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Abstract 

Identifying the lack of cognitive capabilities in artificially intelligent systems has been a 

growing field and a necessary step. Knowledge gaps (KG) are a lack of insufficient 

information which may lead to poor cognitive capabilities. Knowledge gap identification 

can help predict where intelligent systems go wrong. This work proposes methods to 

identify knowledge gaps in Visual Question Answering (VQA) datasets. We created a 

model to automatically classify questions and image pairs into different knowledge gap 

categories that can later be used to resolve shortcomings of VQA models. Additionally, 

artificially intelligent systems often require several days to train for the system to learn 

complex features to provide the most accurate predictions. Testing or inferencing with 

trained models also requires huge amounts of energy and emits massive amounts of CO2. 

Thus, this work also aims to train a classification model which is the Knowledge Gap 

Identification (KGI) model in resource-constrained environments using TinyML (Tiny 

Machine Learning) techniques proposed by previous research. The two main techniques 

implemented are: Quantization-aware scaling and Sparse Update. Finally, this work aims 

to compare the original model with its tiny version (Sustainable KGI) using accuracy, 

processing time, energy consumed and estimation of carbon emission as evaluation 

metrics. 
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Chapter 1. Introduction 

1.1 Problem Statement 

Autonomous AI systems are more widespread today, which are built to accomplish a task, 

interact with the surroundings, and perform analysis. However, there are limitations in 

these systems such as: it is sensitive to slight changes in the input, and it is hard for a trained 

AI system to adapt to new tasks and environments. AI systems are trained to always provide 

an answer even if it's incorrect. This becomes very crucial in environments where there is 

human and AI teaming. For example, in Figure 1 considers an autonomous pilot tasked to 

navigate a drone. Hence building a robust AI system to prevent harmful situations is very 

important.  Thus, this work aims to build human cognitive abilities into AI systems. 

 

Figure 1Autonomous Artificial Intelligence System 

 

When comparing human cognition and artificial intelligence systems, humans have the 

cognitive ability to find shortcomings in their knowledge and can take measures to identify 

and solve their knowledge gaps. In contrast, artificially intelligent systems require this 
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ability to be built to identify shortcomings in their reasoning skills and knowledge. To 

study this problem, researchers have looked into exploring Visual Question Answering 

(VQA) as a testbed [2]. VQA [1] requires reasoning abilities to understand images and 

natural language questions to generate the most accurate answer. VQA agents are said to 

have a Knowledge Gap (KG) when they predict an answer incorrectly due to incorrect 

reasoning over the image and question. These gaps in knowledge can lead to poor 

performance and decreased robustness. 

 

Additionally, Artificial Intelligence systems require a significant amount of processing 

time, energy consumption, and carbon footprint in order to be effective in any task. Deep 

learning models, in particular, often require several days to finish training and for the model 

to learn complex features and provide the most accurate predictions. Testing or performing 

inference with trained models also requires huge amounts of energy and emits massive 

amounts of carbon-dioxide. Thus, this work also aims to address these issues and scale 

down the deep learning models for knowledge gap identification (KGI) task by 

implementing Tiny Machine Learning (TinyML) techniques [7] proposed by previous 

research. To decrease the training and inference times for this problem, these techniques 

entail several modifications to computing techniques and comparison is made between the 

original model (KGI) and its tiny version (Sustainable KGI). 

 

The major research question investigated and addressed in this work is: Can we build 

human cognitive capabilities into Artificially Intelligent systems with less computation and 

preserving accuracy? 
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1.2 Contributions of this work 

To address the research question, implementation is done in two parts as contribution: 

 

(1) This work aims to build a multi-modal classification approach for fusing both 

image and question features to perform knowledge gap identification. For 

predicting knowledge gaps using question features only and the combination of 

question-image features as inputs, a Multi - Layer Perceptron [12] model is 

developed as a classifier. A comparison is made between all the KGI models and 

different fusion techniques. 

(2) Secondly, for the sustainable KGI model, the objective is to reduce training time of 

the model, involving implementation of two methods Quantization-aware Training 

and Sparse Update. Finally, performance metrics of KGI and sustainable KGI 

models are compared. 

 

The rest of the thesis is structured as follows. Chapter 2 describes related work, 

terminologies used and motivation. Chapter 3 provides a detailed explanation on the 

Knowledge Gap Identification model, the datasets used, extracting features from questions 

and images, and model architecture. Chapter 4 describes the TinyML methods 

implemented to build the Sustainable KGI model. Chapter 5 discusses results. Chapters 6 

and 7 describe Challenges and Future Work, respectively. 
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Chapter 2. Related work 

2.1 Knowledge Gaps and Taxonomy 

Autonomous AI systems are said to have knowledge gaps [8] when the system behaves 

flawed or predicts incorrect answers due to insufficient or lack of information or poor 

reasoning abilities. Hence detecting, identifying and resolving knowledge gaps or cognitive 

capabilities of the AI model is important. A taxonomy for knowledge gaps has been created 

and used for identifying knowledge gap tags for each question [2, 8].  Bajaj et al (2020) [2] 

discusses a refined version of the KG taxonomy particularly for VQA tasks.  Figure 2 

shows the taxonomy for knowledge gaps. Each KG denotes the reasoning abilities that the 

model needs, to provide the most accurate answer.  This article also annotates each question 

with one or more KGs and performs more analysis on that. Further, Bajaj et al (2022) [3] 

provides a more detailed explanation on how knowledge gaps relate to cognitive 

capabilities and can be used in the AI systems to make it robust and flexible. 

 

Figure 2 Knowledge Gap Taxonomy 
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2.2 Visual Question Answering 

The reason for investigating KGs using visual question answering is, it is the intersection 

of language, vision, and reasoning. A VQA task can be defined as an algorithm which 

predicts answers for a question asked from the image.  Hence the VQA model extracts the 

image feature embeddings and question feature embeddings and trains an AI model to 

generate the answer. Figure 3 provides the model architecture for the VQA model. Antol 

et al. (2015) [1] proposes the working of VQA, in detailed description about the data sets 

used and implements two methods, one using a multi-layer perceptron and another using 

LSTM [13] for generating the answer. Figure 4 provides two examples of a question image 

pair mapped to the corresponding knowledge gaps. In the first example, for the question 

“Where is the man?” the KG tags are “Entity resolution” and “Direction”. Entity resolution 

gap is to identify if the man is present or not and the Direction gap to know which position 

in space the man is present. These two gaps fall under “Spatial, Perception, Attention” 

cognitive capabilities. 

 
Figure 3 Model architecture of a VQA model 
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*GQA Q: Where is the man? 

GQA KG Tags: Entity Resolution,      

Direction 

*TDIUC Q: What is the weather? 

TDIUC KG Tags: Scene Recognition 

 

*CLEVR Q: There is a large object that is 

on the left side of the large blue cylinder in 

front of the rubber cylinder on the right side 

of the purple shiny thing; what is its shape? 

CLEVR KG Tags: Entity Resolution,  

Direction, Attribute, Size 

*GQA, TDIUC and CLEVR are two different VQA datasets 

Figure 4 Examples of question-image pair from two VQA datasets GQA and TDIUC 

with the corresponding KG labels 

 

2.3 Knowledge Gap Identification 

The function of the KGI method is to process the natural language question, image, and 

the knowledge gaps to predict the KGs for new question-image pairs. By identifying the 

type of KGs, the gaps can then be resolved to improve the prediction accuracy of the VQA 

models. In previous work, the metadata present in the VQA dataset was used to identify 

KGs. The tags are assigned by using the question’s structural annotation as well as 

functional programs provided in the dataset, like yes/no type of question or query type 
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questions. For example, if the question type was ‘positionVerify’, ‘Direction Gap’ is 

assigned as it represents identifying spatial position [2]. A KG-VQA [3] paradigm has been 

defined to evaluate the cognitive capabilities of intelligent systems by identifying the 

knowledge gaps for different Visual Question Answering datasets. A Bidirectional 

Encoder Representation from Transformers (BERT) [14] model is fine-tuned for VQA 

questions and used as a classifier for predicting the knowledge gaps [3]. 

 

The prior research in identifying possible knowledge gaps for VQA questions is based on 

metadata associated with questions and uses rule-based methods for classifying. However, 

existing methods cannot be used for datasets that do not have a rich set of metadata 

associated with the questions (i.e., VQA 2.0 dataset) [2]. Therefore, this work aims to 

define a generic method for tagging knowledge gaps to VQA questions for different 

datasets that do not have such metadata. For automatically identifying knowledge gaps, a 

classifier model is built that uses both the image and the question features to learn the 

knowledge gap tags. 

 

2.4 Tiny Machine Learning 

The Tiny Machine Learning paradigm [7, 9, 10, 11] aims to implement methods to increase 

the model performance by less computation, less data for training, and inferencing. Mainly 

developed to build smaller models and deploy those models on edge devices to perform 

inferencing on low power hardware. Lin, Ji, et al. (2022) discusses training AI models on 

edge devices by using two methods Quantization-aware Scaling and Sparse Update for 
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reducing the computation during model training and performing inferencing after code 

generation. Hence training and testing AI models using TinyML techniques will result in 

a smaller carbon footprint promoting Green AI. Thus, this work aims to extend TinyML 

methods to the knowledge gap identification task to develop sustainable methods for 

identifying knowledge gaps. 

 
Figure 5 Applications of TinyML 
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Chapter 3. Knowledge Gap Identification 

3.1 VQA Datasets 

In this section, all the VQA datasets used are discussed. The knowledge gap identification 

dataset contains the questions, images, and KG tags from [2]. The author has used rule-

based mapping for KGs to question-image pairs. The dataset for which the mappings are 

applied and KGI is performed are: GQA [4], TDIUC [6] and CLEVR [5]. Table 1 shows 

the three datasets used and the KGs categorized based on the metadata present in the 

dataset. Table 2 shows the number of datapoints used for training, validation and testing 

the KGI model. 

VQA Datasets Knowledge Gaps 

GQA Activity, Attribute, Direction, Entity Resolution, 

Location, Material, Reasoning, Sentiment, Size, State 

TDIUC Object Presence, Color, Scene Recognition, Counting, 

Attribute, Activity Recognition, Positional Reasoning, 

Sport Recognition, Object Recognition, Utility 

Affordance, Sentiment Understanding 

CLEVR Attribute, Counting, Direction, Entity Resolution, 

Material, Size 

Table 1 VQA Datasets and its corresponding KG tags 

 

The GQA [4] dataset was developed for real-world visual reasoning and consists of real-

world questions and images. A question engine which utilizes the information from scene 

graphs, attributes and objects is used to generate a diverse set of 22 million reasoning 

questions with the functional programs. The semantic representations associated with 

questions are used to decrease bias in the dataset and it is down sampled to a balanced 
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dataset, also for each question the distribution of answers is made uniform. The semantic 

representation extracted from functional programs is used to assign KGs to the questions 

[2] which is used as a supervised dataset for the KGI model. Here, each question-image 

belongs to one or more KGs. Figure 6 shows the distribution of questions per knowledge 

gap. 

 

Task Directed Image Understanding Challenge (TDIUC) [6] dataset contains 1.6 million 

questions. Based on the task the questions solve, the questions are categorized into different 

types which are used as reasoning abilities needed for the model to provide an answer. The 

question types are listed as the KGs shown in Table 1. For this dataset, each question-image 

pair belongs to only one knowledge gap. 

 

The Compositional Language and Elementary Visual Reasoning (CLEVR) [5] is a 

diagnostic dataset with minimum bias in data and covers a range of reasoning abilities. The 

images in this dataset are composed of 3D objects for simplifying recognition. The 

knowledge gaps are identified using the functional programs representing the questions 

similar to the GQA dataset. In CLEVR, one or more KGs are assigned to each question-

image pair. 
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Figure 6 Distribution of GQA Questions per KG 

 

VQA 

Dataset 

Train Question-

Image samples 

Validation Question-

Image samples 

Test Question-

Image samples 

GQA 921818 184364 

 

117286 

TDIUC 695244 173812 418457 

CLEVR 559991 139998 149991 

Table 2 Train, Validation and Test set split for three datasets 
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3.2 Feature extraction 

Bidirectional Encoders Representations from Transformers (BERT) [14] is used for 

extracting question feature vectors. It is a bidirectionally trained language model that can 

learn contextual relationships between words in the given input text. BERT uses Masked 

LM and Next Sentence Prediction networks for learning the context. First, BERT tokenizer 

is used to tokenize each question text and all the question tokens are padded to a maximum 

length. The padded tensors containing tokens are given as input to the BERT pretrained 

model to get the output predictions. This model has a total of 768 hidden units, out of which 

the first position, also called [CLS] token is sliced from the output tensor. The reason for 

using only [CLS] tokens is, during model training sentence-wide sense is encapsulated in 

the first position of the output prediction. Hence dimension for each question feature vector 

is (768,). 

 

The feature embeddings for images given the datasets are used. For GQA, faster-RCNN 

and ResNet - 101 models were used for extracting object and spatial image features 

respectively. For TDIUC, ResNet - 152 is used and Convolutional Neural Network (CNN) 

[15] is used for CLEVR. These image features are given as input to a CNN to learn the 

complex features and reduce the feature vector dimension for downstream tasks. The CNN 

architecture consists of a Convolution layer, followed by a Maxpool layer, then ReLU 

activation function, Batch normalization and a final Convolution layer with varying hidden 

units tuned depending on the dimensions of the image features. 
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3.3 Combining Image and Question Features 

Two methods are implemented for fusing the image and question features together for 

down-stream classification: Dot Product and Concatenation. 

 

3.3.1 Dot product 

The matrix product of learned image features and question embeddings are computed. Let 

A be a 𝑏 × 𝑛1 × 𝑛𝑛 dimension tensor and B is 𝑏 × 𝑛𝑛 × 𝑛𝑚 dimension tensor, where b is 

the batch size. 

D = A . B is of dimension 𝑏 × 𝑛1 × 𝑛𝑚 , where (.) represents dot product. 

 

 

Figure 7 Illustration for Dot Product 

 

3.3.2 Concatenation 

 

The learned image features from CNN and BERT question embeddings are concatenated 

in the specified dimension of the tensor. Let A be a 𝑛1 × 𝑛𝑛 × . . .× 𝑛𝑖 × . . .× 𝑛𝑛 dimension 

tensor, and B be a𝑛1 × 𝑛𝑛 × . . .× 𝑛′𝑖 × . . .× 𝑛𝑛 dimension tensor. The concatenation of A 

and B horizontally along dimension i results in a new tensor C = [A B] of size 
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𝑛1 × 𝑛𝑛 × . . .× (𝑛𝑖 + 𝑛′𝑖) × . . .× 𝑛𝑚, where 𝑛′𝑖 represents the size of dimension ( i ) of 

tensor B. Here, [] represents concatenation operation.  

 

 

Figure 8 Illustration for Concatenation 

 

3.4 Multi - Layer Perceptron (MLP) Classifier 

As a final classifier Multi-Layer Perceptron neural network is used. The image and 

question features combined with the knowledge gap tags are given as the input to the 

network. The knowledge gap tags are encoded using a multi-label binarizer. This network 

learns the features and predicts the KGs for new question-image pairs. Multi-label or multi-

class classifiers of knowledge gaps for image-question pairs in VQA datasets can be built, 

which can automatically tag knowledge gaps for datasets without much metadata. The 

GQA and CLEVR datasets have one or more KGs for each question hence multi-label 

classification is performed. For TDIUC dataset, only one KG tag for each question so 

multi-class classification is performed. The model architecture of the MLP is a Linear 

layer, followed by ReLU activation, Batch Normalization, Linear layer, TanH activation 

and then final Linear layer. For the output activation, sigmoid is used for multi-label and 

softmax is used for multi-class. For GQA and CLEVR after applying sigmoid, the output 
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values with threshold greater than 0.5 are taken as positive prediction. For TDIUC, 

maximum of the outputs from softmax function is taken as positive predicted KG. Figure 

6 provides a block diagram for the knowledge gap identification model illustrated with an 

example. For loss function, binary cross entropy loss is used. 

 

 

Figure 9 KGI Model Architecture 
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Chapter 4. Sustainable Knowledge Gap Identification 

The pre-trained KGI model is taken and TinyML techniques are applied for fine-tuning 

tasks. The Sustainable KGI model aims to improve the efficiency of the Multi-Layer 

Perceptron model by reducing computation which results in reduction of training time. 

Two methods are implemented: Quantization-aware scaling and Sparse Update [7]. 

 

4.1 Quantization - Aware Scaling (QAS) 

Quantization-aware scaling [7, 16, 17] method involves converting the values from higher 

bit precision to lower bit precision by scaling. For a sustainable KGI model, a pre-trained 

KGI model is trained with 32-bit floating precision and is converted to 8-bit integer 

precision during fine-tuning the model. INT8 is faster for inference and is less expensive. 

Here, quantization-aware training is performed which reduces the bit precision of 

gradients, inputs, and weights of a model pre-trained with high precision and further fine-

tunes by applying quantization. 

For 32-bit floating point, 𝑦𝑓𝑝32  =  𝑊𝑓𝑝32 𝑥𝑓𝑝32   +  𝑏𝑓𝑝32   is the equation for the linear 

layer. The equation for quantized int8 is 𝑦′𝑖𝑛𝑡8  =  𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑡𝑜_𝑖𝑛𝑡(𝑠𝑓𝑝32 ⋅

(𝑊′𝑖𝑛𝑡8 𝑥′𝑖𝑛𝑡8   +  𝑏′𝑖𝑛𝑡32)) . The formula for updating the weight is 𝑊′′𝑖𝑛𝑡8  =

 𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑡𝑜_𝑖𝑛𝑡(𝑊′𝑖𝑛𝑡8   +  𝛼 ⋅ 𝐺𝑊′)).  (⋅ ′) denotes the quantized tensor. 𝑊 is the weight 

tensor, 𝑥 is input, 𝑏 is bias, 𝑦 is output, 𝐺 is gradient and 𝛼 represents the learning rate. 
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Figure 10 Sustainable KGI model architecture with QAS 
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4.1.1 Quantization 

The aim is to map the values in the range [𝛽, 𝛼] to be within [-2𝑏−1, 2𝑏−1  − 1], 𝑏 is the 

number of bits. The two main variables used for quantization are: scaling factor and zero 

point. To quantize a vector from the range of floating-point numbers to the quantized range, 

in this case [𝛽, 𝛼] to [-128 to 127], the scaling factor is the ratio of range of floating point 

and quantized range. Zero point is calculated to represent the 0.0 of floating point in the 

quantized range. When zero point is non-zero it is affine quantization and if it is zero then 

it is symmetric quantization (Figure 9a). For sustainable KGI, for inputs and outputs, affine 

quantization (Figure 9b) is used, and symmetric quantization is used for weights and 

gradients. 

𝑥𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒  =  𝑐𝑙𝑎𝑚𝑝(𝑟𝑜𝑢𝑛𝑑(𝑥 ÷  𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟)  +  𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡) 

were, 𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 =  (𝛼 −  𝛽)  ÷ (2𝑏−1) 

𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡 =  −𝑟𝑜𝑢𝑛𝑑(𝛽 ∗  𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟)  − 2𝑏−1 

Round function rounds a value to the nearest integer. The quantized value is then clamped 

between -128 to 127. 𝛼, 𝛽 are the maximum and minimum value of the tensor. 

 

        (a) Symmetric quantization                          (b) Asymmetric quantization 

Figure 11 Quantization Scheme Types 
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Figure 12 Quantization 

 

4.1.2 Dequantization 

To reverse the quantization. 

𝑥 =  (𝑥𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒  −  𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡) ∗  𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 

 

4.1.3 Quantizing weights and gradients 

𝑊 𝜖 𝑅𝑛×𝑚 represents the 2-dimensional weight matrix of a linear layer, where n, m are 

input and output channels. For per-tensor quantization, the scaling factor for 𝑊 is 

computed and denoted as 𝑠𝑤  𝜖 𝑅,  such that the largest magnitude of the quantized matrix 

is 27- 1 = 127 

𝑊 ≈𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒  𝑠𝑊 ⋅  𝑊′ , 𝐺′𝑊  ≈  𝑠𝑊 ⋅  𝐺𝑊 

 

The reason why quantization works is because what matters is not the absolute values of 

output by the model, but rather the relative difference between the probabilities it assigns 

to different classes for its predictions. Quantizing the weights only scales this relative 

difference up or down, without altering which class the network assigns the highest 



 

 

  

     

 

22 

probability to. As a result, it has no impact on the final predictions made by the neural 

network. 

 

4.2 Sparse Update 

Sparse Update [7] method involves weight update and gradient computation sparsely for 

layers or tensors. The gradients are pruned during backpropagation and the model is 

updated sparsely. There are three versions in the sparse update method. 

 
Figure 13 Full update 

4.2.1 Sparse Layer Update 

The weights of only a subset of layers are updated. In Figure 11, the pink shade represents 

‘fixed’ and blue represents the layers that are updated. The small block on top of the layer 

block represents bias and the same applies for Figure 12 and 13. 

 
Figure 14 Sparse Layer Update 
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4.2.2 Bias Update 

To update bias, this represents the number of layers to backpropagate to do so. 

 

Figure 15 Bias Update 

 

4.2.3 Sparse Tensor Update 

Only the ratio of weight tensor is updated. To choose the layers for sparse update 

contribution analysis is used for selection. The contribution of each weight or bias towards 

the accuracy is computed. By maximizing the total contribution, the subset of layers and 

weights to be updated is found. 

 

 

Figure 16 Sparse Tensor Update 
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4.3 Methodology 

Convolutional Neural Networks (CNN) is trained as the classifier for predicting KGs in 

sustainable KGI. The question features and KGs are given as input to CNN and trained to 

predict the KGs. The scaling factor, zero points are computed and stored for the model 

training with 32-bit floating point precision. Using these variables the quantization is 

applied during fine-tuning the pre-trained KGI model. For fine-tuned sustainable KGI, 

quantized convolution and linear layers are used. 
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Chapter 5. Results and Discussion 

In this section, the results for KGI and sustainable KGI models are discussed. All the 

models are implemented using PyTorch library in python. The KGI model is trained with 

0.0001 learning rate, 32 batch size and Adam optimizer for all three datasets. Table 3 shows 

the F1-scores for KGI model trained using question features only and question-image 

features combined. All the values in bold are the highest f1-scores. Except for the 

“sentiment” gap the KGI question features model performs better than model trained on 

combined features but there is no significant difference in the f1-score for question and 

combined features. 

Knowledge Gap 

F1-Score 

Question 
Feature 

Question and Image Feature 

Dot Product Concatenation 

Activity 0.907 0.901 0.891 

Attribute 0.961 0.957 0.952 

Direction 0.956 0.955 0.954 

Entity Resolution 0.976 0.971 0.974 

Location 0.789 0.788 0.786 

Material 0.839 0.803 0.805 

Reasoning 0.968 0.965 0.963 

Sentiment 0.792 0.816 0.758 

Size 0.856 0.842 0.843 

State 0.828 0.812 0.816 

Table 3 F1-score for KGI model trained on GQA question features only, Dot product and 

concatenation of question and image features 
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Table 4 and Table 5 show the f1-scores of the KGI model trained for CLEVR and 

TDIUC datasets respectively. 

Knowledge Gaps F1 - score 

Attribute 0.9997 

Counting 1 

Direction 1 

Entity Resolution 1 

Material 0.9994 

Size 0.9998 

Table 4 F1-score for KGI model trained on CLEVR question features 

 

Knowledge Gaps F1 - score 

Object Presence 0.97 

Color 0.96 

Scene Recognition 0.95 

Counting 0.99 

Attribute 0.94 

Activity Recognition 0.73 

Positional Reasoning 0.93 

Sport Recognition 0.92 

Object Recognition 0.99 

Utility affordance 0* 

Sentiment Understanding 0.84 

Table 5 F1-score for KGI model trained on TDIUC question features 
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The KGI model is trained for 10 epochs and is fine tuned for different data points of the 

GQA. The sustainable KGI model is trained and fine-tuned for the GQA dataset. Here, the 

comparison is made between the model fine-tuned without applying TinyML methods 

(Quantization - Aware Scaling (QAS) and Sparse Update) and with applying the methods 

(Table 6). The model parameters are learning is 0.1, batch size is 64 and Adam optimizer 

is used. Sparse Update is applied for the two quantized convolutional layers with 0.75 

weight update ratio for both the layers with bias of all layers updated. Here, for Direction 

Gap the performance decreases by 52% than the fine-tuned results, the reason for this is, 

this KG has the highest number of data and there are lot of false negative predictions, 

similarly for ‘Attribute’ and ‘Entity Resolution’. 

Knowledge Gaps 

KGI (without 

QAS + Sparse 

Update) 

Sustainable KGI 

(with QAS + 

Sparse Update) 

Accuracy 

Difference 

Activity 0.9929 0.9763 0.02 

Attribute 0.9573 0.7354 0.22 

Direction 0.9405 0.4299 0.52 

Entity Resolution 0.9594 0.5579 0.40 

Location 0.9755 0.9436 0.03 

Material 0.9766 0.9491 0.03 

Reasoning 0.9929 0.9446 0.05 

Sentiment 0.9987 0.9983 0 

Size 0.9795 0.9548 0.02 

State 0.9944 0.9899 0.02 

Table 6 Accuracy score for fine-tuning KGI for sustainable KGI (with QAS + Sparse 

Update) and fine-tuned KGI 
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The KGI and sustainable KGI model is compared based on training time, energy 

consumption and CO2 Emission. The training time given in Table 7 is for fine-tuning the 

model for 10 epochs and the best model with highest accuracy is shown. Energy 

consumption is the total energy consumed for training the model and does not include the 

energy consumed for cooling. In order to find the carbon emission, the energy 

consumption* measured in kilowatt per hour(kWh) needs to be multiplied by carbon 

intensity measures in grams of CO2eq emitted per kWh. The carbon intensity for Ohio is 

366 gCO₂eq/kWh which is taken from electricity maps* resources. From Table 7, it can be 

observed that sustainable KGI is faster and has less carbon emission compared to fine-

tuned KGI. Around 18% reduction across all the metrics is observed here. The values in 

bold are the lowest values. However, the overall accuracy for the sustainable KGI model 

is lower compared to fine-tuned KGI with values 85% and 98%, respectively. The accuracy 

of the sustainable KGI model is significantly lower for attribute, entity resolution and 

location gaps and performs well for other labels compared to fine-tuned KGI. 

 

Fine-tuning Methods Training time 

(Seconds) 

Energy 

Consumption 

(kWh) 

CO2 Emission 

(gCO₂eq/kWh) 

KGI (Without QAS 

and Sparse Update) 

288.5 0.049 17.934 

Sustainable KGI (with 

QAS + Sparse Update) 

236.2 0.040 14.64 

Reduction 52.3 (18 %) 0.009 (18%) 3.29 (18 %) 

Table 7 Comparing performance metrics for Sustainable KGI and Fine-tuned KGI 
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5.1 Knowledge Gap Identification Examples 

Example 1 

Question: Is the man to the left or to the right of the container made of glass? 

Ground Truth KGs: ['Direction', 'Material'] 

Predicted KGs: ['Direction', 'Material'] 

Here, the predicted KGs match the ground truth KGs. 

 

Example 2 

Question: What is the person in front of the people doing? 

Ground Truth KGs: ['Activity', 'Direction'] 

Predicted KGs: ['Activity', 'Direction', 'Entity Resolution'] 

Here, the predicted KGs do not match the ground truth. But the predicted labels seem more 

reasonable because the model has to identify the presence of ‘person’ and ‘people’ in the 

image which is associated with the ‘entity resolution’ gap. 

 

 

 

 

* The energy consumption value is taken from XD Metrics on Demand (XDMoD) which is an 

open-source tool used by Ohio Supercomputer Center for analyzing job performance and utilization 

metrics. And https://www.electricitymaps.com/ is used for getting the carbon intensity factor. It is 

an open-source site which maps electricity to carbon emission for many parts of the world. 

https://open.xdmod.org/10.5/index.html
https://www.electricitymaps.com/
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Chapter 6.  Future Work and Challenges 

 

In this chapter, the summary of the work, challenges, and possible future directions are 

discussed. 

From this work, it can be concluded that the reasoning skill or cognitive capability also 

termed as knowledge gaps can be identified for the Visual Question Answering task, to 

resolve the gaps. Further, Tiny Machine Learning techniques are applied to build 

sustainable model, leading to 18% reduction in energy consumption and carbon di-oxide 

emission for model training. 

In this work, Visual Question Answering is used as a testbed to investigate Knowledge 

Gaps to build robust and flexible autonomous AI systems and addressed the following 

research question: Can we build human cognitive capabilities into Artificially Intelligent 

systems with less computation and preserving accuracy? 

There were several challenges encountered while solving this problem statement. First, 

depending on each of the question types present in the dataset, knowledge gap tags differ 

for different visual question answering datasets, hence it is hard to train a single classifier 

model for all the datasets. To experiment this, a classifier model trained on GQA dataset 

was tested on TDIUC and vice versa, the performance metrics were low and zero for some 

classes. Secondly, from example 2 in section 5.1, it can be inferred that the ground truth 

annotations are not complete because the current approach uses rule-based mapping, and 

this type of reasonably predicted labels are observed all through the dataset particularly for 

‘Entity Resolution’. Finally, while performing multi-modal classification of question-
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image features into knowledge gaps, the image features does not seem to contribute to the 

learning of the model, this is because of the underlying bias in the distribution which is 

observed in VQA datasets. For sustainable KGI model, applying quantization – aware 

scaling and sparse update for pre-training results in loss of information. 

 

As a future work, this project can be extended by building a multi-modal classification 

model for CLEVR and TDIUC datasets. Implementing over-sampling or under-sampling 

for fine-tuning sustainable KGI model to prevent the performance drop. Quantization-

Aware Scaling and Sparse Update methods can be implemented for tasks other than VQA 

for comparing knowledge gap identification with other tasks and performing detailed 

analysis. Additionally, to improve the efficiency of tiny neural networks, a tiny machine 

learning method called Network Augmentation (NetAug) [18] can be implemented to the 

Sustainable KGI model. NetAug is a novel training method that improves the performance 

of small neural networks by augmenting the network itself instead of the data, addressing 

under-fitting issues commonly found in tiny models. 
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