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Abstract 

In recent years, there has been significant research and development in Deep 

Learning (DL) due to its efficiency and extensive applicability across diverse domains, 

including Computer Vision and Large Language Models. However, the architecture of 

large Deep Learning models, containing dense layers, makes them compute and memory 

intensive. Distributed Deep Learning (Distributed DL) is the successful adaption to 

accelerate and enable training and inference for large-scale DL models, where it also deals 

with various parallel approaches, inference and training techniques, and communication 

optimization strategies to enhance performance. 

In this thesis, we focus on accelerated and memory-efficient techniques to optimize 

distributed training and inference. It is broadly categorized into three different approaches: 

1. Inference for scaled images using quantization, achieving a speedup of 6.5x with integer-

only quantization and 1.58x with half-precision, with less than 1% accuracy degradation. 

2. MPI4DL: Distributed Deep Learning Parallelism framework encompassing various 

parallelism techniques with integral components such as Spatial Parallelism, Bidirectional 

Parallelism, and Hybrid Parallelism 3. Communication optimization by leveraging MCR-

DL: A distributed module for DL frameworks with support for mixed-backend 

communication, dynamic selection of the optimal backend, and communication 

optimization enhancements such as compression and tensor fusion. 
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Chapter 1 Introduction 

In the recent era of Artificial Intelligence (AI), Deep Learning (DL) has emerged 

as a backbone of modern research and development, exhibiting remarkable success across 

various domains. Its efficiency is evidenced by their application in groundbreaking 

technologies such as large language models like LLaMA, ChatGPT, Mistral, as well as 

vision models like ResNet, AmoebNet, and vision transformer utilized in medical imaging, 

autonomous driving, satellite imaging, and robotics. 

Deep Neural Networks architecture, characterized by deep layers and many input 

parameters, poses significant computational and memory requirements. This becomes 

particularly challenging when dealing with single-GPU setups, as the models exceed the 

capacity of a single processing unit, necessitating out-of-core techniques for training and 

inference. 

To address these challenges, the paradigm of Distributed Deep Learning 

(Distributed DL) has gained prominence. By harnessing the collective computational 

power of multiple GPU resources Distributed DL enables as well as accelerate training and 

inference on large-scale neural networks. Given the necessity for performance scalability, 

handling large input parameters, and accommodating deep-layered models, it becomes 

essential to leverage Distributed DL. 
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1.1 Motivation 

One of the focused application areas of deep learning is high-resolution images [1] 

[2] [3], notably utilized in areas such as medical imaging, satellite imagery, and robotics. 

These images often have dimensions as large as 100,000×100,000 pixels. To meet the 

demands of large DL models and handle large-scale image sizes, distributed deep learning 

emerges as a crucial solution. While research in high-resolution image processing with DL 

remains essential due to its applicability, several studies [1] [4] [5] have focused on 

efficient training, whereas very few have explored inference [6] [7] for high-resolution 

images. The studies focusing on inference with high-resolution images primarily involve a 

single-processing unit and are limited to small-scale images. Furthermore, the exploration 

of inference with quantization in the context of high-resolution images in deep learning 

and distributed DL for scaled images has yet to be pursued. Can we leverage quantization 

and distributed DL to accelerate inference and reduce memory footprints for large-

scale images without compromising accuracy? 

Furthermore, there has been significant research [4] [8] dedicated to efficiently 

accelerating and enabling training for large DL models, leading to the evolution of various 

parallelism techniques. These techniques range from simpler approaches like Data 

parallelism (DP) and Model Parallelism (MP) to more advanced methods such as 

Bidirectional Parallelism (GEMS), Spatial Parallelism (SP), and Hybrid Parallelism Are 

all of these easily implementable within the given design and available for researchers 

to perform their own experiments and select the optimal one according to their needs 

and available computing resources? When discussing the benchmarks provided by Deep 
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Learning Parallelism Frameworks such as PyTorch and DeepSpeed, it is noted that their 

support is limited to Data Parallelism, Layer Parallelism, and Pipeline Parallelism, lacking 

support for Bidirectional Parallelism (GEMS), Spatial Parallelism, and Hybrid Parallelism 

(GESMS + SP). 

Besides different parallelism and memory optimization techniques in Distributed 

DL, communication plays a pivotal role and significantly influences performance. 

Different parallelism uses different collective communications such as, Point-to-point, All-

Reduce, All-Gather to undergo different operations such as model parameter sharing, 

synchronizing gradients, which can be performance bottleneck. Currently, Distributed DL 

supports different backends such as MPI and NCCL. Different backends provide tradeoffs 

for different collective and message sizes. Furthermore, rapid advancements in the MPI 

world, such as MVAPICH-PLUS, MVAPICH-GDR [9] [10], and other MPI libraries, 

along with NCCL [11], make it essential to leverage their associated features in Distributed 

DL. However, the distributed module provided by DL frameworks does not cover all 

collective operations and often requires source building to support backends like MPI. 

Therefore, it is also essential to provide direct support to leverage these features without 

depending solely on the distributed module provided by DL frameworks (e.g., PyTorch’s 

Distributed DL). For such requirements, such as mixed-backend, direct support of any 

backend, optimal selection, and overall optimizing communication, can we have 

implementation to support any DL framework and leverage communication 

optimization techniques for any DL application without depending on the DL 

framework’s distributed Module? 
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1.2 Contribution 

In this thesis, we will broadly explore optimal techniques in terms of quantization, 

various forms of parallelism, collective communication techniques, and specifically 

address the questions outlined in the motivation section. 

We proposed inference for scaled images leveraging quantization. We provided 

thorough evaluation for Single GPU and Distribute DL quantization for half-precision and 

Integer-Only precision quantitation. We experimented on real-world pathology datasets 

and achieved less than 1% accuracy degradation while accelerating and reducing memory 

footprint for inference. (Chapter 2) 

We introduced MPI4DL, a Distributed Deep Learning Parallelism framework 

encompassing various parallelism techniques essential for Distributed Deep Learning. This 

includes Spatial Parallelism, Bidirectional Parallelism, Data Parallelism, Model 

Parallelism, and Hybrid Parallelism. We meticulously detailed the existing parallelism 

strategies, evaluating strengths and limitations. We extended support for Spatial, 

Bidirectional, and Hybrid Parallelism as integral components of the MPI4DL framework. 

Comprehensive performance evaluations are conducted for each parallelism strategy, 

providing insights into their effectiveness and efficiency. (Chapter 3)  

We exploited the novel technique of Mix-and-Match communication (MCR-DL 

[12]) for communication optimization in any DL framework and application. Additionally, 

we conducted performance evaluations comparing different collectives in various 

configuration settings. Furthermore, we have provided initial implementation support for 

MCR-DL and its integration with Megatron-LM. (Chapter 4) 
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Chapter 2 Accelerating Inference for High-Resolution Images 

with Quantization and Distributed Deep Learning 

2.1 Introduction 

High-resolution images find extensive use across diverse sectors like medical 

imaging, satellite imagery, and surveillance. Typically, these images are in the gigapixel 

range, often exceeding dimensions of 100,000×100,000 pixels. For instance, the 

CAMELYON16 [13] digital pathology dataset features whole-slide images (WSI) with 

resolutions reaching approximately 100,000x200,000 pixels at a maximum 40× 

magnification. 

With the advancement of Deep Learning (DL) and its demonstrated effectiveness 

across various fields, it has emerged as a popular solution for addressing challenges in 

High-Resolution image tasks such as classification and segmentation. Some commonly 

adopted DL models for these tasks include ResNet [14], U-Net [15], and AmoebaNet [16], 

which employ deep conventional layers. However, considering the large size of the image 

and several convolution layers, it provides challenges due to memory and computation 

limitations, as it cannot be accommodated in a single GPU memory.  

Several studies [17] [6] have adopted a patch-based approach, where each whole 

slide image (WSI) is split into small patches with image sizes such as 256x256. This 

approach further requires pixel-wise annotation or classification mechanism to classify 
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each patch to well-suited classes. But use of deep convolutions neural networks restricts 

the patch size due to memory limitation. For instance, image size of 8192x8192 with 

ResNet101 model and batch size as one becomes out-of-core model on NVIDIA-A100-

40GB GPU. To facilitate scaled image sizes and improve performance, Hy-Fi [4] and 

GEMS [8] have made significant contributions by enabling training using Spatial 

Parallelism for image sizes up to 16384x16384. It further improved performance by 

integrating different parallelism techniques. While most studies have primarily focused on 

efficient deep learning training approaches for high-resolution images, optimizing 

inference in the context of high-resolution images remains unexplored. 

We propose and evaluate quantization approach to accelerate Deep Learning 

inference for high-resolution images to reduce memory and computation requirements 

while maintaining accuracy. Quantization is a technique where model parameters are 

converted to low-precision such as 16-bit floating point or 8-bit integer from 32-bit floating 

point. This results in reducing memory utilization and latency and its proven efficiency for 

DL inference has been evaluated in recent surveys [18] [19] and has also been employed 

for Large Language Models [20] [21]. We leverage the benefits of quantization to 

accelerate high-resolution image inference for deep learning models. Furthermore, to 

enable scaled image inference, further enhance acceleration, and harness the memory and 

compute-efficient benefits of different parallelism, we introduce quantization support for 

Spatial, Layer, and Pipeline parallelism in Distributed DL. 
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2.2 Motivation 

While research in high-resolution images with DL remains essential due to its 

applicability, several studies have been conducted for efficient training, whereas very few 

have delved into the inference for high-resolution images. The studies focusing on 

inference with high-resolution images primarily involve a single-processing unit and are 

limited to small-scale images. The exploration of inference with quantization in the context 

of high-resolution images in Deep Learning and Distributed DL for scaled images is yet to 

be pursued.  

Precision Memory 

Utilization (GB) 

Memory 

Reduction 

Throughput 

(Img/Sec) 

Speedup 

FP32 12.48 Baseline 145.22 Baseline 

FP16 7.64 1.63× 224.85 1.55× 

BFLOAT16 5.28 5.28× 226.12 1.56× 

INT8 2.39 5.23× 903.35 6.22× 

Table 2.1 Memory and Throughput evaluation with quantization using ResNet101 for 256×256 

image size and 64 Batch Size on NVIDIA A100-40GB 

We evaluated the quantization effects on latency and memory footprint for an image 

size of 256x256 using ResNet101. Table 2.1 provides the memory and speedup evaluation 

by comparing quantization with baseline full-precision (FP32), half-precision (FP16, 

BFLOAT16), and integer-only precision (INT8). Results show a significant reduction in 

latency and memory utilization, with the best performance observed for INT8, reducing 

memory requirements by 5.23× while improving speedup by 6.22×. Further, as ResNet101 

cannot scale beyond 2048×2048 or 4096×4096 image size on single GPU, to support larger 

images and slide level inference, we studied different parallelism implemented in Hy-fi 

and GEMS to enable image-sizes such as 8192×8192 and 16384×16384 and support 

quantization. 
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Consider the real-world application of digital pathology images, where inference for 

one whole slide image (WSI) contains an average of 500 patches, each of size 256x256. 

The inference time on a CPU [22] [23]can take several minutes, while on a GPU, it reduces 

to seconds. Utilizing GPU-enabled quantization further minimizes this time to just 1-2 

seconds. 

2.3 Background 

2.3.1 Working Principal: Floating-Point to Integer-Only Quantization 

Floating-point conversion, i.e., converting 32-bit floating point to half-precision 

floating point is relatively simple, as both are floating point data types and follow the same 

scheme representation. On contrast, converting 32-bit floating point to 8-bit integer 

significantly reduces value range to 256 values and requires using new scheme 

representation to map 32-bit float value to integer. This new representation scheme uses 

the range of floating-point values ([α, β] from Figure 2.1) in its representation to represent 

32-bit floating point to integer values. Figure 2.1 shows mapping of floating-point range to 

b-bit integer values range. Equation 2.3 provides conversion calculation to represent b-bit 

integer value relative to floating-point, where x_q is b-bit quantized value of floating-point 

value x. 
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Figure 2.1 Mapping of floating-point to 8-bit values [24] 

 

s =  
2𝑏  −  1

β −  α
 Equation 2.1 

z =  −round (α ·  s − 2𝑏  −  1) Equation 2.2 

xq =  clip(round (x ·  s +  z), −2𝑏−1 , 2𝑏−1 −  1) Equation 2.3 

 

Equation 2.1 and Equation 2.2 provide quantization parameters required in equation 3 

scale factor (s) and zero-point value (z) respectively. The scale factor is the floating-point 

value and zero-point is b-bit integer value corresponding to the zero value in the floating-

point representation. 𝑐𝑙𝑖𝑝 () maps values outside range to nearest integer representable 

value. To determine floating-point value range i.e. [𝛼, 𝛽] calibration step is used which is 

done by performing forward pass with few given samples for model. 

2.3.2 Post-Training Quantization 

Post-Training Quantization (PTQ) converts the weights and activations of a pre-

trained unquantized model to low-bit precision, thereby reducing memory and computation 

requirements for inference. PTQ is categorized into two different modes, namely dynamic 

quantization, and static quantization. Dynamic Quantization converts weights into low-
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precision values beforehand but converts activation dynamically at runtime depending 

observed data range. On other hand, in static quantization, the weights and activation are 

both quantized into low-precision values and requires calibration step to determine these 

values. However, for GPUs, PTQ with PyTorch [25] is limited to Static Post-Training 

Quantization mode via TensorRT [26], and for our work, we have used Static Post-Training 

Quantization. Figure 2.2 provides an overview of Post-Training Quantization Inference 

Pipeline. 

 

Figure 2.2 Post-Training Quantization 

 

2.4 Proposed Solution 

We propose efficient inference for high-resolution images using DL on a single GPU, 

as well as in Distributed DL settings, leveraging post training quantization. We exploit the 

quantization precision range of 16-bit floating point, with both FP16 and BFLOAT16 
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datatypes, and 8-bit integer. As of today, 8-bit integer is the lowest precision for GPUs 

supported through PyTorch. 

We provide quantization support for single GPU inference, specifically to facilitate 

patch-based inference, a widely used approach where patch sizes are small-scale images. 

Furthermore, to enable scaled images, slide-level inference, and improve performance, we 

enable quantization for Distributed DL. We utilized Spatial, Layer, and Pipeline 

Parallelism for Distributed DL from the Hy-Fi implementation. 

We implement our solution in PyTorch [25] and provide an inference pipeline for 

high-resolution images, supporting different precision quantization and Distributed DL.  

2.4.1 Single-GPU Quantization 

For Single-GPU quantization, we leverage the Post-Training Quantization Inference 

Pipeline demonstrated in Figure 2.2. We support FLOAT16, BFLOAT16, and INT8 

quantization for single GPU quantization. As of today, 8-bit integer is the lowest precision 

for GPUs supported through PyTorch. 

2.4.2 Quantization for Distributed DL 

When dealing with Distributed DL models, we follow the same pipeline as shown in 

Figure 3.2. However, it is important to note that model quantization is performed separately 

on each GPU. In Distributed DL, the model is distributed across GPUs, and it can be big 

enough to not fit into memory. Thus, we perform model quantization for each distributed 

part of model. In terms of Spatial Parallelism, for each spatial part, after initialization of 

model with given weights, we perform model quantization independently at each GPU 
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device. Similar is the case with Layer parallelism. Figure 2.3 shows implementation 

pipeline for quantization in Distributed DL. 

 

Figure 2.3 Inference using quantization in Distributed DL 

 

Spatial parallelism requires halo-exchange to perform, as we will discuss in Chapter 

3 (Figure 3.9 and Figure 3.10), where each convolutional and pooling operation, it performs 

point-to-point communication as part of the forward pass. In PyTorch, for GPUs, Integer-

Only quantization is done via TensorRT. TensorRT takes the DL model defined in PyTorch 

and compiles it to support integer quantization specifically for NVIDIA GPUs. This 

compilation supports DL layers, such as convolutional, normalization, pooling, etc., but it 

does not cover collective communication function calls. Since spatial parallelism requires 



13 

 

point-to-point communication for halo-exchange in the forward pass, TensorRT cannot 

resolve such communication calls during compilation, limiting Int8 quantization supported 

for spatial parallelism. 

2.5 Performance Evaluation 

Hardware Specifications  

We conducted our experiments on NVIDIA A100-40 GB GPUs (2 GPUs per node) with 

AMD EPYC 7713 64-Core Processor.  

Software Specifications  

We used PyTorch v1.13.1 [25] as a Deep Learning framework and TensorRT [26] through 

Torch-TensorRT API for Integer-Only quantization. For collective communication in 

Distributed DL, we used NCCL [11] (NVIDIA Collective Communications Library) 

communication backend. 

2.5.1 Effect of quantization on accuracy for Inference 

For accuracy evaluation, we used ResNet101 and performed model quantization with 

different precisions. We conducted our accuracy evaluation on various datasets and 

compared quantization results with the baseline inference accuracy using FP32 precision. 

We used the following datasets: CAMELYON16 [13], ImageNet [27], CIFAR-10 [28] and 

Imagenette [29]. 

Dataset Description 

CAMELYON16 is a real-world digital pathology dataset from a competition held by the 

International Symposium on Biomedical Imaging (ISBI) to detect metastatic breast cancer 
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in whole slide images (WSI). It consists of 400 WSI images categorized into 2 classes: 

normal and tumor. ImageNet, CIFAR-10, and Imagenette are object detection datasets 

containing 1,431,167 images with 1000 object classes, 60,000 images with 10 classes, and 

13,394 images with 10 classes, respectively. 

Evaluation Methodology 

For the CAMELYON16 Dataset, the total size is 300GB, and each image is around 5GB 

with an approximate image resolution of 100,000x200,000. Since these images cannot fit 

into memory, for accuracy evaluation, we used a patch-based approach. We extracted 

patches of size 256x256 containing the tissue region and labeled each patch based on the 

slide label. 

To evaluate the quantization effect on each dataset, we trained ResNet101 for a few 

epochs to achieve the desired training accuracy, applied PTQ to obtain a quantized model 

with various precision levels, and then tested the accuracy for inference on either the testing 

or validation dataset. 

Result Evaluation 

Dataset  Precision 

 FP32 FP16 BFLOAT16 INT8 

CAMELYON16 70.27 70.26 70.32 70.26 

ImageNet 77.62 77.57 78.41 76.85 

CIFAR-10 86.02 86.05 86.04 85.99 

Imagenette 75.87 75.87 75.9 75.13 

Table 2.2 Inference Accuracy (%) with Different Precision Quantized ResNet Model 

Table 2.2 shows accuracy evaluation with quantization on different datasets. We observed 

negligible variations in accuracy while using different precision and demonstrated the 

accuracy degradation of less than 1%. 
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2.5.2 Quantization with Single GPU 

We evaluate quantization effects for memory utilization and throughput on different 

image sizes to understand the benefits of quantization on small-scale image size. Figure 

2.4 and Figure 2.5 show perform evaluation on different image sizes, 256×256, 512×512, 

and 1024×1024 with batch size of 32 on ResNet101 model, and we compare our results 

with baseline FP32 precision. 

 

Figure 2.4  Throughput Evaluation on Single GPU 

 

Figure 2.5 Memory Utilization Evaluation on Single GPU 
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Figure 2.4 illustrates the throughput evaluation. FP16 improved performance by an 

average of 1.54× BFLOAT16 by 1.45×, and INT8 by 6.5×. As shown in Figure 2.5, we 

achieved an average memory reduction of 1.77×, 1.47×, and 4.55× with FP16, BFLOAT16, 

and INT8 precision, respectively. Overall, INT8 precision quantization appears to be the 

optimal choice for small-scale images with a Single-GPU. Further, with an image size of 

1024×1024, we observed a 6.29×memory reduction with a speedup improvement of 6.72×. 

2.5.3 Distributed DL Quantization Performance Evaluation 

In this section, first, we evaluate the performance benefits of using quantization in 

Distributed DL with respect to memory and throughput. Further, we evaluate benefits of 

spatial parallelism by enabling inference for very-high resolution images and accelerating 

performance. We will discuss each of these benefits in specific sections as outlined below. 

Memory Evaluation 

We profile memory footprints for an image size of 4096×4096 to analyze spatial 

parallelism with quantization. Figure 2.6 and Figure 2.7 illustrate the memory distribution 

on different GPUs. We perform an experiment configuration with 4 and 8 spatial parts, as 

shown in the figures, where one additional GPU is used for layer parallelism. Through 

quantization, we can halve memory requirements on each GPU compared to the memory 

required with a full-precision FP32 model. Overall, we achieve a memory reduction of 

1.57× with FP16 and 1.40× with BFLOAT16 when compared to the baseline FP32. 
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Figure 2.6  Memory footprints on 5 GPUs for SP+LP 

 

Figure 2.7  Memory footprints on 9 GPUs for SP+LP 

 

Throughput Evaluation 

We experimented with image sizes image sizes of 2048×2048 and 4096×4096, 

employing Spatial and layer Parallelism. We scaled the experiment with the number of 

spatial parts, ranging from 2, 4, to 8, where each part was distributed on a different GPU. 

For this experiment, we chose the maximum batch size supported for different GPU counts 

to utilize memory to its maximum extent. Due to partitioning into more parts across 
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different GPUs, we enabled a higher batch size. For example, with a resolution of 

2048×2048, we could not scale beyond a batch size of 16 as it would become out-of-core 

on a single GPU, but the batch size can be increased when we partition images using SP. 

 

Figure 2.8 Throughput Evaluation for 2048×2048 Image Size 

 

Figure 2.9 Throughput Evaluation for 4096×4096 Image Size 

 

Figure 2.8 shows throughput for 2048×2048 with batch sizes of 16, 32, and 64, on 

spatial parts 2, 4, and 8, respectively. Similarly, Figure 2.9 shows throughput for 

4096×4096 with batch sizes of 16, 32, and 64, on spatial parts 4, 8, and 16, respectively. 
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We compared the results with the baseline FP32. For 2048×2048, we achieved up to a 1.9x 

speedup with FP16 and 1.6× with BFLOAT16. For 4096×4096, we achieved up to a 1.55× 

speedup with FP16 and 1.65× with BFLOAT16. 

Enabling very high-resolution images 

FP32 precision ResNet101 model with image size 8192×8192, requiring total 

approximately 87GB memory with FP32, becomes out-of-core even with smallest batch 

size 1 on single GPU with 40GB memory. It requires to split image into a number of spatial 

parts to enable inference for 8192×8192. We enabled inference for an image size of 

8192×8192 with 4 GPUs for spatial partitioning. Figure 2.10 shows the overview and 

performance for image size 8192×8192 with 4 and 8 GPUs. 

 

Figure 2.10 Enabling inference for 8192×8192 with FP16 
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Figure 2.11 Accelerating performance with SP 

We further evaluate Spatial Parallelism to accelerate performance while scaling with 

respect to the number of GPUs. Figure 2.11 shows the performance comparison of SP on 

different GPUs (2, 4, and 8) with a baseline of a Single GPU. We achieve linear scaling, 

attaining up to a 1.8× and 2× speedup on 4 and 8 GPUs with BFLOAT16. 

2.6 Summary 

High-resolution images with Deep Learning come with their own set of challenges 

due to the large size of the image and deep networked DL models, making it 

computationally and memory intensive. However, research in high resolution in DL is 

crucial due to its applicability and efficiency, for example in digital pathology. Our efforts 

are focused on making trained DL models accessible for high-resolution image inference 

by reducing computation time and resource requirements. 

We proposed accelerated inference for high-resolution images utilizing quantization 

technique while reducing memory and computation and without accuracy degradation. We 
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provided support for single GPU as well as multi-GPU Distributed DL inference. We 

achieved overall 6.5x speedup and 4.55x memory reduction with single GPU with INT8 

quantization. With Distributed DL, we enabled inference for scaled images. We achieved 

1.58x speedup and 1.57x memory reduction using half-precision Distributed DL. We 

further accelerate performance by 2x using SP compared to single GPU. 

We hope that our work will facilitate researchers in achieving accessibility and 

efficiency in Deep Learning inference while reducing computational costs for their 

innovative research in the field of high-resolution images. 
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Chapter 3 MPI4DL: Distributed Deep Learning Parallelism 

Framework 

3.1 Introduction 

Deep learning (DL) has emerged as a pivotal tool in advancing vision tasks, 

offering a multitude of advantages that elevate its importance in this field. Its capability is 

well proven by its effectiveness in vision tasks such as image classification, object 

detection, and semantic segmentation, utilized in a wide range of real-world applications 

such as autonomous vehicles, healthcare imaging, surveillance, and augmented reality. We 

closely looked at one of such applications in digital pathology in previous Chapter 2.  

The architecture of DL models, characterized by deep convolutional layers, makes 

them memory, and compute intensive. Moreover, considering the large input and batch 

sizes, processing becomes time-consuming and may even not be able to accommodate in 

the available GPU memory. To enable training and inference for these models, as well as 

scale performance, we utilize Distributed Deep Learning with parallelism techniques such 

as Data Parallelism and Model Parallelism. Furthermore, advanced model parallelism 

techniques such as GEMS [8]  and PipeDream-Flush [30] have been proposed to reduce 

GPU underutilization. These techniques employ memory-aware designs, which we will 

discuss in detail in Section 3.4.1. To overcome limitations in model parallelism and enable 

the training of large input images or larger batch sizes, Spatial Parallelism [4] [5] has been 



23 

 

proposed. Furthermore, Hybrid Parallelism leverages the benefits of different parallelism 

paradigms by integrating them. 

However, the aforementioned advanced Model Parallelism, Spatial parallelism, and 

Hybrid parallelism still remain unavailable, restricting researchers from utilizing this work. 

Furthermore, it hinders researchers from conducting their own experiments to explore 

various parallelism techniques and select the parallelism method best suited to their 

specific requirements and available computing resources. When discussing the benchmarks 

provided by Deep Learning Parallelism Frameworks such as PyTorch [25] and DeepSpeed 

[31], it is noted that their support is limited to Data Parallelism, Layer Parallelism, and 

Pipeline Parallelism, lacking support for Bidirectional Parallelism, Spatial Parallelism, and 

Hybrid Parallelism. 

We understood the requirement of enable and accelerate large DL models and 

inaccessibility to recently proposed parallelism techniques for enabling and accelerating 

training. This hinders researchers to utilize proposed parallelism techniques for vision tasks 

and leverage its benefits. Thus, to overcome this challenge we proposed MPI4DL, 

Distributed Deep Learning Parallelism Framework. The effectiveness of this work is also 

evident, with over 755 clones to date. The implementation is available at 

https://github.com/OSU-Nowlab/MPI4DL. 

3.2 Proposed Solution 

MPI4DL is a Distributed Deep Learning Parallelism Framework implemented in 

PyTorch. It consists of GPU-enabled, accelerated, memory-aware parallelism techniques 

https://github.com/OSU-Nowlab/MPI4DL
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for ResNet and AmoebaNet vision models. The parallelism techniques include Data 

Parallelism, Layer Parallelism, Pipeline Parallelism, Bidirectional Parallelism (a memory-

aware parallelism to reduce underutilization of GPUs), Spatial Parallelism (parallelism 

technique to enable very large image sizes), and Hybrid Parallelism (integrates different 

parallelism techniques and leverage their benefits).  

3.3 Challenges and Solutions 

When it comes to different parallelism techniques, they involve various point-to-

point and collective operations, each with its unique communication pattern and workflow. 

These patterns become even more complex with Bidirectional Parallelism and Spatial 

Parallelism. For example, consider Figure 3.8 illustrating Bidirectional Parallelism. 

Models 1 and 2 are distributed across four different GPUs. Model 1 performs pipeline 

parallelism and uses point-to-point communication consecutively from GPU0 to GPU3, 

while the point-to-point communication for Model 2 occurs in reverse order, from GPU3 

to GPU0. Looking at another example, in Spatial Parallelism, we need to understand the 

halo exchange performed for convolution operations to obtain adjacent pixels. As shown 

in Figure 3.1, when we split image into 4 GPUs, GPU 1 will need to perform halo exchange 

with GPU 2, 3, and 4. When we split image onto 8 GPUs as shown Figure 3.2, in GPU5 

needs to communicate with 8 other GPUs (GPU1, 2, 3, 4, 6 ,7, 8,9). Thus, understanding 

the patterns of these communications is significant for efforts in implementing support. 
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In the case of Spatial Parallelism, it was previously implemented for either 4 or 8 

spatial parts, with each spatial part assigned to a separate GPU. However, this approach 

limited scalability. To address this limitation, we provided scalable implementation that 

supports configurations for any number of spatial parts. Our solution has been evaluated 

for scalability across a range of 2 to 128 GPUs. 

It is also required to meticulously understand different configurations for 

parallelism degree associated with different parallelism techniques to avoid deadlocks, and 

runtime errors. For example, for Hybrid Parallelism (Integrating Spatial, Model, 

Bidirectional Parallelisms), we need to make sure model replicas in Bidirectional 

Parallelism will not overlap with GPUs associated with Spatial Parallelism. Figure 3.3 and 

Figure 3.4 shows Hybrid Parallelism with different degrees of parallelism used for Spatial 

and Model Parallelism. Numbers inside the brackets ‘()’ refer to world rank of GPUs, 

whereas outside numbers refer to ranks used by model replica. In Figure 3.3, GPUs (1), 

(2), and (3) are involved in both model replicas of Bidirectional Parallelism, with each 

Figure 3.1 Distribution of spatial 

part on 4 GPUs in SP 
Figure 3.2 Distribution of spatial 

part on 8 GPUs in SP 
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model replica also undergoing Spatial Parallelism. This will lead to a deadlock since these 

GPUs are required to perform halo-exchange as part of spatial parallelism and point-to-

point communication as part of bidirectional parallelism. Thus, to avoid a deadlock 

condition, we ensure that there is overlap between the Spatial Parallelism (SP) of the first 

model replica and the SP of the second model replica, as shown in Figure 3.4. We 

recognized these challenges and addressed them by implementing validity checks before 

initiating parallelism. Furthermore, we provided benchmarks associated with all different 

parallelism techniques, accompanied by examples demonstrating configurations of varying 

degrees of parallelism. 

 

 
Figure 3.3 Hybrid Parallelism with 4 spatial parts and 2 model parts  

(INVALID configurations for parallelism degree) 
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Figure 3.4 Hybrid Parallelism with 4 spatial parts and 5 model parts  

(VALID configurations for parallelism degree) 

 

 

3.4 Design and Background 

In this section we will provide an overview of parallelism techniques and DL models 

utilized by MPI4DL. 

3.4.1 Distributed Parallelism Techniques 

Data Parallelism (DP)  

Data Parallelism is one of the simplest yet most efficient scalable approaches, where each 

model is replicated across GPU resources, and batches of data are distributed to each GPU 

for parallel processing. The gradients are then synchronized using the all-reduce collective 

operation. However, for large models or inputs of considerable scale, where the model 

cannot fit into a single GPU memory, Data Parallelism is not applicable. 
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Figure 3.5 Data Parallelism 

 

Model Parallelism (MP)  

Model Parallelism overcomes the limitation of Data Parallelism by partitioning the entire 

model across different GPU resources. Figure 3.6 illustrates Naïve Model Parallelism (also 

referred to as Layer Parallelism (LP)), where the data dependency between layers results 

in sequential processing. Consequently, only one GPU operates at any given instance, 

rendering the remaining GPUs idle. This inefficiency leads to the underutilization of GPU 

compute and memory resources. 

 

Figure 3.6 Layer Parallelism 
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Figure 3.7 Pipeline Parallelism 

 

Pipeline Parallelism (PP) overcomes the sequential execution inherent in Layer 

Parallelism by dividing the batch size into micro-batch sizes and executing each micro-

batch in a pipeline manner. Figure 3.7 illustrates the execution of Pipeline Parallelism 

across 4 GPU nodes. However, as shown in Figure 3.7, Pipeline Parallelism still encounters 

bubbles, where GPUs are not utilized. 

 

Bidirectional Parallelism  

Bidirectional Parallelism aims to decrease the bubble encountered in Model Parallelism by 

enabling model replicas to run in parallel. As shown in Figure 3.8, model replica 2 begins 

the forward pass once the last model part of model replica 1 completes the backward pass. 

This utilization of GPU resources by model replicas was ideal during the bubble region in 

the previously observed model parallelism. The gradients will be synchronized using point-

to-point operations once both model replicas complete the execution of the batch size. The 

effective batch size equals the number of model replicas batch size equals the number of 

model replicas multiplied by the batch size for each model replica. 
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Figure 3.8 Bidirectional Parallelism (GEMS) [8] 

 

Spatial Parallelism (SP)  

Spatial Parallelism solves the problem where the large input image size and given deep 

convolutional layer makes even single model layer not fit into GPU memory. For example, 

image size of 8192x8192 with ResNet101 model and batch size as one becomes out-of-

core model on NVIDIA-A100-40GB GPU. In Spatial Parallelism, the whole image is 

partitioned into smaller non-overlapping spatial parts and distributed across different 

GPUs. Further, convolution and pooling layers of the DL model are replicated on GPUs 

containing spatial parts and lastly, output layer will be replicated on single GPU 

undergoing LP.  
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Figure 3.9 shows overview of Spatial and Layer Parallelism. The digital pathology 

image is partitioned into 4 spatial parts, and the model is split into 2 parts. The first model 

split consists of compute and memory-intensive convolution and pooling layers, while the 

second and final model partitions contain the output layer. Each spatial part performs 

convolution and pooling operations given by first model split, and finally, the outputs are 

aggregated by second model split. 

In SP, Halo-Exchange Communication is required for convolution and pooling 

operations to receive adjacent pixels. For pixels located on the boundaries of the spatial 

segment, their adjacent pixels will be on different GPUs. Figure 3.10 illustrates the halo-

exchange required by the first spatial part with different GPUs to obtain adjacent pixels.  

 

 

Figure 3.9 Spatial Parallelism 

Figure 3.10 Halo Exchange 



32 

 

Hybrid Parallelism 

Hybrid Parallelism leverages the efficiency of each of the Parallelisms. For example, 

feature of enabling training for scaled images using spatial parallelism, will be integrated 

with bidirectional parallelism, which provides accelerated and memory efficient 

parallelism, Further, Data parallelism can also be integrated to scale and accelerate training. 

Figure 3.11 shows Hybrid Parallelism integrating different parallelisms techniques, namely 

Data Parallelism, Layer Parallelism, Pipeline Parallelism, Bidirectional Parallelism and 

Spatial Parallelism. 

 

Figure 3.11 Hybrid Parallelism [4] 

3.4.2 Support for Deep Learning Models 

MPI4DL utilizes ResNet [14] and AmoebaNet-D [16]; Both ResNet and 

AmoebaNet have excelled in various computer vision tasks, particularly image 

classification, where they have achieved state-of-the-art performance. ResNet 

revolutionized deep learning architecture with its pioneering use of residual blocks, 

featuring shortcut connections to alleviate the vanishing gradient problem in deep 

networks. By facilitating direct gradient flow, ResNet achieves state-of-the-art 
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performance in tasks like image classification. AmoebaNet-D is the evolution of the 

original AmoebaNet, developed by researchers at Google Brain. AmoebaNet incorporates 

a technique of automatically discovering optimal network architectures for a given task. It 

involves searching through a large space of possible network architectures to find the most 

effective ones. AmoebaNet-D was obtained by manually extrapolating the evolutionary 

process and optimizing the resulting architecture for training speed.  

3.5 Performance Evaluation 

For all experiments, the following hardware and software setups were utilized. 

Hardware Specifications 

NVIDIA A100-40 GB GPUs (2 GPUs per node) with AMD EPYC 7713 64-Core 

Processor. GPU nodes are connected via Mellanox HDR (200 Gbps) InfiniBand. 

Software Specifications 

PyTorch v1.13.1 [25] is used as DL framework. For the distributed communication 

backend, we used MVAPICH-GDR 2.3.7 [10].  
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3.5.1 Enabling training for scaled Images and accelerating training with SP 

 

Figure 3.12 Enabling and Accelerating DL training using Spatial Parallelism for 2048 × 2048 

Image Size with ResNet101 Model 

In this experiment, we evaluated ResNet101 with an image size of 2048 × 2048 

using Model Parallelism and Spatial Parallelism. In the case of Model Parallelism, 

ResNet101 was partitioned across 4 GPUs, resulting in a very large batch size to 

accommodate GPU memory. When Spatial Parallelism is used, we enable training by 

splitting spatial parts across 4 GPUs. Figure 3.12 also demonstrates the performance 

scalability with Spatial Parallelism as it scales with the number of GPUs.  

3.5.2 Model Parallelism and Spatial Parallelism 

Figure 3.13 and Figure 3.14 show the performance comparison of Model and 

Spatial Parallelism using the same computer resources of 5 GPUs. In the case of Model 

Parallelism, we partition the model into 5 parts across 5 GPUs. For a batch size of 2, we 

utilize Pipeline Parallelism. For Spatial Parallelism, we partition spatial parts on 4 GPUs, 

and one GPU will be utilized for the last output layer (fully connected and SoftMax layer 

as shown in Figure 3.9).  
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For both experimented image sizes, Spatial Parallelism outperforms Model 

Parallelism. Specifically, it provides 1.5× performance improvement with 1024 × 1024 

(Batch Size = 2) and 2.4× performance improvement with 2048×2048 (Batch Size = 2). 

 

Figure 3.13 Performance Evaluation of Pipeline Parallelism and Spatial Parallelism for 

AmoebaNet Model with 1024 × 1024 image size 

 

 
Figure 3.14 Performance Evaluation of Pipeline Parallelism and Spatial Parallelism for 

AmoebaNet Model with 2048×2048 Image Size 
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3.5.3 Hybrid Parallelism:  Spatial + Bidirectional Parallelism (GEMS)  

Next, we evaluate Hybrid Parallelism which integrates Spatial, Bidirectional, and 

Model Parallelism are used with two model replicas. We conducted experiments for 

AmoebaNet and ResNet with a 1024 × 1024 image size. When spatial parallelism is 

integrated with Bidirectional Parallelism, it provides up to a 2.5× improvement for 

AmoebaNet with a batch size of 4 and performs 2× better for ResNet with a Batch Size of 

4. Figure 3.15 and Figure 3.16 show the performance evaluation for Spatial Parallelism 

and Hybrid Parallelism.  

 
Figure 3.15 Performance Evaluation of Spatial Parallelism and Bidirectional Parallelism for 

AmoebaNet Model with 1024 ×1024 Image Size 
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Figure 3.16 Performance Evaluation of Spatial Parallelism and Bidirectional for ResNet101 

Model with 1024 × 1024 Image Size 

 

3.6 Summary 

Deep Learning has been widely used in vision tasks due to its remarkable 

capabilities. To accommodate large models, input size, and enhance performance, various 

parallelism techniques are utilized. Prominent research has been conducted in this area, 

leading to the existence of different parallelism techniques. However, not all of these 

parallelism techniques are yet available or supported by any Deep Learning Parallelism 

framework. Speaking about the benchmarks provided by PyTorch and DeepSpeed, their 

support is limited to Data Parallelism, Layer Parallelism, and Pipeline Parallelism, but does 

not include support for Bidirectional Parallelism, Spatial Parallelism, and Hybrid 

Parallelism. 

Thus, we proposed MPI4DL, Distributed Deep Learning Parallelism Framework. As 

of today, MPI4DL, is the first open-source work which provides all the state-of-the-art 

GPU-Enabled, memory-efficient, accelerated parallelisms techniques at single place. It 
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includes ResNet and AmoebaNet model support with parallelism, namely Data Parallelism, 

Layer Parallelism, Pipeline Parallelism, Bidirectional Parallelism, Hybrid Parallelism, 

Spatial Parallelism. The success of this work is also evident today, it has 755 clones. The 

implementation is made available at https://github.com/OSU-Nowlab/MPI4DL.  We aim 

for our work to assist researchers in utilizing cutting-edge parallelism techniques in Deep 

Learning vision tasks, speeding up training and lowering computational expenses for their 

research.  

https://github.com/OSU-Nowlab/MPI4DL
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Chapter 4 Leveraging MCR-DL: Mix-and-Match 

Communication Runtime for Deep Learning 

4.1 Introduction 

In the last two chapters, 0 and Chapter 3, we focused on accelerating training and 

inference by quantization and exploiting various parallelism techniques. However, it is 

essential to note that communication in Distributed DL significantly influences 

performance. Distributed DL uses Point-to-Point communication and various collective 

communications depending on the specific parallelism approach used. For instance, Tensor 

Parallelism utilizes All-Reduce, Sequence Parallelism employs Reduce-Scatter and All-

Gather, Pipeline Parallelism relies on Point-to-Point communication, and Data Parallelism 

utilizes All-Reduce. Furthermore, these communications also vary in terms of message 

sizes. Existing Distributed DL frameworks lack support for all communication operations 

and backends, and they do not support mixed-backend communication. MCR-DL [12] 

addresses this limitation by providing support for all communication operations. 

Additionally, for performance optimization, it facilitates Mixed-Backend communication 

and functionality for dynamically selecting the optimal backend based on the message size 

and collective operation requirements.  

Furthermore, rapid advancements in the MPI world, such as MVAPICH-PLUS, 

MVAPICH-GDR [9] [10], and other MPI libraries, along with NCCL [11], make it 
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essential to leverage their associated features in Distributed DL. However, the distributed 

module provided by DL frameworks does not cover all collective operations and often 

requires source building to support backends like MPI. MCR-DL simplifies this 

requirement by decoupling communication backends from PyTorch's distributed module. 

Understanding the significance of communication optimization in Distributed DL, 

we recognize the benefits of MCR-DL, such as providing mixed-backend support, 

dynamically selecting the optimal backend, and enabling easy integration of MPI backend 

for Distributed DL frameworks. Therefore, we are initiating efforts to make it available. 

The efforts to provide the open-source version of MCR-DL are in progress. Currently, 

version 0.1 of MCR-DL has been open-sourced and is accessible at 

https://github.com/OSU-Nowlab/MCR-DL. 

4.2 Design  

MCR-DL is a distributed module for DL frameworks with its mixed-backend 

communication support, dynamic selection of the optimal backend for a given collective 

based on the message size at runtime, and communication optimization enhancements such 

as compression and tensor fusion. 

MCR-DL is implemented as a C++ backbone beneath a thin Python interface, where 

importantly all the collectives are written in C++. The Python wrapper makes it accessible 

to all existing DL Distributed Frameworks, while also adding support for mixed 

communication backends and dynamically selecting the optimal backend for 

communication operations. 

https://github.com/OSU-Nowlab/MCR-DL
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4.2.1 API Usage:  

MCR-DL offers easy access and seamless integration with DL frameworks, 

requiring minimal code changes and programming efforts. Below is an example comparing 

torch.distributed and mcr_dl as Distributed Modules, highlighting the minimal effort 

required to integrate MCR-DL. 

In Code 1, torch.distributed is used as a distributed module with 'nccl' as the 

communication backend, while in Example 2, mcr_dl is used as a distributed module with 

'nccl' as the communication backend. The code changes are highlighted in both examples. 

Additionally, mcr_dl can be further configured with different backends by passing a list of 

user-available multiple backends, such as ['nccl', 'mpi']. These backends will later be used 

by mcr_dl to dynamically select the optimal backend for a given collective and message 

size, thereby improving performance.  

Example 1: Converting PyTorch Distributed Framework code to use MCR-DL  

Code 1: PyTorch with torch.distributed as a Distributed Module: 

1. import torch 
2. import torch.distributed as dist 
3.   
4.   
5. def all_reduce_bench(): 
6.     x = torch.ones(1, 3).to("cuda") * (dist.get_rank() + 1) 
7.     sum_of_ranks = (dist.get_world_size() * (dist.get_world_size() + 1)) // 2 
8.     result = torch.ones(1, 3).to("cuda") * sum_of_ranks 
9.     dist.all_reduce(x) 
10.     assert torch.all(x == result) 
11.           
12. def init_process(backend="nccl"): 
13.     # initialization necessary environment variables 
14.     .... 
15.     dist.init_process_group(backend) 
16.   
17. if __name__ == "__main__": 
18.     init_process(backend="nccl") 
19.     all_reduce_bench() 
20.  
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Code 2: PyTorch with mcr_dl as a Distributed Module: 

1. import torch 
2. import mcr_dl as dist 
3.   
4.   
5. def all_reduce_bench(): 
6.     x = torch.ones(1, 3).to("cuda") * (dist.get_rank() + 1) 
7.     sum_of_ranks = (dist.get_world_size() * (dist.get_world_size() + 1)) // 2 
8.     result = torch.ones(1, 3).to("cuda") * sum_of_ranks 
9.     dist.all_reduce(x) 
10.     assert torch.all(x == result) 
11.           
12. def init_process(backend="nccl"): 
13.     # initialization necessary environment variables 
14.     .... 
15.     dist.init_distributed(backend) 
16.   
17. if __name__ == "__main__": 
18.     init_process(backend="nccl") 

4.2.2 Mixed-Backend Communication 

We can initialize multiple communication backends through mcr_dl and later 

leverage these communication backends for mixing communication, as demonstrated in 

Example 2. To prevent deadlocks and ensure synchronization, each operation by 

independent communication backends needs to be synchronized, as shown in lines 15 and 

16. 

Example 2: Mixed-Backend Communication with mcr_dl 

1. import torch 
2. import mcr_dl as dist 
3.   
4. def tensor(): 
5.     return torch.rand(1,1) 
6.   
7. x = tensor().cuda() 
8. y = tensor().cuda() 
9. z = tensor().cuda() 
10. dist.init_distributed(['nccl', 'mpi']) 
11.   
12. h1 = dist.all_reduce('nccl', x, async_op=True) 
13. h2 = dist.all_reduce('mpi', y, async_op=True) 
14. z = z + z 
15. h1.wait() 
16. h2.wait() 
17. result = x + y + z 
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4.3 Performance Evaluation 

For all experiments, the following hardware and software setups were utilized. 

Hardware Specifications:  

NVIDIA A100-40 GB GPUs (2 GPUs per node) with AMD EPYC 7713 64-Core 

Processor. GPU nodes are connected via Mellanox HDR (200 Gbps) InfiniBand. 

Software Specifications 

PyTorch v2.0.1 [25] is used as DL framework. For the distributed communication backend, 

we used NCCL [11] and MVAPICH-GDR 2.3.7 [10].  

The following performance evaluations demonstrate the need for MCR-DL, specifically in 

terms of dynamically selecting the backend for different communication operations and 

message sizes. However, as the support of MCR-DL in Megatron-LM is experimental and 

currently in progress, application-level results are yet to be collected. 

Experiment Configuration Description 

The following experiments use the configurations 'torch nccl', 'torch mpi', 'pure nccl', and 

'pure mpi'. In this section, we provide explanations for each term to better understand the 

performance results.  

‘torch nccl’ and ‘torch mpi’: 

PyTorch comes with its own distributed module, which can be initialized with a given 

communication backend, such as 'nccl' and 'mpi'. When we use PyTorch's distributed 

module and initialize it with the 'nccl' and 'mpi' backends, we refer to them as 'torch nccl' 

and 'torch mpi', respectively. 

‘pure nccl’ and ‘pure mpi’: 
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MCR-DL distributed module comes with its own implementation for using 'nccl' and 'mpi' 

as backend communication, instead of relying on PyTorch's distributed module for 

collective operations. When we utilize the MCR-DL distributed module with the 'nccl' and 

'mpi' backend implementations provided by MCR-DL, we refer to them as 'pure nccl' and 

'pure mpi', respectively 

4.3.1 Performance Analysis with Different Configurations:  

Figure 4.1 and Figure 4.2 show the experiments using different configuration setups 

for All-Reduce and All-to-all collective operations. As can be observed, 'pure nccl' 

performs best for smaller message sizes (from 16B to 8MB), whereas 'torch nccl' provides 

better performance for message sizes above 8MB. In terms of the All-to-all benchmark, 

'pure nccl' performs consistently across all message ranges, whereas 'torch nccl' performs 

significantly better for large message sizes (from 1MB to 2GB). 

 

 
Figure 4.1 All-Reduce Performance with 2 GPUs using different configurations 
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Figure 4.2 All-to-all Performance with 2 GPUs using different configurations 

 

4.3.2 PyTorch’s Distributed Vs ‘pure nccl’/’pure mpi’ via MCR-DL: 

Figure 4.3 shows the performance results for the All-Gather collective operation 

with 'pure nccl' and 'torch nccl' on a 2-GPU setup. For large message sizes, 'pure nccl' 

performs significantly better than 'torch nccl'. However, when compared to the All-to-all 

benchmark as shown in Figure 4.4, 'torch nccl' performs better than 'pure nccl'. 

 
Figure 4.3 All-Gather Performance with 2 GPUs using different distributed modules 
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Figure 4.4 All-to-all Performance with 2 GPUs using different distributed modules 

Conclusively, as demonstrated in section 4.3.1 and 4.3.2, different collectives with 

different message sizes exhibit different performance and MCR-DL overcomes this 

limitation by dynamically choosing the best configuration for optimal performance.  

4.4 Summary 

In Distributed DL, communication plays a vital role in influencing performance, with 

various parallelisms employing different communication methods. Depending on the type 

of communication and message sizes, different communication backends offer varying 

performance advantages and disadvantages. Furthermore, existing DL frameworks often 

lack comprehensive support for communication operations and require intricate source 

building for backend support like MPI. To address these deficiencies, MCR-DL emerges 

as a solution, providing support for all communication operations, facilitating mixed-

backend communication, and dynamically selecting the most optimal backend based on 

specific needs. This further simplifies the utilization of any backend without dependence 

on the distributed module of a particular DL framework. Recognizing the benefits of MCR-
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DL we initiated efforts to make it available, and its success is evident by having more than 

250 downloads. These initiatives aim to help researchers by providing communication 

optimization for their DL applications across different Distributed DL frameworks.
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Chapter 5 Conclusion and Future Work  

In this thesis, we present quantization techniques, parallelism strategies, and 

communication optimization techniques aimed at improving the performance of 

Distributed Deep Learning applications. Firstly, we focused on inference leveraging 

quantization to reduce memory footprint and accelerate inference without accuracy 

degradation. We introduced support for up to INT8 quantization for single GPU setups and 

half-precision quantization in Distributed DL settings for scaled image inference. 

Secondly, we explored various parallelisms, their benefits, and drawbacks. We 

incorporated these designs as part of MPI4DL to leverage accelerated and memory-

efficient training, further enabling scaled image training. Lastly, we looked into a novel 

approach of mix-and-match communication to improve the performance by mixing 

communication and dynamically selecting communication backend to achieve optimal 

performance and overall optimize Distributed DL communication. 

In Chapter 2, we examined quantization, achieving significant performance 

improvements with int8 quantization while experiencing less than 1% accuracy 

degradation for inference. Recent research [32] [33] has also explored INT4 quantization 

on GPUs for transformer models, which led to a curiosity about potential of INT4 

quantization for vision models. Furthermore, extending INT4 and INT8 for Distributed DL 

could have a substantial impact. At present, we use TensorRT for INT8 quantization, which 
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also restricts support for INT8 quantization in Distributed DL. Additionally, supporting 

mixed precision training in MPI4DL could accelerate performance. Given that MCR-DL 

can be integrated with any Distributed DL application, MPI4DL stands as an example of 

an application that could further benefit from MCR-DL for communication optimization.
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