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Abstract

Recommendation systems are playing an increasingly important role in human

society, which can be theoretically regarded as a sequential decision making prob-

lem and formulated by multi-armed bandit framework. In this thesis, we formulate

commonly seen user behavior in recommendation systems, and propose efficient poli-

cies in maximizing cumulative reward. First, we investigate a new online learning

model that considers real-world phenomena in many recommendation systems: (i)

the learning agent cannot pull the arms by itself and thus has to offer payments to

users to incentivize arm-pulling indirectly; and (ii) if users with specific arm prefer-

ences are well rewarded, they induce a “self-reinforcing” effect in the sense that they

will attract more users of similar arm preferences. Besides addressing the tradeoff

of exploration and exploitation, another key feature of this new MAB model is to

balance reward and incentivizing payment. The goal of the agent is to minimize the

accumulative regret over a fixed time horizon T with a low total payment. Then,

we additionally consider the impact of delayed feedback on previous model. A ma-

jor challenge of this updated MAB framework is that the loss of information caused

by feedback delay complicates both user preference evolution and arm incentivizing

decisions, both of which are already highly non-trivial even by themselves. In our

analysis, we consider delayed feedbacks that can have either arm-independent or arm-

dependent distributions. In both cases, we allow unbounded support for the random

delays, i.e., the random delay can be infinite. Next, we study multi-armed bandit
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based online learning to rank problem, where the user feedback is partial observable

and is generated from two unknown parameters: position preferences and arm means,

which has a wide applications such as search engines, video streaming services, and

recommender systems in e-commerce. The proposed model considers the setting of

multiple user types with different action patterns, and the ranking policies are de-

signed in two strategies: personalized ranking for user experience maximization and

equal treatment ranking for fairness, both of which are widely applied in practice.

For all the proposed model, we propose and analyze theoretically efficient policies,

whose performances are verified by synthetic and real-world experiments.
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Chapter 1

Introduction

A multi-armed bandit problem (or bandit problem) is a sequential decision making

problem with an exploration-exploitation trade-off. The trade-off is the balance be-

tween staying exploiting the option that gave highest payoffs in the past and exploring

new options that might give higher payoffs in the future. In recent years, the ban-

dit framework has received a significant amount of interest in the learning research

community. This is partly due to the fact that, in many online e-commerce recom-

mendation systems (e.g., Amazon and Walmart), the problem of online learning of

the optimal products while making profits at the same time can be well formulated

by a bandit problem. Typically, a three-party bandit framework is usually leveraged

to formulate a recommendation system, including platform as the learner, users, and

the items (in some situations the items can be third-party vendors), as described in

Figure 1.1.

1 2 m…
Arms

AgentUser2 User1User3… Arm filtering

Incoming users

Arm selection

Exits after 
rewarded

User feedback

Figure 1.1: A three-party bandit framework formulating a recommendation system.
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In a three-party bandit framework, at each round, the learning agent filters arms

and recommends a subset of arms to an arriving user, then the user makes arm

selection over the recommended arms, which is observable to the learning agent as

user feedback. A policy is defined as a sequential arm filtering strategy, which learns

from historical user feedback and decides arm recommendation to users at each round.

This three-party bandit framework is general to model a large range of user behavior,

as well as a large range of arm filtering strategies.

1.1 User Behavior Modeling in Recommendation

Systems

Random user preference over items. In many online e-Commerce platforms,

there exists a self-reinforcing phenomenon, where the current user’s behavior is in-

fluenced by the user behaviors in the past (Barabási and Albert, 1999; Chakrabarti

et al., 2005; Ratkiewicz et al., 2010), or an item is getting increasingly more popular

as it accumulates more positive feedbacks. For example, on a movie rental website,

current customers tend to have more interest in Movie A that has 500 positive reviews,

compared with Movie B that only has 10 positive reviews. As an online learner, the

e-Commerce service provider wants to identify the most profitable item in order to

maximize the total profit in the long run. In the literature, such an online profit maxi-

mization problem can often be modeled by the multi-armed bandit (MAB) framework

(Berry and Fristedt, 1985; Bubeck and Cesa-Bianchi, 2012). However, existing works

on MAB that consider the self-reinforcing preferences remain quite limited (see, e.g.,

Fiez et al. (2018); Shah et al. (2018)). In fact, Shah et al. (2018) showed that the
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self-reinforcing preferences might render the classic UCB (upper confidence bound)

policy (Auer et al., 2002) sub-optimal, and new optimal arm selection algorithms are

necessary.

Delayed user feedback. Customer feedbacks are often received much later than

their purchasing times (e.g., a review may or may not be submitted by a customer

even months later after purchasing a product). In an online learning model, policies

are designed to make decisions based on historical feedback, thus, the decisions are

outdated once the feedback is delayed. A realistic situation is that delays are usually

random in length and could be dependent regarding item classification, in which case

the collected feedback by the learner can be outdated in varying degrees, accounting

for even harder estimation of items.

User click models over item ranking. When given an ordered list of recom-

mendation, user feedback is typically regarded as their clicks on items of recommen-

dation. Chuklin et al. (2022) has investigated such user behavior and surveyed on

user click models for web search. It is shown that user click typically follows some

pattern that can be modeled theoretically. Two of the most popular click models

are position-based model and cascade model. Joachims et al. (2017) shows that the

probability of a user examining an item depends heavily on its rank or position and

typically decreases with rank. To incorporate this intuition into a click model, a set

of examination parameters are defined, one for each rank, and is independent of the

quality of ranked items. This position-based model (PBM) was formally introduced

by Craswell et al. (2008). Another popular click model, cascade model (Craswell

et al., 2008), assumes that a user scans items from top to bottom until they find a

relevant item. This model allows simple estimation, since the examination events are

observed: the model implies that all itmes up to the first-clicked item were examined
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by a user. This also means that the cascade model can only describe sessions with

one click and cannot explain non-linear examination patterns.

1.2 Arm Filtering Strategies

Arm incentivizing. In many online learning problems that utilize the MAB frame-

work for sequential decision making (e.g., recommender systems, healthcare, finance,

dynamic pricing, see Bouneffouf and Rish (2019)), the learning agent (e.g., an online

service provider) cannot select the arms directly. Rather, arms are pulled by the users

who are exhibiting self-reinforcing preferences. The agent thus needs to incentivize

users to select certain arms to maximize the total rewards, while avoiding incurring

high incentive costs. Hence, the bandit models in (Fiez et al., 2018; Shah et al., 2018)

are no longer applicable, even though the self-reinforcing preferences behavior is con-

sidered. Meanwhile, there exist several works (Frazier et al., 2014; Mansour et al.,

2015, 2016; Wang and Huang, 2018) that studied incentivized bandit under various

settings and proposed efficient algorithms, but none of these works models practical

user behavior as discussed previously.

Arm ranking. Learning to rank (L2R) is a foundational problem for recom-

mender systems Sorokina and Cantu-Paz (2016). Solving an L2R problem amounts

to understanding and predicting users browsing and clicking behaviors, so that the

system can accordingly provide an optimal ranking of items to recommend to users

with the aim to maximize certain rewards or utilities for the system. In the literature,

L2R has been relatively well studied in the offline supervised setting, where a dataset

is used to train a model in an offline fashion and then the learned model is used for

ranking prediction. However, offline L2R can only provide static results that cannot
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adapt to real-time data and temporal changes of the underlying ground truth. There-

fore, in recent years, online L2R (ONL2R) has received increasing attention Agichtein

et al. (2006). Among the existing approaches for ONL2R, the multi-armed bandit

(MAB) framework is one of the most popular since it closely models the sequential

interactions between the recommender system and the users (e.g., Radlinski et al.

(2008); Lagrée et al. (2016); Zoghi et al. (2017); Lattimore et al. (2018)). In MAB-

based ONL2R methods, the goal of the learner is to understand the click models of

a spectrum of different user types through bandit feedback (i.e., data are collected in

real-time through action-reward interactions rather than preexisting) Chuklin et al.

(2015). Based on the bandit feedback, the system follows an online learning policy

and iteratively adjusts the ranking of items to the next arriving user to maximize its

long-term accumulative reward.

1.3 Overview of Major Contributions

In Chapter 3, We first show that no incentivized bandit policy can achieve a sub-

linear regret with a sub-linear total payment if the feedback function that models the

self-reinforcing preferences has a super-polynomial growth rate. The proof is inspired

by a multi-color Pólya urn model, and we also show how to guide the self-reinforcing

preferences toward a desired direction. To address the unique challenges in the new

MAB model, we introduce (i) a three-phase MAB policy architecture and (ii) a key

result that shows that an O(log T ) incentivizing period is sufficient for establishing

dominance for the multi-color Pólya urn model (see Section 4.3). We propose two

bandit policies, namely At-Least-n Explore-Then-Commit and UCB-List, both of

which are optimal in regret. Specifically, for the two policies, we analyze the upper
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bounds of the expected regret and the expected total payment over a fixed time

horizon T . We show that both policies achieve O(log T ) expected regrets, which

meet the lower bound in Lai and Robbins (1985). Meanwhile, the expected total

incentives for both policies are upper bounded by O(log T ).

In Chapter 4, We propose a new MAB model that jointly considers incentivized

arm sampling, delayed sampling feedback, and self-reinforcing user preferences, all of

which are important features of online recommender systems. To develop efficient and

low-cost incentivized policy for this new MAB model, we propose a three-phase “UCB-

Filtering-with-Delayed-Feedback” (UCB-FDF) policy, which contains an incentivized

exploration phase, an incentivized exploitation phase, and a self-sustaining phase.

In our UCB-FDF policy, the first two phases judiciously integrate delayed feedback

information, while in third phase, the system solely relies on self-reinforcing user

preferences to converge to the pulling of the optimal arm. The success of our policy

design hinges upon two key insights: (i) the self-reinforcing user preference effect

is actually a “blessing in disguise” and can be leveraged to establish an important

“dominance” condition (more on this later) that further implies O(log T ) regret and

incentive costs; and (ii) the impacts of delayed feedback on regret and incentive

costs can be upper bounded under appropriate statistical settings to preserve the

“dominance” condition. We first show a fundamental fact that, under our UCB-

FDF policy, delayed sampling feedback only has an additive penalty on the regret

and incentive cost performances, and that this additive penalty grows logarithmically

with respect to time. Specifically, we first investigate the delayed feedback impact

under the assumption that the feedback delay is an i.i.d. random variable across

samplings with a finite expectation. We show that the UCB-FDF policy achieves

logarithmic growth rates of regret and incentive costs under this setting. Then, we
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relax the i.i.d. feedback delay assumption to allow the feedback delay distribution to

be arm-dependent. Under this setting, we also show that similar logarithmic growth

rates of regret and incentive can still be achieved. We conduct extensive experiments

on Amazon Review Data 1 to demonstrate and verify the performance of our UCB-

FDF policy as well as the impacts of delayed feedback on real-world scenarios. We also

verify our theoretical analysis through various product categories and demonstrate

the efficacy of our proposed UCB-FDF MAB policy.

In Chapter 5, We propose the first general MAB framework that captures all key

ingredients of ONL2R with position-based click models: i) two regret notions that

characterize personalized and equal treatments in ranking recommendations; ii) the

coupling between position preferences and mean arm rewards; and iii) partial observ-

ability of ranking position preferences. This general framework enables our rigorous

policy design and analysis for MAB-based ONL2R with position-based click mod-

els. Based on the above general MAB-based ONL2R framework with position-based

click models, we develop two unified greedy- and upper-confidence-bound (UCB)-

based policies, each of which works for personalized and equal ranking treatments.

For personalized treatment for ranking recommendations, we show that our greedy-

and UCB-based policies achieve O(
√
t ln t) and O(

√
t ln t) anytime sub-linear regrets,

respectively. We show that the MAB policy design for the equal treatment case is

more challenging, which may require solving an NP-hard problem in each time step

depending on the collective utility function for social welfare. To address this chal-

lenge, we identify classes of utility functions and establish their associated sufficient

conditions of approximation accuracy, under which O(
√
t ln t) and O(

√
t ln t) anytime

sublinear regrets are still achievable for greedy- and UCB-based policies, respectively.

1https://nijianmo.github.io/amazon/
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Chapter 2

Related Work

Multi-armed bandit have seen an increasing interest in the academia and industry over

the last few years. It is a special area of reinforcement learning that is specialized

in making decisions under uncertainty. In recommendation systems, multi-armed

bandit is a powerful tool to model online user-platform interactions, which allows

a large range of real-world user behavior, e.g., random user preference over items,

delayed user feedback, and customized user click models over an ordered list of items.

In this chapter, we provide an overview of some closely related fields with our work.

2.1 Bandits with Random User Preferences

The impacts of random user preferences in e-commerce platforms have received in-

creasing interest in several different areas in learning and economics. Existing works

in (Agrawal et al., 2017, 2019) formulated the user preference variation given different

product bundles by the multi-nomial logit model on top of the bandit learning frame-

work and proposed a Thompson Sampling approach that achieves a worst-case regret

bound of O(
√
NT log TK), where N is the size of recommended arm bundle. With a

different focus on preference modeling, Barabási and Albert (1999); Chakrabarti et al.

(2006); Ratkiewicz et al. (2010) investigated the network evolution with “preferential

attachment” that formulates the social behavior known as self-reinforcing preferences.
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Also, a similar social behavior, referred to as herding, is studied in the Bayesian learn-

ing model literature (Bikhchandani et al., 1992; Smith and Sørensen, 2000; Acemoglu

et al., 2011). For example, Acemoglu et al. (2011) first studied the conditions under

which there exists a convergence in probability to the desired action as the size of

a social network increases. More recently, Shah et al. (2018) incorporated positive

externalities in user arrivals and proposed MAB algorithms to maximize the total

reward. Then, Fiez et al. (2018) provided a more general model, where the learning

agent has limited information. We note that the agents in Shah et al. (2018); Fiez

et al. (2018) have full control in determining which arm for users to pull. In contrast,

the agent in our MAB model has no control over which arm to pull, and can only in-

centivize users to indirectly induce the preferences toward a desired arm. Eventually,

which arm to be pulled is entirely dependent on the current user’s random preference.

2.2 Bandits with Delayed User Feedback

Motivated by practical issues in the clinical trials, Eick (1988) was the first to intro-

duce a two-armed bandit model with delayed responses, where the patients survival

time reports after the treatment are delayed. Recently, Joulani et al. (2013) provided

a systematic study and showed that for delay τ with a finite expectation, the worst

case regret scales with O(
√
KT log T + KE[τ ]), where K is the number of arms.

Meanwhile, Vernade et al. (2017) showed that stochastic MAB problems with de-

layed feedback have a regret lower bound O(K log T ). However, this work assumed

that the distribution of the random delay is arm-independent. In contrast, Joulani

et al. (2013) considered arm-dependent delay distributions that have an upper bound

of the maximum random delay. More recently, Manegueu et al. (2020) considered
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arm-dependent and heavy-tailed delay distributions, where only an upper bound on

the tail of the delay distribution is needed, without requiring the expectation to be

finite. Also, Lancewicki et al. (2021) studied the case where the delay distribution

is reward-dependent, which implies that the random delay in each round may also

depend on the reward received on the same round. However, most of these works on

delayed bandits are based on the standard stochastic MAB framework. In contrast,

we consider delayed feedback in incentivized bandit learning with self-reinforcing user

preferences, which is a more appropriate model for real-world recommender systems

than the standard stochastic MAB.

2.3 Arm Filtering Strategies

In a classic bandit model, an action is defined as pulling one arm from available arm

set. When applied to recommendation systems, bandit model often formulates the

recommendation as arm pulling, and pulling one arm implies recommending one item

to users, which is too naive in real world. A more general formulation is defining

actions taken by the learner as an arm filtering strategy, which allows more than one

arms recommended to users, and allows more flexibility of user behavior formulation.

Here, we focus on two arm filtering strategies: arm incentivizing and arm ranking.

Arm incentivizing. incentivized MAB has attracted growing attention in re-

cent years (Kremer et al., 2014; Frazier et al., 2014; Mansour et al., 2015, 2016; Wang

and Huang, 2018). To our knowledge, Frazier et al. (2014) first adopted incentive

schemes into a Bayesian MAB setting. In their model, the agent seeks to maximize

time-discounted total reward by incentivizing arm selections. Kremer et al. (2014)

shares a similar motivation as Frazier et al. (2014). But in the model of Kremer
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et al. (2014), the agent does not offer payments to the users. Instead, he decides the

information to be revealed to users as incentives. Subsequently, Mansour et al. (2015)

studied the case where the rewards are not discounted over time. More recently, Wang

and Huang (2018) considered the non-Bayesian setting with non-discounted rewards.

Agrawal and Tulabandhula (2020) considered incentivizing exploration under contex-

tual bandits. These models differ from ours in both the incentive schemes and user

behaviors.

Arm ranking. research on MAB-based online learning to rank (ONL2R) remains

in its infancy. To our knowledge, the first work that studied MAB-based ONL2R

was reported in Radlinski et al. (2008), which, however, is based on the cascade click

models. Later, MAB-based ONL2R with position-based click model was considered in

Lagrée et al. (2016), which established an Ω(log T ) regret lower bound for their model

and proposed algorithms with a matching regret upper bound. Although sharing

some similarity to ours, the position-based click model in Lagrée et al. (2016) is

a simpler model setting, which assumes known position preference. In contrast, the

unknown position preferences in our work requires extra learning besides conventional

arm mean estimation, causing non-trivial policy design and performance trade-off.

Generalized click model encompassing both position-based and cascade click models

was proposed in Zoghi et al. (2017), where the authors also developed a BatchRank

policy with a gap-dependent upper bound on the T -step regret.BatchRank was later

outperformed by the TopRank policy proposed in Lattimore et al. (2018) in both

cascade and position-based click models. We note that all these existing works make

a strong and unrealistic assumption that user behavior is homogeneous, and they all

aim to optimize a standard MAB objective, i.e., maximizing total clicks. Similar

to our model, combinatorial semi-bandit (CSB) also considers multiple arms being
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pulled with semi-bandit feedback at each round (Kveton et al., 2015; Chen et al.,

2016b,a; Wang and Chen, 2018). For example, the work in Chen et al. (2016a)

studied the general CSB framework, and proposed a UCB-style policy CUCB with

regret upper bound. Later, the work in Wang and Chen (2018) developed a policy

based on Thompson sampling. Also, the work in Kveton et al. (2015) derived two

upper bounds on the n-step regret of policy CombUCB1, while proving a matching

lower bound using a partition matroid bandit. We note that the CSB setting differs

from ours in two key aspects: i) while CSB considers a subset of arms as a super arm

at each round, our setting additionally considers the ranking within the super arm

that also affects the reward; ii) the reward in our setting is based on two unknown

parameters: position preferences and arm means, which cannot be directly estimated

separately due to partial observation of the user feedback. These complications are

unseen in conventional CSB settings.
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Chapter 3

Bandit Learning with Self-Reinforcing User

Preferences

3.1 Overview

The missing of joint modeling of incentives and self-reinforcing preferences in the

existing MAB framework (two key features of many online e-Commerce systems) mo-

tivates us to fill this gap in this work. Specifically, in this work, we first propose a

more general MAB model with stochastic arm selections following user preferences,

which is closely modeling random user behaviors in most online recommendation sys-

tems. This is in stark contrast to most existing works in the areas of incentivized

bandits (Frazier et al., 2014; Wang and Huang, 2018), where a (unrealistic) determin-

istic greedy user behavior is often assumed. Under this model, a pair of fundamental

trade-offs naturally emerge: (1) Sufficient exploration is required to identify an opti-

mal arm, which may result in multiple pullings of sub-optimal arms, while adequate

exploitation is needed to stick with the arm that did well in the past, which may or

may not be the best choice in the long run; (2) The agent needs to provide enough

incentives to mitigate unfavorable initial bias and self-reinforcing user preferences,

while in the meantime avoiding unnecessarily high incentives for users. As in most

online learning problems, we use regret as a benchmark to evaluate the performance

of our MAB policy, which is defined as the performance gap between the proposed
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policy and an optimal policy in hindsight. The major challenges in this new MAB

model thus lie in the following fundamental questions:

(a) During incentivized pulling, how could the agent maintain a good balance between

exploration and exploitation to minimize regret?

(b) How long should the agent incentivize until the right self-reinforcing user prefer-

ence is established toward an optimal arm (so that no further incentive is needed)?

(c) Is the established self-reinforcing user preferences sufficiently strong and stable to

sustain the sampling of an optimal arm over time without additional incentives?

If yes, under what conditions could this happen?

In this work, we answer the above questions by proposing two “log(T )-regret-with-

log(T )-payment” policies for the incentivized MAB framework with self-reinforcing

preferences.

3.2 System Model and Problem Formulation

We denote the set of arms offered by the agent as A = {1, . . . ,M}. Each arm a follows

a Bernoulli reward distribution Pa with an unknown mean µa > 0. The process runs

for T rounds. As shown in Fig. 5.2, in each time step t ∈ {1, . . . , T}, a user arrives

and chooses an arm I(t) to pull, then receives a random reward X(t) ∼ PI(t), which

is observable to the agent. We use Ta(t) =
∑t

i=1 1{I(i)=a} to denote the number of

times that an arm a is pulled up to time t. We denote the total reward generated by

arm a up to time t as Sa(t) =
∑t

i=1X(i) · 1{I(i)=a}. We let Ta(0) = 0 and Sa(0) = 0,

∀a ∈ A. We assume that there is a unique best arm a∗ ∈ A, i.e., a∗ = arg maxa µa

and µ∗ = µa∗ .
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1) Preference and Bias Modeling: Unlike most of the incentivized MAB

models where users are rational and independent, the user behavior is stochastic and

influenced by history in our model. Specifically, in each time step t, the user has a

non-zero probability λa(t) ∈ (0, 1) to pull each arm a ∈ A, with
∑

a∈A λa(t) = 1,∀t.

In other words, the probability λa(t) can be viewed as the preference rate of arm a in

time step t. We adopt the widely used multinomial logit model in the literature to

model λa(t) as follows:

λa(t) =
F
(
Sa(t− 1) + θa

)∑
i∈A F

(
Si(t− 1) + θi

), (3.1)

where F (·) : R→ (0,+∞) is a feedback function that is increasing, and θa > 0 denotes

the fixed initial preference bias of arm a. Intuitively, the increasing feedback function

F (·) models the self-reinforcing user preference effect in the following sense: if an arm

a has been more profitable in the past, a user who prefers arm a is more likely to

arrive in the next round. A simple example of the feedback function is F (x)=xα for

some constant α>1. Here, α represents the strength of the self-reinforcing preference:

a larger α implies a stronger self-reinforcing preference effect.

Several important remarks for the preference model in (3.1) are in order. The

multinomial logit model is based on the behavioral theory of utility and has been

widely applied in the marketing literature to model the brand choice behavior (Guadagni

and Little, 2008; Gupta, 1988). The multinomial logit model is also used in the so-

cial network literature to model preferential attachment (Barabási and Albert, 1999),

where the probability that a link connects a new node j with another existing node

i is linearly proportional to the degree of i. Notably, this multinomial logit model

has also been adopted in Shah et al. (2018) to model the same type of self-reinforcing
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Figure 3.1: Incentivized MAB model with stochastic arm selection based on user
preference rates and incentives.

phenomenon in their MAB model.

2) Incentive Mechanism Modeling: Unlike in conventional MAB models, the

agent in our model can only offer some incentive on the arm that the agent wants

to explore, so as to increase the users’ preferences of pulling this particular arm for

the agent (as shown in Fig. 5.2). The agent’s goal is to maximize total reward in

the long run. In this paper, we model the influence of the incentives by adopting

the so-called “coupon effects on brand choice behaviors” in the economics literature

(Papatla and Krishnamurthi, 1996; Bawa and Shoemaker, 1987). In this model,

the relationship between coupons and choices is nonlinear, and the redemption rate

increases with respect to the coupon value but exhibits a diminishing return effect

(Bawa and Shoemaker, 1987). Specifically, in time step t, if the agent wants to explore

arm a, the agent will offer a fixed payment b1 to the current user to increase the user’s

preference on pulling arm a. Under the coupon effect model, the posterior preference

1In this paper, we consider fixed payment with the goal of gaining a first fundamental under-
standing of the regret of the proposed new MAB model. The problem of optimizing the total cost
of a time-varying payment strategy is an important related problem, which will left for our future
studies.
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rates of the arms with incentive b are updated as follows:

λ̂i(t)=



Ḡ(b, t) + F
(
Si(t− 1) + θi

)
Ḡ(b, t) +

∑
j∈A F

(
Sj(t− 1) + θj

), i = a,

F
(
Si(t− 1) + θi

)
Ḡ(b, t) +

∑
j∈A F

(
Sj(t− 1) + θj

), i 6= a,

(3.2)

where Ḡ : R2 → R+ is an increasing function of b with Ḡ(0, ·) = 0, which can

be interpreted as the impact of payment b on users at time t. Intuitively, Ḡ(b, t)

represents the “impact” of offering incentive b on users at time t. Also, Ḡ(b, t) has

the property that it is increasing over time. The interpretation is that, as arms gain

higher accumulative total reward
∑

i∈A F
(
Si(t − 1) + θi

)
as t increases (e.g., items

gaining more positive reviews), offering the same amount of incentive b on any of

them becomes more attractive.

Clearly, the posterior preference update in (3.2) still follows the multinomial logit

model. Also, we can see from (3.2) that, as parameter b increases asymptotically

(b ↑ ∞), we have λ̂a(t) ↑ 1 and λ̂i(t) ↓ 0, ∀i 6= a, i.e., arm a is preferred with

probability one. For simplicity in our subsequent analysis, in the rest of the paper,

we rewrite λ̂i(t) in the following equivalent form: we divide both the denominator and

numerator by
∑

i∈A F
(
Si(t−1)+θi

)
and let G(b, t) , Ḡ(b, t)/

∑
i∈A F

(
Si(t−1)+θi

)
.

Then, it can be verified that Eq. (3.2) can be equivalently rewritten as:

λ̂i(t) =



λi(t) +G(b, t)

1 +G(b, t)
, i = a,

λi(t)

1 +G(b, t)
, i 6= a.
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Clearly, G(b, t) remains an increasing function of b. Also, we define the accumulative

payment up to time step t as Bt :=
∑t

i=1 bt, where bt ∈ {0, b}, ∀t, denotes the agent’s

binary decision whether to offer incentive b at time step t.

3) Regret Modeling: Let ΓT =
∑T

t=1X(t) denote the accumulative reward up

to time T . In this paper, we aim to maximize E[ΓT ] by designing an incentivized

policy π with low accumulative payment in terms of growth rate with respect to T .

A policy π is an algorithm that produces a sequence of arms that are recommended

at time step t = 1, . . . , T . Similar to conventional MAB problems, we measure our

accumulative reward performance against an oracle policy, where in hindsight the

agent knows the best arm a∗ with the largest mean and can always offer an infinite

amount of payments to users, so that the updated preference rate of arm a∗ is always

infinitely close to one. We denote the expected accumulative reward generated under

the oracle policy up to time T as E[Γ∗T ] = µa∗T .2 The expected (pseudo) regret is

defined as: E[RT ] = µa∗T −E[ΓT ]. Our goal is to minimize E[RT ], with low expected

accumulative payment E[BT ] with respect to the time horizon T .

2It is insightful to compare our oracle policy with Shah et al. (2018). The oracle policy in Shah
et al. (2018) does not achieve µa∗T expected accumulative reward up to time T due to the following
key modeling difference: In Shah et al. (2018), it is assumed that the agent can only feed a single
arm at a time to the current user. Hence, the oracle policy keeps only feeding the best arm to all
arriving users. However, in the early time steps, a fraction of the users may not prefer the best arm
due to initial biases. Hence, the agent has to spend time mitigating these initial biases, resulting in
an expected accumulative reward smaller than µa∗T .

In contrast, we assume that the agent can feed all arms to each user (closely models real-world
recommender systems), and the oracle policy offers an infinite amount of payment as incentives. As
a result, users will always pull the best arm with probability one in each time step, which implies
µa∗T expected accumulative reward up to time T .
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3.3 Policy Designs and Performance Analysis

In this section, we present two policies that achieve O(log T ) expected regret with

O(log T ) accumulative payment with respect to time horizon T .

3.3.1 The Basic Idea

The main idea of our two proposed policies is based on a unique three-phase MAB

policy architecture: 1) We first perform exploration among all arms by incentivizing

pulling until we know the best-empirical arm is optimal, i.e., â∗ = a∗ with high

confidence; 2) We keep incentivizing the pulling of the best-empirical arm â∗ until it

dominates and attracts users who favor this arm; and 3) We stop incentivizing and

rely on the self-reinforcing user preference to continue pulling the optimal arm. The

success of our incentivized policy designs relies on guaranteeing the dominance of arm

â∗, which is defined as follows:

Definition 1 (Dominance). An arm is said to be dominant if it produces at least half

of the total reward.

Our MAB policy designs are based on a key fact that, if the feedback function

F (x)’s growth rate is superlinear polynomial, then as soon as dominance is estab-

lished, we can stop incentivizing and rely on the users’ self-reinforcing preferences

to converge to one arm within a finite number of rounds, i.e., an arm a ∈ A is the

only arm to be sampled eventually. We call this event as the monopoly by arm a

(monoa for short). We point out that a key contribution in this work is the insight

that dominance happens much sooner than establishing monopoly (to be shown later

that this only takes O(log(T )) rounds). This fact further implies the existence of
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an incentivized policy with sub-linear total payment. We formally state this fact as

follows:

Lemma 1. (Monopoly) There exists an incentivized policy that induces users’ pref-

erences to converge in probability to an arm over time with sub-linear payment, if and

only if F (x) satisfies
∑+∞

i=1

(
1/F (i)

)
< +∞.

Proof Sketch of Lemma 1. Our main technique for proving Lemma 1 is an improved

exponential embedding method. This method simulates the reward generating se-

quence by random exponentials. In what follows, we outline the key steps of the

proof and relegate the details to the supplementary material.

Step 1) Construction of an Equivalent Reward Generating Sequence: Define a

sequence {χj}∞j=1 denoting the reward generating order, where each element denotes

the arm index. Note that an arm index appears in {χj} only if it is pulled and

generates a unit reward. We want to construct a sequence {ζj} that has the same

conditional distribution as {χj} given history Fj−1. Then, the constructed sequence

{ζj} will be leveraged to prove the lemma.

For arm i, consider a collection of independent exponential random variables

{ri(n)} such that E[ri(n)] = 1/[µiF (n + θi)]. We construct an infinite set Bi =

{∑n
k=0 ri(k)}∞n=0, where each element

∑n
k=0 ri(k) models the time needed for arm i

to obtain accumulative reward n. Then we mix and sort Bi in an increasing order for

all i ∈ A to form a new sequence H. Our objective sequence {ζj} is the arm index

sequence out of H. Then, we can prove by induction that given the previous reward

history Fj−1, the constructed sequence {ζj} has the same conditional distribution as

{χj}.
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Step 2) Establishing Attraction Time: The proof of Lemma 1 is done once we show

that if and only if any feedback function F (x) > 0 satisfies
∑

i

(
1/F (i)

)
< +∞, then

P(∃a ∈ A, monoa) = 1. We define the attraction time N as the time step when the

monopoly happens. With the constructed sequence {ζj}, we establish the necessity

by showing that if
∑

i

(
1/F (i)

)
< +∞ then P(N < ∞) = 1, and the sufficiency

by showing that if
∑

i

(
1/F (i)

)
= +∞ then P(N = ∞) > 0. This completes the

proof.

Remark 1. The exponential embedding technique has been applied in the literature

(see, e.g., Zhu (2009); Oliveira (2009); Davis (1990); Athreya and Karlin (1968)).

This technique embeds a discrete-time process into a continuous-time process built

with exponential random variables. We adapt it to our model by using exponential

random variables with specific distributions. The most significant feature of our ex-

ponential embedding technique is that the random times of different arms generating

unit rewards are independent and can be mathematically expressed as exponential

distributions, which facilitates our subsequent analysis.

Remark 2. A simple example that satisfies the condition in Lemma 1 is F (x) = Cxα

for some constants C > 0 and α > 1 (i.e., superlinear polynomial). In this case, there

exists an incentivized policy that induces all preferences to converge over time with

sub-linear total payment, since
∑+∞

i=1 (1/iα) < +∞ with α > 1. Previous works

(Drinea et al., 2002; Khanin and Khanin, 2001) considering the balls and bins model

also studied this feedback function with α ≤ 1. For α < 1, the asymptotic preference

rates of arms are all deterministic, positive, and dependent on the means and biases

of arms. For α = 1, the system is akin to a standard Pólya urn model, and will

converge to a state where all arms have random positive preference rates depending
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on the means and initial biases of the arms. For α > 1, the system converges almost

surely to a state where only one arm has a positive probability to generate rewards,

depending on the means and initial biases of arms. Thus, systems under these three

α-values exhibit completely different behaviors.

Remark 3. In our later theoretical and numerical studies, we will focus on the class

of polynomial functions F (x) = Θ(xα) with α > 1 as the feedback function. We note

that the use of F (x) = Θ(xα) does not lose much generality since all analytic functions

in a bounded range can be approximated arbitrarily well by their Taylor polynomial

expansions. Also, since F (x) that satisfies the condition
∑+∞

i=1

(
1/F (i)

)
< +∞ in

Lemma 1 is lower bounded by Ω(xα) with α > 1 (by considering
∑+∞

i=1

(
1/F (i)

)
as p-series), F (x) = Θ(xα) with α > 1 is general enough to cover a large class of

functions.

3.3.2 The At-Least-n Explore-Then-Commit Policy

Our first policy is the At-Least-n Explore-Then-Commit (ALnETC), which consists

of three phases: the exploration phase, the exploitation phase, and the self-sustaining

phase. The agent incentivizes in the first two phases. During the exploration phase,

ALnETC explores all arms until each arm generates sufficient accumulative reward.

Then, the policy incentivizes the arm with the best empirical mean until it dominates

(as defined in Definition 1). Toward this end, we define the sample mean of arm a

at time step t as µ̂a(t) = Sa(t− 1)/Ta(t− 1). Then, we formally state the ALnETC

policy as follows:

For the ALnETC policy, we next show that if the incentive effect is sufficiently

strong, then the dominance time τs happens within O(log T ) rounds, which is much
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Algorithm 1 At-Least-n Explore-Then-Commit (ALnETC).

Require: time horizon T , payment b and n = q lnT , where q > 0 is some tuning
parameter.

1: 1) Exploration Phase: Incentivize pulling arm a ∈ arg mini∈A Si(t) with pay-
ment b until time τn = min{t : Sa(t) ≥ n, ∀a}∧T , when any arm has accumulative
reward of at least n.

2: 2) Exploitation Phase: Incentivize pulling the best-empirical arm â∗ ∈
arg maxa∈A µ̂a(τn) with payment b until it dominates, i.e., Sâ∗(t) ≥

∑
a6=â∗ Sa(t).

Mark current time as τs.
3: 3) Self-Sustaining Phase: Users pull arms based on their own preferences until

time T .

sooner than the attraction time (i.e., time for establishing monopoly). We formally

state this result as follows:

Lemma 2. (Dominance) In ALnETC, if the incentive sensitivity function G(·) and

the payment b satisfy G(b, t) > 1 for all t in the exploration and exploitation phases,

then the expected dominant time τs is O(log T ).

Remark 4. In Lemma 2, the condition “G(b, t) > 1” has an interesting interpretation

in practice. Recall that G(b, t) is defined as G(b, t) , Ḡ(b, t)/
∑

i∈A F
(
Si(t− 1) + θi

)
(cf. Section 4.2). Thus, G(b, t)>1 means that the “incentive impact” Ḡ(b, t) should

be larger (could be ever so slightly) than the “impact of arms’ accumulative reward”∑
i∈A F (Si(t−1)+θi) so that incentive control is possible.

Based on the above result, we will show next that once the best-empirical arm

dominates, then it implies sub-linear regret and accumulative incentive payment.

Intuitively, this is because we will show that, within a finite number of steps after

dominance time τs, monopoly happens with probability one, and arm â∗ has a high

probability to emerge victorious in the monopoly (to be shown in the proof of Theorem

3). If the time horizon T is sufficiently large to cover the attraction time (i.e., the

23



time when monopoly happens), then arm â∗ will be sampled repeatedly after the

attraction time, while the expected pulling times from sub-optimal empirical arms

after the dominance is o(log T ) (which contributes to the regret). Thus, the policy

achieves a sub-linear expected regret. For each arm a, we set ∆a = µ∗ − µa, and let

∆min = mina6=a∗ ∆a, ∆max = maxa6=a∗ ∆a. We formally state this result as follows:

Theorem 3. (At-Least-n Explore-Then-Commit) Given a fixed time horizon T , if

(i) G(b, t) > 1, (ii) q ≥ (2 maxa6=a∗ µa)/∆
2
min, (iii) F (x) = Θ(xα) with α > 1, then

the expected regret of ALnETC is upper bounded by:

E[RT ] ≤
∑
a∈A

2(G(b, t)− La∗)∆max(
G(b, t)− 1

)
µa

· q lnT + o(log T ),

where La = F (q lnT + θa)/
∑

i∈A F (µ∗T + θi). The expected total payment is upper

bounded by:

E[BT ] ≤
∑
a6=a∗

2b(G(b, t) + 1)

µa(G(b, t)− 1)
· q lnT.

Remark 5. For a given incentive b, as G(b, t) increases asymptotically (large in-

centive impact), regret and total payment decrease to some limiting amounts. This

makes intuitive sense since if the incentive has a larger impact on users, it will re-

duce the pullings of random unfavorable arms and shorten the exploration and ex-

ploitation phases. On the other hand, as G(b, t) decreases towards one from above,

users are less affected by incentives, thus in many instances the exploration phase

never stops. This could lead to linear expected regret and linear expected total pay-

ment. Meanwhile, as q decreases, both regret and total payment are smaller. But if

q < (2 maxa6=a∗ µa)/∆
2
min, the exploration will be insufficient to guarantee the event
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{â∗ = a∗}. This leads to a linear regret. Also, a large ∆max implies larger a loss

of pullings of suboptimal arms to reach n accumulative reward during exploration

phase, leading to a larger regret.

Proof Sketch of Theorem 3. Due to space limitation, we provide a proof sketch here

and relegate the details to the supplementary material. By the law of total expecta-

tion, the expected regret up to time T can be decomposed as:

E[RT ] ≤ E[RT | â∗ = a∗]︸ ︷︷ ︸
(a)

+T · P(â∗ 6= a∗)︸ ︷︷ ︸
(b)

.

To bound E[RT ], we want to upper bound both E[RT | â∗ = a∗] and P(â∗ 6= a∗). First,

in (b), the probability P(â∗ = a∗) ≤ P
(
µ̂a(τn) ≥ µ̂a∗(τn)

)
is bounded by O(T−1) by

leveraging the Chernoff-Hoeffding bound. Also, noting that

(a) = µ∗T −
(
E[Γτs | â∗ = a∗] + E[ΓT − Γτs | â∗ = a∗]

)
,

where Γt is the accumulative reward up to time t, we first need to upper bound E[τn]

and E[τs]. Consider E[τn], we show that the number of pulling of arm a to get a unit

reward is a geometric random variable with parameter larger than µaG(b, t)/
(
G(b, t)+

1
)
. Then, for each arm a ∈ A to obtain at least n accumulative reward, the expected

time needed is upper bounded by

E[τn] ≤
G(b, t) + 1

G(b, t)
·
∑
i∈A

q lnT

µi
.

For E[τs], since τs is the earliest time for the system to reach dominance, τs satisfies the

condition µâ∗E[Tâ∗(t)] ≥
∑

a6=â∗ µaE[Ta(t)]. With the bound of E[τn], after relaxing
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the inequality and some rearrangement, we obtain the upper bound as follows:

E[τs] ≤
G(b, t) + 1

G(b, t)− 1
·
∑
a6=a∗

2q lnT

µa
.

According to the policy, the expected accumulative payment E[BT ] can be bounded

by bE[τs] and part of the expected regret E[Γτs | â∗ = a∗].

The next challenge is to show whether the dominant arm has a large enough prob-

ability to “win” in monopoly during the self-sustaining phase. We use D(u0, n0) to

denote the “bad event” that the fraction of accumulative reward from weak arms

increases over time. Formally, suppose that at time step τs, there are u0n0 accumu-

lative reward generated by weak arms, where n0 is the total reward and u0 < 1/2

is the fraction. Then, D(u0, n0) happens if ∃t′ ∈ (τs, T ], un accumulative reward is

generated from weak arms with fraction u > u0. The probability of event D(u0, n0)

can be bounded as P
(
∃n > n0, D(u0, n0)

)
≤ e−(u0n0)γ = e−O(log T )γ with constant

γ ∈ (0, 1/4) using the improved exponential embedding method and a Chernoff-like

bound developed in the supplementary material. The upper bound of event D(u0, n0)

decreases as u0n0 increases monotonically over time. Thus, the arms that stay on the

weak side for a long time have little chance to win back.

Lastly, we bound the term E[RT − Rτs | â∗ = a∗] in (a), which contributes to

the o(log T ) regret term in Theorem 3. After time τs, a unit reward is generated by

sub-optimal arms with probability upper bounded by e−(u0n0)γ , and then the next

unit reward is also generated by sub-optimal arms with probability upper bounded

by e−(u0n0+1)γ . Thus,

E[RT −Rτs | â∗ = a∗] ≤ e−(u0n0)γ + e−(u0n0+1)γ + · · · ,
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with the summation on the right hand side bounded by O
(
(log T )1−γe−(log T )γ

)
and

γ ∈ (0, 1/4).

3.3.3 The UCB-List Policy

In this section, we propose a UCB-List policy to further improve the performance

of the ALnETC policy. UCB-List is similar to ALnETC and also consists of three

phases. During the exploration phase, the agent initially puts all arms in one set,

and then incentivizes the least pulled arm in the set. Meanwhile, it removes arms

that are estimated to be sub-optimal, until only one arm is left in the set, which is

viewed as the best-empirical arm. Note that in this phase, users can still pull any arm

regardless of the set. Then, the agent incentivizes users to sample the best-empirical

arm until it dominates. The UCB-list policy is stated as follows:

Algorithm 2 UCB-List

Require: time horizon T and payment b, confidence interval of arm a at time step t
denoted by ca(t) =

√
lnT/2Ta(t)

1: Initialization: Incentivize pulling arms satisfying Ta(t) = 0 with payment b until
mina∈A Ta(t) = 1. Let set U = A.

2: 1) Exploration Phase: While |U | > 1, keep removing any arm a satisfying
µ̂a(t) + ca(t) ≤ maxi 6=a,i∈U

(
µ̂i(t)− ci(t)

)
from U if there is any. Then, incentivize

pulling arm a ∈ arg mini∈U Ti(t) with payment b. If |U | = 1, let arm â∗ = {a :
a ∈ U} and mark current time as τ1.

3: 2) Exploitation Phase: Incentivize pulling arm â∗ with payment b until it
dominates: Sâ∗(t) ≥

∑
a6=â∗ Sa(t). Mark current time as τs.

4: 3) Self-Sustaining Phase: Users pull arms based on their own preferences until
time T .

Compared to ALnETC that requires a tuning parameter q, UCB-List does not

need any tuning parameter and dynamically eliminates suboptimal arms, while still
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balancing the exploration-exploitation trade-off to achieve O(log(T )) regret and

O(log(T )) payment. We state this result as follows:

Theorem 4. (UCB-List) Given a fixed time horizon T , if G(b, t) > 1, and F (x) =

Θ(xα) with α > 1, then the expected regret of UCB-List E[RT ] is upper bounded by

∑
a6=a∗

[8∆a

(
G(b, t)−1

)
+8∆max(

G(b, t)−1
)
∆2
a

lnT + 4∆a +
4∆max

G(b, t)−1

]
,

with the expected payment E[BT ] upper bounded by

2G(b, t) + 1

G(b, t)− 1

[8b lnT

∆2
min

+
∑
a6=a∗

(8b lnT

∆2
a

+ 4b

)]
.

Remark 6. Without any tuning parameter, the UCB-List policy adapts to a larger

range of systems. The system parameters such as means of arms µ or their gap

summation
∑

a6=a∗ ∆a play an important role in both regret and total payment. As∑
a6=a∗ ∆a decreases (implying it is harder to differentiate a∗), longer exploration and

exploitation phases are needed, resulting in larger expected regret and total payment.

Also, similar to Theorem 3, as G(b, t) ↓ 1, the expected regret and expected total

payment are closer to being linear, because of the weak incentive effect.

Proof Sketch of Theorem 5. We provide a proof sketch here and relegate the details

to the supplementary material. The expected time for initialization can be upper
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bounded by O(1) trivially. By the law of total expectation, we have:

E[RT ] ≤E[Rτ1 ]︸ ︷︷ ︸
(a)

+E[Rτ2 −Rτ1 | â∗ = a∗]︸ ︷︷ ︸
(b)

+ E[RT −Rτ2 | â∗ = a∗]︸ ︷︷ ︸
(c)

+T · P(â∗ 6= a∗)︸ ︷︷ ︸
(d)

.

In what follows, we will bound the four terms on the right-hand-side one by one.

(a) In the exploration phase, since the regret results from the pulls of sub-optimal

arms, the expected regret at time step τ1 can be written as E[Rτ1 ] =
∑

a6=a∗ ∆aE[Ta(τ1)].

Thus, term (a) can be bounded if we upper bound E[Ta(τ1)] for each a ∈ A. Let

U(t) denote the set of arms that can get payment at time t. Consider the following

two cases: (i) At time t ≤ τ1, a∗ ∈ U(t) and there exists at least one suboptimal

arm a ∈ A, a 6= a∗ such that a ∈ U(t). In this case we upper bound the probabil-

ity P
(
∃a 6= a∗ : a ∈ U(t), a∗ ∈ U(t)

)
, and by using the Chernoff-Hoeffding bound,

we obtain that when Ta(t) ≥ (8 lnT )/∆2
a we have P

(
∃a 6= a∗ : a ∈ U(t), a∗ ∈

U(t)
)
≤ 2T−1. Thus, in this case, the expected regret is contributed by a subopti-

mal arm a is ∆aE[Ta(t)] ≤ (8 lnT )/∆a + 2∆a; (ii) At time t ≤ τ1, a∗ is eliminated

by some suboptimal arm a ∈ U(t). With the Chernoff-Hoeffding bound, we obtain

P
(
∃a 6= a∗ : a ∈ U(t), a∗ /∈ U(t)

)
≤ 2T−1. Summing over all possible cases and all

suboptimal arms, E[Rτ1 ] is bounded by:

E[Rτ1 ] ≤
∑
a6=a∗

8 lnT

∆a

+ 4∆a.
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(b) In the exploitation phase, the expected regret E[Rτ2 − Rτ1 | â∗ = a∗] is upper

bounded by O(E[τ2 − τ1]) since

E[Rτ2 −Rτ1 | â∗ = a∗] ≤
∆max

G(b) + 1
· E[τ2 − τ1].

In term (a), the upper bound of E[Rτ1 ] implies that each suboptimal arm a is pulled

at least (8 lnT )/∆2
a with a∗ being pulled at least (8 lnT )/∆2

min times, similar to the

proof of Theorem 3 we obtain the upper bound of both E[τ1] and E[τ2−τ1]. This leads

to the upper bounds of both E[Rτ2 −Rτ1 | â∗ = a∗] and E[BT ] = (E[τ1] +E[τs− τ1])b.

(c) This term represents the expected regret from τ2 to T . Similar to the proof

of Theorem 3, this part of expected regret is bounded by O
(
(log T )1−γe−(log T )γ

)
,

γ ∈ (0, 1/4).

(d) The probability P(â∗ 6= a∗) can be bounded by O(T−1) since P(â∗ 6= a∗) =

P
(
∃a 6= a∗ : a ∈ U(t), a∗ /∈ U(t)

)
, which can be bounded by 2T−1 as in (a)-case (ii).

Combining steps (a)–(d) yields the result stated in the theorem and the proof is

complete.

3.4 Simulations

In this section, we conduct simulations to evaluate the performances of ALnETC and

UCB-List policies.

3.4.1 Comparisons with Baselines

We first compare the ALnETC policy with two baselines: i) no incentive control,

and ii) with incentive control only during exploration. We only compare ALnETC
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Figure 3.2: Comparison of ALnETC and baselines.

with the baselines since UCB-List outperforms ALnETC (to be discussed next). The

simulation setting is as follows: a two-armed model with means µ = [0.3, 0.5] and

initial biases θ = [100, 1], the feedback function F (x) = xα with α = 1.5 and payment

b = 1.5 with an incentive impact function G(x, t) = x. We use the optimal ALnETC

parameter q = 15. The results are shown in Fig. 3.2, where each data point is aver-

aged over 1000 trials. We observe that the average regret under no incentives grows

linearly due to the large initial bias toward the suboptimal arm and self-reinforcing

preferences. The average regret under partial incentive is also linear since the incen-

tive is insufficient to offset the initial bias toward the suboptimal arm. In contrast,

the average regret of ALnETC policy follows a log(T ) growth rate.

3.4.2 Comparisons with Imperfect Conditions

In real-world applications, some of our model conditions may not always hold (e.g.,

the conditions G(b, t) > 1 and F (x) = Θ(xα) with α > 1). Therefore, we conduct

the simulations to study the robustness of our proposed policies. The system setting

in the group with incentive is almost the same as that in Section 3.4.1: a two-armed

model with means µ = [0.3, 0.5] and initial biases θ = [100, 1], the feedback function
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Figure 3.3: Comparisons of imperfect conditions.

F (x) = xα. The key difference is that, in this study, we set α ≤ 1 and G(b, t) < 1

(i.e., the conditions in our theoretical results are not satisfied). Specifically, we set the

value of G(b, t) to be 0.5 and 0.2, implying a weaker incentive impact. Also, we choose

the value of α to be 1.0 and 0.2, implying a weaker self-reinforcing preference strength.

We use the optimal ALnETC parameter q = 15. The results are shown in Fig. 3.3,

where each data point is averaged over 1000 trials. We observe that as the values of α

and G(b, t) decrease, the average regrets of both policies increase. Specifically, when

the incentive impact G(b, t) becomes small enough, or the self-reinforcing preference

strength is weak enough (e.g., α ≤ 1), the regrets of both policies no longer exhibit

sub-linear trends.

3.4.3 Comparisons between ALnETC and UCB-List

Finally, we compare ALnETC and UCB-List. The simulation setting is as follows:

a three-armed model with means µ = [0.2, 0.4, 0.6] and initial biases θ = [10, 10, 1],

the feedback function F (x) = xα, α = 1.5 and payment b = 1.2 with an incentive

impact function G(x, t) = x. For ALnETC, we set the optimal parameter q = 20.
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Four groups of simulations are conducted and the results are shown in Fig. 4.5-3.7,

where each data point is averaged over 1000 trials. Fig. 4.5 illustrates the performance

of both average regret and total payment. Fig. 4.5 also serves as a benchmark for

comparisons with other three groups of results. In each of Figs. 4.6–3.7, only one

parameter is changed compared to the benchmark group. This helps us observe the

changes in average regret and total payment. In Fig. 4.6, all settings are the same

as Fig. 4.5 except α = 2. In Fig. 4.7, all settings are the same as those in Fig. 4.5

except θ = [50, 50, 1]. In Fig. 3.7, all settings are the same as Fig. 4.5 except b = 1.8.

The results show that both policies achieve O(log T ) average regrets and O(log T )

average total payment. This indicates that: i) both policies balance the exploration-

exploitation trade-off so that an order-optimal regret can be reached; ii) both policies

balance the trade-off between maximizing the total reward and keeping the total

payment growing at rate O(log T ). In Fig. 4.6, the results show that both policies

achieve a smaller average regret, because the self-reinforcing preferences are easier to

converge to the incentivized arm under a larger α. Also, ALnETC incurs a higher

total payment because it incentivizes the pulling of sub-optimal arms more often. In

Fig. 4.7, both policies have larger average regrets because it takes more effort for both

policies to mitigate the larger initial biases. In Fig. 3.7, as the payment for each time

step increases from 1.5 to 1.8, the average regrets are not affected significantly, while

the total payments increases correspondingly. Thus, a proper amount of payment

depends on specific system parameters.
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Figure 3.4: Benchmark results.
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Figure 3.5: Policy performance with parameter α = 2.
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Figure 3.6: Policy performance with parameter θ = [50, 50, 1].
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Figure 3.7: Policy performance with parameter b = 1.8.
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Chapter 4

Bandit Learning with Joint Effect of Incentivized

Sampling, Delayed Sampling Feedback, and

Self-Reinforcing User Preferences

4.1 Overview

It is worth noting that most of the existing MAB models in the literature have not

considered the joint effect of three common phenomena in e-commerce recommenda-

tion systems: (i) In many e-commerce recommendation systems, the platform (the

learning agent) cannot sample an intended product (an intended arm) directly and

has to incentivize customers (e.g., through promotions and coupons) to sample the

product and receive the sampling feedback from the customers indirectly (e.g., ratings

and reviews); (ii) Customer feedbacks are often received much later than their pur-

chasing times (e.g., a review may or may not be submitted by a customer even months

later after purchasing a product); and (iii) Customer preferences among products are

influenced and reinforced by historical feedbacks, which may even lead to various

viral effects over some products (the more good reviews one product has received,

the more likely that the next arriving customer will prefer this product). The lack

of a fundamental understanding and joint studies of these three important factors in

MAB policy designs motivates us to fill this gap in this work.
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Toward this end, we propose a new MAB framework that jointly considers i)

incentivized sampling, ii) delayed sampling feedback, and iii) self-reinforcing user

preferences in online recommendation systems. However, we note that the MAB

policy design for the proposed new MAB framework is highly non-trivial due to

the complex couplings between the aforementioned three factors. First, similar to

conventional MAB problems, there exists a dilemma between sufficient exploration

through sampling to learn an optimal arm (i.e., an optimal product), which may

incur numerous pullings of sub-optimal arms, and the greedy exploitation to play

the arm that has performed well thus far to earn profits. Second, there is another

dilemma to the learning agent between offering sufficiently attractive incentives to

mitigate biases (due to lack of initial data and self-reinforcing user preferences) and

avoid spending unnecessarily high incentives that hurt the learning agent’s profits.

Last but not least, the delayed sampling feedbacks may render the estimation of

arms’ quality during the MAB process highly inaccurate, introducing yet another

layer of uncertainty to the MAB online learning problem, which is already plagued

by complications from incentivized sampling and self-reinforcing user preferences. As

in most MAB problems, we adopt “regret” as our performance metric in this work,

which is defined as the cumulative reward gap between the proposed policy and an

optimal policy design in hindsight. Under the regret setting, the complications due

to these three key factors naturally prompt the following fundamental questions:

(1) How should the agent design an incentivizing strategy to strike a good balance

between exploration and exploitation to achieve sublinear (hopefully logarithmic)

regrets?

(2) To avoid offering exceedingly high incentives, how should the agent incentivize
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in order to attract a user crowd that prefer an optimal arm, so that the users’

self-reinforcing preference could automatically gravitate toward this optimal arm

without further incentives?

(3) Under various delayed feedback situations in the new MAB framework (e.g., un-

bounded random delays, heavy-tailed delay distributions, and arm-dependent

delays), could we still achieve low regrets with low incentive costs?

In this chapter, we answer the above fundamental questions affirmatively by

proposing a new “Delayed-UCB-Filtering” policy for the MAB framework that jointly

considers incentivizing sampling, delayed sampling feedback, and self-reinforcing user

preferences. We show that our proposed policy achieves O(log T ) regret with O(log T )

incentive payments. The success of our policy design hinges upon two key insights: (i)

the self-reinforcing user preference effect is actually a “blessing in disguise” and can

be leveraged to establish an important “dominance” condition (more on this later)

that further implies O(log T ) regret and incentive costs; and (ii) the impacts of de-

layed feedback on regret and incentive costs can be upper bounded under appropriate

statistical settings to preserve the “dominance” condition.

4.2 System Model and Problem Formulation

The system has a set of M ≥ 2 arms denoted by A = {1, . . . ,M}, and each arm

a follows a Bernoulli reward distribution Pa with an unknown mean µa > 0. The

bandit time horizon has T rounds. In each time step t = 1, 2, . . . , T , a user arrives

and chooses an arm I(t) to pull. Then, the user will receive a random reward feedback

X(t) ∼ PIt . Both the arm selection I(t) and the feedback X(t) are observable to the

agent. We use Ta(t) ,
∑t

i=1 1{I(i)=a} to denote the number of times that arm a is
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pulled up to time step t. We let Ta(0) = 0, ∀a ∈ A. We assume that there is a unique

best arm a∗ ∈ A in the sense that a∗ = arg maxa∈A µa and let µ∗ = µa∗ . Also, we

define ∆a , µ∗ − µa as the gap between the mean of the optimal arm and the mean

of arm a.

4.2.1 Delayed Feedback Modeling

In this work, we consider delayed feedback, i.e., when an arm I(t) is pulled at time

step t, the corresponding Bernoulli reward X(t) is observed after a delay period τI(t),t,

i.e., the feedback X(t) is observed at time step t+ τI(t),t. Without loss of generality,

we model the random delay time as a random variable τa,t ∼ Ta, where the delay

distribution Ta of arm a is unknown to the agent.

We consider two settings of delayed feedback. We first consider i.i.d. delays

{τt}t≤T across time and arms, i.e., the delay distributions are identical for all arms.

Thus, we omit the arm index in the notations of delay feedback in this setting.

Next, we generalize the delay modeling by allowing arm-dependent delay distribu-

tions, where the delay distributions are allowed to differ across arms. In both settings,

we do not make further assumptions on the delay distributions, except that we only

require a finite delay expectation. Note that we allow the support of the delays to be

unbounded, i.e., an infinite delay time is possible in both settings. This models the

practical scenarios in online recommendation systems that some user feedbacks (e.g.,

ratings and reviews) may never be received.

Under delayed feedbacks, we denote the total number of missing feedbacks from

arm a up to a time step t as Da(t) ,
∑t

s=1 1{s+τa,s>t}. We let D∗a(t) = max1≤s≤tDa(s),

∀a ∈ A as the maximum total number of delayed feedback for arm a up to time
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t. Note that D∗a(t) = 0, ∀a ∈ A corresponds to the non-delayed setting. In this

case, Ta(t) denotes the total number of pulling times of arm a up to time t. At

each time step t, the agent observes a set of time-stamped feedback denoted by

St ⊂ N × {0, 1}. In the set St, each element is a pair of time index and a Bernoulli

reward value, and the time index is the time step when the corresponding reward is

observable. Note that in this model, by observing the set St, the agent is aware of the

information of both the time step when the feedback is received, and the arm that

generated the feedback. We denote the total reward generated by arm a up to time

t as Sa(t) ,
∑t

s=1 X(s) · 1{I(s)=a,s+τa,s≤t}, and let Sa(0) = 0, ∀a ∈ A.

4.2.2 User Preferences and Incentive Impact Modeling

In this work, we assume that the arrival at time t has a non-zero probability λa(t) ∈

(0, 1) to pull each arm a ∈ A. We note that λa(t) can also be thought of as the user’s

preference rate of arm a, and
∑

a∈A λa(t) = 1, ∀t ≤ T . We adopt the widely accepted

multinomial logit model in the economics literature(Bawa and Shoemaker, 1987) to

model arm a’s preference rate at time step t as follows:

λa(t) =
F
(
Sa(t− 1) + θa

)∑
i∈A F

(
Si(t− 1) + θi

), (4.1)

where F (·) : R → (0,+∞) is a feedback function that is increasing, and θa > 0

denotes a fixed initial preference bias of arm a. We note that the preference rate

modeling in (Zhou et al., 2021) is also based on the multinomial logit model, which

appears to be in the same form as in (4.1). However, the key difference between our

preference model in (4.1) and that in (Zhou et al., 2021) is that the accumulative
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award information Si(t − 1) in (4.1) accounts for reward information that can only

be observed up to time t. In other words, Si(t − 1) in (4.1) is affected by feedback

delays. In fact, the preference model in (Zhou et al., 2021) can be viewed as a special

case of our model with zero delay.

Since the arriving users select arms based on preferences, while the agent aims to

maximize the total reward in the long run, there exists a general difference between

users’ arm preferences and agent’s intended arm selection. To induce users to pull

arms following the agent’s goal, the agent needs to intervene users’ arm pulling by

offering incentives on its desired arm, so as to increase the user preference of pulling

the arm. That is, the agent incentivizes arm I ′(t) at time step t so that λI′(t)(t)

increases accordingly. Note that when λI′(t)(t) increases, the preference rates on the

other arms will decrease since
∑

a∈A λa(t) = 1, t ≤ T . We adopt the “coupon effect”

model, which is widely used in the economics and marketing literature (Bawa and

Shoemaker, 1987). Specifically, we consider a fixed incentive b in each time step and

denote the time-dependent incentive impact as G(b, t). Then, the posterior preference

rates of the arms with incentive b are updated as follows:

λ̂i(t) =



λi(t) +G(b, t)

1 +G(b, t)
, i = a,

λi(t)

1 +G(b, t)
, i 6= a.

(4.2)

We remark that the definition of the posterior preference update in (4.2) also follows

from the multi-nomial logit model, which is widely used to model user preferences

and their variations in bandit field (Chen and Wang, 2017; Avadhanula, 2019; Dong

et al., 2020; Zhou et al., 2021). Based on the defined posterior preference, as incentive
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impact G(b, t) increases to infinity (either the incentive value b increases to infinity

or the users are more sensitive to incentives as time goes by), the user preference will

be induced to pulling the agent’s desired arm a with probability one. For further

detailed interpretations of the incentive impact function G(b, t), we refer readers to

the literature (e.g., (Zhou et al., 2021)). Note also that, due to the random user

behaviors, it is possible that I ′(t) 6= I(t), i.e., the arm that the agent incentivizes is

not the one that a user pulls eventually. We define the accumulative incentive up to

time step t as Bt ,
∑t

s=1 bt, where bt ∈ {0, b}, ∀t ≤ T , denotes the agent’s binary

decision whether to offer incentive b at time step t.

4.2.3 Regret Modeling

As in most bandit learning problems, the goal of the agent is to maximize the total

expected reward E
[∑

a∈A Sa(T )
]

in the long run. Toward this end, we need the

notion of the oracle incentivized policy, where in hindsight, the agent is aware of the

optimal arm a∗ and can always offer an infinite amount of payments to users with

feedback being observable immediately, so that the posterior preference rate of arm

a∗ is always infinitely close to one. As a result, the expected accumulative reward

generated under the oracle policy up to time T is E[Sa∗(T )] = µ∗ · T . However, since

the optimal arm a∗ is unknown to the agent, the goal of the agent is to maximize the

total expected reward E[ΓT ] in the long run by designing an incentivized policy with

low accumulative incentive in the presence of self-reinforcing preferences and feedback

delay. Similar to conventional MAB, we measure the performance gap between our

accumulative reward against that of the oracle policy, which is denoted by regret RT .
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The expected (pseudo) regret is defined as follows:

E[RT ] = µ∗ · T − E
[∑
a∈A

Sa(T )
]
.

Our goal is to minimize E[RT ] with low expected accumulative payment E[BT ], i.e.,

sub-linear growth rate regarding time horizon T . It is clear that any policy with

bounded payment cannot outperform the oracle policy. Thus any expected regret

defined by comparing with bounded-payment policy is upper bounded by our regret.

4.3 Policy Designs and Performance Analysis

In this section, we first present the general version of the UCB-FDF policy that

works with any delay distributions, where we upper bound the delay impact on the

regret and incentive costs. Based on this general result, we then study the regret and

incentive costs performance of UCB-FDF under the assumptions of 1) i.i.d. feedback

delay across arms/times and 2) arm-dependent delay distributions. In both cases, we

denote the total number of missing feedbacks over all arms by D(t) ,
∑

a∈ADa(t),

and denote the maximum number of missing feedbacks during the first t time steps

by D∗(t) , max1≤s≤tD(s). For arm a at time step t, we denote the number of its

pulling times whose feedback is observed by T ′a(t) = Ta(t) − Da(t), and denote the

maximum mean gap by ∆∗ = maxa∈A∆a. At time step t, we denote the sample

mean estimation (due to delayed feedbacks) of arm a by µ̂a(t) = Sa(t)/T
′
a(t). Our

UCB-FDF policy is illustrated in Algorithm 3.

UCB-FDF policy contains three phases: an incentivized exploration phase, an

incentivized exploitation phase, and a self-sustaining phase. UCB-FDF policy tack-
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Algorithm 3 The UCB-Filtering-with-Delayed-Feedback Policy (UCB-FDF).

Require: Time horizon T and incentive payment b, the confidence interval of arm a

at time step t defined as ca(t) =
√

lnT/
(
2T ′a(t)

)
.

1: Initialization: Incentivize pulling the arms satisfying T ′a(t) = 0 with incentive
payment b until mina∈A T

′
a(t) ≥ 1. Let set U = A. Mark current time as t0.

2: Exploration Phase: While |U|> 1, remove all the arms from set U satisfying
µ̂a(t) + ca(t) ≤ maxi 6=a,i∈U

(
µ̂i(t) − ci(t)

)
if there is any, then incentivize pulling

arm a ∈ arg mini∈U T
′
a(t) with payment b. If |U| = 1, let arm â∗ = {a : a ∈ U}

and mark current time as t1.
3: Exploitation Phase: Incentivize pulling arm â∗ with payment b until it domi-

nates: Sâ∗(t) ≥
∑

a6=â∗
(
Sa(t) +Da(t)

)
. Mark current time as t2.

4: Self-Sustaining Phase: Users pull arms based on their own preferences until
time T .

les feedback delays in the following two key aspects: (i) correcting the sample mean

estimate of arms by only considering the number of pulling times that have observed

feedback, (ii) setting the length of the exploitation phase in such a way that the out-

standing rewards do not harm the emergence of “dominance” (i.e., one arm receiving

at least half of the rewards) of the sampled optimal arm. Subsequently, these two

aspects also influence the regret and incentive. In order to have enough arm explo-

ration with an unbiased sample mean estimate, the loss of counted number of pulling

times necessitates a carefully designed exploration phase that incentivizes the pulling

of the least informed arm a ∈ arg mini∈U T
′
a(t) under delayed feedbacks. Similarly, the

delay-based dominance threshold (i.e., Sâ∗(t) ≥
∑

a6=â∗
(
Sa(t) + Da(t)

)
in Step 3 of

Algorithm 3) guarantees the dominance of sampled optimal arm, while also accounts

for a longer exploitation phase to mitigate the delayed feedback effect. We now ana-

lyze the upper bounds of the pseudo regret and expected incentive of the UCB-FDF

policy.

Lemma 5. (UCB-Filtering-with-Delayed-Feedback) Given a fixed time horizon T , if
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G(b, t) > 1, and F (x) = Θ(xα) with α > 11, then the pseudo regret of Algorithm 3

E[RT ] is upper bounded by

E[RT ] ≤
∑
a6=a∗

8∆a

(
G(b, 1)− 1

)
+ 8∆∗(

G(b, 1)− 1
)
∆2
a

lnT +
g(F, 1)∆∗

(
E[D∗(T )] + 4K

)
g(b, 1)− 1

,

with the expected payment E[BT ] upper bounded by

E[BT ] ≤ b ·
2G(b, 1) + 1

G(b, 1)− 1

[8 lnT

∆2
min

+
∑
a6=a∗

8 lnT

∆2
a

+ E[D∗(T )] + 4K

]
.

Remark 7. The UCB-FDF policy achieves a sub-linear total incentive cost by lever-

aging the property of self-reinforcing preference. We can show that as long as the

self-reinforcing preference function F (x) satisfies the condition F (x) = Θ(xα) with

α > 1, then “monopoly” happens with probability one (i.e., the scenario where only

one arm has positive probability to be pulled, thus this particular arm is the only

preferred arm). A natural incentivizing policy is to incentivize sampled optimal arm

until it achieves monopoly. However, the key challenge here is that the onset of

monopoly could take infinite time steps, which implies linear total incentive. More-

over, self-reinforcing property is not merely disrupting the system from converging

to the optimal arm. The key idea in our UCB-FDF policy design is that under the

condition of the self-reinforcing preference function F (·), after one arm establishes its

dominance (i.e., the arm a generates at least half of the current total reward), it will

have exponentially increasing probability to beat other arms and achieve monopoly.

More importantly, we can show that the onset of arm dominance takes sub-linear

1The notation Θ() in this work is defined as that, if F (x) = Θ(g(x)), then there exist x0 and two
constants C1, C2 > 0, such that C1G(x) ≤ F (x) ≤ C2g(x) for all x ≥ x0.
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times, thus allowing us to achieve sub-linear total incentive costs.

Remark 8. The feedback delay affects the observation of arm dominance, since the

missing reward information from suboptimal arms, if not compensated carefully, can

potentially destroy the dominance status of the optimal arm. Thus, to guarantee

dominance of the optimal arm, a longer exploitation phase is necessary, and thus a

large total incentive is required.

The existence of delays in our MAB model introduces an additive term Θ(E[D∗(T )])

in both regret and incentive costs, which is dependent on the maximum accumulated

delayed feedback up to time horizon T . Based on Lemma 5, in what follows, we will

analyze the upper bounds of the expected maximum accumulated delayed feedback

under different assumptions on delay distributions.

4.3.1 Arm-Independent Delay with a Finite Expectation

We now analyze the delay impact under our first assumption. In the arm-independent

case, we consider an i.i.d. sequence {τt}t of random delay regarding time step t ≤ T .

We do not make any assumption on the shape of the delay distribution, except that

we only assume a finite expectation E[τ1]. Thus, an infinite random delay is possible

under this assumption, implying some feedbacks may never be observed by the agent.

Our results show that under this assumption, we can still achieve similar orders of

the regret and incentive costs growth rates, since the key fact is that we can upper

bound the expected number of such unexpectedly large random delays for every time

step t.

Existing works (e.g., (Joulani et al., 2013)) provided a systematic study on the

delay effect on the partial monitoring problem with side information, including the
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stochastic problems. Although these works only considered the classic stochastic

MAB, they share some similarities with our work in that their analysis of delay effects

also leveraged the maximum number of missing feedbacks during the first t time steps

D∗(t). However, since our UCB-FDF policy has a different structure compared to

these works on delayed stochastic MAB, their delay analysis is not applicable to our

policy. Next, we restate a result in (Joulani et al., 2013), which will be useful in our

analysis.

Lemma 6 (Lemma 2 in Joulani et al. (2013)). Assume {τ1, . . . , τt} is a sequence

of i.i.d. random variables with finite expected value, and let B(t, s) = s + 2 log t +
√

4s log t. Then, it holds that

E[D∗(t)] ≤ B(t,E[τ1]) + 1.

Theorem 7. (Arm-Independent Delay) Under i.i.d. delays with a finite expectation

and the conditions of Lemma 5, the pseudo regret of Algorithm 3 E[RT ] is upper

bounded by

[2G(b, 1)∆∗

G(b, 1)− 1
+
∑
a6=a∗

8∆a

(
G(b, 1)− 1

)
+ 8∆∗(

G(b, 1)− 1
)
∆2
a

]
lnT+

G(b, 1)∆∗
(√

4E[τ1] lnT + E[τ1] + 4K + 1
)

G(b, 1)− 1
,

with the expected payment E[BT ] upper bounded by

b ·
2G(b, 1) + 1

G(b, 1)− 1

[(
2+

8

∆2
min

+
∑
a6=a∗

8

∆2
a

)
lnT +

√
4E[τ1] lnT + E[τ1] + 4K + 1

]
.
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We note that the gap summation of arms
∑

a6=a∗ ∆a plays an important role in

both regret and total incentive. As arm gaps getting smaller, it is more difficult to

distinguish the optimal arm from others. Thus, a longer exploration phase is required

to conduct enough sampling, which implies a larger regret and a larger total incentive

costs. On the other hand, the feedback delay causes additive terms in both regret

and incentive costs in terms of the expected delay E[τ1], and the delay impact can be

upper bounded as long as the expected delay E[τ1] is no larger than time horizon T .

4.3.2 Arm-Dependent Delay with Finite Expectations

Now, we further relax the assumption on the delay to allow arm-dependent delays.

In this case, the delay has two key impacts on the system: (i) for each arm, there is

a different real-time information loss when estimating the sample mean, (ii) for the

whole arm set, different scales of delay cause an uneven arm estimation, which results

in a larger risk of the elimination of the optimal arm in the UCB-based exploration

step. We formally state our arm-dependent delay assumption as follows:

Assumption 1. The delays of arm a ∈ A form an independent delay sequence {τa,t},

where each element is a random variable satisfying τa,t ∼ Ta, with a finite expectation

E[τa,1] < +∞, ∀a ∈ A.

Under Assumption 1, we show a more general result on the upper bound of

E[D∗(t)] as follows:

Lemma 8. Under Assumption 1, given a finite number of arms K > 0, it holds that

E[D∗(t)] ≤
∑
a∈A

2E[τa,1] + 3K log
t

K
.
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The result in Lemma 8 implies larger upper bounds of the regret and incentive,

due to the existence of the pre-log factor K. This is a consequence of the situation

where, as we consider arm-dependent delay distributions, the worst case could be

evenly distributed expected delays E[τa,1] of arm a with respect to time horizon T .

Formally, we state the upper bounds of regret and incentive as follows:

Theorem 9. (Arm-Dependent Delay) Under Assumption 1 and the conditions of

Lemma 5, the pseudo regret of Algorithm 3 E[RT ] is upper bounded by

∑
a6=a∗

8∆a

(
G(b, 1)− 1

)
+ 8∆∗(

G(b, 1)− 1
)
∆2
a

lnT +
G(b, 1)∆∗

(
3K ln T

K
+
∑

a∈A 2E[τa,1] + 4K
)

G(b, 1)− 1
,

with the expected payment E[BT ] upper bounded by

b ·
2G(b, 1) + 1

G(b, 1)− 1

[( 8

∆2
min

+
∑
a6=a∗

8

∆2
a

)
lnT + 3K ln

T

K
+
∑
a∈A

E[τa,1] + 4K

]
.

Similar to the results under the i.i.d. delay assumption, we can still upper bound

the regret and incentive by an logarithmic growth rate O(log T ) under arm-dependent

delay. This implies that even under the weak delay assumption where only finite

expectation is needed, UCB-FDF can estimate arms without too much bias, and

finally achieve logarithmic regret with logarithmic incentive costs.

4.4 Experiments

In this section, we first introduce our experiment setting and the dataset, then illus-

trate our experimental results.
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4.4.1 Experimental Setup

1) System Parameters: We conduct experiments under two different delay settings.

The system parameters are set as follows: a three-armed model with Arm1 being the

optimal arm, and the initial preference bias θ = [1, 5, 5], i.e., the optimal arm has

the least initial bias. We choose a three-armed model since large arm set requires

a proportional large time horizon to distinguish optimal arm, while in the public

Amazon Review Data, the amount of reviews for most products is limited (no more

than 3,000 for each product). The self-reinforcing preference function is chosen as

F (x) = xα with α = 2. The constant incentive for each time step is set as b = 1.5

with an incentive impact function G(b, t) = b. For the delay distribution, we use

normal distributions in both assumption setting, as normal distributions have an

infinite support x ∈ R. Under the arm-independent delay setting, we choose the

delay distribution as τt ∼ N(10, 2). Under the arm-dependent delay setting, we

choose the delay distributions as τ1,t ∼ N(80, 2), τ2,t ∼ N(10, 2), and τ3,t ∼ N(10, 2)

for Arms 1, 2, and 3, respectively. We only generate non-negative samples of delay

under both assumptions.

Table 4.1: Means of products (arms) in different categories.

Product Category Arm1(optimal) Arm2 Arm3

Pet Supplies 0.773 0.656 0.626
Electronics 0.757 0.605 0.617
Home and Kitchen 0.875 0.588 0.673
Books 0.915 0.551 0.706

2) Dataset: We use Amazon Review Data (Ni et al., 2019) to provide a prac-

tical learning environment. The Amazon Review Data includes 233 million customer

reviews (ratings, posting times) for 29 product categories. In the experiment, we
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select three products to serve as the arms that have the largest number of reviews

in category Pet Supplies, Electronics, Home and Kitchen, and Books, respectively.

For each product (arm), we leverage the rating and unixReviewTime information in

each review, and the total number of reviews is 3,000 for each product. The range

of ratings in Amazon Review Data is the discrete set {1, 2, 3, 4, 5}. We convert the

rating values to binary by setting the rating values 1 and 2 as 0 and the rating value

4 and 5 as 1, and the reviews with rating value 3 are removed. For each product,

the binary review ratings are sorted by unixReviewTime, so the ratings come in real-

world order in the experiment. We summarize the mean values of the products by

their Bernoulli ratings in the four selected categories, as shown in Table 4.1.

4.4.2 UCB-FDF with Arm-Dependent/Independent Delay

The experiment results are illustrated in Figure 4.1-4.4. Figure 4.1 shows the average

regret and incentive trends with policy UCB-FDF under setting with no delay. Fig-

ure 4.2 and 4.3 show the average regret and incentive trends with policy UCB-FDF

under settings with arm-independent delays and arm-dependent delays, respectively.

In Figures 4.3 and 4.4, we compare the performances with policy UCB-FDF and

baseline policy UCB-List (Zhou et al., 2021). Specifically, Figure 4.4 shows the per-

formance under policy UCB-List in the face of arm-dependent delays that is the same

as that in Figure 4.3. Each curve is constructed by regret or incentive values with

different time horizons from T = 150 to T = 3000, incremented by 150. Each node

value in curves are averaged by 100 trials.

Discussion: Comparing Figure 4.1 with Figure 4.2 and 4.3, we can observe the

delay impact on regret and total incentive, that both the regret and total incentive
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Figure 4.1: The performance of policy UCB-FDF in the face of no delay.
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Figure 4.2: The performance of policy UCB-FDF in the face of arm-independent
delay.
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Figure 4.3: The performance of policy UCB-FDF in the face of arm-dependent delay.
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Figure 4.4: The performance of policy UCB-List in the face of arm-dependent delay.
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are increased due to the delayed feedback. Comparing Figure 4.3 and Figure 4.4,

we observe that under the bandit instances in the face of same delayed feedback,

our policy UCB-FDF reaches sub-linear growth rate in both regret and total incen-

tive, except the total incentive in category Pet Supplies, since it may require more

time steps to converge while our data is limited, while the policy UCB-List cannot

guarantee sub-linear growth rate for both regret and total incentive.

4.4.3 Delay Assumptions Comparisons

In this section, we compare our policy UCB-FDF with UCB-List in Zhou et al. (2021).

The system parameters are almost the same as that in Section 4.4.1. We use the

three-armed model with the initial preference bias θ = [1, 5, 5]. The self-reinforcing

preference function is chosen as F (x) = xα with α = 2. The constant incentive for

each time step is set as b = 1.5 with an incentive impact function G(b, t) = b. The

experiment results are illustrated in Figure 4.5. We choose the delay distribution as

τ1,t ∼ N(10, 2), τ2,t ∼ N(15, 2), and τ3,t ∼ N(18, 2) for arm1, arm2, arm3, respec-

tively. We only generate non-negative samples of delay under both assumptions. (a)

and (b) show the average regret and incentive trends with policy UCB-FDF under

settings with arm-independent delays and arm-dependent delays, respectively. Each

curve is constructed by regret or incentive values with different time horizons from

T = 150 to T = 3000, incremented by 150. Each node value in curves are averaged

by 100 trials. Figure (c) illustrates the 100 values of regret or incentive costs with

time horizon T = 3000 under arm-dependent delays.

Discussions: From the figures, we observe that our UCB-FDF policy achieves

sub-linear growth rates for regret and incentive costs under our assumptions of feed-
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Figure 4.5: Regret and incentive trends of four categories under two different delay
settings in (a) and (b). Jittered plot of 100 random cases with T = 3000 under
arm-dependent delays in (c).

back delays. Comparing results under arm-independent delays in Figure 4.5(a) and

arm-dependent delays in Figure 4.5(b), we observe that arm-dependent delays require

higher incentive costs and result in larger regret, due to the longer exploration and

exploitation phases. Comparing regrets in different categories, we observe that the

regret growth trends of categories “Books” and “Home and Kitchen” increase rapidly

initially but quickly slow down, since the arms in these two categories have larger

gap summations
∑

a6=a∗ ∆a. Although a large gap summation may cause larger regret

before the policy finds the optimal arm, it also allows the algorithm to distinguish the

optimal arm faster. More straightforward results can be seen by the incentive curves

in different categories. From a different angle, as we show in Figure 4.5(c), some of

the total incentives in category Pet Supplies are exactly 4500, implying that in many

random cases, the policy is still in the exploration or exploitation phase, while in
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most of the random cases in categories Books and Home and Kitchen, the incentive

can stop early while also reach sub-linear regret. This difference is also caused by the

variation in gap summations.

4.4.4 Delay Distribution Comparisons

In this section, we compare performance of policy UCB-FDF under different delay

distributions using the data in category Books. The experiment results are illustrated

in Figure 4.6. (a) in Figure 4.6 shows the different regret under different delay dis-

tributions, and (b) shows the corresponding total incentive. For arm-independent

delays, we show the policy performance under distribution N(20, 5), N(40, 5), and

Exp(0.1), Exp(0.01). For arm-dependent delays, we choose the delay distribution as

τ1,t ∼ N(40, 5), τ2,t ∼ Exp(0.01), τ3,t = 0 for arm1, arm2, arm3, respectively.

We also show the average exploration phases (t̄1) and average exploitation phases

(t̄2) under four different settings of delay distribution: i) no delay; ii) arm-independent

delay with normal distribution N(40, 5); iii) arm-independent delay with exponen-

tial distribution Exp(0.01); iv) arm-dependent delay with τ1,t ∼ N(40, 5), τ2,t ∼

Exp(0.01), τ3,t = 0 for arm1, arm2, arm3, respectively. The results are shown in

Table 4.2.

Discussion: From Figure 4.6, we observe that the policy performance is impacted

by different delay distributions and different distribution parameters. It aligns with

our theoretical analysis that the case with no delay has the smallest regret, and

as delay expectation getting larger, we have larger expected regret and larger total

incentive. From Table 4.2, we firstly have the general observation that as time horizon

increases, both the exploration phase and the exploitation phase are increasing, due
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Figure 4.6: Regret of policy UCB-FDF in the face of different delay distributions in
(a), and the corresponding total incentive in (b).

Table 4.2: The average exploration phases (t̄1) and average exploitation phases (t̄2)
under four different settings of delay distribution.

Time Horizon 300 600 900 1200 1500 1800 2100 2400 2700 3000

t̄1

No delay 300 600 781 790 796 803 809 813 816 818
N(40, 5) 278 527 691 705 717 724 736 743 748 796
Exp(0.01) 298 595 863 880 896 901 907 915 919 927
Arm-dependent 279 555 739 760 764 769 780 783 788 800

Time Horizon 300 600 900 1200 1500 1800 2100 2400 2700 3000

t̄2

No delay 300 600 795 802 811 816 823 826 831 835
N(40, 5) 291 539 745 759 771 777 787 793 798 847
Exp(0.01) 299 596 894 1010 1024 1024 1030 1038 1043 1051
Arm-dependent 290 567 793 816 823 827 836 841 846 854

to a more accurate estimation over arms. On the other hand, we observe that the

length of exploration phase is problem-dependent, while the length of exploitation

phase is positive proportional with the value of expected delay, which is due to our

exploitation mechanism where dominance threshold grows with expected delay.
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4.4.5 Comparison with Different Parameters

In this section, we compare the performance of policy UCB-FDF under different

system parameters using the data in category Books, specifically, we compare the

impact of different strengths of feedback function F (·) and incentive impact function

G(·). We use the setting F (x) = xα with α = 2 and G(b, t) = b as the comparison

group. For the other four groups of experiment, we use α = 3 and α = 4 for feedback

function with G(b, t) = b, and G(b, t) = 2b and G(b, t) = 3b for incentive impact

function with α = 2, respectively. (a) in Figure 4.7 shows the different regret under

different parameters, and (b) shows the corresponding total incentive.
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Figure 4.7: Regret of policy UCB-FDF in the face of different feedback functions and
incentive impact functions in (a), and the corresponding total incentive in (b).

Discussion: For the feedback function F (·), as α increases, the strength of self-

reinforcing preferences is enhanced, which implies that the preferences are easier to

be induces to one arm, so that we observe smaller regret. For the incentive impact

function G(b, t) = c · b, as the coefficient c increases, the preference impact of a unit

payment is enhances, implying that users are easier to be affected (controlled) by the
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incentive, thus we observe a slightly smaller regret, with obviously decreased total

incentive.
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Chapter 5

Bandit Learning to Rank with Position-Based

Click Models: Personalized and Equal Treatments

5.1 Overview

A key component in MAB-based ONL2R is the click model. A natural choice of click

model is the so-called position-based click model (Richardson et al., 2007; Lagrée et al.,

2016), where each ranking position is associated with a preference probability of being

observed and clicked. Studies have shown that user actions are highly influenced by

webpage layouts or ranking positions: if a listing is not displayed in some particular

area of the web layout, then the odds of being seen by a searcher are dramatically

reduced (Hotchkiss et al., 2005). Position-based click model is also shown to be closely

related to various popular ranking quality metrics for recommendation systems, such

as normalized discounted cumulative gain (NDCG)(Valizadegan et al., 2009; Wang

et al., 2013).

However, developing efficient online learning policies for MAB-based ONL2R with

position-based click models is highly non-trivial due to the following technical chal-

lenges: First, MAB-based ONL2R problems with position-based click models are

combinatorial in nature, which means that their offline counterparts are already NP-

hard in general. Second, due to the multi-user nature, ranking recommendations for

MAB-based ONL2R problems are complicated by the philosophical debate whether
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Figure 5.1: System model of MAB-based ONL2R with position-based click models.

we should provide personalized or equal treatments to different users, both of which

are common in practice. To date, there remains a lack of rigorous understanding

on how different types of ranking treatments could affect MAB-based ONL2R policy

design. Third, unlike conventional MAB problems, there is a fundamental partial

observability challenge in MAB-based ONL2R policy design. Specifically, in many

real-world recommendation systems, if a user does not click on any displayed ranked

item, the system will not receive any feedback on which ranked position has been ob-

served by the user. This uncertainty creates an extra layer of challenge in MAB-based

ONL2R. Last but not least, in MAB-based ONL2R with position-based click models,

there is a complex coupling between each ranking position’s observation preference

and mean reward of each arm, both of which are not only unknown and need to be

learned, but also heterogeneous across user types. Due to these challenges, results

for MAB-based ONL2R with position-based click models are rather limited in the

literature, which motivates us to fill this gap.
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5.2 System Model and Problem Formulation

1) System Setup: As shown in Fig. 5.1, consider a stochastic bandit setting with

a set of user types [N ] := {1, . . . , N}, a set of arms [M ] := {1, . . . ,M}, and a set

of ranking positions [K] := {1, . . . , K}, where K ≤ M . Each user type i has an

arrival rate ζi > 0. Without loss of generality, the arrival rates are normalized such

that
∑

i∈[N ] ζi = 1. For each position k ∈ [K], each user type i ∈ [N ] has a position

preference ρi,k ∈ [0, 1], which represents the chance that user type i observes position

k. We note that such position preferences have been widely observed in practice.

For example, demographic studies Hotchkiss et al. (2005) showed that there exist

many different user’s position-based action patterns that are related to user’s gender,

education, age, etc. Such user-specific position-based patterns include “quick click,”

“the linear scan,” “the deliberate scan,” “the pick up search,” etc. Thus, the same

position can have different preference rates over different groups of people. For each

arm j ∈ [M ], each user type i has a Bernoulli reward distribution Di,j with mean

µi,j ∈ [0, 1], where µi,j can be interpreted as the click rate of arm j if observed by

user type i. We assume that the arrival rates ζi, the position preferences ρi,k, and the

arm means µi,j are all unknown to the learner. With the basic system setup, we are

now in a position to describe the unique key features of our MAB model.

2) Agent-User Interaction Protocol: At time step t, a user of type I(t) = i

arrives with probability λi. With a slight abuse of notation, we also use I(t) to denote

the current user at time step t. The learning agent observes I(t), then picks a K-

sized subset of arms from [M ] and determines a K-permutation σt ∈ PM
K , where σt(j)

represents the ranked position of arm j. Next, user I(t) randomly observes an arm

J(t) at ranked position σt(J(t)) with probability ρI(t),σt(J(t)), and then clicks arm J(t)
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with probability µI(t),J(t). The learner receives a reward X(t) = 1 if some position is

clicked, and X(t) = 0 otherwise. Clearly, we have
∑

k∈[K] ρi,k = 1. We note that if

user I(t) chooses not to click any arm J(t), then the learner receives no information

regarding which position has been observed. In other words, a reward of X(t) = 0 can

happen by the fact that any random arm in σt is observed but not clicked. This partial

observation setting closely follows the reality in most recommendation systems, while

it also makes the estimation of arm means and position preferences much harder.

We illustrate this learner-user interaction in Fig. 5.1. A policy π sequentially makes

decisions on the permutation σt, and observes stochastic rewards X(t) over time t.

3) Regret Modeling: In this work, we consider two MAB-based ONL2R prob-

lems with two different ranking recommendation settings: personalized and equal

treatments.

3-a) Personalized Treatment: In this setting, the learning policy makes ranking

personalized decisions according to the arrived user types. Thus, an optimal policy

always recommends the optimal permutation denoted by σ∗i regarding the arrived user

type i to achieve maximum user satisfaction. We note, however, that personalized

treatment may not be fair to the arms since some arms may never be shown to any

user type. At time t, an expected regret E[R(t)] incurred by a policy {σt}t is defined

as follows:

E[R(t)] =
t∑

s=1

(
〈ρI(s),µI(s),σ∗〉 − E[〈ρI(s),µI(s),σs〉]

)
,

where we use the notation of vector ρi = [ρi,1, ρi,2, . . . , ρi,K ]>, and use the notation

µi,σ = [µi,σ−1(1), . . . , µi,σ−1(K)]
> to denote the vector of arm means ranked by permu-

tation σ, where σ−1 : [K]→ [M ] is the reverse mapping of the permutation σ.
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3-b) Equal treatment: Motivated by fairness, an equal treatment ranking policy

makes an identical ranking decision among all user groups to avoid discrimination

over sensitive groups. This is because, in some scenarios, service providers are legally

required to treat all sensitive groups the same way by recommending the same ranking

content. In the equal treatment setting, we measure its ranking quality by a general

collective utility function (CUF) defined as follows:

Γ(σ) ,
∑
i∈[N ]

ζi · U
( ∑
j∈Mσ

ρi,σ(j) · µi,j
)
,

where Mσ is the set of arm indices in permutation σ, and U(·) is a generic utility

function that transforms the CUF to different social welfare criteria, which we will

discuss later. An optimal policy always recommends a universal optimal permutation

denoted by σ∗ that maximizes CUF, i.e., σ∗ = arg maxσ∈PMK Γ(σ). We note that under

this setting, due to multiple user types and their unequal arm means, the optimal

permutation σ∗ may not be a decreasingly ordered arm list. At time t, an expected

regret E[R(t)] incurred by a policy {σt}t is defined as follows:

E[R(t)] = t · Γ(σ∗)−
t∑

s=1

E [Γ(σs)] .

Here, we provide two common examples of CUF: i) the utilitarian CUF and ii)

the Nash CUF (Ramezani and Endriss, 2009). Specifically, let vi denote the indi-

vidual user utility. Then, the utilitarian CUF is defined as
∑

i vi, which favors users

with higher average utility. The Nash CUF is defined as
∑

i log(vi), which balances

efficiency and fairness.
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5.3 Policy Designs and Performance Analysis

In this section, we focus on policy design and analysis for MAB-based ONL2R with

both personalized and equal treatment settings. While these two settings are dif-

ferent, they share some common subtasks (e.g., estimations of position preferences

and arm means). Thus, we will consider these common subtasks as preliminaries in

Section 5.3.1 first, which paves the way for presenting our policies in Section 5.3.2.

Lastly, we will conduct regret analysis for our proposed policies in Section 5.3.3.

5.3.1 Preliminaries

1) Notations and Terminologies: Before we present our proposed bandit policy

designs, we introduce some notations and terminologies as follows. At time t, if the

policy picks a permutation σt, then any arm j ∈ σt is said to have been “pulled” by

the agent at time t. We use Ti,j,k(t) to denote the cumulative pulling times of arm

j ∈ [M ] that is offered to users of type i ∈ [N ] at position k ∈ [K] up to time t,

i.e., Ti,j,σt(j)(t) = Ti,j,σt(j)(t− 1) + 1 for i = I(t), j ∈ Mσt . Likewise, we use Si,j,k(t) to

denote the cumulative reward of arm j ∈ [M ] that is clicked by users of type i ∈ [N ]

at position k ∈ [K], i.e., Si,j,σt(j)(t) = Si,j,σt(j)(t− 1) + r(t) for i = I(t), j = J(t). We

represent tensors using bold notation, e.g., Si,j(t) = (Si,j,1(t), . . . , Si,j,K(t)). We use

the notation ‖·‖1 to represent the `1-norm of tensors, e.g., ‖Si,j(t)‖1 =
∑K

k=1 Si,j,k(t).

The main statistical challenge in our model is to estimate the position preferences

and arm means only by the user feedback, i.e., a sequence of the joint realizations

of position preference distribution and arm reward distribution. To this end, we

present two estimators that detangle the joint realization and estimate the unkown

parameters with asymptotic confidence over time.
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Algorithm 4 The Position Preference Estimator E (T (t),S(t)).

1: Input: T (t),S(t)

2: for all player i, arm j, and position k do

3: v̄i,j,k(t) =
Si,j,k(t)/Ti,j,k(t)∑
l∈[K] Si,j,l(t)/Ti,j,l(t)

4: end for

5: for all player i and position k do

6: ρ̂i,k(t) =
1

M

∑
j∈[M ] v̄i,j,k(t)

7: end for

2) Position Preference Estimator: The position preference is estimated based

on the fact that given a user type i and an arm j, the value Si,j,k(t)/Ti,j,k(t) at any

position k is asymptotically approaching its expectation µi,j · ρi,k over time. Thus,

intuitively, its normalization over all positions asymptotically removes the impact of

arm mean on the position preference estimation, as stated in Algorithm 4. It is then

possible to obtain a concentration on the estimated position preference, as stated in

Lemma 10 below. Due to space limitation, the proofs of all theoretical results are

relegated to the supplemental material.

Lemma 10. For each user type i ∈ [N ] and position k ∈ [K], for any constant ε ≥ 0,

the position preference estimator E(T (t),S(t)) achieves a concentration bound as

follows:

P

|ρ̂i,k(t)− ρi,k| ≥ max
j∈[M ]

√√√√√ ε ln t

µ2
i,jTi,j,k(t)

 ≤MKt−2ε. (5.1)

3) Arm Mean Estimator: For user type i and arm j, we note that directly

estimating the arm mean µi,j by the value ‖Si,j(t)‖1/‖Ti,j(t)‖1 could be biased since
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its expectation is different from the arm mean µi,j. To address this problem, we define

an asymptotically unbiased total pulling time estimator Ni,j(t) =
∑

k∈[K] Ti,j,k(t) ·

ρ̂i,k(t) for i ∈ [N ], j ∈ [M ], which has an increment of ρ̂i,k(t) once pulled at time

t and can be leveraged to estimate arm means only with the knowledge of joint

realizations. We note here that Ni,j(t) is a random variable that depends on both

the ranking history {σ(t)}t and the position preference distribution. Then, for user

type i and arm j, the asymptotically unbiased arm mean estimator can be defined as

µ̂i,j(t) = ‖Si,j(t− 1)‖1/Ni,j(t− 1).

Following Lemma 10, define event Nt as follows: at time t, for user i and arm j,

there exists ε ≥ 0 such that |Ni,j(t)−N̄i,j(t)| < ‖Ti,j(t)‖1 maxj∈[M ]

√
ε ln t/

(
µ2
i,jTi,j,k(t)

)
.

Then, we have:

Lemma 11. For user type i and arm j, denote the unbiased empirical arm means by

µ̂ij(t) = ‖Si,j(t − 1)‖1/Nij(t − 1). Then, conditioned on event Nt and for any ε ≥ 0

we have

P

∣∣µ̂i,j(t)− µij∣∣ ≥
√

2ε‖Ti,j(t)‖1

Ni,j(t)

∣∣∣∣ Nt
 ≤ εe1−ε log t. (5.2)

4) CUF Estimator: Different from personalized treatment, equal treatment

policies recommend identical ranking lists to all user types, which require extra esti-

mation of user arrival rates. Thus, obtaining an optimal arm ranking order is typically

more complicated than obtaining a decreasingly ordered arm list as in personalized

treatment. We measure the quality of a permutation by a CUF estimator. Combining

ρ̂i,k(t) and µ̂i,j(t) with the fact that we can estimate the arrival rate of user type i

at time t as ζ̂i(t)/‖ζ̂(t)‖1, where ζ̂i(t) is the cumulative number of arrived users in

type i up to time t, we can estimate all unknown parameters ρi,k, µi,j, and ζi with
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asymptotic confidence. Given a ranking σ at time t, we can estimate the unknown

CUF Γ(σ) as follows:

Γ̂t(σ) =
∑
i∈[N ]

ζ̂i(t)

‖ζ̂(t)‖1

· U
( ∑
j∈Mσ

ρ̂i,σ(j) · µ̂i,j(t)
)
. (5.3)

5.3.2 Policy Design for Personalized and Equal Treatments

Based on the estimators presented in Section 5.3.1, we are now in a position to present

our policy designs for both personalized and equal treatments.

1) GreedyRank: GreedyRank is a greedy policy that has an increasing probabil-

ity to exploit the empirical best permutation over time and a decreasing probability

to explore combinations of every arm and position in a round-robin fashion. The

policy is described in Algorithm 5.

Algorithm 5 The GreedyRank Policy.

1: Input: εt
2: Initialization: σt =

{
arm → position : [(t + k) mod M ] + 1 → k, k ∈ [K]

}
till

min
i,j,k

Si,j,k(t)>0

3: Mark current time t0 = t, and let Iexplore ← 1
4: for t = t0 + 1, . . . do
5: Observe user type I(t), and toss a coin with head rate of εt
6: if head then
7: σt =

{
arm→ position : [(Iexplore + k) mod M ] + 1→ k, k ∈ [K]

}
8: Iexplore = (Iexplore mod M) + 1
9: else

10: Option 1 [Personalized treatment]: σµ ← decreasingly rank arm indices by
µ̂I(t),j(t)

11: σρ ← decreasingly rank position indices by ρ̂I(t),k(t)
12: σt = {arm→ position : σµ(a)→ σρ(a), a ∈ [K]}
13: Option 2 [Equal treatment]: σt = arg maxσ∈PMK

Γ̂t(σ)
14: end if
15: Observe user feedback X(t), update parameters Si,j,k(t), Ti,j,k(t), ρ̂(t), Ni,j(t) as

stated in Section 5.3.1
16: end for
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2) UCBRank: Under UCBRank, the personalized treatment allows UCB-style

policies to sort optimistic indices in a decreasing order and pick the corresponding first

K arms as permutation, while the equal treatment searches for a the permutation that

maximizes the estimated CUF and a confidence interval. To balance exploration and

exploitation, we use a confidence interval derived from the McDiarmid’s inequality,

as described in Algorithm 6.

Algorithm 6 The UCBRank Policy.

1: Input: at
2: Initialization: σt =

{
arm → position : [(t + k) mod M ] + 1 → k, k ∈ [K]

}
till

min
i,j,k

Si,j,k(t)>0

3: Mark current time t0 = t
4: for t = t0 + 1, . . . do
5: Observe user type I(t)
6: Option 1 [Personalized treatment]: σµ ← decreasingly rank arm indices by

µ̂I(t),j(t) +
at ln t

NI(t),j(t)
7: σρ ← decreasingly rank position indices by ρ̂I(t),k(t)
8: σt = {arm→ position : σµ(a)→ σρ(a), a ∈ [K]}

9: Option 2 [Equal treatment]: σt = arg maxσ∈PMK

(
Γ̂t(σ) +

∑
i∈[N ]

∑
j∈Mσ

at ln t

Ni,j(t)

)
10: Observe user feedback X(t), update parameters Si,j,k(t), Ti,j,k(t), ρ̂(t), Ni,j(t) as

stated in Section 5.3.1
11: end for

One important remark regarding the time complexity of the equal treatment op-

tion in both policies is in order. In both policies, The option of equal treatment

requires solving an integer (combinatorial) optimization problem, which may be NP-

hard depending on the type of the utility function U . As a result, the equal treat-

ment setting is more challenging in general than the personalized treatment setting in

MAB-based ONL2R. Also, it is easy to see that the search space of the optimization

is O(MK). To this end, several interesting cases may happen:
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1) K is Fixed and Moderate: This case corresponds to a short ranking list (e.g., due

to limited screen space on phones). In this case, the search space is polynomial

with respect to M . Thus, the integer optimization problems in Lines 11 and 7 in

Algorithms 5 and 6, respectively (referred to as IOPs) can be exactly solved by

brute force search with acceptable time complexity. However, if M is fixed or K

is fixed but large, a brute force search is clearly too costly.

2) U is Linear and the MK-value Is Moderate: This case happens if utilitarian crite-

rion is used. In this case, IOPs can be equivalently transformed to an integer linear

program (ILP) over a probability simplex (associating each permutation with a

binary variable such that these binary variables sum to 1). Thanks to this simple

structure, solving the LP relaxation of the transformed problem automatically

yields a binary solution (hence the optimal ranking) in polynomial time.

3) U is Linear and the MK-value Is Large (Exponential): In this case, even solving

the transformed LP relaxation of the optimization problems (Lines 11 and 7 in

Algorithms 5 and 6, respectively) could still be cumbersome due to the large

problem size. One solution approach is to uniformly sample with probability p a

subset of all possible permutations and then solve an LP relaxation only using the

sampled permutations. Clearly, as p→ 1, the LP solution will be arbitrarily close

to the optimal solution, hence yielding a polynomial-time approximation scheme

(PTAS).

4) U is Concave: This case happens if, e.g., Nash criterion (U = log(·)) is used. In

this case, IOPs are an integer convex optimization problem, which may be solved

by state-of-the-art branch-and-bound-type (BB) optimization scheme Sierksma

and Zwols (2015) to high accuracy relatively fast, if exponentially growing running
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time is tolerable.

5) U is Non-Concave: In this case, IOPs are an integer non-convex problem (INCP),

which is the hardest. Although one can still use branch-and-bound-type schemes

in theory, the time complexity could be arbitrarily bad. However, developing

INCP algorithms is beyond the scope of this paper.

5.3.3 Regret Analysis

We now present the theoretical results on the proposed policies, as well as their proof

sketches. The complete proofs are provided in the supplemental material.

Theorem 12. (Personalized treatment with GreedyRank) Setting εt = t−1/2, the

expected regret of GreedyRank Option 1 at any time step t can be bounded as

follows:

E[R(t)] ≤ 2N
√
t+

∑
i∈[N ]

8CρMK
√
ζit ln t

(1− 1/C) minj µi,j
+O(1),

where C,Cρ > 1 are problem-dependent constants.

Proof Sketch of Theorem 12. Based on the lemmas presented in Section 5.3.1, we

define two “good” events Pt and Ut regarding the estimated position preference and

the estimated arm mean, respectively. Then, for user type i and arm j, conditioned

on events Pt and Ut, we obtain a concentration bound regarding the quantity µ̂i,j(t) ·

ρ̂i,σt(j)(t) for any policy σt. Next, we define another “good” event Ft regarding the

minimum cumulative number of exploration times that GreedyRank performs up to

time t. Conditioned on all the defined events, we obtain the upper bound of the

regret E[R(t)] with respect to εt, and the upper bound of E[R(t)] is minimized with
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εt = t−1/2. Finally, upper bounding the complementary of all the conditioned events

finishes the proof.

Theorem 13. (Personalized treatment with UCBRank) Setting at ∈ (2/minµi,j,√
t/ ln t], the expected regret of UCBRank Option 1 at any time step t can be bounded

as follows:

E[R(t)] ≤
∑
i∈[N ]

2CρMK
√
ζit ln t

minj ∆i,j

+O(1).

Proof Sketch of Theorem 13. We define a “bad” event Et regarding the appearance

of sub-optimal permutation selection. Then, we show that event Et happens with

probability zero if i) events Pt and Ut happens, ii) at is in a proper range, and iii) each

possible permutation has been sampled for enough times. By bounding the probability

of the appearance of event Et for each time, and bounding the complementary of all

the conditioned events as in the proof of Theorem 12, we finish the proof.

For the equal treatment option in both policies, to address the potential NP-

Hardness challenge in solving the optimization problems (Lines 11 and 7 in Algo-

rithms 5 and 6, respectively), we consider approximation algorithms to balance the

trade-off between time complexity and optimality. Also, compared to personalized

treatment, equal treatment policies are more expensive on average due to the extra

estimation of user arrival rate.

To avoid linear regret, we require the continuity assumption on the utility function

f as follows:

Assumption 2 (Bi-Lipschitz Continuity). The function U is LU bi-Lipschitz contin-

uous, i.e., there exists a constant LU ≥ 0 such that for any x1, x2 ∈ [mini,j,k{ρi,kµi,j},

maxi,j,k{ρi,kµi,j}], it holds that (x1 − x2)/LU ≤ U(x1)− U(x2) ≤ LU(x1 − x2).
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Theorem 14. (Equal Treatment with GreedyRank) Setting εt = Nt−1/2, with a δt-

approximate solution to the maximization problem in GreedyRank Option 2, the

expected regret of Fair-GreedyRank at any time step t can be bounded by:

E[R(t)] ≤ 2Nt
1
2 +

8LUCρNMK

(1− 1/C) minµi,j
t

1
2 ln t+

t∑
s=1

U(1)Nδs +O(1),

and for δt = O(t−1), we have: E[R(t)] = O
(

8LUNMKt
1
2 log t/minµi,j

)
.

Proof Sketch of Theorem 14. In the equal treatment setting, we obtain a concentra-

tion on the estimated CUF Γ̂t(σ) by i) the properties of the utility function U , and

ii) the estimated user arrival rate ζ̂i(t). Note that ζ̂i(t) can be bounded by Hoeffd-

ing’s inequality. Then, when bounding the regret upper bound in a similar manner

as that in the proof of Theorem 12, we additionally consider the suboptimality from

the approximated solution, which causes an extra regret of at most U(1)Nδt for each

time t.

To present the regret result of equal treatment UCBRank, we define the minimum

reward gap ∆Γ as follows: ∆Γ = Γ(σ∗)−maxσ∈PMK ,σ 6=σ∗ Γ(σ). We note that ∆Γ only

depends on the distributions of user arrival rate ζ, position preference ρ, and arm

mean µ.

Theorem 15. (Equal Treatment with UCBRank) With any δt-approximate solution

to the maximization problem in UCBRank Option 2, setting δ = O(
√

log t/t) and

at ∈ (2LU/minµi,j,
√
t/ ln t], the expected regret of UCBRank at any time step t can
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be bounded as follows:

E[R(t)] = O

N2MK
√
t log t

∆Γ

 .

Proof Sketch of Theorem 15. Similar as the proof of Theorem 13, we define a “bad”

event Et regarding the appearance of sub-optimal permutation selection, and we show

that event Et happens w.p.0 if two additional conditions are satisfied: i) the estimated

CUF Γ̂t(σt) is accurate enough, which is shown in the proof of Theorem 14, and ii)

the suboptimality of the approximation δt is upper bounded.

5.4 Experiments

5.4.1 Experiment on Synthetic Data

We first conduct experiment on a synthetic dataset, where N = 3, M = 20, and

K = 4. We relax the assumption of Bernoulli distributed arm means, and replace it

by the Beta distribution, which allows discrete-valued reward with a scaled-up arm

expectation (this will increase the regret while it helps the estimation with a large

problem size in a finite-time horizon). All the system parameters are randomly sam-

pled. We set εt = at = 1 for personalized treatment GreedyRank (PT-GreedyRank)

and UCBRank (PT-UCBRank), respectively. We set εt = at = 5 for equal treatment

GreedyRank (ET-GreedyRank) and UCBRank (ET-UCBRank), respectively. Since

there is no existing algorithm that works in our context, we set a baseline with a

idea similar to most existing algorithms: the baseline runs the UCB algorithm that

shares the same confidence interval as ours in PT-UCBRank, while the baseline does
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Figure 5.2: Baselines, personalized policies (left), equal treatment policies in utilitar-
ian CUF (left) and Nash CUF (right) on synthetic dataset.
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Figure 5.3: Average regret of proposed policies (left), and the optimal action rate of
proposed policies (right) on real-world dataset.

not distinguish different user types and treats all users as one type. We present the

results in Figures 5.2 and 5.3. The curves confirm our analysis that all proposed

policies are sub-linear in regret, and the performance of each policy also depends on

the system parameters and policy parameters, e.g., ET-GreedyRank is optimal in

utilitarian CUF but not in Nash CUF.
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5.4.2 Experiment on Real-World Data

We use the dataset provided for KDD Cup 2012 track 2 1, which is about adver-

tisements shown alongside search results in a search engine owned by Tencent. The

users in the dataset are numbered in millions, and are provided with demographics

information, e.g., gender. Ads are displayed in a position (1, 2, or 3) with a binary

reward (click or not). Since ads are rarely displayed in position 3, which results in a

lack of data, so we focus on two positions (1 and 2). We pick the top 5 ads with high

frequency and present the statistical information in Table A.3. We set εt = at = .25

for PT-GreedyRank and PT-UCBRank, respectively. We set εt = at = .5 for ET-

GreedyRank and ET-UCBRank, respectively. We present the results in Fig. 5.3. The

results show that all the proposed policies find the optimal permutations over time.

Although the rewards are synthetic, this experiment is still realistic since the values

of all other parameters are extracted from the real world.

Table 5.1: Statistics on the dataset, including two user types (male and female), user
arrival rate, arm means and position preference (bias).

Arm Mean Position Bias

Gender 1 2 3 4 5 1 2

Male .357 .471 .604 .808 .564 .323 .677
Female .247 .327 .491 .49 .303 .416 .584

Arrival Rate: .52(M) : .48(F)

We also compare the case where approximation algorithms are used in equal treat-

ment ranking. we use a PTAS for utilitarian CUF maximization in both policies:

given a ratio δt that gets close to one over time, randomly sample δtn(PM
K ) permuta-

tions and find the optimal in the samples. If the utility function U is linear, it can be

1https://www.kaggle.com/datasets/mohamedkhaledelsafty/click-prediction
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Table 5.2: Comparison of equal treatment policies with approximated solution and
optimal solution under utilitarian CUF.

t = 3 · 105 t = 6 · 105

regret
running
time/s

regret
running
time/s

GreedyRank
approx. 512 33 581 68

opt. 387 41 461 87

UCBRank
approx. 314 75 326 162

opt. 238 82 249 188

easily shown that this strategy is PTAS. The experiment on real-world dataset runs

on CPU configured by Apple M1 with 8-core and 3.2 GHz, with 16 GB main memory.

The results in Table A.2 confirm our analysis on the tradeoff between regret and time

complexity.
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Chapter 6

Discussions and Conclusion

6.1 Summary

Multi-armed bandit is a critical model in online learning. As research in recommen-

dation systems attracts more attention in academia, it is necessary to understand

and analyze user behavior formulated in bandit framework, so as to design efficient

policies that achieve long-term objectives of service providers. To this end, in this

thesis, we studied bandit models that are applicable in real-world recommendation

systems. We tackled in the following two aspects:

(1) We modeled commonly seen user behavior in recommendation systems by mak-

ing natural assumptions and reasonable formulations, and we modeled arm fil-

tering strategies that are well-adopted by service providers of recommendation

systems.

(2) We designed efficient policies that aim to maximize long-term reward of service

providers, and theoretically show that all the proposed policies achieve sub-

linear regret.

Specifically, in (1), we formulated self-reinforcing user preference and theoretically

analyzed how user preference evolves by urn model, and proved an interesting property

of arm dominance, which is the critical property for subsequent policy design. Then,
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we analyzed the impact of delayed user feedback on the basis of model with self-

reinforcing user preference. Next, we formulated online learning to rank problem in

bandit, with a set of users that vary in arm preference and ranking position preference.

In particular, we focus on position-based user click model, which is popular in e-

commerce platforms. For arm filtering, we mainly considered two strategies. One is

to show users with all arms but pay incentive on agent’s desired arm, thus stimulates

users to pull the desired arm to some extent. The other strategy is to pick a subset

of arms and show users with an ordered list of arms, on which user behavior can

be seen as following position-based click model. On the other aspect, in (2), we

propose policies in the face of the combinations of aforementioned user behavior.

We first proposed At-Least-n Explore-Then-Commit (ALnETC) and UCB-List for

incentivized bandit with self-reinforcing user preference. Then, for the previous model

with delayed feedback, we improved our policy and proposed UCB-Filtering-with-

Delayed-Feedback. Finally, for the problem of online learning to rank with multiple

user types, we proposed two policies: GreedyRank and UCBRank, both designed

for personalized treatment and equal treatment. Theoretically, we showed that all

proposed policies achieve sub-linear regret, implying that all policies success in finding

the optimal action in expectation. Experiments on synthetic and real-world datasets

verify our theoretical results.
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6.2 Limitations and Future Work

6.2.1 Fairness and Social Welfare Issues

Fairness and social welfare are always hot social issues. On the one hand, fairness

is required legally for many service providers to make recommendations, in the con-

sideration of races, genders, religions, etc; on the other hand, many recommendation

systems set their goals to maximize social welfare or regard it as a constraint when

maximizing profit. In Chapter 3 and 4, we proposed policies that converge the recom-

mendation to the optimal arm over time. In the propose model, our policies achieve

optimal performance, while always recommending one arm ignores the diversity of

user types in a system, which can lead to monopoly of one user type in the system,

thus the system is lack of diversity and fairness. In the consideration of fairness and

social welfare, an improved model allows a variety of user types, each of which could

behave different in arm preference. However, in such model, the perviously shown

property of monopoly no longer stands, therefore, this could be a future direction for

policy design.

6.2.2 General User Click Models

Click models are crucial in problem formulation, and policy design. A good click

model describes user behavior accurately, and helps in designing policies that perform

efficiently in practice. However, it is well-known that user behavior is complicated

and hard to be formulated by a detailed model. In recommendation systems, users

usually have behavior that falls in the intersection of several click models. This

requires a problem formulation that models user behavior in a general click model.
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In Chapter 5, we focused on position-based model, which can be naive in some real-

world situations. An improved model incorporates a general click model, that allows

some uncertainty on user click behavior. However, a general click model also brings

challenges. For example, the uncertainty of click model makes the estimation of

click model parameters much harder, leading to a much harder policy design. In

future work, general click model can be a challenge, but could also shed lights in user

behavior modeling.
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Appendix A

Proofs of Results in Chapter 3

Proof of Lemma 1

Lemma 1. (Monopoly) There exists an incentivized policy that induces users’ pref-

erences to converge in probability to an arm over time with sub-linear payment, if and

only if F (x) satisfies
∑+∞

i=1

(
1/F (i)

)
< +∞.

Proof. Let the sequence {χj}∞j=1 be the arm order that generates a unit reward in

our model without the participation of incentive, such that χj indicates the arm that

generates the j-th unit reward, as shown in Figure A.1. Next we will construct a

sequence that has the same conditional distribution as {χj}.

t10 4 8

2 2 2 23 3 31Pull arms: · · ·

{χj} = {2, 1, 3, · · · }

Figure A.1: This figure shows an instance of sequence {χj}. At time step t = 1, arm 2
is pulled and generates 0 reward. At time step t = 2, arm 2 is pulled and generates a
unit reward. Thus, the first element χ1 in {χj} is the arm index 2 that generates the
first unit reward. The subsequent elements in the sequence are generated similarly.

Our main mathematical tool is the improved exponential embedding method. For

each arm i ∈ A, we let {ri(n)} be a collection of independent exponential random
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variables such that E[ri(n)] = 1
µiF (n+θi)

. We define set Bi := {∑n
k=0 ri(k)}∞n=0, where

each element
∑n

k=0 ri(k) represents the random time needed for arm i to get n ac-

cumulative reward, and define set G = B1 ∪ B2 ∪ · · · ∪ Bm. Let ζ1 be the smallest

number in G and in general let ζj be the j-th smallest number in G. Next, we define

a new random sequence {ζj}, by making the j-th element of the sequence be the arm

i if ζj ∈ Bi. Then, we have the following lemma (to be proved later):

Lemma 16. Given the previous reward history Fj−1, the constructed sequence {ζj}

is equivalent in conditional distribution to the sequence {χj}.

Next, we formally define the notion of attraction time.

Definition 2 (Attraction time). Let N denote the attraction time, such that after

this time step N , monopoly happens, i.e., only one arm has positive probability to

generate rewards.

Necessity: if α > 1 then P(N < ∞) = 1. With the help of improved exponential

embedding, the time until the accumulative reward of arm i ∈ A approaches infinity

is
∑∞

k=0 ri(k). If the condition
∑

i
1

F (i)
<∞ is satisfied, then we have

E
[ ∞∑
k=0

ri(k)
]

=
1

µi

∞∑
k=0

1

F (k + θi)
<∞.

So for each arm i ∈ A, P(
∑∞

k=0 ri(k) < ∞) = 1. Let a = arg mini∈A{
∑∞

k=0 ri(k)},

then for each b 6= a, there exists a finite number Kb such that

Kb∑
k=0

rb(k) <
∞∑
k=0

ra(k) <

Kb+1∑
k=0

rb(k).
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Thus if we let N := maxi∈A,i 6=a{
∑fi(k)

k=0 ri(k)}, then after this time N , only arm a can

generate rewards.

Sufficiency: if P(N <∞) = 1 then
∑

i
1

F (i)
<∞. If we show that when

∑
i

1
F (i)

=∞

we have P(N =∞) > 0, then the proof is done. When
∑

i
1

F (i)
=∞, we have

E
[ ∞∑
k=0

ri(k)
]

=
1

µi

∞∑
k=0

1

F (k + θi)
→∞.

Thus for any i ∈ A it takes infinite time to accumulate infinite reward, which implies

P(N =∞) > 0. In fact, in this case P(N =∞) = 1. We refer readers to Khanin and

Khanin (2001) and Oliveira (2009) for further details.

Proof of Lemma 16

Proof. The proof of this lemma relies on the memoryless property of the exponential

distribution as well as the following two facts:

Fact 1. If X1, · · · , Xm(m ≥ 2) are independent exponential random variables with

parameter λ1, · · · , λm, respectively, then min(X1, · · · , Xm) is also exponential with

parameter λ1 + · · ·+ λm.

Fact 2. For two independent exponential random variables X1 ∼ exp(λ1) and X2 ∼

exp(λ2), P(X1 < X2) = λ1

λ1+λ2
.
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Initially, in the sequence {ζj} when j = 1, since the initial value for arm i is its

bias θi, using the above two facts:

P(ζ1 = i | F0) = P
(
ri(0) < min

j 6=i
{rj(0)}

∣∣∣∣F0

)
=

µiF (θi)∑
j∈A µjF (θj)

.

In our model, each arm i has probability µi · λi(t) = µiF (θi)∑
j∈A F (θj)

to generate the first

reward every time step before it does. The value of element χ1 is a random variable

following multinomial distribution with single trial, i.e., with F0, the event {χ1 = i}

happens with probability P(χ1 = i | F0) = µiF (θi)∑
j∈A µjF (θj)

, and
∑

i∈A P(χ1 = i | F0) = 1.

Thus

P(ζ1 = i | F0) = P(χ1 = i | F0)

Now suppose that before ζn, each arm a has been added to Na. Then

P(ζn = i | Fζn−1) = P
(
ri(Ni + 1) < min

j 6=i
{rj(Nj + 1)}

∣∣∣∣Fζn−1

)
=

µiF (Ni + θi)∑
j∈A µjF (Nj + θj)

.

Correspondingly in our model, each arm i has probability µi ·λi(t) = µiF (Ni+θi)∑
j∈A F (Nj+θj)

to generate the next reward every time step before it does. The value of element χn is

a random variable following multinomial distribution with single trial, i.e., with Fχn−1 ,

the event {χn = i} happens with probability P(χn = i | Fχn−1) = µiF (Ni+θi)∑
j∈A µjF (Nj+θj)

, and
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∑
i∈A P(χn = i | Fχn−1) = 1. Thus,

P(ζn = i | Fζn−1) = P(χn = i | Fχn−1).

Proof of Lemma 2

Lemma 2. (Dominance) In ALnETC, if the incentive sensitivity function G(·) and

the payment b satisfy G(b, t) > 1 for all t in the exploration and exploitation phases,

then the expected dominant time τs is O(log T ).

Proof. Recall that the definition of dominance is at time t ≥ τn, Sâ∗(t) ≥
∑

a6=â∗ Sa(t).

Thus arm â∗ is expected to dominate at time t ≥ τn if

µâ∗E[Tâ∗(t)] ≥
∑
a6=â∗

µaE[Ta(t)].
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We tighten this condition by narrowing the left-hand-side and amplifying the right-

hand-side as follows:

µâ∗E[Tâ∗(t)] ≥
∑
a6=â∗

µaE[Ta(t)]

⇒ Tâ∗(τn) + µâ∗E[Tâ∗(t)− Tâ∗(τn)] ≥
∑
a6=â∗

Ta(τn) +
∑
a6=â∗

µaE[Ta(t)− Ta(τn)]

⇒ n+ µâ∗E[Tâ∗(t)− Tâ∗(τn)]
(i)

≥ (µâ∗E[τn]− n) +
∑
a6=â∗

µaE[Ta(t)− Ta(τn)]

⇒ n+ µâ∗
G(b, t)

G(b, t) + 1
E[t− τn]

(ii)

≥ (µâ∗E[τn]− n) + µâ∗
E[t− τn]

G(b, t) + 1

⇒ E[t− τn]
(iii)

≥

(
E[τn]−

2n

µâ∗

)(
G(b, t) + 1

)
G(b, t)− 1

, (A.1)

where (i) is because arm â∗ is pulled at least n times during the exploration phase,

(ii) is because by incentivizing arm â∗, we have λ̂â∗(t) ≥ G(b,t)
G(b,t)+1

and λ̂a(t) ≤ 1
G(b,t)+1

for a 6= â∗, and (iii) is the rearrangement. Then we obtain the sufficient condition of

dominance (A.1). Since time τs is defined as the earliest time to reach dominance,

we can upper bound E[τs − τn] by

E[τs − τn] ≤

(
E[τn]−

2n

µâ∗

)(
G(b, t) + 1

)
G(b, t)− 1

. (A.2)

Next, we prove the following result for E[τn].

Lemma 17. In ALnETC, the expected exploration phase duration E[τn] is upper

bounded by O(log T ).
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Proof of Lemma 17

Proof. In ALnETC, during the exploration phase at time step t, the agent offers

payment b to the user pulling arm i. The probability that the arm i generates reward

is λi(t)+G(b,t)
1+G(b,t)

· µi > G(b,t)µi
1+G(b,t)

. Thus, the number of attempts for arm i to generate a

unit reward is a geometric random variable with parameter larger than G(b,t)µi
1+G(b,t)

. By

the policy, during the exploration phase, each arm generates at least n accumulative

reward. Then we obtain

E[τn] ≤ n ·
∑
i∈A

1 +G(b, t)

G(b, t)µi
= O(n) = O(log T ). (A.3)

Lastly, it follows from Lemma 17 that E[τs] = E[τn] +E[τs− τn] = O(log T ). This

completes the proof.

Proof of Theorem 3

Theorem 3. (At-Least-n Explore-Then-Commit) Given a fixed time horizon T , if

(i) G(b, t) > 1, (ii) q ≥ (2 maxa6=a∗ µa)/∆
2
min, (iii) F (x) = Θ(xα) with α > 1, then

the expected regret of ALnETC is upper bounded by:

E[RT ] ≤
∑
a∈A

2(G(b, t)− La∗)∆max(
G(b, t)− 1

)
µa

· q lnT + o(log T ),
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where La = F (q lnT + θa)/
∑

i∈A F (µ∗T + θi). The expected total payment is upper

bounded by:

E[BT ] ≤
∑
a6=a∗

2b(G(b, t) + 1)

µa(G(b, t)− 1)
· q lnT.

Proof. In the rest of the proofs, for simplicity we will use the notations ∆a = µ∗−µa,

µmin = min
a∈A

µa, ∆max = max
a∈A

∆a and ∆min = min
a∈A

∆a.

By the law of total expectation, the expected regret up to T is as follows:

E[RT ] = E[RT | â∗ = a∗]P(â∗ = a∗) + E[RT | â∗ 6= a∗]P(â∗ 6= a∗)

≤ E[RT | â∗ = a∗] + T · P(â∗ 6= a∗).

We want to bound both E[RT | â∗ = a∗] and P(â∗ 6= a∗) to get the regret bound.

First we analyze the upper bound of the part P(â∗ 6= a∗). We start with the following

lemma.

Lemma 18. For each arm a 6= a∗, there exists a constant εa > 0 independent of n

such that the following hold:

P
(
µ̂a(τn) > µa +

∆a

2

)
≤ 2e−2εan,

and

P
(
µ̂a∗(τn) < µa∗ −

∆a

2

)
≤ 2e−2εan.

93



Let arm a = arg maxi∈A,i 6=a∗ µ̂i(τn) denote the arm with largest sample mean and not

equal to arm a∗ at time step τn. We have:

P(â∗ 6= a∗) ≤ P
(
µ̂a(τn) ≥ µ̂a∗(τn)

)
(i)

≤ P
(
µ̂a(τn) ≥ µa +

∆a

2

)
+ P

(
µ̂a∗(τn) ≤ µa∗ −

∆a

2

)
(ii)

≤ 4e−
n∆2

a
2µa ,

where (i) is because µa+∆a/2 = µa∗−∆a/2, and the event {µ̂a(τn) ≥ µ̂a∗(τn)} implies

either {µ̂a(τn) ≥ µa+∆a/2} or {µ̂a∗(τn) ≤ µa∗−∆a/2}, and (ii) follows by leveraging

Lemma 18. Recall that, in the policy, we define n = q log T . Thus, if q ≥ 2 maxa6=a∗ µa
∆2
min

,

it then follows that P(â∗ 6= a∗) = O( 1
T

).

Next, we analyze the upper bound of the part E[RT | â∗ = a∗]. Let Γt denote the

accumulative reward up to time step t. Then, we have:

E[RT | â∗ = a∗] = E[Γ∗T ]− E[ΓT | â∗ = a∗]

= µ∗ · T − E[ΓT | â∗ = a∗]

= µ∗ · T −
(
E[Γτs | â∗ = a∗] + E[ΓT − Γτs | â∗ = a∗]

)
. (A.4)
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During the exploration phase, since each arm generates rewards at least n times, we

obtain:

E[Γτn | τn] = E
[∑
i∈A

(
n+ (Si(τn)− n)

)]
= m · n+ E

[∑
i∈A

(
Ti(τn) · µi − n

)]
= m · n+

∑
i∈A

µi

(
E[Ti(τn)]− n

µi

)
≥ m · n+ µmin ·

∑
i∈A

(
E[Ti(τn)]− n

µi

)
= m · n+

(
τn · µmin − µmin ·

∑
i∈A

n

µi

)
= τn · µmin + n ·

∑
i∈A

µi − µmin
µi

. (A.5)

For each arm a ∈ A, let La = F (q lnT+θa)∑
i∈A F (µ∗T+θi)

. Thus at time t ∈ {τn + 1, . . . , T}, we

have

E[λa(t)] = E
[ F (Sa(t− 1) + θa)∑

i∈A F (Si(t− 1) + θi)

]
(i)

≥
F (q lnT + θa)∑
i∈A F (µ∗T + θi)

= La,

where (i) is obtained since at time t > τn, Sa(t− 1) ≥ q lnT and Sa(t− 1) ≤ µ∗T for

any a 6= a∗.
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During the exploitation phase, the agent offers payment to users pulling arm â∗,

so using the bound in (A.5) we obtain:

E[Γτs | â∗ = a∗, τn, τs]

= E[Γτn | τn] +
τs∑

t=τn+1

E
[
λa∗(t) +G(b, t)

1 +G(b, t)
· µ∗ +

∑
i∈A

λi(t)

1 +G(b, t)
· µi
]

≥ E[Γτn | τn] +
τs∑

t=τn+1

E
[
λa∗(t) +G(b, t)

1 +G(b, t)
· µ∗ +

(1− λa∗(t))
1 +G(b, t)

· µmin
]

= E[Γτn | τn] +
τs∑

t=τn+1

E
[

G(b, t)

1 +G(b, t)
· µ∗ +

µmin
1 +G(b, t)

+
λa∗(t)∆max

1 +G(b, t)

]

≥ E[Γτn | τn] +
µ∗(τs − τn)G(b, t)

1 +G(b, t)
+

(τs − τn)µmin
1 +G(b, t)

+
(τs − τn)La∗∆max

1 +G(b, t)

(i)

≥ τnµmin + n
∑
i∈A

µi−µmin
µi

+
µ∗(τs−τn)G(b, t)

1 +G(b, t)
+

(τs−τn)µmin
1 +G(b, t)

+
(τs−τn)La∗∆max

1 +G(b, t)

= n
∑
i∈A

µi − µmin
µi

+
µ∗G(b, t) + µmin + La∗∆max

1 +G(b, t)
τs + τn · µmin−

µ∗G(b, t) + µmin + La∗∆max

1 +G(b, t)
τn

= n
∑
i∈A

µi − µmin
µi

+
µ∗G(b, t) + µmin + La∗∆max

1 +G(b, t)
τs −

(
G(b, t) + La∗

)
∆max

1 +G(b, t)
τn,

(A.6)
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where (i) is obtained by replacing E[Γτn | τn] using (A.5). Then replacing (A.4) using

(A.6) and taking expectation with respect to τn and τs, we obtain:

E[RT | â∗ = a∗]

≤ µ∗T − µ∗G(b, t) + µmin + La∗∆max

1 +G(b, t)
E[τs] +

(
G(b, t) + La∗

)
∆max

1 +G(b, t)
E[τn]−

n
∑
i∈A

µi − µmin
µi

− E[ΓT − Γτs | â∗ = a∗]

= µ∗E[τs]−
µ∗G(b, t) + µmin + La∗∆max

1 +G(b, t)
E[τs] +

(
G(b, t) + La∗

)
∆max

1 +G(b, t)
E[τn]−

n
∑
i∈A

µi − µmin
µi

+ µ∗
(
T − E[τs]

)
− E[ΓT − Γτs | â∗ = a∗]

=
∆max(1− La∗)

1 +G(b, t)
E[τs − τn] + ∆maxE[τn]− n

∑
i∈A

µi − µmin
µi

+ E[RT −Rτs | â∗ = a∗].

(A.7)
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Then, the evaluation of E[RT | â∗ = a∗] boils down to evaluating E[τn], E[τs − τn]

and E[RT −Rτs | â∗ = a∗]. We obtain from Lemma 2 and (A.7) that

E[RT | â∗ = a∗]

≤
∆max(1− La∗)

1 +G(b, t)
·

(
n ·∑i∈A

1+G(b,t)
G(b,t)µi

−
2n

µ∗
)(
G(b, t) + 1

)
G(b, t)− 1

+ ∆maxn
∑
i∈A

1 +G(b, t)

G(b, t)µi
−

n
∑
i∈A

µi − µmin
µi

+ E[RT −Rτs | â∗ = a∗]

= n

[(G(b, t)− La∗
)(
G(b, t) + 1

)
G(b, t)

(
G(b, t)− 1

) ∑
a∈A

∆max

µa
−
a∆max(1− La∗)
µ∗
(
G(b, t)− 1

) −∑
a∈A

µa − µmin
µa

]
+

E[RT −Rτ2 | â∗ = a∗]

(i)

≤ n

[2
(
G(b, t)− La∗

)
G(b, t)− 1

∑
a∈A

∆max

µa

]
+ E[RT −Rτ2 | â∗ = a∗]

= O(log T ) + E[RT −Rτ2 | â∗ = a∗],

where (i) follows because G(b, t) + 1 < 2G(b, t). By leveraging Eqs (A.3) and (A.2),

the expected accumulative payment E[BT ] can also be upper bounded by

E[BT ] = b · (E[τn] + E[τs − τn]) ≤
∑
a6=a∗

2b(G(b, t) + 1)

µa(G(b, t)− 1)
· q lnT = O(log T ).

Next, for simplicity, we consider a system with A = {1, 2}, where µ1 > µ2 and

θ1, θ2 > 0. The idea of the policy is that the agent keeps offering payment b to the

users pulling arm 1 to help accumulate reward from arm 1 and keep the arm in the

leading side, i.e., arm 1 generates at least half of accumulative reward, until time
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step τs when arm 1 dominates and has an overwhelming chance to be the only arm

that can generate rewards after monopoly happens. This phenomenon is formulated

as follows: suppose at time step τs, S1(τs) + S2(τs) = n0, and S2(τs) = u0n0 with

0 < u0 < 1
2

and u0n0 � θ1, θ2. We estimate the probability of a “bad” event

D(u0, n0), where at some time step t′ > τs we have S1(t′) + S2(t′) = n > n0 and

S2(t′) ≥ un with 0 < u0 < u < 1
2
, by leveraging the improved exponential embedding

method, D(u0, n0) can be expressed as follows:

D(u0, n0) =

( un−1∑
i=u0n0

r2(i) <
n−un−1∑

i=n0−u0n0

r1(i)

)
.

We will show later that P(D(u0, n0)) is very small, and with u0n0 getting larger,

P(D(u0, n0)) is getting exponentially smaller. This result is formally stated as follows:

Lemma 19. Suppose at time step τs there are n0 accumulative reward with u0n0, 0 <

u0 <
1
2

generated by arm 2. Then, there exists a constant γ ∈ (0, 1/4), such that for

any u0 < u < 1
2

and all large enough n0, it holds that:

P
(
∃n > n0, D(u0, n0)

)
≤ e−(u0n0)γ .

By the above lemma, with u0n0 = O(τn) = O(log T ), we get P
(
D(u0, n0)

)
=

O(e−(log T )γ ). This result can be extended to the case with arm number m ≥ 2, by

viewing the sum of accumulative reward generated from all sub-optimal arms as the

accumulative reward generated from a single “super arm.”

Next, we bound the last part E[RT − Rτs | â∗ = a∗]. Note that the regret comes

from pullings of sub-optimal arms, and the expected number of attempts for each
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arm to get a unit reward is O(1) since µi > 0, i ∈ A. Let n0 denote the accumulative

reward from all arms at time step τs with u0n0, 0 < u0 <
1
2

rewards generated by sub-

optimal arms. Note that u0n0 = O(log T ) since u0n0 < τs and τs = O(log T ). Then,

by Lemma 19, for the unit reward generated right after τs, it is generated by sub-

optimal arms with probability smaller than or equal to e−(u0n0)γ with γ ∈ (0, 1
4
). When

a unit reward is generated by sub-optimal arms, the probability that the next unit

reward is also generated by sub-optimal arms is smaller than or equal to e−(u0n0+1)γ .

Thus, we can upper bound the expected regret E[RT −Rτs | â∗ = a∗] by

E[RT −Rτs | â∗ = a∗] ≤ e−(u0n0)γ + e−(u0n0+1)γ + · · ·

≤
∫ ∞
u0n0−1

e−n
γ

dn

= Ce−(u0n0−1)γ , (A.8)

where C only depends on u0n0 and γ such that C = O
(
(u0n0)1−γ) with γ ∈

(0, 1/4). Thus Eq. (A.8) is o(log T ). Now we get the expected regret up to time step

T as E[RT ] = O(log T ), this completes the proof.

Proof of Lemma 18

Fact 3 (Chernoff-Hoeffding bound). Let Z1, · · · , Zn be independent bounded random

variables with Zi ∈ [a, b] for all i, where −∞ < a ≤ b <∞. Then for all s ≥ 0

P
(∣∣∣∣ 1n

n∑
i=1

(Zi − E[Zi])

∣∣∣∣ ≥ s

)
≤ exp

(
− 2ns2

(b− a)2

)
.
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Proof. Let sequences {Xi(t)} denote the Bernoulli reward with support {0, 1} gen-

erated by arm i 6= a∗ at time step t. Thus, for each time step t, Xi(t) is an i.i.d.

random variable and E[Xi(t)] = µi. At time step τn, by the policy, each arm has at

least n accumulative reward. Since Si(τn) is the accumulative reward generated by

arm i at time step τn we have Si(τn) ≥ n. By Chernoff-Hoeffding bound, at time step

τn for arm i, we get the following:

P
(
µ̂i(τn) > µi +

∆i

2

)
≤ 2e−2E[Ti(τn)](

∆i
2

)2

= 2e
−2

E[Si(τn)]

µi
(

∆i
2

)2 ≤ 2e
−n∆2

i
2µi .

The proof for arm a∗ also follows from similar arguments and thus is omitted for

brevity.

Proof of Lemma 19

Proof. Suppose at some time step t, there are n accumulative reward from both arms.

Recall that for arm i ∈ A,
∑∞

j=n ri(j) < ∞ and E
[∑∞

j=n ri(j)
]

=
∑∞

j=n
1

µiF (j+θi)

converges. To prove Lemma 19, we use the following lemma

Lemma 20. There exists a constant n0 such that for all n > n0,

P
(∣∣∣∣

∑∞
j=n ri(j)

E
[∑∞

j=n ri(j)
] − 1

∣∣∣∣ > n−
1
4

)
≤ e−n

1
4 , i ∈ A.
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Given a constant t, define an event En0 where the following conditions hold simulta-

neously:

∣∣∣∣
∑∞

j=u0n0
r2(j)

E
[∑∞

j=u0n0
r2(j)

] − 1

∣∣∣∣ ≤ (u0n0)−
1
4 , (A.9)

∀n > n0,

∣∣∣∣
∑∞

j=un r2(j)

E
[∑∞

j=un r2(j)
] − 1

∣∣∣∣ ≤ (un)−
1
4 , (A.10)∣∣∣∣

∑∞
j=(1−u0)n0

r1(j)

E
[∑∞

j=(1−u0)n0
r1(j)

] − 1

∣∣∣∣ ≤ ((1− u0)n0

)− 1
4 , (A.11)

∀n > n0,

∣∣∣∣
∑∞

j=(1−u)n r1(j)

E
[∑∞

j=(1−u)n r1(j)
] − 1

∣∣∣∣ ≤ ((1− u)n
)− 1

4 . (A.12)

By Lemma 20, we obtain the probability of event En0 as follows

P(En0) ≥ 1− 2e−(u0n0)
1
4 −

∑
n>n0

2e−(u0n)
1
4 ≥ 1− e−(u0n0)γ ,

with γ ∈ (0, 1
4
) depending only on F and u0. If we show that for all large enough

u0n0, En0 ∩D(u0, n0) = 0, then the proof is finished since it implies

P
(
∃n > n0, D(u0, n0)

)
≤ P(Ec

n0
) ≤ e−(u0n0)γ .

We consider the definition of event D(u0, n0). By (A.9)–(A.12), we obtain

un−1∑
i=u0n0

r2(i) =
∞∑

i=u0n0

r2(i)−
∞∑
i=un

r2(i)

≥
(
1 + o(1)

) ∞∑
i=u0n0

1

µ2F (i+ θ2)
−
(
1 + o(1)

) ∞∑
i=un

1

µ2F (i+ θ2)
,
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and similarly,

n−un−1∑
i=n0−u0n0

r1(i) ≤
(
1 + o(1)

) ∞∑
i=(1−u0)n0

1

µ1F (i+ θ1)
−
(
1 + o(1)

) ∞∑
i=(1−u)n

1

µ1F (i+ θ1)
.

By contradiction, suppose that En0 ∩D(u0, n0) 6= 0. It then follows that

(
1 + o(1)

) ∞∑
i=u0n0

1

µ2F (i+ θ2)
−
(
1 + o(1)

) ∞∑
i=un

1

µ2F (i+ θ2)

<
(
1 + o(1)

) ∞∑
i=(1−u0)n0

1

µ1F (i+ θ1)
−
(
1 + o(1)

) ∞∑
i=(1−u)n

1

µ1F (i+ θ1)
,

which implies

(1−u0)n0∑
i=u0n0

1

µ1F (i+ θ1)
<
(
1 + o(1)

) (1−u)n∑
i=un

1

µ1F (i+ θ1)
. (A.13)

We want to show that (A.13) cannot hold as u0n0 goes large, which implies En0 ∩

D(u0, n0) = 0. Since F (x) = Ω(xα), there exists k > 0 such that

(1−u)n∑
i=un

1

µ1F (i+ θ1)
≤ k

(
n0

n

)α (1−u)n∑
i=un

1

µ1F (n0

n
i+ no

n
θ1)

= k

(
n0

n

)α (1−u)n0∑
i=un0

1

µ1F (i+ θ1)
.

Also, note that [un0, (1−u)n0] ⊂ [u0n0, (1−u0)n0]. Therefore, there exists a constant

d ∈ (0, 1) such that

(1−u)n∑
i=un

1

µ1F (i+ θ1)
≤ dk

(
n0

n

)α (1−u0)n0∑
i=u0n0

1

µ1F (i+ θ1)
,
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which contradicts with (A.13) since o(1) goes to 0 as u0n0 goes to infinity, and this

completes the proof.

Proof of Lemma 20

Proof. Let Rn =
∑∞

j=n ri(j), h(j) = µiF (j+ θi), Zn =
∑∞

j=n
1

h(j)2 . We first show that

for any t ∈ R+, we have

P(Rn − E[Rn] > t
√
Zn) ≤ e−t, (A.14)

and

P(Rn − E[Rn] < −t
√
Zn) ≤ e−t. (A.15)
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We only prove the first inequality and the proof of the second one is similar. Given

a constant s, we have:

P(Rn − E[Rn] > t
√
Zn)

(i)
= P

(
es(Rn−E[Rn]) > est

√
Zn

)
(ii)

≤ e−st
√
ZnE

[
es

∑
j≥n(ri(j)− 1

h(j)
)

]
= e−st

√
Zn
∏
j≥n

E
[
es(ri(j)−

1
h(j)

)

]
(iii)
= e−st

√
Zn
∏
j≥n

e−
s

h(j)

1− s
h(j)

= e−st
√
Zn
∏
j≥n

e
−s
h(j)

[
1 +

s

h(j)
+

s2

h(j)2

1− s
h(j)

]
(iv)

≤ e−st
√
Zn
∏
j≥n

e
2s2

h(j)2

≤ exp(2s2Zn − st
√
Zn), (A.16)

where (i) follows from multiplying both sides by a variable s and exponentiate both

sides, (ii) follows from Markov’s inequality, (iii) is because given random variable

X ∼ Exp(λ), E[eaX ] = 1
1− a

λ
, a < λ, and (iv) follows from ex ≥ 1 +x. We set s = 1√

Zn
,

which is achievable since there exists n such that 1√
Zn
≤ h(n)

2
. Thus, by (A.16), we

obtain P(Rn − E[Rn] > t
√
Zn) ≤ e−t. Next, we use Lemma 1 in Oliveira (2009),

which is restated as follows:

Lemma 21 (Oliveira (2009), Lemma 1). Define a feedback function F (x) = Θ(xα)

where α > 1, and define the quantity

Sr(n) =
∞∑
j=n

1

F (j)r
, r ∈ R+, n ∈ N.
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Then, for all r ≥ 1, Sr(n) converges and as n→ +∞

Sr(n)→ n

(rα− 1)F (n)r
.

By using Lemma 21, we obtain
√
S2(n) = n−

1
2S1(n) asymptotically. Note that

S1(n) = µiE[Rn] and S2(n) = µ2
iZn. Therefore, we obtain the relation between E[Rn]

and
√
Zn as

√
Zn = n−

1
2ERn asymptotically. Then we replace t by n

1
4 in both (A.14)

and (A.15), and we get the inequality in Lemma 20.

Proof of Theorem 5

Lemma 5. (UCB-Filtering-with-Delayed-Feedback) Given a fixed time horizon T ,

if G(b, t) > 1, and F (x) = Θ(xα) with α > 11, then the pseudo regret of Algorithm 3

E[RT ] is upper bounded by

E[RT ] ≤
∑
a6=a∗

8∆a

(
G(b, 1)− 1

)
+ 8∆∗(

G(b, 1)− 1
)
∆2
a

lnT +
g(F, 1)∆∗

(
E[D∗(T )] + 4K

)
g(b, 1)− 1

,

with the expected payment E[BT ] upper bounded by

E[BT ] ≤ b ·
2G(b, 1) + 1

G(b, 1)− 1

[8 lnT

∆2
min

+
∑
a6=a∗

8 lnT

∆2
a

+ E[D∗(T )] + 4K

]
.

1The notation Θ() in this work is defined as that, if F (x) = Θ(g(x)), then there exist x0 and two
constants C1, C2 > 0, such that C1G(x) ≤ F (x) ≤ C2g(x) for all x ≥ x0.
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Proof. We start in a similar way as the proof of Theorem 3. By the law of total

expectation, the expected regret up to T can be bounded as follows:

E[RT ] = E[RT | â∗ = a∗]P(â∗ = a∗) + E[RT | â∗ 6= a∗]P(â∗ 6= a∗)

≤ E[RT | â∗ = a∗] + T · P(â∗ 6= a∗).

We want to bound both E[RT | â∗ = a∗] and P(â∗ 6= a∗) to get the regret bound. We

first consider E[RT | â∗ = a∗]. After decomposing, we have:

E[RT | â∗ = a∗] = E[Rτ2 | â∗ = a∗] + E[RT −Rτ2 | â∗ = a∗]

= E[Rτ1 ] + E[Rτ2 −Rτ1 | â∗ = a∗] + E[RT −Rτ2 | â∗ = a∗]. (A.17)

Note that after initialization, i.e., let t0 be the time step when initialization is finished,

each arm a has Ta(t0) ≥ 1 since the number of attempts for each arm a to get a unit

reward is a geometric random variable with parameter larger than G(b,t)µa
1+G(b,t)

, which is

independent of time. During the exploration phase, since the regret is caused by

pullings of sup-optimal arms, the expected regret after t time steps can be written as

∑
a6=a∗,a∈A

∆aE[Ta(t)].

Thus we can bound the expected regret during the exploration phase E[Rτ1 ] by bound-

ing each E[Ta(τ1)] for a 6= a∗. Let U(t) denote the set of arms that can get payment

at time t. Consider the following two cases during the exploration phase:

(a) At time t ≤ τ1, a∗ ∈ U(t) and there exists at least one suboptimal arm

a ∈ A, a 6= a∗ such that a ∈ U(t). Recall that ca(t) =
√

lnT/2Ta(t) is the confidence
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bound of arm a at time step. In this case, we have:

P
(
∃a 6= a∗ : a ∈ U(t), a∗ ∈ U(t)

)
(i)

≤ P
(
µ̂a(t) + ca(t) > µ̂∗(t)− ca∗(t)

)
· P
(
µ̂∗(t) + ca∗(t) > µ̂a(t)− ca(t)

)
≤ P

(
µ̂a(t) + ca(t) > µ̂∗(t)− ca∗(t)

)
(ii)

≤ P
(
µ̂a(t) + ca(t) > µa +

∆a

2

)
+ P

(
µ̂∗(t)− ca∗(t) < µ∗ −

∆a

2

)
, (A.18)

where (i) is obtained since arm a, a∗ ∈ U(t) implies that the upper confidence bound

of both arms is larger than the other arms’s lower confidence bound, (ii) is because

µa + ∆a/2 = µ∗ −∆a/2, and the event {µ̂a(t) + ca(t) > µ̂∗(t)− ca∗(t)} implies either

{µ̂a(t)+ ca(t) > µa+∆a/2} or {µ̂∗(t) < µ∗−∆a/2}. We consider the first probability

in Eq. (B.4). By Chernoff-Hoeffding bound we have

P
(
µ̂a(t) + ca(t) > µa +

∆a

2

)
= P

(
µ̂a(t)− µa >

∆a

2
− ca(t)

)
≤ e−2Ta(t)

(
∆a
2
−ca(t)

)2

= e−
(

lnT+
∆2
a

2
Ta(t)−∆a

√
2Ta(t) lnT

)
. (A.19)

Let ∆2
a

2
Ta(t)−∆a

√
2Ta(t) lnT = 0, we obtain Ta(t) = 8 lnT/∆2

a and Eq. (B.5) equals

1/T . Note that as Ta(t) increases, Eq. (B.5) decreases monotonically. Similar bound

can be obtained of the second probability in Eq. (B.4). Thus, in this case, the expected
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regret contributed by a suboptimal arm a ∈ A is bounded by

∆aE[Ta(t)] ≤
8 lnT

∆a

+ ∆aT · P
(
t < τ1 : a ∈ U(t), a∗ ∈ U(t)

)
≤

8 lnT

∆a

+ 2∆a. (A.20)

(b) At time t ≤ τ1, a∗ is eliminated by some suboptimal arm a ∈ U(t), a 6= a∗. In

this case, with similar technique as that in case (a) and Chernoff-Hoeffding bound,

we have

P
(
∃a 6= a∗ : a ∈ U(t), a∗ /∈ U(t)

)
≤ P

(
µ̂a(t)− ca(t) > µ̂∗(t) + ca∗(t)

)
≤ P

(
µ̂a∗(t) + ca∗(t) ≤ µa∗ −

∆a

2

)
+ P

(
µ̂a(t)− ca(t) ≥ µa +

∆a

2

)
≤ e−2Ta∗ (t)

(
∆a
2

+ca∗ (t)
)2

+ e−2Ta(t)
(

∆a
2

+ca(t)
)2

= e−
∆2
a

2
Ta∗ (t)−lnT−∆a

√
2Ta∗ (t) lnT + e−

∆2
a

2
Ta(t)−lnT−∆a

√
2Ta(t) lnT

≤ 2T−1.

Note that P(â∗ 6= a∗) = P
(
∃a 6= a∗ : a ∈ U(t), a∗ /∈ U(t)

)
. Thus, in this case the

expected regret contributed by a suboptimal arm a ∈ A is upper bounded by

∆aE[Ta(t)] ≤ ∆aT · P
(
a ∈ U(t), a∗ /∈ U(t)

)
= 2∆a. (A.21)
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Summing Eq. (B.7) and Eq. (B.9) over all suboptimal arms, the expected regret

during the exploration phase is bounded by:

E[Rτ1 ] ≤
∑
a6=a∗

8 lnT

∆a

+ 4∆a.

During the exploration phase at time step t < τ1, since the agent offers payment b

to the user for pulling arm i, the probability that the arm i is pulled is λi(t)+G(b,t)
1+G(b,t)

>

G(b,t)
1+G(b,t)

. Thus, the number of attempts for arm i to get pulled is a geometric random

variable with parameter at least G(b,t)
1+G(b,t)

. Since the above cases (a) and (b) imply the

requirement of 8 lnT
∆2
a

+ 4 expected number of pullings from suboptimal arms, thus, the

expected number of pullings for a suboptimal arm a to guarantee at most 8 lnT
∆2
a

+ 4

number of pullings on every suboptimal arm is upper bounded by:

E[Ta(τ1)] ≤
G(b, t) + 1

G(b, t)

(8 lnT

∆2
a

+ 4

)
.

Thus, E[τ1] is upper bounded by:

E[τ1] =
∑
a∈A

E[Ta(τ1)]
(i)

≤
G(b, t) + 1

G(b, t)

(8 lnT

∆2
min

+
∑
a6=a∗

(8 lnT

∆2
a

+ 4
))
, (A.22)

where (i) is due to the requirement of Ta∗(τ1) to be at most 8 lnT
∆2
min

, since the

exploration phase stops once the sampled strongest suboptimal arm is eliminated.

By the definition of dominance, arm â∗ is expected to dominate at time t ≥ τ1 if

µâ∗E[Tâ∗(t)] ≥
∑
a6=â∗

µaE[Ta(t)].
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Similar as that in the proof of Lemma 2, after tightening the condition by nar-

rowing the left-hand-side and amplifying the right-hand-side, we obtain the sufficient

condition of dominance as follows:

µâ∗E[Tâ∗(t)] ≥
∑
a6=â∗

µaE[Ta(t)]

⇒ µâ∗Tâ∗(τ1) + µâ∗E[Tâ∗(t)− Tâ∗(τ1)] ≥
∑
a6=â∗

µaTa(τ1) +
∑
a6=â∗

µaE[Ta(t)− Ta(τ1)]

⇒ µâ∗E[Tâ∗(t)− Tâ∗(τ1)]
(i)

≥
∑
a6=â∗

(8µa

∆2
a

lnT + 4µa
)

+
∑
a6=â∗

µaE[Ta(t)− Ta(τ1)]

⇒
µâ∗G(b, t)E[t− τ1]

G(b, t) + 1

(ii)

≥
∑
a6=â∗

(8µa

∆2
a

lnT + 4µa
)

+
maxa6=â∗ µaE[t− τ1]

G(b, t) + 1

⇒ E[t− τ1]
(iii)

≥
G(b, t) + 1

µâ∗G(b, t)−max
a6=â∗

µa

∑
a6=â∗

(8µa

∆2
a

lnT + 4µa
)
, (A.23)

where (i) is obtained since Tâ∗(τ1) > 0, (ii) is because by incentivizing arm â∗, we

have λ̂â∗(t) ≥ G(b,t)
G(b,t)+1

and λ̂a(t) ≤ 1
G(b,t)+1

for a 6= â∗, and (iii) is the rearrangement.

Since time τ2 is defined as the earliest time to reach dominance, we can upper bound

E[τ2 − τ1] by

E[τ2 − τ1] ≤
G(b, t) + 1

µâ∗G(b, t)−max
a6=â∗

µa

∑
a6=â∗

(8µa

∆2
a

lnT + 4µa
)
. (A.24)
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Thus, we can bound the regret during the exploitation phase E[Rτ2 − Rτ1 | â∗ = a∗]

in (A.17) by

E[Rτ2 −Rτ1 | â∗ = a∗]
(i)

≤
∆max

G(b, t) + 1
· E[τ2 − τ1]

≤
∑
a6=a∗

( 8∆max

∆2
a(G(b, t)− 1)

log T +
4∆max

G(b, t)− 1

)
,

where (i) follows because during the exploitation phase there is always a positive

probability λ̂a(t) which is at most 1
G(b,t)+1

to pull suboptimal arm a. By using Eqs

(B.11) and (B.13), the expected accumulative payment E[BT ] can also be upper

bounded by

E[BT ] = (E[τ1] + E[τs − τ1]) · b

≤
G(b, t) + 1

G(b, t)

(8b lnT

∆2
min

+
∑
a6=a∗

(8b lnT

∆2
a

+ 4b
))

+

G(b, t) + 1

µâ∗G(b, t)−max
a6=â∗

µa

∑
a6=â∗

(8bµa

∆2
a

lnT + 4bµa

)

(i)

≤
G(b, t) + 1

G(b, t)

(8b lnT

∆2
min

+
∑
a6=a∗

(8b lnT

∆2
a

+ 4b
))

+
G(b, t) + 1

G(b, t)− 1

∑
a6=â∗

( 8b

∆2
a

lnT + 4b

)

=
G(b, t) + 1

G(b, t)
·

8b lnT

∆2
min

+

(G(b, t) + 1

G(b, t)
+
G(b, t) + 1

G(b, t)− 1

)
·
∑
a6=â∗

( 8b

∆2
a

lnT + 4b

)
(ii)

≤
2G(b, t) + 1

G(b, t)− 1

[8b lnT

∆2
min

+
∑
a6=a∗

(8b log T

∆2
a

+ 4b

)]
,

where (i) follows from µ∗ > µa for a 6= a∗, and (ii) follows from rearranging of the
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coefficients containing G(b, t). The choice of τ2 is sufficient to make the sampled

best arm dominate at time step τ2 and have overwhelming probability to stay in

leading side in monopoly after τ2. The proof is the same as that in the proof of

Theorem 3. Thus, the expected regret of the last part E[RT − Rτ2 | â∗ = a∗] =

O((log T )1−γe−(log T )γ ) = o(log T ) with γ ∈ (0, 1
4
) and the proof is the same as that in

the proof of Theorem 3.

The above results show that we get the expected regret up to time step T as

E[RT ] = O(log T ) with expected accumulative payment E[BT ] = O(log T ), which

completes the proof.
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Appendix B

Proofs of Results in Chapter 4

Proof of Lemma 5

Lemma 5. (UCB-Filtering-with-Delayed-Feedback) Given a fixed time horizon T ,

if G(b, t) > 1, and F (x) = Θ(xα) with α > 11, then the pseudo regret of Algorithm 3

E[RT ] is upper bounded by

E[RT ] ≤
∑
a6=a∗

8∆a

(
G(b, 1)− 1

)
+ 8∆∗(

G(b, 1)− 1
)
∆2
a

lnT +
g(F, 1)∆∗

(
E[D∗(T )] + 4K

)
g(b, 1)− 1

,

with the expected payment E[BT ] upper bounded by

E[BT ] ≤ b ·
2G(b, 1) + 1

G(b, 1)− 1

[8 lnT

∆2
min

+
∑
a6=a∗

8 lnT

∆2
a

+ E[D∗(T )] + 4K

]
.

1The notation Θ() in this work is defined as that, if F (x) = Θ(g(x)), then there exist x0 and two
constants C1, C2 > 0, such that C1G(x) ≤ F (x) ≤ C2g(x) for all x ≥ x0.
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Proof. By the law of total expectation, the expected regret up to time T can be

bounded as follows:

E[RT ]

= E[Rt0 ] + E[RT | â∗ = a∗]P(â∗ = a∗) + E[RT | â∗ 6= a∗]P(â∗ 6= a∗)

≤ E[Rt0 ] + E[RT | â∗ = a∗] + T · P(â∗ 6= a∗)

= E[Rt0 ] + E[Rt2 | â∗ = a∗] + E[RT −Rt2 | â∗ = a∗] + T · P(â∗ 6= a∗)

= E[Rt0 ] + E[Rt1 ] + E[Rt2 −Rt1 | â∗ = a∗] + E[RT −Rt2 | â∗ = a∗] + T · P(â∗ 6= a∗).

(B.1)

We start from bounding the term E[Rt0 ]. Note that the goal of the initialization

step is to ensure that the confidence interval for each arm is initialized. Then we have

E[Rt0 ] ≤ E[t0]

(i)

≤ m ·
(1 +G(b, 1)

G(b, 1)
+ E[τ1]

)
(i)
< m · (E[τ1] + 2), (B.2)

where (i) is because that by definition of initialization, for each arm a, it contributes

to t0 in terms of its incentivizing attempts for being pulled by users once, and its

delay period after which arm a will be regarded as initialized, then at time step t,

when offered incentive b, arm a has probability no less than G(b, t)/
(
1+G(b, t)

)
to be

pulled by users, thus the number of attempts for arm a to be pulled once is a geometric

random variable with parameter no less than G(b, t)/
(
1 + G(b, t)

)
, with expectation

value
(
1 +G(b, t)

)
/G(b, t), and (ii) is because that by condition G(b, t) > 1, we have
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(
1 +G(b, t)

)
/G(b, t) < 2.

Then we bound the term E[Rt1 ]. During the exploration phase, since the regret

is caused by pullings of sup-optimal arms, the expected regret after t ≤ t1 time steps

can be written as ∑
a6=a∗,a∈A

∆aE[Ta(t)].

Thus we can bound the expected regret during the exploration phase E[Rt1 ] by bound-

ing each E[Ta(t1)] for a 6= a∗. Let U(t) denote the set of arms that are activated, i.e.,

can get incentive, at time t. Consider the following two cases during the exploration

phase:

(a) At time t ≤ t1, a∗ ∈ U(t) and there exists at least one suboptimal arm

a ∈ A, a 6= a∗ such that a ∈ U(t). Recall that ca(t) =
√

lnT/2
(
Ta(t)−Da(t)

)
is the

confidence interval of arm a at time step t. In this case, we have:

P
(
∃a 6= a∗ : a ∈ U(t), a∗ ∈ U(t)

)
(B.3)

(i)

≤ P
(
µ̂a(t) + ca(t) > µ̂∗(t)− ca∗(t)

)
· P
(
µ̂∗(t) + ca∗(t) > µ̂a(t)− ca(t)

)
≤ P

(
µ̂a(t) + ca(t) > µ̂∗(t)− ca∗(t)

)
(ii)

≤ P
(
µ̂a(t) + ca(t) > µa +

∆a

2

)
+ P

(
µ̂∗(t)− ca∗(t) < µ∗ −

∆a

2

)
, (B.4)

where (i) is obtained since arms a, a∗ ∈ U(t) implies that the upper confidence bound

of either arm is larger than the other arms’s lower confidence bound, (ii) is because

µa + ∆a/2 = µ∗ −∆a/2, and the event {µ̂a(t) + ca(t) > µ̂∗(t)− ca∗(t)} implies either

the event {µ̂a(t) + ca(t) > µa + ∆a/2} or the event {µ̂∗(t)− ca∗(t) < µ∗−∆a/2}. We

consider the first probability in Eq. (B.4), and similar bound will be obtained for the
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second probability. By Chernoff-Hoeffding bound we have

P
(
µ̂a(t) + ca(t) > µa +

∆a

2

)
= P

(
µ̂a(t)− µa >

∆a

2
− ca(t)

)
≤ e−2(Ta(t)−Da(t))

(
∆a
2
−ca(t)

)2

= e−
(

lnT+
∆2
a

2
(Ta(t)−Da(t))−∆a

√
2(Ta(t)−Da(t)) lnT

)
. (B.5)

Let ∆2
a

2
(Ta(t)−Da(t))−∆a

√
2(Ta(t)−Da(t)) lnT = 0, we obtain Ta(t) = 8 lnT/∆2

a+

Da(t) and Eq. (B.5) equals 1/T . Note that as (Ta(t) − Da(t)) increases, Eq. (B.5)

decreases monotonically. Thus, in this case, the expected regret contributed by a

suboptimal arm a ∈ A during the exploration phase is bounded by

∆aE[Ta(t1)] ≤
8 lnT

∆a

+ ∆a

(
E[Da(t1)] + T · P

(
t < t1 : a ∈ U(t), a∗ ∈ U(t)

))

≤
8 lnT

∆a

+ ∆a

(
E[Da(t1)] + 2

)
(B.6)

≤
8 lnT

∆a

+ ∆a

(
E[D∗a(t1)] + 2

)
. (B.7)

(b) At time t ≤ t1, a∗ is eliminated by some suboptimal arm a ∈ U(t), a 6= a∗. In

this case, with similar technique as that in case (a) and Chernoff-Hoeffding bound,
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we have

P
(
∃a 6= a∗ : a ∈ U(t), a∗ /∈ U(t)

)
≤ P

(
µ̂a(t)− ca(t) > µ̂∗(t) + ca∗(t)

)
≤ P

(
µ̂a∗(t) + ca∗(t) ≤ µa∗ −

∆a

2

)
+ P

(
µ̂a(t)− ca(t) ≥ µa +

∆a

2

)
≤ e−2(Ta∗ (t)−Da∗ (t))

(
∆a
2

+ca∗ (t)
)2

+ e−2(Ta(t)−Da(t))
(

∆a
2

+ca(t)
)2

= e−
∆2
a

2
(Ta∗ (t)−Da∗ (t))−lnT−∆a

√
2(Ta∗ (t)−Da∗ (t)) lnT

+ e−
∆2
a

2
(Ta(t)−Da(t))−lnT−∆a

√
2(Ta(t)−Da(t)) lnT

≤ 2T−1. (B.8)

Note that P(â∗ 6= a∗) = P
(
∃a 6= a∗ : a ∈ U(t), a∗ /∈ U(t)

)
. Thus, in this case the

expected regret contributed by a suboptimal arm a ∈ A is upper bounded by

∆aE[Ta(t1)] ≤ ∆aT · P
(
a ∈ U(t), a∗ /∈ U(t)

)
= 2∆a. (B.9)

Summing Eq. (B.7) and Eq. (B.9) over all suboptimal arms, the expected regret

during the exploration phase is bounded by:

E[Rt1 ] ≤
∑
a6=a∗

8 lnT

∆a

+ ∆a

(
E[D∗a(t1)] + 4

)
. (B.10)

During the exploration phase at time step t < t1, since the agent offers incentive

payment b to the user for pulling arm i, the probability that the arm i is pulled is(
pi(t)+G(b, t)

)
/
(
1+G(b, t)

)
lower bounded by G(b, t)/

(
1+G(b, t)

)
. Thus, the number

of attempts for arm i to get pulled is a geometric random variable with expectation
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no larger than
(
1 + G(b, t)

)
/G(b, t). Since the above cases (a) and (b) imply that

at most 8 lnT/∆2
a +E[D∗a(t1)] + 4 expected number of pullings from each suboptimal

arm ensures a good estimation of the optimal arm, thus, the expected number of

incentivizing attempts on a suboptimal arm a to guarantee 8 lnT/∆2
a +E[D∗a(t1)] + 4

number of pullings is upper bounded by:

E
[ t1∑
s=1

1{I′s=a}

]
≤
G(b, 1) + 1

G(b, 1)

(8 lnT

∆2
a

+ E[D∗a(t1)] + 4

)
.

Thus, E[τ1] is upper bounded by:

E[t1] =
∑
a∈A

E
[ t1∑
s=1

1{I′s=a}

]
(i)

≤
G(b, 1) + 1

G(b, 1)

[8 lnT

∆2
min

+
∑
a6=a∗

(8 lnT

∆2
a

+ 4

)
+
∑
a∈A

D∗a(t1)

]
,

(B.11)

where (i) is due to the requirement of Ta∗(t1) to be at most 8 lnT/∆2
min+E[D∗a∗(t1)],

since the exploration phase stops once the sampled strongest suboptimal arm is elim-

inated. By the definition of dominance, arm â∗ is expected to dominate at time t ≥ t1

if

µâ∗E[Tâ∗(t)−Dâ∗(t)] ≥
∑
a6=â∗

µaE[Ta(t)].
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We tighten the condition by narrowing the left-hand-side and amplifying the right-

hand-side, and obtain the sufficient condition of dominance as follows:

µâ∗E[Tâ∗(t)−Dâ∗(t)] ≥
∑
a6=â∗

µaE[Ta(t)]

⇒ µâ∗E[Tâ∗(t)−D∗â∗(t)− Tâ∗(t1)] ≥
∑
a6=â∗

µa

(
E[Ta(t1)] + E[Ta(t)− Ta(t1)]

)

⇒ µâ∗E[Tâ∗(t)−D∗â∗(t)−Tâ∗(t1)]
(i)

≥

∑
a6=â∗

[8µa

∆2
a

lnT+µa
(
E[D∗a(t)]+4

)
+µaE[Ta(t)−Ta(t1)]

]

⇒ µâ∗

[G(b, 1)E[t− τ1]

G(b, 1) + 1
− E[D∗â∗(t)]

]
(ii)

≥

∑
a6=â∗

[8µa

∆2
a

lnT + µa
(
E[D∗a(t)] + 4

)]
+
µâ∗E[t− τ1]

G(b, 1) + 1

⇒ E[t− τ1]
(iii)

≥
G(b, 1) + 1

G(b, 1)− 1

[∑
a6=â∗

8 lnT

∆2
a

+
∑
a∈A

(
E[D∗a(t)] + 4

)]
, (B.12)

where (i) is obtained since Tâ∗(t1) > 0 and D∗â∗(t) ≥ Dâ∗(t), (ii) is because by incen-

tivizing arm â∗, we have p̂â∗(t) ≥ G(b, t)/
(
G(b, t) + 1

)
and p̂a(t) ≤ 1/

(
G(b, t) + 1

)
for

a 6= â∗, and (iii) is the rearrangement. Since time t2 is defined as the earliest time to

reach dominance, we can upper bound E[t2 − t1] by

E[t2 − t1] ≤
G(b, 1) + 1

G(b, 1)− 1

[∑
a6=â∗

8 lnT

∆2
a

+
∑
a∈A

(
E[D∗a(t2)] + 4

)]
. (B.13)
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Thus, we can bound the regret during the exploitation phase E[Rt2 − Rt1 | â∗ = a∗]

in (B.1) by

E[Rt2 −Rt1 | â∗ = a∗]
(i)

≤
∆∗

G(b, 1) + 1
· E[t2 − t1]

≤
∑
a6=a∗

8∆∗ lnT

∆2
a(G(b, 1)− 1)

+
∑
a∈A

∆∗
(
E[D∗a(t2)] + 4

)
G(b, 1)− 1

, (B.14)

where (i) follows because during the exploitation phase there is always a positive

probability p̂a(t) which is at most 1/
(
G(b, t) + 1

)
to pull suboptimal arm a. After

arm â∗ dominates, we want to prove that arm â∗ has exponentially large probability

to achieve monopoly, so as to upper bound the regret in the self-sustaining phase

E[RT − Rt2 | â∗ = a∗]. Since the dominance proof only involves the accumulated

reward Sa(t), our situation reduces to the non-delay case in expectation. Thus, we

omit the proof in Zhou et al. (2021) and show the result by

E[RT −Rτs | â∗ = a∗] ≤ e−(log T )γ + e−(log T+1)γ + · · · , (B.15)

with the summation on the right hand side bounded by O
(
(log T )1−γe−(log T )γ

)
and

γ ∈ (0, 1/4). Now, summing up Eqs. (B.2),(B.8),(B.10),(B.14),(B.15), we obtain the

regret upper bound stated in Lemma 5.
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By using Eqs (B.11) and (B.13), the expected incentive E[BT ] can also be upper

bounded by

E[BT ]

= (E[t1] + E[ts − t1]) · b

≤
G(b, 1) + 1

G(b, 1)

[8b lnT

∆2
min

+
∑
a6=a∗

(8b lnT

∆2
a

+ 4b
)

+ E[D∗(t1)]

]
+

G(b, 1) + 1

G(b, 1)− 1

[∑
a6=â∗

8b lnT

∆2
a

+ bE[D∗(t2)] + 4bK

]
(i)

≤
G(b, 1) + 1

G(b, 1)

[8b lnT

∆2
min

+
∑
a6=a∗

8b lnT

∆2
a

+ bE[D∗(t2)] + 4bK

]
+

G(b, 1) + 1

G(b, 1)− 1

[∑
a6=â∗

8b lnT

∆2
a

+ bE[D∗(t2)] + 4bK

]

=
G(b, 1) + 1

G(b, 1)
·

8b lnT

∆2
min

+

(G(b, 1) + 1

G(b, 1)
+
G(b, 1) + 1

G(b, 1)− 1

)
·
(∑
a6=â∗

8b lnT

∆2
a

+ bE[D∗(t2)] + 4bK

)
(ii)

≤
2G(b, 1) + 1

G(b, 1)− 1

[8b lnT

∆2
min

+
∑
a6=a∗

8b lnT

∆2
a

+ bE[D∗(t2)] + 4bK

]
,

where (i) follows from D∗(t2) ≥ D∗(t1) since t2 ≥ t1, and (ii) follows from rearranging

of the coefficients containing G(b, 1).
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Proof of Theorem 7

Theorem 7. (Arm-Independent Delay) Under i.i.d. delays with a finite expectation

and the conditions of Lemma 5, the pseudo regret of Algorithm 3 E[RT ] is upper

bounded by

[2G(b, 1)∆∗

G(b, 1)− 1
+
∑
a6=a∗

8∆a

(
G(b, 1)− 1

)
+ 8∆∗(

G(b, 1)− 1
)
∆2
a

]
lnT+

G(b, 1)∆∗
(√

4E[τ1] lnT + E[τ1] + 4K + 1
)

G(b, 1)− 1
,

with the expected payment E[BT ] upper bounded by

b ·
2G(b, 1) + 1

G(b, 1)− 1

[(
2+

8

∆2
min

+
∑
a6=a∗

8

∆2
a

)
lnT +

√
4E[τ1] lnT + E[τ1] + 4K + 1

]
.

Proof. Combining the results in Lemma 5 and Lemma 6, we obtain that the regret is

upper bounded by

E[RT ]

≤
∑
a6=a∗

8∆a

(
G(b, 1)−1

)
+ 8∆∗(

G(b, 1)− 1
)
∆2
a

lnT +
G(b, 1)∆∗

(
E[τ1]+2 lnT+

√
4E[τ1] lnT+4K+1

)
G(b, 1)− 1

.

Then by some straightforward rearrangements we obtain the regret upper bound in

Theorem 7. Similarly, by replacing E[D∗(T )] with its upper bound in the incentive

upper bound, we obtain the rearranged incentive upper bound in Theorem 7.
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Proof of Lemma 8

Lemma 8. Under Assumption 1, given a finite number of arms K > 0, it holds that

E[D∗(t)] ≤
∑
a∈A

2E[τa,1] + 3K log
t

K
.

Proof. We consider a two-armed model with arm a and b, with arm-dependent delay

distribution Ta and Tb. Without loss of generality, we assume that E[τa,1] ≥ E[τb,1].

Then, the worst case where D∗(t) is maximized is that one first consecutively pull

arm a for ta times, then consecutively pull arm b for the rest t − ta times. Now,

consider another two cases where arm a and arm b are pulled for ta times and t− ta
times independently, we denote their maximum outstanding feedback up to time step

ta and t− ta by D∗a(ta) and D∗b (t− ta) respectively. We obtain the relationship below

at time step t:

D∗(t) ≤ D∗a(ta) +D∗b (t− ta),
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Now, by the result in Lemma 6, we obtain that

E[D∗(t)]

≤ E[D∗a(ta)] + E[D∗b (t− ta)]
(i)

≤
∑
i=a,b

E[τi,1] + 2
(

log ta + log(t− ta)
)

+ 2
√

E[τa,1] log ta + 2
√
E[τb,1] log(t− ta)

(ii)

≤
∑
i=a,b

E[τi,1] + 2
(

log ta + log(t− ta)
)

+ E[τa,1] + log ta + E[τb,1] + log(t− ta)

=
∑
i=a,b

2E[τi,1] + 3
(

log ta + log(t− ta)
)

(iii)

≤
∑
i=a,b

2E[τi,1] + 3 · 2 log
t

2
,

where (i) is by the result in Lemma 6; (ii) comes from the inequality 2
√
ab ≤ a+b; and

(iii) comes from the fact that t/2 is the maximizer of function h(x) = log x+log(t−x).

This result can be straightforwardly extended to multi-armed model with K ≥ 2 by

the relationship D∗(t) ≤∑i∈AD
∗
i (ti) with

∑
i∈A ti = t.

Proof of Theorem 9

Theorem 9. (Arm-Dependent Delay) Under Assumption 1 and the conditions of

Lemma 5, the pseudo regret of Algorithm 3 E[RT ] is upper bounded by

∑
a6=a∗

8∆a

(
G(b, 1)− 1

)
+ 8∆∗(

G(b, 1)− 1
)
∆2
a

lnT +
G(b, 1)∆∗

(
3K ln T

K
+
∑

a∈A 2E[τa,1] + 4K
)

G(b, 1)− 1
,
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with the expected payment E[BT ] upper bounded by

b ·
2G(b, 1) + 1

G(b, 1)− 1

[( 8

∆2
min

+
∑
a6=a∗

8

∆2
a

)
lnT + 3K ln

T

K
+
∑
a∈A

E[τa,1] + 4K

]
.

Proof. Combining the results in Lemma 5 and Lemma 8, we obtain that the regret is

upper bounded by

E[RT ]

≤
∑
a6=a∗

8∆a

(
G(b, 1)− 1

)
+ 8∆∗(

G(b, 1)− 1
)
∆2
a

lnT +
G(b, 1)∆∗

(∑
a∈A 2E[τa,1] + 3K log

t

K
+ 4K

)
G(b, 1)− 1

.

Thus we obtain the regret upper bound in Theorem 9. Similarly, by replacing

E[D∗(T )] with its upper bound in the incentive upper bound, we obtain the rear-

ranged incentive upper bound in Theorem 9.
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Appendix C

Proofs of Results in Chapter 5

Proof of Lemma 10

Lemma 10. For each user type i ∈ [N ] and position k ∈ [K], for any constant ε ≥ 0,

the position preference estimator E(T (t),S(t)) achieves a concentration bound as

follows:

P

|ρ̂i,k(t)− ρi,k| ≥ max
j∈[M ]

√√√√√ ε ln t

µ2
i,jTi,j,k(t)

 ≤MKt−2ε. (5.1)

Proof. In Algorithm 4, we denote a random vector vi,j(t) = Si,j(t)/Ti,j(t) for user i

and arm j. Given that each entry of vectors Si,j(t) and Ti,j(t) is unbiased, and the

arriving user at time t views exactly one position, for any time step t with arriving

user I(t) = i and arm j ∈ m(t), we have E[vi,j,k(t)−vi,j,k(t−1)] = µi,jρi,k for position

k. Then, by Hoeffding’s Inequality, for any ε ≥ 0 we have

P

|vi,j,k(t)− µi,jρi,k| ≥
√√√√ ε ln t

Ti,j,k(t)

 ≤ t−2ε, i ∈ [N ], j ∈ [M ], k ∈ [K]. (C.1)
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Summing vi,j,k(t) in (C.1) over k, by union bound, we have

P

∑
k∈[K]

(|vi,j,k(t)− µi,jρi,k|) ≥ K

√√√√ ε ln t

Ti,j,k(t)



= P

|vi,j(t)− µi,j| ≥ K

√√√√ ε ln t

Ti,j,k(t)


≤ Kt−2ε.

To prove Eq. (10), we start from one direction of the inequality. By setting ε = 0, it

is obvious that P(vi,j(t) ≤ µi,j) ≤ 1. Then, for any position k ∈ [K], we have

P

 1

vi,j(t)
≥

1

µi,j
, vi,j,k(t) ≥ µi,jρi,k +

√√√√ ε ln t

Ti,j,k(t)



= P

vi,j,k(t)vi,j(t)
≥ ρi,k +

√√√√√ ε ln t

µ2
i,jTi,j,k(t)


≤ Kt−2ε.
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Averaging the term
vi,j,k(t)

vi,j(t)
over arms j ∈ [M ], by union bound we have

P

 1

M

∑
j∈[M ]

vi,j,k(t)

vi,j(t)
≥ ρi,k +

1

M

∑
j∈[M ]

√√√√√ ε ln t

µ2
i,jTi,j,k(t)

 ≤MKt−2ε,

⇒ P

ρ̂i,k ≥ ρi,k +
1

M

∑
j∈[M ]

√√√√√ ε ln t

µ2
i,jTi,j,k(t)

 ≤MKt−2ε,

⇒ P

ρ̂i,k ≥ ρi,k + max
j∈[M ]

√√√√√ ε ln t

µ2
i,jTi,j,k(t)

 ≤MKt−2ε.

Thus, we obtain one direction of Eq. (10). Similarly, to prove the reversed direction,

for any position k ∈ [K], we have

P

 1

vi,j(t)
≤

1

µi,j
, vi,j,k(t) ≤ µi,jρi,k −

√√√√ ε ln t

Ti,j,k(t)



= P

vi,j,k(t)vi,j(t)
≤ ρi,k −

√√√√√ ε ln t

µ2
i,jTi,j,k(t)


≤ Kt−2ε.
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Averaging the term
vi,j,k(t)

vi,j(t)
over arms j ∈ [M ], we obtain the following

P

 1

M

∑
j∈[M ]

vi,j,k(t)

vi,j(t)
≤ ρi,k −

1

M

∑
j∈[M ]

√√√√√ ε ln t

µ2
i,jTi,j,k(t)

 ≤MKt−2ε,

⇒ P

ρ̂i,k ≤ ρi,k −
1

M

∑
j∈[M ]

√√√√√ ε ln t

µ2
i,jTi,j,k(t)

 ≤MKt−2ε,

⇒ P

ρ̂i,k ≤ ρi,k − max
j∈[M ]

√√√√√ ε ln t

µ2
i,jTi,j,k(t)

 ≤MKt−2ε.

Thus, we obtain both directions of Eq. (10).

Proof of Lemma 11

Lemma 11. For user type i and arm j, denote the unbiased empirical arm means by

µ̂ij(t) = ‖Si,j(t − 1)‖1/Nij(t − 1). Then, conditioned on event Nt and for any ε ≥ 0

we have

P

∣∣µ̂i,j(t)− µij∣∣ ≥
√

2ε‖Ti,j(t)‖1

Ni,j(t)

∣∣∣∣ Nt
 ≤ εe1−ε log t. (5.2)

We will leverage the following proposition in the proof.
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Proposition 1 (Lagrée et al. (2016), Proposition 8). Given user i ∈ [N ] and arm

j ∈ [M ], for any ε ≥ 0, we have

P

µ̄ij(t)− µij ≥
√

ε
2
‖Ti,j(t)‖1

N̄ij(t)

 ≤ εe1−ε log t. (C.2)

Proof. Assume that the position probabilities ρ are known, then we can replace

Line 16 in Algorithm 5 by N̄i,j(t) ← N̄i,j(t − 1) + ρi,σt(j), and denote unbiased em-

pirical means by µ̄i,j(t) =
∑

k Si,j,k(t − 1)/N̄i,j(t − 1). Formally, define N̄i,j(t) =∑t
s=1 ρi,σs−1(j) · 1{j ∈ Mσs}, and define Ni,j(t) =

∑t
s=1 ρ̂i,σs−1(j) · 1{j ∈ Mσs}, where

1{X} is an indicator of event X. Then we have:

|Ni,j(t)− N̄i,j(t)|/‖Ti,j(t)‖1 =
1

‖Ti,j(t)‖1

t∑
s=1

[∣∣ρ̂i,σs−1(j) − ρi,σs−1(j)

∣∣ · 1{j ∈ Mσs}
]
.

Define a “good” event Nt as follows: at time t, for any user i ∈ [N ] and any arm

j ∈ [M ], there exists ε ≥ 0 such that

|Ni,j(t)− N̄i,j(t)| < ‖Ti,j(t)‖1 max
j∈[M ]

√
ε ln t/

(
µ2
i,jTi,j,k(t)

)
.

Combining with Lemma 10, we obtain that P
(
NC
t

)
is upper bounded by

1

‖Ti,j(t)‖1

t∑
s=1

1{j ∈ Mσs} · P

∣∣ρ̂i,σs−1(j) − ρi,σs−1(j)

∣∣ ≥ max
j∈[M ]

√√√√√ ε ln t

µ2
i,jTi,j,k(t)




≤MKt−2ε.
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Then, with Proposition 1, we have

P

µ̄ij(t)− µij ≥
√

ε
2
‖Ti,j(t)‖1

N̄ij(t)


= P

µ̂ij(t)− µijN̄ij(t)

Ni,j(t)
≥
√

ε
2
‖Ti,j(t)‖1

Nij(t)


= P

µ̂ij(t)− µij ≥ µi,j(N̄i,j(t)−Ni,j(t)) +
√

ε
2
‖Ti,j(t)‖1

Nij(t)


≤ εe1−ε log t.

Replacing
(
N̄i,j(t)−Ni,j(t)

)
by ‖Ti,j(t)‖1 maxj∈[M ]

√√√√ ε1 ln t

µ2
i,jTi,j,k(t)

with ε1 = ε/ ln t,

conditioned on Nt, we have

P

µ̂ij(t)− µij ≥
√

2ε‖Ti,j(t)‖1

Nij(t)

∣∣∣∣ Nt


≤ P

µ̂i,j(t)− µi,j ≥ µi,j(N̄i,j(t)−Ni,j(t)) +
√

ε
2
‖Ti,j(t)‖1

Ni,j(t)


≤ εe1−ε log t.
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Thus, we obtain one direction of Eq. (5.2). Similarly, for the reversed direction, we

have

P

µij(t)− µ̄ij ≥
√

ε
2
‖Ti,j(t)‖1

N̄ij(t)


= P

µij(t)N̄i,j(t)

Ni,j(t)
− µ̂ij ≥

√
ε
2
‖Ti,j(t)‖1

Nij(t)


= P

µij(t)− µ̂ij ≥ µi,j(Ni,j(t)− N̄i,j(t)) +
√

ε
2
‖Ti,j(t)‖1

Nij(t)


≤ εe1−ε log t.

Replacing
(
Ni,j(t)− N̄i,j(t)

)
by ‖Ti,j(t)‖1 maxj∈[M ]

√√√√ ε1 ln t

µ2
i,jTi,j,k(t)

with ε1 = ε/ ln t,

conditioned on Nt, we have

P

µij(t)− µ̂ij ≥
√

2ε‖Ti,j(t)‖1

Ni,j(t)

∣∣∣∣ Nt
 ≤ εe1−ε log t. (C.3)

Proof of Theorem 12

Theorem 12. (Personalized treatment with GreedyRank) Setting εt = t−1/2, the

expected regret of GreedyRank Option 1 at any time step t can be bounded as
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follows:

E[R(t)] ≤ 2N
√
t+

∑
i∈[N ]

8CρMK
√
ζit ln t

(1− 1/C) minj µi,j
+O(1),

where C,Cρ > 1 are problem-dependent constants.

We will leverage the following lemma and proposition in the proof.

Proposition 2 (McDiarmid’s Inequality). Let X1, . . . , Xn be independent (not nec-

essarily identical in distribution) random variables. Let f : X1 × · · · Xn → R be any

function with the (c1, . . . , cn)-bounded difference property: for every i = 1, . . . , n and

every (x1, . . . , xn), (x′1, . . . , x
′
n) ∈ X1 × · · · Xn that differ only in the i-th coordinate

(xj = x′j for all j 6= i), we have |f(x1, . . . , xn) − f(x′1, . . . , x
′
n)| ≤ ci. Then , for any

t > 0, we have

P (|f(x1, . . . , xn)− E[f(x1, . . . , xn)]| ≥ t) ≤ exp

− 2t2∑n
i=1 c

2
i

 .

Lemma 22. At time t, for any user i ∈ [N ] and any ε ≥ 0, the estimated user arrival

rate ζ̂i(t) in Greedy Ranking satisfies the following

P
(
t ·
∣∣∣ζ̂i(t)− ζi∣∣∣ ≥ ε

)
≤ exp

(
−2tε2

)
.

Proof. We start from evaluating the initialization phase. Since the initialization per-

forms a round-robin sampling, then, at time t > 1, for each user i, arm j, position k,

we have

E[Si,j,k(t)− Si,j,k(t− 1)] =
ζiµi,j

M
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By the definition of time step t0, we have

E[t0] ≤
∑
i∈[N ]

∑
j∈[M ]

MK

ζiµi,j
.

Next, we analyze the exploration. Denote the cumulative number of exploration times

that policy Greedy Ranking performs up to time t by ξt, then we observe the following

E[ξt] =
∑
s≤t

εs ≥ t · εt.

Assume that there exists a constant C > 1 such that εt ≥ Ct−1/2. Then, by Hoeffd-

ing’s Inequality, we obtain

P

1

t
·
∣∣∣∣E[ξt]− ξt

∣∣∣∣ ≥ εt

C

 ≤ exp

−2tε2
t

C2


By the relations E[ξt] ≥ tεt and εt ≥ Ct−1/2, we have

P

tεt − ξt ≥ tεt

C

 ≤ exp

−2tε2
t

C2

 ≤ exp
(
−2t1/2

)
.

Define an event Ft regarding ξt as follows: at time t, ξt ≥ (1− 1/C) · tεt, and we have

P(FCt ) = P

ξt ≤ tεt −
tεt

C

 ≤ exp
(
−2t1/2

)
< exp(−2 ln t) =

1

t2
.

In policy GreedyRank, we perform round robin over users and arms during explo-

ration, thus, conditioned on event Ft, for each user i ∈ [N ] and each arm j ∈ [M ] we
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have

‖Ti,j(t)‖1 ≥
ξt
NM

≥ (1− 1/C) · tεt
NM

.

The analysis of exploitation requires a high probability bound of |µ̂i,j(t)·ρ̂i,σt(j)(t)−

µi,j ·ρi,σt(j)|. We note that given a policy {σt}t, the expected value of µ̂i,j(t) · ρ̂i,σt(j)(t)

depends on the policy, and may change over time. In other words, the expected value

of µ̂i,j(t) · ρ̂i,σt(j)(t) is some function of a policy-related sequence of samples. Thus, to

bound the deviation of µ̂i,j(t) · ρ̂i,σt(j)(t) to its expectation, we fix a user type i and

an arm j, and we use McDiarmid’s inequality as stated in Proposition 2. Define an

event Pt regarding ρ̂(t) as follows: at time t, for any user i ∈ [N ] and any position

k ∈ [K], it holds that |ρ̂i,k(t) − ρi,k(t)| < maxj∈[M ]

√
2 ln t/(µ2

i,jTi,j,k(t)). Define an

event Ut regarding µ̂(t) as follows: at time t, for any user i and any arm j, it holds

that |µ̂i,j(t)−µi,j| <
√

2/Ni,j(t). Then, given any policy {σt}t, at time t, conditioned

on event Pt ∩ Ut, for any user i and any arm j, the random variable µ̂i,j(t) · ρ̂i,σt(j)(t)

can change by at most
√

4 ln t/
(
Ni,j(t) minj

√
µ2
i,jTi,j,k(t)

)
. By Proposition 2, we

have

P

∣∣µ̂i,j(t) · ρ̂i,σt(j)(t)− µi,j · ρi,σt(j)∣∣ ≥ 2 ln t

µi,jNi,j(t)

∣∣∣∣ Pt,Ut
 ≤ t−2,

where P(PCt ) ≤MKt−4, and P(UCt ) . t−1/2 exp(1− t−1/2) log t. By union bound, we

obtain

P

∣∣∣∣∣∑
j∈Mσ

µ̂i,j(t) · ρ̂i,σt(j)(t)−
∑
j∈Mσ

µi,j · ρi,σt(j)
∣∣∣∣∣ ≥ ∑

j∈Mσ

2 ln t

µi,jNi,j(t)

∣∣∣∣∣ Pt,Ut
 ≤ Kt−2.
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Now, denote Γi(σ) =
∑

j∈Mσ
µi,j · ρi,σ(j), and denote Γ̂ti(σ) =

∑
j∈Mσ

µ̂i,j(t) · ρ̂i,σ(j)(t),

by union bound we have

P

∣∣∣∣∣∑
j∈Mσ

µ̂i,j(t) · ρ̂i,σt(j)(t)−
∑
j∈Mσ

µi,j · ρi,σt(j)
∣∣∣∣∣ ≥ ∑

j∈Mσ

2 ln t

µi,jNi,j(t)

∣∣∣∣∣ Pt,Ut


= P

∣∣∣Γ̂ti(σ)− Γi(σ)
∣∣∣ ≥ ∑

j∈Mσ

2 ln t

µi,jNi,j(t)

∣∣∣∣∣ Pt,Ut


≤ Kt−2.

Define an event Y it regarding the estimated CUF Γ̂ti(σt) as follows: for any policy

{σt}t and any user type i, it holds that |Γ̂i(σt)− Γi(σt)| <
∑

j∈Mσt
2 ln t/(µi,jNi,j(t)).

Conditioned on event Ft ∩ Y1
t ∩ . . . ∩ YNt , we have

Γi(σ
∗)− Γi(σt) =

[
Γi(σ

∗)− Γ̂ti(σ
∗)
]

+
[
Γ̂ti(σ

∗)− Γ̂ti(σt)
]

+
[
Γ̂ti(σt)− Γi(σt)

]
≤
[
Γi(σ

∗)− Γ̂ti(σ
∗)
]

+
[
Γ̂ti(σt)− Γi(σt)

]
≤

∑
σ∈{σ∗,σt}

∣∣∣Γ̂ti(σ)− Γi(σ)
∣∣∣

≤
4CρNMK ln t

minj µi,j(1− 1/C)tεt
,

where Cρ ≥ 1 is a constant such that ‖Ti,j(t)‖1 = CρNi,j(t), which depends on

the position preference distribution and policy, independent of K,M,N . Then, we
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evaluate the regret of personalized treatment GreedyRank up to time t as follows

E[R(t)]

≤ E[t0] +
t∑

s=t0

E

εs + (1− εs)
∑
i∈[N ]

(
Γi(σ

∗)− Γi(σs)
)

≤ E[t0] +
t∑

s=t0

{
εs +

∑
i∈[N ]

E
[
Γi(σ

∗)− Γi(σs)

∣∣∣∣Fs ∩ Y1
s ∩ . . . ∩ YNs

]
+

P
(
FCs
)

+ P
(
Y1C
s ∪ . . . ∪ YNCs

)}
≤ E[t0] +

t∑
s=t0

{
εs +

∑
i∈[N ]

E
[
Γi(σ

∗)− Γi(σs)

∣∣∣∣Fs ∩ Y1
s ∩ . . . ∩ YNs

]
+

P
(
Y1C
s ∪ . . . ∪ YNCs |As ∩ Ps ∩ Us

)
+ P

(
ACs |Fs

)
+ P

(
PCs |Fs

)
+

P
(
UCs |Fs

)
+ P

(
FCs
)}

≤ E[t0]+
t∑

s=t0

{
εs+

∑
i∈[N ]

E
[
Γi(σ

∗)−Γi(σs)

∣∣∣∣Fs ∩ Y1
s ∩ . . . ∩ YNs

]
+

N · P
(
Y1C
s |As ∩ Ps ∩ Us

)
+ P

(
ACs |Fs

)
+ P

(
PCs |Fs

)
+ P

(
UCs |Fs ∩Ns

)
+

P
(
NC
s

)
+ P

(
FCs
)}

≤ E[t0] +
t∑

s=1

{
εs +

4CρNMK ln s

minµi,j(1− 1/C)sεs
+ f(1)δsN +N2Ks−2 + s−2 ln s +MKs−4+

s−1/2 exp(1− s−1/2) ln s+MKs−2 + s−2

}
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Setting εt = Nt−1/2, we obtain the regret E[R(t)] of personalized GreedyRank upper

bounded by

E[R(t)] ≤
∑
i∈[N ]

∑
j∈[M ]

MK

ζiµi,j
+ 2Nt

1
2 +

∑
i∈[N ]

8CρMK
√
ζit ln t

(1− 1/C) minµi,j
+O(1).

Proof of Lemma 22

Proof. At any time t, the user i ∈ [N ] arrives with probability ζi. Then, by Hoeffding’s

Inequality, for any ε ≥ 0, the estimated user arrival rate ζ̂i(t) satisfies the following

P
(
t ·
∣∣∣ζ̂i(t)− ζi∣∣∣ ≥ ε

)
≤ exp

(
−2tε2

)
.

Proof of Theorem 13

Theorem 13. (Personalized treatment with UCBRank) Setting at ∈ (2/minµi,j,√
t/ ln t], the expected regret of UCBRank Option 1 at any time step t can be bounded

as follows:

E[R(t)] ≤
∑
i∈[N ]

2CρMK
√
ζit ln t

minj ∆i,j

+O(1).
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Proof. For user type i, define a “bad” event E ti regarding policy {σt}t as follows:

E ti ,

Γ̂ti(σt) +
∑
j∈Mσt

at ln t

Ni,j(t)
≥ Γ̂ti(σ

∗
i ) +

∑
j∈Mσ∗

i

at ln t

Ni,j(t)

 ,

then event E ti is necessary and sufficient for event {σ∗i 6= σt}. We observe that event

E ti implies that at least one of the following events must hold:

Γ̂ti(σ
∗
t ) ≤ Γi(σ

∗
i )−

∑
j∈Mσ∗

i

at ln t

Ni,j(t)
(C.4)

Γ̂ti(σt) ≥ Γi(σt) +
∑
j∈Mσt

at ln t

Ni,j(t)
(C.5)

Γ(σ∗i ) < Γi(σt) +
∑
j∈Mσt

2at ln t

Ni,j(t)
. (C.6)

Conditioned on event Y1
t ∩ . . . ∩ YNt , we obtain that the event (C.4) and (C.5)

both happen with probability zero if at ≥ 2/minµi,j. For event (C.6), when Ni,j(t) =

2K
√
t ln t/minj ∆i,j and at ≤

√
t/ ln t, we have the following with probability one:

∑
j∈Mσt

2at ln t

Ni,j(t)
=
at minj ∆i,j√

t/ ln t
≤ min

j
∆i,j ≤ Γi(σ

∗
i )− Γi(σt).
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Therefore, we obtain the regret of personalized UCBRank E[R(t)] upper bounded

as follows:

E[R(t)] =
t∑

s=1

∑
i∈[N ]

E
[
Γi(σ

∗
i )− Γi(σs)

∣∣∣∣P (σ∗i 6= σs)

]
· P (σ∗i 6= σs)

≤ E[t0] +
t∑

s=t0

(∑
i∈[N ]

P
(
σ∗i 6= σs

∣∣As ∩ Ps ∩ Us ∩ Y1
s ∩ . . . ∩ YNs

)
+ P(ACs ) + P(PCs ) + P(UCs ) + P

(
Y1C
s ∪ . . . ∪ YNCs

))
≤ E[t0] +

t∑
s=t0

(∑
i∈[N ]

P
(
σ∗ 6= σs

∣∣As ∩ Ps ∩ Us ∩ Y1
s ∩ . . . ∩ YNs

)
+ P(ACs ) + P(PCs ) + P(UCs |Ns) + P(NC

s ) + P
(
Y1C
s ∪ . . . ∪ YNCs

))

≤ E[t0] +
∑
i∈[N ]

2CρMK
√
ζit ln t

minj ∆i,j

+
t∑

s=t1

[
N2Ks−2 + s−2 ln s +MKs−4

+ s−1/2 exp(1− s−1/2) ln s+MKs−2

]

≤
∑
i∈[N ]

∑
j∈[M ]

MK

ζiµi,j
+
∑
i∈[N ]

2CρMK
√
ζit ln t

minj ∆i,j

+O(1).

Proof of Theorem 14

Theorem 14. (Equal Treatment with GreedyRank) Setting εt = Nt−1/2, with a δt-

approximate solution to the maximization problem in GreedyRank Option 2, the
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expected regret of Fair-GreedyRank at any time step t can be bounded by:

E[R(t)] ≤ 2Nt
1
2 +

8LUCρNMK

(1− 1/C) minµi,j
t

1
2 ln t+

t∑
s=1

U(1)Nδs +O(1),

and for δt = O(t−1), we have: E[R(t)] = O
(

8LUNMKt
1
2 log t/minµi,j

)
.

Proof. Similar with the proof of Theorem 12, we obtain the regret of the initialization

phase as upper bounded by

E[t0] ≤
∑
i∈[N ]

∑
j∈[M ]

MK

ζiµi,j
,

We now analyze the exploitation. We first obtain a concentration of the estimated

CUF Γ̂t(σ). Since the utility function f is Lf -Lipschitz continuous, then for any user

i and any policy {σt}t, we have

P

∣∣∣f (Γ̂ti(σt)
)
−f (Γi(σt))

∣∣∣ ≥ Lf
∑
j∈Mσt

2 ln t

µi,jNi,j(t)

∣∣∣∣∣ Pt,Ut


≤ P

Lf · ∣∣∣Γ̂ti(σt)− Γi(σt)
∣∣∣ ≥ Lf ·

∑
j∈Mσt

2 ln t

µi,jNi,j(t)

∣∣∣∣∣ Pt,Ut


≤ Kt−2. (C.7)

Define an event At regarding estimated user arrival rate ζ̂t as follows: at time t, for

any user i ∈ [N ], there exists ε1 ≥ 0 such that |ζ̂i(t)− ζi| < ε1. Then, conditioned on
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event At ∩ Pt ∩ Ut, for user i ∈ [N ], we have

P

ζ̂i(t) · ∣∣∣f (Γ̂ti(σt)
)
− f (Γi(σt))

∣∣∣ ≥ ζ̂i(t)Lf ·
∑
j∈Mσt

2 ln t

µi,jNi,j(t)

∣∣∣∣∣ At,Pt,Ut


≥ P

ζ̂i(t) · ∣∣∣f (Γ̂ti(σt)
)
− f (Γi(σt))

∣∣∣ ≥ Lf ·
∑
j∈Mσt

2 ln t

µi,jNi,j(t)

∣∣∣∣∣ At,Pt,Ut


≥ P

∣∣∣ζ̂i(t)f (Γ̂ti(σt)
)
− (ζi + ε2)f (Γi(σt))

∣∣∣ ≥ Lf
∑
j∈Mσt

2 ln t

µi,jNi,j(t)

∣∣∣∣∣ At,Pt,Ut


≥ P

∣∣∣ζ̂i(t)f (Γ̂ti(σt)
)
− ζif (Γi(σt))

∣∣∣ ≥ ε2f(1) + Lf
∑
j∈Mσt

2 ln t

µi,jNi,j(t)

∣∣∣∣∣At,Pt,Ut
 ,

(C.8)

and by Eq. (C.7), we have (C.8) ≤ Kt−2. By union bound, we obtain

P

∣∣∣Γ̂t(σt)− Γ(σt)
∣∣∣ ≥∑

i∈[N ]

ε1f(1) + Lf
∑
i∈[N ]

∑
j∈Mσt

2 ln t

µi,jNi,j(t)

∣∣∣∣ At,Pt,Ut
 ≤ NKt−2.

(C.9)

Specifically, setting ε1 =
∑

j∈Mσt
2Lf ln t/ (f(1)µi,jNi,j(t)), we obtain

P

∣∣∣Γ̂t(σt)− Γ(σt)
∣∣∣ ≥ 2Lf

∑
i∈[N ]

∑
j∈Mσt

2 ln t

µi,jNi,j(t)

∣∣∣∣ At,Pt,Ut
 ≤ NKt−2, (C.10)

in which case, we have the probability of event P(ACt ) ≤ t−2C1 ln t with constant

C1 > 0.
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We proved that in policy GreedyRank, conditioned on event Ft, for user i and

arm j, we have

P

tεt − ξt ≥ tεt

C

 ≤ exp

−2tε2
t

C2

 ≤ exp
(
−2t1/2

)
.

Then, define an event Yt regarding estimated CUF Γ̂t(σ) as follows: for any policy

{σt}t, it holds that |Γ̂t(σ) − Γ(σt)| < 2Lf
∑

i∈[N ]

∑
j∈Mσt

2 ln t/(µi,jNi,j(t)). Condi-

tioned on event Ft ∩ Yt, we have

Γ(σ∗)− Γ(σt) =
[
Γ(σ∗)− Γ̂t(σ

∗)
]

+
[
Γ̂t(σ

∗)− Γ̂t(σt)
]

+
[
Γ̂t(σt)− Γ(σt)

]
.

Specifically, Γ̂t(σt) is defined as being maximized by permutation σt. If we use an

approximate solution with a factor δt of being optimal, then we have

Γ(σ∗)− Γ(σt) ≤
[
Γ(σ∗)− Γ̂t(σ

∗)
]

+
[
Γ̂t(σ

∗)− (1− δt)Γ̂t(σt)
]

+
[
Γ̂t(σt)− Γ(σt)

]
≤ f(1)δtN +

∑
σ∈{σ∗,σt}

∣∣∣Γ(σ)− Γ̂t(σ)
∣∣∣

≤ f(1)δtN +
4LfCρN

2MK ln t

minµi,j(1− 1/C)tεt
.
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Then, we evaluate the regret of equal treatment GreedyRank up to time t as follows

E[R(t)] ≤ E[t0] +
t∑

s=t0

E
[
εs + (1− εs)

(
Γ(σ∗)− Γ(σs)

)]
≤ E[t0] +

t∑
s=t0

{
εs + E

[
Γ(σ∗)− Γ(σs)

∣∣∣∣Fs ∩ Ys]+ P
(
FCs
)

+ P
(
YCs
)}

≤ E[t0] +
t∑

s=t0

{
εs + E

[
Γ(σ∗)− Γ(σs)

∣∣∣∣Fs ∩ Ys]+ P
(
YCs |As ∩ Ps ∩ Us

)
+ P

(
ACs |Fs

)
+ P

(
PCs |Fs

)
+ P

(
UCs |Fs

)
+ P

(
FCs
)}

≤ E[t0] +
t∑

s=t0

{
εs + E

[
Γ(σ∗)− Γ(σs)

∣∣∣∣Fs ∩ Ys]+ P
(
YCs |As ∩ Ps ∩ Us

)
+ P

(
ACs |Fs

)
+ P

(
PCs |Fs

)
+ P

(
UCs |Fs ∩Ns

)
+ P

(
NC
s

)
+ P

(
FCs
)}

≤ E[t0] +
t∑

s=1

{
εs +

4LfCρN
2MK ln s

minµi,j(1− 1/C)sεs
+ f(1)δsN +NKs−2 + s−2 ln s

+MKs−4 + s−1/2 exp(1− s−1/2) ln s+MKs−2 + s−2

}

Setting εt = Θ(N · t−1/2), we obtain the regret E[R(t)] of policy GreedyRank upper

bounded by

E[R(t)] ≤
∑
i∈[N ]

∑
j∈[M ]

MK

ζiµi,j
+ 2Nt

1
2 +

8LfCρNMK

(1− 1/C) minµi,j
t

1
2 ln t+ f(1)δtNt+O(1).
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Proof of Theorem 15

Theorem 15. (Equal Treatment with UCBRank) With any δt-approximate solution

to the maximization problem in UCBRank Option 2, setting δ = O(
√

log t/t) and

at ∈ (2LU/minµi,j,
√
t/ ln t], the expected regret of UCBRank at any time step t can

be bounded as follows:

E[R(t)] = O

N2MK
√
t log t

∆Γ

 .

Proof. Define a “bad” event Et regarding policy {σt}t as follows:

Et ,

Γ̂t(σt) +
∑
i∈[N ]

∑
j∈Mσt

at ln t

Ni,j(t)
≥ Γ̂t(σ

∗) +
∑
i∈[N ]

∑
j∈Mσ∗

at ln t

Ni,j(t)

 ,

then event Et is necessary and sufficient for event {σ∗ 6= σt}. We observe that event

Et implies that at least one of the following events must hold:

Γ̂t(σ
∗) ≤ Γ(σ∗)−

∑
i∈[N ]

∑
j∈Mσ∗

at ln t

Ni,j(t)
(C.11)

Γ̂t(σt) ≥ Γ(σt) +
∑
i∈[N ]

∑
j∈Mσt

at ln t

Ni,j(t)
(C.12)

Γ(σ∗) < Γ(σt) +
∑
i∈[N ]

∑
j∈Mσt

2at ln t

Ni,j(t)
. (C.13)
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Conditioned on event Yt, we obtain that the event (C.11) and (C.12) both happen

with probability zero if at ≥ 4Lf/minµi,j and the following condition is satisfied:

δt ≤
at − 4Lf/minµi,j

f(1)N
·
∑
i∈[N ]

∑
j∈Mσt

ln t

Ni,j(t)
. (C.14)

For event (C.13), when Ni,j(t) = 2NK
√
t ln t/∆Γ and at ≤

√
t/ ln t, we have the

following with probability one:

∑
i∈[N ]

∑
j∈Mσt

2at ln t

Ni,j(t)
=

at∆Γ√
t/ ln t

≤ ∆Γ ≤ Γ(σ∗)− Γ(σt).

Therefore, if ‖Ti,j(t)‖1 ≥ 2CρNK
√
t ln t/∆Γ, at ∈ (2Lf/minµi,j,

√
t/ ln t] and

condition (C.14) is satisfied, we obtain the regret of equal treatment UCBRank
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E[R(t)] upper bounded as follows:

E[R(t)] =
t∑

s=1

E
[
Γ(σ∗)− Γ(σs)

∣∣∣∣P (σ∗ 6= σs)

]
· P (σ∗ 6= σs)

≤ E[t0] +
t∑

s=t0

{
f(1)N ·

(
P
(
σ∗ 6= σs

∣∣As ∩ Ps ∩ Us ∩ Ys)
+ P(ACs ) + P(PCs ) + P(UCs ) + P(YCs )

)}
≤ E[t0] +

t∑
s=t0

{
f(1)N ·

(
P
(
σ∗ 6= σs

∣∣As ∩ Ps ∩ Us)
+ P(ACs ) + P(PCs ) + P(UCs |Ns) + P(NC

s ) + P(YCs )

)}

≤ E[t0] +
2CρN

2MK
√
t ln t

∆Γ

+
t∑

s=t1

{
f(1)N

(
NKs−2 + s−2 ln s

+MKs−4 + s−1/2 exp(1− s−1/2) ln s+MKs−2

)}

≤
∑
i∈[N ]

∑
j∈[M ]

MK

ζiµi,j
+

2CρN
2MK

√
t ln t

∆Γ

+ C1f(1)N ln t+O(1).
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