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Abstract

Accurate forecasting of weekly number of influenza (flu) lab tests and positive cases is

vital for hospitals to provide adequate patient care at the right time. It also helps

prevent shortages or overages of staffs and supplies. In this paper we present a practical

implementation of a Bayesian Kalman filter to forecast weekly flu test and positive

cases in a hospital environment. By integrating real time hospital data, this framework

offers a robust methodology for accurately predicting flu volume one to four weeks

out with a reasonable accuracy.
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Chapter 1: Introduction

Influenza places a significant burden on the US health care system annually [3]. Ac-

cording to [5] (CDC), between 2010 and 2023, about 9.3 million to 41 million influenza

illnesses occured annually, resulting in 100,000-710,000 annual hospitalizations and

4,900-51,000 annual deaths. For the most recent seasonal year (2022-2023), CDC

estimates about 31 million illnesses with 360,000 hospitalizations and 21,000 deaths.

During an influenza seasonal year, the provision of optimal patient care within a

hospital system requires effective preparations for incoming influenza patients [6, 8].

Hence, accurate seasonal influenza volume estimates are paramount to facilitate

resource allocation, budgeting, and delivering quality patient care. This underscores

the importance of developing a predictive model that enables hospitals to anticipate

and accommodate fluctuations in weekly case volumes. By accurately forecasting

weekly influenza cases one to four weeks out, our objective is to help hospital system

strategize resource allocation, preemptively adjust staffing levels, optimize operational

workflows to accommodate patient surges effectively and ensure an adequate supply

of beds and laboratory test specimens.

The data used for this project is collected from OhioHealth, a mid-sized nonprofit

hospital system in central Ohio. We extracted data on the weekly count of all

1



laboratory tests performed and the resulting positive cases, from September 2016 to

August 2023. This period was chosen since the health system implemented a new

Electronic Medical Record (EMR) system mid 2015, and reliable data was available

only beginning September 2016 for all locations.

For our analysis, we defined a seasonal influenza year as starting from September of

that calendar year and ending in August of the subsequent year. The data includes

all patients who had an influenza lab test order at one of the hospital locations and

whether they tested positive [21, 7]. In total, we had seasonal influenza data for 8

different years (September 2016 to August 2023).

Compartmental epidemic models [12], such as the Susceptible-Infected-Recovered

(SIR) model, offer valuable insights into the dynamics of infectious diseases, they

are often geared towards understanding broader epidemiological trends, such as peak

times and transmission rates, etc. Recent approaches linking SIR to survival analysis,

as in [14, 13] and [19], were instrumental during the COVID-19 epidemic.

For further insights into the Extended Kalman Filter (EKF) methodology employed

in influenza modeling study, readers are encouraged to refer to the work by [22].

Additionally, for a comprehensive understanding of nationwide influenza forecasting,

the CDC’s publications on influenza Forecasting [15] provide valuable context and

insights into the recent development. For the immediate decision-making needs within

hospital systems, where timely care for patients is critical [17], our focus lies in

short-term prediction using readily available hospital data by taking advantage of the

Kalman filter methodology.
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The rest of the manuscript is organized as follows. Chapter 2 gives a gentle introduction

to both linear Kalman filter and Bayesian Kalman filter methodologies to estimate

parameters for forecasting weekly influenza lab tests and positive cases. It details the

development of our final models, including the derivation of informative priors Section

2.4 from other seasonal years for the Markov Chain Monte Carlo (MCMC) estimation.

In Chapter 3, we assess the performance of our final models by comparing actual

versus predicted values over a forecasting horizon of 1-4 weeks, evaluating performance

metrics such as Mean Absolute Deviation (MAD) and coverage probability. Finally,

we highlight the strengths and weaknesses of our model in the Chapter 4, along with

suggestions for further improvements.
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Chapter 2: Methods

In this paper, we propose a bivariate linear Kalman filter to simultaneously model

and predict weekly total influenza tests (T ) and the resulting positive cases (P ) in

the OhioHealth hospital system. The assumption is that both T and P are influenced

by the unknown true incidence of influenza in the source population. By adjusting for

this hidden state using a Kalman filter, we hope to extract a meaningful signal from

noisy data.

While the dynamics of infectious disease epidemics, such as influenza, are inherently

nonlinear and subject to complex interactions, our focus lies on short-term predictions

(1 to 4 weeks), where it is reasonable to approximate the influenza dynamics as locally

linear. Because the Kalman filter is an optimal filter for a linear Gaussian process, it is

expected to provide a good reconstruction of the means of T and P using aggregated

weekly data. The use of a Bayesian framework allows us to borrow information from

other seasonal years to create informative priors for the MCMC estimation process,

[10].
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2.1 Linear Kalman Filter

The Kalman filter, which was first introduced by Rudolph Emil Kalman, is a method

for state estimation in a dynamic system [11]. It has since been used in many areas,

such as robotics motion planning, object navigation, signal processing, and wireless

networks to extract signals from noisy data. At a basic level, the Kalman filter

estimates the true state of a system at a current step (say t) by combining the estimate

made at the previous step (t − 1) for the current step (t) with the currently observed

value (at t) to better approximate the true state of the system at t. The current

observed value is assumed to be noisy (e.g., due to faulty devices) and need a way to

get a precise estimate of its true value. The aim of a filter is to find optimal values for

the parameters by reducing the deviance between the predicted state and observed

value.

A Kalman filter has two steps that operate at each time step: the predict step and

the update step 2.1. The state equation predicts the value at the next time step with

uncertainty estimated through an uncertainty extrapolation equation. After observing

the value at the next time step (which is assumed to include some error), this estimate

is then updated according to a factor called the Kalman gain. The filter then uses the

updated predictions and the state equation to predict the next step value, and the

system goes on in a loop. The filter has been extensively discussed in the literature,

and details can be found in [18], for example.
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Figure 2.1: Predict and update step in a Kalman filter.

Consider a bivariate state space model [SSM, 1] whose state and observation equation

is linear with multivariate normally distributed error, which can be defined as follows:

• State Equation:

St = FSt−1 + Et−1, (2.1)

where
Et−1 ∼ MVN(0, Σs), Σs =

(
σ2

T ρsσT σP

ρsσT σP σ2
P

)
,

F =
(

ϕ1 0
0 ϕ2

)
, and St =

(
Tt

Pt

)
.

• Observation Equation:

Ot = HSt + Vt, (2.2)
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where

Vt ∼ MVN(0, Σo), Σo =
(

ν2
T ρoνT νP

ρoνT νP ν2
P

)
, Ot =

(
To,t

Po,t

)
,

and H is a data transformation matrix (often an identity matrix).

Following [2] and [16], the set of equations that are needed in a Kalman filter to

perform the predict and update step are given by:

1. Predict Step:

• Estimate next state value:

Ŝt+1,t = FŜt,t; (2.3)

• Estimate next state variance:

P̂t+1,t = FP̂t,tF
⊤ + Σs; (2.4)

where P̂t,t is defined recursively in equation (2.7).

2. Update Step:

• Compute Kalman gain (K):

K̂t = P̂t,t−1H
⊤(HP̂t,t−1H

⊤ + Σo)−1; (2.5)

• Update state estimate:

Ŝt,t = Ŝt,t−1 + K̂t(Ot − HŜt,t−1); (2.6)

• Update state variance:

P̂t,t = (I − K̂tH)P̂t,t−1(I − K̂tH)⊤ + K̂tΣoK̂
⊤
t . (2.7)

7



2.2 Bayesian Kalman Filter

The setup of a bivariate Kalman Bayesian Markov Chain Monte Carlo (MCMC) model

is shown in Algorithm 1.

Algorithm 1 Bayesian Kalman Filter.
Require: Initialize step, at t = 0:

Ŝ1,0 = Sinit,

P̂1,0 = Pinit.

for t in 1 to n do:
1. Compute Kalman gain using 2.5.
2. Perform state and variance update using update equations given in 2.6 and

2.7 to obtain (Ŝt,t, P̂t,t);
3. Predict the next state value using updated estimates and transition equation

such that,

Ŝt+1,t ∼ MVN(FŜt,t, (FP̂t,tF
t + Σs));

4. Assume multivariate normal distribution for observations, such that

Ot+1 ∼ MVN(Ŝt+1,t, Σo).

end for

The objective of the Algorithm 1 is to estimate the parameters (F , Σs and Σo), such

that predicted state values Ŝt+1,t provides us with estimates and uncertainty of the

hidden states reflecting the true incidence means better than the observed observations

Ot+1, which are considered to be noisy.

2.3 Final model for weekly lab test and positive case incidence

We analyzed and modeled each seasonal influenza year independently but borrowed

information from other years to construct an informative prior for all the parameters
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to be estimated through MCMC sampling. For example, when we analyzed 2016

seasonal data, information from 2017 to 2023 was used to generate an informative

prior on all model parameters. Similarly, when we analyzed 2020 seasonal year data,

we borrowed information from year 2016 to 2019 and 2021 to 2023. The rationale for

this approach is that each influenza season has different dynamics [4]. By modeling

each year independently, we allow the model to reflect this variation between years.

By using an informative prior based on other years, we take advantage of the fact that

some patterns are shared across influenza seasons. See Section 2.4 for more details on

how the priors were constructed.

2.3.1 Influenza Lab Tests Model

To model the number of weekly lab tests, we considered an ensemble model which

integrates the estimates from two different Bayesian Kalman filter setups. After

iterating through various model specifications, we found that the ensemble of two

distinct Kalman filters produced the best results in terms of Mean Absolute Deviation

(MAD) and coverage probability metrics. Specifically, the first model in the ensemble

excelled in predicting week 1 cases, while the second model performed better for

week 4 predictions. Therefore, combining these two models enabled us to optimize

predictions made 1 to 4 weeks ahead.

The first model employs a straightforward bivariate autoregressive of order 1 or AR(1)

framework for total lab test and positive cases, similar to the one we considered for the

bivariate state space model 2.1. Within this framework, we modeled the uncertainty

by specifying unknown state and observation covariance matrices (i.e., the correlation

of errors between the two series in each matrix is non-zero). The matrix H is the

9



identity matrix, and we estimate the F matrix, the AR(1) parameter matrix, and the

state and observation covariance matrices ΣS and ΣO. The priors for the parameters

are informative with information borrowed from other seasonal years.

In contrast, the second model assumes zero correlation between the two series, decou-

pling their respective dynamics. By assuming zero correlation between the two series,

we treat each series as an independent normal distributed random variable, effectively

decoupling their respective dynamics. The model has a first-order autoregressive pa-

rameter, F matrix, and state and observation variance terms, Σs and Σo, respectively

to be estimated through MCMC sampling. Again, the priors are informative with the

information borrowed from other seasonal influenza years.

We combined the two models within a Bayesian hierarchical framework to produce an

ensemble estimate such that M1W1 + M2(1 − W1). This hierarchical setup facilitates

the integration of two models through an unknown weight parameter, W1, governing

the relative influence of each model. Critically, W1 is not predetermined but instead

inferred directly from the data with an informative beta prior, allowing the data to

dictate the influence of each model on the final predictions.

2.3.2 Influenza Positive Cases Model

For the weekly number of positive influenza cases, we considered a bivariate Kalman

filter on a difference scale (d = 1). The structure of this model is very similar to

the model considered for total lab test Section 2.3.1 with few modifications. First,

the two series were decoupled such that the correlation of their error terms is zero in

both state and observation covariance matrix. Second, each series not only depends

on the lagged value of its own but also the lagged value of the second series (see F
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matrix structure below). Third, the second series,Pt, (positive cases volume) has a

covariate matrix Xt−1, which is a smoothed total test volume derived by smoothing

other seasonal year data. For example, if we are analyzing 2016 data, we derived a

smoothed total lab tests volume from seasonal year 2017 to 2023. Finally, we did not

use ensemble technique and only one bivariate Kalman filter was used. The priors for

the parameters, F, W, Σs, Σo are informative with information borrowed from other

seasonal years, Section 2.4. Note, W is the coefficient for smoothed predictor Xt−1 to

be estimated.

• State Equation:

St = FSt−1 + WXt−1 + Et−1,

where
St =

(
∆T t

∆P t

)
, F =

(
ϕ11 ϕ12
ϕ21 ϕ22

)
,

Σs =
(

σ2
T 0
0 σ2

P

)
, Et−1 ∼ MVN(0, Σs);

• Observation Equation:

∆Ot = HSt + Vt,

where
Vt ∼ MV N(0, Σo),

Σo =
(

ν2
T 0
0 ν2

P

)
, ∆Ot =

(
∆To,t

∆Po,t

)
.

2.4 Priors for Bayesian Kalman Filter Model

In the Bayesian Kalman filter model for estimating weekly lab tests and positive cases

volume, we utilized informative priors by incorporating relevant historical information

to enhance the estimation process. We formed informative priors for key parameters

the autoregressive matrix (F ), the state (Σs) and observation (Σo) covariance matrix,

11



and the weight parameter (W1) (only for lab tests model). These priors are designed

to leverage insights from other seasonal influenza years, thereby enabling our model

for more accurate and robust estimation. This is also one of the main reason why we

decided to use Bayesian MCMC estimation for the Kalman filter. Below is a high

level summary.

Algorithm 2 Informative Prior Construction
for Model in totalLabTests and positiveCases do:

for SeasinalY ear in 2016 to 2023 do:
1. Define a non-informative prior for model parameters (F , Σs, Σo, W1).
2. Using Algorithm 1, perform MCMC sampling using the appropriate Model

discussed in Section 2.
3. For each model parameter, extract mean and standard deviation from the

posterior distribution
end for

end for

The approach in Algorithm 2 allowed us to capture the different influenza dynamics

in the other seasons. For example, to create informative priors for 2016 positive cases

model parameters (F , Σs and Σo), we initially ran the final positive case bivariate

Kalman filter model discussed in Section 2.3.2 independently for each seasonal year

(2017 to 2023), assuming a non-informative beta prior for F and a non-informative

uniform prior for Σs and Σo. We combined the resulting posterior distribution of each

model parameters, using mean and standard deviation, for seasonal years (2017 to

2023) to create an informative beta and uniform priors for the 2016 influenza season.

A similar approach was employed for deriving informative priors for the final lab tests

model for each seasonal year in the final lab tests model, Section 2.3.1.
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2.4.1 AR Parameters

For the AR parameters, we first ran uninformative beta priors and the hyperparameters

were set by borrowing information from other seasonal influenza years. By leveraging

the patterns and dynamics observed in the other influenza seasons, we enhanced

the model’s ability to capture the temporal dependencies inherent in the influenza

process. Here, we chose a beta prior because often the case that in a influenza cycle

the incidences of cases are often positively correlated over time.

F =
(

ϕ11 ϕ12
ϕ21 ϕ22

)
, ϕij ∼ Beta(aij, bij)

2.4.2 State and Observation Covariance Matrix

Informative priors were incorporated for the state and observation covariance matrix,

which govern the uncertainty in the state dynamics and the relationship between the

observed data and the underlying state variables. We first used an uninformative

uniform prior and then estimated the hyperparameters using posterior data from other

seasonal years. By using the covariance patterns observed in these years, we ensure

that the model appropriately accounts for the variability and correlation present in

influenza volume data. For instance, consider state and observation covariance matrix

below, all the hyper parameter values were formed from other seasonal years.

Σs =
(

σ2
T ρsσT σP

ρsσT σP σ2
P

)
, Σo =

(
ν2

T ρoνT νP

ρoνT νP ν2
P

)
,

σT ∼ Unif(Ts.a, Ts.b), σP ∼ Unif(Ps.a, Ps.b),

ρs ∼ Unif(ρs.a, ρs.b), νT ∼ Unif(To.a, To.b),

νP ∼ Unif(Po.a, Po.b), ρo ∼ Unif(ρo.a, ρo.b).

13



2.4.3 Ensemble Weight Parameter

Finally, in the ensemble model for total lab cases, the weight parameter, W1, is

informative beta prior and the information is borrowed from other influenza years

using the process described in Algorithm 2.

W1 ∼ Beta(Wa, Wb).

14



Chapter 3: Results

3.1 Data Summary

The dataset encompasses weekly counts of lab test and influenza cases recorded across

multiple seasonal years, spanning from September 2016 to August 2023, extracted

from a Hospital EMR system. Notably, the dataset includes observations from both

traditional influenza seasons (2016 to early 2020) and COVID years (early 2020 to

2023), during which the testing and incidence for COVID-19 significantly impacted

public health surveillance efforts and confounded the lab test and influenza case

volume.

Figure 3.1 plots the incidence of weekly lab test and positive cases across different

seasonal years. Figures 3.2 and 3.3 depict a box plot of lab tests and influenza

case counts by seasonal year, providing a visual representation of the variability and

distribution of flu activity across different years. The inclusion of COVID years in

the dataset underscores the dynamic nature of public health surveillance and the

challenges posed by overlapping epidemics and introduces confounding factors, such

as increased COVID test volume and heightened awareness of respiratory illness. We

can clearly see that volume of lab tests is significantly higher during the COVID years

highlighting this confounding. This was also one of the reason why we modeled each
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influenza season independently but borrowed information from one another through

informative priors.
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Figure 3.1: Weekly incidence of lab tests and positive cases by seasonal years. Total
lab test volume (in red) and positive case volume (in blue).
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Figure 3.3: Box plot of positive cases by influenza seasonal year.
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3.2 Predicting influenza lab tests and positive cases using a
rolling 4 weeks out forecast

The predictive performance of the model was evaluated using a rolling forecasting

framework, where forecasts were generated for the next weeks 4 out at each forecasting

horizon, weeks 4 to 52 of a seasonal year. The predicted volume, along with their

corresponding 95% credible intervals, were compared against the actual cases for each

forecasting horizon. Figures 3.4-3.7 illustrate the comparison.

The rolling forecast methodology involved generating forecasts 1 to 4 weeks ahead

using a rolling window (horizon) that started at week 4 and extended up to week 52 of

the seasonal year. At each iteration of the rolling window, the model was trained on

historical flu data up to the forecast horizon, and predictions (and credible intervals)

were made for the next 4 weeks from the forecasting horizon.
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Figure 3.4: Total lab test actuals vs. prediction 1 to 4 weeks out (non COVID years).

19



1 2 3 4

2021
2022

2023

10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

0
5000

10000
15000
20000

0
5000

10000
15000
20000

0
3000
6000
9000

Seasonal Week

La
b 

te
st

Actual Predict

Figure 3.5: Total lab test actuals vs. prediction 1 to 4 weeks out (COVID years).
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Figure 3.6: Positive cases actuals vs. prediction 1 to 4 weeks out (non COVID years)
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Figure 3.7: Positive cases actuals vs. prediction 1 to 4 weeks out (COVID years).

3.3 Assessment of Predictive Performance

The accuracy and reliability of the predictions were assessed using mean absolute

deviation (MAD), and percent of observations contained with in the 95% credible

intervals (coverage probability) for each of the predictions made 1 to 4 weeks out.

Figure 3.8 illustrates the performance of the models.
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Figure 3.8: Model performance. Mean absolute deviation (MAD) and coverage
probability for total lab test (top) and for positive cases (bottom).

3.4 Summary and Results

For predictions made for 1 and 2 weeks ahead, the model demonstrated robust

performance, with MAD and coverage probabilities within acceptable values, indicating

accurate predictions for both lab tests and positive cases. Week 3 predictions also

exhibited satisfactory performance, albeit with a slightly higher MAD value and

lower coverage probability. However, the model encountered challenges in predicting

volume 4 weeks ahead. Week 4 predictions showed slightly elevated MAD values and
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lower coverage probabilities compared to earlier forecasting horizons underpinning the

difficulty in predicting the lab test and positive case volume four weeks out.

Note that we implemented two distinct bivariate models to forecast weekly influenza

lab tests and positive cases, with each model focusing on optimizing performance for

its respective outcome. The lab tests model excelled in predicting lab test volume even

though both lab tests and positive cases were modeled together, while the positive

case model demonstrated better accuracy in predicting positive cases.
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Chapter 4: Discussion

In summary, the prediction model demonstrated satisfactory performance for fore-

casting horizons of one to four weeks out. These forecast can be made and updated

weekly with real time hospital data and can be modified to produce for a specific

hospital location or catchment area. The model’s accuracy was slightly diminished for

predictions made four weeks ahead, highlighting the inherent challenges with long-term

forecasting and reflecting heterogeneities in influenza transmission dynamics during a

seasonal year [23]. We experimented different Kalman filters with various ARIMA

parameters (p,d,q) including a model using the KFAS package [9]. Our selection of the

final model was based on minimizing the MAD and optimizing coverage probability.

Through an iterative process, we identified the final models, for total lab test and

positive case volume, that balanced accuracy and reliability in forecasting weekly

influenza lab tests and positive cases.

While our study employed a linear Gaussian Kalman filter for forecasting weekly

influenza lab test and positive cases, it is important to acknowledge that these outcomes

are better modeled as count processes, such as Poisson distributions. Although the

version of the Kalman filter discussed in this paper is optimal only for linear Gaussian

processes, we opted to remain within the Gaussian realm for our modeling approach
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because it can be a reasonable approximation for large count data. An avenue

for improvement is to adopt a count process framework and refining the Kalman

filter methodology [20] to better accommodate the non linearity and count nature of

influenza. These findings underscore the need for further research and refinement of

modeling approaches to improve the accuracy and reliability of influenza forecasting.
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