𝐹𝐶𝑂2(𝑡 − 𝜏)𝑑𝜏

𝑡

𝑡0

 (3-5) 

where 

𝐼𝑅𝐹𝐶𝑂2(𝑡) = 0.2173 + 0.2240 ∙ 𝑒
−

𝑡
394.4 + 0.2824 ∙ 𝑒−

𝑡
36.54 + 0.2763 ∙ 𝑒−

𝑡
4.304 (3-6) 

2) Radiative Forcing 

The radiative forcing [W/m2] for CH4 (𝐹𝐶𝐻4(𝑡)) is a subduplicate function of its 

concentration in the atmosphere, 𝐶𝐶𝐻4 [ppb], 
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𝐹𝐶𝐻4(𝑡) = 𝐹𝐶𝐻4(𝑡0) + 𝑎𝐶𝐻4(√𝐶𝐶𝐻4(𝑡) − √𝐶𝐶𝐻4(𝑡0)) (3-7) 

and the radiative forcing for CO2 is a logarithmic function of its concentration, 

𝐹𝐶𝑂2(𝑡) = 𝐹𝐶𝑂2(𝑡0) + 𝑎𝐶𝑂2𝑙𝑛 (
𝐶𝐶𝑂2(𝑡)

𝐶𝐶𝑂2(𝑡0)
) (3-8) 

where 𝑎𝐶𝐻4 is 0.038 W/m2 and 𝑎𝐶𝑂2 is 5.36 W/m2
 (Etminan et al., 2016).  The total 

radiative forcing is the sum of 𝐹𝐶𝐻4(𝑡), 𝐹𝐶𝑂2(𝑡), and the radiative forcing of other 

constituents in the atmosphere (𝐹𝑜𝑡ℎ𝑒𝑟(𝑡)), 

𝐹(𝑡) = 𝐹𝐶𝐻4(𝑡) + 𝐹𝐶𝑂2(𝑡) + 𝐹𝑜𝑡ℎ𝑒𝑟(𝑡) (3-9) 

3) Temperature 

Using a deep-layer energy balance model, the global mean surface temperature, 𝑇(𝑡), 

results from 𝐹(𝑡) (Drake et al., 2021; Geoffroy et al., 2013; Held et al., 2010), according 

to 

𝑇(𝑡) =
𝐹(𝑡)

𝛽 + 𝛾
+
𝛾

𝛽
∫
𝑒
𝜏−𝑡
𝛿

𝛿

𝐹(𝜏)

𝛽 + 𝛾
𝑑𝜏

𝑡

𝑡0

 (3-10) 

where 𝛽 = 1.13 W/(m2K) is the climate feedback parameter, 𝛾 = 0.73 W/(m2K) is the 

ocean heat uptake rate, and 𝛿 = 240 yr is a slow deep ocean timescale.  Note that 

historical CH4 emissions and total radiative forcing (i.e., before 𝑡0) are considered in the 

calibration of the model. (See the details in Appendix A.1) 

3.2.2. Technology Model 

1) Methane Mitigation Technology Model 

Marginal cost curves for CH4 emissions mitigation in different sectors (e.g., energy, 

agriculture, waste) are based on data from the U.S. Environmental Protection Agency 
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(USEPA, 2019). These USEPA data embed considerations of technological change and 

provide comprehensive forecasts of CH4 mitigation potentials and corresponding costs 

for each mitigation method and each country at five-year increments from 2015 to 2050.  

Directly using the cost-quantity pairs by countries and by technologies would require 

many discrete, step-like curves which cannot be simply expressed with a mathematical 

function. Accommodating these data directly would substantially increase the complexity 

of the Methane Mitigation Technology model. In keeping with the goal of an accurate yet 

parsimonious model, these forecasts are simplified to establish explicit and continuous 

marginal cost functions. To do so, the timescale, resolution, and baseline scenario are 

aligned to the IPCC AR6 data (Byers et al., 2022). We use data for approaches with 

marginal costs between -$500/tCO2e and $500/tCO2 and, for consistency with the rest of 

the model, the years 2020 – 2050. These data account for 90% of the total data from the 

EPA dataset. Technological changes in cost reductions and efficiency improvements are 

embedded in the USEPA data (Figure 2a). Those discretized data are fitted with least-

squares regression into two-term exponential functions for each sector, such that 

𝑐𝑀(�̇�𝑀𝑠𝑒𝑐𝑡 , 𝑡) = 𝑚1(𝑡)𝑒
𝑛1(𝑡)�̇�𝑀𝑠𝑒𝑐𝑡(𝑡) +𝑚2(𝑡)𝑒

𝑛2(𝑡)�̇�𝑀𝑠𝑒𝑐𝑡(𝑡) (3-11) 

where 𝑐𝑀 is the marginal cost of CH4 mitigation, �̇�𝑀𝑠𝑒𝑐𝑡  is the mitigation capacity for a 

sector, and 𝑚1, 𝑚2, 𝑛1, and 𝑛2 are coefficients that are estimated by the regression.  To 

incorporate the structural characteristics of the marginal costs for each sector without 

influence from the maximum capacities that are outliers, the marginal cost curves for 

each sector are normalized by changing the absolute mitigation capacity into percentages 

of the maximum potentials. To do so, we implement compression transformations so that 
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the maximum capacity is normalized to 100%. These transformations reveal other minor 

but important structural impact factors beyond cost reduction and efficiency improvement 

that affect the cost curves. To align the timescale and resolution with our model, the 

marginal cost curves are then linearly interpolated and extrapolated along the temporal 

dimension. Figure 3-2 provides an example of this process for the energy sector. 

 

 

Figure 3-2: Example Alignment from the Energy Sector. 

(a) Marginal Cost Curves for CH4 Mitigation Technologies, every five years from year 

2020 to year 2050 (USEPA, 2019). (b) Alignment of the Marginal Cost Curves in (a) 

after harmonizing them. (c) Alignment of Maximum Mitigation Potentials for Non-

Baseline Emissions. 
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The maximum mitigation potentials, as percentages of baseline CH4 emissions in the 

USEPA data, are also linearly interpolated or extrapolated along the temporal dimension. 

The baseline here refers to the Business-As-Usual (BAU) conditions, where scenarios 

with emission rates are consistent with historical levels and do not include policy 

changes. For baseline emissions of other scenarios from the AR6 data for the SSPs, the 

percentage-based maximum mitigation potentials for each sector are assumed to be the 

same as those in the USEPA data. For non-baseline emissions (Figure 3-2c), we consider 

the differences from baseline emissions to be mitigation efforts that have already been 

applied.  The assumption is that the cheapest approaches are implemented until their 

individual capacity is exhausted before more expensive approaches are implemented. The 

mitigation potential that has not been used is incorporated into decision variables in the 

model. 

2) Methane Removal Technology Model 

Given the nascent development of CH4 removal approaches, a logarithmic learning curve, 

or experience curve, and sigmoid growth curve are employed to describe future 

development of CH4 removal technologies.  These mathematical representations are 

typically applied to projections of learning and diffusion for emerging technologies 

(Lackner & Azarabadi, 2021; Rogers, 2003; van der Kam et al., 2018; van der Zwaan & 

Rabl, 2003).  The cost of CH4 removal technologies is 

𝑐𝑅 = 𝑐𝑅0 [
�̇�𝑅

�̇�𝑅,0
]

log2(1−𝑙𝑅)

 (3-12) 
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where 𝑐𝑅 [$/tCH4] is the average cost of CH4 removal at removal ability 𝑅, �̇�𝑅,0 [Mt/yr] 

is the initial CH4 removal ability at t = 0, and 𝑙𝑅 [%] is the learning rate of the CH4 

removal technology.  The growth of the deployment of CH4 removal technology is 

�̇�𝑅(𝑡) =
�̇�𝑅,𝑚𝑎𝑥

1 + 𝑒
−𝑔�̇�𝑅,𝑚𝑎𝑥

(𝑡−𝑡𝑚𝑖𝑑)
 (3-13) 

where �̇�𝑅,𝑚𝑎𝑥 [Mt/yr] is the maximum removal potential, 𝑔�̇�𝑅,𝑚𝑎𝑥 [%] is the maximum 

relative growth rate, and 𝑡𝑚𝑖𝑑 [yr] is the time when the removal ability reaches half of the 

maximum of the removal potential.  The growth rate [%/yr] of the removal, 𝑔�̇�𝑅(𝑡), is  

𝑔�̇�𝑅(𝑡) =
𝑑�̇�𝑅(𝑡)

𝑑𝑡

1

�̇�𝑅(𝑡)
=

𝑔𝐸𝑅,𝑚𝑎𝑥

1 + 𝑒
𝑔�̇�𝑅,𝑚𝑎𝑥

(𝑡−𝑡𝑚𝑖𝑑)
 (3-14) 

It can be deduced that �̇�𝑅(𝑡) and 𝑔�̇�𝑅(𝑡) are linearly correlated by  

𝑔�̇�𝑅(𝑡) = −
𝑔�̇�𝑅,𝑚𝑎𝑥

�̇�𝑅,𝑚𝑎𝑥
�̇�𝑅(𝑡) + 𝑔�̇�𝑅,𝑚𝑎𝑥 (3-15) 

As the initial expression of the sigmoid growth rate, Equation (3-13) is non-convex and is 

thus more likely to result in a locally optimal solution. As a result, the MOMENTUM uses 

Equation (3-15), which is a linear equivalent of Equation (3-13). Moreover, considering 

that the growth curve is likely to not strictly follow the sigmoid pattern, the relative 

growth rate defined by (3-15) is set as the maximum relative growth rate and (3-15) is 

relaxed into 

0 ≤ 𝑔�̇�𝑅(𝑡) ≤ −
𝑔�̇�𝑅,𝑚𝑎𝑥

�̇�𝑅,𝑚𝑎𝑥
�̇�𝑅(𝑡) + 𝑔�̇�𝑅,𝑚𝑎𝑥 (3-16) 



50 

 

3.2.3. Optimization Model 

The objective function is minimizing the total discounted cost of CH4 mitigation and 

removal, 

min𝐶𝑜𝑠𝑡 =∑[∑𝑐𝑀(�̇�𝑀𝑠𝑒𝑐𝑡(𝑡), 𝑡)

𝑠𝑒𝑐𝑡

+ 𝑐𝑅 (�̇�𝑅(𝑡))] (1 + 𝜌)
−𝑡

𝑡

 (3-17) 

The constraints are defined by other relationships in the climate model and the 

technology model, with an additional climate goal given as 

𝑇(𝑡𝑒𝑛𝑑) ≤ 𝑇𝑔𝑜𝑎𝑙 (3-18) 

The optimization model is implemented in MATLAB 2021b using the optimization 

toolbox YALMIP (Lofberg, 2004) and optimization solver IPOPT (Bertolazzi, 2022; 

Wächter & Biegler, 2006). 

3.2.4. Scenarios 

Five representative shared socioeconomic pathways (SSPs) are used with the 

MOMENTUM to study optimal pathways for CH4 control: SSP1-1.9, SSP1-2.6, SSP2-

4.5, SSP3-7.0, and SSP5-8.5. The SSPs are global scenarios that have become a standard 

for integrated assessment modeling to determine pathways for mitigating global climate 

change (O’Neill et al., 2020).  The SSPs are based on alternative future worlds with 

different narratives (e.g., SSP1) describing alternative socio-economic developments, 

followed by a value of nameplate radiative forcing (e.g., 1.9 W/m2) that is possible to 

reach by 2100 under the narrative (Riahi et al., 2017). Since SSP1-1.9, SSP1-2.6, and 

SSP2-4.5 are not baseline scenarios, the baseline scenarios (which describe future 

developments in the absence of new climate policies) of SSP1 and SSP2 are also 
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considered. Data for the climate model are from IPCC AR6 dataset (Byers et al., 2022), 

and data for CH4 mitigation technology model are based on USEPA data (as described in 

Section 3.2.2). Baseline parameters for CH4 removal technology model are shown in 

Table 3-1. 

 

Table 3-1: Baseline Parameters for CH4 Removal Approaches 

Initial CH4 

Removal 

Ability 

Maximum CH4 

Removal 

Potential 

Maximum CH4 

Removal 

Growth Rate 

Initial CH4 

Removal Cost 

CH4 Removal 

Learning Rate 

0.01Mt/yr 200Mt/yr 30% $30k/t 20% 

 

 

 

Table 3-2: Summary of Shared Socioeconomic Pathway (SSP) Scenarios Used in This 

Study 

 

Challenges for Mitigation 

/ Adaptation (O’Neill et 

al., 2017) 

Radiative 

Forcing in 

2100 (W/m2) 

Temperature in 2100 above Pre-

Industrial in 2100(℃) 

[range], climate goal 

SSP1 Low/Low 
1.9 [1.03, 1.34], 1.2 

2.6 [1.42, 1.71], 1.5 

SSP2 Intermediate/Intermediate 4.5 [2.38, 2.63], 2.5 

SSP3 High/High 7.0 [3.76, 4.07], 3.9 

SSP5 High/Low 8.5 [4.52, 4.84], 4.7 

 

 

 

For each SSP scenario, a specific climate goal is input into the MOMENTUM to 

determine the optimal CH4 mitigation and CH4 removal pathways.  These climate goals 

are more stringent, in terms of lower global mean surface temperatures, than the 
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representative SSP scenarios and are based on a range of possible temperatures in 2100 – 

from no CH4 control to full CH4 control. 

Table 3-2 summarizes the SSP scenarios used in this study, where the possible ranges of 

temperature above the pre-industrial in 2100 are simulated under baseline parameters of 

CH4 mitigation and removal. 

3.3. Results 

3.3.1. Optimal CH4 Control Costs and Pathways for Several Shared Socioeconomic 

Pathways 

Figure 3-3 contains the results for CH4 emissions mitigation and CH4 emissions removal 

for specific climate goals in each SSP scenario. 

For SSP1-1.9 and SSP1-2.6, where the climate goals are respectively 1.2℃ and 1.5℃ 

above pre-industrial temperatures, the optimal CH4 control strategies are similar. The 

results in Figure 3-3(a - d) show a small amount of CH4 emissions mitigation occurs early 

in the timeframe (2020-2030). A small amount of CH4 removal begins around the middle 

of the century and increases substantially around 2075.  Of the total amount of CH4 

control, less than 20% relies on CH4 emissions mitigation, whereas the rest (>80%) relies 

on CH4 emissions removal. Further, the cost of CH4 emissions mitigation in each sector 

are negative and small (~-0.1T$), whereas the total cost of CH4 removal is enormous 

(~$3T/~$5T).  

There is more CH4 mitigation potential in SSP2-4.5 than in SSP1-1.9 and SSP1-2.6 

because it has more allowable emissions which leads to a higher temperature.  The results 

in Figure 3-3(e-f) show that CH4 emissions mitigation accounts for ~30% of the total CH4 

control. The CH4 mitigation costs in the agricultural and waste sectors are negative, but 
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the CH4 mitigation costs in the energy sector are positive and total CH4 mitigation cost is 

much smaller than that of CH4 removal (<$0.1T vs. ~$3.3T). In addition to CH4 

mitigation beginning early (2020-2030), some CH4 mitigation is also deployed along with 

CH4 removal in the later years (around 2085). 

The SSP3-7.0 scenario is the baseline scenario for SSP3, with the climate goal set to 

3.9C above pre-industrial temperatures. As the baseline SSP3 scenario with a high 

climate goal, a discontinuity in total CH4 mitigation cost becomes apparent around the 

year 2030 because the marginal abatement cost curves of the agriculture sector in the 

U.S. EPA dataset have a distinct difference before and after 2030. Figure 3-3(g-h) show 

that the large amount of CH4 mitigation potential keeps total costs negative until around 

2085 – which suggests that it is economically beneficial to mitigate CH4 emissions under 

the baseline conditions for SSP3 – until a few years after CH4 removal substantially 

accelerates, which occurs around 2080. In Figure 3-3(i-j) for the least stringent climate 

goal (4.7C) we investigate (SSP5-8.5), mitigation is the primary means for CH4 control, 

although CH4 removal begins to accelerate around the year 2080. Initial CH4 emissions 

stabilize during 2050-2070 and start to decrease after 2070, mainly due to a peak and 

subsequent reduction in population and demand for food (Kriegler et al., 2017; Riahi et 

al., 2017).  
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Figure 3-3: Optimal CH4 Control Costs and Pathways for Several Shared Socioeconomic 

Pathways (SSPs) and Global Mean Surface Temperature Goals in 2100. 
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There are some notable trends across the five SSPs and their climate goals.   Methane 

removal begins at small levels around the middle of the century, yet in the SSPs that have 

more mitigation potential, CH4 mitigation accounts for more of the total CH4 control 

(e.g., 16.4% in SSP1-1.9 vs. 91.4% in SSP5-8.5) and CH4 removal is less relied upon and 

tends to start later in time (e.g., 2055 in SSP1-1.9 vs. 2062 inSSP5-8.5). While the results 

from SSP1-1.9 and SSP1-2.6 do not strictly follow this trend (e.g., SSP1-2.6 has more 

CH4 mitigation potential but less CH4 mitigation), the 1.5C climate goal for SSP1-2.6, 

which was chosen to be consistent with the 2016 Paris Agreement (UNFCCC, 2015), is 

more demanding than the 1.2C goal for SSP1-1.9. That is, the difference in radiative 

forcing for the same SSP makes it more difficult to achieve a 1.5C goal with radiative 

forcing consistent with RCP 2.6 than a 1.2C climate goal consistent with RCP 1.9. 

Finally, for all SSPs, the energy sector consistently has the most CH4 mitigation while the 

waste sector consistently has the cheapest CH4 mitigation. These results suggest that, 

from a societal standpoint, the energy sector must be prioritized for CH4 emission 

reductions and the waste sector can offset total costs. 

3.3.2. Sensitivity of Climate Goals in 2100 by Shared Socioeconomic Pathway 

The results in Figure 3-3 are for the subsets of the climate goals that are achievable for 

each SSP. Figure 3-4 provides an overview of the results of five representative SSPs 

under the full range of achievable climate goals in 2100. Within these ranges for each 

SSP, the maximum is the “business as usual” pathway and is the same as the initial SSP 

with no additional CH4 control. The minimum represents the case where all the 
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mitigation and removal potential are applied and any climate goal under this value is 

unrealizable. 

 

Figure 3-4: Sensitivity Analysis of Climate Goals in 2100 for Five Representative SSPs 
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As shown in the top subplots for each panel (black curves) for each SSP, the temperature 

in 2100 after the optimal CH4 control is not necessarily same as the climate goal.  This 

difference is clear for SSP3-7.0 and SSP5-8.5. As the climate goal increases, the 

temperature in 2100 initially equals the climate goal until at some point that the 

temperature plateaus. This result occurs because the mitigation approaches with negative 

costs are economically beneficial and will be applied, and the temperature in 2100 with 

all the negative-cost mitigation approaches may thus be lower than the climate goal. For 

instance, the plateau for SSP3-7.0 occurs around a climate goal of 4.03℃, where all the 

negative-cost mitigation approaches are the only mitigation approaches that are applied. 

If the temperature in 2100 is forced to be higher than 4.03℃, less mitigation approaches 

with negative costs will be applied and the overall cost will be higher. As a result, climate 

goals higher than 4.03℃ in SSP3-7.0 will not have a real influence on the results. This 

phenomenon is not apparent for the SSP1 and SSP2 scenarios due to the limited 

mitigation potentials that are available.  The middle subplots (blue curves) show the total 

cost for each SSP as a function of the climate goal in 2100.  Across the SSPs, the slope of 

the curve is higher with more stringent climate goals (i.e., lower temperatures in 2100) it 

is more and more costly to achieve per unit of climate goal.  For the SSP1 and SSP2 

scenarios, the costs under almost all the achievable climate goals are positive, whereas 

for SSP3-7.0 and SSP5-8.5 a range of climate goals are achievable with negative costs 

because of the larger availability of mitigation potential.  The bottom subplots (green 

curves) for each SSP show when CH4 removal should start.  When CH4 removal begins 

earlier, there is more total CH4 removal and a lower climate goal can be achieved. For all 
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SSPs, to reach the most ambitious climate goal, the removal must start immediately at the 

beginning of the simulation period (i.e., year 2020). The CH4 removal begins later as the 

climate goal increases, but never after the year 2070.  In these situations, for high climate 

goals, the ability to remove CH4 stays consistent at the initial baseline amount of 0.01 

MtCH4/yr. CH4 removal never begins to exceed the baseline level after 2080 because it is 

too late to develop CH4 removal technology; there is insufficient time before 2100 to 

scale CH4 removal to the point where the high average CH4 removal cost decreases 

enough for it to be cost-effective to rely on CH4 removal. Additionally, the range of 

climate goals in which CH4 removal never occurs widens from SSP1-1.9 to SSP5-8.5, 

because almost all the CH4 control is realized by mitigation and latter SSPs (e.g., SSP5-

8.5) have more mitigation potential (especially those with negative costs). 

3.3.3. Dependence of Total Cost of CH4 Control on Several Key Parameters 

Figure 3-5 shows the results of sensitivity analyses of the total cost of CH4 control on six 

important parameters for CH4 removal: (1) initial CH4 removal cost vs. (2) maximum 

CH4 removal potential; (3) CH4 removal learning rate vs. (4) maximum CH4 removal 

growth rate; and (5) CH4 mitigation cost vs. (6) maximum CH4 mitigation potential.  For 

each of these six parameters, five values are used in the sensitivity analysis. The values 

for each parameter are indicated on the axes of each panel in Figure 3-5 (e.g., Figure 

3-5a(i) shows the values considered for initial CH4 removal cost are $3k, $10k, $30k, 

$100k, and $300k/tCH4 and the values considered for maximum CH4 removal potential 

are 50, 100, 200, 300, and 400 MtCH4), and the middle value is the baseline that is 

presented in Section 3.2.2 (for CH4 mitigation) or Table 3-1 (for CH4 removal). 
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Figure 3-5: Sensitivity of Total Cost of CH4 Control to Important Parameters. 

(i) Initial CH4 Removal Rate vs. Maximum CH4 Removal Potential; (ii) CH4 Removal 

Learning Rate vs. Maximum CH4 Removal Growth Rate; (iii) CH4 Mitigation Cost vs. 

Maximum CH4 Mitigation Potential. Dark grey = no feasible solution.  

 

 

 

In column (i) of Figure 3-5, the initial CH4 removal cost influences the total cost of CH4 

control more than the maximum CH4 removal potential.  While the total cost of CH4 

control decreases with increases in maximum CH4 removal potential, those differences 

are less than the increases in the total cost of CH4 control with increases in the initial CH4 

removal cost.  Throughout the results presented in column (i) of Figure 3-5, the total cost 

of CH4 control approximately triples with an approximate tripling of the initial CH4 
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removal cost, holding maximum CH4 removal potential fixed.  That is, the relationship 

between total cost is roughly linear. In contrast, when maximum CH4 removal potential is 

halved, the total cost of CH4 control increases between 5% and 46%, holding initial CH4 

removal cost constant.  For the range of values for maximum CH4 removal potential we 

consider in this sensitivity analysis, the total cost of CH4 control tends to increase 

proportionally less than the decrease in maximum CH4 removal potential. In addition, 

when the maximum CH4 removal potential is low (≤100Mt/yr), or the maximum CH4 

removal growth rate is low (≤10%), the results here suggest that the climate goal cannot 

be attained. 

As with column (i), the results in column (ii) of Figure 3-5 show that CH4 removal 

learning rate has more effect on the total cost of CH4 control than the maximum CH4 

removal growth rate.  In each panel corresponding to different SSP-RCP combinations 

and associated climate goals, the proportional changes in the total cost of CH4 removal 

with differences in the CH4 removal learning rate (the rows) are greater than with 

differences in maximum CH4 removal growth rate.   

Finally, while the cost and potential of CH4 mitigation (respectively the y and x axes of 

the panels in column (iii) of Figure 3-5) both influence the total cost of CH4 control, the 

variations of each key variable we investigate result in less total costs than the variations 

in the other key variables in columns (i) and (ii).  The total cost of CH4 control is more 

sensitive to the variations in maximum CH4 mitigation potential we investigated than the 

variations in CH4 mitigation cost we investigated, but these key variables exert less 
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overall influence on the total cost of CH4 control than the other key parameters in 

columns (i) and (ii) of Figure 3-5. 

3.3.4. Dependence of the Year CH4 Removal Begins on Key Parameters 

Table 3-3 provides a summary of the results of the sensitivity analyses for the year that 

CH4 removal starts. The parameters and their values are the same as in Section 3.3.3. 

(The full results are provided in Figure A-4.) For example, for SSP1-2.6 with a climate 

goal of 1.5C, CH4 removal starts in the year 2046 when (a) the maximum CH4 removal 

potential is 200 MtCH4/yr, regardless of the initial cost of CH4 removal we investigate; 

(b) the maximum CH4 removal growth rate is 30%/yr, regardless of the CH4 removal 

learning rate we investigate; and (c) when the maximum CH4 mitigation potential is 50 – 

150% of the baseline value.  In contrast, CH4 removal starts later and with increasing 

variability as the climate goals are less stringent.  For example, when the maximum CH4 

removal potential is 200 MtCH4/yr, CH4 removal starts between 2052 and 2054 in SSP2-

4.5 with a climate goal of 2.5C and between 2053 and 2063 in SSP3-7.0 with a climate 

goal of 3.9C.  Within each cell of the table when there is a range in the year in which 

CH4 removal begins, this removal begins later when the initial cost of CH4 removal is 

costlier, the CH4 removal learning rate is higher, and the CH4 mitigation cost is costlier.  

In general, the columns in Table 3-3 show that CH4 removal begins later with increases in 

the maximum CH4 removal potential, the maximum CH4 removal growth rate, and the 

maximum CH4 mitigation potential.   Aside from the case with the lowest maximum CH4 

removal potential in the SSP with the highest amount of radiative forcing and 

temperature increase (SSP3-7.0, 3.9C, shown in Figure A-4), the results in Table 3-3 
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indicate that the year in which CH4 removal starts is generally insensitive to the 

variations in, respectively, initial CH4 removal cost, CH4 removal learning rate, and CH4 

mitigation cost.  That is, in each cell of Table 3-3 there is a narrow range of years in 

which CH4 removal starts. 

 

Table 3-3: Summary of Results for Start Year for CH4 Removal Depending on Several 

Key Parameters. 

In each cell, the results are for variations in another parameter: for Maximum CH4 

Removal Potential the Initial CH4 Removal Price is varied from $3k/tCH4 to $300k/tCH4; 

for Maximum CH4 Removal Growth Rate the CH4 Removal Learning Rate is varied 

between 5% and 25%; for Maximum CH4 Mitigation Potential the CH4 Mitigation Cost is 

varied between 50% and 150% of the base case.  Full results are provided in Figure A-4 

in the Supplemental Information. 

 

Maximum CH4 Removal 

Potential (MtCH4/yr)a 

Maximum CH4 Removal 

Growth Rate Per Yearb 

Maximum CH4 Mitigation Potential 

(% of Baseline) c 

200 300 400 20% 30% 40% 50% 50% 75% 100% 125% 150% 

SSP1-2.6 

Climate 

Goal = 

1.5C 

2046 2053 2055 2028 2046 2055 2060 2046 2046 2046 2046 2046 

SSP2-4.5 

Climate 

Goal = 

2.5C 

2052-

2054 

2056-

2057 

2057-

2058 

2035-

2037 

2053-

2054 

2062-

2063 

2067-

2068 
2052 2052 

2053-

2054 

2055-

2056 

2057-

2058 

SSP3-7.0 

Climate 

Goal = 

3.9C 

2053-

2062 

2056-

2062 

2057-

2063 

2038-

2047 

2055-

2062 

2064-

2070 

2069-

2075 

2045-

2048 

2052-

2054 

2056-

2059 

2060-

2064 

2066-

2069 

a When the Maximum CH4 Removal Potential is 50 and 100MtCH4/yr, there is no feasible solution for 

Initial CH4 Removal Costs between $3k/tCH4 and $300k/tCH4. 
b When the Maximum CH4

 Removal Growth Rate is 10%, there is no feasible solution for CH4 Removal 

Learning Rates of 5%, 10%, 15%, 20%, and 25%. 
c When Maximum CH4 Mitigation Potential is 150% of the base case, CH4 removal never occurs cost of 

50%, 75%, and 100% of the base case. 
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3.4. Discussion and Conclusions 

Among the substantial efforts that address the need to evolve energy systems and deploy 

approaches that slow, stop, and reverse the flow of greenhouse gases to the atmosphere, 

we are not aware of prior work that investigates the deployment CH4 removal approaches 

at scale and how those approaches can work in tandem with CO2 mitigation, CO2 

removal, and CH4 mitigation approaches to achieve climate goals.  The present work 

addresses this gap by developing and implementing the MOMENTUM with scenarios 

about the possible socioeconomic evolutions that are pertinent to addressing climate 

change.  This work addresses questions around when CH4 removal will be needed to be 

deployed at scale in order to minimize climate change.  While this analysis is relatively 

agnostic to the technical approach for removing CH4 from free air – the nature of which 

is challenging (Jackson et al., 2021) – the need to understand the necessary timing of the 

availability of these approaches is the point of departure for this investigation.  The 

results show that developing and deploying these CH4 removal technologies is essential, 

and we can provide several generalizable conclusions. 

1) Negative-cost CH4 mitigation options should be implemented, and the barriers to their 

implementation should be addressed.  From a purely economic perspective, negative 

cost options such as adding propionate precursors to animal feed to reduce enteric 

CH4 emissions, should be pursued for their ability to account for more than half of the 

negative-cost CH4 mitigation potential in 2030 (USEPA, 2019). Yet absent local 

incentives to do so, it is unlikely that these strategies will be implemented. For 

example, livestock farmers would incur the added expense for a more global solution.  
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As such support by policy to implement and share these techniques and other CH4 

mitigation techniques is essential. 

2) Relying solely on mitigating CH4 emissions is not feasible to meet climate goals; it is 

imperative that CH4 removal technologies are developed and deployed at a substantial 

scale, and policy to stimulate these developments through the energy technology 

innovation spectrum (Gallagher et al., 2012) are needed. While CH4 removal appears 

to be expensive, it is an important and substantial component of the cost-effective 

portfolios of options to achieve climate goals.  Further, while it is common to 

consider costly interventions such as CH4 removal to be “backstop technologies” to 

be employed late in time when other approaches have not yielded the scale of 

intervention that is needed, waiting increases costs and puts the ability to preserve the 

present environmental envelope at risk. 

3) The emergence of options for CH4 removal will likely be similar to the emergence of 

other energy technologies, where approaches are identified and developed over time.   

Each option may have its own characteristics (NREL, 2024), such as efficiency and 

learning rate.    In our results, Initial CH4 Removal Cost and CH4 Removal Learning 

Rate have more impact on the total cost of CH4 control than the Maximum CH4 

Removal Potential or the Maximum CH4 Removal Growth Rate.  As a result, 

emphasis on research and development activities early in the energy technology 

innovation spectrum is important for their influences on the initial costs and learning 

rates of the approaches, yet these emphases should not come at the expense of 

demonstration and deployment efforts.  These efforts later in the energy technology 
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innovation spectrum affect the pace and scale of implementation and the degree to 

which CH4 removal diffuses and costs decrease by technological learning.  

4) If there is a desire to achieve ambitious climate goals with least cost, concerted efforts 

to develop CH4 removal approaches need to be initiated decades in advance of the 

year 2075 so that they can be deployed and diffuse at industrial scale by the year 

2075.  Across the range of stringency of climate action as manifest in the 

combinations of Shared Socioeconomic Pathways, Representative Concentration 

Pathways, climate goals, and sensitivity analyses of key parameters we investigate, in 

our results CH4 removal always begins by the year 2075. If CH4 removal were 

deployed after 2075, total costs would be higher or the climate goal would need to be 

less stringent (i.e., higher temperature).   

5) The year when CH4 removal needs to begin is influenced by scale-related parameters 

(e.g., maximum CH4 removal potential, maximum CH4 removal growth rate) much 

more than by cost-related parameters (e.g., initial CH4 removal cost, CH4 mitigation 

cost).  As such, roadmaps for the development of CH4 removal can be established 

with less focus on present and future costs and more focus on timelines for initiating 

research, development, and demonstration of the CH4 removal approaches so that 

they can scale in time to contribute to the portfolio of efforts to minimize global 

climate change. 

6) Society has a vested interest in controlling CH4 emissions. Across all the scenarios we 

investigate with the relevant climate goals, the average cost of CH4 control we find is 

always below $4,300/tCH4 (See details in Figure A-5), which is the minimum 
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estimate of the social cost of CH4 emissions (UNEP & CCAC, 2021). This indicates 

that, if we take the avoided social cost into consideration, all CH4 control can be 

implemented with net benefits. 
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Chapter 4. Agent-Based Analysis for Methane Emission Control 

4.1. Introduction 

How to combat climate change has become one of the most essential and compelling 

topics globally, especially as we are unfortunately moving away from the 1.5℃ climate 

goal appealed in the Paris Agreement (P. M. Forster et al., 2020; UNFCCC, 2015). Most 

approaches to studying climate change related issues can be categorized into two groups: 

system-based modeling (SBM) and agent-based modeling (ABM). SBM, as a top-down 

method, aggregates and abstracts the components in the system into representative 

parameters and variables, and uses equations to analyze the system as a whole. ABM, as 

a bottom-up method, involves individual agents, each with their own rules and behaviors, 

interacting within the environment, which can be used to explain and predict macro 

patterns of the system (Castro et al., 2020). Compared to SBM, ABM is more effective in 

capturing the heterogeneity of individual behaviors and local interactions, potentially 

revealing emergent phenomena that are difficult to realize from a system-level 

perspective (Crooks & Heppenstall, 2012; Van Dyke Parunak et al., 1998). Therefore, for 

climate-change topics involving policy and market dynamics, which involves individual 

decision-making and interactions, ABM holds a distinct advantage and has been widely 

applied in studies, such as emission reduction (Tang et al., 2015; Zhu et al., 2018), 
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technology diffusion (Al Irsyad et al., 2019; Kangur et al., 2017), and energy 

conservation (Moglia et al., 2018; Niamir et al., 2018). 

One of the most famous market-based emission control approaches is the Emission 

Trading Scheme (ETS), also known as the cap-and-trade system. In the ETS, the 

participants are limited by an emission cap and are issued equivalent amount of emission 

allowances that can be traded. They cannot emit more than the emission allowances they 

hold, otherwise they will receive a penalty. Many studies have employed ABM to 

analyze the behaviors of participants in the ETS (Dong & Fan, 2023; Richstein et al., 

2014; Tang et al., 2015, 2017; Wei et al., 2023; H. Zhang et al., 2017; Zhu et al., 2018). 

However, these studies often have at least one of the following limitations. The first one 

is only considering a single sector in the ETS system, such as the electricity sector. Since 

the ETS system involves participants from various sectors, focusing on one sector does 

not comprehensively reflect the ETS system. Secondly, only considering the dynamics in 

the ETS system, while barely considering those in the commodity/service markets related 

to the ETS system. However, participation in the ETS will change the income and 

expenses of the participants and potentially influence their decision-making in the 

commodity/service market. 

The third limitation is that current ETSs primarily consider carbon dioxide (CO2) 

emissions, which is understandable since CO2 is the most important GHG. Nevertheless, 

methane (CH4) emissions are also significant and should be controlled in a separate ETS. 

One of the main reasons is that CH4 has a short atmospheric lifetime of approximately 10 

years. This suggests that immediate action on CH4 control could lead to a rapid decrease 
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in its concentration and an effective slowdown in global warming. Also, as a more 

powerful GHG than CO2 (which is indicated by its CO2e, 25), CH4 is increasing faster 

than CO2, and faster now than at any time since the 1980s. In addition, CH4 plays a 

crucial role in the formation of ground-level ozone, which is detrimental to human health 

(UNEP & CCAC, 2021). As a conclusion, handling CH4 separately in an ETS system 

could be more beneficial for better tackling climate change. 

To address the aforementioned limitations, this study proposes an ABM-based model on 

CH4 emission control, with considerations of both the emission market and 

commodity/service markets. The model includes agriculture, energy, and waste sectors, 

which account for ~90% of CH4 emissions in the US (USEPA, 2022a). The government, 

suppliers and consumers constitute the three types of agents, and the latter two are 

modeled with heterogeneity, local interactions, and adaptations. Finally, case studies are 

conducted based on 2030 projected data in Ohio, US. 
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4.2. Methods 

 
Figure 4-1. A Schematic Diagram of the Agent-Based Model for Methane Emission 

Control 

 

 

 

The agent-based model for CH4 emission control includes three types of agents 

(government, suppliers, and consumers) and two types of markets (emission market and 

commodity/service market) (see Figure 4.1). Each year, the government sets an emission 

cap and allocates CH4 emission allowances to suppliers. At the end of the year, suppliers 

are required to surrender emission allowances equal to their current-year emissions to the 

government. To meet the emission cap, suppliers can apply mitigation techniques to 

reduce emissions or trade emission allowances in the emission market, which is 

established and regulated by the government. In the commodity/service market, suppliers 
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offer commodities/services with varying attributes, and consumers select products based 

on their preferences. Suppliers and consumers are heterogeneous and interact locally 

within their respective groups. Finally, the government collects data from both markets to 

evaluate the effectiveness of the emission regulations. 

The following sections provide a detailed explanation of the model. 

4.2.1. System Boundary and Settings 

 
Figure 4-2. System Boundary and Settings of the Agent-Based Model for Methane 

Emission Control 

 

 

 

The system boundary and settings are determined through three dimensions: time, space, 

and sector (Figure 4-2). 

1) Time: The number of years (e.g., 10 years) limits the time boundary, and the number 

of periods per year (e.g., 12 periods per year) determines the time step. During each 

period, each agent only takes action (or a set of actions) once, i.e., the same type of 

action will not be repeated during the same period. 
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2) Space: The system is limited within a given space, e.g., a country or a state. The 

space is divided into zones, and the suppliers vary among different zones. Each zone 

is further divided into subzones, and the consumers can only mutually interact in the 

same subzone, i.e., one consumer cannot influence another consumer in a different 

subzone. 

3) Sector: The CH4 control is limited within three sectors which account for most of the 

CH4 emissions: agriculture, energy, and waste. Each sector is subdivided into two 

sources, including (following the order of sectors) rice and livestock, coal and oil & 

gas, and landfill and wastewater. Any other sectors or sources are not considered. 

4.2.2. Government 

The primary goal of the government is to control CH4 emissions to help address climate 

change. To achieve this, the government sets CH4 emission reduction targets for major 

CH4 emitters (i.e., suppliers in this study), which are specified by an annually decreasing 

CH4 emission cap. This cap should be clear and fixed; for example, the maximum CH4 

emission is reduced by 2% of the benchmark per year. The benchmark CH4 emission is 

calculated based on the historical CH4 emissions of each supplier. To motivate suppliers 

to reduce CH4 emissions, the government establishes a CH4 emission market system, 

including CH4 emission allowance allocation, trade, and surrender. 

Each year, the government allocates free CH4 allowances to each supplier, matching the 

emission cap for that year. This allocation gives suppliers permission to emit CH4 within 

the specified cap. At the end of the year, suppliers must surrender CH4 emission 

allowances equivalent to their actual emissions to the government. If a supplier exceeds 
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the available emission allowances, they will be fined heavily for the excess CH4 

emissions. If suppliers satisfy the emission cap, they will be allowed to mark this 

achievement on their products/services with an “ecolabel”. 

The difficulty of mitigating CH4 emissions varies among sectors and sources: some 

suppliers can mitigate CH4 emissions cheaply, whereas others face high mitigation costs. 

As a result, for the whole system, CH4 emissions are not reduced in the most cost-

effective manner. To address this, the government allows suppliers to trade CH4 emission 

allowances in the emission market. Suppliers with inexpensive CH4 mitigation options 

are encouraged to mitigate more and sell their surplus allowances to the market for profit. 

Those facing higher mitigation costs can buy allowances from the market to offset their 

allowance deficits. Consequently, CH4 emission mitigation is achieved with less total 

cost. Additionally, the government sets a reference price for emission allowance trading 

when the emission market is first established. More details of the CH4 emission 

allowance trading scheme are put in section 4.2.3. 

Finally, the government collects information from the emission market and the 

commodity/service market to evaluate the influence of the emission regulations and 

provide suggestions for future CH4 control. 

4.2.3. Emission market: Trading Scheme 

In the emission market, CH4 emission allowances are traded following the “double 

auction” rule. The suppliers can choose to be buyers, who submit CH4 emission 

allowance bid price and quantity, or sellers, who submit CH4 emission allowance ask 

price and quantity. The emission market institution will choose a price that clears the 
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market: 1) all the sellers who ask equal to or less than the clearing price sell, and all the 

buyers who bid equal to or more than the clearing price buy, both at the clearing price; 2) 

the selling quantity and buying quantity are exactly equal, i.e., the emission market itself 

would not gain any emission allowance or create any additional emission allowance. 

Note that the successful seller who asks the highest price may not be able to sell all the 

ask quantity, and the successful buyer who bids the lowest price may not be able to buy 

all the bid quantity. In particular, the emission market institution determines the clearing 

price by the following steps. 

1) Order the participants. Order the buyers in descending order of their bid prices, and 

order the sellers in ascending order of their ask prices. 

2) Match a buyer and a seller. If the bid price of the first buyer (i.e., the one with the 

highest bid price) is more than or equal to the ask price of the first seller (i.e., the one 

with the lower ask price), match the buyer and the seller, and the trading quantity is 

the smaller of the bid quantity and the ask quantity. Remove the trading quantity from 

the buyer and seller, and remove the one who has zero bid/ask quantity from the 

order. 

3) Repeat Step 2) until no pair of buyer and seller meets the matching criteria, or no 

buyer/seller is left in the order. The total trading quantity is the sum of all trading 

quantities realized in Step 2). 

4) Determine the clearing price. Following initial orders given in Step 1), Denote the bid 

price of the last successful buyer b1, the ask price of last successful seller s1, the bid 

price of the first unsuccessful buyer b2, and the ask price of the first unsuccessful 
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seller s2. Note that by the matching criteria in Step 2, 𝑏1 ≥ 𝑠1, and 𝑏2 < 𝑠2. The 

clearing price is determined as shown in Table 4.1. 

Under several special situations, the total trading quantity can be zero: 1) the highest bid 

price is lower than the lowest ask price, where the clearing price is the average of the two 

prices; 2) no buyer, where the clearing price is the lowest ask price; 3) no seller, where 

the clearing price is the highest bid price; and 4) no buyer nor seller, where no clearing 

price is determined. 

 

 

Table 4-1. Algorithm for Determining Clearing Price in the Emission Market 

Conditions 𝒔𝟐 > 𝒃𝟏 𝒔𝟐 ≤ 𝒃𝟏 

𝒔𝟏 > 𝒃𝟐 (𝑠1 + 𝑏1)/2 (𝑠1 + 𝑠2)/2 

𝒔𝟏 > 𝒃𝟐 (𝑏1 + 𝑏2)/2 (𝑠2 + 𝑏2)/2 

 

 

 

Each period, the clearing results including the total clearing quantity and the clearing 

price are announced publicly, but the details of the successful buyers and sellers are not. 

4.2.4. Suppliers 

The decision rule for suppliers is maximizing the profit (i.e., revenue minus cost) 

considering both the emission market and the commodity/service market. Particularly, 

suppliers will decide (i) whether and which CH4 emission mitigation technique to apply, 

(ii) the price change of the commodity/service, and (iii) the price and quantity of 

emission allowances to bid (to buy) or ask (to sell) in the emission market. 

(i) Decision on CH4 emission mitigation techniques 

Each supplier has its own set of available CH4 emission mitigation techniques with 

specific costs and CH4 emission intensity reduction. Some techniques are competing, i.e., 
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one supplier cannot have more than one technique among those that are competing. At 

the start of each period, at most one mitigation technique can be applied, and any 

mitigation technique will take the whole period to be fully implemented and thus will be 

effective starting from the next period. Once the mitigation technique is applied, it will be 

kept for all following periods. For each period, the decision on CH4 emission mitigation 

techniques follows the steps below. 

1) Check available mitigation techniques. If all available mitigation techniques have 

been applied, do nothing; otherwise, go to Step 2). 

2) Find the mitigation technique with the lowest cost among those that have not been 

applied. If the cost is non-negative, apply the technique; otherwise, go to Step 3). 

3) Estimate total CH4 emissions in the current year, which is calculated by summing up 

a) the CH4 emissions that already occurred during past periods in the current year and 

b) the CH4 emissions that will occur in the current and following periods assuming 

the production amount and CH4 intensity remain the same as the previous period. If 

the estimated annual CH4 emissions are higher than the emission cap (i.e., allocated 

emission allowances), go to Step 4); otherwise, do nothing. 

4) Predict the clearing price in the emission market in the current period. The clearing 

price is predicted based on the previous one, varying through random sampling to 

reflect the heterogeneity of suppliers. If the lowest mitigation technique cost is equal 

to or lower than the predicted clearing price, apply the technique; otherwise, do 

nothing. 

 



77 

 

(ii) Decision on commodity/service prices 

Before the establishment of the emission market, it is assumed that the 

commodity/service market is under a Nash equilibrium where no supplier can make more 

profit by changing its own price, and thus all prices remain unchanged (See Section 4.2.6 

for more details). The introduction of the emission market changes the costs of 

commodities/services, which breaks the initial Nash equilibrium and suppliers will 

accordingly adjust prices to make maximum profits. The steps are: 

1) Estimate the additional cost per unit commodity/service. The additional unit cost is 

comprised of a) the cost of applied mitigation techniques per unit commodity/service 

and b) the cost from trading emission allowances per unit commodity/service. To 

obtain part b), estimate the total cost of trading emission allowances in the current 

and following periods (which is the product of the estimated emission allowance 

deficit and the predicted clearing price) and the total production amount in the current 

and following periods (by assuming that the production amount remains the same as 

the previous period), and divide the former by the latter. 

2) Determine the price. Transfer some percentage of the additional unit cost to the initial 

price. This cost transfer percentage is obtained through random sampling for different 

suppliers, and it is fixed for all periods in the same year. 

One supplier will learn from other suppliers’ annual financial reports released at the end 

of each year, which contain information about the cost transfer percentage. In the 

following year, the supplier will adjust its cost transfer percentage to align more closely 
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with that of the supplier whose profit increased the most in the current year. The level of 

the alignment is also obtained through random sampling. 

(iii) Decision on trading emission allowances 

1) Estimate total CH4 emissions in the current year, which is calculated by summing up 

a) the CH4 emissions that already occurred during past and current periods and b) the 

CH4 emissions that will occur in the following periods assuming the production 

amount and CH4 intensity remain the same as the current period. 

2) Determine bid/ask price. If the estimated annual CH4 emissions are higher than the 

emission cap, buy emission allowances with a bid price set at 50% to 100% of the 

cost of the cheapest unapplied mitigation technique. Conversely, if the emissions are 

below the cap, sell emission allowances with an ask price set at 100% to 200% of the 

cost of the most expensive applied mitigation technique. The above percentages are 

obtained through random sampling. 

3) Determine bid/ask quantity. The maximum available bid/ask quantity is the difference 

between the estimated annual CH4 emissions and the emission cap. Bid/ask a quantity 

of 0% to 100% (obtained through random sampling) of the maximum. If it is the final 

period of the year, bid/ask the maximum quantity. 

4.2.5. Consumers 

The decision rule for consumers is modeled based on random utility theory: within the 

available alternatives, the consumer will select the commodity/service that maximizes the 

utility. The interactions between commodity/service markets in different sectors and 

sources are not considered in this study, and consumers will make decisions in each 
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commodity/service market respectively. The following theory is applicable to each 

commodity/service market. 

The set of available alternatives are called “choice set”. For consumers in a subzone, their 

choice set is made up of all commodities/services provided by suppliers in the zone that 

the subzone belongs to. 

The utility is modeled as a random variable (𝑈), which consists of a deterministic part (𝑉) 

and a stochastic part (𝜀). For consumer 𝑖, the utility of commodity/service 𝑗 at period 𝑡 is 

𝑈𝑖𝑗𝑡 = 𝑉𝑖𝑗𝑡 + 𝜀𝑖𝑗𝑡 (4-1) 

We use the logit discrete choice model to model the utility further. Under this model, the 

stochastic part 𝜀 is assumed to be independent and identically Gumbel distributed, and 

the density function is 

𝑓(𝜀) = 𝑒−𝜀𝑒−𝑒
−𝜀

 (4-2) 

where 𝑒 is the base of the natural logarithm function. 

It can be further proven that the probability that consumer 𝑖 selects commodity/service 𝑗 

at period 𝑡 is 

𝑃𝑖𝑗𝑡 =
𝑒𝑉𝑖𝑗𝑡

∑ 𝑒𝑉𝑖𝑗𝑡𝑗

 (4-3) 

The deterministic part 𝑉 is modeled by a linear function 

𝑉𝑖𝑗𝑡 = (𝒂𝑖)
𝑇𝒙𝑖𝑗𝑡 + 𝐶𝑖𝑗 (4-4) 

where 𝒂𝑖 is a vector reflecting the individual-specific taste of consumer 𝑖 for attributes of 

choices in the choice set, 𝒙𝑖𝑗𝑡 is a vector reflecting the attributes of choice 𝑗 for consumer 

𝑖 at period 𝑡, 𝐶𝑖𝑗 is the utility of all other attributes of choice 𝑗 for consumer 𝑖 not 



80 

 

modeled by 𝒂𝑖 and 𝒙𝑖𝑗𝑡, and superscript 𝑇 is the transpose symbol. Note the 𝐶𝑖𝑗 is 

assumed to be a constant through all periods. 

Specifically, the components of 𝒂𝑖 and 𝒙𝑖𝑗𝑡 are 

1) Price. Since consumers tend to select choices with lower prices given that other 

attributes are same, 𝑎𝑝𝑟𝑖𝑐𝑒 is negative. 

2) Inertia. It is assumed that consumers have some extent of inertia, i.e., they tend to 

stick with the previous choice regardless of changes, and 𝑎𝑖𝑛𝑒𝑟𝑡𝑖𝑎 is non-negative. If 

choice 𝑗 was chosen by consumer 𝑖 at period 𝑡 − 1, 𝑥𝑖𝑗𝑡
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 1; otherwise, 

𝑥𝑖𝑗𝑡
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 0. 

3) Social influence. It is assumed that one consumer is to some extent influenced by the 

choices of neighboring consumers, i.e., they tend to select the commodity/service 

selected by others, and 𝑎𝑠𝑜𝑐𝑖𝑎𝑙 is non-negative. As mentioned in Section 4.2.1, one 

consumer can only be influenced by other consumers in the same subzone. Denote the 

market share of choice 𝑗 in consumer 𝑖’s subzone 𝑠 at period 𝑡 as 𝑀𝑠𝑗𝑡 (𝑖 ∈ 𝑠), and the 

consumption percentage (i.e., weight) of consumer 𝑖 in subzone 𝑠 as 𝑤𝑠𝑖. 𝑥𝑖𝑗𝑡
𝑠𝑜𝑐𝑖𝑎𝑙 

equals the market share of choice 𝑗 among consumers other than consumer 𝑖 at period 

𝑡 − 1. If choice 𝑗 was chosen by consumer 𝑖 at period 𝑡 − 1, 𝑥𝑖𝑗𝑡
𝑠𝑜𝑐𝑖𝑎𝑙 =

𝑀𝑠𝑗(𝑡−1)−𝑤𝑠𝑖

1−𝑤𝑠𝑖
 

(𝑖 ∈ 𝑠); otherwise, 𝑥𝑖𝑗𝑡
𝑠𝑜𝑐𝑖𝑎𝑙 =

𝑀𝑠𝑗(𝑡−1)

1−𝑤𝑠𝑖
 (𝑖 ∈ 𝑠). 

4) Eco-consciousness. It is assumed that consumers, to some extent, tend to select 

choices that are more eco-friendly, i.e., choices with an ecolabel (See Section 4.2.2), 
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and 𝑎𝑒𝑐𝑜 is non-negative. If choice 𝑗 has an ecolabel at period 𝑡, 𝑥𝑗𝑡
𝑒𝑐𝑜 = 1; otherwise, 

𝑥𝑗𝑡
𝑒𝑐𝑜 = 0. 

Equation (4.4) can be rewritten in a decomposed form 

𝑉𝑖𝑗𝑡 = 𝑎𝑖
𝑝𝑟𝑖𝑐𝑒𝑥𝑗𝑡

𝑝𝑟𝑖𝑐𝑒 + 𝑎𝑖
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑥𝑖𝑗𝑡

𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝑎𝑖
𝑠𝑜𝑐𝑖𝑎𝑙𝑥𝑖𝑗𝑡

𝑠𝑜𝑐𝑖𝑎𝑙 + 𝑎𝑖
𝑒𝑐𝑜𝑥𝑗𝑡

𝑒𝑐𝑜 + 𝐶𝑖𝑗 (4-5) 

In the logit discrete choice model, the consumption amount of each consumer is fixed, 

i.e., only which commodity/service the consumer selects is determined. However, the 

amount of consumption also needs to be considered. To address this, we allow the 

consumer to select none of the choices in the choice set. In this case, one consumer agent 

does not directly represent one consumer in reality, but represents the aggregation of a 

number of real consumers with same/similar tastes. For example, if the price of a 

commodity increases, the probability of it being selected by a consumer agent decreases, 

while the probability of the consumer agent selecting other commodities or none 

increases. This is equivalent to, for the real consumers that the consumer agent 

represents, that some consumers turn to select other commodities, while others keep 

selecting the commodity but consume less. 

Denote selecting none as choice “0”, and the only two attributes are inertia and social 

influence, i.e., 𝑥0𝑡
𝑝𝑟𝑖𝑐𝑒 = 𝑥0𝑡

𝑒𝑐𝑜 = 𝐶𝑖0 = 0. Thus, the deterministic part 𝑉 for consumer 𝑖 at 

time 𝑡 is 

𝑉𝑖0𝑡 = 𝑎𝑖
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑥𝑖0𝑡

𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝑎𝑖
𝑠𝑜𝑐𝑖𝑎𝑙𝑥𝑖0𝑡

𝑠𝑜𝑐𝑖𝑎𝑙 (4-6) 

4.2.6. Commodity/service market 

In the commodity/service market, consumers accept the market price, while suppliers 

adjust their production amounts based on market demand. In this study, it is simplified 
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that in each period the production amount of each supplier is exactly equal to the demand, 

i.e., there is no situation where consumers cannot purchase according to their preferences 

due to a shortage of commodities/services, nor is there a situation where suppliers have to 

store or dispose of excess commodities/services due to a surplus. 

The commodity/service market is influenced by the introduction of the emission market. 

In the emission market, the suppliers are encouraged to apply mitigation techniques and 

trade emission allowances, resulting in receiving a penalty or an ecolabel, which will 

change the attributes (price and ecolabel) of the commodity/service. To easily analyze the 

influence of the emission market on the commodity/service market, it is assumed that 

before the introduction of the emission market, 1) the commodity/service market is in a 

stable state where the market share of each supplier is fixed, and 2) this stable state is a 

Nash equilibrium regarding the pricing strategy where no supplier can make more profit 

by changing the price of its own commodity/service. Details are as follows. 

If consumer 𝑖 selects choice 𝑗1 at period 𝑡 − 1, the deterministic utility of choice 𝑗1 for 

consumer 𝑖 at period 𝑡 is 

𝑉𝑖𝑗1𝑡 = 𝑎𝑖
𝑝𝑟𝑖𝑐𝑒𝑥𝑗𝑡

𝑝𝑟𝑖𝑐𝑒 + 𝑎𝑖
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝑎𝑖

𝑠𝑜𝑐𝑖𝑎𝑙
𝑀𝑠𝑗(𝑡−1) − 𝑤𝑠𝑖

1 − 𝑤𝑠𝑖
+ 𝑎𝑖

𝑒𝑐𝑜𝑥𝑗1𝑡
𝑒𝑐𝑜 + 𝐶𝑖𝑗1 

𝑖 ∈ subzone 𝑠 

(4-7) 

For choices other than 𝑗1, 

𝑉𝑖𝑗2𝑡 = 𝑎𝑖
𝑝𝑟𝑖𝑐𝑒𝑥𝑗2𝑡

𝑝𝑟𝑖𝑐𝑒 + 𝑎𝑖
𝑠𝑜𝑐𝑖𝑎𝑙

𝑀𝑠𝑗(𝑡−1)

1 − 𝑤𝑠𝑖
+ 𝑎𝑖

𝑒𝑐𝑜𝑥𝑗2𝑡
𝑒𝑐𝑜 + 𝐶𝑖𝑗2  

𝑖 ∈ subzone 𝑠, 𝑗1 ≠ 𝑗2 

(4-8) 
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Based on Equation (4-3), for consumer 𝑖, the transition probability of from selecting 

choice 𝑗1 at period 𝑡 − 1 to selecting choice 𝑗1 at period 𝑡 is 

𝑋𝑖(𝑗1→𝑗1)(𝑡−1→𝑡) =
𝑒
𝑎
𝑖
𝑝𝑟𝑖𝑐𝑒

𝑥
𝑗𝑡
𝑝𝑟𝑖𝑐𝑒

+𝑎𝑖
𝑖𝑛𝑒𝑟𝑡𝑖𝑎+𝑎𝑖

𝑠𝑜𝑐𝑖𝑎𝑙
𝑀𝑠𝑗(𝑡−1)−𝑤𝑠𝑖

1−𝑤𝑠𝑖
+𝑎𝑖
𝑒𝑐𝑜𝑥𝑗1𝑡

𝑒𝑐𝑜+𝐶𝑖𝑗1

𝑒
𝑎
𝑖
𝑝𝑟𝑖𝑐𝑒

𝑥
𝑗𝑡
𝑝𝑟𝑖𝑐𝑒

+𝑎𝑖
𝑖𝑛𝑒𝑟𝑡𝑖𝑎+𝑎𝑖

𝑠𝑜𝑐𝑖𝑎𝑙
𝑀𝑠𝑗(𝑡−1)−𝑤𝑠𝑖

1−𝑤𝑠𝑖
+𝑎𝑖
𝑒𝑐𝑜𝑥𝑗1𝑡

𝑒𝑐𝑜+𝐶𝑖𝑗1

+∑ 𝑒
𝑎
𝑖
𝑝𝑟𝑖𝑐𝑒

𝑥
𝑗2𝑡
𝑝𝑟𝑖𝑐𝑒

+𝑎𝑖
𝑠𝑜𝑐𝑖𝑎𝑙

𝑀𝑠𝑗(𝑡−1)
1−𝑤𝑠𝑖

+𝑎𝑖
𝑒𝑐𝑜𝑥𝑗2𝑡

𝑒𝑐𝑜+𝐶𝑖𝑗2
𝑗1≠𝑗2

, 

𝑖 ∈ subzone 𝑠 

(4-9) 

The transition probability of from selecting choice 𝑗1 at period 𝑡 − 1 to selecting choice 

𝑗2 at period 𝑡 is 

𝑋𝑖(𝑗1→𝑗2)(𝑡−1→𝑡) =
𝑒
𝑎
𝑖
𝑝𝑟𝑖𝑐𝑒

𝑥
𝑗2𝑡
𝑝𝑟𝑖𝑐𝑒

+𝑎𝑖
𝑠𝑜𝑐𝑖𝑎𝑙𝑀𝑠𝑗(𝑡−1)

1−𝑤𝑠𝑖
+𝑎𝑖
𝑒𝑐𝑜𝑥𝑗2𝑡

𝑒𝑐𝑜+𝐶𝑖𝑗2

𝑒
𝑎
𝑖
𝑝𝑟𝑖𝑐𝑒

𝑥
𝑗𝑡
𝑝𝑟𝑖𝑐𝑒

+𝑎𝑖
𝑖𝑛𝑒𝑟𝑡𝑖𝑎+𝑎𝑖

𝑠𝑜𝑐𝑖𝑎𝑙
𝑀𝑠𝑗(𝑡−1)−𝑤𝑠𝑖

1−𝑤𝑠𝑖
+𝑎𝑖
𝑒𝑐𝑜𝑥𝑗1𝑡

𝑒𝑐𝑜+𝐶𝑖𝑗1

+∑ 𝑒
𝑎
𝑖
𝑝𝑟𝑖𝑐𝑒

𝑥
𝑗2𝑡
𝑝𝑟𝑖𝑐𝑒

+𝑎𝑖
𝑠𝑜𝑐𝑖𝑎𝑙

𝑀𝑠𝑗(𝑡−1)
1−𝑤𝑠𝑖

+𝑎𝑖
𝑒𝑐𝑜𝑥𝑗2𝑡

𝑒𝑐𝑜+𝐶𝑖𝑗2
𝑗1≠𝑗2

, 

𝑖 ∈ subzone 𝑠 

(4-10) 

Equations (4-9) and (4-10) give the expression of elements in the transition probability 

matrix. Denote 𝕏𝑖(𝑡−1→𝑡) as consumer 𝑖’s transition probability matrix of choice 

transition from period 𝑡 − 1 to period 𝑡, and 𝑷𝑖𝑡 as consumer 𝑖’ choice probability vector 

which contains the probabilities of selecting each choice at period 𝑡. The transition 

function for consumer 𝑖 is 

𝑷𝑖𝑡 = 𝐗𝑖(𝑡−1→𝑡)𝑷𝑖(𝑡−1) (4-11) 

Sum up the choice probability vectors of all consumers by their weight and denote 𝑴𝑠𝑡 as 

subzone 𝑠’ market share vector which contains the market shares of each choice 

(containing selecting none) at period 𝑡, and we have 
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𝑴𝑠𝑡 =∑𝑷𝑖𝑡𝑤𝑖
𝑖∈𝑠

=∑𝕏𝑖(𝑡−1→𝑡)𝑷𝑖(𝑡−1)𝑤𝑖
𝑖∈𝑠

=∑𝕏𝑖(𝑡−1→𝑡)𝑴𝑠(𝑡−1)

𝑖∈𝑠

 (4-12) 

In a market under a stable state, the attributes of commodities/services and consumers’ 

choice probabilities both remain unchanged, so transition probability matrices and market 

shares will both be unchanged for any period. In this case, the time subscripts can be 

removed from Equation (4-12), and we have 

𝑴𝑠
𝑠𝑡𝑎𝑏𝑙𝑒 =∑𝕏𝑖

𝑠𝑡𝑎𝑏𝑙𝑒𝑴𝑠
𝑠𝑡𝑎𝑏𝑙𝑒

𝑖∈𝑠

 (4-13) 

where the superscript 𝑠𝑡𝑎𝑏𝑙𝑒 represents the stable state. Note that 𝕏𝑖
𝑠𝑡𝑎𝑏𝑙𝑒  (𝑖 ∈ 𝑠) is a 

function of 𝑴𝑠
𝑠𝑡𝑎𝑏𝑙𝑒. 

The stable market shares in subzone 𝑠 can be obtained by solving 𝑴𝑠
𝑠𝑡𝑎𝑏𝑙𝑒 from Equation 

(4-13). Since direct solving is highly complex, it is realized by numerical iterations (See 

Appendix B.1 for details). 

For supplier 𝑗 in zone 𝑧, the total market share under a stable state considering all 

subzones that belong to zone 𝑧 is 

𝑀𝑧𝑗
𝑠𝑡𝑎𝑏𝑙𝑒 =∑(𝑀𝑠𝑗

𝑠𝑡𝑎𝑏𝑙𝑒∑𝑤𝑧𝑖
𝑖∈𝑠

)

𝑠∈𝑧

 (4-14) 

where 𝑤𝑧𝑖 represents the consumption percentage (i.e., weight) of consumer 𝑖 in zone 𝑧. 

Further the profit under the stable state is 

𝐹𝑗
𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑀𝑧𝑗

𝑠𝑡𝑎𝑏𝑙𝑒(𝑥𝑗
𝑝𝑟𝑖𝑐𝑒,𝑠𝑡𝑎𝑏𝑙𝑒 − 𝑐𝑗) (4-15) 

where 𝑥𝑗
𝑝𝑟𝑖𝑐𝑒,𝑠𝑡𝑎𝑏𝑙𝑒

 is the price of commodity/service 𝑗 under the stable state, 𝑐𝑗 is the cost 

of commodity/service 𝑗 which is a constant. 
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Under a Nash equilibrium, all suppliers have adjusted the price of its own 

commodity/service to make the maximum profit and the price is fixed. Thus, for any 

suppliers in zone 𝑧, we have 

𝑥𝑗
𝑝𝑟𝑖𝑐𝑒,𝑛𝑎𝑠ℎ = argmax

𝑥
𝑗
𝑝𝑟𝑖𝑐𝑒,𝑠𝑡𝑎𝑏𝑙𝑒

𝐹𝑗
𝑠𝑡𝑎𝑏𝑙𝑒 = argmax

𝑥
𝑗
𝑝𝑟𝑖𝑐𝑒,𝑠𝑡𝑎𝑏𝑙𝑒

[𝑀𝑧𝑗
𝑠𝑡𝑎𝑏𝑙𝑒(𝑥𝑗

𝑝𝑟𝑖𝑐𝑒,𝑠𝑡𝑎𝑏𝑙𝑒 − 𝑐𝑗)], 

∀𝑗 ∈ 𝑧𝑜𝑛𝑒 𝑧 

(4-16) 

where 𝑥𝑗
𝑝𝑟𝑖𝑐𝑒,𝑛𝑎𝑠ℎ

 is the price of commodity/service 𝑗 under the Nash equilibrium. Note 

that 𝑀𝑧𝑗
𝑠𝑡𝑎𝑏𝑙𝑒 is a function of 𝑥𝑗

𝑝𝑟𝑖𝑐𝑒,𝑠𝑡𝑎𝑏𝑙𝑒
. Similar to Equation (4-13), Equation (4-16) is 

also solved by numerical iterations (See Appendix B.2 for details). 

4.2.7. Simulation process 

The whole simulation process is summarized as shown in Figure 4-3. After initialization, 

the government sets up the emission market system, including regulations of CH4 

emission allowance allocation, trade, and surrender. At the start of each year, the 

government allocates emission allowances to suppliers, and at the end of the year 

suppliers surrender emission allowances back to the government and receive penalties or 

ecolabels depending on whether satisfying the emission cap. During each period within 

the year, suppliers first make decisions on emission mitigation techniques, and change 

commodity/service prices based on this decision and other estimations. Consumers make 

their choices on commodities/services (choosing one or nothing) according to their 

preferences, which determines the current-period market shares of suppliers. At the end 

of each period, suppliers decide on whether and how to bid/ask in the emission market, 

and the governmental institution clears the emission market by a uniform price. 
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Figure 4-3: Simulation Process of the Agent-Based Model for Methane Emission Control 
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4.2.8. Scenarios 

In this study, we constructed scenarios of CH4 emission and control based on 2030 

projected data in Ohio, US. The time is bounded within 10 years, and the time step is one 

month. Five sources are included: Livestock, coal, oil and gas, landfill, and wastewater. 

The rice source is not considered since Ohio barely produces rice. The suppliers in the 

waste sector (landfill and wastewater) are simplified as monopolies within their own 

zones, since consumers have very limited alternatives and usually they are not the direct 

decision-makers. The whole state is divided into 27 zones, each having 10 subzones. 

Each zone has a unique combination of consumer parameters, including inertia, social 

influence, and eco-consciousness. Data for CH4 emissions and mitigation techniques are 

from USEPA (USEPA, 2022b). Five random seeds (same for all cases) are used for the 

simulation. Other details of the base-case parameters are listed in Table 4-2. 

 

Table 4-2. Base-case Parameters for CH4 Emission Control Agent-Based Model 

Government 

Emission cap reduction rate 3%/year 

Emission market penalty price $2500/tCH4 

Emission market reference price $500/tCH4 

Suppliers 

Source Livestock Coal Oil and Gas Landfill Wastewater 

Initial Emissions 1.7×105 tCH4 2.3×104 tCH4 3×105 tCH4 2.4×105 tCH4 1.9×104 tCH4 

Scale per year $7×109
  $1.25×108 $3.75×1010 2×107 t 

4.9×106 

households 

Ave. No. per zone 20 5 5 1 1 

Ave. own price 

elasticity of demand 
-0.31 -0.18 -0.6 --- --- 

Ave. profit rate 10% 10% 10% --- --- 

Heterogeneity Percent 30% 

Consumers 

No. total 10000 

Parameters set (inertia, social influence, eco-
consciousness) 

(0, 0.5, 1) 

Heterogeneity Percentage 70% 
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4.3. Results 

Figure 4-4 shows the emission trajectories under different emission cap reduction rates 

set by the government. In the base case [Figure 4-4(b)], where the emission cap is 

reduced by 3% per year and to 70% at the end, the agriculture and energy sectors meet 

the emission cap throughout the time horizon. However, the waste sector fails to do so 

starting from year 2, and its emissions remain at approximately 95% of the initial level 

from year 6 until the end. As a result, total emissions exceed the emission cap starting 

from year 5, ultimately only reduced to around 80%. When the emission cap is relaxed to 

a 1% reduction per year, resulting in a final cap of 90% of the initial emissions, the 

agriculture and energy sectors successfully reduce their emissions to below 90% (~88% 

and ~80%, respectively) by the second year and maintain these levels thereafter. 

However, the waste sector still cannot meet the emission cap and only minimally reduces 

its emissions. Despite this, total emissions remain below the cap throughout the time 

horizon. If the emission cap reduction rate is increased to 5% per year, the agriculture and 

energy sectors can satisfy the emission cap until year 7, when their emissions are reduced 

to about 68% of the initial level yet stop decreasing in the following years, and the waste 

sector only reduces its emissions to a minimum of ~93% of initial level. Starting from 

year 4, total emissions become higher than the emission cap, and decrease to about 75% 

of the initial emission between year 8 and year 10. In general, a higher emission cap 

reduction rate will lead emissions across all sectors to decrease more significantly, but 

will also result in more sectors violating the emission cap earlier.  
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Figure 4-4. Dynamics of Emissions Under Different Emission Cap Reduction Rates. 

Allowance trading is not taken into account. 



90 

 

Intuitively, to encourage emissions reduction and decrease instances of exceeding 

emission caps (e.g., those shown in Figure 4-4), the government can set up a higher 

penalty price in the emission market. However, as shown in Table 4-3, under the same 

emission cap reduction rate, the change of penalty price ($1250-3750/tCH4) has almost 

no influence on the final total emissions (<1% for all cases). Since the suppliers would 

ultimately apply mitigation techniques that cost less than the penalty price, this indicates 

that mitigation techniques with costs ranging from $1250/tCH4 to $3750/tCH4 are 

extremely limited. Under such a situation, increasing the penalty price will not be helpful 

in satisfying a demanding emission cap. 

 

Table 4-3. Final Total Emissions as Percentages of the Initial Emission (Average of All 

Simulation Seeds) 
Emission Cap Reduction 

Emission                                   Rate 

Market Penalty Price 
1%/year 3%/year 5%/year 

$1250/tCH4 88.46% 76.88% 75.00% 

$2500/tCH4 88.46% 76.62% 74.45% 

$3750/tCH4 88.46% 76.62% 74.43% 

 

 

 

Figure 4-5 presents the influence of government-set parameters on the trajectory of the 

clearing price in the emission market. When one parameter varies, all other parameters 

use base-case values. As shown in Figure 4-5(a), when the emission cap reduction rate is 

set as 1% per year, the emission market clearing price remains nearly zero throughout all 

years. Under a higher reduction rate as 3% per year, the clearing price starts at around 

$700/tCH4, and quickly decreases to nearly zero within the first year. This price is 

maintained until the start of year 5, when the clearing price begins to surge, reaching 
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$2500/tCH4 (the penalty price) within a year, and remains at that value until the end. If 

the reduction rate rises to 5% per year, the clearing price begins at $2500/tCH4 and drops 

rapidly to nearly zero during the first year. From the start of year 3, the clearing price 

rises and reaches $2500/tCH4 during year 4, staying at that value until the end. 

The emission market penalty price [Figure 4-5(b)] does not have an obvious influence on 

the clearing price during the first five years, when all clearing prices are relatively low (< 

$1000/tCH4). Instead, it determines the highest clearing price that maintains during the 

latter five years. In other words, the penalty price performs as a “ceiling” preventing the 

clearing price from increasing to higher than that value. This is because no buyer in the 

emission market would bid a price higher than the penalty price, otherwise the cost of 

buying emission allowance would be higher than receiving the penalty. 

In contrast to the penalty price, the emission market reference price only impacts the 

clearing price at the starting stage [Figure 4-5(c)]. When the reference price is $250/tCH4, 

the initial clearing price is ~$300-400/tCH4, which rises to ~$600-800/tCH4 with a 

reference price of $500/tCH4, and ~$800-1200/tCH4 with a reference price of $750/tCH4. 

This indicates that the initial clearing price is likely to be higher than the reference price. 

Within the first year, clearing price trajectories with different reference prices quickly 

converge to one bunch with tiny differences, which means that the reference price has no 

obvious influence on the emission market throughout the time horizon. 
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Figure 4-5. Dynamics of Emission Market Clearing Price Under Different Emission 

Market Settings. 
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Figure 4-6. Dynamics of Emission Allowance Clearing Quantity Under Different 

Emission Cap Reduction Rates. 

 

 

 

Figure 4-6 shows the influence of the emission cap reduction rate on the trajectory of the 

allowance clearing quantity in the emission market. Under an emission cap reduction rate 

of 1% per year, the clearing quantity starts from nearly zero in the first year, and steadily 

increases over time, reaching ~26 ktCH4 by the end. This is mainly due to the 

requirement of emission allowances from the waste sector, which increases as the 

emission cap reduces. This also explains the reason why in year 1 the clearing quantity 

becomes higher (~5 ktCH4) when the emission cap is reduced by 3% per year. However, 

unlike the case with a 1% reduction cap, the clearing quantity peaks in year 4 (~27 

ktCH4) and subsequently continues to decline, finally reaching ~1.2 ktCH4. The main 

reason is that starting from year 5, more suppliers are faced with difficulty in complying 

with the emission cap, and those who used to sell emission allowances turned to buying. 

When the quantity of bids to buy exceeds the quantity of bids to sell, the clearing quantity 

will primarily depend on the quantity of sell bids, which is reduced over time. A similar 
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pattern can be observed when the emission cap reduction rate goes to 5% per year. In this 

case, the initial clearing quantity (~0.8 ktCH4) is higher than that in the other two cases, 

the peak occurs in year 3, and the final clearing quantity (~0.5 ktCH4) is less than that in 

the other two cases. In summary, a higher emission cap reduction rate will result in a 

higher clearing quantity in the early stage and a lower one in the later stage. A low 

emission cap reduction rate leads to a constant increase in the clearing quantity, while a 

high enough one will create a peak (an increase followed by a decrease) in the trajectory 

of the clearing quantity. 

 

Table 4-4. All-Time Costs and Percents of Penalty Receivers (Average of All Simulation 

Seeds) 

Emission Cap Reduction Rate 1%/year 3%/year 5%/year 

All-Time Costs of 

Technique 

Application  

(106 $) 

Agriculture -368.4 -307.4 -250.1 

Energy -209.7 -176.0 -72.2 

Waste -74.8 -40.1 -24.0 

All Sectors -653.0 -523.5 -346.3 

All-Time Costs of 

Emission 

Allowance Trade 

(106 $) 

Agriculture 0.004 -83.7 -34.1 

Energy -0.007 -111.6 -126.5 

Waste 0.003 195.3 160.6 

All Sectors 0 0 0 

All-Time Total 

Costs 

(106 $) 

Agriculture -368.4 -391.1 -284.2 

Energy -209.7 -287.6  -198.7 

Waste -74.8 155.2 136.6 

All Sectors -653.0 -523.5 -346.3 

All-Time Percent 

of Penalty 

Receivers 

Agriculture 0% 1.43% 39.55% 

Energy 0% 1.80% 19.63% 

Waste 0% 56.48% 73.75% 

All Sectors 0% 5.17% 35.37% 

 

 

 

Table 4-4 lists the costs of applying mitigation techniques and trading emission 

allowances for all sectors under different emission cap reduction rates. As the emission 
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cap reduction rates increase, the cost of technique application also increases for all 

sectors, resulting from applying more expensive techniques to meet a stricter emission 

cap. All costs of mitigation technique application are negative, even under the highest 

emission cap reduction rate, which indicates that all sectors have a net benefit from 

applying mitigation techniques. Even if some techniques have positive costs, they cannot 

fully offset the benefit from negative-cost techniques. One of the main reasons is that 

positive-cost techniques are applied later and the cost is accumulated over a shorter time 

than negative-cost techniques. 

When the emission cap reduction rate is 1%/year, the costs from trading emission 

allowances are all nearly zero for all sectors, since the clearing price keeps extremely low 

[Figure 4-5(a)]. With an emission cap reduction rate as 3%/year, the agriculture and 

energy sectors receive $83.7M and $111.6M, respectively, from selling emission 

allowances, which are paid by the waste sector. When the emission cap reduction rate is 

5%/year, the agriculture sector benefits less from the emission market, while the energy 

sector benefits more. Their total benefit becomes less, leading to less expenditure of the 

waste sector to the emission market. 

By considering both types of costs, all the sectors can gain benefits except for the waste 

sector under an emission cap reduction rate of 3%/year or 5% per year. As the emission 

cap reduction rate rises, the total cost of all sectors increases but remains below zero, and 

the entire state can benefit by at least 0.35 billion dollars from controlling CH4 emissions. 

In addition, under a 1%/year emission cap reduction rate, no supplier in any sector is 

punished by the government. Although the waste sector actually emits more than the 
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emission cap [Figure 4-4(a)], it offsets the emission allowance deficit through trading in 

the emission market. With a 3%/year emission cap reduction rate, some suppliers in 

agriculture and energy sectors receive penalties in some years, yet the percentages are 

very low (1%-2%). In contrast, the penalty receivers in the waste sector surge to more 

than 50%. The percentages of penalty receivers increase across all sectors under a higher 

emission cap reduction rate (5%/year), with the energy sector the lowest (~20%) and 

waste sector the highest (~74%). In general, the waste sector is faced with the highest risk 

of receiving a penalty, while the energy sector has the lowest. 

Finally, Figure 4-7 depicts the change in prices for the waste sector under different 

emission cap reduction rates. It is important to note that the price changes of other sectors 

(agriculture and energy) are minimal (<1%) in all cases throughout the entire time, so 

these results are not shown in Figure 4-7. The prices in the landfill and wastewater 

sources change with similar patterns. When the emission cap is low (reduced by 

1%/year), the prices hardly change. With a base-case emission cap (reduced by 3%/year), 

the prices rise obviously from year 6, ultimately reaching ~$6/t and ~$3/household-year 

higher than initial prices for landfill and wastewater sources, respectively. A 5%/year 

emission cap reduction rate leads to higher prices, which by the end reach ~$12/t and 

~$4.5/household-year higher than initial prices for landfill and wastewater sources, 

respectively. Compared with the rate in Franklin County Sanitary Landfill, Ohio at 

$39.75/t (SWACO, 2024) and the average annual household sewer rate in Ohio at 

$489.95 (Gingerich et al., 2023), the landfill price can rise up to 30% while the 

wastewater price only rises less than 1%. 
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Figure 4-7. Dynamics of Price Change (Average of All Simulation Seeds) Under 

Different Emission Cap Reduction Rates. 

Only the results of waste sector are shown. The price changes of other sectors 

(agriculture and energy) are all <1%. 

 

 

 

4.4. Discussion and Conclusions 

This study establishes a comprehensive model for CH4 emission control analysis with the 

agent-based method. The model consists of three types of agents, including the 

government, suppliers, and consumers. The suppliers and consumers are modeled with 
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heterogeneity, local interactions, and adaptations. Both the emission market and 

commodity/service markets are considered, covering agriculture, energy, and waste 

sectors. Case studies on Ohio, US that are based on projected data in 2030 indicate 

primary conclusions as follows: 

1) The emission cap, which is determined by the emission cap reduction rate, is the main 

factor that influences CH4 control, while the emission market penalty price has a tiny 

effect. If total emissions fail to satisfy the emission cap, it is ineffective to encourage 

more CH4 mitigation by increasing the penalty (within the range of $1250-

3750/tCH4). 

2) The emission cap should be set carefully in the most cost-effective way for the whole 

system. A tighter emission cap will result in less CH4 emissions and higher mitigation 

costs, but that relationship is not linear. As shown in this study, total CH4 emissions 

can be reduced to ~88% with a 1%/year emission cap reduction rate. If the rate is 

3%/year, total CH4 emissions can decrease by an additional 11.84% with an extra cost 

of $129.5M. However, under a rate of 5%/year, the additional emission reduction is 

14.01% yet leading to a $306.7M extra cost, which indicates that it is not cost-

effective to set an excessively tight emission cap. 

3) In all cases studied, the CH4 control exhibits a negative total cost, i.e., a net total 

benefit. One of the main reasons is that suppliers always apply negative-cost 

techniques first, of which the negative costs accumulate over a longer period than 

positive-cost techniques. Those techniques with negative costs should have been 

applied before the introduction of the emission market, which would have led to more 
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cumulative benefits from CH4 control. However, in reality a fair amount of negative-

cost techniques still remain unapplied due to various barriers. Thus, the government 

should implement more incentives to encourage earlier deployments of negative-cost 

CH4 mitigation techniques. 

4) The waste sector faces the most difficulties in mitigating CH4 emissions. In all cases 

studied, compared with the agriculture and energy sectors, the waste sector realizes 

the least CH4 emission reduction with the highest cost, and the suppliers are penalized 

the most frequently. This leads to considerable price increases in the landfill source, 

up to 30% of the initial price. Therefore, the government should pay more attention to 

and provide greater support for the waste sector, especially the landfill source, in an 

effort to control CH4 emissions. 
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Chapter 5. Conclusions 

The Paris Agreement proposed the 1.5℃ and 2℃ pathways, but we are diverging from 

these targets. According to UNEP predictions, even with the full implementation of 

conditional Nationally Determined Contributions (NDCs), the temperature increase will 

still be limited to only 2.5℃ above pre-industrial levels. To bridge the emission cap and 

address climate change, a portfolio of emission control approaches must be implemented 

in a more comprehensive and more optimized way. 

This dissertation focuses on two components that can play a role in combating climate 

change yet are currently insufficiently developed: geothermal utilization and CH4 control. 

Specifically, the dissertation explores optimizing strategies for their most effective 

implementations under different scenarios. Main conclusions are discussed as follows. 

5.1. Geothermal Heat Mining 

1) The optimal way to mine geothermal heat has four situations. In situation 1, the mass 

flow rate keeps the maximum; In situation 2, the mass flow rate keeps as 0; In 

situation 3, the mass flow rate starts as the maximum, decreases to a constant value, 

and finally recovers to the maximum; In situation 4, the mass flow rate starts as 0, and 

changes to the maximum. Setting aside situation 2 (where mining heat cannot make 

any profit) and situation 4 (where the discount rate is negative), the other two 

situations both contain a stable state where the extracted heat remains constant. This 
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is perfectly consistent with the common practice of utilizing geothermal energy as 

base loads. Note that such a consistency is under the assumption that the energy price 

is constant. With a fluctuating energy price, the facility-level optimal strategy will not 

necessarily have such a stable state. This suggests that it could be better to set the 

geothermal energy price as a constant (e.g., the average of energy prices in a year) for 

a stable and profit-maximized use of geothermal heat. 

2) The optimal geothermal heat mining profit is highly sensitive to surrounding media 

temperature, efficiency, and compression cost, yet barely influenced by reservoir 

mass, maximum mass flow rate, and contact conductance. This indicates that, to make 

the best profit, we should locate the geothermal plant at a site with high underground 

temperature, but not necessarily with a large reservoir or good thermal conductivity. 

Moreover, we should not focus on the scale of the plant (which is reflected by the 

maximum mass flow rate) but more on the energy-saving techniques (which is 

reflected by the efficiency and compression cost). 

3) Compared with water geothermal systems, CO2 geothermal systems perform better 

for shallow, low-grade heat sources due to less requirement for the thermosiphon 

effect. Thus, when deciding the type of working fluid for geothermal heat mining, we 

should consider the depth and thermal gradient of the underground reservoir. To 

achieve better synergy between geothermal energy and carbon storage while 

maintaining cost-effectiveness, we should prioritize the utilization of shallow, low-

grade heat sources. 
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5.2. Methane Control 

1) Negative-cost CH4 mitigation strategies should be put into action, and obstacles to 

their use should be overcome. Economically, these strategies are beneficial, but 

without local incentives, they are unlikely to be used. Therefore, policy support to 

promote and share CH4 mitigation techniques is crucial, especially for those with 

negative costs. An earlier deployment of more cost-effective CH4 mitigation 

strategies would accumulate more benefits for potential CH4 mitigation efforts with 

positive costs in the future. 

2) Relying only on mitigating CH4 emissions is not enough to meet climate goals. We 

must develop and use CH4 removal technologies on a large scale, and policies are 

needed to encourage these developments. Although CH4 removal may seem 

expensive, it is a crucial and significant part of cost-effective strategies to reach 

climate targets. If we aim to achieve ambitious climate goals at the lowest cost, we 

need to start developing CH4 removal methods decades before 2075, so they can be 

implemented on an industrial scale by then. The timing of when to start CH4 removal 

depends more on scale-related parameters (e.g., maximum CH4 removal potential, 

maximum CH4 removal growth rate), rather than on cost-related parameters (e.g., 

initial CH4 removal cost, CH4 mitigation cost). Therefore, plans for developing CH4 

removal should focus less on current and future costs and more on timelines for 

starting research, development, and testing of these approaches. 

3) The emission market is an effective tool to encourage CH4 emission reduction, where 

participants can benefit from trading emission allowances. The government should 
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carefully set the emission cap: a cap that is too high is not sufficient to meet the 

climate goal, while if it is too low, the whole system will control CH4 emissions in a 

cost-ineffective way. Additionally, the government should focus less on setting 

penalty prices for the emissions market. If total emissions exceed the cap, increasing 

the penalty is ineffective in encouraging further CH4 mitigation. 

4) In the effort to control CH4 emissions, the government should pay more attention to 

and provide greater support for the waste sector, especially landfill sources. Case 

studies in Ohio, US indicate that the waste sector faces the most significant 

challenges in mitigating CH4 emissions. Compared to the agriculture and energy 

sectors, the waste sector achieves the least CH4 emission reduction at the highest cost, 

leading to substantial price increases in landfill sources, up to 30% of the initial price. 

The government can offer more incentives or subsidies to the waste sector or 

establish an emission cap reduction goal at a slower pace for it. 
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Appendix A 

A.1. Climate Model Calibration 

The calibration of the MOMENTUM considers historical CH4 emissions (Crippa et al., 

2023) and total historical radiative forcing (IPCC, 2023a). Historical CO2 emissions are 

not considered in the calibration, since this study focuses on the change of CH4 emissions 

and resulting influences on the radiative forcing and temperature. The calibration results 

are shown in Figure A-1. 
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Figure A-1: Climate Model Calibration Results for Five Representative SSPs. 
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A.2. Methane Mitigation Technology Model 

 

Figure A-2: Fitting Curves of USEPA Marginal Cost Data for CH4 Mitigation 

Technologies in the Energy Sector 
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A.3. Methane Removal Technology Model 

 
Figure A-3: Methane removal technology model. 

Parameters used for illustration: 𝑅0 =10kt, 𝑃𝑅0 = $30k/t, 𝑙𝑅 = 20%, 𝑅𝑚𝑎𝑥= 200Mt/year, 

𝑔𝑚𝑎𝑥 = 30%, 𝑡𝑚𝑖𝑑 =2060. (a) learning curve (normal axes). (b) learning curve (log-log 

axes). (c) growth curve (removal ability vs. time). (d) growth curve (Growth rate vs. 

removal ability), where the shadow represents the feasible region of corresponding 

constraint in the optimization model. (e) growth curve (Growth rate vs. time). 
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A.4. Other Results  

 

 
Figure A-4: Full Results of Sensitivity Analysis of the Year that CH4 Removal Starts to 

Important Parameters 

Dark Grey = no feasible solution; Light Grey = CH4 removal never starts.  
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Figure A-5: Estimated Average Cost for CH4 Control for Relevant Climate Goals in 

Different Scenarios 
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Appendix B 

B.1. Stable Market Shares 

The stable market shares in subzone 𝑠 is solved through iterations as follows. 

Based on Equation (4-13), the iteration equation is  

𝑴𝑠
(𝑖+1)

=∑𝕏𝑖
𝑠𝑡𝑎𝑏𝑙𝑒𝑴𝑠

(𝑖)

𝑖∈𝑠

 (B-1) 

where the superscript 𝑖 represents the iteration index. 

Choose two initial values for the market share vector, i.e., 𝑴𝑠
(0)

, as (1, 0, 0, …, 0)T and 

(0, 0, 0, …, 1)T. In other words, it is assumed that initially the first or the last supplier has 

all the market. Put the two initial market share vectors into Equation (B-1), respectively, 

and continue the iteration in parallel. The stopping criteria is that the maximum 

difference between the elements in the two market share vectors is less than a given 

tolerance (i.e., 10-8). Take the average of the two market share vectors when the iteration 

stops as the stable market shares in subzone 𝑠, i.e., 𝑴𝑠
𝑠𝑡𝑎𝑏𝑙𝑒. 
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B.2. Commodity/Service Prices Under the Nash Equilibrium 

The commodity/service prices under the Nash equilibrium in zone 𝑧 is solved through 

iterations as follows. 

Based on Equation (4-16), the iteration equation is  

𝑥𝑗
𝑝𝑟𝑖𝑐𝑒 (𝑖+1)

= argmax
𝑥
𝑗
𝑝𝑟𝑖𝑐𝑒,(𝑖)

𝐹𝑗
𝑠𝑡𝑎𝑏𝑙𝑒,(𝑖)

= argmax
𝑥
𝑗
𝑝𝑟𝑖𝑐𝑒,(𝑖)

[𝑀𝑧𝑗
𝑠𝑡𝑎𝑏𝑙𝑒,(𝑖)

(𝑥𝑗
𝑝𝑟𝑖𝑐𝑒,(𝑖)

− 𝑐𝑗)], 

∀𝑗 ∈ 𝑧𝑜𝑛𝑒 𝑧 

(B-2) 

Set all heterogeneous parameters (expect for the price) for all suppliers in zone 𝑧, and set 

the initial values of prices, i.e., 𝑥𝑗
𝑝𝑟𝑖𝑐𝑒,(0)

 based on the costs and the average profit rate in 

the sector. For each supplier, put the initial price value into Equation (B-2), respectively, 

and continue the iteration in parallel. The stopping criteria is that the maximum 

difference between 𝑥𝑗
𝑝𝑟𝑖𝑐𝑒,(𝑖)

 and 𝑥𝑗
𝑝𝑟𝑖𝑐𝑒,(𝑖+1)

 is less than a given tolerance (i.e., 10-5). The 

price of commodity/service 𝑗 under the Nash equilibrium, i.e., 𝑥𝑗
𝑝𝑟𝑖𝑐𝑒,𝑛𝑎𝑠ℎ

, is then the 

value in the (i+1)th iteration. 


