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Abstract

In this dissertation, we study the dynamical and number theoretical behaviors of orbits

of lattices in homogeneous spaces. This work is composed of three relatively independent

topics.

The first part explores the Diophantine approximation and dynamical properties of the

successive minima of Euclidean lattices. We define Diophantine approximation properties

and Dani’s correspondence with respect to higher successive minima and use a variational

principle in parametric geometry of numbers to show that badly approximable matrices

of higher orders have full Hausdoff dimension. We also establish estimates of the Haar

measure of the sublevel sets of successive minima functions in the space of unimodular

lattices. We also prove a few number theoretical and dynamical properties associated to

successive minima.

The second part, based on a joint work with Michael Bersudsky, establishes an equidis-

tribution phenomenon of dense orbits in a space of sublattices of rank m in Rm+1 under

discrete group actions. We study the limiting distribution of dense orbits of a lattice sub-

group Γ ≤ SL(m + 1,R) acting on H\SL(m + 1,R), with respect to a filtration of growing

norm balls. One of the main challenges in this work is that the groups H we consider have

infinitely many non-trivial connected components. For a specific such H, the homogeneous

space H\G identifies with Xm,m+1, a moduli space of (oriented) rank m-discrete subgroups

in Rm+1. The proof uses linearization technique and duality principle.
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The third part, based on a joint work with Michael Bersudsky and Nimish Shah, studies

the equidistribution of definable curves in a polynomially bounded o-minimal structure in

homogeneous spaces. For an algebraic subgroup G ≤ SL(n,R) and a lattice Γ ≤ G. We

consider definable curves {γ(t)} ⊂ G in a polynomially bounded structure that are unipotent

upper triangular and show such curves are equidistributed along its orbit closure under

homogeneous measure. The proof relies on linearization technique and (C, α)-good properties

for certain families of definable functions in a polynomially bounded o-minimal structure.
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Chapter 1: Number theoretical and dynamical properties of

sucessive minima of lattices

Throughout this chapter, all norms of vectors in an Euclidean space without specification

are assumed to be the maximum Euclidean norm.

1.1 Diophantine approximation and successive minima of lattices

1.1.1 Dirichlet’s Theorem and Diophantine Approximation

Diophantine approximation is a branch of number theory studying the approximation of

real numbers by rational numbers. The first known result of this kind is due to Adrien-Marie

Legendre, which can be proved by the Pigeonhole Principle:

Theorem 1.1.1 (Legendre, 1808). For any real number x and every Q > 1, there exists an

integer vector (p, q) ∈ Z2 such that

|xq − p| < 1

Q
and 0 < q < Q.

The Classical multidimensional version of approximation theorem, Due to Johann Peter

Gustav Lejeune Dirichlet, states that

Theorem 1.1.2 (Dirichlet’s approximation theorem [Dir42], 1842). For every real m × n

matrix A and every Q > 1, there exists an integer vector p ∈ Zm and q ∈ Zn such that

‖Aq − p‖ < 1

Q
n
m

and 0 < q < Q.
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The modern proof of Dirichlet’s approximation theorem often uses a generalized version

of “Pigeonhole Principle” for lattices in Euclidean spaces, called the (first) convex body

theorem, due to Hermann Minkowski, applied to an appropriately chosen convex set1:

Theorem 1.1.3 (Minkowski [Min96], 1889). Suppose that L is a unimodular lattice in Rd

of covolume 1 and S is a convex subset of Rd that is symmetric with respect to the origin

(namely x ∈ S if and only if −x ∈ S). If the volume of S is strictly greater than 2n, then S

must contain at least one lattice point other than the origin.

1.1.2 Matrix diophantine approximation and Dani’s correspon-
dence principle

We begin by introducing two classes of matrices that generalizes the Diophantine ap-

proximation of real numbers.

Definition 1.1.4. Let M denote the set of all m × n matrices with real entries. A matrix

A ∈M is called singular if for all ε > 0, there exists Qϵ such that for all Q ≥ Qϵ, there exist

integer vectors p ∈ Zm and q ∈ Zn such that

‖Aq + p‖ ≤ εQ−n/m and 0 < ‖q‖ < Q (1.1.1)

Here ‖ · ‖ denotes an arbitrary norm on Rm or Rn. We denote the set of singular m× n

matrices by Sing(m,n).

An m × n matrix A is called badly approximable if there exists c > 0 such that for all

integer vectors p ∈ Zm and q ∈ Zn − {0} we have

‖Aq + p‖ ≥ c‖q‖− n
m .

We denote the collection of badly approximable m× n matrices by BA(m,n).
1For the special case when m = n = 1, this convex set can be chosen as

S =

{
(x, y) ∈ R2 : −N − 1

2
≤ x ≤ N +

1

2
, |αx− y| ≤ 1

N

}
.

2



Example 1.1.5. When m = n = 1, being singular is the same as being rational. If A is a

rational number, then it trivially satisfies (1.1.1). Conversely, by Hurwitz’s approximation

theorem [BE02], given any irrational number α, there exist infinitely many rational numbers

p/q with (p, q) = 1 such that

|α− p

q
| < 1√

5q2
,

and that
√
5 is optimal. So if ε < 1√

5
, then there exist integers p, q with (p, q) = 1 such that

|α− p
q
| > ϵ√

5
which fails (1.1.1).

By Liouville’s theorem [EW11], any quadratic irrational (solutions to quadratic equations

over Z) is badly approximable, but it is unknown whether all algebraic numbers are badly

approximable.

The sets of badly approximable and singular matrices are linked to homogeneous dy-

namics via the Dani correspondence principle. For each t ∈ R and for each matrix A, let

gt :=

[
et/mIm 0

0 e−t/nIn

]
and uA :=

[
Im A
0 In

]
, where Ik denotes the k-dimensional identity

matrix.

By the Dani’s correspondence principle ([Dan85]), the Diophantine properties of A and

the dynamical properties of the orbit (gtuAx0)t≥0 (which consists of unimodular lattices)

can be summarized in the following table. Write x0 = Zm+n ,an element in the space of

unimodular lattices in Rm+n, also identified with the neutral element in SL(m+n,R)/SL(m+

n,Z):

Theorem 1.1.6. Let G be a Lie group and Γ be a unimodular Lattice in G. Consider the

G-homgeneous space X := G/Γ, equipped with the G-invariant Borel probability measure µX .

Then the G-action on X is ergodic.

3



Diophantine properties of A Dynamical properties of (gtuAx0)t≥0

A is badly approximable (gtuAx0)t≥0 is bounded
A is singular (gtuAx0)t≥0 is divergent

Table 1.1: Dani’s correspondence.

Proof. Let µG be a left Haar measure on G. Let f ∈ L2(X,µX) be such that f is invariant

under G-action, namely for any g ∈ G

f(g.x) = f(x), for µX-almost every x.

We will show that f is a constant almost everywhere with respect to µX .

Consider the product space G×X. We will apply Fubini-Tonelli Theorem to the function

|f(g.x)− f(x)| on G×X:

0 =

∫
G

∫
X

|f(g.x)− f(x)|dµXdµG =

∫
X

∫
G

|f(g.x)− f(x)|dµGdµX .

Hence, 0 =
∫
G
|f(g.x) − f(x)|dµG(g) for µX-almost every x ∈ X. Therefore for almost

all x ∈ X (and in particular there exists x ∈ X), there exists U ⊂ G with µG(U) = 1 such

that for every g ∈ U ,

f(g.x) = f(x).

That f is µX-almost everywhere constant follows from the claim below.

Claim: µX(U.x) = 1 for any x ∈ X.

To show this claim, we use the quotient integral formula (See for example Theorem 1.5.3

in [DE14] or Theorem 2.51 in [Fol15]):

Take h = 1(G−U)g0 , noticing that µ((G − U)g0) = 0 because of the unimodularity. Now

let µΓ be a Haar measure on Γ, by the the quotient integral formula and Fubini’s theorem

4



we have:

0 =

∫
G

hdµG =

∫
G/Γ

∫
Γ

h(gγ)dµΓ dµX =

∫
Γ

∫
G/Γ

h(gγ)dµX dµΓ.

Since Γ is countable, the Haar measure on it must be a scalar multiple of counting

measure. So we must have for every γ ∈ Γ, in particular for γ = e,

0 =

∫
G/Γ

h(g)dµX = µX((G− U)g0Γ).

Since g0 ∈ G is arbitrary, and by the transitivity of the action, G/Γ−Ux is contained in

(G− U).x, we are done.

Theorem 1.1.7 (See Chapter III Corollary 2.2 of [BM00]). If a simple Lie group with finite

center acts ergodically on a probability space X, then every subgroup of G with a non-compact

closure is strongly mixing, and thus ergodic on X.

It follows from the ergodicity of (gt)-action on SL(m+n,R)/SL(m+n,Z) and the equidis-

tribution of orbits under ergodic actions that BA(m,n),Sing(m,n) and VSing(m,n) all

have Lebesgue measure zero.

To further investigate the sets with various Diophantine properties, we will look into their

fractional dimensions. In order to compute the Hausdorff dimension of badly approximable

numbers and matrices, Schmidt invented the following topological game [Sch66] [Sch69]

called Schmidt Games:

Choose two parameters 0 < α < 1 and 0 < β < 1. Two players, called Alice and Bob,

will play the following game:

• First Bob choose a closed ball B1 in Rd;

• Then Alice choose closed ball A1 ⊂ B1 in Rd whose radius is α times the radius of B1

5



• Next Bob chooses a closed ball B2 ⊂ A1 whose radius is β times the radius of A1

• Then Alice chooses a closed ball A2 ⊂ B2 whose radius is α times the radius of B2

• · · · · · ·

We call a sequence of choices by Alice (resp. Bob) depending on the choices of Bob (resp.

Alice) a strategy. A set S ⊂ Rd is called (Alice)-winning if Alice has a strategy to make sure

(no matter how Bob chooses his strategy), we have

∩∞
k=1Ak ⊂ S.

Schmidt proved the following

Theorem 1.1.8 (Theorem 2, [Sch69]). The set of badly approximable matrices in Rm×n is

a winning set.

Theorem 1.1.9 (Corollary 2 to Theorem 6, [Sch66]). Any winning set in an Euclidean space

is of full Hausdorff dimension.

By introducing a modified version of Schmidt’s game, Kleinbock and Weiss [KW10]

proved that the set of weighted badly approximable matrices is also winning and thus of full

Hausdorff dimension. Specifically,

Theorem 1.1.10. For ri, sj, 1 ≤ i ≤ m, 1 ≤ j ≤ n with
∑m

i=1 ri = 1 =
∑n

j=1 sj, let

r = (r1, . . . , rm) and s = (s1, . . . , sn). Then the set of badly approximable matrices with

weight (r, s), denoted

BAr,s(m,n) := {A ∈ Rm×n : inf
p∈Zm,q∈Zn−{0}

‖Aq − p‖r · ‖q‖s > 0},

where the notation ‖x‖r := max{|x1|
1
r1 , · · · , |xm|

1
rm } for any x ∈ Rm, is a winning set of

modified Schmidt game and thus of full Hausdorff dimension mn.

6



However, it is a major challenge in Diophantine approximations to compute the Haus-

dorff dimension of the set Sing(m,n) of singular matrices. The first breakthrough was made

in 2011 by Cheung [Che11], who proved that the Hausdorff dimension of Sing(2, 1) is 4/3;

this was extended in 2016 by Cheung and Chevallier [CC16], who proved that the Hausdorff

dimension of Sing(m, 1) is m2/(m + 1) for all m ≥ 2; while Kadyrov, Kleinbock, Linden-

strauss, and Margulis [KKLM17] proved that the Hausdorff dimension of Sing(m,n) is at

most δm,n := mn(1− 1
m+n

). Most recently, Das, Fishman, Simmons and Urbański [DFSU20]

proved that this upper bounded is sharp. Their proof is based on a generalized variational

principle and is independent of the previous results.

Theorem 1.1.11 ([DFSU20]). For all (m,n) 6= (1, 1), we have

dimH(Sing(m,n)) = dimP (Sing(m,n)) = δm,n,

where dimH(S) and dimP (S) denote the Hausdorff and packing dimensions of a set S,

respectively.

Remark 1.1.12. When m = n = 1, dimH(Sing(m,n)) = dimP (Sing(m,n)) = 0, since in this

case Sing(m,n) is simply the set of rational numbers.

1.1.3 Successive minima functions and matrices with Diophantine
Approximation properties of higher orders

Definition 1.1.13. Let d = m + n, and for each j = 1, . . . , d, let λj(Λ) denote the j-th

minimum of a lattice Λ ⊂ Rd (with respect to the l2 norm on Rd 2), i.e. the infimum of λ

such that the set {r ∈ Λ : ‖r‖2 ≤ λ} contains j linearly independent vectors.

2Note that ‖ · ‖∞ ≤ ‖ · ‖2 ≤
√
d‖ · ‖∞. So if we use the maximum norm ‖ · ‖ := ‖ · ‖∞ to define λi, the

resulting λ∞
i is equivalent to λi up to a multiple constant depending on d, which doesn’t change any results

below. We use l2 norm here since it is most common in literature.

7



Diophantine properties of A Dynamical properties of (gtuAx0)t≥0

A is badly approximable supt≥0 −hA,1(t) <∞
A is singular limt→∞ −hA,1(t) = ∞

Table 1.2: Dani’s correspondence with successive minima function.

For a m × n matrix A, the successive minima function of the matrix A, denoted h =

hA = (h1, . . . , hd) : [0,∞) → Rd is defined by the formula

hi(t) := log λi(gtuAZd). (1.1.2)

Then the Dani’s correspondence principle can be translated into the language of succes-

sive minima function as follows:

In light of successive minima functions, we can generalize the notion of badly approx-

imable matrices, singular matrices as follows:

Definition 1.1.14. For r = 1, 2, . . . , d = m+n, A matrix A ∈M(m×n,R) is called badly

approximable of order r if

sup
t≥0

−hA,r(t) <∞.

A ∈M(m× n,R) is called singular of order r if

lim
t→∞

− loghA,r(t) = ∞.

Let BAr(m,n) (resp. Singr(m,n)) denote the set of badly approximable (resp. singular)

m × n matrices. BAr(m,n) (resp. Singr(m,n)) form an ascending (descending) sequence

of sets in r.
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1.1.4 Dani’s correspondence for Diophantine Approximation prop-
erties of higher orders

For r = 1, 2, ..., d and a lattice Λ, let Ir(Λ) denote the set of all r-tuples of linearly

independent vectors (v1, . . . , vr).

Theorem 1.1.15. A matrix A ∈ Rm×n is badly approximable of order r if and only if

there exists c > 0 such that for all linearly independent r vectors (p1, q1), . . . , (pr, qr) ∈

Zm × (Zn − {0}), there exists 1 ≤ i ≤ r satisfying

‖Aqi − pi‖ ≥ c

‖qi‖
n
m

. (1.1.3)

Proof. For the forward implication, notice that the definition of badly approximable of order

r is equivalent to saying that there exists δ > 0 such that

λr(gtuAZd) ≥ δ, ∀t > 0.

Using our Ir notation, this is the same as saying there exists δ > 0 such that

Ir(gtuAZd) ∩ Br
δ = ∅, ∀t ≥ 0. (1.1.4)

where Bδ denotes the (open) ball in Rd centered at the origin with radius δ and Br
δ means

its r-fold Cartesian product.

But

gtuA

[
p
q

]
=

[
e

t
m Im

e−
t
n In

] [
Im A

In

] [
p
q

]
=

[
e

t
m (p + Aq)
e−

t
n q

]
. (1.1.5)

So the above equation 1.1.4 implies (from here we change the 2-norm to ∞-norm) that

there exists δ > 0 such that for all linearly independent r vectors (p1,q1), . . . , (pr,qr) ∈

Zm × (Zn − {0}) = Zd, there exists 1 ≤ i ≤ r satisfying

‖e
t
m (Aqi + pi)‖ ≥ δ or

‖e−
t
n qi‖ ≥ δ

9



for all t ≥ 0. Note that since qi 6= 0, we can choose t = t(δ, qi) so that ‖e− t
n qi‖ = δ

2
< δ,

then the second possibility is blocked and

‖Aqi + pi‖ ≥ e−
t
m δ = (e−

t
n )

n
m δ =

(
δ/2

‖qi‖

) n
m

δ =:
c

‖qi‖
n
m

.

For the backward implication, there exists c > 0 such that for all linearly independent r

vectors (p1,q1), . . . , (pr,qr) ∈ Zm × (Zn − {0}), there exists 1 ≤ i ≤ r satisfying

‖Aqi − pi‖ ≥ c

‖qi‖
n
m

.

We want to find δ > 0 such that

λr(gtuAZd) ≥ δ,

for all t ≥ 0. From the computation of product 1.1.5, this is the same as there exists δ > 0,

such that for all t ≥ 0,

λr

([
e

t
m (p + Aq)
e−

t
n q

]
: p ∈ Zm,q ∈ Zn

)
≥ δ

Suppose on the contrary that this is not possible, then for any δ > 0, there exists t ≥ 0 and

linearly independent r vectors (p1,q1), . . . , (pr,qr) ∈ Zm × Zn satisfying

‖e
t
m (Aqi + pi)‖ < δ and

‖e−
t
n qi‖ < δ

for all 1 ≤ i ≤ r. But the first equation times the n
m
-th power of the second equation yields

‖Aqi + pi‖ · ‖qi‖
n
m < δ

m+n
m

for i = 1, 2, ..., r, contradicting to (1.1.3) whenever c < δ
m+n
m .

Theorem 1.1.16. A matrix A ∈ Rm×n is singular of order r if and only if for any ε > 0

there exists Qϵ > 0 such that for all Q > Qϵ, there exist r linearly independent vectors
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(p1, q1), . . . , (pr, qr) ∈ Zm × (Zn − {0}) satisfying

‖Aqi − pi‖ ≤ δ

‖qi‖
n
m

,

and 0 < ‖qi‖ < Q.

for all 1 ≤ i ≤ d.

Proof. We first prove the forward direction. The aim is to find Qϵ. Fix ε > 0, the definition

of singularity of order r is the same as saying that for any δ > 0, there exists Tδ > 0 such

that for all t ≥ Tδ,

λr(gtuAZd) < δ.

In view of the equation 1.1.5, this is equivalent to that for any δ > 0, there exists Tδ > 0

such that for all t ≥ Tδ, there exist linearly independent r vectors (p1,q1), . . . , (pr,qr) ∈

Zm × Zn = Zd with {
‖e t

m (Aqi + pi)‖ < δ

‖e− t
n qi‖ < δ

(1.1.6)

for all 1 ≤ i ≤ d.

In order to find the Qϵ we need, we consider the system of inequality{
e−

t
m δ ≤ εQ− n

m

e
t
n δ ≤ Q

(1.1.7)

and solve it for Q. Note that this is equivalent to

δe
t
n ≤ Q ≤

( ε
δ

)m
n
e

t
n (1.1.8)

We first fix δ := 1
2
ε

m
m+n < ε

m
m+n so that 1.1.8 is solvable for Q and it follows that as long

as

Q ∈ I = ∪t≥Tδ
I(t),

where

I(t) :=

[
δe

t
n ,
( ε
δ

)m
n
e

t
n

]
,
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then 1.1.8 holds. Therefore, our choice of Qϵ in the statement of the theorem can be

Qϵ :=
1

2
ε

m
m+n e

Tδ
n .

For the backward direction, suppose now for any ε > 0 there exists Qϵ > 0 such that for

all Q > Qϵ, there exist r linearly independent vectors (p1,q1), . . . , (pr,qr) ∈ Zm×(Zn−{0})

satisfying

‖Aqi − pi‖ ≤ δ

‖qi‖
n
m

and

0 < ‖qi‖ < Q, (1.1.9)

for all 1 ≤ i ≤ d.

For any δ > 0, we want to find Tδ > 0 such that for any t ≥ Tδ,

λr(gtuAZd) < δ.

Again from 1.1.5, what we need is{
‖e t

m (Aqi + pi)‖ < δ

‖e− t
n qi‖ < δ

From 1.1.9, we solve {
e

t
m εQ− n

m < δ

e−
t
nQ < δ

(1.1.10)

for t as

n log

(
Q

δ

)
< t < m log

(
δ

ε
Q

n
m

)
This is solvable as long as we choose ε := 1

2
δ

m+n
m < δ

m+n
m . Let

J = ∪Q≥QϵJQ,

where JQ :=
[
n log

(
Q
δ

)
,m log

(
δ
ϵ
Q

n
m

)]
. It follows that the Tδ we need can be taken as

TQ := n log

(
Qϵ

δ

)
.
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1.2 Fractal Dimensions and Variational Principles

1.2.1 Hausdorff and packing dimensions and a theorem of
Rogers-Taylor-Tricot

The s-dimensional Hausdorff measure of a set S ⊂ RD is defined to be

H s(S) := lim
δ→0

inf

{
∞∑
i=1

(diamUi)
s :

∞⋃
i=1

Ui ⊇ S, diamUi < δ

}
(1.2.1)

The s-dimensional packing measure of a set S is defined as

Ps(S) = inf

{∑
j∈J

Ps
0(Sj)

∣∣∣∣∣S ⊆
⋃
j∈J

Sj, J countable
}
, (1.2.2)

where PS
0 , called the s-dimensional packing pre-measure, is defined as

Ps
0(S) = lim sup

δ→0

∑
i∈I

diam(Bi)
s

∣∣∣∣∣
{Bi}i∈I is a countable collection

of pairwise disjoint closed balls with
diameters ≤ δ and centres in S

 . (1.2.3)

Given the measures defined above, we define the Hausdorff dimension and packing di-

mension of a set S ⊂ RD as follows:

dimH(S) := inf{d ≥ 0 : H d(S) = 0} = sup
(
{d ≥ 0 : H d(S) = ∞} ∪ {0}

)
, (1.2.4)

dimP(S) := sup{s ≥ 0|Ps(S) = +∞} = inf{s ≥ 0|Ps(S) = 0}. (1.2.5)

Let µ be a Borel probability measure on Rd and x ∈ Rd, we define the lower and upper

pointwise dimensions of the measure µ at x by

dimx(µ) := lim inf
r→0

log(µ(B(x, r)))

log(r)
,

and

dimx(µ) := lim sup
r→0

log(µ(B(x, r)))

log(r)
.

Remark 1.2.1. By a squeezing argument, we can replace the liminf and limsup on the right

hand sides by the lininf and limsup over any sequence rn → 0 with rn/rn+1 bounded. Namely,

lim infr→0
log(µ(B(x,r)))

log(r)
= lim infn→∞

log(µ(B(x,rn)))
log(rn)

,and similarly for limsup.
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The following powerful theorem introduces a method of computing the Hausdorff and

packing dimensions of a set in terms of local geometric-measure-theoretic information, which

plays an important role in establishing the relation between Hausdorff dimension and game:

Theorem 1.2.2 (Rogers–Taylor–Tricot, [Fal97] Proposition 2.3). Fix d ∈ N and let µ be a

locally finite Borel measure on Rd. Then for every Borel set A ⊂ Rd,

• If dimx(µ) ≥ s for all x ∈ A and µ(A) > 0, then dimH(A) ≥ s.

• If dimx(µ) ≤ s for all x ∈ A, then dimH(A) ≤ s.

• If dimx(µ) ≥ s for all x ∈ A and µ(A) > 0, then dimP (A) ≥ s.

• If dimx(µ) ≤ s for all x ∈ A, then dimP (A) ≤ s.

1.2.2 Templates

Recall the definition of successive minina (Definition 1.1.13). The key idea of variational

principles is to approximate successive minina function h by piecewise linear functions called

templates, define appropriate averaging quantities for templates and study the relation be-

tween such quantities and the fractional dimension.

Definition 1.2.3 ([DFSU20] ). An m×n template is a piecewise linear map f : [0,∞) → Rd

with the following properties:

(I) f1 ≤ · · · ≤ fd.

(II) − 1
n
≤ f ′

i ≤ 1
m

for all i.

(III) For all j = 0, . . . , d and for every interval I such that fj < fj+1 on I, the function

Fj :=
∑

0<i≤j fi is convex and piecewise linear on I with slopes in

Z(j) := {L+

m
− L−

n
: L± ∈ [0, d±]Z, L+ + L− = j} (1.2.6)
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Figure 1.1: A graph of a 1× 2 partial template f = (f1, f2, f3).

Here d+ := m, d− := n, [a, b]Z := [a, b] ∩ Z.

We use the convention that f0 = −∞ and fd+1 = +∞. We will call the assertion that Fj

is convex the convexity condition, and the assertion that its slopes are in Z(j) the quantized

slope condition. We denote the space of m× n templates by Tm,n

Observe that Fd = f1 + ... + fd is always a constant due to the property (III) above.

A template f is called balanced if Fd = 0. A partial template is a piecewise linear map f

satisfying (I)-(III) whose domain is a closed, possibly infinite, subinterval of [0,∞).

The fundamental relation between templates and successive minima functions is given as

follows:

Theorem 1.2.4 ([DFSU20]).

(i) For every m× n matrix A, there exists an m× n template f such that hA �+ f.

(ii) For every m× n template f, there exists an m× n matrix A such that hA �+ f.
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Theorem 1.2.4(ii) asserts that for every template f, the set D(f) := {A : hA �+ f}

is nonempty. It is natural to ask how big this set is in terms of Hausdorff and packing

dimensions. Moreover, given a collection of templates F , we can ask the same question

about the set

D(F) := ∪f∈FD(f).

1.2.3 The lower and upper contraction rates

The next important notion we need to introduce for the statement of the variational

principal is the lower and upper average contraction rate of a template.

We define the lower and upper average contraction rate of a template f as follows. Let I

be an open interval on which f is linear. For each q = 1, . . . , d such that fq < fq+1 on I, let

L± = L±(f, I, q) ∈ [0, d±]Z be chosen to satisfy L+ + L− = q and

F ′
q =

∑
i=1q

f ′
i =

L+

m
− L−

m
, (1.2.7)

as guaranteed by (III) of the definition of templates. An interval of equality for f on I is an

interval (p, q]Z, where 0 ≤ p < q ≤ d satisfy

fp < fp+1 = · · · = fq < fq+1 on I. (1.2.8)

As before, we use the convention that f0 = −∞ and fd+1 = ∞. Note that the collection of

intervals of equality forms a partition of [1, d]Z. If (p, q]Z is an interval of equality for f on I,

then we let M±(p, q) =M±(f, I, p, q), where

M±(f, I, p, q) = L±(f, I, q)− L±(f, I, p). (1.2.9)

or equivalently, M±(p, q) are the unique integers such that

M+ +M− = q − p and
q∑

i=p+1

f ′
i =

M+

m
− M−

n
on I. (1.2.10)
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It can be shown from the definition of template that M± ≥ 0 by (II) of the definition of

templates. Next, let

S+ = S+(f, I) = ∪(p,q]Z(p, p+M+(p, q)]Z (1.2.11)

S− = S−(f, I) = ∪(p,q]Z(p+M+(p, q), q]Z (1.2.12)

where the unions are taken over all intervals of equality for f on I. Note that S+ and S− are

disjoint and satisfy S+ ∪ S− = [1, d]Z, and that #(S+) = m and #(S−) = n.

Next, let

δ(f, I) = #{(i+, i−) ∈ S+ × S− : i+ < i−} ∈ [0,mn]Z, (1.2.13)

and note that

mn− δ(f, I) = #{(i+, i−) ∈ S+ × S− : i+ > i−} (1.2.14)

Definition 1.2.5. The lower and upper average contraction rates of f are the numbers

δ(f) := lim inf
T→∞

∆(f, T ), (1.2.15)

and

δ(f) := lim sup
T→∞

∆(f, T ), (1.2.16)

where ∆(f, T ) := 1
T

∫ T

0
δ(f, t)dt. Here we abuse notation by writing δ(f, t) = δ(f, I) for all

t ∈ I.

To help illustrate the definitions above, let us introduce the following example:

Example 1.2.6 (The contraction rate of zero template is mn ). Let f be the template where

all of its components are zero, then the interval of linearity is [0,R) and the only interval of

equality is (0, d]Z.

(1) For q = 0 {
L+ + L− = 0
L+

m
− L−

n
= 0

⇐⇒

{
L+ = 0

L− = 0
.
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(2) For q = d {
L+ + L− = F ′

d = 0
L+

m
− L−

n
= 0

⇐⇒

{
L+ = m

L− = n
.

Hence,

M+(0, d) =M+(f, [0,R), 0, d) := L+(d)− L+(0) = m

and

S+ = ∪(p,q]Z(p, p+M(p, q)] = (0,m]Z

and

S− = [1, d]Z − S+ = (m+ 1, d].

It follows that

δ(f, I) = #{(i+, i−) ∈ S+ × S− : i+ < i−} = mn.

Hence

δ(f) = lim
T→∞

1

T

∫ T

0

δ(f, t)dt ≡ mn.

Example 1.2.7 (The contraction rate of standard quadrilateral partial template of order

r). For r ≤ min(m,n), let f be the template with

f1 = · · · = fr < fr+1 = · · · = fd,

where each of the components is a piecewise linear function with two pieces defined on I1 :=

[0, m
m+n

] and I2 := [ m
m+n

, 1] (intervals of linearity). For f1 = · · · = fr the derivative (slope) on

the first interval is − 1
n
and the derivative on the second interval is 1

m
; for fr+1 = · · · = fd the

derivative (slope) on the first interval is − r
(d−r)n

and the derivative on the second interval is

− r
(d−r)m

.

There are two intervals of equality: (0, r]Z and (r + 1, d]Z.

(1) Over the interval I1:
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t

fr+1 = · · · = fd

r
(d−r)n

- 1
n

1
m

− r
(d−r)m

f1 = · · · = fr

Figure 1.2: Construction of the standard partial template of order r.

(a) For q = 0 {
L+ + L− = 0
L+

m
− L−

n
= 0

⇐⇒

{
L+ = 0

L− = 0
.

(b) For q = r {
L+ + L− = r
L+

m
− L−

n
= F ′

r =
∑r

i=1 f
′
i = − r

n

⇐⇒

{
L+ = 0

L− = r
.

(c) For q = d {
L+ + L− = d
L+

m
− L−

n
= 0

⇐⇒

{
L+ = m

L− = n
.

Hence,

M+(0, r) =M+(f, [0,R), 0, r) := L+(r)− L+(0) = 0;

M+(r, d) =M+(f, [0,R), r, d) := L+(d)− L+(r) = m.

and

S+ = ∪(p,q]Z(p, p+M(p, q)] = (r,m+ r]Z

and

S− = [1, d]Z − S+ = (0, r]Z ∪ (m+ r + 1, d]Z.
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It follows that

δ(f, I1) = #{(i+, i−) ∈ S+ × S− : i+ < i−} = m(n− r).

(2) Over the interval I2:

(a) For q = 0 {
L+ + L− = 0
L+

m
− L−

n
= 0

⇐⇒

{
L+ = 0

L− = 0
.

(b) For q = r {
L+ + L− = r
L+

m
− L−

n
= F ′

r =
∑r

i=1 f
′
i = + r

m

⇐⇒

{
L+ = r

L− = 0
.

(c) For q = d {
L+ + L− = F ′

d = d
L+

m
− L−

n
= 0

⇐⇒

{
L+ = m

L− = n
.

Hence,

M+(0, r) =M+(f, 0, r) := L+(r)− L+(0) = r;

M+(r, d) =M+(f, r, d) := L+(d)− L+(r) = m− r.

and

S+ = ∪(p,q]Z(p, p+M(p, q)] = (0, r]Z ∩ (r,m]Z = (0,m]Z

S− = [1, d]Z − S+ = (m+ 1, d]Z.

It follows that

δ(f, I2) = #{(i+, i−) ∈ S+ × S− : i+ < i−} = mn.

Therefore, ∫ 1

0

δ(f, t)dt = n

m+ n
m(n− r) +

m

m+ n
mn = mn− mnr

m+ n
.
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Note that when r = 1, this is equal to mn − mn
m+n

. This example plays a central role in

the computation of the Hausdorff dimension of singular matrices.

Note that if r > min(m,n), then the derivatives (slopes) will violate the axiom − 1
n
≤

f ′
i ≤ 1

m
, i = 1, 2, · · · , d for templates.

1.2.4 The variational principles for templates

Definition 1.2.8. A collection of templates F is said to be closed under finite perturbations

if whenever g �+ f ∈ F , we have g ∈ F .

Theorem 1.2.9 (Variational principle: version 1 [DFSU20]). Let F be a collection of tem-

plates closed under finite perturbations. Then

dimH(D(F)) = sup
f∈F

δ(f) (1.2.17)

and

dimP (D(F)) = sup
f∈F

δ(f). (1.2.18)

Theorem 1.2.10 (Variational principle, version 2 [DFSU20]). . Let S be a collection of

Borel functions from [0,∞) to Rd which is closed under finite perturbations, and let D(S) :=

{A : hA ∈ S}. Then

dimH(D(S)) = sup
f∈S∩Tm,n

δ(f) (1.2.19)

and

dimP (D(S)) = sup
f∈S∩Tm,n

δ(f). (1.2.20)

Theorem 1.2.11 (Variational principle, version 3 [DFSU20]).

(i) Let S be a (Borel) set of m× n matrices of Hausdorff (resp. packing) dimension > δ.

Then there exist a matrix A ∈ S and a template f �+ hA whose lower (resp. upper)

average contraction rate is > δ.
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(ii) Let f be a template whose lower (resp. upper) average contraction rate is > δ. Then

there exists a (Borel) set S of m×n matrices of Hausdorff (resp. packing) dimension

> δ, such that hA �+ f for all A ∈ S.

1.2.5 Applications of the variational principles

With variational principle, one can immediate prove Schmidt’s result on the Hausdorff

dimention of the set of badly approximable matrices.

Indeed, by the variational principle (Theorem 1.2.10), the Hausdorff dimension of the set

of badly approximable matrices is equal to the supremum of δ over all bounded templates.

Since the zero template satisfies δ(0) = mn and any template f satisfies δ(f) ≤ mn by

definition, this supremum has to be mn.

As mentioned in the introduction, the following theorem is one of the most important

result of Das, Fishman, Simmons and Urbański in [DFSU20]

Theorem 1.2.12 ([DFSU20]). For all (m,n) 6= (1, 1), we have

dimH(Sing(m,n)) = dimP (Sing(m,n)) = δm,n,

where dimH(S) and dimP (S) denote the Hausdorff and packing dimensions of a set S,

respectively, as defined in the section 1.2.1.

Remark 1.2.13. When m = n = 1, dimH(Sing(m,n)) = dimP (Sing(m,n)) = 0, since in this

case Sing(m,n) is simply the set of rational numbers.

Let us summarize the proof of the lower bound for this theorem in [DFSU20]. The key

idea is the construction of the so-called standard templates:

Definition 1.2.14. Fix 0 ≤ tk < tk+1 and εk, εk+1 ≥ 0 and let ∆t = ∆tk = tk+1 − tk and

∆ε = ∆εk = εk+1 − εk. Assume that the following formulas hold:

− 1

m
∆t ≤ ∆ε ≤ 1

n
∆t (1.2.21)
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∆ε ≥ −n− 1

n
∆t if m = 1 (1.2.22)

∆ε ≤ m− 1

2m
∆t if n = 1 (1.2.23)

either (n− 1)(
1

n
∆t−∆ε) ≥ dεk or (m− 1)(

1

m
∆t+∆ε) ≥ dεk (1.2.24)

Then the standard (partial) template defined by the two points (tk, εk) and (tk+1, εk+1)

is the partial template (i.e. the restriction of a template to an interval) f : [tk, tk+1] → Rd

defined as follows:

Let g1, g2 : [tk, tk+1] → R be two piecewise linear functions such that for i = 1, 2,

gi(t1) = −ε1 and gi(t2) = −ε2.

We assign g1 with two intervals of linearity: first with slope − 1
n
and second with slope

1
m
. g2 has two intervals of linearity flipped: first with slope 1

m
and second with slope − 1

n
. So

the graph of g1 and g2 form a parallelogram, with g2 on the top. The existence of g1 and g2

is guaranteed by (1.2.21). Define g3 = g4 = · · · = gd so that g1 + g2 + · · ·+ gd = 0.

For each t ∈ [tk, tk+1] let f(t) = g(t) if g2(t) ≤ g3(t); otherwise let f1(t) = g1(t) and let

f2(t) = · · · = fd(t) be chosen so that f1 + · · ·+ fd = 0.

The key idea to construct a template (over [0,∞)) using the standard (partial) templates

we defined above, give an estimate of the contraction rates and use the variational principles.

Specifically, we choose two parameters τ ≥ 0 and λ > 1 and let

tk = λk, εk = τtk, for all k.

In this case, equations 1.2.21 through 1.2.24 become

τ ≤ 1

n
, (1.2.25)

τ ≤ m− 1

2m
, if n = 1, (1.2.26)
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either (n− 1)(
1

n
−∆ε) ≥ 1

λ− 1
dτ or (m− 1)(

1

m
+ τ) ≥ λ

λ− 1
dτ. (1.2.27)

Now let f[τ, λ] denote the template defined by gluing together the standard (partial)

templates defined by the pairs of points (tk,−εk) and (tk+1,−εk+1) for all k. From the

example 1.2.7 with r = 1, the lower and upper contraction rates of s[(tk, 0), (tk+1, 0)] are

both δm,n := mn− mn
m+n

. And with τ → 0, using the integral estimates, one can indeed show

that this is indeed the average contraction rate over [0,∞) and the variational principle gives

the lower bound δm,n.

Conjecture 1.2.15 (Schimidt’s conjecture on successive minima functions, [Sch82]). For all

2 ∈ k ∈ m, there exists an m× 1 matrix A such that

λk−1(gtuAZd) → 0 and λk+1(gtuAZd) → ∞ as t→ ∞. (1.2.28)

This conjecture was proven by Moshchevitin [Mos12]. Tushar Das, Lior Fishman, David

Simmons and Mariusz Urbański [DFSU20] improved Moshchevitin’s result by finding a lower

bound on the the Hausdorff dimension of the set of matrices witnessing Schmidt’s conjecture

in the matrix framework:

Definition 1.2.16 ([DFSU20]). An m× n matrix A is k − singular for 2 ≤ k ≤ m+ n− 1

if

λk−1(gtuAZd) → 0 and λk+1(gtuAZd) → ∞ as t→ ∞. (1.2.29)

Theorem 1.2.17. For all (m,n) 6= (1, 1) and for all 2 ≤ k ≤ m + n − 1, the Hausdorff

dimension of the set of matrices A that satisfy (1.2.29) is at least

max(fm,n(k), fm,n(k − 1))
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where

fm,n(k) := mn− k(m+ n− k)mn

(m+ n)2
−
{ km

m+ n

}{ kn

m+ n

}
(1.2.30)

Here {x} denotes the fractional part of a real number x. The same formula is valid for

the set of matrices A that satisfy (1.2.29) and trivially singular (meaning entries satisfy a

linear equation with rational coefficients).

1.2.6 Fractional dimensions of badly approximable matrices of or-
der r

In this section, we shall prove the following results on the measure and fractal dimensions

of badly approximable matrices of higher orders:

Theorem 1.2.18. BAd(m,n) = Rm×n. For all r = 1, 2, . . . , d − 1, BAr(m,n) is Lebesgue

null.

Since BA1(m,n) ⊂ BA2(m,n) · · · ⊂ BAd(m,n) = Rm×n, a natural question to ask next

is how big the gaps BAr+1(m,n) − BAr(m,n) are in terms of fractional dimensions. We

have

Theorem 1.2.19. For 1 ≤ r ≤ d−1, we have the Hausdorff dimension for the gaps between

the badly approximable matrices of order r and r + 1 is full:

dimH

(
BAr+1(m,n)− BAr(m,n)

)
= dimP

(
BAr+1(m,n)− BAr(m,n)

)
= mn.

To prove Theorem 1.2.18, the following lemmata are needed:

Lemma 1.2.20. For d = m+n, G = SL(d,R), let P− denote the subgroup of lower diagonal

block matrices

P− :=

{[
A O
C D

]
∈ SL(d,Z)

∣∣∣∣ A,C,D are any real matrices of size m×m,n×m,n× n respectively,
and O is a zero m× n matrix

}
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and U+ denote the subgroup of unipotent upper diagonal matrices

U+ :=

{[
Im B
O Im

]
∈ SL(d,Z)

∣∣∣∣ B is a any m× n real matrix.,
}

then the complement G− P−U
+ has Haar measure zero in G.

Proof. The classical proof of this involves the theory of algebraic geometry and algebraic

groups. By looking at the orbit P−\P−U
+ in the irreducible projective variety P−\G. By

the theory of algebraic groups, P−\P−U
+ is Zariski open in its closure and further Zariski

open, and therefore dense in P−\G. Therefore its complement in P−\G has strictly non-full

dimension. So P−U
+ has non-full dimension in G and thus of zero Haar measure.

For the self-containedness purpose,we shall give an elementary proof here that only in-

volves linear algebra and manifold theory. We will study the set of matrices
[
X Y
Z W

]
in

SL(n,Z) that can be (and cannot be) represented by matrices in P− and U+.

Suppose
[
A O
C D

]
∈ P− and

[
Im B
O In

]
∈ U− and we have the following equation of block

matrices:

[
X Y
Z W

]
=

[
A O
C D

] [
Im B
O In

]
=

[
A AB
C BC +D

]
(1.2.31)

We have the system of equations:


X = A

Z = C

Y = AB

W = BC +D

(1.2.32)

which can be simplified to Y = XB and W = BZ + D. Therefore, the matrix equation

1.2.31 is solvable for A,B,C,D and if and only if Y = XB is solvable for B (noticing that

W = BZ +D always gives the solution D = W −BZ). However, if Y = XB is not solvable

for B, then we must have det(X) = 0 for the m×m matrix X from the beginning. It follows
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that

G− P−U
+

=

{[
X Y
Z W

]
∈ SL(d,R) :

[
X Y
Z W

]
cannot be written as

[
A O
C D

] [
Im B
O In

]
=

[
A AB
C BC +D

]}
⊂
{[

X Y
Z W

]
∈ SL(d,R) : det(X) = 0

}
By the last term is a subvariety of SL(d,R) whose dimension is strictly less than the full

dimension, and therefore of Haar measure zero since the Haar measure on Lie groups are

given by the full-dimensional volume form.

Lemma 1.2.21 (Decomposition of Haar measure in Lie groups, Theorem 8.32 in [Kna02]).

Let G be a Lie group, and let S and T be closed subgroups such that S ∩ T is compact,

multiplication S × T → G is an open map, and the set of products ST exhausts G except

possibly for a set of Haar measure 0. Let ∆T and ∆G denote the modular functions of T and

G. Then the left Haar measures on G, S, and T can be normalized so that∫
G

f(x)dx =

∫
S×T

f(st)
∆T (t)

∆G(t)
dsdt,

for all Borel function f ≥ 0 on G.

Remark 1.2.22. We can apply this lemma to the scenario where S = P− and T = U+ since

they are both closed subgroups with trivial (compact) intersection. That P− × U+ → G is

open follows from the fact that this map is injective (since S = P− and T = U+ have trivial

intersection) and thus an immersion for Lie groups. Also the product maps in Lie groups are

submersions. Therefore it gives an local diffeomorphsm and thus open. Finally, the previous

lemma gives G− P−U
+ is of measure zero.

Theorem 1.2.23 (Birkhoff’s Pointwise Ergodic Theorem, the discrete version,[EW11],Theorem

2.30). Let (X,B, µ) ba a probability space and T : X → X be an ergodic measure-preserving
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transformation. If f ∈ L1(X), then

lim
n→∞

1

n

n−1∑
i=0

f(T ix) =

∫
X

fdµ,

for µ-almost every x ∈ X.

Corollary 1.2.24 (Birkhoff’s Pointwise Ergodic Theorem, the continuous version). Let G

be a topological group with continuous action on X,namely G × X → X, (g, x) → g.x is

continuous and let (X,B, µ) a probability space with µ a G-invariant probability measure .

Suppose that (gt)t∈R is a one-parameter subgroup of G and that there the discrete subgroup

(gn)n∈Z acting ergodically on X.

If f ∈ L1(X), then

lim
t→+∞

1

T

∫ T

0

f(gt.x) =

∫
X

fdµ,

for µ-almost every x ∈ X.

Proof. First, observe that from the definition of ergodicity we have immediately that for

fixed s > 0, (gsn)n∈Z acting ergodically on X implies that gs acts on X ergodically. Now

taking T := gs and fs(x) :=
∫ s

0
f(gt.x)dt in the discrete version of Birkorff’s ergodic theorem,

noticing that fs is again a L1-function since s is fixed and∫
X

fs(x)dµ =

∫
X

∫ s

0

f(gt.x)dtdµ =

∫ s

0

∫
X

f(gt.x)dµdt <∞,

by Fubini’s theorem.

The discrete version of Birkorff’s ergodic theorem gives us

lim
n→∞

1

n

n−1∑
i=0

fs(gis.x) =

∫
X

fsdµ
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Therefore for this fixed s, we have

lim
T→∞

1

T

∫ T

0

f(gt.x)dt = lim
n→∞

1

sbT
s
c

⌊T
s
⌋−1∑

i=0

∫ (i+1)s

is

f(gt.x)dt+Ox(1)


= lim

n→∞

1

sbT
s
c

⌊T
s
⌋−1∑

i=0

∫ s

0

f(gt+is.x)dt+Ox(1)


= lim

n→∞

1

sbT
s
c

⌊T
s
⌋−1∑

i=0

fs(gis.x)dt+Ox(1)


=
1

s

∫
X

fsdµ (by the discrete Birkorff)

=
1

s

∫
X

∫ s

0

f(gt.x)dtdµ

=
1

s

∫ s

0

∫
X

f(gt.x)dµdt =
1

s

∫ s

0

∫
X

f(gt.x)dµdt (by Fubini)

=
1

s

∫ s

0

∫
X

f(x)dµdt (µ is gt-invariant)

=

∫
X

f(x)dµ.

Lemma 1.2.25. For any r = 1, 2, . . . d − 1 and δ > 0, the set Br
δ := {Λ ∈ L : λr(Λ) < δ}

has positive measure, where the measure is the unique SL(d,R) invariant measure in the

homogeneous space G/Γ := SL(d,R)/SL(d,Z).

Proof. First we observe that for r = 1, 2, . . . d − 1, Br
δ is nonempty since it contains the

elements
δ

2
e1, · · · ,

δ

2
ed−1,

which already form a linearly independent set in Br
δ of lengths all less than δ. Note that

for δ small enough, this cannot be generalized to r = 1, 2, . . . , d due the Minkowski’s second

convex body theorem A.8.

By the continuity of λr on G/Γ (by the Theorem A.10), Br
δ is open.
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Any open subset on G/Γ. Indeed, since any open subset of SL(d,R)/SL(d,Z) has count-

ably many translations under SL(n,Q) whose union will cover the whole space, whose mea-

sure is 1, and this follows from the G-invariance of the measure.

Proof of the Theorem 1.2.18. We first notice that the condition

lim sup
t→∞

−hA,r(t) <∞.

is equivalent to

inf
t≥0

λr(gtuAZd) ≥ δ,

for some δ > 0.

When r = d(= m+ n), we notice that by the Theorem A.8 (Minkowski’s second convex

body theorem),

[λd(gtuAZd)]d ≥
d∏

r=1

λr(gtuAZd) �d covol(gtuAZd) = 1.

Hence there exist a δd > 0 such that for any m× n matrix A and t ≥ 0,

inf
t≥0

λd(gtuAZd) ≥ δd.

Hence, BAd(m,n) = Rm×n.

For r ≤ d − 1, we first observe that the set {Λ ∈ L : inft≥0 λr(gtΛ) ≥ δ} is gt-invariant

for any t ≥ 0. So by the ergodicity of (gn)n∈Z-action (Theorem 1.1.7), this set has µ-measure

zero or 1. So it suffices to show its complement {Λ ∈ L : inft≥0 λr(gtΛ) < δ} has positive

measure for any δ > 0. However, by the continuous version of Birkoff’s ergodic theorem,

Corollary 1.2.24,

lim
T→∞

1

T

∫ T

0

f(gt.Λ)dt =

∫
X

f(Λ)dΛ,

for µ-almost every Λ ∈ L (identified with X := SL(d,R)/SL(d,Z) and f ∈ L1(L, µ).
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Now take f as the characteristic function on the set Br
δ := {Λ ∈ L : λr(Λ) < δ}, which

is of positive measure by Lemma 1.2.25 and it follows that for µ-a.e. Λ ∈ L,

lim
T→∞

1

T

∫ T

0

1Br
δ
(gt.Λ)dt > 0. (1.2.33)

This means for almost every lattice Λ ∈ L and over a positive proportion of time t ∈ [0, T ]

when T is large, λr(gtΛ) < δ. More precisely, thanks to the boundedness of 1, for µ-a.e. Λ

and any T0 > 0,

lim
T→∞

1

T

∫ T

T0

1Br
δ
(gt.Λ)dt > 0.

In particular, for µ-a.e. Λ and any T0 > 0, there exists t > t0 such that

lim sup
t→∞

f(gt.Λ) < δ. (1.2.34)

This together with the fact that the set Br
δ := {Λ ∈ L : λr(Λ) < δ}, which is of positive

measure gives

µ

(
{Λ ∈ L : inf

t≥0
λr(gtΛ) < δ}

)
≥ µ

(
{Λ ∈ L : lim sup

t≥0
λr(gtΛ) < δ}

)
> 0

Therefore by the ergodicity of gt-action, {Λ ∈ L : inft≥0 λr(gtΛ) ≥ δ} has zero µ-measure

in the space of unimodular lattices.

It remains for us to show that the set of matrices corresponding to the lattices {uAZd}

has measure zero.

To this end, we first recall the root space decomposition for sl(d,R), cf. [Kna02] Chapter

II section 1:

sl(d,R) = h⊕i ̸=j gij

= (⊕i ̸=j:1≤i≤m,1≤j≤n; m+1≤i≤m+n,m+1≤j≤m+ngij)⊕ h⊕ (⊕1≤i≤m,m+1≤j≤m+ngij)

= p− ⊕ u+.
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Under the exponential map exp : sl(d,R) → SL(d,R), p− corresponds to the subgroup

P− in SL(d,R), and u+ corresponds to the subgroup U+ in SL(d,R), cf. lemma 1.2.20. In

particular,

gt ∈ exp p−, uA ∈ exp u+

Since the canonical quotient map π : SL(d,R) → SL(d,R)/SL(d,Z) is a local diffeomorphism

of manifolds, for any A ∈M(m× n,R), we have that the map

π ◦ exp : sl(d,R) = p− ⊕ u+ −→ SL(d,R)/SL(d,Z)

(X−, X+) 7−→ expX− expX+ · uASL(d,Z)

gives a local coordinate at the point uASL(d,Z).

Observing that

gt expX− expX+ · uASL(d,Z) = gt expX−g−t · gt expX+ · uASL(d,Z)

and that

{gt expX−g−t}t≥0

is bounded, since expX− is a lower triangular block matrix contracted to the identity matrix

as t → ∞ under the {gt}t≥0 conjugation, and in view of the inequality in the Lemma A.9,

we have for fixed X−, A

λr (gtuASL(d,Z)) is bounded below away from zero

if and only if

λr (gt expX− · uASL(d,Z)) is bounded below away from zero.

By what we proved above using the ergodicity of (gt)-action

µ{x ∈ G/Γ : inf
t≥0

λr (gtx) > 0} = 0
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Now notice that the subgroup U+ :=

{[
Im A
0 In

]
: A ∈M(m× n,R)

}
is naturally iso-

morphic to M(m× n,R) with multiplication corresponding to the addition. The Haar mea-

sure on U+, by the uniqueness, can be identified with the Lebesgue measure onM(m×n,R).

Notice that with the local diffeomorphism π : SL(d,R) → SL(d,R)/SL(d,Z), the identifi-

cation also can also go from the Haar measure on U+Γ/Γ to the Lebesgue measure on

M(m× n,R).

Now by Lemma 1.2.20, almost every element gΓ in G/Γ := SL(d,R)/SL(d,Z) has the

decomposition gΓ = puΓ with p ∈ P− and u ∈ U+. By the decomposition of Haar measure

dx =
∆U+ (u)

∆G(u)
dpdu in G and the local identification of Haar measures on G and G/Γ, we have

that

0 =

∫
G

1{x∈G/Γ:inft≥0 λr(gtx)>0}dx (by the ergodicity of gt-action)

=

∫
U+

∫
P−

1{puΓ∈G/Γ:inft≥0 λr(gtpuΓ)>0}
∆U+(u)

∆G(u)
dpdu

(by the decomposition of Haar measure)

=

∫
P−

∫
U+

1{puΓ∈G/Γ:inft≥0 λr(gtpuΓ)>0}
∆U+(u)

∆G(u)
dudp (by the Fubini’s theorem)

=

∫
P−

∫
U+

1{puΓ∈G/Γ:inft≥0 λr(gtuΓ)>0}
∆U+(u)

∆G(u)
dudp

(by the contraction above on gt-contraction)

=

∫
P−

∫
U+

1{uΓ∈G/Γ:inft≥0 λr(gtuΓ)>0}
∆U+(u)

∆G(u)
dudp

(since puΓ ∈ G/Γ if and only if uΓ ∈ G/Γ)

Therefore, ∫
U+

1{uΓ∈G/Γ:inft≥0 λr(gtuΓ)>0}
∆U+(u)

∆G(u)
du = 0,

and thus 1{uΓ∈G/Γ:inft≥0 λr(gtuΓ)>0} = 0 for µ-almost all u ∈ U+ or equivalently

µU+({puΓ ∈ G/Γ : inf
t≥0

λr (gtuΓ) > 0}) = 0.
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Finally, by the identification between the Haar measure on U+ and the Lebesgue measure

on Rm×n, we have

m({A ∈ some neighborhood of O in M(m× n,R) : inf
t≥0

λr (gtuAΓ) > 0}) = 0

Note that the above argument also works if we replace Γ with uA0Γ for some A0 ∈

M(m × n,R) and a countable union of zero-measure sets is again of zero measure. This

completes the proof of the Theorem 1.2.18.

Proof of Theorem 1.2.19

To illustrate the idea of the proof, we first observe that the Examples 1.2.6 and 1.2.7

allows us to construct an “electrocardiography” template with deeper and deeper “pulse”

(corresponding to quadrilateral partial templates) that spends larger and larger proportion

of time with zero templates. However, the limitation for this construction, as discussed in

the Example 1.2.7, is that we will violate the bounds for the derivatives of components for

such templates when r > min(m,n). So the main task left for us is to lower the slopes for the

templates so that they are confined in [− 1
n
, 1
m
] and at the same time make sure we still have

the “quantized” accumulated slope as required in the definition of templates, cf. Definition

1.2.3.

To this end, we need to following lemma from the elementary number theory, which will

later allow us to generalize the bound on r to r ≤ max(m,n):

Lemma 1.2.26. For positive integers m,n, r with r ≤ max(m,n), we have

r − n ≤
⌈

mr

m+ n
− 1

⌉
(1.2.35)

and dually

r −m ≤
⌈

nr

m+ n
− 1

⌉
(1.2.36)
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Proof. For the first inequality, if r ≤ n, then it trivially holds (notice that the right hand

side is always nonnegative). Hence it suffices to assume n < r ≤ m.

r − n ≤
⌈

mr

m+ n
− 1

⌉
⇐⇒ r − n ≤

⌈
r − nr

m+ n
− 1

⌉
⇐⇒ r − n ≤

⌈
− nr

m+ n
− 1

⌉
+ r (since dx+ re = dxe+ r)

⇐⇒ − n ≤
⌈
− nr

m+ n
− 1

⌉
⇐⇒ 0 ≤

⌈
n− nr

m+ n
− 1

⌉
⇐= 0 ≤

⌈
n− nm

m+ n
− 1

⌉
(by the monotonicity of ceiling function)

The nonnegativeness of the right hand side on the last line follows from nm
m+m

< n. This

proves the first inequality and the second follows from switching m and n.

Proof. Recall the variational principle gives us

dimH(D(S)) = sup
f∈S∩Tm,n

δ(f)

and

dimP (D(S)) = sup
f∈S∩Tm,n

δ(f)

where S is a (Borel) collection of functions closed under finite perturbation and D(S) :=

{A ∈ Rm×n : hA ∈ S}, where hA is the successive minima function of A. In this proof we

shall take

S := {g ∈ C([0,∞),Rd) : lim inf
x→∞

gi(x) = −∞, ∀i ≤ r; lim inf
x→∞

gi(x) > −∞, ∀i ≥ r + 1}.

Then it follows that

D(S) = BAr+1(m,n)− BAr(m,n)
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We first observe that for any m × n template in f, we have by definition of lower and

upper contraction rates:

δ(f) ≤ mn.

In view of the variational principles,it suffices to find a template (or a sequence of tem-

plates) whose contraction rates is equal to (or approximates) mn.

Let τ1, τ2 be two positive number, which will represent slopes for templates, to be deter-

mined later. We now construct a piecewise linear map f as follows:

For convenience let us denote

ak = kk − k, bk := kk,

and b0 = 0. Observe that bk−1 ≤ ak for all k ≥ 1.

For n = 1, 2, 3, 4 · · · , we first define the restriction of f on [bk − k, bk], denoted qk :=

qk[τ1, τ2] as follows:

For the first r components of qk,

qk1 = qk2 · · · = qkr =

{
− τ1

r
(x− bk + n) if x ∈ [bk − k, ηk(τ1, τ2)]

τ2
d−r

(x− bk) if x ∈ [ηk(τ1, τ2), bk]
, (1.2.37)

where ηk[τ1, τ2] is the point satisfies

−bk + k + ηk(τ1, τ2)

−ηk(τ1, τ2) + bk
=
τ2
τ1
.

For the last d− r components of qk, we set

qn,r+1 = · · · = qnd

so that

qk1 + qk2 + · · ·+ qkd ≡ 0.

and then we define

f =
{

0 if x ∈ [bk−1, bk − k]

qk[τ1, τ2](x) if x ∈ [bk − k, bk]
. (1.2.38)
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t

fr+1 = · · · = fd

τ1
d−r

−τ1
r

τ2
r

−τ2
d−r

f1 = · · · = fr

Figure 1.3: Construction of q[τ1, τ2].

It is easy to see that

lim
n→∞

fr(ηk(τ1, τ2)) = −∞,

and therefore

lim inf
t→+∞

fr(t) = −∞.

Now let us see under what circumstances will f indeed becomes a template on [0,∞).

Recall that we have three conditions for a template:

(I) f1 ≤ · · · ≤ fd.

(II) − 1
n
≤ f ′

i ≤ 1
m

for all i.

(III) For all j = 0, . . . , d and for every interval I such that fj < fj+1 on I, the function

Fj :=
∑

0<i≤j fi is convex and piecewise linear on I with slopes in

Z(j) := {L+

m
− L−

n
: L± ∈ [0, d±]Z, L+ + L− = j} (1.2.39)

Here d+ = m and d− = n.

(I) is obvious from our construction. So our next goal is to find an appropriate choice τ1

and τ2 so that (II) and (III) hold.
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The template f we defined above, restricted on the interval [bk − k, bk], has two intervals

of linearity, namely

I1 := [bk − k, ηk(τ1, τ2)], and I2 := [ηk(τ1, τ2), bk].

On the both of them, we have the separation of components of templates as follows:

−∞ =: f0 < f1 = f2 = · · · = fr < fr+1 = · · · = fd = fd+1 := +∞.

By the definition of templates, there are two (integer) intervals of equality:

(0, r]Z and (r, d]Z,

where the subscripts means intersections with the set of integers, forming a partition of the

set {1, 2, · · · , d}.

On the interval of linearity I1, we have slopes:{
f ′
1(ak+) = · · · = f ′

r(ak+) = − τ1
r

f ′
r+1(ak+) = · · · = f ′

r(ak+) = + τ1
d−r

. (1.2.40)

Now we will follow the procedures of computing the lower and upper contractions rates:

(1) On the intervals of linearity I1, we shall determine the possible values for L± :=

L±(I1, q) as follows:

(a) For q = 0, {
L+ + L− = 0
L+

m
− L−

n
= F ′

0 = 0
⇐⇒ L+ = L− = 0.

(b) For q = d, {
L+ + L− = d = m+ n
L+

m
− L−

n
= F ′

d = 0
⇐⇒ L+ = m,L− = n.

(c) For q = r, {
L+ + L− = r
L+

m
− L−

n
= F ′

r = −τ1
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Note that in this case, in order to make our solution

L+ =
rm−mnτ1
m+ n

L− =
rn+mnτ1
m+ n

satisfy the conditions (II) and (III) in the definition of templates. We need:

τ1 > 0 (1)

L+ =
rm−mnτ1
m+ n

∈ [0,m]Z (2)

L− = r − L+ =
rn+mnτ1
m+ n

∈ [0, n]Z (3)

− 1

n
≤ −τ1

r
≤ 1

m
(4)

− 1

n
≤ τ1
d− r

≤ 1

m
(5)

Solving (2) for τ1 and using (1), we get

τ1 =
−(m+ n)L+ + rm

mn
=
r

n
− L+(

m+ n

mn
) > 0 (1.2.41)

Now we can list the possible choices for L+, L−, τ1 in the following table:

L+ 0 1 · · ·
⌈

rm
m+n

− 1
⌉

L− r r − 1 · · · r −
⌈

rm
m+n

− 1
⌉

τ1
r
n

r
n
− m+n

mn
· · · (τ1)min

Table 1.3: Correspondence between L± and τ1 on I1.
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Under the condition τ1 > 0, the maximal possible value for L+ is
⌈

rm
m+n

− 1
⌉
,

which gives us the minimal positive value for τ1. Note that here we cannot choose

L+ =
⌊

rm
m+n

⌋
since this may result in τ1 = 0 if rm

m+n
is an integer.

Now we turn to look at the conditions (4) and (5). Given τ1 > 0, it is equivalent

to saying

0 < τ1 ≤ min{ r
n
,
d− r

m
}

Note that

(τ1)min = τ1 =
−(m+ n)

⌈
rm
m+n

− 1
⌉
+ rm

mn
=
r

n
−
⌈

rm

m+ n
− 1

⌉
(
m+ n

mn
) ≤ r

n

So it suffices to check if

r

n
−
⌈

rm

m+ n
− 1

⌉
(
m+ n

mn
) ≤ d− r

m

But this is equivalent to

r

n
− d− r

m
≤
⌈

rm

m+ n
− 1

⌉
m+ n

mn

⇐⇒ (
1

m
+

1

n
)r − d

m
≤
⌈

rm

m+ n
− 1

⌉
⇐⇒ r − n = r −

d
m

1
m
+ 1

n

≤
⌈

rm

m+ n
− 1

⌉
By our lemma above, the last line holds for r ≤ max(m,n).

(2) On the intervals of linearity I2, we shall determine the possible values for L± :=

L±(I2, q) as follows:

(a) For q = 0, {
L+ + L− = 0
L+

m
− L−

n
= F ′

0 = 0
⇐⇒ L+ = L− = 0.

(b) For q = d, {
L+ + L− = d = m+ n
L+

m
− L−

n
= F ′

d = 0
⇐⇒ L+ = m,L− = n.
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(c) For q = r, {
L+ + L− = r
L+

m
− L−

n
= F ′

r = +τ2
⇐⇒

{
L+ = rm+mnτ2

m+n

L− = rn−mnτ2
m+n

A similar discussion yields the possible values for L+, L− and τ2 as listed in the following

table:

L− 0 1 · · ·
⌈

rn
m+n

− 1
⌉

L+ r r − 1 · · · r −
⌈

rn
m+n

− 1
⌉

τ2
r
m

r
m
− m+n

mn
· · · (τ2)min

Table 1.4: Correspondence between L± and τ2 on I2.

From the derivative restrictions:

− 1

n
≤ τ2

r
≤ 1

m

− 1

n
≤ τ2
d− r

≤ 1

m

we have τ ≤ min{ r
m
, d−r

n
}, but τ2 ≤ r

m
is automatic and the condition

(τ2)min = −m+ n

mn

⌈
rn

m+ n
− 1

⌉
+

r

m
≤ d− r

n

is equivalent to

r −m ≤
⌈

rn

m+ n
− 1

⌉
.

Again, this is guaranteed by the proceeding lemma as long as r ≤ max (m,n).

Summarizing what we have done so far, we have demonstrated that it is possible to find

slopes τ1, τ2 such that the d-component piecewise linear function f = q[τ1, τ2] on [ak, bk] =

[bk − k, bk] as constructed is indeed a partial template as long as r ≤ max(m,n).
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Now we will show that

δ(f) = mn.

Indeed,

δ(f) := lim
T→∞

∆(f, T ) := lim
T→∞

1

T

∫ T

0

δ(f, [0, t])dt,

where 0 < δ(f, [ak, bk]) ≤ mn and δ(f, [bk−1, ak]) = mn.

Since

0 =: b0 < b1 < · · · < bk = nn → ∞,

any T > 0 lies in the dilating period (bn−1, bk] of f for some n ≥ 0. In each of such period,

the average of integral 1
T

∫ T

0
δ(f, [0, T ])dt reaches its maximum at T = ak and its minimum

at T = bk:
1

ak

∫ ak

0

δ(f, [0, t])dt ≤ mn.

But

1

ak

∫ ak

0

δ(f, [0, t])dt ≥ 1

ak

n∑
i=1

∫ ai

bi−1

δ(f, [0, t])dt

=
1

ak

n∑
i=1

∫ ai

bi−1

mn dt

=mn
1

kk − k

k∑
i=1

(ii − i− (i− 1)i−1)

=mn
kk

kk − k
−mn

k(k + 1)

2(kk − k)

which converges to mn as k → ∞.

Therefore, by the variational principle,

dimP (BA(r + 1)− BA(r)) = dimH(BA(r + 1)− BA(r)) = mn,

for all r ≤ max(m,n). Since d
2
≤ max(m,n), we have proved the theorem for at least half of

the orders.
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For the computation of cases when r > max(m,n), we will study the dual of the orbit of

lattices (gtuAZd)t≥0.

Recall that for a lattice Λ ⊂ Rd with basis {b1, · · · ,bd}, since b1, · · · ,bd are linearly

independent, from linear algebra we know there exist vectors b∗
1, · · ·b∗

d, call dual vectors to

b1, · · · ,bd, such that

〈bi,b∗
i 〉 =

{
0 i 6= j

1 i = j
.

The Z-span of dual basis vectors, namely Λ∗ := Span{b∗
1, · · ·b∗

d}, is called the dual (or

polar or reciprocal) lattice to the lattice Λ.

Although defined through basis, it turns out that the dual lattices are independent of

the choice of basis of the original lattice.

Proposition 1.2.27. The dual lattice Λ∗ consists of all vectors b∗ ∈ Rd such that 〈b∗,b〉 is

an integer for all b in Λ. As a consequence, Λ∗ is also the dual of Λ.

Proof. Let b1, · · · ,bd be a basis of the lattice Λ and their duals be b∗
1, · · · ,b∗

d. For any

b ∈ Λ and any c ∈ Λ∗, suppose

b = s1b1 + · · ·+ sdbd, and c = t1b∗
1 + · · ·+ tdb∗

d

with integer coefficients si, ti ∈ Z for i = 1, 2, · · · , d. We have immediately that

〈b, c〉 = s1t1 · · ·+ sdtd ∈ Z.

On the other hand, if b∗ = u1b∗
1 + · · · + udb∗

d ∈ Rd, where ui ∈ R satisfies 〈b∗,b〉 ∈ Z,

for any b ∈ Z, then in particular this holds for b = bi, for any i = 1, 2, · · · , d and thus

ui = 〈b∗,bi〉 ∈ Z.

Therefore b∗ ∈ Λ∗.
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The dual lattice operator commutes nicely with an invertible linear transformation on

Rd:

Proposition 1.2.28. Let Λ be a lattice on Rd and T : Rd → Rd be an invertible linear

transformation, then we have

(TΛ)∗ = T ∗Λ∗,

where T ∗ = tT−1 is the inverse of the transpose of T and Λ∗ is the dual lattice to Λ.

Proof. If b1, · · · ,bd is a basis of Λ, then Tb1, · · · , Tbd is a basis of TΛ. The corresponding

dual basis

(Tb1)
∗, · · · , (Tbd)

∗

satisfy 
t(Tb1)

∗

...
t(Tb1)

∗

 [Tb1 · · · Tbd

]
= Id

But on the other hand, 
t(tT−1b1)

...
t(tT−1bd)

 [Tb1 · · · Tbd

]
= Id

So by the uniqueness of inverse matrix, T ∗bi = tT−1bi = (Tbi)
∗, for any i = 1, 2 · · · , d.

Therefore (TΛ)∗ = T ∗Λ∗.

We are able to use the idea of dual lattice to address the issue of higher r’s, thanks to

the following theorem:

Theorem 1.2.29 ([Cas97] Chapter VIII, Theorem VI). Let λ1, · · · , λd be the successive

minima of lattices in Rd. Then for a lattice Λ and its dual Λ∗, we have

1 ≤ λr(Λ)λd+1−r(Λ
∗) ≤ d!

for any r = 1, 2, · · · d.
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Now let us return to our proof, for the flow of lattices (gtuAΛ), the proposition above

gives its dual as:

(gtuAZd)∗ =g∗t u
∗
A(Zd)∗

=tg−1
t · tu−1

A Zd

=t

[
et/mIm 0

0 e−t/nIn

]−1

· t
[
Im A
0 In

]−1

Zd

=

[
e−t/mIm 0

0 et/nIn

]
·
[
Im 0
−tA In

]
Zd

Now observe that for r > d
2
, d+1− r < d+1− d

2
= d

2
+1 ≤ max(m,n) + 1 (which is the

same as d+ 1− r ≤ max(m,n)), and we have that

lim inf
t→∞

hA,r = −∞

⇐⇒ lim inf
t→∞

λr(gtuAZd) = 0

⇐⇒ lim inf
t→∞

λr(gtuAZd) = 0

⇐⇒ lim sup
t→∞

λd+1−r((gtuAZd)∗) = ∞

⇐⇒ lim sup
t→∞

λd+1−r

([
e−t/mIm 0

0 et/nIn

]
·
[
Im 0
−tA In

]
Zd

)
= ∞

⇐⇒ lim sup
t→∞

h−tA,d+1−r(t) = ∞

⇐⇒ lim inf
t→∞

−h−tA,d+1−r(t) = −∞
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and that

lim inf
t→∞

hA,r+1(t) > −∞

⇐⇒ lim inf
t→∞

λr+1(gtuAZd) > 0

⇐⇒ lim inf
t→∞

λr+1(gtuAZd) > 0

⇐⇒ lim sup
t→∞

λd−r((gtuAZd)∗) <∞

⇐⇒ lim sup
t→∞

λd−r

([
e−t/mIm 0

0 et/nIn

]
·
[
Im 0
−tA In

]
Zd

)
<∞

⇐⇒ lim sup
t→∞

h−tA,d−r(t) <∞

⇐⇒ lim inf
t→∞

−h−tA,d−r(t) > −∞

Therefore, by replacing templates f with −f in our S and observe that if we change

any m × n matrix A D(S) to its negative transpose −tA, then the Hausdorff and Packing

dimensions of D(S) will not change and the result we obtained above for d ≤ max(m,n)

applies. This proves

dimP (BA(r + 1)− BA(r)) = dimH(BA(r + 1)− BA(r)) = mn,

for d > max(m,n) and completes the proof of the theorem.

1.3 Haar measure distribution of successive minima on the space
of unimodular lattices and logarithms laws.

1.3.1 Distribution function associated to higher sucesssive minima
and estimates

Proposition 1.3.1. For a rank d unimodular lattice Λ ∈ L, let λi(Λ) denote its i-th succes-

sive minima (1 ≤ i ≤ d). For any δ > 0, we have

µ({Λ ∈ L : λi(Λ) = δ}) = 0,

where µ is the Haar measure defined on the space of unimodular lattices.
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Proof. Indeed, the set {Λ ∈ L : λi(Λ) = δ} is contained in

Sδ := {Λ ∈ L : there exists a vector v ∈ Λ with ‖v‖ = δ}.

Noticing that any unimodular lattice can be written as gZd for some g ∈ SL(d,R) and the

local identification between Haar measure on G = SL(d,R) and G/Γ = SL(d,R)/SL(d,Z),

we shall look at the set

Tδ :={g ∈ G : there exists a vector v ∈ Zd with ‖gv‖ = δ}

= ∪v∈Zd {g ∈ G : ‖gv‖ = δ}.

This is a countable union and each member in the union is a submanifold of G with lower

dimension and hence of zero Haar measure.

For x ≥ 0, it would be interesting to give an estimate for the distribution function

Φi(δ) := µ({Λ ∈ L : λi(Λ) < δ}) = µ({Λ ∈ L : λi(Λ) ≤ δ})

For i = 1, Kleinbock and Margulis gave both lower and upper bounds for Φ1(x) [KM99]

using a generalized Siegel’s formula:

Theorem 1.3.2 ([KM99], Proposition 7.1). There exists Cd, C
′
d such that

Cdδ
d − C ′

dδ
2d ≤ Φ1(δ) ≤ Cdδ

d,

for δ � 1.

The main result in this section is a generalization of the above result to λi:

Theorem 1.3.3. For 1 ≤ i < d, there exists Cd and C ′
d such that

Cdδ
di − o(δdi) ≤ Φi(δ) := µ({Λ ∈ L : λi(Λ) ≤ δ}) ≤ C ′

dδ
di,

for all δ � 1.
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Corollary 1.3.4. For 1 ≤ i ≤ d− 1, we have

lim
t→∞

− log µ ({Λ ∈ L : λi(Λ) ≤ e−t})
t

= di

Proof. Take δ = e−t.

For the proof we will use a generalized version of Siegel’s mean value formula in geometry

of numbers: For a lattice Λ in Rd, let P (Λ) denote the set of primitive vectors in Λ, i.e.

those vectors that are not a proper integer multiple of any other element in Λ. Given a

real-valued function f on Rd, we define a function f̂ on the homogeneous space X = G/Γ :=

SL(d,R)/SL(d,Z) by

f̂ :=
∑

v∈P (Λ)

f(v)

Theorem 1.3.5 (Classical Siegel’s Formula [Sie45]). For any f ∈ L1(Rd), one has∫
X

f̂dµ = cd

∫
Rd

fdv,

where cd = 1
ζ(d)

:= 1∑∞
n=1

1

nd

.

Below is a generalization of classical Siegel’s formula. First let us recall the notion of

primitive tuple from geometry of numbers:

Definition 1.3.6. For 1 ≤ k ≤ d, we say that an ordered k-tuple of vectors (v1, . . . , vk) ∈

Λ× · · · × Λ︸ ︷︷ ︸
d-times

for a lattice Λ ⊂ Rd is primitive if it is extendable to a basis of Λ, and denote

by P k(Λ) the set of all such k-tuples. Note that P 1(Λ) = P (Λ) above 3.

Now for a function f ∈ Rdk = (Rd)k, we define correspondingly

f̂k(Λ) :=
∑

(v1,...,vk)∈Pk(Λ)

f(v1, . . . , vk).

3Any primitive vector in a lattice can be extended to a basis of the lattice. This follows from the general
fact that any element of a free abelian group which is not divisible by any integer bigger than 1 can be
extended to a basis of the abelian group
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Here the superscript on f̂k should not be confused with the composition (power) of a function.

Then we have a generalized Siegel’s Formula for primitive tuples which will be helpful for us

to estimate the distribution for λi(Λ).

Theorem 1.3.7 (Generalized Siegel’s Formula for primitive tuples). For 1 ≤ k < d and

φ ∈ L1(Rdk), we have ∫
X

f̂kdµ = ck,d

∫
Rdk

fdv1 · · · dvk, (1.3.1)

where cd,k = 1
ζ(d)···ζ(d−k+1)

.

Proof. Let {e1, . . . , ed} be the canonimcal basis of Rd. For G = SL(d,R) and Γ = SL(d,Z)

and the k-tuple (e1, . . . , ek), be , let

Gk : = {g ∈ G : g.ei = ei, ∀1 ≤ i ≤ k},

Γk : = {g ∈ Γ : g.ei = ei, ∀1 ≤ i ≤ k}.

be the stabilizer subgroup of (e1, . . . , ek) in G and Γ, respectively.

Now consider the subset

L := {(v1, . . . , vk) ∈ Rdk : v1, . . . , vk are linearly independent vectors in Rd}

Claim 1. L is open dense in Rdk and in particular Rdk − L is of Lebesgue measure zero.

Proof of claim . That L is open follows from the condition that linear independence im-

plies that [v1, . . . , vk] is a full-rank matrix (there exists at least one k × k submatrix with

determinant zero).

To see it is dense, we observe that this is equivalent to proving that the set of full-rank

d × k matrices, denoted F , is dense in M(d × k,R). Noticing that its complement F c is

contained in some subvariety (of stricly lower dimension)

{A ∈M(d× k,R) : det(Ak×k) = 0},

for some k × k submatrix of A. Therefore F must be dense in Rdk. #
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Claim 2. L is equal to the G-orbit of the k-tuple (e1, . . . , ek) in Rdk.

Proof of claim . Indeed, for any g ∈ G = SL(d,R), the tuple (g.e1, . . . , g.ek) corresponds to

the first k columns of the matrix g. However, any k linearly independent vectors v1, · · · , vk

in Rd (k < d) can be completed to a d × d matrix of determinant 1 (by adding diagonal

entries to the last d− k columns). #

Now consider the map

φG : G→ L ⊂ Rdk, g 7→ (g.e1, . . . , g.ek)

By the Orbit-Stabilizer theorem, we have the identification of homogeneous spaces φ′
G :

G/Gk −̃→ L. Since L is open dense in Rdk and the Lebesgue measure on Rdk (viewed as a

product (Lebesgue) measure on Rd × · · · × Rd︸ ︷︷ ︸
k-times

) is invariant under G = SL(d,R). The pull-

back of the Lebesgue measure on Rdk gives a (unique up to scalar multiple) G-invariant Haar

measure µG/Gk
on G/Gk (uniqueness of Haar measure on G/Gk follows from the unimodu-

larity of G).

Claim 3. P k(Zd) is equal to the Γ-orbit of the k-tuple (e1, . . . , ek) in Rdk.

Proof of claim . Let (q1, . . . , qk) be any k-tuple of integer vectors in Zd that are extendable

to a basis {q1, . . . , qd} of Zd, and as a basis we have det[q1 . . . qd] = 1 (up to adjusting the sign

of the last column qd) and hence (q1, . . . , qk) lies in the Γ-orbit of the k-tuple (e1, . . . , ek).

On the other hand, for any (g.e1, . . . , g.ek), where g ∈ Γ = SL(d,Z), clearly {g.e1, . . . , g.ek}

can be completed to a basis {g.e1 . . . , g.ed} of Zd. #

It follows that the map

φΓ : Γ → P k(Zd) ⊂ Rdk, γ 7→ (γ.e1, . . . , γ.ek)
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gives the identification of Γ-homogeneous spaces φΓ : Γ/Γk −̃→ P k(Zd), under which the

counting measure on P k(Zd) (clearly Γ-invariant) can be pulled back to a (unique up to scalar

multiples) Γ-invariant Haar measure on Γ/Γk, denoted µΓ/Γk
. Note that the summation over

P k(Zd) is equal to the integration with respect to the counting measure µΓ/Γk
over Γ/Γk.

By the Lemma 1.6, Chapter I in [Rag72], the invariant measures on G/Γ and Γ/Γk give

an invariant measure on Γ/Γk and we have the quotient integral formula∫
G/Γ

∫
Γ/Γk

ϕ(glΓk) dµΓ/Γk
(lΓ)dµ(g)

=

∫
G/Γk

ϕ(gΓk) dµG/Γk
(gΓ)

=

∫
G/Gk

∫
Gk/Γk

ϕ(ggkΓk) dµGk/Γk
(gkΓk)dµG/Gk

(gGk)

for any ϕ ∈ L1(G/Γk).

Now for any f ∈ L1(Rdk), we first identify f with a function in L1(G/Gk) via φG. For

this new f , we define ϕf on G/Γk by setting it as of constant value on each Gk-coset:

ϕf (gΓk) := f(gGk), ∀g ∈ G.

In other words, ϕf (gΓk) = ϕf (hΓk), whenever h−1g ∈ Gk.

It follows that∫
G/Γk

ϕf (gΓk)dµG/Γk
= µGk/Γk

(Gk/Γk) ·
∫
G/Gk

f(gGk)dµG/Gk
(gGk) <∞.

So ϕf ∈ L1(G/Γk).

Claim 4. The inner integral on the left hand side is (recall that the integration with respect

to counting measure on Γ/Γd is the same as the sum over primitive tuples)∫
Γ/Γk

ϕf (glΓk)dµΓ/Γk
(l) =

∑
(v1,...,vk)∈Pk(gZd)

f(v1, . . . , vk) =: f̂k(gZd).
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Proof of claim . First recall by our identification

∑
(v1,...,vk)∈Pk(gZd)

f(v1, . . . , vk)

=
∑

(he1,...,hek)∈Pk(gZd),h∈G

f(he1, . . . , hek)

=
∑

(he1,...,hek)∈Pk(gZd),h∈G

f(hGk) (viewing f as a function on G/Gk)

=
∑

(g−1he1,...,g−1hek)∈Pk(Zd),h∈G

f(hGk)

=
∑

(le1,...,lek)∈Pk(Zd),l∈G

f(glGk) (change of variable l := g−1h)

=

∫
Γ/Γk

f(glGk)dµΓ/Γk
(lΓk) (summation to integration w.r.t. counting measure)

=

∫
Γ/Γk

ϕf (glΓk)dµΓ/Γk
(lΓk) (definition of ϕf )

#

Hence this proves ∫
X

f̂kdµ = ck,d

∫
Rdk

fdv1 · · · dvk,

with ck,d = µGk/Γk
(Gk/Γk).

Now we can give the distribution for Φi(δ):

Proof of Theorem 1.3.3. Let B be the ball centered at 0 with radius δ.

Note that the condition λi(Λ) < δ implies that there are at least i linearly independent

vectors in Λ lying in the open ball B. However, this does not necessarily mean they can be

extended to a basis. But thanks to the Theorem A.6, there exists a basis v1, . . . , vd of Λ such

that

‖v1‖ = λ1(Λ), ‖v2‖d �d λ2(Λ), . . . , ‖vd‖ �d λd(Λ).
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It follows that there exists a constant factor ηd > 1 such that if we dilate the ball B by ηd

to a new ball B′ (centered at the origin with radius ηdδ), we have Λ ∩B′ contains i linearly

independent vectors that can be extended to a basis of Λ. It follows that (since by symmetry

v and −v must be contained in Λ ∩ B′ simultaneously and any permutation of this i-tuple

also gives a new primitive i-tuple):

|P i(Λ) ∩B′i| ≥ 2ii!,

where B′i := B′ × · · · × B′︸ ︷︷ ︸
i-times

⊂ Rdi.

Now take f := 1B′i and f̂ = f̂ i(Λ) :=
∑

(v1,...,vi)∈P i(Λ) f(v1, . . . , vi) counts the number of

points falling into B′i. The left hand side of the generalized Siegel’s formula (Theorem 1.3.7)

yields ∫
X

f̂ idµ ≥
∫
{Λ:λi(Λ)≤δ}

f̂ idµ ≥ 2ii!µ({λ : λi(Λ) ≤ δ}).

On the other hand ∫
Rdi

fdv1 · · · dvi = Vol(B′)i = ηidδ
dicid,

where cd is the volume of unit ball in Rd.

Hence we have the upper bound

µ({Λ : λi(Λ) ≤ δ}) ≤ 1

i!

(ηdcd
2

)i
δdi

For the lower bound, for 1 ≤ i < d− 1 and x > 0, let N(i, x) denote the quantity

min{|P i(Λ)∩B(0, x)i| : Λ ∈ L,Λ∩B(0, x) contains at least i+1 linearly independent vectors},

namely the miminum of the number of all primitive i-tuples (v1, · · · , vi) with each com-

ponent taken from the lattice Λ ∩ B(0, x) for all unimodular lattice Λ, given Λ ∩ B(0, x)

contains at least i + 1 linearly independent vectors. Note that by our assumption and the

discussion above, N(i, ηdδ) ≥ 2ii!.
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Since one can always choose a unimodular lattice with the first i + 1 sucessive minima

small enough to be contained in B(0, x) for any x > 0 whenever i < d− 1, we have

Claim 5. N(i, x) ≤ 2i(i+ 1)! (independent of x ∈ (0, 1)) whenever i < d− 1.

Proof of claim . Consider the unimodular lattice

Λx :=

{
3

4
xe1, ...

3

4
xei+1,

1

(3
4
x)

i+1
d−i−1

ei+2, ...
1

(3
4
x)

i+1
d−i−1

ed

}
.

Note that when x < 1, we have

Λx ∩B(0, x) =

{
±3

4
xe1, ...,±

3

4
xei+1

}
since any integer linear combination

n1
3

4
xe1 + ...+ ni+1

3

4
xei+1

with some |nj| ≥ 2 or at least two of nj 6= 0 must be outside of B(0, x). So

|P i(Λx) ∩ B(0, x)i| ≤ 2ii!

(
i+ 1

i

)
= 2i(i+ 1)!.

Therefore N(i, x) ≤ 2i(i+ 1)!. #

Now set x = δ. The idea is to separated the integration domain into two parts: {Λ :

f̂ i(Λ) < N(i, δ)} and {Λ : f̂ i(Λ) ≥ N(i, δ)}. We will see that the integration over the second

domain contribute insignificantly as δ → 0. Hence,∫
X

f̂ idµ =

∫
{Λ:f̂ i(Λ)<N(i,δ)}

f̂ idµ+

∫
{Λ:f̂ i(Λ)≥N(i,δ)}

f̂ idµ
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Notice that by our choice of B′, f and the definition of f̂ i, f i(Λ) = |P i(Λ) ∩ Bi|, and the

first term 4

∫
{Λ:f̂ i(Λ)<N(i,δ)}

f̂ idµ =

∫
{Λ:f̂ i(Λ)<N(i,δ)}

f̂ idµ

=

∫
{Λ:Λ∩B contains no i+1 linearly independent vectors, f̂ i(Λ)<N(i,δ)}

f̂ idµ

≤
∫
Li

2i(i+ 1)!dµ

=2i(i+ 1)!µ(Si) (by the estimate from the claim above)

where Li denote the set of unimodular lattices that contain no i + 1 linearly independent

vectors but contain at least one family of primitive i-set of vectors (so that the integral will

not vanish). But clearly Si ⊂ {Λ : λi(Λ) ≤ δ}.

Now we look at the second term
∫
{Λ:f̂ i(Λ)≥N(i,δ)} f̂

idµ. If f̂ i(Λ) ≥ N(i, δ), by definition it

means the ball B = B(0, δ) contains at least i + 1 linearly independent vectors in Λ. But

again by symmetry that extra vector has to come in pairs namely B ∩Λ has to contain both

vi+1 and −vi+1.

Therefore for such Λ,

|P i(Λ) ∩ Bi)| ≤ 1

2
|P i+1(Λ) ∩ Bi+1)|.

4Note that if i = d − 1 this argument won’t make sense since N(d, δ) will become zero if δ → 0 by the
Minkowski’s second convex body theorem A.8.
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Notice that the left hand side is precisely f̂ i(Λ). Let fi = 1Bi+1 , a function in Rd(i+1), we

have ∫
{Λ:f̂ i(Λ)≥N(i,δ)}

f̂ idµ =
1

2

∫
{Λ:f̂ i(Λ)>N(i,δ)}

f̂1
i+1
dµ

≤1

2

∫
X

f̂i
i+1
dµ

=
1

2

∫
Rd(i+1)

fidv1 · · · dvi+1 (by the generalized Siegel’s formula)

=
1

2
(

∫
Rd

1Bdv)
i+1

=
1

2
(cdδ

d)i+1

Therefore we obtain the lower bound

µ({Λ : λi(Λ) ≤ δ}) ≥ 1

N(i, δ)

(∫
X

f̂ idµ−
∫
{Λ:f̂ i(Λ)≥N(i,δ)}

f̂ idµ

)
=

1

2i(i+ 1)!

(∫
Rdi

fdv1 · · · dvi −
∫
{Λ:f̂ i(Λ)≥N(i,δ)}

f̂ idµ

)
=

1

2i(i+ 1)!
(cidδ

di − 1

2
ci+1
d δd(i+1)).

This finishes the case when i < d− 1.

To cover the remaining case when i = d− 1, we will study the following example:

Example 1.3.8 (Measure of a subset of {Λ : λi(Λ) ≤ δ}).

In view of Iwasawa decomposition of G = SL(d,R), we shall first construct a subset of G

that will shrink the first i canonical basis vectors in Zd: Let Si denote the collection of all

elemnents of the form kan, where k ∈ SO(d,R),

a = diag(a1, ...ai, ai+1, ..., ad) ∈ SL(d,R), (1.3.2)
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with
√
3
2
aj−1 ≤ aj <

δ√
i
, ∀1 ≤ j ≤ i (assuming a0 = 0 as convention) and

√
3
2
aj−1 ≤ aj ≤ 1

whenever j > i, and

n =


1 n12 n13 ... n1d

0 1 n23 ... n2d

0 0 1 ... n3d
... ... ... . . . ...
0 0 0 ... 1

 (1.3.3)

with 1
2
≤ nij ≤ 1 for all i < j.

Clearly, with restrictions
√
3
2
aj−1 ≤ aj and 1

2
≤ nij, Si is contained in the Siegel domain

Σ := Σ 2√
3
, 1
2
. The reason that we choose to restrict our set to Siegel domain is that over

Siegel domain, we have very good control on the overlaps modulo the Γ = SL(n,Z) action

thanks to Theorem B.4.

Claim 6. λj(SiZd) ≤ δ for all j ≤ i.

Proof of Claim . Indeed, for kan ∈ Si and j ≤ i,

‖kanej‖2 =‖[a1n1j, ..., ai−1ni−1,j, ai]
T‖2 (k preserves the distance)

=
√
a21n

2
1j + · · ·+ a2i−1n

2
i−1,j + aii

≤
√
i · δ

2

i
= δ

#

Therefore π(Si) ⊂ {Λ : λi(Λ) ≤ δ}. Now we shall give a lower bound estimate for the

measure of π(Si) in G/Γ.

Let f = 1Si
denote the indicator function of π(Si) on G/Γ and let Nd denote the (finite)

number of γ for which Σ ∩ Fγ is nonempty, then since Si is a subset of the Siegel set Σ,

Si = ∪γ∈Γ(Siγ
−1 ∩ F ) is a finite union of no more than Nd nonempty sets. Let md denotes

57



the largest measure of these Nd sets, it follows that∫
G

f(g)dg =

∫
G/Γ

∑
γ∈Γ

f(gγ)d(gΓ)

≤Ndmd

≤NdµG/Γ(Si).

Now we compute
∫
G
f(g)dg via Iwasawa decomposition in view of Theorem B.8:∫

G

f(g)dg

=

∫
K

∫
A

∫
N

f(kan)ρ(a)dkdadn

=

∫
K

dk

∫ δ/
√
i

0

∫ δ/
√
i

√
3
2
a1

· · ·
∫ δ/

√
i

√
3

2
ai−1

∫ 1

√
3
2
ai

· · ·
∫ 1

√
3

2
ad−1

ρ(a)

a1 . . . ad−1

dad−1 . . . da1

∫
[ 1
2
,1]d(d−1)

∏
i<j

dnij

≥Vol(K)
1

2d(d−1)

∫ δ/
√
i

0

∫ δ/
√
i

√
3

2
a1

· · ·
∫ δ/

√
i

√
3

2
ai−1

∫
[
√
3

2
,1]d−i−1

(
a1d−1a

3
d−2 · · · a2d−3

1

)
dad−1 . . . da1

=Vol(K)
cd,i

2d(d−1)

∫ δ/
√
i

0

∫ δ/
√
i

√
3

2
a1

· · ·
∫ δ/

√
i

√
3

2
ai−1

(
a2d−1−2i
i · · · a2d−3

1

)
dai . . . da1

≥Ddδ
(2d−i−1)i + o(δ(2d−i−1)i)

where the constant cd, i comes from the integration w.r.t. the variables ai+1, ...ad and the

exponential δ(2d−i−1)i comes from (2d − i − 1)i = 2d − 1 − 2i + · · · + 2d − 3 + i (the last

i is from the accumulation of the total order of anti-derivatives of polynomials) and when

i = d− 1, δ(2d−i−1)i = d(d− 1) = di.

Therefore, for i = d− 1, we have proved

µ{Λ : λi(Λ) ≤ δ} ≥ C ′
dδ

d(d−1), as δ � 1.

This completes the proof for all 1 ≤ u ≤ d− 1.

By looking at the dual lattice, we can also obtain the tail bound for this distribution.
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Corollary 1.3.9. For 1 < i ≤ d there exist Cd and C ′
d such that

Cdδ
di ≤ µ

({
Λ ∈ L : λi(Λ) ≥

1

δ

})
≤ C ′

dδ
di,

for all δ � 1.

Proof. Recall the notion of dual lattice (cf. 1.2.6) and notice that the dual map

∗ : X → X,Λ 7→ Λ∗

is measure-preserving. By the Theorem 1.2.29. We have

1 ≤ λr(Λ)λd+1−r(Λ
∗) ≤ d!

for any r = 1, 2, · · · d. Hence the corollary follows.

1.3.2 The measure of the set of unimodular lattices with k-tuple
vectors avoiding a measurable set

For a more general setting, using Rogers’ formulas [Rog56], Athreya and Margulis [AM09]

proved the following:

Theorem 1.3.10 ([AM09], Theorem 2.2). For d ≥ 2, there is a constant Cd such that if A

is a measurable set in Rd, with m(A) > 0,

µ({Λ ∈ L : Λ ∩ A = ∅}) ≤ Cd

m(A)
.

For 1 ≤ k ≤ d and a unimodular lattice Λ in Rd, let Λk denote the direct sum of k copies

of Λ, which is again a unimodular lattice in Rdk.

The main result in this section is the following:
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Theorem 1.3.11. For d ≥ 2 and 1 ≤ k ≤ d
2
, there is a constant Cd such that if A is a

measurable set in Rdk, with m(A) > 0,

µ({Λ ∈ L : Λk ∩ A = ∅}) ≤ Cd

m(A)
1
k

.

Before we give the proof, let us first introduce some background on Rogers’ theory on

the mean value formulas in the geometry of numbers.

In order to tackle with the arbitrary measurable set A, we shall use the following Rogers’

symmetrization technique:

Definition 1.3.12 (Spherical Symmetrization of a measurable function).

Let f be any measurable function in Rd, we define a function f ∗, called the spherical sym-

metrization of f , as follows:

f ∗(0) := sup
x∈Rd

f(x)

and if x 6= 0,

f ∗(x) := inf{ρ ≥ 0 : m({y ∈ Rd : f(y) > ρ}) ≤ m({y ∈ Rd : ‖y‖ ≤ ‖x‖})}.

The following example justifies the terminology spherical symmetrization:

Example 1.3.13 (Spherical symmetrization of indicator functions).

For A ⊂ Rd measurable, if we take f = 1A, then 1∗A(0) = 1 and

1∗A(x) = inf{ρ ≥ 0 : m({y ∈ Rd : 1A(y) > ρ}) ≤ m({y ∈ Rd : ‖y‖ ≤ ‖x‖})}

= 1B(A)(x).

where B(A) denotes the ball in Rd centered at the origin that has volume equal to the

measure of A, namely m(B(A)) = m(A).
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Theorem 1.3.14 (Special case of Theorem 1, [Rog56]). For d ≥ 2, let f : Rd → R be

a nonnegative Borel measurable function, and let f ∗ be the function obtained from f by

spherical symmetrization. Then∫ ( ∑
v∈Λ−0

f(v)

)2

dµ(Λ) ≤
∫ ( ∑

v∈Λ−0

f ∗(v)

)2

dµ(Λ).

Now we state a multiple-sum formula due to Rogers:

Theorem 1.3.15 (Theorem 4, [Rog55] and for the convergence part, Theorem 2, [Sch58]).

Let 1 ≤ k ≤ d − 1 and f : Rdk → R be a non-negative Borel measurable function in

(x1, . . . , xk). Then∫
X

∑
v1,...,vk∈Λ

f(v1, . . . , vk)dµ(Λ)

=f(0, ..., 0) +

∫
Rd

· · ·
∫
Rd

f(x1, . . . , xk)dx1 . . . dxk

+
∑

(ν,µ)=1

∞∑
q=1

∑
D

(
e1
q
· · · em

q

)d ∫
Rd

· · ·
∫
Rd

f

(
m∑
i=1

di1
q
xi, . . . ,

m∑
i=1

dik
q
xi

)
dx1 . . . dxm. (1.3.4)

Here the first sum is over all partitions (ν, µ) = (ν1, ..., νm;µ1, ..., µk−m) of the numbers

{1, ..., k} into two sequences 1 ≤ ν1 < ... < νm ≤ k and 1 ≤ µ1 < ... < µk−m ≤ k with

1 ≤ m ≤ k − 1 (of course νi 6= µj for any i, j).

The third sum is taken over all integer-valued m× k matrices D, such that

(1) the greatest common divisor of all entries is 1

(2) for all i, j, D satisfies{
diνj = qδij for i = 1, ...,m and j = 1, ...,m

diµj
= 0 for µj < νi, i = 1, ...,m and j = 1, ..., k −m.

(1.3.5)

Finally, ei = (εi, q), where ε1, ..., εm are the elementary divisors of D.

Moreover, if f is bounded and compactly supported, then the both sides of the equation 1.3.4

are finite.
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Here for the convenience of readers, we shall give an example for the matrix D:

Example 1.3.16. Let k = 6 and m = 4 and assume the partition is given by

(ν1, ν2, ν3, ν4) = (2, 3, 5, 6), and (µ1, µ2) = (1, 4).

The the 4× 6 matrix D with respect to this partition has the form
0 q 0 ∗ 0 0
0 0 q ∗ 0 0
0 0 0 0 q 0
0 0 0 0 0 q


Note that in the 4-th column, since µ2 = 4 > ν1 = 2, diµj

are not necessarily zero, however

they must be chosen so that the greatest common divisor of all coefficients of D is coprime

to q.

Proof of Theorem 1.3.11.

For a measurable subset A ⊂ Rdk, let ΣA,k := {Λ ∈ L : Λk ∩A = ∅} and gA(Λ) := 1Σc
A,k

(Λ).

Let5

fA(Λ) :=
∑

(v1,...,vk)∈Λk−(0,...,0)

1A(v1, ..., vk).

Since

gA(Λ) = 0 ⇐⇒ Λ ∈ ΣA,k ⇐⇒ Λk ∩ A = ∅ =⇒ fA(Λ) = 0,

it follows that fA = gAfA and by Cauchy-Schwarz’ theorem(∫
X

fAdµ

)2

≤
(∫

X

f 2
Adµ

)(∫
X

g2Adµ

)
Notice that since g2A = gA, we have

µ(ΣA,k) = 1− ‖gA‖1 = 1− ‖gA‖22,

5Note here we are excluding the all-zero term in the sum.
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and therefore

µ(ΣA,k) ≤ 1− ‖fA‖21
‖fA‖22

≤ 1− m(A)2

‖fA‖22
,

where the last inequality follows from Theorem 1.3.15 (the remainder term is non-negative).

On the other hand, by the spherical symmetrization (Theorem 1.3.14 and Example

1.3.13), we have

‖fA‖22 ≤ ‖
∑

Λk−(0,...,0)

1B(A)‖22,

where B(A) is the spherical symmetrization of A in Rdk. Note that the radius of this ball

has magnitude r � dk
√
m(A).

It follows that

µ(ΣA,k) ≤ 1− m(A)2

‖
∑

Λk−(0,...,0) 1B(A)‖22
, (1.3.6)

It remains for us to give an estimate for the second moment of
∑

Λk−(0,...,0) 1B(A).

Assume 1 ≤ 2k ≤ d − 1. By replacing k in Theorem 1.3.15 with 2k, f with f × f and

keeping all other assumptions are the same as the previous theorem (with 2k playing the

role of k, of course), and distribute the products in the square of sums, we have∫
X

( ∑
v1,...,vk∈Λ

f(v1, . . . , vk)

)2

dµ(Λ)

=f(0, ..., 0)2 +

∫
Rd

· · ·
∫
Rd

f(x1, . . . , xk)f(xk+1, ..., x2k)dx1 . . . dx2k

+
∑

(ν,µ)=1

∞∑
q=1

∑
D

(
e1
q
· · · em

q

)d ∫
Rd

· · ·
∫
Rd

f

(
m∑
i=1

di1
q
xi, . . . ,

m∑
i=1

dik
q
xi

)
f

(
m∑
i=1

di,k+1

q
xi, . . . ,

m∑
i=1

di,2k
q
xi

)
dx1 . . . dxm. (1.3.7)

=f(0, ..., 0)2 +

[∫
Rd

· · ·
∫
Rd

f(x1, . . . , xk)dx1 . . . dxk

]2
+
∑

(ν,µ)=1

∞∑
q=1

∑
D

(
e1
q
· · · em

q

)d ∫
Rd

· · ·
∫
Rd

f

(
m∑
i=1

di1
q
xi, . . . ,

m∑
i=1

dik
q
xi

)
f

(
m∑
i=1

di,k+1

q
xi, . . . ,

m∑
i=1

di,2k
q
xi

)
dx1 . . . dxm. (1.3.8)
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Note that the condition 1 ≤ 2k ≤ d − 1 guarantees the convergence on the right hand side

of equation. Now take f = 1Bdk
r

= 1B(A), where Bdk
r is a ball in Rdk with radius r whose

volume is the same as that of B(A) and thus A. Specifically, rdk �d,k m(A) or

r �d,k m(A)
1
dk (1.3.9)

Then the first term is 1 and the second term can be easily computed as m(A)2.

For the third term, we have

f

(
m∑
i=1

di1
q
xi, . . . ,

m∑
i=1

dik
q
xi

)
f

(
m∑
i=1

di,k+1

q
xi, . . . ,

m∑
i=1

di,2k
q
xi

)
= 1

⇐⇒
m∑
i=1

d2i1
q2

‖xi‖2 + · · ·+
m∑
i=1

d2ik
q2

‖xi‖2 ≤ r2 and

m∑
i=1

d2i,k+1

q2
‖xi‖2 + · · ·+

m∑
i=1

d2i,2k
q2

‖xi‖2 ≤ r2

If the partition is given by 1 ≤ ν1 < ... < νm ≤ k and 1 ≤ µ1 < ... < µk−m ≤ k, then in

view of the definition of entries in D (1.3.5), each ‖xi‖ for 1 ≤ i ≤ m must be in the range

[0, r] in order to make the integrand nonvanishing. So we can magnify each the integral as∫
Rd

· · ·
∫
Rd

f

(
m∑
i=1

di1
q
xi, . . . ,

m∑
i=1

dik
q
xi

)
f

(
m∑
i=1

di,k+1

q
xi, · · · ,

m∑
i=1

di,2k
q
xi

)
dx1 · · · dxm

≤
∫
Bd

r

· · ·
∫
Bd

r

1dx1 · · · dxm

=Vol(Bd
r )

m = Od,m(r
dm).

Noticing that m < 2k < d − 1, it follows from the convergence that the right hand side of

(1.3.8) is m(A)2 +Od(r
d(2k−1)). So the estimate (1.3.6) becomes

µ(ΣA,k) ≤1− m(A)2

m(A)2 +Od(rd(2k−2))

=
Od(r

d(2k−1))

m(A)2 +Od(rd(2k−1))

=
Od(r

d(2k−1))

m(A)2
= Od(1)

m(A)
2k−1

k

m(A)2
(By (1.3.9))

=Od(1)
1

m(A)
1
k
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1.3.3 Logarithm law associated to the higher successive minima

Now we define ∆i(Λ) := − log(λi(Λ)). It follows from taking the negative logarithm of

all sides of the equation (A.0.4) that ∆i(Λ) is uniformly continuous. Recall from [KM99]:

Definition 1.3.17. For a function ∆ on a G-homogeneous space X, define the tail distri-

bution Φ∆(z) := µ{x ∈ X : δ(x) ≥ z}.

For k > 0, we will also say that δ is k distance-like if it is uniformly continuous and in

addition there exist constants Cd and C ′
d such that

Cde
−kz ≤ Φ∆(z) ≤ C ′

de
−kz, ∀z ∈ R.

It follows from our Theorem 1.3.3 that ∆i is di distance-like in the space of unimodular

lattices. And as an immediate consequence of Theorem 1.7 in [KM99], we have the non-

unipotent version of logarithm law:

Theorem 1.3.18. For any nonzero (z1, . . . zd) with z1 + · · · + zd = 0, and for almost all

unimodular lattice Λ in X = SL(d,R)/SL(d,Z) we have

lim sup
t→∞

∆i(exp(tz)Λ)

log t
=

1

di
. (1.3.10)

For the unipotent flow and first successive minimum, Athreya and Margulis proved the

following logarithm law:

Theorem 1.3.19 ([AM09], Theorem 2.1). Let (ut)t∈R be a unipotent one-parameter subgroup

of SL(d,R) and X := SL(d,R)/SL(d,Z). For µ-a.e. Λ in X, we have

lim sup
t→∞

− log λ1(htΛ)

log t
=

1

d
.
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We shall generalize this theorem to higher λi’s:

Theorem 1.3.20. Let (gt)t∈R be an unbounded one-parameter subgroup of SL(d,R) and

X := SL(d,R)/SL(d,Z). For µ-a.e. Λ in X, we have

lim sup
t→∞

− log λi(htΛ)

log t
=

1

di
.

This is also discovered independently by Kim and Skenderi [Kim22]. To prove this

theorem, we first observe that by Borel-Cantelli Lemma, the upper bound holds for all flows:

Lemma 1.3.21 (The upper bound). For µ-almost every Λ ∈ X, 1 ≤ i ≤ d − 1, and any

one parameter subgroup (ht)t∈R of G = SL(d,R),

lim sup
t→∞

− log λi(htΛ)

log t
≤ 1

di
.

Proof. For any ε > 0, and for k ≥ 1, let rk = ( 1
di
+ ε) log k and let tk be any sequence going

to ∞ as k → ∞, we have by Theorem 1.3.3 and the fact that utk is measure-preserving that

µ({Λ ∈ X : λi(utkΛ) ≤ e−rk}) ≤ C ′
d(e

rk)di,

which is equivalent to

µ({Λ ∈ X : − log λi(utkΛ) ≥ rk}) ≤ C ′
d

1

k1+diϵ
.

Since the summatin on the right hand side over k is finite, by Borel-Cantelli Lemma, we

have

µ(lim sup
k→∞

{Λ ∈ X : − log λi(utkΛ) ≥ rk}) = 0.

Taking the complement, this means

µ(∪N ∩k≥N {Λ ∈ X : − log λi(utkΛ) < rk}) = µ(lim inf
k→∞

{Λ ∈ X : − log λi(utkΛ) < rk}) = 1.

In other words, for µ-almost every Λ ∈ X, there exists N such that k ≥ N implies

− log λi(utkΛ) < rk := (
1

di
+ ε) log(k)
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Since tk → ∞ is arbitrary, we have

lim sup
t→∞

− log λi(htΛ)

log t
≤ 1

di
.

for µ-almost all Λ.

To show the lower bound, we shall use a logarithm law for hitting time of unbounded

flow against the spherical shrinking target due to Kelmer and Yu [KY17].

Theorem 1.3.22 (Special Case of Theorem 1.1, [KY17]). Let {Bt}t>0 denote a monotone

family of spherical (meaning each set Bt is invariant under the left action of K = SO(d,R))

shrinking (meaning Bt ⊃ Bs for t ≥ s and limt→∞ µ(Bt)) targets in X := G/Γ :=

SL(d,R)/SL(d,Z). Let {gm}m∈Z denote an unbounded discrete time flow on X . Then

for a.e. Λ ∈ X

lim
t→∞

log(min{m ∈ N : gmΛ ∈ Bt})
− log(µ(Bt))

= 1 (1.3.11)

The quantity min{m ∈ N : gm.x ∈ Bt} is often called the first hitting time with respect

to the flow {gm} and the target set Bt.

Proof of 1.3.20 (the lower bound). We will take the shrinking targets as

Bt := {Λ : λi(gmΛ) ≤ e−t}, t ≥ 0.

These sets are clearly spherical, namely SO(d,R)-invariant since λi. So by Theorem 1.3.22,

lim
t→∞

logmin{m ∈ N : λi(gmΛ) ≤ e−t}
− log µ({Λ : λi(gmΛ) ≤ e−t})

= 1.6 (1.3.12)

By Corollary 1.3.4,

lim
t→∞

− log µ ({Λ ∈ L : λi(Λ) ≤ e−t})
t

= di (1.3.13)

6The set {m ∈ N : λi(gmΛ) ≤ e−t} is non-empty because (gm)-action is ergodic by the Howe-Moore
theorem, and thus almost every (gm)-orbit is dense.
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Therefore by taking the product and reciprocal,

lim
t→∞

t

logmin{m ∈ N : λi(gmΛ) ≤ e−t}
=

1

di
. (1.3.14)

But observe that

λi
(
gmin{m∈N:λi(gmΛ)≤e−t}Λ

)
≤ e−t, (1.3.15)

and therefore

− log λi
(
gmin{m∈N:λi(gmΛ)≤e−t}Λ

)
≥ t, (1.3.16)

It follows that

lim sup
t→∞

− log λi(htΛ)

log t

≥ lim sup
t→∞

− log λi
(
gmin{m∈N:λi(gmΛ)≤e−t}Λ

)
logmin{m ∈ N : λi(gmΛ) ≤ e−t}

(By the definition of limsup. Here the subscript is considered as a subsequence.)

≥ lim sup
t→∞

t

logmin{m ∈ N : λi(gmΛ) ≤ e−t}
(By the inequality (1.3.16))

=
1

di
. (By the limit (1.3.14))

This finishes the proof of lower bound and thus the whole logarithm law theorem.
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Chapter 2: Equidistribution of sub-lattices in Rd

This chapter is based on the joint work with Michael Bersudsky [BX23].

2.1 Introduction

In this paper we study the limiting distribution of dense orbits of a lattice Γ ≤ SL(m+

1,R) in the space Xm,m+1 of normalized m-dimensional discrete subgroups of Rm+1 with

respect to a filtration given by growing norm balls (see precise definitions below). Such a

research direction was originally suggested by U. Shapira as natural continuation of the work

[SS17] which considers random walks on X2,3 (see also the more recent work [GLS22] which

generalizes [SS17]). Another motivation for our work is to extend the scope of applications

of the duality principle in homogeneous dynamics to the ergodic theory of lattice subgroups,

see Section 2.1.1 below for more details.

We start with our results in Xm,m+1. In what follows, m is a natural number strictly

larger than 1. We say that Λ ⊂ Rm+1 is a m-lattice if Λ is the Z-Span of a tuple of linearly

independent vectors v1, v2, ..., vm ∈ Rm, that is,

Λ := SpanZ{v1, v2, ..., vm}.

For Λ we let

Cov(Λ) :=
√

det(〈vi, vj〉),

which is the area of a fundamental parallelogram of Λ. An m-lattices Λ is called unimodular

if Cov(Λ) = 1. Next, we recall the definition of the shape of lattices, a notion that was
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extensively studied in e.g [EMSS16; AES16], which refined the classical work of Schmidt

[Sch98]. We view Rm+1 as row vectors, and for a unimodularm-lattice Λ ⊂ Rm+1, let w ∈ Sm

be such that w ⊥ Λ. We choose a ρ ∈ SO(m + 1,R) such that wρ = em+1 := (0, . . . , 0, 1),

and we define the shape of the pair (Λ, w) as

s(Λ, w) := Λρ

[
SO(m,R) 0

0 1

]
, (2.1.1)

which is independent of the choice of ρ. By identifying the unimodular m-lattices Λ ⊂ e⊥m+1

with Xm := SL(m,Z)\SL(m,R), we view s(Λ, w) as a point in Xm/SO(m,R). Note that in

general

s(Λ, w) 6= s(Λ,−w).

Remark 2.1.1. A more intrinsic definition of a shape of a discrete subgroup, see e.g. [SS17;

Sch98], is defined by the equivalence class under the equivalence relation of scaling and

rotations. When defining shape in this way, one gets a point in Xm/O(m,R), and it captures

slightly less information. Our definition (2.1.1) is mainly motivated by the definition in

[EMSS16; AES16], which produces a point in the more familiar space Xm/SO(m,R).

We consider

Xm,m+1 := {(Λ, w) : Cov(Λ) = 1, w ∈ Sm, w ⊥ Λ},

and note that s defined in (2.1.1) yields a map

s : Xm,m+1 → Xm/SO(m,R).

We define a right SL(m + 1,R) action on Xm,m+1 using the usual right matrix multipli-

cation by

(Λ, w).g :=

(
Λg√

Cov(Λg)
,
w(tg−1)

‖w(tg−1)‖

)
, g ∈ SL(m+ 1,R), w ∈ Sm, (2.1.2)

where ‖ · ‖ is the usual Euclidean norm. We note that this action is transitive.
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It turns out that for each lattice subgroup Γ ≤ SL(m+ 1,R) and each x0 ∈ Xm,m+1, the

orbit x0Γ is dense in Xm,m+1. This follows for example by [SS17], and a more direct proof of

this fact is obtained by applying a duality argument as follows — Xm,m+1 is a homogeneous

space identified with H\SL(m + 1,R), with H as in (2.1.7). Now a Γ-orbit HgΓ is dense

in H\SL(m + 1,R) if and only if the ”dual” H-orbit HgΓ is dense in SL(m + 1,R)/Γ. By

Proposition 1.5 of [SR80], it follows that all H-orbits in G/Γ are dense.

Our goal in this paper will be to compute the limiting distribution of Γ orbits in Xm,m+1

with respect to growing Hilbert-Schmidt norm balls. Namely, let ‖g‖ =
√

Trace(tgg) =√∑
ij g

2
ij be the Hilbert-Schmidt norm of g ∈ SL(m+ 1,R), and let

ΓT := {γ ∈ Γ : ‖γ‖ ≤ T}. (2.1.3)

For

x0 := (Λ0, w0) ∈ Xm,m+1,

consider the probability measures

µT,x0 :=
1

#ΓT

∑
γ∈ΓT

δx0.γ, T > 0.

Remark 2.1.2. When m = 1 the space Xm,m+1 is naturally identifies with S1 the unit circle

in R2. The limiting distribution of µT,x0 in the case of m = 1 was obtained in [Gor03].

Our result below states that the probability measures µT,x0 converge as T → ∞ to a

probability measure ν̃x0 depending on x0 ∈ Xm,m+1 which we describe now. We observe that

Xm,m+1 has a natural projection to Sm defined by

π⊥(Λ, w) := w,

which endows Xm,m+1 with a fiber-bundle structure, where the fibers are isomorphic to

Xm := SL(m,Z)\SL(m,R).
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To define the measure ν̃x0 , we define a measure µx0,w on each fiber π−1
⊥ (w), and we integrate

those measures by the unique rotation invariant probability measure µSm on Sm. We note

that the measures µx0,w have a slightly surprising form; they are a combination of a SL(m,R)-

invariant measure with a density involving the Hilbert-Schmidt norm of operators which we

define now.

For an operator T from a hyperplane U ⊂ Rm to another hyperplane V ⊂ Rm, we define

‖T‖2HS :=
m∑
i=1

‖Tui‖2, (2.1.4)

where {u1, u2, ..., um} is an orthonormal basis of U , and where the norm on the right hand

side is the usual Euclidean norm on Rm. We note that this norm is independent of the choice

of an orthonormal basis {u1, u2, ..., um}. Moreover, this norm is bi-SO(m + 1,R) invariant

in the following sense. If ρ1, ρ2 ∈ SO(m+ 1,R), then ρ2 ◦ T ◦ ρ1 : ρ−1
1 U → ρ2V satisfies

‖ρ2 ◦ T ◦ ρ1‖HS = ‖T‖HS.

For an ordered tuple of linearly independent vectors B = (u1, u2, ..., um) ∈ Rm×m we de-

fine the linear map TB : SpanR{e1, e2, ..., em} → SpanR{u1, u2, ..., um}, by sending e1 7→

u1, ..., em 7→ um. Now fix unimodular m-lattice Λ0 ⊂ Rm, and let B0 be an ordered tuple of

linearly independent vectors forming a Z-basis for Λ0. We define for an arbitrary unimodular

m-lattice Λ ⊂ Rm,

ΨΛ0(Λ) :=
∑

SpanZB=Λ

1

‖TB ◦ T−1
B0

‖m2

HS
. (2.1.5)

We note that ΨΛ0 is independent of the choice of basis B0, and we observe that by bi-

SO(m+1,R) invariance of the Hilbert-Schmidt norm that the values of the function ΨΛ0(Λ)

only depends on the shapes of Λ and Λ0.

By identifying π−1
⊥ (em+1) with SL(m,Z)\SL(m,R), we obtain the SL(m,Z)\SL(m,R)

invariant measure µem+1 supported on π−1
⊥ (em+1) scaled such that the measure νx0,em+1 defined
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by

νx0,em+1(f) :=

∫
π−1
⊥ (em+1)

f(Λ, em+1)ΨΛ0(Λ)dµem+1(Λ), f ∈ Cc(Xm,m+1),

is a probability measure. Then, the measure supported on π−1
⊥ (w), for w ∈ Sm, is defined

by choosing ρw ∈ SO(m+ 1,R) such that w = em+1ρw, and by letting,

νx0,w := (ρw)∗νx0,em+1 ,

which is the push-forward of the right translation by ρw via the right action of SO(m+1,R)

on Xm,m+1 defined in (2.1.2). Note that νx0,w is independent of the choice of ρw. Finally, we

define ν̃x0 by

ν̃x0(f) =

∫
Sm
νx0,w(f)dµSm(w).

Theorem 2.1.3. Let Γ ≤ SL(m + 1,R) be a lattice and fix x0 ∈ Xm,m+1. Then, µT,x0

converges in the weak-* topology to ν̃x0 as T → ∞. In other words, for all f ∈ Cc(Xm,m+1),

we have

lim
T→∞

1

#ΓT

∑
γ∈ΓT

f(x0 · γ) =
∫
Xm,m+1

f(x)dν̃x0(x). (2.1.6)

We observe that that the push-forward of ν̃x0 by s is given by

s∗ν̃x0 = s∗νx0,em+1 .

Corollary 2.1.4. Let Γ ≤ SL(m + 1,R) be a lattice and fix x0 ∈ Xm,m+1. Then, the

probability measures on Xm/SO(m,R) given by

s∗µT,x0 =
1

#ΓT

∑
γ∈ΓT

δs(x0.γ), T > 0,

converge in the weak-* topology to the probability measure s∗νx0,em+1 , as T → ∞.

2.1.1 Connection to homogeneous dynamics - the duality principle

To simplify notation, we denote G := SL(m + 1,R). We note that G-action on Xm,m+1

given in (2.1.2) is transitive, and we observe that the stabilizer subgroup of the base point
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(SpanZ{e1, . . . , em}, em+1) is

H =

{[
t−

1
m q 0
v t

]
: t > 0, q ∈ SL(m,Z), v ∈ Rm

}
. (2.1.7)

Then we obtain the identification H\G ∼= Xm,m+1.

This connects our problem to the study of distribution of orbits of closed subgroups

in homogeneous spaces. The duality principle allows us to connect the equidistributional

properties of the Γ-orbits on H\G to the equidistributional properties of the H-orbits in

the dual action of H on G/Γ, see Section 1.7 of [GN14] for an extensive exposition of the

existing literature on this principle. A general recipe for applying the duality principle was

developed in [GN14] and [GW04]. Our approach in this paper uses a theorem of Gorodnik

and Weiss ([GW04]), since it allows to prove equidistribution for every starting point.

Prior to this work, the duality principle wasn’t applied to the setting in which H has

infinitely many non-trivial connected components. We note that the case when H is con-

nected algebraic was studied in great generality in [GN12; GW04], and the case where H is

a lattice was studied in [Oh05] and in greater generality in [GW04].

In the section below we formulate our main result which we view as a first step towards a

more general theorem in the setting which G is a semi-simple group and H is a subgroup of

a parabolic group P such that in at least one of the levi-components of P appears a lattice.

2.1.2 Our general results

From now on, G := SL(m+ 1,R), Γ ≤ G is a lattice,

H :=

{[
t−

1
m q 0
v t

]
: t > 0, q ∈ ∆, v ∈ Rm

}
, (2.1.8)

where ∆ ≤ SL(m,R) is a lattice, and

P :=

{[
t−

1
mη 0
v t

]
: t > 0, η ∈ SL(m,R), v ∈ Rm

}
. (2.1.9)
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Let x0 := Hg0 ∈ H\G, and consider the one-parameter set of probability measures on H\G

µT,x0 :=
1

#ΓT

∑
γ∈ΓT

δx0.γ ,

for T > 0. Our main result below will show that µT,x0 equidistributes as T → ∞ with respect

to the ν̃x0 the probability measure we define below.

The space H\G is naturally a fiber-bundle over P\G with respect to the natural map

sending

π(Hg) := Pg,

(note that P\G is identified with Sm the unit sphere in Rm+1 via the right action w.g :=

w(tg−1)
∥w(tg−1)∥ , g ∈ G, w ∈ Sm). The fibers are isomorphic to ∆\SL(m,R). Notice that SO(m +

1,R) acts transitively on P\G (with respect to the natural action), and we let µP.SO(m+1,R)

be the right SO(m + 1,R)-invariant probability on P\G = P.SO(m + 1,R). Now we define

measures on each fiber

π−1(Pρ) = HPρ, ρ ∈ SO(m+ 1,R).

We write (as we may, using Iwasawa decomposition)

x0 = H

[
G0 0
v0 1/det(G0)

]
ρ0,

where G0 ∈ SL(m,R), and ρ0 ∈ SO(m+ 1,R), and consider the function

Φx0

(
H

[
η 0
v 1/det(η)

]
ρ

)
=
∑
q∈∆

1

‖G−1
0 qη‖m2

.

Here ρ ∈ SO(m + 1,R) and η ∈ SL(m,R). The experession on the right is well-defined as

the Hilbert-Schmidt norm is bi-SO(m + 1,R) invariant. The infinite sum is convergent due

to Lemma 2.2.1 below. The “standard” fiber π−1(P ) = H\P is naturally identified with

∆\SL(m,R), and we let µH.SL(m,R)) be the SL(m,R) invariant measure on H\P such that

the measure

νx0,π−1(P )(f) :=

∫
π−1(P )

f(y)Φx0(y)dµH.SL(m,R)(y), f ∈ Cc(H\G)
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is a probability measure. On any other fiber π−1(Pρ), ρ ∈ SO(m + 1, R), we define the

pushed measure

νx0,π−1(Pρ) := ρ∗νx0,π−1(P ),

where the pushforward is via the right translation by ρ. Having defined the above measures

on the base space and the fibers of the fiber bundle H\G, we can now define our probability

measure on H\G to be

ν̃x0(f) =

∫
P.SO(m+1,R)

νx0,π−1(b)(f)dµP.SO(m+1,R)(b), f ∈ Cc(H\G).

Theorem 2.1.5. Let Γ ≤ SL(m+1,R) be a lattice and fix x0 ∈ H\G. Then, µT,x0 converges

in the weak-* topology to ν̃x0 as T → ∞.

Theorem 2.1.3 is a particular case of Theorem 2.1.5. We leave the details to the reader.

As mentioned above, to prove our main result we will follow the method developed in

[GW04]. The key ingredients are certain volume estimates and certain ergodic theorems

which we present in the following section.

2.1.3 Volume estimates of expanding skew balls in H and an equidis-
tribution theorem on G/Γ

Let us first describe the left invariant measure on H. Put

∆m,1 :=

[
∆ 0
0 1

]
, A =

{[
t−

1
m I2 0
0 t

]
: t > 0

}
, U :=

[
I2 0
Rm 1

]
(2.1.10)

Then the group H has the decomposition:

H = U ⋊ (∆m,1 × A) = U ⋊ (A×∆m,1).

Notice that any element in H can be uniquely represented as uqa, where u ∈ U , q ∈ ∆m,1(Z),

a ∈ A (note that a commutes with q),
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where the semidirect product is given by:

(u1, q1, a1) · (u2, q2, a2) := (u1q1a1u2(q1a1)
−1, q1q2, a1a2) (2.1.11)

Now we give a formula for the left Haar measure µ on H. For x ∈ H, write x = uvatq,

where

q :=

[
q 0
0 1

]
7, at :=

[
t−

1
m Im 0
0 t

]
, uv :=

[
Im 0
v 1

]
, (2.1.12)

where q ∈ ∆, t > 0, v ∈ Rm. Then a left Haar measure on H is given by∫
H

f(x)dµ(x) =
∑
q∈∆

∫ ∞

0

∫
Rm

f(uvatq)dv
1

tm+2
dt, (2.1.13)

where the measure dv and dt denote the Lebesgue measures on Rm and R correspondingly.

Let ‖ · ‖ denote the Hilbert-Schmidt norm on matrices. Namely ‖A‖ :=
√

Trace(ATA),

or the square root of the sum of squares of all entries of the matrix A.

For any subgroup L of G = SL(m+ 1,R), let

LT := {g ∈ L : ‖g‖ < T}. (2.1.14)

Following [GW04] (cf. [GN12]), for g1, g2 ∈ G and T > 0, we define the so-called “skewed

balls” as follows:

HT [g1, g2] := {h ∈ H : ‖g−1
1 hg2‖ < T}. (2.1.15)

Let

Vq,T [g1, g2] := {h ∈ UAq : ‖g−1
1 hg2‖ < T}, (2.1.16)

then it follows that

HT [g1, g2] =
⊔
q∈∆

Vq,T [g1, g2]. (2.1.17)

7Here and henceforth we shall abuse the notation q, allowing it to represent both the m ×m and (m +
1)× (m+ 1) matrices whenever its meaning is evident from the context.
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For g1, g2 ∈ G, by using Iwasawa decomposition (for block-lower-triangular matrix), we

may assume

g1 :=

[
g1 0
v1 det(g1)−1

]
k1, g2 :=

[
g2 0
v2 det(g2)−1

]
k2 (2.1.18)

where k1, k2 ∈ SO(m+ 1,R), g1, g2 ∈ Rm×m, and v1,v2 ∈ R1×m.

The key volume estimates we will prove are given in the following proposition.

Proposition 2.1.6. Let Γ(z) be the classical Gamma function, and let

C(m) :=
π

m
2 mΓ(m

2

2
)

2Γ(m
2

2
+ m

2
+ 1)

.

There exists κ > 0 such that for any bounded subset B ⊆ SL(m + 1,R) it holds for all

g1, g2 ∈ B that for q ∈ ∆,

µ(Vq,T [g1, g2]) = C(m)
det(g1)m
det(g2)

Tm(m+1)

‖g−1
1 qg2‖m

2
+ CqO(T

m(m+1)−κ), (2.1.19)

where Cq > 0, and

µ(HT [g1, g2]) = C(m)
det(g1)m
det(g2)

Tm(m+1)
∑
q∈∆

1

‖g−1
1 qg2‖m

2
+O(Tm(m+1)−κ). (2.1.20)

As an immediate corollary, we obtain the following statements which are key requirements

for the method of [GW04].

Corollary 2.1.7 (Uniform volume growth for skewed balls in H, property D1 in [GW04]).

For any bounded subset B ⊂ G and any ε > 0, there are T0 and δ > 0 such that for all

T > T0 and all g1, g2 ∈ B we have:

µ
(
H(1+δ)T [g1, g2]

)
≤ (1 + ε)µ (HT [g1, g2]) . (2.1.21)

Corollary 2.1.8 (Limit volume ratios, property D2 in [GW04]). For any g1, g2 ∈ G. the

limit

α(g1, g2) := lim
T→∞

µ (HT [g1, g2])

µ (HT )
=

det(g1)m
det(g2)

∑
q∈∆

1

∥g−1
1 qg2∥m

2∑
q∈∆

1

∥q∥m2

, (2.1.22)

exists and is positive and finite.
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We prove Proposition 2.1.6 in Section 2.2.

Next, we give our ergodic theorem. For F ∈ Cc(G/Γ) and g1, g2 ∈ G, we consider the

measure defined by the integral

µT,g1,g2(F ) :=
1

µ (HT [g1, g2])

∫
HT [g1,g2]

F (h−1g1Γ)dµ(h), F ∈ Cc(G/Γ). (2.1.23)

Theorem 2.1.9. Let µX be the normalized G-invariant probability measure on X = G/Γ.

For all g1, g2 ∈ G and all F ∈ Cc(X)

lim
T→∞

µT,g1,g2(F ) =

∫
X

F (x)dµX(x). (2.1.24)

The above ergodic theorem is proven in Section 2.3. In an overview, we will establish

unipotent invariance of the limiting measure, which opens the way to apply the celebrated

results of Ratner (see e.g. [Rat91]), combined with the results of Shah (see e.g. [Sha94]) on

the behaviour of polynomial orbits. The main technical result we prove is a certain divergence

of polynomial maps in representation space, where the domain of the maps ”shrinks” (see

Lemma 2.3.6).

Notations and conventions

Throughout this paper, for function f and g on R, by f(x) = O(g(x)) or f(x) � g(x) we

mean there is some C > 0 such that |f(x)| ≤ C|g(x)| for sufficiently large x; by f(x) � g(x)

we mean f(x) � g(x) and g(x) � f(x); by f(x) ∼ g(x) we mean limx→∞

∣∣∣f(x)g(x)

∣∣∣ = 1 or

limx→0

∣∣∣f(x)g(x)

∣∣∣ = 1, depending on the context.

2.2 Volume estimates of skewed balls in H

The main goal of this section is to prove Proposition 2.1.6. In our arguments below we

will make use of the following Lemma.
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Lemma 2.2.1. For an integer n ≥ 1 and σ ∈ R, when T → ∞,∫
SL(n,R)T

‖g‖σdg ∼Vol(SL(n,R)/∆)

∫
∆T

‖q‖σdq (2.2.1)

∼

{
Cn

n(n−1)
n(n−1)+σ

T n(n−1)+σ if σ > −n(n− 1)

In,σ +O(T n(n−1)+σ) if σ < −n(n− 1)
, (2.2.2)

where In,σ and Cn are constants, and dγ is the counting measure.

Remark 2.2.2. We note that our method of proof doesn’t give explicitly the constants In,σ.

The constants Cn come from formula A.1.15 in [DRS93]. We also note that our method of

proof below also gives the asymptotics for σ = −n(n− 1), but they will not be used in our

paper.

Proof. The case σ = 0 is the estimate that as T → ∞, Vol(SL(n,R)/∆)·#∆T ∼ Vol(SL(n,R)T )

and the estimate Vol(SL(n,R)T ) ∼ CnT
n(n−1), which were obtained in [GN09] (see formula

A.1.15 in [DRS93] for the expression of the constant Cn). For σ > 0, by Fubini argument

and using A1.15 in [DRS93], we have∫
SL(n,R)T

‖g‖σdg =
∫

SL(n,R)T

∫ ∥g∥σ

0

1dtdg

=

∫
SL(n,R)T

∫ ∞

0

1[t<∥g∥σ ]dtdg

=

∫ ∞

0

∫
SL(n,R)T

1[t<∥g∥σ ]dgdt

=

∫ Tσ

0

Vol([t 1
σ < ‖g‖ < T ])dt

=

∫ Tσ

0

Vol([‖g‖ < T ])dt−
∫ Tσ

0

Vol([‖g‖ ≤ t
1
σ ])dt

= CnT
n(n−1)+σ −

∫ Tσ

0

Cnt
n(n−1)/σdt+ o(T n(n−1)+σ)

= Cn
n(n− 1)

n(n− 1) + σ
T n(n−1)+σ + o(T n(n−1)+σ).
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For −n(n− 1) 6= σ < 0,∫
SL(n,R)T

‖g‖σdg =
∫

SL(n,R)T

∫ ∥g∥σ

0

1dtdg

=

∫
SL(n,R)T

∫ ∞

0

1[t<∥g∥σ ]dtdg

=

∫ ∞

0

∫
SL(n,R)T

1[t<∥g∥σ ]dgdt

=

∫ ∞

0

Vol([‖g‖ < min(t
1
σ , T )])dt

=

∫ ∞

Tσ

Vol([‖g‖ < t
1
σ ])dt+

∫ Tσ

0

Vol([‖g‖ < T ])dt

=

∫ 1

Tσ

Vol([‖g‖ < t
1
σ ])dt+

∫ Tσ

0

Vol([‖g‖ < T ])dt

(For g ∈ SL(n,R), ‖g‖ ≥ 1)

=

∫ 1

Tσ

Vol([‖g‖ < t
1
σ ])dt+ CnT

n(n−1)+σ + o(T n(n−1)+σ)

Since Vol([‖g‖ < t
1
σ ]) � t

n(n−1)
σ as t → 0 (recall that here σ < 0), and since

∫ 1

0
t
n(n−1)

σ dt

converges, we have by dominated convergence that∫ 1

0

Vol([‖g‖ < t
1
σ ])dt = In,σ

for some (implicit) constant = In,σ. Now∫ 1

Tσ

Vol([‖g‖ < t
1
σ ])dt =In,σ −

∫ Tσ

0

Vol([‖g‖ < t
1
σ ])dt

=In,σ +O

(∫ Tσ

0

t
n(n−1)

σ dt

)
= In,σ +O(T n(n+1)+σ),

which concludes the proof of the estimate for σ < −n(n− 1).

The proof for the statement with ∆T is similar — use the Fubini argument with the

counting measure dq instead of dg, and then apply the estimate that ∆τ ∼ Cnτ
n(n−1) as

τ → ∞.

For g1 ∈ SL(m+ 1,R) we write

g−1
1 := k1

[
G1 0
G3 G4

]
, g2 :=

[
H1 0
H3 H4

]
k2, (2.2.3)
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where k1, k2 ∈ SO(m + 1,R), G1, H1 ∈ Rm×m, G3, H3 ∈ R1×m and G4, H4 ∈ R. We proceed

now to study µ (HT [g1, g2]), where HT [g1, g2] := {h ∈ H : ‖g−1
1 hg2‖ < T}. Recall that our

HT [g1, g2] is the disjoint union (2.1.17), so that

µ (HT [g1, g2]) =
∑
q∈∆

µ (Vq,T [g1, g2]) , (2.2.4)

where we recall Vq,T [g1, g2] := {h ∈ UAq : ‖g−1
1 hg2‖ < T}. We will now inspect closely

Vq,T [g1, g2]. Since the Hilbert-Schmidt norm is bi-SO(m + 1,R) invariant, we may assume

that k1 and k2 in (2.2.3) are equal to the identity matrix.

A generic term h ∈ UAγ is of the form

h :=

[
I2 0
v 1

] [
t−

1
m I2 0
0 t

] [
q 0
0 1

]
=

[
t−

1
m q 0

t−
1
m vq t

]
,

where t 6= 0, q ∈ ∆, v ∈ Rm. Note

g1hg2 =

[
G1 0
G3 G4

] [
t−

1
m q 0

t−
1
m vq t

] [
H1 0
H3 H4

]
=

[
t−

1
mG1q 0

t−
1
mG3q + t−

1
mG4vq G4t

] [
H1 0
H3 H4

]
=

[
t−

1
mG1qH1 0

t−
1
mG3qH1 + t−

1
mG4vqH1 +G4H3t G4H4t

]
.

Upon taking the sum of squares and rearranging terms, we conclude that ‖g1hg2‖ ≤ T is

equivalent to

‖G3qH1 +G4vqH1 +G4H3t
1
m
+1‖2 ≤ −|G4H4|2t

2
m
+2 + t

2
mT 2 − ‖G1qH1‖2 (2.2.5)

In view of (2.2.5), let

Dq,T,t := {v ∈ Rm : ‖G3qH1+G4vqH1+G4H3t
1
m
+1‖2 ≤ −B2

1t
2
m
+2+t

2
mT 2−Am(q)

2}, (2.2.6)

where

Am(q) = ‖G1qH1‖ (2.2.7)
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and

B1 = |G4H4|. (2.2.8)

Recall the expression (2.1.13) for the left Haar measure on H, which gives

µ (Vq,T [g1, g2]) :=

∫ ∞

0

∫
Rm

1Vq,T [g1,g2](uvatq)dv
1

tm+2
dt =

∫ ∞

0

Vol(Dq,T,t)
1

tm+2
dt, (2.2.9)

where Vol(Dq,T,t) is the Lebesgue measure of Dq,T,t. We observe that Dq,T,t is the interior of

an ellipse in Rm, whose area is

Vol(Dq,T,t) =

vm
(
−B2

1t
2
m+2+t

2
m T 2−Am(q)2

)m
2

|G4|m| det(H1)| if − B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2 > 0

0 otherwise.
(2.2.10)

Here vm = π
m
2

Γ(m
2
+1)

denotes the volume of Euclidean ball of radius one in Rm. We now

inspect more closely (2.2.10) with the goal to shed light on how it changes as we vary γ and

T . Roughly, we will show that when Am(q) is “large” with respect to T , then the volume of

the ellipse is “small”.

First, observe that the maximal value of −B2
1t

2
m
+2 + t

2
mT 2 for t > 0 is

MT :=
m

m+ 1

(
1

m+ 1

) 1
m T 2+ 2

m

B
2
m
1

, (2.2.11)

which is attained at

θ(T ) :=
1√

1 +m

T

B1

. (2.2.12)

Then, according to (2.2.10), we get that m(Dγ,T,t) 6= 0 only if

Am(q) <
√
MT � T 1+ 1

m

B1

. (2.2.13)

Next, observe that f(t) = −B2
1t

2
m
+2+t

2
mT 2−Am(q)

2 is monotonic increasing in (0, θ(T )) and

monotonic decreasing in (θ(T ),∞). Also, note that f(0) < 0 and that f(
√
m+ 1θ(T )) < 0.

Then, whenever Am(q)
2 < MT , it is easy to see that −B2

1t
2
m
+2 + t

2
mT 2 − Am(q)

2 has two

positive roots, which we denote by αq,T and βq,T , and the following bounds hold

0 < αq,T < θ(T ) < βq,T <
√
m+ 1θ(T ), (2.2.14)
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whenever Am(q) <
√
MT . In particular,

Vol(Dq,T,t) =

vm
(
−B2

1t
2
m+2+t

2
m T 2−Am(q)2

)m
2

|G4|m| det(H1)| if t ∈ (αq,t, βq,t)

0 otherwise,
(2.2.15)

and by recalling (2.2.4), we conclude that

µ (Vq,T [g1, g2]) =
vm

|G4|m| det(H1)|

∫ βγ,T

αγ,T

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt. (2.2.16)

f(t) = −G2
4H

2
4 t

3 + tT2 − ∥G1γH1∥2

a b

MT

t0

Figure 2.1: Illustration of the estimate of the roots of the polynomial when m = 2.

The following gives more precise bounds for the root αγ,T as q and T vary. By rearranging

terms in

−B2
1α

2
m
+2

q,T + α
2
m
q,TT

2 − Am(q)
2 = 0,

we get that

α
2
m
q,T =

Am(q)
2

T 2 − B2
1α

2
q,T

, (2.2.17)

and by using that αq,T < θ(T ), see (2.2.14), we conclude that

α
2
m
q,T =

Am(q)
2

T 2 − B2
1α

2
q,T

∈
(
Am(q)

2

T 2
,
(m+ 1)Am(q)

2

mT 2

)
. (2.2.18)
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In particular, it follows that

αq,T � Am(q)
m

Tm
, (2.2.19)

and moreover, by (2.2.17) and (2.2.18),

α
2
m
q,T =

Am(q)
2

T 2
+O

(
1

Tm+1.5

)
, when Am(q) ≤

√
T (2.2.20)

Lemma 2.2.3. It holds that

µ(Vq,T [g1, g2]) ≤
vm

|G4|m| det(H1)|
Tm(m+1)

‖Am(q)‖m2 (2.2.21)

≤vm‖G
−1
1 ‖m2‖H−1

1 ‖m2

|G4|m| det(H1)|
Tm(m+1)

‖q‖m2 . (2.2.22)

In particular, when g1, g2 vary in a compact subset of SL(m+ 1,R), it holds that

µ(Vq,T [g1, g2]) ≤ Tm(m+1)O

(
1

‖q‖m2

)
.

Proof. We have ∫ βq,T

αq,T

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt (2.2.23)

≤
∫ βq,T

αq,T

(t
2
mT 2)

m
2

tm+2
dt (2.2.24)

=Tm

∫ βq,T

αq,T

1

tm+1
(2.2.25)

≤Tm 1

mαm
q,T

. (2.2.26)

Using (2.2.18), we get

1

αm
q,T

≤ Tm2

Am(q)m
2 ≤ Tm2 ‖G−1

1 ‖m2‖H−1
1 ‖m2

‖γ‖m2 ,

which proves the claim upon recalling (2.2.16).

We now return to µ (HT [g1, g2]). We conclude by (2.2.27) that

µ (HT [g1, g2]) =
∑
q∈∆,

Am(q)<
√
MT

vm
|G4|m| det(H1)|

∫ βq,T

αq,T

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt,

(2.2.27)
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where MT is given by (2.2.11). We split the sum into two parts as ∑
q∈∆,

Am(q)<
√
T

+
∑
q∈∆,√

T<Am(q)<
√
MT

 vm
|G4|m| det(H1)|

∫ βq,T

αq,T

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt.

(2.2.28)

We will now estimate the second sum. The second sum is relatively easier to estimate,

and it will eventually follow that it is of lower order in T compared to the first sum.

Lemma 2.2.4. If g1, g2 vary in a bounded set, then∑
q∈∆,√

T<Am(q)<
√
MT

vm
|G4|m| det(H1)|

∫ βq,T

αq,T

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt = O(Tm(m+1)−m/2)

(2.2.29)

Proof. In the following g1, g2 vary in a bounded set. By Lemma 2.2.3,∑
q∈∆,√

T<Am(q)<
√
MT

∫ βq,T

αq,T

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt (2.2.30)

≤Tm(m+1)O

 ∑
q∈∆,√

T<Am(q)

1

‖q‖m2

 . (2.2.31)

We have

Am(q) = ‖G1γH1‖ ≤ ‖G1‖‖γ‖‖H1‖,

where ‖G1‖, ‖H1‖ are bounded above since they depend continuously on g1, g2. Then, for

some C > 0, we conclude that

O

 ∑
q∈∆,√

T<Am(q)

1

‖q‖m2

 = O

 ∑
q∈∆,

C
√
T<∥q∥

1

‖q‖m2

 .

By Lemma 2.2.1 with n = m and σ = −m2, it follows that
∑

q∈∆
1

∥q∥m2 converges with the

tail estimate ∑
q∈∆,√
T<∥q∥

1

‖q‖m2 = O(
√
T

−m
),
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which proves our claim.

We now proceed to treat the first part of the sum (2.2.28). Namely, in the following,

assume that Am(q) ≤
√
T .

For ε1 we define δ = δ(T, q, ε1) by

δ :=
Am(q)

T 1+ϵ1
, (2.2.32)

we define αδ = αδ(q, T, ε1) by

α
1
m
δ := α

1
m
q,T + δ, (2.2.33)

and for ε2 ∈ (0, 1) we let λ = λ(q, T, ε2)

λ :=

(
Am(q)

T ϵ2

) m
m+1

. (2.2.34)

We consider the following partition of the integral appearing in the terms of (2.2.28),∫ βq,T

αq,T

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt (2.2.35)

=

(∫ αδ(q,T,ϵ1)

αq,T

+

∫ λ(q,T,ϵ2)

αδ(q,T,ϵ1)

+

∫ βq,T

λ(q,T,ϵ2)

)
(−B2

1t
2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt (2.2.36)

Our key point in the computation below will be that the main term among the three integrals

above is the integral in the range
∫ λ(q,T,ϵ2)

αδ(q,T,ϵ1)
. For the following, we note that

‖G−1
1 ‖−1‖H−1

1 ‖−1‖q‖ ≤ Am(q), (2.2.37)

and we note that ‖G−1
1 ‖−1, ‖H−1

1 ‖−1 are bounded from below when g1, g2 vary in a bounded

set.

Lemma 2.2.5. Suppose that g1, g2 vary in a bounded subset of SL(m+1,R) and fix ε1 ∈ (0, 1).

Then ∫ αδ(q,T,ϵ1)

αq,T

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt = O

(
Tm(m+1)−ϵ1

m+2
2

‖q‖m2

)
(2.2.38)
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Proof. By substituting the variable s = t
1
m in −B2

1t
2
m
+2 + t

2
mT 2 − Am(q)

2, the expression

becomes

f(s) := −B2
1s

2m+2 + T 2s2 − Am(q)
2. (2.2.39)

Recall

αδ(q, T, ε1)
1
m := α

1
m
q,T + δ(q, T, ε1) = α

1
m
q,T +

Am(q)

T 1+ϵ1
,

and note that f(α
1
m
q,T ) = 0. In the following, to ease the reading, we will omit from the

notations the dependencies on q, T and ε1. We apply Taylor expansion to f(s) in the range

s ∈ [α
1
m , α

1
m
δ ] at s = α

1
m which gives

f(α
1
m
δ ) =[−(2m+ 2)B2

1α
2m+1

m + 2T 2α
1
m ]δ +

f ′′(ξ)

2
δ2

�T 2α
1
m δ + f ′′(ξ)δ2 (2.2.40)

where ξ ∈ [α
1
m , α

1
m
δ ]. When g1, g2 are bounded, we get that B1 is bounded above and away

from zero. Then the second derivative f ′′(ξ) over [α 1
m , α

1
m
δ ] will be bounded as

|f ′′(ξ)| =| − (2m+ 2)(2m+ 1)B2
1ξ

2m + 2T 2|

≤(2m+ 2)(2m+ 1)B2
1α

2m
m
δ + 2T 2

�T 2. (2.2.41)

We note that for all large T (independently of q and ε1) f is monotonically increasing on the

interval (α 1
m , α

1
m
δ ). To see this, recall that θ(T ) 1

m ∼ T
1
m is a critical point for f(s), f(s) is

monotonically increasing in (0, θ(T )
1
m ), and αδ = o(1). Then
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∫ αδ

α

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt

≤ 1

αm+2

∫ αδ

α

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2 dt

=
1

αm+2

∫ α
1
m
δ

α
1
m

f(s)
m
2 msm−1ds

� 1

αm+2
f(α

1
m
δ )

m
2 α

m−1
m

δ δ (monotonicity of f(s))

� 1

αm+1+ 1
m

f(α
1
m
δ )

m
2 δ (αδ � α)

�

{
T 2α

1
m δ + T 2δ2

}m
2

αm+1+ 1
m

· δ (by (2.2.40) and (2.2.41))

=

{
T 2α

1
m
δ

}m
2

αm+1+ 1
m

· δ
m+2

2

�

{
T 2α

1
m

}m
2

αm+1+ 1
m

· δ
m+2

2

Using the bounds of α in (2.2.18) and by applying the definition of δ in (2.2.32), we get{
T 2α

1
m

}m
2

αm+1+ 1
m

· δ
m+2

2 � Tm(m+1)−ϵ1
m+2

2

Am(q)m
2 , (2.2.42)

which concludes our proof.

We proceed to treat the middle integral, which will be the main term in (2.2.35).

Lemma 2.2.6. Suppose that Am(q) ≤
√
T , and g1, g2 vary in a bounded set of SL(m+1,R).

Suppose that 0 < ε1 < 2ε2 < 1, and let

ε := min{ε1, 2ε2 − ε1, 1 +
1− 2ε2
m+ 1

}. (2.2.43)

Then ∫ λ(q,T,ϵ2)

αδ(q,T,ϵ1)

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt

=
mΓ(m

2
+ 1)Γ(m

2

2
)

2Γ(m
2

2
+ m

2
+ 1)

· T
m(m+1)

Am(q)m
2 +O

(
Tm(m+1)−ϵ

‖q‖m2

)
. (2.2.44)
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Proof. Suppose that Am(q) ≤
√
T , and assume that g1, g2 vary in a bounded set. In par-

ticular, recall that B1 will be bounded above. To ease the reading, we will omit from some

notations the dependencies on q, T and ε1, ε2. The dependencies should be clear from the

context. We first rewrite our integral as∫ λ

αδ

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt =

∫ λ

αδ

(t
2
mT 2 − Am(q)

2)
m
2

tm+2

(
1− B2

1t
2
m
+2

t
2
mT 2 − Am(q)2

)m
2

dt.

We now show that in the range t ∈ (αδ, λ) it holds that

B2
1t

2
m
+2

t
2
mT 2 − Am(q)2

= O

(
1

T 2ϵ2−ϵ1

)
, (2.2.45)

Indeed,

B2
1t

2
m
+2

t
2
mT 2 − Am(q)2

� λ2+
2
m

α
2
m
δ T

2

=
λ2

m+1
m

(α
1
m + δ)2T 2

(definition of αδ (2.2.33))

� λ2
m+1
m

α
1
m δT 2

≤ (Am(q)/T ϵ2)2

Am(q)
T

Am(q)
T 1+ϵ1

T 2
= O

(
1

T 2ϵ2−ϵ1

)
. (see (2.2.34), (2.2.18) and (2.2.32))

Now in view of the estimate (1 + x)α ∼ 1 + αx as x→ 0, we conclude that∫ λ

αδ

(t
2
mT 2 − Am(q)

2)
m
2

tm+2

(
1− B2

1t
2
m
+2

t
2
mT 2 − Am(q)2

)m
2

dt

=

(∫ λ

αδ

(t
2
mT 2 − Am(q)

2)
m
2

tm+2
dt

)(
1 +O

(
1

T 2ϵ2−ϵ1

))
. (2.2.46)

We shall now estimate
∫ λ

αδ

(t
2
m T 2−Am(q)2)

m
2

tm+2 dt. To this end, we use the substitute u = Am(q)2

T 2t
2
m

(or conversely t = Am(q)m

Tmu
m
2
), so that∫ λ

αδ

(t
2
mT 2 − Am(q)

2)
m
2

tm+2
dt (2.2.47)

=

∫ λ

αδ

Tm

tm+1

(
1− Am(q)

2

T 2t
2
m

)m
2

dt (2.2.48)

=
m

2

Tm2+m

Am(q)m
2

∫ Am(q)2/T2α
2
m
δ

Am(q)2/T2λ
2
m

u
m2

2
−1(1− u)

m
2 du. (2.2.49)
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We will now prove that∫ Am(q)2/T2α
2
m
δ

Am(q)2/T2λ
2
m

u
m2

2
−1(1− u)

m
2 du =

∫ 1

0

u
m2

2
−1(1− u)

m
2 du+O

(
1

T ϵ1

)
+O

(
1

T 1+
1−2ϵ2
m+1

)
=
mΓ(m

2
+ 1)Γ(m

2

2
)

2Γ(m
2

2
+ m

2
+ 1)

+O

(
1

T ϵ

)
. (2.2.50)

where in the last equality we used the classical formula for the beta function. Notice that

by (2.2.46), by (2.2.49) and by (2.2.50) the proof is complete.

To prove (2.2.50) it suffices to estimate the differences between the endpoints of the

corresponding integral, namely it suffices to estimate
∣∣∣∣1− Am(q)2

T 2α
2
m
δ

∣∣∣∣ and ∣∣∣Am(q)2

T 2λ
2
m

− 0
∣∣∣ = Am(q)2

T 2λ
2
m
.

We have∣∣∣∣∣1− Am(q)
2

T 2α
2
m
δ

∣∣∣∣∣ =
∣∣∣∣∣T 2α

2
m
δ − Am(q)

2

T 2α
2
m
δ

∣∣∣∣∣
=

∣∣∣∣∣(T 2α
2
m − Am(q)

2) + (2α
1
m δ + δ2)T 2

T 2α
2
m
δ

∣∣∣∣∣ (using definition of αδ, see (2.2.33))

=

∣∣∣1/Tm−0.5 + (2α
1
m δ + δ2)T 2

∣∣∣
T 2α

2
m
δ

(see (2.2.20))

≤

∣∣∣1/Tm−0.5 + (2α
1
m δ + δ2)T 2

∣∣∣∣∣∣T 2α
2
m

∣∣∣
=O

(
1

T ϵ1

)
, (we have T 2α

2
m = O(1) and (2α

1
m δ + δ2)T 2 = O( 1

T ϵ1
))

and finally

Am(q)
2

T 2λ
2
m

=
Am(q)

2

T 2 (Am(q)/T ϵ2)
2

m+1

=
Am(q)

2− 2
m+1

T 2− 2ϵ2
m+1

=︸︷︷︸
Am(q)≤

√
T

O

(
1

T 1+
1−2ϵ2
m+1

)
. (2.2.51)

For the last integral, we have the following.

Lemma 2.2.7. Suppose that g1, g2 vary in a bounded set and fix ε2 ∈ (0, 1). Then∫ βq,T

λ(q,T,ϵ2)

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt = Tm(m+1)−m2(1− ϵ2

m+1
)O

(
1

‖q‖
m2

m+1

)
. (2.2.52)
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Proof. Again, to ease the reading, we will omit from the notations the dependencies on q,T

and ε2. We have ∫ β

λ

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt (2.2.53)

≤
∫ β

λ

(t
2
mT 2)

m
2

tm+2
dt =

∫ β

λ

Tm

tm+1
dt (2.2.54)

≤ Tm

mλm
=

Tm

m(Am(q)/T ϵ2)
m2

m+1

=
Tm+

ϵ2m
2

m+1

mAm(q)
m2

m+1

(2.2.55)

Proof of Proposition 2.1.6. We first conclude the estimate for the volume of Vq,T [g1, g2]. By

combining Lemmata 2.2.5 - 2.2.7, we conclude that there exists κ > 0 and Cq > 0 (which

can be explicitly determined by optimizing ε1 and ε2) such that whenever g1, g2 vary in a

bounded set, we have

µ(Vq,T [g1, g2]) =︸︷︷︸
(2.2.16)

vm
|G4|m| det(H1)|

∫ βq,T

αq,T

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt

=

(∫ αδ(q,T,ϵ1)

αq,T

+

∫ λ(q,T,ϵ2)

αδ(q,T,ϵ1)

+

∫ βq,T

λ(q,T,ϵ2)

)
vm

|G4|m| det(H1)|

∫ βq,T

αq,T

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt

=︸︷︷︸
Lemmata 2.2.5−2.2.7

vm
|G4|m| det(H1)|

mΓ(m
2
+ 1)Γ(m

2

2
)

2Γ(m
2

2
+ m

2
+ 1)

Tm(m+1)

Am(γ)m
2 + CγO(T

m(m+1)−κ).

Now we compute the total volume µ (HT [g1, g2]).

µ (HT [g1, g2]) =
∑
q∈∆,

Am(q)2<MT

µ (Vq,T [g1, g2]) (2.2.56)

=︸︷︷︸
Lemma 2.2.4 and (2.2.37)

∑
q∈∆,

∥q∥<C
√
T

µ (Vq,T [g1, g2]) + O(Tm(m+1)−m/2). (2.2.57)

As above, we split the computation of the volume of Vq,T [g1, g2] into the sum of the three

integrals(∫ αδ(q,T,ϵ1)

αq,T

+

∫ λ(q,T,ϵ2)

αδ(q,T,ϵ1)

+

∫ βq,T

λ(q,T,ϵ2)

)
vm

|G4|m| det(H1)|

∫ b

a

(−B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2)
m
2

tm+2
dt.
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But now, in order to conclude the volume estimate (2.1.20), we need to use Lemma 2.2.1

when summing over γ ∈ ∆ the estimates depending on ‖γ‖ that appear in lemmata 2.2.5

- 2.2.7. For the summation over γ of the estimates in lemmata 2.2.5 - 2.2.6, note that by

Lemma 2.2.1, the infinite sum
∑

q∈∆
1

∥q∥m2 converges. For the estimate appearing in Lemma

2.2.7, observe that

∑
q∈∆,

∥q∥<C
√
T

Tm+
ϵ2m

2

m+1

Am(q)
m2

m+1

(2.2.58)

=Tm+
ϵ2m

2

m+1 O(
√
T

m(m−1)− m2

m+1 ) (2.2.59)

=O(T 0.5(m2+m)− (0.5−ϵ2)m
2

m+1 ). (2.2.60)

As we may choose any ε1, ε2 with 0 < ε1 < 2ε2 < 2 (this restriction appears only in Lemma

2.2.6), it follows that there exists a κ > 0 such that

HT [g1, g2] =
vm

Gm
4 | det(H1)|

mΓ(m
2
+ 1)Γ(m

2

2
)

2Γ(m
2

2
+ m

2
+ 1)

Tm(m+1)
∑
q∈∆

1

Am(q)m
2 +O(Tm(m+1)−κ).

To obtain the exact expressions appearing in Proposition 2.1.6, recall that Am(q) = ‖G1qH1‖

and note that νm the volume of the unit ball in m-space is π
m
2

Γ(m
2
+1)

2.3 Proof of equidistribution along skewed H-balls

We start by reducing Theorem 2.1.9 to the following equidistribution statement along

skewed balls of the connected component of H. Consider for g1, g2 ∈ SL(m+1,R) and T > 0

the measures

µ◦
T,g1,g2

(F ) :=
1

µ(VT [g1, g2])

∫
VT [g1,g2]

F (a−1
t u−1

v g1Γ)dv
1

tm+2
dt. (2.3.1)

Theorem 2.3.1. For all g1, g2 ∈ SL(m+ 1,R) and all F ∈ Cc(X) it holds that

lim
T→∞

µ◦
T,g1,g2

(F ) = µX(F ).
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Proof of Theorem 2.1.9 assuming Theorem 2.3.1. In view of (2.1.17), we can decompose

µT,g1,g2(F ) as the following convex linear combination:

µT,g1,g2(F ) =
∑
q∈∆

µ (Vq,T [g1, g2])

µ (HT [g1, g2])

1

µ (Vq,T [g1, g2])

∫
Vq,T [g1,g2]

F (q−1a−1
t u−1

v g1Γ)
1

tm+2
dvdt (2.3.2)

Notice that

µ(Vq,T [g1, g2]) = µ(VT [g1, qg2]), (2.3.3)

and observe that

1

µ (Vq,T [g1, g2])

∫
Vq,T [g1,g2]

F (q−1a−1
t u−1

v g1Γ)
1

tm+2
dvdt = µ◦

T,g1,qg2
(Lq−1(F )). (2.3.4)

By assuming Theorem 2.3.1, we have for all q ∈ ∆,

lim
T→∞

µ◦
T,g1,qg2

(Lq−1(F )) = µX(Lq−1(F )) =︸︷︷︸
invariance

µX(F ).

We denote

cq,T :=
µ (Vq,T [g1, g2])

µ (HT [g1, g2])
. (2.3.5)

Then clearly, ∑
q∈∆

cq,T = 1, ∀T, and cq,T ≤ 1, ∀q, T.

Importantly, by Lemma 2.2.4 and by (2.1.20) there is C > 0 such that for all T > 0

cq,T ≤ C

‖q‖m2 .

By Lemma 2.2.1,
∑

q∈∆
1

∥q∥m2 converges. Then for arbitrary small ε > 0, we may find Nϵ

such that ∑
q∈∆,

∥q∥>Nϵ

cq,T ≤ ε, ∀T > 0.
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Thus,

|µT,g1,g2(F )− µX(F )| =

∣∣∣∣∣∑
q∈∆

cq,T (µ
◦
T,g1,qg2

(F )− µX(F ))

∣∣∣∣∣ (2.3.6)

≤
∑
q∈∆

cq,T
∣∣µ◦

T,g1,qg2
(F )− µX(F )

∣∣ (2.3.7)

≤
∑
q∈∆,

∥q∥≤Nϵ

∣∣µ◦
T,g1,qg2

(F )− µX(F )
∣∣+ 2ε‖F‖∞. (2.3.8)

Then, by assuming Theorem 2.3.1, we get that

lim sup
T→∞

|µT,g1,g2(F )− µX(F )| ≤ 2ε‖F‖∞,

which concludes our proof.

In the rest of the section we will be proving Theorem 2.3.1. Let X = G/Γ denote the

one-point compactification of X = G/Γ. Our plan is to show that if a finite measure η on X

is a weak-* limit of the measures µ◦
T,g1,g2

, T > 0 (recall that by the Banach-Alaoglu theorem,

there’s always a weak-* limit)8, then

(1) There’s no escape of mass, namely η(∞) = 0, and

(2) η is G-invariant.

As a result we must have η|X = µX the unique G-invariant probability on X.

There are essentially two key facts that stand behind our proof of the above statements.

The first is that the measures µ◦
T,g1,g2

involve integration along families of polynomial tra-

jectories, which allows to utilize deep results due to Shah on the behavior of polynomial

trajectories in G/Γ. We note that those results are generalization of the celebrated results of

Dani-Margulis [DM93] building on the linearisation technique. The second key fact is that η

is invariant by a unipotent group, see Theorem 2.3.2. This opens the way for the application
8recall if any convergent subsequence of a bounded sequence converges to the same limit, then so does

the original bounded sequence.
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of Ratner’s theorems on measure rigidity [Rat91] in combination with the results of Shah.

We note that our apporach is similar to the one taken by Gorodnik in [Gor03]. The essential

difference between our approach compared to [Gor03] is in our treatment of the divergence

of the polynomial trajectories in the representation space, see Section 2.3.6.

2.3.1 The U-invariance of the measure along skewed balls of V

The main goal here is to prove that any weak-* limit of µ◦
T,g1,g2

is U :=

[
Im 0
Rm 1

]
-invariant.

For any u0 ∈ U , consider Lu0(F )(x) := F (u−1
0 x).

Theorem 2.3.2. For all g1, g2 ∈ SL(m+ 1,R) and all F ∈ Cc(X) it holds that

lim
T→∞

(
µ◦
T,g1,g2

(F )− µ◦
T,g1,g2

(Lu0(F )
)
= 0. (2.3.9)

The following lemma will be needed:

Lemma 2.3.3. Let f : Rd → R be a bounded continuous function. Let E ⊂ Rd be an

ellipsoid with surface area S, then for y ∈ Rd we have the estimate:∣∣∣∣∫
E

[f(v)− f(y + v)]dv

∣∣∣∣ ≤ ‖f‖∞‖y‖S. (2.3.10)

Proof. Indeed, ∣∣∣∣∫
E

[f(v)− f(y + v)]dv

∣∣∣∣ = ∣∣∣∣∫
E

f(v)dv −
∫
E

f(v)dv

∣∣∣∣
≤
∫
E△E−y

|f(v)|dv

≤‖f‖∞‖y‖S, (f is bounded)

where the last line follows from the Theorem 1 of [Sch10].

Proof of Theorem 2.3.2. Recall that

VT [g1, g2] = {uvat : t > 0, v ∈ DT,t},
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where DT,t := DIm,T,t which is given by (2.2.6). We denote αT := αIm,T and βT := βIm,T the

roots of −B2
1t

2
m
+2 + t

2
mT 2 − Am(q)

2 which determine DT,t, see Section 2.2. Let F ∈ Cc(X)

and fix uv0 =
[
Im 0
v0 1

]
∈ U . We have∣∣∣∣∫

VT [g1,g2]

F (h−1g1Γ)dµ(h)−
∫
VT [g1,g2]

F (u−1
v0
h−1g1Γ)dµ(h)

∣∣∣∣
=

∣∣∣∣∫
VT [g1,g2]

(
F (h−1g1Γ)− F (u−1

v0
h−1g1Γ)

)
dµ(h)

∣∣∣∣
=

∣∣∣∣∣
∫ βT

αT

∫
DT,t

(
F (a−1

t u−1
v g1Γ)− F (u−1

v0
a−1
t u−1

v g1Γ)
)
dv

1

tm+2
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ βT

αT

∫
DT,t

(
F (a−1

t u−1
v g1Γ)− F (a−1

t [atu
−1
v0
a−1
t ]u−1

v g1Γ)
)
dv

1

tm+2
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ βT

αT

∫
DT,t

(
F (a−1

t u−vg1Γ)− F (a−1
t u

−t
1
m+1v0−v

g1Γ)
)
dv

1

tm+2
dt

∣∣∣∣∣
=

∣∣∣∣∣
(∫ cT

αT

+

∫ βT

cT

)∫
DT,t

(
F (a−1

t u−1
v g1Γ)− F (a−1

t u
−t

1
m+1v0−v

g1Γ)
)
dv

1

tm+2
dt

∣∣∣∣∣ ,
where the auxiliary parameter cT is chosen by

cT :=
1

T
m
2

. (2.3.11)

To estimate the integral
∫ βT

cT
we use the trivial bound∣∣∣∣∣

∫
DT,t

(
F (a−1

t u−vg1Γ)− F (a−1
t u

−t
1
m+1v0q−1−v

g1Γ)
)
dv

∣∣∣∣∣
≤
∫
DT,t

2‖F‖∞dv = 2‖F‖∞vm
(−B2

1t
2
m
+2 + t

2
mT 2 − A2

m)
m
2

Gm
4 | det(H1)|

, (by (2.2.10))

so that the integral
∫ βT

cT
will be bounded by∫ βT

cT

2‖F‖∞vm
(−B2

1t
2
m
+2 + t

2
mT 2 − A2

m)
m
2

Gm
4 | det(H1)|

1

tm+2
dt

�
∫ βT

cT

Tm

tm+1
dt

�T
m2

2
+m. (using (2.3.11))

After normalization by VT [g1, g2] � Tm(m+1), this integral vanishes as T → ∞.
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Now it remains to estimate the integral
∫ cT
αT

. For that we use Lemma 2.3.3.

∣∣∣∣∣
∫ cT

αT

∫
DT,t

(
F (a−1

t u−vg1Γ)− F (a−1
t u

−t
1
m+1v0−v

g1Γ)
)
dv

1

tm+2
dt

∣∣∣∣∣
≤‖F‖∞

∫ cT

αT

‖ − t
1
m
+1v0‖

√
−B2

1t
2
m
+2 + t

2
mT 2 − A2

m

Gm
4 | det(H1)|

m−1 1

tm+2
dt (by Lemma 2.3.3)

=‖F‖∞
∫ cT

αT

‖t
1
m
−m−1v0‖

√
−B2

1t
2
m
+2 + t

2
mT 2 − A2

m

Gm
4 | det(H1)|

m−1

dt

≤‖F‖∞
∫ cT

αT

‖α
1
m
−m−1

T v0‖

√√√√ c
2
m
T T

2

Gm
4 | det(H1)|

m−1

dt

� cTα
1
m
−m−1

T (c
1
m
T T )

m−1

�Tm(m+1)− 5
2 . (using (2.2.18) the range for the root a)

Again, this term goes to zero as T → ∞, after normalization by VT [g1, g2] � Tm(m+1).

2.3.2 The non-escape of mass

Recall G = SL(m + 1,R) and Γ ≤ G is a lattice. Let g be the Lie algebra of G. For

positive integers d and n, denote by Pd,n(G) the set of functions ϕ : Rn → G such that for

any a, b ∈ Rn, the map

τ ∈ R 7→ Ad(ϕ(τa+ b)) ∈ g (2.3.12)

is a polynomial of degree at most d with respect to some basis of g.

Let VG =
∑dim g

i=1

∧i g. There is a natural action of G on VG induced from the adjoint

representation (in other words, we are considering a representation π : G → GL(VG) but

sometimes omit the symbol π). Fix a norm ‖ · ‖ on VG. For a Lie subgroup H of G with Lie

algebra h, take a unit vector pH ∈
∧dim h h.

Theorem 2.3.4 (Special case of the theorems 2.1 and 2.2 in [Sha96], combined). With no-

tations above, there exist closed subgroups Ui(i = 1, 2, ..., l) such that each Ui is the unipotent
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radical of a parabolic subgroup, UiΓ is compact in X = G/Γ and for any d, n ∈ N, ε, δ > 0,

there exists a compact set C ⊂ G/Γ such that for any ϕ ∈ Pd,n(G) and a bounded open

convex set D ⊂ Rn, one of the following holds:

(1) there exist γ ∈ Γ and i = 1, ..., l such that supv∈D ‖ϕ(v)γ.pUi
‖ ≤ δ;

(2) Vol(v ∈ D : ϕ(v)Γ /∈ C) < εVol(D), where Vol is the Lebesgue measure on Rn.

Fix g1, g2 ∈ SL(m+1,R). We shall consider the family of polynomial maps which appear

in the integration along the measures µ◦
T,g1,g2

which are given by

ϕt(v) := a−1
t u−1

v g1, (2.3.13)

where t > 0 and v ∈ Rm. For each fixed t, the map ϕt(·) is in P2,m(G). Our strategy is to

investigate how ϕt(v) fails the condition 1 of the Theorem 2.3.4 by studying the expanding

phenomenon of the map ϕt(v). This will be the key fact which will allow to prove the

non-escape of mass.

Denote by HΓ the family of all proper closed connected subgroups H of G such that Γ∩H

is a lattice in H, and Ad(H∩Γ) is Zariski-dense in Ad(H). We have the following important

theorem:

Theorem 2.3.5 (Theorem 1.1 [Rat91], Theorems 2.1 and 3.4 [DM93]. see also Section 3

and Proposition 4.1 in [Sha96]). The set HΓ is countable. For any H ∈ HΓ,Γ.pH is discrete.

Consider the finite set of unipotent radicals of parabolic subgroups, denoted U1, ..., Ul

appearing in Theorem 2.3.4. By Theorem 2.3.5, we have that Γ.pUi
is discrete in VG for all

i.

Write VG = V0

⊕
V1, where V0 is the space of vectors fixed by G and V1 is its G-invariant

complement (exists because every finite-dimensional representation of a semisimple Lie group

99



is completely reducible). Denote by Π the projection of VG onto V1 with kernel V0, and note

that by Lemma 17 in [Gor03] it holds that Π(Γ.pUi
) is discrete for all i. Since pUi

is not fixed

by G (this is because the action is through conjugation and Ui’s are not normal subgroups

in the simple group G), Π(Γ.pUi
) does not contain 0. So it follows that

inf
x∈∪l

i=1Γ.pUi

‖Π(x)‖ := r > 0. (2.3.14)

The following lemma will play a crucial role in proving η(∞) = 0:

Lemma 2.3.6. Let B ⊆ Rm be a bounded set, and let χ ∈ (0, 1). Then for any ν > 0, there

exist t0 > 0 such that for any 0 < t < t0, any ξ ∈ B and any x ∈ VG such that ‖Π(x)‖ ≥ r,

it holds

sup

v∈D
(
t
1−χ
m

)
+ξ

‖a−1
t u−1

v g1.x‖ > ν, (2.3.15)

where D(β) is the ball of radius β in Rm centered at the origin.

The idea of the proof of the lemma to decompose the elements a−1
t u−1

v into m elements,

each belongs to a subgroup isomorphic to SL(2,R) and then use the representation theory

of SL(2,R) for each component. We note that a similar approach was used in [KW06].

Let Ei,j be the (m + 1) × (m + 1) matrix where the (i, j)-th entry is 1 while all other

entries are zero. Consider the following copy of SL(2,R) in SL(m+ 1,R)

SL(j)(2,R) := {Im+1+(a−1)Ejj+bEm+1,j+cEj,m+1+(d−1)Em+1,m+1 : ad−bc = 1}, (2.3.16)

for j = 1, 2, ...,m. We will denote

π(j)

[
a b
c d

]
:= Im+1 + (a− 1)Ejj + bEm+1,j + cEj,m+1 + (d− 1)Em+1,m+1. (2.3.17)

We have the following observation which we leave the reader to verify.
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Lemma 2.3.7. Let σ : {1, 2, . . .m} → {1, 2, . . . ,m} be a permutation. Then it holds that

a−1
t u−1

v =
m∏
j=1

π(σ(j))

([
t

1
m 0

0 t−
1
m

] [
1 0

−t−m−j
m vσ(j) 1

])
, (2.3.18)

where v = (v1, ..., vm) and t > 0.

The decomposition (2.3.18) reduces the proof of Lemma 2.3.6 to the study of the expan-

sion of elements of the form [
t

1
m 0

0 t−
1
m

] [
1 0
y 1

]
in representations of SL(2,R). In the following we review some of the basic facts on the

SL(2,R)-irreducible representations, and then we will proceed with the proof of Lemma

2.3.6.

Recall that if π is an (n+1)-dimensional irreducible representation of SL(2,R) and π′ is

the induced Lie algebra representation, then there exists a basis v0, v1, ..., vn such that

π′(H)(vi) = (n− 2i)vi, i = 0, 1, ..., n; (2.3.19)

π′(X)(vi) = i(n− i+ 1)vi−1, i = 0, 1, ..., n; (2.3.20)

π′(Y )(vi) = vi+1, i = 0, 1, ..., n (vn+1 = 0). (2.3.21)

where H =

[
1 0
0 −1

]
, X =

[
0 1
0 0

]
, and Y =

[
0 0
1 0

]
form a generating set of sl(2,R).

Under the matrix Lie group-Lie algebra correspondence,

π

([
t

1
m 0

0 t−
1
m

])
= exp(π′(log(t

1
m )H))

has the matrix representation 
t

n
m

t
n−2
m

. . .
t−

n
m

 (2.3.22)

and

π

([
1 0
−y 1

])
= exp(π′(−yY ))
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has the matrix representation 
1

p21(y) 1
... . . . . . .

pnn(y) · · · pn1(y) 1

 (2.3.23)

where pkl(y) is a monomial in y of degree l. Both matrices are under the basis v0, v1, ..., vn.

Observe that the line

W := Rvn

is the fixed subspace of π
([

1 0
−y 1

])
. This space is important for us since it’s the eigenspace

of the matrices π
([
t

1
m 0

0 t−
1
m

])
which corresponds to the largest eigenvalue as t → 0. We

denote by prW the orthogonal projection on W with respect to some scalar product on Vn.

The following lemma is a special case of [Gor03, Lemma 13], which is essentially [Sha96,

Lemma 5.1].

Lemma 2.3.8. Let π : SL(2,R) → Vn be the n+1-dimensional irreducible representation of

SL(2,R), and let

Θ(y) := π

([
1 0
−y 1

])
.

Fix a bounded interval I. Then there exists a constant c0 > 0 such that for any β ∈ (0, 1),

τ ∈ I and x ∈ Vn,

sup
n∈Θ([0,β]+τ)

‖prW (nx)‖ ≥ c0β
n‖x‖. (2.3.24)

We have the following corollary.

Corollary 2.3.9. Suppose that π : SL(2,R) → V is a representation, fix an interval I and

let χ ∈ (0, 1). Then for all t ∈ (0, 1) the following holds.

(1) If π is irreducible, then for all τ ∈ I it holds that

sup
y∈[0,t

1−χ
m ]+τ

∥∥∥∥π([t 1
m 0

0 t−
1
m

] [
1 0
−y 1

])
x
∥∥∥∥� t−

χ
m‖x‖, (2.3.25)

for all x ∈ V, where the implied constant depends on π only.
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(2) If π is any representation, then for all τ ∈ I

sup
y∈[0,t

1−χ
m ]+τ

∥∥∥∥π([t 1
m 0

0 t−
1
m

] [
1 0
−y 1

])
x
∥∥∥∥� ‖x‖, (2.3.26)

for all x ∈ V, where the implied constant depends on π only.

Proof. In the following, for convenience, we will omit the representation symbol π. Suppose

that V is the n+ 1’th irreducible representation. Then for all y ∈ R and all x ∈ V∥∥∥∥[t 1
m 0

0 t−
1
m

] [
1 0
−y 1

]
.x
∥∥∥∥

≥C
∥∥∥∥prW ([t 1

m 0

0 t−
1
m

] [
1 0
−y 1

]
.x
)∥∥∥∥ (by the boundedness of the linear operator prW )

=C

∥∥∥∥[t 1
m 0

0 t−
1
m

]
.prW

([
1 0
−y 1

]
.x
)∥∥∥∥

(since the matrix (2.3.22) commutes with prW = prRen)
=Ct−

n
m ‖prW (Θ(y)x)‖ (see the last component of (2.3.22))

Then, part 1 of our corollary follows by Lemma 2.3.8. To conclude part 2, note that we may

always decompose V as V0⊕V1 where V0 is the space of fixed vectors, and V1 is an invariant

complement. By further decomposing V1 into irreducible representations, and applying part

1 of the corollary in each component, we get the result.

The proof for Lemma 2.3.6

Recall VG = V0 ⊕ V1 where V0 is the space of SL(m + 1,R)-fixed vectors, and V1 is it’s

invariant complement. Note that in order to prove Lemma 2.3.6, it’s enough to verify that

for a fixed r > 0, a bounded set B ⊂ Rm and χ ∈ (0, 1) it holds that

min
x∈V1, ∥x∥≥r

sup

v∈D
(
t
1−χ
m

)
+ξ

‖a−1
t u−1

v x‖ � t−χ/m, ∀ξ ∈ B (2.3.27)

where t ∈ (0, 1). As V1 is invariant by each SL(j)(2,R) action, we may further decompose V1

by

V1 = V (j)
0 ⊕ V (j)

1 (2.3.28)
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where V (j)
0 is the subspace of fixed vectors of the action of SL(j)(2,R) for j = 1, 2, ...,m and

V (j)
1 is its invariant complement. For any x ∈ V1 we write

x = x(j)
0 + x(j)

1 , j = 1, 2, ...,m. (2.3.29)

where x(j)
i ∈ V (j)

i , i = 1, 2, ...,m from above.

Lemma 2.3.10. It holds that infx∈V1,∥x1∥≥r

(
‖x(1)

1 ‖+ · · ·+ ‖x(m)
1 ‖

)
= Lr for some L > 0

Proof. We recall that UA is an epimorphic group, cf. [SW00]. This simply means that if

x ∈ V1 is fixed by UA, then it’s fixed by all of SL(m + 1,R). But in such case, x = 0,

since V1 is an invariant complement of the fixed vectors. In particular, this implies that⋂m
i=1 V

(i)
0 = {0}. Since the sphere of radius 1 is compact and as

⋂m
i=1 V

(i)
0 = {0}, we have

inf
x1∈V1,∥x1∥=1

(
‖x(1)

1 ‖+ · · ·+ ‖x(m)
1 ‖

)
= L > 0.

By scaling, it is easy to see for r ≥ 1,

inf
x1∈V1,∥x1∥=r

(
‖x(1)

1 ‖+ · · ·+ ‖x(m)
1 ‖

)
=r inf

x1∈V1,∥x1∥=1

(
‖x(1)

1 ‖+ · · ·+ ‖x(m)
1 ‖

)
(by linearity and scaling)

=Lr > 0.

Now take x ∈ V1 and fix j such that ‖x(j)
1 ‖ ≥ Lr. We pick a permutation σ : {1, ...,m} →

{1, ...,m} such that σ(m) = j. Using Lemma 2.3.7 we write

a−1
t u−1

v x =
m−1∏
l=1

π(σ(l))

([
t

1
m 0

0 t−
1
m

] [
1 0

−t−m−l
m vσ(l) 1

])
π(j)

([
t

1
m 0

0 t−
1
m

] [
1 0

−vj 1

]
x
)
.

(2.3.30)

Note that ([
0,

1√
m
t
1−χ
m

]
+ I1

)
× ...×

([
0,

1√
m
t
1−χ
m

]
+ Im

)
⊆ D

(
t
1−χ
m

)
+B,
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for some intervals Il, 1 ≤ l ≤ m. Then (2.3.27) is obtained by applying Corollary 2.3.9

as follows: We decompose V (j)
1 into SL(j)(2,R)-irreducible representations, and we assume

(without loss of generality, as all norms are equivalent) that our norm ‖ · ‖ on V1 is obtained

by taking the sup norm with respect to a basis of V1 composed out of a basis for V (j)
0 and

bases for each of the SL(j)(2,R)-irreducible spaces. Then, using Corollary 2.3.9 (1), we have

for all τj ∈ Ij that

sup
vj∈[0,t

1−χ
m ]+τj

∥∥∥∥π(j)

([
t

1
m 0

0 t−
1
m

] [
1 0
−y 1

])
x
∥∥∥∥� t−

χ
m r, (2.3.31)

and by further applying Corollary 2.3.9,(2) when taking the supremum of (2.3.30) over the

parameters
([

0, 1√
m
t
1−χ
m

]
+ I1

)
× ...×

([
0, 1√

m
t
1−χ
m

]
+ Im

)
, we obtain (2.3.27).

Proof of η(∞) = 0

Recall that η is a weak-* limit of the measures

µ◦
T,g1,g2

(F ) :=
1

µ (VT [g1, g2])

∫ βT

αT

∫
DT,t

F
(
a−1
t u−1

v g1Γ
)
dv

1

tm+2
dt, F ∈ Cc(G/Γ), (2.3.32)

where we recall that DT,t is the ellipsoid centered at −G−1
4 G3 −H3H

−1
1 t

1
m
+1 ∈ Rm given by

DT,t := {v ∈ Rm : ‖G3H1 +G4vH1 +G4H3t
1
m
+1‖2 ≤ −B2

1t
2
m
+2 + t

2
mT 2 − A2

m}, (2.3.33)

Am := Am(Im) which was defined in (2.2.7), and 0 < αT := αIm,T < βT := βIm,T are the two

positive roots of −B2
1t

2
m
+2 + t

2
mT 2 −A2

m. We note that DT,t contains the ball with the same

center whose radius is equal to the shortest radius of the ellipse, which is

RT,t := Cg1,g2

√
−B2

1t
2
m
+2 + t

2
mT 2 − A2

m,

for some constant Cg1,g2 > 0. The displacement of the center from the origin has two parts:

one part (−G−1
4 G3) is constant and the other part (−H3H

−1
1 t

1
m
+1) involves t but is bounded

when t ∈ (0, 1). To use Lemma 2.3.6 in our proof for η(∞) = 0, we would like to have
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RT,t > t
1−χ
m . But, when t approaches to either αT or to βT , RT,t becomes too small. Thus

we need to truncate the range for t as following. Using Lemmata 2.2.5 and 2.2.7 together

with the estimate of µ(VT [g1, g2]) in (2.1.19), we have that for ε1, ε2 ∈ (0, 1) there exists some

κ = κ(ε1, ε2) > 0 such that for any fixed F ∈ Cc(G/Γ) it holds

µ◦
T,g1,g2

(F ) =
1

µ (VT [g1, g2])

∫ λ(T,ϵ2)

αδ(T,ϵ1)

∫
DT,t

F
(
a−1
t u−1

v g1Γ
)
dv

1

tm+2
dt+O(T−κ). (2.3.34)

Lemma 2.3.11. Fix χ ∈ (0, 1). Then, there exist 0 < ε1 < ε2 < 1 such that for all T large

enough, we have that for all t ∈ (αδ(T, ε1), λ(T, ε2)) it holds that

RT,t > t
1−χ
m (2.3.35)

Proof. To prove the inequality, we estimate from below the left hand side, and estimate from

above the right hand side. For the right hand side, we have for t ∈ (αδ(T, ε1), λ(T, ε2)) that

λ(T, ε2)
1−χ
m ≥ t

1−χ
m . (2.3.36)

By definition of λ, see (2.2.34), we have

λ(T, ε2)
1−χ
m � 1

T
ϵ2(1−χ)
m+1

(2.3.37)

We now estimate RT,t. As we already noted, the function f(t) := −B2
1t

2
m
+2 + t

2
mT 2 − A2

m

has one critical point θT in the range t > 0, and f(t) is monotonically increasing in (0, θT ),

where we recall that θT � T . Since λ(T, ε2) = o(1) as T → ∞, we conclude that for all

t ∈ (αδ(T, ε1), λ(T, ε2)) it holds√
−B2

1t
2
m
+2 + t

2
mT 2 − A2

m ≥
√

−B2
1αδ(T, ε1)

2
m
+2 + αδ(T, ε1)

2
mT 2 − A2

m. (2.3.38)

Note that as T → ∞ (by (2.2.33) and by (2.2.20))

αδ(T, ε1)
2
m =

(
α

1
m
T +

Am

T 1+ϵ1

)2

� A2
m

(
1

T 2
+

2

T 2+ϵ1

)
.
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Then, as T → ∞, we have√
−B2

1αδ(T, ε1)
2
m
+2 + αδ(T, ε1)

2
mT 2 − A2

m � 1

T ϵ1/2
. (2.3.39)

We are free to choose ε1 and ε2 in the interval (0, 1) as we wish. In particular, we as well

may assume that

ε1/2 <
ε2(1− χ)

m+ 1
.

With the latter choice, we obtain our claim by the estimates (2.3.39) and (2.3.37).

We are now ready to prove η(∞) = 0. By the above Lemma 2.3.11 and Lemma 2.3.6, we

conclude that the first outcome in Theorem 2.3.4 for the translated ellipsoids D = DT,t fails

in the range t ∈ (αδ(T, ε1), λ(T, ε2)) for all T large enough. Here ε1, ε2 are fixed such that

Lemma 2.3.11 holds. Thus, by the second outcome of Theorem 2.3.4, for arbitrarily small

ε > 0 there’s a compact C ⊂ G/Γ such that

Vol(v ∈ DT,t : ϕt(v)Γ /∈ C) < εVol(DT,t), ∀t ∈ (αδ(T, ε1), λ(T, ε2)). (2.3.40)

Now take F ∈ Cc(G/Γ) with 1C ≤ F ≤ 1. As T → ∞,

µ◦
T,g1,g2

(F ) =
1

µ (VT [g1, g2])

∫
VT [g1,g2]

F (h−1g1Γ)dµ(h)

=
1

µ (VT [g1, g2])

∫ λ(T,ϵ2)

αδ(T,ϵ1)

∫
DT,t

F (ϕt(v)Γ) dv
1

tm+2
dt+O(T−κ) (by (2.3.34))

≥ 1

µ (VT [g1, g2])

∫ λ(T,ϵ2)

aδ(T,ϵ1)

∫
DT,t

1C (ϕt(v)Γ) dv
1

tm+2
dt+O(T−κ)

≥ 1

µ (VT [g1, g2])

∫ λ(T,ϵ2)

aδ(T,ϵ1)

(1− ε)Vol(DT,t)
1

tm+2
dt+O(T−κ) (by (2.3.40))

=(1− ε)
1

µ (VT [g1, g2])

∫ βT

αT

Vol(DT,t)
1

tm+2
dt+O(T−κ)

(by Lemmata 2.2.5 and 2.2.7)
=1− ε+O(T−κ).

Therefore,

lim inf
T→∞

µ◦
T,g1,g2

(F ) ≥ 1− ε (2.3.41)
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so that

η(∞) ≤ lim sup
T→∞

µ◦
T,g1,g2

(support(F )c) ≤ ε (2.3.42)

Since ε is arbitrary η(∞) = 0.

2.3.3 Proof of G-invariance

Recall U =

[
Im 0
Rm 1

]
. For a closed subgroup H of G, denote

N(H, U) := {g ∈ G : Ug ⊂ gH}, (2.3.43)

S(H, U) := ∪H′⊊H,H′∈HΓ
N(H′, U). (2.3.44)

Consider,

Y :=
⋃

H∈HΓ

N(H, U)Γ =
⋃

H∈HΓ

[N(H, U)− S(H, U)]Γ ⊂ G/Γ, (2.3.45)

where HΓ was defined above Theorem 2.3.5. The equality holds since for any g ∈ N(H, U), if

g is also in S(H, U), then g must belong to N(H′, U) for some H′ ⊊ H (note for Lie subgroups,

this condition means dimH′ < dimH) and H′ ∈ HΓ. Since H′ has strictly lower dimension,

by repeating this argument we see eventually, g will fall into some N(H̃, U)− S(H̃, U) (with

S(H̃, U) possibly empty when H̃ has minimal dimension).

Now we perform the ergodic decomposition of the U -invariant measure η. By Theorem

2.2 of [MS95], each ergodic component of η is either G-invariant or supported on Y ∪ {∞}.

Thus, in order to show that η is G-invariant, it is sufficient to prove the following lemma.

Lemma 2.3.12. η(Y ) = 0.

By the discreteness of HΓ (Theorem 2.3.5), it suffices to show that for each fixed H ∈ HΓ

it holds

η([N(H, U)− S(H, U)]Γ) = 0. (2.3.46)
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Since [N(H, U) − S(H, U)]Γ is a countable union of compact subsets in G/Γ (See [MS95]

Proposition 3.1), it suffices to show η(C) = 0 for any compact subset C of [N(H, U) −

S(H, U)]Γ.

The main tool in the proof of the latter statement is the following consequence of Propo-

sition 5.4 in [Sha94]. We use in the following the same notations as in Section 2.3.2.

Theorem 2.3.13. Let d, n ∈ N, ε > 0,H ∈ HΓ. For any compact set C ⊂ [N(H, U) −

S(H, U)]Γ, there exists a compact set F ⊂ VG such that for any neighborhood Φ of F in VG,

there exists a neighborhood Ψ of C in G/Γ such that for any ϕ ∈ Pd,n(G) and a bounded

open convex set D ⊂ Rn, one of the following holds:

(1) There exist γ ∈ Γ such that ϕ(D)γ.pH ⊂ Φ.

(2) Vol(t ∈ D : ϕ(t)Γ ∈ Ψ) < εVol(D), where Vol is the Lebesgue measure on Rn.

Fix ε > 0 and H ∈ HΓ. Recall that ϕt(·) which was defined in (2.3.13) is in P2,m. Let

C ⊂ [N(H, U) − S(H, U)]Γ be a compact set and take a compact set F ⊂ VG satisfying

the outcome of Theorem 2.3.13. By the same argument as in the Section 4.3 with Lemma

2.3.6 applied, the first outcome of Theorem 2.3.13 fails for all T large enough. Then, for

t ∈ (αδ(T, ε1), λ(T, ε2)) for all T large enough,

Vol(v ∈ DT,t : ϕt(v)Γ ∈ Ψ) < εVol(DT,t), (2.3.47)
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where C ⊆ Ψ is the compact neighborhood from Theorem 2.3.13. Now let f ∈ Cc(G/Γ) be

such that 1C ≤ f ≤ 1 and support(f) ⊂ Ψ, it follows that

η(C) ≤ lim sup
T→∞

µ◦
T,g1,g2

(f)

= lim sup
T→∞

1

µ (VT [g1, g2])

∫ βT

αT

∫
DT,t

f (ϕt(v)Γ) dv
1

tm+2
dt

= lim sup
T→∞

1

µ (VT [g1, g2])

∫ λ(T,ϵ2)

αδ(T,ϵ1)

∫
DT,t

f (ϕt(v)Γ) dv
1

tm+2
dt

(by Lemmata 2.2.5 and 2.2.7)

≤ lim sup
T→∞

1

µ (VT [g1, g2])

∫ λ(T,ϵ2)

αδ(T,ϵ1)

∫
DT,t

1Ψ (ϕt(v)Γ) dv
1

tm+2
dt

≤ lim sup
T→∞

1

µ (VT [g1, g2])

∫ λ(T,ϵ2)

αδ(T,ϵ1)

εVol(DT,t)
1

tm+2
dt

≤ε.

Since ε > 0 is arbitrary, η(C) = 0 and thus η(Y ) = 0.

2.4 Proof of Theorem 2.1.5: The limiting measure on H\G.

We follow Section 2.5 of [GW04]. First, we provide an explicit measurable section

σ : H\G→ Y ⊂ G,

and then we define a measure νY on Y such that

dg = dµdνY , (2.4.1)

where dµ is the left Haar measure on H given by (2.1.13) and dg is the Haar measure on G

normalized such that Vol(G/Γ) = 1

To define the section, let Fm ⊂
[
SL(m,R) 0

0 1

]
denote a measurable fundamental domain

of [
∆ 0
0 1

]∖[
SL(m,R) 0

0 1

]/[
SO(m,R) 0

0 1

]
∼= ∆\SL(m,R)/SO(m,R), (2.4.2)

110



and consider the product

Y := Fm · SO(m+ 1,R).

Then, we claim that the product map H ×Y → G is a Borel isomorphism, which defines

a section σ identifying H\G with Y . The surjectivity is clear from the block-wise Iwasawa

decomposition. We only verify the injectivity here:

Suppose h1g1s1 = h2g2s2 where hi ∈ H, gi ∈ Fm and si ∈ SO(m+ 1,R). Then[
∗ 0
∗ ∗

]
3 g−1

2 h−1
2 h1g1 = s2s

−1
1 ∈ SO(m+ 1,R),

and it follows from the definition of SO(m+1,R) that both side must lie in
[
SO(m,R) 0

0 1

]
.

So h−1
2 h1 = g2s2s

−1
1 g−1

1 ∈
[
SL(m,R) 0

0 1

]
. But

[
SL(m,R) 0

0 1

]
∩ H =

[
∆ 0
0 1

]
. Hence

qg1s1 = g2s2 for some q ∈
[
∆ 0
0 1

]
. It follows that g−1

2 qg1 = s2s
−1
1 ∈

[
SL(m,R) 0

0 1

]
∩

SO(m + 1,R) =

[
SO(m,R) 0

0 1

]
. Hence g1 = g2, s1 = s2 by the definition of fundamental

domain, and h1 = h2.

Next, let T :=

{[
t−

1
mη 0
v t

]
: η ∈ SL(m,R), v ∈ Rm, t > 0

}
and S := SO(m+1,R). On

T we define the Haar measure dτ = dv dt
tm+2dη, where dη is the Haar measure on SL(m,R)

defined through standard Iwasawa decomposition, under which SO(m,R) has volume 1. We

note the formula ∫
SL(m,R)

ϕ(η)dη =

∫
Fm

∑
q∈∆

∫
SO(m,R)

ϕ(qηρ′)dρ′dη. (2.4.3)
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On S we take dρ to be the Haar measure probability measure. Then, by using Theorem 8.32

of [Kna02], we unfold a Haar measure on G (with some implicit normalization) as follows∫
G

f(g)dg

=

∫
S

∫
T

f(τρ)dτdρ

=

∫
S

∫
SL(m,R)

∫ ∞

0

∫
Rm

f(uvatηρ)dv
dt

tm+2
dηdρ (by definition of dτ)

=

∫
S

∑
q∈∆

∫
Fm

∫
SO(m,R)

∫ ∞

0

∫
Rm

f(uvatqηρ
′ρ)dv

dt

tm+2
dηdρ′dρ (by formula (2.4.3))

=

∫
S

∑
q∈∆

∫
Fm

∫ ∞

0

∫
Rm

f(uvatqηρ)dv
dt

tm+2
dηdρ (invariance of dρ)

=

∫
S

∑
q∈∆

∫ ∞

0

∫
Rm

∫
Fm

f(uvatqηρ)dηdv
dt

tm+2
dρ

=

∫
H

∫
S

∫
Fm

f(hηρ)dηdρdµ(h)

=

∫
H

∫
Fm

∫
S

f(hηρ)dρdηdµ(h)

Then it follows that the measure νY on Y defined by

dνY := dρdη̃,

where dη̃ := 1
Vol(G/Γ)

dη, satisfies (2.4.1).

Fix Hg0 ∈ H\G. By identifying H\G with Y , we define a measure on H\G via

dνHg0(Hg) := α(σ(Hg0), σ(Hg))dνY (σ(Hg)). (2.4.4)

where α(·, ·) is given in (2.1.22).

In view of Theorem 2.2 and Corollary 2.4 in [GW04] (duality principle), an immediate

consequence of Theorem 2.1.9 is the following

Corollary 2.4.1. Fix g0 ∈ G. For any compactly supported ϕ ∈ Cc(H\G),

lim
T→∞

1

µ(HT )

∑
γ∈ΓT

ϕ(Hg0.γ) =

∫
H\G

ϕ(Hg)dνHg0(Hg). (2.4.5)
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Now we would like to replace the normalization factor µ(HT ) by #ΓT . By Theorem 1.7

of [GN12],

lim
T→∞

Vol(GT )

#ΓT

= 1. (2.4.6)

We notice that by formula A.1.15 in [DRS93] and by Proposition 2.1.6, the limit

L := lim
T→∞

µ(HT )

Vol(GT )

exists. Thus we conclude

lim
T→∞

µ(HT )

#ΓT

= lim
T→∞

µ(HT )

Vol(GT )

Vol(GT )

#ΓT

= lim
T→∞

µ(HT )

Vol(GT )
= L, (2.4.7)

which shows that

lim
T→∞

1

#ΓT

∑
γ∈ΓT

ϕ(Hg0.γ) = L

∫
H\G

ϕ(Hg)dνHg0(Hg).

Our goal now will be to show that LνHg0(H\G) = 1. We first show that the total measure

νHg0(H\G) is independent of the choice of the base point Hg0. Namely νHg0(H\G) =

νH(H\G) for all Hg0 ∈ H\G. For g0, y ∈ Y , we consider the decompositions

g0 :=

[
G0 0
0 1

]
ρ0, y :=

[
η 0
0 1

]
ρ, (2.4.8)

where G0, η ∈ Fm and ρ0, ρ ∈ SO(m+ 1,R). Hence α in (2.1.22) takes a more simpler form

(note g−1
0 := ρ−1

0

[
G−1

0 0
0 1

]
)

α(g0, y) =

∑
q∈∆

1

∥G−1
0 qη∥m2∑

q∈∆
1

∥q∥m2

.
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Using the invariance of the SO(m + 1,R) invariance of the Hilbert-Schmidt norm, we

compute

νHg0(H\G)

=

∫
Y

α(g0, y)dνY

=
1∑

q∈∆
1

∥q∥m2

∫
SO(m+1,R)

∫
Fm

∑
q∈∆

1

‖G−1
0 qη‖m2

dη̃dρ (definition of dνY )

=
1∑

q∈∆
1

∥q∥m2

∫
SL(m,R)

1

‖G−1
0 η‖m2

dη̃ (by formula (2.4.1))

=
1∑

q∈∆
1

∥q∥m2

∫
SL(m,R)

1

‖η‖m2 dη̃ (invariance of dη̃)

=νH(H\G).

This also confirms that νHg0(H\G) is finite. Finally, we prove

Proposition 2.4.2. νHg0(H\G) = νH(H\G) = limT→∞
Vol(GT )
µ(HT )

= 1
L
.

Proof. νH is a Radon measure since is finite and Borel. So for any ε > 0, we can choose

fϵ ∈ Cc(H\G) with support Bϵ (note Bϵ is bounded) such that (recall that Y is a lift of

H\G to G such that H × Y → G is a Borel isomorphism)∫
Y

|fϵ(Hy)− 1|α(e, y)dνY (y) =
∫
H\G

|fϵ(Hg)− 1|dνH(Hg) ≤ ε. (2.4.9)

As in [GW04], we observe that

1

µ(HT )

∫
GT

|fϵ(Hg)− 1|dg = 1

µ(HT )

∫
Y

∫
{h:∥hy∥<T}

|fϵ(Hy)− 1|dµ(h)dνY (y) (2.4.10)

=
1

µ(HT )

∫
Y

|fϵ(Hy)− 1|µ({h : ‖hy‖ < T})dνY (y) (2.4.11)

=

∫
Y

|fϵ(Hy)− 1|µ(HT [e, y])

µ(HT )
dνY (y) (2.4.12)

Recall that limT→∞
µ(HT [e,y])
µ(HT )

= α(e, y). We will use below the dominated convergence the-

orem, and for that we will now show that the integrand µ(HT [e,y])
µ(HT )

is bounded by a function
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in L1(Y ) for large T . Recall that µ(HT ) ∼ Tm(m+1) and it only depends on the variable T

(constant over Y ).

Here since g1 = e and g2 = y, Am(q) = ‖G−1
0 qη‖ = ‖qη‖ in view of (2.4.8). Recall

Y = Fm · SO(m + 1,R) and the factor SO(m + 1,R) does not affect the finiteness of the

integral over Y , therefore in this proof we shall ignore the SO(m + 1,R) part and only

integrate against the variable H1 ∈ Fm.

By (2.2.21) and by (2.2.4), we see

µ(HT [e, y])

µ(HT )
�
∑
q∈∆

1

‖qη‖m2 . (2.4.13)

By Lemma 2.2.1, we get that Ψ(y) :=
∑

q∈∆
1

∥qη∥m2 ∈ L1(Y ) (more precisely, to see that this

is a L1 function, use (2.4.3) and then Lemma 2.2.1).

By the dominant convergence theorem, the second term satisfies

lim
T→∞

∫
Y

|fϵ(Hy)− 1|µ(HT [e, y])

µ(HT )
dνY (y) =

∫
Y

|fϵ(Hy)− 1|dνH(y) ≤ ε (2.4.14)

Therefore, by triangular inequality

lim sup
T→∞

∣∣∣∣Vol(GT )

µ(HT )
− νH(H\G)

∣∣∣∣
≤ lim sup

T→∞

∣∣∣∣Vol(GT )

µ(HT )
− 1

µ(HT )

∫
GT

fϵ(Hg)dg

∣∣∣∣
+ lim sup

T→∞

∣∣∣∣ 1

µ(HT )

∫
GT

fϵ(Hg)dg −
∫
H\G

fϵ(Hg)dνH(g)

∣∣∣∣
+ lim sup

T→∞

∣∣∣∣∫
H\G

fϵ(Hg)dg − νH(H\G)
∣∣∣∣

≤ε+ 0 + ε (the middle term vanishes because of Theorem 2.3, [GW04])

Now let ε→ 0, and this finishes the proof.

Therefore, ν̃Hg0 := LνHg0 is a probability measure, and we conclude

lim
T→∞

1

#ΓT

∑
γ∈ΓT

ϕ(Hg0.γ) =

∫
H\G

ϕ(Hg)dν̃Hg0(g). (2.4.15)
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Chapter 3: Equidistribution of o-minimal curves in homogeneous

spaces

This chapter is based on part of a joint work in progress with Michael Bersudsky and

Nimish Shah.

3.1 Introduction

Throughout this chapter, G = SL(n,R) and Γ = SL(n,Z).

Definition 3.1.1. We say that a curve ϕ : [0,∞) → G (not necessarily a one-parameter

subgroup), has the homogeneous equidistribution property, if for all x ∈ G/Γ there exists a

closed subgroup F ≤ G and a y ∈ G/Γ such that Fy has a finite F -invariant volume, and

for any compactly supported function f ∈ Cc(G/Γ)

lim
T→∞

1

T

∫ T

0

f(ϕ(t)x)dt =

∫
Fy

fdµF , (3.1.1)

where µF is the F -invariant probability measure on Fy.

Along this direction of research, Shah [Sha94] established the homogeneous equidistri-

bution property for multivariate polynomial trajectories in homogeneous spaces general real

algebraic group with a product type assumption and later generalized by Zhang [Zha23] to

trajectories without product type assumption (but with an additional regularity condition on

the domain of averaging). For more general curves, Peterzil and Starchenko established the
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equidistribution results for definable curves in complex and real tori [PS18a] a polynomially

bounded o-minimal structure with dense image in nilmanifolds [PS18b].

In this chapter, we establish homogeneous equidistribution property for single variable

unipotent definable curves. A curve

ϕ(t) = [fi,j(t)]1≤i,j≤n (3.1.2)

is definable in a polynomially bounded o-minimal structure, if each fi,j : [0,∞) → R is

definable in such a structure.

Theorem 3.1.2. Supose that ϕ(t) ∈ U for all t ∈ [0,∞), where U ≤ G is a unipotent

upper-triangular subgroup. Then ϕ has homogeneous equidistribution property.

Another result of independent interest which stands behind our equidistrbution theorems

is the following (C, α)-good property. This property stands behind many applications in

homogeneous dynamics, as first was noted in [KM98].

Theorem 3.1.3. Let F be a vector space of functions definable in a polynomially bounded

o-minimal structure such that for all f ∈ F ∖ 0 it holds that

lim
t→∞

f(t) 6= 0.

Then, there exists C, α > 0 and A ≥ 1 such that for all f ∈ F ∖ 0 and all I ⊆ [A,∞)

|{t ∈ I : |f(t)| ≤ ε}| ≤ C

(
ε

‖f‖I

)α

· |I|

This property is well-known for polynomials, and is new in the above setting.

3.2 (C, α)-good property of definable functions in a polynomially
bounded o-minimal structure

The (C, α)-good property (Theorem 3.1.3) will follow from the following inequalities for

suprememums of a function on nested intervals. This form of inequalities are well-known in

the literature as Remez-type inequalities, see [Rem36].

117



Definition 3.2.1. Let δ ∈ (0, 1). A family of real functions F defined on [A,∞) is called

δ-good if there exists a constant M(δ) depending on δ only such that

‖f‖I
‖f‖Iδ

≤M(δ), (3.2.1)

for all f ∈ F and all bounded sub-intervals Iδ ⊂ I ⊆ [A,∞] satisfying |Iδ| = δ|I|.

The following is our key theorem which stands behind Theorem 3.1.3.

Theorem 3.2.2. Let F be a finite dimensional vector space of functions definable in a

polynomially bounded o-minimal structure such that for all f ∈ F ∖ 0,

lim
t→∞

f(t) 6= 0.

Namely, F doesn’t contain functions decaying to 0. Then, there exists A > 0 such that for

all δ ∈ (0, 1) and all f ∈ F ∖ 0 it holds that f restricted to [A,∞) is δ-good.

We first prove Theorem 3.1.3 by assuming Theorem 3.2.2, and the rest of the section will

be dedicated to proving Theorem 3.2.2.

3.2.1 Proving Theorem 3.1.3

We recall that for a definable function f in a polynomially bounded o-minimal structure

it holds that either f : [0,∞) → R is eventually constantly zero, or there exist r 6= 0 such

that limt→∞ f(t)/tr = c 6= 0, see [Mil94a]. We will denote this exponent by:

deg(f) := r. (3.2.2)

We have the following elementary observation.

Lemma 3.2.3. Suppose that F is a finite dimensional vector space of functions f : [0,∞) →

R definable in a polynomially bounded o-minimal structure of dimension n + 1. Then there

exist a basis {f0, f1, ..., fn} of F , where

deg(f0) < deg(f1) < ... < deg(fn).
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In particular, F doesn’t include functions decaying to zero if and only if 0 ≤ deg(f0).

For the rest of the section,

F = Span{f0, f1, ..., fn}, (3.2.3)

where

0 ≤ deg(f0) < deg(f1) < ... < deg(fn),

and we denote

ri = deg(fi).

In addition, we assume without loss of generality that

lim
t→∞

fi(t)

tri
= 1.

In what follows, for a tuple (c0, c1, ..., cn) ∈ Rn+1, we will denote

fc = c0f0 + c1f1 + ...+ cnfn. (3.2.4)

We have the following Corollary from Theorem 3.2.2.

Corollary 3.2.4. Let F be a finite dimensional vector space of functions definable in a

polynomially bounded o-minimal structure such that for all f ∈ F ∖ 0,

lim
t→∞

f(t) 6= 0.

Let A ≥ 1 such that the outcome of Theorem 3.2.2 holds. Then, there exists λ, r > 0 such

that for all x ≥ 1, f ∈ F ∖ 0 and I ′ ⊆ I ⊆ [A,∞) such that |I|
|I′| ≤ x it holds that

‖f‖I ≤ λxr‖f‖I′ (3.2.5)

Proof. Consider the definable set:

S := {(x, y) : x, y > 0, such that , ‖fc‖I
‖fc‖I′

≤ y, ∀c 6= 0, I ′ ⊆ I ⊆ [A,∞),
|I|
|I ′|

≤ x}.
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By Theorem 3.2.2, the projection of S to the first coordinate includes [1,∞). Then, by the

definable choice theorem there exists a definable function φ : [1,∞) → S in the polynomially

bounded o-minimal structure. Since φ is polynomially bounded, the result follows.

We are now ready to prove the C, α-good property.

Proof of Theorem 3.1.3. By o-minimality, the number of connected components of the sub

level sets

{t ∈ I : |f(t)| ≤ ε},

where ε > 0 and f ∈ F ∖ 0 is bounded uniformly, say by K. Let

I ′ ⊆ {t ∈ I : |f(t)| ≤ ε}

be an interval of maximum length. Then

L ≤ K|I ′|,

where

L := |{t ∈ I : |f(t)| ≤ ε}|.

The latter inequality implies,
|I|
|I ′|

≤ |I|
L/K

.

By Corollary 3.2.5, we get

‖f‖I ≤ λ

(
|I|
L/K

)r

‖f‖I′ ≤ λ

(
|I|
L/K

)r

ε.

Reordering the latter inequality, we get that

|{t ∈ I : |f(t)| ≤ ε}| = L ≤ λ
1
rK

(
ε

‖f‖I

) 1
r

|I|.
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3.2.2 Proving Theorem 3.2.2

The following is the fundamental well known example of δ-good functions. We present

it’s proof for completeness.

Proposition 3.2.5. Let F := SpanR{1, x, ..., xn}∖0, then F is δ-good on R. More precisely:

‖c0 + c1x+ · · ·+ cnx
n‖I

‖c0 + c1x+ · · ·+ cnxn‖Iδ
≤ (n+ 1)

nn

δn
, (3.2.6)

for all c0, c1, ..., cn ∈ R not all zero, interval I ⊂ R and sub-interval Iδ ⊂ I satisfying

|Iδ| = δ|I|

Proof. Let f := c0 + c1x+ · · ·+ cnx
n and I = [a, a+ T ]. Put ti = t0 +

iδT
n

for i = 0, 1, ..., n,

a ≤ t0 < t1 < · · · < tn ≤ a + T , and Iδ = [t0, tn]. Then by polynomial interpolation of f at

points t0, t1, ..., tn, we have

f(t) =
n∑

j=0

∏
i ̸=j(t− ti)∏
i ̸=j(tj − ti)

f(tj). (3.2.7)

Now, by triangle inequality ∣∣∣∣∣
∏

i ̸=j(t− ti)∏
i ̸=j(tj − ti)

∣∣∣∣∣ ≤ nn

δn
, ∀t ∈ I.

Thus

|f(t)| ≤ (n+ 1)
nn

δn
max |f(ti)| ≤ (n+ 1)

nn

δn
‖f‖Iδ , ∀t ∈ I,

and the statement follows.

We will be using the following facts:

• The derivative f ′ of any definable function f : [0,∞) → R exists and continuous for

all large enough t, and moreover f ′ is definable.

• For a definable function f : [0,∞) → R in a polynomially bounded o-minimal structure

with f(t) ∼ tr where r 6= 0, we have f ′(t) ∼ rtr−1, as t→ ∞, see [Mil94b, Proposition

3.1].
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Lemma 3.2.6. There exists A > 0 such that for any interval I ⊂ [A,∞) it holds that

‖fc‖I > 0 for all c 6= 0.

Proof. We first note that there’s no loss in generality in assuming that f0(t) ≡ 1 after

possibly dividing fc by f0. In fact, since f0(t) ∼ tr0 , we get that f0(t) > 0 for all large t.

Moreover deg(fi/f0) = ri − r0.

We now prove the statement for n = 1, and then argue by induction. Let A0 > 0 be such

that f ′
0(t) 6= 0 for all t ≥ A0. Assume that for an interval I ⊂ [A,∞) we have ‖c0+c1f‖I = 0.

Since c0 + c1f(t) = 0, ∀t ∈ I, we get that

d

dt
(c0 + c1f(t)) = c1f

′(t) = 0, ∀t ∈ I,

and as f ′(t) 6= 0 for all t ∈ [A,∞), it follows that c1 = 0. As a consequence, c0 = 0 as-well.

Now let n ≥ 2, 0 < r1 < r2 < · · · < rn be a fixed sequence of real numbers, and assume

that f1, ..., fn are definable in a polynomially bounded o-minimal structure such that for

1 ≤ i ≤ n− 1

fi(t) ∼ tri ,

as t → ∞. Observe that in some ray J = [A1,∞] we have f ′
1(t) 6= 0, ∀t ∈ J , and for all

2 ≤ i ≤ n the functions f ′
i(t)

f ′
1(t)

are well defined in J . Note that

hi(t) :=
r1
r2

f ′
i(t)

f ′
1(t)

∼ tr
′
i ,

where r′i := ri − r1. By induction, there’s A > 0 such that if

‖c1 + c2h2 + ...+ cnhn‖I = 0

for some I ⊂ [A,∞) then c1 = · · · = cn = 0. Now if

‖c0 + c1f1 + c2f2 + ...+ cnfn‖I = 0,
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then

‖c1 + c2
r1
r2
h2 + ...+ cn

r1
rn
hn‖I = 0.

It then follows that ci = 0 for all i.

In what follows we will take A such that f0(t), f1(t), ..., fn(t) are continuously differen-

tiable (n+ 1) times for all t ≥ A. We consider the Wronskian matrix

D(t) = D(f0, ..., fn)(t) (3.2.8)

which is the (n+1)×(n+1) matrix D(t) is whose 0-th row is D0(t) = (f0(t), f1(t), . . . , fn(t))

and its and i-th row is Di(t) = D
(i)
0 (t), the i-th derivative of the 0-th row at t, for 1 ≤ i ≤ n.

Lemma 3.2.7. There exists an A > 0 such that D(t) is non-singular for all t ≥ A.

Proof. If n = 0, the statement is trivial. Assume that D(f1, ..., fn−1)(t) is not singular for

all t ≥ T0. Since D(t) = D(f1, ..., fn)(t) is a definable function, it’s either non-zero for all

large t or eventually is constantly zero, say D(t) = 0, ∀t ≥ T1. Suppose for contradiction the

latter case. Then by a classical result of Bôcher [Bôc01], we get that f0, f1, ..., fn are linearly

dependent in any sub-interval of [T1,∞). This contradicts Lemma 3.2.6.

In the following we will make use of the fact:

• A definable function f : [0,∞) → R either converges as t→ ∞ or diverges to ∞ or to

−∞ as t→ ∞.

Proof of Theorem 3.2.2. Let A as in Lemma 3.2.7. Fix δ ∈ (0, 1), and assume for contradic-

tion that F ∖ 0 is not δ-good on [A,∞). Consider the following definable subset:

A :=
{
(s, c, a, T, α) :

s ≥ 1, c 6= 0, a > A, T > 0,

a ≤ α ≤ a+ T − δT,
∥fc∥[a,a+T ]

∥fc∥[α,α+δT ]
> s

}
. (3.2.9)

123



By the assumption, the projection of A to the first coordinate is R≥1. By the choice

function theorem, there exists a polynomially bounded definable curve φ : [1,∞) → A,

meaning each of the coordinate components of

φ(s) = (c(s), a(s), T (s), α(s))

is a polynomially bounded o-minimal function in s. In particular, we have

a(s)

T (s)
� sκ. (3.2.10)

We will now discuss two cases for κ.

Case 1: if κ ≤ 0. In this case, we treat two sub-cases in which T (s) is bounded or not.

Case 1.1. T (s) is bounded in s. Then a(s) is also bounded, and by o-minimality that

T (s) and a(s) converge as s → ∞. We first observe that lims→∞ T (s) 6= 0. In fact, if we

assume by contradiction that lims→∞ T (s) = 0, since we have that a(s) ≥ A ≥ 1, we will

get that lims→∞
a(s)
T (s)

= ∞, which is a contradiction to the assumption that κ ≤ 0. Now let

λ(s) = ‖c(s)‖1 be the l1 norm of the coefficients. Denote

ĉ :=
c

λ
,

and observe that by o-minimality, since ĉ(s) is bounded, ĉ(s) converges to some vector v

with ‖v‖1 = 1. Also, the end-points of the intervals [α(s), α(s)+ δT (s)] ⊂ [a(s), a(s)+T (s)]

converge to the end-points of some intervals, say Iδ ⊂ I ⊆ [A,∞) where |Iδ |
|I| = δ. Now

‖fĉ(s)‖[a(s),a(s)+T (s)]

‖fĉ(s)‖[α(s),α(s)+δT (s)]

=
‖fc(s)/λ(s)‖[a(s),a(s)+T (s)]

‖fc(s)/λ(s)‖[α(s),α(s)+δT (s)]

=
‖fc(s)‖[a(s),a(s)+T (s)]

‖fc(s)‖[α(s),α(s)+δT (s)]

> s.

Namely:
‖fĉ(s)‖[a(s),a(s)+T (s)]

s
≥ ‖fc(s)‖[α(s),α(s)+δT (s)],

and by taking the limit s→ ∞, we get

0 = ‖fv‖Iδ ,

124



which is a contradiction.

Case 1.2. T (s) is unbounded in s. Then, by o-minimality T (s) → ∞. Since fi(x) ∼ xri ,

there exists 0 < νi such that for all t ∈ [0, 1], we have

fi(a+ tT )

T ri
=

(a+ Tt)ri

T ri
+O

(
(a+ Tt)ri−νi

T ri

)
=
( a
T

+ t
)ri

+O

(
T−νi

( a
T

+ t
)ri−νi

)
.

Now, lims→∞ T (s) = ∞ and a(s)
T (s)

is bounded in s. Thus,

fi(a(s) + tT (s))

T (s)ri
=

(
a(s)

T (s)
+ t

)ri

+O
(
T (s)−ν

)
, ∀0 ≤ i ≤ n, ∀t ∈ [0, 1],

where ν = min{νi} > 0. In particular,

fc(s)(a(s) + tT (s)) =c0(s)f0(a(s) + tT (s)) + · · ·+ cn(s)fn(a(s) + tT (s))

= (c0(s)T (s)
r0)

(
a(s)

T (s)
+ t

)r0

+ · · ·+ (cn(s)T (s)
rn)

(
a(s)

T (s)
+ t

)rn

+O(C(s)T (s)−ν),

where C(s) = max{ci(s)T (s)ri}. We consider:

ϕc(s)(t) := fc(s)(a(s) + tT (s)), t ∈ [0, 1].

Since a(s)
T (s)

is bounded, we have lims→∞
a(s)
T (s)

= x0 (here it’s possible that x0 = 0). We put

λ(s) := ‖(c0(s)T (s)r0 , ..., cn(s)T (s)rn)‖1,

and we observe that

lim
s→∞

ϕc(s)(t)

λ(s)
= v0 (x0 + t)r0 + · · ·+ vn (x0 + t)rn ,

uniformly in t ∈ [0, 1], where (v0, ..., v1) is the limiting vector of 1
λ(s)

(c0(s)T (s)
r0 , ..., cn(s)T (s)

rn)

having ‖(v0, ..., vn)‖1 = 1. Now

s <
‖fc(s)‖[a(s),a(s)+T (s)]

‖fc(s)‖[α(s),α(s)+δT (s)]

=
‖ϕc(s)‖[0,1]
‖ϕc(s)‖Iδ(s)

=
‖ϕc(s)/λ(s)‖[0,1]
‖ϕc(s)/λ(s)‖Iδ(s)

(3.2.11)
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where Iδ(s) :=
(

α(s)
T (s)

− a(s), α(s)+δT (s)
T (s)

− a(s)
)
⊆ [0, 1], where |Iδ(s)| = δ, ∀s ≥ 1. We con-

clude that:

lim
s→∞

‖ϕc(s)/λ(s)‖Iδ(s) = 0

As s→ ∞, we have that Iδ(s) converges to a sub-interval J of [0, 1] of relative length δ, and

we get that

v0 (x0 + t)r0 + · · ·+ vn (x0 + t)rn = 0, ∀t ∈ J,

which is a contradiction since not all the coefficients vi are zero.

Case 2: if κ > 0. In an overview, in this case, the idea is to approximate fĉ in the inter-

vals [a, a+ T ] using Taylor expansion and to apply Proposition 3.2.5 to get a contradiction.

As above, let λ(s) = ‖c(s)‖1 be the l1-norm of the coefficients. We denote: ĉ := c
λ
, and

we note that
‖fĉ(s)‖[a(s),a(s)+T (s)]

‖fĉ(s)‖[α(s),α(s)+δT (s)]

=
‖fc(s)‖[a(s),a(s)+T (s)]

‖fc(s)‖[α(s),α(s)+δT (s)]

> s.

We now consider two cases: a(s) is bounded or a(s) → ∞.

Case 2.1. a(s) is bounded. We observe that lims→∞ T (s) = 0. In fact, this follows since

a(s) ≥ A ≥ 1, and a(s)
T (s)

∼ sκ → ∞ because κ > 0. We have that lims→∞ a(s) = x0 ≥ A, and

lims→∞ ĉ(s) = v with ‖v‖1 = 1.

Recall that f0, f1, ..., fn are (n + 1)-times continuously differentiable for all a ∈ [A,∞).

Then we may consider the Taylor polynomial Qn,a(s)(t) for fĉ(s) centered at a(s) ∈ [A,∞) of

degree n. Since a(s), ĉ(s) and T (s) are bounded, we get that |f (n+1)
ĉ(s) (ξ)| is uniformly bounded

in the range ξ ∈ [a(s), a(s) + T (s)]. By Taylor’s theorem there exists ξ ∈ [a(s), a(s) + T (s)]

such that

|fĉ(s)(t)−Qn,a(s)(t)| =

∣∣∣∣∣f
(n+1)
ĉ(s) (ξ)

(n+ 1)!
(t− a(s))n+1

∣∣∣∣∣
=O(T (s)n+1)
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for all t ∈ [a(s), a(s) + T (s)]. Denote I(s) := [a(s), a(s) + T (s)], and Iδ(s) := [α(s), α(s) +

δT (s)]. We have:

‖fĉ(s)‖I(s) =‖Qn,a(s)‖I(s) +O(T (s)n+1) (By Taylor approximation)

≤Mn(δ)‖Qn,a(s)‖Iδ(s) +O(T (s)n+1) (By Proposition 3.2.5)

≤Mn(δ)(‖fĉ(s)‖Iδ(s) +O(T (s)n+1) (By Taylor approximation)

=Mn(δ)‖fĉ(s)‖Iδ(s)
[
1 +O

(
T (s)n+1

‖fĉ(s)‖Iδ(s)

)]
Namely,

‖fc(s)‖I(s)
‖fc(s)‖Iδ(s)

� 1 +O

(
T (s)n+1

‖fĉ(s)‖Iδ(s)

)
.

We now show that

lim
s→∞

T (s)n+1

‖fĉ(s)‖Iδ(s)
= 0. (3.2.12)

This outcome gives a contradiction to our assumption s ≤ ∥fc(s)∥I(s)
∥fc(s)∥Iδ(s)

. To prove (3.2.12), first

recall the following general fact: if q(x) = c0 + c1x + ... + ckx
k is a polynomial of degree k

and J is an interval of length |J | < 1, then

‖q‖J � ‖(c0, c1, ..., ck)‖∞|J |k. (3.2.13)

Now Qn,a(s) is a polynomial of degree n whose coefficients are given by D(a(s))ĉ(s), where

D = D(f0, ..., fn) is the Wronskian matrix. According to Lemma 3.2.7, using the fact that

a(s) is bounded, the l1-norm of it’s coefficients is uniformly bounded from below. Then

‖fĉ(s)‖Iδ(s) +O(T (s)n+1) = ‖Qn,a(s)‖Iδ(s) � T (s)n. (3.2.14)

Since T (s) → 0, we get (3.2.12).

Case 2.1. a(s) is unbounded. Here a(s) = sθ, for θ > 0. We recall that for each N ∈ N

there’s xN such that fi will be continuously differentiable N times in a ray [AN ,∞), see
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[DM96]. We have by [Mil94b] for a non-negative integer l,

f
(l)
i (x) � xri−l.

Then we conclude that for integers N such that ri − (N + 1) < 0 for all 1 ≤ i ≤ n, we have

for all t ∈ [a(s), a(s) + T (s)] that

f
(N+1)
ĉ(s) (t) = O(a(s)rn−(N+1)).

By Taylor’s theorem:

|fĉ(s)(t)−QN,a(s)(t)| = O(a(s)rn−(N+1)T (s)N+1)

= O

(
a(s)rn

(
T (s)

a(s)

)N+1
)

= O
(
srnθs−(N+1)κ

)
. (using that a(s)

T (s)
∼ sκ)

The functionΨ(s) := ‖fĉ(s)‖[α(s),α(s)+δT (s)] is positive and definable in a polynomially bounded

o-minimal structure, which implies that there’s η > 0 such that

‖fĉ(s)‖[α(s),α(s)+δT (s)] � s−η, as s→ ∞ (3.2.15)

We take N large enough such that

ν := rnθ − (N + 1)κ > η,

where η as in (3.2.15). Then:

‖fĉ(s)‖I(s) ≤‖QN,a(s)‖I(s) +O(s−ν) (By Taylor approximation)

≤MN(δ)‖Q‖Iδ(s) +O(s−ν) (By Proposition 3.2.5)

≤MN(δ)‖fĉ(s)‖Iδ(s) +O(s−ν) (By Taylor approximation)

=MN(δ)(‖fĉ(s)‖Iδ(s)
[
1 +O

(
s−ν

‖fĉ(s)‖Iδ(s)

)]
�MN(δ)‖fĉ(s)‖Iδ

[
1 +O

(
s−ν

s−η

)]
(By (3.2.15))

This is a contradiction to our assumption ‖fĉ(s)‖I(s) ≥ s‖f‖Iδ(s).
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3.2.3 (C, α)-good property of o-minimal curves in representations

Our goal in ths section is to prove the following proposition.

Proposition 3.2.8. Let θ : G→ GL(m,R) be an algebraic homomorphism, and fix a norm

‖ · ‖ on Rm. Let ϕ : [0,∞) → G be either contained in a unipotent group for all t. Then the

following holds:

(1) For v ∈ Rm we have limt→∞ θ(ϕ(t))v = v or limt→∞ θ(ϕ(t))v = ∞.

(2) There exists A,C, α > 0 such that for all v the function Θ(t) := ‖θ(ϕ(t))v‖ is (C, α)-

good in [A,∞).

In order to prove Proposition 3.2.8, we have the following statement.

Lemma 3.2.9. Let U ≤ GL(m,R) be the unipotent group of upper-triangular matrices, and

let ψ : [0,∞) → U be a continuous curve definable in a polynomially bounded o-minimal

structure. Then there exist upper triangular unipotent matrices σ(t) and u(t) such that

ψ(t) = σ(t)u(t) (3.2.16)

where limt→∞ σ(t) = Im and the real span of entries of u(t) in each row form a real linear

space containing either constant functions or functions converging to ∞ in absolute value as

t→ ∞.

Proof. We prove this by induction on m. m = 1 is is trivial. Now let m > 1, and consider

ψ(t) =


1 f1,2 · · · f1,m−1 f1,m
0 1 · · · f2,m−1 f2,m
... ... ... ...
0 0 · · · 1 fm−1,m

0 0 · · · 0 1

 . (3.2.17)

Using the induction hypothesis, we assume without loss of generality that the (m−1)×(m−1)

sub-matrix on the left upper corner of ψ satisfies the outcome of the lemma. If i is such
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that SpanR{1, fi,i+1, ..., fi,m−1, fi,m} − {0} contains a non-trivial linear combination yielding

function decaying to zero, then, there’s coefficients ci,i1, ..., ci,m ∈ R not all zero such that

hi(t) := ci,i + ci,i+1fi,i+1 + · · ·+ ci,mfi,m

which decays to zero. By induction hypothesis ci,m 6= 0 so without loss of generality we may

always assume ci,m = 1. Consider

σ−1
i (t) =


1

1 −hi(t)
. . .

1
1

 , (3.2.18)

where the function hi is in the i-th row. We have that the span of the functions in first

row of ui(t) := σ−1
i (t)ϕ(t) is as the span of {1, fi,i+1, ..., fi,m−1}, which contains functions

that are either constant or converge to infinity in absolute value. Also, limt→∞ σi(t) = Im.

Let i1, ..., ik be the indices of the rows in ϕ(t) whose span contains decaying functions. We

conclude that

u(t) := σ−1
i1
(t) · · · σ−1

ik
(t)ϕ(t)

and

σ(t) := σi1(t) · · · σik(t),

satisfy the outcome of the lemma.

Proof of Proposition 3.2.8 for curves in a unipotent group. Suppose that U ≤ G is a unipo-

tent subgroup and ϕ : [0,∞) → U is a continuous curve definable in a polynomially bounded

structure. Let θ : G→ GL(m,R) be an algebraic homomorphism. Then θ(U) is a unipotent

subgroup and up-to conjugation, θ(U) is contained in the group of unipotent upper-triangular

matrices in GL(m,R). Moreover, θ is a polynomial map and therefore ψ(t) := θ(ϕ(t)) is

definable. The rest follows from Lemma 3.2.9.
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3.3 Non-escape of mass

Let X ∪{∞} denote the one-point compactification of X := G/Γ. For T > 0 and Λ ∈ X,

let

µγ,Λ,T (f) :=
1

T

∫ T

0

f(γ(t).Λ)dt. (3.3.1)

Since {µγ,Λ,T}T>0 is a family of probablity measure and by Banach-Alaoglu theorem, there

exists a subsequence Ti → ∞ such that µΛ,Ti
has a weak-star limit µΛ,∞. With an abuse of

notations we shall drop the subscripts in below.

For a rank k sublattice ∆ ⊂ Zn, let ‖∆‖ denote the volume of the quotient space R∆/∆.

This definition can be interpreted using the exterior algebra of Rn: if ∆ is generated by

v1, ...,vk, then ∆ = ‖v1 ∧ · · · ∧ vk‖, where the norm is the standard Euclidean norm on the

wedge product defined through inner product.

The following powerful theorem on quantitative non-divergence due to Kleinbock [Kle07]

will be needed. Let P (Zn) denote the set of primitive sublattices of Zn (whose bases can be

extended to a basis of Zn).

Theorem 3.3.1. Suppose an interval B ⊂ R, C, α > 0, 0 < ρ < 1 and a continuous map

h : B → SL(n,R) are given. Assume that for any ∆ ⊂ P (Zn), we have

(1) the function x→ ‖h(x)∆‖ is (C, α)-good on B, and

(2) supx∈B ‖h(x)∆‖ ≥ ρrank(∆)

then for any ε < ρ,

|{x ∈ B : λ1(h(x)Zn) ≤ ε}| ≤ Cn2n
(
ε

ρ

)α

|B|, (3.3.2)

where λ1(·) is the function that outputs the length of the shortest nonzero vector of an

Euclidean lattice.
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The follow classical fact for representations of algebraic groups will also be used in the

proof (Cf. Theorem 9.18 [Mil17]):

Lemma 3.3.2. Let V be an R-vector space and θ : G → GL(V ) be an algebraic homomor-

phism. If u ∈ G is unipotent, then so is ϕ(u) as a linear map on V .

Lemma 3.3.3. µΛ,∞(∞) = 0, for all Λ ∈ X.

Proof. For any exterior representation ρ : G→ GL(∧kRn) ∼= GL(RN).

Fix a norm ‖ · ‖ on RN . We will denote below for r > 0,v ∈ RN by Br(v) ⊆ RN the

ball of radius r centered at v. Since ϕ is contained in a unipotent group or is polynomially

regular, we get by Proposition 3.2.8 that there exists A > 0 such that Θv(t) := ‖ϕ(t)v‖ is

(C, α)-good for all v ∈ RN ∖ 0 and t ∈ [A,∞).

We identify SL(N,R)/SL(N,Z) with the space of unimodular lattices

LN := {Λ := SpanZ{v1, ..., vn} | det(vi,j) = 1}.

Consider

Bϵ := {Λ ∈ LN | (Λ∖ 0) ∩ Bϵ(0) 6= ∅}.

By Mahler’s Criterion ([BM00], Theorem 3,2), LN ∖Bϵ is compact for all ε > 0 and thus Bϵ

is a neighborhood of ∞.

To use Theorem 3.3.1, we assume the base point Λ = gZN and h(t) = ϕ(t)g and ρ :=

inf∆∈P (ZN ) ‖h(A)∆‖1/rank(∆).

Now it suffices to connect condition (1) to Proposition 3.3.1. To this end, we observe

that for any rank k sublattice of ZN with a Z-basis v1, · · · ,vk,

h(t)∆ = h(t)v1 ∧ · · · ∧ h(t)vk.

The action of h(t) on the linear space ∧k
i=1RN is unipotent by Lemma 3.3.2 and therefore

there exist C, α > 0 that only depend on ϕ(t) such that t 7→ ‖h(t)∆‖ is (C, α)-good.
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It follows from Theorem 3.3.1 that there exist C, α > 0 that for an interval I ⊂ R,

|{t ∈ I : λ1(ϕ(t)Λ) ≤ ε}| ≤ C

(
ε

ρ

)α

|I| (3.3.3)

Now we take I = [A, T ] and f be a continuous bump function on SL(N,R)/SL(N,Z) com-

pactly supported on Bϵ and constantly equal to 1 on Bϵ/2. It follows that for large T ,

µ(∞) ≤ 1

T

∫ T

A

f(ϕ(t)Λ)dt ≤ 1

T

∫ T

A

1Bϵ(ϕ(t)Λ)dt ≤ CN

(
ε

ρ

)α

.

This completes the proof.

3.4 Unipotent invariance of limiting measure

An important ingredient of the linearization techique is to show the limiting measure is

invariant under a one-parameter unipotent subgroup of G.

For the following, for r < 1, consider

Tr,s(t) :=
(
t1−r + (1− r)s

) 1
1−r = t+ str + o(tr), where s ∈ R, (3.4.1)

and let

T1,s(t) := st, where s > 0. (3.4.2)

The following is a summary of the results we require from [Poulios_thes]

Proposition 3.4.1 (Poulious’ Thesis). Let ϕ : [0,∞) → SL(n,R) be an unbounded curve

definable in a polynomially bounded o-minimal structure. Then there exists a unique r ≤ 1

such that the limit

Mφ := lim
t→∞

tr · ϕ′(t) · ϕ(t)−1 (3.4.3)

exists and non-zero. We have that Mφ is nilpotent ⇐⇒ r < 1. Mφ is diagonalizable

⇐⇒ r = 1. Moreover, let p = SpanR{Mφ} ≤ sl(n,R), and P = exp p. Then:
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(1) r < 1 ⇐⇒ for each s ∈ R, the limit

ρ(s) := lim
t→∞

ϕ(Tr,s(t))ϕ(t)
−1, (3.4.4)

exists. In this case ρ defines an isomorphism R → P . Here R denotes the additive

group of real numbers.

(2) r = 1 ⇐⇒ for each s > 0, the limit

ρ(s) := lim
t→∞

ϕ(T1,s(t))ϕ(t)
−1, (3.4.5)

exists. In this case ρ defines an isomorphism ρ : R>0 → P . Here R>0 denote the

multiplicative group of positive real numbers.

Notice that when ϕ(t) is contained in a unipotent subgroup, it follows that the matrix

Mφ is nilpotent. In particular, it follows from the proposition that r < 1.

Next, we will show the invariance of limiting measure under this unipotent subgroup. To

this end, we need the following elementary lemma from Calculus:

Lemma 3.4.2. Let : l : (0,∞) → R be a differentiable function such that limt→∞ l′(t) = 0

as t→ ∞. Then, for any bounded continuous function f : R → R, we have

1

T

∫ T

0

[f(t+ l(t))− f(t)]dt = 0 (3.4.6)
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Proof. We don’t necessarily have limt→∞ f(t+ l(t))/f(t) = 1. Let y = g(t) := t+ l(t). Then

by change of variables formula,

1

T

∫ T

0

[f(t+ l(t))− f(t)]dt

=
1

T

∫ T

0

f(y)dg−1(y)− 1

T

∫ T

0

f(t)dt

=
1

T

∫ T

0

f(y)dg−1(y)− 1

T

∫ T

0

f(t)dt

=
1

T

∫ T

0

f(y)
1

g′(g−1(y))
dy − 1

T

∫ T

0

f(t)dt

=
1

T

∫ T

0

f(y)
1

1 + l′(g−1(y))
dy − 1

T

∫ T

0

f(t)dt

=
1

T

∫ T

0

f(t)

[
1

1 + l′(g−1(t))
− 1

]
dt

Since g(t)
t

= y
g−1(y)

, limy→∞ g−1(y) = ∞, then last limit is zero by the boundedness of f and

integral-truncation trick.

Lemma 3.4.3. Let G ≤ SL(n,R) be a closed subgroup and let Γ ≤ G be a discrete subgroup.

Suppose that ϕ : [0,∞) → G is an unbounded curve definable in a polynomially bounded

o-minimal structure such that (3.4.3) holds for r < 1. Let ρ as in (3.4.5). Then

lim
T→∞

1

T

∫ T

0

{f(ρ(s)ϕ(t)x)− f(ϕ(t)x)}dt = 0, (3.4.7)

for all f ∈ Cc(G/Γ), x ∈ G/Γ and s ∈ R.

Proof. For any f ∈ Cc(G/Γ), ε > 0, take Tϵ such that

|f(ρ(s)ϕ(t)x)− f(ϕ(Tr,s(t))| ≤ |f(ρ(s)ϕ(t)x)− f(ϕ(Tr,s(t))ϕ(t)
−1]ϕ(t)x)| ≤ ε/2,

for t ≥ Tϵ. Now

1

T

∫ T

0

|f(ρ(s)ϕ(t)x)− f(ϕ(t)x)|dt

≤ 1

T

∫ Tϵ

0

|f(ρ(s)ϕ(t)x)− f(ϕ(t)x)|dt+ 1

T

∫ T

Tϵ

|f(ρ(s)ϕ(t)x)− f(ϕ(t)x)|dt

≤ 1

T

∫ Tϵ

0

|f(ρ(s)ϕ(t)x)− f(ϕ(t)x)|dt+ 1

T

∫ T

Tϵ

|f(ϕ(Tr,s(t))− f(ϕ(t)x)|dt|+ ε

2
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Now take T → ∞. The first term goes to zero by boundedness of the function f and the

middle term goes to zero by Lemma 3.4.2.

We call the i, j index of an upper-triangular matrix b ∈ SL(n,R) of the form

b =



f1,1 0 · · · 0 0 · · · 0 0 · · · 0

0
. . . . . . ... ... ... ... ...

... . . . . . . 0 0 · · · 0 0 · · · 0
0 · · · 0 fi,i 0 · · · 0 fi,jfi,jfi,j · · · fi,n
... ... . . . . . . ... ...
... ... . . . . . . ... ...
... ... . . . . . . ... ...
... ... 0 fj,j · · · fj,n
... ... . . . . . . ...
0 · · · 0 · · · · · · · · · · · · · · · 0 fn,n



, (3.4.8)

where fi,j 6= 0, the first non-zero off-diagonal entry. More precisely, (i, j) is the first non-zero

entry amoung the off-diagonal entries according to the following lexicographic order on N2:

(i, j) ≺ (k, l) ⇐⇒ i < k or (i = k and j < l). (3.4.9)

Let B ≤ SL(n,R) be the group of upper-triangular matrices. Let b : [0,∞) → B be a

definable curve. Recall that each definable function f(t) is either zero for all large enough

t or f(t) either positive or negative for all large t. Thus, for all large enough t there exists

a unique first non-zero off-diagonal entry in b(t), or b(t) is diagonal for all large t. We will

refer to this entry as the first non-zero off-diagonal entry of the curve b(t).

Lemma 3.4.4. Let ϕ : [0,∞) → SL(n,R) be a definable curve. Then there’s a definable

curve b : [0,∞) → B, such that b(t) is either diagonal for all large t, or the first non-zero

off-diagonal entry fi,j satisfies

(1) deg fi,i 6= deg fi,j, and

(2) deg fi,j > deg fj,j,
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and importantly,

ϕ(t) = σ(t)b(t)C, (3.4.10)

where C ∈ SL(n,R) is constant, and σ(t) ∈ SL(n,R) is convergent as t→ ∞.

Proof. Using the KAN decomposition, we first write ϕ(t) ∈ SL(n,R), as ϕ(t) = k(t)B(t),

where k(t) ∈ SO(n,R) and B(t) ∈ B an upper-triangular matrix. Since k(t) is obtained by

performing the Gram-Schimdt process in the columns of ϕ, we conclude that k(t) is definable.

As a consequence, B(t) is definable. Since k(t) is bounded and definable, limt→∞ k(t) exists.

For all t large, B(t) is either diagonal, or B(t) takes the form of (3.4.8). To obtain the

outcome of the lemma, we consider the following algorithm:

(1) If deg(fi,j) = deg(fi,i), then subtract the i-th column from the j-th column. This

amounts to multiplying by a constant unipotent matrix from the right. The obtained

matrix is the same, besides that the i, j-th entry is replaced with fi,j − fi,i. There are

two possibilities now:

(a) fi,i − fi,j is eventually zero. This means that in the obtained matrix, the first

non-zero off-diagonal entry has a larger index. Then one repeats step 1. again.

(b) deg(fi,i−fi,j) 6= 0. In this case, we get that deg(fi,i−fi,j) 6= deg(fi,i), which fulfills

the first requirement of Lemma 3.4.4. One continues then with the following step.

(2) If deg(fi,j) ≤ deg(fj,j). Then subtract fi,j
fj,j

times the j-th row from the i-th row. This

amounts to multiplying from the left by a unipotent matrix converging to identity as

t → ∞. The i, j-th entry in the resulting matrix is now replaces with zero, and the

eventually first non-zero off-diagonal entry has a larger index. One now repeats step

1. again.

The algorithm ends with a finitely many steps with either a diagonal matrix, or a definable

curve b(t) satisfying the requirements of the lemma.

137



Definition 3.4.5. A curve {ϕ(t)} ⊂ G ⊂ SL(n,R) is called essentially diagonal it has the

decomposition of Lemma 3.4.4 with b(t) eventually diagonal.

Proposition 3.4.6. An unbounded continuous curve ϕ : [0,∞) → SL(n,R) definable in

a polynomially bounded o-minimal structure is essentially diagonalizable if and only if the

unique r ∈ R such that limt→∞ trϕ′(t)ϕ(t)−1 exists in gl(n,R)− {0} is equal to 1.

Proof. Using Lemma 3.4.4 we write:

ϕ(t) = σ(t)b(t)C,

where limt→∞ σ(t) = g ∈ SL(n,R). Let Ts,r(t) be is as in (3.4.1)–(3.4.2), where r ≤ 1. We

note that the limit

lim
t→∞

ϕ(Ts,r(t))ϕ(t)
−1

exists, if and only if the limit

lim
t→∞

b(Ts,r(t))b(t)
−1

exists, and according to Proposition 3.4.1, we have

lim
t→∞

ϕ(Ts,r(t))ϕ(t)
−1 = gC exp(sMb)(gC)

−1.

Thus, there’s no loss in generality in assuming that ϕ(t) = b(t) is either eventually diagonal

or upper-triangular satisfying the conditions of the eventually first non-zero off- diagonal

entry.

Since (i, j) is the first non-zero off diagonal entry in b(t) (for all large enough t), we

observe that (i, j)-th entry in the matrix b′(t)b(t)−1 is

−f ′
i,ifi,j + f ′

i,jfi,i

fi,ifj,j
=

(
fi,j
fi,i

)′

· fi,i
fj,j

(3.4.11)

Since ri,i := deg fi,i 6= ri,j := deg fi,j, we have that deg
(

fi,j
fi,i

)′
= ri,j − ri,i − 1 (see

Theorem C.14). Thus,

deg

((
fi,j
fi,i

)′

· fi,i
fj,j

)
= ri,j − rj,j − 1.
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Recall by Lemma 3.4.4 that ri,j−rj,j > 0. Thus the (i, j)-th entry in tb′(t)b(t)−1 is unbounded.

As a consequence, r < 1.

3.5 Linearization

3.5.1 Thin neighborhood of tubes — the singular sets

In this section we state the general definitions and results on a special class of closed

subgroups in G which plays a key role in linearization technique.

Definition 3.5.1. Let H be the class of all closed connected proper subgroups H of G

such that the identity component Γ0 ⊂ H, H/H ∩ Γ admits an H-invariant probability

measure and the subgroup WH generated by all unipotent one-parameter subgroups of H

acts ergodically on H/H ∩ Γ with respect to the H-invariant probability measure.

Theorem 3.5.2. ([Rat91, Theorem 1.1]) The collection H is countable.

Let π : G → G/Γ be the canonical projection and let W be a subgroup generated by

one-parameter unipotent subgroups of G contained in W . For H ∈ H, define

N(H,W ) ={g ∈ G : W ⊂ gHg−1};

S(H,W ) =
⋃

H′∈H,H′⊊H

N(H ′,W );

TH(W ) =π(N(H,W )− S(H,W )).

The following is a consequence of Ratner’s theorem ([MS95, Theorem 2.2]) describing

probability measures invariant under the subgroup W given as above.

Theorem 3.5.3. Let P denote the space of regular Borel probability measure on X = G/Γ

and let W be a subgroup which is generated by one-parameter unipotent subgroups of G

contained in W . Assume that µ ∈ P(X) is a W -invariant measure.

For every H ∈ H, let µH denote the restriction of µ on TH(W ). Then the following

holds.
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(1) For all Borel measurable subsets A ⊂ X,

µ(A) =
∑
H∈H∗

µH(A),

where H∗ ⊂ H is a countable set consisting of one representative from each Γ-conjugacy

class of elements in H.

(2) Each µH is W -invariant. For any W -ergodic component µ ∈ P(X) of µH , there exists

a g ∈ N(H,W ) such that µ is the (unique) gHg−1-invariant probability measure on

the closed orbit gHΓ/Γ.

As a consequence, there exists H ∈ H such that

µ(π(N(H,W ))) > 0 and µ(π(S(H,W ))) = 0.

Moreover, almost every W -ergodic component of µ on π(N(H,W )) is a measure of the form

g∗µH , where g ∈ N(H,W ) \ S(H,W ) and µH is a finite H-invariant measure on π(H). In

particular, if H is a normal subgroup of G then µ is invariant under H.

Let H ∈ H. Let g, h be the Lie algebras of G and H, respectively. Let d = dim h

and VH =
∧d g. Consider the adjoint representation of G on VH =

∧d g. Fix a vector

pH ∈
∧d h \ {0}. Also define a continuous map ηH : G → VH by ηH(g) = g · pH = Adg.pH

(with Adg(
∧n

i=1 xi) :=
∧n

i=1 Adg(xi) and extended to VH by multi-linearity). Define

N1(H) := η−1
H (pH) = {g ∈ N(H) : det(Adg|h) = 1}, (3.5.1)

where N(H) is the normalizer of H in G.

Put ΓH = N(H) ∩ Γ. It follows that for any γ ∈ ΓH , we have γ(HΓ/Γ) = HΓ/Γ and

hence γ preserves the volume of HΓ/Γ. Therefore, γ.pH = ±pH .

Now we define V H = VH/ {±1} if ΓH .pH = {±pH} and V H = VH if ΓH .pH = pH . The

action of G factors through the quotient map of VH onto V H . Let pH denote the image of

pH in V H and define ηH : G→ V H as ηH(g) = g.pH for all g ∈ G. Then ΓH = η(pH) ∩ Γ.
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For any subset Z of G/Γ, define

Rep(Z) := {g.pH : g ∈ G, π(g) ∈ Z} ⊂ V H . (3.5.2)

Theorem 3.5.4. ([DM93, Theorem 3.4]) Let H ∈ H, then

(1) the orbit Γ.pH is discrete in V H and hence closed;

(2) N1(H)Γ is closed in G/Γ;

(3) For any compact set Z ⊂ G/Γ, the set Rep(x) is discrete in V H .

(4) For any compact set Z ⊂ G/Γ, the set Rep(Z) is closed in V H .

(5) The map φ : G/ΓH → G/Γ× V H defined by

φ(gΓH) = (π(g), ηH(g)), ∀g ∈ G, (3.5.3)

is proper.

Recall that W is a subgroup of G which is generated by unipotent one-parameter sub-

groups of G contained in W . Let AH denote the Zariski closure of ηH(N(H,W )) in V H .

Evidently, N(H,W ) is contained in the preimage η−1
H (AH). Indeed, we have the following:

Lemma 3.5.5. ([DM93, Proposition 3.2]) Let H ∈ H, then η−1
H (AH) = N(H,W ).

Proposition 3.5.6. ([MS95, Proposition 3.2]) Let D be a compact subset of AH ⊂ V H .

Define

S(D) = {g ∈ η−1
H (D) : gγ ∈ η−1

H (D) for some γ ∈ Γ− ΓH} ⊂ G. (3.5.4)

Then the following holds:

(1) S(D) ⊂ S(H,W );

(2) π(S(D)) is closed in X;
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(3) For any compact set K ⊂ X − π(S(D)), there exists a neighborhood Φ of D in V H

such that every y ∈ π(η−1
H (Φ)) ∩K has a unique representative in Φ; that is, the set

ηH(π
−1(y)) ∩ Φ consists of a single element.

3.5.2 A dichotomy theorem

Theorem 3.5.7. For H ∈ H, let a compact set C ⊂ AH and a 0 < ε < 1 be given. Then

there exists a closed subset S of X contained in π(S(H,W )) such that the following holds:

For a given compact set K ⊂ X −S, there exists a neighborhood Ψ of C in V H such that for

any unbounded unipotent definable curve {γ(t)}t>A of G in a polynomially bounded o-minimal

structure and any x ∈ X, at least one of the following is satisfied:

(1) There exists w ∈ ηH(π
−1(x)) ∩ Ψ and bounded {δ(t)}t>A ⊂ G with limt→∞ δ(t) = e,

such that

{δ(t)−1γ(t)} ⊂ Gw := {g ∈ G : g.w = w}. (3.5.5)

In other words, there exists g ∈ G, such that δ(t)−1γ(t).x ⊂ gN 1(H)Γ.

(2) For all large T > 0,

|{t ∈ [A, T ] : γ(t).x ∈ K ∩ π(η−1
H (Ψ))}| ≤ εT (3.5.6)

Proof. For given compact set C and 0 < ε < 1, we will show (3.5.6) holds whenever (3.5.5)

fails.

For H ∈ H, let AH and V := V H be as in Section 3.5.1. Since AH is a real algebraic

subvariety of V . By the Hilbert Basis Theorem, AH is a set of zeros of a finitely many

polynomials f1, ..., fr, there exists a real polynomial function p := f 2
1 + · · · + f 2

r on V such

that

AH := {v ∈ V : p(v) = 0}. (3.5.7)
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In particular, AH is contained in a co-dimension one hyperplane V ′ ⊂ V . Without loss of

generality, we may assume V = RdimV and V ′ = RdimV−1 × 0.

Let R1 > 0 be the smallest number such that [−R1, R1]
dimV−1 is the smallest closed cube

containing C. We then determine R2, ε2, and ε1 (see the end of the proof) consecutively and

define Φ := [−R1, R1]
dimV−1 × [−ε1, ε1] ⊃ D and Ψ := [−R2, R2]

dimV−1 × [−ε2, ε2] ⊃ C and

prove a relative-time property for C and D.

Put Ω = π(η−1
H (Ψ) ∩K and define

J = {t ≥ T0 : γ(t).x ∈ Ω} (3.5.8)

Then for every t ∈ J , there exists a unique w = w(t) ∈ ηH(π
−1(x)) ⊂ V such that

γ(t).w := ρ(γ(t)).w ∈ Φ, in which case γ(t).w ∈ Ψ.

Since s 7→ γ(s).w is a polynomially bounded definable map, it is either convergent to a

constant map fixing w or unbounded.

In the first case, it is well-known from the theory of algebraic groups that ρ(γ(t)) is

still unipotent as a linear map on V , we have the stable-unstable decomposition ρ(γ(t)) =

S(t)U(t) with S(t) → Id. Since the map G→ G.pH is open, there exists δ(t) → e in G such

that ρ(δ−1(t)γ(t)) = U(t), and that δ(t)−1γ(t) ⊂ Gw := {g ∈ G : g.w = w}. This becomes

the first outcome of the theorem; or we have

‖γ(s).w‖ → ∞ (3.5.9)

as s→ ∞. We will show in this case (3.5.6) holds.

For every t ∈ J , we define I(t) := [t−, t+] to be the largest closed interval in [T0, T ]

containing t such that

(1) γ(s).w ∈ Φ for all s ∈ I(t);

(2) γ(t+).w ∈ Φ− Φ or t+ = T ;
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(3) t− ∈ J .

For the case t+ = T , we denote the corresponding maximal interval by Ilast := I(t).

For any s1, s2 ∈ I(t), we have by the maximality of I(t) that

either I(s1) = I(s2) or I(s1) ∩ I(s2) = ∅ (3.5.10)

Now we have the decomposition let [To, T ] =
⊔

k I(tk)
⊔
Ilast. We will show by (C, α)-

goodness that the relative-time property is satisfied on each interval. To this end, we need

to discuss a few cases:

Let n denote the unit vector perpendicular to the hyperplane V ′.

t+

γ(s).w

(R2, R2)

(R2, ε2),Φ
(R1, ϵ1),Ψt−

Figure 3.1: Segment of trajectory leaving R2-box from the ceiling (with dimV = 2)
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Case 1: If γ(s).w on some I(tk) = [t−, t+] satisfies:

|n · γ(s).w| ≤ ε2, ∀s ∈ I(t) and |n · γ(t+).w| = ε2, (3.5.11)

noticing that by our construction there exists ν > 0 and C0, α0 > 0 such that tν |n · γ(t).w|

is (C0, α0)-good for some C0 and α and that

sup
s∈[t−,t+]

|sνn · γ(s).w| = |(t+)νn · γ(t+).w| = (t+)νε2,

we have

|I(t) ∩ J | ≤|{t ∈ I(t) : |n · γ(s).w| ≤ ε1}|

≤|{s ∈ I(t) : sν |n · γ(s).w| ≤ sνε1}|

≤|{s ∈ I(t) : sν |n · γ(s).w| ≤ (t+)νε1}|

≤C0

(
(t+)νε1

sups∈[t−,t+] |sνn · γ(s).w|

)α0

|I(t)|

≤C0

(
ε1
ε2

)α0

|I(t)|.

Case 2: If γ(s).w on some I(tk) = [t−, t+] satisfies:

‖γ(s).w‖ ≤ R2, ∀s ∈ I(t) and ‖γ(t+).w‖ = R2, (3.5.12)

|I(t) ∩ J | ≤|{s ∈ I(t) : ‖γ(s).w‖ ≤ R1}|

≤C1

(
R1

sups∈I(t) ‖γ(s).w‖

)α1

|I(t)|

=C1

(
R1

R2

)α1

|I(t)|.

Case 3: We now consider γ(s).w on the interval Ilast = [t−, t+] = [t−, T ]. By dis-

creteness, there are only finitely many w = w(t) ∈ ηH(π
−1(x)) ⊂ V with ‖w‖ ≤ R2,

denoted w1, w2, ..., wN (note that at most one of them corresponds to t ∈ J). There-

fore, by the unboundedness of γ(s).wi, there exists T1 > T0 such that for any s ≥ T1,
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γ(s).w

(R2, R2)

(R2, ε2),Φ
(R1, ϵ1),Ψ

t−
t+

Figure 3.2: Segment of trajectory leaving R2-box from the side (with dimV = 2).

‖γ(s).wi‖ ≥ R1, i = 1, 2, ..., N and therefore we can ignore them on [T1, T ] and assume the

base point w = w(t) satisfies ‖w‖ ≥ R2. Now

|I(t) ∩ J | ≤{s ∈ [T0, T ] : ‖γ(s).w‖ ≤ R1}

≤C1

(
R1

sups∈[T0,T ] ‖γ(s).w‖

)α1

|I(t)|

≤C1

(
R1

‖γ(T0).w‖

)α1

|I(t)| = C1

(
R1

‖γ(T0)−1‖−1‖w‖

)α1

|I(t)

≤C1

(
R1‖γ(T0)−1‖

R2

)α1

|I(t)|

≤C1

(
R1‖γ(T0)−1‖

R2

)α1

T

Now for the givenR1, we first chooseR2 so that C1

(
R1

R2

)α1

< ε and that C1

(
R1∥γ(T0)−1∥

R2

)α1

<

ε. Then we choose ε2 = R2/2 and ε1 < ε2 so that C0

(
ϵ1
ϵ2

)α0

< ε.
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s = T1

s = T

s = T

γ(s).wi, ‖wi‖ ≤ R2

γ(s).w, ‖w‖ ≥ R2

(R2, R2)

(R2, ε2),Φ
(R1, ϵ1),Ψ

Figure 3.3: The last segment of trajectory with different base points w (dimV = 2)

3.6 Proof of Theorem 3.1.2

3.6.1 Lifting properties

Lemma 3.6.1. Let G be a locally compact Hausdorff group and H be closed normal subgroup

of G and Γ be a lattice in G. Furthermore, assume H ∩ Γ is a lattice in H. Let q : G/Γ →

G/HΓ ∼= G/H
HΓ/H

be the natural quotient map. For an H-invariant probability measure µ on

G/Γ, we have ∫
G/Γ

f(gΓ)dµ(gΓ) =

∫
G/HΓ

∫
HgΓ/Γ

f(ghΓ)d(hΓ)dq∗µ(gHΓ)

where q∗µ is the push-forward of µ under q.
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Proof. By ergodic decomposition, we have∫
G/Γ

f(gΓ)dµ(gΓ) =

∫
G/HΓ

∫
HgΓ/Γ

f(ghΓ)dµA
gHΓ(hΓ)dq∗µ(gHΓ), (3.6.1)

where µA
gHΓ is the conditional measure concentrated at the A-atom of x relative to the sub-

sigma-algebra q−1(B(G/HΓ)) ⊂ B(G/Γ). Given µ is H-invariant, we would like to show

µA
gHΓ is also H-invariant. Thus by the uniqueness of H-invariant measure on HgΓ/Γ, we

have dµA
gHΓ(hΓ) = d(hΓ) for q∗µ almost every gHΓ ∈ G/HΓ. To show this, we recall from

the construction of conditional measures that for q∗µ a.e. gHΓ ∈ G/HΓ, µA
gHΓ is the unique

probability measure on gHΓ satisfying∫
G/HΓ

µA
gHΓ(f)dq∗µ(gHΓ) = µ(f) = h∗µ(f) =

∫
G/HΓ

h∗µ
A
gHΓ(f)dq∗µ(gHΓ)

and thus we have for every h ∈ H, h∗µA
gHΓ = µA

gHΓ for q∗µ a.e. gHΓ. Let S := {(h, gHΓ) :

h∗µ
A
gHΓ 6= µA

gHΓ}. Now by Fubini’s theorem,

0 =

∫
H

∫
G/HΓ

1Sdq∗µdµH =

∫
G/HΓ

∫
H

1SdµHdq∗µ

Therefore for almost every gHΓ ∈ G/HΓ, we have h∗µA
gHΓ = µA

gHΓ for µH a.e. h ∈ H. But

by approximation, it follows that h∗µA
gHΓ = µA

gHΓ for every h ∈ H.

The following corollary is immediate from Lemma 3.6.1

Corollary 3.6.2. If q∗µ = δg0HΓ, the Dirac measure supported at g0HΓ ∈ G/HΓ, then µ is

supported on g0HΓ/Γ ⊂ G/Γ.

Corollary 3.6.3. If q∗µ is G/H-invariant, then µ is G-invariant.
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Proof. For any g0 ∈ G, let Lg0φ(g) = φ(g−1
0 g) be the left translation operator. Then∫

G/Γ

Lg0(f(gΓ))dµ(gΓ)

=

∫
G/HΓ

P (Lg0(f))(gHΓ)dq∗µ(gHΓ) (by Lemma 3.6.1)

=

∫
G/HΓ

∫
HΓ/Γ

Lg0(f)(ghΓ)d(hΓ)dq∗µ(gHΓ)

=

∫
G/HΓ

∫
HΓ/Γ

f(g−1
0 ghΓ)d(hΓ)dq∗µ(gHΓ)

=

∫
G/HΓ

P (f)(g−1
0 gHΓ)dq∗µ(gHΓ)

=

∫
G/HΓ

Lg−1
0 HP (f)(gHΓ)dq∗µ(gHΓ)

=

∫
G/HΓ

P (f)(gHΓ)dq∗µ(gHΓ) (by the G/H-invariance of q∗µ)

Proof of Theorem 3.1.2. Let W be the maximal subgroup generated by unipotent elements

under which the limiting measure µ is invariant.

Let µ = µγ,Λ,∞ denote the limiting measure. Let W be the subgroup of G preserving µ.

In particular, this group contains PSγ.

By Theorem 3.5.3, we have that there exists H ∈ H such that

µ(π(N(H,W ))) > 0 and µ(π(S(H,W ))) = 0.

Let C1 ⊂ N(H,W )− S(H,W ) be a compact set such that π(C1) ∩ π(π(S(H,W ))) = ∅

and that µ(π(C1)) = α for some α > 0. Now we apply Theorem 3.5.7 for C = ηH(C1) and

α = ε/2. Let S be as in Theorem 3.5.7. Then there exist a compact neighborhood K of

π(C1) in X such that K ∩ S = ∅. Put Ω = π(η−1
H (Ψ)) ∩K where Ψ is as in Theorem 3.5.7.

Since Ψ ⊃ C, Ω ⊃ π(C1) and therefore µ(Ω) ≥ 2ε > ε, contradicting to the second outcome

of Theorem 3.5.7 as T � 1.
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Therefore {δ−1(t)γ(t)}t≥A ⊂ g1N
1(H)g−1

1 for some g ∈ G. By Theorem 3.5.4, the orbit

g1N
1(H)Γ is closed. Now put G1 := g1N

1(H)g−1
1 , H1 = g1Hg

−1
1 and Γ1 = Γ ∩ G1. Clearly

H1 is normal in G1.

Since H1Γ1 is closed in G1, the subgroup H1Γ1/Γ1 = Γ1H1/Γ1 is closed (and hence

discrete) in G1/Γ1 and we can view G1/H1Γ1 as a G1/H1 homogeneous space. Let

q : G1/Γ1 →
G1/H1

H1Γ1/H1

∼= G1/H1Γ1

be the natural quotient map. Define a map q∗ : P(G1/Γ1) → P(G1/H1Γ1) such that for

any ν ∈ P(G1/Γ1) and any Borel measurable subset A ⊂ G1/H1Γ1, q∗(ν)(A) = ν(q−1(A)).

Then q∗ is continuous.

The following lemma will be needed:

Lemma 3.6.4. Let q : G1/Γ1 → G1/H1Γ1 be the quotient map as above where G1/H1Γ1 is

viewed as a G1/H1 homogeneous space. Let ν be a regular Borel measure on G1/Γ1. If q∗(ν)

is invariant under gH1 ∈ G1/H1, then ν is invariant under g.

Let ι : G1/H1 → SL(n1,R) be a regular algebraic group embedding. Then the map

γ̃(t) := ι ◦ π1 ◦ γ(t) : [A,∞) → G1 → G1/H1 ↪→ SL(n1,R)

is again definable in a polynomially bounded o-minimal structure.

Case 1: γ̃(t) is bounded (and thus convergent by definability). Suppose γ̃(t) → g0 ∈

SL(n1,R), then the orbit γ(t)H1Γ1 → x0 = ι−1(g0)H1Γ1/H1 ∈ G1/H1Γ1. Now the limiting

measure associated to γ(t)H1Γ1 is q∗(µ) = δx0 . It follows that µ = (g0)∗µH1Γ1 , where µH1Γ1

denotes the H1-invariant Haar measure on H1Γ1/Γ1.

Case 2: γ̃(t) is unbounded. In this case, the Peterzil-Starchenko subgroup PSγ̃ ⊂

ι(G1/H1) is a non-trivial one-parameter subgroup. This is unipotent by the Poulious’

condition and Proposition 3.4.6. q∗(µ) is invariant under the generator g̃ ∈ PSγ̃. Write
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ι−1(g̃) = gH1, then by Lemma 3.6.4, we must have µ is invariant under g /∈ H1. Since

W ⊂ H1, g1 /∈ W , which is a contradiction to the maximality of W .
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Appendix A: More on Successive Minima

In this appendix we prove a few results on successive minima for a lattice that are known

to experts but whose proofs are hard to find in the standard literature on geometry of

numbers, for example [Cas97] and [SC89] . The goal is to relate the basis of a lattice to

successive minima.

Recall that for a positive integer d and a lattice Λ ⊂ Rd, and for each j = 1, . . . , d, The

j-th minimum of a lattice Λ ⊂ Rd, denoted λj(Λ), is the infimum of λ such that the set

{r ∈ Λ : ‖r‖ ≤ λ} contains j linearly independent vectors. (with respect to the l2 norm on

Rd).

A natural question is, can the successive minima always attained by a basis of the rank

d lattice Λ? In other words, does there exist a basis {v1, . . . , vd} of Λ such that

‖vj‖ = λj, for j = {1, 2, . . . , d}.

The answer is positive if and only if d ≤ 4, as are shown in the following theorem and

example

Theorem A.1. Let Λ be a lattice Rd. Assume that d ≤ 4, then there exist a basis {v1, . . . , vd}

of Λ such that

‖vj‖ = λj, for j = {1, 2, . . . , d}.
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The case when d = 1 is trivial. To prove this theorem for the cases d = 2, 3, we need the

following lemma from Euclidean geometry.

Lemma A.2.

(1) The minimal distance from any point in the interior of a parallelogram in R2 to its

vertices is always strictly less than the maximal length of the edges of the parallelogram.

(2) The minimal distance from a point in the interior of a parallelepiped in R3 to its vertices

is always strictly less than the maximal length of three linearly independent vectors form by

the vertices , with at least two of them being the edges of the parallelopiped. In particular,

these three vector will span the three dimensional lattice spanned by this parallelopiped.

Proof.

For the part (1), observe that a parallelogram ABCB′ can be divided into two triangles

ABC and AB′C, and any point D in the interior of ABCB′ must fall in either the triangle

ABC or the triangle AB′C

By drawing a line perpendicular to the line AC through the point B, we easily see

|BD| ≤ |BE| < max{|AB|, |BC|}.

For the part (2), first observe that a parallelepiped can be divided into six tetrahedra

and any point x in the interior of the parallelepiped, say ABCDEFGH must fall into one

of the six.

If X falls in the tetrahedra AFEH. It follows from the first part of this lemma that

|EX| ≤ |EY | ≤ max{|EA|, |EZ|} < max{|EH|, |EF |, |EA|},

If X falls in the tetrahedra DHAF . It follows from the first part of this lemma that

|DX| ≤ |DY | ≤ max{|DA|, |DZ|} < max{|DA|, |DH|, |DF |},
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Figure A.1: The parallelogram case
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Figure A.2: X must fall into one of six tetrahedra.
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E

X

Y

Z

Figure A.3: Construction of points Y, Z in the proof.

If X falls in the tetrahedra BAFD. It follows from the first part of this lemma that

|BX| ≤ |BY | ≤ max{|BA|, |EZ|} < max{|BA|, |BF |, |BD|},

where the construction of auxiliary points and segments as illustrated in the figure A.3

above.

Proof of the theorem for the case d=2,3:

We do this for d = 3 and the case d = 2 is only simpler. Let v1, v2, v3 be any linearly

independent vectors in Λ such that

‖vj‖ = λj, for j = {1, 2, 3}.

Let Λ0 be the lattice spanned by those three vectors. Consider the fundamental domain

F := {t1v1 + t2v2 + t3v3 : ti ∈ [0, 1)}

of Λ0.
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The closure of F is the parallelepipiped spanned by vectors v1, v2, v3 at the origin of R3

and it follows that R3 = F + Λ0.

Suppose on the contrary that Λ0 is a proper sublattice of Λ, then there exists a vector

x ∈ Λ− Λ0. By translating x with a vector in λ0, we may assume without loss of generality

that

x = t1v1 + t2v2 + t3v3,

where ti ∈ (0, 1) (ti cannot be equal to zero since x /∈ Λ0). So x is in the interior of the

parallelepipiped.

By our lemma above, noticing that the length of each edge in the parallelepipiped is

equal to ‖v1‖, ‖v2‖ or ‖v3‖, there exists a vertex w of the parallelepipiped spanned by vectors

v1, v2, v3 at the origin such that

‖x− w‖ < max{‖vj‖ : j = 1, 2, 3} = ‖v3‖.

Translating the vector x − w to the origin. It follows that x − w, v1, v2 are still linearly

independent and this lead to the contradiction to the assumption that v3 = λ3(λ). Therefore

we must have

Λ0 = Λ,

namely v1, v2, v3 form a basis of λ.

We need the following lemma for the proof of d = 4 case:

Lemma A.3. For k ≥ 1 and yi ∈ R for all 1 ≤ i ≤ k, we have the identity

Sk :=
∑

x1x2 · · · xk = 1,

where the sum is over all 2k possible choices of xi = yi or xi = 1− yi.
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Proof. We perform induction on k.

When k = 1, this sum is simply 1− y1 + y1 = 1.

Assume Sk−1 = 1. For general k, we observe that Sk = yiSk−1 + (1 − yi)Sk−1 = Sk−1 =

1.

Proof of the theorem for the case d=4:

The idea of proof is essentially due to Noam Elkies [Elk]. Let v1, v2, v3, v4 be any linearly

independent vectors in Λ such that

‖vj‖ = λj(Λ), for j = {1, 2, 3, 4}.

As in the proof of cases d = 2, 3, we let Λ0 denote the lattice spanned by v1, v2, v3, v4.

If λ0 is a proper sublattice of λ, then there exist v ∈ Λ− Λ0 such that

v =
4∑

i=1

tivi, ti ∈ R

and without loss of generality, we may assume that ti ∈ [0, 1) for any i = 1, 2, 3, 4.

Namely v lives in

P :=

{
4∑

i=1

tivi, ti ∈ [0, 1)

}
.

Claim 7. For any v0 ∈ Λ0, and any v ∈ Λ− Λ0

‖v − v0‖ ≥ ‖vi‖, ∀i = 1, 2, 3, 4

Proof of Claim. If ‖v − v0‖ < ‖vi0‖ for some i0 ∈ {1, 2, 3, 4}, then vi, i ∈ {1, 2, 3, 4} \ {i0},

together with v − v0 would be still linearly independent (since v ∈ Λ− Λ0) and form a new

system of successive minima with strictly smaller λi. #

Claim 8. For any v ∈ P we have

min
v0∈Λ0

‖v − v0‖2 ≤
1

4

4∑
i=1

‖vi‖2.
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Proof of Claim.

The vertices of P form the set:

V :=

{
4∑

i=1

nivi : ni ∈ {0, 1}

}
.

In view of the preceding lemma, the idea here is to find a weighted sum of squared

distances from v to each vertices in V . For v = t1v1 + t2v2 + t3v3 + t4v4, we associae the

weights w(v0) to each ‖v − v0‖2 where v0 ∈ V :

If v0 =
∑4

i=1 nivi, ni ∈ {0, 1}, then w(v0) :=
∏4

i=1((2ti − 1)ni + (1− ti)). For example, if

v0 = v2 + v3, then v0 = (1− t1)t2t3(1− t4).

It follows immediately from the preceding lemma that

∏
v0∈V

w(v0) =
∑

xi=1−ti or ti

x1x2x3x4 = 1.

The claim then follows from the following subclaim:

∑
v0∈V

w(v0)‖v − v0‖2 =
4∑

i=1

ti(1− ti)‖vi‖2 ≤
4∑

i=1

1

4
‖vi‖2.

Indeed, if we write ‖v − v0‖2 = 〈
∑

i(ti − ni)vi,
∑

i(ti − ni)vi〉 and in view of lemma for

the case when k = 3, the coefficient for each 〈vi, vi〉 is

(1− ti)t
2
i + ti(1− ti)

2 = (1− ti)ti.

In view of lemma for the case when k = 2, the coefficient for each 〈vi, vj〉 where i 6= j, is

2(1− ti)(1− tj)titj + 2(1− ti)tjti(tj − 1) + 2ti(1− tj)(ti − 1)tj + 2titj(ti − 1)(tj − 1) = 0.

#

a
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Now we find the minimum of ∑
v0∈V

‖v − v0‖2,

for v = t1v1 + · · ·+ t4v4 ∈ P, t1, t2, t3, t4 ∈ [0, 1).

Indeed,

∑
v0∈V

‖v − v0‖2 =
∑

ni∈{0,1}

〈
4∑

i=1

(ti − ni)vi,
4∑

i=1

(ti − ni)vi

〉

For the moment, we assume that (t1, t2, t3, t4) can take any value in R4 and this problem

becomes a standard optimization problem without constraints.

Now taking the partial derivative with respect to ti, for i = 1, 2, 3, 4, we obtain the

following system of linear equations:

∂

∂ti

∑
v0∈V

‖v − v0‖2

=
∂

∂ti

∑
ni∈{0,1}

〈
4∑

i=1

(ti − ni)vi,
4∑

i=1

(ti − ni)vi

〉

=
∑

ni∈{0,1}

〈
vi

4∑
i=1

(ti − ni)vi

〉
.

We may write the solution to the critical points of this four variable function in its matrix

form as:


〈v1, v1〉 〈v1, v2〉 〈v1, v3〉 〈v1, v4〉
〈v2, v1〉 〈v2, v2〉 〈v2, v3〉 〈v2, v4〉
〈v3, v1〉 〈v3, v2〉 〈v3, v2〉 〈v3, v4〉
〈v4, v1〉 〈v4, v2〉 〈v4, v3〉 〈v4, v4〉



2t1 − 1
2t2 − 1
2t3 − 1
2t4 − 1

 =


0
0
0
0

 .

Since {v1, v2, v3, v4} are linearly independent, the coefficient matrix, as a Gram matrix,

is nondegenerate and the unique solution to this equation is

t1 = t2 = t3 = t4 =
1

2
.
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The second derivative test gives immediately that this is a local, and thus global minimum

for the function, and its miminum value is

min
v∈R4

∑
v0∈V

‖v − v0‖2 =
∑

ni∈{0,1}

〈
4∑

i=1

(ti − ni)vi,
4∑

i=1

(ti − ni)vi

〉

=
∑

ni∈{0,1}

〈
4∑

i=1

(
1

2
− ni)vi,

4∑
i=1

(
1

2
− ni)vi

〉

=
∑

ni∈{0,1}

〈
4∑

i=1

(
1

2
− ni)vi,

4∑
i=1

(
1

2
− ni)vi

〉

= 4
4∑

i=1

‖vi‖2,

where the last equality follows from the cancellations in the cross terms 〈vi, vj〉 whenever

i 6= j. It follows that (noticing that |V | = 16)

min
v∈Λ−Λ0

min
v0∈Λ0

‖v − v0‖2 ≤ min
v∈Λ−Λ0

1

16

∑
v0∈V

‖v − v0‖2

≤ 1

4

4∑
i=1

‖vi‖2 (by the Claim 8)

≤ max{‖vj‖ : j = 1, 2, 3, 4}

Now combining this with Claim 7 above yields

max{‖vj‖ : j = 1, 2, 3, 4} ≤ 1

4

4∑
i=1

‖vi‖2 ≤ max{‖vj‖ : j = 1, 2, 3, 4}, (A.0.1)

and thus

‖v1‖ = ‖v2‖ = ‖v3‖ = ‖v4‖.

Claim 9. 〈vi, vj〉 = 0 for all i 6= j.

Proof of Claim. Let us summarize what we have obtained so far:

We proved that if v1, v2.v3, v4 are linearly independent and ‖vj‖ = λj, j = 1, 2, 3, 4, then

any vector v ∈ P ∩ Λ− Λ0 must be of the form:

1

2
(v1 + v2 + v3 + v4),
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Since P is a fundamental domain of Λ, it follows that

Λ =
1

2
(v1 + v2 + v3 + v4) + Λ0.

On the other hand, from the inequality

‖vi‖2 = λi(Λ)
2 ≤

∥∥∥∥12(±v1 ± v2 ± v3 ± v4)

∥∥∥∥2 ,
we have ∑

1≤i<j≤4

±〈vi, vj〉 ≥ 0.

By symmetry, ∑
1≤i<j≤4

±〈vi, vj〉 = 0. (A.0.2)

If we view this equation as a linear system with
(
4
2

)
= 6 variables 〈vi, vj〉 and the coefficient

matrix


1 1 1 1 1 1
1 1 1 1 1 −1
1 1 1 1 −1 −1
1 1 1 −1 −1 −1
1 1 −1 −1 −1 −1
1 −1 −1 −1 −1 −1


is clearly of rank 6, which forces

〈vi, vj〉 = 0,

for all i 6= j. #

Hence either

Λ = Λ0 = SpanZ{v1, v2, v3, v4}
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or vi’s are of equal length and mutually orthogonal

Λ = SpanZ{v1, v2, v3,
1

2
(v1 + v2 + v3 + v4)} ⊋ Λ0

In either case, it is possible to find a basis of Λ corresponding to the four successive

minima of the lattice, as desired. This completes the proof of the case d = 4.

The following example shows that the theorem above fails for d ≥ 5.

Example A.4. Let d ≥ 5 and consider the lattice Λ spanned by

e1, e2, . . . , ed−1,
1

2
(e1 + · · ·+ ed),

where ei is the canonical basis vector of Rd whose i-th component is 1 while all the other

components are zero.

It is easy to see that Λ contains Zd since

ed = 2 · 1
2
(e1 + · · ·+ ed)− e1 − · · · − ed−1 ∈ Λ.

Observe that λi(Λ) = 1, ∀i = 1, 2, . . . , d since the closed unit ball at the origin contains

exactly d linearly independent vectors e1, · · · , ed with equal length 1.

On the other hand, we cannot find a basis v1, · · · , vd of Λ satisfying

‖vi‖ = 1, ∀i = 1, 2, · · · , d.

This is because each vector in Λ is either of the form ei or of the form

1

2
(±niei ± njej ± nkek ± npep ± nqeq),

where ni, nj, nk, np, nq are all nonzero integers.

Since Λ ⊋ Zd, the basis vectors of Λ cannot only be in the former case. But for the

latter case, the sum of squares of coefficients is at least 5
4
, contradicting to ‖vi‖ = 1, ∀i =
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1, 2, · · · , d. Therefore, for d ≥ 5, it is not true that the successive minima of a lattice can be

realized by a basis of the lattice.

However, with a compromise, we can still choose a basis whose lengths are equivalent to

the successive minima of the lattice. To this end, we need the following lemma (the proof

given here mimics the proof of Theorem 11.33. in [EW11]):

Lemma A.5. Let Λ be a lattice in Rd and v1 ∈ Λ be a vector with ‖v1‖ = λ1(Λ). In other

words, this is a nonzero vector in Λ of shortest length. Let π1 be the projection of Rd onto

v⊥1 , the hyperplane in Rd orthogonal to v1, then we have to following statements:

(1) ‖π1(v)‖ ≥
√
3
2
‖v1‖, ∀v ∈ Λ;

(2) π1(Λ) is a lattice 9 in v⊥1 with covolume covol(λ)
∥v1∥ ;

Proof. For (1) and (2), we suppose on the contrary that there is a vector v ∈ Λ such that

‖π1(v)‖ <
√
3

2
‖v1‖.

The orthogonal decomposition of Rd gives

v = π1(v) + tv1,

for some t ∈ R.

Since π1(v+ nv1) = π1(v), for all n ∈ Z, by replacing v with v+ nv1 for some n, we may

assume v = π1(v) + tv1 with t ∈ [−1
2
, 1
2
).

9The projections of lattices are not always lattices of the corresponding subspaces. For example, the
projection of the standard lattice Z2 onto the irrational line y =

√
2x is no longer a lattice with respect to

that line, which can be deduced from Dirichlet’s simultaneous Diophantine approximation theorem.
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For (1), since v1 is perpendicular to π1(v), by the Pythagorean’s theorem

‖v‖2 = ‖π(v)‖2 + t2‖v1‖2

<
3

4
‖v1‖2 +

1

4
‖v1‖2

= ‖v1‖2,

which contradicts to the choice of ‖v1‖ as a minimal-length nonzero vector of Λ. This proves

(1).

To see (2), we first observe that from (1), all vectors in π1(Λ) are bounded
√
3
2
‖v1‖ away

from zero (This gives the discreteness). On the other hand clearly π1(Λ) contains d − 1

linearly independent vectors. So by definition, π1(Λ) is a lattice in v⊥1 and it makes sense

from now to talk about its fundamental domain, covolume and success minima.

We shall first study the relation between the fundamental domain of Λ and π1(Λ). Let

F1 be a fundamental domain of π1(Λ).

Claim 10. F := F1 + [0, 1)v1 is a fundamental domain of Λ

Proof of Claim. For any x ∈ Rd,π1 ∈ v⊥1 . By the definition of fundamental domain π1(Λ),

there exists a vector v ∈ Λ such that

π1(x− v) ∈ F.

It follows that x − v − π1(x − v) ∈ Rv1. Since π1(v1) = 0, there exists n ∈ Z and t ∈ [0, 1)

such that

x− v − π1(x− v) ∈ Rv1 = nv1 + tv1.

Therefore, x− v − nv1 = tv1 + π1(x− v) ∈ [0, 1)v1 + F1. Namely for any vector x in Rd, we

can find a translation of x by a vector in Λ that falls into [0, 1)v1 + F1 =: F .

On the other hand, if x − v′ and x − v′′ are both in F with v′, v′′ ∈ Λ, we would like to

see v′ = v′′.
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Suppose: {
x− v′ = t′v1 + y′

x− v′′ = t′′v1 + y′′
,

where t′, t′′ ∈ [0, 1) and y′, y′′ ∈ F1.

Applying π1 to both sides, we get{
y′ = π1(x)− π1(v

′)

y′′ = π1(x)− π1(v
′′)

.

Since F1 is a fundamental domain for π1(Rd)/π1(Λ), the translation is unique and π1(v′) =

π1(v
′′). So v′ − v′′ ∈ Zv1.

But v′ − v′′ = (x− v′′)− (x− v′) ∈ [0, 1)v1 +F1 −
(
[0, 1)v1 +F1

)
= (−1, 1)v1 + (F1 −F1),

so it forces v′ = v′′. #

Now since v1 is orthogonal to all vectors in F1, it follows that

∞ > covol(Λ) = m(F )

= m([0, 1)v1 + F1)

= ‖v1‖ ·m(F1)

= ‖v1‖ · covol(π1(Λ))

This proves (2).

Theorem A.6. Let Λ be a lattice in Rd. Then there exist a basis v1, v2, . . . , vd of Λ such

that

‖v1‖ = λ1(Λ), ‖v2‖d �d λ2(Λ), . . . , ‖vd‖ �d λd(Λ).

Here A �d B means there exist positive constants cd, Cd depending only on d such that

cd|A| ≤ |B| ≤ Cd|A|.
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Proof. We shall prove this by induction on d. The case d = 1 is obvious.

Assume the statement holds for lattices with rank less than or equal to d− 1. For a rank

d lattice Λ in Rd, let v1 be any nonzero vector in Λ satisfying ‖v1‖ = λ1(Λ) and let π1 be the

projection of Rd onto v⊥1 , the hyperplane in Rd orthogonal to v1 as in the previous lemma.

Now applying the induction hypothesis to the d− 1 dimensional hyperplane v⊥1 and the

rank d− 1 lattice π1(Λ) contained in v⊥1 yields a basis w2 . . . wd of π1(Λ) with

‖w2‖ = λ1(π1(Λ)), ‖w3‖ �d λ2(π1(Λ)), . . . , ‖wd‖ �d λd−1(π1(Λ)).

By the monotonicity of λ′js, we know

‖w2‖ ≲d · · · ≲d ‖wd‖.

Our next step is to choose some v2, . . . , vd in Λ as preimages of w2, . . . , wd under π1 such

that v1, v2 . . . , vd form a basis of Λ. We start by choosing v2, · · · , vd to be any d− 1 vectors

in Rd with

π1(vj) = wj, 2 ≤ j ≤ d.

It follows that v1, · · · , vd are R-linearly independent and thus form an R-linear basis of Rd.

For any v ∈ Λ,

π1(v) = n2w2 + · · ·+ ndwd

= n2π1(v2) + · · ·+ ndπ1(vd)

= π1(n2v2 + · · ·+ ndvd).

So π1[v − (n2v2 + · · ·+ ndvd)] = 0 and

v = n2v2 + · · ·+ ndvd + tv1,

for some t ∈ R. But since v ∈ Λ, tv1 ∈ Λ and thus t = 0 or ±1 since v1 by our choice is a

minimal nonzero vector.
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Therefore, Λ = SpanZ{v1, . . . vd}. Namely v1, . . . , vd indeed form a basis for Λ.

Observe that replacing each vj with vj + njv1, nj ∈ Z does not change the nature that

v1, · · · , vd form a basis of Λ. Since vj = wj + tjv1 for some tj ∈ R, by carefully choosing nj

we may assume tj ∈ [−1
2
, 1
2
).

It follows that for 2 ≤ j ≤ d,

‖wj‖ ≤ ‖vj‖ ≤ ‖wj‖+ |tj|‖v1‖

≤ ‖wj‖+
1

2

2√
3
‖w2‖

≲d (1 +
1√
3
)‖wj‖,

where the second inequality follows from the previous lemma with π1(v2) = w2. So

‖vj‖ �d ‖wj‖, j = 2 . . . , d.

Next, we observe that λj−1(π1(Λ)) ≤ λj(Λ). This is because if v1, v′2, . . . v′j represent the

first j successive minima vectors in Λ, then their projection images (excluding π1(v1) = 0),

π1(v1), π1(v
′
2), . . . π1(v

′
j) are still linearly independent in v⊥1 and

‖π1(v′2)‖ ≤ λj(Λ)
...

‖π1(v′j)‖ ≤ λj(Λ)

,

which implies λj−1(π1(Λ)) ≤ λj(Λ). Therefore

‖vj‖ �d ‖wj‖ �d λj−1(π1(Λ)) ≤ λj(Λ)

for j = 2, . . . , d.

On the other hand,

λj(Λ) ≤ max{‖v1‖, . . . , ‖vj‖}

≲d max{‖w2‖, . . . , ‖wj‖}

≲d ‖wj‖

= λj−1(π1(Λ)).
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Therefore

‖vj‖ �d λj(Λ), j = 1, 2, . . . d.

The proof is complete by the induction hypothesis.

Remark A.7. In practice, the basis in the theorem can be achieve by the Minkowski reduced

basis. A basis {b1, . . . , bd} of a lattice Λ ⊂ Rd is called Minkowski reduced if for each 1 ≤

i ≤ d, bi is the shortest nonzero vector in the lattice such that i linearly independent vectors

{b1, ...bi} can be extended to a basis of the lattice. See [Hel85] for an algorithm to produce

a Minkowski reduced basis. Interestingly, it is still not know whether the construction of

shortest vectors in a lattice with respect to the l2 norm is NP-hard or not (But the answer

is affirmative for the l∞-norm [Boa81]. Moreover, the l2 case is proved to be NP-hard for

randomized algorithms in [Ajt98]).

As another corollary to our Lemma A.5, we can prove the classical Minkowski’s Second

Convex Body Theorem:

Theorem A.8 (Minkowski’s Second Convex Body Theorem, 1896 [Min96]). Let Λ ⊂ Rd be

a lattice and let λk(Λ) denote the k-th successive minima of Λ. Then

λ1(Λ) · · ·λd(Λ) �d covol(Λ).

Proof. Like we did in the previous proof, we still proceed by induction. The case d = 1 is

obvious.

Assume the statement holds for lattices with rank less than or equal to d− 1. Let v1 be

any nonzero vector in Λ satisfying ‖v1‖ = λ1(Λ) and let π1 be the projection of Rd onto v⊥1 ,

the hyperplane in Rd orthogonal to v1 as in the previous lemma.
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Now applying Lemma A.5 (1) to the d− 1 dimensional hyperplane v⊥1 and the rank d− 1

lattice π1(Λ) contained in v⊥1 yields a basis w2 . . . wd of π1(Λ) with

‖w2‖ = λ1(π1(Λ)), ‖w3‖ �d λ2(π1(Λ)), . . . , ‖wd‖ �d λd−1(π1(Λ)).

By the induction hypothesis

‖w2‖ · · · ‖wd‖ �d λ1(π1(Λ)) · · ·λd−1(π1(Λ)) �d covol(π1(Λ)).

On the other hand, from the proof of the Theorem A.6, we know

‖wj‖ �d ‖vj‖ �d λj(Λ), j = 2, . . . d.

Since ‖v1‖ = λ1(Λ) by construction, by Lemma A.5 (2),

covol(Λ) = covol(π1(Λ)) · ‖v1‖ �d λ1(Λ) · · ·λd(Λ).

Next, we study the continuity of successive minima on the space of lattices.

Lemma A.9. Let b ∈ SL(d,R) and ‖b‖op denotes the operator norm of b, then we have for

all i = 1, 2, . . . , d and unimodular lattice Λ, the inequality

λi(bΛ) ≤ ‖b‖opλi(Λ) (A.0.3)

Proof. For i = 1, 2, . . . , d, let v1, . . . , vi denote the i linearly independent vectors in Rd such

that

‖vi‖ = λi(Λ).

Consider the vectors bv1, . . . , bvi. Since b ∈ SL(d,R), bv1, . . . , bvi are again linearly inde-

pendent. From ‖bvi‖ ≤ ‖b‖op‖vi‖ it follows that bv1, . . . , bvi are contained in a ball of radius

‖b‖opλi(Λ). So it follows that λi(bΛ) ≤ ‖b‖opλi(Λ).
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Theorem A.10. λi(·) are continuous functions on the space of unimodular lattices L for

i = 1, 2, · · · d.

Proof. We may identify L with the homogeneous space G/Γ := SL(d,R)/SL(d,Z) By the

Lemma A.9, we have for any b, c ∈ SL(d,R),

1

‖b‖op
λi(bΛ) ≤ λi(Λ) ≤ ‖c‖opλi(c−1Λ). (A.0.4)

For any Λ ∈ L, we may write Λ = gZd for some g ∈ SL(d,R), identified with gΓ. For

any convergent sequence of lattices

giΓ → gΓ, t→ ∞ (A.0.5)

which is equivalent to the convergence g−1gjΓ → Γ.

Let d denote any right-invariant metric on G and define a metric d′ on G/Γ by

d′(gΓ, hΓ) := inf
γ1,γ2∈Γ

d(gγ1, hγ2).

For each i, we may choose γi ∈ Γ as the element closest to g−1gi, namely

d(g−1gj, γj) = min
γ∈Γ

d(g−1gi, γ) = d′(g−1gjΓ,Γ).

It follows that the condition d′(gjΓ, gΓ) → 0 is equivalent to d(g−1g, γj) → 0. Therefore,

by replacing the representative gj in gjΓ with giγ. We may assume gj → g for the equation

A.0.5.

Now taking b = gjg
−1 and c = b−1 in the inequality A.0.4, we have

λi(gjg
−1Λ) → λ(Λ).

and therefore λi is continuous on G/Γ.
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Remark A.11. For G = SL(d,R) and Γ = SL(d,Z). There is a right G-invariant (Rieman-

nian) metric dist on G/Γ. We speculate the following inequality holds:

|λi(gZd)− λi(hZd)| ≤ Cddist(gΓ, hΓ), ∀g, h ∈ G, ∀i,

where Cd is a constant depending only on d.
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Appendix B: The Siegel Sets and Invariant Measure on the Space

SL(d,R)/SL(d,Z) and the Computation of the Constant cd,k for the

Generalized Siegel’s Formula

In this appendix we shall recall a few definitions and results on Siegel sets and the

probability Haar measure on the space SL(d,R)/SL(d,Z) and use them to compute the

coefficient in the generalized Siegel’s formula 1.3.7 in Chapter 2.

The main reference for the following is [BM00] Chapter V and [Fol15] Section 2.6.

Let K := SO(d,R),

A := {diag(a1, ...ad) : a1 · · · ad = 1, ai > 0, ∀i = 1, 2, . . . , d},

the diagonal subgroup of SL(d,R) with positive entries and

N := {(nij) ∈ SL(d,R) : nii = 1, nij = 0, ∀i < j},

the subgroup of upper triangular unipotent matrices in G. We have

Theorem B.1 (Iwasawa Decomposition). The product map

K × A×N → G, (k, a, n) → kan

is a homeomorphism.
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Definition B.2 (Siegel Sets in SL(d,R)).

A Siegel Set in SL(d,R) is a set Σt,u of the form

Σt,u := KAtNu,

where t, u > 0 and At and Nu are given by

At :=

{
diag(a1, ...ad) ∈ A :

ai
ai+1

≤ 2√
3
, i = 1, 2, ...d− 1

}
and

Nu := {(nij) ∈ N : |nij| ≤ u, ∀i < j}

It turns out that Σt,u can cover the fundamental domain of G := SL(d,R) under the

action of Γ := SL(d,Z):

Theorem B.3. For t ≥ 2√
3
and u ≥ 1

2
, we have G = Σt,uΓ. As a result Σt,u contains a

fundamental domain of G/Γ.

Another important fact about Siegel sets is that it only intersects finitely many of its

Γ-translates

Theorem B.4. Fix t and u, then for all but finitely many γ ∈ Γ, we have

Σt,uγ ∩ Σt,u = ∅.

In particular, all but finitely many γ ∈ Γ satisfies

Σt,u ∩ Fγ = ∅.

Now we turn to look at the Haar measure on G. Let B = AN ∼= N ⋊c A (note that as

sets AN = NA) be the semidirect product of A and N with conjugation as action:

c : A→ N, a 7→ ca,

where ca(n) = ana−1. In other words, the product in AN is defined by

a1n1 · a2n2 := (a1a2)(n1a1n2a
−1
1 ).

173



Proposition B.5. da := da1
a1
. . . dad−1

ad−1
, with the right hand side identified with the standard

Lebesgue measure on Rd−1, is a bi-invariant Haar measure on A.

Proof. For a′ = diag(a′1, a′2, . . . , a′d) ∈ A, we have a′a = diag(a′1a1, a′2a2, . . . , a′dad). Hence,

d(a′a) =
d(a′1a1)

a′1a1
· · ·

d(a′d−1ad−1)

a′d−1ad−1

= da.

Proposition B.6. dn :=
∏

i<j dnij, with the right hand side identified with the standard

Lebesgue measure on Rd(d−1)/2, is a bi-invariant Haar measure on N .

Proof. For n′ = (n′
ij) ∈ N , the (i, j)-th entry of (n′

ij)(nij) is

nij + (n′
i,i+1ni+1,j + · · ·+ n′

i,j−1nj−1,j) + n′
ij,

whose partial derivative w.r.t. nij is 1. So by the d(d−1)
2

-dimensional change of variable

formula with Jacobian the identity matrix, we obtain the left invariance d(n′n) = dn. The

right invariance is similar.

Proposition B.7. ρ(a)dadn is a right invariant Haar measure on B, where the coefficient

ρ(a) :=
∏

i<j
ai
aj
.

Proof. For a′n′, an ∈ N ⋊cA =: B, and for any continuous function f with compact support

on AN , identified with Rd−1 × Rd(d−1)/2 via the previous propositions,∫
A

∫
N

f(ana′n′)ρ(a)dadn =

∫
A

∫
N

f(aa′a′−1na′n′)ρ(a)dadn

=

∫
A

∫
N

f(aa′(a′−1na′)n′)ρ(a)dadn.
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Making a change of variable n 7→ a′na′−1, whose Jacobian can be easily computed as ρ(a′) =∏
i<j

a′i
a′j
, this is equal to∫

N

∫
A

f(aa′nn′)ρ(a)d(a′na′−1)da =

∫
N

∫
A

f(aa′nn′)ρ(a)ρ(a′)dnda.

Making change of variables a 7→ aa′−1 and then n → nn′−1 and noticing that da, dn are

bi-invariant and that ρ is a group character, the above is equal to∫
N

∫
A

f(ann′)ρ(aa′−1)ρ(a′)dnda =

∫
N

∫
A

f(an)ρ(a)dnda

=

∫
A

∫
N

f(an)ρ(a)dadn.

This proves the right invariance of the measure ρ(a)dadn on B.

Theorem B.8. Let dk denote a (finite) Haar measure on K. If we identify G = SL(d,R)

with KB = KAN via the Iwasawa decomposition (Theorem B.1), then ρ(a)dkdadn gives a

bi-invariant Haar measure on G.

Now we define the Haar measure on G/Γ:

Theorem and Definition B.9 (Haar meaure on G/Γ). Let F be any compactly supported

continuous function on G/Γ, then there exists a compacted supported continuous function f

on G such that

F (gΓ) :=
∑
γ∈Γ

f(gγ).

Define ∫
X

F (gΓ)d(gΓ) :=

∫
G

f(g)dg. (B.0.1)

The right hand side
∫
G
f(g)dg is independent of the choice of f by unfolding the integral using

the quotient integral formula (Theorem 2.51 in [Fol15]). Therefore by the theory of Radon

measures on locally compact Hausdorff spaces ([Fol07] Chapter 7), the equation B.0.1 defines

a left G-invariant (and thus bi-invariant by the unimodularity) Haar measure on G/Γ.
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For the Haar measure on K = SO(d,R) and the scaling, since the map

SO(d,R) → Sd−1, g 7→ ge1

has

Stabe1(G) =

[
1 R1×d−1

0 SO(d− 1,R)

]
,

we have the identification SO(d,R)/SO(d − 1,R) ∼= Sd−1. We use this identification and

induction to stipulate:

Vol(K) = µK(SO(d,R)) :=
d−1∏
i=1

Vol(Si) =
d−1∏
i=1

π
i
2

Γ( i
2
+ 1)

. (B.0.2)

Theorem B.10. Every Siegel set Σt,u ∈ SL(d.R) has finite Haar measure in G and it follows

from Theorem B.3 that the Haar measure defined above is finite. Therefore SL(d,Z) is a

lattice in SL(d,R).

Before we compute the coefficient in the generalized Siegel’s formula, let us first recall

the notion of admissible functions and Poisson summation formula:

Definition B.11. A function f : Rd → R is called admissible if there exist constants

c1, c2 > 0 such that both |f(x)| and |f̂(x)| are bounded by c1
(1+∥x∥)d+c2

, where ff̂(t) :=∫
Rd f(x)e

2πi⟨x,t⟩dx is the Fourier transform of f .

Theorem B.12 (Poisson Summation Formula). Given any unimodular lattice Λ ∈ Rd, a

vector v and an admissible function f : Rd → R, we have

∑
x∈Λ

f(x+ v) =
∑
w∈Λ∗

e−2πi⟨v,w⟩f̂(t),

where Λ∗ is the dual lattice of Λ, cf. 1.2.6.
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Proposition B.13. As in the proof of Theorem 1.3.7, let {e1, . . . , ed} be the canonimcal

basis of Rd. For G = SL(d,R) and Γ = SL(d,Z) and the k-tuple (e1, . . . , ek), be , let

Gk : = {g ∈ G : g.ei = ei, ∀1 ≤ i ≤ k},

Γk : = {g ∈ Γ : g.ei = ei, ∀1 ≤ i ≤ k}.

be the stabilizer subgroup of (e1, . . . , ek) in G and Γ, respectively. Let dg denote the Haar

measure on G (scaled as above) and dgk := dµGk
(gk),d(gΓ) := dµG/Γ(gΓ), dµG/Γk

(gΓk)

denoted the induced Haar measures on Gk, G/Γ and G/Γk respectively. Then,

µGk/Γk
(Gk/Γk) =

1

ζ(d− k + 1) · · · ζ(d)

Proof.

We start from the case when k = 1. In this case,

G1 :=StabG{e1} = {g ∈ SL(d,R) : ge1 = e1} =

[
1 R1×(d−1)

0 SL(d− 1,R)

]
Γ1 :=StabΓ{e1} = {g ∈ SL(d,R) : ge1 = e1} =

[
1 Z1×(d−1)

0 SL(d− 1,Z)

]
For the computation, we first consider the Fourier transform of compactly supported

functions.

Let f ∈ Cc(Rd), namely a continuous function with compact support. Furthermore,

assume that f is K-invariant and f(0) 6= f̂(0) :=
∫
Rd f(x)dx. Such function exists. For

example, there exists η ∈ (0, 1) such that

f(x) =

{
1−η∥x∥

(1+∥x∥)d+1 if x ∈ B[0, 1]

0 if x /∈ B[0, 1]

satisfy f(0) 6= f̂(0). Other properties are immediate.

Let F̃ (g) : G→ R be defined as

F̃ (g) :=
∑
v∈Zd

f(gv).
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It follows that F̃ is bounded and for any γ ∈ Γ = SL(d,Z),

F (gγ) =
∑
Zd

f(gvγ) =
∑
Zd

f(gv) = F (g).

The Γ-invariance of F̃ induces a function F : G/Γ → R by

F (gΓ) :=
∑
v∈Zd

f(gv).

Consider the following decomposition of Zd:

Zd = {0}
⊔ ⊔

γΓ1∈Γ/Γ1

∞⊔
j=1

je1. (B.0.3)

It follows that F ∈ Cc(G/Γ) and that∫
G/Γ

F (gΓ)d(gΓ) =

∫
G/Γ

∑
v∈Zd

f(gv)d(gΓ)

=

∫
G/Γ

f(0)d(gΓ) +

∫
G/Γ

∑
γΓ1∈Γ/Γ1

∞∑
j=1

f(jgγe1)d(gΓ1)

=

∫
G/Γ

f(0)d(gΓ) +

∫
G/Γ1

∞∑
j=1

f(jgγe1)d(gΓ1)

=f(0)µ(G/Γ) +
∞∑
j=1

∫
G/Γ1

f(jge1)d(gΓ1) (B.0.4)

To treat the section part of the sum above, we introduce the following subgroups :

W1 :=

[
1 0
0 SL(d− 1,R)

]
,

U1 :=

[
1 R1×(d−1)

0 Id−1

]
,

At :=

[
t 0

0 t−
1

d−1

]
.

The measures on them are canonical ones: µW1 is identified with the Haar measure on

SL(d− 1,R), again defined through Iwasawa decomposition above; µU1 is identified with the

Lebesgue measure on Rd−1; and the measure At is identified with dt
t
on R>0.

Clearly G1 = W1U1.
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Claim 11. td dt
t
dwdu defines a right invariant measure on AtW1U1.

Proof of Claim. Indeed, for any continuous function f with compact support defined on

AtW1U1, identified with Rt>0 × SL(d− 1,R)×Rd−1 and a = diag(t, t−
1

d−1 Id−1), w′ ∈ W1 and

u′ ∈ U1. Notice that awa′−1 = w and the Jacobian of the map u′ 7→ aua′−1 is (t1+
1

d−1 )d−1 =

td−1, the same change of variable argument for the integral∫
A

∫
W1

∫
U1

f(awua′w′u′)dadwdu

gives the right invariance of td dt
t
dwdu. #

Observe that

K ∩ AW1U1 =

[
1 0
0 SO(d− 1,R)

]
∼= SO(d− 1,R)

and that the map

K ×G1 → KG1, (k, g) 7→ k−1g

has its fiber at the identity equal to K ∩ AW1U1
∼= SO(d − 1,R), we have by the quotient

integral formula and the proof of Theorem 8.32 in [Kna02], for any compactly supported

continuous function φ on G,∫
G

φ(jge1)d(gΓ) =
1

Vol(SO(d− 1,R))

∫
KAtW1U1

φ(jkawue1)dkt
ddadwdu.

Since any compactly supported function Φ on G/Γ1 can be expressed as

Φ(gΓ1) =
∑
γ∈Γ1

φ(gγ),

for some compactly supported continuous function φ on G, we have by quotient integral

formula and the uniqueness of Haar measure on homogeneous space G/Γ1∫
G/Γ1

f(jge1)d(gΓ) =

∫
KAtW1U1/Γ1

f(jkawue1)dkt
ddad(wuΓ1)
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where f ∈ Cc(Rd) as above and j ≥ 1.

Now it follows from B.0.4 that∫
G/Γ

F (gΓ)d(gΓ)

=f(0)µ(G/Γ) +
∞∑
j=1

∫
G/Γ1

f(jge1)d(gΓ1)

=f(0)µ(G/Γ) +
1

Vol(SO(d− 1,R))

∞∑
j=1

∫
K

∫
AtW1U1/Γ1

f(jkawue1)dkt
ddad(wuΓ1)

=f(0)µ(G/Γ) +
Vol(SO(d,R)

Vol(SO(d− 1,R))

∞∑
j=1

∫
AtW1U1/Γ1

f(jawue1)t
ddad(wuΓ1)

(f is K-invariant by assumption)

=f(0)µ(G/Γ) + Vol(Sd−1)
∞∑
j=1

∫
AtW1U1/Γ1

f(jawue1)t
ddad(wuΓ1)

=f(0)µ(G/Γ) + Vol(Sd−1)
∞∑
j=1

∫
At

∫
W1U1/Γ1

f(jawue1)t
dda

=f(0)µ(G/Γ) + Vol(Sd−1)
∞∑
j=1

∫
At

∫
W1U1/Γ1

f(jtwue1)t
d−1dt

=f(0)µ(G/Γ) + Vol(Sd−1)Vol(SL(d− 1,R)/SL(d− 1,Z))
∞∑
j=1

∫ ∞

0

f(jte1)t
d−1dt

(Vol(SL(d− 1,R)/SL(d− 1,Z)) = Vol(W1U1/Γ1) since Vol(Rd/Zd)=1.)

=f(0)µ(G/Γ) + Vol(Sd−1)Vol(SL(d− 1,R)/SL(d− 1,Z))
∞∑
j=1

1

jd

∫ ∞

0

f(te1)t
d−1dt

(change of variable t 7→ t
j
)

Note that the above only works d > 2. For the case when d = 2, this Vol(SL(d−1,R)/SL(d−

1,Z)) has to be replaced by 1.

Claim 12.

Vol(Sd−1)

∫ ∞

0

f(te1)t
d−1dt = f̂(0),

where f̂(0) =
∫
Rd f(x)dx is the Fourier transform of f at 0.

180



Proof of Claim. Indeed, notice that f is K-invariant (rotation invariant), so

f(te1) = f(x), ∀x ∈ Rd with ‖x‖ = t.

By the spherical coordinate in Rd, we have

x1 = r cos(ϕ1)

x2 = r sin(ϕ1) cos(ϕ2)

x3 = r sin(ϕ1) sin(ϕ2) cos(ϕ3)

...

xd−1 = r sin(ϕ1) · · · sin(ϕd−2) cos(ϕd−1)

xd = r sin(ϕ1) · · · sin(ϕd−2) sin(ϕd−1).

where 0 ≤ φd−1 ≤ 2π and 0 ≤ φi ≤ π for all i ≤ d− 1. and∫
Rd

f(x)dx =

∫ ∞

0

· · ·
∫ ∞

0

f(x1, . . . , xd)dx1 · · · dxd

=

∫
[0,π]d−1×[0,2π]

∫ ∞

0

f(x1, . . . , xd)

∣∣∣∣det ∂(xi)

∂ (r, ϕj)

∣∣∣∣ dr dϕ1 dϕ2 · · · dϕd−1

=

∫
[0,π]d−1×[0,2π]

∫ ∞

0

f(re1)r
d−1 sind−2(ϕ1) sin

d−3(ϕ2) · · · sin(ϕd−2) dr dϕ1 dϕ2 · · · dϕn−1

=Vol(Sd−1)

∫ ∞

0

f(re1)r
d−1dr.

#

Therefore, we have∫
G/Γ

F (gΓ)d(gΓ) =f(0)µ(G/Γ) + Vol(Sd−1)Vol(SL(d− 1,R)/SL(d− 1,Z))
∞∑
j=1

1

jd

∫ ∞

0

f(te1)t
d−1dt

=f(0)µ(G/Γ) + f̂(0)Vol(SL(d− 1,R)/SL(d− 1,Z))
∞∑
j=1

1

jd

=f(0)µ(G/Γ) + f̂(0)Vol(SL(d− 1,R)/SL(d− 1,Z))ζ(d). (B.0.5)
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In other to find Vol(SL(d− 1,R)/SL(d− 1,Z)), we shall look at the dual version of the

above equation.

For any g ∈ G, gZd defines a lattice and its dual lattice is g∗Zd = tg−1Zd (Proposition

1.2.28). But the automorphism

∗ : G→ G, g 7→ g∗

clearly preserves the Haar measure on G and γZd = γ∗Zd for all γ ∈ Γ. So it also

preserves the Haar measure on G/Γ.

On the other hand, by the Poisson summation formula:

F (gΓ) =
∑
v∈Zd

f(gv) =
∑
v∈Zd

f̂(g∗v) =: F̂ (g∗).

Since ˆ̂
f(0) = f(0), by replacing f in the recursion equation B.0.5 by f̂ , we have

f(0)µ(G/Γ) + f̂(0)Vol(SL(d− 1,R)/SL(d− 1,Z))ζ(d)

=

∫
G/Γ

F (gΓ)d(gΓ) =

∫
G/Γ

F̂ (gΓ)d(gΓ)

=f̂(0)µ(G/Γ) +
ˆ̂
f(0)Vol(SL(d− 1,R)/SL(d− 1,Z))ζ(d)

=f̂(0)µ(G/Γ) + f(0).

Since we have chosen f(0) = f̂(0) at the beginning, this yields:

Vol(G/Γ) = Vol(SL(d,R)/SL(d,Z)) = ζ(d)Vol(SL(d−1,R)/SL(d−1,Z)) = ζ(d)Vol(G1/Γ1),

for d > 2 and with our discussion above (before the claim),

Vol(SL(2,R)/SL(2,Z)) = ζ(2).

By induction, we have

Vol(G/Γ) = ζ(d) · · · ζ(d− k + 1)Vol(Gk/Γk)
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This gives the constant we need for the generalized Siegel formula as well as

Vol(G/Γ) = ζ(d) · · · ζ(2).
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Appendix C: Preliminaries in model theory

In this appendix we provide necessary background in polynomially bounded o-minimal

structures.

The notion of o-minimal structures dates back to Alexander Grothendieck in 1980’s

where he tried to give an axiomatic approach to tame topology [Gro97]. In this appendix we

introduce basic notions for o-minimal structures which are needed to formulate our theory

in the last Chapter. The main reference for this section is [Dri98].

Definition C.1. Let S be a set and A be a family of subsets of S. A finite boolean combi-

nation of A is obtained by a finite application of intersections, unions, and complements to

a finite subset of A . A is called a boolean algebra of subsets of S if A is closed under finite

boolean combinations of its members.

Definition C.2. A semi-algebraic set, X ⊂ Rn, is a finite boolean combination of sets of

the form

{x ∈ Rn : f(x) = 0} or {x ∈ Rn : g(x) > 0}, (C.0.1)

where f, g ∈ R[x1, ..., xn].

Semi-algebraic sets has a lot of nice properties showing its stability (“tame”) under various

operations:

Theorem C.3 (Properties of semi-algebraic sets). Let A be a semi-algebraic set in Rn, then
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• the closure, interior and boundary of A are also semi-algebraic;

• A has finitely many connected components, each of which is again semi-algebraic.

• (Tarski-Seidenberg Theorem) if n > m and π : Rn → Rm is a projection onto its first

m-coordinates, then π(A) is again semi-algebraic.

Definition C.4 (Structure and definability). Given the field of real numbers R, we define a

structure S on Rn to be a sequence (Sn)n∈N (Sn ⊂ P(Rn), the power set of Rd) satisfying

the following axioms: for each n ≥ 0,

(1) (boolean axiom) Sn is a boolean algebra of subsets of Rn;

(2) (diagonal axiom) The diagonal of Rn is in Sn, namely {(x1, ..., xn) : xi = xj} ∈ Sn for

all i 6= j.

(3) (lifting axiom) if A ∈ Sn, then the sets A× R and R× A are in Sn+1;

(4) (projection axiom) if A ∈ Sn+1 and if π : Rn+1 → Rn is the projection map onto the

first n coordinates, then π(A) ∈ Sn.

(5) (operation axiom) For A1, B1 ∈ S1 ,the graph of addition {(x, y, x + y) : x ∈ A1, y ∈

B1} and multiplication {(x, y, xy) : x ∈ A1.y ∈ B1} are in S3.

The elements (sets) in ∪n∈NSn are called definable with respect to the structure S . A

function f : R → R is called definable if its graph graph(f) := {(x, f(x)) : x ∈ R} is

definable.

Definition C.5. A structure S over R is said to be o-minimal if

(O1) (points and intervals axiom) {r} ∈ S1 for all r ∈ R and for all x, y ∈ R with x < y,

we have the graph {(x, y) ∈ R2 : x < y} ∈ S2; and
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(O2) (S1 axiom) The only sets in S1 are finite unions of points and open intervals in R.

Example C.6. The structure of semi-algebraic sets, Ralg, are the smallest o-minimal struc-

ture on (R, ·,+).

The following theorem is crucial in our proof of goodness of definable functions in a

polynomially bounded o-minimal structure:

Theorem C.7 (Definable choice function). If S ⊂ Rm+n is definable and π : Rm+n → Rm

the projection on the first m coordinates, then there is a definable map f : π(S) → Rn such

that graph(f) ⊂ S.

Definition C.8. Given a family of real valued functions, F , the smallest structure on

(R, ·,+) containing graph(f) for all f ∈ F , is denoted (R, ·,+,F).

Definition C.9. A structure S = (Sn)n∈N on R is polynomially bounded if for every

definable f : R → R there exists m ∈ N such that f(t) = O(tm) as t→ ∞.

Example C.10. The structure of real numbers with restricted analytic functions, denoted

Ran := (R, ·,+,A),

is constructed as follows:

Let R[[x1, ..., xm]][−1,1]m denote the ring of all power series in m-variables x1, ..., xm con-

vergent in a neighborhood of [−1, 1]m ⊂ Rm. For each f ∈ R[[x1, ..., xm]][−1,1]m , put

f̃(x) =

{
f(x) x ∈ [−1, 1]m,

0 x /∈ [−1, 1]m.
(C.0.2)

Finally, let A := (f̃)f∈R[[x1,...,xm]][−1,1]m
.

(Ran, (x 7→ xr)r∈R), where xr := 0 whenever x ≤ 0 is the largest known polynomially

bounded o-minimal structure on (R, ·,+) to our knowledge [Mil95].
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Proposition C.11 (Growth Uniform Asymptotics). Let f be a polynomially bounded o-

minimal real function, then there exists C, r ∈ R such that

f(x) = Cxr + o(xr) (C.0.3)

for x� 1.

Proposition C.12. Let R+ = (0,∞) and P : Rk
+ → R be a function of the form:

P (x1, . . . , xk) =
∑

r1,...,rk

Cr1,...,rkx
r1
1 · · · xrk2 , (C.0.4)

where r1, ..., rk ∈ R and the sum is finite. If f1, ..., fk are polynomially bounded o-minimal,

then so is P (f1, ..., fk).

It is known that polynomially bounded o-minimal definable functions are piecewise

smooth and monotone ([Mil94b]).

Theorem C.13. Let f : R+ → R be a polynomially bounded o-minimal definable function.

Then there exist 0 < a0 < · · · < an < an+1 = ∞ such that f |(ak, ak+1) is differentiable and

monotone (including constant).

Theorem C.14 ([Mil94b], special case of Proposition 3.1). Let f : R+ → R be a polynomial

bounded o-minimal definable function and suppose f(x) = Cxr+o(xr). Then f(tx) ∼ trf(x),

f(x+ t) ∼ f(x) for each t > 0. If r 6= 0, then xf ′(x)/f(x) ∼ r.
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