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Abstract

This dissertation addresses two distinct topics: inference from synthetic aperture

radar (SAR) data and the application of lattice theory to array signal processing.

First, we propose a series of methods that mitigate the effect of speckle in inference

tasks involving multichannel SAR data. Coherent imaging methods like SAR are

subject to speckle, and the suppression of this noise-like quality is often a prereq-

uisite to image interpretation. We propose a technique that recovers the per-pixel

multichannel SAR covariance matrix and incorporates a statistical model of speckle

and a priori knowledge of the varieties of clutter present in the scene. In this ap-

proach, an expectation-maximization algorithm is made computationally tractable by

a graph-coloring probing technique. We next address the problem of coherent change

detection in repeat-pass SAR data. A Bayesian change detection approach is given

that assigns prior distributions to the unobserved model variables to exploit spatial

structure both in the geophysical scattering qualities of the scene and among the

scene disturbances that take place between the passes. We also give a polarimetric

SAR (PolSAR) despeckling method based on convolutional neural networks (CNNs).

An invertible transformation involving a matrix logarithm is used to facilitate CNN

processing of the PolSAR data. A residual learning strategy is adopted, in which the

CNN is trained to identify the speckle component which is then removed from the

corrupted image.
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The latter portion of this dissertation is concerned with the application of lattice

theory to array signal processing. We consider the problem of maximum likelihood

parameter estimation in mixed integer linear models and provide two polynomial-

time solution methods for special cases of this problem. These approaches extend the

prior art by allowing for multivariate real-valued unknowns and more general linear

models. We then provide a generally applicable alternative solution method that uses

sphere decoding.

We next consider the design and analysis of nonuniform arrays in one, two, and

three dimensions. We give simply tested necessary and sufficient conditions for an

array of sensors to unambiguously determine the direction of arrival for a specified

set of possible directions of arrival. The new results facilitate the design of nonuni-

form arrays, allowing for configurations with widely separated sensors or increased

apertures without an increase in the number of sensors. The unambiguous region is

shown to be a parallelotope, a property which admits simple geometric interpretation

and facilitates array design.
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Chapter 1: Introduction

This dissertation addresses two topics: inference from synthetic aperture radar

(SAR) data and the use of lattice theory in array signal processing.

1.1 Inference Methods for Synthetic Aperture Radar

In the first portion of this dissertation, we propose a series of inference methods for

multichannel SAR data. SAR is a microwave sensing technology capable of produc-

ing high-resolution images of terrain and targets. The airborne or spaceborne radar

system traverses a flight path, transmitting and receiving a series of high-bandwidth

radio frequency (RF) pulses, most often linear frequency modulated (LFM) chirps,

towards a scene of interest. In spotlight mode SAR, the antenna is steered to illumi-

nate a fixed patch of ground continuously. The backscattered pulses are mixed with

a reference signal and low-pass filtered, resulting in a set of samples of the Fourier

transform of the complex scene reflectivity confined to an annular region in the spatial

frequency domain. The recorded pulses or phase history can then be processed into

an image.

In this dissertation, we consider multichannel SAR imaging modalities, such as

polarimetric SAR (PolSAR) or interferometric SAR (InSAR), in which data are col-

lected via multiple channels. These data are considerably more informative than
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single-channel collections; the inter-channel relationships are informative of physical

scattering behavior [10, 11]. These multichannel radar systems have proven critical

for monitoring changes on the earth’s surface, and numerous techniques employ these

data for terrain classification or surface parameter estimation [12].

We use a tomographic formulation of SAR and a plane-wave assumption, permit-

ting the expression of the sampled radar returns as

y = Ax+ u, (1.1)

in which A is a SAR imaging operator, the lexicographically-ordered 2D scene reflec-

tivity samples are denoted by x, and u represents thermal noise.

Speckle in SAR imaging is a result of the coherent interaction of reflections from

objects within a resolution cell. When illuminating a homogeneous medium that is

rough on the scale of the radar’s central frequency, the reflectivity is modeled as a

random variable with a complex normal distribution [13–15].

In Chapter 2 we give a method for multichannel coherent image recovery based

on a hierarchical statistical model. This approach accommodates a reduced synthetic

aperture but also suppresses speckle and thermal noise. The model presented here

uses latent terrain class variables with an MRF prior to exploit both structure among

coherent imaging channels and spatial correlation for improved image recovery.

In Chapter 3, we consider the problem of coherent change detection from repeat-

pass SAR imagery. A Bayesian approach is formulated as an alternative to conven-

tional window-based change detection statistics that entail losses to spatial resolution.

The proposed approach assigns prior distributions to the unobserved model variables

to exploit spatial structure both in the geophysical scattering qualities of the scene

and among the scene disturbances that take place between the passes. Variational
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expectation maximization is used to efficiently approximate the posterior distribu-

tion of the latent variables and the prior model hyperparameters. Experiments on

simulated and measured interferometric SAR data pairs indicate the effectiveness of

the proposed change detection method and highlight improvements over traditional

window-based approaches.

In Chapter 4, we consider the problem of speckle reduction of multichannel SAR

images. It is often a prerequisite to suppress speckle in some way before SAR data

are considered suitable for analysis [16]. This is frequently realized by the application

of a speckle filter, classically one which acts on the image locally [17]. We describe

a polarimetric SAR despeckling approach that uses convolutional neural networks

(CNNs). The approach operates in the matrix logarithm domain and uses a residual

learning architecture that has been successful in natural image denoising. We have

implemented this approach with a training set of spatially multilooked PolSAR images

that are corrupted by a simulated speckle process. Further, the proposed approach

provides improved despeckling over conventional filtering methods and operates with

a comparably fast running time afforded by the use of CNNs.

1.2 Array Processing With Lattices

This dissertation next addresses the applications of lattices (regular arrangements

of points in Euclidean space) to sensor array processing. In Chapter 5, we consider the

problem of maximum likelihood (ML) parameter estimation in mixed integer linear

models. That is, we consider a linear model with a measurement vector y that is

related to a real-valued unknown x and an integer-valued unknown k as

y = Ax+Mk + u, (1.2)
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where A is an encoding matrix with full column rank and M is an invertible matrix.

This problem is relevant to many applications, including ranging [18–21], frequency

estimation [22–24], interferometry [25], MIMO decoding [26–28], direction of arrival

estimation [29], multichannel modulo sampling [30], and magnetic resonance imag-

ing [9, 31].

In [32], a case of (1.2) is considered, in which there is a single real-valued variable

and the encoding matrix meets a certain coprimeness condition. There, a polynomial-

time ML solution method is given that leverages the classical Chinese remainder

theorem. In Chapter 5, we provide two ML solution methods that extend polynomial-

time computation to a wider range of problems. These extensions of the prior art

account for both multivariate real-valued unknowns and general encoding matrices

with full column rank. We then provide a solution method based on sphere decoding

that applies generally to (1.2).

In Chapter 6, we focus on the use of lattice theory in the analysis and design

of nonuniform sensor arrays in one, two, and three dimensions. Nonuniform array

geometries are often used to extend the array aperture or to reduce mutual coupling

among sensors. The work in this chapter is motivated by the use of nonuniform arrays

in the direction of arrival (DoA) estimation problem. We give a necessary and suffi-

cient condition for an array of isotropic sensor elements to be unambiguous for any

specified set of DoAs. The set of unambiguous DoAs for a given array configuration is

shown to be a parallelotope, a property that admits simple geometric interpretation

and facilitates sensor array design. The result is an easily tested necessary and suffi-

cient condition for arbitrary sets of DoAs, an alternative to a widely used sufficient
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condition [33, Thm. 8]. We include additional properties in this chapter to aid in the

design of nonuniform arrays that meet aliasing requirements.
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Chapter 2: Speckle Suppression in Multichannel SAR

Imaging

2.1 Introduction

An issue endemic to coherent imaging is the presence of speckle, a phenomenon

which manifests as a granular quality in images and may obscure features of interest.1

Speckle is the result of the coherent interaction of multiple reflections from within

a resolution cell. It is common to account for the presence of speckle by modeling

the scene reflectivity stochostically, canonically as a zero-mean Gaussian-distributed

random variable [13,14].

Also of concern for image formation and interpretation are gaps in the SAR coher-

ent phase history, which may be caused by radio frequency jamming or interruptions

due to hardware multiplexing; spectral gaps result in ringing artifacts which hinder

image interpretation. The objective of this work is to estimate the multichannel scat-

tering properties of a scene afflicted by speckle when the collection suffers from gaps in

spatial frequency observations. We hypothesize that directly addressing speckle and

ringing artifacts in a multichannel image formation procedure can produce results

1This chapter is largely drawn from [34], coauthored with Lee C. Potter (© 2020 IEEE).
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superior to the existing data flow of channel-by-channel imaging followed by speckle-

reducing post-processing. To this end, we adopt a maximum a posteriori (MAP)

estimation approach to recover the per-pixel multichannel SAR covariance with dual

goals of speckle reduction and preservation of spatial resolution. Rather than placing

a prior directly on the covariance, we employ a latent terrain class random vector on

which a Markov random field (MRF) prior is placed. To accommodate texture within

a terrain class, the per-pixel covariance within a class is assumed to be distributed

as a complex inverse Wishart (CIW) matrix. To alleviate computational complexity,

we use an expectation-maximization (EM) surrogate function for the MAP objective

function and a probing method for estimating the block-diagonal of a matrix inverse.

2.1.1 Motivating Applications

The proposed approach is motivated by SAR imaging modalities in which data

are collected via multiple channels, such as PolSAR and InSAR. Multichannel SAR

data have been shown to be considerably more informative than single-channel collec-

tions because the relationships between channels capture information corresponding

to physical scattering behavior [10,11]. The information that these multichannel sys-

tems gather has proven critical for monitoring changes on the earth’s surface, and

numerous techniques employ these data for terrain classification and surface param-

eter estimation [12].

A common multichannel SAR modality is PolSAR, in which diversity of the po-

larizations of the transmitted and received signals provides more information about

the environment than would a single-channel sensor. A pair of orthogonal polariza-

tions are used (e.g., horizontal and vertical polarizations) to emit and receive energy,
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the permutations of which yield a reflectivity vector of four complex values for each

pixel. The experimental results presented here use simulated and measured PolSAR

data, although the proposed approach applies to other SAR modalities and, indeed,

to other multichannel coherent imaging tasks.

2.1.2 Ameliorating Speckle by Post-Processing

The existing data flow is to first form single-channel SAR images, then post-

process to reduce speckle before image interpretation [16]. The speckle suppression

step is frequently realized by the application of a speckle filter, classically one which

acts on the image locally [17]. The simplest such despeckling technique is a boxcar

filter, which suppresses speckle effectively in homogeneous areas but degrades the

resolution and the fine structural details of the image [16]. Further local filtering

methods include the Lee [35] and Refined Lee [36] filters, which have, among other

classical PolSAR speckle filtering techniques, been reviewed and analyzed by Foucher

and López-Mart́ınez [17].

In recent years, there has been a trend toward non-local patch-based speckle re-

duction based on the non-local means (NLM) filter [37]. Unlike the local filtering

methods, the NLM ethos is based on the nonlocal averaging of pixels across the im-

age. Applications of this principle to PolSAR despeckling have demonstrated robust

performance [38–40].

There are also many variational PolSAR speckle reduction methods, in which the

underlying idea is to suppress speckle by optimizing an energy functional consisting of

a regularization term and a data fidelity term. Some such methods reduce complexity
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by operating only on the diagonal elements of the covariance [41], ignoring the statis-

tical correlations between channels. In [42], a scheme for multichannel SAR speckle

reduction is proposed which maps multichannel SAR covariance images to real-valued

images using a homomorphic transform, allowing for the use of general-purpose de-

noising algorithms. In [43], a MAP PolSAR despeckling approach is proposed which

uses a matricial total variation (TV) regularization term to enforce smoothness, and

this approach is modified in [44] with a nonlocal TV-based regularization term. A

review of the recent developments in PolSAR speckle filtering can be found in [16].

2.1.3 Regularized Imaging

The speckle present in coherent imaging is central to the problem formulation in

this work. In contrast, many regularized SAR imaging approaches eschew a speckle

model and opt to estimate the scene reflectivity, rather than its variance. To combat

artifacts due to gaps in the SAR phase history data, many of these techniques enforce

sparsity on the magnitude of the reflectivity [45, 46]. For a review of this literature,

see [47–49]. Another family of sparsity-based approaches is based on sparse Bayesian

learning (SBL) [50–52], in which the reflectivity is modeled as a zero-mean circularly-

symmetric Gaussian, and an independent Gamma hyperprior is placed on the variance

of each reflectivity element [53].

The proposed approach can also be considered in the context of other coherent

image recovery methods that estimate the second moment of the image. In [54], an

image recovery framework is proposed for single-channel synthetic aperture LADAR;

the approach adopts a statistical model for fully-developed speckle and uses an iter-

ative EM optimization scheme that treats reflectivity as a nuisance parameter. The
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variances of the reflectivity elements are found via MAP estimation with a general-

ized Gaussian MRF prior. In [55], this approach is broadened into a plug-and-play

framework [56, 57] which allows for regularization by way of off-the-shelf Gaussian

denoising algorithms. In both [54] and [55], the forward model operator is a scaled

unitary matrix, a limitation which greatly reduces computational complexity.

Rather than treating reflectivity as a nuisance parameter in the MAP variance

estimation as in [54], reflectivity and its variance are jointly estimated in a single-

channel SAR image recovery approach in [58]. This approach uses a classical stochas-

tic speckle model and a TV regularization term in a joint recovery approach which

also accounts for the deleterious effects of arbitrary gaps in phase history.

The speckle-aware imaging approach proposed here draws motivation from [54,

55] where the variance of the scene reflectivity is estimated in the fully-developed

speckle regime. Like [54, 55], our approach considers an image recovery task that

jointly forms images and combats speckle. In contrast, the literature for speckle

reduction customarily considers despeckling as an image post-processing problem [38,

42,43]. Three novel components comprise the contribution of the proposed approach.

First, we extend the Bayesian modeling and estimation in [54,55] to the multi-variate

case; rather than estimate a variance at each pixel, we estimate a positive semi-

definite multichannel covariance matrix. In this way, informative relationships among

the channels are exploited to combat both speckle and image side-lobes from data

dropouts. Second, we present a novel algorithmic component that overcomes an

intractable matrix inversion encountered when extending [54, 55] to a more general

class of linear measurement models; in particular, a matrix probing scheme in the new

framework allows for the correlation in the random speckle process induced by the
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gaps in the phase history data. Finally, we incorporate into the proposed framework

a terrain class-based MRF prior which models spatial dependencies in a latent terrain

class label.

2.2 Imaging Model

2.2.1 Spotlight-Mode SAR Imaging

In spotlight-mode SAR, high-bandwidth pulses, most often linear frequency mod-

ulated (LFM) chirps, are transmitted from the radar system towards the scene of

interest, and the reflected pulses recorded. The received signal is mixed with a refer-

ence sent through a low-pass filter, resulting in a set of what may be considered slices

from the 2-D Fourier transform of the complex scene reflectivity [59].

The single-channel SAR data collection process can be approximated by a linear

mapping [59]

y = Amx+w, (2.1)

where x ∈ CN is the scene reflectivity, y ∈ CM noisy linear measurements, and w ∈

CM complex zero-mean white Gaussian noise with covariance σ2
wIM ; each corresponds

to an image ordered lexicographically as a vector, with IM denoting anM×M identity

matrix. Note that the vector w in (2.1) models additive thermal noise present at

the receiver and is not related to the speckle phenomenon. Assuming SAR to be a

linear shift-invariant imaging system, the forward operator Am is characterized by

the spatial frequency support of the system [60].
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2.2.2 Multichannel SAR

For a SAR system with D channels, the reflectivity vectors at each pixel are

xi = [x
(1)
i , x

(2)
i , . . . , x

(D)
i ]T, i = 1, 2, . . . , N, (2.2)

which compose the scene reflectivity vector x ∈ CDN as

x = [xT
1 ,x

T
2 , . . . ,x

T
N ]

T (2.3)

where (·)T denotes transposition. The multichannel measurement and thermal noise

vectors y and w are likewise formed by stacking their constituents.

A multichannel SAR linear system model relates the scene reflectivity to the ob-

servations as

y = Ax+w, (2.4)

in which the multichannel SAR forward operator A ∈ CDM×DN is

A = Am ⊗ ID, (2.5)

where ⊗ is the Kronecker product operator.

2.2.3 Modeling Speckle in Multichannel SAR

Speckle in SAR imaging is a result of the coherent interaction of reflections from

objects within a resolution cell. When illuminating a homogeneous medium that is

rough on the scale of the radar’s central frequency, the classical reflectivity model is

[13,14]:

p(xi | Σi) = CN (xi;0,Σi), i = 1, 2 . . . , N (2.6)
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where CN (xi;0, ·) denotes a complex zero-mean circularly-symmetric Gaussian dis-

tribution [15] defined by:

CN (xi;0,Σi) =
1

πD|Σi|
exp

{
−xH

i Σ
−1
i xi

}
, (2.7)

in which | · | denotes a determinant. Note that this stochastic modeling of xi in (2.6)

is to account for the speckle phenomenon in coherent imaging. Under this model,

the scattering behavior within a pixel is characterized by the covariance Σi ∈ HD
+ ,

where HD
+ is the set of D×D Hermitian positive-definite matrices. This is known as

the fully-developed speckle model, and most PolSAR filtering techniques are derived

from its assumption.

2.2.4 Markov Random Field Prior

The proposed model stipulates that each pixel belongs to one of ℓ terrain classes

(e.g., grass or scrub), a construct similar to the non-homogeneous clutter model de-

tailed in [61]. The terrain class labels are unknown, but the statistics of each class

are assumed to be known a priori. The latent random vector z ∈ Z = {1, 2 . . . , ℓ}N

indicates the terrain class to which each pixel belongs. Given a pixel’s terrain class,

its covariance is conditionally distributed as a complex inverse Wishart (CIW) distri-

bution [62], defined for Σ ∈ HD
+ by

CIW(Σi;G, v) =
|Σi|−(v+D) exp

{
tr(−GΣ−1

i )
}
|G|v

πD(D−1)/2
∏D

i=1 Γ(v − i+ 1)
(2.8)

where tr(·) is the trace operator. The conditional distribution of Σi is given by

p(Σi | zi) =


CIW(Σi;G1, v1), zi = 1

...
...

CIW(Σi;Gℓ, vℓ), zi = ℓ

, (2.9)
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for i = 1, 2, . . . , N , where (Ga, va) are the distribution parameters corresponding to

class a ∈ {1, 2, . . . , ℓ}. Each zi is assigned a marginal prior distribution of p(zi = j) =

αj for i = 1, 2, . . . , N , and j = 1, 2, . . . , ℓ where
∑

j αj = 1. A Markov random field

(MRF) prior encodes spatial correlation among neighboring zi. Specifically, we have,

for γn(ℓ− 1) + γe = 1,

p(zi | zj) =
{
γn, zi ̸= zj

γe, zi = zj

as the pair-wise marginal probability of zi conditional on any of its four neighbors

zj ∈ δi [63]. The total distribution of z is given by

p(z) =
1

Z

N∏
i=1

p(zi)
∏
j∈δi

p(zi | zj) (2.10)

where Z is a normalizing term. A factor graph representing this probability model

is shown in Fig. 2.1, where, for clarity, the MRF along the bottom of the graph is

visualized as a chain. Square nodes are used to represent factors of the distribution

and circular nodes denote unknown random variables.

2.3 MAP Estimation

The recovery of the per-pixel covariance from the observations is posed as a MAP

estimation problem; i.e., we find

Σ̂ ∈ argmax
Σ∈Ω

p(Σ | y) (2.11)

where

Σ =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · ΣN

 , (2.12)

with a set of feasible values defined by

Ω =
{
Σ | Σ = diagD(Σ) and Σ ∈ HDN

+

}
(2.13)
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Figure 2.1: Factor graph depicting the conditional probabilities comprising the as-
sumed signal model. The text at the right describes the physical characteristics
captured in the model, depicted as factor nodes in the graph.

in which diagD(Σ) denotes a block-diagonal matrix of D × D blocks whose block-

diagonal entries are the same as those of Σ. From Bayes’ theorem, the MAP problem

is equivalent to

Σ̂ ∈ argmin
Σ∈Ω

{
− log p(y | Σ)− log p(Σ)

}
, (2.14)

where [53]

p(y | Σ) = CN (0,T ), (2.15)

with

T = AΣAH + σ2
wIDM . (2.16)

With (2.6), the MAP estimation optimization problem is

Σ̂ ∈ argmin
Σ∈Ω

{log |T |+ yHT−1y − log p(Σ)}. (2.17)
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The objective function in (2.17) is non-convex and generally does not admit a solution

in closed form [53]. As such, we use a surrogate for the objective function in (2.17)

as is proposed in [54].

2.3.1 MAP Objective Surrogate Function

Treating reflectivity x and terrain class z as hidden variables, we form an EM

surrogate for the MAP cost in (2.17) parameterized by the previous estimate Σ′ and

given by [54,64]

Q(Σ;Σ′) = −Ex,z|y,Σ′ [log p(x,Σ, z | y)]

= −Ex,z|y,Σ′ [log p(y | x) + log p(x,Σ, z)] + const.,

where we have used the fact that p(y | x,Σ, z) = p(y | x), and const. is used to

collect terms which do not depend on Σ. We then have

Q(Σ;Σ′) = −Ex,z|y,Σ′
[
log p(y | x) + log p(x | Σ)

+ log p(Σ | z) + log p(z)
]
+ const.

= −Ex,z|y,Σ′
[
log p(x|Σ) + log p(Σ | z)

]
+ const.

= −Ex|y,Σ′
[
log p(x | Σ)

]
− Ez|Σ′

[
log p(Σ | z)

]
+ const., (2.18)

where we have used that p(z | Σ′,y,x) = p(z | Σ′). The conditional posterior

density p(x | y,Σ′) is a complex Gaussian-distributed random vector with mean and

covariance [65]

µΣ′ = σ−2
w CΣ′AHy (2.19a)

CΣ′ =
[
σ−2
w AHA+ (Σ′)−1

]−1
, (2.19b)
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respectively. With this, (2.18) can be simplified to

Q(Σ;Σ′) = log |Σ|+ tr
(
SΣ′Σ−1

)
− Ez|Σ′

[
log p(Σ | z)

]
+ const., (2.20)

where SΣ′ = CΣ′ +µΣ′µH
Σ′ . Evaluation of p(z | Σ′) over all possible realizations of z

in (2.20) is prohibitively costly. As such, we will approximate p(z | Σ′) as a product

of its marginal probabilities; that is, assume p(z | Σ′) ≈∏N
i=1 p(zi | Σ′). In this case,

the surrogate in (2.20) is approximated as

Q(Σ;Σ′) ≈ log |Σ|+ tr
(
SΣ′Σ−1

)
−

N∑
i=1

ℓ∑
k=1

p(zi = k|Σ′) log p(Σi | zi) + const.

(2.21)

The marginal distributions p(zi | Σ′), for i = 1, 2, . . . , N , are approximated using the

sum-product algorithm [65, 66]. The function in (2.21) decouples by pixel, and the

ith block of its minimizer is

Σ̂i ≜ argmin
Σi∈HD

+

log |Σi|+ tr(Σ−1
i (SΣ′)i)−

ℓ∑
k=1

p(zi = k | Σ′) log p(Σi | zi) (2.22)

=
(SΣ′)i +

∑ℓ
k=1 p(zi = k|Σ′)Gk

1 +
∑ℓ

k=1 p(zi = k|Σ′)(vk +D)
. (2.23)

In (2.23), we have used the fact that the objective in (2.22) has a unique minimizer

over HD
+ [67].

2.3.2 Evaluating the Conditional Posterior Covariance

To evaluate (2.21), it is necessary to compute the conditional posterior covariance

matrix CΣ′ . Its direct, explicit evaluation is both memory-intensive and computa-

tionally prohibitive, involving as it does the inversion of a DN × DN matrix. For

scaled unitary Am, CΣ′ is block-diagonal, making its inversion tractable for practical

image sizes. This simplifying assumption, which is made in [54, 55], is met when
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imaging sidelobes are not present. To accommodate more general imaging scenarios,

first note that we need only compute the block-diagonal of CΣ′ because CΣ′ appears

in (2.21) only via the trace of its product with the block-diagonal Σ−1.

With this in mind, we consider computing the D-block-diagonal of the inverse of

a Hermitian matrix, adapting an approach from Tang and Saad [68]. Their method

exploits sparsity to ease the computational burden of computing the diagonal of the

inverse of a symmetric and positive-definite matrix. In describing its adaptation, we

adopt generic notation: let B ∈ HDN
+ denote a known positive-definite Hermitian

matrix from which we seek to approximate diagD(B
−1).

Consider B to be composed of blocks as

B =


B11 B12 · · · B1N

B21 B22 · · · B2N
...

...
. . .

...
BN1 BN2 · · · BNN

 (2.24)

where Bik ∈ CD×D. This method relies on B−1 having relatively few “non-trivial”

blocks. This is to say that Sϵ(B−1) is sparse, where the sparsified block-support

operator Sϵ(·) : CDN×DN → {0, 1}N×N is defined by

(Sϵ(B−1))ik =

{
1, if ∥(B−1)ik∥2F > ϵ

0, otherwise.
(2.25)

for a small constant ϵ > 0. The sparsifiedB−1, for which entries outside the sparsified

block-support are set to zero, is denoted by (B−1)ϵ.

To proceed, note the following relation:

diagD(B
−1) = diagD(B

−1V V T) diag−1
D (V V T), (2.26)

which holds trivially for orthogonal V . In this estimation scheme, we exploit the

approximately sparse structure of B−1 to construct a tall, thin V ∈ {0, 1}DN×DP for
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which (2.26) holds with P << N . In [68], V is called a “probing” matrix. Here we

decompose the probing matrix V as

V =
[
V T

1 V T
2 · · · V T

N

]T
(2.27)

where

Vi =
[
Vi1 Vi2 · · · ViP

]
, i = 1, 2, . . . , N (2.28)

and Vij ∈ {0, 1}D×D. The construction of the probing matrix rests on the following

proposition, stated in [68] for D = 1:

Proposition 1. Given Hermitian positive-definite B ∈ HDN
+ , let V ∈ {0, 1}DN×DP

be full-rank with P ≤ N , then

diagD(B
−1) = diagD(B

−1V V T) diagD(V V T) (2.29)

holds if ViV
T
k = 0 for all (i, k) for which i ̸= k and (B−1)ik ̸= 0.

A probing matrix which satisfies Proposition 1 can be formed by first constructing

a graph in which each node corresponds to a pixel in the image, and the corresponding

adjacency matrix is the sparse support of B−1. We are able to form a suitable V by

coloring the nodes of this graph. Graph coloring is known to be an NP-hard problem,

and, as is common practice, we rely on a heuristic to find a graph coloring with few

colors. A well-known greedy graph coloring algorithm is summarized in Algorithm 1

[68], and further details on graph coloring algorithms can be found in [69].
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Algorithm 1 Greedy Graph Coloring Algorithm

Input: Graph corresponding to N ×N matrix
Output: Colors corresponding to nodes of the graph
1: for i = 1 to N do
2: Set Color(i) = 0
3: end for
4: for i = 1 to N do
5: Set Color(i) = min{k > 0 | k ̸= Color(l) ∀ l ∈ Adjacent(i)}
6: end for
7: return Color

As is done for the estimation of the diagonal of a matrix inverse in [68], a probing

matrix can be formed from the colored nodes. Specifically, V is constructed as

Vik =

{
ID, Color(i) = k

0, otherwise
. (2.30)

In general the support of B−1 is not known, and it must be estimated from the known

B. The support of the sparsified inverse can be estimated as

Sϵ(B−1) ≈ Sϵ(Bq) (2.31)

where q ∈ N is small [68].

Next, the matrix G = B−1V is computed by solving the linear systems

Bgi = vi, i = 1, 2, . . . , DP, (2.32)

from which we get G = [g1, g2, . . . , gDP ]. The linear systems in (2.32) can by solved

efficiently and in parallel by a Krylov subspace method such as the preconditioned

conjugate gradient method. Finally, the desired output is found as diagD(B
−1) ≈

diagD(GV T). The estimation procedure detailed above is summarized in Algorithm

2.
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Algorithm 2 Matrix Inverse Block-Diagonal Estimation Probing Scheme

Input: B ∈ HDN
+

Output: diagD((B
−1)ϵ)

1: Color the graph associated with adjacency matrix Sϵ(Bq) using Algorithm 1
2: Construct V per (2.30)
3: for i = 1 to DP do
4: Solve Bgi = vi (e.g. with the preconditioned conjugate gradient method)
5: end for
6: Set G← [g1, · · · , gDP ]
7: Set diagD((B

−1)ϵ)← diagD(GV T)
8: return diagD((B

−1)ϵ)

This method relies on coloring a graph corresponding to the sparse support ofB−1

with few colors. Physically, the P distinct colors used to label the graph partition the

image into regions for which the speckle decorrelates, thereby averting the complexity

of computing the full conditional posterior covariance. Rather than inverting the

DN ×DN matrix in (2.19b), the graph coloring with P colors allows us to compute

the block-diagonal elements of the inverse by solving DP linear systems, where P is

much smaller than N .

2.3.3 Summary of MAP Estimation Approach

Beginning with the matched filter estimate of reflectivity x,

x̂ = AHy, (2.33)

an unbiased initial estimate of Σi is given by

Σ̃i =
x̂ix̂i

H∑
k |(AH

mAm)ki|2
− σ2

wID
∑
k

|(Am)ki|2, (2.34)
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for i = 1, 2, . . . , N . We observe improved performance by applying a small diagonal

loading to the unbiased estimate and re-scaling the off-diagonal elements as

(Σ̃i)
(new)
kj ← |∑l hi,l(Σ̃l)kj|√∑

l hi,l(Σ̃l)kk
∑

l hi,l(Σ̃l)jj

(Σ̃i)kj (2.35)

where hi,l are the weights of a Gaussian kernel with a bandwidth of one pixel [42].

The iterative EM scheme for approximating a solution to (2.17) is summarized in

Algorithm 3.

Algorithm 3 Iterative MAP Estimation Scheme

Input: y,A, σw, Ns, ϵs, {(Gi, vi, αi)}ℓi=1, γ

Output: Σ̂
1: Set x̂← AHy
2: for i = 1 to N do
3: Set Σ̃i ← x̂ix̂i

H−σ2
wID

∑
k |(Am)ki|2∑

k |(AH
mAm)ki|2

4: Set (Σi)
(0)
kj ←

|∑l hil(Σ̃l)kj |√∑
l hil(Σ̃l)kk

∑
l hil(Σ̃l)jj

(Σ̃i)kj

5: Apply diagonal loading to (Σi)
(0)

6: end for
7: Set k ← 0
8: while k < Ns and ϵ < ϵs do
9: Compute µΣ′ = σ−2

w CΣ′AHy
10: Estimate diagD(CΣ(k)) with Algorithm 2
11: Set diagD(SΣ(k))← diagD(CΣ(k) + µΣ(k)µH

Σ(k))
12: for i = 1 to N do
13: Estimate p(zi|Σ(k)) using the sum-product algorithm

14: Σ
(k+1)
i ← (S

Σ(k) )i+
∑ℓ

q=1 p(zi=q|Σ(k))Gq

1+
∑ℓ

q=1 p(zi=q|Σ(k))(vq+D)

15: end for
16: Set ϵ← ∥Σ(k+1)−Σ(k)∥F

∥Σ(k)∥F
17: Set k ← k + 1
18: end while
19: return Σ(k)

The complexity of this iterative MAP estimation scheme in Algorithm 3 is dom-

inated by the solving of linear systems in step 10. If we use the preconditioned
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conjugate gradient (PCG) method and assume that the matrix vector product in

(2.32) can be computed with NUFFT-based methods [70], step 10 requires

O(ηD2NP log (DN)) (2.36)

flops, where η is a constant which depends on the conditioning of CΣ(k) [71, 72].

The benefits of this method rely on P being much smaller than N, which is the

case when CΣ(k) is approximately sparse and its corresponding graph requires rela-

tively few colors. ComputingCΣ(k) explicitly using Gauss-Jordan elimination requires

O(D3N3) flops and is generally non-feasible. If P ≪ N , Algorithm 3 presents sig-

nificant reductions in complexity, e.g. in the experiments that follow, we have that

P/N ≈ 1.4 × 10−3. To provide an indication of the computing burden in practice,

note that an image chip in the measured data experiments of Section IV required

190.7 seconds of computation time in the MATLAB (R2018a) environment with an

3.20GHz Intel(R) Core(TM) i5-6500 CPU.

The proposed method relies on a terrain class-based prior to express prior beliefs

about the structure of the scene. For such a prior it is necessary to have knowledge

of the types of terrain present in the scene and their statistical properties. As such,

this method requires training data.

In experiments with simulated data, we can define the statistical properties of

terrain classes and ensure that the simulated data adheres to them. In application to

measured data, it is necessary to estimate the statistics of the terrain classes through

auxiliary data.
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2.4 Experimental Results

This section provides an evaluation, using both synthetic and measured PolSAR

data, of the proposed method and its performance compared to conventional process-

ing chains. The conventional processing chains used for comparison involve applying

two despeckling approaches to Σ̃, the biased empirical covariance matrix computed

from the matched filter images formed channel by channel. The first, a simple yet

commonplace boxcar filtering approach, is a convolutional filter with a small rect-

angular kernel (here a 3 × 3 window) of equal weights [73]. The other is MuLoG

(MUltichannel LOgarithm with Gaussian denoising), a state-of-the-art multichannel

SAR despeckling procedure that facilitates the use of Gaussian denoising algorithms

on multichannel SAR data and has demonstrated impressive despeckling performance

[42]. In each experiment, we use the default MuLoG parameters in the provided code

with block-matching and 3D filtering (BM3D) [74] as the embedded Gaussian de-

noiser. The BM3D denoising algorithm has shown remarkable results in additive

Gaussian noise removal from natural images, and performed notably well when em-

bedded in the MuLoG framework in [42].

2.4.1 Evaluation of Algorithm Performance

The two properties we consider desirable in coherent image recovery are speckle

reduction and preservation of spatial resolution. To evaluate the degree of speckle

reduction we use the conventional equivalent number of looks (ENL), defined by [75]:

ENL =
µ2

σ2
, (2.37)

where the empirical mean µ and empirical standard deviation σ are computed within

a homogeneous region. A higher ENL indicates greater speckle reduction. As ENL
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is a single channel metric, we compute it on the intensity (the squared amplitude)

image for each channel.

To measure edge preservation, we use edge-preservation degree based on the ratio

of average (EPD-ROA), defined by

EPD-ROA =

∑K
i=1 |Id1(i)/Id2(i)|∑K
i=1 |Is1(i)/Is2(i)|

, (2.38)

in which Id1 and Id2 are adjacent intensity values of a despeckled image along a

particular direction, and Is1 and Is2 are the corresponding adjacent intensity values of

a reference image [76]. EPD-ROA values close to one indicate good edge preservation.

As with ENL, we measure the EPD-ROA of each channel’s intensity. The EPD-ROA

is measured in two orientations, one considering the immediate horizontal neighbor

and one the vertical.

Additionally, a loss metric is used to measure fidelity to the simulated data: the

normalized root mean square error (NRMSE), defined by

NRMSE(Σ̂;Σ) =
∥ζ̂Σ̂−Σ∥F
∥Σ∥F

(2.39)

for estimate Σ̂, reference Σ, and least-squares scaling constant ζ̂ found as

ζ̂ = argmin
ζ

{
∥ζΣ̂−Σ∥F

}
(2.40)

2.4.2 PolSAR data

Full PolSAR data comprise four complex channels corresponding to the pairs

of transmission/reception modes. Assuming a basis of horizontal and linear polar-

izations, each pixel then has four reflectivity elements xHH
i , xHV

i , xV H
i , xV V

i , where

H and V refer to the horizontal and vertical polarization states, respectively. The
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first superscript character refers to the transmitting polarization and the second to

the receiving polarization. It is common to assume a reciprocal medium in which

xHV
i = xV H

i , meaning that each pixel can be represented by just three reflectivity

elements [77]. The reflectivity at pixel i is then

xi =
[
x
(1)
i , x

(2)
i , x

(3)
i

]T
, (2.41)

the elements of which correspond to the HH, HV, and VV channels, respectively. To

visualize the experimental results, we use the span, a measure of total backscattering

power defined for fully polarimetric data by [78]

span(Σi) = (Σi)11 + 2(Σi)22 + (Σi)33. (2.42)

2.4.3 Simulated Data Results

In this section, we generate simulated PolSAR data and use it to evaluate the

performance of the proposed framework. In our simulations, we begin with focused

SAR imagery and use a clustering method to segment the image into ℓ terrain classes,

yielding a terrain class labeling vector z ∈ {1, 2, . . . , ℓ}N . Within each class, the mean

covariance is determined and used as the scale parameter Gi for that class. From the

labeling z and the terrain class distribution parameters which have been determined

from the data, a ground truth covariance can be had by drawing a realization from the

CIW distribution corresponding to each pixel. In this manner, measured SAR data

are used to generate realistic simulated data which adhere to the proposed terrain

class model. From the ground truth covariance, the reflectivity can be drawn as a

realization of the random vector

xi ∼ CN (xi;0,Σi), i = 1, 2, . . . , N. (2.43)
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Note that the image reflectivity at pixel i is a random quantity by virtue of the speckle

model, and per Goodman [13],a Gaussian distribution is assumed. The imaging

process including additive thermal noise is then simulated according to (2.4), yielding

a set of noisy linear measurements.

Dual-pol SAR Simulated Data Result

In a first experiment, dual-pol SAR data collected by the Sentinel-1 mission

[79] are segmented into ℓ = 3 terrain classes using k-means clustering, providing

a ground truth terrain class labeling. Within each terrain class, the mean covari-

ance is determined and assigned as the scale parameter Gi for that class with a

degree of freedom vi ∈ [4, 10]. A ground truth covariance is then drawn as a realiza-

tion of Σi ∼ CIW(Σi;Gzi , vzi), and speckle is simulated by drawing a realization of

xi ∼ CN (xi;0,Σi), for i = 1, 2, . . . , N . Finally, the linear observations are simulated

according to (2.4) with thermal noise added to simulate a signal-to-noise ratio (SNR)

of 16 dB. The synthetic aperture is reduced to simulate a scenario in which 14.1%

of pulses are unobserved in the pattern {+9.0%,−6.3%,+43.8%,−7.8%,+33.2%},

where + denotes observations and − gaps, an interruption pattern to be repeated in

each subsequent experiment.

A matched filter estimate of x is found as in (2.33), from which a biased estimate

of Σ is determined as in (2.34,2.35). This serves both as an initial estimate for

the proposed iterative method and as an input to despeckling. In this section, we

compare a conventional SAR processing chain (i.e. the despeckling an empirical

covariance from conventionally-formed PolSAR imagery) to the proposed iterative

MAP estimation scheme.
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The ground truth span of our simulated dual-pol SAR image is depicted in Fig.

2.2a. The biased empirical covariance estimate from the linear measurements is shown

in Fig. 2.2b; the result of its processing by boxcar despeckling is in Fig. 2.2c and by

MuLog with BM3D in Fig. 2.2d.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.2: Simulated SAR image estimation results: (a,f) the span of the ground
truth covariance, (b,g) the single-look empirical covariance, (c,h) the boxcar-filtered
estimate, (d,i) the MuLoG-filtered estimate, and (e,j) the MAP estimate with the top
row involving dual-pol data and the bottom fully-polarimetric data.

The MAP estimate by the proposed method is found by using Algorithm 3. In our

experiments we use equal marginal prior probabilities for each terrain class. For the

conditional marginal probabilities of the terrain class variables, we use γe/γn = 1.5,

a ratio which was found to work well and is used in each subsequent experiment.

The preconditioned conjugate gradient method is used to solve the linear systems in

Algorithm 2, and 10 iterations of the sum-product algorithm are used to estimate

p(zi | Σ′
i), for i = 1, 2, . . . , N , in step 13 of Algorithm 3. The span of the resulting
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Table 2.1: Recovery metrics from simulated fully polarimetric SAR data experiment.

Method NRMSE ENL EPD-ROA (H) EPD-ROA (V)

Boxcar 0.928 5.153 0.1305 0.1170

MuLoG 0.874 112.399 0.1663 0.1610

MAP 0.736 33.4412 0.687 0.6349

estimate is in Fig. 2.2e, and the recovery metrics for each method are shown in

Table 2.1 where the ENL and EPD-ROA measurements have been averaged across

channels.

Degraded spatial resolution is readily apparent in the boxcar-filtered result, paired

with meager despeckling performance. The MuLoG-filtered results are spatially

smooth and evince impressive despeckling performance that is both visually-apparent

and supported by its ENL. The ENL measured on the MAP result is more than ten

times that of the boxcar-processed image, indicating strong speckle suppression, but

not to the degree supplied by MuLoG; yet, the image texture qualitatively appears

to be better preserved by the MAP approach than by either filtering method. As the

ground truth is not itself homogeneous, even within a terrain class, ENL alone renders

an incomplete portrait of speckle suppression. Note as well that the MAP approach

fares better in NRMSE than the filtering approaches, and in edge-preservation, it

yields EPD-ROA values significantly closer to unity than either filtering approach in

both the orientations measured.

Fully Polarimetric SAR Simulated Data Experiment

This simulation procedure is repeated using fully polarimetric SAR data from

the Pi-SAR sensor [80]. Here two terrain classes are used with equal marginal prior
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probabilities on each terrain class and γe/γn = 1.5. The span images of the results

from the various methods from this fully polarimetric simulation are shown in Fig.

2.2, and the recovery metrics are listed in Table 2.1. The quantitative results in this

case are similar to those from the dual-pol data: the MAP estimate provides speckle

reduction with superior edge preservation and reduced reconstruction error.

2.4.4 Measured Data Results

The proposed approach is next tested on measured PolSAR data collected by the

Advanced Detection Technology Sensor (ADTS), an airborne Ka band SAR sensor

operated by MIT Lincoln Laboratory. Further details and sample imagery from the

sensor can be found in [61]. Once again we analyze image recovery performance

under a reduced-aperture regime, now in the absence of ground truth covariance for

reference.

It is first necessary to estimate the statistics of the terrain classes which comprise

the scenes used for this analysis in order to inform the prior model. To do so, we

will use a corpus of PolSAR data to learn the distribution parameters for our prior

model, which we will then use to test image recovery performance on other data of a

similar terrain composition.

In [61], Novak et al. segment ADTS PolSAR images into four region classes and

reported the mean covariance of each class. Four types of clutter regions were con-

sidered in this analysis: shadows, grass, mixed scrub, and trees. Each bin of the

segmentation contained 2000 to 8000 pixels (equivalent to an area of several hundred

square meters) [61]. We segment a corpus of twelve 128 × 128 pixel image chips

using a maximum likelihood classifier in which was assume that the terrain classes
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Table 2.2: Stockbridge ADTS data recovery metrics.

Method ENL EPD-ROA (H) EPD-ROA (V)

Boxcar 2.581 0.711 0.782

MuLoG 7.207 0.669 0.746

MAP 70.923 0.842 0.883

are CIW-distributed with scale matrices corresponding to the empirical terrain class

results reported in [61] and degrees of freedom vi = 4, for i ∈ {1, 2, 3, 4}. Once this

training data was segmented into the ℓ = 4 terrain classes, we determine the max-

imum likelihood CIW parameters for each class. These distribution parameters are

then used to inform the prior model used to test recovery performance.

As in the simulated data experiments, the matched filter estimate of the reflectivity

is found as in (2.33), from which a biased estimate of the polarimetric covariance

is found for each pixel as in (2.34,2.35). Note that, unlike in the simulated data

experiments, speckle is not simulated as it is assumed to be present in the data. The

biased empirical covariance estimates for two sample images shown in Fig. 2.3b and

Fig. 2.3g; the results of two speckle filtering methods, boxcar and MuLoG, are shown

alongside them in Fig. 2.3. This procedure is applied to a set of twelve 128 × 128

images, the mean recovery metrics from which are reported in Table 2.2.

The proposed MAP inference method is carried out on the measured data with

γe/γn = 1.5 and equal marginal prior probabilities on the terrain class. The recovered

span images from the proposed inference method are shown in Fig. 2.3e and Fig. 2.3j

for two representative image chips. Absent ground truth, we have plotted in Fig.

2.3a and Fig. 2.3f the span of the matched filter-based empirical covariances found as
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.3: Measured fully polarimetric Ka-band SAR data estimation results from
two image chips: (a,f) the span of the full-data empirical covariance, (b,g) the single-
look empirical covariance, (c,h) the boxcar-filtered estimate, (d,i) the MuLoG-filtered
estimate, and (e,j) the MAP estimate. High-quality color graphics of reconstruction
results have been made available as supplementary material.

in (2.34) using the uninterrupted measurements, to which spatial averaging has been

applied using a 3 × 3 Gaussian kernel. These filtered full-data images are also used

as references to compute the EPD-ROA metrics shown in Table 2.2.

The ENL metrics in Table 2.2, indicate that the proposed approach provides

greater speckle suppression in homogeneous areas than the boxcar filter or MuLoG.

Note that in the simulated data experiments, it was found that the MuLoG-filtered

results had a higher ENL metric than the proposed method.

The EPD-ROA values are evidence of better edge preservation by the MAP ap-

proach than either of the filtering techniques. Considering the full-data span images

to be imperfect references, the textures seem qualitatively to have been recovered

more faithfully by the MAP approach.
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2.4.5 Discussion

The proposed Bayesian method provides a principled balance between competing

objectives when computing multichannel coherent images from under-sampled data.

On one hand, we wish to maintain resolution, reduce imaging side-lobes, and preserve

texture, and, on the other hand, we seek to suppress speckle and thermal noise. The

proposed hierarchical model provides this balance, while exploiting correlations across

channels. For example, the balance with respect to preserving texture arises from the

CIW scale matrix: e.g., a larger determinant encourages richer texture at the expense

of speckle reduction. In contrast, the existing processing chain performs despeckling

that is agnostic to gaps in phase history data, to typical image texture, and to thermal

noise power. Traditionally, speckle is ameliorated by averaging: using local sums, as

in boxcar or Gaussian filtering, or by summing similar patches found throughout an

image, as in BM3D. By tuning the filtering, such as increasing the filter support

beyond a 3-by-3 neighborhood, any level of despeckling may be achieved, but at the

expense of coarser image resolution and blurred image texture. The balancing of

objectives via the Bayesian imaging procedure is evident in the numerical results

presented in this section; for example, in the synthetic data experiment reported in

Table 2.3, MuLoG provides more image smoothing, and hence a larger ENL, but at

the expense of texture and resolution. The specific statistical model presented here

uses a mixture model generated from terrain classes; for each class, a CIW scale

matrix provides a prior, and the algorithm applies the mixture density without any

explicit image segmentation required. The scale matrices are estimated from reference

images and applied to mission images. Variations of the proposed framework might

also be implemented with an MRF prior model [54], a TV regularization term [43,44],
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Table 2.3: Recovery metrics from simulated dual-pol SAR data experiment.

Method NRMSE ENL EPD-ROA (H) EPD-ROA (V)

Boxcar 0.811 9.148 0.4958 0.535

MuLoG 0.752 504.272 0.457 0.491

MAP 0.682 125.940 0.914 0.925

or other Gibbs priors [81]. Further, an implicit prior could be used in a plug-and-play

framework [55,56], e.g. those in the form of neural network-based denoisers [82–84].

2.5 Conclusion

2.5.1 Summary

We have proposed a new method for multichannel coherent image recovery based

on a hierarchical statistical model which not only accommodates a reduced synthetic

aperture but also suppresses speckle and thermal noise. The model presented here

uses latent terrain class variables with an MRF prior to exploit both structure among

coherent imaging channels and spatial correlation for improved image recovery.

The algorithm to produce the MAP estimate based on this model uses a surrogate

scheme from [54,55], extending it for use with multiple channels in a reduced aperture

regime by the novel application of a matrix inverse block-diagonal estimation scheme.

This approach, tested on synthetic and measured PolSAR data, has been shown

to suppress speckle and preserve spatial resolution in the recovery of multichannel

coherent images.
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2.5.2 Future Work

Future work might involve learning of the terrain classes from the noisy data,

rather than requiring auxiliary data. The approach in this chapter assumes that the

fully developed speckle model is followed throughout the scene. Instead, a mixture

model might be used that accounts for areas in which man-made media are present

that do not follow the speckle model.
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Chapter 3: Coherent Change Detection in SAR Imaging

3.1 Introduction

An important application of SAR is the detection of changes to the complex scene

reflectivity that occur between repeated collections of the same terrain.2 In coherent

change detection (CCD), both the magnitude and the phase components of SAR

images are used to identify subtle changes in the scene, such as those caused by the

movement of vehicles over grass [86], foot traffic [87], or land subsidence [88].

The complex correlation coefficient between a pair of SAR images (denoted time-1

and time-2) at a given pixel with index i is [89]

γie
jϕi =

E
[
y
(1)
i y

(2)
i

]√
E
[
|y(1)i |2

]
E
[
|y(2)i |2

] , (3.1)

where y
(k)
i ∈ C is the value of pixel i in the time-k image, E[·] denotes expectation,

and denotes complex conjugation. The interferometric phase ϕi in (3.1) depends

on the terrain topography as well as the displacement between the flight paths of the

two passes. The magnitude of the correlation coefficient, denoted by γi and referred

to as the coherence, is sensitive to the temporal changes in complex reflectivity that

are of interest in CCD. Environmental effects can cause decorrelation, the degree of

2This chapter is largely drawn from [85], coauthored with Joshua N. Ash and Lee C. Potter
(© 2023 IEEE).
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which will depend on the time between passes and the types of scatterers present [86].

The coherence is also influenced by a number of other factors: thermal noise in the

SAR system, the co-registration process of the images, the mismatch in acquisition

geometries between the two passes, and the presence of volume scatterers in the

scene [87,90].

Change detection in SAR has relied largely on the computation of local statistics

within sliding estimation windows, e.g., [91–94]. The coherence, for example, is locally

estimated as

γ̂i =

∣∣∣∑j y
(1)
j y

(2)
j

∣∣∣√∑
j

∣∣y(1)j

∣∣2∑
j

∣∣y(2)j

∣∣2 , (3.2)

in which each summation occurs over a small neighborhood or window of image sam-

ples [89, 91]. Man-made disturbances may result in small, isolated fluctuations in

the scene coherence, for which a commensurately small estimation window is desir-

able. However, the use of a small estimation window to localize fine-scale scene

changes leads to noisy coherence estimates and poor detection performance [86].

Other window-based CCD methods rely on likelihood ratio tests [93, 95] or involve

Stokes parameters [96]. Rather than computing a statistic within a sliding rectangu-

lar window, locally-adaptive directional windows are used in [97] for despeckling and

coherence estimation.

Various alternatives to window-based coherence estimation have been proposed.

In [98], the two-dimensional discrete wavelet packet transform is used to adapt to the

spatially nonhomogeneous character of the scene coherence. This approach allows

for high resolution coherence estimation that is not biased by the interferometric

phase. Nonlocal methods, based on the nonlocal means filter [37], have also been

used to estimate both the coherence and the interferometric phase, e.g., the nonlocal
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interferometric SAR (NL-InSAR) estimator [99]. Nonlocal methods exploit redundant

patterns in the image, selecting pixels to combine in estimation based on the similarity

of the patches that surround them. NL-InSAR and similar approaches [100, 101]

estimate the coherence in a manner that may mitigate the biases and loss of resolution

that are caused by scene heterogeneity in window-based approaches. However, these

methods may be ill-suited to change detection scenarios with small, isolated regions

of change.

Bayesian methods have been useful in the problem of joint SAR imaging and

change detection from interrupted collections [63,102]. These approaches incorporate

prior information about the scene and the physical properties of change into Bayesian

models which mitigate the impact of interruptions to the SAR data collections. In

both [63, 102], Markov random field (MRF) priors are used to model the spatial

sparsity and clustering tendencies of the scene changes. Another class of prior models

called gamma MRFs was introduced to model the local dependencies among the

variances of time-frequency coefficients of audio sources [103]. Gamma MRFs enforce

positive correlations between neighboring variance elements and have the convenient

property that they are conditionally conjugate to a Gaussian likelihood with unknown

variance.

In this work we propose a Bayesian approach to SAR change detection that en-

ables fine-resolution detection of temporal disturbances between pairs of co-registered

SAR images. An MRF prior models the spatial dependencies of the scene changes,

which are anticipated to appear in clusters. Gamma MRFs are used to model the

spatial dependencies of the unknown mean backscatter powers of the image pair.

These prior models are incorporated into a Bayesian framework from which the joint
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posterior distribution of the latent variables is estimated using variational expecta-

tion maximization (EM) [104, 105], a framework which also allows for the iterative

estimation of the model parameters. In addition, a 2-D polynomial regression based

on the local phase differences is used to account for the spatially nonhomogeneous

interferometric phase.

The proposed Bayesian approach assigns prior distributions to the latent model

variables, exploiting spatial structure in the scene changes as well as in the scatter-

ing properties of the scene. This approach does not suffer from the loss of spatial

resolution and fine-scale details as do conventional window-based SAR CCD meth-

ods. The proposed approach has the added benefit that it estimates the prior model

hyperparameters from the data, rather than requiring manual tuning. In experi-

ments using both simulated data and measured interferometric SAR images, this

approach is shown to yield improved detection performance compared to the conven-

tional window-based statistics used for SAR CCD.

3.2 Background

3.2.1 Variational Inference

Of primary interest in Bayesian inference is the estimation of the posterior distri-

bution of the latent random vector x given the observed random vector y. The idea

behind variational inference is to approximate the posterior with a distribution q(x)

that minimizes the Kullback-Leibler (KL) divergence between the two distributions.
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The KL divergence between q(x) and the posterior distribution is given by [104]

DKL(q ∥ p) =
∫

q(x) log
q(x)

p(x | y ; Θ)
dx (3.3)

= log p(y ; Θ) +

∫
q(x) log

q(x)

p(x,y ; Θ)
dx (3.4)

= log p(y ; Θ)− L(q ; Θ), (3.5)

where Θ denotes a set of fixed parameters. Note that L(q ; Θ) is a lower bound on the

log evidence, log p(y ; Θ). Because the evidence p(y ; Θ) is constant with respect to

the variational distribution q, maximizing L(q ; Θ) is equivalent to minimizing the KL

divergence in (3.4). Optimization of L(q ; Θ) over the space of all candidates for q(x)

is generally infeasible, and the search is restricted to a family of distributions. This

commonly involves a mean field assumption, in which a particular factorization for

the variational distribution is postulated, e.g.,

q(x) =
∏
i=1

qxi
(xi). (3.6)

By fixing the other factors, the qxi
which maximizes L(q ; Θ) can be found as [65]

log qxi
(xi) = ⟨log p(y,x ; Θ)⟩q(x−i) + const. (3.7)

where ⟨·⟩f(x) denotes expectation under the probability distribution f(x), and x−i

denotes the variables other than xi. A solution is found by cycling through the

factors and updating them according to (3.7), using the current estimates for the

other factors.

In variational EM, variational inference approximates the expectation step (E-

step) of the EM algorithm [64], and like exact EM, the fixed model parameters are

also estimated [105]. The maximization step (M-step) of variational EM for the
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update of model parameter Θi is given by

argmax
Θi

⟨log p(y,x ; Θ)⟩q(x). (3.8)

Note that unlike in exact EM, the variational M-step uses an approximate expectation

to perform parameter optimization.

3.2.2 Gamma Markov Random Fields

Gamma MRFs were first used to model the dependencies among the variances

of audio signal time-frequency elements [103, 106], making use of the fact that the

signal energies often change slowly over both axes. These models have also been used

for spectral unmixing problems [107, 108]. In this chapter, we use gamma MRFs to

model the local dependencies of the mean backscatter powers of interferometric SAR

image pairs in order to improve change detection performance.

A key feature of the gamma MRF defined in [103] is the introduction of auxiliary

random variables which do not necessarily correspond to quantities of interest. In-

stead, these auxiliary variables are present to enforce positive correlations among the

primary variables while preserving the conditional conjugacy of the prior model.

A gamma MRF models a joint probability distribution on r ∈ R|V|
+ and the aux-

iliary variables z ∈ R|Vz |
+ by defining a bipartite undirected graph between r and z,

with V and Vz denoting sets of indices on which r and z are respectively defined.
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Figure 3.1: The neighborhood structure of a 4-connected gamma MRF showing the
vertical and horizontal neighbors for ri. The auxiliary variables are shown in red.

The joint probability of r and z is expressed as [103]

p(r, z ;a) =
1

Z(a)
π(r, z ;a) (3.9)

=
1

Z(a)

∏
i∈V

exp

{
−
(
1 +

∑
j∈Sr

i

ai,j
)
log ri

}

×
∏
j∈Vz

exp

{
(−1 +

∑
i∈Sz

j

ai,j) log zj −
∑
i∈Sz

j

ai,jzj
ri

}
, (3.10)

in which π(· ;a) denotes the non-normalized probability density, Z(a) is a normalizing

factor or partition function, and Sr
i and Sz

j contain the indices of the neighboring

elements of ri and zj, respectively. The hyperparameter ai,j determines the coupling

strength between ri and zj for i ∈ V and j ∈ Sr
i .

The neighborhood structure of a 4-connected gamma MRF is illustrated in

Fig. 3.1, in which the neighboring auxiliary nodes (in red) are shown for a given

primary variable ri. The auxiliary variables, denoted zh (horizontal) and zv (vertical),

are present between the immediately adjoining elements of r in the horizontal and

vertical directions.
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3.3 Coherent Change Detection

3.3.1 Bayesian Change Detection Model

We assume that the time-1 image of a repeat-pass interferometric SAR image pair

conditionally follows a complex circularly-symmetric Gaussian distribution:

p(y
(1)
i | r(1)i ) = CN (y

(1)
i ; 0, r

(1)
i ), i ∈ V , (3.11)

where V is a set of pixel indices on a 2-D planar grid. The latent variable r
(1)
i is

referred to as the mean backscatter power of the time-1 image at pixel i. The mean

backscatter power is a geophysical quantity that is dependent on the structural and

electromagnetic properties of the scattering elements within the scene [86]. The model

in (3.11) is common for distributed target environments where many statistically

identical discrete scatterers occupy a given resolution cell [13, 109].

We next define the conditional distribution on the time-2 image as the Gaussian

mixture

p(y
(2)
i | y(1)i , r

(2)
i , ci ;ϕi, γ) = δ(ci − 1)CN (y

(2)
i ; 0, r

(2)
i )

+ δ(ci + 1)CN (y
(2)
i ; γe−jϕiy

(1)
i , (1− γ2)r

(2)
i ) (3.12)

where δ(·) is the Kronecker delta function, ϕi is the unknown interferometric phase at

pixel i, and ci ∈ {−1, 1} is a change indicator random variable. Here, ci = 1 indicates

a temporal change at pixel i, and ci = −1 indicates the absence of change. The

unknown parameter γ ∈ (0, 1) determines the degree of change allowable within the

no-change state. Note that (3.12) is a temporal change model similar to that in [94];

(3.12) differs by omitting thermal noise terms and allowing the mean backscatter

power to differ between passes.

43



The interferometric phase ϕ is often assumed to be constant over the small neigh-

borhoods that are conventionally used to compute change statistics. However, if ϕ

is not constant within the estimation window, the sample coherence estimator will

be biased [98]. For methods operating on a pixel-wise basis, the phase must be esti-

mated, either by means of external digital elevation models (DEMs) or from the radar

data. In this work, we estimate the spatially varying interferometric phase from the

radar data by modeling the interferometric phase with a low-order two-dimensional

polynomial.

To account for the spatial correlations between the neighboring change indicator

variables, we define an MRF prior distribution for c. In particular, this chapter

focuses on the following prior distribution for the change indicator variables [110]

p(c | χ) = 1

Z(χ)
exp

{∑
i∈V

(
χ0ci +

χ

2

∑
j∈Sc

i

cicj
)}

, (3.13)

in which χ0 is assumed to be known a priori and Sc
i contains the neighboring elements

of ci for i ∈ V . Values of χ0 < 0 enforce the notion that change pixels are less

likely than no-change pixels. Larger values of the interaction parameter χ imply

greater spatial correlation among the change indication variables, and when χ = 0,

the elements of c are mutually independent. In this chapter, we use a 4-connected

neighborhood structure for the change indicator variables.

Further, we assign gamma MRF priors to r(1) and r(2) that model the local de-

pendencies of the mean backscatter power within the scene. This quantity may vary

across the scene due to errors in the antenna pointing accuracy or spatial variations

in the geophysical qualities of the scene. The structure of these spatial variations

is meant to be captured by the gamma MRFs. The mean backscatter power of a

given pixel may also differ between passes due to radiometric miscalibrations or scene
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Figure 3.2: Factor graph representation of the proposed change detection model. The
squares denote factor nodes and the circles variable nodes.

disturbances that occur between the collections [93]. We assume that the hyperpa-

rameters ai,j are uniform across and between both images and that a single hyperpa-

rameter a need be learned for the gamma MRFs. We use a 4-connected neighborhood

structure for the gamma MRFs as depicted in Fig. 3.1. A factor graph representation

of the proposed change detection model is shown in Fig. 3.2, in which square nodes

denote factors and round nodes represent variables.

3.3.2 Inference

The joint posterior density of the latent variables is given by

p(r(1), r(2), z(1), z(2), c | y(1),y(2) ; Θ) ∝ p(c ;χ)

× p(r(1), z(1) ; a) p(r(2), z(2) ; a)

×
∏
i∈V

p(y
(1)
i | r(1)i ) p(y

(2)
i | y(1)i , r

(2)
i , ci ;ϕi, γ), (3.14)

where Θ = {γ, χ,ϕ, a} is the set of model parameters, and V is the set of pixel

indices in the image. While exact computation of the posterior distribution in (3.14)
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is computationally prohibitive, the marginal posteriors of the latent variables can be

efficiently approximated by using variational EM on the factor graph of Fig. 3.2. In

doing so, we use the following mean field approximation for the posterior:

q =
∏
i∈V

q
r
(1)
i
(r

(1)
i )q

r
(2)
i
(r

(2)
i )qci(ci)

∏
j∈Vz

q
z
(1)
j
(z

(1)
j )q

z
(2)
j
(z

(2)
j ), (3.15)

the factors of which are cyclically updated until convergence. Note that, due to the

mean-field assumption, the computational complexity of a cycle of factor updates is

linear in the number of pixels—O(|V|). For brevity, the subscripts of the variational

factors may be omitted when clarity is not impacted.

Next we describe the updates to the variational factors in (3.15). From (3.7)

and (3.14), the factor associated with r
(1)
i is updated as q(r

(1)
i ) = IG(r(1)i ;α

(1)
r,i , β

(1)
r,i )

with

α
(1)
r,i = 1 + a|Sr

i | (3.16a)

β
(1)
r,i = |y(1)i |2 +

∑
j∈Sr

i

a⟨z(1)j ⟩, (3.16b)

where IG(· ;α, β) is the inverse gamma distribution’s probability density function

defined in Appendix A. The factor associated with r
(2)
i is updated as q(r

(2)
i ) =

IG(r(2)i ;α
(2)
r,i , β

(2)
r,i ) with

α
(2)
r,i = 1 + a|Sr

i | (3.17a)

β
(2)
r,i =

⟨δ(ci + 1)⟩|y(2)i − γe−jϕiy
(1)
i |2

(1− γ2)
+ ⟨δ(ci − 1)⟩|y(2)i |2 +

∑
j∈Sr

i

a⟨z(2)j ⟩. (3.17b)

The time-k auxiliary variable factors for k ∈ {1, 2} are given by

q(z
(k)
j ) = G(z(k)j ;α

(k)
z,j , β

(k)
z,j ), (3.18)
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with

α
(k)
z,j = a|Sz

j | (3.19a)

β
(k)
z,j =

∑
i∈Sz

j

〈
a

r
(k)
i

,

〉
(3.19b)

where G(· ;α, β) is the gamma probability density function defined in Appendix A.

From (3.7) and (3.14), the factors associated with the change bits are updated

using

log q(ci = −1) = −χ0 − log (1− γ2)

−
〈 |y(2)i − γe−jϕiy

(1)
i |2

r
(2)
i (1− γ2)

〉
− χ

∑
j∈Sc

i

⟨cj⟩+ const. (3.20a)

and

log q(ci = 1) = χ0 −
〈 |y(2)i |2

r
(2)
i

〉
+ χ

∑
j∈Sc

i

⟨cj⟩+ const. (3.20b)

Further details regarding these updates are in Appendix A.

3.3.3 Parameter Estimation

Now we describe the procedures used to estimate the unknown model parameters.

Two of the model parameters, γ and χ, are updated in a straightforward manner

via the M-step in (3.8). The estimate for the interferometric phase ϕ is updated

using a 2-D polynomial regression based on the local phase differences, rather than

a conventional M-step update. The gamma MRF hyperparameter governing the

local dependencies of the mean backscatter powers is estimated using contrastive

divergence [111].
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Gamma MRF Hyperparameter

We assume that a single hyperparameter, denoted by a, governs the prior mod-

els for the mean backscatter power of both the time-1 and time-2 images. This

hyperparameter can then be learned from a single image as a prerequisite to the

other parameter estimation or inference tasks. Because variational Bayesian meth-

ods have been shown to poorly estimate gamma MRF hyperparameters [112], we use

a contrastive divergence approach. Contrastive divergence is an iterative approxi-

mate maximum likelihood method that uses Markov chain Monte Carlo (MCMC)

samples to approximate the intractable log-partition function [111]. The approach

described in Algorithm 4 is similar to one used in [103] for the estimation of the

gamma MRF hyperparameters in audio source modeling, though, Algorithm 4 uses

variational inference rather than MCMC samples to approximate the expectations in

the contrastive divergence gradients. The variational inference procedure used to fa-

cilitate this approximation is described in Algorithm 5. This revised approach results

in similar performance to [103] in our experiments, though it is faster as it requires

fewer MCMC samples.

Interferometric Phase

We adopt a 2-D polynomial model for the local interferometric phase differences

and, as in [113], find a vector of polynomial coefficients g by solving a weighted least

squares problem:

ĝ = argmin
g

∥∥P ( [ϕT
∆1 ϕT

∆2

]T − [BT
∆1 BT

∆2

]T
g
)∥∥2

2
,

where ϕ∆1 and ϕ∆2 are respectively the differences of the interferometric phase image

along the first and second image dimensions; the matrices B∆1 and B∆2 are formed
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Algorithm 4 (cd gmrf normal) Contrastive divergence on a gamma MRF model
with Gaussian observations.
Input: Observations y.
1: Fixed parameters: number of contrastive divergence steps Ncd, number of MCMC

cycles Nmc, and step sizes λ ∈ RNcd
+

2: Initialize hyperparameter estimate â
3: for i ∈ {1, . . . , Ncd} do
4: q ← vi_gmrf_normal (y, a)
5: Draw r(0), z(0) from q
6: for k ∈ {1, . . . , Nmc} do
7: Draw z(k) from p(z | r(k−1) ; a)
8: Draw r(k) from p(r | y, z(k) ; a)
9: end for
10: Draw y′i from CN (yi; 0, r

(Nmc)
i ) for i ∈ V

11: q′ ← vi_gmrf_normal (y′, a)

12: â← â− λi

(〈∂ log π(r,z|a)
∂a

〉
q′ −

〈∂ log π(r,z|a)
∂a

〉
q

)
13: end for
Output: Estimated hyperparameter â

Algorithm 5 (vi gmrf normal) Variational inference on a gamma MRF model with
complex Gaussian observations .

Input: Observations y, gamma MRF hyperparameter a
1: Initialize qr
2: repeat
3: qz ← G(· ;αz,βz) with αz,j = a|Sz

j | and βz,j = a
∑

i∈Sz
j
⟨r−1

i ⟩ for j ∈ Vz

4: qr ← IG(· ;αr,βr) with αr,i = 1 + |Sr
i | and βr,i = |yi|2 + a

∑
j∈Sr

i
⟨zj⟩ for i ∈ V

5: until Terminated
Output: q = qzqr

by taking the corresponding differences in the rows of the polynomial design matrix

B, each column of which defines the spatial distribution of a polynomial term. The

matrix P is a row-pruning operator which excludes areas of temporal change from

the computation of the polynomial coefficients. In particular, the pruning operation

excludes elements with an estimated posterior probability of change above a threshold,
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after which the element is considered unreliable. A threshold of 0.5 is used for the

computed results, and performance was not found to be overly sensitive to the choice

of threshold.

Once the polynomial coefficients are estimated, the method of least squares can

be used to estimate the constant phase offset. The interferometric phase estimate is

thus given by

ϕ̂ = Bĝ + ϕ̂0 (3.21)

where ϕ̂0 ∈ [−π, π) is the constant phase offset estimate. The interferometric phase

estimate is updated iteratively throughout the inference procedure along with the

M-step parameter updates.

Coherence Parameter

Using (3.8), the updated estimate for γ is given by

γ̂ = argmax
γ

〈
log p(y(2) | y(1), c, r(2) ;ϕ, γ)

〉
(3.22)

= argmax
γ

{∑
i∈V
−⟨δ(ci + 1)⟩ log (1− γ2)

− ⟨δ(ci + 1)⟩
〈
γ2|y(1)i |2 + |y(2)i |2 − γbi

r
(2)
i (1− γ2)

〉}
, (3.23)

in which

bi = 2Re{y(2)i y
(1)
i e−jϕi}. (3.24)
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By setting to zero the derivative of the objective in (3.23) with respect to γ, we have

a third-order polynomial,

−
(∑

i∈V
2⟨δ(ci + 1)⟩

)
γ3 +

(∑
i∈V

〈
biδ(ci + 1)

r
(2)
i

〉)
γ2

+

(∑
i∈V
⟨δ(ci + 1)⟩

(
2− 2

〈 |y(1)i |2 + |y(2)i |2

r
(2)
i

〉))
γ

+

(∑
i∈V

〈
biδ(ci + 1)

r
(2)
i

〉)
= 0,

(3.25)

that may be used to find the optimal value for γ.

Change Indicator MRF Hyperparameter

Due to the difficulty of assessing the partition function in (3.13), given by

Z(χ) =
∑

c∈{−1,1}|V|

exp

{∑
i∈V

χ0ci +
χ

2

∑
j∈Sc

i

cicj

}
, (3.26)

we use the following mean field approximation [114]:

ZMF(χ) =
∏
i∈V

∑
ci∈{−1,1}

exp

{
χ0ci + χ

∑
j∈Sc

i

ci⟨cj⟩
}
. (3.27)

Note that (3.27) is a latent variable version of the approximation used in the psuedo-

likelihood of Besag [115], i.e., equivalent if ⟨cj⟩ in (3.27) is replaced with cj. With the

mean field partition approximation and (3.8), the M-step update to χ is given by

χ̂ = argmax
χ

{
− logZMF(χ) +

∑
i∈V

χ0⟨ci⟩+ χ
∑
j∈Sc

i

⟨ci⟩⟨cj⟩
}
, (3.28)

which can be solved using Newton’s method.

3.3.4 Summary

The proposed coherent change detection approach is summarized in Algorithm 6.
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Algorithm 6 The proposed variational EM change detection algorithm

Input: Observations: y(1),y(2)

1: Initialize qr, qc, ϕ̂, χ̂, γ̂
2: â← cd_gmrf_normal (y(1))
3: repeat
4: repeat
5: Update qz(1) according to (3.19a) and (3.19b)
6: Update qz(2) according to (3.19a) and (3.19b)
7: Update qr(1) according to (3.16a) and (3.16b)
8: Update qr(2) according to (3.17a) and (3.17b)
9: Update qc according to (3.20a) and (3.20b)
10: until Terminated
11: Update ϕ̂ according to (3.21)
12: Update γ̂ according to (3.23)
13: Update χ̂ according to (3.28)
14: until Terminated
Output: Approximate change posterior distribution qc

3.4 Experiments

In this section, we evaluate the proposed change detection approach using both

simulated and measured interferometric SAR image pairs. The analysis includes

comparisons to conventional window-based change detection as well as to coherence

estimates from NL-InSAR [99], a more advanced approach that uses nonlocal tech-

niques.

3.4.1 Simulated Data Experiments

Interferometric SAR data are first simulated according to four example scenarios

that are intended to provide a variety of test conditions for the evaluation of change

detection performance. The scenarios use various configurations of the underlying

simulation parameters that may impact change detection: the interferometric phase,
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Figure 3.3: Values used to simulate Scenarios 1–4 (columns 1–4, respectively). (a–
d) Normalized mean backscatter power (in dB). (e–h) Interferometric phase (in radi-
ans).

mean backscatter power, coherence, and change maps (i.e., the arrangement of tem-

poral disturbances in the scene).

To provide an empirical basis for the change maps used to simulate the data, we use

ground truth temporal change maps derived from the Onera satellite change detection

dataset [116]. The change maps derived from the Onera change detection dataset for

the four scenarios appear in the first column of Fig. 3.5 as binary images with black

pixels indicating a change between the two passes. Scenarios 1 and 3 use mean

backscatter power images that have been realized by a Gibbs sampling procedure on

gamma MRF models with a = 20 and a = 16, respectively. Scenarios 2 and 4 follow

linear ramps that range in power from 0dB to 30 dB. In each case the time-1 and

time-2 images have the same mean backscatter power, the patterns for which are
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(e) (f) (g) (h)

Figure 3.4: Magnitude images for Scenarios 1–4 (columns 1–4, respectively). (a–
d) Time-1 magnitude images. (e–h) Time-2 magnitude images.

shown in the first row of Fig. 3.3. The underlying interferometric phase data are two-

dimensional polynomials which have been fit to interferogram phases obtained from

image pairs in the Gotcha challenge problem dataset [2]. The phase images used to

simulate each scenario are shown in the second row of Fig. 3.3. Interferometric SAR

image pairs of size 256 × 256 pixels are then drawn according to the change model

in (3.11) and (3.12) using γ values of 0.55, 0.65, 0.75, and 0.85 for Scenarios 1–4,

respectively. The magnitudes of the resulting image pairs are shown in Fig. 3.4.

The change detection results from the four scenarios are shown in Fig. 3.5. The

second and third columns of Fig. 3.5 show the sample coherence maps computed

with 3× 3 and 5× 5 windows, respectively. The fourth column shows the coherence

estimates from NL-InSAR [99], computed using the default parameters in the publicly
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Figure 3.5: Comparison of change detection results on simulated data Scenarios 1–4
(rows 1–4, respectively) with various coherence values γ. The first column has the
true change maps with change pixels in black, and the remaining columns show the
change detection results from the compared methods. The last column shows the
results of the proposed inference approach with black indicating a high probability of
change.

available MATLAB code.3 Shown in the fifth column of Fig. 3.5, the results from

the proposed method express the estimated posterior probability of change at a given

pixel, with darker pixels indicating a higher probability of change. The results from

the proposed method are computed according to Algorithm 6 with the variational

3https://www.charles-deledalle.fr/pages/nlinsar.php
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factors qr(k) for k ∈ {1, 2} initialized to the maximum likelihood estimates computed

in 9 × 9 neighborhoods and a maximum of 35 iterations of variational EM. The

change posterior estimates are initialized to 0.5 for i ∈ V , and the interferometric

phase parameters are initialized to the interferogram phases.

The receiver operating characteristic (ROC) curves for the four simulated data

scenarios are shown in Fig. 3.6, in which the curves labeled “SC” correspond to the

sample coherence computed with the specified window size and “VEM” refers to the

proposed variational EM approach. The ROC curves show the proposed method to

outperform the others with respect to reduced false alarm rates for a given probability

of detection. The improved performance of the proposed approach is particularly ap-

parent from the low-coherence simulations using Scenarios 1–2 (i.e., the first two rows

in Fig. 3.5) in which many false alarms are visible in the coherence estimates. Quali-

tatively, the NL-InSAR estimates obscure the edges of the change regions and in some

cases render small, isolated regions of change difficult to observe.

In these experiments, both NL-InSAR and the proposed approach are significantly

slower than the classical window-based CCD methods, which averages 2.16ms of

computing time: NL-InSAR runs in 65.49 s and the proposed approach in 22.57 s. All

experiments are computed in MATLAB R2020a with a 3.2GHz Intel Core i5-6500

CPU.

As a further point of comparison, we compute the threshold values that, when

applied to the coherence estimates, minimize the empirical error rate in the four sim-

ulated scenarios depicted in Fig. 3.5. The error rates for the coherence estimates

thresholded in this manner are reported in Table 3.1. The error rates for the varia-

tional EM approach are computed using the maximum a posteriori (MAP) estimates
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Figure 3.6: Receiver operating characteristic (ROC) curves for simulated data ex-
periments. (a) Scenario 1 (γ = 0.55). (b) Scenario 2 (γ = 0.65). (c) Scenario 3
(γ = 0.75). (d) Scenario 4 (γ = 0.85).

of the change indicator variables. These results show the variational EM approach to

improve upon the minimum error rates available from the coherence-based detectors.

Another series of experiments focuses on the impact of γ while keeping the other

ground truth parameters constant. The change detection results computed using

the compared methods on Scenario 4 with γ values of 0.55, 0.65, 0.75, and 0.85
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Table 3.1: Error rates from the simulated data experiments using Scenarios 1–4.
The error rates for the coherence estimates are computed using a threshold which
minimizes the error rate.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

SC (3× 3) 0.039 0.037 0.020 0.012

SC (5× 5) 0.018 0.011 0.008 0.008

NL-InSAR 0.021 0.016 0.013 0.010

VEM 0.007 0.004 0.004 0.002

are shown in Fig. 3.7 with the minimum error rates reported in Table 3.2. Since

the coherence quantifies the degree of pass-to-pass self-similarity between no-change

pixels, we observe the expected result that all methods perform better for larger

values of γ—with notably fewer numbers of false alarms. However, for all values

of γ, the proposed VEM method appears to suppress substantially more false alarms

while also faithfully representing fine details of the change regions. For example,

with γ = 0.55, the “c”-shaped change region (identified by the red arrows in Fig. 3.7)

is largely obscured by the window-based methods and NL-InSAR. However, the high

contrast between the changed and unchanged regions of the VEM approach enables

both fine localization of the change and identification of the change shape. Such high

resolution change detection is important in forensic applications seeking to perform

high resolution tracking or shape-based classification of a changed object (e.g., vehicle

classification).

Next, the recovery of fine detail is evaluated by reusing the simulation parameters

of Scenario 1 with the change map replaced by one consisting of square change regions

with side lengths of ten pixels, placed randomly in the scene with at least a three pixel

margin between them. The minimum error rates from the sample coherence using
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Figure 3.7: Comparison of change detection results from Scenario 4 with γ values
of 0.55, 0.65, 0.75, and 0.85 depicted in rows 1–4, respectively. The other simulation
parameters are kept constant. The first column has the true change maps with change
pixels in black, and the remaining columns show the change detection results from
the compared methods. The last column shows the results of the proposed inference
approach with black indicating a high probability of change.

various window sizes are plotted in Fig. 3.8 as the curve labeled “SC”. The x-axis

corresponds to the number of pixels on each side of the square estimation window used

to compute the sample coherence. The “U”-shaped error curve of the SC estimator

highlights competing effects resulting from different window sizes. On the left of the

figure, small window sizes produce poor coherence estimates, resulting in larger change
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Table 3.2: Error rates from the simulated data experiments using Scenario 4 with
various values for γ. The error rates for the coherence estimates are computed using
a threshold which minimizes the error rate.

γ = 0.55 γ = 0.65 γ = 0.75 γ = 0.85

SC (3× 3) 0.062 0.047 0.027 0.012

SC (5× 5) 0.023 0.013 0.009 0.008

NL-InSAR 0.021 0.017 0.015 0.010

VEM 0.011 0.005 0.003 0.002

detection error rates. Increasing the window size improves the coherence estimate;

however, when the window becomes too large, it captures both change and non-change

pixels. This degrades the coherence estimate and affects the ability to localize fine

details, which contributes to the increased SC error rates seen for large window sizes

on the right side of the figure. The error rate of the MAP estimate from the variational

EM approach is shown to be lower than that of the sample coherence detectors using

any of the window sizes considered in Fig. 3.8. This result demonstrates superior

fidelity of the proposed approach to the structure of the underlying change maps

used in these experiments without the need to select a window size.

3.4.2 Measured Data Experiments

Next we evaluate the performance of the proposed change detection algorithm

using measured interferometric data from two SAR systems, one X-band and the other

C-band. Unlike the simulated measurements, these data were produced under non-

ideal conditions and lack precise pixel-level ground truth necessary for quantitative

evaluation. Therefore, we limit the discussion to qualitative assessments of change

detection performance.
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Figure 3.8: Error rates of a sample coherence estimator plotted against window size.
The error rates are computed using thresholds which minimize the error rates at each
window size. The x-axis corresponds to the pixels per side of the square window
used to compute the sample coherence. Also shown are the error rate from the NL-
InSAR coherence estimates and the MAP change estimates from the proposed VEM
approach. The underlying change map consists of randomly-placed square change
regions, and the simulation assumes a coherence of γ = 0.55.

Gotcha Change Detection Data

We first evaluate the proposed change detection algorithm using a co-registered

pair of measured HH-polarized SAR images from the X-band Gotcha change detection

dataset [2]. The images have a sample spacing of 0.2m, and they are from data that

was collected on the same day and coherently aligned to a single reference. We use

corresponding portions of the HH-polarization images FP1020 and FP1024 as the

time-1 and time-2 images, respectively. The region observed in these sub-images is

roughly that contained in the black rectangle in Fig. 3.9. The 256 × 200 pixel sub-

images feature a paved path running along the right side of the scene and, to the
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(a) (b)

Figure 3.9: Optical satellite images [1] of a region observed in the Gotcha change
detection challenge problem dataset [2]. (a) The observed region in the measured
data experiment is shown framed by a black box. (b) The hinged grate shown here
is identified by the blue arrow in (a).

left of it, a grassy area where foot traffic is known to have occurred in the interim

between the two collections. The time-1 and time-2 magnitude images are shown in

Fig. 3.10, from which the foot traffic is largely unobservable.

The change detection results from the compared methods are shown in Fig. 3.11.

Each of the coherence estimates show the path to be a low coherence region, evidence

of a temporal disturbance—and thus a false alarm, since actual changes were not

present there. According to the proposed approach, the region occupied by the hinged

metal grate, identified by the blue arrow in Fig. 3.9, is the only spot along the path

that has a high probability of change. This hinged grate extends roughly the width
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(a) (b)

Figure 3.10: Magnitude images from the Gotcha dataset [2]. (a) Time-1 (FP1020).
(b) Time-2 (FP1024).

of the path as shown in Fig. 3.9. The proposed method departs from the coherence

estimates, in that it properly does not indicate change along the rest of the path. Each

method shows clear evidence of the foot traffic in the grass, though the proposed VEM

method results in a notably more contiguous change region about the track.

Sentinel-1 Change Detection Data

We also compare the change detection methods using a pair of SAR images formed

with data from the C-band SAR systems of the Sentinel-1 constellation of satellites [5].

We use the Sentinel-1 images to detect the effects of a wildfire in the southern foothills

of the Troodos Mountains in Cyprus that began on July 3, 2021.4 The images had a

pixel spacing of 2.3m in range and 14.0m in azimuth before they were downsampled

by a factor of two in range. The time-1 image in the pair was collected before the

4https://emergency.copernicus.eu/mapping/list-of-components/EMSR515
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(a) (b)

(c) (d)

Figure 3.11: Change detection results from the X-band Gotcha dataset. (a) Sample
coherence with 3×3 window. (b) Sample coherence with 5×5 window. (c) NL-InSAR
coherence estimate. (d) Proposed VEM inference approach with black indicating a
high probability of change.

fire, on June 30, 2021, and the time-2 image after, on July 6, 2021. The impacted

area, as determined by optical image analysis [3], is shown in yellow on the map in

Fig. 3.12.
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Figure 3.12: Optical image of the Troodos Mountains in Cyprus with a yellow overlay
depicting the area impacted by a wildfire that began on July 3, 2021 [3, 4].

(a) (b)

(c) (d)

Figure 3.13: Change detection results from C-band Copernicus Sentinel SAR data [5]
collected over the region of Cyprus shown in Fig. 3.12. (a) Sample coherence with 3×3
window. (b) Sample coherence with 5×5 window. (c) NL-InSAR coherence estimate.
(d) Proposed VEM inference approach with black indicating a high probability of
change.
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The change detection results from the Cyprus Sentinel-1 data are shown

in Fig. 3.13. The results from each method depict the extent of the burned area to be

broadly in agreement with the estimate from the optical data. As seen in the earlier

experiments, the proposed variational EM method exhibits greater contrast between

the change and no-change regions. The results from NL-InSAR and the proposed

approach both indicate small regions free of temporal change from within the burn

region shown in Fig. 3.12, though, without precise ground truth knowledge of the

temporal changes, it is difficult to speculate on the accuracy of these departures from

the optical data.

3.5 Conclusion

3.5.1 Summary

In this chapter, we have introduced a Bayesian approach to SAR change detec-

tion that enables fine-resolution detection of temporal disturbances between pairs of

co-registered SAR images. The proposed approach assigns prior distributions to the

unobserved model variables that exploit spatial structure both in the scattering qual-

ities of the scene and among the scene disturbances that occur between the passes.

The proposed modeling advances the use of gamma MRFs for SAR change detection,

using them to capture positive spatial correlations in the mean backscatter power

elements. Further, a 2-D polynomial regression is used to account for the spatially

nonhomogeneous interferometric phase.

The prior models are incorporated into a Bayesian framework, on which variational

EM is used to approximate the posterior distribution of the latent variables and the

prior model hyperparameters. In the Bayesian approach, the posterior probability of
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change is directly inferred, rather than thresholding the coherence estimates obtained

by local, or nonlocal, spatial averaging. To optimize the gamma MRF coupling hy-

perparameter, variational inference is used to efficiently approximate expectations in

the contrastive divergence gradient.

The proposed approach does not suffer from losses of spatial resolution and fine-

scale details as do conventional window-based CCD methods. In experiments using

both simulated data and measured interferometric SAR image pairs, the new ap-

proach is shown to yield improved detection performance compared to the conven-

tional window-based statistics used for SAR CCD.

3.5.2 Future Work

The approach of this chapter may be extended to form a joint imaging and change

detection framework that is intended to mitigate the effects of interrupted data col-

lections, as in [63]. A Bayesian approach similar to that proposed here could be used

to compensate for missing data via prior distributions on the change variables, the

scene reflectance, and the interferometric phase.
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Chapter 4: Polarimetric SAR Despeckling

4.1 Introduction

Polarimetric SAR (PolSAR) systems use polarization diversity in the emitted and

received electromagnetic waves to provide data that are considerably more informative

than single-channel collections as the inter-channel relationships are informative of

physical scattering behavior [16, 117, 118].5 Multichannel radar imaging modalities

such as PolSAR have proven beneficial for tasks such as terrain classification [120],

target recognition [10], and surface parameter estimation [121,122].

The speckle phenomenon lends a noise-like, granular character to imagery which

can impede interpretation and the completion of automated tasks [13]. The reduction

of speckle, i.e. despeckling, improves both the visual quality of the image and the

prospects for tasks such as segmentation and target recognition based on the data [36].

It is often necessary to suppress speckle before SAR data are considered suitable

for analysis [16], a prerequisite realized by the application of a speckle filter, classically

one which acts on the image locally [17]. Notable SAR despeckling algorithms have

been proposed using local filtering [35, 76, 123], patch-based filtering [38, 39, 77, 124],

region-growing [125], and variational methods [42–44].

5This chapter is largely drawn from [119], coauthored with Lee C. Potter (© 2022 IEEE).
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Deep learning techniques that involve the use of hierarchical structures to extract

feature representations from data have been responsible in recent years for state-

of-the-art performance in numerous image processing tasks. Convolutional neural

networks (CNN), flexible deep learning architectures composed of cascades of con-

volutions and other operations, have been used with great success in tasks such as

super-resolution [126,127], object detection [128,129], and denoising [130,131]. Since

2017, there has been a trend towards deep learning in single-channel SAR despeckling,

e.g. [132–135]. CNNs have been applied to PolSAR data tasks [136] such as super-

resolution [137,138], land use classification [139,140], and target recognition [141,142].

Yet, there have been few CNN-based methods for PolSAR speckle reduction [143–146].

The need for large datasets in deep learning presents a hindrance to SAR despeck-

ling applications because the speckle-free images which might be used in training are

not observable. The issue has been managed in single-channel SAR despeckling by

using optical images as clean intensity data [133, 134], a practice which does not

have an obvious equivalent for PolSAR images. Temporal multilooking has also been

used to approximate speckle-free intensity images [132,147,148]. However, the series

of co-registered multi-temporal images used in these approaches may not be readily

available in the quantity necessary for deep learning, particularly from fully polari-

metric collections. Other approaches eschew the need for clean training data and

instead learn to complete the despeckling task in a self-supervised manner using only

noisy images [149–151].

PolSAR despeckling is further complicated by the nature of the data as images

of complex-valued Hermitian positive definite polarimetric covariance matrices. De-

speckling methods must respect the Hermitian positive definite constraint and manage
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the complex-valued off-diagonal elements of the polarimetric covariance matrices. The

phases of the off-diagonal elements hold valuable information, and the polarimetric

characteristics that they capture ought to be preserved by any filtering process.

The approach presented in this chapter extends the single-channel SAR CNN-

based speckle filtering in [132] to PolSAR despeckling, yielding a deep learning frame-

work which estimates from PolSAR data the underlying polarimetric covariance ma-

trices. With a residual learning approach [83, 152], a CNN recovers not the filtered

image itself, but the speckle component which is to be removed from the corrupted

image. Drawing from [42], a bijective transform enables real-valued CNN processing

such that the network outputs represent valid covariance estimates. As training data,

we use spatially-multilooked PolSAR images in lieu of unobservable ground truth co-

variance data and simulate speckle to form corrupted training images. We use both

simulated and measured polarimetric SAR data to evaluate the proposed approach

and introduce a suite of quantitative indexes to evaluate the competing objectives

of speckle suppression and preservation of scene features and polarimetric informa-

tion. The proposed approach markedly reduces speckle and faithfully preserves fine

structural detail in comparison to state-of-the-art methods. A further benefit of the

proposed approach is the fast running time due to the use of CNNs.

The remainder of the paper is organized as follows. Section 4.2 provides back-

ground information and a review of the relevant literature. Section 4.3 is a summary

of the proposed despeckling method. Section 4.4 outlines an experimental proce-

dure to compare the proposed method to existing methods. Section 4.5 presents and

discusses the experimental results. Section 4.6 gives concluding remarks.
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4.2 Background

4.2.1 Principles of Polarimetric SAR

The single-look scattering properties observed by a polarimetric SAR system at a

given pixel can be described by a 2× 2 complex scattering matrix given by

S =

[
Shh Shv

Svh Svv

]
, (4.1)

where Shv denotes the scattering element corresponding to the horizontal transmitting

and vertical receiving polarizations. For a monostatic radar operating in a reciprocal

medium, S is symmetric and can be vectorized according to the lexicographic or Pauli

basis as

s =
[
Shh

√
2Shv Svv

]T
(4.2)

κ =
1√
2

[
Shh + Svv Shh − Svv 2Shv

]T
, (4.3)

respectively, wherein the superscript T denotes a matrix transpose. When the scat-

tering medium is rough on the scale of the radar’s central wavelength, it is common

to model a scattering vector as following a complex zero-mean circularly-symmetric

Gaussian distribution [13], given by

p(s | Σ) =
1

π3|Σ| exp {−s
HΣ−1s}, (4.4)

in which | · | denotes a determinant. In (4.4), Σ ∈ H3
+ is the covariance matrix

Σ = E
[
ssH

]
with the superscript H denoting a complex conjugate transpose and

HD
+ denoting the set of D ×D Hermitian positive definite matrices. The equivalent

for the Pauli scattering vector is the coherency matrix, T = E
[
κκH

]
. The stochastic

scattering model in (4.4), often referred to as fully-developed speckle, accounts for the
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speckle phenomenon in coherent imaging. When the model is valid, the covariance

matrix Σ contains the important polarimetric information of the imaged surface.

Multilook PolSAR observations can be represented using the L-look sample co-

variance matrix given by

Z =
1

L

L∑
t=1

s(t)sH(t) (4.5)

where s(t) for t = 1, . . . , L are independent realizations of the scattering vector. These

multiple “looks” are most often taken from a small window centered upon the pixel

of interest. The goal of PolSAR despeckling is to recover the unobserved covariance

Σ from the sample covariance matrix Z.

Under the fully-developed speckle model, the L-look sample covariance matrix fol-

lows a complex Wishart distribution, i.e. Z ∼ CW(Z;L−1Σ, L), where the complex

Wishart density is defined for X ∈ HD
+ as [153]

CW(X;G, v) =
|X|v−D exp {− tr(G−1X)}

|G|v Γ̃D(v)
(4.6)

with scale matrix G, degrees of freedom v, tr(·) denoting the trace function, and

Γ̃D(·) the complex multivariate gamma function.

4.2.2 Polarimetric SAR Data Notation

In describing the statistics of PolSAR, we have considered the behavior of a

single pixel. We now adopt a notation to describe a covariance image wherein a

D-channel N1 × N2 pixel covariance image is represented by a fourth-order tensor

Z ∈ CD×D×N1×N2 . We denote by Zi ∈ HD
+ the covariance matrix with pixel indices

i = (i1, i2), and denote by Zj1j2 ∈ CN1×N2 the spatial image corresponding to the

(j1, j2)th entry of the covariance matrix.
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4.2.3 Related Work

PolSAR despeckling has been an active area of research since the early 1990s. The

early despeckling methods relied on local window filtering, in which each element of

the despeckled image is estimated from the values of nearby pixels within a small

window. The simplest and most common such technique is the boxcar filter, a convo-

lutional filter with a small window of equally-weighted elements. In 1983, the sigma

filter was developed by Lee [35], offering a simple and effective despeckling approach

for single-channel SAR. The sigma filter operates by averaging nearby pixels, exclud-

ing those differing significantly in intensity. The improved sigma filter was developed

to rectify deficiencies related to bias and blurring in its predecessor [154] and later

was extended for use with PolSAR data [123].

Vasile et al. [125] developed the intensity-driven adaptive neighborhood (IDAN)

filter, which uses a region-growing approach to group pixels belonging to the same

statistical populations. Adaptive neighborhoods are formed with respect to the in-

tensity information (the diagonal terms of the coherency matrix), and grouped pixels

are given equal weight in the estimation of the coherency matrix at each pixel.

In recent years, patch-based methods have been used in PolSAR despeckling.

Rather than selecting pixels with similar intensities, such methods compare the

patches about pixels to determine relative importance. The nonlocal means (NLM)

filter, developed by Buades et al. [37] for the denoising of natural images, is respon-

sible for popularizing these methods, and patch-wise descendants of the NLM filter

have proven effective in PolSAR despeckling [38,39,124].

Variational methods, which pose the estimation as an optimization problem, are

also used for speckle reduction. Some variational despeckling methods, such as [41],
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process only the diagonal elements of the coherency or covariance matrices, ignoring

the information in the cross-channel correlations. Other works formulate an objective

function which operates on the full covariance matrix, such as the variational model

in [43] which introduces a matricial total variation (TV) prior term to encourage

spatial smoothness. This approach is augmented in [44] with a nonlocal regulariza-

tion term leading to improved despeckling performance. Like [43, 44], the proposed

approach operates on the full polarimetric covariance matrix so as to consider the

polarimetric information of the off-diagonal elements.

Another variational despeckling methodology, the multichannel logarithm with

Gaussian denoising (MuLoG) framework [42], facilitates the use of single-channel

denoisers designed to remove additive white Gaussian noise (AWGN). This is a con-

siderable benefit as the bulk of work in image denoising has been dedicated to the

removal of AWGN.

Considering the success of deep learning in natural image denoising [83, 130], its

application to SAR despeckling is natural, e.g. [132–134, 147]. Among them, SAR-

CNN in [132] adapts the denoising CNN (DnCNN) framework [83] to single-channel

SAR data by way of a log transform. A residual learning strategy [152] is used

that treats the output of the CNN as a residual image, i.e. the difference between

the noisy observation and the latent clean image. Residual learning and batch nor-

malization [155] have been shown to both accelerate training and improve denoising

performance on natural images [83].

Yet there are comparatively few CNN-based despeckling methods for PolSAR.

The MuLoG [42] framework allows for the straight-forward application of deep learn-

ing to multichannel SAR despeckling through the techniques developed for AWGN
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Figure 4.1: Proposed despeckling framework.

denoising of natural images, e.g. [83,130,131]. Indeed, MuLoG has been studied with

deep learning-based denoisers trained on both natural images [156] and measured

SAR images [145]. A related study [147] compares the performance of SAR-CNN to

MuLoG when paired with either natural image-based DnCNN denoisers or DnCNN

denoisers trained on SAR images. In [143], an iterative approach to PolSAR despeck-

ling is studied that uses a CNN architecture intended for image super-resolution. This

approach is limited in that it only considers the diagonal elements of the covariance,

ignoring the information of the off-diagonal elements. That shortcoming is addressed

in a revised approach [144] which uses a CNN to derive speckle correction terms based

on all covariance elements.

4.3 Proposed Despeckling Approach

In this section, we summarize a proposed CNN-based approach to polarimetric

SAR despeckling that operates in the matrix logarithm domain. The proposed ap-

proach, referred to as “MS-CNN”, is depicted graphically in Fig. 4.1.
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4.3.1 Approach Details

The PolSAR despeckling problem is complicated by the Hermitian positive definite

constraint on Σ, which for variational methods requires a potentially challenging

optimization over the open cone of Hermitian positive definite matrices. This difficulty

can be mitigated, as in [42], with a matrix logarithm transform, defined for A ∈ HD
+

having eigendecomposition A = U diag(λ1, · · · , λD)U
H by

logA = U diag(log λ1, · · · , log λD)U
H. (4.7)

Note that when applied to an image Z, the log(·) operator denotes pixel-wise appli-

cation of the matrix logarithm to each Zi.

The matrix logarithm of a Hermitian positive definite covariance matrix is a Her-

mitian matrix. By filtering in the matrix log domain, we need only ensure that the

output of the CNN remains Hermitian, which can be accomplished by operating on

only the non-redundant elements of the matrix log-transformed covariance matrices.

To do so, we define V(·) : C3×3×N1×N2 → R9×N1×N2 , a bijective operator which maps a

complex fourth-order tensor to a nine channel real-valued image. The channels of the

reparameterized image correspond to the non-redundant real and imaginary elements

of a 3× 3 Hermitian matrix.

As depicted in Fig. 4.1, the input is an L-look sample covariance image of N1×N2

pixels, Z. At each pixel, Zi represents a corrupted measurement of the unobserved

covariance Σi. For L < 3, it is necessary to ensure Zi is full rank at each pixel,

for which we adopt a technique used in [42] involving a minor rescaling of the off-

diagonal elements. The covariance image undergoes a matrix log transformation at

each pixel and is reparameterized using V(·). The transformed image is then fed to
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the CNN, and the output of the CNN is interpreted as a multichannel residual image.

A despeckled estimate of the covariance image is given by subtracting the residual in

the matrix log domain:

Σ̂ = exp
{
V−1 (V(logZ)− fθ(V(logZ)))

}
, (4.8)

where fθ(·) is a CNN using the parameter set θ. With the matrix logarithm and this

reparameterization, we ensure that the despeckled covariance matrix estimates are

Hermitian positive definite.

To train the network, we assume the availability of a suitable proxy for speckle-

free ground truth covariance data. A training pair (x,y) is given by x = V(logΣ)

and y = V(logZ), where Z is an L-look sample covariance image drawn using the

underlying covariance image Σ according to (4.4) and (4.5).

4.3.2 Network Architecture

The CNN architecture depicted within the dotted lines in Fig. 4.1 is that of [83],

where the CNN is used to denoise natural images. The first layer is composed of 64

filters of size 3×3×9. Next is a layer of rectified linear units (ReLUs) followed by 17

repetitions of convolutional layers with 64 filters of size 3×3×64, batch normalization

layers, and ReLUs. The final convolutional layer has nine filters of size 3 × 3 × 64,

leading to a nine channel output image. The use of 17 hidden layers was adopted here

for the PolSAR despeckling problem; further expansion or contraction of the network

failed to improve despeckling performance in our experiments.

We use the following loss function to form the deep learning objective

ℓ(θ) =
M∑

m=1

∥∥vec(fθ(y(m))− (y(m) − x(m))
)∥∥

1
, (4.9)

77



optimized with respect to the CNN parameter set θ, with the sum in (4.9) over M

pairs from the training set. In our experiments, we found that an ℓ1 loss function

provided improved training performance over the ℓ2 loss used with optical images

in [83]; similar results were reported in [147] for single-channel SAR data.

4.3.3 Approach Summary

Thus, to extend deep learning to PolSAR despeckling, we adopt the residual

network architecture used for natural images in [83] and single-channel SAR in [132].

In order to estimate the complex-valued covariance matrices, we employ the matrix

logarithm and a reparameterization of the covariance matrix to an unconstrained

set of real-valued parameters. Simulated speckle [13] is used to construct a corpus

of training images. And, to better conform to the physics of the reparameterized

variables, we use an ℓ1 loss in training the network.

4.4 Experimental Procedure

In this section we detail experimental procedures to implement the algorithm

described in Section 4.3 and compare its despeckling performance to existing methods.

We also introduce a set of indexes for the quantitative assessment of polarimetric

despeckling performance.

4.4.1 Training

In place of ground truth covariance information in the training set, we use PolSAR

data from the L-band UAVSAR sensor [6, 157], images which have undergone a 36-

look spatial averaging and equivalent downsampling. The noncoherent averaging

coarsens the resolution in a compromise that reduces speckle so as to approximate the
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unobservable ground truth covariance data. This method to generate clean covariance

images relies on two assumptions which are likely to be violated at times: neighboring

pixels combined by multilooking share statistical properties, and the neighboring

observations are conditionally independent given the true covariance [158,159]. This

approach, while convenient and simple, may in its coarsening of image resolution

diminish the value of the data for the most demanding of applications [151]. Further,

the fundamental problem remains that we rely on an approximation to truly speckle-

free images. We use a training set of 91490 such ground truth covariance images of

size 40×40 that have been excised from 14 different collections. Ground truth images

from two separate collections are later used in model validation.

The corrupted images used for training are L-look sample covariance images that

are formed from clean images according to (4.4) and (4.5). For each number of looks,

a separate CNN is trained using 60 epochs of stochastic gradient descent with weight

decay of 10−3, momentum of 0.9, batch size of 64, and a learning rate that begins

at 0.1 and reduces to 10−4 during training. The network weights are initialized as

in [160].

4.4.2 Conventional Despeckling Methods

We compare the proposed method to three well-established speckle filters: the

simple boxcar filter [73], the extended sigma filter [123], and the IDAN filter [125].

The tuning parameters for these despeckling methods were selected as follows. For

the boxcar filter, we use a 5 × 5 window. Two parameters are used to tune the

performance of the extended sigma filter: the sigma value ξ, which controls the range

in which pixels are considered similar, and a window size. In our experiments, we
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use ξ = 0.7 for single-look data and ξ = 0.9 for four-look data, as is suggested

in [123]. In either case, we use a filtering window of size 9× 9. The IDAN filter uses

a tuning parameter which determines the maximum number of pixels included in a

neighborhood, for which we select Nmax = 50 as in [125].

4.4.3 MuLoG Despeckling Framework

We also compare results from the MuLoG framework [42], which represents the

state-of-the-art in multichannel SAR despeckling. The MuLoG framework poses a

maximum a posteriori (MAP) optimization problem that is solved by the plug-and-

play variant of the alternating direction method of multipliers (ADMM) [56], an

approach which facilitates the use of single-channel AWGN denoising operators. In

our experiments, we use the MATLAB implementation6 of MuLoG and adopt three

choices for the denoising operator: the familiar block-matching 3D (BM3D) filter [74]

used with MuLoG in [42], a DnCNN denoiser [83] trained on natural images, and a

DnCNN denoiser trained on SAR images. We set the tuning parameter in MuLoG

to β = 1 + 2/L and use six iterations of ADMM, as suggested in [42].

For the DnCNN trained on natural images, we use a set of 14 pre-trained models

from https://github.com/cszn/DnCNN; these have been trained for noise standard

deviations of χ = { 10
255

, 15
255

, . . . , 75
255
} on sets of natural images [83]. The range of the

training images is [0, 1], and, due to the nonlinearity of DnCNN, we use a rescaling

operator to match this range, defined by

Ψv0(v) =
v −R0.3%(v0)

R99.7%(v0)−R0.3%(v0)
, (4.10)

6https://www.charles-deledalle.fr/pages/mulog.php
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where Rq(·) returns the qth quantile of its input, and we have used the quantile values

suggested in [156]. We use as the denoising operator a function composition that for

input v is equal to

Ψ−1
v (gσ2(Ψv(v))) (4.11)

where gσ2 denotes a denoising operator for noise power σ2 with σ selected according

to the tuning parameter β as

σ = argmin
σ∈χ

∣∣∣∣ β−1/2

R99.97%(v)−R0.3%(v)
− σ

∣∣∣∣ . (4.12)

We refer to MuLoG used with the pre-trained DnCNNs as “MuLoG-CNN.”

We also consider in the MuLoG framework a DnCNN trained with images from the

training set used for the proposed approach. To form ground truth images appropriate

for use with MuLoG, each patch is matrix log-transformed, decorrelated, then each

channel is rescaled using (4.10), yielding nine single-channel images from each patch.

Models are trained using this data for additive noise with standard deviations of

{0.04, 0.08, . . . , 0.24}. We use 50 epochs of stochastic gradient descent with weight

decay of 0.001, a momentum of 0.9, a batch size of 64, and a learning rate beginning

at 0.1 and reducing to 10−4 during training. The denoisers trained on PolSAR data

can then be applied in the same manner as those trained on natural images, i.e. as

described in (4.11) and (4.12). We refer to MuLoG with the DnCNNs trained in this

manner as “MuLoG-CNN-P.”

4.4.4 PolSAR Despeckling Performance Assessment

We describe in this section methods used to assess despeckling performance with

consideration for speckle reduction, preservation of scene features, and preservation of

polarimetric information. Assessment indexes are defined with respect to a covariance

81



image Σ̂ of N1×N2 pixels that has been estimated from an L-look sample covariance

image Z with reference to a true underlying covariance image Σ. The symbol η is

used to denote the set of pixel locations in the image.

Loss Functions

We use various loss functions in the simulated data experiments to assess the fi-

delity of the estimated covariance image to the true underlying image and the preser-

vation of polarimetric information. The first is the normalized mean square error

(NMSE), given by

NMSE = 10 log10

(∑
i∈η ∥Σ̂i −Σi∥2F∑

i∈η ∥Σi∥2F

)
, (4.13)

with ∥·∥F denoting a Frobenius norm. We also use a quadratic loss (QL) given by [67]

QL = max
i∈η
∥Σ̂iΣ

−1
i − I3∥2, (4.14)

where ∥ · ∥2 denotes a spectral norm. Note that both the NMSE and quadratic

loss depend on all elements of the polarimetric covariance matrix. Additionally, the

structural similarity (SSIM) index [161] is computed on the images corresponding to

the log of the diagonal covariance matrix elements. The average SSIM of the images

corresponding to the three intensity elements is recorded.

Whitened Covariance Image Evaluation

It is common in the despeckling literature to analyze the image formed by the

element-wise ratio between the speckled single-channel image and the filtered im-

age. The analysis of such ratio images is usually limited to an assessment of visible

structure, the presence of which indicates an undue erosion of the underlying image
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structure. For a multichannel analogue to the ratio image, we adopt a whitened image

W , formed as

Wi = Σ̂
−1/2
i ZiΣ̂

−1/2
i for i ∈ η. (4.15)

For a scene with fully-developed speckle, a faithfully recovered covariance image re-

sults in Wi that are independently and identically distributed as

Wi ∼ CW(Wi;L
−1I3, L), (4.16)

for L ≥ 3. We introduce indexes regarding the whitened image which are intended to

detect erosion of structure in the underlying image, providing an enrichment to the

qualitative analysis of the ratio image.

The first is a Kolmogorov-Smirnov test computed on W jj for j ∈ {1, 2, 3}. For

fully-developed speckle, each diagonal element of the whitened image ought to in-

dependently and identically follow a gamma distribution. The Kolmogorov-Smirnov

test compares the empirical distribution function of a sample with a theorized cu-

mulative distribution function, with a smaller Kolmogorov-Smirnov statistic (KSS)

indicating greater correspondence.

Second, we use a modified Box-Pierce test [162], given by

BP2 = |η|
(
− 1 +

K∑
d1=0

K∑
d2=0

ρ2v(d1, d2)
)
, (4.17)

to detect autocorrelations in the whitened image with ρv(d1, d2) denoting the nor-

malized sample autocorrelation function for image v at lag (d1, d2). When the fully

developed speckle hypothesis is satisfied, the whitened image should be spatially

decorrelated. The purpose of this test is to detect degradations of the spatial struc-

ture of the image from the despeckling process. In experiments, we use a maximum

lag of K = 5.
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In simulated data experiments, adherence to the speckle model is ensured by

construction, and these whitened image metrics are valid everywhere. In the mea-

sured data experiments, we limit the quantitative analysis to a region of the image

which appears to lack man-made media and is more likely to produce fully-developed

speckle. In quantitative assessments, we report the KSS and BP2 results correspond-

ing to W 11.

Incoherent Decomposition Parameters

The entropy (H), anisotropy (An), and mean alpha angle (α) are parameters re-

lated to the eigenvalues and eigenvectors of the coherency matrix [163]. These param-

eters are sensitive to the type of scattering mechanism present within the resolution

cell and are commonly used to compare PolSAR despeckling performance [17,43,125].

In the simulated data experiments, we report the relative absolute error between the

true values and the estimates of these parameters as in [17, 43], using the median as

an indicator of aggregate performance across the image.

Polarization Signatures

PolSAR data admit the synthesis of scattering coefficients corresponding to an

arbitrary pair of transmit and receive polarizations. This allows the plotting of po-

larization signatures, 3D visualizations of the normalized scattering power density

as a function of the polarizations of the transmitting and receiving antennas [164].

Because a visualization of all possible receive polarizations for each transmit polariza-

tion is difficult, it is common to plot either a co-polarization signature, in which the

receive polarization is identical to the transmit polarization, or a cross-polarization
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signature, in which the two are orthogonal [16, 17, 43]. We use both such plots in

comparisons using simulated PolSAR data.

Measured Data Assessment

Next we list the performance indexes used exclusively on the measured PolSAR

data, for which ground truth reference is unavailable. The first is the equivalent

number of looks (ENL), which assesses suppression of speckle in homogeneous regions.

We use a trace moment-based ENL estimator designed for PolSAR images [165]:

ENL =

[
tr(⟨Σ̂⟩)

]
2〈

tr(Σ̂Σ̂)
〉
− tr(⟨Σ̂⟩⟨Σ̂⟩)

, (4.18)

where ⟨·⟩ denotes a spatial ensemble average.

We use the edge-preservation detection ratio of average (EPD-ROA) [76] to assess

edge-preservation ability, defined for each jth diagonal entry of the covariance matrix

as

EPD-ROA =

∑
i∈η

∣∣∣Σ̂jj
i /Σ̂

jj
i+d

∣∣∣∑
i∈η
∣∣Zjj

i /Zjj
i+d

∣∣ (4.19)

with lag d = (d1, d2). EPD-ROA values closer to one indicate better edge preservation.

We use target-to-clutter ratio (TCR) to assess the preservation of point targets

during despeckling [16]. The TCR is computed over a patch containing a point

scatterer amongst homogeneous clutter, and it measures the absolute difference in

decibels before and after despeckling of the intensity ratio between the strong scatterer

and the surrounding area. Finally, we compute the mean of ratio (MOR), which is a

ratio between the mean intensity in a homogeneous area before and after despeckling.

A MOR close to one indicates good radiometric preservation. The TCR, EPD-ROA,

and MOR results are reported as averages over the three intensity channels.
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4.5 Results

In this section, we discuss experimental results computed using both simulated

and measured polarimetric SAR data which are intended to compare the proposed

method to existing despeckling methods.

4.5.1 Simulated Data Experiments

We first study the performance of the compared methods on a set of 18 ground

truth covariance images, each formed by the same multilooking procedure used to

generate training data. These data comprise a set of 256×256 images from collections

which were not used for training. From the ground truth covariance images, we

simulate speckle according to (4.4) and (4.5) using L = 1 and L = 4. For each

number of looks, each clean image was used to generate 10 speckled images used in

experimental trials. Experiments were computed in MATLAB R2020a with a 3.2 GHZ

Intel Core i5-6500 CPU and a Nvidia GTX 1060 6GB GPU. Training and application

of CNNs were carried out with the MatConvNet toolbox [166]. The MuLoG codes

were run in parallel using four CPU cores.

In Fig. 4.2 the despeckled results computed from a simulated single-look (L = 1)

image are displayed in an RGB representation based on the Pauli decomposition. The

image depicting the ground truth is shown in the center panel along with the original

data and the results from the compared methods. A visual analysis shows that the

boxcar and IDAN filters reduce speckle in homogeneous regions yet fail to preserve fine

structural detail, while the extended sigma filter appears to better preserve edges and

point targets. The three MuLoG results are qualitatively similar to each other with

the BM3D variant suffering from over-smoothing and poorer preservation of point
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targets. Each of the CNN-based methods result in an apparently faithful restoration

of the ground truth covariance image, with the proposed approach providing a better

preservation of texture.

The proposed approach outperforms the compared methods on both the single-

look and four-look data according to each of the loss index results reported in Ta-

ble 4.1 and Table 4.2. Though operating with a running time similar to the extended

sigma and IDAN filters, MS-CNN provides greater than 3 dB improvement in average

NMSE over either in both the L = 1 and L = 4 simulations. The MuLoG variants

provide comparable performance to MS-CNN in terms of the loss indexes but are

more computationally intensive. The quantitative results regarding the incoherent

decomposition parameters of entropy, anisotropy, and alpha angle are shown in Ta-

ble 4.3. In these assessments of polarimetric information preservation, the proposed

method is likewise shown to perform best among the compared methods.

Table 4.1: Quantitative despeckling assessment results from simulated single-look
(L = 1) PolSAR data. The mean results over ten independent realizations of the
speckle process from each of 18 ground truth covariance images of 256 × 256 pixels
are shown with standard deviations in gray.

NMSE (dB) QL SSIM

Original 0.92 ±0.7 33.5 ±17.6 0.574 ±0.10
Boxcar -3.54 ±1.2 181.0 ±231.6 0.550 ±0.15
Ext. sigma 0.44 ±0.7 91.6 ±126.7 0.664 ±0.09
IDAN -2.57 ±0.9 15.2 ±8.2 0.568 ±0.12
MuLoG-BM3D -5.36 ±1.1 24.9 ±11.4 0.707 ±0.11
MuLoG-CNN -5.23 ±1.1 27.2 ±12.2 0.722 ±0.10
MuLoG-CNN-P -5.28 ±1.1 27.1 ±13.1 0.727 ±0.10
MS-CNN -5.83 ±1.0 15.0 ±8.0 0.762 ±0.08

87



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: Comparison of despeckling algorithms using a 256× 256 pixel simulated
single-look PolSAR image [6]. The results are displayed in an RGB representation
based on the Pauli decomposition. (a) Original data. (b) Boxcar. (c) Extended sigma.
(d) IDAN. (e) Ground truth. (f) MuLoG-BM3D. (g) MuLoG-CNN. (h) MuLoG-CNN-
P. (i) MS-CNN.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.3: Whitened images from the simulated single-look PolSAR data. (a) Boxcar.
(b) Extended sigma. (c) IDAN. (d) MuLoG-BM3D. (e) MuLoG-CNN. (f) MuLoG-
CNN-P. (g) MS-CNN.

Table 4.2: Quantitative despeckling assessment results from simulated four-look (L =
4) PolSAR data. The mean results over ten independent realizations of the speckle
process from each of 18 ground truth covariance images of 256×256 pixels are shown
with standard deviations in gray.

NMSE (dB) QL SSIM Time (s)

Original -4.85 ±0.6 14.3 ±7.6 0.820 ±0.06 -

Boxcar -4.15 ±1.4 138.2 ±171.0 0.562 ±0.15 -

Ext. sigma -4.54 ±0.7 29.9 ±29.9 0.844 ±0.05 0.4

IDAN -4.39 ±1.1 12.9 ±4.7 0.701 ±0.09 0.4

MuLoG-BM3D -7.39 ±1.0 12.2 ±6.9 0.864 ±0.05 24.4

MuLoG-CNN -7.17 ±1.1 12.0 ±7.0 0.873 ±0.05 10.4

MuLoG-CNN-P -7.44 ±0.9 12.9 ±9.7 0.870 ±0.05 10.9

MS-CNN -8.28 ±0.7 11.7 ±8.1 0.876 ±0.05 0.2

Fig. 4.3 shows the W 11 element of the whitened images produced via (4.15).

Structure is visible in the boxcar, extended sigma, and IDAN whitened images, indi-

cating a loss of spatial detail from the despeckling process. The whitened images from
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Table 4.3: Quantitative polarimetric information preservation assessment results from
simulated PolSAR data. The mean results over ten independent realizations of the
speckle process from each of 18 ground truth covariance images of 256 × 256 pixels
are shown.

Single-look Four-look

KSS BP2 H An α KSS BP2 H An α

Boxcar 0.074 1581.0 0.097 0.855 0.113 0.186 3506.8 0.081 0.709 0.092

Ext. sigma 0.305 717.2 0.342 1.100 0.185 0.349 399.2 0.153 1.031 0.122

IDAN 0.163 1009.1 0.089 0.887 0.097 0.150 1500.3 0.073 0.757 0.082

MuLoG-BM3D 0.035 270.1 0.082 0.777 0.081 0.036 282.9 0.073 0.734 0.076

MULoG-CNN 0.026 148.2 0.085 0.775 0.082 0.067 1779.5 0.074 0.724 0.080

MuLoG-CNN-P 0.026 123.7 0.083 0.772 0.082 0.073 168.5 0.074 0.732 0.080

MS-CNN 0.035 268.7 0.073 0.676 0.077 0.074 625.6 0.061 0.602 0.065

MuLoG show very little visible structure, while apparent structure is visible within

the road at the bottom of the MS-CNN image. The visual analysis is supported by

the modified Box-Pierce test results in Table 4.3, which indicate significant autocor-

relation in the whitened images from the boxcar, extended sigma, and IDAN methods

in the L = 1 case. MuLoG-CNN-P exhibits the least autocorrelation according to the

Box-Pierce test for any of the methods in both the L = 1 and L = 4 experiments. The

Kolmogorov-Smirnov statistics in Table 4.3 show the MuLoG variants to adhere best

to the theorized statistical properties of the whitened image, followed by MS-CNN.

In Fig. 4.4, co-polarization and cross-polarization signatures computed from the

average covariance matrix within the 7 × 6 pixel region identified by the red arrow

in Fig. 4.2 are shown for a subset of the compared despeckling methods. It is no-

table that the MS-CNN signatures, both co-polarization and cross-polarization, are in

closer agreement with the respective ground truth signatures than those of the other

methods shown, indicating preservation of polarimetric information. Of the methods
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Figure 4.4: Co-polarization (top row) and cross-polarization (bottom row) signatures
computed from a small region of a simulated single-look PolSAR image. The ellipticity
and orientation angles of the transmitting antenna are given in degrees. (a,e) Ground
truth. (b,f) Extended sigma. (c,g) MuLoG-CNN. (d,h) MS-CNN.

not displayed, IDAN produced signatures distinctly different from the ground truth,

and the other MuLoG variants produced results similar to those from MuLoG-CNN.

4.5.2 Measured Data Experiments

We next compare the despeckling approaches using measured PolSAR images from

the Pi-SAR sensor. Pi-SAR, an L-band airborne PolSAR system with a 3 m resolu-

tion in both azimuth and slant range, was developed by the former Communications

Research Laboratory and NASDA (now JAXA) of Japan [80, 167]. A single-look

512×512 pixel PolSAR image from data collected by Pi-SAR over Tsukuba, Japan is

shown in Fig. 4.5 with boxes indicating regions in which specific performance indexes

are computed: white boxes for ENL and MOR, green for TCR, yellow for EPD-ROA,

and blue for the whitened image assessments. To allow a detailed comparison, a
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Figure 4.5: Single-look PolSAR image of 512 × 512 pixels from the Pi-SAR sensor
used in despeckling comparison. The boxes indicate regions in which performance
indexes are computed: white boxes for ENL and MOR, green for TCR, yellow for
EPD-ROA, and blue for the whitened image assessments. The region within the red
box is depicted in Fig. 4.6.

128×128 pixel region cropped from within the red box in Fig. 4.5 is shown in Fig. 4.6

along with the despeckled images from that region. Despeckling results from a four-

look 200 × 200 pixel Pi-SAR image of Niigata City, Japan are shown in Fig. 4.7.

The quantitative results computed from the two images are shown in Table 4.4 and

Table 4.5.

From the cropped images in Fig. 4.6, it is clear that the MuLoG variants provide

significant speckle suppression in homogeneous regions. MS-CNN provides a less

smooth image with a greater preservation of texture within the vegetated regions.

The ENL results show the CNN-based MuLoG variants to provide the greatest speckle
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: Detailed comparison of the despeckling algorithms using a 128 × 128
region cropped from Fig. 4.5. (a) Original data. (b) Boxcar. (c) Extended sigma. (d)
IDAN. (e) MuLoG-BM3D. (f) MuLoG-CNN. (g) MuLoG-CNN-P. (h) MS-CNN.

suppression on the single-look data, followed by MS-CNN, which reduces speckle

significantly more than the conventional methods. IDAN returns the highest ENL on

the four-look data followed by the proposed method. Lacking a clean reference image,

it is difficult to judge the correct balance between speckle suppression and textural

preservation.

Notably, the extended sigma filter appears to preserve point targets more than

the other methods, while the IDAN filter obscures point scatterers present in the

original image. The MuLoG variants tend to smear point scatterers more than either

the extended sigma filter or MS-CNN. The “EPD-HD” and “EPD-VD” columns in

Table 4.4 and Table 4.5 show the EPD-ROA computed using immediate horizontally

and vertically neighboring pixels, respectively. The EPD-ROA results show the ex-

tended sigma filter and MS-CNN to best preserve edges in both the single-look and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Comparison of despeckling methods using a four-look PolSAR image of
200× 200 pixels. The boxes in (a) indicate regions in which performance indexes are
computed: white boxes for ENL and MOR, green for TCR, yellow for EPD-ROA,
and blue for the whitened image assessments. (a) Original data. (b) Boxcar. (c)
Extended sigma. (d) IDAN. (e) MuLoG-BM3D. (f) MuLoG-CNN. (g) MuLoG-CNN-
P. (h) MS-CNN.

four-look images, and the TCR and MOR indexes show largely mixed results. The

Kolmogorov-Smirnov statistics in Table 4.4 and Table 4.5 show MS-CNN to underper-

form all methods but IDAN, indicating substandard fit to the theorized distribution.

The extended sigma filter and MuLoG-BM3D both show a lower modified Box-Pierce

statistic than the proposed method.

The W 11 element of the whitened images formed from the region bound by the

cyan box in the single-look image in Fig. 4.5 are shown in Fig. 4.8. Spatial struc-

ture is visible in the whitened images from each method, most notably from IDAN.

The whitened images from the MuLoG variants appear similar to that of the pro-

posed method, with each having small constant areas. Note that the simulated data
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Table 4.4: Quantitative despeckling assessment results from the measured PolSAR
data (L = 1).

ENL EPD-HD EPD-VD TCR MOR KSS BP2

Original 2.3 - - - - - -

Boxcar 15.0 0.33 0.30 6.32 1.01 0.067 554.7

IDAN 35.3 0.33 0.30 6.21 0.94 0.120 727.9

Ext. sigma 3.9 0.41 0.40 0.71 1.00 0.313 346.0

MuLoG-BM3D 61.6 0.34 0.30 2.84 1.03 0.068 422.8

MuLoG-CNN 110.1 0.34 0.29 1.99 1.03 0.071 621.2

MuLoG-CNN-P 170.5 0.33 0.29 2.02 1.00 0.096 707.5

MS-CNN 89.3 0.35 0.31 1.97 1.00 0.100 480.3

Table 4.5: Quantitative despeckling assessment results from the measured PolSAR
data (L = 4).

ENL EPD-HD EPD-VD TCR MOR KSS BP2

Original 3.9 - - - - - -

Boxcar 9.1 0.64 0.54 7.62 1.12 0.084 217.3

IDAN 51.5 0.71 0.55 5.68 0.94 0.095 159.4

Ext. sigma 4.9 0.90 0.82 0.11 0.99 0.358 162.6

MuLoG-BM3D 22.3 0.77 0.64 1.33 0.94 0.061 122.4

MuLoG-CNN 23.6 0.78 0.64 0.41 0.94 0.090 107.1

MuLoG-CNN-P 33.8 0.75 0.61 0.98 0.94 0.057 163.8

MS-CNN 38.1 0.79 0.67 2.07 0.89 0.087 152.0
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.8: Whitened single-look PolSAR images from the region bound by the cyan
box in Fig. 4.5. (a) Boxcar. (b) Extended sigma. (c) IDAN. (d) MuLoG-BM3D. (e)
MuLoG-CNN. (f) MuLoG-CNN-P. (g) MS-CNN.

experiments contain only fully-developed speckle by construction, and thus spatial

correlations in the whitened images indicated an undue erosion of polarimetric in-

formation by the despeckling process. For measured data, this is not necessarily the

case, e.g., with the presence of man-made media.

Fig. 4.9 shows the estimated entropy of the four-look image from a subset of

the considered despeckling methods. The entropy image from the extended sigma

filter has a granular character similar to that of the original data. Compared to

the original image and the extended sigma filter result, both MuLoG and MS-CNN

yield high entropy values within the vegetated regions, indicating a more random

scattering process. The MuLoG and MS-CNN results are quite similar with MuLoG

appearing smoother and MS-CNN better preserving small low entropy regions. The

estimated alpha angle images in Fig. 4.10 show an extended sigma filter result that

again appears similar to the original data. The MuLoG image is much smoother

with apparent structure over the man-made media. The result from the proposed
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Figure 4.9: Estimated entropy from the four-look measured data. (a) Original data.
(b) Extended sigma. (c) MuLoG-CNN. (d) MS-CNN.

method is also smooth compared to the original data with low-angle regions that are

less contiguous than the MuLoG image. A satisfying interpretation of these results

is difficult due to the lack of ground truth. Note that the MuLoG variants not shown

were found to produce results similar to MuLoG-CNN in estimates of both entropy

and mean alpha angle.

4.6 Conclusion

4.6.1 Summary

In this chapter, we have proposed a CNN-based polarimetric SAR despeckling

approach that operates in the matrix logarithm domain and uses a residual learning

architecture that has been successful in natural image denoising. We have imple-

mented this approach with a training set of spatially multilooked PolSAR images

that are corrupted by a simulated speckle process.
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Figure 4.10: Estimated alpha angle (in degrees) from the four-look measured data.
(a) Original data. (b) Extended sigma. (c) MuLoG-CNN. (d) MS-CNN.

In experimental results on both simulated and measured PolSAR data, the pro-

posed method has demonstrated improved scene feature preservation and comparable

despeckling performance compared to state-of-the-art methods. Further, the pro-

posed approach provides improved despeckling over conventional filtering methods

and operates with a comparably fast running time afforded by the use of CNNs.

4.6.2 Future Work

A continuation of the work in this chapter might entail application to other multi-

channel SAR imaging modalities. Alternative methods of procuring unspeckled SAR

data for training purposes might also be considered, e.g., using temporally multi-

looked images. Another avenue for future work is the use of complex-valued CNNs
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in a similar approach; accounting for the relationship between the real and imag-

inary components of the covariance matrix in this way could improve despeckling

performance and allow for training with fewer samples.
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Chapter 5: Maximum Likelihood Estimation in Mixed

Integer Linear Models

5.1 Introduction

In many sensing and communication applications, an unknown quantity is encoded

in the phase of a signal. Because phase is unambiguous only on [0, 2π), a measurement

may experience an integer number of phase wraps. Let R, Z, andQ denote the fields of

real numbers, integers, and rational numbers, respectively. To estimate the quantity

of interest, we consider a linear model with an observation vector y ∈ Rm that is

related to parameter vectors x ∈ Rn and k ∈ Zm as

y = Ax+Mk + u. (5.1)

The encoding matrixA ∈ Rm×n has full column rank and no all-zero row, M ∈ Rm×m

is nonsingular, and the zero-mean noise u ∈ Rm is assumed to be Gaussian with

covariance Σ ∈ Rm×m. The model in (5.1) arises in applications such as MIMO

decoding [26–28], frequency estimation [22–24], ranging [18–21], interferometry [25],

direction of arrival estimation [29], multichannel modulo sampling [30], and magnetic

resonance imaging [9, 31,168].
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The maximum likelihood (ML) estimate of x and k in (5.1) is given by

{x̂, k̂} = argmin
x∈Rn,k∈Zm

Lx,k(x;y), (5.2)

where

Lx,k (x,k ;y) =
∥∥Σ−1/2 (y −Ax−Mk)

∥∥2. (5.3)

For general A, M , and covariance Σ, (5.2) is an NP-hard mixed-integer quadratic

program; for M−1A ∈ Qm×n, (5.2) is equivalent to a closest lattice point problem

(CPP) [169, 170]. As such, it can be solved with Voronoi cell algorithms [171] or

methods known as sphere decoders [172,173]. But these methods have non-polynomial

worst-case computational complexity [174], and the computation time depends on the

random noise realization. Polynomial-time, and even linear-time, algorithms for the

CPP problem have long been known for certain lattices [175–177]. In [32], a special

case of (5.1) is considered, for which (5.2) can be solved in polynomial time by

leveraging the classical Chinese remainder theorem (CRT). The case in [32] has that

n = 1, Σ and M are diagonal, and M−1A meets a certain coprime restriction. In

some applications, this coprime restriction limits potential data acquisition strategies,

and relaxation of the restriction has been shown to enable design of A with improved

estimation error variance [21,178,179].

In this chapter7, we first survey the existing literature, then provide background

on the CRT and lattices. We present two algorithms for the problem in (5.2) that,

for fixed n, have worst-case computational complexity that is polynomial in m. The

7This chapter is largely drawn from [7] (© 2023 IEEE) and [180], coauthored with Shen Zhao
and Lee C. Potter. Manuscript [180] was supported in part by FA238523C0002 and has been
granted public release, PA# AFRL-2024-1975. Distribution Statement A. Approved for public
release: distribution is unlimited. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the Air Force Research Laboratory or the U.S. Government.
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two polynomial-time methods require that Σ and M be diagonal, as in [32]. First,

we describe a solution method that allows for a multivariate unknown x ∈ Rn, but

the method applies to a restricted class of rational A matrices. The solution, similar

to its existing counterpart for n = 1 [32], is found in two parts: one part real-valued

and the other integer-valued. The real part is found by constructing and evaluating

a short list of candidate solutions. The integer part is found through a multivariate

extension of the CRT [181, 182]. The second method lifts the restriction on A and

allows arbitrary rational A with full column rank; this method works by simply

evaluating a list of candidate solutions. We then provide a method that applies

more generally to the problem in (5.2). This approach relies on sphere decoding and

requires only that M−1A be rational. Unlike the other methods in this chapter, this

more general method does not require that the covariance matrix Σ be diagonal, thus

accommodating correlated noise. Application of the theory is illustrated in computed

examples. Most proofs are relegated to appendices.

5.2 Prior Art

For n = 1, methods based on the CRT have been used to address special cases

of (5.1) [32, 183–185]. Alternatively, parameter estimation involving (5.1) can be

addressed by solving a closest lattice point problem [169, 170, 179]. Though, to use

conventional algorithms such as sphere decoding, it is necessary to find a basis for

a lattice generated by a rank-deficient matrix. Li et al. [20] study the n = 1 case

of (5.1) with M = I, Σ = I, and A = [Γ−1
1 ,Γ−1

2 , . . . ,Γ−1
m ]T, where the elements of

Γ are pairwise coprime integers (wavelengths, in ranging); explicit construction of a

lattice basis is given. The case considered in [20] is broadened in [21] to allow for
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arbitrary integer entries in Γ. The lattice basis is explicitly derived in terms of the

entries of A, with a construction that relies on unimodular extension of A. Though,

for n > 1, the unimodular extension does not, in general, exist [186].

The CRT-based estimator proposed in [32] applies to the n = 1 case of (5.1) with

diagonal Σ and M such that M−1A = α[ Γ−1
1 ,Γ−1

2 , . . . ,Γ−1
m ]T, for some α ∈ R, with

Γ ∈ Zm having pairwise coprime entries. Thus, the method in [32] accommodates

non-white, uncorrelated noise. In [187], the n = 1 case of (5.1) is considered with

arbitrary covariance matrix Σ and M−1A = [Γ−1
1 ,Γ−1

2 , . . . ,Γ−1
m ]T, with Γ ∈ Zm

having pairwise coprime entries. Hence, [187] accommodates correlated noise. In [188,

189], (5.1) is studied for modulo sampling in the noiseless case with M = I, sparse

structure in x, and a restriction on A. In [190], a method from [177] is modified to

solve the special case of (5.2) with n = 1, diagonal Σ, and M−1A not subject to a

coprime restriction.

The general problem in (5.1) for n > 1 is widely addressed for MIMO com-

munications. There, the intrinsic rank deficiency is overcome by regularization or,

equivalently, maximum a posteriori probability (MAP) estimation [19, 26–28]. The

problem in (5.2) is equivalent to the CPP [7]

argmin
k∈Zm

∥Bk −By∥2, (5.4)

for BTB = MTΣ−1M − EET and E = MTΣ−1A(ATΣ−1A)−1/2. The CPP so-

lution method in [177] requires B to be nonsingular, and its complexity depends on

the eigenstructure of BTB. However, B is inherently singular, and thus, [177] does

not apply to our problem.
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5.3 Background

5.3.1 Lattices

For Q ∈ Rc×d with full column rank, the set

ΛQ = {Qk | k ∈ Zd} (5.5)

is the c-dimensional lattice generated by the lattice basis Q [191]. The integer d is the

rank of the lattice. All lattice points x ∈ ΛQ admit a unique representation, x = Qk,

for k ∈ Zd [192]. If Q is invertible (c = d), ΛQ is called a full-rank lattice. The set

PQ = {Qλ | λ ∈ [0, 1)n} (5.6)

is called the fundamental parallelotope [193] of ΛQ forQ. A fundamental parallelotope

of ΛQ contains no lattice points of ΛQ except for its vertices.

A square matrix U ∈ Zc×c is called unimodular if it has integer entries and

det(U) = ±1, where det(·) denotes the determinant of a matrix. The following are

equivalent [194, Thm. 4.3].

(i) U is unimodular.

(ii) U−1 is unimodular.

(iii) The lattice generated by the columns of U is Zc.

(iv) The Hermite normal form of U is Ic.

(v) U can be transformed into Ic by elementary column operations.

A lattice basis Q is not unique for a given lattice and, hence, neither is the corre-

sponding fundamental parallelotope PQ. We can express any lattice basis for ΛQ as

QU , for some unimodular matrix U , and ΛQ = ΛQU , for any unimodular U .
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The volume of a parallelotope, denoted by detΛQ ≜ vol(PQ) =
√

det(QTQ), is

the same for all lattice bases. If c = d, the operation that translates x ∈ Rd onto a

fundamental parallelotope PQ is

⟨x⟩Q ≜ x−Q⌊Q−1x⌋, (5.7)

where ⌊·⌋ returns the greatest integer less than or equal to its input, acting element-

wise when applied to a vector.

5.3.2 Hermite Normal Form

Definition 2. An integer matrix H ∈ Zc×d is said to be in Hermite normal form

(HNF) if it has entries that satisfy the following:

hi,i > 0, ∀i

hi,j = 0, ∀i > j

0 ≤ hi,j < hi,i, ∀i < j. (5.8)

A matrix H in HNF is upper triangular and has full column rank; it can be

expressed as H = [H̃T,0d,(c−d)]
T, where H̃ ∈ Zd×d is a nonsingular, upper triangular

matrix.8 Every full column rank integer matrix T ∈ Zc×d has unique decomposition

H = UT , with unimodular U and H in HNF [194, Cor. 4.2a]. The HNF and the

corresponding unimodular transformation can be computed in polynomial time [191,

p. 149].

5.3.3 Chinese Remainder Theorems

The classical CRT for a single unknown variable is as follows [195,196].

8The HNF is sometimes defined to be lower triangular or according to various alternative restric-
tions on the matrix entries.
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Theorem 3 (Chinese remainder theorem). Let b ∈ Zm. Let c ∈ Zm have pairwise

coprime entries. The system of linear congruences given by

1mx ≡ b mod c (5.9)

has integer solutions, and any two solutions are congruent modulo
∏m

i=1 ci.

There are solution methods to the univariate Chinese remaindering problem with

complexity O(m2) [195, p. 23].

The CRT has been extended to accommodate multivariate unknowns [181, 182].

The following is a direct implication of the multivariate CRT in [182]:

Theorem 4 (Multivariate CRT). Let W ∈ Zm×n. Let c ∈ Zm have pairwise coprime

entries. The system of linear congruences given by

Wx ≡ b mod c (5.10)

has integer solutions for all b ∈ Zm iff

gcd([gi,1, . . . , gi,n, ci]
T) = 1, (5.11)

for each i ∈ {1, . . . ,m}, where gcd(·) is the positive column-wise greatest common

divisor of an integer matrix input.

Lemma 5. Let W ∈ Zm×n; c ∈ Zm; b ∈ Zm; and W̃ = [W , diag(c)]T ∈ Z(m+n)×m.

Let H = [H̃T, 0m,n]
T be the HNF of W̃ . The system of congruences

Wx ≡ b mod c (5.12)

has integer solutions iff H̃−Tb ∈ Zm.
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Proof. The system of linear congruences in (5.12) has integer solutions iff there are

k ∈ Zm and x ∈ Zn such that Wx = b− c ◦ k or, equivalently, if there is k̃ ∈ Zm+n

such that W̃ Tk̃ = b. Here, ◦ denotes the element-wise product. From [194, Cor. 5.3b],

W̃ Tk̃ = b has an integer solution iff H̃−Tb ∈ Zm.

The following multivariate CRT is more general than Theorem 4 as it does not

assume that the moduli are pairwise coprime:

Theorem 6 (Generalized multivariate CRT). Let W ∈ Zm×n; c ∈ Zm; and W̃ =

[W , diag(c)]T ∈ Z(m+n)×m. Let H = [H̃T, 0m,n]
T be the HNF of W̃ . The system of

congruences

Wx ≡ b mod c (5.13)

has integer solutions for all b ∈ Zm iff H̃ = Im.

Proof. From Lemma 5, (5.13) has integer solutions for all b ∈ Zm iff H̃−Tb ∈ Zm for

all b ∈ Zm, which is true iff H̃−T ∈ Zm×m. As H̃T ∈ Zm×m, H̃−T ∈ Zm×m iff H̃T,

and hence H̃ , is unimodular. Because H̃ is upper-triangular, its determinant is the

product of its diagonal entries. Thus, if H̃ is unimodular, its diagonal entries are ones.

By the definition of the HNF, the off-diagonal entries of H̃ are zeros. Therefore, if H̃

is unimodular, then H̃ = Im. The converse is also true. Therefore, H̃ is unimodular

iff H̃ = Im.

A method is given in Algorithm 7 for computing an integer solution to a multi-

variate system of congruences.
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Algorithm 7 Solution to a system of linear congruences with a multivariate unknown.

Input: b ∈ Zm, c ∈ Zm, and W ∈ Zm×n, such that Wx ≡ b mod c has integer
solutions.

Output: Solution x ∈ Zn such that Wx ≡ b mod c.
1: Let W̃ = [W , diag(c)]T

2: By Theorem 6,H = [Im,0m,n]
T is the HNF of W̃ , withH = UW̃ for unimodular

U ∈ Z(m+n)×(m+n). Let Ũ ∈ Zm×n be the first m rows of the first n columns of U .

3: x← ŨTb

5.3.4 Negative Log-Likelihood Function

The negative log-likelihood function for x and k in (5.1) is, up to an additive

constant, proportional to Lx,k in (5.3). Note that Lx,k is periodic in x and k, with

Lx,k (x,k ;y) = Lx,k

(
x+ δ,k −M−1Aδ ;y

)
, (5.14)

for any x ∈ Rn, k ∈ Zm, and δ ∈ {x |M−1Ax ∈ Zm}. If M−1A is rational, then

{x |M−1Ax ∈ Zm} = ΛV , (5.15)

for some invertible lattice basis V ∈ Rn×n. The basis V can be formed as in [7]. First,

let M−1A = Qnum ⊘Qden, for Qnum,Qden ∈ Zm×n, and let D = diag(lcm(Qden)) ∈

Zn×n, where ⊘ denotes element-wise division, and lcm(·) gives the column-wise pos-

itive least common multiple of an integer-valued matrix input, with zeros ignored.

Let

T = M−1AD ∈ Zm×n, (5.16)

and let H = [H̃T,0n,(m−n)]
T be the HNF of T , with

H = UT , (5.17)
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for some unimodular U ∈ Zm×m. From (5.15) and (5.16),

x ∈ ΛV ⇔ Ax ∈ Zm ⇔ TD−1x ∈ Zm

⇔ U−1HD−1x ∈ Zm ⇔HD−1x ∈ Zm

⇔ x ∈DH̃−1Zn,

where we have used that U is bijective on Zm. Thus,

ΛV = {DH̃−1λ | λ ∈ Zn} (5.18)

is a full-rank lattice with a basis V = DH̃−1. Therefore, for any x ∈ Rn, k ∈ Zm,

Lx,k (x,k ;y) = Lx,k

(
x+ V λ,k −M−1AV λ;y

)
, (5.19)

for any λ ∈ Zn. The parallelotope PV defines a region in which the solution to (5.2)

is unique, and we can therefore limit our search to this region.

5.4 ML Estimator for Restricted Encoding Matrices

In this section we provide an ML estimation procedure for a special case of (5.2),

in which n ≥ 1, the covariance matrix Σ and M are diagonal, and M−1A is a

rational matrix that meets a certain condition. For simplicity in this section, we will

assume, without loss of generality, that M = I. The restriction on A is analogous

to the coprime moduli restriction used in [32]. Hence in this section, we extend

the algorithm in [32] to provide polynomial-time (for fixed n) ML estimation for

multivariate unknowns.

5.4.1 Preliminaries

In [32], it is assumed that A = α[ Γ−1
1 ,Γ−1

2 , . . . ,Γ−1
m ]T, for some α ∈ R, with

Γ ∈ Zm having pairwise coprime entries. The solution for x in (5.2) is constructed
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as a sum of two terms: The first is an estimate of a “common remainder,” that is, a

real number within an interval of length |C|, where C = α−1 gcd(Γ). The common

remainder is found by a search over a list of only m candidate values. The second

term is an integer multiple of C, which can be solved for efficiently by the use of the

univariate CRT.

For n > 1, the interval in which the common remainder is found becomes the

n-dimensional parallelotope PC corresponding to a lattice basis C ∈ Rn×n. The basis

is given by C = V diag−1 (z), with z = (lcm(AV ))T ∈ Zn, and V found from A

as in (5.18). Thus, ΛV is a sub-lattice of ΛC , and PC provides a tiling of PV , i.e.,

translated copies of PC can be arranged within PV such that PV is covered with no

overlap between the copies. This tiling is illustrated, for the encoding matrix

A =

[
1/2 0 1
−1/6 1/3 2/3

]T
, (5.20)

in Fig. 5.1; in this case V = [2, 1; 0, 3] and C = [1, 1/3; 0, 1]. Thus, z = [2, 3]T.

Let β ∈ Zm×n with

βj,k =

{
((ajC)k)

−1, (ajC)k ̸= 0

0, otherwise
, (5.21)

where aj ∈ Q1×n denotes the jth row of A. Also let ω ∈ Zm denote the row-wise

positive least common multiple of β, i.e.,

ω =
(
lcm

(
βT
))T

. (5.22)

For example with n = 1, m = 3, and A = [1
2
, 1
4
, 1
6
]T, we have V = 12, C = 2, z = 1,

and β = [1, 2, 3]T. Note that for n = 1, ωj = |βj|, j ∈ {1, . . . ,m}.

The following condition is, for n > 1, analogous to the assumption of pairwise

coprime moduli, used for n = 1 in [32]:
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Figure 5.1: PV partitioned by six shifted copies of PC for the encoding matrix
in (5.20).

Condition 7. For any b ∈ Zm, there is γ ∈ Zn such that

ω ◦ (AC)γ ≡ b mod ω. (5.23)

The following proposition is directly implied by Theorem 6:

Proposition 8. Let W̃ = [ω ◦ (AC), diag(ω)]T ∈ Z(m+n)×m and H = [H̃T, 0m,n]
T

be the HNF of W̃ . Condition 7 is equivalent to H̃ = Im.

The solution method in this section requires that A meets Condition 7. We will

show that this restriction leads to a fast ML estimation procedure.

A solution to (5.2) for x is constructed as

x̂ = r̂ +Cγ̂ ∈ PV , (5.24)

with r̂ ∈ PC and γ̂ ∈ ⟨Zn⟩C−1V . Such an approach is appealing because the integer-

valued unknown γ can be estimated efficiently thanks to the multivariable CRT; the
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real-valued unknown r can, as in [32], be found by searching a relatively short list of

candidate solutions.

5.4.2 Estimating the Integer Remainders

Recall thatC−1V = diag(z), with z ∈ Zn. According to the formulation in (5.24),

we consider an equivalent problem to (5.2), given by:

{γ̂, r̂, k̂} = argmin
γ∈⟨Zn⟩C−1V ,r∈PC ,k∈Zm

Lγ,r,k(γ, r;y), (5.25)

where

Lγ,r,k(γ, r,k;y) =
∥∥Σ−1/2 (y −A (r +Cγ)− k)

∥∥2 .
For any q, k, and γ such that

ω ◦ (ACγ + k) = q, (5.26)

we have that Lq,r(q, r;y) = Lγ,r,k(γ, r,k;y), where

Lq,r(q, r;y) =
∥∥Σ−1/2 (y −Ar − q ⊘ ω)

∥∥2 . (5.27)

The bijection between {q ∈ Zm} and {γ ∈ ⟨Zn⟩C−1V ,k ∈ Zm} shown by Theorem 27

suggests that, rather than finding γ̂ ∈ ⟨Zn⟩C−1V and k̂ ∈ Zm directly, we find q̂ ∈ Zm

such that (5.26) is satisfied. This leads to yet another equivalent problem, given by

{q̂, r̂} = argmin
q∈Zm,r∈PC

Lq,r(q, r;y). (5.28)

For any r ∈ PC , q̂ can be found by solving a CPP:

q̂ = argmin
q∈Zm

∥∥Σ−1/2
(
y −Ar − diag−1(ω)q

)∥∥2 . (5.29)
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Because Σ−1/2 diag−1(ω) has orthogonal columns (as it is diagonal), q̂ can be found

via Babai’s rounding procedure [197]. That is [198, pg. 379],

q̂ = ⌈ω ◦ (y −Ar)⌋ , (5.30)

where ⌈x⌋ denotes element-wise rouding of x to the nearest integers, with
⌈
1
2

⌋
= 1.

5.4.3 Estimating the Real-Valued Common Remainder

After inserting q̂ into (5.28), we consider

r̂ =argmin
r∈PC

Lq,r(q̂, r;y)

= argmin
r∈PC

∥∥Σ−1/2 d1m⊘ω (y −Ar)
∥∥2

=argmin
r∈PC

Lr(r;y), (5.31)

where 1m is a length-m column vector of ones, and

dz(x) ≜ x− z ◦ ⌈x⊘ z⌋ , (5.32)

for z ∈ Rm, with 0 ≺ z. Here, ≺ and ⪯ denote element-wise inequalities. The

operator dz has the property that

− z/2 ⪯ dz(x) ≺ z/2 (5.33)

If −z/2 ⪯ x ≺ z/2, then dz(x) = x.

Define H as

H =
{
r ∈ Rn | ∃j ∈ {1, . . . ,m} s.t. dω−1

j
(yj − ajr) = −1

2
ω−1
j

}
(5.34)

=
{
r ∈ Rn | ∃j ∈ {1, . . . ,m} s.t. ωjajr − ⟨ωjyj +

1
2
⟩1 ∈ Z

}
. (5.35)
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Note that H is a union of countably infinitely many vector hyperplanes (subspaces

with codimension one) in Rn. Due to the rounding operation in d, Lr is non-

differentiable for r ∈ H. The hyperplanes in H partition Rn into chambers, con-

vex regions within which ⌈ω ◦ (y −Ar)⌋ is constant.9 A chamber is thus uniquely

identified by ℓ ∈ Φ ⊂ Zm, according to

Ψ(ℓ) = {r ∈ Rn | ⌈ω ◦ (y −Ar)⌋ = ℓ}, (5.36)

where Ψ : Φ 7→ Rn, and Φ is the set of integer vectors that correspond to chambers

in Rn formed by H. The closure of any chamber is a polytope (the convex hull of

finitely many points).

The function Lr in (5.31) is continuous for r ∈ Rn and differentiable for r ∈ Rn\H.

For any ℓ ∈ Φ, the rounded portion of Lr is constant within r ∈ Ψ(ℓ). Thus, Lr

is quadratic over Ψ(ℓ), and Lr is a piecewise quadratic function. In Fig. 5.2, Lr for

r ∈ PC is shown, with value indicated by color, for a measurement from (5.1) with

A from (5.20).

Let H̃ = PC ∩ H. The set H̃ is the intersection of PC with a union of finitely

many hyperplanes, and it can be considered to partition PC into “wrapped chambers,”

i.e., chambers that are wrapped about the parallelotope PC . The wrapped chamber

corresponding to ℓ ∈ Φ̃ is

Ψ̃(ℓ) = {⟨r⟩C | r ∈ Ψ(ℓ)}

= {r ∈ PC | ∃λ ∈ Zn s.t. ⌈ω ◦ (y −Ar)⌋ = ℓ+ ω ◦ (ACλ)}. (5.37)

9The term “chamber” has elsewhere been used interchangeably with the more common term
“cell“ to refer to an intersection of half-planes in the context of hyperplane arrangements [199,200].
Here, we use “chamber” to refer to a similar concept, with the distinction that the cells of hyperplane
arrangements are open, whereas our chambers are neither open nor closed.

114



0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1

1

1

1

2

2

2

3

0.05

0.1

0.15

0.2

0.25

0.3

(a)

0

1

0.8

0.1

0.6

0.2

0.4

0.3

0.2
1.210.80.60.40 0.20

(b)

Figure 5.2: (a) The value of Lr is indicated by color over PC . The wrapped hyper-

planes in H̃ are shown in red. The candidate solutions for (5.31) are marked with
magenta squares, with the solution r̂ at the yellow cross. PC is partitioned into
wrapped chambers, labeled 1–3. (b) Lr as a surface plot.

For any ℓ ∈ Φ and λ ∈ Zn, Ψ̃(ℓ) = Ψ̃(ℓ + ω ◦ (ACλ)), as shown by Proposition 22

(Appendix B.1). In Fig. 5.2, H̃ is depicted by red line segments, and PC is shown to

be divided by H̃ into three wrapped chambers, labeled with white text.

Theorem 9. For some ℓ ∈ Φ, r̂ ∈ int Ψ̃(ℓ).

Proof. We have that r̂ ∈ PC , and

PC =
(
∪ℓ∈Φ int Ψ̃(ℓ)

)
∪ H̃. (5.38)

For no r ∈ H does Lr have a local minimum at r, as shown by Lemma 24 (Ap-

pendix B.1); the statement and proof follow those given for n = 1 in [32, Thm. 2].

As H̃ ⊂ H, we have that r̂ /∈ H̃. Therefore, r̂ ∈ int Ψ̃(ℓ), for some ℓ ∈ Φ.

According to Theorem 9, r̂ ∈ int Ψ̃(ℓ), for some ℓ ∈ Φ, where int denotes the

interior of a set. Now assume, for any ℓ̂ ∈ Φ, that r̂ ∈ Ψ̃(ℓ̂). From (5.37), for any
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r ∈ Ψ̃(ℓ̂), that

Lr(r;y) =
∥∥Σ−1/2

(
y −Ar − ℓ̂⊘ ω −ACλ

)∥∥2, (5.39)

for some λ ∈ Zn. Therefore, r̂ can be found by generalized least squares as

r̂ = (Σ−1/2A)†Σ−1/2(y − ℓ̂⊘ ω −ACλ)

= ⟨(Σ−1/2A)†Σ−1/2(y − ℓ̂⊘ ω)⟩C

= ⟨(Σ−1/2A)†Σ−1/2(y − ⌈ω ◦ (y −Ar)⌋ ⊘ ω)⟩C , (5.40)

for any r ∈ Ψ̃(ℓ̂). Because ℓ̂ is unknown (i.e., we do not know which wrapped

cell contains r̂), it is useful to find a set χ containing one point from each wrapped

chamber (see Appendix B.3 for deteails). We then form V , a set of candidate solutions

to (5.31), as

V =
{
⟨(Σ−1/2A)†Σ−1/2(y − ⌈ω ◦ (y −Ar)⌋ ⊘ ω)⟩C | r ∈ χ

}
. (5.41)

For the example in Fig. 5.2, there are three wrapped chambers and, thus, three

elements in V , which are marked with magenta squares; the solution to (5.2) is shown

with a yellow cross. The solution to (5.31) is

r̂ = argmin
r∈V

Lr(r;y), (5.42)

and it can be found by evaluating Lr for each element of the candidate set V .

5.4.4 Constructing the ML Solution

By inserting r̂ into (5.30), we get

q̂ = ⌈ω ◦ (y −Ar̂)⌋ . (5.43)
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Algorithm 8 ML solution for (5.1) with Condition 7 satisfied.

Input: Measurements y ∈ Rm; diagonal covariance Σ; and full column rank A ∈
Qm×n satisfying Condition 7.

Output: ML solution {x̂, k̂}.
1: Let χ be a set containing a point in Ψ̃(ℓ) for each ℓ ∈ Φ
2: Let V be the set of candidate solutions in (5.41)
3: r̂ ← argminr∈V Lr(r;y)
4: q̂ ← ⌈ω ◦ (y −Ar̂)⌋
5: Use Algorithm 7 to find γ̂ as the solution for γ to ω ◦ (ACγ) ≡ q̂ mod ω
6: x̂← ⟨Cγ̂ + r̂⟩V
7: k̂← ⌈y −Ax̂⌋

We then find γ̂ ∈ ⟨Zn⟩C−1V as the solution to the following system of congruences:

ω ◦ (AC)γ ≡ q̂ mod ω, (5.44)

using Algorithm 7; the congruences are known to have a solution by Theorem 6.

Finally, the solution to (5.2) is formed as

x̂ = ⟨Cγ̂ + r̂⟩V (5.45)

k̂ = ⌈y −Ax̂⌋ . (5.46)

The proposed method to solve (5.2) for this case is summarized in Algorithm 8.

5.4.5 Computational Complexity

The ML solution method in Algorithm 8 involves two primary tasks. The first is

to solve a system of linear congruence equations in multiple integer variables, which

can be done in polynomial time [194, Cor. 5.3b]. The solution method given in

Algorithm 7 computes a HNF, which can be reused for subsequent measurements

from the same A. The second task is to build a set of candidate solutions for (5.31)

and evaluate them. The number of candidate solutions is given by |V| = |{Ψ̃(ℓ)}ℓ∈Φ|.
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For fixed V , C, and n, we get that |V| is O(mn), as shown in Appendix B.4. Here

again, much of the computation to form the set of candidate solutions can be reused

for inference on subsequent measurements. Thus, for fixed V , C, and n, both primary

tasks can be completed in time that is polynomial in m.

5.4.6 Comment on the n = 1 Case

The problem treated in this section is simpler when n = 1, which is the scenario

considered in [32]. With n = 1, ωj = |βj| = |(Caj)
−1|, for j ∈ {1, . . . ,m}, and

C−1V = lcm(β). The fundamental parallelotope PV is simply an interval with length

|V |. A univariate CRT method [195, p. 23] can be used rather than Algorithm 7 in

step 5 of Algorithm 8. The construction of χ is particularly simple in this case, as dis-

cussed in Appendix B.3. The set χ, and hence V , has cardinality m. Therefore, with

n = 1, just m candidates need be considered to estimate the real-valued unknown, as

in [32].

5.5 ML Estimator for General Encoding Matrices

In this section, we remove the restriction onA given by Condition 7 and provide an

ML estimator for n ≥ 1 that constructs a short list of candidate points in Rn provably

containing the ML solution. That is, we consider the case of (5.2) in which n ≥ 1,

the covariance matrix Σ and M are diagonal, and A ∈ Qm×n is an arbitrary matrix

with full column rank. As in Section 5.4, we assume, without loss of generality that

M = Im. The development parallels Section 5.4; however, the multivariate CRT is no

longer necessarily applicable, typically resulting in a larger list of candidate solutions.
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According to Proposition 36, for any x, the Babai rounding method [197] gives

the optimal k in (5.2) as k̂ = ⌈y −Ax⌋. Inserting this into Lx,k gives us

Lx,k(x, k̂;y) = Lx(x;y) =
∥∥Σ−1/2 d1 (y −Ax)

∥∥2, (5.47)

with d defined in (5.32). We define HNC as the set of points at which Lx is non-

differentiable:

HNC =
{
x ∈ Rn | ∃j ∈ {1, . . . ,m} s.t. ajx− ⟨yj + 1

2
⟩1 ∈ Z

}
, (5.48)

using the subscript NC to distinguish from analogous quantities in Section 5.4. The

hyperplanes in HNC partition Rn into chambers, within which ⌈y −Ax⌋ is constant.

A chamber is thus uniquely identified by ℓ ∈ ΦNC, according to

ΨNC(ℓ) = {x ∈ Rn | ⌈y −Ax⌋ = ℓ}, (5.49)

where ΨNC : ΦNC 7→ Rn, and ΦNC ⊂ Zm is the set of integer vectors that correspond

to chambers in Rn formed by HNC. Let H̃NC = PV ∩HNC; i.e., H̃NC is the intersection

of PV with a union of finitely many hyperplanes, and it can be considered to partition

PV into wrapped chambers. Now, similarly to (5.37), we define Ψ̃NC(ℓ) as

Ψ̃NC(ℓ) ={⟨x⟩V | x ∈ ΨNC(ℓ)}

={x ∈ PV | ∃λ ∈ Zn s.t. ⌈y −Ax⌋ = ℓ+AV λ}. (5.50)

Note that (5.50) uses the lattice basis V , rather than basis C used in (5.37). By an

analogous statement to Theorem 9, we have that x̂ ∈ int Ψ̃NC(ℓ), for some ℓ ∈ ΦNC.

Assume, for any ℓ̂ ∈ ΦNC, that x̂ ∈ Ψ̃NC(ℓ̂). From (5.50) we have, for any

x ∈ Ψ̃NC(ℓ̂), that

Lx(x;y) =
∥∥Σ−1/2

(
y −Ax− ℓ̂−AV λ

)∥∥2, (5.51)
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for some λ ∈ Zn. Therefore, x̂ can be found by generalized least squares as

x̂ = (Σ−1/2A)†Σ−1/2(y − ℓ̂−AV λ)

= ⟨(Σ−1/2A)†Σ−1/2(y − ℓ̂)⟩V

= ⟨(Σ−1/2A)†Σ−1/2(y − ⌈y −Ax⌋)⟩V , (5.52)

for any x ∈ Ψ̃NC(ℓ̂). We again form a set of candidate solutions to (5.2), as

VNC =
{
⟨(Σ−1/2A)†Σ−1/2(y − ⌈y −Ax⌋)⟩V | x ∈ χNC

}
, (5.53)

where the set χNC is constructed so as to contain a point in each wrapped chamber.

The set χNC can be constructed analogously to χ in Section 5.4. The solution to (5.2)

for x is

x̂ = argmin
x∈VNC

Lx(x;y), (5.54)

and it can be found by evaluating Lx for each element of the candidate set VNC. The

solution for k is then given by k̂ = ⌈y −Ax̂⌋.

In Fig. 5.3, Lx for x ∈ PV is shown, with value indicated by color, with A

from (5.20) for the measurement as Fig. 5.2. In this case, the more general method

given in this section yields six wrapped chambers, and hence six candidate solutions,

whereas the approach in Section 5.4 must evaluate only three candidate solutions.

The proposed method to solve (5.2) for this case is summarized in Algorithm 9.

Note that this method is more straightforward than Algorithm 8, in the sense that it

involves only a search over a candidate set and does not require solving a system of

congruence equations. The cardinality of the candidate set is again polynomial in m,

as shown in Appendix B.5. However, |VNC| is typically larger than |V|, the cardinality

of the candidate set constructed in Section 5.4.
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Figure 5.3: (a) The value of Lx is indicated by color over PV . The wrapped hy-

perplanes in H̃NC are shown in red. The candidate solutions for (5.2) are marked
with magenta squares, with the solution x̂ at the yellow cross. PV is partitioned into
wrapped chambers, labeled 1–6. (b) Lx as a surface plot.

Algorithm 9 ML solution for (5.1) with unrestricted A.

Input: Measurements y ∈ Rm; diagonal covariance Σ; and A ∈ Qm×n.
Output: ML solution {x̂, k̂}.
1: Let χNC be a set containing a point in Ψ̃NC(ℓ) for each ℓ ∈ ΦNC

2: Let VNC be the set of candidate solutions defined in (5.53)
3: x̂← argminx∈VNC

Lx(x;y)

4: k̂← ⌈y −Ax̂⌋

As in Section 5.4, the problem considered in this section is simpler when n = 1. In

that case, C−1V = lcm(β), and |χNC| = |VNC| ≤ mV/C, as shown in Appendix B.5.

A benefit of both Algorithm 8 and Algorithm 9 is that much of the computation can

be done ahead of time and reused on arbitrarily many sets of measurements when the

same A is used repeatedly.
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5.6 ML Estimator for General Mixed Integer Linear Models

The methods presented in Section 5.4 and Section 5.5 require that the covariance

Σ be diagonal, and thus, that the noise in (5.2) be uncorrelated. Though, in certain

applications the noise is correlated, such as when the measurements correspond to

phase differences appearing in sufficient statistics for multi-snapshot, multi-channel

data [29]. In this section we provide an ML solution method for (5.2) that applies

more generally than the methods presented in Section 5.4 and Section 5.5.

Some applications considered in this chapter share three features: (1) no prior

knowledge of the distribution of the parameters, rendering MAP estimation inappro-

priate or subject to extensive tuning of a regularization parameter; (2) correlated

noise; (3) multivariate unknowns, x ∈ Rn. In this section, we provide an ML solu-

tion method for the problem in (5.1) that simultaneously accommodates these three

characteristics.

For this method, we require only that M−1A be rational. We also assume in this

section, without loss of generality, that the measurements have been whitened; thus,

Σ = Im. A MATLAB implementation of this approach is available.10

5.6.1 Estimation Task

For any k, minimization of (5.3) over x yields

xk = A† (y −Mk) , (5.55)

10https://github.com/tuckerda/Mixed-Integer-Linear-Models-MLE
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where † denotes the Moore-Penrose pseudo-inverse. Minimizing L(xk,k;y) with re-

spect to the integer vector k gives us

k⋆ = argmin
k∈Zm

L(xk,k;y) = argmin
k∈Zm

∥ỹ −Bk∥2, (5.56)

an integer least squares problem (ILS) with B = (Im −AA†)M and ỹ = BM−1y.

Note that the range of B is the nullspace of AT. For m = n, we get that B = 0, and

any k ∈ Zm minimizes (5.56).

The estimation task is then to find the point in the lattice ΛB = {Bk | k ∈ Zm}

that is closest to the transformed noisy observation ỹ. This is a closest lattice point

problem, which is NP-hard [201], though the expected complexity may be a polyno-

mial [174]. Note that the lattice-generating matrix B has nullity n and is therefore

not a lattice basis. To use conventional algorithms such as sphere decoding [169,170]

to solve (5.56), it is necessary to first find a basis for ΛB.

5.6.2 Lattice Basis Construction

To find a basis for ΛB, we use that BT = 0. Partition U−1 from (5.17) into

G̃ ∈ Zm×n and G⊥ ∈ Zm×(m−n) such that

U−1 = [G̃,G⊥]. (5.57)

Because only the first n rows ofH are non-zero, we have from (5.17) that G̃ = TH̃−1.

Using that unimodular U−1 is bijective on Zm, we have

ΛB = BZm = BU−1Zm

= BG̃Zn +BG⊥Zm−n

= BTH−1
n Zn +BG⊥Zm−n. (5.58)
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Since BT = 0, this gives us

ΛB = BG⊥Zm−n, (5.59)

and therefore, B̃ = BG⊥ is a basis for ΛB.

An alternative to the basis construction in (5.59) is to apply the modified LLL

algorithm [202, 203] to B, as in [187]. Unlike the original LLL algorithm [204], the

modified LLL algorithm accepts as input a linearly dependent set of vectors. The

modified LLL algorithm operates by detecting linear dependencies among a set of

vectors, and this process can be plagued by rounding errors [202]. We find that this

method is prone to numerical difficulties even for small m [205].

5.6.3 Lattice Basis Reduction

In order to solve (5.56), we first compute the LLL-QRZ factorization of B̃ as

B̃ = Q[RT,0m−n,n]
TZ−1 = Q1RZ−1 (5.60)

where Q = [Q1,Q2] ∈ Rm×m is orthonormal, Zm×m is unimodular, and R(m−n)×(m−n)

is upper-triangular [206]. The matrix R satisfies the size-reduction and Lovász con-

ditions [204], given respectively by

|ri,j| ≤ |ri,i|/2, 1 ≤ i < j ≤ m− n (5.61)

δr2i−1,i−1 ≤ r2i−1,i + r2i,i, 1 < i ≤ m− n, (5.62)

with δ ∈ (1/4, 1]. We use this factorization to pose a new closest lattice point problem

that is equivalent to (5.56), given by

z⋆ = argmin
z∈Z(m−n)

∥QT
1 ỹ −Rz∥2. (5.63)
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The closest lattice point problem in (5.63) can be solved using a search algorithm

such as sphere decoding. For our examples, we use a depth-first sphere decoding

algorithm [169, 170, 207]. After a solution has been found for (5.63), we get that

k⋆ = G⊥Zz⋆ and xk⋆ = A† (y −Mk⋆) . Thus, for any optimal {k⋆,xk⋆} in (5.3),

there exists an equivalent solution {k̂, x̂} with x̂ ∈ PV , given by

x̂ = ⟨xk⋆⟩P (5.64)

and k̂ = k⋆ −M−1A(⟨x̂⟩P − xk⋆). From (5.55), (5.63), and (5.64),

x̂ =
〈
A†(y −MG⊥Zz⋆)

〉
P . (5.65)

5.6.4 Babai Point

Simple rounding of the non-integer least squares solution to (5.63) can, in some

cases, provide the ML solution ℓ⋆, thereby foregoing the complexity of sphere decod-

ing. Define

ℓB = ⌈B̃†ỹ⌋ (5.66)

where ⌈·⌋ denotes element-wise rounding to the nearest integer. The solution ℓB

is referred to as the Babai point [197] or the zero-forcing equalization point [174].

Define dmin as the length of the shortest non-zero lattice point in ΛB [208]. As noted

in [19,178], for example, if

∥ỹ − B̃ℓB∥ ≤ dmin/2, (5.67)

then ℓB = ℓ⋆. For applications in which the same B̃ is used with many noisy mea-

surements [209], then B̃† may be pre-computed and (5.67) tested before resorting to

sphere decoding for integer solution in (5.63), thereby providing accelerated computa-

tion, on average. Further, if ΛB admits an orthogonal basis B̃U , for some unimodular
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U , then the (m− n)-dimensional problem in (5.63) decouples for that basis. In that

case, ⌈(B̃U )†ỹ⌋ is likewise optimal, as shown by Proposition 36 (Appendix B.6).

Other instances of lattices that admit polynomial-time solution of (5.63) are given

in [24,176,190,210].

5.6.5 Estimation Procedure

An ML parameter estimation procedure for the model in (5.1) is given in Algo-

rithm 10. Note that steps 1–4, 6, and 7 can be computed beforehand and reused

to form estimates from different sets of noisy measurements that share the same A

and M . This reuse of precomputed values can greatly reduce computation times

when many measurements have the same noise covariance and sensor configuration.

We also seek to improve the average computational cost by first computing the

Babai point as in (5.66) and determining whether it is optimal as in (5.67). If the

Babai point is optimal, then sphere decoding can be foregone. Otherwise we solve a

closest lattice point problem using a sphere decoding algorithm [169,170,207]. In the

case that m = n, we have that any k ∈ Zm is optimal in (5.56), and we can give k⋆

an arbitrary value.

5.6.6 Estimator Distribution

We next consider the distribution of the estimator, which in turn enables opti-

mized design of A [31, 178, 211]. The Voronoi cell of ΛB, denoted Vor(ΛB), is the

closure of the subset in Rm containing all points closer to the origin than to any

other lattice point. The lattice ΛB lies in the nullspace of AT, and Vor(ΛB) is there-

fore unbounded in the range of A. The integer parameter estimate k̂ is considered

correct if Bk̂ = Bk [178] or, equivalently, if BM−1u ∈ Vor(ΛB) [19]. From [178],
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Algorithm 10 ML parameter estimation for linear model in (5.1).

Input: Measurements y ∈ Rm; full-column rank A ∈ Rm×n; and invertible M ∈
Rm×m, such that M−1A ∈ Qm×n.

Output: ML parameter estimates x̂ and k̂
1: Compute V , a lattice basis for Λ, as in (5.18), (5.16), (5.17)
2: Compute G⊥ as in (5.57)
3: B ← (Im −AA†)M

4: B̃ ← BG⊥
5: if m > n then
6: Compute the LLL-QRZ factorization of B̃, with Q1 and Z as given in (5.60).
7: dmin ← minz∈Zm−n,z ̸=0 ∥Rz∥
8: ỹ ← BM−1y
9: zB ← ⌈R−1QT

1 ỹ⌋
10: if ∥QT

1 ỹ −RzB∥ ≤ 1
2
dmin then

11: z⋆ ← zB

12: else
13: z⋆ ← argminz∈Z(m−n) ∥QT

1 ỹ −Rz∥2
14: end if
15: k⋆ ← G⊥Zz⋆

16: else
17: k⋆ ← 0
18: end if
19: xk⋆ ← A† (y −M−1k⋆)
20: x̂← ⟨xk⋆⟩P
21: k̂← k⋆ −M−1A(x̂− xk⋆).

BM−1u ∈ Vor(ΛB) if and only if BM−1u + As ∈ Vor(ΛB) for all s ∈ Rn. Since

u = BM−1u+As for some s,

BM−1u ∈ Vor(ΛB)⇔ u ∈ Vor(ΛB). (5.68)

That is, the probability that k̂ is correct is equal to the probability that u is in

Vor(ΛB). This probability, denoted Pc, is upper bounded by the probability that u

is within a sphere of volume detΛB and lower bounded by the probability that u is

in a sphere of radius dmin/2 [19]. Thus,

Fr,0

(
d2min/4

)
≤ Pc ≤ Fr,0

(
(det ΛB/α)

2/r
)

(5.69)
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where Fr,0 is the central χ2 cumulative distribution function (cdf) with r = m − n

degrees of freedom, α = πr/2/Γ (1 + r/2), and Γ is the Gamma function.

Conditioned on k⋆ = G⊥ℓ⋆, the estimate xk⋆ (without translation onto P) in

(5.55) is linear in y and is therefore Gaussian with variance ΣML =
(
ATA

)−1
. Let

NP(µ,Σ) denote a Gaussian distribution wrapped onto P . Given the true x and ℓ,

by total probability the distribution of the estimate x̂ is then a mixture of wrapped

Gaussians,

f(x̂ |x, ℓ) =
∑
ℓ′∈Zr

wℓ′NP(x+A†MG⊥(ℓ− ℓ′),ΣML). (5.70)

Each weight wℓ′ in the mixture is the integration of the probability density of ỹ over

a translated Voronoi cell,
{
Vor(ΛB) + B̃(ℓ′ − ℓ)

}
. We can numerically approximate

this distribution by limiting the sum to the top several closest lattice points and ap-

proximating wℓ′ , as in (5.69), using a non-central χ2 cdf with non-centrality parameter

∥B̃(ℓ′ − ℓ)∥2. For the non-central case, the right-hand side term in (5.69) provides

only an approximation when ℓ′ ̸= ℓ, while the left-hand side remains a valid lower-

bound. To illustrate, Fig. 5.4 displays the distribution of f(x̂ |x, ℓ) for whitened

matrices M = Σ−1/2,

A =
Σ−1/2

6

−2 7
2 2
4 1

 , Σ =
1

100

 4 1 −1
1 4 1
−1 1 4

 .

Here, the probability of correctly detecting the wrapping integers is only Pc ≈ 0.6988,

with upper and lower bounds in (5.69) equal because r = 1. The most probable six

components are visible via the colormap used to display the Gaussian mixture on the

fundamental parallelotope.
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Figure 5.4: Example distribution, f(x̂ |x, ℓ), for m = 3, n = 2.

5.6.7 Direction of Arrival Estimation

Consider a planar array of L isotropic sensors that is used to estimate the direction

of arrival (DoA) of a narrowband signal s(t) ∈ C from a single emitter located in the

far field of the array. The demodulated array output vector is given by

b(t) = a(x)s(t) + ε(t), t = 1, 2, . . . , T, (5.71)

where a(x) is the array steering vector and ε(t) is zero-mean circular Gaussian noise

that is uncorrelated across snapshots indexed by t. The array steering vector is given

by

a(x) =
[
eiπp

T
1x eiπp

T
2x · · · eiπp

T
Lx
]T

, (5.72)

The position vectors pj ∈ Rn, for j ∈ {1, 2, . . . , L}, give the sensor positions in units

of one-half wavelength. For linear arrays, n = 1 and x = sin θ, where θ is the azimuth

angle of the source. For planar arrays, n = 2 and x = [cos θ cosϕ, sin θ cosϕ]T,

with ϕ denoting the elevation angle to the source. For general arrays, n = 3 and

x = [cos θ cosϕ, sin θ cosϕ, sinϕ]T.
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The sample covariance, given by R̂ = 1
T

∑T
t=1 b(t)b

H(t), is a sufficient statistic of

the data [29], and the MLE for x in (5.71) is given by [22, p. 288]

argmax
x∈B

aH(x)R̂a(x), (5.73)

where B is the set of feasible values for x. For n = 1, the set B1 =
{
x | θ ∈

[
−π

2
, π
2

]}
is the unit ball in R, ∥x∥ ≤ 1. For a planar array, n = 2 and the set B2 ={
x | θ ∈ [0, 2π), ϕ ∈

[
0, π

2

]}
of all DoAs is the unit ball in R2, ∥x∥ ≤ 1. These DoAs

correspond to source directions on the upper hemisphere. If, for the planar array, the

source is constrained to lie in the plane of the sensors, then B′
2 is the unit circle in

the plane. For a 3D array, n = 3 and the set B3 =
{
x | θ ∈ [0, 2π), ϕ ∈

[
−π

2
, π
2

]}
of

all DoAs is a sphere in R3, {x | ∥ω∥ = 1}.

The evaluation of the MLE in (5.73) often involves a costly grid search over the

non-convex cost surface. This grid search can be accelerated by the use of a multi-

resolution grid search as in [212], though this involves some tuning of the succession

of grid spacings over which the search will be conducted. The grid search will also

necessarily introduce a bias.

Phase unwrapping estimators [23,24,31] offer a fast grid-free alternative. A phase

unwrapping estimator uses only the phase information to estimate the direction of

arrival. As such, this option is viable only when estimating the DoA of a single

source [213–215].

Let v denote the vector of
(
L
2

)
lower-triangular entries of R̂ in column-major order.

That is,

v = [ r̂2,1, r̂3,1, . . . , r̂L,L−1 ]
T (5.74)
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where r̂i,j is the (i, j)th entry of R̂. The whitened measurement vector y in (5.1) is

then given by

y = Σ̃−1/2(2π)−1∠v, (5.75)

where ∠ returns the phase of a complex quantity, and Σ̃ = cov ((2π)−1∠v). The

covariance matrix Σ̃ can be approximated as in [31]; see Appendix C for details. The

encoding matrix A is given by

A = 1
2
Σ̃−1/2 [ (p2 − p1), (p3 − p1), . . . , (pL − pL−1) ]

T (5.76)

and M = Σ̃. This construction allows the use of Algorithm 10 to estimate DoA from

only the phase data of the sample covariance matrix. This approach offers a fast,

grid-free alternative to the MLE in (5.73).

The phase unwrapping estimator conducts a depth-first search to find a solu-

tion to (5.63), though the solution may not correspond to a direction in the feasible

set B [216]. A non-feasible ω̂ is projected to the feasible set as

ω̂MLPUE = argmin
ω∈B

min
q∈Zn

∥x̂− ω − V q∥. (5.77)

More generally, multiple solutions may be accepted from the sphere decoding step,

only to keep the projected solution maximizing the likelihood.

5.7 Examples

In this section we provide computed examples for the three ML solution methods

given in the chapter.
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Figure 5.5: Mean computation time plotted against m for Algorithm 8 (MCRT),
Algorithm 9 (NC), and the sphere decoding approach of [7] (SD).

5.7.1 Computation Time Comparison

First, we compare the computation times of the methods. We form a series of

encoding matrices A with n = 2 and m ∈ [10, 70]. Each such A satisfies Condi-

tion 7 of Section 5.4 and has V = I2 and C = diag([1/5, 1/3]T). The noise has

covariance Σ = 10Im. In Fig. 5.5, the average times to compute the ML estimate via

Algorithm 8, (labeled “MCRT”), Algorithm 9 (labeled “NC”), and the Algorithm 10

(labeled “SD”) are plotted. The results are from 100 random draws of noise and

parameters x and k. The algorithms have identical estimation error; here, we com-

pare only the computation time. Note that each algorithm uses a precomputation

step that is not included in the timing results. This step need only be done once for

a given A and Σ. For reasonably small m, the sphere decoding approach is faster

than either polynomial-time method proposed here. As m becomes large, the mean

computation time of the sphere decoding approach increases rapidly [174]; indeed,
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for no fixed signal-to-noise ratio (SNR) is there a polynomial upper bound on the

expected complexity of sphere decoding that holds for all m [217]; the rate of the

exponential function dictating average complexity depends on SNR. Compared to

the polynomial-time algorithms, the sphere decoding approach also exhibits greater

variance in computing time, which can result in undesirable decoding and complica-

tions in hardware implementation [218]. Nevertheless, the sphere decoding approach

remains an efficient option for many practical problems involving (5.1).

5.7.2 Encoding Matrices in Application

Table 5.1 refers to encoding matrices from the literature and provides context

relevant to the two polynomial time algorithms given in this chapter. For sensor

arrays, A corresponds to pairwise differences of the element positions. Table 5.1

shows that there are encoding matrices in use that meet Condition 7 and those that

do not. For the A matrix in [219], K = KNC. Thus, despite meeting Condition 7,

Algorithm 8 provides no computational benefit, and it is advisable to use the simpler

Algorithm 9. Though, for the encoding matrix made by the wavelengths denoted “set

E” in [178], the computational benefit is significant, with KNC > 585K.

5.7.3 Direction of Arrival Estimation With Planar Array

As an example for the estimation approach in Section 5.6, we simulate array

outputs from the cross-shaped five-element planar array configuration from [8], with

positions given by [0, 0]T, [−4, 0]T, [0, 4]T, [0,−5]T, and [5, 0]T, in units of one-half

wavelength. The MLE in (5.73) is evaluated using a multi-resolution grid search

over x [212]. We use an initial grid search with a grid spacing in x of 10−2, followed
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Table 5.1: Algorithms and problem sizes for examples of the linear model (5.1) ap-
pearing in application.

Reference m n Condition 7 Alg. K KNC

[216] 10 3 false Alg. 9 - 264
[219] 10 3 true Alg. 9 200 200
[220] 10 1 false Alg. 9 - 34
[221] 10 2 false Alg. 9 - 1143

[178, set E] 5 1 true Alg. 8 5 2927
[178, set F] 5 1 false Alg. 9 - 2311

Appendix B.5 16 3 true Alg. 8 1087 8953

by a second search over the grid cells adjacent to the optimal point in the first search,

with a spacing of 10−3.

We compare the MLE in (5.73), which uses the full sample covariance data, ampli-

tude and phase, to an approximate MLE that uses phase unwrapping estimation. The

phase unwrapping estimator uses only the phase information of the sample covariance.

Phase unwrapping estimation allows us to use Algorithm 10. To do so, we make the

approximation that the phase noise follows a zero-mean Gaussian distribution with

the covariance matrix determined as in [31]; see Appendix C for details.

The root mean square error (RMSE) results of the two estimators from T = 10

snapshots are plotted in Fig. 5.6 against signal-to-noise ratio (SNR) for a true angle

of arrival of θ = π/2, ϕ = π/4. The results are computed from 106 trials at each SNR.

The approximate MLE based on phase unwrapping (labeled MLPUE in Fig. 5.6, for

“ML phase unwrapping estimator”) matches the RMSE performance of the MLE.

The square root of the trace (denoted tr(·) in Fig. 5.6) of the Cramér-Rao bound

(CRB) [222] of x in (5.71) is also shown. Both estimators approach this lower bound
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Figure 5.6: DoA estimation performance against SNR with T = 10 snapshots from
five-element planar array [8]. RMSE results for the MLE of (5.73) and the phase
uwrapping MLE are shown along with the square root of the trace of the CRB for x.
The results are averaged over 106 trials.

for SNR values exceeding a threshold [223] of roughly 11 dB. In this example, the

MLPUE approach is on average over 85 times faster than the multi-resolution grid

search.

5.7.4 Magnetic Resonance Flow Imaging

We next demonstrate the use of the estimation approach in Section 5.6 in phase-

contrast magnetic resonance imaging (PC-MRI). PC-MRI encodes the velocity of

spins into the image voxel phase through the first moment, p ∈ R3, of the time

varying gradient field:

bk(t) = s(t)ei(ϕ0+γp⊺
kx) + εk(t), (5.78)

where k = 1, 2, . . . , L indexes encodings, ϕ0 is an unknown background phase, γ is

the gyromagnetic ratio, x ∈ R3 is velocity, and εk(t) is zero-mean circular Gaussian
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noise that is uncorrelated across T coils indexed by t. Proceeding with the sample

covariance matrix as in Section 5.7.3, y is formed from the complex measurements as

in (5.75). Each entry in y is a scaled phase difference from two encodings, averaged

over coils, thereby canceling the unknown background phase.

Pelc et al. [9] introduced 3-directional flow encoding and a velocity estimator.

Phase differences from balanced four-point encoding yield

AT =
γρ

π

1 1 0 0 −1 −1
1 0 1 −1 0 1
0 1 1 1 1 0

 , (5.79)

where ρ is the absolute value of the first moment in each spatial direction. Phase

differences are then pre-processed to conveniently yield a decoupled set of three equa-

tions in n = 3 unknown velocity components. Specifically, the pre-processing is given

by a linear operator P ∈ R3×6, given by

P =

1 0 0 0 0 −1
1 0 0 0 0 1
0 0 1 1 0 0

 . (5.80)

This preprocessing yields PA = 2γρ
π
I and a least squares estimate, xLS = π

2γρ
Py.

(a) (b)

Figure 5.7: Velocity RMSE on PV ∈ R3 for (a) the estimator in [9] and (b) the
MLPUE. Velocity components and RMSE are shown in cm/s.
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Fig. 5.7 shows RMSE versus true x across one choice of the fundamental paral-

lelotope PV . The example is computed for var(εk(t)) = 1, s(t) = 10, T = 8 coils, and

γρ = π
100

s/cm, with 103 trials at each x. The estimator xLS is aliased on half of P , as

shown in Fig. 5.7a, whereas the MLPUE allows un-aliased estimation across most of

P , illustrated in Fig. 5.7b. With the MLPUE, wrap-around error is encountered only

when the true speed is within approximately 2 cm/s of a boundary. With the four-

point balanced encoding, the error covariance matrices for both xLS and the MLPUE

are a scaled identity, signifying i.i.d. errors; but, the processing in [9] results in a

95% confidence sphere with 3.7% larger volume, because it ignores noise correlation

in the phase differences. Finally, the sphere decoding for the MLPUE is, on average,

over 500 times faster than grid-search estimation in (5.73) using 100 grid points per

dimension [224].

5.8 Summary

In this chapter, we have proposed three methods for the ML estimation task

in (5.2). Generally, the problem can be solved using the sphere decoding approach

given in Section 5.6. The computation time of this approach is dependent on the

noise realization, and the worst-case computational complexity is not polynomial in

m, the length of the measurement vector. In [32], an ML solution method for (5.2)

is given for the special case of a single unknown variable (n = 1), diagonal noise

covariance, and a restriction on the encoding matrix A. This method has worst-case

polynomial-time complexity. In this chapter, we have presented estimation algorithms

that extend polynomial-time computation to a wider range of problems with diagonal

covariance. The extensions presented here account for both multivariate unknowns
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(n > 1) and general encoding matrices with full column rank. The method given in

Section 5.4 use a multivariate CRT to further reduce algorithm complexity.

5.9 Future Work

In this chapter, we have described two ML estimation methods for the problem

in (5.2) that have polynomial complexity in m, the number of measurements. Both

of these methods require that the measurement noise be uncorrelated. We have also

described a sphere decoding approach that accommodates correlated noise, though

the worst-case computational complexity is non-polynomial in m. It remains to find

a polynomial-time algorithm that accommodates correlated noise. A structure is

present for the special case of (5.2) with measurements corresponding to phase differ-

ences and the covariance matrix Σ found according to the phase noise approximation

described in Appendix C. This structure may admit an efficient estimation procedure.

Another avenue of continued work is the leveraging of the proposed techniques for

MAP estimation. In this chapter, we have considered estimation from a single set of

measurements. Though, often, as in phase-contrast MRI, a parameter is estimated for

each voxel in an image. The per-voxel estimation proposed here could be a component

in an estimation method that leverages spatial correlations to improve estimation

performance, as in [31,225].

It is often necessary to estimate the DoA of multiple targets simultaneously, and

a notable limitation of the methods in this chapter is that they apply only to situa-

tions with a single target. Future research could extend these methods to apply to

multiple targets. Such an extension would also allow for the simultaneous estimation
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of multiple frequency components in frequency estimation problems and the heights

of multiple scatterers within a resolution cell in interferometric SAR.
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Chapter 6: Aliasing in Nonuniform Arrays

6.1 Introduction

A sensor array is said to be “alias-free” on some set B of directions of arrival

(DoAs) if array steering vectors are distinct for all DoAs in B. In this chapter11, a

necessary and sufficient condition is presented for an arbitrary sensor array to be alias-

free. The results apply to linear, planar, and 3D arrays; they hold for any predefined

subset of DoAs for which the array must be unambiguous. The results extend existing

literature to provide simple geometrical interpretation for use in array design.

In [33], Godara and Cantoni give necessary and sufficient conditions for alias-free

arrays in one, two, or three dimensions. For L sensors, the test entails a combinatorial

search over L-tuples of integers. For planar and 3D arrays, [33] also provides easily

tested, but restrictive, sufficient conditions, requiring a smallest inter-sensor spacing

not exceeding λ/2, where λ is the wavelength of the signal. The sufficient condi-

tions have been widely used in design [226–228]. A slightly less restrictive sufficient

condition for planar arrays is given in [229, Thm. 2].

Motivated by array design, alternative sufficient conditions have been devised for

linear arrays. To avoid aliasing over the full range of azimuth angles, uniform linear

11This chapter is largely drawn from [216], coauthored with Shen Zhao, Rizwan Ahmad, and
Lee C. Potter (© 2022 IEEE).
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arrays require an inter-sensor spacing that is no more than λ/2 [230]. It may be

prohibitive to have two sensors within λ/2, due either to physical size limitations

or mutual coupling. Nonuniform linear arrays allow for alias-free operation despite

a minimum inter-sensor spacing that exceeds λ/2 [8, 221, 231, 232]. A difference co-

array is a virtual array with positions given by the pairwise differences of the physical

sensor locations. Particular attention has been given to array geometries for which

the co-array has uniform sampling and is fully filled, such as minimum redundancy

arrays [233], nested arrays [234], and co-prime arrays [235]. Thinned arrays refer to

the special case of a uniform array from which some elements have been removed.

For a thinned linear array of L sensors with λ/2 spacing, a necessary and sufficient

condition for no aliasing is given in [236]: for reference sensor at 0 and positions

niλ/2, the integers {n2, n3, . . . , nL} must have a greatest common divisor (gcd) of 1.

Specialized to a nonuniform linear array of L = 3 sensors at positions {0, q1, q2} with

0 < q1 < q2, [237] posits the sufficient condition that q2/q1 = m/ℓ for co-prime integers

m, ℓ, with |ℓ| > ⌊2q1/λ⌋ or |m| > ⌊2q2/λ⌋. Likewise for L = 3, [213,238] establish the

sufficient condition that the co-array contains a pair of elements not more than λ/2

apart.

A task very similar to array design arises in phase-contrast magnetic resonance

imaging [31,168,225,239,240]. There, the velocity of spins at a voxel is encoded into

image phase differences. Encoded images are acquired by adopting a time-varying

gradient field, and the first moments of these waveforms are analogous to sensor

positions. For velocity in one or several dimensions, unambiguous performance is

required up to some maximum speed, such as 300 cm/s.
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6.2 Signal Model

Consider data collected from an array with L sensors receiving a narrow-band

signal from a single emitter located in the far field. The demodulated complex-valued

L× 1 array output vector is given by

b(t) = a(x)s(t) + ε(t), t = 1, 2, . . . , T, (6.1)

where s(t) ∈ C is the baseband complex amplitude of the impinging wavefront, T is

the number of snapshots, a(x) ∈ CL×1 is the array steering vector, ε(t) ∈ CL×1 is

circularly symmetric Gaussian noise with zero mean and covariance σ2IL, and ϵ(t) is

uncorrelated across snapshots.

For an array of isotropic sensors in n dimensions, the array steering vector is given

by

a(x) =
[
eiπp

T
1x eiπp

T
2x · · · eiπp

T
Lx
]T

, (6.2)

where i =
√
−1 and the vector x ∈ Rd corresponds to the DoA of the impinging signal.

The position vectors pj ∈ Rn, for j ∈ {1, 2, . . . , L}, give the sensor positions in units

of one-half wavelength. For linear arrays, n = 1 and x = sin θ, where θ is the azimuth

angle of the source. For planar arrays, n = 2 and x = [cos θ cosϕ, sin θ cosϕ]T,

with ϕ denoting the elevation angle to the source. For general arrays, n = 3 and

x = [cos θ cosϕ, sin θ cosϕ, sinϕ]T.

6.3 Alias-free

For an array to be alias-free, the steering vectors in (6.2) must be distinct for

distinct DoAs. Using the first sensor as a phase reference, the (L−1) phase differences
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are π [pk − p1]
T x, for k ∈ {2, 3, . . . , L}. We define the (L− 1)-by-n encoding matrix

A = 1
2
[ (p2 − p1), (p3 − p1), . . . , (pL − p1) ]

T , (6.3)

and assume that rank(A) = n [33, Thm. 4]. Note that the encoding matrix A is

determined entirely by the geometry of the array. Next, define B as the set of arrival

directions. For n = 1, the set B1 =
{
x | θ ∈

[
−π

2
, π
2

]}
is the unit ball in R, ∥x∥ ≤ 1.

For a planar array, n = 2 and the set B2 =
{
x | θ ∈ [0, 2π), ϕ ∈

[
0, π

2

]}
of all DoAs

is the unit ball in R2, ∥x∥ ≤ 1. These DoAs correspond to source directions on

the upper hemisphere. If, for the planar array, the source is constrained to lie in

the plane of the sensors, then B′
2 is the unit circle in the plane. For a 3D array,

n = 3 and the set B3 =
{
x | θ ∈ [0, 2π), ϕ ∈

[
−π

2
, π
2

]}
of all DoAs is a sphere in R3,

{x | ∥x∥ = 1}. These DoAs correspond to source directions on the sphere. Note that

B may alternatively be defined as some subset of Bn in n dimensions, for example,

with prior knowledge restricting the range of possible DoAs [241].

Definition 10 (Alias-free on B). An array with the encoding matrix A is alias-free

on B if, for any x1,x2 ∈ B,

A(x2 − x1) ∈ ZL−1 ⇒ x2 = x1.

When considering the set of all directions of arrival, B = Bn and the array is simply

said to be “alias-free.”

Thus, we consider the system of linear congruence equations

Ax ≡ 0L−1 mod 1L−1, (6.4)

which can be reformulated as

Ax = k, (6.5)
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where k ∈ ZL−1 is called a vector of wrapping integers. The set of solutions to (6.4)

for an array with encoding matrix A is

ΩA = {x ∈ Rn | Ax ∈ ZL−1}. (6.6)

If (6.4) admits any nonzero solution, then ΩA = ΛV ; that is, the solutions form a

lattice ΛV ⊂ Rn [181,242,243], for some lattice basis V . The solution set ΩA is thus

either {0} or a lattice; in either case the solution set is closed under addition. Note

that if ΩA = {0}, then the array is said to be alias-free on all Rn.

We have that ΩA = ΛV if and only if, for all x ∈ Rn,

Ax ∈ ZL−1 ⇔ x ∈ ΛV . (6.7)

Definition 11. A matrix Z ∈ Zc×d with c ≥ d is called primitive if, for all q ∈ Qd

[244],

Zq ∈ Zc ⇒ q ∈ Zd. (6.8)

A column vector is primitive if its elements have a greatest common divisor of unity

[245]. Any c-by-d primitive matrix can be extended to a c-by-c unimodular matrix

[186,244].

Lemma 12. A matrix Z ∈ Zc×d with c ≥ d is primitive if and only if UZ is primitive

for any unimodular U ∈ Zc×c.

Proof. For any unimodular U ∈ Zc×c and any q ∈ Qd,

UZq ∈ Zc ⇔ Zq ∈ U−1Zc ⇔ Zq ∈ Zc.

From Definition 11, Z is primitive if and only if UZ is primitive.

Lemma 13. For invertible V ∈ Rn×n, if Z = AV is primitive, then ΩA = ΛV .
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Proof. If Z = AV is primitive, then for all x ∈ Rn,

Ax ∈ ZL−1 ⇔ ZV −1x ∈ ZL−1 ⇔ V −1x ∈ Zn

⇔ x ∈ V Zn ⇔ x ∈ ΛV .
(6.9)

For the second equivalence, sufficiency is given by Definition 11, and necessity is due

to Z being integer-valued. From (6.7), ΩA = ΛV .

Proposition 14. For invertible V ∈ Rn×n, ΩA = ΛV if and only if A = ZV −1, for

some primitive matrix Z ∈ Z(L−1)×n.

Proof. Necessity: This is given by Lemma 13.

Sufficiency: Assume that ΩA = ΛV . From (6.7), for all x ∈ Rn,

Ax ∈ ZL−1 ⇔ x ∈ ΛV ⇔ x ∈ V Zn. (6.10)

Thus, AV Zn ⊂ ZL−1, which is true if and only if AV ∈ Z(L−1)×n.

From (6.10), for any q ∈ Qn,

AV q ∈ ZL−1 ⇔ V q ∈ V Zn ⇔ q ∈ Zn. (6.11)

Therefore, from Definition 11, Z = AV is primitive.

Corollary 15. For any invertible V ∈ Rn×n, ΩA = ΛV if and only if ΩUA = ΛV ,

for any unimodular U ∈ Z(L−1)×(L−1).

Proof. From Lemma 12, AV is primitive if and only if UAV is primitive. Thus,

according to Lemma 13, ΩA = ΛV if and only if ΩUA = ΛV .

Corollary 16. For any invertible V ∈ Rn×n, ΩA = ΛV if and only if ΩAS = ΛS−1V ,

for any invertible S ∈ Rn×n.
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Proof. From Proposition 14, if ΩA = ΛV , then A = ZV −1, for some primitive

Z(L−1)×n. This is true if and only if AS = ZV −1S, for any invertible S ∈ Rn×n,

which is true if and only if ΩAS = ΛS−1V .

For linear arrays, the lattice basis becomes a scalar v ∈ R. From Proposition 14,

we have that a 1D array has ΩA = Λv if and only if the sensor displacements in (6.3)

are setwise coprime integer multiples of a common real-valued factor 1/v.

If A is rational, ΩA = ΛV is a full-rank lattice with invertible basis V ∈ Rn×n;

the basis V can be formed as in (5.16), (5.17), (5.18), (5.18) in Section 5.3.4 [7], with

M = IL−1. Therefore, a sufficient condition for ΩA to be a full-rank lattice is for

A to be rational, i.e., for the sensors to have been placed on a Cartesian grid, such

as might naturally happen in fabrication. The parallelotope PV defines a region in

which the solution to (6.4) is unique.

For a given DoA x0, let ϕ0 = 2π(Ax0 − k0) = ∠a(x0) be the phases of the

steering vector; k0 is the associated vector of wrapping integers. The least-squares

solution x̂ =
〈
A†(ϕ0

2π
+ k̂

)〉
V

for k̂ ̸= k0 corresponds to a beampattern side-lobe.

Here, ⟨·⟩V refers to the operation defined in (5.7), by which a vector is translated to

the parallelotope PV .

6.4 Necessary and Sufficient Condition

For the remainder of this chapter, we assume that ΩA = ΛV , for some invertible

V ∈ Rn×n. From Definition 10, we immediately have:

Proposition 17. An array is alias-free on B if and only if translations B+{ui} and

B + {uj} are disjoint for all ui ̸= uj ∈ ΛV .
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Specializing to the case of the full range of DoAs, defined as Bn above, yields the

following corollary.

Corollary 18. An array is alias-free if and only if

min
u∈ΛV \{0}

∥u∥ > 2, (6.12)

i.e., the smallest norm of a non-zero lattice point in ΛV is greater than 2.

Proof. Recall Bn as defined in 6.3: unit balls in R and R2 or the sphere in R3. Then,

B+ {ui} and B+ {uj} have an empty intersection for all ui ̸= uj ∈ ΛV if and only if

∥uj − ui∥ > 2 for all ui ̸= uj ∈ ΛV . As lattices are closed under addition, the array

is alias-free if and only if ∥u∥ > 2, for all u ∈ ΛV \ 0.

Godara and Cantoni [33, Thm. 6] provide an alternative necessary and sufficient

test for alias-free on the full set of DoAs: the image of the unit ball under A contains

no integer point other than the origin. The test is applied by combinatorial search over

k ∈ ZL−1, with ∥k∥ < ∥A∥2. In contrast, construction of the lattice basis V provides

for an easily tested necessary and sufficient condition for arbitrary B. Specialization

to the set of all possible directions of arrival in one or several dimensions is considered

below.

6.4.1 Linear Arrays

For n = 1, the fundamental parallelotope Pv ⊂ R reduces to an interval and is

unique, up to a sign. By the Chinese remainder theorem and Corollary 18, a linear

array is alias-free if and only if

LCM
(
1(L−1) ⊘A

)
> 2, (6.13)
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where LCM(·) denotes the least common multiple, which is the smallest positive real

number that is an integer multiple of all input numbers. For example,

LCM
(
π
3
, π
2
, 2π

3

)
= 2π.

Equation (6.13) is an equivalent and alternative test to [33, Thm. 11]: there exists

sensor separation less than or equal to λ/2, or for minimum spacing qα > λ/2 with

integer q, there exists a third element such that its distance from any one of the two

elements is not an integer multiple of α. The simplicity of (6.13) aids in design.

6.4.2 Nonlinear Arrays

For planar or 3D arrays, the lattice basis, and hence the corresponding fundamen-

tal parallelotope, are not unique. Equation (6.12) provides a simple necessary and

sufficient test, in contrast to the widely used sufficient condition [33, Thm. 8]. Note

that evaluating (6.12) is equivalent to solving a shortest lattice vector problem in n

dimensions.

6.4.3 Invariances and Scaling

From (6.6), we see that ΛV is invariant to translations of the point set {p1, . . . ,pL}.

According to Corollary 15, ΛV is invariant to unimodular transformation ofA. Corol-

lary 16 describes the effect of an invertible transformation of A on the lattice of

solutions to (6.4); this property can be used to examine the effects of dilation or

contraction of a point set in array design. We also have the following property show-

ing that an alias-free array remains alias-free following orthonormal transformation

(including rotation or reflection) of its point set.
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Proposition 19. If the array with encoding matrix A is alias-free, then the array

with encoding matrix ABT is alias-free, for any n-by-n matrix B with orthonormal

columns.

Proof. Assume that ΩA = ΛV and that the array with encoding matrixA is alias-free.

By Corollary 16, ΩABT = ΛBV (note that B−1 = BT). From Corollary 18,

min
u∈ΛV \{0}

∥u∥ > 2 ⇔ min
λ∈Zn\{0}

∥V λ∥ > 2

⇔ min
λ∈Zn\{0}

∥BV λ∥ > 2 ⇔ min
u∈ΛBV \{0}

∥u∥ > 2.

Therefore, the array with encoding matrix ABT is alias-free.

6.5 Examples

6.5.1 Linear Array

In [221] a four-element linear array is proposed for meteor trajectory estimation

with element positions given, in units of one-half wavelength, by {0, 4, 9, 40}. The

array, an extension of an interferometric system in [8], is alias-free for the full range

of azimuth angles. The application requires a minimum inter-sensor spacing much

larger than λ/2 to limit the effects of mutual coupling. As an example, we design an

alternative array configuration to minimize the Cramér-Rao lower bound (CRB) on

estimation error variance subject to the constraints that the minimum inter-sensor

spacing and peak side-lobe level meet those of the array in [221].

The source signal {s(t)} follows a zero-mean circularly symmetric Gaussian dis-

tribution with power ρ2 and is independently and identically distributed across snap-

shots, indexed by t [22, 230]. Under this model with T snapshots and L sensors, the
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CRB is given by (e.g., [222,223])

CRB =
L · snr + 1

2π2TL2Msnr2
(6.14)

where snr denotes the signal-to-noise ratio ρ2/σ2 and

M =
1

L

L∑
k=1

(
pk −

1

L

L∑
n=1

pn

)2

(6.15)

is the moment of inertia.

For a 20 dB signal-to-noise ratio as in [8], the array in [221] has a CRB of 5.09×10−7

and a peak side-lobe level of 0.369 dB. Assuming that |θ| < 80◦ [221], we follow

a design procedure similar to that in [31] to obtain the element locations 0.986 ·

{0, 5, 41, 78}. This new array configuration has a peak side-lobe level of 0.369 dB, a

reduced CRB of 1.25 × 10−7, and from (6.13), an unambiguous interval for sin θ of

1.97.

Next, we interpret (6.13) for an arbitrary three-element linear array with rational

positions. Without loss of generality, let p1 = 0 and (p2 − p1) ≤ (p3 − p2). Select

co-prime integers q and ℓ such that p3−p1
p3−p2

= q
ℓ
∈ (1, 2]. Then, from (6.13) with

B = (−1, 1), the array is alias-free on B if and only if

q − ℓ

(p2 − p1)
≥ 1. (6.16)

In [213,214,238], the co-array is constrained to have a pair of positions not more than

λ/2 apart; from (6.16), this sufficient condition is not necessary, allowing additional

design flexibility. If [−1, 1] is a strict subset of the unambiguous interval PV , then

the two end-fire DoAs, ± sin(π/2), are disambiguated.
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6.5.2 Planar Arrays

Consider a uniform circular array with L = 6 and one-wavelength spacing [246–

248]. The lattice has basis V = diag({2, 2
√
3/3}). Corollary 18 is violated, because

a vertex in PV , given by
[
0, 2

3

√
3
]T
, has norm 2

3

√
3 ≈ 1.1547 < 2. This is evident in

Fig. 6.1a, where the boundary of B2 is shown translated to each of the several lattice

points displayed, and the translated unit balls overlap. For a regular hexagonal

array, the largest spacing at which the unit balls become tangent is
√
3
3
λ ≈ 0.5774

wavelength. The minimum spacing
√
3
3
λ > 1

2
λ violates the widely used sufficient

condition [33, Thm. 9].

Fig. 6.1b depicts the lattice and shifted unit balls for a four-element array with po-

sitions [0, 0]T, [±1.71, 0]T, and [0.26, 2.11]T. The array is alias-free on B2, although no

fundamental parallelogram contains a unit ball and the smallest inter-sensor spacing

is 0.855λ.

Fig. 6.1c shows the lattice and shifted B for a four-element array with a reduced

set of DoAs given by B = {x | θ ∈ [−π/3, π/3], ϕ ∈ [0, π/2]}. Note that the array

is not alias-free for the full set of DoAs B2; the minimum separation between the

parallelogram vertices is 1.335, and the condition of Corollary 18 is not satisfied.

However, for the subset B, the condition in Proposition 17 is satisfied, and the array

is alias-free on B. The lack of aliasing is illustrated by the disjointedness of the

hourglass-shaped translations of B in Fig. 6.1c. The array is designed from the desired

parallelogram via A = ZV −1 with primitive matrix Z yielding positions [0, 0]T,

[2.67, 0.42]T, [1.78, 2.48]T, and [0.89, 4.54]T; the minimum separation between sensors

is 1.122λ. This example shows how Proposition 17 may be used to design arrays that

avoid aliasing over a subset of DoAs, as is sought in [221].
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Figure 6.1: (a) For a uniform circular array of six sensors with λ spacing, illustration
of the lattice Λ, a basis V , a fundamental parallelogram, and the disc of all DoAs, B2,
translated periodically per the lattice. In this case, the translated discs intersect, and
the array is aliased. (b) The lattice and shifted B2 for a four-sensor planar array that
is alias-free, despite a minimum sensor separation of 0.855λ. (c) A second four-sensor
planar array in which B is the set of DoAs with |θ| ≤ 60◦; the array is alias-free on
B.

6.5.3 3D Array

A bi-tetrahedron of five sensors [219,249,250] is shown in Fig. 6.2a with positions

[0, 0,±1]T, [2, 0, 0, ]T, and [−1,±1, 0, ]T in units of one-half wavelength. The positions

correspond to the vertices of an irregular polyhedron and are chosen so that there

exists a cubic fundamental parallelotope circumscribing a sphere of diameter 2. The

minimum distance between sensors is
√
3λ/2. This is 73% too large to satisfy the

commonly used sufficient condition [33, Thm. 8], which requires that the minimum

distance between sensors not exceed λ/2. The tangent points on each face correspond

to the three pairs (az, el) of ambiguous DoAs, (0,±90◦), (±90◦, 0), and (90◦± 90◦, 0);

any small contraction of the array geometry removes these points of tangency. The
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(a) (b)

Figure 6.2: For a bi-tetrahedral (a) array of five sensors, (b) illustration of a funda-
mental parallelotope and the sphere of all DoAs, B3, translated to the center of the
parallelotope. Spheres translated to lattice points are merely tangent; the array is
alias-free other than three pairs of ambiguous DoAs.

array is not isotropic: the CRB for x1 is three times smaller than for x2 and x3. The

unambiguous set for 3D arrays is underestimated in some prior literature, e.g., [9,219].

6.6 Summary

In this chapter, the results in [33] have been extended to provide a simply tested

necessary and sufficient condition characterizing array geometries that provide un-

ambiguous steering vectors. First, Proposition 17 considers an arbitrary set, B, of

candidate DoAs, with application illustrated in Fig. 6.1c. In contrast, [33] only con-

siders the case in which B corresponds to all possible DoAs. Second, the test in (6.12)

provides a simple necessary and sufficient condition for alias-free array geometries in
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2D and 3D, offering a less restrictive alternative to a widely used sufficient condi-

tion [33, Thms. 8, 9]. The test in (6.12) is easily applied, yet it offers increased

flexibility for array geometry design over the sufficient condition in [33]. Third, the

direct test for 1D arrays in (6.13) is simpler than [33, Thm. 11] and therefore advan-

tageous in a design procedure. The new results facilitate the design of nonuniform

arrays for widely separated sensors or increased aperture without an increase in the

number of sensors. The unambiguous set of spatial frequencies was shown to be a

parallelotope, admitting both intuitive geometric interpretation and application of

the test for any subset of DoAs.

6.7 Future Work

The properties given in this chapter may allow for efficient 2D and 3D sensor array

design and analysis techniques similar to those offered for 1D arrays in [31, 178].

In particular, Lemma 13 allows for an array design process that begins with the

specification of a desired lattice basis V . Next, a set of candidate primitive matrices

can be formed. For each Z in the set, the encoding matrix A is given by A = ZV −1,

and from A, the sensor locations can be determined. The result is a set of sensor

configurations that can be analyzed with respect to the CRB and the probability of

an outlier [223]. This approach may lead to an efficient design process, in which only

the sensor configurations with a desirable unambiguous region will be considered.

Corollary 16 can also be used to scale candidate array configurations.

Note that the signal model in (6.2) uses the traditional assumption of isotropic

sensor elements. In [251], ambiguity analysis with arbitrary complex-valued gain
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functions per sensor was considered. Future research might address these alternative

scenarios.
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Appendix A: Variational Inference Details for Chapter 3

The gamma distribution’s probability density is denoted by

G(v;α, β) = βαvα−1

Γ(α)
exp {−βv}, (A.1)

with shape parameter α > 0 and rate parameter β > 0. The inverse gamma distri-

bution’s probability density is denoted by

IG(v;α, β) = βαv−(α+1)

Γ(α)
exp

{
−βv−1

}
(A.2)

with shape parameter α > 0 and scale parameter β > 0. From (3.7) and (3.14), the

variational factor associated with r
(1)
i is updated as

log q(r
(1)
i ) = log p(y

(1)
i |r(1)i ) + ⟨log p(r(1)i | z(1))⟩q(z(1))

+ const.

=− log r
(1)
i −

|y(1)i |2

r
(1)
i

− (1 + a|Sr
i |) log r(1)i

−
∑
j∈Sr

i

a⟨z(1)j ⟩
r
(1)
i

+ const., (A.3)

giving q(r
(1)
i ) = IG(r(1)i ;α

(1)
r,i , β

(1)
r,i ), with

α
(1)
r,i = 1 + a|Sr

i | (A.4a)

β
(1)
r,i = |y(1)i |2 +

∑
j∈Sr

i

a⟨z(1)j ⟩. (A.4b)
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The factor associated with r
(2)
i is updated as

log q(r
(2)
i ) =

〈
log p(y

(2)
i | y(1)i , r

(2)
i , ci)

〉
q(c)

+ ⟨log p(r(2)i | z(2))⟩q(z(2)) + const. (A.5)

=− ⟨δ(ci + 1)⟩
[ |y(2)i − γe−jϕiy

(1)
i |2

r
(2)
i (1− γ2)

]
− ⟨δ(ci − 1)⟩

[ |y(2)i |2

r
(2)
i

]
−
(
1 + a|Sr

i |
)
log r

(2)
i

− log r
(2)
i −

∑
j∈Sr

i

a⟨z(2)j ⟩
r
(2)
i

+ const., (A.6)

giving q(r
(2)
i ) = IG(r(2)i ;α

(2)
r,i , β

(2)
r,i ), with

α
(2)
r,i = 1 + a|Sr

i | (A.7a)

β
(2)
r,i =

⟨δ(ci + 1)⟩|y(2)i − γe−jϕiy
(1)
i |2

(1− γ2)

+ ⟨δ(ci − 1)⟩|y(2)i |2 +
∑
j∈Sr

i

a⟨z(2)j ⟩. (A.7b)

The time-k auxiliary variable factors for k ∈ {1, 2} are updated according to

log q(z
(k)
j ) =⟨log p(z(k)j | r(k))⟩q(r(k)) + const.

=(−1 + a|Sz
j |) log z(k)j

−
∑
i∈Sz

j

〈
a

r
(k)
i

〉
z
(k)
j + const. (A.8)

This implies that q(z
(k)
j ) = G(z(k)j ;α

(k)
z,j , β

(k)
z,j ), with

α
(k)
z,j = a|Sz

j | (A.9a)

β
(k)
z,j =

∑
i∈Sz

j

〈
a

r
(k)
i

〉
. (A.9b)
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Appendix B: Proofs for Chapter 5

B.1 Proofs for Section 5.4

This appendix has statements that are relevant to the ML solution method in

Section 5.4, in which Condition 7 is assumed to be met.

Proposition 20. For any r ∈ H and λ ∈ Zn, r +Cλ ∈ H.

Proof. From (5.35), ωjajr − ⟨ωjyj +
1
2
⟩1 ∈ Z, for some j ∈ {1, . . . ,m}. Then for any

λ ∈ Zn,

ωjaj(r +Cλ)− ⟨ωjyj +
1
2
⟩1 ∈ Z, (B.1)

as ωjajCλ ∈ Z. Therefore, r +Cλ ∈ H.

Proposition 21. If r ∈ H, then ⟨r⟩C ∈ H̃.

Proof. From (5.7), ⟨r⟩C = r −C⌊C−1r⌋. Thus from Proposition 20, ⟨r⟩C ∈ H, and

since ⟨r⟩C ∈ PC , ⟨r⟩C ∈ H̃.

Proposition 22. If r̃ ∈ Ψ̃(ℓ), then r̃ ∈ Ψ̃(ℓ+ ω ◦ (ACλ)), for any λ ∈ Zn.
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Proof. From (5.37), if r̃ ∈ Ψ̃(ℓ), then there is r ∈ Ψ(ℓ) such that ⟨r⟩C = r̃. From

(5.36), ⌈ω ◦ (y −Ar)⌋ = ℓ, and therefore, for any λ ∈ Zn,

⌈ω ◦ (y −A(r −Cλ+Cλ))⌋ = ℓ

⌈ω ◦ (y −A(r −Cλ))⌋ = ℓ+ ω ◦ (ACλ) (B.2)

Thus, r −Cλ ∈ Ψ(ℓ+ ω ◦ (ACλ)). Since ⟨r −Cλ⟩C = r̃, r̃ ∈ Ψ̃(ℓ+ ω ◦ (ACλ)),

according to (5.37).

Proposition 23. For any λ ∈ Zn, Lr(r;y) = Lr(r +Cλ;y)

Proof.

Lr(r +Cλ;y) =
∥∥Σ−1/2 d1m⊘ω (y −A(r +Cλ))

∥∥2
=
∥∥Σ−1/2

(
y −Ar −ACλ

− ⌈ω ◦ (y −Ar −ACλ)⌋ ⊘ ω
)∥∥2

=Lr(r;y)

Lemma 24. At no element of H does Lr have a local minimum.

Proof. From (5.31),

Lr(r;y) =
m∑
i=1

1

σ2
ii

d2
ω−1
i

(yi − air) .

For any r0 ∈ H, dω−1
j
(yj − ajr0) = −1

2
ω−1
j , for some j ∈ {1, . . . ,m}, and therefore,

yj = ajr0 + ω−1
j ⌈ωj(yj − ajr0)⌋ −

1

2
ω−1
j . (B.3)
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Let u ∈ Rn be an arbitrary unit vector. The right directional derivative of Lr with

respect to u is

∂u+Lr(r0;y) = lim
h→0+

Lr(r0 + hu)− Lr(r0)

h

= lim
h→0+

m∑
i=1

σ−2
ii

h

(
d2
ω−1
i
(yi − ai(r0 + hu))

− d2
ω−1
i
(yi − air0)

)
= lim

h→0+

σ−2
jj

h

(
d2
ω−1
j
(yj − aj(r0 + hu))

− d2
ω−1
j
(yj − ajr0)

)
= lim

h→0+

σ−2
jj

h

((
ω−1
j ⌈ωj(yj − ajr0)⌋

− ω−1
j ⌈ωj(yj − aj(r0 + hu))⌋

− 1

2
ω−1
j − haju

)2 − 1

4
ω−2
j

)
. (B.4)

If aju > 0, we have

⌈ωj(yj − aj(r0 + hu))⌋ − ⌈ωj(yj − ajr0)⌋ = −1, (B.5)

in which we have used that h > 0. Using (B.5) in (B.4), we get that

∂u+Lr(r0;y) =− (σ2
jjωj)

−1aju, (B.6)

and thus ∂u+Lr(r0;y) < 0, when aju > 0. (Note that σ2
jjωj > 0.) Alternatively, if

aju ≤ 0,

⌈ωj(yj − aj(r0 + hu))⌋ − ⌈ωj(yj − aj(r0))⌋ = 0, (B.7)

and from (B.4), we have

∂u+Lr(r0;y) = (σ2
jjωj)

−1aju. (B.8)

With aju < 0, we also have that ∂u+Lr(r0;y) < 0. Thus, ∂u+Lr(r0;y) < 0. Follow-

ing a similar procedure for the left derivative, we find that ∂u−Lr(r0;y) < 0. Thus, Lr
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does not have a local minimum at r0, and we conclude that Lr has a local minimum

at no point in H.

Lemma 25. If ω has pairwise coprime entries, then Condition 7 is satisfied.

Proof. From (5.22), ωi = lcm([βi,1, . . . , βi,n]
T), for each i = 1, . . . ,m. So, there is

hi,j ∈ Z, for each j ∈ {1, . . . , n}, such that

hi,j =

{
ωi

βi,j
, βi,j ̸= 0

0, else,

with gcd([hi,1, . . . , hi,n]
T) = 1. Thus, from (5.21),

gcd([ωiaiC, ωi]
T) = gcd([hi,1, . . . , hi,n, ωi]

T) = 1.

According to Theorem 4, there are integer solutions to

ω ◦ (AC)λ ≡ q mod ω, (B.9)

for any q ∈ Zm. Hence, Condition 7 is satisfied.

Lemma 25 shows that ω having pairwise coprime entries is sufficient to satisfy

Condition 7, but it is not necessary. As an example, consider the encoding matrix

A =

[
4 0 1
2 1 2

]T
, (B.10)

which has ω = [1, 2, 4]TThe entries of ω are not pairwise coprime, yet A satisfies

Condition 7.

Proposition 26. With n = 1, Condition 7 is satisfied iff ω has pairwise coprime

entries.
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Proof. (⇐): Given by Lemma 25.

(⇒): Let W̃ = [ω ◦ (AC), diag(ω)]T ∈ Z(m+n)×m, and let H = [H̃T, 0m,n]
T be

the HNF of W̃ . From Proposition 8, Condition 7 is equivalent to H̃ = Im. As

W̃ = U−1H , Condition 7 is equivalent to the possibility of extending W̃ to an

(m+n)×(m+n) unimodular matrix. According to [186, Lemma 2], this is possible iff

the full-rank minors of W̃ are setwise coprime. For n = 1, we have that ωjajC = ±1,

for j ∈ {1, 2, . . . ,m}. Therefore, each element of the first row of W̃ is ±1, and the

absolute values of the full-rank minors of W̃ are given by

M =
{ m∏

i=1

ωi

}
∪
{∏

i ̸=j

ωi

}m

j=1
. (B.11)

For example, if A = [ 1/2, 1/3, 1/5 ]T, then C = 1 and ω = [2, 3, 5]T. Thus,

W̃ =


1 1 1
2 0 0
0 3 0
0 0 5

 , (B.12)

andM = {30, 15, 10, 6}.

Suppose that M is setwise coprime and that ω does not have pairwise coprime

entries. Then ωk = αωℓ for some k ̸= ℓ and α ∈ Z. Thus, the factor ωℓ is present in

each element inM. This is a contradiction, as we have assumed thatM is setwise

coprime. Thus, if the full-rank minors of W̃ are setwise coprime, then ω has pairwise

coprime entries.

Theorem 27. For encoding matrix A satisfying Condition 7, the function f : {⟨Zn⟩C−1V×

Zm} 7→ Zm defined by f(γ,k) = ω ◦ (ACγ + k) is a bijection.

Proof. Onto: As A meets Condition 7, for any q ∈ Zm, there is λ ∈ Zn such that

ω ◦ (AC)λ = q mod ω. (B.13)
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Let γ = ⟨λ⟩C−1V . It follows from (B.13) and (5.7) that

ω ◦ (AC)(γ +C−1V ⌊V −1Cλ⌋) ≡ q mod ω

⇔ ω ◦ (ACγ) ≡ q mod ω,

where we have used that AV ∈ Zm×n. Therefore, f(γ,k) = ω ◦ (ACγ + k) = q for

some k ∈ Zm.

One-to-one: For any γ1,γ2 ∈ ⟨Zn⟩C−1V and k1,k2 ∈ Zm, assume that f(γ1,k1) =

f(γ2,k2). Then,

ω ◦ (ACγ1 + k1) = ω ◦ (ACγ2 + k2)

⇒ AC(γ2 − γ1)) ∈ Zm ⇔ C(γ2 − γ1) ∈ ΛV (B.14)

⇔ γ2 − γ1 ∈ C−1V Zn ⇔ γ1 = γ2 ⇔ k1 = k2.

Proposition 28. If Condition 7 is satisfied for an encoding matrix A, then it is

satisfied for the encoding matrix Ã = AS, where S is any n-by-n invertible matrix.

Proof. If V is the basis for {x | Ax ∈ Zm}, then according to Corollary 16, S−1V is

the basis for {x | Ãx ∈ Zm}. If C is a basis for a super-lattice of ΛV (as defined in

Section 5.4.1), then C̃ = S−1C is a basis for a super-lattice of ΛṼ . Continuing with

this notation, we get that β̃ = β and that ω̃ = ω. Thus, for any b ∈ Zm,

ω̃ ◦ (ÃC̃)γ ≡ b mod ω̃ ⇔ ω ◦ (AC)γ ≡ b mod ω.
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B.2 Correspondence Between Hyperplane Intersections and
Chambers

Let U denote the set of points at which n hyperplanes in H intersect, and let

Ũ = PC ∩ U = ⟨U⟩C . Recall that H, defined in (5.35), comprises hyperplanes

(subspaces of codimension one) in Rn defined by the normal vectors {aT
j }j∈{1,...,m},

where aj ∈ Q1×n is the jth row of A. Because A is assumed to have full column

rank, we have that U is nonempty. Further, we assume that there is no intersection

of more than n hyperplanes in H, which is true almost surely.

Let cl Ψ(ℓ) denote the polytope given by the closure of Ψ(ℓ). Define a directed

graph G, in which each node is a point in U . Let any pair of nodes in G be connected

by an edge if both points occupy the same edge in clΨ(ℓ), for any ℓ ∈ Φ. The direction

of the edges will be determined by a linear objective function on the vertices.

Let G(Ψ(ℓ)) be the sub-graph of G having only the nodes that are vertices of

cl Ψ(ℓ). The graph G(Ψ(ℓ)) is thus a polytopal digraph. Given a polytope and a

linear objective function on the vertices of the polytope, a polytopal digraph is a

directed graph with nodes and edges corresponding to the polytope vertices and

extremal edges, with each edge directed toward the vertex with the higher objective

function value [252, 253]. The linear objective function we use is p(v) = dTv, where

d ∈ Rn is an arbitrary unit vector such that dTaj ̸= 0, for all j ∈ {1, . . . ,m}. This

ensures that d is orthogonal to no hyperplane in H. Thus, the edge between any

pair of connected nodes v and η is directed towards v if dTv > dTη, and towards η

otherwise. Also, let G(v) denote a sub-graph of G containing only the node v and

the nodes connected to v.

Proposition 29. Let v ∈ U . For any node η connected to v, dTv ̸= dTη.
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Proof. Both v and η are in one of the hyperplanes that constitute H. So, v − η is

also in that hyperplane. We assume that d is orthogonal to no hyperplane in H, and

thus, dT(v − η) ̸= 0.

Lemma 30. For any v ∈ U , the remaining nodes in G(v) can be partitioned into

pairs such that, within each pair, the edge between v and one neighboring node directs

towards v, and the edge between v and the other neighboring node directs away from

v.

Proof. Any vertex v ∈ U is an intersection of n hyperplanes, and there are 2n nodes

in G that are connected to v. The points in U appear along lines formed by the

intersection of n − 1 hyperplanes. Hence, for any point connected to v in G, there

will be a corresponding point (also connected to v) in the opposing direction. Each

pair of opposing points is collinear with v, and v is located between the pair. Let

{η1, η2} be any such pair. We have that η2 = v − α(η1 − v) for some α > 0. (This

expresses that η1 is in the opposite direction from v as η2.) The edge between v and

η1 directs to η1 iff

dT(η1 − v) > 0⇔ dT(−α(η1 − v)) < 0

⇔ dT(η2 − v) < 0,

which is true iff the edge between v and η2 directs to v. Hence, one of {η1,η2} has

an edge directed towards v, and one has an edge directed away from v.

Lemma 31. For any v ∈ U , there is only one chamber, denoted Ψ(ℓ) for some ℓ ∈ Φ,

for which v is a sink (source) in G(Ψ(ℓ)). (Note that v ∈ clΨ(ℓ).)

Proof. Any of the 2n chambers that have v in its closure can be uniquely identified

with a set consisting of one node from each of the n pairs described by Lemma 30.
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One of each such pair has an edge that directs towards (away from) v. Therefore, for

only one of the 2n chambers are all edges between v and vertices in the chamber’s

closure directed towards (away from) v. Thus, for this chamber, denoted Ψ(ℓ), v is

a sink (source) in G(Ψ(ℓ)).

Theorem 32 ([253, Theorem 19.4.1]). A polytopal digraph has one source and one

sink.

Theorem 33. There is a bijection between U and {Ψ(ℓ)}ℓ∈Φ.

Proof. Let π : U 7→ {Ψ(ℓ)}ℓ∈Φ be a function that maps v ∈ U to the (unique, from

Lemma 31) chamber Ψ(ℓ) for which v is a source in G(Ψ(ℓ)).

Onto: According to Theorem 32, one vertex of cl Ψ(ℓ) is a source in G(Ψ(ℓ)). For

any ℓ ∈ Φ, the source in G(Ψ(ℓ)) is given by π(Ψ(ℓ)). Therefore, π is onto.

One-to-one: Assume that π(v) = π(η) = Ψ(ℓ), for some ℓ ∈ Φ. Thus, both v

and η are sources in G(Ψ(ℓ)). Because G(Ψ(ℓ)) is a polytopal digraph with a unique

source, v = η. Therefore, π is one-to-one.

Lemma 34. For any v ∈ U and any λ ∈ Zn, π(v+Cλ) = π(v)+{Cλ}, a Minkowski

sum.

Proof. The chamber π(v) is formed by hyperplanes in H. Due to the periodicity in

H, π(v +Cλ) is a translation of π(v) by Cλ.

Theorem 35. There is a bijection between Ũ and {Ψ̃(ℓ)}ℓ∈Φ.

Proof. Define a mapping π̃ : Ũ 7→ {Ψ̃(ℓ)}ℓ∈Φ, which is given by π̃(ṽ) = ⟨π(ṽ)⟩C .
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Onto: According to Theorem 33: for any ℓ ∈ Φ there is v ∈ U such that π(v) =

Ψ(ℓ). Then π(⟨v⟩C +C⌊C−1v⌋) = Ψ(ℓ), as v = ⟨v⟩C +C⌊C−1v⌋. From Lemma 34,

we have that π(⟨v⟩C) + {C⌊C−1v⌋} = Ψ(ℓ). Thus,

⟨π(⟨v⟩C)⟩C = ⟨Ψ(ℓ)⟩C

π̃(⟨v⟩C) = Ψ̃(ℓ). (B.15)

Therefore, π̃ is onto.

One-to-one: Assume, for any v,η ∈ U that π̃(v) = π̃(η), and therefore that

⟨π(v)⟩C = ⟨π(η)⟩C . Then, π(v) = π(η) + Cλ, for some λ ∈ Zn. From Lemma 34,

π(v) = π(η +Cλ), and from Theorem 33, v = η +Cλ. Since v,η ∈ PC , this gives

us v = η. Thus, π is one-to-one.

Therefore, π̃ is a bijection between Ũ and {Ψ̃(ℓ)}ℓ∈Φ.

The correspondence between Ũ and {Ψ̃(ℓ)}ℓ∈Φ is shown in Fig. B.1. For each of

the three elements in Ũ (marked with blue circles), the wrapped chamber given by π̃

is indicated by an arrow.

B.3 Constructing χ

B.3.1 Constructing χ with n ≥ 1

Algorithm 8 in Section 5.4 requires a set χ that contains a point in Ψ̃(ℓ) for each

ℓ ∈ Φ. According to Theorem 35 in Appendix B.2, we can construct χ by forming a

point in π̃(v), for each v ∈ Ũ .

Any v ∈ Ũ is the intersection of n hyperplanes defined by {aT
ji
}i∈{1,...,n}, for some

j ∈ {1, . . . ,m}n. Let {η1, . . . ,ηn} be the n vertices in clπ(v) that are connected to v
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Figure B.1: PC is partitioned into wrapped chambers, labeled 1–3. The points at
which two wrapped hyperplanes in H̃ (shown in red) intersect are marked with blue

circles (denoted Ũ). The correspondence of each such point to a wrapped chamber
(as described in Appendix B.2) is shown by an arrow.

in G. (Recall that the closure of π(v) is a polytope.) Consider an n-simplex defined

by the n+ 1 extremal points {v,η1, . . . ,ηn}. This simplex is a subset of cl π(v).

We find a point in the interior of this simplex as the convex combination

ϕ(v) = α0v +
n∑

i=1

αiηi, (B.16)

where α0 +
∑n

i=1 αi = 1 and αi ∈ (0, 1), for i ∈ {0, . . . , n}. First note that

ηi = v + (In − Pi)dγi (B.17)

for some γi > 0, where Pi is the orthogonal projection onto span({aT
jq}q∈{1,...,n}\i).

That is, (In − Pi) is a projection to the line that contains both v and ηi.
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From (B.16) and (B.17), we have

ϕ(v) = α0v +
n∑

i=1

αi(v + (In − Pi)dγi) (B.18)

= v +
n∑

i=1

αi(In − Pi)dγi. (B.19)

We choose the weights such that αi =
ϵ
γi
, for each i ∈ {1, . . . , n}, for some ϵ > 0.

Letting α0 = 1 −∑n
i=1

ϵ
γi
, we have that

∑n
i=0 αi = 1. For a convex combination, it

is necessary that
∑n

i=1 αi =
∑n

i=1
ϵ
γi

< 1, and thus, that ϵ < (
∑n

i=1 γ
−1
i )−1. Recalling

that d is a unit vector, we have from (B.17) that

dT(ηi − v) = dT(In − Pi)dγi

dT(ηi − v) = ∥(In − Pi)d∥2γi

dT(ηi − v) ≤ γi.

Therefore, it is sufficient that

ϵ <

(
n∑

i=1

(
dT(ηi − v)

)−1

)−1

(B.20)

to ensure that
∑n

i=1
ϵ
γi

< 1. We have a point,

ϕ(v) = v + ϵ
n∑

i=1

(In − Pi)d, (B.21)

in the interior of the simplex and, thus, in π(v). Then ⟨ϕ(v)⟩C ∈ π̃(v). The set χ is

formed as χ = {⟨ϕ(v)⟩C | v ∈ Ũ}.

B.3.2 Comment on the n = 1 Case

For n = 1, the construction of χ is greatly simplified. In this case the unit vector

is merely d = ±1 (we assume d = 1, without loss of generality), and (In − Pi) = 1.

We also have that Ũ = H̃. Thus, each point in χ is given by ϕ(v) = v + ϵ, for some
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v ∈ H̃, where ϵ is chosen such that ϵ < |η − v|, for any v ̸= η ∈ H̃. Therefore,

χ = {⟨v + ϵ⟩C | v ∈ H̃}.

Note that, for n = 1, we have that H = {a−1
j yj + C(λ+ 1/2) | λ ∈ Z}, and

H̃ = {⟨a−1
j yj + C/2⟩C | j ∈ {1, . . . ,m}}. (B.22)

Therefore, χ has a cardinality of m.

B.4 Bounds on Problem Size for Restricted Encoding Ma-
trices

This appendix provides bounds on quantities related to the size of the problem

considered in Section 5.4, in which we assume that Condition 7 is met by A.

B.4.1 Upper Bound on N

From (5.6), for any r ∈ PC and some λ ∈ [0, 1)n,

ωjajr = ωjajCλ

∈ ωjajC[0, 1)n

=
[
min(0T

n , ωjajC)1n, max(0T
n , ωjajC)1n

)
=
[
tmin
j , tmax

j

)
, (B.23)

with tmin
j , tmax

j ∈ Z, for each j ∈ {1, . . . ,m} and min and max denoting element-wise

minimum and maximum operations, respectively.

From (5.35) and (B.23), any r ∈ H̃ satisfies the following linear equality:

ωjajr = ⟨ωjyj +
1
2
⟩1 + ℓ, (B.24)

for some j ∈ {1, . . . ,m} and ℓ ∈ {tmin
j , . . . , tmax

j − 1}. Note that {tmin
j , . . . , tmax

j − 1}

is a set of integers with cardinality N j =
∑n

k=1 |ωj(ajC)k|. Thus, (B.24) describes a
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total of N =
∑m

j=1 N
j hyperplanes, and H̃ ⊂ Hsub, where

Hsub =
{
r ∈ Rn | ∃j ∈ {1, . . . ,m} s.t.

ωjajr − ⟨ωjyj +
1
2
⟩1 ∈ {tmin

j , . . . , tmax
j − 1}

}
, (B.25)

i.e., Hsub is a union of the N hyperplanes in H that intersect with PC . Thus, H̃ =

PC ∩H = PC ∩Hsub.

Recall that β ∈ Zm×n, with

βj,k =

{
1/(ajC)k, (ajC)k ̸= 0

0, otherwise
,

and that βj ∈ Z1×n is the jth row of β. Thus, if βj,i ̸= 0, βj,i =
zi

(ajV )i
. For each

j ∈ {1, . . . ,m},

N j =
n∑

k=1

| lcm(βT
j )(ajC)k|

≤
n∑

k=1

∣∣∣∣∣∣
 ∏

{i|βj,i ̸=0}
βj,i

 (ajC)k

∣∣∣∣∣∣
=

n∑
k=1

∏
{i ̸=k|βj,i ̸=0}

|βj,i| ≤
∏

{i|βj,i ̸=0}
n |βj,i|

≤
∏

{i|βj,i ̸=0}
n

∣∣∣∣ zi
(ajV )i

∣∣∣∣ ≤ n
n∏

i=1

zi, (B.26)

in which we we have used that ajV ∈ Z1×n. From (B.26), an upper bound on N is

given by

N ≤ mn

(
n∏

i=1

zi

)
= mn det(C−1V ). (B.27)

Thus, for fixed C, V , and n, N is O(m).

B.4.2 Bound on Number of Wrapped Chambers

Let U ⊂ H denote the set of points at which n hyperplanes in H intersect, and

let U sub ⊂ U denote the set of points at which n hyperplanes in Hsub intersect. |U sub|
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is maximized when none of the N hyperplanes that it comprises are parallel to one

another, in which case, |U sub| =
(
N
n

)
. From (B.27), an upper bound on |U sub| is given

by

|U sub| ≤
(
N

n

)
≤ (m det(C−1V ))nnn−1. (B.28)

Thus, for fixed C, V , and n, |U sub| is O(mn).

In general, some hyperplanes in Hsub will be parallel to one another, and this

admits a refinement of the upper bound on |U sub|. Letting τ denote the set of n-

combinations of {1, . . . ,m}, an upper bound on |U sub| is given by

|U sub| ≤
∑
I∈τ

∏
j∈I

N j. (B.29)

We have that Ũ = PC ∩ U = PC ∩ U sub and, therefore, that |Ũ | ≤ |U sub|.

Let K = |{Ψ̃(ℓ) | ℓ ∈ Φ}| denote the number of wrapped chambers. We have

from Theorem 35 that there is a bijection between the set of wrapped chambers and

Ũ . Thus,

K = |Ũ | ≤ |U sub|, (B.30)

and the upper bounds on |U sub| in (B.28) and (B.29) apply to the number of wrapped

chambers as well. Thus, K is O(mn).

B.5 Bounds on Problem Size for General Encoding Matrices

This appendix provides bounds on quantities related to the size of the problem

considered in Section 5.5, in which the restriction on A used in Section 5.4 is lifted.
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B.5.1 Bound on NNC

For x ∈ PV , we have, for some λ ∈ [0, 1)n, that

ajx = ajV λ

∈ ajV [0, 1)n

=
[
min(0T

n ,ajV )1n, max(0T
n ,ajV )1n

)
=
[
tmin
j , tmax

j

)
(B.31)

with tmin
j , tmax

j ∈ Z, for each j ∈ {1, . . . ,m}.

From (5.48) and (B.31), any x ∈ H̃NC satisfies

ajx = ⟨yj + 1
2
⟩1 + ℓ, (B.32)

for some j ∈ {1, . . . ,m} and ℓ ∈ {tmin
j , . . . , tmax

j − 1}. Note that {tmin
j , . . . , tmax

j − 1}

is a set of integers with cardinality N j
NC =

∑n
k=1 |(ajV )k|. Thus (B.32) describes a

total of NNC =
∑m

j=1N
j
NC hyperplanes. We therefore have that H̃NC ⊂ Hsub

NC, where

Hsub
NC =

{
x ∈ Rn | ∃j ∈ {1, . . . ,m} s.t.

ajx− ⟨yj + 1
2
⟩1 ∈ {tmin

j , . . . , tmax
j − 1}

}
, (B.33)

i.e., Hsub
NC is a union of the NNC hyperplanes inHNC that intersect with PV . Therefore,

H̃NC = PV ∩HNC = PV ∩Hsub
NC.

Recalling that z = (lcm(AV ))T, we have an upper bound on N j
NC given by

N j
NC ≤

∑n
k=1 zk. Therefore,

NNC ≤ mzT1n = m tr(C−1V ). (B.34)

173



B.5.2 Comparison Between N and NNC

Like NNC, N in Appendix B.4 determines the complexity of an ML solution

method. Both quantities give the number of hyperplanes that intersect a parallelo-

tope. The method in Section 5.4, to which N is relevant, has a restrictive condition

on the encoding matrix A. It may be surprising that, even when Condition 7 is met,

it is possible that N > NNC. This is the case, for example, when

A =

3 0 1 3
4 4 1 0
1 1 1 1

T

, (B.35)

with V = I3 and C = diag([1
3
, 1
4
, 1]T). In this case, N = 26 and NNC = 20. Note

that for n = 1, N = m, and thus, N ≤ NNC.

B.5.3 Bound on the Number of Wrapped Chambers

Following Appendix B.4, upper bounds on |U sub| are given by

|U sub| ≤
(
NNC

n

)
≤ (m tr(C−1V ))nn−1. (B.36)

|U sub| ≤
∑
I∈τ

∏
j∈I

N j
NC. (B.37)

We have that Ũ = PV ∩ U = PV ∩ U sub and, therefore, that |Ũ | ≤ |U sub|. Let

KNC = |{Ψ̃NC(ℓ) | ℓ ∈ Φ}| denote the number of wrapped chambers. By a statement

analogous to Theorem 35 in Appendix B.2, it can be shown that there is a bijection

between the set of wrapped chambers and Ũ . Thus,

KNC = |Ũ | ≤ |U sub|, (B.38)

and the upper bounds on |U sub| in (B.36) and (B.37) apply to the number of wrapped

chambers as well. Therefore, K is of order O(mn) (for fixed n, C, and V ).
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Figure B.2: The number of wrapped chambers for Algorithm 8 is plotted in red
against m; the red dash-dotted line is the upper bound on K from (B.28). The
number of wrapped chambers for Algorithm (9) is in blue; the blue dash-dotted line
is the upper bound on KNC from (B.36).

B.5.4 Comparison Between K and KNC

Here we compare the number of wrapped chambers for the algorithms in Sec-

tion 5.4 (denoted K) and Section 5.5 (denoted KNC). The number of wrapped cham-

bers for the two methods are shown against m in Fig. B.2. The encoding matrices

are such that, as m increases, V and C are constant. The encoding matrices are

made to satisfy Condition 7 from Section 5.4. In Fig. B.2, K and KNC are plotted

against m = 5, . . . , 20. The upper bound on K from (B.28) is shown as well as the

upper bound on KNC from (B.36). The plot shows the computational benefit that

Algorithm 8 may have over Algorithm 9 when Condition 7 is met. For example, with

m = 20, KNC > 8K.
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B.6 Proofs for Section 5.6

Proposition 36. For any t ∈ Rm and B ∈ Rm×n having orthogonal (though, not

necessarily orthonormal) columns,

k̂ = argmin
k∈Zn

∥t−Bk∥ = ⌈B†t⌋. (B.39)

That is, the Babai rounding method [197] solves a closest lattice point problem when

the lattice basis has orthogonal columns.

Proof.

∥t−Bk∥2 =∥(BB† + P⊥
B )t−Bk∥2

=∥P⊥
B t∥2 + ∥BB†t∥22 + ∥Bk∥2 − 2tTBk

=∥P⊥
B t∥2 +

n∑
i=1

∥bi∥2((B†t)i − ki)
2,

where BB† is the orthogonal projection onto the range of B, P⊥
B is the orthogonal

projection onto the kernel of B, and bi is the ith column of B. Since the objective is

separable in k, it is clear that k̂i = ⌈(B†t)i⌋, and k̂ = ⌈B†t⌋.
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Appendix C: Phase Noise Model

In [31], the noise in the phase entries of a sample covariance matrix from multi-

snapshot data is modeled by jointly Gaussian random variables. In this appendix, we

rederive this approximation and express the resulting approximate covariance matrix.

Following the signal model in Section 5.6.7 and Section 6.2, consider an array of L

isotropic sensors that is impinged upon by a narrowband signal s(t) ∈ C from a single

emitter located in the far field of the array. The demodulated array output vector is

given by

b(t) = a(x)s(t) + ε(t), t = 1, ..., T, (C.1)

where a(x) is the array steering vector for the parameter x ∈ Rn, and ε(t) is zero-

mean circular Gaussian noise that is uncorrelated across snapshots indexed by t. The

array steering vector is given by

a(x) =
[
eiπp

T
1x eiπp

T
2x · · · eiπp

T
Lx
]T

, (C.2)

where i =
√
−1. The position vectors pj ∈ Rn, for j ∈ {1, 2, . . . , L}, give the sensor

positions in units of one-half wavelength.

The sample correlation matrix of b is R̂ = 1
T

∑T
t=1 b(t)b

H(t). Let v denote the

vector of
(
L
2

)
lower-triangular entries of R̂ in column-major order. That is,

v = [ r̂2,1, r̂3,1, . . . , r̂L,L−1 ]
T (C.3)
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where r̂i,j is the (i, j)th entry of R̂.

Under the conditional (deterministic) signal model [222], the distribution of r̂i,j

depends on the fixed, unknown signal {s(t)}. Because we do not observe this signal

directly, we involve the noisy array outputs in the following approximation:

|s(t)|2 ≈ 1
L
bH(t)b(t). (C.4)

Using (C.4), we have

E [r̂i,j] ≈ ρ̂ai(x)aj(x), i ̸= j (C.5)

var (r̂i,j) ≈ T−1
(
2ρ̂σ2 + σ4

)
, i ̸= j (C.6)

cov (r̂i,j, r̂k,j) ≈ T−1ai(x)ak(x)ρ̂σ
2, i ̸= j, k ̸= j, i ̸= k (C.7)

cov (r̂i,j, r̂i,k) ≈ T−1aj(x)ak(x)ρ̂σ
2, i ̸= j, i ̸= k, j ̸= k (C.8)

cov (r̂i,j, r̂k,ℓ) = 0, i ̸= j, k ̸= ℓ, i ̸= k, j ̸= ℓ, (C.9)

where denotes complex conjugation, and

ρ̂ ≜
1

LT

T∑
t=1

bH(t)b(t). (C.10)

In the above, we have used the conditional signal model for {s(t)}. If the signal

follows the unconditional model, then ρ̂ = T−1
∑T

t=1 E
[
|s(t)|2

]
may be used, rather

than estimating the power of {s(t)} from the data.

The complex logarithm of z ∈ C \ {0} is given by Log z ≜ log |z|+ i∠z. Let

f : {C \ 0}m → [−1
2
, 1
2
)m

z 7→ i

4π
(Log z − Log z) .

(C.11)

Thus, f(z) = (2π)−1∠z ∈ [−1
2
, 1
2
)m for any z ∈ {C \ 0}m.

Now, let y = f(v) ∈ [−1
2
, 1
2
)(

L
2). We use nonlinear error propagation to approx-

imate the covariance matrix of y, i.e., we find the covariance of a first-order Taylor
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approximation of y. The linear approximation of y around its expected value is

y ≈ ỹ = f(E[v]) + Jf (E[v])(v − E[v]) + J c
f (E[v])(v − E[v]) (C.12)

= f(E[v]) + 2Re {Jf (E[v])(v − E[v)]}, (C.13)

in which Jf (z) ∈ Rm×m is the Jacobian of f evaluated at z and J c
f (z) ∈ Rm×m is the

conjugate Jacobian of f [254]. That is, (Jf (z))j,k =
∂fj(z)

∂vk
and (J c

f (z))j,k =
∂fj(z)

∂vk
, for

j, k ∈ {1, . . . ,m}. Note that Jf (z) = J c
f (z), as f is real-valued [254]. The Jacobian

of f evaluated at z ∈ {C \ 0}m is

Jf (z) = diag

(
− i

4π

[
z−1
1 , z−1

2 , . . . , z−1
m

]T)
. (C.14)

The covariance of ỹ is

cov(ỹ) = cov(2Re {Jf (E[v])(v − E[v])}) (C.15)

= 2Jf (E[v]) cov(v)(Jf (E[v]))
H. (C.16)

Thus,

var(ỹi,j) = (2π)−2 var(r̂i,j)

2|E [r̂i,j]|2
= (2π)−2 1 + 2 ρ̂

σ2

2T
(

ρ̂
σ2

)2 , i > j

cov(ỹi,j, ỹk,j) = (2π)−2 cov(r̂i,j, r̂k,j)

2 E [r̂i,j] E
[
r̂k,j

] = (2π)−2 1

2T ρ̂
σ2

, i > j, k > j, i ̸= k

cov(ỹi,j, ỹi,k) = (2π)−2 1

2T ρ̂
σ2

, i > j, i > k, j ̸= k

cov(ỹi,j, ỹj,k) = − cov(ỹi,j, ỹk,j) = −(2π)−2 1

2T ρ̂
σ2

, i > j > k

cov(ỹi,j, ỹk,i) = −(2π)−2 1

2T ρ̂
σ2

, k > i > j

cov(ỹi,j, ỹk,ℓ) = 0, i > j, k > ℓ, {i, j} ∩ {k, ℓ} = ∅.

(C.17)
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Equivalently, for any i > j, k > ℓ, we have that

cov(ỹi,j, ỹk,ℓ) =



(2π)−2 1+2
ρ̂
σ2

2T( ρ̂

σ2 )
2 , i = k, j = ℓ

(2π)−2 1

2T ρ̂

σ2

, i ̸= k, j = ℓ,

(2π)−2 1

2T ρ̂

σ2

, i = k, j ̸= ℓ,

−(2π)−2 1

2T ρ̂

σ2

, j = k

−(2π)−2 1

2T ρ̂

σ2

, i = ℓ

0, {i, j} ∩ {k, ℓ} = ∅

(C.18)

Hence, the covariance matrix approximation can be expressed as

cov(ỹ) = (2π)−2 1

2T ρ̂
σ2

(
ΦΦT +

(
ρ̂

σ2

)−1

I

)
, (C.19)

whereΦ ∈ {−1, 0, 1}(L2)×L is a matrix with rank L−1 that corresponds to the ordering

of elements in v. When L = 4, for example, Φ is given by

Φ =


−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1

 . (C.20)
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tering techniques,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2006,
pp. 1760–1763.

[74] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse
3-D transform-domain collaborative filtering,” IEEE Trans. Image Process.,
vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[75] Hua Xie, L. E. Pierce, and F. T. Ulaby, “SAR speckle reduction using wavelet
denoising and Markov random field modeling,” IEEE Trans. Geosci. Remote
Sens., vol. 40, no. 10, pp. 2196–2212, Oct. 2002.

[76] H. Feng, B. Hou, and M. Gong, “SAR image despeckling based on lo-
cal homogeneous-region segmentation by using pixel-relativity measurement,”
IEEE Trans. Geosci. Remote Sens., vol. 49, no. 7, pp. 2724–2737, Jul. 2011.

[77] L. Torres, S. J. S. Sant’Anna, C. da Costa Freitas, and A. C. Frery, “Speckle
reduction in polarimetric sar imagery with stochastic distances and nonlocal
means,” Pattern Recognit., vol. 47, no. 1, pp. 141–157, Jan. 2014.

[78] Y. Yamaguchi, T. Nishikawa, M. Sengoku, and W. M. Boerner, “2-D polarimet-
ric imaging by an FM-CW radar,” in Proc. Proc. IEEE Antennas Propag. Soc.
Int. Symp. URSI Nat. Radio Sci. Meeting, vol. 3, Jun. 1994, pp. 1998–2001.

[79] M. Berger, J. Moreno, J. A. Johannessen, P. F. Levelt, and R. F. Hanssen,
“ESA’s sentinel missions in support of earth system science,” Remote Sens.
Environ., vol. 120, pp. 84–90, 2012, the Sentinel Missions - New Opportunities
for Science.

[80] Y. Yamaguchi, K. Kimura, H. Yamada, S. Uratsuka, and W.-M. Boerner, “L-
band polarimetric AIR/Pi-SAR images around Niigata city,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., vol. 1, Jun. 2002, pp. 423–425.

[81] C. Bouman and K. Sauer, “A generalized gaussian image model for edge-
preserving map estimation,” IEEE Trans. Image Process., vol. 2, no. 3, pp.
296–310, July 1993.

187



[82] L. Denis, C. Deledalle, and F. Tupin, “From patches to deep learning: Combin-
ing self-similarity and neural networks for sar image despeckling,” in IGARSS
2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium,
July 2019, pp. 5113–5116.

[83] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE Trans.
Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[84] C. J. Pellizzari, M. F. Spencer, and C. A. Bouman, “Coherent-image recon-
struction using convolutional neural networks,” in Imaging and Applied Optics,
2019, p. MTu4D.4.

[85] D. Tucker, J. N. Ash, and L. C. Potter, “SAR coherent change detection with
variational expectation maximization,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 59, no. 3, pp. 2163–2175, 2023.

[86] M. Preiss and N. J. S. Stacy, “Coherent change detection: Theoretical de-
scription and experimental results,” Defence Sci. Technol. Org., Tech. Rep.
DSTO-TR-1851, 2006.

[87] D. A. Yocky and B. F. Johnson, “Repeat-pass dual-antenna synthetic aperture
radar interferometric change-detection post-processing,” Photogrammetric Eng.
and Remote Sens., pp. 425–429, 1998.

[88] T. Strozzi, U. Wegmuller, C. L. Werner, A. Wiesmann, and V. Spreckels, “JERS
SAR interferometry for land subsidence monitoring,” IEEE Trans. Geosci. Re-
mote Sens., vol. 41, no. 7, pp. 1702–1708, 2003.

[89] R. Touzi, A. Lopes, J. Bruniquel, and P. W. Vachon, “Coherence estimation for
SAR imagery,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 135–149,
1999.

[90] F. Gatelli, A. Monti Guarnieri, F. Parizzi, P. Pasquali, C. Prati, and F. Rocca,
“The wavenumber shift in SAR interferometry,” IEEE Trans. Geosci. Remote
Sens., vol. 32, no. 4, pp. 855–865, 1994.

[91] C. V. Jakowatz, D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thomp-
son, Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach.
New York, NY, USA: Springer, 1996.

[92] M. Cha, R. D. Phillips, P. J. Wolfe, and C. D. Richmond, “Two-stage change
detection for synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 12, pp. 6547–6560, 2015.

188



[93] M. Preiss, D. A. Gray, and N. J. S. Stacy, “Detecting scene changes using
synthetic aperture radar interferometry,” IEEE Trans. Geosci. Remote Sens.,
vol. 44, no. 8, pp. 2041–2054, 2006.

[94] D. E. Wahl, D. A. Yocky, C. V. Jakowatz, and K. M. Simonson, “A new
maximum-likelihood change estimator for two-pass SAR coherent change de-
tection,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4, pp. 2460–2469,
2016.

[95] M. Newey, G. Benitz, and S. Kogon, “A generalized likelihood ratio test for
SAR CCD,” in Proc. Conf. Rec. 46th Asilomar Conf. Signals, Syst., Comput.,
2012, pp. 1727–1730.

[96] R. Sabry, “A new coherency formalism for change detection and phenomenology
in SAR imagery: A field approach,” IEEE Trans. Geosci. Remote Sens., vol. 6,
no. 3, pp. 458–462, 2009.

[97] J.-S. Lee, S. R. Cloude, K. P. Papathanassiou, M. R. Grunes, and I. H. Wood-
house, “Speckle filtering and coherence estimation of polarimetric SAR inter-
ferometry data for forest applications,” IEEE Trans. Geosci. Remote Sens.,
vol. 41, no. 10, pp. 2254–2263, 2003.
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