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Abstract 

Given AI’s increasing role in healthcare, it is vital to ensure that created models neither 

perpetuate nor introduce new biases. A naive approach to bias reduction is to exclude 

demographic data during model training. However, in the healthcare sector, this approach 

may not produce the most efective models as these features could hold vital information 

related to care. This dissertation investigates the balance between optimal performance and 

algorithmic bias associated with the use of demographic data. 

The dissertation begins with a case study illustrating the necessity of examining the 

balance between performance and bias resulting from the use of demographic information. 

The analysis reveals a clear trade-of when using demographic information, necessitating a 

structured method for evaluating such a trade-of. Consequently, the dissertation introduces 

a framework to quantify this trade-of and make decisions regarding the type and extent of 

demographic information to be used for model training. This framework ofers a mechanism 

to decide whether to use no, some, or all available demographic information by providing a 

quantifed method to identify the bias-performance trade-of. The framework is then tested 

on two healthcare applications, and a dashboard is developed to analyze the pattern of the 

results. 

The fndings indicate a trade-of when including demographic features for model perfor-

mance, and also suggest a more equitable alternative than using all demographic information. 

Lastly, the dissertation discusses some of the signifcant results and ethical considerations 
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of the general use of demographic information observed from the outputs of the two mod-

els. By examining various model outcomes in detail, the research ofers valuable insights 

into the intricate relationship between demographic information and model performance in 

healthcare applications. 
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Chapter 1: INTRODUCTION 

1.1 AI and Healthcare 

AI systems such as machine learning (ML) models are transforming various industries, 

and healthcare is no exception. ML models have been utilized to perform various tasks in 

the healthcare sector, such as diagnosing conditions, assisting doctors in making decisions, 

and patient monitoring. Although it is not feasible to list all applications of AI in healthcare 

within the scope of this work, the following list provides insight into some of the most 

signifcant and emerging applications of AI in the healthcare sector. 

Diagnosis 

ML models have been efectively applied in diagnosing various medical conditions such as 

breast and skin cancer, COVID-19, and various heart and kidney conditions. For example, 

studies have used approaches such as Convolutional Neural Networks (CNN) and overall 

deep learning for cancer detection using mammography and ultrasound images ([35]; [19]). 

Additionally, studies have also demonstrated the utilization of CT images and medical history 

for diagnosing COVID-19 ([26]; [3]). Furthermore, a study by Ozsahin et al. [37] revealed 

a substantial increase in publications related to AI/ML and heart, rising from 559 in 2010 
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to 5697 in 2022, marking a percentage increase of approximately 900%, highlighting the 

growing use of AI in healthcare solutions. 

Assitance in decision making 

Another area of application in healthcare is assisting doctors in making decisions beyond 

diagnosis. For example, AI has been used to predict the readmission risk of patients back 

to the hospital and ICU, a crucial aspect in reducing mortality risk and ensuring extended 

care [23]. Additionally, hospitals are ranked based on the quality of care they ofer and 

face government fnes for falling below a specifed level of care, with patient readmission 

within a designated time frame serving as one of the key metrics. The utilization of AI in 

predicting patient readmission not only mitigates mortality risks, but also supports hospitals 

in maintaining a certain standard of care, ultimately benefting both patients and healthcare 

providers[25]. Similarly, ML models have been used to predict patients’ mortality risk and 

anticipate length of stay for proactive interventions allowing healthcare providers to assess 

resource allocation efectively[21]. 

Patient monitoring 

In times when there is a tremendous shortage of medical staf and equipment, AI models 

play a crucial role in easing the continuous monitoring workload for healthcare professionals. 

Hence, ML models have been utilized for ongoing remote monitoring of patients, promptly 

alerting healthcare professionals in emergencies, and ensuring timely and appropriate care for 

patients[31]. Continuous monitoring can take various forms, including video-based methods 

where images and videos capture changes in patients’ condition. Alternatively, it may involve 

IoT devices, allowing real-time monitoring of patients [34]. 
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1.2 AI and Bias 

In every context where AI systems are used, they raise the concern of bias against diferent 

groups of people. One of the most reported cases of ML bias is found in the criminal justice 

sector, involving the COMPAS algorithm. The COMPAS algorithm is a ‘risk assessment 

tool’ that is used by diferent courts in the USA to assist in decision making. A study 

by ProPublica found that this algorithm, which was utilized by courts to assess the risk 

of recidivism among defendants, inaccurately predicts future criminal behavior for black 

defendants at twice the rate compared to their white counterparts. In addition, this study 

also found that, “only 20 percent of the people predicted to commit violent crimes actually 

went on to do so” [5]. 

Machine learning (ML) bias is not an issue exclusive to the criminal justice system, as 

various studies have indicated. ML models have also been found to be biased against women 

in recruiting, especially in felds such as engineering. This bias often stems from data bias, 

where these models are trained predominantly on resumes of male employees, leading the 

model to associate being male as a criterion for success [10]. Furthermore, ML models have 

also been found to be biased in advertising, healthcare, and education. ([2]; [1]; [27]). 

1.3 AI, Healthcare and Bias 

The integration of AI into healthcare has the potential to signifcantly increase the number 

of lives saved. Hence, it is crucial to thoroughly evaluate the process to ensure that all 

patients receive equitable benefts from the use of such systems. The evaluation of AI 

systems in healthcare has been a slow and challenging process because researchers have 

difculty accessing healthcare data or the algorithms. It is understandable that healthcare 

data, due to its sensitive nature, must not be publicly accessible. However, until a pipeline 
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is developed where researchers are allowed to evaluate such systems, the AI system in the 

healthcare sector can remain a black box that perpetuates the unconscious and historical 

bias embedded within healthcare. [27] 

Studies have shown that ML models in healthcare can contribute to underdiagnosing 

patients from underserved populations, with an exacerbation of this problem when patients 

belong to multiple underserved groups simultaneously ([33]). Furthermore, studies have also 

shown that individuals from various underserved groups experience more inaccurate model 

predictions and unfavorable outcomes ([29]; [32]; [27]). To ensure the sustained integration 

of machine learning into healthcare in the long run, it is crucial to actively combat these 

biases. 

ML biases can be caused by various reasons, such as the utilization of incorrect proxies 

for prediction tasks, as shown by [27], where the wrong features are used to train diferent 

ML models. Additionally, biases embedded in historical data can be magnifed and result in 

biased models [33]. Furthermore, data availability bias, where data not originally collected 

for ML purposes used in these models, is another contributing factor for bias ([30]; [16]). 

1.4 Addressing AI Bias in Healthcare 

One naive approach to mitigate ML biases, especially one that results from historically 

biased data, is to exclude features that could aid in identifying an individual, such as race, 

gender, and insurance type, from the training data to achieve “Fairness through Blindness” 

([28]). “Fairness through Blindness” is a bias mitigation technique used in model training 

across diverse sectors, healthcare included. This approach assumes that being unaware of 

sensitive attributes while making decisions leads to fair decision making. While this method 

is easy to implement and check, it has its limitations. First, absolute blindness is usually 
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impossible. Even though sensitive attributes are not explicitly provided, other features could 

have correlations with the attributes, therefore allowing for the same grouping as if the sensi-

tive attributes were provided ([15]). This phenomenon has been observed in diferent sectors, 

such as criminal justice ([4]) and the advertising industry ([14]). Second, it might not yield 

the most optimal models. Especially in healthcare where some of these sensitive attributes 

might provide meaningful insight, excluding them in the model training process might not 

produce the best-performing models. A study by [23] demonstrated that incorporating all 

provided demographic information improved the model’s performance for predicting Inten-

sive Care Unit(ICU) readmission risk. While the inclusion of sensitive attributes, as shown 

by [23], might improve model performance, it concurrently raises the risk of introducing 

additional bias. Therefore, it is crucial to analyze the trade-of between performance and 

the potential for additional bias to determine the optimal circumstances for leveraging such 

features. 

1.5 Problem Statement 

This paper introduces and tests a framework that investigates when it is appropriate to 

use demographic information in model training to get optimal performance while minimizing 

additional introduced bias. The framework is then used to analyze whether there is a more 

fair alternative between using no demographic information and using all provided demo-

graphic information. Two healthcare application models were used to test the framework. 

Lin et al. [23] presents the frst model and predicts patients’ unplanned ICU readmission 

risk. The second model, presented by Harutyunyan et al. [21], predicts patients’ In-Hospital 

Morality (IHM) risk. 
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Our fndings provide crucial insight into both machine learning and the healthcare do-

mains. Firstly, this work demonstrates that an increase in a model’s performance does not 

always result in a fairer model, which highlights the necessity for a formalized metric to 

assess the additional bias introduced. Second, this framework is tested with two health-

care applications, illustrating its adaptability to a broader range of applications. Lastly, the 

results reveal inherent biases that cannot be addressed by altering model architectures or 

removing all demographic features. This intrinsic bias underscores the prevailing inequities 

in today’s healthcare system. 

The remainder of the thesis is structured as follows: Chapter 3 introduces the two models 

used for the rest of the analysis, while Chapter 4 elaborates on the data used for these 

models. Chapter 5 discusses the importance of conducting a trade-of analysis by showing 

a case study, while Chapter 6 introduces and explores the framework developed in depth. 

Chapter 7 then talks about the visualization tool created to understand the patterns of the 

results. Chapter 8 uses the visualization tool developed to highlight key fndings for the two 

models tested, introduced in 3, showcasing the process involved in decision making regarding 

the use of demographic data. Following this, Chapter 9 discusses the main takeaway from 

this work. Lastly, Chapter 10 addresses the limitations of the work and outlines potential 

future research directions. 
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Chapter 2: RELATED WORK 

2.1 The Use of Demographic Data for Healthcare Models 

The use of sensitive attributes in healthcare models has been a contentious topic ([38]; 

[8]). This originates from weighing the benefts these features provide versus the potential 

bias they introduce. Borrell et al. [7] argue that the responsible use of race in health-

care models is benefcial in providing useful information, and should be used until a better 

alternative is found. This article further discusses how the use of race and ethnicity for 

biomedical research captures information other than genetics, such as socioeconomic status 

and environmental exposure, which could contain important epidemiological data. Borrell 

et al. [7] also acknowledge the complexity behind using information such as ethnicity, as it 

is self-identifable information. For example, if a biracial patient comes to a hospital, they 

could identify themselves as either white or black, when medically they are considered both, 

potentially leading to misdiagnosis of the patient. Nonetheless, the paper argues that race 

and ethnicity, when complemented by ancestry data, can provide a comprehensive under-

standing, with ethnicity ofering environmental exposure information and ancestry providing 

genetic data. 

On the contrary, Cooper et al. [12] argue that the minimal advantages of using race are 

overshadowed by the possible negative consequences stemming from the extensive legacy of 

racism in the feld of medicine [38]. This perspective highlights concerns that the use of 

7 



race-specifc drugs could divert the attention of healthcare providers from existing efective 

drugs. Furthermore, it emphasizes the genetic diversity present within a single ethnicity. 

For example, if a patient is of African descent, there is still a big genetic variation among 

patients in this group. Therefore, more information, such as educational level and lifestyle, 

would need to be provided to make any inference about a given patient. Similarly, Vyas et 

al. [38] discuss biases resulting from using race as a decision factor. This article discusses 

how, as a result of using race, black patients could be considered lower risk, which reduces 

their chance of admission to cardiology services, and delays referrals to specialists for kidney 

problems. 

However, Lin et al. [23] have shown that the use of demographic features such as age, 

gender, ethnicity, and insurance can increase the performance of the model used to predict 

ICU readmission risk, demonstrating the importance of demographic information for health-

care ML models. This study predicts ICU readmission risk using patients’ medical records 

and experiments with the use of demographic information mentioned above. The results 

indicated an improved performance of the model when demographic features were incorpo-

rated compared to models without them. The authors tested demographic information using 

either all or none of them in their experiments. 

Our work analyzes the model of Lin et al. [23] in Chapter 5 to understand the trade-of be-

tween increased performance as a result of using the demographics model and the additional 

bias introduced. The result shows that there is indeed a trade-of, signifying the importance 

of performing such an analysis before choosing to use demographic information. This work 

then provides, in scenarios where these features have to be used, a framework that evaluates 

the trade-of between additional gained performance and additional bias introduced. The 

framework is discussed in detail in Chapter 6. 
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2.2 Fairness Analysis of Healthcare Models 

Previous studies have shown the bias in machine learning models within healthcare con-

texts by examining various models developed for diferent applications. Röösli et al. [29] 

evaluated the In-Hospital Mortality (IHM) risk prediction model presented by Harutyunyan 

et al. [21], the same model used to test the framework in this thesis. Röösli et al. [29] 

presented a three-stage framework that starts with internal validation followed by external 

validation and concludes with internal validation after retraining the model with a diferent 

dataset. Their fndings revealed that this model exhibits classifcation parity violations for 

patients with Medicaid insurance during internal validation. Additionally, the results indi-

cated poorer performance for black patients, a pattern observed consistently across all three 

stages of the evaluation. 

A work by Chen et al. [9] also studied the bias across diferent demographic groups 

for the application of 30-day psychiatric and ICU mortality readmission using patient notes 

from New England Hospital and MIMIC-III, a dataset that will be explained in depth later, 

respectively. When doing bias analysis, the authors found that female patients and patients 

with public insurance have a higher error rate for the ICU readmission model. They also 

found that private insurance has the highest error rates for psychiatric readmission. 

Similarly, Seyyed-Kalantari et al. ([33]; [32]) investigated the bias of AI-based chest 

X-ray (CXR) prediction models. The results of the analysis show a disparity in the True 

Positive Rate (TPR) for female patients, Hispanic patients, and Medicaid-insured patients 

[32]. Similarly, Seyyed-Kalantari et al.’s [33] evaluation found that female patients and 

Hispanic female patients have a higher underdiagnosis bias compared to other patient groups. 

Furthermore, Daneshjou et al. [13] examine the performance of dermatology AI models 
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using datasets containing patients with diverse skin colors and observe poorer performance 

for darker skin tones. 

The models discussed above have all been trained without the inclusion of demographic 

information. Our work tries to complement the studies mentioned above by training models 

with demographic information and investigating whether additional bias is introduced as a 

result. To accomplish this, we introduce a framework for analyzing the bias-performance 

trade-of associated with the use of demographic information, enabling informed decisions 

regarding its utilization. 
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Chapter 3: BASE MODELS 

The following subsections introduce the two models utilized throughout this paper. The 

frst model is a readmission risk prediction model from the work of Lin et al. [23]. The 

second model predicts the mortality risk of patients and this work is done by Harutyunyan 

et al. [21]. The readmission risk model is used in Chapter 5 for a case study to conduct a 

thorough trade-of analysis, showcasing the necessity for such an evaluation. Both models 

are then utilized to test the framework developed in Chapter 6. 

3.1 Readmission Risk Prediction 

Lin et al. [23] used supervised ML models to predict the ICU readmission risk of patients. 

The target variable is a binary variable that indicates whether a patient is at high risk for 

unplanned ICU readmission. Various model architectures and data combinations were tested 

to enhance the models’ performances. The architectures examined included LSTM, CNN, 

LSTM+CNN, and CNN+LSTM. For input data, low-dimensional diagnosis codes ([11]) 

were used and experiments involved diferent time series windows of chart events recorded 

hourly, such as F48 (frst 48 hours after admission) and L48 (last 48 hours before discharge). 

Furthermore, the use of demographic information was experimented with. In this case, 

demographic information such as age, gender, ethnicity, and insurance were all used to 

train the model, or none of them were used. For our experiments, we took the LSTM and 
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LSTM+CNN models with L48 data, as they were the most explored model and highest-

performing model, respectively. The performance of the models was reported using True 

Positive Rate (TPR) and Area Under the Curve (AUC). 

The frst model selected for our analysis is the LSTM model. It is a bidirectional model 

with an additional LSTM layer followed by an output layer that is a one-neuron Sigmoid. In 

contrast, in the LSTM+CNN model, LSTM outputs hidden units which are then passed into 

a CNN. The CNN will then compute the feature maps based on the hidden units without 

zero padding. Similar default parameters as the base model in the paper were used to train 

these models. For example, the learning rate was set to 0.001 and the Adam optimizer was 

used with a beta of 0.9. More details about these models can be found in [23]. 

While debugging the base model’s code, we discovered an error in calculating the mean 

and standard deviation(SD) age of patients. The mean and SD age of the patients was 

calculated horizontally across a single row instead of vertically. Consequently, the model 

took the mean and standard deviation of age and other variables of an individual patient’s 

records instead of computing the mean and standard deviation age of all patients. This issue 

was corrected before using the base model to test the framework. 

3.2 Mortality Prediction 

The second base model, [21], looks at the clinical data of patients to predict the risk 

of In-Hospital Mortality (IHM) using the frst forty-eight-hour (F-48) data after admission. 

The target label is a binary output that shows if a patient is at high risk of death before 

discharge. Out of the models experimented with by the authors, standard LSTM and channel 

LSTM were selected for our analysis. Standard LSTM was the most basic neural network 

tested, and channel LSTM was the best-performing model experimented with. The standard 
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LSTM model is a bidirectional LSTM model with an output sigmoid neuron. In contrast, 

the channel LSTM model is a “modifed version of the standard LSTM where all variables 

are frst independently pre-processed with an individual bidirectional LSTM layer instead 

of working directly on the full matrix of clinical events as usual” ([29]). Similarly to the 

readmission risk prediction work mentioned in the preceding section, the code for this study 

also had an error in computing the mean and standard deviation for age. However, this issue 

was resolved prior to the application of the model. 

The models’ performance was evaluated using Area Under the Curve (AUC) and Area 

Under the Precision-Recall Curve (AUPRC). The default model parameters, as described 

in the paper by Harutyunyan et al. [21], were used for the application of this thesis. More 

details about these models can be found in [21]. 
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Chapter 4: DATASETS 

The data used for both models, and therefore our analysis is the MIMIC-III data ([22]). 

MIMIC-III is a deidentifed, comprehensive clinical data of patients admitted to the Beth 

Israel Deaconess Medical Center ICU in Boston, Massachusetts. The version III data spans 

over the time frame between 2001 and 2012. This data includes demographic information, 

imaging reports, vital sign measurements made at the bedside ( 1 data point per hour), lab-

oratory test results, caregiver notes, procedures, medications, diagnosis codes and mortality 

(both in and out of the hospital). 

The specifc details of the data used for each base model and any modifcations made to 

the data on our end are described below. 

4.1 Readmission Risk Prediction 

For this application, Lin et al. [23] remove patients who are under the age of 18 and pa-

tients who passed away in hospitals. The details of a positive binary outcome are extensively 

explained in the paper [23]. The data was split into 80%,10%,10% for training, validation, 

and testing. The work conducts a fve-fold cross-validation, therefore we also use the aver-

age of the fve-fold as our fnal result. Features classifed into three distinct categories were 

used. The frst category is chart events, which records the physiological conditions of the 

patients. Seventeen chart events were used; some of them were continuous data and others 
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were categorical. The categorical data was one-hot encoded to prepare the data for model 

input. Some of the clinical data in this category include heart rate, glucose, oxygen satura-

tion, body temperature, and pH. The second category is low-level embedding of ICD codes, 

where diferent chronic diseases could be found ([11]). The third category is demographic 

information such as age, ethnicity, insurance, and gender of patients. Table 4.1 shows the 

subcategories of each demographic feature used to train the models. This feature category 

was used as part of an experiment in which both its inclusion and exclusion were tested to 

obtain a higher performing model. 

Lin et al. [23] experimented with the use of all demographic information listed above 

all at once or not at all. Even though including demographic features increased the model’s 

performance, a trade-of analysis was not done to understand if additional bias was intro-

duced due to using such information. In this work, in addition to providing the trade-of 

between using all demographic information and no demographic data, we also experimented 

with using some demographic information, where we tested every combination of it to fnd 

the best-performing and fairest model. 

4.2 Mortality Prediction 

Harutyunyan et al. [21] remove patients with ICU transfers, patients with two plus ICU 

stays per admission, and pediatric patients. The base model did not include cross-validation, 

so we added a fve-fold cross-validation with 80%,10%,10% train, validate, and test split to 

match the splitting process of the readmission model. 

This model only used one category of data mentioned in the readmission risk model, the 

chart events. Neither diagnosis codes nor demographic information was used to train this 

model. Given the pivotal role of demographic information in analysis, we have integrated 
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Demographic Data Subgroups 
Age 18-120 

Gender F, M 
Ethnicity White, Black, Hispanic, Asian, Other, No Information 
Insurance Medicare, Medicaid, Private, Self-Pay 

Table 4.1: Demographic Information 

the functionality to train the model using diferent demographic features of patients and 

conduct analyses for such groups. The demographic data category and subcategory used 

for this model are listed in table 4.1. Moreover, given that the base model doesn’t explore 

the integration of demographic features, this study’s experimentation with incorporating all, 

some, and no demographic features sheds light on the correlation and trade-ofs associated 

with using demographic features in the context of mortality prediction. 
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Chapter 5: EXAMINING PERFORMANCE BIAS TRADE-OFF: 

CASE STUDY 

The goal of this chapter is to perform an in-depth analysis of trade-ofs between bias 

and performance when demographic data is used to train a model. Specifcally, this chapter 

explores the models presented by Lin et al. [23] to investigate whether the increased per-

formance after using demographic data is consistent across all patients. We systematically 

explored the trade-of for each demographic variable and their combinations by comparing 

two identical models that difer only in whether they used particular demographic informa-

tion. 

5.1 Method 

As discussed in detail in Chapter 3, Lin et al. [23] used supervised machine learning 

models to predict ICU readmission risk using patients’ clinical data. For our analysis, we 

took two LSTM models with L-48 data from the work done by [23] as base models where the 

only diference between the two is the incorporation of demographic data. For this case, the 

frst model did not include any demographic information, whereas the second model included 

all demographic data provided, such as age, gender, insurance, and ethnicity. The LSTM 

model was used because it was the most explored and showed the third highest performance 
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improvement with the inclusion of demographic data in the original work. We refer to the 

model with demographic information as WD and the one without it as WOD. 

The original model by Lin et al. [23] utilizes True Positive Rates (TPR) as one of the 

metrics for reporting results, and we adopt the same metric to examine performance and 

bias for two primary reasons. First, it is used to maintain consistency with the original 

work because it allows us to measure disparity using the originally intended metric. Second, 

assuming that a true positive prediction gets the beneft of extended care due to the high 

risk of readmission, TPR allows us to gauge the classifcation efectiveness of the models and 

assess whether the inclusion of demographic data has increased or decreased the disparity of 

such beneft. 

To examine the introduced bias resulting from the use of demographic data, the TPR of 

model WOD is computed for diferent demographic subgroups, and compared to the TPR of 

model WD for the same groups. The TPR for each model is derived by averaging the TPR 

values obtained through a 5-fold cross-validation. The diference of these TPRs between the 

models WOD and WD is then used to measure the disparity of beneft for each demographic 

group that happens as a result of using demographic data. 

To explore further, we extend our analysis to include intersectional demographic groups. 

This entails repeating the same analysis for patients who belong to diferent categories of 

demographic groups, simultaneously. For example, we evaluate how model WOD performs for 

female patients with Medicaid insurance and compare it to how model WD performs for the 

same group of patients. 
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Figure 5.1: TPR diference of model WOD and WD for gender, ethnicity, and insurance sepa-
rately 

Figure 5.2: TPR of model WOD and WD for intersectional groups (Insurance, Ethnicity) where 
G: Government, M-i: Medicaid, M-r: Medicare, P: Private are diferent insurance groups 
and N: No Data, B: Black, H: Hispanic, A: Asian, W: White are diferent ethnicity groups 
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Figure 5.3: TPR of model WOD and WD for intersectional groups (Insurance, Gender) where 
F: Female, M: Male, G: Government, M-i: Medicaid, M-r: Medicare, P: Private are diferent 
insurance groups 

Figure 5.4: TPR of model WOD and WD for intersectional groups (Gender, Ethnicity) where F: 
Female, M: Male and N: No Data, B: Black, H: Hispanic, A: Asian, W: White are diferent 
ethnicity groups 
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5.2 Results 

When observing the results, bias could be noticed in two ways. First, when the TPR 

diference is negative for some demographic groups and positive for others, it implies varying 

benefts from the use of demographic information. Second, when there is a noticeable gap in 

the magnitude of the TPR diference among diferent groups, it suggests that the magnitude 

of beneft from the use of demographic information varies across such groups. 

Fig.5.1 to Fig. 5.4 present the TPR diference for individual subgroups and their inter-

section. Each fgure is centered at 0 with positive WOD minus WD to the right and negative 

WOD − WD to the left of the center. The magnitudes of the bars show the extent to which 

demographic information contributed to the improvement. Figure 5.1 shows the TPR difer-

ence for all subgroups across gender, ethnicity, and insurance. Additionally, Figure 5.2, 5.3 

and 5.4 show the diference for all the intersectional subgroups. 

Figure 5.1 shows that the addition of demographic data increased the beneft of all 

subgroups except for patients with self-pay and Hispanic patients compared to the model 

WOD. It can also be seen that there is a magnitude diference among both the positive and 

negative bars. All of the fgures illustrate both kinds of biases discussed above. For example, 

fgure 5.3’s frst type of bias is noticeable when observing the performance bar for female 

patients with government insurance, where the bar is to the right of the center axis. It can 

be inferred that the addition did not help this demographic group, resulting in an average 

performance decrease of approximately 13%. For the second bias, the noticeable comparison 

is the big diference between females and males with government insurance, where there is a 

beneft disparity of roughly 40%, although more disparities can be observed. Such inference 

can be made about all the other fgures as well, but it is important to note that as the 
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number of patients decreases in the group, the fuctuations in beneft could be higher and 

that needs to be kept in mind when making decisions. 

5.3 Discussion 

As shown throughout this paper, depending solely on performance metrics for reporting 

can obscure nuanced information, especially in the area of algorithmic fairness. For an 

increased overall performance of roughly 2 percent TPR, the fgures above show the kind 

of beneft disparity that could be introduced. Depending on the application, the acceptable 

trade-of and bias could difer, but these kinds of analyses allow us to understand such 

trade-ofs before making decisions. 

This chapter presented the result of an analysis that examined the trade-ofs between 

optimal performance and algorithm bias linked to using demographic data. It is important 

to understand that the use of demographic information does not always increase benefts for 

all protected groups uniformly. This analysis is key to assessing the trade-of between perfor-

mance and bias and can be used to decide whether or not to use demographic information. 

To generalize the trade-of analysis process to a wider range of healthcare applications and 

allow developers to apply their data, models, and sets of demographic groups for analysis, 

we constructed a framework. This framework can be used to quantify the performance 

bias trade-of associated with the utilization of demographic information. An additional 

question arising from this analysis is whether there exists a more optimal alternative between 

utilizing all demographic information and none at all. Consequently, Chapter 6 presents the 

framework for analyzing trade-ofs and identifying a more optimal alternative between using 

all demographic information and none. 
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Chapter 6: FRAMEWORK: ANALYZING 

PERFORMANCE-BIAS TRADE-OFF 

Two-stage Framework Introduction 

As shown in Chapter 5, the utilization of demographic information, and overall having a 

better performing model, does not always equate to a fairer outcome. Hence, it is crucial to 

do an in-depth analysis to understand the possible additional bias introduced due to the use 

of demographic information before utilizing it. This chapter introduces a framework that 

can be used to quantify the trade-of and analyze the efect of using demographic information 

on a case-by-case basis. 

The trade-of analysis framework consists of two stages. The frst one is model training, 

followed by trade-of and worst-case disparity analysis. In these two stages, multiple models 

are trained and subsequently analyzed in the next stage to answer two key questions. The 

frst question aims to understand the performance-bias trade-of between utilizing all demo-

graphic information and none for a given healthcare application. The second question aims 

to explore whether there is a better alternative, in terms of both performance and fairness, 

to using no demographic data and all demographic information to train healthcare models. 

This analysis aims to answer whether we can selectively choose diferent combinations of 
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demographic information groups as features to obtain the most optimal model, which is also 

fair. 

The two stages are explained in depth below: 

6.1 Model Training 

In any application utilizing this framework, there are two categories of features: those 

that do not pertain to the demographic information of patients and those that do. We refer 

to the previous ones as NonDemographicFeatures and the latter ones as 

DemographicFeatures. A model trained with any additional DemographicFeatures is de-

noted as WD (with demographic) model, while any model trained solely with 

NonDemographicFeatures and without DemographicFeatures is denoted as WOD (without 

demographic) model. 

Assume that there are N number of DemographicFeatures in consideration to be used for 

training a model. For any given set with N number of demographic features, the cardinality 

of the power set P (DemographicFeatures) is 2N , including the empty set. This power set 

includes every combination of elements of the set, ranging from no elements (the empty set) 

to all elements included. For model training, while keeping the NonDemographicFeatures 

and architecture of the models similar, the given base model is trained 2N times. The 

only diference among these models is the type of DemographicFeatures added to train the 

models, taking one from the power set for each training without replacement. In the end, 

there will be one WOD model and 2N − 1 models that are WD. 

For example, as shown in Chapter 4, [Age, Gender, Race, Insurance] are the four demo-

graphic feature types under consideration for the two base models used to test this framework; 

therefore, N = 4. Table 6.1 shows the power set of the above demographic features. Let us 
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take the readmission risk model with LSTM architecture as a sample; then, while keeping 

the clinical data and architecture of the model similar, the base model would be trained 16 

times with a row set of demographic features from Table 6.1 taken for each training round of 

the base model. Consequently, the resulting models would include 15 WD models and one 

WOD model. 

After the models are trained according to the process described above, the outputs are 

analyzed in the second stage. This analysis addresses the two key questions posed at the 

beginning of this chapter. More specifcally, training the model with and without the demo-

graphic information allows a developer to answer the frst question, the trade-of between 

using no demographic and all demographic information. Additionally, training the model 2N 

times with diferent combinations of demographic information allows for the exploration of 

the impact of each demographic and the interaction between multiple demographic features 

for a given application, allowing to answer the second question. The results will indicate 

whether there are alternatives to using all demographic or no demographic information, 

resulting in a better performance and fairer outcome. 

6.2 Trade-of and Bias Analysis 

Two types of analysis are done in this stage: trade-of and worst-case disparity analysis. 

Trade-of analysis involves comparing a given WD model to a WOD model of the same application 

and architecture. This comparison is done to understand whether an additional bias is 

introduced due to utilizing DemographicFeatures to train the WD model. In contrast, worst-

case disparity analysis is intended to evaluate the bias of each model individually. This 

means that the bias of each model is calculated and reported separately, rather than in 
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Age Gender Race Ethnicity 
✗ ✗ ✗ ✗ 
✓ ✗ ✗ ✗ 
✗ ✓ ✗ ✗ 
✗ ✗ ✓ ✗ 
✗ ✗ ✗ ✓ 
✓ ✓ ✗ ✗ 
✓ ✗ ✓ ✗ 
✓ ✗ ✗ ✓ 
✗ ✓ ✓ ✗ 
✗ ✓ ✗ ✓ 
✗ ✗ ✓ ✓ 
✓ ✓ ✓ ✗ 
✓ ✓ ✗ ✓ 
✓ ✗ ✓ ✓ 
✗ ✓ ✓ ✓ 
✓ ✓ ✓ ✓ 

Table 6.1: Power set for the set of demographic features 

relation to another model. After the models are trained in the frst stage, such trade-of and 

worst-case disparity analysis could be done for any intended demographic group of patients. 

For example, in the two test applications used to evaluate this framework, bias is stud-

ied across gender, ethnicity, insurance subgroups and additional intersectional subgroups. 

Subgroups are distinct categories within a broader group. For example, Medicaid and Medi-

care are subgroups examined within the insurance category. Intersectional subgroups, as 

explained in chapter 5, refer to patients who belong to diferent categories of demographic 

groups, simultaneously, like black female patients. Subgroups with fewer than 50 patients 

were removed from the analysis to avoid infation of the resulting bias report. 
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6.2.1 Trade-of Analysis 

As mentioned above, trade-of analysis aims to understand whether there is an additional 

bias due to the use of demographic information. This analysis is conducted and reported in 

two ways. First, the trade-of is assessed using the True Positive Rate (TPR) of the model’s 

performance. Second, the trade-of analysis is reported using the original metric utilized by 

the model. The two mechanisms of reporting the analysis are explained in depth below: 

TPR Disparity 

Assuming a true positive prediction provides some beneft, for example, in the case of 

readmission, extended care, and IHM, extra attention to patients; this metric allows to 

document the increased or decreased beneft to a specifc group due to the use of certain de-

mographic information to train a model. This metric is important because it provides insight 

into whether the additional incorporation of demographic information evenly distributes the 

model’s capability to identify positive instances accurately. To calculate this diference, we 

took: 

W OD(TPR)g − WD(TPR)g 

where g stands for a specifc subgroup or intersectional subgroup in question. 

If the diference is negative, then the sensitive attribute used to train the model benefted 

the subgroup being analyzed. On the other hand, if the diference is positive, then the 

sensitive attribute used to train the model disadvantaged the given group. Rarely, if the 

diference is zero, it means the sensitive attribute used to train the model neither benefted 

nor disadvantaged the analyzed group. 
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Original Metric Disparity 

This reporting metric operates similarly to TPR disparity, except in this case, instead 

of using TPR, the original performance metric of the model is used to document the trade-

of. This means that if the performance metric used by the base model was accuracy, then 

accuracy would be used to report the performance diference, as diferent combinations of 

demographic features are used to train the model. To calculate this diference, we took: 

W OD(metric)g − WD(metric)g 

where g stands for a specifc subgroup or intersectional subgroup in question, and metric 

stands for the specifc metric the developer wants to test for. 

The rationale behind using the original metric is to facilitate the generalizability of the 

framework. This method allows developers to understand how the diferent combinations 

of demographic information afect the model’s fairness outcome in terms of the originally 

intended metric, in addition to the pre-specifed fairness metric. For example, the mortality 

risk model reported its results using AUROC and AUPR. Even though we report the TPR 

disparity of the model in Chapter 8, AUROC and AUPR disparity are also reported to draw 

a full picture of the performance and disparity of the models for diferent demographic groups 

of patients. 

6.2.2 Worst Case Analysis 

The above analysis looks at the bias by comparing models that were trained with any 

demographic information to the one that did not. Although this method provides a great 

insight into what additional bias looks like by comparing it to a model without it, it does not 

show the bias of a given model on its own. To study that, we used the worst-case disparity. 
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As shown by Ghosh et al. [17], the worst-case min-max ratio is used to cover all potential 

subgroups within a data set by examining the most unfavorable outcome. Similarly, we 

use worst-case disparity min-max ratio, referred to as worst-case disparity in the rest of the 

paper, to show the highest level of inequity / bias that results within a group as a result of 

using a model. To calculate the worst-case disparity for a given group, 

min{P (Ŷ = 1|A ∈ sgi, Y = 1)∀i ∈ N} 
max{P (Ŷ = 1|A ∈ sgi, Y = 1)∀i ∈ N} 

where Ŷ is a binary predictor, A is a member of some given group sg and N is the number 

of subgroups within a given group. 

The work by Ghosh et al. [17] uses this formula to investigate the worst-case disparity 

in intersectional subgroups. However, for our study, we will utilize it to analyze general 

groups, as the number of patients in each intersectional subgroup might be low, potentially 

infating the results. Providing protection to smaller numbers of people in a subgroup is 

among the recommendations for future work discussed in Chapter 10. In this study, the 

farther away the ratio is from one, the higher the worst-case disparity among a given group. 

Therefore, the higher the ratio is, the lower the disparity, and the lower the ratio, the higher 

the disparity. 

This study enables us to observe the initial worst-case bias in the model trained without 

demographic data, as well as each of the other models separately. While it is an efective 

tool for assessing disparity, it should be used in conjunction with trade-of analysis to ensure 

the accuracy of the results. This is because even if the performance of a particular model 

decreases, as long as it decreases for all subgroups in the study, the worst-case disparity 

will decrease (the ratio will increase). For instance, if a model has a TPR of [50,80,90] for 
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three subgroups A, B, and C, and another model has a TPR of [30,30,30], then the worst-

case disparity of the frst model will be .56 while the second one will have a ratio of 1, 

even though the second model has signifcantly lower performance across all three groups. 

Therefore, examining it in isolation might cause us to overlook this aspect. If, when viewed 

alongside the trade-of analysis, it is found that the models under consideration are enhancing 

the benefts of the subgroups being studied, then the worst-case analysis becomes useful to 

ensure that no groups are severely disadvantaged and left behind. 

The computation of the worst-case analysis is solely based on the True Positive Rate 

(TPR), rather than incorporating both the TPR and the original metric as done in trade-of 

analysis. This approach is adopted because the worst-case disparity focuses on the disparity 

in benefts, utilizing the Equal Opportunity fairness metric as outlined by [17]; [20]. The 

equal opportunity metric seeks to ensure that the positive rates among diferent groups are 

equal, provided that the individuals in each group meet the qualifcations. The formula for 

this metric is as follows: 

P (Ŷ = 1|A ∈ sgi, Y = 1) = P (Ŷ = 1|A ∈ sgj , Y = 1)∀i,j ∈ N, i ≠ j 

where Ŷ is a binary predictor and A is a member of some given group sg. 
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Chapter 7: DASHBOARD INTRODUCTION FOR TRADE-OFF 

AND BIAS ANALYSIS 

To better understand the trade-of and bias analysis patterns, we built an interactive 

Tableau dashboard for visualization of the results. This dashboard showcases the compari-

son of performance-bias trade-ofs across various models and architectures, simplifying the 

comparison process. Although the decision on which demographic information to utilize may 

not always be straightforward, such a dashboard streamlines the examination of patterns and 

aids in decision-making. 

For the two base models used to test the framework in Chapter 6, we created two side-by-

side plots, one for each application, making it a total of four plots per application. We refer 

to each side-by-side plot as a dashboard. The frst dashboard is for trade-of analysis, and 

each plot pertains to the type of architecture used to train the model. A sample trade-of 

analysis dashboard is shown in Fig. 7.1 and thoroughly explained in the subsequent sections. 

In contrast, the second dashboard shows the worst-case analysis outcome, with one plot for 

each architecture. A sample dashboard is illustrated in Fig. 7.2 and detailed explanations 

are provided in the upcoming sections. 

The dashboards built for analyzing the two test case models are provided in Chapter 7.3. 
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Figure 7.1: Screeshot of trade-of analysis dashboard 

7.1 Trade-of Analysis Dashboard 

The purpose of this dashboard is to compare the results of the trade-of analysis of 

diferent models to efectively assess the additional bias introduced by each model. This 

facilitates the identifcation of models with the least amount of additional bias introduced. 

Fig. 7.3 is used to explain the various elements of the dashboard, focusing on one plot of 

the dashboard shown in Fig. 7.1. Although the explanation pertains to one plot of the 

two, the same interpretation applies to the other one as well. Fig. 7.3 shows the trade-of 

analysis for mortality risk using the channel LSTM model. In this fgure, A denotes the model 

architecture used to train the model and the application for which the model is trained, while 

B, model type, denotes the type of demographic information used to train the model. The 
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Figure 7.2: Screenshot of worst-case disparity analysis dashboard 

diferent types of demographic information used as features are connected with an underscore. 

For instance, if the model type is group1 group2, then group1 and group2 information were 

used as features to train this model. The only exception to this is ‘all dem’, which means 

all demographic information was used for model training. For the two test cases in Chapter 

3, it means all age, gender, ethnicity, and insurance features were used to train the models. 

C denotes the type of demographic group of patients being studied. ‘ethnicity transformed’ 

refers to the ethnicity of patients, but it is named as is because multiple ethnicities had to 

be consolidated to give out the fve subgroups, Asian, Black, Hispanic, White, No data and 

Other, used for this study. Two back-to-back ethnicities show the study of an intersectional 

group of patients. For instance, ’INSURANCEGENDER’ is the intersectional subgroup of 
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insurance and gender; some subgroups are female patients with private insurance and female 

patients with medicare insurance. 

In sections B and C, users can compare the various types of demographic features used to 

train the models, as well as the diferent demographic groups intended for study. This can be 

done by selecting the specifc features and groups they wish to analyze by toggling the check 

boxes associated with each. The diferent demographic features used to train the models 

selected from section B can be seen color-coordinated in section D, whereas the diferent 

demographic groups studied in section C add or remove additional elements in the y-axis 

to show the corresponding outputs. For studying TPR disparity, users can select ”Rec1” 

from the dropdown menu depicted as E in fg. 7.3. Alternatively, for the original metric, all 

necessary metrics required to report the results are available in the drop-down menu. 

As mentioned above, the Y-axis shows the subgroup of the demographic information 

being studied, which is arranged per demographic category so that subgroups from the same 

category appear together. When a user clicks on a toggle for a group to be added or removed 

from section C, the resulting group is accordingly included or excluded from the Y-axis. The 

X-axis shows the trade-of disparity for each subgroup being studied. 

For example, in Figure 7.3, the dashboard pertains to a mortality risk prediction ap-

plication using a channel wise LSTM model architecture and the analysis focuses on TPR 

disparity. The blue bar represents a model trained with age as an additional input feature, 

while the yellow bar represents a model trained with all demographic features as input. The 

demographic groups under study include ethnicity, insurance, and an intersectional group 

between insurance and gender. 
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7.2 Worst Case Disparity Analysis Dashboard 

This dashboard illustrates the outcome of the worst-case analysis. Fig. 7.4 is a zoomed-in 

version of Fig. 7.2 used to showcase the diferent elements of the plot. Similar to the previous 

section, while only one plot is utilized to explain the dashboard, the same interpretation 

applies to both plots on the worst-case analysis dashboard. 

Section F of the plot displays the model architecture used to train the model and the 

application for which the model is trained. Section G allows users to examine models trained 

with diferent demographic information, with color-coordinated outcomes, as shown in sec-

tion H. A detailed explanation of section G is provided in the preceding section, where the 

section is presented as section B. The only additional element is the type of model ’no dem’, 

which refers to the model trained without any demographic information. As mentioned in 

the previous chapter, the worst-case analysis is solely conducted for ethnicity, gender, and 

insurance groups, excluding intersectional groups to prevent result infation. The diferent 

types of demographics studied are presented in section I. 

The Y-axis represents the worst-case disparity ratio of the models, while the X-axis 

displays the outcomes of diferent models. The ”Without Dem” column shows the output 

of the model trained without demographic features, labeled as “No Dem” in section G. The 

“With Dem” column shows every model trained with demographic features, enabling side-

by-side comparison of models with and without demographic features, as well as comparison 

of diferent models with demographic features on a single axis. The color coded horizontal 

line seen on the plot corresponds to the TPR of the model as a whole. For example, in Fig. 

7.4, the outcomes of models ‘age gender’, ‘age gender insurance’, and ‘no demographic’ are 

compared. 
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7.3 Dashboard Availability 

The dashboards described in the previous sections are hyperlinked below. 

• Readmission risk trade-of analysis 

• Readmission risk worst-case disparity analysis 

• IHM risk trade-of analysis 

• IHM risk worst-case disparity analysis 
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being studied, D: bar color for the model selected in section B, E: metric type. 
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Chapter 8: SAMPLE INTERPRETATIONS OF KEY RESULTS 

FROM TRADE-OFF AND BIAS ANALYSIS 

The framework introduced in Chapter 6 was tested using the two base models outlined 

in Chapter 3. As detailed in Chapter 4, the model training utilized four demographic infor-

mation groups: gender, ethnicity, insurance, and age. Consequently, 16 models were trained 

for each architecture and application. Given that there are two applications, each with two 

model architectures, a total of 64 models were trained and analyzed. The bias and trade-of 

analysis were conducted for three out of the four mentioned groups: gender, ethnicity, and 

insurance. 

The two types of analysis, tradeof analysis, and worst-case disparity analysis, assess 

diferent kinds of biases. It is essential to consider the fndings of both analyses when 

deciding which demographic information to incorporate. The trade-of analysis dashboard 

primarily shows two types of biases. First, when the result is negative for some groups being 

studied, and positive for others, it shows that there is varying beneft across these groups. 

This is observed when the bar plot is to the right of the center for some and to the left 

for others, with diferent magnitudes. Second, when there is a noticeable gap between the 

magnitude of results across diferent subgroups studied, that also indicates varying benefts 

from the use of a given demographic information. In contrast, for the worst-case disparity 
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dashboards, the further the ratio is from one, the higher the disparity within the group being 

studied. 

Returning to the question of when to utilize demographic information for model train-

ing, ideally, it would be when there is a collective increase in beneft across all subgroups 

being studied along with a lowered worst-case disparity within each group studied. However, 

as shown by the results of the IHM model and the readmission risk model, this ideal sce-

nario may not always happen. In that case, trade-of tolerance and the specifc application 

determine the acceptable trade-of for a given increase in performance. 

When interpreting the dashboards to decide which demographic information to use for 

model training, it is important to understand that the decision is not always clear-cut. It 

is also crucial to note that not all demographic information will consistently beneft all 

subgroups being studied. In the following sections, we present various models that yield 

intriguing results and patterns. Given the large number of models (64 in total), documenting 

the analysis of each one is impractical. Instead, we present select results that we found 

particularly interesting as they provide insight into the decision-making process. As stated 

above, decision-making is not a linear process and depends on the trade-of tolerance of each 

application and developer. However, these interpretations illustrate the thought process 

involved in making these decisions. The results in the following subsections are presented 

for TPR disparity and are reported across diferent architectures. The same analysis can be 

applied to understand the varying outcomes across diverse model architectures and outcome 

reporting metrics. 
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8.1 Readmission Risk - LSTM Architecture 

Figures 8.1 and 8.2 present key fndings of the readmission risk model using the LSTM 

architecture. As detailed in Chapter 5 and Figure 8.1, incorporating all demographic features 

increased benefts for most, but not all, groups. In contrast, alternative models such as 

the ‘insurance ethnicity’ model resulted in greater benefts for larger number of groups. 

Furthermore, this model showed a smaller decrease in benefts for the three groups it did not 

beneft: Asian males, white patients with Medicaid insurance, and Hispanic patients with 

Medicare. The benefts for these three groups decreased by 1%, 1%, and 2%, respectively, 

a decrease much smaller than that observed in the ‘all demographic’ model for the groups 

this model did not beneft. 

The worst-case disparity plot (Figure 8.2) demonstrates that the ‘all demographic’ and 

‘insurance ethnicity’ models reduce the worst-case disparity across all three groups compared 

to the WOD model. A comparison between the ‘all demographic’ and ‘insurance ethnicity’ 

models shows that the ‘insurance ethnicity’ model reduces the disparity better for gender 

and insurance groups. In contrast, the ’all demographic’ model is more efective in reducing 

worst-case disparity for ethnicity. 

Upon reviewing the trade-of analysis and worst case disparity plots for this architecture, 

it can be observed that there is a better alternative to using either no demographic infor-

mation or all demographic information. This alternative improves the beneft for nearly all 

groups, and for the groups it did not beneft, the maximum beneft reduction was 2%. Fur-

thermore, it efectively mitigates the worst disparity compared to both the no demographic 

information and all demographic information models. Additionally, this model also exhibits 

a higher True Positive Rate (TPR) than both the ’no demographic’ and ’all demographic’ 

models. 
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This plot also prompts an intriguing question about the relationship between ethnicity, 

insurance, and patient readmission risk and why insurance and patient ethnicity are better 

predictors in this model. It calls for further investigation into potential systemic bias in the 

healthcare system, which is further discussed in Chapter 10. 

8.2 Readmission Risk - LSTM CNN Architecture 

The models ‘gender insurance’, ‘insurance’, and ‘age gender insurance’ are particularly 

noteworthy, as shown in Figures 8.3 and 8.4. The maximum decrease in beneft is 15% for the 

‘insurance’ model across government insured male patients, 22% for the ‘gender insurance’ 

model across government insured white patients and 7% for ‘age gender insurance’ model 

across government insured white patients, all compared to the WOD model. 

In this situation, where no model presents a clear beneft, it becomes essential to consider 

the trade-ofs. For example, the ‘gender insurance’ model has fewer groups experiencing re-

duced benefts, with some of these reductions ≥ 10%. In contrast, the ‘age gender insurance’ 

model has a greater number of groups with decreased benefts, although the extent of this 

reduction is typically 5% or less. 

Upon examining the worst-case disparity plots, it can be seen that the True Positive Rate 

(TPR) for ‘insurance’ and ‘gender insurance’ models is higher than ‘age gender insurance’, 

which is nearly equivalent to WOD model. However, the worst-case disparity within the 

insurance category is greater for ‘insurance’ and ‘gender insurance’ models compared to 

the WOD model. Meanwhile the ‘age gender ethnicity’ model shows roughly similar levels of 

disparity within the insurance category to the WOD model. The worst-case disparity of all 

three models across ethnicity and gender is close to the WOD model. Therefore, in this context, 

the decision on which demographic to use would depend on the developer’s priorities, such 
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as the maximum number of groups with decreased beneft, the maximum beneft reduction, 

or the lowest worst-case disparity introduced. 

8.3 Mortality Risk - LSTM Architecture 

The models of ‘gender ethnicity’ and ‘gender insurance’ are particularly intriguing. When 

examining the worst-case disparity plot (referenced as fg 8.6), it can be seen that the ‘gen-

der insurance’ model reduces disparity more efectively than the ‘gender ethnicity’ model 

across ethnicity, and the diference between the two models across gender and insurance 

groups is not substantial. However, a closer look at the trade-of analysis plot (fg 8.5) for 

these two models reveals a diferent pattern: the ‘gender ethnicity’ model tends to disad-

vantage most of the groups studied, while the ‘gender insurance’ model tends to advantage 

them. This insight cannot be learned from the worst-case disparity analysis plot alone. 

Therefore, as previously stated, it is crucial to consider both plots together when analyzing 

and deciding which demographic information to utilize. 

8.4 Mortality Risk - Channel LSTM Architecture 

The most notable result of this architecture is the consistent pattern of additional bias 

displayed by most of the models. Despite being trained with various combinations of demo-

graphic information, these models consistently alter advantages for the same demographic 

groups. As shown in Figure 8.7, all models reduce the benefts for Asian and black patients 

to varying degrees. It is also observable that all models reduce the benefts for patients with 

Medicaid insurance, black female patients, and Medicaid insured female patients. 
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This unanimous bias is a unique outcome, unseen in other applications and architec-

tures, especially when compared to the mortality application model with LSTM architec-

ture. Compared to this model, since the only variable changed is the training model, further 

investigation is required into why this model architecture exhibited this kind of performance 

bias. This pattern could indicate the existence of algorithmic or systemic bias, which calls 

for a comprehensive analysis. Figure 8.7 is designed to illustrate this consistent bias pat-

tern. However, due to the selection of numerous models, understanding each one might be 

challenging. 

As illustrated in Figure 8.7, this is an instance where no single model consistently errs 

towards beneft or disadvantage. All these models provide advantages to some groups and 

not to others. Therefore, despite potential diferences in tolerance for the selection of demo-

graphic information, this might be a case where refraining from using any will prevent the 

introduction of additional bias into the model. 
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Chapter 9: MAIN TAKEAWAY 

The dashboards discussed in the previous chapter demonstrate the versatility of this 

framework. These dashboards can be used to highlight various aspects, such as the starting 

bias in a model trained without demographic data, and to compare the trade-ofs between 

diferent models. The choice of model depends on the priority of the developers and the 

requirements of the application. However, this framework equips users with the necessary 

tools to review and make an informed decision. Furthermore, it also identifes potential 

systemic biases that may manifest in the output. 

This section discusses the three main takeaways from the experiments conducted in the 

preceding sections, which involved training 64 models. 

Higher performance doesn’t always correlate with fair 

One of the most signifcant insights gained from the above experiments is the understand-

ing that better performance does not necessarily equate to a fairer model. This underscores 

the signifcance of performing trade-of and bias analysis, even after achieving improved 

model performance through adjustments to features or parameters. In some cases, although 

high-performing models may demonstrate a higher disparity ratio (low disparity) across cer-

tain groups, this consistency may not extend to all groups under study. Hence, it is crucial 

to conduct the analysis across all relevant groups. 
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For instance, in Fig. 9.1, the worst-case analysis outcome of the readmission risk model 

with LSTM architecture is showcased. It can be seen that the model trained with insurance 

features has a higher True Positive Rate (TPR) compared to the model trained with addi-

tional ethnicity feature. However, it also has the lowest proportion of worst-case disparity 

across all demographic groups studied compared to the model trained with ethnicity. This 

highlights the complexity of balancing performance and fairness considerations in model 

development. 

Model architecture and application matter 

Another signifcant insight gained from these experiments is that a demographic group 

utilized as input for a particular application, resulting in a fairer output compared to alter-

natives, may not yield the same outcome when assessed in other healthcare applications or 

even diferent architectures within the same application. While it may appear tempting to 

extrapolate the results of one analysis to another application or architecture, caution must 

be taken to avoid wrong conclusions. 

While this trend is observable across many more dashboards, Fig. 9.2 is an illustrative 

example. This fgure compares models trained with age and age insurance for the readmis-

sion risk application. Age decreases the disparity across ethnicity and gender compared to 

age insurance for the LSTM architecture but seems to exhibit the opposite trend for the 

LSTM CNN architecture. Conversely, age insurance appears to better reduce the disparity 

across insurance compared to the age model for LSTM but demonstrates the opposite trend 

for the LSTM CNN model. 
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WOD model is not bias-free 

The two most signifcant takeaways regarding the trade-of between using no, some, or 

all demographic information are: 

First, not using demographic information for model training does not equate to bias-free 

outcomes. This is evident from the four worst-case analysis plots shown in fg. 9.4 and 9.3, 

each illustrating the worst-case bias introduced by each model individually. Fig. 9.4 and 9.3 

show that omitting demographic information from model training (“Fairness through Blind-

ness”) does not guarantee bias-free outcomes. None of the worst-case disparity plots show 

a perfect 1.0 worst-case disparity ratio, demonstrating that models that do not incorporate 

demographic data are not free of bias. This insight is vital for both ML and healthcare pro-

fessionals. For healthcare professionals, knowing this helps to understand that the models 

deployed in the healthcare sector today may not be fair to everyone. Therefore, human in-

tervention is cruicial when using these systems. For ML professionals, these outcomes show 

that training models with or without demographic information might result in bias to some 

groups. Therefore, it is important to analyze and document the bias before the deployment 

of any healthcare models. Second, using demographic information doesn’t always guaran-

tee better-performing and fairer models. The outcomes of some of the models, such as one 

in 8.7, demonstrated that there are instances where a model without demographic data is 

preferable, as all alternatives introduce more bias than the WOD model. 
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Chapter 10: LIMITATIONS AND FUTURE WORK 

10.1 Limitations 

Time Limitation 

Although this analysis is highly valuable for seeing the nuances of relationships between 

demographic information, diferent architectures, and applications, its implementation may 

require signifcant time and resources. Running multiple models simultaneously numerous 

times can be time-consuming, especially if the number of demographic features considered 

is high or if the model architecture is complex. In addition, a signifcant amount of time 

is also required to go through the results of each model and understand the results of each 

before making decisions. Nonetheless, we think that the time invested in this analysis is 

critical before deploying ML models for healthcare decisions and is comparable to other 

testing protocols before deploying more traditional healthcare solutions. 

Small Groups Have Outsized Efect 

There are two key challenges here. First, when examining subgroups and diferent inter-

sectional subgroups, if the number of patients in a subgroup is small, the reported results 

may be disproportionately infated or defated compared to other groups. This can lead to 

misleading conclusions. Therefore, it is crucial to consider this factor carefully. Second, 
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while implementing methods to address this issue, we must also ensure the protection of 

patients within these small groups. Historically, individuals in these marginalized intersec-

tional groups have faced bias. Disregarding their data due to potential infation undermines 

the purpose of these dashboards. Therefore, we need an approach that accounts for a smaller 

number while protecting patients in this category [18]. 

10.2 Future Work 

In this work, we developed a framework to assess the trade-ofs associated with using 

demographic information for training healthcare models. However, the use of demographic 

information remains contentious. Although our framework can be utilized for a transpar-

ent and intentional use of demographic information, it does not dive into why less biased 

demographic features yield better results. For example, a study has shown that patients’ 

quality of care varies based on their insurance status, with privately insured patients having 

lower mortality risks[36]. Additionally, research has also revealed gender-based disparities 

in the quality of care. Female patients receive better treatment for certain conditions, while 

male patients experience better outcomes for others.[6]. So when these features reduce the 

bias in model training, it is crucial to understand why such information improves model 

performance and reduce bias. Further studies are necessary to separate intrinsic historical 

and systemic bias from that attributed to ML models and the use of demographic data. 

A crucial next step for this work would involve incorporating a mechanism to explain how 

demographic information utilized by the models is used to generate the observed results. This 

step would not only assist developers in determining which demographic features to include 

in model training but also shed light on existing biases within the healthcare sector on a 

case-by-case basis. Furthermore, it would also reveal implicit or explicit correlations between 
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these features and various healthcare applications, thereby opening opportunities to address 

existing issues in healthcare [24]. 

Furthermore, as highlighted in the above limitations, it is essential to develop a mecha-

nism that protects subgroups with a small patient count while ensuring that the reported 

results are not unnecessarily infated or defated due to the small patient count in the sub-

group under study. Only then will it be possible to protect all patients and ensure that they 

receive fair treatment through these models. 

Lastly, at present, the results can be visually inspected and interpreted. While this is 

generally acceptable as the results are primarily based on demographic information that 

introduces obvious biases, in scenarios where the results of two or more models are a close 

call, a streamlined process for interpreting results should be established. This would ensure 

the repeatability of the work by diferent programmers and promote consistency in selecting 

demographic features. 
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