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Abstract

This dissertation addresses the integration of reinforcement learning (RL) with

model-based methods to develop robust and efficient bipedal locomotion strategies for

robots, highlighting the significance of these machines in navigating complex terrains

and confined spaces. The quest for advanced bipedal robots is driven by their poten-

tial utility across various sectors, including terrain exploration, rescue missions, and

assistive technologies. However, the inherent complexity of bipedal motion—marked

by high-dimensional models, underactuation, and nonlinear dynamics—presents sub-

stantial hurdles in crafting effective motion synthesis techniques.

The core of this research lies in devising innovative, learning-based frameworks

that synergize the principles of control theory and the adaptability of RL. By encap-

sulating the hybrid nature of bipedal locomotion and leveraging reduced-order models,

these frameworks aim to surmount the challenges of data efficiency and interpretabil-

ity in controller design. The dissertation unfolds across a series of contributions

that collectively enhance the understanding and capabilities of bipedal locomotion,

eschewing a chapter-by-chapter exposition for a thematic discussion of key advances.

A significant portion of the work is dedicated to developing RL-based frameworks

that compartmentalize the bipedal locomotion challenge into trajectory planning and

feedback regulation. Incorporating insights from the physics of walking, these frame-

works reduce the complexity of policy inputs, leading to the creation of variable speed

ii



locomotion policies without relying on pre-established reference trajectories. These

methodologies underscore the feasibility of implementing sophisticated locomotion

strategies in real-world robots, as demonstrated on platforms like the Cassie and

Digit robots.

Further, the dissertation extends into the realm of data-driven techniques, propos-

ing a novel integration of low-dimensional state representations with RL for crafting

robust locomotion policies. This approach underscores the potential of unsupervised

learning techniques in distilling complex dynamics into efficient, interpretable models

suitable for real-time application.

The dissertation also focuses on terrain-aware locomotion, with the introduction

of a hierarchical framework that adeptly combines an efficient encoded latent repre-

sentation of the terrain with an RL high-level planner and a model-based low-level

controller. This strategy exhibits enhanced robustness and sample efficiency, enabling

effective navigation over diverse terrains and demonstrating a considerable advance

over traditional model-based or model-free approaches.

The challenge of bridging the simulation-to-reality gap is also addressed, highlight-

ing the indispensable role of simulation in the development and testing of locomotion

policies. Successful real-world applications of these policies demonstrate the practical

viability of the proposed frameworks and their potential for sim-to-real transfer, a

critical consideration for deploying robotic systems in indoor and outdoor environ-

ments.

In sum, this dissertation contributes significantly to the field of legged robotics

by advancing data-efficient RL frameworks for bipedal locomotion, bridging theoret-

ical and empirical insights with practical applications. These developments not only
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enhance the adaptability and efficiency of bipedal robots but also open avenues for

their deployment in varied real-world scenarios. Future work should aim to integrate

perception sensors such as depth cameras and point clouds, broadening their appli-

cability and overcoming the extant challenges in real-world implementation, thereby

unlocking the full potential of bipedal and humanoid robots in industrial and societal

applications.
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Chapter 1: Introduction

1.1 Motivation

The anthropomorphic design of bipedal and humanoid robots provides unique ad-

vantages for navigating challenging terrains and operating in restricted environments.

The allure of these robots lies in their potential applications across diverse fields such

as terrain exploration, rescue missions, assistive robotics, and more, making them

a focal point for both academia and industry. However, the inherent complexity of

bipedal locomotion, characterized by high-dimensional models, underactuation, con-

tact constraints, and the nonlinear and hybrid nature of its dynamics, significantly

increases the complexity of synthesizing feasible robot motions and has historically

hindered the rapid development of biped robots compared to their counterparts, such

as quadruped robots.

The journey of bipedal machines traces back to the late 19th century with the in-

troduction of The Steam Man, a pioneering invention by Georges Moore in 1893. This

early biped machine, powered by a 0.5 hp gas-fired boiler, astoundingly achieved rea-

sonable walking speeds [5]. As technology evolved, so did the sophistication of bipedal

robots. By 1969, Ichiro Kato at Waseda University in Japan unveiled the WAP-1, a

robot equipped with artificial rubber muscles powered pneumatically. However, its
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initial iterations suffered from a glaring limitation - an exceedingly slow pace. This

challenge was later addressed with the development of WL-9DR in 1983, a hydrauli-

cally actuated robot boasting ten degrees of freedom and larger feet [6].

Throughout the next decades, there was a notable escalation in the creation of

two-legged robots, fueled by technological progress and a refined grasp of bipedal

mechanics. However, many of these machines faced challenges in dynamic movement

and adapting to their surroundings. Notable progress was made in the field during

the 80s with the contributions of Mark Raibert’s Leg Lab at MIT on dynamic loco-

motion. Their robots showed impressive agile maneuvers such as jumping, hopping,

and running [7].

Over the last few years, recent innovations in the field have given rise to bipeds

that can perform intricate dynamic maneuvers, not just limited to walking but also

encompassing actions like running, jumping, and adapting to disturbances. A stand-

out instance of such cutting-edge bipeds is the Atlas robot from Boston Dynamics

and the Cassie robot from Agility Robotics.

More recently, several renowned companies have joined the race in the develop-

ment of humanoids and bipedal robots, including Tesla, with the recent unveiling of

their humanoid robot Optimus, Apptronik with their robot Apollo, and Figure AI

with their version of a humanoid robot. According to the latest market research, in

2022, the bipedal robot market was valued at USD 1.5 billion and is estimated to

reach USD 17.3 billion by 2027 [8]. These facts show the increasing popularity of

bipedal and humanoid robots and their potential to become active agents in our daily

lives.
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A bipedal locomotion controller or locomotion policy takes the information mea-

sured by the robot’s sensors to compute the torque needed at the robot’s joints to

achieve a desired control objective while fulfilling some safety and feasibility require-

ments. Although important progress has been made in bipedal locomotion in terms

of mobility and control, bipedal robots still lack the robustness and versatility they

need for most real-world applications.

Significant research efforts have been made in the control theory and machine

learning communities separately to develop controllers that can exploit the particular

features of legged robots, such as underactuation and compliance. However, little

work has been conducted to develop a complete framework that integrates machine

learning techniques, formal methods from control theory, and insights from the physics

of bipedal locomotion. The successful integration of these three components will

provide new methods for the development of data-efficient and interpretable learning-

based controllers for robust and agile bipedal locomotion.

This thesis addresses the challenges of such integration by studying several learning-

based frameworks that combine the potential of reinforcement learning (RL) with

model-based methods to design control policies that realize robust and dynamic loco-

motion in challenging terrains. The research presented in this work attempts to find

insightful answers to the questions: (Q1) What is the best design choice for a learn-

ing framework that provides the best trade-off between model-free and model-based

methods for bipedal locomotion? (Q2) How can we exploit the benefits of RL-based

methods while maintaining high data efficiency? (Q3) Can we efficiently integrate

perception into RL frameworks for locomotion?

3



Model-based methods generally rely on optimization techniques that use the full-

order model of the robot to accurately capture the underlying dynamics, which yields

more natural dynamic walking behaviors. Model-free methods such as RL do not rely

on mathematical models but rather on significant amounts of data obtained through

the agent’s interaction with the environment -generally through simulations- to learn

policies that achieve the desired tasks. With the success of deep learning algorithms

in tackling challenging control problems, RL-based approaches have been proposed

to develop bipedal locomotion controllers. The desired control objectives can be

characterized either as reward functions or hard constraints in the RL formulation.

Traditional end-to-end RL methods use policies that take all the information from

the robot’s sensors and directly output the desired joint torques or angles. However,

using RL policies to generate torque outputs can produce non-realistic behaviors [9,

10], while policies that generate joint angles can be challenging to learn from scratch

and heavily rely on particular hardware designs [11, 12]. In the last decade, more

structured learning frameworks have proposed the use of reference trajectories to

guide the learning process. The reference data may be obtained from motion data sets

or the solution of model-based optimization problems. There are two main drawbacks

to these approaches. First, end-to-end approaches ”see” the bipedal system as a black

box without considering the underlying dynamics or hybrid nature of walking. The

resulting learned policies lack interpretability and are difficult to analyze and fine-

tune for deployment on real robots. Second, using the complete robot’s state, i.e., all

the sensors’ information as inputs of the policy, and all the joint torques or angles

as the output, results in big-sized policies with hundreds of thousands of parameters.
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Without any insights from the system, the policy requires large amounts of data

(millions of samples) to learn a stable walking gait [13].

1.2 Contributions and Thesis Outline

This dissertation addresses the problems mentioned aforehead by integrating in-

sights from control theory and reduced-order models into the learning process of the

policy. In particular, I have proposed sample efficient RL-based frameworks that

decouple the problem of bipedal locomotion in a modular structure where we can

combine the benefits of RL to exploit the natural dynamics of walking with the ro-

bustness of heuristic-based regulations and model-based control design. Thanks to

this decoupled structure, we can draw important concepts from control theory largely

used in the design of locomotion controllers, such as template models and Hybrid Zero

Dynamics.

In Chapter 2, we provide an overview of the bipedal locomotion problem with some

important background about the historical development of bipedal and humanoid

robots and the principal model-based and learning-based methods used for the design

of robust locomotion controllers.

Chapter 3 focuses on the foundations and categorization of reinforcement learning

(RL) algorithms, an important group of the learning-based methods mentioned in

Chapter 2. The chapter begins with a comprehensive overview and mathematical

formulation of reinforcement learning, providing the theoretical background necessary

to understand its application in the field of bipedal locomotion. This chapter then

looks into the categorization of RL algorithms, which is crucial for identifying the most

suitable approaches for our specific applications. The chapter also covers Proximal
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Policy Optimization (PPO), a state-of-the-art algorithm known for its balance of

sample efficiency and performance, and its relevance to our proposed frameworks.

Additionally, Evolution Strategies are discussed, offering an alternative perspective

on solving RL problems that could complement traditional methods. This chapter

lays a strong foundation for understanding the RL-based frameworks proposed in

later chapters, particularly their design choices and the rationale behind selecting

specific algorithms for our bipedal locomotion solutions.

In Chapter 4, we propose a sample efficient RL-based framework that decouples

the problem of bipedal locomotion in two stages of a cascade structure, trajectory

motion planning, and feedback regulation [14, 15]. The motion planning module

takes inspiration from the Hybrid Zero Dynamics (HZD), a formal control framework

extensively used in the control of bipedal robots [16, 17].

By incorporating the physical insights of bipedal walking, such as its hybrid nature

and symmetric motion, along with the virtual constraints, the proposed framework

significantly reduces the dimension of the policy input, which is parameterized by

a simple neural network (NN). The feedback regulation module compensates the

reference trajectories using intuitive and effective regulators that enhance the stability

and robustness of the walking gait. To the best of our knowledge, the proposed

method produced the first variable speed locomotion policy for a 3D robot that is

learned without using previously known reference trajectories or training separate

policies for different speeds. The framework was successfully validated in the 3D

bipedal robot Cassie, which is a known testbed for advanced control techniques in

bipedal locomotion. Moreover, the learned policy is the smallest NN ever reported for

dynamic locomotion with the robot Cassie, with about 20 times fewer parameters than
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other state-of-the-art RL-based approaches applied on the same robot. Finally, we

extended the proposed framework to humanoid robots (bipedal robots with arms) and

implemented it on real hardware (sim-to-real) using the humanoid robot Digit [18].

Chapter 5 introduces a task space learning-based framework that completely de-

couples the bipedal locomotion problem into a hierarchical structure with two mod-

ules: a task-space high-level planner policy and a tasks-space low-level controller.

The high-level policy uses a reduced-order state to learn task-space actions based on

the desired objective. Then, the low-level task-space controller takes the high-level

policy actions to compute the desired torques at the joint level. The work presented

in Chapter 5 improves on some limitations of the methods discussed in Chapter 4,

such as the entangled coupling between the high-level policy and low-level controller,

the reduced interpretability of the learned policy, and limited locomotion behaviors,

e.g., walking at low speeds. Different from traditional end-to-end learning approaches,

our HL policy takes insights from the angular momentum-based linear inverted pen-

dulum (ALIP) to carefully design the observation and action spaces of the Markov

Decision Process (MDP). This simple yet effective design creates an insightful map-

ping between a low-dimensional state that effectively captures the complex dynamics

of bipedal locomotion and a set of task space outputs that shape the walking gait of

the robot. The HL policy is agnostic to the task space LL controller, which increases

the flexibility of the design and generalization of the framework to other bipedal

robots. This hierarchical design results in a learning-based framework with improved

performance, data efficiency, and robustness compared with the ALIP model-based

approach and state-of-the-art learning-based frameworks for bipedal locomotion.
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In Chapter 6, we explore the integration of data-driven techniques with reinforce-

ment learning (RL) to enhance the control of bipedal robots. Addressing a pivotal

question in RL—the optimal selection of observation states- this chapter proposes

a novel framework for bipedal walking that integrates a data-driven learned low-

dimensional state representation with robust gait planning using RL. Inspired by

the hierarchical structure proposed in Chapter 5, our approach utilizes an autoen-

coder to extract a low-dimensional, effective state representation of the full-order

system dynamics. This improvement in state representation learning is coupled with

reinforcement learning and a task space feedback controller to develop robust loco-

motion policies. The contributions of this work are twofold: first, it demonstrates

that the complex dynamics of bipedal robots can be effectively captured in a com-

pact, low-dimensional learned latent space. Second, it showcases how these learned

latent variables can be employed to learn robust locomotion policies through RL. We

highlight the potential of data-driven methods, such as unsupervised learning and

representation learning, in extracting relevant features from high-dimensional data,

leading to more efficient and interpretable state representations applicable to real

humanoid robots.

Chapter 7 introduces the main challenges associated with bipedal locomotion in

unstructured terrains and the transition from robust blind locomotion to robust

terrain-aware locomotion. An extension of the methods developed in Chapter 5 is

presented to integrate the robot’s perception of the terrain through exteroceptive

feedback. To this end, we propose a hierarchical framework for terrain-aware lo-

comotion that merges an RL-based high-level policy for the real-time generation of
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task space commands and a model-based low-level controller for task space trajec-

tory tracking. The high-level policy leverages insights from reduced-order template

models and latent representations of the robot’s surrounding terrain to thoughtfully

design the observation and action spaces of the Markov Decision Process (MDP).

This hierarchical design shows superior robustness and sample efficiency compared to

traditional pure model-based or model-free approaches. The trained policy success-

fully traverses challenging terrains such as slopes, stairs, and terrains with random

shapes and heights while maintaining the walking gait’s robustness and stability, even

in challenging conditions.

Chapter 8 addresses the challenge of sim-to-real transfer in reinforcement learning,

focusing on bipedal robots where real-world data collection is often impractical due

to cost and safety concerns. The chapter highlights the benefits of simulation-based

training, leveraging advanced physics engines and parallelization for efficient data

generation. Central to the discussion is the sim-to-real gap, a key hurdle in applying

RL to real-world robotics, especially in the intricate domain of bipedal locomotion.

We provide details about our learning pipeline, including important considerations

that help the sim-to-real transfer of our trained policies. Furthermore, this chap-

ter shows the implementation details of our controllers in hardware with the robot

Digit, with a special focus on the integration of the high-level RL policies and the

low-level feedback controllers through the Robotic Operative System (ROS), showing

the successful sim-to-real transfer of the policies trained in simulation to the hard-

ware Digit. We demonstrate the robustness of the policies to external disturbances

and unstructured environments, which makes our frameworks feasible to deploy on

real hardware and intense testing conditions. The chapter concludes by emphasizing
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the importance of consistent and standardized methods in disturbance rejection and

robustness, showcasing a preliminary study with a linear impactor for safety perfor-

mance testing in legged robots. These contributions are pivotal in advancing the field

towards the reproducibility of research and more reliable and standardized approaches

in robotic locomotion.

Finally, some conclusions regarding the methods proposed in this dissertation

along with future directions of inquiry are presented in Chapter 9.

I expect the methods proposed in my dissertation to contribute to the development

of data-efficient RL frameworks that produce safe, robust, and interpretable policies

for bipedal locomotion. The ultimate goal of my research is to unlock the potential of

bipedal and humanoid robots to navigate robustly in the real world. This achievement

will enable the safe deployment of these systems in essential areas of our society

with applications in industry, human-robot cooperation, caregiving, and emergency

response, among others.
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Chapter 2: Literature review

The development of bipedal and humanoid robots is a significant area of research

and industry in robotics, combining elements of mechanical engineering, control sys-

tems, and artificial intelligence. This chapter examines the progress in the field of

bipedal and humanoid locomotion, a journey from basic designs struggling with sta-

bility to advanced models capable of imitating complex human movements. This

literature review serves a dual purpose: first, to provide a detailed overview of the ad-

vancements in bipedal robotic locomotion, and second, to lay the groundwork for the

discussions on the latest data-driven methods and reinforcement learning approaches

that are at the forefront of current research in robust bipedal locomotion.

In reviewing this history, we aim to understand how bipedal robots have evolved

and the various challenges and achievements in this field. This background is essential

for appreciating the current state of technology and for setting the context for the

newer, data-driven approaches explored in later chapters.

2.1 History of bipedal locomotion

Although the origin of bipedal robotics could be traced back to the mid-20th cen-

tury, there were earlier efforts to replicate the locomotion of humans with automated
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machines. The earliest forms of such devices would likely be mechanical automata,

which date back to ancient civilizations.

2.1.1 Early Developments

One of the earliest examples of a walking automaton is the ”Mechanical Monk,”

completed in the 1560s. This automaton, possibly created by Juanelo Turriano,

utilized wheels for movement while simulating walking. The monk was driven by a

key-wound spring and is capable of walking in the path of a square, imitating prayer

movements, and performing gestures such as striking its chest, nodding its head, and

kissing a cross [19]. n ancient China, a notable account of an automaton is found in the

”Lie Zi” text, which describes a meeting between King Mu of Zhou and a mechanical

engineer known as Yan Shi. Yan Shi presented the king with a very realistic and

detailed life-size, human-shaped automaton. This figure could walk, move its head,

sing, and even make advances toward the ladies in attendance [20]. In 1893 Georges

Moore invented The SteamMan, a pioneering biped machine, supported by a carriage-

like structure, and powered by a 0.5 hp gas-fired boiler, achieving reasonable walking

speeds [5]. In 1939, the engineers from Westinghouse introduced the robot Elektro at

the New York World’s Fair. Elektro, who also relied on a wheeled base for mobility,

could perform 26 different tricks, including ”walking” and talking, showcasing the

evolving complexity of autonomous machines. While these automata and robots

couldn’t walk or balance solely on their legs, they represent significant milestones in

the quest to replicate human and animal movements, highlighting the extraordinary

creativity and engineering prowess of their creators across different civilizations [21].
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The first significant step towards bipedal robot locomotion was the WABOT-1,

developed by Waseda University, Japan, in 1973, which could walk in a human-like

manner, albeit slowly and without the dynamic balance of a human [22]. WABOT-1

could recognize objects by vision, understand voice commands, speak, and manipulate

objects with two hands. Although the level of the technologies was not so matured,

we can certainly consider WABOT-1 the first humanoid robot.

In the United States, the research at the Massachusetts Institute of Technology

(MIT) led to the development of the MIT Leg Laboratory in the 1980s, led by Marc

Raibert. Raibert’s work focused on dynamic walking and running robots, laying

the groundwork for many principles of dynamic locomotion[7]. Raibert’s contribu-

tions continue to be foundational in contemporary research on humanoid and general

legged locomotion. His conceptual frameworks serve as essential building blocks that

inspire ongoing research in this field, and various control laws he developed have been

integrated into numerous subsequent advancements [23–25].

2.1.2 Technological Advancements and Major Milestones

In the 1990s, Japan and the United States saw a surge in the development of

bipedal robots with more sophisticated control systems. In Japan Honda’s P2 and P3

robots evolved into ASIMO in 2000, a robot that could walk, run, and climb stairs with

a smooth, human-like gait, employing real-time adaptive motion planning [26]. Con-

currently, Sony’s robot QRIO, introduced in 2003, demonstrated advanced bipedal

motions and stability through the use of gyro sensors and pressure-sensitive feet [27].

The HRP (Humanoid Robotics Project), run by the Japanese Ministry of Econ-

omy, Trade and Industry, made significant strides in the development of humanoid
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robots. The HRP-2 robot, introduced in 2003, brought significant improvements with

the implementation of the Zero Moment Point (ZMP) method for balance, and it was

the first human-size humanoid robot that could walk, lie down and get up [28,29].

In the United States, the 2000s marked the emergence of dynamically advanced

bipedal robots. Boston Dynamics, a spin-off company from Raibert’s Leg Laboratory

continued to push the boundaries of robotic capabilities, particularly in dynamic

and agile movements. The company was a pivotal moment in translating academic

research into practical, real-world applications. Boston Dynamics’ BigDog, funded

by DARPA (Defense Advanced Research Projects Agency), showcased exceptional

balance and agility in rough terrains, laying the groundwork for their later humanoid

robot, Atlas, which achieved impressive feats of balance and agility, including jumping

and running [30].

The DARPA Robotics Challenge (DRC) in 2015 was another significant milestone.

The DRC was a prize competition intended to speed the development of advanced

robotic hardware, software, sensors and control interfaces so that robots might as-

sist humans in responding to future natural and man-made disasters. It led to the

development of robots like IHMC’s Atlas-based Running Man, KAIST’s HUBO, and

Tartan Rescue’s Chimp, which were designed for disaster response and demonstrated

how bipedal robots could navigate complex environments and manipulate objects [31].

2.1.3 Current State and Challenges

The current landscape in bipedal robotics features an array of advanced humanoid

robots. In the last decade, several companies have joined the race of humanoid robots,

with special focus on creating a general purpose robot that can be deployed in any
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environment to perfom any task. Some of these companies, like Agility Robotics and

Apptronik, emerged as spin-offs from research labs. Agility Robotics’ Digit is used

in different research labs in the United States, and has been recently deployed in

warehouses to perform logistic tasks like moving totes and boxes. Apptronik’s robot

Apollo has also showcased similar applications for warehouses. Other companies, like

Toyota, has focused in showcasing their advancements The Toyota T-HR3, introduced

in 2017, showcases advancements in human-robot interaction and teleoperation [32].

More recently, several renowned companies announced the development of their

own humanoid robots including Tesla, with the recent unveiling of their humanoid

robot Optimus, Unitree’s robot H1, and Figure AI with their version of a humanoid

robot. A complete list of all the companies with their respective robots is shown in

Table 2.1 and most of them are shown in Fig. 2.1.

Despite these advancements, challenges remain, particularly in energy efficiency,

adaptability to varied terrains, and achieving human-like autonomy and decision-

making. The ongoing research in model-based and model-free methods for bipedal

and humanoid locomotion aims to address these challenges by creating more adaptable

and efficient bipedal robots.

2.2 Model-based methods for bipedal locomotion

The main objective of a successful locomotion gait in a bipedal robot is to maintain

balance at all times while walking or standing. The problem of gait generation thus

consists of planning trajectories that result in a balanced gait and then realizing them

on the robot. Two main walking modes are possible: static and dynamic walking.

In static walking, the projection of the robot’s Center of Mass (CoM) on the ground
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Company Robot
Agility Robotics Digit
Apptronik Apollo
Agibot Raise A1
Boardwalk Robotics Nadia
Figure AI Figure 01
Boston Dynamics Atlas
Fourier Intelligence GR1
Kepler Exploration Robot Co Kepler
PAL Robotics Kangaroo
Sanctuary AI Phoenix
Toyota T-HR3
Ubtech Walker X
Unitree Robotics H1
Xiaomi Cyberone
Xpeng PX5
1x Neo

Table 2.1: Humanoid robots by company

Figure 2.1: Humanoid robots in the industry. Taken from [1]
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must always be inside the support polygon, defined as the convex hull of the robot’s

feet. This results in a slow gait that does not resemble the dynamic way humans

walk. The first successful experiments involving bipedal humanoid locomotion were

achieved through this mode, e.g., for the WABOT-1 [22].

In dynamic walking, the CoM projection is not constrained to lie above the support

polygon of the robot, allowing for faster motions. Here, the dynamic balance must

be ensured by keeping the zero momentum point (ZMP) inside the support area.

The ZMP, introduced by Vukobratović in 1972 [33], is defined as the point where

horizontal components of the moments of the ground reaction forces are equal to

zero [29]. This means the robot can maintain balance without falling over while

walking or performing other movements.

The introduction of the ZMP marked an important point in the history of bipedal

locomotion and opened the door to more dynamic behaviors such as faster walking

speeds, running, stair climbing, and even walking with no actuators.

2.2.1 Dynamic models of bipedal locomotion and reduced
order systems

Dynamic models for bipedal locomotion in robotics are essential for understanding,

simulating, and controlling the complex movements of bipedal robots. These models

are used to capture the intricate dynamics involved in walking, running, and other

locomotion interactions. The way in which the walking system is modeled plays

an important role in the planning and control approaches that realize the desired

locomotion gaits.

A convenient method for modeling the robotic locomotion system is to construct

a representation of the robot in a general position and then enforce ground contacts
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through forces arising from the associated holonomic constraints that are imposed

at the feet. This is often referred to as the floating-base model of the robot [2, 34].

Assuming the robot as a structure of rigid body linkages, the continuous dynamics of

a bipedal robot can be represented in the Lagrangian form:

D(q)q̈ +H(q, q̇) = Bu+ JTh (q)λ (2.1)

J(q)q̈ + J̇(q, q̇)q̇ = 0, (2.2)

where q is the vector of generalized coordinates that represents the configuration of

the robot, D(q) is the inertia matrix, H(q, q̇) = C(q, q̇)q̇+G(q)+F is the vector sum

of the Coriolis, centripetal, gravitational, and additional non-conservative forces, B

is the actuation matrix, Jh(q) =
∂h
∂q
(q) is the Jacobian of the holonomic constraints

h(q), and λ are the corresponding wrenches at the holonomic constraints.

However, using the full-order dynamics of the system to plan and execute lo-

comotion trajectories is challenging and computationally intensive due to the high-

dimensional, nonlinear, and hybrid nature of legged systems. Therefore, significant

efforts have been made in the robotics and biomechanics communities to determine

simplified models that allow capturing the most salient features of the full-order

model in a reduced set of differential equations. These simplified models are known

as reduced-order models (ROMs), and they are crucial for the efficient and robust

design of locomotion gaits, particularly for real-time or online applications. The

selection of an appropriate reduced-order model is dependent on various factors, in-

cluding the specific requirements of the intended application, available computational

resources, and the constraints inherent to the system.

Fig. 2.2 shows the decomposition of the dynamics models from the most complete

e.g., whole body considering the full-order dynamics, to the most simple one, e.g.,
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Figure 2.2: Reduced order models (ROMs) used in bipedal locomotion. Published
in [2]

linear inverted pendulum (LIP). The centroidal dynamics model considers a reduced

problem posed over the trajectories for the CoM position pCoM , angular momentum

kG contact locations, and contact forces λi. This order model reduction means losing

details about the limbs of the robot by projecting their effects onto the CoM without

explicitly considering their kinematics [35,36]

The single-rigid-body (SRB) model is a simplification of the centroidal dynamics

model where the total rotational inertia of the system IG about the CoM is considered

approximately invariant. The SRB model treats the robot as a single, unified mass.

It simplifies the robot’s body to one rigid entity without articulating its individual

limbs or segments while being able to characterize the linear and rotational dynamics

that are required to achieve highly aggressive maneuvers [37]. Therefore, this ROM

is useful in scenarios where the overall motion of the robot (like jumping or falling) is

more critical than the specific movements of its limbs [38]. However, the SRB model

is a better choice for systems dynamics where the limbs mass is significantly less
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compared with the torso mass, which is why it has been mostly used on quadruped

robots [38, 38, 39] and more recently in bipedal robots with a hardware design close

to that mass distribution such as the robot Cassie from Agility Robotics [37] and the

MIT´s humanoid robot [25,40].

By imposing additional restrictions to the SRB model, such as removing the ori-

entation dynamics, e.g., KG = 0, and keeping the CoM height constant, a simpler

but effective model can be realized, the Linear Inverted Pendulum (LIP). The LIP

model is a widely used dynamic model for analyzing and designing walking patterns

in bipedal robots and humanoid robotics. This model simplifies a walking robot to a

point mass (representing the robot’s CoM) supported by an inverted pendulum with a

a massless telescopic leg that can vary in length but remains always straight [41]. The

point of contact with the ground is the Center of Pressure (CoP). These assumptions

result in a model with linear differential equations, making it computationally effi-

cient and easier to handle compared to nonlinear systems. The LIP model has been

extensively used to simplify the design process for the online generation of the CoM

and CoP trajectories for 2D and 3D bipedal walking [42–45]. A common approach in

the early days of bipedal locomotion was to use predefined ZMP reference trajectories

and generate dynamically feasible trajectories for the robot’s CoM [46,47] Latter ap-

proaches proposed the generation of both the ZMP and CoM trajectories with online

adaptation methods [48, 49]. Kajita et al. [41] applied the output regulation by the

preview control, which is a variation of Model Predictive Control, to the tracking of

the referential trajectory of the ZMP. This was a significant step that opened the

door for addressing the bipedal locomotion problem through optimization techniques

and Model Predictive Control.
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2.3 Data-driven methods for bipedal locomotion

Data-driven methods for bipedal locomotion in robotics represent a significant

shift from traditional model-based approaches, focusing instead on learning or op-

timizing control strategies directly from data or experience. Although the founda-

tional theory underpinning data-driven algorithms has been established for decades,

it is only in recent years, with significant advances in computing power and data

availability, that these methods have become feasible for application in more com-

plex systems with high DOF, such as bipedal robots. The increased computational

capacity has allowed for the processing of vast amounts of data required by these

algorithms, facilitating real-time learning and decision-making.

Additionally, the integration of sophisticated machine learning techniques, includ-

ing deep learning, has further enabled the effective application of data-driven methods

in handling the intricate dynamics and control challenges inherent in bipedal locomo-

tion. This convergence of computational power and advanced algorithmic approaches

has not only made it possible to implement these methods in more complex scenarios

but also opened up new possibilities for adaptive and intelligent robotic systems that

can learn and operate autonomously in a variety of environments.

The literature about data-driven methods for control is vast and, in some cases,

can become confusing because of the blurred line between different methods and their

applications in particular settings of the bipedal locomotion problem. However, we

could distinguish 3 main groups: supervised learning-based approaches, unsupervised

learning-based approaches, and reinforcement learning-based approaches.
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2.3.1 Supervised Learning

In supervised learning, the algorithm is trained on a dataset containing input-

output pairs. The goal is to learn a mapping from inputs to outputs, which, in the

case of bipedal locomotion, might be mapping sensory inputs to motor actions either

as direct target positions or as a parameterized trajectory from which the targets can

be derived. In [50], the training and testing sets consist of controllers based on the full

dynamic model of the robot, virtual constraints, and parameter optimization to meet

torque limits, friction cone, and environmental conditions. Supervised learning is used

to extract a low-dimensional state-variable realization of the open-loop trajectories,

which is embedded in the original model in a way that makes the desired walking

motions locally exponentially stable.

2.3.2 Unsupervised Learning

Unsupervised learning, on the other hand, learns patterns and structures from

data that does not have labeled outputs. The focus is on discovering the underlying

structure of the data. Mitchel et al. [51] use an unsupervised learning approach to

train a variational autoencoder to learn a latent space capturing the key stance phases

constituting a particular gait for a quadruped robot. A drive signal can be used in

the latent space to synthesize a continuous variety of trot styles. Starke et al. [52]

extracts a multi-dimensional phase space from full-body motion data, which results

in a periodic embedding that can be used to synthesize neural motion controllers for

a diverse set of tasks, including locomotion skills.
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Supervised and unsupervised learning methods have also been applied to enhance

the performance of dynamic model-based controllers. This approach allows the de-

signer to choose particular modules of their system architecture to improve through

the harnessing of collected data, which makes the method tailored to very specific

applications. Early research work from Hu et al. [53, 54] proposed a self-organizing

CMAC (Cerebellum Model Articulation Controller) neural network mechanism to

identify the unmodelled dynamics of a planar bipedal robot and a Virtual Model

Controller ensuring asymptotic system stability in a Lyapunov sense.

More recently, [55–57] use data collected from simulation and hardware experi-

ments gaits to optimize existing controller parameters. Ahn et al. [58] train a cen-

troidal inertia network to use a Composite Rigid Body (CBR) model within a trajec-

tory optimization framework. In [59], a step-to-step linear dynamics model is learned

through supervised learning from the undisturbed walking behaviors of the robot.

This model is then used to synthesize a controller with the walking step size as the

control input. This approach is extended in [60], where a data-driven representation

of the robot’s step-to-step dynamics is learned online through classical adaptive con-

trol methods. The desired discrete foot placement on the robot is thereby realized by

proper continuous output synthesis capturing the data-driven S2S controller coupled

with a low-level tracking controller. A similar approach is presented in [61] where an

unsupervised learning approach is used to implement a neural network-based adap-

tive term to reduce the model mismatch between the template LIP model and the

physical robot. The adaptive foot planner is then combined with an online QP-based

inverse kinematics solver to realize stable and periodic walking for the robot Digit in

both simulation and hardware.
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2.3.3 Reinforcement Learning

The main limitation of supervised and unsupervised learning-based methods is

that they require significant amounts of data, and they may suffer from generaliza-

tion limitations to scenarios outside of the data distribution. Moreover, obtaining this

data can be time-consuming, expensive, and sometimes impractical. As an alterna-

tive, Reinforcement Learning-based approaches can discover solutions and locomotion

strategies on their own, which is particularly useful in situations where labeled data

is scarce or difficult to obtain. Unlike supervised learning, RL does not require a

labeled dataset. Instead, it learns from the consequences of its actions through inter-

action with an environment, receiving rewards or penalties. In chapter 3, we explain

the foundations of Reinforcement Learning in detail.In this subsection, we intend to

provide a general overview of how these learning-based approaches have been applied

in the field of bipedal locomotion.

Even though Reinforcement Learning has been applied to bipedal locomotion for

decades [62–65], its popularity has increased significantly during the last years, show-

ing impressive results for legged robots in both simulation and hardware experiments.

Some early approaches used RL to learn or modify walking patterns for simple pla-

nar bipedal robots using Central Pattern Generator-based controllers [62] or Poincaré

maps [65,66]. By exploiting the mechanical design of passive dynamic walker robots,

Tedrake et al. achieve dynamic walking in a 3D robot by learning a feedback linear

control policy updated with a stochastic policy gradient algorithm [12,64].

One of the main limitations in the earlier stage of RL was the scalability of the al-

gorithms for systems with high-order degrees of freedom and continuous action spaces.

With higher degrees of freedom, the dimension of the state grows significantly, which
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results in significantly more complex policies that require intense computational re-

sources. With the recent development in computing technology and learning algo-

rithms, state-of-the-art policy gradient methods have been applied to the bipedal

locomotion problem to find policies that map from the observation space to the ac-

tion space in order to achieve a continuous walking motion. This learning setup is

known as end-to-end learning.

In an end-to-end learning framework for a bipedal robot system, the observation

space generally consists of the base position, orientation, velocity and angular veloc-

ity, and the joint’s position and velocity, while the action space can be the joint’s

motor torques or the joint target positions. Some of the initial breakthroughs of RL

for locomotion use end-to-end approaches with policy gradient algorithms such as

PPO and DDPG to learn torque output policies, showing impressive performance in

simulation [9], [67].

However, directly learning torques can produce undesired behaviors and unneces-

sary stress on the robot’s joints. Even small errors in the input can lead to significant

and potentially harmful actions, resulting in policies with high risk of unstable or

erratic behavior. Although there have been some efforts to improve these issues by

using pre-trained torque networks with gravity compensation [68], most of the state-

of-the-art end-to-end learning frameworks use the joint target position as the policy

output.

Position output-based end-to-end learning approaches demonstrated some of the

first impressive results in hardware with the quadruped robot Anymal [69] and the

bipedal robot Cassie [13, 70]. Some of these approaches rely on prior knowledge of a

good reference trajectory for the robot joints either by learning small compensations
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added to the reference trajectory [70] or by using the reference trajectory as part of

the reward function [13, 71]. The latter approach, known as imitation learning, has

been extensively used in the computer animation community, exhibiting promising

results to realize policies that generalize to different tasks without the burden of

custom-designed rewards for each particular task. The generalization advantages of

imitation learning were pushed forward with the introduction of adversarial motion

priors by Peng et al. [72], which uses Generative Adversarial Imitation Learning [73]

to allow single policies to perform different tasks while imitating behaviors from large

unstructured motion datasets [72, 74] and even generalize to behaviors that are not

present in the motion dataset [75,76].

While some reference trajectories for imitation learning approaches can be ob-

tained from human motion datasets such as [77,78], they can also be obtained from

videos [79] or from solving a trajectory optimization problem with the reduced or

full-order model of the robot [37,80,81].

Other RL frameworks have proposed to use principled and periodic reward func-

tions based on the physics nature of the locomotion problem to train reference-free

policies that learn whole-body push-recovery strategies [82], or diverse locomotion

gaits for walking, running, galloping and hopping [83], showing remarkable hardware

results in the robot Cassie.

The work in [13, 83] established the foundation for several end-to-end learning

bipedal locomotion frameworks with goal-oriented tasks such as velocity tracking [13],

high-speed running [84], fast 90◦turning [85], highly-dynamic maneuvers [37], robust

walking under unsensed dynamic loads [86], walking across stepping stones [87, 88],

loco-manipulation [89], and perceptive locomotion on irregular terrains [90].
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While end-to-end RL has achieved impressive results, it also has some important

limitations, including the lack of interpretability of the trained policy, high compu-

tational demands, and challenges in ensuring safe exploration during training. More-

over, end-to-end RL methods combined with deep neural networks can be sampling

inefficient (millions of data samples) and are usually over-parameterized (thousands

of tunable parameters) as they do not consider the underlying physics of bipedal

walking. To address these challenges, some works have proposed to combine RL with

model-based kinematic or dynamic controllers commonly used in the field of locomo-

tion. The main idea behind these combined frameworks is to reduce the complexity

of the learning problem by integrating control frameworks for legged locomotion,

such as hybrid zero dynamics, inverse kinematics, inverse dynamics, and whole-body

controllers.

Duan et al. [91] use RL learn task space actions, i.e. the policy outputs resid-

ual setpoints in the task space of the feet relative to the robot base. The residual

setpoints are added to reference signals, and the regulated trajectories are tracked

by an inverse dynamics control of the robot’s feet relative to the base. In [92], a

3D reactive stepper is proposed to approximate the 3D capture regions for the full

robot dynamics using deep RL. A Q-learning algorithm is used along a LIPM-based

stepper to learn the optimal next step location for a biped robot with point feet.

The CoM trajectories are generated using the nonlinear inverted pendulum dynam-

ics, and the task space trajectories are tracked using a whole-body controller. Ahn

et al. proposed a safe and data-efficient learning framework by combining a walking

pattern generator (WPG) with a neural network and a safety controller. The gait

generation system employs an analytical approach based on the WPG that enhances
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efficient learning, while the neural network is optimized to maximize long-term bene-

fits. Concurrently, the safety controller encourages safe exploration by utilizing step

capturability and control-barrier functions [93]. The work in [94] introduces a learn-

ing framework for humanoid loco-manipulation by combining imitation learning from

human-teleoperated demonstrations in task space form with a whole body controller

that generates the torques to execute the target commands while complying with the

robot dynamics.

Most of the work presented in this dissertation fits in this category. We have

proposed different architectures that borrow ideas from control techniques for legged

locomotion to exploit the nature of the walking dynamics to reduce the policy com-

plexity, improve the sample efficiency of learning the learning process, and realize

robust controllers for bipedal walking under challenging terrains. Our work in [18]

borrows ideas from the hybrid zero dynamics theory to propose an RL framework

that learns robust walking gaits from scratch for 3D bipedal and humanoid robots

by exploiting insights from the hybrid and symmetric nature of dynamic walking to

significantly reduce the dimension of policy state and action spaces, improving the

sample efficiency of the learning process and robustness of the walking gait. In [95],

we present a hierarchical framework that takes insights from the angular momentum-

based linear inverted pendulum (ALIP) model to combine an RL-based high-level

planner policy for the online generation of task space commands with a model-based

low-level controller to track the desired task space trajectories to achieve high-speed

locomotion in challenging terrains with slopes up to 20 degrees.
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Chapter 3: Reinforcement Learning

In the quest to achieve robust and efficient bipedal robots, data-driven methods

have emerged as a promising avenue. Unlike traditional model-based approaches,

which rely heavily on predefined equations of motion and dynamics, data-driven

methods leverage vast amounts of data to learn and optimize walking behaviors.

Two primary advantages of data-driven approaches are their adaptability to diverse

scenarios and their potential to discover novel walking strategies that might not be

evident in traditional model-based approaches. To achieve this goal, these methods

harness the significant developments achieved in modern computational resources for

machine learning and high-fidelity simulators.

This chapter introduces the details of Reinforcement Learning (RL), a major

branch of machine learning that focuses on training agents to make sequences of

decisions by interacting with an environment. In essence, RL provides a mechanism

for an agent to learn to accomplish a specific objective by engaging with its surround-

ing environment. Instead of being explicitly instructed on the steps to achieve the

objective, the agent must determine the most rewarding actions through a process

of experimentation. Sometimes, the agent’s actions can influence not just the imme-

diate reward but also the agent’s next state and all the subsequent rewards. These

two characteristics, trial-and-error search, and delayed reward, are the most critical
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features of reinforcement learning [3], making it one of the most promising fields of

research towards generalized artificial intelligence and autonomy.

3.1 Overview and Mathematical Formulation

The fundamental components of the reinforcement learning framework include:

Agent: The decision-maker in the RL framework. It observes the environment,

takes actions based on its policy, and learns from the feedback received in the form

of rewards. Usually, the agent is represented by the robot being trained to achieve a

particular task.

Environment: Everything that the agent interacts with and observes. It re-

sponds to the agent’s actions by presenting a new state and a reward. In RL, the

environment is typically modeled as a Markov Decision Process (MDP), where the

probability of transitioning to the next state depends only on the current state and

action.

State (s): A representation of the current configuration of the agent within the

environment. In the robotics field, the state is usually determined by the set of

measurements obtained from the robot and the environment.

Action (a): Decisions made by the agent that affect the environment. The set

of all possible actions is termed the action space.

Reward (r): A scalar feedback signal received after taking an action in a partic-

ular state. It indicates the immediate benefit of that action.

Policy (π): Defines the agent’s behavior. It’s a mapping from states s to actions

a, denoted by

π(s, a) = P(a = a|s = s), (3.1)
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which is the probability of taking an action a given a state s, to maximize the to-

tal future rewards r. In a simple scenario, the policy might be a straightforward

look-up table based on discrete states and actions, defined within spaces S and A,

respectively. However, for most applications, creating and learning such a policy is

excessively complex and costly, especially when dealing with continuous state and ac-

tion spaces. Therefore, the policy is usually approximated as an approximate function

parameterized by a vector of parameters θ:

π(s, a) ∼ π(s, a, θ) ≡ πθ(s, a). (3.2)

In deep reinforcement learning, this function approximation is generally executed

through a deep neural network. This network effectively encapsulates the complex

relationship between states, actions, and their outcomes, translating them into a man-

ageable, lower-dimensional representation. This approach allows for efficient learning

and decision-making in environments with vast or continuous state and action spaces,

where traditional tabular methods are impractical.

Markov Decision Process (MDP): The problem of RL is formalized using

ideas from dynamical systems theory. As previously stated above, the agent’s inter-

action with the environment can be modeled as a finite MDP. MDPs are a classical

formalization of sequential decision-making, where actions influence not just imme-

diate rewards but also subsequent situations or states and, through those, future

rewards. [3]. Importantly, this process meets the Markov property, which can be

described as the independence of the future from the past, given the present. There-

fore, an MDP generalizes the notion of a Markov process to include actions and

rewards, making it suitable for decision making and control. Formally, a MDP can
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be represented as the tuple:

M := (S,A,P,R, ξ, γ), (3.3)

where S is the feature state space, and A is the feasible action space. Specifically,

as shown in Fig. 3.1 given st ∈ S at time t, the agent takes an action at ∈ A, which

takes it into the next state st+1 ∈ S according to the transition probability P

P (s′, s, a) = P(st+1 = s′|st = s, at = a), (3.4)

and the reward function R

R(s′, s, a) = P(rt+1|st+1 = s′, st = s, at = a). (3.5)

Here, ξ denotes the distribution of the initial state s0 ∈ S, and γ ∈ (0, 1) denotes

the discount factor.

Figure 3.1: Agent-environment interaction in a Markov decision process [3]

Discount Factor (γ): A factor that determines the present value of future re-

wards. A discount factor close to 0 makes the agent ”short-sighted,” valuing only

immediate rewards, while a factor close to 1 makes the agent ”far-sighted,” consider-

ing long-term rewards.

32



Value Function (V ): Represents the expected cumulative reward an agent can

obtain starting from a particular state. It provides a measure of the ”value” or

desirability of being in a given state. Given a policy π, the value function is defined

by:

Vπ(s) = Eπ

[
∞∑
k=0

γkRt+k+1|st = s

]
, (3.6)

where Eπ denotes the expected value of a random variable given that the agent follows

policy π at time t.

Action-Value Function Q: This function, commonly referred to as the Q-

function, represents the expected cumulative reward of taking a particular action in

a given state and then following a specific policy for all future timesteps.

Qπ(s, a) = Eπ

[
∞∑
k=0

γkRt+k+1|st = s, at = a

]
, (3.7)

The goal of the RL framework is to find an optimal motion policy π∗ : S → A

that maximizes a long-term accumulated reward, which is equivalent to find a policy

that maximizes the value function V (s) for all s ∈ S. Thus, the RL problem can be

formally defined as

maximize
π

Eπ

[
∞∑
k=0

γkRt+k+1|st = s

]
, γ ∈ (0, 1],

subject to st+1 = P(st, at), (3.8)

One of the most important properties of the value function is that the value at a

state s may be written recursively as

Vπ(s) = Eπ

[
Rt +

∞∑
k=1

γkRt+k+1|st+1 = s′

]
, (3.9)
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which results in the optimal value function

Vπ(s) = max
π

Eπ [Rt + γVπ(s
′)] , (3.10)

where s′ = st+1 is the next state after taking action at from state s = st, and the

expectation is over actions selected from the optimal policy π. This equation embodies

Bellman’s principle of optimality, and it serves as a central result that forms the basis

of modern RL.

3.2 Categorization of RL algorithms

Reinforcement learning sits at the crossroads of machine learning and control

theory, dealing with complex optimization problems. Machine learning optimizes

the model parameters to fit training data, while control theory optimizes control

performance metrics within dynamic constraints [96]. RL’s primary aim is to learn

an optimal policy π navigating through various approaches like model-based and

model-free RL, each with its unique strategies and challenges.

3.2.1 Model-base vs model-free RL

A main categorization in RL is given between model-based RL (MBRL) and

model-free RL (MFRL) methods. In model-based RL, the agent attempts to learn

models of the environment’s dynamics alongside the policy. By constructing these

models, model-based RL techniques enable the agent to simulate future states and

rewards, thus facilitating more informed decision-making. This approach often leads

to greater sample efficiency, as the agent can learn from fewer interactions by extrap-

olating from its internal models.
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In model-free RL, the dynamics and reward function are treated as unknown and

are not explicitly learned. Instead, the agent’s learning focuses on directly deriving

the optimal policy or value functions from interactions with the environment. Model-

free RL is particularly useful in environments where the underlying dynamics are

either too complex to model or unnecessary for learning an effective policy.

While model-based RL methods have higher sample efficiency than their counter-

part, their downside is the challenge of model bias, where an agent performs optimally

in the learned model but may fail drastically in the actual environment. Conversely,

model-free RL methods do not use an environmental model. While they may sacrifice

the sample efficiency benefits of model-based methods, they are generally simpler to

implement and adapt, which is the reason why they are more popular and widely

used for real-world robotics applications.

Model-based RL algorithms

Model-based RL methods have many distinct strategies for integrating models

into the learning process. This versatility makes it difficult to give a straightfor-

ward classification of these methods. Nevertheless, we can differentiate at least three

important applications.

i) Simulation of the environment: The world model, i.e., the learned model

of the environment, is used for data-augmentation techniques by generating artifi-

cial trajectories for the state transitions. DYNA [97] and MBPO [98] are two good

examples of this technique.

ii) Assistance for learning algorithms: Leverage smooth functions for the

state transition and rewards to perform gradient-based optimization on entire trajec-

tories as shown in Stochastic Value Gradients (SVG) [99] and Dreamer [100,101]
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iii) Strengthening the policy: Leverage internal planners that simulate the

environment using the learned world model before picking the best action. Monte

Carlo Tree Search (MCTS) [102] is an example of this type of algorithm.

In general, these methods range from pure planning [103] and expert iteration [104,

105] to innovative approaches like data augmentation for model-free methods [106,107]

and embedding planning loops into policies [108], demonstrating the versatility and

adaptability of model-based RL techniques in various scenarios.

Model-free RL algorithms

There are three main different ways to apply model-free RL: value-based methods,

policy-based methods, and actor-critic methods.

Value-based methods, such as Q-learning and SARSA, determine the policy π(s)

by estimating the value function V (s) and/or state-value function Q(s, a) [3]. These

functions represent the expected total reward from following the current policy π

starting from the present state. On the other hand, policy-based methods like the

REINFORCE algorithm directly learn a parametrized policy πθ, avoiding the need to

evaluate V (s) and Q(s, a). Finally, Actor-Critic methods merge these two approaches,

using the value function and Q-function estimates to achieve more stable updates of

πθ. Examples of this method include Proximal Policy Optimization (PPO) and Soft

Actor-Critic (SAC).

Value iteration, such as Q-learning [109], takes advantage of the recursive form of

the Bellman equation to establish an off-policy algorithm to learn the action-value

function Qπ(st, at). While such methods have shown promising performance on com-

plex tasks with high-dimensional state space, their applications in high-dimension ac-

tion space are limited unless the maximization over action can be efficiently computed
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during each iteration. For robotic applications with continuous high-dimensional ac-

tion space, policy gradient methods are more commonly adopted [9].

Policy gradient methods

Policy gradient methods are one of the most common and powerful techniques to

optimize a policy that is parameterized, as in equation 3.2. Moreover, these methods

are well-suited for tasks with continuous action spaces [110]. When the policy π is

parameterized by θ, it is possible to use gradient optimization on the parameters to

improve the policy much faster than through traditional iteration [96]. The parame-

terization may be a multi-layer neural network, in which case the policy is known as

a deep policy network, although other representations and function approximations

may be useful. In any case, instead of extracting the policy as the argument maximiz-

ing the value or quality functions, it is possible to directly optimize the parameters θ,

for example through gradient descent or stochastic gradient descent. The value func-

tion Vπ(s), depending on a policy then becomes V (s, θ), and a similar modification is

possible for the quality function Q.

Since the work presented in this dissertation focuses on continuous and high-

dimensional action spaces, we use state-of-the-art policy gradient methods that esti-

mate the policy gradient

▽θJ(θ) = Ep(xt;θ) [r(xt)▽θ log p(xt; θ)] , xt = (st, at), (3.11)

either implicitly or explicitly, such as Evolution Strategies (ES) [111] and Proximal

Policy Optimization (PPO) [10], respectively. The policy is iteratively improved

through simulation rollouts followed by gradient ascent with respect to the objective.
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3.2.2 Proximal Policy Optimization

Policy gradient methods compute an estimator of the policy gradient in the form

of equation 3.11, and plug it into a stochastic gradient ascent algorithm.

PPO is a policy gradient method that proposes a novel objective function that

uses multiple epochs of stochastic gradient ascent to perform each policy update. The

objective function is of the form

LCLIP (θ) = Et [min(gt(θ)At, clip(gt(θ), 1−ϵ,1 +ϵ)At)] , (3.12)

where At is the so-called advantage estimation [67]. The policy πθ(at|st) is improved

by a modified probability ratio of gt(θ) =
πθ(at|st)
πθold (at|st)

controlled by the clip ratio ϵ. PPO

has the stability and reliability of trust-region methods but is more straightforward

to implement and presents better overall performance [10].

3.2.3 Evolution Strategies

Evolution strategies are a class of black box optimization algorithms inspired by

natural evolution [111] that use a set of candidate solutions (population) to evaluate a

problem, updating and improving the set of candidate solutions using random search.

Although ES and RL are seen as distinct categories within the broader field of

machine learning and artificial intelligence, both can be applied to similar problems,

such as optimization and control, which is the reason why ES has received attention

in the last years as a scalable alternative to Reinforcement Learning. However, their

methodological approaches are completely different. While RL focuses on learning a

direct policy or value function through interaction with the environment, ES is about

evolving a population of solutions based on their performance.
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In ES, at every iteration (generation), a population of parameter vectors (genomes)

is perturbed (mutated) and, optionally, recombined (merged) via crossover. Then,

an objective function evaluates the reward (fitness) of each resulting offspring, and

through some form of selection, the individuals with higher reward are chosen to

produce the individuals in the next generation. More specifically, a population of N

policies π(s|θi)Ni=1 are sampled following θi ∼ N (θµ, σ). The normal distribution of

policy parameterized on θµ and σ is then improved through estimated gradient using

the evaluation results (rewards) from the sampled policies.

This algorithm is repeated until the objective is fully optimized. There are sev-

eral variations of this algorithm that differ in the method to represent the population

and perform mutation and recombination. For the training process in some of the

frameworks discussed in this dissertation, we will use a version of natural evolu-

tion strategies (NES) developed by OpenAI, which has been applied to standard RL

benchmarks [112]. In their work, the stochastic reward experienced over a full episode

of agent interaction is represented by a fitness function F (·), and θ is the vector of

parameters of the stochastic policy πθ. The objective function is defined in terms of

θ and it is optimized over θ directly using stochastic gradient ascent with the score

function estimator

▽θEϵ∼N(0,I)F (θ + σϵ) =
1

σ
Eϵ∼N(0,I)F (θ + σϵ)ϵ (3.13)
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Chapter 4: Hybrid Zero Dynamics Inspired Reinforcement

Learning for Robust Bipedal Locomotion

4.1 Introduction and Motivation

Bipedal locomotion’s most common learning objective is a feedback control policy

that directly maps the state inputs to the torque control output or the joint angles.

Typically, this policy is constructed in an end-to-end manner, and the learned policy

serves the general purpose of stability maintenance (i.e., walking without falling).

Various learning methods have shown effectiveness in learning an end-to-end control

policy. Policy gradient-based approaches such as DDPG and PPO have demonstrated

competitive performance for general robotic locomotion tasks in simulations with

end-to-end learning using torque output policies [9, 10] and real-world experiments

(typically combined with dynamics randomization) using torque output-based end-

to-end learning [12,69] and joint angle-based end-to-end learning [11,113].

Some more advanced methods also seek to achieve velocity tracking [70], push-

recovery [82], and walking in various terrain conditions [114] through more structured

frameworks. The velocity tracking policy from [70] relies on prior knowledge of a good

joint reference trajectory and only learns small compensations added to the known

reference trajectory. Siekmann et al. proposed to combine PPO with recurrent neural
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network (RNN) for learning the direct control policy for Cassie [13]. Some also

extend the deep reinforcement learning approach with provided guidance for motion

mimicking [71,115].

Another learning objective is to acquire a reference tracking trajectory of a selected

anchor point (e.g., the center of gravity point of the upper torso). A lower-level

controller then seeks to track such a learned reference through basic model information

such as kinematics. Morimoto et.al. [65,66] learned the Poincare map of the periodic

walking pattern and applied the method to two 2D bipedal robots. Some recent

work has proposed to learn the joint-level trajectory as the reference motion through

supervised learning [116] and reinforcement learning [14,15,117]. The authors in [24]

learn linear policies that map the reduced robot’s state to parameterized elliptical

trajectories for the robot’s feet. These approaches often simplify the design of the

lower-level tracking, which can be as simple as a PD controller.

Despite the empirical success, most of the aforementioned learning-based ap-

proaches are sampling inefficient (millions of data samples) and are usually over-

parameterized (thousands of tunable parameters). It is also worth emphasizing that

the reference-trajectory-learning approach makes it easier to induce gait symmetry

and smooth control signals within the bounded admissible space. On the other hand,

the end-to-end approach is difficult to handle symmetry and torque constraints, hence

may lead to unnatural walking gaits and sparky control signals [118].

In this chapter, we propose a trajectory-based RL framework to address some of

the challenges found in the learning of bipedal locomotion. By decoupling the prob-

lem of bipedal locomotion as a two-phase process: trajectory planning and feedback

regulation, we propose a modular solution that incorporates the physical insights of
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dynamic locomotion and its hybrid nature into the learning process of the policy.

In particular, we leverage the exploration potential of RL algorithms to find refer-

ence trajectories for dynamic locomotion using a reduced state of the robot. Then,

we improve these reference trajectories using feedback regulation to obtain stable

and robust walking gaits. This decoupled structure significantly simplifies the neural

network’s complexity, enhancing sampling efficiency and robustness of the learned

policy.

A method similar to ours is presented in [119], where the authors propose a de-

coupled structure that uses DRL to learn a Finite State Machine (FSM) based policy

that outputs reference trajectories for particular joints of the robot. A simple linear

balance feedback controller is then used on top of the reference trajectories to pro-

duce robust locomotion. In our proposed work, we compute continuous joint-space

trajectories by means of 5th-order Bézier Polynomials. In addition, we use differ-

ent high-level commands, e.g., desired velocity tracking, as part of the reduced-order

state of our learning framework, whereas [119] uses the full-order state of the robot in

addition to desired gait parameters: step length, step duration, and maximum swing

foot height during a step.

Our proposed method is evaluated with different robot models, including simula-

tion of the bipedal robots Rabbit, Cassie, and Digit. In addition, we show that the

proposed controller structure can be used to transfer the learned policy successfully

to hardware with minimal tuning. The resulting controller is extensively tested in

hardware with the Digit robot, showing effective velocity tracking performance, and

robustness to different disturbances such as external adversarial forces and uneven

terrains.
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Preliminary results of this work were presented in conference papers [15], [23].

In this work, we extend the preliminary results to further increase the efficiency of

the learning method, consider an additional degree of freedom to include constrained

arm’s motion into the walking gait, include additional regulations to improve the

performance of the controller, and perform an extensive series of indoors and outdoors

experiments to demonstrate the good performance of the learned policy on hardware.

Our contribution can be summarized as follows:

• We propose a complete RL framework to learn robust and stable walking gaits

from scratch for 3D bipedal robots. The method takes insights from the hy-

brid and symmetric nature of dynamic walking to significantly reduce the state

and action spaces of the policy, enhancing the sample efficiency of the learning

process and robustness of the walking gait.

• We design a regulator policy that uses simple but effective feedback regulators to

improve the stability and robustness of the learned walking gait. Different from

the earlier conference version, we also develop an estimator of the terrain slope

to improve the swing foot orientation regulator, which is the key to successful

outdoor experiments. Moreover, we add a stance foot regulation that facilitates

velocity tracking on hardware.

• We demonstrate that the proposed framework can be easily extended to robots

with different DoF and morphology. We use the proposed learning framework

to control the bipedal robot Cassie (no arm joints) and the humanoid robot

Digit (with arm joints). The results show the same RL framework learns stable
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walking gaits for both robots. The results have also been validated extensively

in both simulation and hardware.

• We conduct extensive experiments to test the performance of the policy on real

hardware, demonstrating the learned policy has a good tracking performance

on the desired waking velocity and the desired torso orientation. These results

enable the application of the proposed RL framework with confidence for terrain

navigation in indoor and outdoor environments. Most of the learning frame-

works for bipedal locomotion proposed in the literature do not provide details

about the performance of the learned policy for tracking high-level commands

like the torso’s desired velocity and orientation.

4.2 Preliminaries and Problem Formulation

4.2.1 Bipedal Robot Model

Bipedal locomotion consists of a collection of phases of continuous dynamics with

discrete events that trigger the transitions between these continuous dynamics phases;

formally, modeling both continuous and discrete dynamics together results in a hybrid

system model. The configuration space Q of a robot can typically be represented by

a floating-base generalized coordinate system, defined as

q = [pb, ϕb, qr] ∈ Q, (4.1)

where pb = (qx, qy, qz) ∈ R3 denotes the relative position of the robot’s base, ϕb ∈

SO(3) denotes the orientation of the robot’s base frame, and qr ∈ Rm denotes the

relative angles of articulated joints. Throughout this work, we use ṗb = (vx, vy, vz)

to represent the velocity of the robot’s frame, ϕb = (qψ, qθ, qϕ) as the Euler’s angle
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representation (roll, pitch, yaw) of the robot’s base orientation, and ϕ̇b = (q̇ψ, q̇θ, q̇ϕ)

represents the angular velocity of the robot’s base.

Letting x = (q, q̇) ∈ X denote the robot states, u ∈ U ⊆ Rm a vector of actuator

inputs, and ω ∈ Ω ⊆ Rw a vector of disturbances and uncertainties, the hybrid system

model for bipedal locomotion can be defined as

Σ :

{
ẋ = f(x, u;ω) x /∈ H
x+ = ∆(x−) x− ∈ H,

(4.2)

where f represents the continuous dynamics. The switching surface H is typically

the (hyper-) surface of points corresponding to the height of the swing leg above the

ground being zero, and ∆ : H → X , the reset map or impact map [120], determines

the post-impact state values x+ just after switching as a function of the pre-impact

state values x− just before switching.

4.2.2 Bipedal Locomotion Problem

In general, the bipedal locomotion problem seeks to establish a motion control

policy π : X × C → U with C being a set of high-level locomotion commands, such

that some properties are achieved. For example, the desired properties may include

(i) following commands, (ii) maintaining feasibility condition, (iii) satisfying admis-

sibility condition, (iv) exhibiting naturalistic locomotion, and (v) robustness against

uncertainties and disturbances. Here, we mathematically define the aforementioned

properties as follows to define the bipedal locomotion problem formally.

Following Command. We would like the robot to follow specific high-level com-

mands, such as desired velocities or target locations. In this work, we are particularly

interested in velocity tracking, which can be defined as the asymptotic convergence
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to the desired velocity profile vd(t), given as,

lim
t→∞

∥v̄(x)− vd(t)∥ = 0, (4.3)

where v̄(x) denotes the average velocity over a walking step.

State Feasibility Condition. Let Z ⊆ X be a set of forbidden states that are

prohibitive for the robot. Hence the feasibility criterion is equivalent to ensuring the

set X ∗ = X \ Z forward invariant given the dynamics model (4.2), i.e.,

∀x(0) ∈ X ∗ → x(t) ∈ X ∗, ∀t ≥ 0. (4.4)

Input Admissibility Condition. Let U∗ be the nominal admissible actuator input

set of the robot determined by the actuators’ physical capability. The admissibility

criterion requires the actuator inputs are persistently feasible, i.e.,

π(x, c) ∈ U∗ ∀x ∈ X ∗, c ∈ C. (4.5)

Naturalistic Locomotion. Moreover, the bipedal applications also expect natural-

istic motion for various causes (e.g., environment adaptation and energy efficiency).

Examples of naturalistic motion include maintaining the upper-body straight, the

Center-of-Mass (CoM) within the support polygon described by the robot feet, avoid-

ing the collision of the robot’s feet with each other, etc. In this work, we consider

the torso angle limits and the constrained Center-of-Mass (CoM) position to charac-

terize the naturalistic behavior. In particular, let θtor(x) : X → SO(3) represents the

orientation of the robot’s torso, the following constraint is expected to be satisfied:

θtor(x) ∈ Θ, ∀x ∈ X , (4.6)

where Θ ∈ SO(3) represents the admissible range for the roll, yaw and pitch angles

of the robot’s torso. In addition, let pcom : X → R3 be the CoM position with respect
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Figure 4.1: The cascaded structure of the proposed motion control policy framework
for bipedal locomotion.

to the stance foot in the Cartesian coordinate. The following condition confines the

projection of CoM within a enclosed region determined by both feet and the height

of CoM within a certain threshold:

pcom(x) ∈ P ∀x ∈ X , (4.7)

where P ⊂ R3 represents the admissible CoM range.

Problem 1. The Bipedal Locomotion Problem: Consider the robot model in (4.2),

the Bipedal Locomotion Problem seeks to establish a motion control policy π : X×C →

U , such that the criterion defined in (4.3) - (4.7) are satisfied with the presence of

model uncertainty and external disturbance.

In practice, solving the above problem is challenging as the hybrid dynamical

system in (4.2) is too complex to have a model-based solution that guarantees the

satisfaction of all desired properties. Moreover, the various properties specified cannot

be satisfied simultaneously in principle (e.g., the velocity tracking requirement may

be relaxed in exchange for the safety assurance). In this work, we propose to solve

the problem using a cascaded structure that combines reinforcement learning (RL)

based motion planning and model-based feedback control design.
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4.2.3 Cascaded Motion Control Framework

Our proposed approach takes inspiration from the generalized Hybrid Zero Dy-

namics (G-HZD) framework presented in [50,121]. As shown in Figure 4.1, the motion

control policy π in Problem 1 consists of a feature selection module, G, and two cas-

caded policies: a motion policy πy and a feedback control policy πm. To clearly

identify the objectives of this work, we formally define the proposed motion control

framework as follows, where the design of each component will be presented in detail

in the following sections.

Problem 2. Cascade Motion Control Policy Design: The motion control

policy π in Problem 1 can be designed as

π = πm(·) ◦ πy(·) ◦ G(·). (4.8)

The feature selection module G : X × C → S maps the full-order states and external

commands to a reduced-dimensional feature states s ∈ S. The motion policy πy(·) :

S → A will be designed to generate feasible joint actions a ∈ A, with A being the

action space, that satisfy the conditions defined in (4.3) - (4.7). Finally, the feedback

control policy πm(·) : X × A → U converts the joint action commands to admissible

actuator inputs with the objective of keeping the robot from falling and simultaneously

satisfying (4.3) - (4.7).

While there are various ways to design the motion policy for bipedal locomotion

in literature, our work particularly focuses on reinforcement learning (RL) design

approaches [13, 113, 115]. Despite the recent success of RL-based approaches in ro-

bust sim-to-real transfer of the policy on robot hardware, existing approaches still

suffer from sampling inefficiency and often require prior knowledge of good reference
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trajectories in training [13, 115]. The proposed trajectory-based RL motion policy

design (see Section 4.3) aims to tackle existing limitations of RL-based approaches

in bipedal locomotion by incorporating insights from model-based control methods

with data-driven reinforcement learning to realize robust bipedal locomotion poli-

cies. In addition, an intuitive feedback regulation controller policy (see Section 8.1)

is designed to improve the overall robustness of the motion policy.

Remark 1. A classic end-to-end RL solution to the bipedal locomotion problem can

be considered as a special case of Problem 2. Instead of using the decoupled structure,

the end-to-end approaches train a single neural network (NN) policy π(·) : X → U

that maps the full order states directly to the actuator inputs. However, this approach

blindly uses all the data available without insights about the nature or structure of

the bipedal locomotion problem, resulting in largely inefficient training with learned

policies that are not feasible to be implemented safely in hardware [9].

4.3 Motion Policy Design

In this section, we present a sample efficient RL framework for the motion policy

design problem described in Section 4.2. The overall structure of the proposed RL-

based cascade motion policy is presented in Figure 4.2. We will start with the formal

definition of the RL framework for our later discussion. Then we will comprehen-

sively discuss the design of reduced state and action spaces and the specific learning

procedure for bipedal locomotion.
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4.3.1 Reinforcement Learning Framework

As we discussed in Chapter 3, reinforcement learning considers the Markov Deci-

sion Process (MDP) as a tuple of components defined by

M := (S,A,P, r, ξ, γ), (4.9)

with the goal is to find an optimal motion policy π∗ : S → A that maximizes a

long-term accumulated reward, defined as

J(π) = (1− γ)E[
∞∑
t=0

γtr(st, αt, st+1)], (4.10)

where st ∈ S is the observation state of the agent at time t, αt ∈ A is the policy

action, r(st, αt, st+1) is the reward term, and γ ∈ (0, 1) denotes the discount factor.

To cast bipedal motion policy as a RL problem, one requires (i) adapting the

model (4.2) to the MDP form of (4.9), and (ii) configuring the criterion in Problem 1

to align with the RL settings. It is immediate that the probabilistic transition part

in (4.9) is equivalent to the described bipedal robot model (4.2). The stochastic

transition of the MDP process captures the disturbances and uncertainties ω such as

the random sampling of initial states in the policy training and dynamics uncertainty

due to the random interactions with the environment (e.g., early or late ground

impacts). Moreover, the desired properties in Problem 1 can be either characterized

as rewards or hard constraints in RL. In this work, we formulate criterion (4.3), (4.5),

(4.6), (4.7) as rewards, and (4.4) as hard constraints.

4.3.2 State space

In our proposed framework, a neural-network motion policy πy maps a feature s ∈

S to an action a ∈ A via a probability distribution πy(·|s). In particular, the feature
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can be decomposed into an endogenous component, ζ, and an exogenous component,

η. The endogenous component ζ is a reduced dimensional representation of the

robot states. The exogenous component η corresponds to the external commands,

such as desired walking speeds or turning directions, terrain slope, whose transitions

will not be affected by the agent through actions [122]. The inclusion of exogenous

components enables a single motion policy to capture various locomotion tasks and

smooth transitions among these tasks.

Reduced Dimensional Feature Representation. Many existing learning-based

approaches for bipedal locomotion use the full-order state as the input of the neural

network policy, which significantly reduces the sampling efficiency of the training pro-

cess, resulting in unnecessarily large neural networks and prolonged training time. In

this work, we take inspiration from classic model-based approaches in bipedal loco-

motion to design a lightweight neural network policy structure to improve sampling

efficiency and reduce the training time. In particular, we choose as a reduced set of

features of the policy the average velocity of the robot’s pelvis, the desired velocity

of the robot, and the error between the desired and the actual average velocity. This

selection is inspired by the Hybrid Zero Dynamics (HZD)-based feedback controllers

for bipedal locomotion [16] and the simplicity but effectiveness of the LIP model to

provide reference trajectories of the COM and step length [44].

4.3.3 Action space

In our motion planning framework, the action determines the parameterized de-

sired joint trajectories. It has been shown that trajectory actions typically provide a
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Figure 4.2: Overall structure of the proposed Trajectory-based RL framework. The
trajectory planning phase is done by the neural network policy while the feedback
regulation block use the robot’s sensor information to guarantee the stability of the
walking gait and the velocity tracking performance.

better representation of locomotion than the direct actuator inputs [123]. Parameter-

ized trajectories also allow model-free joint references to be tracked by the feedback

controller, thereby enabling the seamless sim-to-real transfer of the learned policy on

robot hardware.

As discussed later in this section, the motion policy does not need to determine

desired trajectories for all actuated joints of the robot. Let N be the number of

actuated joints determined by the motion policy πy, the desired trajectory of each

joint i ∈ 0, . . . , N will be parameterized as an M -th order Bézier polynomial with

coefficients αi ∈ RM+1, given as

ydi (τ, αi) :=
M∑
k=0

αi[k]
M !

k!(M − k)!
τ k(1− τ)M−k, (4.11)

where τ = t−t−
Tstep

∈ [0, 1] is the scaled time-based phase variable over one walking step

with t− being the time at the beginning of the step, and Tstep is the time duration of

one walking step.
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Dimension Reduction of Action Space. In order to reduce the output size,

thereby the overall size, of the neural network policy πy, we reduce the action space

dimension by incorporating the unique nature of bipedal locomotion.

Redundant Joints . The desired trajectory of some actuated joints will be directly

commanded by the feedback regulator policy πm described in sec:control. Therefore,

the motion policy πy does not need to provide reference trajectories for these joints,

significantly reducing the number of outputs required. Specifically, the torso regula-

tion takes care of the stance leg hip roll and pitch joints, the swing foot orientation

regulation takes care of the swing ankle roll and pitch joints, and the stance foot

regulation takes care of the stance ankle roll and pitch joint. We provided a detailed

description of each of these regulations in the following section. Moreover, if arm

joints are present (e.g., Digit, see Section 4.5), we can treat the arm as a single pen-

dulum by controlling the motion of the shoulder pitch joint only through the motion

policy. Thus, we can lock other arm joints at constant angles, further reducing the

policy outputs.

Gait Symmetry . For bipedal locomotion, there exists symmetry between the right and

left stance gaits. This allows us to learn only the right stance gait parameters and

determine the left stance gait parameters using the symmetry condition. Assuming

that the set of coefficients for the right stance gait αR is given, the set of coefficients

for the left stance gait αL can be computed by

αL = TαR (4.12)

where T ∈ RN×N is an invertible sparse transformation matrix that captures the

symmetry between the robot’s joints on the right and left sides.
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Impact Invariance. To encourage the smoothness of the control actions after the

swing foot impacts the ground, we enforce an equality constraint such that at the

beginning of every step, the initial point of the Bézier polynomial (determined by

αRi [0]) coincides with the current position of the i-th robot’s joint. To determine the

switching condition between right and left stances, we detect the impact of the swing

foot with the ground by estimating the ground reaction force (GRF) and comparing it

with a fixed threshold easily tuned based on experiments performed both in simulation

and hardware. Although this threshold is kept fixed during training and evaluation

of the policy, early or late contact conditions are indirectly managed by the learned

policy through the update of the reference trajectories at the switching conditions.

Finally, we enforce the position of the actuated joints to be the same at the end of

the right stance and the beginning of the left stance. This encourages continuity

in the joint position trajectories after switching the stance foot. When using Bézier

polynomials, this condition can be easily enforced through αRi [M ] = αLi [0]. Therefore,

two Bézier coefficients for each joint can be obtained through the above conditions.

This means we only need to find the remaining M − 1 coefficients for each of the N

reference trajectories, which results in an action space of dimension N ×M − 1.

4.3.4 Learning Procedure

The proposed framework can use any RL algorithm that handles continuous ac-

tion spaces, including but not limited to evolution strategies (ES), proximal policy

optimization (PPO) [10], and deterministic policy gradient (DDPG) [124]. In this

work, we use the ES algorithm because of its simple implementation for parallel pro-

cessing, and its promising results in environments with a high number of time steps
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in an episode, actions with long-lasting effects, or with no good estimations available

for the value function [112]. All of these conditions are present in the problem of

bipedal locomotion.

The reward function adopted in this work is determined by a vector of 9 customized

rewards with their respective weights w. Specifically:

r = wT [rvx , rvy , rh, ru, rCoM, rang, rangvel, rfd, rstf]
T . (4.13)

These rewards are designed accordingly to the desired properties described in Sec-

tion 4.2.2 by criteria (4.3) - (4.7). That is, encouraging the policy performance in four

sub-tasks: velocity tracking, feasible states (height maintenance), admissible actions

(energy efficiency), and naturalistic behavior.

To encourage better velocity tracking performance for desired average walking

speeds in the longitudinal and lateral direction, rewards rvx , rvy are defined as

rvx =

{
max (ρv/(v̄x − vdx + ϵ), 1) if |v̄x − vdx| ≤ evx

−ρv/(v̄x − vdx)
2 if |v̄x − vdx| > evx

rvy =

{
max (ρv/(v̄y − vdy + ϵ), 1) if |v̄y − vdy | ≤ evy

−ρv/(v̄y − vdy)
2 if |v̄y − vdy | > evy

where ρv is a scaling variable that makes the reward function sharp about the desired

walking velocity to encourage better velocity tracking, ϵ is a bias term to prevent

singularities when the tracking error is zero, and evx, evy are the bounds for the

maximum error allowed in the tracking of the desired average velocity.

To encourage the policy to maintain a desired robot’s height, we define the reward

rh =


max {(qz/qdz)2, 1} if |qz − qdz | ≤ eqz, qz ≤ qdz
max {(qdz/qz)2, 1} if |qz − qdz | ≤ eqz, qz > qdz
−(qz − qdz)

2 if |qz − qdz | > eqz
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where qdz is the desired height and eqz is the maximum error allowed for the height of

the robot’s base.

The torque efficiency reward encourages the learning to reduce the torque ap-

plied to the joints.

ru = −∥u∥2 (4.14)

Four rewards are designed to encourage the naturalistic behavior of the walking

gaits by keeping the center of mass inside the support polygon, keeping the torso

upright during the walking motion, and keeping the distance between the feet within a

desired nominal range. In particular, (4.15) handles the case when pxycom, the projection

of the center of mass on the xy plane, is out of P , the area determined by a radius

of 0.1m about the midpoint between the projection of the two feet on the xy plane,

denoted by Q.

rCoM =

{
ρd/d if pxycom ∈ P

−1/ρd(d− 0.1)2 if pxycom /∈ P
(4.15)

where ρd is a scaling variable, and d is the distance between pxycom and Q.

In (4.16) and (4.17), the torso’s angles (qψ, qθ, qϕ) and angular velocities (q̇ψ, q̇θ, q̇ϕ)

are used to penalize the deviation of the torso from an upright position during the

walking motion.

rang = −(q2ψ + q2θ + q2ϕ) (4.16)

rangvel = −(q̇2ψ + q̇2θ + q̇2ϕ) (4.17)

To prevent that the robot’s feet spread apart from each other significantly, or the

collision of the feet between each other, a penalization to the reward based on the
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distance between the robot’s feet is added in the form of (4.18).

rfd =


−(∆f −∆fmin)

2 if ∆f < ∆fmin

−(∆f −∆fmax)
2 if ∆f > ∆fmax

0 otherwise

(4.18)

where ∆fmin and ∆fmax are the minimum and maximum desired distance distance

between the robot’s feet.

Finally, the reward in (4.19) is used to encourage the stance foot to remain static

on the ground.

rstf = −∥vstf∥2 − ∥wstf∥2, (4.19)

where vstf ∈ R3 and wstf ∈ R3 are the linear and angular velocity of the stance foot.

4.4 Feedback Regulator Policy Design

The feedback regulator policy πm modifies some of the trajectories generated by

the motion planning policy πy for some of the robot’s joints and generates new tra-

jectories for some other joints. This allows the motion planning policy πy to reduce

the number of outputs needed to be learned, significantly improving the sample effi-

ciency of the learning framework. The regulations applied are intuitive yet powerful

and allow the controller to compensate for uncertainties in the model used for train-

ing the high-level planner policy and adapt it to unknown disturbances like external

forces or challenging irregular terrains that the learned policy has not experienced

during training in simulation. These regulations were originally proposed by Raibert

in [125], and they have been applied successfully on the control and balance of legged

robots in several works, including [126–129]. As shown in Figure 4.2, the feedback

regulations are composed of two submodules: i) trajectory regulations and tracking,

and ii) direct torque regulations for torso orientation.
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4.4.1 Trajectory Regulations and Tracking

Letting qd be the desired trajectories for the robot’s actuated joints provided by

the motion policy πy, then the regulated trajectories qreg are determined by

qreg = qd +Aδq, (4.20)

where δq is the vector of compensations applied on top of the trajectories for some of

the robot’s joints directly related with the swing foot placement, swing foot orienta-

tion and stance foot orientation. The matrix A is an assignation matrix that assigns

the compensation term with its corresponding joint. Thus, we will use simple PD

controllers to track the regulated reference trajectories at the joint level to compute

the torque inputs for the actuated joints of the robot. In this work, the PD controllers

are defined as

u = −Kp(q − qreg)−Kd(q̇ − q̇reg), (4.21)

where Kp and Kd are the matrices of PD gains associated with the actuated joints

of the robot.

The following joint regulations are applied in this work:

δq =
[
δswhr , δ

sw
hp , δ

sw
hy , δ

sw
tp , δ

sw
tr , δ

st
tp, δ

st
tr

]T
, (4.22)

which is determined by:

δq = P× E+B, (4.23)
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where, P is a gain matrix, E is a vector of velocity errors, and B is a vector of

feed-forward correction terms, respectively defined as follows:

P =



0 0 SyK
sw
phr SyK

sw
dhr 0

Ksw
php Ksw

dhr 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

Kst
ptp 0 0 0 0
0 0 Kst

ptr 0 0


, (4.24)

E =


v̄x − vdx
v̄x − vlsx
v̄y − vdy
v̄y − vlsy
qϕ − qdϕ

 , (4.25)

B =
[
βy βx 0 ξtp ξtr 0 0

]T
. (4.26)

The underlying motivation of the joint regulators is described as follows. The

swing foot regulations, i.e., δswhp δswhr , and δswhy , are originally inspired by the LIP

model and has been applied to improve the stability and robustness of model-based

feedback controller for 3D bipedal based on the tracking of the average walking

speed [125–129]. The compensation for lateral speed regulation δswhr gives a trajectory

compensation for the swing leg’s hip roll angle. Analogously, δswhp , the compensation

for the longitudinal speed regulation, outputs a trajectory compensation for the swing

leg’s hip pitch joint. Moreover, δswhy , the compensation for the heading angle of the

robot’s torso, adds a trajectory compensation to the swing leg’s hip yaw angle to keep

the torso’s yaw orientation at the desired angle. Sy ∈ {1,−1} depends on the swing

foot being left or right, v̄x, v̄y are the longitudinal and lateral average velocities of the

robot, vlsx , v
ls
y are the velocities at the end of the previous step, vdx, v

d
y are the refer-

ence velocities, and Ksw
php, K

sw
dhp, K

sw
phr, K

sw
dhr are the proportional and derivative gains
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of hip pitch and roll joints, respectively. The phase variable τ is used to smooth the

regulation at the beginning of each walking step and reduce torque overshoots. The

terms βx and βy are outputs of an additional PI controller used to compensate for

the accumulated error in the velocity and prevent the robot from drifting towards a

non-desired direction.

The swing foot orientation regulations, i.e., δswtp and δswtr , are applied to keep

the swing foot parallel to the walking surface to ensure a proper landing orientation

of the swing foot. These compensations are decoupled for the roll (δswtr ) and pitch

(δswtp ) joints of the robot’s ankle of the swing foot. These regulations are obtained by

applying decoupled inverse kinematics (IK) to the robot’s leg. Therefore, we represent

them as ξtp and ξtr in (4.26) as they are dependant on the kinematic tree of the robot

and the slope estimation of the walking surface. To estimate the terrain’s slope, we

assume the stance foot of the robot is aligned with the terrain’s surface, and we use

the measurements of the robot’s IMU and joint angles to compute the orientation

of the stance foot through forward kinematics. In Section 4.5, we provide detailed

expressions for these regulations.

Finally, the stance foot orientation regulations, i.e., δsttp and δsttr , are added

to improve the tracking performance of the desired average walking speed. The

compensations δsttp and δsttr are applied to the stance ankle’s pitch and roll joints,

respectively, to add a trajectory that modifies the current position of these joints.

4.4.2 Torque regulations

The torque regulation module applies torque compensations directly to stance hip

joints to maintain the desired torso orientation. The torso regulation is used to
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keep the robot’s torso in an upright position, which is desired for a natural motion

of the walking gait. Assuming that the stance foot is fixed to the ground during the

single support phase and that we have a discrete instantaneous impact during the

double support phase, the orientation of the torso is directly controlled by the hip

roll and hip pitch joints of the robot’s stance leg. Therefore, the PD torque regulation

denoted by (usthr) and (usthp) can be applied respectively to the hip roll and hip pitch

joint of the stance leg to keep the torso upright.

[
usthr
usthp

]
= −

[
Kpψ Kdψ 0 0
0 0 SθKpθ SθKdθ

]
qψ − qdψ
q̇ψ − q̇dψ
qθ − qdθ
q̇θ − q̇dθ


in which, Sθ ∈ {1,−1} depends on the stance foot being left or right, qdϕ, q

d
θ , q̇

d
ϕ, and q̇dθ

are desired torso roll and pitch angles and angular velocities, and Kpψ, Kdψ, Kpθ, Kdθ

are manually tuned PD gains.

4.5 Illustration Examples

In this section, we present the details of the implementation of the proposed

framework on an underactuated bipedal robot Cassie and a humanoid robot Digit,

both built by Agility Robotics.

Cassie has 20 degrees of freedom (DoF) and 10 actuated joints. Each leg has five

actuated joints corresponding to the motors located on the robot’s hip, knee and an-

kle, and two passive joints corresponding to the robot’s shin and tarsus joints. During

the single support phase (only one foot on the ground), the robot is underactuated

because of its narrow feet.
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Figure 4.3: Robot models used to test the proposed RL locomotion framework

Digit has the same leg morphology as Cassie, with additional joints for the ankle

roll, shoulder, and elbow. This makes Digit a more complex system with 30 DoF and

20 actuated joints. Moreover, Digit is equipped with a full stack of vision sensors,

including an RGB camera, four depth cameras, and a LiDAR. Figure 4.3 shows the

kinematic structure of Cassie and Digit with a description of the notation used for

the robot’s floating base and joints.

4.5.1 State and Action Space

Following the motion policy design presented in Section 4.3.2, the feature state

space S is determined by st = (ηt, ζt) with ηt = (vdx, v
d
y), and ζt = (v̄x, v̄y), where

(v̄x, vy) are the average longitudinal and lateral velocity, and (vdx, v
d
y) correspond to

the desired average walking speed. We consider the average speed during one walking
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Description Cassie Digit
dim(S) 6 6
Outputs of motion policy (N) 6 7
dim(A) 24 28
Hidden layers in NN 4 4
Number of units per layer 32 32
Total number of parameters NN 4184 4316

Table 4.1: Details of the state and action space and NN implemented in Cassie and
Digit.

step of the robot, which lasts about 400 ms for Cassie and 500 ms for Digit. Simi-

larly, following the considerations discussed in Section 4.3.3, the number of outputs

determined for the motion planning policy for Digit is N=7, whereas for Cassie N=6

because we do not have arms motion. More details about the dimension of the state

and action spaces are provided in Table 4.1.

4.5.2 Neural Network Structure

The structure of the lightweight neural network used in our framework is shown

in Figure 4.4, and the details about its parameters are shown in Table 4.1. ReLU

activation functions are used between hidden layers, whereas the final layer employs

a sigmoid function to limit the range of the outputs. Moreover, Table 4.2 shows

a detailed comparison of the NN structure of our method with state-of-the-art RL

frameworks for bipedal locomotion. For a fair comparison, we only considered studies

implemented on the robot Cassie. Table 4.2 shows the NN is considerably smaller

in size, making the proposed RL framework more lightweighted, faster to train, and

feasible to implement on real-time controllers even on budget-limited processors. This

is the smallest NN implemented in simulation and hardware to realize robust and
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323232 32

Figure 4.4: Detailed structure of the neural network implemented for the robots
Cassie and Digit. By incorporating insights from the symmetry and dynamics of the
walking motion, plus simple but effective feedback regulations, we reduce significantly
the dimension of the state and action spaces, which results in the smallest NN used
for locomotion of real 3D bipedal robots.

Method State Action Layers Units Total parameters

Ours 6 24 4 32 4184
[70] 80 10 2 256 89098
[13] 49 10 2 128 225034
[113] 277 10 2 512 410122

Table 4.2: Comparison of the total number of parameters of the neural network with
other learning frameworks for bipedal locomotion with the robot Cassie. The neural
network implemented in our method has about 20x fewer parameters when compared
with the other methods.

stable locomotion on the 3D bipedal robots Cassie and Digit to the best of our

knowledge.

4.5.3 Training setup

To train the NN presented in Section 4.5.2 we used the evolution strategies (ES) al-

gorithm [112], using the tuning parameters shown in Table 4.3. Our learning pipeline

uses a model-based balancing controller to obtain a pool of initial states that are fea-

sible to be implemented in both simulation and the real robot. We use a customized
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Parameter Value

Population 24
Standard deviation 0.1
Decay standard deviation 0.9999
Limit standard deviation 1e-4
Learning rate 0.01
Decay learning rate 0.9999
Limit learning rate 1e-4

Table 4.3: Tuning parameters used for training of the policy using Evolution Strate-
gies (ES).

environment using MuJoCo [130], with each episode starting from a robot’s state cho-

sen randomly from the pool of balanced initial states and uniformly sampled desired

walking velocities. We denote that the trained policy learns to walk from scratch

without using previously known reference trajectories or policies pre-trained with ex-

pert demonstrations. In Table 4.4, we detail the values of the gains and bounds used

for the rewards introduced in Section 4.3.4. We denote that the weight corresponding

to rstf, the reward associated with keeping the stance foot static during the step, is

equal to zero for Cassie. This reward was added particularly for the Digit because the

robot’s torso is significantly heavier than Cassie’s, which caused Digit’s stance foot

to slip on the ground. In addition, to encourage policies that realize sustained walk-

ing, we increased the episode length from 10000 simulation steps (Cassie) to 15000

(Digit), which are equivalent to 5 and 7.5 seconds, respectively. The episode has an

early termination if any of the following conditions are violated:

|qψ| < 0.5, |qθ| < 0.5, |qϕ| < 0.5,

|q̇ψ| < 2, |q̇θ| < 2, |q̇ϕ| < 2,

0.8 < qz < 1.2, ∆fmin < ∆f < ∆fmax,

(4.27)
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Coefficient Cassie Digit

ρv 1e−3 1e−3

ϵ 1e−5 1e−5

evx 0.1 0.1
evy 0.2 0.2
qdz 0.91 1.00
eqz 0.05 0.04
ρd 0.01 0.01
d 0.1 0.1
∆fmin 0.2 0.2
∆fmax 0.4 0.4

w
[0.8, 0.2, 0.1, 0.01,
0.1, 0.5, 0.5, 5, 0]T

[0.3, 0.3, 0.2, 0.1,
0.5, 0.5, 0.5, 5, 0.5]T

Table 4.4: Coefficients and weights used for the rewards during the training of each
environment.

Parameter Range Unit

Link Mass [0.85, 1.15] kg
Link Center of Mass [0.95, 1.05] m

Table 4.5: Dynamic properties and sample range used for dynamic randomization
during training.

where qz is the height of the robot’s pelvis and ∆f is the distance between the feet.

In addition, we use dynamic randomization in our training process to improve the

robustness of the policy and the sim-to-real transfer success. These parameters are

shown in Table 4.5.

Figure 4.5 shows the evolution of the normalized mean reward during training

for both Cassie and Digit. The number of training episodes needed by the policy to

achieve a stable reward is significantly higher in the Digit’s environment. This result

is expected given the higher level of complexity imposed by the model of the Digit

robot.
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Figure 4.5: Learning process of the trained policy for Cassie (blue) and Digit (red).

Comparing the sample efficiency between different RL frameworks for bipedal

locomotion is difficult because of the particular settings used for each training setup

(e.g., learning task, episode length, policy update frequency, learning algorithm, prior

knowledge of the walking gait, performance of the trained policy). In addition, not

all the methods present information about the number of samples required to learn a

stable walking gait. However, Table 4.6 shows a comparison between state-of-the-art

learning-based frameworks for bipedal locomotion. To promote a fair comparison, we

only considered methods that use the bipedal robot Cassie. The results show that our

method needs fewer samples than other approaches for the reward to converge to a

stable value. In addition, Table 4.6 shows that the proposed framework requires less

wall time than other approaches, except for [70], which learns policies that walk at a

single desired walking speed using known reference trajectories. On the other hand,

our method learns a single policy that tracks various speeds without using known

reference trajectories. The policy is trained using a single 12-core CPU machine.
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Task Training time [h] Samples

Ours Various speeds 3 0.6e7
[70] One speed 2.5 -
[13] Various speeds 8 1e7
[91] Various speeds 16 -
[113] Various speeds - 1e7

Table 4.6: Comparison between different RL frameworks for bipedal locomotion with
the robot Cassie.

4.5.4 Feedback regulations

The gains of the compensations described in Section 4.4.1 and Section 4.4.2 for

Cassie and Digit are detailed in Table 4.7. We denote that the regulation for the stance

foot orientation is applied only to Digit to enhance the speed tracking performance

of the controller in hardware experiments. In addition, given the kinematic tree for

Cassie and Digit, the IK functions used in the swing foot orientation regulation are

defined in Table 4.7 as ξtr and ξtp, where λr and λp are offsets that depend on the

geometric design of the swing leg, and γ, σ are the inclination of the terrain with

respect to the robot’s floating base.

4.6 Simulation and Experimental Results

Once the trained policy has been exhaustively tested in simulation, we deploy the

learned controller on the hardware and evaluate its performance under challenging

conditions and terrains. This section shows the performance of the proposed controller

structure when evaluated in terms of speed tracking, stability of the walking gait, and

robustness against external disturbances and challenging terrains. A sequence of the

learning process of the policy and the sim-to-real transfer can be seen in this video:

https://www.youtube.com/watch?v=ocAZtHr07Fw.
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Gain Cassie Digit

Ksw
phr 1 0.5

Ksw
dhr 0.05 0.03

Ksw
php 0.6 0.5

Ksw
dhp 0.01 0.1

Kst
ptp - 0.1

Kst
ptr - 0.02

Kpψ 100 3500
Kdψ 20 500
Kpθ 100 2000
Kdθ 20 500
ξtr qψ + qswhr + λr + γ qψ + qswhr + λr + γ
ξtp qθ + qswhp + λp + σ qθ + qswhp + λp + σ

Table 4.7: Gains and IK functions used in the feedback regulator policy for Cassie
and Digit.

4.6.1 Simulation results on Cassie

Speed Tracking

For evaluation of speed tracking, we assigned a desired velocity profile with fast

changes in both longitudinal (vx) and lateral (vy) directions with respect to the robot’s

body frame. The results presented in Figure 4.6 show that the controller keeps good

tracking of the desired velocities in both directions, and it can effectively handle

the changes in the speed profile even for large speed changes without significant

overshoot. We denote that depending on the combination of the velocity profiles in

both directions, the robot can perform different behaviors such as walking in place,

walking to the right, left, forward, backward, and walking in a diagonal direction.

Stability and feasibility of the walking gait

To evaluate the stability of the generated walking gait, we analyzed the period-

icity described by joint limit cycles. Figure 4.7 shows that the phase portrait for
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Figure 4.6: Speed tracking performance of the proposed controller in simulation with
the robot Cassie. The controller tracks the desired speed for different walking direc-
tions: walking forward (vx > 0), backward (vx < 0), to the right (vy > 0), to the left
(vy < 0), diagonal (any combination of the previous cases).

the actuated joints while the robot is walking at a constant desired velocity. The

plot shows the convergence of the orbits to a periodic limit cycle, demonstrating the

stability of the walking gait. Furthermore, the corresponding orbits for the left and

right are approximately symmetrical, which was expected by the conditions enforced

in the formulation of the RL framework. The minor discrepancies, mostly noticed

in hip roll joints, are due to the swing leg regulator’s efforts to maintain the lateral

stability of the robot.
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Figure 4.7: Walking limit cycle of the learned policy when tracking a longitudinal
velocity vdx = 0.4 m/s, and lateral velocity vdy = 0 m/s.

4.6.2 Experimental results on Digit

Speed Tracking

We evaluate the speed tracking performance of the controller in hardware by as-

signing a velocity profile with variations in the desired velocities in both directions.

The results presented in Figure 6.5.a show that the controller keeps good tracking of

the desired velocities, especially for the velocity in the longitudinal direction (v̄x). We

observe that the tracking error is higher for the lateral velocity (v̄y), which could be

caused by the continuous motion of the robot from left to right and vice-versa, asym-

metries in the hardware joints associated with the lateral movement, and drifting in

the IMU measurements used to estimate the linear velocity. In addition, Figure 6.5.b
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Figure 4.8: Speed tracking performance of the proposed controller. The controller
tracks the desired speed for different cases: walking in place (vx = 0, vy = 0 ), forward
(vx > 0), backward (vx < 0), to the right (vy > 0), to the left (vy < 0), and diagonal
(any combination of the previous cases).

shows that the controller keeps the torso upright during the walking gait and ac-

curately tracks the desired heading angle. This tracking performance enables the

application of the proposed RL-based cascade motion policy for navigation indoors

and outdoors.

4.7 Conclusion

This work presents a novel RL framework for the design of a cascade motion

policy that simultaneously addresses two important problems in bipedal locomotion:

trajectory planning and feedback regulation. By incorporating the physical insights of

dynamic walking such as symmetry motion, invariance through impact condition, and

heuristic regulations into the learning process, we provide a complete and effective
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solution for the design of feedback controllers that realize stable and robust walking

gaits without any prior knowledge of reference trajectories. The method relies on a

small-size network with reduced state and action spaces, resulting in improved sample

efficiency and reduced training time. The proposed method is tested in simulation

with two bipedal robots Cassie and Digit, and successful sim-to-real transfer of the

learned policy is demonstrated on Digit with minimal tuning. Extensive hardware

experiments show the learned policy can track desired walking speeds in any direction

while maintaining stable walking gaits. Moreover, the policy is robust to external

disturbances and challenging terrains, including rubber ground, pavement, grass, and

slopes.
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Chapter 5: Template Model Inspired Task Space Learning

5.1 Introduction and Motivation

In Chapter 5, we presented an RL framework for bipedal locomotion based on

a cascade structure to compensate the learned trajectories with feedback regulators

to increase the robustness of the walking gait [15, 23]. Although the method was

successfully tested in hardware, the interpretability of the learned policy was limited

by the complex structure imposed over the input-output mapping of the RL policy

and the addition of compensation terms on top of the learned joint trajectories. On

the one hand, the integration of the feedback regulators improves the robustness and

sim-to-real transfer of the learned policy. On the other hand, it makes it difficult

to identify the actual contribution of the learned policy to the robustness of the

walking gait. Moreover, the selection of the observation state of the policy is chosen

heuristically based on empirical observations with insight from the HZD framework.

This results in a policy limited to naturally exploiting the state and action spaces

and a restricted walking speed range, e.g., vx ∈ [−0.5, 0.5] m/s on the robot Digit.

In this chapter, we explore a more efficient and clean framework that completely

decouples the HL learning policy from the LL controller with better insights into the
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selection of the state and action spaces, which results in improved sample efficiency

and interpretability of the policy.

We demonstrate the proposed framework is general for 2D and 3D bipedal robots

and can be applied even in the case of underactuated robots. Moreover, we show that

the learned policy achieves enhanced performance and robustness compared with the

framework presented in Chapter 4.

Common methods applied in bipedal locomotion rely on solving optimization

problems using the robot’s full-order or reduced-order model to find feasible tra-

jectories that realize stable walking gaits. In general, using full-order models results

in computationally expensive problems that cannot be solved in real-time [17, 131].

To reduce the computation time, reduced-order models are used to capture the dy-

namics of the full-order system and plan trajectories for the robot’s center of mass

(CoM) and end-effectors. However, the assumptions made on reduced-order models

such as a constant CoM height limit their performance on dynamic locomotion be-

haviors and their accuracy in predicting the behavior of the real robot under certain

conditions. Recently, the angular momentum-based linear inverted pendulum (ALIP)

has been presented as an improved alternative to the Linear Inverted Pendulum (LIP)

to predict the evolution of the model’s state, demonstrating in simulation and hard-

ware experiments that the angular momentum about the contact point can be more

accurately predicted than the CoM velocity [132,133].

With the recent success of deep learning in tackling challenging control problems,

machine learning-based approaches have exploited advances in physics simulators

and computing power to learn locomotion policies through more structured learning

frameworks.
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Some end-to-end RL frameworks rely on using optimization to obtain a single

feasible reference trajectory [13, 70], or libraries of reference trajectories [113, 134]

to guide the learning. However, these approaches require large amounts of data,

and the learned policy often lacks interpretability and control over the parameters

of the walking gait. This makes it difficult to adjust the policy during the sim-to-

real transition. As an alternative, more complex frameworks have been proposed

to combine learning algorithms with model-based controllers. The authors in [14]

take insights from the Hybrid Zero Dynamics (HZD) to learn joint trajectories for

planar robots. In [135], an HZD-based approach is used to learn a policy that satisfies

Control Barrier Functions (CBF) defined on the reduced-order dynamics.

In this chapter, we propose a hierarchical RL-based approach to address bipedal

locomotion in underactuated and fully actuated robots. At the HL stage, RL is used to

train policy that learns task space commands for different walking speeds. At the LL,

a model-based nonlinear controller is implemented to track the trajectories generated

by the HL planning. Several RL-based approaches have been already proposed to

exploit hierarchical structures. In [91, 134], a task space policy is trained to walk

at different speeds. However, the method relies on solving a series of optimization

problems using the Spring Linear Inverted Pendulum to create a gait library that is

used as a reference for the reward and the target end-effector positions. The policy

learns residual terms that are added to the task space references [91] or joint space

references [134]. Different from these approaches, our method directly learns a set of

task space actions that completely characterize the dynamic walking gait without the

need for previously computed reference trajectories. Moreover, we use different state
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and action spaces that significantly simplify the complexity of the learning problem

and can be generalized to both unactuated and underactuated robots.

The main contributions of this chapter are as follows: 1) A simple, efficient,

and general hierarchical learning framework that fully decouples the HL planner

from the LL feedback controller. Different from other task space learning approaches,

our method (i) uses a reduced-order state for the RL, (ii) learns to walk from scratch,

and (iii) computes a set of task space actions that fully characterize dynamic walking

gaits. The selection of inputs and outputs is general to bipedal robots of different

morphology and degrees of freedom. We show results for actuated and underactuated

2D (Rabbit, Walker2D) and 3D robots (Digit).

2) Insightful design of the RL state space. We use the ALIP state and speed-

tracking information to design a reduced-order state space for the RL that captures

the complex dynamics of bipedal locomotion while simplifying the learning process.

We expect this to set the path towards learning-based methods for legged locomotion

that are more simple and interpretable.

3) Enhanced flexibility of the policy to naturally exploit the nonlinear dy-

namics of bipedal locomotion. By including the desired step length, torso orientation,

and CoM’s height in the action space of the RL, the policy is not restricted to par-

ticular behaviors. This allows the policy to learn natural behaviors seen in dynamic

locomotion without enforcing them during training.

4) A robust locomotion controller that accurately tracks a wide range of

walking speeds, even under external disturbances and challenging terrains, with in-

clinations up to 20 degrees for both underactuated and fully-actuated robots.
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5.2 Preliminaries and Problem Formulation

5.2.1 Bipedal locomotion as a hierarchical problem

As introduced in section 4.2.1, the bipedal locomotion problem can be character-

ized as a hybrid system determined by a collection of phases of continuous dynamics

with discrete events between the transitions of the continuous phases. Formally, the

hybrid system model for biped locomotion from equation 4.2 can be further defined

as

Σ :

{
ẋ = f(x) + g(x)u+ ω(x, u) x ∈ X \ H
x+ = ∆(x−) x− ∈ H,

(5.1)

where x ∈ X ⊆ Rndenotes the robot states, u ∈ U ⊆ Rm is a vector of actuator inputs.

and ω ∈ Ω ⊆ Rw a vector of disturbances and uncertainties. The switching surface H

is typically the hyper-surface of points corresponding to the height of the swing leg

above the ground being zero, and the reset map ∆ : H → X denotes the post-impact

state values x+ immediately after switching as a function of the pre-impact state

values x− right before switching.

The control of the bipedal locomotion system described by equation (5.1) can be

formulated as a hierarchical control problem composed by a HL planner and a LL

tracking controller. This cascade structure is presented in Fig. 5.1. The high level

policy πy generates trajectories to realize walking gaits according to design parameters

and HL commands, e.g., average walking speed, robustness, terrain slope, etc. The LL

policy πm computes the actuator inputs to track the desired trajectories commanded

by the HL planner.

The general structure presented in Fig. 5.1 can characterize most controller formu-

lations used in both model-based and model-free state-of-the-art methods for bipedal
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Figure 5.1: Hierarchical structure for bipedal locomotion

locomotion. Once the HL trajectories have been generated by the policy, classic

model-based control approaches such as feedback linearization, inverse dynamics QP,

operational task space controllers, or simple PD controllers can be used to track the

desired HL commands. The choice of the LL control policy πm will mostly depend

on the action space of the HL policy, e.g., joint space versus task space.

5.2.2 Reduced order models for HL planning

Reduced order models have become a powerful tool for the design of HL planners

for bipedal locomotion since they allow using simple dynamical models to characterize

biped walking behaviors. Recently, the ALIP model has gained attention because of

its advantages over LIP to predict the evolution of the state space. The learning-based

approach proposed in this work is heavily inspired by recent results using ALIP as a

step planner [132,133].

Angular Momentum-based Linear Inverted Pendulum (ALIP): Considering

the states {qx, Ly}, where qx is the CoM position in the x direction, and Ly is the pitch

component of the angular momentum about the contact point, the ALIP dynamics
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is given by [
q̇x
L̇y

]
=

[
0 1/(mH)
mg 0

] [
qx
Ly

]
, (5.2)

where m is the total mass and H is the constant CoM height. The main advantage

of using the ALIP model over the LIP model is that the evolution of the angular

momentum about the contact point is closer to its behavior on the full-order robot’s

model and the actual hardware [132].

Limitations of reduced-order models

Although ALIP does better work describing the actual behavior of the system

than LIP, both are linear models subject to assumptions such as point mass body,

constant CoM height, and the angular momentum about the CoM being zero during

the walking gait.

In addition, the prediction of the state at the end of the step depends on the step

duration T . This implies that an accurate prediction would depend on the perfect

timing of the touchdown event, which could only happen in ideal conditions, e.g.,

perfect tracking of the LL controller, point-contact foot, and non-irregular walking

surfaces.

To analyze this effect, we compare the predicted value of Ly scaled by mH at the

end of the step with the actual Ly for the five-link bipedal robot Rabbit in Fig. 5.2.

We show the evolution of Ly in simulation using the MuJoCo physics engine [130]. To

simulate ideal conditions on the model as closely as possible, we set the geometry of

the robot’s links to be very thin (to emulate point contact with the ground) and use

a LL feedback linearization controller with high gains to encourage better tracking

and accurate touchdown timing. For the ”non-ideal” conditions, we use the real
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Figure 5.2: Prediction of Ly at the end of each step under ideal (top) and non-ideal
(bottom) conditions.

geometry and dynamic properties of the robot’s links (as described in [136]), and we

use an inverse dynamics QP controller [137]. The results show that under non-ideal

conditions, the prediction of Ly at the end of the step differs significantly from its

actual value.

5.2.3 Task-space LL controller

Several approaches have been proposed in the literature to design task space con-

trollers that consider the full-order model of the legged robot. Considering a me-

chanical system with configuration space Q and generalized coordinates q ∈ Q, the

equations of motion formulated using the method of Lagrange are given by:

D(q)q̈ +H(q, q̇) = Bu+ JT (q)λ (5.3)

J(q)q̈ + J̇(q, q̇)q̇ = 0, (5.4)
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where D(q) is the inertia matrix, H(q, q̇) = C(q, q̇)q̇ +G(q) + F is the vector sum of

the Coriolis, centripetal, gravitational, and additional non-conservative forces, B is

the actuation matrix, and J(q) the Jacobian of the holonomic constraints.

We denote that the system (5.3) can be expressed in the general form (5.1). Let

x =
(
qT , q̇T

)T ∈ TQ = X , then

f(x) =

[
q̇

−D−1(q)
(
JT (q)λ−H(q, q̇)

) ]
(5.5)

g(x) =

[
0

D(q)−1B

]
. (5.6)

The task space feedback controller tracks a set of desired trajectories of the form:

y(x) = ya(x)− yd(τ(x)), (5.7)

where ya and yd are smooth functions, and yd characterizes the desired behavior of

the system. Upon the assumption that y(x) has relative degree 1 or 2, nonlinear

control methods can be applied to find a control law that drives y(x) to zero, which

implies the outputs converge to their target values.

5.3 Method

This section presents the methodology for the design of the proposed learning-

based hierarchical controller for bipedal locomotion. First, we introduce the overall

structure of the framework. Then, we describe the learning-based HL and model-

based LL components of the framework.

5.3.1 Hierarchical structure for bipedal locomotion

The proposed learning-based framework combines the capabilities of model-based

and model-free methods into a hierarchical structure to realize robust locomotion con-

trollers for underactuated and fully-actuated bipedal robots. Inspired by the success
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Figure 5.3: Overall structure of the proposed learning-based framework. The HL
policy maps a reduced-order state to task space trajectories that are tracked by the
LL policy.

of reduced-order models for the online generation of HL trajectories, we use reinforce-

ment learning to train an HL policy that maps a reduced state space inspired by the

ALIP model to a set of task space commands to generate online task space trajec-

tories for the robot’s base and end-effectors. For the LL task space controller, we

use well-known model-based inverse dynamics controllers to guarantee the tracking

performance of the system’s outputs.

The proposed hierarchical structure is presented in Fig. 7.2. By combining the

learning-based HL planner with the model-based LL controller, we obtain a robust

controller capable of accurately tracking a wide range of walking speeds while pre-

serving a good tracking performance for the task space trajectories. This significantly

increases the flexibility and safety of the policy when compared with pure learning-

based controllers.
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5.3.2 Reinforcement Learning for High-Level Planning

The problem of determining a motion policy for bipedal robots can be modeled as

a Markov Decision Process (MDP), which consists of a tuple of components defined

as

M := (S,A,P, r, ξ, γ). (5.8)

Here S is the state space, and A is the set of feasible actions referred to as the

action space. Specifically, at time t, an agent (i.e., the motion planner) takes an

action at ∈ A at state st ∈ S, transits into the next state st+1 ∈ S according to the

transition probability P(st+1|st, at) and receives a reward r(st, at, st+1). Moreover, ξ

denotes the distribution of the initial state s0 ∈ S, and γ ∈ (0, 1) denotes the discount

factor. The stochastic transition of the MDP process captures the random sampling of

initial states in the policy training and dynamics uncertainty due to model mismatch

and random interactions with the environment (e.g., early ground impacts).

Reduced-Order State Space

Several works have already proposed using a reduced state of the robot as the ob-

servation space of the learning algorithm. However, the choice of the reduced state is

made based on trial and error or empirical observations of the policy performance. In

this work, we leverage recent results on the effectiveness of using angular momentum

about the contact point to regulate the walking speed of biped robots [132]. Inspired

by the ALIP model, we select the state

s = (qx, qy, L
x, Ly, ev̄x , ev̄y , v

d
x, v

d
y , α). (5.9)

84



where (qx, qy, L
x, Ly) is the ALIP state composed by the robot’s base position in the

x, y axes and the angular momentum about the contact point along the x and y axes,

(ev̄x , ev̄y) is the error between the average velocity the robot’s base (v̄x, v̄y) and the

desired robot’s velocity (vdx, v
d
y), and α is the terrain slope measured in radians. We

denote that we use the robot’s base position instead of the CoM because of practical

convenience for future hardware experiments. The CoM estimation on complex robots

may result in noisy measurements, while the base position with respect to the contact

point can be easily computed using forward kinematics.

The choice of (ev̄x , v
d
x, α) as part of the learning state is justified by the overall

objective of the HL planner, which is to control the average walking speed of the

robot under challenging terrains. We believe speed tracking and robustness are key

parameters for the deployment of bipedal robots in the real world. In addition, the

output for most global/local motion planning algorithms for navigation is given in

terms of longitudinal, lateral and angular speeds.

We assume the slope of the terrain is known by the learning agent. This assump-

tion is reasonable since most of the bipedal robots available for research and com-

mercial applications are equipped with perception systems to map the surrounding

environment. Even in the absence of perception systems, proprioceptive approaches

could be used to accurately estimate the terrain slope based on the orientation of the

robot’s base and feet, as we have shown in simulation and hardware in our previous

work [18].
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Task Action Space

The action a ∈ A is chosen to be

a = (pxsw,T , p
y
sw,T , q

d
ϕ, h

d) (5.10)

where pxsw,T , p
y
sw,T correspond to the position of the swing foot w.r.t. the robot’s base

at the end of the swing phase T , i.e., the landing position of the swing foot, qdϕ is the

desired absolute torso pitch angle, and hd is an offset added to the nominal height of

the robot’s base w.r.t. the stance foot. This selection of the action space encourages

the flexibility of the policy to exploit the natural nonlinear dynamics of the biped

robot and enhance the robustness of the policy under big disturbances, sudden speed

changes, and walking at high speeds, as it will be shown in section 6.4.

The HL actions a are used to generate smooth task space trajectories for the

robot’s floating base and end-effectors. The trajectory for px,ysw is generated using a

minimum jerk trajectory of a straight line segment connecting px,ysw,0 with px,ysw,T . The

swing foot position at the beginning of the walking step, px,ysw,0 is computed using

Forward Kinematics (FK) and updated at every touch-down event. The desired

position for the swing foot at landing, px,ysw,T is updated by the HL policy at the

frequency of 33Hz. The vertical trajectory of the swing foot position w.r.t. the

robot’s base is generated using a 5th order Bézier Polynomial parameterized by the

vertical position of the foot at the beginning (pzsw,0) and the end (pzsw,T ) of the step,

and the high foot clearance pzsw,T/2. For flat ground terrain, we have

pzsw,T = −hd (5.11)

We update pzsw,T by

pzsw,T = −hd + pxsw,T ∗ tan(α)− pzoff, (5.12)
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where α is the terrain slope and pzoff = 0.005m is a small offset added to guarantee

the swing foot makes contact with the ground.

The Neural Network chosen to parameterize the HL policy is a Recurrent Neural

Network with 2 hidden layers, each layer with 128 units for the case of 2D robots and

256 units for 3D robots. The hidden layers use the ReLU activation function, and

the output layer is bounded by the sigmoid activation function and a scaling factor

to constrain the maximum value of the HL commands.

5.3.3 Low-level task space controller

The LL task space controller is designed using standard techniques of the nonlin-

ear systems control literature. In particular, we implement two types of model-based

controllers i) Feedback Linearization (FL), and ii) Inverse Dynamics with QP for-

mulation (ID-QP). We evaluate the performance of the HL policy with different LL

controllers and show that the learned policy is robust to any choice of the LL con-

troller. The purpose of this evaluation is to demonstrate the versatility of the task

space-based HL planner to adapt to different LL control structures without affect-

ing the performance of the learned policy. This also provides more flexibility for the

designer to use any LL control approach at their convenience. For instance, FL is

easy to implement and requires less computation time, but it is known to be hard to

implement on real hardware. Therefore, FL could be used during the training process

of the HL policy, while any suitable ID-QP formulation could be used for hardware

experiments.

For more details, we refer the reader to [137,138], where several QP formulations

for bipedal locomotion are proposed with successful applications to real hardware. In
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this work, we use the most basic case of the ID-QP formulation in [137] for the 2D

robots and the Task Space Inverse Dynamics (TSID) formulation in [137] for the 3D

robot Digit.

5.3.4 Learning procedure

The reinforcement learning algorithm we use in this work is an implementation of

the Proximal Policy Optimization [10] algorithm with parallel experience collection,

input normalization, and fixed covariance. The algorithm shares the same code base

as the implementations in [134] and [13].

For each episode, the initial state of the robot is set randomly from a normal

distribution about an initial pose corresponding to the robot standing in the double

support phase. One iteration of the HL policy corresponds to the interaction of

the learning agent with the environment. The HL policy takes the reduced-order

state s ∈ S and computes an action a ∈ A that is converted in desired task space

trajectories yd at the time t. The reference trajectories are then sent to the LL task

space controller. The LL control loop runs at a frequency of 1 KHz, while the HL

planner runs at 33 Hz. The maximum length of each episode is 300 steps, which

corresponds to 9 seconds of simulated time.

The episode has an early termination if any of the following conditions are violated:

|qϕ| < 1rad, qz < 0.5m. (5.13)

The simple reward function (7.3) adopted in this work is designed to keep track of

the target walking speed while realizing a stable walking gait. In particular, the terms

rvx , rvy encourage the tracking of the longitudinal and lateral target speeds. Since the

torso pitch angle is part of the learning action space, the term rLCoM
encourages the
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policy to avoid excessive changes in the torso orientation without explicitly restricting

the torso pitch angle. Finally, the term ra encourages the policy to avoid excessive

variations between the last action and the current action. This avoids unnecessary

overshooting in the commanded actions that may produce risky behaviors during the

walking gait. The weighted reward function is given as:

r = wT [rvx , rvy , rLCoM
, ra]

T , (5.14)

where

rvx = exp (−∥v̄x − vdx∥
2
) (5.15)

rvy = exp (−∥v̄y − vdy∥
2
) (5.16)

rLCoM
= exp (−∥LCoM∥2) (5.17)

ra = exp (−∥ak − ak−1∥2). (5.18)

and wT is a vector of weights corresponding to each reward term. For 2D robots we

use wT = [0.6, 0, 0.2, 0.2] while for 3D robots we use [0.3, 0.3, 0.2, 0.2].

5.4 Illustration example

In this section, we show the proposed method can be generalized to both under-

actuated and fully actuated robots without any changes to the structure of the HL

planner policy. Moreover, we demonstrate the framework can be applied in 2D and

3D bipedal robots. We use 3 different robots.

Rabbit is a five-link, planar underactuated bipedal robot with point feet and four

actuated joints, two in the hips and two in the knees. Despite its simple mechanical

structure, Rabbit still provides a suitable representation of biped locomotion, which
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is the reason it has been considered as a test bed for advanced control theory in the

field of legged robots [136].

Walker2D is a seven-link, planar, fully actuated bipedal robot with 6 actuated

joints, two in the hips, two in the knees, and two in the ankles. The additional

degrees of freedom at the ankles enable the robot to realize human-like walking gaits

and balancing.

Schematics of the Walker2D and Digit are shown in Fig. 5.4. Rabbit shares the

same design and structure as Walker2D without the feet and ankle joints.

Digit is a 3D fully actuated bipedal robot with 30 DoF and 20 actuated joints.

Each leg has six actuated joints corresponding to the motors located on the robot’s

hip, knee, and ankle and two passive joints corresponding to the robot’s shin and

tarsus joints. In addition, it has four actuated joints per arm corresponding to the

shoulder and elbow joints. Fig. 5.4 shows the kinematic structure of Digit.

Figure 5.4: Schematics of the robots Walker2D and Digit.
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5.4.1 Task-space outputs for the LL controller.

The set of task space outputs of relative degree 2 described by equation (5.7) to

characterize the walking gait of the biped robot are defined as follows:

ya2(q) :=


qϕ
qz
pxsw
pysw
pzsw
ϕsw

 →


torso pitch angle

base height
swing foot x
swing foot y
swing foot z

swing foot pitch

 (5.19)

This selection of outputs is common in the field of bipedal locomotion. The first

five outputs (qϕ, qz, p
x
sw, p

y
sw, p

z
sw) are valid for both underactuated and fully actuated

robots. However, for an underactuated robot, it is not possible to control the horizon-

tal position of the robot’s base or CoM. Therefore, the evolution of the base velocity

is indirectly controlled by the HL learned policy through the planning of touchdown

position. In the case of fully actuated robots, we also consider the sixth output to

control the swing foot pitch angle to be parallel to the walking surface. This con-

tributes to reducing disturbances at the touchdown event. Although we could add

an additional output to control the horizontal position and velocity of the robot’s

base, we prefer to rely on the HL planning to control the robot’s speed indirectly.

The objectives of this choice of design are twofold: i) devise a general framework for

both underactuated and fully-actuated robots that share the same structure for the

HL policy independently of the particular design of the bipedal robot. ii) simplify

the design of the controller and avoid limitations of the torque ankle to control the

robot’s base position. Although this effect could not be significant for quasi-static

locomotion gaits, it does matter when realizing agile and dynamic locomotion.
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5.5 Simulation results

In this section, we show the performance of the learned HL policy under different

testing scenarios with three different robot models, including Rabbit, Walker2D, and

Digit. Moreover, we analyze the contribution of the HL policy to the robustness of the

walking gait, and we compare our method with similar model-based and model-free

approaches.

5.5.1 Speed tracking for different velocity profiles.

We test the learned policy for tracking a velocity profile in different directions.

Fig. 6.5 shows the velocity tracking performance of the learned HL policy for the

robots Rabbit and Walker2D. To evaluate the robustness of the policy under differ-

ent LL controllers, we test the same policy with the ID-QP controller and the FL

controller with different tracking gains. The results show the policy effectively tracks

the walking speeds in the range [−1, 1] m/s, even with aggressive changes in the

velocity profile.

Figure 5.5: Velocity tracking performance of the learned policy with different LL
controllers. The prefix R/W is used to differentiate a policy for Rabbit or Walker2D.

92



To highlight the contribution of the choice of action space, we present in Fig. 6.6

the actions computed by the HL policy for different commanded velocities. When a

steep change in the desired velocity is commanded, the policy uses the torso orienta-

tion to compensate for variations in the robot’s speed and angular momentum. We

denote that these behaviors are not enforced during the training process but arise

naturally from the insightful design of the proposed framework. Interestingly, some

of these strategies are also observed in human locomotion [139].

Figure 5.6: Contribution of the policy actions for different speeds.

5.5.2 Comparison with ALIP model-based approach

To assess the advantages of the proposed HL planner with respect to pure model-

based approaches, we compare the performance between our learning-based controller

and the ALIP-based controller. Fig. 5.7 (top) shows the HL-RL policy (ours) out-

performs the model-based controller in tracking a velocity profile, especially for high
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speeds. We also show the variation of LCoM (bottom) to denote the trade-off the pol-

icy learns between minimizing LCoM and tracking vdx. For small speeds, LCoM looks

quite similar for both controllers. For high speeds, the policy learns to prioritize

speed tracking over minimizing LCoM. This behavior is encouraged by the selection

of weights in the reward function (7.3).

Figure 5.7: Comparison of HL-RL with ALIP-based controller.

5.5.3 Comparison with other RL-based approaches

To highlight the contribution of the proposed framework in terms of speed track-

ing for 3D bipedal robots and sample efficiency, we compare our method with our

previous work in [18] and the end-to-end learning approach presented in [13]. Al-

though there are no end-to-end learning approaches implemented on the Digit robot

in the literature, there are several works that have done so with the robot Cassie,
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which shares the same leg morphology as Digit. Therefore, we choose to implement

the end-to-end learning approach in [13] with Digit as it focuses on speed tracking,

which makes it more comparable to our method. Moreover, the framework in [13]

is the base for several SOTA end-to-end learning approaches for bipedal locomotion

[83, 91, 140]. Finally, the code implementation for [13] is publicly available online,

which makes the comparison as fair as possible in terms of the reproducibility of their

work.

In Fig. 5.8, we present the comparison results for speed tracking on flat ground

with the robot Digit using our learned HL policy, the HZDRL controller in [18], and

the end-to-end RL policy in [13]. We observe that the HZDRL controller fails, i.e., the

robot falls, for speeds higher than 0.5 m/s, while the end-to-end RL controller fails

to track low speeds accurately and realizes a non-smooth walking motion that causes

higher variance in the speed profile. This effect may be caused by the reference tra-

jectory used to guide the learning. In our implementation of [13], we use a reference

trajectory corresponding to Digit walking forward at a speed of 0.8 m/s. For more

details, the reader can refer to [13]. Our learned policy can successfully track the

desired walking speed in a significantly wider range compared with the other meth-

ods. Additional testing with Digit demonstrates our controller can handle desired

walking speeds in the range vx ∈ [−1.0, 1.5]m/s and vy ∈ [−0.5, 0.5]m/s, including

combinations of both, i.e., diagonal walking, as can be seen in the following video:

https://www.youtube.com/watch?v=YTjMgGka4Ig.

In terms of sample efficiency, Fig. 5.9 shows our approach uses fewer data samples

to successfully train a robust policy when compared with the end-to-end learning

approach. Although this is not a surprising result as several authors have studied
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Figure 5.8: Comparison of speed tracking performance with SOTA RL-based ap-
proaches.

the effects of task space learning in the data sample efficiency [91,141], to the best of

our knowledge, our method is the only task space approach that learns to walk from

scratch and has been successfully implemented in 3D bipedal robots without the need

of previously computed reference trajectories, e.g., the gait library used in [91].

Figure 5.9: Comparison of sample efficiency between traditional end-to-end RL and
our proposed method. The higher variance in the reward is caused by the effect of
the exploration noise in the task-space actions, which allows the policy to explore a
more diverse set of behaviors during training.
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5.5.4 Robustness on challenging terrain

We test our controller in terrains with slopes up to 20 degrees for Rabbit and

Walker2D and 10 degrees for Digit. Fig. 5.10 shows a grid plot with the Root

Mean Squared Error between v̄x and vdx for Digit with vdx ∈ [−1.0, 1.0]m/s, vdy ∈

[−0.5, 0.5]m/s, and α ∈ [−10, 10] degrees. We denote that during training, we only

use α ∈ [0, 10]. Yet, we test the policy in an extended range of slopes to highlight

the robustness and interpolation capability of the policy to scenarios not seen during

training. In this scenario, we define the robustness of the policy by its capability to

keep track of vdx, v
d
y under challenging conditions. The results show that the learned

policy keeps good tracking of vdx in almost all conditions, except for combinations

where the robot is walking backward at high speed on very steep terrain.

Figure 5.10: Robustness of the learned policy under different conditions of terrain
slope and target speed.
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A higher error in the tracking of vdy is caused by the higher variance of the in-

stantaneous velocity along the y axis, which is expected in bipedal locomotion as the

robot’s torso tends to oscillate more about the sagittal plane. We also notice there

is a higher error when tracking positive speeds along the y axis. This effect may be

caused by a biased created during training by the exposure of the policy to more

samples with negative commands of vy.

5.5.5 Robustness against disturbances.

The trained policy is also subjected to extensive tests against external disturbances

Fx ∈ [−80, 60]N applied in both forward and backward directions with duration

t ∈ [0.15, 3]s. Fig. 6.8 shows the policy reacts effectively to all the applied disturbances

without falling and maintaining the tracking of the desired walking speeds. In some

scenarios, the policy uses interesting combinations of the task space outputs to realize

effective strategies to reject the disturbances, e.g., bending forward/backward to ab-

sorb the impact. The results are similar for Walker2D and Digit. More details can be

seen in the accompanying video: https://www.youtube.com/watch?v=YTjMgGka4Ig.

Figure 5.11: Robustness test to external disturbances.
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5.6 Conclusion

In this chapter, we present a simple and effective learning-based hierarchical ap-

proach to realize robust locomotion controllers for bipedal robots. The design of the

HL policy is inspired by the reduced-order state of the ALIP model and a set of task

space commands that include the step length, torso orientation, and height. This

insightful choice of state and action spaces results in a compact policy that learns

effective strategies for robust and dynamic locomotion. We show the HL planner is

agnostic to the choice of LL controller, and its application is general to underactuated

and fully actuated 2D and 3D robots. Finally, we show the learned policy tracks a

wide range of speeds even under challenging conditions, such as external forces and

slopes up to 20 degrees. Future work will focus on hardware experiments with the

robot Digit and the extension of the proposed hierarchical framework to integrate dif-

ferent behaviors such as balancing, climbing stairs, and walking over stepping stones.
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Chapter 6: Data-Driven Latent Space Representation for

Robust Bipedal Locomotion Learning

6.1 Introduction and Motivation

Conventional methods for bipedal walking often involve solving optimization prob-

lems using the robot’s full-order [142] or reduced-order model [41,143] to find feasible

trajectories that enable stable walking gaits. While the full-order model captures

all the complexities and details of the robot’s dynamics, it can be computationally

demanding and not suitable for real-time control [17].

On the other hand, reduced-order template models (such as linear inverted pendu-

lum (LIP) and its variants [4,41,144]) simplify the dynamics of the system, making it

easier to plan trajectories for the robot’s center of mass and end-effector. However, as

we discussed in Chapter 5, these reduced-order models often require strict constraints

to account for the mismatch between the reduced and full-order states of the robot.

As an alternative to the use of template models for high-level stepping planning, we

proposed in Chapter 5 a hierarchical structure that combines a template-based RL

policy with a model-based low-level controller. Even though this framework shows

promising results for high-speed and robust walking, the selection of the observation
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state is still biased by the expertise of the designer and the theoretical and empirical

results of reduced-order locomotion models.

An important question arises here. What is the best choice for the selection

of the observation state for the RL policy? This question becomes the motivation

of the study in this chapter. One critical aspect that we intend to address is the

extraction of effective state representations that capture the complex dynamics of

bipedal robots, enabling efficient learning and control. With the significant increase

in data availability and the potential of machine learning to analyze and discover

patterns in unstructured data, data-driven techniques have become powerful tools in

the control of complex systems.

These data-driven approaches offer novel ways to address challenges in control de-

sign, often sidestepping traditional, more rigid, and computationally expensive meth-

ods. There is a growing interest in using RL-based approaches that allow exploiting

data from simulation to train controllers in a model-free fashion [13, 70, 113, 134].

However, similar to model-based techniques, they are highly dependent on the qual-

ity of the state representation provided to the learning algorithm. As an alternative,

more complex frameworks have been proposed to combine learning algorithms with

model-based controllers. In [135], an HZD-based approach is used to learn a policy

that satisfies Control Barrier Functions (CBF) defined on the reduced-order dynam-

ics. In our previous work [18, 23], a cascade structure is implemented to compensate

the learned trajectories with feedback regulators to increase the robustness of the

walking gait. A hierarchical structure that combines a template-based RL policy

with a model-based low-level controller is proposed in [95].
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An effective state representation that can accurately capture the complex dynam-

ics of the whole system can significantly enhance the learning process, enabling more

efficient learning and better transferability of control strategies. Unsupervised learn-

ing, dimensionality reduction, and representation learning methods can be employed

to extract relevant features from high-dimensional sensory data, enabling the develop-

ment of more efficient and interpretable state representations [145,146]. Dai et al. [60]

learn the step-to-step residual dynamics via an adaptive control approach, which is

then used to design a foot-stepping controller for a bipedal robot in simulation. More

complex learned residual dynamic models are also combined with Model Predictive

Control (MPC) for agile systems [147]. These techniques require previous knowledge

of the dynamics of the system’s model. Several works also have exploited latent rep-

resentations through reinforcement learning for locomotion. Peng et al. [75] combine

techniques from adversarial imitation learning and unsupervised reinforcement learn-

ing to develop skill embeddings that produce locomotion behaviors. Starke et al. [52]

extract a multi-dimensional phase space from the full-order state motion data, which

effectively clusters animations and produces a manifold with better temporal and spa-

tial alignment. However, these are end-to-end frameworks, which makes it difficult to

establish a relationship between the latent space and the control actions of the policy.

Moreover, these approaches have been mostly used to control animated characters

in simulation, and there are no studies focused on implementation for actual bipedal

robots.

In this chapter, we propose a novel data-driven framework for bipedal walking

that combines a learned low dimensional state representation of bipedal locomotion

with a robust gait planner using RL, as depicted in Fig. 6.1. Our framework uses an
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Figure 6.1: An overview of the overall structure and flow of the proposed learning-
based framework. In the pre-training phase, the autoencoder learns a latent space that
captures the dynamics of the full-order system. During the RL training, the policy
maps the latent representation to a set of task space actions that are translated into
task space trajectories. Finally, a whole-body task space feedback controller computes
the motor torque to track the desired task-space trajectories.

autoencoder to extract an effective reduced-dimensional state representation of the

full-order system dynamics. We then integrate this reduced-order latent space with

reinforcement learning and a task space feedback controller to train robust locomotion

policies.

This work introduces two key contributions. First, we demonstrate that the com-

plex dynamics of bipedal robots can be effectively captured using a low-dimensional

learned latent space. This allows for a more compact representation of the system’s

behavior. Second, we show that the learned latent variables can be leveraged to design

a robust locomotion policy using RL. By bridging the gap between state representa-

tion learning and learning-based control policies, this work enables leveraging existing
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locomotion data to develop more effective and adaptable frameworks for versatile and

robust bipedal locomotion.

6.2 Preliminaries and Problem Formulation

6.2.1 Low-Dimensional Models for Locomotion Planning

As we discussed in Chapter 5, the bipedal locomotion problem can be characterized

as the hybrid system determined by equation (5.1). For a typical humanoid robot

with high degrees of freedom (DoF), the dimension of the robot states x is too large

to be effectively used for online feedback for locomotion planning. Low-dimensional

models have become a powerful tool for motion planning of bipedal locomotion, given

their potential to characterize the dynamics of bipedal walking into simple linear or

nonlinear models.

However, existing reduced-order template models, such as the LIP and ALIP, make

assumptions that limit the full capabilities of walking robots. These assumptions

include a constant CoM height and zero angular momentum about the CoM during

the walking gait. While previous research has explored alternative template models

for bipedal locomotion, this study aims to investigate whether available locomotion

data can be utilized to identify an effective reduced-dimensional state representation

of bipedal locomotion for motion planning purposes.

6.2.2 Data-driven Low Dimensional Latent Space

Autoencoders are a great tool for harnessing high-dimensional gait data to extract

a reduced dimensional latent representation of the system that captures the essence

of the full-order robot dynamics. An autoencoder works by compressing the input

data into a low-dimensional latent space through a feature-extracting function in a
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specific parameterized closed form, such as neural networks [146]. This function,

called encoder is determined by

z = h(x, θe), (6.1)

where z is the latent variable or representation encoded from the input x, and θe

is the vector of parameters for the encoder neural network. Another closed-form

parameterized function called the decoder maps from the latent space back to the

full-order state. This function is defined by

x̂ = d(z, θd), (6.2)

where z is the encoded latent variable, x̂ is the reconstruction of the original input

data x, and θd is the vector of parameters for the decoder neural network.

The strength of autoencoders lies in their ability to preserve most of the crucial

information from the original data in the latent representation, even though it is of

much lower dimensionality. This is ensured by training the autoencoder to minimize

the reconstruction loss L, which measures the error between the original data and its

reconstruction from the latent space. In summary, autoencoder training consists of

finding a value of the parameter vectors θe, θd that minimize the reconstruction error:

JAE(θe, θd) =
∑
x(i)∈X

L
(
x(i), d

(
h
(
x(i), θe

)
, θd

))
, (6.3)

where x(i) is a training sample containing the vectors of position and velocity of the

generalized coordinates, and X is the training set containing all the data samples. h

and d are the encoding and decoding functions introduced in (6.1) and (7.8). Once

the autoencoder has been trained, the resulting latent representation can then be

utilized as part of the state for the high-level planner policy, offering a compact yet

expressive state space for learning and control.
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6.3 Method

The proposed data-driven framework is shown in Fig. 6.1. The gait policy will be

learned via RL by utilizing an effective latent representation of the full-order robot’s

dynamics to a set of task space commands that generate desired trajectories for the

robot. Then, a whole body task space controller (TSC) from [95] is employed to

accurately track the desired trajectories to realize stable locomotion.

The proposed framework is tested with the robot Digit, which is a 3D fully actu-

ated bipedal robot with 30 DoF and 20 actuated joints built by the company Agility

Robotics. Each leg has six actuated joints corresponding to the motors located on

the robot’s hip, knee, and ankle and three passive joints corresponding to the robot’s

tarsus, shin spring, and heel spring joints. In addition, it has four actuated joints

per arm corresponding to the shoulder and elbow joints. Since the spring joints are

very stiff, we considered them as fixed joints in this work. Therefore, the vector of

generalized coordinates for Digit is defined by

q = (pb, qϕ, qj), (6.4)

where pb = (qx, qy, qz) ∈ R3 ∈ is the position of the robot’s base, qϕ ∈ R4 is the

quaternion representation of the robot’s orientation, and qj = (q1, . . . , qnj
) is the

vector of the robot’s joints with nj = 24. Therefore, q ∈ SE(3)×R24 ⊂ R31, q̇ ∈ R30,

and x ∈ R61.

6.3.1 Reduced Dimensional Latent Space Representation

To collect the locomotion dataset to train the autoencoder, we use the hierarchical

controller proposed in [95]. The dataset is collected by performing walking gaits at
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various velocities. Specifically, the velocities vx and vy are varied within the ranges of

[−0.5, 1.0] m/s and [−0.2, 0.2] m/s, respectively, with a step size of 0.1 m/s, resulting

in a total of 16 different walking gaits. Each walking gait has a duration of 10 seconds,

with the data being collected at a frequency of 50 Hz. Therefore, the complete

locomotion dataset X consists of 40, 000 samples of the robot’s full-order states, i.e.,

X = {x(i)|i ∈ [1, 40000]}.

Remark: Note that any locomotion controller could be used to collect the gait data.

For instance, many commercial robots are equipped with proprietary controllers that

could be used to collect this data even though they are a black box from the user’s

perspective. Moreover, we do not make any assumptions about the distribution of

the gait data.

In this work, we use an encoder parameterized by a fully connected neural network

with three hidden layers of 128, 64, and 32 units, respectively, and ReLU activation

functions. The input of the encoder is the robot’s full order states. However, since

the inputs of the encoder need to be bounded, the absolute base position of the robot

cannot be directly used. This is because the absolute position can grow unbounded

as the robot moves in the sagittal or frontal plane. To address this, the base position

and orientation of the robot are transformed from the world frame to the stance foot

frame, which ensures that the inputs to the encoder remain bounded and allows for

effective learning of the latent representation of the robot’s dynamics.

The autoencoder is trained using Adam optimizer [148] with a learning rate of

0.001 and a batch size B of 128. The reconstruction loss is computed with the mean

squared error (MSE) between the original values of the gait dataset x(i) ∈ X and
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their reconstructed values x̂(i) ∈ X̂, given as

L =
1

B

(
x(i) − x̂(i)

)2
. (6.5)

The autoencoder is trained for 400 episodes in a 12-core CPU machine with an

NVIDIA RTX 2080 GPU. The training takes about 10 minutes using the described

locomotion dataset X and PyTorch.

The selection of the dimension of the latent variable z involves a trade-off. On

one hand, a smaller dimension is desirable as it reduces the number of inputs for the

RL policy. However, the dimension should also be large enough for the autoencoder

to accurately reconstruct the full-order state of the system. In our study, we investi-

gated this trade-off and discovered that even for a complex system like a humanoid

robot, a latent variable dimension of N = 2 is sufficient to capture the dynamics

of the full-order systems effectively. This finding is supported by the results shown

in Fig. 6.2, where increasing the dimension of the latent variable does not lead to

significant improvements in reconstruction quality. Even in cases where performance

is slightly degraded, the reconstructed variable still follows the same pattern as the

original state. Interestingly, our findings align with those reported in [52], where the

authors demonstrated that periodic movements in bipedal locomotion can be repre-

sented using fewer than five phase variables. This similarity may be attributed to the

symmetric and periodic nature of bipedal walking.

6.3.2 RL-based Gait Policy using Learned Latent Variables

Given the reduced dimensional latent space, we train an RL policy for robust

locomotion based on our previous work in [95]. The states of the policy are defined
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Figure 6.2: Reconstruction of the robot’s state with different dimensions N for the
latent variable z. The plots show the position (left column) and velocity (right col-
umn) for the robot’s base x coordinate (top), robot’s base y coordinate (middle), and
left knee joint (bottom), respectively.

as

s = (z, ev̄, v
d, ak−1), (6.6)

where z = (z1, . . . , zN) ∈ RN is the encoded latent state, ev̄ = (ev̄x , ev̄y) is the error

between the average velocity, v̄ = (v̄x, v̄y), and the desired velocity, vd = (vdx, v
d
x), of

the robot, and ak−1 is the last action of the planner policy.

The selection of the action space in this work is designed to exploit the natu-

ral nonlinear dynamics of the biped robot and enhance the robustness of the policy

under various challenging scenarios. Since Digit is a fully actuated system during
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the single support phase, we include the instantaneous base velocity as part of the

action a. We choose to control instantaneous velocity over the base position because

controlling the position during the stance phase through the TSC is more challenging

than velocities in practical hardware implementation. This is caused by the noisy and

inaccurate estimation of the position and the limited amount of torque in the robot’s

ankles. Moreover, sudden motions of the foot position due to terrain irregularities

could produce big errors in the base position tracking that could result in aggressive

control maneuvers. Therefore, controlling the instantaneous velocity is a less aggres-

sive strategy for the TSC and provides some degree of damping to the ankle motion

that helps with the stability of the walking gait under irregular terrains. Thus the

action a ∈ A of the policy for Digit is chosen to be:

a = (pxsw,T , p
y
sw,T , v

d
x, v

d
y), (6.7)

which corresponds to the landing position of the swing foot in x and y coordinates

with respect to the robot’s base and an offset to the instantaneous velocity of the

robot’s base in x and y coordinates, as illustrated in Fig. 6.3. The trajectory genera-

tion module transforms the policy action a into smooth task-space trajectories for the

robot’s base and end-effectors. Specifically, the trajectory for the relative swing foot

positions, pxsw and pysw, are generated using a minimum jerk trajectory connecting ini-

tial foot positions with target foot positions from the policy action. In particular, the

initial foot positions will be computed at every touch-down event and kept constant

throughout the current step.

The neural network (NN) chosen to parameterize the gait policy is a feed-forward

network with two hidden layers, each layer with 128 units. The hidden layers use the

ReLU activation function, and the output layer is bounded by the Tanh activation
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Figure 6.3: Visualization of the policy actions and the trajectories generated for the
task space controller. Additionally, we keep the torso straight up and the base at a
constant height.

function and a scaling factor to constrain the maximum value of the policy commands

within the feasible physical limits of the robot hardware. Finally, we use the TSC

model-based controller introduced in Chapter 5 to track the task space trajectories, as

described in our previous work [95]. However, we denote that the TSC can be imple-

mented using any control method, including feedback linearization, inverse dynamics,

and inverse kinematics.

6.3.3 Learning Procedure of the RL Gait Policy

To train the RL policy, we use the Proximal Policy Optimization algorithm [10]

with input normalization, fixed covariance, and parallel experience collection. We

follow the algorithm implementation described in [13].
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Figure 6.4: Two-dimensional principal component analysis (PCA) of the learned
latent manifolds at different walking speeds.

For each episode during the RL training, the initial state of the robot is set

randomly from a normal distribution about an initial pose corresponding to the robot

standing in the double support phase. An episode will be terminated early if the torso

pitch and roll angles exceed 1 rad or the base height falls below 0.8 m. The reward

function adopted in this work is designed to (1) keep track of desired velocities, (2)

minimize the angular momentum around the center of mass, denoted as LCoM, and (3)

reduce the variation of the policy actions between each iteration. More specifically,

r = wT [rv, rLCoM
, ra]

T , (6.8)

with

rvx = exp (−∥v̄ − vd∥2), (6.9)

rLCoM
= exp (−∥LCoM∥2), (6.10)
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ra = exp (−∥ak − ak−1∥2), (6.11)

and the weights are chosen as wT = [0.6, 0.3, 0.1].

One iteration step of the policy corresponds to the interaction of the learning agent

with the environment. The RL policy takes the reduced order state s and computes

an action a that is converted in desired task-space trajectories yd at the time tk. The

reference trajectories are then sent to the task-space controller, which sends torque

commands to the robot. This workflow is depicted in Fig. 6.1. The feedback control

loop runs at a frequency of 1 kHz, while the high-level planner policy runs at 50 Hz.

The maximum length of each episode is 600 iteration steps, which corresponds to 12

seconds of simulated time.

6.4 Simulation results

In this section, we show the performance of the learned planner policy under dif-

ferent testing scenarios with the bipedal robot Digit. Moreover, we analyze the latent

representation generated during the testing of the RL policy. More details about these

experiments can be found here: https://www.youtube.com/watch?v=SUIkrigsrao.

6.4.1 Latent State Representation

To visualize the learned latent manifolds, we applied principal component analysis

(PCA) to reduce the dimensionality of the latent space to 2D. Fig. 6.4 shows the 2D

representation of the latent space for dimensions N = 2, N = 4, and N = 8. The

data used for visualization correspond to the robot Digit walking with the learned

RL policy within the range of vdx ∈ [−0.75, 1.4] m/s. In all three cases, the latent

space exhibits a well-distributed and disentangled representation of the data, with
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Figure 6.5: Comparison of velocity tracking performance of the learned policy with
different dimensions of the latent space N with a model-based ALIP planner described
in [4].

each walking speed corresponding to a specific area in the 2D plane. For comparison,

Fig. 6.4 also includes the 2D PCA visualization of the full-order state of the robot. It

is evident that data points for different speeds overlap with no clear structure. This

highlights that the latent space, even with a very low dimensionality N , effectively

captures the distribution of the data in the full-order system. This demonstrates the

potential of exploiting the latent representation for control purposes.

6.4.2 Tracking Performance of Different Velocity Profiles

We evaluated the performance of the learned gait policies with latent space di-

mensions with N = 2, N = 4, and N = 8 in tracking a velocity profile in different

directions using the Digit robot. As shown in Fig. 6.5, the policy successfully tracks
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walking speeds in the range vdx ∈ [−0.75, 1.4] m/s, even with aggressive changes in the

velocity profile. Importantly, the data collected to train the autoencoder was within

the range of vdx ∈ [−0.5, 1.0]. These results show the effectivity of the learned latent

states to control the walking velocity even with a low dimension N . Furthermore, the

results demonstrate that the latent representation captures the dynamic nature of

the walking gait and can be generalized to scenarios outside the training distribution.

Additional tests about this aspect are presented in Sec. 6.4.3.

For comparison, Fig. 6.5 also shows the speed-tracking performance of a model-

based ALIP planner based on the design in [4]. Our policy outperforms the ALIP-

based planner in terms of velocity tracking and offers a wider range of admissible

walking speeds. The ALIP planner fails to maintain a stable walking gait for speeds

higher than 1.2 m/s. In addition, Fig. 6.6 illustrates the correspondence between the

walking speeds and control actions of the RL policies with different Ns and the ALIP

planner. Specifically, we focus on the swing foot landing position with respect to

the robot’s base pswx,T when the robot is walking at 0.7 and 1.0 m/s. Interestingly,

the actions of the RL policy exhibit similar patterns across different latent space

dimensions N . This finding aligns with the results presented in Sec. 6.4.1, where we

showed that even a small N is sufficient to characterize the dynamics of the full-order

system fully. When provided with a larger latent space dimension, the policy learns to

disregard less important states in the latent space, resulting in similar policy actions

for different N values.

Furthermore, the actions of the latent space-based policies exhibit similar patterns

to those of the ALIP planner. This is intriguing because the latent space used by the

RL policy does not have a direct physical interpretation. Nevertheless, the RL policy
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Figure 6.6: Comparison of the desired swing foot landing positions (the policy action)
from different latent space dimensions N and the ALIP planner.

learns to behave in a manner similar to the template model-based planner. These

behaviors are not enforced during training, suggesting that the latent space naturally

captures the dynamics of both the template model and the full-order system.

6.4.3 Policy Generalization to Out-of-Distribution Scenarios

In addition to evaluating the policy’s performance on data it was trained on, we

also assess its ability to handle out-of-distribution scenarios. To do this, we conduct

tests where the policy is instructed to maintain a constant speed while the height of the

base is varied. It is important to note that the training of the autoencoder and the RL

policy did not include any data with varying base heights, as the locomotion data used

for training latent spaces was collected with a fixed base height of 1 m. However, as

depicted in Fig. 6.7, the policy demonstrates successful tracking of the desired walking

speed regardless of the different base heights commanded. An interesting future work

direction may be the exploration of the robust generalization of the latent space
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Figure 6.7: Generalization of the latent space and trained policy to out-of-distribution
data.

to generate transitions between different locomotion tasks such as walking, jogging,

sitting, and jumping.

Furthermore, we conducted tests to evaluate the policy’s robustness against ex-

ternal disturbances in the forward and backward directions. The disturbances ranged

from −100 N to 60 N, with durations ranging from 0.1 s to 1.5 s. As illustrated

in Fig. 6.8, the policy demonstrated effective reactions to the different disturbances,

successfully maintaining stability and tracking the desired walking speeds without

falling.

6.5 Conclusion

In this work, we present a novel data-driven learning framework to realize robust

bipedal locomotion. The design of the high-level RL gait policy takes data-driven

reduced dimensional latent variables as input states and generates a set of task space
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Figure 6.8: Robustness test to external disturbances.

commands, including the robot’s step length with respect to the base and instanta-

neous velocity offset of the robot’s base. The latent representation of the full-order

state is obtained using an autoencoder trained with supervised learning from loco-

motion data collected with existing locomotion controllers. Our work shows that the

learned latent representation manifold has a disentangled structure that is directly

correlated with the speed of the walking robot. The insightful choice of the RL state

and action spaces results in a compact policy that learns effective strategies for robust

and dynamic locomotion in simulation. Future work will focus on implementing and

validating the proposed framework on Digit, further demonstrating its effectiveness

and adaptability for real-world bipedal locomotion.
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Chapter 7: Terrain-aware locomotion with hierarchical task

space learning

7.1 Introduction and motivation

One of the main advantages of legged robots over their wheeled counterparts is

their potential to navigate challenging terrains and unstructured environments. In the

early stage of legged locomotion research, the focus was on blind locomotion where

legged robots were designed to move without any real-time exteroceptive feedback

from their environment. These systems relied heavily on pre-programmed movements

and robust locomotion controllers to navigate their surroundings. However, as anyone

who has observed the effortless grace of animals and humans to traverse rugged ter-

rains can attest, there is an important difference between simply moving and moving

with an awareness of one’s environment, known as perceptive locomotion .

Conventional methods employed in blind locomotion often involve solving opti-

mization problems to find feasible trajectories that enable stable walking gaits either

using the robot’s reduced-order model [44,132,149], the full-order model [17,34], or a

hierarchical combination of both [150, 151]. Although most of the existing RL-based

controllers for bipedal locomotion have focused on learning gaits for blind locomotion,
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Figure 7.1: Digit walking on different terrains with a single policy.

the impressive robustness of the learned walking policies allows the robot to walk in

challenging terrains such as slopes [18], hills [70], and even flights of stairs [152].

The evolution from blind locomotion to perceptive locomotion marked a signif-

icant paradigm shift in the field. Exteroceptive information plays a crucial role in

influencing robot locomotion. By integrating visual sensors and processing capabili-

ties, robots could now ”see” and respond to their environment in real time. This is

important for legged robots to adapt to and traverse various environments, such as

rough terrains, uneven surfaces, and obstacles. Exteroceptive information not only

expanded the range of terrains they could navigate but also improved their efficiency

and safety by allowing robots to adjust their gait, speed, and balance in response to

the ground beneath them.
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In recent years, there has been a growing interest in using deep reinforcement

learning to achieve terrain-aware locomotion. By exposing the robot to various ter-

rains and scenarios, these systems can learn optimal movement strategies through

extensive interaction with the environment and careful reward design, often resulting

in highly adaptive and robust locomotion policies. Similar to the blind locomotion

case, reference trajectories could be used to enhance the performance of the policy

and the sample efficiency either by imitation learning [153] or as base trajectories

that are compensated with the trained policy [154]. Gangapurwala et al. present

a unified model-based and data-driven approach for quadrupedal planning and con-

trol over uneven terrain, utilizing proprioceptive and exteroceptive feedback [155].

Takahiro et al. present a robust controller for quadrupedal locomotion in challenging

natural environments, trained by reinforcement learning and based on proprioceptive

and exteroceptive feedback [156]. Kareer et al. propose a framework for visual navi-

gation and locomotion over obstacles, which enables a quadrupedal robot to navigate

unseen indoor environments while stepping over small obstacles [157]. Other works

have proposed end-to-end RL frameworks with a teacher-student architecture that

uses scandots from the terrain as privileged information during the training of the

teacher policy with an additional training phase to replace the scandots with an ego-

centric depth camera input. This results in agile policies to navigate in challenging

terrains [158], stepping stones and balance beans [159], and even in extreme parkour

settings with custom-designed rewards [160,161].

Despite the efforts to integrate legged robots with terrain information through

learning-based frameworks, most of the research in the field has focused on quadruped

robots. Some of the first attempts to integrate terrain information in an RL policy
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for bipedal locomotion were implemented in simulations of physic-based animations.

In [162], a reduced character state and reduced terrain state were used to train a

policy to navigate terrains with steps and gaps in a simulation of a 2D environment.

This approach was extended [163] by using the full height field map and character

state in an end-to-end RL framework with a mixture of actor-critic experts updated

through temporal difference learning. These approaches were extended to the 3D case

in simulation in [164], where Hierarchical Deep Reinforcement Learning was used to

train a high-level policy that makes step target decisions based on high-dimensional

inputs, including terrain maps or other suitable representations of the surroundings

and a low-level policy that learn to achieve robust walking gaits. The work in [88,114]

addresses the irregular terrain challenge by using pre-planned footsteps obtained from

the environment height field. The RL policy then uses the foothold sequence along

with the robot’s state to compute the joint target positions. While these results were

important milestones in terrain-aware locomotion, they were constrained to physics-

based simulations with no applications to real-world hardware experiments.

Recently, two important contributions to learning-based perceptive bipedal lo-

comotion have been implemented with Agility Robotics’ Cassie, showcasing robust

locomotion over challenging terrains. Marum et al. [165] build upon the work in

attention-based belief encoding for quadruped locomotion [156] to train an end-to-

end policy to navigate a wide variety of terrains using noisy exteroception. Duan et

al. [90] use a heightmap expressed in the robot’s local frame to train an end-to-end

locomotion policy that can navigate in environments with stairs and steps of differ-

ent heights. The height map is then replaced by a height map predictor obtained
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from depth camera images. The work in [90] is the first successful implementation of

sim-to-real learning for vision-based bipedal locomotion over challenging terrains.

In this chapter, we propose a perceptive bipedal locomotion framework that com-

bines the versatility of learning-based policies for high-level (HL) commands with

the robustness of a low-level model-based task space controller to track the desired

task-space trajectories. To perceive the terrain around the robot, we use privileged

information during training by extracting directly from the simulation the egocentric

terrain height map, which is encoded into a latent space that captures the features of

different terrain types. This latent terrain representation is used along with a reduced-

order representation of the robot dynamics as the input of the learned policy. During

training, the policy learns to navigate through challenging scenarios while exploiting

the latent encoding of the terrain and the reduced order dynamics of the robot. This

results in a highly efficient yet robust locomotion policy for bipedal robots. While

there have been several efforts to achieve humanoid locomotion on irregular terrains

by using pre-planned footsteps [88, 114], this is, to the best of our knowledge, the

first RL-based policy to successfully achieve terrain-aware bipedal locomotion on a

human-size robot, e.g. Digit.

The remainder of the chapter is organized as follows. Section 7.2 addresses terrain-

aware locomotion as a hierarchical problem, introduces the proposed framework com-

ponents, and lays out the RL formulation of our approach. Section 7.3 explains

the supervised learning approach to encode a latent representation of the terrain by

means of variational autoencoders, and it presents a detailed analysis of the impor-

tance of the dimension of the learned latent space. Section 7.4 shows simulation

results of the proposed framework with the robot Digit, with ablation studies and
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baseline comparisons to determine the effect of our method on the learning efficiency

and policy robustness. Finally, Section 7.5 presents conclusions and future directions

of our work.

7.2 Method

In this section, we outline the methodology employed in designing the learning-

based hierarchical controller for perceptive bipedal locomotion, i.e. using propriocep-

tive and exteroceptive feedback.

7.2.1 Hierarchical terrain-aware bipedal locomotion

Building on the success of reduced-order models for online generation of HL trajec-

tories [44,95,132,149], we employ reinforcement learning to train a high-level planner

policy that harnesses an effective representation of the full-order robot’s dynamics

and the terrain information. As shown in Fig. 7.2, the proposed high-level RL policy

takes as input a latent space encoding learned from the local height map of the terrain

together with a reduced-order representation of the robot’s dynamics based on the

LIP model and the state of the swing foot of the robot. The output of the RL policy

is a set of task space commands used to generate online task space trajectories for

the robot’s base and end-effectors. The low-level controller is a model-based whole-

body controller used to guarantee the tracking performance of the task space desired

trajectories.

7.2.2 Reinforcement Learning for High-Level Planning

The problem of determining a motion policy for bipedal robots can be modeled

as a Markov Decision Process (MDP). The stochastic transition of the MDP process
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Figure 7.2: The hierarchical structure of the proposed framework: a high-level (HL)
policy for gait planning and a low-level (LL) controller for trajectory tracking. A
convolutional variational autoencoder (CVAE) is used to encode the local height
map to a reduced dimensional latent variable for training terrain-aware perception
locomotion policy.

captures the random sampling of initial states in the policy training and dynamics

uncertainty due to model mismatch and random interactions with the environment

(e.g., early ground impacts).

Reduced-Order State Space

In this work, we leverage the insights provided by template models to regulate

the walking speed of biped robots [132]. Inspired by the success of [18, 95] to use

template-based models, we select the state

s = (xb, qz, ev̄, v
d
x, v

d
y , psw, vsw, z, ak−1), (7.1)
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where xb = (qx, qy, vx, vy) is the LIP state composed by the robot’s base x and y

position and velocity, hb is the robot’s base height, ev̄ = (ev̄x , ev̄y) is the error between

the average velocity of the robot’s base (v̄x, v̄y) and the commanded robot’s velocity

(vdx, v
d
y), psw, vsw ∈ R3 are the cartesian position and velocity of the robot’s swing foot,

zhm is the latent variable encoded from the local height map centered at the robot’s

base, and ak−1 is the last policy action. The details about the encoded representation

zhm of the terrain map are presented in Section 7.3.

Task Space Actions

The action a ∈ A is chosen to be

a = (pxsw,T , p
y
sw,T , p

z
sw,T , hsw, v

x
off, v

y
off) (7.2)

where px,y,zsw,T correspond to the landing position of the swing foot w.r.t. the robot’s

base at the end of the swing phase T , hsw is swing foot clearance, and vxoff, v
y
off are an

offset added to the commanded speed of the robot. This selection of the action space

encourages the flexibility of the policy to exploit the natural nonlinear dynamics of

the biped robot and enhance the robustness of the policy under challenging terrains,

disturbances, and sudden speed changes caused by irregularities in the terrain, i.e.

tripping over.

Low-level task space controller

Given the desired set of policy actions, the trajectory generation module trans-

forms the policy action a into smooth task-space trajectories for the robot’s base

and end-effectors. Specifically, the trajectory for the relative swing foot positions,

pxsw and pysw, are generated using a minimum jerk trajectory connecting initial foot
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positions with target foot positions from the policy action. In particular, the ini-

tial foot positions will be computed at every touch-down event and kept constant

throughout the current step. To track the task space trajectories, we implemented a

model-based whole-body controller with Quadratic Programming formulation based

on work presented in [95,150].

Rewards

The reward function adopted in this work is designed to exploit the privileged

information from the terrain’s height map to shape the motion of the robot’s swing

foot while keeping track of the desired walking speed and reducing the variation of

the policy actions between each iteration. More specifically, we define the reward

function

r = wT [rvx , rvy , rswx , rswy , rswz , rswh
, rswf

, ra]
T , (7.3)

with

r□ = exp (−∥□−□d∥2) (7.4)

ra = exp (−∥ak − ak−1∥2), (7.5)

where □ represents the measured value and □d is the target value. For the velocity

rewards rvx , rvy , the target value is the desired walking speed sampled at the beginning

of each episode. For the swing-foot rewards rswx , rswy , rswz the target values are the 3D

foothold position, where the (x, y) target coordinates are ideally estimated from the

desired walking speed and the z target coordinate is the terrain height corresponding

to the (x, y) coordinates. Finally, the rewards rswh
, rswf

correspond to the swing-foot

clearance and force, which encourages the policy to adjust the max height of the
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swing foot during the swing phase according to the terrain and to avoid early contact

of the swing foot with the edges of the terrain during the swing phase. The weights

are chosen as wT = [0.2, 0.1, 0.075, 0.075, 0.15, 0.2, 0.15, 0.1].

RL training setup

To train the RL policy, we use the Proximal Policy Optimization algorithm [10]

with input normalization, fixed covariance, and parallel experience collection. We

follow the algorithm implementation described in [13]. The neural network selected

for the RL policy is an MLP with two hidden layers, each one with 128 units and tanh

activation function. For the PPO algorithm, we use a batch size of 64, a discount fac-

tor of 0.95, and 56000 samples with 6 epochs of policy update per algorithm iteration.

For each training episode, a terrain type is randomly selected from a set of 5 different

terrains: hills, slopes, random stairs, squared steps, and stairs up. These terrains are

randomly generated from a diverse set of parameters, such as slope degree, number

of stairs, stairs dimensions (width, height, depth), and size of squares, among others.

Moreover, the initial state of the robot is drawn from a normal distribution about an

initial pose corresponding to the robot standing in the double support phase.

One iteration step of the policy corresponds to the interaction of the learning agent

with the environment. The RL policy takes the reduced order state s and computes

an action a that is converted in desired task-space trajectories yd at the time tk. The

reference trajectories are then sent to the task-space controller, which sends torque

commands to the robot. This workflow is depicted in Fig. 7.2. The feedback control

loop runs at a frequency of 1 kHz, while the high-level planner policy runs at 33 Hz.

The maximum length of each episode is 300 iteration steps, which corresponds to 9

seconds of simulated time. An episode will be terminated early if the torso pitch and
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Figure 7.3: Local height map used to detect the terrain around the robot.

roll angles exceed 1 rad or if the height of the robot’s base relative to the stance foot

is less than 0.4 m.

7.3 Terrain representation in latent space

To perceive the terrain around the robot, we use a local height map of the terrain

corresponding to the area of 2 square meters in front of the robot’s base. When using

a resolution of 5 square cm, the local terrain height map is represented by a matrix

of size 20× 40, which results in a total of 800 elements. Using all the elements of the

local terrain height map matrix as input of the RL policy would result in an increased

number of network parameters and, consequently, a larger inference time. Moreover,

many of these elements may not have useful information for the policy to produce

effective control actions. For illustration, we show in Fig. 7.3 a sample of this local

height map obtained from simulation.
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Therefore, we use a convolutional variational autoencoder (CVAE) to encode the

whole terrain height matrix into a single vector zhm of dimension m. This encoding

process significantly reduces the neural network (NN) input dimension while harness-

ing the advantages of VAEs, such as probabilistic modeling, generative capabilities,

and the ability to capture meaningful latent representations [145].

7.3.1 Terrain data collection

We use a customized simulation environment in Mujoco [130] to create different

terrain profiles, including sloped planes, hills, squared steps, and stairs with different

configurations (up, down) and dimensions (width, depth, and height). For each type

of terrain, we collect 60000 samples of local height maps with respect to the robot’s

base as described in Section 7.3.In this work, we do not assume the existence of a

locomotion controller we can use to collect the data of the height samples. To collect a

diverse dataset of terrain height maps, we simulate the kinematic motion of the robot

around the terrain by updating the position of the robot’s base in the simulation

environment according to randomly sampled velocity while keeping the base height

at a height that follows a normal distribution with a mean 0.92 m and standard

deviation 0.1 m. Thus, the complete dataset Xhm consists of 360000 samples of local

terrain height maps x , i.e., Xhm = {x(i)
hm|i ∈ [1, 360000]}.

7.3.2 Convolutional Variational Autoencoder

A CVAE is a type of neural network model that is particularly adept at han-

dling complex data like images. It combines the principles of convolutional neural

networks (CNNs), which are excellent for image processing, with those of variational

autoencoders (VAEs), which are a type of generative model that excel in learning
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the underlying probability distribution of input data. This is different from the tra-

ditional autoencoder, where the input is mapped to a deterministic unique value.

Therefore, one of the primary advantages of CVAEs is their proficiency in handling

high-dimensional data, such as large maps, and effectively compressing them into

lower-dimensional representations that capture the essential features and structures

of the original data through a conditioned probability distribution.

In this work, the encoder part of the CVAE consists of three convolutional layers:

the first layer comprises 32 filters with a kernel size of 4, stride 2, and padding

1, effectively reducing the input’s spatial dimensions by half while increasing the

depth of the feature map. The subsequent layers follow a similar structure but with

an increased number of filters (64 and 128, respectively), further compressing and

encoding the spatial information present in the height map.

These convolutional layers are followed by two fully connected layers, each map-

ping the flattened output of the last convolutional layer to the latent space. Specif-

ically, these layers output the mean µ and variance σ of the prior distribution, both

sized according to the predefined latent variable dimension m. Then, the latent ran-

dom variable zhm can be expressed as a deterministic variable

zhm = gθ(ϵ, xhm), (7.6)

where xhm is the sample vector corresponding to the local height map, gθ(·) is the

encoder function parameterized by θ, and ϵ is an auxiliary random variable with an

independent marginal probability distribution. Therefore, if we choose ϵ to be the uni-

variate Gaussian distribution N (0, 1), the random latent variable zhm is determined
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by

zhm = µ+ σϵ. (7.7)

This method, known as the reparameterization trick, allows backpropagation through

random sampling processes, which is essential to train VAEs through standard stochas-

tic gradient descent methods.

The encoder part of the CVAE not only efficiently reduces the dimensionality

of the input data but also captures its essential features in a form conducive to

generative tasks. By learning this compact latent representation, the CVAE can

effectively generate a probability distribution from which one can reconstruct the

local height map samples and even generate new, unseen maps that share statistical

properties with the training data.

7.3.3 Reconstruction of the height map

The decoder is the closed-form parameterized function that maps from the latent

space back to the full-order state. This function is defined by

x̂hm = d(zhm, θd), (7.8)

where zhm is the encoded latent variable, ˆxhm is the reconstruction of the original

input data xhm, and θd is the vector of parameters for the decoder neural network.

The CVAE is trained by minimizing the standard β-VAE loss [145] L, which

consists of reconstruction loss and the Kullback-Leibler (KL) divergence [166] as the

latent loss. Then, the VAE loss is formulated as

L = MSE(x
(i)
hm, x̂

(i)
hm) + βDKL(q(z

(i)|x(i)
hm)||p(z

(i)
hm)) (7.9)
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where x̂
(i)
hm is the reconstructed height map, p(z

(i)
hm) is the prior distribution parame-

terized by the Gaussian distribution ϵ, and q(z
(i)
hm|x

(i)
hm) is the posterior distribution of

the latent variable z
(i)
hm given x

(i)
hm. The autoencoder is trained using Adam optimizer

[148] with a learning rate of 0.001 and a batch size B of 256. The autoencoder is

trained for 40 epochs in a 12-core CPU machine with an NVIDIA RTX 2080 GPU.

The training takes about 20 minutes using the described dataset Xhm and PyTorch.

There is no rule of thumb for the proper size for the encoded state used to capture

the features of the encoder input. On one side, a latent variable of large dimension

allows a better reconstruction of the local height map. On the other side, a smaller

dimension of the latent variable enables more efficient encoding and, consequently,

results in more compact networks both for the VAE and the RL policy. To analyze the

trade-off between these two properties, we conduct an ablation study with different

values of the latent variable dimension m. In Fig. 7.4, we show the loss L during

training of the CVAE for different values of m. Latent dimensions 256, 128, and

64 show the most rapid decrease in loss, indicating efficient learning and improved

ability to capture data features. Latent dimensions 64 and 32 show a good balance

between model complexity and learning efficiency. The smaller dimensions 8 and 4

exhibit higher average loss, which means the model is not complex enough to capture

all the necessary features of the data.

In addition, we apply principal component analysis (PCA) to the encoded rep-

resentation of the different latent dimensions. These results, presented in Fig. 7.5,

show that form ≥ 16, the latent space shows the same structure for the encoded data,

while for values of m ≤ 8, the structure of the data changes significantly. This means

that even a latent dimension as low asm = 16 can still capture the same features from
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Figure 7.4: Latent representation learned by the CVAE for different dimensions of
the latent variable m.

the terrain height map as more complex models with m ∈ {32, 64, 128}. Therefore,

we choose m = 16 as the latent variable used for the CVAE during the training of

the RL policy. This choice is further supported by the results in Fig. 7.6, where we

present the reconstruction of a terrain height map sample with different values of m.

As expected, the CVAE with m = 16 is the model with the lowest latent dimension

that can still produce an accurate reconstruction of the terrain height map.
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Figure 7.5: Latent representation learned by the CVAE for different terrain types.

7.4 Simulation Results

In this section, we show the performance of the proposed hierarchical controller in

simulation with a 3D bipedal robot Digit. The learned HL policy is tested in different

terrains, including narrow and wide stairs, slopes, wavy terrain, and irregular steps

with random heights.

7.4.1 Learning convergence

We demonstrate the effectiveness of the latent representation of the terrain by

conducting an ablation study of the effect of this latent terrain representation on the

efficiency and effectiveness of the learning process. In Fig. 7.7, we present the evolu-

tion of the reward during the RL training for different values of the latent dimension
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Figure 7.6: Reconstruction of the local height map for different terrains and latent
dimensions.

m. Notably, the reward curves with better learning efficiency (fewer number epochs to

converge) are the ones corresponding to m ≤ 32, while the reward curves correspond-

ing with m ≥ 64 show slower convergence to a lower value. In addition, we replace

the latent representation of the terrain with the complete local height map matrix,

which results in significantly decreased sample efficiency and policy performance, as

shown in Fig. 7.7.
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Figure 7.7: Reward convergence for different values of the latent variable dimension.

7.4.2 Policy performance

We denote the RL policy learns to walk from scratch and that one single trained

policy can successfully navigate on a variety of terrains as shown in Fig. 7.1. When

walking over irregular terrains like stairs or square steps, as shown in Fig. 7.8, the

policy adapts the feet’ landing location by taking shorter or longer steps when needed

to avoid collisions with the edges of the terrain. Similarly, the policy adapts the foot

location to compensate for the heavy robot’s inertia to avoid falling, i.e., when taking

a step up or down the stairs. These adaptive strategies naturally emerged during the

training from the effective integration of the terrain features into the RL policy and

the combination of rewards.

While the policy successfully navigates on all the terrains shown in Fig. 7.6 with-

out falling, there is a tradeoff between robustness and tracking of the commanded

walking speed. The complexity of the terrain causes a higher tracking error in some
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Figure 7.8: Learned policy performance on irregular terrains.

of the terrains since the policy sacrifices the velocity tracking performance to guaran-

tee the robustness of the walking gait. This is particularly evident in Fig. 7.9, where

the desired and average speed of the robot are shown for all the terrains. Despite the

irregularities in the terrain, the policy adapts its behavior to keep close track of the

target speed, except in cases where the terrain conditions are too challenging, e.g.,

the hill terrain, where the terrain inclination is too high, forcing the policy to take a

step back to avoid falling.

Furthermore, we analyze the contribution of the latent representation of the height

map by keeping the input of the CVAE fixed during the whole episode. This effect is

equivalent to making the policy ”see” flat ground even when the robot is walking on

nonflat terrains. Under these conditions, the policy fails to account for terrain height

variations, and the robot immediately falls after tripping over the edges of the stairs.

In Fig. 7.9, this case is labeled as ”Stairs fail.”
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Figure 7.9: Learned policy performance on different terrains.

7.4.3 Robustness and comparison

We test the policy’s robustness across diverse terrains for at least two hundred

experiments per terrain type. The resulting success rate for each type of terrain is

shown in Fig. 7.10 with a confidence interval ≥ 95%. This consistency in success

across a spectrum of terrains highlights the policy’s capability to effectively navigate

and adapt without the need for terrain-specific tuning. These results also demonstrate

the policy’s repeatability and reliability, which are essential qualities for humanoid

robots to enable their deployment in environments made for humans.

In addition, we compare the performance of our approach against two baselines

(policy A, and policy B) that share the same policy architecture as our proposed

method with two modifications. Policy A corresponds to the case of blind locomotion,

where the policy does not have a meaningful representation of the upcoming terrain.
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Figure 7.10: Robustness of the policy to different terrains.

By keeping the input of the local height map to a fixed value corresponding to flat

terrain, the policy ”thinks” it is walking on flat ground. The policy is robust enough

to handle terrains with hills and slopes, which is consistent with several works on blind

bipedal locomotion, where it has been shown the potential of RL policies to navigate

on these types of terrains without the use of exteroceptive feedback. However, its

success rate drops significantly for terrains with random square steps and stairs.

On the other hand, policy B corresponds to the case where the full terrain height

map x ∈ R20×40 is included in the policy state. While this approach has been suc-

cessfully applied in other end-to-end RL frameworks for bipedal locomotion [90,165],

we find that it is not compatible with our proposed compact and sample-efficient

framework. We hypothesize that the lack of structure in the data of the raw ter-

rain height map results in a bottleneck for learning effective actions. This effect is
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observed in Fig. 7.7, where the reward curve for the policy with the full height map

converges significantly slower to a smaller value compared with the policies that use

the latent representation of the terrain height map. To alleviate this effect, the work

in [90] uses a basis RL policy trained according to [83] and uses the complete height

map along with the full-order robot’s state to learn compensations added to the basis

RL policy.

7.5 Conclusion

We propose a framework for learning terrain-aware perceptive locomotion for

bipedal locomotion. Our proposed approach integrates a latent representation of

the local height map with a reduced-order representation of the robot’s dynamics for

bipedal locomotion to form an efficient state representation for terrain-aware loco-

motion and uses task space trajectories to formulate effective actions. By combining

a learning-based HL terrain-aware planner with an LL model-based controller, we

obtain a robust controller capable of traversing challenging terrains while preserving

a good speed-tracking performance. We provide a detailed analysis of the selection

of the latent space dimension with empirical demonstrations that a bigger dimension

of the state is not necessarily better but the capability of the latent representation to

capture the important features of the terrain. Future work will focus on the hardware

implementation with the robot Digit.
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Chapter 8: Sim to real

Reinforcement Learning techniques require significant amounts of data to learn

policies that can effectively solve the required tasks. The complexity of the task

depends on several factors, including dimensionality of the observation and action

space, sparsity of the rewards, dynamics of the underlying system, exploration dif-

ficulty, safety, and risk factors. The more complex the task, the more experience is

required. Using real robotics systems to acquire such amounts of experience is not fea-

sible for most robotics applications, especially for applications where data collection

is expensive and dangerous, such as bipedal robots. While there has been significant

research in the last years to develop offline RL frameworks that can train policies

purely from data collected offline [167], and sample efficient algorithms that can ac-

celerate the exploration process [168] or learn directly on real-world systems [169,170],

online RL trained on simulation is still one the most preferred methods for training

RL robotics systems.

Using simulations to train RL policies allows us to easily generate significant

amounts of experience data by harnessing the faster-than-real-time capabilities of

modern physics engines [130] and the parallelization of multiple simulated environ-

ments, resulting in substantial improvements in training time [171, 172]. Moreover,

the integration of simulators with accelerating computing hardware has allowed the
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massive parallelization of environments. to reduce the training time from days to

hours and even minutes [173].

One of the main challenges in applying RL to real-world robotics is the sim-to-real

gap. This gap is characterized by the differences between the simulated environment,

where the RL model is initially trained, and the real world, where the model is

ultimately deployed. In bipedal locomotion, this gap is significant due to the complex

interaction of robotic components with varied terrains and environmental conditions.

The research done to bridge this gap, known in the literature as sim-to-real transfer,

is crucial for the successful application of policies trained on simulation to physical

robots. In particular, sim-to-real transfer in RL refers to the process of training a

robotic control system in a simulated environment and then transferring the learned

policy to a real-world robot without -or very little- additional training or tuning on

the hardware.

In this chapter, we discuss some important details in the implementation of the

frameworks presented in Chapters 4-7 to reduce the sim-to-real gap. In particular, we

provide details about the implementation of our controllers and the software-hardware

integration used in our frameworks. Moreover, we discuss sim-to-real transfer tech-

niques, such as dynamic randomization and curriculum training, and the hardware

results with the robot Digit.

8.1 Controller implementation on hardware

We provide details about the integration of the high-level and low-level controllers

of the control-learning framework introduced in our works [18, 23, 95]. Moreover, we
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Figure 8.1: Our controller architecture allows asynchronous operation of the high-level
and low-level controllers. Moreover, it enables fast and reliable communication be-
tween different control layers, external user inputs, and the Digit simulator/hardware.
Note that the same controller architecture can be used for different tasks, e.g., walk-
ing, standing, crouching.

describe the architecture of our controller and its integration with Digit’s low-level

API and communication system. This architecture is presented in Fig. 8.1.

The Agility Robotics low-level API utilizes the UDP protocol to stream data,

facilitating access to low-level sensor data and direct command issuance to motor

drives. To maintain an active connection with the low-level API for continuous sensor

data reception, periodic command transmission is essential. Once connected and

engaged in command sending, torque control activation is achieved by requesting a
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transition to low-level API operation through JSON messages communicated via the

WebSocket protocol.

Additionally, our system leverages the Robot Operating System (ROS) to coordi-

nate the communication between various components. This integration enhances the

versatility of our controller architecture, enabling functionalities such as data logging,

external command reception, and interfacing with Digit’s perception system.

Since the low-level API needs to run at a very high frequency (2 kHz), we use

shared memory to enable fast and reliable communication between the low-level API

and our custom main control code (1 kHz). The low-level API reads the sensor

measurements and writes them into the shared memory. It also reads from the shared

memory the torque information and velocity commands written by the main control

code and sends the commands to the motors.

The main control code manages the integration and synchronization of all the

components in the overall control structure. It retrieves the sensor data from the

shared memory and publishes it in ROS topics to make it available for the other

components of the systems, such as the high-level planner and the low-level controller.

For the works presented in this dissertation, the high-level planner is the RL policy,

which runs in a separate node, retrieving the information from the corresponding

ROS topics to compute the high-level commands at a lower frequency compared

with the low-level planner. Then, the high-level planner node publishes the desired

high-level commands in the corresponding ROS topics to make the data available

to the other nodes in the ROS network. Depending on the controller framework,

these commands could be high-level actions in the joint space or action space. In the

framework presented in Chapter 4, the high-level commands are the Bézier coefficients
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used to compute the corresponding Bézier Polynomials that become the reference

trajectories for the robot’s joints. In the frameworks presented in Chapter 5 - 7, the

high-level commands are task space actions, including swing foot landing location,

foot clearance, CoM height, and torso orientation.

The low-level controller takes the sensor feedback and the trajectories from the

Trajectory planner module to compute the torque needed to track the desired joint

space or task space trajectories. Similar to the high-level module, the low-level module

could look different depending on the particular structure of the control framework.

For example, in the framework proposed in [18, 23], the low-level controller is com-

posed of a feedback regulator module and PD controllers at the joint level. The

integration of these low-level feedback regulations into the learning framework is a

key part that makes the controller structure very robust to uncertainties in the model

and makes possible an almost zero effort transfer from the policy learned in simula-

tion into the real hardware. In the frameworks proposed in [95, 174], the low-level

controller is composed of an inverse dynamics whole-body controller that tracks the

desired task space trajectories for the robot’s feet and CoM.

8.1.1 Learning pipeline

Although standard sim-to-real transfer techniques like domain randomization and

learning curriculum are useful to increase the robustness of the policy, there are also

other things important to consider when training an RL policy. In order to realize

a policy that is transferable to the actual robot, we need to create a pipeline for the

training process in simulation that renders working conditions as close as possible to
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Figure 8.2: Pipeline of the proposed learning framework. A standing controller is
included within the pipeline of the learning process to obtain a feasible set of initial
states for the policy training using a customized Mujoco environment. Then, the
trained policy is tested in a more realistic real-time simulator. Finally, it is tested on
hardware.

the real hardware. A diagram of the training pipeline used in the works proposed in

this dissertation is shown in Fig. 8.2.

The initial state for each training episode is chosen randomly from a pool of initial

states whose kinematics and dynamics are feasible to implement on the real robot.

To achieve this, we utilize a standing controller that allows the robot to start up from

an arbitrary resting position when the robot is hanging up from the lab’s crane [23].

We tested the controller successfully in hardware and used it to replicate the standing

process in simulation.

After the standing controller is activated and the robot is able to stand and balance

steadily in simulation, we capture the state of the robot and save it in a pool of initial

states. We repeat the process 40 times to create a diverse enough set of initial

states that we can use for training our controller. It is important to denote that

this process does not provide a fixed initial state for the walking gait but a whole
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set of different initial configurations that encourage the randomness of the initial

state during the training while providing feasible and safe starting conditions for the

walking gait. Moreover, this process does not provide any reference trajectories for

the walking gait that could bias the learning process to specific or predefined walking

gaits. Different from other RL approaches to bipedal locomotion, our method learns

walking gaits from scratch without the need for predefined reference trajectories or

imitation learning.

Given the pool of initial states, we use a customized environment using MuJoCo

[130] to start the training process. We denote that the proposed learning pipeline is

very general, and any learning algorithm that handles continuous action spaces could

be used, including evolution strategies, and gradient-based methods like PPO.

When the training is finished, we test the trained policy in the Agility Robotics’

proprietary simulation software. This simulation software provides a more realistic

representation of the robot’s dynamic behavior since it runs in real-time and shares

the same features with the hardware, such as low-level API, communication delay,

and dynamic parameters of the robot.

Finally, once we verify the trained policy is deployed safely in the AR simulation,

we proceed to test it in the hardware and verify its performance to do additional

tuning of the low-level controller gains if needed.

8.2 Sim-to-real transfer results

In this section, we show the effectiveness of the learning pipeline introduced above

to realize RL policies that can work effectively on hardware with minimal tunning.

We compare the simulation and hardware results of the policy trained using the
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framework proposed in Chapter 4. Moreover, we analyze the performance of the

policy in hardware for different test cases, including robustness to external forces and

robustness to challenging terrain.

8.2.1 Stability and feasibility of the walking gait

Figure 8.3 shows the phase portrait of the actuated joints of the robot’s leg while

walking at a constant desired velocity. Similar to the simulation results, the plot shows

the convergence of the orbits to a periodic limit cycle, empirically demonstrating the

stability of the walking gait. As expected, the limit cycles of the joints are noisier

than the ones obtained in the simulation, particularly for the joints that are being

modified by the feedback regulator policy.

8.2.2 Robustness

We perform two tests to evaluate the robustness of the cascade controller: i)

robustness to external disturbances and ii) robustness when walking on challenging

terrain. For the first test, external disturbances are applied to the robot’s torso while

walking forward (vx = 0.11m/s, vy = 0m/s). Figure 8.4 shows the performance of the

controller to keep tracking the desired walking speed, while Figure 8.5 shows the limit

walking cycle of some of the robot joints before, during, and after the disturbance.

These results show the controller can recover effectively from disturbances while keep-

ing a good tracking performance of the desired walking speed and maintaining the

stability of the walking limit cycle.

For the second test, we set Digit to walk blindly on a series of challenging irregular

terrains. To test the robustness of the controller on different slopes, we conducted
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Figure 8.3: Walking limit cycle of the learned policy when tracking a longitudinal
velocity vdx = 0.0 m/s, and lateral velocity vdy = 0 m/s.
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Figure 8.5: Disturbance rejection when adversarial forces are applied in the forward
and backward direction

rigorous experiments on a treadmill varying the slope inclination from 0 to 11 de-

grees. In addition, we evaluate the controller’s performance to real-world scenarios

by conducting experiments outdoors on different terrains, including concrete ground,

vinyl, pavement, grass, and slopes of different inclinations. Figure 8.6 shows tile plots
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Figure 8.6: Digit walking on different terrains using the learned policy: concrete slopes
(top-left), rubber surface (top-right), grass (bottom-left), and pavement (bottom-
right). The top-right tile plots also show the robustness of the policy against external
forces applied to the robot’s torso.

of the robot walking on some of these terrains. More details about these experiments

can be seen in the video: https://www.youtube.com/watch?v=ocAZtHr07Fw.

We evaluate the speed-tracking performance of the controller along all the different

terrains. The results presented in Figure 8.7 show the proposed controller structure

is able not only to keep stable walking but also to keep a good speed tracking per-

formance on every single terrain. This demonstrates that our learned policy can be

used with confidence for navigation in real-world scenarios.

We denote that the same learned policy is used to navigate the robot in all the

terrains mentioned above without the need for additional training or tuning between

different terrains. It is important to note that no disturbances or terrain random-

ization were applied during the training. Therefore, the robustness of the policy is

the result of the enhanced structure of the controller that allows the external and

internal loops to be updated at different rates. The inner loop (feedback regulation)

facilitates the feedback response of the controller to external disturbances while the
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Figure 8.7: Speed tracking performance of the controller while walking blindly on
different challenging terrains.

outer loop (NN-based trajectory planning) keeps updating the reference trajectories

for different desired speeds at a lower rate.

8.3 Towards Standardized Disturbance Rejection Testing -
A Linear Impactor Approach

This section further showcases the sim-to-real capabilities of the policies trained

with the RL frameworks proposed in this dissertation. Moreover, we discuss an

important problem in the legged robots community that is directly connected with

the testing of locomotion controllers in real scenarios.

Even though legged robots seem to be ready for industrial collaboration, there

is still one critical thing that is hindering their spread commercialization: the lack
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of standardized testing. Contrary to the vehicle industry, there are limited studies

regarding standard testing equipment and infrastructure for legged robots, which

becomes evident when we analyze the experimental and robustness tests of legged

locomotion in the last decades. Historically, the methods used for testing legged

robots, such as hand-pushing, foot-kicking, rope-dragging, stick-poking, and ball-

swinging, have lacked standardization.

In the work presented in [175], we analyze this lack of standardization problem and

propose alternatives for the design of standard methods that guarantee the repeata-

bility, adaptability, and accuracy of the disturbance rejection testing. In particular,

we propose the use of the linear impactor, a well-established tool in other standard-

ized testing disciplines. We use a pneumatic linear impactor to test three different

locomotion controllers on the Digit robot. These controllers correspond to a template

model-inspired whole-body controller (TM), a manufacturer controller provided by

Agility Robotics (AR), and our template model-based task space learning controller

(TL) introduced in Chapter 5.Fig. 8.8 shows the overall configuration used during

the testing experiments. The center of the impactor face is 99.2 cm from the ground.

The impactor weight is 6.4 kg. The impactor face is a rectangle of 6-inch × 4-inch

(about 15.24 cm × 10.16 cm) [175].

This work not only showcases the sim-to-real capabilities and robustness of our

controller to withstand extensive and standardized testing, but also highlights other

anti-intuitive observations, demonstrations, and implications that, to the best of the

authors’ knowledge, are first-of-its-kind revealed in real-world testing of legged robots.

For example, Fig. 8.9 shows the results of 36 impact tests against the three different
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Figure 8.8: The testing configuration in-lab and the conceptual illustration before
and after the impact: “A” denotes the impactor face with a rectangular surface, “B”
denotes the displacement potentio-meter.

locomotion controllers. There are multiple regions where impact events sharing simi-

lar impact velocities end up with different fallover outcomes (indicated by the marker

size). Analyzing this results one could observe that a more significant impact does

not necessarily lead to a more severe outcome.

In particular, the TL-driven robot recovers from the impact velocities of 3.214

m/s and falls over against the 3.216 m/s velocity, and that is only 0.0128 kg · m/s

difference in impact momentum. A similar pattern is seen with AR at notably higher

impact velocities: 3.89 m/s, 4.23 m/s, and 4.26 m/s. While the robot falls in two out

of the three impacts, it is noticeable that the falls do not correspond to the highest

velocity impacts. Moreover, these counter-intuitive cases highlight the challenges in

developing fair and effective safety performance testing algorithms [176].
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Figure 8.9: An overview of all 36 impact tests against three locomotion controllers:
different impact phases are differentiated by the marker color and the label is specified
in the form of stance foot phase (whether the left or the right foot is on the ground)
and swing foot phase (whether the swing foot is going up or stepping down) with an
underscore “ ” in between. Note the dual support phase (with both feet on-ground)
is specified as “Dual None”. The fallover status is characterized by the size of the
marker. The three different locomotion controllers are differentiated by the marker
type.

.

8.4 Conclusion

In this chapter, we present the learning pipeline used to implement the frameworks

presented in this dissertation and demonstrate its effectiveness in realizing RL policies

with successful sim-to-real transfer. Moreover, we discuss in detail the implementa-

tions of our controllers in the robot Digit, showing the integration of the high-level

RL policy with the low-level feedback controller. We emphasize the importance of

having a pipeline that is consistent with the hardware setup used to test the poli-

cies in real-world experiments and demonstrate that our proposed pipeline realizes

policies that successfully address the sim-to-real gap challenge. Notably, we showcase

the robustness of the learned policies with hardware experiments of the robot Digit

walking on different terrains at different speeds around the OSU campus.
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Finally, we discuss the importance of standardized methods for disturbance re-

jection and robustness and show the application of one of our controllers for a pre-

liminary study where a linear impactor is used as a proposed approach for testing

standardization (repeatable, fair, measurable), showing the robustness of our con-

troller. These experiments have revealed interesting insights, challenges, and lessons,

all contributing to an expected future of standardized safety performance testing for

legged robots.
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Chapter 9: Conclusions

In this dissertation, we have explored advanced methodologies for achieving ro-

bust bipedal locomotion, addressing key challenges through innovative reinforcement

learning and hierarchical learning-based frameworks. Our research has made impor-

tant contributions to the intricate balance between theoretical insight and practical

application of model-based and model-free methods for bipedal locomotion, leading

to the development of dynamic and adaptable locomotion strategies.

Our first contribution is the integration of Hybrid Zero Dynamics with reinforce-

ment learning, culminating in a novel framework that not only simplifies trajectory

planning and feedback regulation but also enhances the adaptability and efficiency of

bipedal robots. This approach, inspired by the use of reduced state and action spaces

with additional heuristic regulations, has demonstrated remarkable improvements in

sample efficiency and training time, setting a new benchmark for the field. By in-

tegrating dynamic walking insights into the RL process, a sophisticated yet efficient

solution for designing feedback controllers was developed, capable of achieving stable

and robust walking gaits without reliance on predefined trajectories.

Further exploration led to the development of a template-model-inspired task

space learning approach, offering a hierarchical learning-based method that leverages

a reduced-order state inspired by the ALIP model with a set of task space commands
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and a model-based whole-body controller for trajectory tracking. This approach

demonstrated versatility across different robot configurations, including fully actuated

and underactuated robots, proving its effectiveness in enabling dynamic locomotion

under challenging conditions.

Further, our research into data-driven latent space representation has revealed the

potential of hierarchical and data-driven approaches in refining locomotion control by

harnessing locomotion data extracted from existing model-based controllers. These

strategies have proven effective in developing compact RL policies that can extrapo-

late to scenarios out of the distribution of the collected data, showcasing a significant

leap forward in developing versatile and robust data-driven locomotion controllers.

A pivotal contribution of our work is the successful implementation and validation

of these methodologies in real-world scenarios, particularly through the sim-to-real

transfer on the robot Digit. This not only attests to the practical viability of the

learning pipeline developed throughout our research but also opens new avenues for

the application of our controllers in higher-level navigation systems that allow the

deployment of bipedal robots in indoor and outdoor scenarios.

This dissertation also ventured into terrain-aware locomotion, presenting a frame-

work that combines latent representations of the terrain with reduced-order robot

dynamics. This method emphasized the ability of the high-level RL policy to adapt

to complex terrains while maintaining robust and agile locomotion, showcasing the

importance of the dimension of the latent space in the robustness of the policy and

sample efficiency of the learning process.

In essence, our thesis contributes to the advancement of bipedal robot locomo-

tion by proposing and validating frameworks that combine the theoretical rigor of

159



dynamic systems with the practical robustness required for real-world application.

These innovations pave the way for the development of more autonomous, efficient,

and adaptable bipedal robots, potentially transforming their application in essential

sectors of industry and society.

9.1 Future work

While our research has made significant strides in advancing bipedal locomotion

for real-world scenarios, there are several lines of research that could be explored to

extend the findings and applications of this thesis:

Real-World Hardware Testing and Application: Future initiatives should

focus on extending the application of our frameworks to a broader array of bipedal

robots, including those designed for specific tasks or environments such as exoskele-

tons. This will not only validate the universality of our approaches but also highlight

potential areas for refinement.

Integration of Advanced Sensory and Perceptive Capabilities: Incorpo-

rating sophisticated sensory and perception mechanisms can enhance the adaptability

and decision-making capabilities of bipedal robots, especially in dynamic or unknown

environments. Future work could explore the integration of these technologies and

the development of more sophisticated state representations and actions that can

navigate these terrains with even greater efficiency and adaptability.

Expansion of Locomotion Behaviors: Extending our frameworks to encom-

pass a wider range of locomotion behaviors, such as running, jumping, or walking
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over stepping stones, represents an exciting frontier. This could involve the develop-

ment of new learning models or the integration of existing ones into our hierarchical

learning-based approaches.

Integration of Large Language Models for Enhanced Decision-Making:

Integration of Large Language Models for Enhanced Decision-Making: The advent of

sophisticated Large Language Models (LLMs) opens new horizons for robotic systems,

particularly in complex decision-making scenarios. Future research could explore the

integration of LLMs as high-level decision tools within our framework, enhancing the

robot’s ability to make informed decisions about locomotion, manipulation, and task

execution based on a vast array of data and contextual understanding. This approach

could leverage the natural language processing capabilities of LLMs to interpret and

analyze instructions, environmental descriptions, or task requirements, translating

them into actionable strategies for the robot.

Embarking on these future endeavors will undoubtedly enrich the field of bipedal

locomotion, driving forward the capabilities of robots and opening new possibilities

for their application in society. I am confident that the path ahead is filled with

potential for groundbreaking discoveries and innovations that will continue to push

the boundaries of what is currently possible.
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