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Abstract

Data is the new oil in today’s rapidly developing era of Artificial Intelligence (AI). The

large-scale collection of textual data, coupled with powerful computing capabilities, has

transformed natural language processing (NLP). For instance, people can create question-

answering (QA) systems to help users find precise answers to natural language queries, sig-

nificantly changing the way people search for information and acquire knowledge. However,

collecting, annotating, and processing real-world data can be costly and time-consuming.

Additionally, real-world data may contain sensitive personal or confidential information,

making it difficult to access due to privacy regulations like the General Data Protection

Regulation (GDPR).

In this dissertation, we introduce synthetic data as a solution to boost the utility and

privacy in NLP with minimal human effort and cost. Synthetic data is a type of artificially

generated data that mimics real-world data. We describe a standard NLP life cycle with

three stages: data collection, model training and evaluation, as well as model deployment.

We discuss the challenges in each cycle and how synthetic data can solve them. In the data

collection stage, we propose generating high-quality synthetic data that preserves privacy

using differential privacy (DP) to avoid privacy leaks and address regulatory concerns when

collecting sensitive data. In the model training and evaluation stage, we pre-train large

language models (LLMs) with synthetic data to address the training objective mismatch and

knowledge acquisition gap between pre-training and fine-tuning. Synthetic data will also
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be harnessed for improving model evaluation. In the model deployment stage, we adapt

fully-trained models to the target domain with selected synthetic data to address the issue of

domain shifts between source training data and target testing data.

There are several interesting future directions to explore in leveraging synthetic data to

enhance utility and privacy for NLP models. In data collection, the quality and realism of

synthetic data can be improved to better emulate real-world data. Recent advances in LLMs

for text generation suggest their potential for generating synthetic data. The controllable

generation of synthetic data to suit specific tasks or goals is an area for further work. In

model training and evaluation, synthetic data augmentation and weighting real-world data

with synthetic data during training are approaches to investigate improving utility metrics

like robustness. During model deployment, incorporating domain-specific knowledge to

make synthetic data more similar to real-world target domain data is another direction

to explore. To summarize, synthetic data is a promising area for advancing NLP model

utility and privacy through techniques spanning data collection, model development, and

deployment.
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Chapter 1: Introduction

Data, one of the most valuable resources in the world, is seen as the new oil in the

current rapidly developing era of Artificial Intelligence (AI). The vast amount of available

textual data, combined with powerful computing capabilities, has led to significant recent

advancements in natural language processing (NLP). These advances have enabled the

creation of various intelligent systems, such as question-answering and conversational

agents, as well as tools for summarization, machine translation, and natural language to

code generation.

However, creating NLP models can be a costly and time-consuming process, often

requiring the collection, annotation, and processing of large amounts of data. For example,

using a crowd-sourcing service like Amazon Mechanical Turk1 and Scale2 to annotate 100K

samples could cost anywhere from $8,000-$80,000, depending on the complexity of the

annotations.

Furthermore, the implementation of strict privacy protection regulations like the General

Data Protection Regulation (GDPR)3, the California Consumer Privacy Act (CCPA)4, and

1https://www.mturk.com/pricing

2https://scale.com/pricing

3https://gdpr.eu/

4https://oag.ca.gov/privacy/ccpa
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Figure 1.1: A synthetic article generated by the GPT-3 model [24] given the prompt “Write
an article to talk about the future of synthetic data for NLP”. The screenshot is taken from
OpenAI GPT-3 Playground.

the Health Insurance Portability and Accountability Act (HIPAA)5 makes it difficult and

costly to obtain real data for training privacy- and utility-preserving machine learning (ML)

models. This adds to the already time-consuming and expensive process of building these

models.

All of these constraints have opened up unbounded opportunities for adopting Synthetic

Data, a type of artificially generated data that reflects statistical properties of real-world data.

With the advancement of deep learning (DL), synthetic text generated by deep generative

5https://www.hhs.gov/hipaa/index.html
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models can closely resemble text written by humans. For example, in Figure 1.1, a large pre-

trained language model, GPT-3 [24], was able to generate a natural and logically-coherent

paragraph when given the prompt “Write an article to talk about the future of synthetic data

for NLP”.

This is very promising, as synthetic data generation can be a highly efficient and cost-

effective method for constructing large-scale training datasets in a short amount of time. The

synthetic data produced is of high quality and can be used to train accurate machine learning

models, particularly when labeled training data is scarce. Additionally, incorporating

privacy-preserving techniques like Differential Privacy (DP) in the data generation process

can help address privacy concerns surrounding sensitive real data. In conclusion, generating

synthetic data allows for an improvement in both the utility and privacy of NLP models with

minimal human effort and cost.

In this chapter, we will begin by discussing the three main stages of the NLP life cycle:

data collection, model training, and model deployment. We will then highlight some of the

challenges that can arise in each stage of the NLP life cycle. Next, we will introduce the

concept of synthetic data and explain how it can help address these challenges. We will also

provide a brief overview of how synthetic textual data is generated. Finally, we will provide

an outline of the rest of this thesis proposal and give a brief summary of each chapter.

1.1 A Standard NLP Life Cycle

In this section, we begin our discussion by introducing a standard NLP life cycle (as

shown in Figure 1.2), which gives us a high-level view of building an NLP model. It
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Figure 1.2: A standard NLP life cycle, the challenges across the NLP life cycle, and how
synthetic data can help at each stage of the life cycle.
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basically classifies the NLP life cycle into three main stages6: Data Collection, Model

Training, and Model Deployment. The details of each stage are as follows:

Data Collection. The first stage of the NLP life cycle is data collection. As the foundation

of modern machine learning, data is crucial for AI applications. Therefore, it is important to

collect large amounts of data to build accurate NLP models. For instance, GPT-3 [24], one of

the most powerful pre-trained language models, was trained on 45 TB of text data. Another

example is CLIP [190], a well-known text-to-image generative model that was trained on

400 million pairs of images and text captions. The use of large amounts of training data

significantly improves the performance of these models. Undoubtedly, there is even more

need for collecting large-scale high-quality data in this foundation model era [19]. After

acquiring data, it is often necessary to annotate the unlabeled data for different downstream

tasks. For example, if we aim to build a question-answering (QA) model to answer user’s

questions, we need first to create a number of QA pairs over the knowledge source, such as

text [194], knowledge bases (KB) [228], and images [8]. Data annotation is often costly and

time-consuming. It also sometimes needs considerable domain expertise and faces ethical

and privacy concerns (which we will discuss more in the next section). Data annotation is

often an indispensable step as the number of labeled data has a significant impact on task

performance.

Model Training and Evaluation. Once the data has been collected and processed, we

can begin training a NLP model on it. In recent years, pre-training followed by fine-tuning

has become a common approach for developing NLP applications. In the pre-training

6We acknowledge that there should be other (fine-grained) stages inside each major stage. We omit them
for simplicity.
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phase, neural models such as Transformers [240] are typically trained on large, general

datasets like Wikipedia using self-supervised language modeling tasks, such as masked

language modeling in BERT [51]. The pre-trained language models are then fine-tuned on

task-specific corpora. For example, if we aim to build a QA model to teach the model how

to answer a question based on a document, we will fine-tune a pre-trained language model

on annotated QA pairs. The pre-training fine-tuning pipeline has become a nearly standard

approach since it can well transfer the (linguistic) knowledge learned during the pre-training

phase to downstream tasks, and thus significantly improves the performance compared with

training models from scratch.

Model Deployment. After training and evaluating the model, we will deploy it for real

use. However, it is common for the model’s performance to decrease when used in the real

world due to domain shifts between the original (source) training and real (target) testing

data. This is where domain adaptation comes in. Domain adaptation is a research area

focused on improving a model’s performance when adapting it to the target domain. Various

techniques [195] have been developed to help models achieve better accuracy in the target

domain.

The NLP cycle is a process of continuous development, analysis, and improvement.

Even after a model is adapted and deployed, one can still go over the three stages again

to develop an improved version of the model. In the next section, we will discuss specific

challenges in each stage.
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1.2 Challenges across the NLP Life Cycle

Although recent years have seen great progress in NLP, there are still various challenges

in each stage of the life cycle (Figure 1.2). In this section, we will discuss these challenges

in detail.

Data Collection. The growth in available data has made it easier than ever to develop

natural language processing (NLP) models. However, this increased accuracy comes at

a cost. Large NLP models often have hundreds of millions to billions of parameters,

which allows them to memorize most of the data they have seen. This memorization can

lead to the leakage of (sensitive) training data and pose significant privacy concerns. For

example, recent studies have shown that it is possible to extract verbatim text sequences

from pre-trained language models without any knowledge of the model or training set

[29, 33, 34, 128, 69, 239, 281]. These sequences can contain sensitive information such as

names, addresses, and social media accounts [33]. This presents a practical threat to the safe

release of large language models or APIs [34], as attackers can extract individual sequences

used to train the model by interacting with them. Addressing these privacy concerns is

essential, especially when the training data is sensitive and must be protected.

Model Training and Evaluation. Pre-trained language models have greatly improved the

accuracy of various NLP tasks, but there are still gaps between pre-training and downstream

task fine-tuning. These gaps can be seen in two ways: the “training objective gap” and

the “task knowledge gap”. The training objective gap refers to the mismatch between the

pre-trained objectives and the task-specific fine-tuning objectives. For example, BERT

models [51] use masked language modeling to predict masked tokens given their context,

8



but fine-tuning it for an extractive QA model requires predicting the start and end indices of

the answer within a given passage. The task knowledge gap refers to the difference between

the general linguistic knowledge learned during pre-training and the task-specific knowledge

acquired during the fine-tuning phase. These two gaps can lead to poor performance on

downstream tasks, especially when there is not a lot of task data available. Therefore,

aligning pre-training objectives and data with the fine-tuning phase is crucial for improving

downstream task performance.

Model Deployment After training a model, it must be adapted and deployed for real-world

use. In this stage, the testing data used is often different from the training data, which can

cause the performance of the well-trained model to decrease significantly. To improve

the model’s performance on the target data, additional data from the target domain can be

collected and annotated, but this process is time-consuming, costly, and may require domain

expertise. How to better adapt and deploy the model for real uses with little human effort is

the key challenge in this stage.

In the next section, we will introduce synthetic data and discuss how synthetic data could

help address these challenges in each stage of the NLP life cycle.

1.3 How Synthetic Data can help at each stage of the NLP Life Cycle?

In the previous section, we discussed the various challenges that arise at each stage of the

NLP life cycle. These challenges can take different forms, but they often stem from a lack

of large-scale, inexpensive, high-quality data that also protects privacy. In this proposal,

we propose using synthetic data to address these challenges. Synthetic data is artificially

generated based on predefined distributions, rules, or generative models. We will provide

9



an overview of how synthetic data can help at each stage of the NLP life cycle and provide

more detailed information in later chapters.

Synthetic Data can address privacy and regulatory concerns in the Data Preparation

stage. In the first stage of data preparation, a significant amount of time and effort is

often spent on collecting or obtaining access to raw data. A recent Kaggle survey [109]

found that getting access to raw data can take up to 50% of the time spent on an AI project.

One of the major reasons for this bottleneck is privacy and regulatory concerns. The most

recent privacy regulations, such as GDPR and CCPA, have much stricter requirements for

privacy and anonymity. These regulations consider data to be anonymous only if no subjects

can be re-identified, either directly or indirectly, by the data controller or by any third

party. These regulations make data collection difficult, as simply applying pre-processing

methods such as de-identification to the original data is not enough to meet the requirements.

This has led to the need for generating synthetic data with formal privacy guarantees, such

as differential privacy (DP) [59]. By incorporating DP mechanisms into synthetic data

generation, it is possible to greatly limit the disclosure of any directly or indirectly linkable

private information. As a result, synthetic data can be more freely shared and used for

building downstream NLP models with fewer constraints.

Synthetic Data can provide well-aligned pre-training signals in the Model Training

and Evaluation stage. In the second stage of model training, models are often pre-

trained on plain texts using self-supervised objectives. However, this pre-training phase

cannot acquire task-specific knowledge. To address this limitation, task-specific pre-training

objectives can be designed and synthetic pre-training data can be created to match the form
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of downstream tasks. Recent research has shown that using tailored synthetic pre-training

data can significantly improve the performance of downstream tasks [159, 263].

Synthetic Data can help models better adapt to the target domain in the Model Deploy-

ment Stage. In the third stage of model deployment, we often encounter issues where the

data used to train the model is different from the data used to test or deploy it. This is known

as domain shift. One way to address this issue is to use synthetic data generation methods to

create additional training data for the target domain. This can help the model adapt to new

environments without the need for costly re-annotation of real data.

In the next section, we will briefly introduce how to generate synthetic textual data in

general.

1.4 How to Generate Synthetic Data?

The use of synthetic data for various applications has a long history, dating back to the

1930s with the development of audio and speech synthesis. One notable contribution to

the field of synthetic data generation was Donald B. Rubin’s 1993 proposal [204] for using

synthetic data to address issues such as undercounting in censuses. Since then, various

approaches to data synthesis have been developed, which can be broadly grouped into two

categories: rule-based data generation and deep generative models.7

Rule-based Data Generation. People design specific rules to synthesize data for different

applications. The complexity of the rules used to synthesize data for different applications

can vary from simple to complex. The amount of human labor and expertise required, as

7It is worth noting that other methods of data generation, such as random generation from pre-defined
distributions, exist but are typically not used for generating informative synthetic data for training machine
learning models. Instead, they are often used for other purposes, such as stress testing. We skip the discussion
of these approaches in this thesis.
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well as the information contained in the synthetic data, is determined by the specific rules

that are designed for the task at hand. As such, the level of complexity of the rules and

human efforts can have a significant impact on the overall effectiveness of the synthetic data.

Deep Generative Models. In recent years, due to the rapid development of deep learning,

people explore to train deep generative models on real data so that it can be used to generate

new synthetic data that have similar distributions to the original one. Representative models

include Generative adversarial networks (GANs) [82], Variational autoencoders (VAEs)

[116], and Autoregressive Language Models. GANs consist of two sub-models: a generator

and a discriminator. The generator is to synthesize the fake data, and the discriminator is

to differentiate the generated fake data from the real data. The process continues until the

generator can synthesize data items that the discriminator is not able to differentiate from the

real data input. VAEs aim to reconstruct original data points by first transforming them into

latent distributions, and back into the original space. Autoregressive language models learn

the probability over sequences of words. They then create data by predicting the probability

distribution of the next token given the previous context.

Using synthetic data generation methods in practice faces several challenges. The first

challenge is quality. To train accurate NLP models, it is essential to obtain high-quality

synthetic data. Despite the impressive progress made by deep generative models, synthetic

data can still sometimes contain a lot of noise, such as factual hallucinations [151, 101]

and repetitions [74]. Chapter 7 presents a method for filtering out noisy synthetic data

and selecting high-quality samples for training accurate models. The second challenge is

diversity. Lack of diversity is a common issue with synthetic data. Studies have shown

that diverse training data can lead to more robust models [169]. Chapter 4 and 6 present
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approaches for synthesizing diverse data for training QA models. The third challenge is

privacy. Synthetic data does not inherently provide privacy guarantees [106]. Generating

privacy-preserving data is particularly important for sensitive applications such as medical

or financial applications. Chapter 2 and Chapter 3 discuss how to protect privacy during

synthetic text generation using DP.

1.5 Organization of this Thesis

Thesis Statement. In this thesis, we aim to generate and leverage synthetic data to boost

utility and privacy in NLP with minimal human effort and cost.

The rest of this thesis is organized as follows.

In Part II, we talk about how to generate synthetic data with differential privacy to protect

training data privacy. We first propose a token-by-token text sanitization approach (Chapter

2) to replace the original (sensitive) tokens with similar tokens based on an exponential

distribution that satisfies the notion of DP. We then propose a stricter privacy requirement for

the synthetic text: we require that the whole synthetic dataset should be differentially private,

i.e., any data instance should be statistically indistinguishable in the synthetic dataset. To

achieve this, in Chapter 3, we propose to fine-tune a large language model with DP and then

use it to generate synthetic text with carefully-designed natural prompts.

In Part III, we will discuss how synthetic data can help pre-training and evaluation.

Specifically, in Chapter 4, we study open-domain question answering, one of the most

important tasks in NLP. We first synthesize millions of pseudo question-answer-document

triplets from Wikipedia articles and their references using some rule-based generation

methods. We then further illustrate how to utilize these synthetic data to pre-train an open-

domain QA system and improve both its retrieval and reading performance. In Chapter 5,
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we study the evaluation of attribution. We propose to train and evaluate an attribution score

model with synthetic data from QA, fact-checking, NLI and summarization.

Finally, in Part IV, we will talk about how to better adapt and deploy fully-trained models

to new environments in the wild with the help of synthetic data. Specifically, we study

Machine Reading Comprehension (MRC) as the application case. We first propose a neural

question generation method to synthesize diverse QA pairs on the target documents to help

improve the performance of clinical QA models (Chapter 6). Due to the noisy nature of the

synthetic data (e.g., the synthetic questions sometimes do not match with their answers), we

further propose a question value estimator (QVE) to help us select the most useful synthetic

questions that can improve the QA model’s performance on the target domain (Chapter 7).
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Part II: Data Synthesis with Differential
Privacy
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As concerns about data privacy continue to grow, privacy regulations have been imple-

mented to provide extra protection. For example, the HIPAA includes a list of sensitive

attributes, such as names, ages, and addresses, that must be removed or anonymized before

a patient’s record can be shared or used. As a result, various de-identification methods,

including both rule-based and machine learning-based approaches, have been developed

to identify this protected health information (PHI) or personally identifiable information

(PII). Despite being widely adopted, these strategies are still far from perfect. An intelligent

adversary can mine unique characteristics from seemingly harmless fields in a released data

set and potentially link it to other “auxiliary knowledge” for re-identification or single-out

attacks. Such attacks are common [163, 227, 220]. For example, Sweeney [227] was able

to identify patients from anonymized health records released by Washington State using

newspaper stories. However, de-identification methods often have false negatives, and the

increasing number of sensitive attributes makes the de-identification process less efficient

and accurate.

To solve these challenges, in this part, we propose to generate synthetic data with the

formal guarantee of differential privacy. Firstly, in Chapter 2, we introduce a token-by-token

text sanitization approach. It replaces each token in the sentence with a similar token

randomly sampled from an exponential distribution that satisfies DP. In Chapter 3, we

propose to fine-tune language models with differential privacy and use them to generate

synthetic text.
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Chapter 2: Differential Privacy for Text Analytics via Natural Text

Sanitization

Text, a convenient medium conveying sophisticated knowledge, and hence a treasure for

various data analytics tasks, often contains sensitive information that requires sanitization.

Despite the success of differential privacy (DP) mechanisms in many domains, there remains

a major unresolved challenge for differentially private text sanitization. In this chapter, we

propose token-level DP mechanisms that sanitize an input text by replacing each token

with a similar candidate sampled from an exponential distribution. The sanitized texts

also contribute to our sanitization-aware pre-training and fine-tuning, enabling privacy-

preserving natural language processing over the BERT language model with promising

utility. Surprisingly, the high utility does not boost up the success rate of inference attacks.

2.1 Introduction

Natural language processing (NLP) requires a lot of training data, which can be sensitive.

Naïve redaction approaches (e.g., removing common personally identifiable information) is

known to fail [227]: innocuous-looking fields can be linked to other information sources for

reidentification. The recent success of many language models (LMs) has motivated security

researchers to devise advanced privacy attacks. [31] recover texts from (a single document
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Figure 2.1: Workflow of our PPNLP pipeline, including the user-side sanitization and the
service provider-side NLP modeling with pretraining/fine-tuning

of) the training data via querying to an LM pretrained from it. [175] and [219] target the

text embedding, e.g., revealing from an encoded query to an NLP service.

Emerging NLP works focus on only specific document-level (statistical) features [250]

or producing private text representations [268, 47, 63, 138] as initial solutions to the first

issue above on training-data privacy. However, the learned representations are not human-

readable, which makes transparency (e.g., required by GDPR) questionable: an average

user may not have the technical know-how to verify whether sensitive attributes have been

removed or not. Moreover, consider the whole NLP pipeline, the learned representations

often entail extra modeling or non-trivial changes to existing NLP models, which take

dedicated engineering efforts.
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2.1.1 Sanitizing Sensitive Texts, Naturally

With this state-of-affairs of the security and the NLP research, we deem it better to

address privacy from the root, i.e., directly producing sanitized text documents. Being the

most native format, they incur minimal changes to existing NLP pipelines. Being human-

readable, they provide transparency (to privacy-concerning training-data contributors) and

explainability (e.g., to linguists who might find the need for investigating how the training

data contribute to a certain result). Moreover, it naturally extends privacy protection to the

inference phase. Users can apply our sanitization mechanism before sending queries (e.g.,

medical history) to the NLP service provider (e.g., diagnosis services).

Conceptually, we take a natural approach – we sanitize text documents into also (sani-

tized) text documents. This is in great contrast to the typical “post-processing” for injecting

noises either to gradients in training (a deep neural network) [153] or the “cursed” high-

dimensional text representations [148, 149, 71]. It also leads to our O(1) efficiency, freeing

us from re-synthesizing the document word-by-word via nearest neighbor searches over the

entire vocabulary space V [71].

Technically, we aim for the de facto standard of local differential privacy (LDP) [56] to

sanitize the user data locally, based on which the service provider can build NLP models

without touching any raw data. DP has been successful in many contexts, e.g., location

privacy and survey statistics [7, 160]. However, DP text analytics appears to be a difficult

pursuit (as discussed, also see Section 2.2), which probably explains why there are only

a few works in DP-based text sanitization. In high-level terms, text is rich in semantics,

differentiating it from other more structured data.

Our challenge here is to develop efficient and effective mechanisms that preserve the

utility of the text data with provable and quantifiable privacy guarantees. Our insight is
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the formulation of a new LDP notion named Utility-optimized Metric LDP (UMLDP). We

attribute our success to the focus of UMLDP on protecting what matters (sensitive words)

via “sacrificing” the privacy of non-sensitive (common) words. To achieve UMLDP, our

mechanism directly samples noises on tokens.

Our result in this regard is already better than the state-of-the-art LDP solution producing

sanitized documents [71] – we got 28% gain in accuracy on the SST-2 dataset [244] on

average at the same privacy level (i.e., the same LDP parameter) while being much more

efficient (∼60× faster, precomputation included).

2.1.2 Privacy-Preserving NLP, Holistically

Text sanitization is essential but just one piece of the whole privacy-preserving NLP

(PPNLP) pipeline. While most prior works in text privacy are motivated by producing useful

data for some downstream tasks, the actual text analytics are hardly explored, not to say in

the context of many recent general-purpose language models. As simple as it might seem,

we start to see design choices that can be influential. Specifically, our challenge here is

to adapt the currently dominating pretraining-fine-tuning paradigm (e.g., BERT [51]) over

sanitized texts for building the model.

Our design is to build in privacy at the root again, in contrast to the afterthought approach.

We found it beneficial to sanitize even the public data before feeding them to training. It is

not for protecting the public data per se. The intuition here is that it “prepares” the model to

work with sanitized queries, which explains our eventual (slight) increase in accuracy while

additionally ensuring privacy.

Specifically, we propose a sanitization-aware pretraining procedure (Figure 2.1). We

first use our mechanisms to sanitize the public texts, mask the sanitized texts (as in BERT),
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and train the LM by predicting a MASK position as its original unsanitized token. LMs

preptrained with our sanitization-aware procedure are expected to be more robust to noises

in the sanitized texts and achieve better utility when fine-tuning on downstream tasks.

We conduct experiments on three representative NLP tasks to empirically confirm that

our proposed PPNLP pipeline preserves both utility and privacy. It turns out that our

sanitization-based pretraining (using only 1/6 of data used in the original BERT pretraining)

can even improve the utility of NLP tasks while maintaining privacy comparable to the

original BERT. Note that there is an inherent tension between utility and privacy, and privacy

attack is also inference in nature. To empirically demonstrate the privacy aspect of our

pipeline, i.e., it does not make our model a more powerful tool helping the attacker, we also

conduct the “mask token inference" attack on private texts, which infers the masked token

given its context based on BERT. As a highlight, our base solution SANTEXT improves

the defense rate by 20% with only a 4% utility loss on the SST-2 dataset. We attribute our

surprising result of mostly helping only good guys to our natural approach: to avoid the

model memorizing sensitive texts “too well,” we fed it with sanitized text.

2.2 Related Work

Privacy risks in NLP. A taxonomy of attacks that recover sensitive attributes or partial

raw text from text embeddings output by popular LMs has been proposed [219], without

any assumptions on the structures or patterns in input text. Carlini et al. [31] also show

a powerful black-box attack on GPT-2 [189] that extracts verbatim texts of training data.

Defense with rigorous guarantees (DP) is thus vital.

Differential privacy and its application in NLP. DP [57] has emerged as the de facto

standard for statistical analytics [247, 248, 48]. A few efforts inject high-dimensional
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DP noise into text representations [70, 71, 148, 149]. The noisy representations are not

human-readable and not directly usable by existing NLP pipelines, i.e., they consider a

different problem not directly comparable to ours. More importantly, they fail to strike a

nice privacy-utility balance due to “the curse of dimensionality,” i.e., the magnitude of the

noise is too large for high-dimensional token embedding, and thus it becomes exponentially

less likely to find a noisy embedding close to a real one on every dimension. This may also

explain why an earlier work focuses on document-level statistics only, e.g., term-frequency

vectors [250].

Our approaches produce natively usable sanitized texts via directly sampling a sub-

stitution for each token from a precomputed distribution (to be detailed in Section 2.4),

circumventing the dimension curse and striking a privacy-utility tradeoff while being much

more efficient. A concurrent work [187] also considers the whole NLP pipeline, but it still

builds on the token-projection approach [71].

Privacy-preserving text representations. Learning private text representations via ad-

versarial training is also an active area [268, 47, 63, 138]. An adversary is trained to infer

sensitive information jointly with the main model, while the main model is trained to max-

imize the adversary’s loss and minimize the primary learning objective. While we share

the same general goal, our aim is not such representations (similar to those with DP) but to

release sanitized text for general purposes.

2.3 Defining (Local) Differential Privacy

Suppose each user holds a document D = ⟨xi⟩Li=1 of L tokens (which can be a character,

a subword, a word, or an n-gram), where xi is from a vocabulary V of size |V|. For privacy,

each user derives a sanitized version D̂ by running a common text sanitization mechanism
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M over D on local devices. Specifically,M works by replacing every token xi in D with a

substitution yi ∈ V , assuming that xi itself is unnecessary for NLP tasks while its semantics

should be preserved for high utility. The output D̂ is then shared with an NLP service

provider.

We consider a typical threat model in which each user does not trust any other party and

views them as an attacker with access to D̂ in conjunction with any auxiliary information

(includingM).

2.3.1 (Variants of) Local Differential Privacy

Let X and Y be the input and output spaces. A randomized mechanismM : X → Y

is a probabilistic function that assigns a random output y ∈ Y to an input x ∈ X . Every y

induces a probability distribution on the underlying space. For sanitizing text, we set both

X and Y as the vocabulary V .

Definition 2.3.1 (ϵ-LDP [56]). Given a privacy parameter ϵ ≥ 0, M satisfies ϵ-local

differential privacy (ϵ-LDP) if, for any x, x′, y ∈ V ,

Pr[M(x) = y] ≤ eϵ · Pr[M(x′) = y].

Given an observed output y, from the attacker’s view, the likelihoods y is derived from x

and x′ are similar. A smaller ϵ means better privacy due to a higher indistinguishability level

of output distributions, yet the outputs retain less utility.

ϵ-LDP is a very strong privacy notion for its homogeneous protection over all input pairs.

However, this is also detrimental to the utility: no matter how unrelated x and x′ are, their

output distributions must be similar. As a result, a sanitized token y may not (approximately)

capture the semantics of its input x, degrading the downstream tasks.
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LDP over metric spaces. To capture semantics, we borrow the relaxed notion of Metric-

LDP (MLDP) [5] originally proposed for location privacy [7] with the distance metric d(·, ·)

between two locations (e.g., Manhattan distance [36]).

Definition 2.3.2 (MLDP). Given ϵ ≥ 0 and a distance metric d : V × V → R≥0 over V ,M

satisfies MLDP or ϵ · d(x, x′)-LDP if, for any x, x′, y ∈ V ,

Pr[M(x) = y] ≤ eϵ·d(x,x
′) · Pr[M(x′) = y].

When d(x, x′) = 1 ∀x ̸= x′, MLDP becomes LDP. For MLDP, the indistinguishability of

output distributions is further scaled by the distance between the respective inputs. Roughly,

the effect of ϵ becomes “adaptive.” To apply MLDP, one needs to carefully define the metric

d (see Section 2.4.2).

Incorporating ULDP to further improve utility. Utility-optimized LDP [160] (ULDP)

also relaxes LDP, which was originally proposed for aggregating ordinal responses. It

exploits the fact that different inputs have different sensitivity levels to achieve higher utility.

By assuming that the input space is split into sensitive and non-sensitive parts, ULDP

achieves a privacy guarantee equivalent to LDP for sensitive inputs.

In our context, more formally speaking, let VS ⊆ V be the set of sensitive tokens

common to all users, and VN = V \ VS be the set of remaining tokens. The output space V

is split into the protected part VP ⊆ V and the unprotected part VU = V \ VP .

The image of VS is restricted to VP , i.e., a sensitive x ∈ VS can only be mapped to

a protected y ∈ VP . For text, we can set VS = VP for simplicity. While a non-sensitive

x ∈ VN can be mapped to VP , every y ∈ VU must be mapped from VN , which helps to

improve the utility.
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Figure 2.2: Overview of our new UMLDP notion

2.3.2 Our New Utility-optimized MLDP Notion

Among many variants of (L)DP notions, we found the above two variants (i.e., ULDP

and MLDP) provide useful insight in quantifying semantics and privacy of text data. We

thus formulate the new privacy notion of utility-optimized MLDP (UMLDP).

Definition 2.3.3 (UMLDP). Given VS ∪ VN = V , two privacy parameters ϵ, ϵ0 ≥ 0, and a

distance metric d : V × V → R≥0,M satisfies (VS,VP , ϵ, ϵ0)-UMLDP, if

i) for any x, x′ ∈ V and any y ∈ VP , we have

Pr[M(x) = y] ≤ eϵd(x,x
′)+ϵ0 Pr[M(x′) = y];

ii) for any y ∈ VU , i.e., from an unprotected set VU where VU ∩ VP = ∅, there is an x ∈ VN

such that

Pr[M(x) = y] > 0,

Pr[M(x′) = y] = 0 ∀x′ ∈ V \ {x}.

Figure 2.2 summarizes the treatment of UMLDP. It exhibits “invertibility,” i.e., y ∈ VU

must be “noise-free” and mapped deterministically. Apart from generalizing ϵ in the ULDP
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definition (recalled in Appendix A.1.1) into ϵd(x, x′), we incorporate an additive bound ϵ0

due to the invertibility, which makes the derivation of ϵ easier. Looking ahead, ϵ0 would

appear naturally in the analysis of our UMLDP mechanism for the invertible case.

UMLDP (and MLDP), as an LDP notion, satisfies the composability and free post-

processing. The former means that the sequential execution of ϵ1-LDP and ϵ2-LDP mecha-

nisms satisfies (ϵ1 + ϵ2)-LDP, i.e., ϵ can be viewed as the privacy “budget” of a sophisticated

task comprising multiple subroutines, each consumes a part of ϵ such that their sum equals ϵ.

The latter means further processing the mechanism outputs incurs no extra privacy loss.

2.4 Our Privacy-Preserving NLP Pipeline

2.4.1 Overview

We propose two token-wise sanitization methods with (U)MLDP: SANTEXT and SAN-

TEXT+, which build atop a variant of the exponential mechanism (EM) [154] over the

“native” text tokens as both input and output spaces to avoid going to the “cursed dimensions”

of token embeddings. EM samples a replacement y for an input x based on an exponential

distribution, with more “suitable” y’s sampled with higher probability (detailed below). It is

well-suited for (U)MLDP by considering the “suitability” as how well the semantics of x is

preserved for the downstream tasks (run over the sanitized text y) to remain accurate.

To quantify this, we utilize an embedding model mapping tokens into a real-valued

vector space. The semantic similarity among tokens can then be measured via the Euclidean

distance between their corresponding vectors. Our base design SANTEXT outputs y with

probability inverse proportional to the distance between x and y: the shorter the distance,

the more semantically similar they are. SANTEXT+ considers some tokens VN in V are

non-sensitive, and runs SANTEXT over the sensitive part VS = V \ VN (i.e., it degenerates
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Algorithm 1 Base Mechanism SANTEXT

Input: A private document D = ⟨xi⟩Li=1, and a privacy parameter ϵ ≥ 0
Output: Sanitized document D̂.

1: Derive token vectors ϕ(xi) for i ∈ [1, L]
2: for i = 1, . . . , L do
3: RunM(xi) to sample a sanitized token yi with probability defined in Eq. (2.1)
4: end forOutput sanitized D̂ as ⟨yi⟩Li=1

to SANTEXT if VS = V). For VN , we tailor a probability distribution to provide UMLDP as

a whole.

With SANTEXT or SANTEXT+, each user sanitizes D into D̂ and uploads it to the service

provider for performing any NLP task built atop a pretrained LM, e.g., BERT. Typically, the

task pipeline consists of an embedding layer, an encoder module, and task-specific layers,

e.g., for classification.

Without the raw text, the utility can degrade; we thus propose two approaches for

improving it. The first one is to pretrain only the encoder on the sanitized public corpus to

adapt to the noise. It is optional if pretraining is deemed costly. The second is to fine-tune

the full pipeline on D̂’s, which updates both the encoder and task layers.

2.4.2 Base Sanitization Mechanism: SANTEXT

In NLP, a common step is to employ an embedding model8 mapping semantically

similar tokens to close vectors in a Euclidean space. Concretely, an embedding model

is an injective mapping ϕ : V → Rm, for dimensionality m. The distance between any

two tokens x and x′ can be measured by the Euclidean distance of their embeddings:

d(x, x′) = deuc(ϕ(x), ϕ(x
′)). As ϕ is injective, d satisfies the axioms of a distance metric.

8We assume that it has been trained on a large public corpus and shared by all users.
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Algorithm 2 Enhanced SANTEXT+

Input: A private document D = ⟨xi⟩Li=1, a privacy parameter ϵ ≥ 0, probability p for a
biased coin, and sensitive VS
Output: Sanitized document D̂.

1: if xi ∈ VS then
2: ▷ Run SANTEXT over VS and VP
3: Sample a substitution yi ∈ VP = VS with probability given in Eq. (2.1)
4: else
5: Output yi = xi with prob. (1− p); or yi ∈ VP with prob. in Eq. (2.2);
6: end if

Algorithm 1 lists the pseudo-code of SANTEXT for sanitizing a private document D at

the user side. The first step is to use ϕ to derive token embeddings of each token9 x in D.

Then, for each x, we runM(x) to sample a sanitized y with probability

Pr[M(x) = y] = Cx · e−
1
2
ϵ·deuc(ϕ(x),ϕ(y)) (2.1)

where Cx = (
∑

y′∈V e
− 1

2
ϵ·deuc(ϕ(x),ϕ(y′)))−1.

The smaller deuc(ϕ(x), ϕ(y)), the more likely y is to replace x. To boost the sanitizing

efficiency, we can precompute a |V|× |V| probability matrix, where each entry (i, j) denotes

the probability of outputting yj on input xi, upon obtaining ϕ(x) for ∀x ∈ V . Lastly, the

sanitized D̂ = ⟨yi⟩Li=1 can be released to the service provider for NLP tasks.

2.4.3 Enhanced Mechanism: SANTEXT+

In SANTEXT, all tokens in V are treated as sensitive, which leads to excessive protection

and utility loss. Following the less-is-more principle, we divide V into VS and VN , and focus

on protecting VS .

Observing that most frequently used tokens (e.g., a/an/the) are non-sensitive to virtually

all users, we use token frequencies for division. A simple strategy, which is also used in our

experiments, is to mark the top w of low-frequency tokens (according to a certain corpus) as

9For easy presentation, we omit the subscript i later.
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VS , where w is a tunable parameter. Looking ahead, this “basic” method already showed

promising results. (Further discussion can be found in Section 2.4.5).

Algorithm 2 lists the pseudo-code of SANTEXT+ with VS = VP and VN = VU shared

by all users. The first step, as in SANTEXT, is to derive the token embeddings in D. Then,

for each token x, if it is in VS , we sample its substitution y from VP with probability given in

Eq. (2.1). (This is equivalent to running SANTEXT over VS and VP .) For x ∈ VN , we toss a

biased coin. With probability (1− p), we output y as x (i.e., the “invertibility”). Otherwise,

we sample y ∈ VP with probability

Pr[M(x) = y] = p · Cx · e−
1
2
ϵ·deuc(ϕ(x),ϕ(y)) (2.2)

where Cx = (
∑

y′∈VP
e−

1
2
ϵ·deuc(ϕ(x),ϕ(y′)))−1.

As in SANTEXT, we can also precompute two |VS| × |VP | and |VN | × |VP | probability

matrices, which correspond to Eq. (2.1) and (2.2), for optimizing the sanitizing efficiency.

Lastly, the sanitized D̂ of ⟨y⟩Li=1 can be released to the service provider.

Theorem 1. Given ϵ ≥ 0 and deuc over the embedding space ϕ of V , SANTEXT satisfies

MLDP.

Theorem 2. Given (VS = VP ) ⊆ V , ϵ ≥ 0, ϵ0 = ln 1
p
≥ 0, and deuc over the embedding

space ϕ of V , SANTEXT+ satisfies (VS,VP , ϵ, ϵ0)-UMLDP.
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Proof of Theorem 1. Consider L = 1, i.e., D = ⟨x⟩. For another document D′ with

x′ ∈ V \ {x} and a possible output y ∈ V:

Pr[M(x) = y]

Pr[M(x′) = y]

=
Cx · e−

1
2
ϵ·deuc(ϕ(x),ϕ(y))

Cx′ · e− 1
2
ϵ·deuc(ϕ(x′),ϕ(y))

=
Cx

Cx′
· e

1
2
ϵ·[d(x′,y)−d(x,y)]

≤ Cx

Cx′
· e

1
2
ϵ·d(x,x′)

=

∑
y′∈V e

− 1
2
ϵ·d(x′,y′)∑

y′∈V e
− 1

2
ϵ·d(x,y′)

· e
1
2
ϵ·d(x,x′)

≤e
1
2
ϵ·d(x,x′) · e

1
2
ϵ·d(x,x′) = eϵ·d(x,x

′)

The proof, showing SANTEXT ensures ϵ ·d(x, x′)-LDP, mainly relies on the triangle inequal-

ity of d. To generalize to the case of L > 1, we sanitize every token xi in D independently,

and thus:

Pr[M(D) = D̂] =
L∏
i=1

Pr[M(xi) = yi].

Then, for any D,D′, the privacy bound is given as

Pr[M(D) = D̂]

Pr[M(D′) = D̂]
≤ eϵ·

∑L
i=1 d(xi,x

′
i),

which follows from the composability.

Proof of Theorem 2. Consider the case L = 1 with D = x and D′ = x′. For x, x′ ∈ VS , the

output y is restricted to VP , with the proof identical to the above theorem (as SANTEXT is

run over VS,VP ).

For x, x′ ∈ VN and y ∈ VP , we have

Pr[M(x) = y]

Pr[M(x′) = y]
=

p · Cx · e−
1
2
ϵ·deuc(ϕ(x),ϕ(y))

p · Cx′ · e− 1
2
ϵ·deuc(ϕ(x′),ϕ(y))

≤ eϵ·d(x,x
′).
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For x ∈ VS , x′ ∈ VN , and y ∈ VP , we have

Pr[M(x) = y]

Pr[M(x′) = y]
=

Cx · e−
1
2
ϵ·deuc(ϕ(x),ϕ(y))

p · Cx′ · e− 1
2
ϵ·deuc(ϕ(x′),ϕ(y))

≤ 1

p
· eϵ·d(x,x′) = eϵ·d(x,x

′)+ϵ0 .

The probability for x ∈ VN is (1− p). The above inequalities thus show that SANTEXT+

ensures the properties of UMLDP. Similarly, we use the composability to generalize for

L > 1.

2.4.4 NLP over Sanitized Text

With D̂’s (shared by the users), the service provider can perform any NLP task. In this

work, we focus on those built on a pretrained LM, and in particular, we study BERT as

an example due to its wide adoption and superior performance. The full NLP pipeline is

deployed at the service provider.

Given a piece of (sanitized) text, the embedding layer maps it to a sequence of token

embeddings. The encoder computes a sequence representation from the token embeddings,

allowing task-specific layers to make predictions. For example, the task layer could be a

feed-forward neural network for multi-label classification of a diagnosis system.

The injected noise deteriorates the performance of downstream tasks as the service

provider cannot access the raw texts {D}. To mitigate this, we propose two approaches

– pretraining the encoder and fine-tuning the full pipeline, which allow the tasks to be

“adaptive” to the noise to some extent.

Pretraining BERT over sanitized public corpus. Besides D̂’s, the service provider can

also obtain a massive amount of text that is publicly available (say, the English Wikipedia).

It also has access to the sanitization mechanisms, and it can produce the sanitized public

text (as how users produce D̂’s).
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Our key idea is to let the service provider pretrain the encoder (i.e., BERT) over the

sanitized public text, making it more “robust” in handling D̂’s. We thus initialize the encoder

with the original BERT checkpoint and conduct further pretraining with an adapted masked

language model (MLM) loss. In more detail, the adapted MLM objective is to predict the

original masked tokens given the sanitized context instead of the one from the raw public

text. We note that this is beneficial for improving the task utility, yet may breach the user

privacy as the objective learns to “recover” the original tokens or semantics. In Section 2.5.4,

our results will show that such pretrained BERT indeed improves accuracy, with comparable

privacy as in original BERT.

Fine-tuning the full NLP pipeline. After pretraining BERT using sanitized public text, the

service provider can further improve the efficacy of downstream tasks by fine-tuning the

full pipeline. We assume that the ground-truth labels are available to the service provider,

say, inferring from D̂’s when they can preserve similar semantics to the raw text. Then, the

sanitized text-label pairs are used for training/fine-tuning downstream task models, with

gradients back-propagated to update the parameters of both the encoder and task layer. We

leave more realistic/complex labeling processes based on sanitized texts as future work.

2.4.5 Definition of “Sensitivity”

Simply treating the top w of least frequent tokens (e.g., according to a public reference

corpus) as the sensitive token set already led to promising results (see Section 2.5.2). By

this definition, stop words are mostly non-sensitive (e.g., for w = 0.9 over the sentiment

classification dataset we used, ∼98% of the stop words are deemed non-sensitive). For

context-specific corpus, this strategy is better than merely using stop words, e.g., breast

cancer becomes non-sensitive among breast-cancer patients.
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Mechanisms SST-2 MedSTS QNLI
ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3 ϵ = 1 ϵ = 2 ϵ = 3

Random 0.4986 0.4986 0.4986 0.0196 0.0196 0.0196 0.5152 0.5152 0.5152
FBDD[71] 0.5099 0.5143 0.5345 0.0201 0.0361 0.0452 0.5162 0.5256 0.5333
SANTEXT 0.5101 0.5838 0.8374 0.0351 0.5392 0.8159 0.5372 0.5598 0.8116
SANTEXT+ 0.7796 0.7943 0.8516 0.4965 0.7082 0.8162 0.7699 0.7760 0.8131

Unsanitized 0.9251 0.8527 0.9090

Table 2.1: Utilities comparison of sanitization mechanisms under similar privacy levels
using the GloVe embedding

Sophisticated machine-learning approaches or other heuristics could also be considered,

e.g., training over context-specific reference corpus or identifying tokens with personal (and

hence sensitive) information (e.g., names). We leave as future work.

Moreover, the definition of sensitivity may vary across users. Some may consider a

token deemed non-sensitive by most other users sensitive. The original ULDP work [160]

has discussed a personalized mechanism that preprocesses such tokens by mapping them

to a set of semantic tags, which are the same for all users. These tags will be treated as

sensitive tokens for the ULDP mechanism. Apparently, this approach is application-specific

and may not be needed in some applications; hence we omit it in this work.

2.5 Experiments

2.5.1 Experimental Setup

We consider three representative downstream NLP tasks (datasets) with privacy implica-

tions.

Sentiment Classification (SST-2). When people write online reviews, especially the

negative ones, they may worry about having their identity traced via writing too much that

may provide hints of authorship or linkage to other online writings. For this task, we use the

preprocessed version in GLUE benchmark [244] of (binary) Stanford Sentiment Treebank
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(SST-2) dataset [218]. Accuracy (w.r.t. the ground truth included in the dataset) is used as

the evaluation metric.

Medical Semantic Textual Similarity (MedSTS). Automated processing of patient records

is a significant research direction, and one such task is computing the semantic similarity

between clinical text snippets for the benefit of reducing the cognitive burden. We choose

a very recent MedSTS dataset [249] for this task, which assigns a numerical score to each

pair of sentences, indicating the degree of similarity. We report the Pearson correlation

coefficient (between predicted similarities and human judgments) for this task.

Question Natural Language Inference (QNLI). Question-answering (QA) aims to auto-

matically answer user questions based on documents. We consider a simplified setting of

QA, namely QNLI, which predicts whether a given document contains the answer to the

question. We use the QNLI dataset from GLUE benchmark [244].

We implement our sanitized mechanisms using Python and the sanitization-aware train-

ing using the Transformers library [260]. We use sanitized data to train and test prediction

models for all three tasks. We either build vocabularies for the tasks using GloVe em-

beddings [179] or adopt the same BERT vocabulary [51]. Table 2.2 shows their sizes.

Our sanitization-aware pretraining uses WikiCorpus (English version, a 2006 dump, 600M

words) [200]. We start from the bert-base-uncased (instead of randomly initialized)

model to accelerate the pretraining.

We set the maximum sequence length to 512, training epoch to 1, batch size to 6, learning

rate to 5e-5, warmup steps to 2000, and MLM probability to 0.15. Our sanitization-aware

fine-tuning uses the bert-base-uncased model for SST-2/QNLI, and ClinicalBERT [4]

for MedSTS. We set the maximum sequence length to 128, training epochs to 3, batch size

to 64 for SST-2/QNLI or 8 for MedSTS, and learning rate to 2e-5 for SST-2/QNLI or 5e-5
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Figure 2.3: Performance of SANTEXT+ over (w, p) when fixing ϵ = 2 based on the GloVe
embedding

for MedSTS. Other hyperparameters are kept default. Our hyperparameters followed the

transformer library [260] and popular setups in the original dataset literature [244, 249].

2.5.2 Comparison of Sanitization Mechanisms

We first compare our SANTEXT and SANTEXT+ with random sanitization and the

state-of-the-art of [71] (FBDD). Here, we use the GloVe embedding as in FBDD for a fair

comparison. Random sanitization picks a token from the vocabulary uniformly. We set the

UMLDP parameters p = 0.3, w = 0.9 for SANTEXT+ (while Figure 2.3 plots the impacts

of p and w when fixing ϵ = 2).

Table 2.1 shows the utility of the four mechanisms for the three selected tasks at different

privacy levels. FBDD has a higher utility than random replacements. While both FBDD and

SANTEXT are based on word embeddings, SANTEXT does not suffer from the “curse-of-

dimensionality" and achieves better utility at the same privacy level. SANTEXT+ achieves

the best utilities in all cases since it allows the non-sensitive tokens to be noise-free, lowering

the noise and improving the utility.
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Figure 2.4: Privacy and Utility Tradeoffs of SANTEXT in terms of Defense Rate (of the
Mask Token Inference Attack) versus Accuracy (ϵ =∞ means “unsanitized.”)

In terms of efficiency, our SANTEXT and SANTEXT+ are very efficient (e.g., ∼2min for

the SST-2 dataset) compared with FBDD (∼117min) when they all run on a 24 core CPU

machine. This is because our mechanisms only need to compute the sampling probability

once and use the same probability matrix for sampling each time, while FBDD needs to

recalculate the additive noise and re-search the nearest neighbor each time.

Datasets GloVe embeddings BERT embeddings
V VS V VS

SST-2 14,730 13,258
30,522 27,469MedSTS 3,320 2,989

QNLI 88,159 79,343

Table 2.2: Sizes of vocabularies (w = 0.9 for VS)
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Figure 2.5: Influence of privacy parameter ϵ of SANTEXT on the utility and privacy (Nx,
Sx, S∗

y ) based on the SST-2 dataset: The top panel is based on BERT embeddings, and the
bottom panel is based on GloVe embeddings.

2.5.3 Mask Token Inference Attack

From now on, we adopt the BERT embedding for its superiority. As (U)MLDP is

distance-metric dependent, we need to use different ϵ’s (e.g., Figure 2.5) to ensure a similar

privacy level, specifically, ϵ · d.

Our sanitization mechanisms provide broad protection for seen/unseen attacks at a

fundamental level (by sampling noise to directly replace original tokens) with formally-

proven DP, e.g., two guesses of the original token with different styles are nearly probable

in an attempt of authorship attribution [250] or other “indirect” attacks. Here, we consider a

mask token inference attack as a representative study to “confirm the theory” by empirically

measuring the “concrete” privacy level of sanitized texts.

To infer or recover original tokens given the sanitized text, one can let a pretrained

BERT model infer the MASK token given its contexts. After all, BERT models are trained via

masked language modeling. For each sanitized text of the downstream (private) corpus, we

replace each token sequentially by the special token [MASK] and input the masked text to the
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Datasets ϵ
Utility

∆privacyOriginal +Pretrain

SST-2
12 0.6084 0.6208 0.0089
14 0.7548 0.7731 0.0101
16 0.8698 0.8830 -0.0046

QNLI
12 0.5822 0.6037 0.0076
14 0.7143 0.7309 -0.0047
16 0.8265 0.8369 -0.0039

Table 2.3: Sanitization-aware pretraining via SANTEXT

pretrained BERT model to obtain the prediction of the [MASK] position. Then, we compare

the predicted token to the original token in the raw text. Figure 2.4 reports the defense

rate (the proportion of unmatched tokens to total tokens) and task utility of sanitized texts

(by SANTEXT) as well as unsanitized texts on SST-2 and QNLI. We see a privacy-utility

trade-off: the more restrictive the privacy guarantee (smaller ϵ), the lower the utility score.

Notably, we improve the defense rate substantially with only a small amount of privacy loss

(e.g., when ϵ = 16, SANTEXT improves the defense rate by 20% with only 4% task utility

loss over the SST-2 dataset in Figure 2.4).

2.5.4 Effectiveness of Pretraining

We then show how the sanitization-aware pretraining further improves the utility but does

not hurt the original privacy. Specifically, Table 2.3 compares the accuracy of sanitization-

aware fine-tuning based on the publicly-available bert-base-uncased model and our

sanitization-aware pretrained one at different privacy levels on SST-2 and QNLI. Our

sanitization-aware pretrained BERT models can obtain a 2% absolute gain on average. We

conjecture that it can be improved since our pretraining only uses 1/6 of the data used in the

original BERT pretraining and 1 training epoch as an illustration.
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To demonstrate that such utility improvement is not obtained by sacrificing privacy, we

record the change of defense rate (∆privacy) in launching mask token inference attacks on the

original BERT models and our sanitization-aware pretrained BERT models. As Table 2.3

confirmed, the privacy level of our sanitization-aware pretrained model is nearly the same as

the original (sometimes even better).

2.5.5 Influence of Privacy Parameter

We aim at striking a nice balance between privacy and utility by tuning ϵ. To empirically

show the influence of ϵ, we report the utility and privacy scores over the SST-2 dataset

based on SANTEXT. The utility score is the accuracy over the test set. We define three

metrics to “quantify” privacy. Firstly, Nx = Pr[M(x) = x], which we estimate by the

frequency of seeing no replacement byM(). The output distribution of x has full support

over V , i.e., Pr[M(x) = y] > 0 for any y ∈ V . Yet, we are interested in the effective

support S, a set of y’s with cumulative probability larger than a threshold, and then define

Sx as its size. Sx can be estimated by the number of distinct tokens mapped from x.

Both Nx and Sx can be related to two extremes of the Rényi entropy [203], defined as

Hα(M(x)) = 1
1−α

log(
∑

y∈V Pr[M(x) = y]α), with an order α ≥ 0 and α ̸= 1. The two

extremes are obtained by setting α = 0 and =∞, resulting in the Hartley entropy H0 and

the min-entropy H∞. This implies that we can also approximate H0 and H∞ by logSx and

− logNx, respectively. Making them large increases the entropy of the distribution.

Another important notion is plausible deniability [15], i.e., a set of x’s could have led to

an output y with a similar probability. We define S∗
y as the set size, estimated by the number

of distinct tokens mapped to y.
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We run SANTEXT 1, 000 times for the whole SST-2 dataset vocabulary. As Figure 2.5

shows, when ϵ increases, the utility boosts and Nx increases while Sx, S
∗
y , and the privacy

level of the mechanism decrease, which gives some intuition in picking ϵ, e.g., for ∼40%

probability of replacing each token to a different one based on the BERT embeddings (top

panel), we could set ϵ = 15 since the median of Nx is ∼60% and the accuracy is ∼81%.

2.6 Conclusion

Great predictive power comes with great privacy risks. The success of language models

enables inference attacks. There are only a few works in differentially private (DP) text

sanitization, probably due to its intrinsic difficulty. A new approach addressing the (inherent)

limitation (e.g., in generality) of existing works is thus needed.

Theoretically, we formulate a new LDP notion, UMLDP, which considers both sensitivity

and similarity. While it is motivated by text analytics, it remains interesting in its own right.

UMLDP enables our natural sanitization mechanisms without the curse of dimensionality

faced by existing works.

Practically, we consider the whole PPNLP pipeline and build in privacy at the root

with our sanitization-aware pretraining and fine-tuning. With our simple and clear defini-

tion of sensitivity, our work already achieved promising performance. Future research in

sophisticated sensitivity measures will further strengthen our approach.

Surprisingly, our PPNLP solution is discerning like a cryptographic solution: it is kind

(maintains high utility) to the good but not as helpful to the bad (not boosting up inference

attacks). We hope our results with different metrics for quantifying privacy can provide

more insights in privacy-preserving NLP and make it accessible to a broad audience.
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Chapter 3: Synthetic Text Generation with Differential Privacy: A

Simple and Practical Recipe

In Chapter 2, we introduced a token-by-token text sanitization method with DP. However,

the token-level DP cannot give us a very strong privacy guarantee and the token replacement

does not consider the context information during the sanitization, which may hurt the utility

of the generated text. In this chapter, we will propose a stricter privacy requirement for the

synthetic text: we require that the whole synthetic dataset should be differentially private, i.e.,

any data instance should be statistically indistinguishable in the synthetic dataset. To achieve

this, we show a simple, practical, and effective recipe: simply fine-tuning a generative

language model with DP allows us to generate useful synthetic text while mitigating privacy

concerns. Through extensive empirical analyses, we demonstrate that our method produces

synthetic data that is competitive in terms of utility with its non-private counterpart and

meanwhile provides strong protection against potential privacy leakages.

3.1 Introduction

The issue of privacy has gained increasing attention in the Natural Language Processing

(NLP) community. Privacy attacks against common pipelines have demonstrated that models

trained without formal guarantees can reveal membership information and reconstruct

training data [214, 32]. Privacy concerns manifested through tightening legislation (e.g.,
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Figure 3.1: Illustration of our problem and methodology: Directly using private data for
downstream analyses and applications often faces privacy issues. We propose to generate
synthetic text with a formal privacy guarantee: we fine-tune a generative language model
with DP and then leverage it for synthetic text generation using control codes. Privacy
loss of the overall procedure can be controlled by the first stage as, by the robustness to
post-processing property of DP, the second stage does not incur any additional privacy loss.

GDPR [9]) and growing discussions on policy and ethics call for improved approaches for

privacy-preserving machine learning.

Among different approaches for learning with private data, learning with differential pri-

vacy (DP) [59] has become the gold standard as its formal guarantee enables reasoning about

the privacy loss in a principled manner and makes the approach resilient to strong privacy

attacks [28]. While recent developments have substantially improved the computational effi-

ciency and privacy-utility trade-off of DP machine learning [224, 137, 277, 49, 25, 136, 156],

these works have primarily focused on learning models that directly perform target tasks

(e.g., text classification, dialog generation, etc.).

Different from the above works, in this work, we study synthetic text generation with

DP by building generative text models with DP training algorithms (Figure 3.1). The goal of

this approach is to learn a generative model that faithfully captures distributional properties
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of the training data (and the underlying distribution), as opposed to learning task-oriented

models with specific functions. Compared to directly learning models for target tasks, this

paradigm has several advantages: (1) DP-trained generative models can be used to draw

synthetic data for learning an expanding set of task models without incurring any additional

privacy loss; (2) Dataset debugging is made easy as synthetic text generated from DP trained

models can be shared more freely, and inspecting its samples poses less of a privacy concern

compared to examining the original private data directly [11]; (3) Synthetic data generated

from a DP-trained model can likely be retained for longer periods of time under existing

policies and guidelines (e.g., right to be forgotten) thanks to the fact that DP implies some

degree of (approximate) machine unlearning [21, 210].

Despite the appeal, past work on DP synthetic text generation has not demonstrated the

general feasibility of this approach in realistic settings [18]. Here, we initiate a systematic

empirical study of the problem and show that DP language model fine-tuning, which was

applied only to learn task models in previous works [137, 277], can be an effective solution

to DP synthetic text generation. In particular, we show that simply fine-tuning progressively

better (and larger) autoregressively pre-trained language models with appropriate hyper-

parameters on (private) data leads to increasingly useful synthetic text. For instance, we

fine-tune a GPT-2 Large model [189] on a review dataset with DP at ϵ = 4 and then

use it to generate synthetic text to build a classifier. The classification model achieves

comparable performance to the classifier trained on the text generated by a GPT-2 model

fine-tuned without DP, and only 2-4% (in accuracy) away from the classification model

trained on the original dataset. Distributional similarity evaluation also confirms that the

synthetic text distribution is close to the original data distribution. To empirically verify

that DP fine-tuning limits the leakage of private information, we show that specially-crafted
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canaries [28] injected in the training data enjoy strong protection against potential leakage

when the generators are fine-tuned with DP. Lastly, we uncover a novel phenomenon in

language models trained with DP that is of independent interest. We show that text generation

with a DP-trained model can exhibit a length truncation effect and produce completions that

are generally shorter than their non-DP counterparts and instances in the original training

dataset.

3.2 Background

3.2.1 Differential Privacy

We state the definition of differential privacy.

Definition 3.2.1 (Differential Privacy (DP) [60]). A randomized algorithm M : D → S is

(ϵ, δ)-differentially private if for any two neighboring datasets D,D′ ∈ D that differ exactly

in a single data sample, and for all sets S ⊆ S, we have:

P[M(D) ∈ S] ≤ eϵP[M(D′) ∈ S] + δ

We note that this definition provides a rigorous privacy guarantee by theoretically

bounding the effect of a single data sample in the dataset. For a differentially private

algorithm, the output distribution is statistically similar whether any data sample appears

or not in the input dataset. An algorithm can typically be made (ϵ, δ)-DP by bounding

the contribution of a single data sample and adding controlled noise from a predetermined

distribution (e.g., Gaussian) [58].

An appealing property of DP that is crucial to this work is robustness to post-processing.

This property ensures that if the algorithm M satisfies (ϵ, δ)-DP, then so does F ◦M for

any deterministic or randomized function F . In other words, one can perform arbitrary

post-processing without incurring any additional privacy loss.

44



3.2.2 Differentially Private Stochastic Gradient Descent

Deep learning models can be trained with DP via a modification of the stochastic gradient

descent (SGD) algorithm [221, 12, 1]. The modified algorithm clips per-sample gradients

to bound the contribution of individual examples. Noise from a Gaussian distribution is

sampled and added to the sum of the clipped gradients in a batch to obfuscate the gradient

update. The resulting algorithm, called Differentially Private Stochastic Gradient Descent

(DP-SGD), can be shown to be DP for some (ϵ, δ) for each update of the model. Privacy

parameters of the model at the end of the training can be computed via privacy composition

algorithms [1, 84]. In the next section, we will utilize DP-SGD to train a language model

with privacy for synthetic text generation.

3.3 Method

In this section, we formally state the problem and present our method (see Figure 3.1 for

an illustration) that produces a synthetic version of private text data with differential privacy.

3.3.1 Problem Statement

LetD be a database representing the collection of token sequences from a fixed dictionary

V . We define a mapping M : D → D such that for a given dataset D ∈ D, the goal is to

generate a synthetic version M(D) = D̃ with privacy constraints and utility desiderata.

Regarding privacy constraints, we require that M be (ϵ, δ)-DP with domain D. This

requirement provides strong protection for the participants in the input dataset as this

participation will be statistically indistinguishable to a certain degree through any adversary

accessing the model or synthetic version of the dataset in the output.
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For the case of utility, ideally, the synthetic version D̃ should be able to replace D in

providing a training resource for models on relevant downstream applications. In other

words, on target downstream tasks, models trained on the synthetic dataset D̃ are expected

to have performance similar to the models trained on the original dataset D. More generally,

distributional properties of the dataset D should be captured as much as possible in the

synthetic version D̃ while satisfying the aforementioned privacy requirement. These will be

extensively explored in Section 3.4.

3.3.2 Synthetic Text Generation with DP

Conventionally, to generate synthetic text, an auto-regressive language model (e.g. GPT-

2 [189]) is trained on the original dataset and subsequently sampled using a sampling

mechanism (e.g., beam search, top-k sampling [66], nucleus sampling [94], etc.) to produce

synthetic sequences.

To make this operation differentially private, we adopt DP-SGD to fine-tune a pretrained

generative language model. The post-processing property of DP ensures that once the

language model has been fine-tuned with DP, sampling from the model incurs no extra

privacy loss.

This approach, as it is, may not easily produce the same categorical distribution if

it explicitly exists in the original dataset. As an example, feedback data collected from

users on a set of products may contain product types and review scores associated with

each data sample. It would be desirable to maintain the original distribution of product

types and review scores in the synthetic version. We achieve this by building a conditional

generator introduced in [114] to provide more explicit control over text generation. In

this approach, using so-called control codes, the probability distribution of a text sequence
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x = (x1, x2, . . . , xn) is conditioned on a control code c and decomposed as

P (x|c) =
n∏

i=1

P (xi|x1, x2, . . . , xi−1, c) .

A neural network pθ(·) is then trained to model each conditional distribution. The model

can later be used to generate new samples conditioned on a control code c by sequentially

sampling pθ(x1|c), pθ(x2|x̃1, c), . . . , pθ(xm|x̃1, . . . x̃m−1, c). The advantage of this approach

is that it provides flexibility in the text generation of the model by allowing the conditional

control codes to specify a particular style, domain, sentiment, category, etc. In the aforemen-

tioned example, control codes can be constructed as cp,r = "Product type: p | Review

score: r" for different product type (p) and review score (r) pairs. In our method, we

utilize control codes to prepend each sample with its corresponding categories as a simple

preprocessing step. During the text generation, this allows us to use the control codes to

generate as many samples as the original categorical distribution is preserved.

We point out that the categorical distribution in the original dataset may also be a piece

of private information itself. However, its estimation could easily be privatized [61] and

for simplicity, we ignore the low-cost privacy loss of this step and use the exact categorical

distribution of the original dataset.

3.4 Analyses on a Public Review Dataset

In this section, we extensively analyze our method with experiments on a public bench-

mark dataset: Yelp Open Dataset10, which has been widely adopted for language modeling

and text classification tasks. We then apply our method to an internal private customer

feedback dataset in Section 3.5.

10https://www.yelp.com/dataset
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3.4.1 Experimental Setup

Dataset. The Yelp dataset contains review text data on businesses that can be studied for

academic purposes. We select two attributes for the conditional generation as well as the

downstream task applications: review stars (1-5) and business category. We sample 10

frequent business categories and remove the reviews that do not have ratings.11 This results

in a dataset that has 1.9M reviews for training, 5000 for validation, and 5000 for testing.

Implementation Details. We use the public repository [264] that is based on Hugging-

face [258] and Opacus [276] to fine-tune language models with DP. We fine-tune three

language models GPT2 [189], GPT2-Medium, and GPT2-Large for synthetic text gener-

ation and RoBERTa-base [144] for all downstream text classification tasks. The control

codes are constructed based on attributes such as "Business Type: Restaurants |

Review Stars: 5.0" and prepended to each sample. Hyperparameters are specified in

Appendix B.1. For both synthetic text generation and classification, we set the maximum

sequence length as 128 unless otherwise stated. We evaluate the models during training on

the validation dataset and use the checkpoint that achieves the best validation performance

for the final evaluation on the test set.

We set the privacy parameters ϵ = 4 and δ = 1/(N · logN), where N is the size of

the original dataset. The additive noise scale is calculated by the numerical composition

algorithm [83] given the batch size and number of epochs corresponding to each setting in

Appendix B.1 for DP training.

For generating the synthetic text samples, we employ top-k [66] and nucleus sampling

(top-p) [94], and set k = 50 and p = 0.9. To produce synthetic datasets preserving the

1110 categories: Restaurants, Bars, Shopping, Event Planning & Services, Beauty & Spas, Arts & Entertain-
ment, Hotels & Travel, Health & Medical, Grocery, Home & Garden.
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Data Type Data Generator ϵ Rating Category
Original - - 0.7334 0.7752

Synthetic

GPT2
∞ 0.6892 0.7584
4 0.6656 0.7478

GPT2-Medium
∞ 0.6878 0.7550
4 0.6756 0.7486

GPT2-Large
∞ 0.7090 0.7576
4 0.6936 0.7568

Table 3.1: Synthetic text generation with DP produces models that have similar performance
in the downstream tasks compared to the models trained on synthetic text produced without
privacy. The first row shows the performance of models trained on the original dataset.
The accuracies are reported on two classification tasks: Rating (review star) and Category
(Business).

categorical distributions (i.e., business category, review star), we generate 100K samples

from the fine-tuned models using the appropriate control codes.

3.4.2 Synthetic Data Performance on Downstream Tasks

One way to measure the quality of the synthetic dataset is to examine the performance

of downstream task models trained on it.

We fine-tune RoBERTa-base models [144] for classifying ratings (review stars) as well

as business categories on the synthetic dataset. We also compare them with models trained

on the original dataset. All models are tested on the same original test set.

The results are presented in Table 3.1. The downstream task models trained on the

synthetic data generated by GPT2 with DP (ϵ = 4) achieve comparable performance to

the ones trained on the synthetic data generated without DP (ϵ =∞) and the ones trained

on the original dataset. We could also identify the quality of the synthetic generations

increases when we employ larger pretrained language models and the performance gap

between private and non-private generations decreases. We note an interesting observation
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Data
Type

Data
Size

DP
Position

Task Accuracy
Rating Category

Original 1.9M Task modeling 0.7014 0.7644
Original 100K Task modeling 0.6689 0.7552
Synthetic 100K Data Generator 0.6936 0.7568

Table 3.2: Models trained on synthetic data that is generated with DP-trained GPT2-Large
(the last row) have similar performance compared to the models directly trained on the
original dataset with DP (the first two rows).

that models trained on synthetic data generated by GPT2-Large with DP achieve better

performance in rating and similar performance in the category compared to the models

trained on synthetic data generated by GPT2 without DP.

These results demonstrate the great potential of our method used to generate synthetic

data for different downstream applications.

3.4.3 Synthetic Data Generation with DP v.s. Downstream Task Mod-
eling with DP

It is natural to ask how the downstream task models trained on the synthetic text

generated by a language model trained with DP compare to the downstream task models

directly trained on the original data with DP.

We show the results of this comparison in Table 3.2. Since for the default downstream

task setting, we only generate 100K synthetic data, for a fair comparison, we report the

downstream task models trained on the whole original dataset (1.9M) and a sampled original

dataset (100K) with DP. As we can see, when adopting the same privacy parameter (ϵ = 4),

the two ways for leveraging DP (Synthetic Data Generation with DP and Downstream

Task Modeling with DP) achieve very comparable performances. However, the overall

privacy loss of training two models on the same dataset will be higher than ϵ = 4 and it will
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Figure 3.2: Topic distribution between synthetic and the original data is similar when the
generations are produced by GPT2 models trained with DP. The similarity improves as the
model size increases. Best viewed in color.

accumulate for additional downstream tasks, whereas by the post-processing property of

DP, one can train any number of models for various downstream tasks on the synthetic data

generated by a language model trained with DP without incurring any additional privacy

loss.

3.4.4 Similarity between Synthetic and Original Datasets

To further test the quality of the synthetic generations, we measure the similarity between

the synthetic dataset and the original dataset. Unlike typical natural language generation

tasks (e.g, machine translation, summarization) that often have gold references for the

evaluation, without a one-to-one mapping it is hard to directly compare the synthetic

generations with the original dataset. Here, we measure the “similarity” from three different

perspectives: Embedding Distance, Topic Difference, and Text Length Distribution.

Embedding Distance. We embed the synthetic generations and the original data with

sentence-transformer [201] models and calculate the distance between two distributions

based on various distance metrics:
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Generator ϵ F1↑ FID↓ MAUVE↑

GPT2
∞ 0.5199 3.2368 0.7158
4 0.4786 4.7998 0.5579

GPT2-Medium
∞ 0.5446 3.1464 0.7222
4 0.5076 4.1880 0.6085

GPT2-Large
∞ 0.5852 3.0978 0.7238
4 0.5140 4.1352 0.6093

Table 3.3: Distribution distance between the synthetic and original data based on various
metrics. Performance improves as larger models are used.

1) F1 Score (Harmonic mean of Precision and Recall) [124]. The Precision and Recall

estimate the average sample quality and the coverage of the sample distribution by checking

whether a generation falls within the surroundings (e.g., k = 3 nearest neighbors) of any

original samples (measured by the Euclidean distances) and whether an original sample falls

within the surroundings of any generations.

2) Fréchet Inception Distance (FID) [91]. The FID score is originally proposed to measure

the quality of synthetic images in computer vision. Here we re-purpose it for synthetic text

evaluation. It first calculates feature-wise mean and covariance matrices of the embedding

vectors and then measures the distance of two sets based on Fréchet distance (Wasserstein-2

distance).

3) MAUVE [180] compares the distributions of the synthetic data and the original data using

divergence frontiers. Specifically, after embedding the text into embedding vectors, it first

groups them into several clusters and then count the cluster assignments to form histograms.

Finally, a divergence curve built upon the histograms is plotted and the area under the curve

is reported as the metric to measure the gap between the two distributions.
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Figure 3.3: Synthetic data that is generated with or without privacy includes shorter se-
quences compared with the original data. This is more pronounced in the case where the
synthetic data is produced with DP, especially for the small model.

It is important to note that the absolute scale of these metrics varies as different embed-

ding models are used. We thus run the evaluations with 5 different pre-trained sentence

transformers12 and then take the average for each metric.

Table 3.3 shows the distribution distances between the synthetic data and the original

data based on the metrics introduced above. Similarly, we observe that the quality of the

synthetic data improves as we use larger pretrained models for private training. Similar to

the results of the previous section, we observe that F1 score of GPT2-Large model with DP

(the last row) matches the F1 score of GPT2 model without privacy (the first row). On the

other hand, there remains a gap between synthetic generations with and without DP for FID

and MAUVE.

125 sentence-transformers we use from huggingface.co: "all-MiniLM-L6-v2", "paraphrase-MiniLM-L6-v2",
"all-mpnet-base-v2", "stsb-roberta-base-v2", "distilbert-base-nli-stsb-mean-tokens".
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Topic Difference. Another angle to measure the similarity between the synthetic and the

original data is to look at their topic distributions. Topic modeling is a frequently used

approach to identify hidden semantic structures (or abstract “topics”) in a collection of

documents. We add the synthetic generations and the original data in one collection and

leverage an unsupervised topic model BERTopic [85] to extract the top 10 frequent topics

in the documents. We plot the distributions of these topics for both synthetic data and the

original data in Figure 3.2. We observe from the results that the distributions of topics for the

synthetic data with or without DP are quite similar to the original. This further demonstrates

the good quality of the synthetic data generated with our approach.

Text Length Distribution. We finally investigate the sequence lengths of the synthetic

data and compare them with the original data. To better understand whether the maximum

sequence length or the truncation during pre-processing phase would have a significant

influence on the generations, we train two sets of generative models with the maximum

sequence lengths of 128 and 512.

We plot the density of the sequence lengths in Figure 3.3. We note that the synthetic

data that is generated with or without privacy is in general shorter than the original data. We

further observe that for GPT2 the synthetic data that is generated with DP has more weight

on shorter sequences compared to the one without DP. Although this issue is somewhat

alleviated with the increase of model size as we observe that the distributions between the

two cases are very close for GPT2-Medium and GPT2-Large, it is not fully resolved and

we can still notice that the generations with DP are slightly shorter compared with their

non-private counterparts (e.g., avg length 84.5 v.s. 89.4 for GPT2-Large).
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ϵ
Repetition=1 Repetition=10 Repetition=100

Rank Leaked Rank Leaked Rank Leaked
∞ 1017/10000 0% 1/10000 0% 1/10000 80%
4 3926/10000 0% 3320/10000 0% 969/10000 0%

Table 3.4: Generations by a language model trained with DP show strong privacy protection
against the leakage of injected canary sequences. The second column shows the percentage
of canaries appearing in the synthetic generations and the first column shows the rank of the
canaries among a similar set of candidates by the model’s perplexity.

5 10 15
Perplexity

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Repetition: 1, Canary: Name
w/o DP
w/ DP

50 100 150
Perplexity

0.000

0.005

0.010

0.015

0.020

Repetition: 1, Canary: Address

10 15 20 25 30
Perplexity

0.00

0.05

0.10

0.15

0.20

0.25
Repetition: 1, Canary: Number

50 100 150
Perplexity

0.000

0.005

0.010

0.015

0.020

0.025
Repetition: 1, Canary: Email

20 30 40
Perplexity

0.000

0.025

0.050

0.075

0.100

0.125
Repetition: 1, Canary: Plate

5 10 15
Perplexity

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Repetition: 10, Canary: Name
w/o DP
w/ DP

0 50 100 150
Perplexity

0.000

0.005

0.010

0.015

0.020

0.025
Repetition: 10, Canary: Address

10 20 30
Perplexity

0.0

0.1

0.2

0.3

0.4

0.5

Repetition: 10, Canary: Number

0 50 100 150
Perplexity

0.00

0.01

0.02

0.03

0.04
Repetition: 10, Canary: Email

10 20 30 40
Perplexity

0.00

0.05

0.10

0.15

0.20

0.25
Repetition: 10, Canary: Plate

5 10 15
Perplexity

0.0

0.1

0.2

0.3

De
ns

ity

Repetition: 100, Canary: Name
w/o DP
w/ DP

0 50 100
Perplexity

0.00

0.01

0.02

0.03
Repetition: 100, Canary: Address

0 10 20 30
Perplexity

0.0

0.2

0.4

0.6
Repetition: 100, Canary: Number

0 50 100
Perplexity

0.00

0.01

0.02

0.03

0.04

0.05
Repetition: 100, Canary: Email

0 10 20 30 40
Perplexity

0.0

0.1

0.2

0.3

Repetition: 100, Canary: Plate

Figure 3.4: Distributions of perplexities of the secret parts of injected canary sequences
among their similar set of candidates measured by GPT2 models trained with and without DP.
The dashed lines represent the perplexity of the secret parts. Even a single-time occurring
private information can achieve top rank in a non-private model which is not the case in the
models trained with DP.

3.4.5 Leakage of Private Information

In this section, we empirically measure to what extent training with DP prevents the

leakage of private data. For this purpose, we use the approach introduced in [28] to assess
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the risk of unintended memorization (and leakage in the synthetic version) of private

information. We construct sequences with particular private information contained in them

(called canaries) and inject them into the original training data to see how difficult it is to

reconstruct them during the generation phase.

In our experiments, we construct 5 artificial review-style canary sequences (e.g., “The

food took literally 6 hours to arrive to 1940W State St Boise.”; The other canaries are stated

in Appendix B.2). We perform a series of experiments where we inject these 5 canary

sequences with various repetition rates into the original dataset. Once we generate the

synthetic dataset, we check whether the secret part (underlined text in the example) of any

of the canary sequences appears in the synthetic dataset. The results are shown in Table

3.4 under the column “Leaked”. We observe that the secret part of the canary sequences

never appears in the synthetic dataset when the corresponding language model is trained

with DP. On the other hand, at high a repetition rate such as 100, 4 out of 5 canary sequences

verbatim appear in the synthetic dataset when the corresponding language model is trained

without DP.

We note that the appearance of the canary sequences in the synthetic dataset is tied to the

way we perform the text generation (i.e. the methods we use such as top-p sampling). This

may not assess the privacy risk exhaustively as synthetic data can be generated with other

decoding methods and hyperparameters. Therefore, we furthermore focus directly on the

model and investigate the rank of the secret part of a canary based on its perplexity given by

the model among a similar set of candidates. We construct 10K similar candidates for each

canary type by replacing the canary placeholder with another sampled named entity in the

same category. The named entity lists are either downloaded from the Web (e.g., name and
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address) or generated randomly following some regular expressions (e.g., number, email,

plate).

We show the average rank of the secret part of canary sequences in Table 3.4 under

the column “Rank”. Moreover, we also show the perplexity distributions of all similar

candidates for each type in Figure 3.4. We conclude our interesting findings as follows:

1) For all repetition settings, we observe that training the language model with DP signifi-

cantly lowers the privacy leakage risk as the secret part of canary sequences do not achieve

low rank and are not distinguishable among the similar candidates.

2) When the canary sequence only appears once in the training set, the risk of being extracted

in the generation is relatively low. However, for some canaries (e.g., Address and Plate

in Figure 3.4), they are still ranked in first place. This indicates that in practice, even if

some private information appears only once in the training set, models still are likely to

memorize it and this can lead to a leakage in synthetic generations. And if we repeat the

canary sequences for 10 and 100 times, they are always ranked in first place without DP

protection. By contrast, when equipped with DP, the Rank of inserted sequences are much

higher and the Leaked percentage is always 0.

3.5 Results on Private Customer Feedback

To further demonstrate our method’s potential, we evaluate it on an internal private

feedback dataset collected from customers.

Dataset. Microsoft receives large volumes of customer feedback for its products. While

this collection of data contains highly valuable information for product improvements, it

cannot be arbitrarily processed due to privacy regulations such as General Data Protection

Regulation (GDPR) [9]. This necessitates the application of privacy-preserving tools while
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Data Type ϵ A1 A2 A3
Original - 0.686 0.602 0.638

Synthetic
∞ 0.643 0.576 0.573
4 0.592 0.536 0.520
8 0.639 0.537 0.554

Table 3.5: Downstream task accuracy of models trained on the private customer feedback
data and synthetic data generated by GPT2-Medium models with various privacy levels.

handling the usage of data collected from users. A potential way to overcome privacy

concerns and perform downstream tasks is using a synthetic version of this dataset that is

generated with a formal privacy guarantee such as DP. We pull 1M customer feedback in

our scenario. For downstream tasks we are interested in three attributes of the feedback,

which we call A(ttribute)1, A2 and A3. Attributes can be a number of product characteristics

including, but not limited to, user satisfaction scores, date/time range, product name, product

type, location, etc. Using the attributes (A1, A2, A3) together with a particular combination

of their respective values, such as (VA1, VA2, VA3), the conditional text generation prompt

becomes: "A1: VA1 | A2: VA2 | A3: VA3". We use GPT2-Medium model with the

settings described in Section 3.4.1 in our scenario.

Downstream Task Performance. Similar to Section 3.4.2, to measure the quality of

generated synthetic data we evaluate the performance of classification models trained on

them. We train three multi-class classification models, to predict three attributes A1, A2,

and A3 respectively. We present the results in Table 3.5. We observe that the performance

gap between models trained on synthetic data generated with DP (ϵ = 4) and without DP

(ϵ =∞) is more pronounced in our scenario. This is primarily due to the dataset size, which

is roughly half of the one adopted in Section 3.4. We note that the gap can also be improved

by relaxing the privacy loss as it can be seen from the results with DP (ϵ = 8).
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Figure 3.5: Synthetic data generated with DP tends to be shorter compared to the data
generated without DP. The plot shows sequence length distributions of the synthetic data
generated with and without DP and the original customer feedback data.

Text Length Distribution. We further compare the sequence lengths of the synthetic data

generated with and without DP to the original dataset. The results are plotted in Figure 3.5.

We notice a similar phenomenon that the data generated with DP exhibits a length truncation

effect compared to the data generated without DP by the shift of the distribution from the

tail towards the shorter sequence lengths with DP.

3.6 Related Work

Synthetic Data Generation with DP. The problem of DP synthetic data generation has

been widely studied for tabular and image data in machine learning. Notable works in

the literature on DP tabular data generation address the privacy-utility trade-off problem

by building Bayesian networks [282], by preserving marginals [152], or through training

generative adversarial networks with DP-SGD [121, 267, 105, 229]. The literature on DP

image generation has so far mostly focused on GAN-based methods [11, 267, 166]. To

the best of our knowledge, the only work in the literature on DP synthetic text generation

is that by [18] which preliminarily outlined potential approaches without going in depth.
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We point out that other one-to-one mapping approaches including both token-level [250,

70, 71, 269, 270, 16, 188, 279] and sentence-level [119, 89, 155, 251] perturbations fail to

satisfy our privacy requirement outlined in Section 3.3.1 even though they possess certain

DP guarantees themselves. This is because we require that the procedure of synthetic text

generation should be statistically similar whether a data sample appears in the original

dataset or not. These one-to-one mapping methods focus on producing a perturbed version

of a single data sample, therefore, cannot fulfill this requirement. Besides, such one-to-one

perturbations cannot meet the requirement of GDPR [9] with regard to “linkability” since

the data owner can always link the perturbed text to a specific user as long as they keep the

user meta record. However, our method can fulfill the requirement as the data owner cannot

link any of the generated sequences to a specific user.

DP fine-tuning of language models. DP fine-tuning has been recently demonstrated to be

a simple and effective approach for building performant models for solving a variety of NLP

tasks including text classification, table-to-text generation, and dialog generation [137, 277].

However, past works have not studied these techniques for the problem of synthetic text

generation. Unlike the above works, we initiate a careful empirical study of private fine-

tuning for building synthetic text generation models, measure the different aspects of the

approach, and demonstrate its general effectiveness as well as its unique limitations.

3.7 Conclusion

In this chapter, we show a simple and practical recipe for generating synthetic text data

with privacy guarantees. Our method is built upon the large pretrained language models and

differential privacy, where the former enables us to generate high-quality synthetic text data

and the latter provides formal privacy guarantees. We conduct comprehensive experiments
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evaluating both the utility and privacy risks of the synthetic data. The results demonstrate

that our method can generate high-quality data while protecting it from privacy leakage.
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Part III: Data Synthesis for Model
Training and Evaluation
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In Part II, we discussed how to generate high-utility synthetic text meanwhile mitigating

privacy concerns in the Data Collection stage. In this part, we move to the second stage of

the NLP life cycle: Model Training and Evaluation.

For the model training, as pre-training fine-tuning becomes a standard paradigm for

building NLP applications, how to better align these two phases becomes significantly

crucial for improving the final task performance. Generally, the model is trained with

self-supervised language modeling objectives in the pre-training phase and task-specific

knowledge might not be learned. To solve the challenge, in Chapter 4, we will talk about

how to leverage synthetic data to pre-train more accurate models for open-domain question

answering. Model evaluation often requires a metric trained on diverse, high-quality data.

Synthetic data, generated through rule-based systems and human intervention, can meet this

need. In Chapter 5, we will discuss repurposing and producing such data for an attribution

evaluation scenario.
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Chapter 4: C-MORE: Pretraining to Answer Open-Domain Questions

by Consulting Millions of References

We consider the problem of pretraining a two-stage open-domain question-answering

(QA) system (retriever + reader) with strong transfer capabilities. The key challenge is

how to construct a large number of high-quality question-answer-context triplets without

task-specific annotations. Specifically, the triplets should align well with downstream tasks

by: (i) covering a wide range of domains (for open-domain applications), (ii) linking a

question to its semantically relevant context with supporting evidence (for training the

retriever), and (iii) identifying the correct answer in the context (for training the reader).

Previous pre-training approaches generally fall short of one or more of these requirements.

In this work, we automatically construct a large-scale corpus that meets all three criteria

by consulting millions of references cited within Wikipedia. The well-aligned pre-training

signals benefit both the retriever and the reader significantly. Our pre-trained retriever leads

to 2%-10% absolute gains in top-20 accuracy. And with our pre-trained reader, the entire

system improves by up to 4% in exact match.

4.1 Introduction

Open-domain question answering (QA) aims to extract the answer to a question from

a large set of passages. A simple yet powerful approach adopts a two-stage framework
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[37, 113], which first employs a retriever to fetch a small subset of relevant passages from

large corpora (i.e., retriever) and then feeds them into a reader to extract an answer (text

span) from them. Due to its simplicity, a sparse retriever such as TF-IDF/BM25 is generally

used together with a trainable reader [158]. However, recent advances show that transformer-

based dense retrievers trained on supervised data [113] can greatly boost the performance,

which better captures the semantic relevance between the question and the correct passages.

Such approaches, albeit promising, are restricted by the limited amount of human annotated

training data.

Inspired by the recent progresses of language models pretraining [50, 127, 87, 206], we

would like to address the following central question: can we pretrain a two-stage open-

domain QA system (retriever + reader) without task-specific human annotations? Unlike

general language models, pretraining such a system that has strong transfer capabilities to

downstream open-domain QA tasks is challenging. This is mainly due to the lack of well-

aligned pretraining supervision signals. In particular, we need the constructed pretraining

dataset (in the form of question-answer-context triplets) to: (i) cover a wide range of domains

(for open-domain applications), (ii) link a question to its semantically relevant context with

supporting evidence (for training the retriever), and (iii) identify the correct answer in the

context (for training the reader).

There have been several recent attempts in addressing these challenges. ORQA [127]

creates pseudo query-passage pairs by randomly sampling a sentence from a paragraph and

treating the sampled sentence as the question while the rest sentences as the context. REALM

[87] adopts a retrieve-then-predict approach, where the context is dynamically retrieved

during training and an encoder (reader) predicts the masked token in the question based

on the retrieved context. The retriever pretraining signals constructed in these approaches
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Question: The boarding crew freed 14 Iranian and Pakistani
fishermen who had been held as hostages for over two months.

Pretraining Data Instance

On 7 January 2012, Absalon intercepted and boarded a
Somali pirate mother ship in the Indian Ocean. The boarding
crew freed 14 Iranian and Pakistani fishermen who had been
held as hostages for over two months.[18] On 30 November
2015, Minister of Defence Peter Christensen, announced
that Absalon was to be moved to the Mediterranean Sea...

HDMS Absalon (F341)
Wikipedia

the free
encyclopedia

A Sampled Wikipedia Article

Reference

(Posted 2012-01-08) The Danish navy says it has captured
a suspect pirate mothership off the Horn of Africa and
rescued 14 people who were being held hostage on it. The
navy says its warship HDMS Absalon, which participates in
NATO’s Ocean Shield anti-piracy force, encountered the
ship Saturday and the crew boarded it.

Context: On 7 January 2012, Absalon intercepted ...On 30  
November 2015,Minister of Defence Peter Christensen ... 

Question: The boarding crew freed [MASK] Iranian and Pakistani
fishermen who had been held as hostages for over two months.
Answer: 14

Question: The boarding crew freed how many Iranian and Pakistani
fishermen who had been held as hostages for over two months.
Answer: 14
Context: (Posted 2012-01-08) The Danish navy says it has captured
a suspect pirate mothership off the Horn of Africa and rescued 14
people who were being held hostage on it...

ORQA: Inverse-Cloze Task

REALM: Retrieval-augmented Masked Language Modeling

C-MORE: Consulting Millions of References 

Pretraining Comparison

REAL
M C-MO
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[18] "Danish warship captures suspected pirate mothership," 
 Worldnews.com. 8 January 2012

Direct Retrieval
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the Question

Reader 
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Direct Reader
Training Signal
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Figure 4.1: Different pretraining methods for open-domain QA. Our C-MORE pretrains both
retriever and reader by using direct signals extracted from millions of references cited in the
verified knowledge source.

are not aligned with question-context pairs in open-domain QA settings. For example, as

shown in Figure 4.1, the context (in blue color) of ORQA pretraining data instance does

not contain direct supporting evidence to the question. Likewise, the dynamically retrieved

context in REALM cannot be guaranteed to contain direct supporting evidence either. In

addition, existing pretraining methods [127, 87] mostly focus on the retriever and do not

jointly provide direct pretraining signals for the reader (Figure 4.1).

To meet all three aforementioned criteria, we propose a pretraining approach named

Consulting Millions Of REferences (C-MORE), which automatically constructs pretraining

data with well-aligned supervision signals (Figure 4.1). Specifically, we first extract three

million statement-reference pairs from Wikipedia along with its cited references. Then,

we transform them into question-answer-context triplets by replacing a potential answer

span in the statement (e.g., “14” in the Figure 4.1) by an interrogative phrase (e.g, “how

many”). Such kind of pseudo triplets are in the exact same form as human-annotated ones,

and the question is linked to the context that contains the most direct-supporting evidence,

a highly desirable feature for open-domain QA tasks. We experiment the pretraining with
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a widely-adopted open-domain QA system, Dense Passage Retriever (DPR) [113]. The

experimental results show that our pretrained retriever not only outperforms both sparse

and dense retrieval baselines in the zero-shot retrieval setting (2%-10% absolute gain in

top-20 accuracy), but also leads to further improvement in the downstream task finetuning.

By integrating with our pretrained reader, the entire open-domain pretraining improves the

end-to-end QA performance by 4% in exact match.

4.2 Method

Recall that we want to automatically construct a large-scale open-domain QA pretraining

dataset that satisfies three criteria: (i) The dataset should cover a wide range of domains

for the open-domain QA purpose. (ii) The context passage is semantically relevant to the

question and contains direct supporting evidence for answering the question. (iii) The

correct answer span in the context passage for answering the question should also be

identified for training the reader. This section first discusses how to extract a large amount

of statement-reference pairs from the Wikipedia and then explain how to construct pseudo

question-answer-context triplets for pretraining open-domain QA systems.

4.2.1 Statement-Reference Pairs Collection

Wikipedia articles usually contain a list of knowledge sources (references) at the end

that are verified by human editors to support the statements in the articles [139]. And the

reference documents always consist of strong supporting evidence to the statements. For

example, as shown in Figure 4.1, the document (in green color) contains the direct evidence

“...rescued 14 people who were being held hostage on it...” to support the query (red text) “The

boarding crew freed 14 Iranian and Pakistani fishermen who had been held as hostages over

two months”. Additionally, such knowledge sources are often organized in a good structure
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and can be automatically extracted and processed. Moreover, the statement-reference pairs

in Wikipedia cover a wide range of topics and domains. Thus, when converted into question-

context pairs, they satisfy the first two criteria and are suitable for training an accurate dense

retriever at a large scale.

In our study, we extract around six million statement-reference pairs from Wikipedia.

We filter the pairs whose reference documents are not reachable and finally obtain around

three million statement-reference pairs (see statistics in Appendix Table 4.1). The data

collection method we proposed is very general and therefore can be easily extended to other

domains, e.g., WikiEM (wikem.org) for medical domain or other languages, e.g., Baidu

Baike (baike.baidu.com) for Chinese.

4.2.2 QAC Triplets Construction

We now explain how to further convert the statement-reference pairs into question-

answer-context pairs. Inspired by previous unsupervised extractive QA work [131], we

extract entities as potential answers to construct pseudo question-answer-context pairs

where an answer span is extracted from the context given an question to accommodate the

extractive QA setting. Specifically, we first adopt an off-the-shelf named entity recognition

tool spaCy [95] to identify entities in each query. Next, we filter the entities that do not

appear in the evidence based on string matching. If multiple entities are found, we sample

one of them as the potential answer to the query. The sampled entity in the query is replaced

by an interrogative phrase based on the entity type (e.g., a [DATE] entity will be replaced

by phrases such as “when”, “what date”. In this way, we can construct question-answer-

context triplets to train open-domain QA models. See more question reformation rules in

Appendix Table C.1).
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Data Type Dataset Train Dev Test
Pretraining C-MORE 2.96M 40K -

Finetuning
QA Data

NaturalQuestion 58,880 8,757 3,610
TriviaQA 60,413 8,837 11,313
WebQuestion 2,474 361 2,032

Table 4.1: Statistics of pretraining and finetuning data.

Settings Methods
Training
Data

Top-20 Accuracy Top-100 Accuracy
NQ TQA WebQ NQ TQA WebQ

Unsupervised

BM25 - 59.1* 66.9* 55.0* 73.7* 76.7* 71.1*
ORQA [127] Wikipedia 50.6 57.5 - 66.8 73.6 -
REALM [87] Wikipedia 59.8 68.2 - 74.9 79.4 -
C-MORE Wikipedia 61.9 72.2 62.7 75.8 81.3 78.5

Domain
Aaptation

DPR-NQ NaturalQuestion - 69.7 69.0 - 79.2 78.8
+ C-MORE + Wikipedia - 72.8 71.2 - 81.6 81.3
DPR-TQA TriviaQA 69.2 - 71.5 80.3 - 81.0
+ C-MORE + Wikipedia 71.0 - 74.3 81.7 - 83.2
DPR-WebQ WebQ 56.1 66.1 - 70.7 77.6 -
+ C-MORE + Wikipedia 67.3 74.2 - 79.2 82.6 -

Supervised
DPR-supervised Supervised Data 78.4* 79.4* 73.2* 85.4* 85.0* 81.4*
+ C-MORE + Wikipedia 80.3 81.3 75.0 86.7 85.9 83.2

Table 4.2: Overall retrieval performance of different models. Results marked with “*” are
from DPR [113], “” are from [206] and “-” means it does not apply to the current setting.

4.3 Experiment

4.3.1 Experimental Setup

Pretraining Model Architecture. Since conceptually the construed triplets is in the same

format as the annotated QA data, they can be used to pretrain any existing neural open-

domain QA model. Here, we adopt DPR [113], which consists of a dual-encoder as the

retriever and a BERT reader, considering its effectiveness and popularity. Specifically, the

retriever first retrieves top-k (up to 400 in our experiment) passages, and the reader assigns
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Row Model Architecture
Retriever Reader

NQ TQA WebQ
Pretrain Finetune Pretrain Finetune

1 ORQA [127] ✓ ✓ ✗ ✓ 33.3 45.0 36.4
2 REALM [87] ✓ ✓ ✓ ✓ 40.4 - 40.7
3

DPR [113]

✓ ✗ ✓ ✗ 11.3 24.8 4.5
4 ✗ ✗ ✗ ✓ 32.6 52.4 29.9
5 ✓ ✗ ✗ ✓ 35.3 55.1 32.1
6 ✗ ✓ ✗ ✓ 41.5 56.8 34.6
7 ✓ ✓ ✗ ✓ 41.9 58.6 35.6
8 ✓ ✓ ✓ ✓ 41.6 60.3 38.6

Table 4.3: End-to-end QA performance based on different retrievers and readers. Note that
we only test the effectiveness of C-MORE based on the DPR [113] model architecture. ORQA
and REALM are listed here as references. The retriever of Row 4 is BM25, which does not
involve either pretraining or finetuning.

a passage score to each retrieved passage and extracts an answer with a span score. The

span with the highest passage selection score is regarded as the final answer. The reader and

retriever can be instantiated with different models and we use BERT-base-uncased for both

of them following [113].

Pretraining Data Processing. For our extracted pseudo question-answer-context triplets,

sometimes the context (reference document) is too long to fit into a standard BERT (max-

imum 512 tokens) in the DPR model. Thus, we chunk a long document into n-word text

blocks with a stride of m. Without loss of generality, we use multiple combinations of n and

m: n = {128, 256, 512}, n = {64, 128, 256}. Then we calculate relevance scores (using

BM25) of the derived blocks with the question and select the most relevant block as the

context. Note that the retrieval step is done within the single document (usually less than 20

text blocks). In contrast, the baseline model (Section 4.3.2) - sparse retriever BM25 - looks

up the entire knowledge corpus (20M text blocks). In this way, we can automatically collect

the most relevant context that supports the query from a long article.
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Finetuning QA Datasets. We consider three popular open-domain QA datasets for fine-

tuning: NaturalQuestions (NQ) [122], TriviaQA (TQA) [108], and WebQuestions (WebQ)

[14], whose statistics are shown in Table 4.1.

Following the setting of DPR [113], we use the Wikipedia as the knowledge source and

split Wikipedia articles into 100-word units for retrieval. All the datasets we use are the

processed versions from the DPR implementation.

Overlap between Pretraining and Finetuning Datasets. Though both C-MORE and down-

stream QA data are constructed based on Wikipedia, the overlap between them would be

very little. C-MORE extracts query from Wikipedia while the queries of downstream QA

data are annotated by human. C-MORE extracts contexts from the external referenced pages

(general Web) while the downstream QA data extract contexts from Wikipedia.

Implementation Details. For pretraining, we set training epochs to 3, batch size to 56 for

retrievers and 16 for readers, and learning rate to 2e-5. We select the best checkpoint based

on the pretraining dev set. For finetuning, we use the same set of hyperparameters as the

original DPR paper. The comparing baselines ORQA [127] and REALM [87] use 288-token

truncation over Wikipedia, which are not directly comparable to our results. To enable a fair

comparison, we report the retrieval results from a recent paper [206], which uses the same

retrieval corpus as ours.

4.3.2 Retrieval Performance

We consider three settings to demonstrate the usefulness of our pretrained retriever.

Unsupervised. We assume no annotated training QA pairs are available. In this setting, We

compare our method with existing unsupervised retrievers: a sparse retriever BM25 and two

pretrained dense retrievers ORQA and REALM.
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Domain Adaptation. We consider the condition in which there are QA training pairs in the

source domain but no training data in the target domain. The task is to obtain good retrieval

performance on the target test set only using source training data. We compare our method

with two baselines: one is to directly train a dense retriever on the source domain while the

other is to first pretrain a dense retriever on our constructed corpus and then finetune it on

the source domain training set.

Supervised. In this setting, all the annotated QA training instances are used. Similar

to the previous setting, we compare a supervised retriever with and without our C-MORE

pretraining.

For all settings, we report the top-k retrieval accuracy (k ∈ {20, 100}) on the test set

following [113]. See the overall retrieval performance of different models in each setting in

Table 4.2. We have the following observations.

In the unsupervised setting, compared with the strong sparse retrieval baseline BM25,

our pretrained dense retriever shows significant improvement. For example, we obtain

around 7% absolute improvement in terms of both Top-20 and Top-100 accuracy on the

WebQuestion dataset. Compared with pretrained dense retrievers (i.e., ORQA and REALM),

our pretrained model outperforms them by a large margin. This is not surprising as our

pretraining data contain better aligned retrieval supervision signals: reference documents

often have supporting evidence for the question while their retrieval training signals are

relatively indirect.

In the domain adaptation and supervised settings, our pretrained dense retriever

provides a better finetuning initialization and leads to improvement compared with randomly

initialized DPR models. Another surprising result is that our pretrained dense retriever even

outperforms some DPR domain adaptation models. For example, on the TriviaQA testing
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set, our pretrained DPR model achieves 72.2% top-20 and 81.3% top-100 accuracy while the

DPR-NQ model obtains 69.7% and 79.2% respectively. This indicates that our pretrained

dense retriever can generalize well even without using any annotated QA instances.

All the results demonstrate the usefulness and generalization of our pretrained dense

retriever for open-domain QA tasks.

4.3.3 End-to-End QA performance

We now examine how our pretrained retriever and reader improve the end-to-end QA

performance, measured in exact match (EM). The results are shown in Table 4.3, from

which we make the following observations. (i) Surprisingly, our fully-unsupervised system

(pretrained retriever + pretrained reader) shows a certain level of open-domain QA ability

(see row #3). For example, on TriviaQA, our fully-unsupervised system can answer around

25% of questions correctly. (ii) Compared to the system with BM25 retriever (row #4), the

one with our pretrained dense retriever (line #5) retrieves more relevant passages, leading to

better QA performance. (iii) Initializing either the retriever or the reader from our pretrained

checkpoint can lead to further improvement (rows #6-#8). For example, on the TriviaQA

and WebQuestion datasets, our entire pipeline pretrain leads to about 4% absolute gain in

terms of EM. Note that on the WebQuestion dataset, all the DPR models perform worse

than REALM, this is because of the limited training data of WebQuestion. The issue can be

easily solved by adding Multi datasets for finetuning according to [113].

4.3.4 Computational Resource Comparison

In addition to the performance gain, another benefit of C-MORE is its training scalability.

We compare the C-MORE pretraining with ORQA and REALM in terms of computational

resources they use in Table 4.4. As can be seen, C-MORE only requires reasonable GPU
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GPU TPU

#cards
batch
size

Train
steps #cards

batch
size

Train
steps

ORQA 128 4096 100K - 4096 100K
REALM 240 - 100K 64 512 200K
C-MORE 8 56 20K - - -

Table 4.4: Computational resource comparison between different retriever pretraining
methods. Our C-MORE provides more direct retrieval pretraining signals, thus leading to fast
converge. ORQA and REALM GPU setups are from [206] and TPU setups are from their
original papers.

computational resources, which could be normally conducted on an academic-level compu-

tational platform. On the contrary, due to the lack of direct retrieval supervision, ORQA

and REALM often needs more computational resources and requires more training steps to

converge.

4.4 Conclusion

This chapter proposes an effective approach for pretraining open-domain QA systems.

Specifically, we automatically construct three million pseudo question-answer-context

triplets from Wikipedia that align well with open-domain QA tasks. Extensive experiments

show that pretraining a widely-used open-domain QA model (DPR) on our constructed

data achieves promising performance gain in both retrieval and QA accuracies. Future

work includes exploring the effectiveness of the constructed data on more open-domain

QA models (e.g., REALM) and training strategies (e.g., joint optimizing the retriever and

reader).
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Chapter 5: Automatic Evaluation of Attribution by Large Language

Models

The previous chapter addresses synthetic data use for model pre-training. In this chapter,

we will talk about how to generate synthetic data for model evaluation.

A recent focus of large language model (LLM) development, as exemplified by genera-

tive search engines, is to incorporate external references to generate and support its claims.

However, evaluating the attribution, i.e., verifying whether the generated statement is indeed

fully supported by the cited reference remains an open problem. Although human evalua-

tion is common practice, it is costly and time-consuming. In this chapter, we investigate

the automatic evaluation of attribution by LLMs. We begin by providing a definition of

attribution and then explore two approaches for automatic evaluation: prompting LLMs

and fine-tuning smaller LMs. The fine-tuning data is repurposed from related tasks, such

as question answering, fact-checking, natural language inference, and summarization. To

facilitate the evaluation, we manually curate a set of test examples covering 12 domains

from a generative search engine, New Bing. Our results on the curated test set and simulated

test examples from existing benchmark questions highlight both promising signals as well

as remaining challenges for the automatic evaluation of attribution. We hope our testbed,

modeling methodology, and insights will help lay the foundation for future studies on this

important problem.
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5.1 Introduction

Generative large language models (LLMs) [24, 173, 44, 171, 172, inter alia] often

struggle with producing factually accurate statements, resulting in hallucinations [102].

Recent efforts aim to alleviate this issue by augmenting LLMs with external tools [207]

such as retrievers [216, 20] and search engines [162, 231, 217].

Incorporating external references for generation inherently implies that the generated

statement is backed by these references. However, the validity of such attribution, i.e.,

whether the generated statement is fully supported by the cited reference, remains question-

able.13 According to Liu et al. [143], only 52% of the statements generated by state-of-the-art

generative search engines such as New Bing and PerplexityAI are fully supported by their

respective cited references.14

Inaccurate attribution compromises the trustworthiness of LLMs, introducing significant

safety risks and potential harm. For instance, in healthcare, an LLM might attribute incorrect

medical advice to a credible source, potentially leading users to make harmful health

decisions. Similarly, in finance, faulty investment advice attributed to a reliable source may

cause substantial financial losses.

To identify attribution errors, existing attributed LLMs [162, 231] rely heavily on human

evaluation, which is both expensive and time-consuming. For instance, the average cost

of annotating a single (query, answer, reference) example is about $1 in Liu et al. [143].

In the actual use of attributed LLMs, it is the user who needs to be wary of the attribution

and manually verify it, which puts a tremendous burden on their side. Therefore, effective

13Attribution primarily refers to “the act of attributing something” in this chapter, which is similar to
“verifiability” as defined in Liu et al. [143].

14www.bing.com/new, www.perplexity.ai
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Q: What is the temperature range on
the moon?

A: The average temperature on the
moon can range from -298 degrees F
(-183 degrees C) at night to 224 degrees
F (106 degrees C) during the day [1].

The temperature on the Moon
The average temperature on the Moon (at
the equator and mid latitudes) varies from
-298 degrees Fahrenheit (-183 degrees
Celsius), at night, to 224 degrees
Fahrenheit (106 degrees Celsius) during
the day. Because the Moon has no...

References
[1] coolcosmos.ipac.caltech.edu

Q: What is the highest price of a gallon
of regular gas in the US in 2022?

A: According to a news article by NPR,
as of June 2022, the highest average
price of a gallon of regular gas in the
US was $6.34 in California [1].

In 10 states, a gallon of gas now
costs more than $5
...U.S. gas prices hit a new record on
Monday, with a gallon of regular gas costing
an average of $4.865 (not adjusting for
inflation), according to the most recent data
from American Automobile Association...

References
[1] npr.org/states-highest-gas-prices

Q: What was the unemployment
rate in Germany in 2020?

A: According to [1], the unemployment
rate in Germany for 2020 was 4.31%,
which was a 1.17% increase from 2019.
It's important to note that the COVID...

Germany Unemployment Rate
1991-2023
Unemployment refers to the share of the
labor force that is without work but
available for and seeking...Germany
unemployment rate for 2020 was 3.81%,
a 0.67% increase from 2019.

References
[1] macrotrends.net/unemployment-rate

As an Attribution Validator, your task is to
verify whether a given a reference can support

the answer to a provided question. A contradictory
error means the answer contradicts the fact in the
attribution, while an extrapolatory error means that
there is not enough information in the attribution..

AttrScore

Attributable Extrapolatory Contradictory

(1) Prompt LLMs with a clear
evaluation instruction

(2) Fine-tune LMs on a set of
diverse repurposed datasets 

QA Fact-Checking

NLI Summarization

Figure 5.1: We make the first step towards automatically evaluating attribution and identify-
ing specific types of errors with AttributionLens. We explore two approaches in Attribution-
Lens: (1) prompting LLMs, and (2) fine-tuning LMs on simulated and repurposed datasets
from related tasks.

and reliable methods to automatically evaluate attribution and identify potential attribution

errors are highly desired.

Towards this goal, we take the first step by introducing AttributionLens (Figure 5.1), a

framework designed for automatic evaluation of attribution and identification of specific

types of attribution errors. We propose a new problem formulation that categorizes attribution

into three types: 1) attributable: the reference fully supports the generated statement; 2)

extrapolatory: the reference lacks sufficient information to support the generated statement,

and 3) contradictory: the generated statement directly contradicts the cited reference. Unlike
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existing work [17] that uses binary categorization (i.e., attributable or not) and Liu et al. [143]

that defines the degree of reference support for the generated statement as “full”, “partial”,

or “no support”, our fine-grained error categorization aids humans in better understanding

the type of an attribution error made by an LLM. This not only enhances safe system usage

but also provides valuable insights for future development of mechanisms tailored to correct

specific errors.

We explore two approaches in AttributionLens: 1) prompting LLMs and 2) fine-tuning

LMs on simulated and repurposed data from related tasks such as question answering (QA),

fact-checking, natural language inference (NLI), and summarization. For evaluation, unlike

existing work [143, 76] that only uses queries from existing benchmarks, we curate a set of

test examples covering 12 different domains from a generative search engine, New Bing.

This is the first evaluation set for measuring the attribution of LLMs with queries created

based on real-life interactions, hence avoiding the data contamination issue.

Our results indicate that both approaches show reasonable performance on our curated

and simulated test sets; yet there is still substantial room for further improvement. Major

sources of evaluation failures include insensitivity to fine-grained information comparisons,

such as overlooking contextual cues in the reference, disregard for numerical values, and

failure in performing symbolic operations. In light of these findings, we discuss potential

directions for improving AttributionLens, including training models to be more strongly

conditioned on the reference, and augmenting them with external tools for numerical and

logical operations.

With the new formulation of attribution errors, the development of AttributionLens,

the introduction of new test sets, and the insights into challenges and potential directions
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for future work, we hope our work can help lay the foundation for the important task of

automatically evaluating LLM attributions.

5.2 Problem Formulation

The primary task in this chapter is to evaluate attribution, which involves verifying

whether a reference provides sufficient support for a generated answer to a user’s query. Our

task setting prioritizes one reference per statement, a unit task that more complex scenarios

can be decomposed to. We study such a setting as it forms the basis for dealing with multiple

references or distinct segments [143, 76].

Prior work, such as Rashkin et al. [197], Gao et al. [75], Bohnet et al. [17], mainly

focuses on binary verification, i.e., determining if a reference supports the generated answer

or not. We propose advancing this task by introducing a more fine-grained categorization.

Specifically, we classify attributions into three distinct categories:15

• Attributable: The reference fully supports the generated answer.

• Extrapolatory: The reference lacks sufficient information to validate the generated

answer.

• Contradictory: The generated answer contradicts the information presented in the refer-

ence.

To illustrate, consider a contradictory example (Figure 5.1). The query is “What was

the unemployment rate in Germany in 2020?”, and the generated answer is “4.31%”.

However, the reference states that the rate was “3.81%”, contradicting the generated answer.

15We acknowledge that while these categories are generally mutually exclusive, complex scenarios might
blur the boundaries between them. However, such cases are very rare. For the purpose of this study, we
maintain their exclusivity to enable clear and focused error analysis.
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An extrapolatory instance, on the other hand, would be a query about the “gas price in

California”. While the reference is relevant, it does not contain specific information to

verify the correctness of the generated answer.

Following these examples, we see the importance of granularity in error classification. A

fine-grained classification allows us to pinpoint the nature of the errors, be it contradiction or

extrapolation. Users can better understand the type of errors an LLM might make, enabling

them to use the model more safely. Additionally, such an error identification system

can guide future training processes of attributed LLMs, leading to specific mechanisms’

development to correct such errors.

Our categorization also offers a departure from the existing approach [143], which

emphasizes on degree of support (“full”, “partial”, or “none”) rather than attribution error

types. Our approach highlights specific issues in attribution evaluation for more effective

error management and system improvement.

Formally, the task of attribution evaluation involves a natural language query q, a

generated answer a, and a reference x from an attributed LLM. The goal is to develop a

function, denoted as f , that inputs (q, a, x) and outputs a class label indicating whether

“according to x, the answer a to the query q is attributable, extrapolatory or contradictory.”16

5.3 Automatic Evaluation of Attribution

Following our problem definition, we introduce two approaches for automatic evaluation

of attribution: prompting LLMs and fine-tuning LMs on simulated and repurposed data

from related tasks.

16It is important to note that this evaluation focuses on the “verifiability” of the answer based on the
reference. It does not measure the “relevance”, i.e., whether the answer correctly responds to the query [143].
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Query: Which apostle had a
thorn in his side?

Long Ans: Paul was an apostle
who had a thorn in his side [1].

Thorn in the flesh
Thorn in the flesh is a phrase of
New Testament origin used to
describe a chronic infirmity,
annoyance, or trouble in one's
life, drawn from Paul the
Apostle's use of the phrase in
his Second Epistle to the
Corinthians 12 : 7 -- 9

References
[1] en.wikipedia.org/wiki/
Thorn_in_the_flesh

Thorn in the flesh
Thorn in the flesh is a phrase of
New Testament origin used to
describe a chronic infirmity,
annoyance, or trouble in one's
life, drawn from Paul the
Apostle's use of the phrase in
his Second Epistle to the
Corinthians 12 : 7 -- 9

References
[1] en.wikipedia.org/wiki/
Thorn_in_the_flesh

Thorn in the flesh
Thorn in the flesh is a phrase of
New Testament origin used to
describe a chronic infirmity,
annoyance, or trouble in one's
life, drawn from John the
Apostle's use of the phrase in
his Second Epistle to the
Corinthians 12 : 7 -- 9

References
[1] en.wikipedia.org/wiki/
Thorn_in_the_flesh

Thorn (letter)
Thorn or þorn (Þ, þ) is a letter
in the Old English, Old Norse,
Old Swedish and modern
Icelandic alphabets, as well as
modern transliterations of the
Gothic alphabet, Middle Scots,
and some dialects of Middle
English. It was also used ...

References
[1] https://en.wikipedia.org/
wiki/Thorn_(letter)

(A): Attributable (B): Contradictory (C): Contradictory (D): Extrapolatory

Query: Which apostle had a
thorn in his side?

Long Ans: Phillip had a thorn
in his side [1].

Query: Which apostle had a
thorn in his side?

Long Ans: Paul was an apostle
who had a thorn in his side [1].

Query: Which apostle had a
thorn in his side?

Long Ans: The apostle who had
a thorn in his side is Paul [1].

Short Ans: Paul [1] Short Ans: Phillip [1] Short Ans: Paul [1] Short Ans: Paul [1]

Figure 5.2: Examples simulated from open-domain QA. We 1) use the original (question,
answer, context) pair as an attributable instance (A), 2) substitute the answer or the answer
span in the context to simulate a contradictory error example (B, C), and 3) replace the
context with alternatives to simulate an extrapolatory error example (D). In order for models
trained the simulated data to generalize well to the long answer setting in real-life search
engines like New Bing, we convert the short answer to a long one (using ChatGPT).

5.3.1 Prompting LLMs

Recent research [73] has demonstrated the possibility of prompting LLMs to evaluate

the quality of generated text using their emergent capabilities [253], such as zero-shot

instruction [252] and in-context learning [24]. Following this approach, we prompt LLMs,

such as ChatGPT [171], using a clear instruction that includes definitions of the two types

of errors (as shown in Figure 5.1) and an input triple of the query, answer, and reference for

evaluation. The complete prompt used in our study can be found in Appendix Table D.2.
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5.3.2 Fine-tuning LMs on Repurposed Data

The primary challenge in fine-tuning LMs for automatic attribution evaluation is the lack

of training data. One potential approach is to hire annotators to collect real samples, but the

cost can be prohibitive.

Here, we first repurpose datasets from three related tasks (fact-checking, NLI, and

summarization). We then propose to further simulate more realistic samples from existing

QA benchmarks.

Repurpose data from fact-checking, NLI, and summarization tasks. Given the con-

nections between our attribution evaluation task and the tasks of fact-checking, NLI, and

summarization, we propose to utilize datasets from these fields to enrich our training exam-

ples. Fact-checking data and NLI data, with their emphasis on assessing the consistency

and logical relationship between claims (hypothesis) and evidence (premise), mirrors our

task’s objective of checking the supporting relationship between reference documents and

generated statements. Summarization datasets, especially those involving the detection of

hallucinations (including both intrinsic and extrinsic [151], could provide a useful starting

point for identifying attribution inconsistencies. Nevertheless, these datasets would require

suitable adaptation. We keep their original data sequences and modify their data label space

to suit the specific needs of the attribution evaluation definition. Additional information on

this can be found in Appendix D.1.

Simulate data from open-domain QA. QA benchmarks provide an ideal platform for

data simulation, as they comprise questions, their corresponding ground truth answers, and

reference contexts. These elements can be directly employed as attributable examples

(Figure 5.2, A). In open-domain QA datasets, answers are typically brief text spans. To

cater to the long answer setting in most attributed LLMs, we convert these short answers
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into longer sentences using ChatGPT. For simulating contradictory errors, we propose two

methods: (1) The first involves modifying the correct answer with an alternative candidate

from an off-the-shelf QA model, an answer substitution model, or a random span generator

(Figure 5.2, B). (2) The second retains the original answer but replaces the answer span in

the reference context with a comparable candidate (Figure 5.2, C). To emulate extrapolatory

errors, we employ a BM25 retriever on the question, retrieving relevant external documents

from resources such as Wikipedia, which do not contain the ground truth answers (Figure

5.2, D). More details regarding the simulation of these errors from QA datasets can be found

in Appendix D.1.

5.4 Experimental Setup

5.4.1 Datasets

This section presents the datasets utilized for training and testing methods for automatic

attribution evaluation. In particular, we develop two evaluation sets, AttrEval-Simulation

and AttrEval-GenSearch, derived from existing QA datasets and a generative search engine,

respectively. The dataset statistics are presented in Table 5.1.

Training data. To repurpose and simulate training examples, we follow the method in

Section 5.3.2 based on four similar tasks’ datasets. For QA, we consider NaturalQuestions

[122]. For fact-checking, we include FEVER [232], Adversarial FEVER [233], FEVEROUS

[6], VITAMINC [208], MultiFC [10], PubHealth [118], and SciFact [242]. For NLI, we

include SNLI [23], MultiNLI [256], ANLI [170] and SciTail [115]. For summarization, we

include XSum-Halluc. [151], XENT [26], and FactCC [120]. We use all examples in the

summarization task datasets, and sample 20K examples from QA, fact-checking, and NLI
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Split Related Tasks Data Sources #Samples

Train

QA NaturalQuestions 20K

Fact-checking

FEVER, VITAMINC,
Adversarial FEVER,
FEVEROUS, SciFact
PubHealth, MultiFC

20K

NLI
SNLI, MultiNLI
ANLI, SciTail

20K

Summarization
XSum-Hallucinations,
XENT, FactCC

3.8K

Test

QA
PopQA, EntityQuestions,
HotpotQA, TriviaQA,
WebQuestions, TREC

4K

-
Annotated samples from a
generative search engine

242

Table 5.1: Statistics of the training and test datasets for attribution evaluation. We include
the distributions of the labels and data sources in Appendix D.2.

task datasets. We combine all the simulated datasets to create the training set for our main

experiment.

AttrEval-Simulation. For testing, we first simulate examples from six out-of-domain QA

datasets: HotpotQA [272], EntityQuestions [209], PopQA [150], TREC [13], TriviaQA

[108], and WebQuestions [14]. Note that we intend to use different QA datasets for training

and testing, as to test the model’s generalization ability, and evaluate its performance across

a diverse set of domains and question formats. Our manual examination indicates that 84%

of 50 randomly sampled examples accurately align with their category, and the labeling

errors are primarily due to incorrect annotations in the original QA datasets or heuristics

used to formulate comparable answer candidates for contradictory errors and to retrieve

negative passages for extrapolatory errors.
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Daily Life
7.1%
Pet & Animal
5.5%
Med & Health
6.7%
History
8.2%
Law
5.1%
Science
6.7%
Econ. & Fin.
18.4%

AI/NLP Research
24.3%

Business
5.9%

Geography
2.7%
Math
1.2%

Game&Anime
8.2%

Figure 5.3: Domain distribution of our annotated AttrEval-GenSearch test set (covering 12
domains in total).

AttrEval-GenSearch. To examine the real-life application of automatic attribution evalua-

tion, approximately 250 examples from the New Bing search engine are annotated carefully

by the authors. This process comprises two subtasks: creating queries and verifying attribu-

tions. To avoid the issue of training data contamination, new queries are manually created

across 12 domains (Figure 5.3).17 To facilitate and motivate query annotation, keywords

from a specific domain are randomly generated using ChatGPT, and relevant facts within

that domain are compiled from the Web.18

In the verification process, queries are sent to the New Bing search engine under a

balanced mode following Liu et al. [143], which balances accuracy and creativity. The

validity of the output generated by New Bing is evaluated, where we consider only the first

sentence that answers the question along with its reference. As we state in Section 5.2, our

evaluation emphasizes the error type in a single reference per statement. In the case of a

17The “AI/NLP Research” domain is inspired by recent discussions on social media about testing LLMs’
knowledge on researchers, e.g., “Is XX a co-author of the chapter XX?”

18We make an effort to collect new facts post-2021 to test about “knowledge confliction” [290, 266] between
parametric and external knowledge.
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Setting Model (Size) AttrEval-Simulation AttrEval-GenSearch

Attri. Contra. Extra. Overall Attr. Contra. Extra. Overall

Zero-shot

Alpaca (7B) 50.0 4.0 1.4 33.6 50.7 8.6 3.6 34.3
Alpaca (13B) 48.3 5.6 2.2 33.5 50.6 6.1 19.3 34.7
Vicuna (13B) 46.3 8.3 21.6 34.6 54.4 13.3 26.1 41.4
ChatGPT 45.7 17.9 52.7 43.2 61.2 20.6 53.3 55.0
GPT-4 58.7 23.2 61.5 55.6 87.3 45.0 89.6 85.1

Few-shot

Alpaca (7B) 45.4 8.2 9.6 31.9 49.6 5.2 13.5 37.2
Alpaca (13B) 38.9 20.1 2.2 33.1 50.5 10.3 5.6 34.8
Vicuna (13B) 35.4 37.2 0.3 32.6 50.6 9.1 8.4 34.1
ChatGPT 46.6 27.6 35.8 39.2 62.6 26.8 49.5 53.3
GPT-4 61.1 31.3 68.8 60.0 85.2 53.3 88.9 84.3

Fine-tuned

Roberta (330M) 62.5 54.6 74.7 65.0 47.2 25.2 62.3 49.8

GPT2 (1.5B) 63.6 54.6 71.9 63.5 51.1 18.6 60.7 47.4

T5 (770M) 45.9 57.1 71.6 59.1 58.5 24.3 72.5 61.6
Flan-T5 (770M) 57.3 50.1 70.5 59.3 64.3 27.6 72.9 64.5
Flan-T5 (3B) 48.1 48.7 67.1 55.7 77.7 44.4 80.0 75.2
Flan-T5 (11B) 48.4 49.9 66.5 55.4 81.6 38.9 76.9 72.7

LLaMA (7B) 62.2 50.7 74.6 62.8 77.9 41.1 78.3 72.5
Alpaca (7B) 66.8 41.1 76.8 64.5 73.0 30.2 80.0 72.5
Alpaca (13B) 63.6 48.9 75.8 63.6 77.5 34.5 79.4 73.3
Vicuna (13B) 66.2 49.1 78.6 66.0 69.4 37.7 79.9 72.1

Table 5.2: The performance (F1 score) of AttributionLens with different models on AttrEval-
Simulation and AttrEval-GenSearch sets. The best-performing result in each setting is in
bold. The results show both promising signals and challenges (e.g., all models struggle with
contradictory errors) in automatic evaluation of attribution.

sentence having multiple references or distinct segments (for example, “XXX [1][2]” or

“XXX [1] and YYY [2]”), each reference or segment is treated as a separate sample, and the

attributions are verified individually. Finally, the samples are categorized by the annotators

as attributable, contradictory, or extrapolatory. Detailed annotation guidelines can be found

in Appendix D.4.
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5.4.2 Implementation Details

In the configuration of “prompting LLMs”, we test Alpaca [230], Vicuna [41], Chat-

GPT [171] and GPT-4 [172], where we use OpenAI’s official APIs (gpt-3.5-turbo,

gpt-4-0314)19, and weights from Alpaca and Vicuna from the official repository20. For

Alpaca and Vicuna inference, documents are tokenized and truncated at a maximum of 2048

tokens. We generate text with a temperature of 0. The prompts for the task of evaluating

attribution are provided in Appendix Table D.2, and our main results are averaged over 4

different prompts. For the few-shot prompting setting, we manually write 3 examples as

demonstrations for both test sets as shown in Table D.3. If LLMs yield an attribution label

with an explanation, we extract the predicted label with regular expression.

In the “fine-tuning LMs” setting, we fine-tune four types of LMs of various scales:

Roberta (340M) [145], (FLAN-)T5 (770M, 3B, 11B) [191, 45], GPT2 (1.5B) [189], LLaMA

(7B), Alpaca (7B, 11B) [230], and Vicuna (7B, 11B) [41]. Our implementation utilizes

the Huggingface library [259] and Alpaca examples. The training is performed on 4 A100

80GB GPUs with a maximum of 512 tokens. For the LLaMA family of models, we use a

batch size of 32 and train for 1 epoch. For the other models, we use a batch size of 64 and

3 epochs. We set the learning rate as 2e-5 and use a cosine learning rate decay with 0.03

warm-up steps.

Metrics. For evaluation, we present the F1 score for each individual class as well as the

micro-F1 score, which is equivelant to the overall accuracy.

19platform.openai.com/docs/api-reference/chat. Given GPT-4’s high cost and slow inference speed,
we evaluate it on 500 random samples from AttrEval-Simulation.

20https://github.com/tatsu-lab/stanford_alpaca, https://github.com/lm-sys/FastChat
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5.5 Results

5.5.1 Overall Performance

Table 5.2 presents an evaluation of different models on both the simulated dataset

(AttrEval-Simulation) and the annotated dataset on New Bing (AttrEval-GenSearch). Our

primary findings are as follows:

GPT-4 achieves promising results, reaching an overall accuracy of 84-85% on AttrEval-

GenSearch and significantly outperforming other models. This suggests a promising poten-

tial for employing GPT-4 for automatic attribution evaluation to alleviate human annotation

workloads, aligning with the emerging trend that uses GPT-4 for different evaluation tasks

[41, 288]. However, it may still not be sufficiently accurate for practical use. We also note

some potential concerns of bias (see Limitations Section 5.8).

Automatic attribution evaluation presents substantial challenges. This complex task

requires not only understanding the reference information but also comparing it with the

information in the statement, all of which can significantly vary across different datasets

and test conditions. Against these challenges, models other than GPT-4 exhibit suboptimal

performance in zero-shot and few-shot settings. Fine-tuning LMs on the simulated datasets

from related tasks significantly improves the performance. For instance, the Vicuna (13B)

model sees the overall accuracy on the two test sets rise from 34.6% and 41.4% in the

zero-shot setting to 66.0% and 71.3%, respectively. And the fine-tuned FLAN-T5 (770M)

model can even surpass ChatGPT on both test sets. Despite this, there is still a large room

for further improvement. Some models that yielded better results on the simulated test set

may be less effective on the annotated test set, indicating a lack of consistency across diverse

testing settings, signaling generalizability challenges.
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Error Type (per-
centage)

Example

Fine-grained
information insen-
sitivity
(30.6%)

Query: Was ketchup a medicine before?
Answer:: In the early 1800s , it was believed that ketchup could be used to treat indigestion, jaundice, and
diarrhea
Reference: According to John Cook Bennett, tomatoes could be used to treat diarrhea, ... Soon, Bennett
was publishing tomato ketchup recipes in pill form ... According to Dr. Bennett, this tomato blend can help
people with diarrhea, indigestion, rheumatism, and jaundice.
▷ Ground Truth: Extrapolatory
▷ GPT-4: Attributable. The reference supports the claim that in the early 1800s , ketchup was believed to
be used as a medicine to treat indigestion, jaundice, and diarrhea. It mentions John Cook Bennett’s belief in
the medicinal properties of tomatoes and his publication of tomato ketchup recipes in pill form, which were
sold as patent medicines in supermarkets and pharmacies.

Misunderstanding
the task definition
and logical rela-
tion implied by
labels
(22.2%)

Query: When GTA6 will be published?
Answer: Rockstar Games has not officially announced the release date for GTA 6 yet.
Reference: The most likely GTA 6 release date is holiday 2024, and although there is no official confirmation,
this estimate is confirmed by Microsoft’s stating that it “is expected” in 2024 in a legal filing and assorted
insider leaks.
▷ Ground Truth: Attributable
▷ GPT-4: Extrapolatory. The reference provides an estimated release date for GTA 6 based on a legal filing
from Microsoft and insider leaks, but it does not confirm an official announcement from Rockstar Games
regarding the release date.

Failing on sym-
bolic operators
(13.9%)

Query: What’s the average salary for a software engineer working at Amazon in 2022?
Answer: According to Indeed.com, the average salary for a software engineer working at Amazon in the
United States is $131,930 per year.
Reference: Average salary $132,147 Salary estimated from 3,612 employees, users, and past and present
job advertisements on Indeed in the past 12 months. Last updated: April 18, 2023.
▷ Ground Truth: Contradictory
▷ GPT-4: Attributable. The reference does provide an average salary of $132,147 for a software engineer
working at Amazon, which is very close to the claim’s figure of $131,930.

Table 5.3: Qualitative analysis on misclassified examples from prompting GPT-4 in Attribu-
tionLens.

Models struggle most notably with contradictory errors. Detecting contradictions is

particularly complex because it requires the model to weigh one piece of information in the

statement against another in the reference, a process that necessitates advanced fine-grained

information comparison and reasoning capabilities. Consequently, even the best-performing

model GPT-4 and the fine-tuned models often fail when faced with contradictory inputs,

most often treating them as attributable (see qualitative analysis in Section 5.5.2).
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5.5.2 Qualitative Analysis

To shed light on the space for future improvements in attribution evaluation, we quali-

tatively examine all the error examples of GPT-4 in the zero-shot setting. Representative

examples are in Table 5.3.

Our first observation is that a significant portion (30.6%) of errors happen due to fine-

grained information insensitivity: failure in comparing very fine-grained information such

as numerical values, numbers, dates, and time. Besides, the model misunderstands task

definition and misinterprets logical relations implied by labels (22.2%). The model also

struggles with symbolic operators (13.9%). For example, it fails to distinguish ‘equal to’

(=) and ‘approximately equal to’ (≈) in numeric comparisons. In the left cases, the model

tends to overlook the context clues and does not make judgments by conditioning on the

reference (e.g., potentially relying on its own parametric knowledge).

Our observations point to two potential directions for improvement: 1) training or

prompting models to be more faithful and strongly conditioned on the reference [290],

especially paying attention to fine-grained information; and 2) augmenting an LM-based

evaluation method with external tools for different types of numerical and logical operations

that are hard to be accurately performed only by the LM itself [39, 157]. Similarly, we do

qualitative analysis for ChatGPT in Appendix Section D.5.

5.5.3 Ablation Study

In this section, we perform an ablation study to test how each task influences the fine-

tuned LMs’ results and analyze the prompt sensitivity in zero-shot and few-shot settings for

prompting LLMs.
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Figure 5.4: The influence of individual task data. Combining datasets generally improves
model performance.

Contribution of individual task. We show the performance of models fine-tuned on

individual task datasets and their combinations in Figure 5.4. We select a representative

from each group of the models under the fine-tuned setting in Table 5.2. Our findings

suggest that examples from our simulated QA and fact-checking task most significantly

improve performance for the attribution evaluation task, hinting at a strong link between

these tasks. Furthermore, integrating various related task datasets generally leads to better

performance, particularly on out-of-domain test instances in AttrEval-GenSearch.

Sensitivity of prompts. The choice of prompts used to evaluate language models can have

an impact on their performance. We evaluate the sensitivity of prompts for AttributionLens

under both zero-shot and few-shot settings of Alpaca (7B) and ChatGPT. We show four types

of prompts as mentioned earlier: a prompt designed specifically for our evaluation setting

(Attri.), an NLI prompt, a fact-checking prompt (Fact.), and a summarization hallucination

detection prompt (Sum.). These prompts are presented in Appendix Table D.2. As shown in

Table 5.4, fact-checking and NLI prompts generally perform better, as similar tasks may

have been seen during their instruction tuning phase.
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5.6 Related Work

Attributed LMs. Generative LMs often produce hallucinations [151, 62, 126, 216, 245,

265, 102]. To alleviate the issue, recent work proposes to augment LLMs [157] with external

tools [207, 134, 185] such as retrievers [88, 132, 216, 99, 100, 20, 236, 184] and search

engines [162, 117, 231, 274, 80, 217, 178]. Incorporating external references for generation

inherently implies that the generated statement is backed by these references. However, the

validity of such attribution remains questionable.

Evaluation of attribution. To evaluate attribution, Liu et al. [143] conduct a human

evaluation to audit the verifiability of responses from generative search engines. They find

that these engines frequently contain unsupported statements and inaccurate citations, which

strengthen the need to carefully examine the attribution of generations [197]. However,

human evaluations are very expensive and time-consuming. Gao et al. [75], Bohnet et al.

[17], Gao et al. [76] propose to automatically evaluate attribution by levering NLI models

[96, 110, 77]. We study this problem in a more comprehensive and realistic manner: 1) we

explore how helpful other relevant tasks besides NLI are to attribution evaluation; 2) our

evaluation setting is based on both benchmark examples and real examples.

5.7 Conclusion

In this chapter, we investigate the important problem of automatically evaluating attri-

bution given by LLMs. We begin by defining different types of attribution errors and then

explore two approaches for automatic evaluation: prompting LLMs and fine-tuning smaller

LMs. We experiment with both simulated test examples and manually curated test examples

from a real-life generative search engine. The results highlight both promising signals and
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Models
Task
Prompts

Zero-shot Few-shot

Sim. Gen. Sim. Gen.

Alpaca

Attr. 34.8 34.4 31.3 33.5
NLI 32.1 35.5 32.1 33.6
Fact. 34.0 33.9 32.7 46.7
Sum. 33.6 33.5 31.6 34.8

Average 33.6 34.3 31.9 37.2

ChatGPT

Attr. 37.2 45.1 37.6 51.4
NLI 45.0 61.7 35.8 56.1
Fact. 44.8 54.9 43.2 54.9
Sum. 45.6 58.1 40.2 50.6

Average 43.2 55.0 39.2 53.3

Table 5.4: Sensitivity of prompts for prompting LLMs on AttrEval-Simulation (Sim.) and
-GenSearch (Gen.). The prompts include a prompt for attribution (Attri.), a NLI prompt, a
fact-checking prompt (Fact.), and a summarization hallucination detection prompt (Sum.).

remaining challenges for the automatic evaluation of attribution. We hope our work could

lay the foundation for future studies on this important problem.

5.8 Limitations

Currently, smaller models in AttributionLens are fine-tuned on the combination of

simulated or repurposed datasets from related tasks. However, this dataset still has gaps

from the real scenario. Moreover, the error patterns in these simulated datasets might be

overly simplistic and lack diversity, which can limit the models’ ability to effectively handle

more complex and varied real-world errors. It is also worth noting that these simulated

datasets may contain noise and erroneous labels, which could further impede the models’

learning and subsequent performance. How to obtain higher-quality training data for

attribution evaluation at scale can be a major focus for future development.
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Our annotated evaluation set, AttrEval-GenSearch, is derived from New Bing, which

uses GPT-4 as its backbone. It is crucial to note that we also use GPT-4 for evaluating

attribution on AttrEval-GenSearch, which achieves the best performance with around 85%

overall accuracy. Some bias might come from GPT-4 both generating the test examples and

evaluating the attribution, which could potentially skew our understanding of the model’s

true performance. We therefore caution against over-optimism. We also acknowledge that

the size of AttrEval-GenSearch is moderate, which may not fully represent the real use

setting of attributed LLMs.

While acknowledging current limitations, several promising directions emerge for future

research and enhancement. For example, one can diversify data sources to include examples

from a variety of generative search engines, not just New Bing. In addition, it may be

beneficial to annotate larger-scale queries that cover a broad spectrum of topics, styles, and

perspectives.

5.9 Future Work

Several promising directions exist for advancing attribution evaluation capabilities:

Connecting to Explainable Fact-Checking. Recent work on fact-checking [241, 64]

focuses on generating natural language explanations to justify fact-checking decisions.

For example, Vedula and Parthasarathy [241] construct relevant knowledge graphs and

retrieves supporting textual context to explain veracity predictions. Such explanation

generation techniques are highly relevant for attribution evaluation. Future work may

adapt such explanation fack-checking methods to provide explanations justifying attribution

decisions and evaluate their effectiveness for this task. Moreover, FactKeg shows improved

performance when focusing on structured domains - this suggests attribution evaluation may
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also benefit from domain-specific datasets where models can learn specialized reasoning

patterns. Future attribution benchmarks should be developed for domains like finance and

healthcare where claims are more regularized.

Incorporating Structured Knowledge External knowledge bases (KBs) and knowledge

graphs (KGs) can provide structured facts to verify attributions. Future work could consider

developing domain-specific KBs in areas like medicine, finance, and science to provide

rich specialized knowledge. New models could be developed to effectively integrate these

structured knowledge stores, enabling more reliable reasoning. Comparative benchmarking

of models conditioned on just text versus text + KBs will shed light on their complementary

benefits.

Handling Scientific Uncertainty Capturing uncertainty poses challenges for attribution

where evidence may be limited or conflicting. Future models should identify uncertain

attributions and abstain when evidence is inconclusive rather than making spurious claims.

Uncertainty metrics should be developed to capture reliability. New evaluation metrics are

also needed to assess calibration and reliability as evidence becomes more ambiguous.

Targeted future work in this space also includes: integrating numerical reasoning modules

to address common model failures, developing better prompts to force comparison between

statements and references, and benchmarking model architectures augmented with retrievers

to reason over multiple references. By pursuing these research avenues, we aim to ultimately

develop models capable of robust, trustworthy attribution evaluation across diverse real-

world applications.
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5.10 Ethics Statement

This research project involves evaluating attribution given by attributed LLMs. We

collect and annotate data for evaluation using publicly available information on the web, with

the assistance of a generative search engine, New Bing. We acknowledge that LLMs have

the potential to reproduce and amplify harmful information present in the data. We made

an effort to mitigate this risk by carefully selecting our evaluation data and by conducting

analyses to identify and mitigate potential risks in the process.
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Part IV: Data Synthesis for Domain
Adaptation
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In Part III, we discussed how to leverage synthetic data for model training. After training

a model, one needs to adapt and deploy it to the target environment for real use. The target

testing set may have different distributions from the source training data in the second stage.

In this part, we will discuss how to utilize synthetic data for domain adaptation in the Model

Deployment stage. We will focus on Machine Reading Comprehension. In Chapter 6,

we first propose a question generator to synthesize diverse questions for clinical machine

reading comprehension. We will show that the synthesized QA corpus can be greatly useful

to boost the QA performance on the target domain. Due to the noisy nature of synthetic data,

in Chapter 7, we further propose a question value estimator to select the most high-quality

and useful synthetic QA pairs for improving the QA performance on the target domain.
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Chapter 6: CliniQG4QA: Generating Diverse Questions for Domain

Adaptation of Clinical Question Answering

Clinical question answering (QA) aims to automatically answer questions from medical

professionals based on clinical texts. Studies show that neural QA models trained on one

corpus may not generalize well to new clinical texts from a different institute or a different

patient group, where large-scale QA pairs are not readily available for model retraining. To

address this challenge, we propose a simple yet effective framework, QVE, which leverages

question generation (QG) to synthesize QA pairs on new clinical contexts and boosts QA

models without requiring manual annotations. In order to generate diverse types of questions

that are essential for training QA models, we further introduce a seq2seq-based question

phrase prediction (QPP) module that can be used together with most existing QG models to

diversify the generation. Our comprehensive experiment results show that the QA corpus

generated by our framework can improve QA models on the new contexts (up to 8% absolute

gain in terms of Exact Match), and that the QPP module plays a crucial role in achieving the

gain.

6.1 Introduction

Clinical question answering (QA), which aims to automatically answer natural language

questions based on clinical texts in Electronic Medical Records (EMR), has been identified
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as an important task to assist clinical practitioners [177, 192, 174, 68, 198]. Neural QA

models in recent years [37, 51, 198] show promising results in this research. However,

answering clinical questions still remains challenging in real-world scenarios, because

well-trained QA systems may not generalize well to new clinical contexts from a different

institute or a different patient group. For example, as pointed out in [278], when a clinical

QA model that was trained on the emrQA dataset [174] is deployed to answer questions

based on MIMIC-III clinical texts [104], its performance drops dramatically by around 30%

even on the questions that are similar to those in training, simply because clinical texts of

the two datasets are different (e.g., different topics, note structures, writing styles).

One straightforward solution is to annotate QA pairs on new contexts and retrain a QA

model. However, manually creating large-scale QA pairs in clinical domain is extremely

challenging due to the requirement of tremendous expert effort, data privacy concerns and

other ethical issues.

In this work, we study the problem of constructing clinical QA models on new contexts

without human-annotated QA pairs (which is referred to as domain adaptation). We assume

the availability of a large set of QA pairs on source contexts, and our goal is to better

answer questions on new documents (target contexts21), where only unlabeled documents

are provided.

To this end, we introduce our framework, QVE, which leverages question generation

(QG), a recent technique of automatically generating questions from given contexts [55],

to synthesize clinical QA pairs on target contexts to facilitate the QA model training

(Figure 6.2). The QG model is built up by reusing the QA pairs on source contexts as

training data. To apply QG to target contexts, our framework also includes an answer

21We use “new" and “target" contexts interchangeably.
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evidence extractor (AEE) to extract meaningful text spans, which are worthwhile to ask

questions about, from the clinical documents. Intrinsically, our framework is backed by

the observation that questions in the clinical domain generally follow similar patterns even

across different contexts, and clinical QG suffers less from the context shift compared with

clinical QA. This allows us to utilize QG models trained on source clinical contexts to boost

QA models on target contexts.

However, our preliminary studies find that many existing QG models often fall short on

generating questions that are diverse enough to serve as useful training data for clinical QA

models. To tackle the problem, we introduce a question phrase prediction (QPP) module,

which takes an answer evidence as input and sequentially predicts potential question phrases

(e.g., “What treatment”, “How often”) that signify what types of questions humans would

likely ask about the answer evidence. By directly forcing a QG model to produce specified

question phrases in the beginning of the question generation process (both in training and

inference), QPP enables diverse questions to be generated.

Due to the lack of publicly-available clinical QA pairs for our proposed domain adap-

tation evaluation setting, we ask clinical experts to annotate a new test set on the sampled

MIMIC-III [104] clinical texts. We conduct extensive experiments to evaluate QVE, using

emrQA [174] as the source contexts and our annotated MIMIC-III [104] as the target ones.

We instantiate our framework with a variety of widely adopted base QG models and base

QA models.

By performing comprehensive analyses, we show that the proposed QPP module can

substantially help generate much more diverse types of questions (e.g., “When” and “Why”

questions). More importantly, we systematically demonstrate the strong capability of QVE for

improving QA performance on new contexts by evaluating it on our constructed MIMIC-III
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QA dataset. When using QA pairs automatically synthesized by our QPP-enhanced QG

models as the training corpus, we are able to boost QA models’ performance by up to 8%

in terms of Exact Match (EM), compared with their counterparts directly trained on the

emrQA dataset. To further investigate why QG boosts QA, we provide both quantitative and

qualitative analyses, indicating that QA models can benefit from seeing more target contexts

as well as more diverse questions generated on them.

6.2 Preliminary and Related Work

Clinical Question Answering aims to extract a text span (a sentence or multiple sentences)

as the answer from a patient clinical note given a question (Fig. 6.1 left) [278]. Though many

neural models [211, 37, 51, 198, 254] have achieved impressive results on this task, their

performance on new clinical contexts, whose data distributions could be different from the

ones that these models were trained on, is still far from satisfactory [278]. Though one can

improve the performance by adding more QA pairs on new contexts into training, however,

manually creating large-scale QA pairs in the clinical domain often involves tremendous

expert effort and data privacy concerns. Moreover, during the pandemic, clinical QA models

can also be deployed to answer COVID-19 related questions [182, 285].

Question Generation seeks to automatically generate questions given a sentence or para-

graph (Fig. 6.1 right). Existing QG models [55, 289, 226, 287, 164, 237, 271, 54, 3, 284]

in the open domain usually adopt a seq2seq (encoder-decoder) architecture. One of the

drawback of such models is that they can only generate one question given one input and

fail to generate multiple diverse questions, which we find is crucial to the QA task. Some

recent work [111, 42, 141] explores the diverse QG in the open domain, but they cannot be

directly applied to the clinical domain as their models usually require a short answer (e.g.,
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Context:	...	For	HTN	control,
pt	was	given	HCTZ	and
lopressor	which	sufficiently
controlled	his	BP.	Pt	was	sent
home	on	HCTZ	25mg	daily	and
atenolol	50mg	daily.	
...
ADDITIONAL	COMMENTS:
1.)	Take	hydrochlo-rothiazide
25mg	daily	and	atenolol	50mg
daily	for	your	blood	pressure.
...

RECORD	#992321,	Date:	2145-09-22

QA 
Model

For	HTN	control,	pt	was	given
HCTZ		and	lopressor	which
sufficiently	controlled	his	BP.

Why	has	the	patient
been	prescribed	hctz?

Read	
Text

Question

Extract	Answer

For		HTN	control		...					BP

Encoder

Decoder

Why		has				the			patient	...

(Answer	Evidence)

(Generated	Question)

Question	Answering	(QA)	Task Question	Generation	(QG)	Task

QG	Model

Figure 6.1: Illustration of Clinical Question Answering (QA) and Question Generation (QG)
task.

an entity) as input but that information sometimes is not available in the clinical QA dataset

(e.g. emrQA [174]), rendering the difficulty of directly deploying their model on the clinical

QA.

In the clinical and medical domain, [213] and [222, 223] apply Variational Autoencoder

(VAE) models to generate or paraphrase medical or clinical questions. However, none of

them explore leveraging QG to improve QA performance on new contexts.

Our aim is to improve clinical QA on new clinical texts (i.e., domain adaptation of clinical

QA). We assume the availability of a large set of QA pairs and corresponding clinical

documents (source contexts), and our goal is to better answer questions on new documents

(target contexts) where only unlabeled documents are provided. We leverage a QG model

to synthesize diverse QA pairs to save medical experts annotation efforts and improve

QA performance without requiring extra annotations. Our setting is very practical in the

real-world scenario, since it is infeasible to always annotate QA pairs on new clinical texts

when deploying a QA system into a new environment.
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Question
Phrase

Prediction
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How often
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Q1

Q2

Q3
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Annotated
QA pairs

on Target Contexts

on Source Contexts
Train

Train

clonazepam 1 mg tablet
sig: one tablet once a
day (at bedtime) as
needed for insomnia.

Input

What treatment did the
patient use for insomnia?

How often does the
patient take clonazepam?

What dosage of insomnia
does the patient take?

QA 
Model

Train

Figure 6.2: Illustration of our Question Phrase Prediction (QPP) module, which can be used
together with QG models to diversify generations.

6.3 Methods

6.3.1 Overview of Our Framework

We first give an overview of our QVE framework (Fig 6.2). QVE improves clinical QA on

new contexts by automatically synthesizing QA pairs for new clinical contexts. To approach

this, we first leverage an answer evidence extractor to extract meaningful text spans from

unlabeled documents, based on which a QG model can be applied to generate questions.

In order to encourage diverse questions, we reformulate the question generation process

as two-stage. In the first stage, we propose a question phrase prediction module to predict a

set of question phrases, which represent the types of questions humans would ask, given an

answer evidence. In the second stage, following a specific question phrase predicted by our

QPP, a QG model is used to complete the rest of the question.

Therefore, our framework QVE is able to produce questions of more diverse types. The

generated QA pairs by QG models are finally used to train QA models on new contexts.

6.3.2 Answer Evidence Extractor (AEE)

When human annotators create questions, they first read a document and then select a

text span to ask questions about. To imitate this process, we implement an answer evidence
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extractor to extract possible text spans from a document. Following [174, 278], we focus

on longer text spans (as answer evidences) instead of short answers (e.g., a single named

entity), since longer text spans often contain richer information compared with short ones,

which are very important for the clinical QA task.

More formally, given a document (context) p = {p1, p2, ..., pm}, where pi is the i-th

token of the document and m is the total number of tokens, we aim to extract potential

evidence sequences. Since the answer evidence is not always a single sentence (sometimes

could be multiple sentences), instead of treating it as a sentence selection task, we formulate

it as a sequence labeling (or tagging) task. We follow the BIO tagging (short for begin-

ning, inside, outside), a commonly used sequence labeling scheme [196], to label answer

evidences.

Firstly, we adopt the ClinicalBERT model [4] to encode the document:

U = ClinicalBERT{p1, ..., pm}. (6.1)

where U ∈ Rm×d, and d is size of the dimension.

Following the same paradigm of the BERT model for the sequence labeling task [51],

we use a linear layer on top of the hidden states output by ClinicalBERT followed by a

softmax function to do the classification:

Pr(aj|pi) = softmax(U ·W + b), ∀pi ∈ p (6.2)

where aj is the predicted BIO tag.

After prediction, we observe that the extracted answer evidences sometimes are broken

sentences due to the noisy nature and uninformative language (e.g., acronyms) of clinical

texts. To make sure that the extracted evidences are meaningful, we designed a “merge-

and-drop” heuristic rule to further improve the extractor’s accuracy. Specifically, for each
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extracted evidence candidate, we first examine the length (number of tokens) of the extracted

evidence. If the length is larger than the threshold η, we keep this evidence; otherwise, we

compute the distance, i.e., the number of tokens between the current candidate span and

another closest candidate span If the distance is smaller than the threshold γ, we merge

these two “close-sitting” spans; otherwise, we drop this overly-short evidence span. In our

experiments, we set η and γ to be 3 and 3, respectively, since they help achieve the best

performance on the dev set.

6.3.3 Question Phrase Prediction (QPP)

Existing QG models are often biased to generate limited types of questions. To address

this problem, we introduce our question phrase prediction module that can be used to

diversify the generation of existing QG models.

Formally, denote Vl = {s1, ..., sL} as the vocabulary of all available question phrases

of length l in the training data and L = |Vl| as its size. Vl can be obtained by collecting

the first n-gram words in the questions. We set n = 2 in our experiment as it achieves the

best performance on the dev set. Given an answer evidence a, the goal of QPP is to map

a → y = (y1, ..., yL) ∈ {0, 1}L, where yi = 1 indicates predicting si in Vl as a question

phrase for the evidence a. Instead of treating it as a common multi-label classification

problem, we formulate the task as a sequence prediction problem and adopt a commonly

used seq2seq model with an attention mechanism [147] to predict a sequence of question

phrases s = (sj1 , ..., sj|s|) (e.g., “What treatment” (sj1) → “How often” (sj2) → “What

dosage” (sj3), with |s| = 3).

During training, we assume that the set of question phrases is arranged in a pre-defined

order. Such orderings can be obtained with some heuristic methods, e.g., using a descending
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Algorithm 3 QVE training procedure
Input: labeled source data {(PS, AS, QS)}, unlabeled target data {PT}
Output: Generated QA pairs {(A′

T , Q
′
T )} on target contexts; An optimized QA model for

answering questions on target contexts;
Pretraining Stage
1: Train Answer Evidence Extractor based on the source data {(PS, AS)} using Eq. 6.3
2: Obtain question phrase data YS from QS and train Question Phrase Prediction module

on the source data {(AS, YS)} using Eq. 6.4
3: Train a QPP-enhanced QG model on the source data {(AS, YS, QS)} using Eq. 6.5

Training Stage
4: Use AEE to extract potential answer evidences {A′

T} on the target contexts {PT}
5: Use QPP to predict potential question phrases set {Y ′

T} on {A′
T}

6: Use QPP-enhanced QG to generate diverse questions {Q′
T} based on {(A′

T , Y
′
T )}

7: Train a QA model on synthetic target data {(PT , A
′
T , Q

′
T )} using Eq. 6.6

order based on question phrase frequency in the corpus22. In the inference stage, QPP can

dynamically decide the number of question phrases for each answer evidence by predicting

a special [STOP] token. By decomposing QG into two steps (diversification followed by

generation), the implemented QPP can increase the diversity in a more controllable way.

6.3.4 Training

Algorithm 3 illustrates the pretraining and training procedure of our QVE.

During the pretraining stage, we first train the answer evidence extractor (AEE) module

on the source contexts by minimizing the negative log-likelihood loss:

LAEE = −
∑
i

logP (a|p;ϕ) (6.3)

where ϕ represents all the parameters of the answer evidence extractor. For the supervision

signals, we identify all evidences in the source data as ground-truth chunks which are marked

using the BIO scheme.

22In our dataset, each answer evidence is tied with multiple questions, which allows the training for QPP.
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Table 6.1: Statistics of the datasets. We synthesize a machine-generated dev set and ask
human experts to annotate a test set for MIMIC-III.

(Question / Context) emrQA MIMIC-III
# Train 781,857 / 337 - / 337
# Dev 86,663 / 41 8,824 / 40
# Test 98,994 / 42 1,287 / 36
# Total 967,514 / 420 - / 413

for purpose of
QG & QA
(source)

QA
(target)

Moving to the Question Phrase Prediction (QPP) module, given an answer evidence a,

we aim to predict a question phrase sequence y and minimize:

LQPP = −
∑
i

logP (y|a; θ) (6.4)

where θ denotes all the parameters of QPP.

Then we can train any QG model (e.g, NQG [55]) on source data by minimizing:

LQG = −
∑
i

logP (q|a,y;µ) (6.5)

where µ denotes all parameters of the QG model.

During the training stage, given unlabeled target clinical documents, we first extract

answer evidences, based on which QPP can be “plugged" into the QG model to generate

diverse questions. Finally, a QA model (e.g., DocReader [37]) can be trained on the

generated QA pairs of the target documents:

LQA = −
∑
i

logP (a|q,p; δ) (6.6)

where δ denotes all parameters of the QA model.

6.4 Generalizability Test Set Construction

Unlike open domain, there are very few publicly available QA datasets in the clinical

domain. EmrQA dataset [174], which was generated based on medical expert-made question
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Table 6.2: The QA performance on MIMIC-III test set. emrQA is also included as a baseline
dataset to help illustrate the generated diverse questions on MIMIC-III are useful to improve
the QA model performance on new contexts.

QA Datasets

DocReader [37] ClinicalBERT [4]
Human

Generated
Human
Verified

Overall
Test

Human
Generated

Human
Verified

Overall
Test

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
emrQA [174] 69.87 83.66 61.44 78.82 63.48 79.99 69.23 82.83 61.23 78.56 63.17 79.59
NQG [55] 66.99 79.67 64.71 79.36 65.26 79.43 67.30 82.59 59.49 76.68 61.38 78.11
+ BeamSearch 71.15 83.07 67.07 81.21 68.07 81.66 68.91 84.26 63.17 79.17 64.56 80.40
+ Top-k Sampling 71.58 83.48 66.77 80.45 67.94 81.19 67.74 81.96 60.82 78.16 62.50 79.08
+ Nucleus Sampling 70.62 83.68 67.16 80.37 68.00 81.17 68.70 83.21 62.36 77.89 63.90 79.18
+ QPP (Ours) 74.36 85.18 68.82 82.89 70.09 83.44 69.23 84.33 63.79 79.56 65.11 80.72
NQG++ [289] 66.34 81.34 65.94 78.71 66.04 79.35 65.06 80.11 59.59 75.85 60.92 76.88
+ BeamSearch 72.11 84.56 68.10 80.09 69.07 81.17 68.26 83.70 64.61 80.30 65.50 81.12
+ Top-k Sampling 73.29 85.56 69.11 82.38 69.41 83.35 70.19 85.61 62.84 79.77 64.62 81.19
+ Nucleus Sampling 73.34 84.95 68.94 81.72 70.01 82.51 70.19 84.72 63.93 79.54 65.45 80.80
+ QPP (Ours) 74.68 85.92 70.05 83.47 71.10 84.06 70.83 85.76 65.33 80.64 66.67 81.88
BERT-SQG [35] 70.19 81.47 66.05 79.64 67.05 80.08 65.06 82.20 59.59 78.04 60.92 79.05
+ BeamSearch 73.71 84.44 68.71 81.98 69.93 82.58 67.31 82.54 61.94 79.02 63.25 79.88
+ Top-k Sampling 72.81 84.16 69.20 82.24 70.07 82.71 69.12 84.20 60.44 78.27 62.55 79.71
+ Nucleus Sampling 70.73 83.60 68.56 81.80 69.09 82.24 67.74 83.16 61.61 78.74 63.09 79.81
+ QPP (Ours) 74.36 85.53 70.77 83.60 71.64 84.07 69.23 85.38 64.21 80.53 65.43 81.71

templates and existing annotations on n2c2 challenge datasets [161], is a commonly adopted

dataset for clinical reading comprehension.

However, all the QA pairs in emrQA are based on n2c2 clinical texts and thus not

suitable for our generalization setting. [278] studied a similar problem and annotated a

test set on MIMIC-III clinical texts [104]. However, their test set is too small (only 50

QA pairs) and not publicly available. Given the lack of a reasonably large clinical QA test

set for studying generalization, with the help of three clinical experts, we create 1287 QA

pairs on a sampled set of MIMIC-III [104] clinical notes, which have been reviewed and

approved by PhysioNet23 and is downloadable by following the instructions24. Annotation

23https://physionet.org/. PhysioNet is a resource center with missions to conduct and catalyze for
biomedical research, which offers free access to large collections of physiological and clinical data, such as
MIMIC-III [104].

24https://physionet.org/content/mimic-iii-question-answer/1.0.0/.
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Process. We sample 36 MIMIC-III clinical notes as contexts. When sampling MIMIC-III

notes, we ensure that all the sampled clinical texts do not appear in emrQA, acknowledging

that there is a small overlap between the two datasets. For each context, clinical experts

can ask any questions as long as an answer can be extracted from the context. To save

annotation effort, QA pairs generated by QG models (i.e., all base QG models and their

diversity-enhanced variants; see Section 6.5.1) are provided as references, and duplicates

are removed. Meanwhile, clinical experts are highly encouraged to create new questions

based on the given clinical text (which are marked as “human-generated"/“HG”). But if

they do find the machine-generated questions sound natural and match the provided answer,

they can keep them (which are marked as “human-verified"/“HV”). After obtaining the

annotated questions, we ask another clinical expert to do a final pass of the questions in

order to further ensure the quality of the test set. The final test set consists of 1287 questions

(of which 975 are “human-verified" and 312 are “human-generated").

We understand that there might be potential bias when evaluating QA models on the

HV set (i.e, a QG model which is used to generate training questions for a QA model also

contributes questions to the HV set as well). However, such bias might exist in human

annotated data as well (e.g., the same set of humans create both training and testing dataset).

Note that the contexts used to generate questions in HV/HG are separated from those to

generate training questions. Besides, due to the relatively limited language patterns in

clinical domain, we find most questions in HV set sound like what humans would ask. As

such, we still deem it as a valuable asset and potential future research could leverage our

HV set as their dev set to tune hyper-parameters.

To help tune the model, we also construct dev set of MIMIC-III by sampling generated

questions from QG models and their variants and is used to tune the hyper-parameters. In the
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following sections, we consider emrQA as the source dataset and our annotated MIMIC-III

QA dataset as the target data. Detailed statistics of the two datasets are in Table 6.1.

6.5 Experimental Setup

6.5.1 Base QG models

We instantiate our QVE framework using three base QG models:

• NQG [55] is the first seq2seq model with a global attention mechanism [147] for question

generation.

• NQG++ [289] is one of the most commonly adopted QG baselines with a feature-enriched

encoder (e.g., lexical features) and a copy mechanism [86].

• BERT-SQG [35] uses a pretrained BERT model (we use ClinicalBERT [4] to accom-

modate clinical setting) as the encoder and formulates the decoding as a “MASK" token

prediction problem.

It has been studied that beam search and sampling strategies show competitive per-

formance in diversifying generations [98, 225]. We thus include Top-k [67] and Nucleus

samplings [93] as representative sampling strategies in our experiments.

As such, to investigate the effectiveness of diverse QG for QA, we consider the following

variants of each base QG model: (1) Base Model: Inference with greedy search; (2) Base

Model + Beam Search: Inference with Beam Search of beam size K and keep top K beams

(K = 3); (3) Base Model + Top-k sampling: Inference with sampling from top-k tokens

(k = 20); (4) Base Model + Nucleus sampling: Inference with sampling from top-p tokens

(p = 0.95); (5) Base Model + QPP: Inference with greedy search for both QPP module and

Base model.
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6.5.2 Base QA models

For QA, we instantiate QVE with two base models, DocReader [37] and ClinicalBERT

[4]. When training a QA model, we only use the synthetic data on the target contexts and do

not combine the synthetic data with the source data since the combination does not help in

our preliminary studies.

Note that more complex QG/QA models and training strategies can also be used in our

framework. As this work focuses on exploring how diverse questions help QA on target

contexts, we adopt fundamental QG/QA models and training strategies, and leave more

advanced ones that are complementary to our framework as future work.

6.5.3 Evaluation Metrics

For QA evaluation, we report exact match (EM) (percentage of predictions that match

the ground truth answers exactly) and F1 (average overlap between the predictions and

ground truth answers) as in [194]. Since our main goal is to evaluate whether the generated

questions are useful to improve the QA performance on the target contexts, the common

language generation metrics such as BLEU [176] and ROUGE-L [140] are not suitable to

reflect the quality of the generated questions, and thus we do not adopt these metrics in our

experiments.

6.5.4 Implementation Details

Base QG Models: We re-implement three base QG models using Pytorch and have ensured

that they achieve comparable performance as originally reported. Best QG models are

selected using the per-token accuracy of both the QPP module (if applicable) and QG on

dev set.
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Figure 6.3: Distributions over types of questions generated by NQG models.

Base QA Models: We use the open-sourced implementation.2526 Best QA models are

selected using EM and F1 on dev set.

Hyperparameters Search: Hyperparameters of QG models are set to be the same as in

original papers and hyperparameters of QA models are set according to [278]. Specifically,

we train NQG and NQG++ up to 20 epochs, BERT-SQG up to 5 epochs, DocReader up to 5

epochs and ClinicalBERT up to 3 epochs.

6.6 Experimental Results

6.6.1 Can Generated Questions Help QA on New Contexts?

Table 6.2 summarizes the performance of two widely used QA models, DocReader [37]

and ClinicalBERT [4], on the MIMIC-III testing set. The QA models are trained based on

different corpora, including the emrQA dataset as well as QA pairs generated by different

models. For a fair comparison, we keep the total number of generated QA pairs roughly the

same as emrQA. As can be seen from the table, the QA models based on the corpora that

are generated using the three base QG models can only achieve roughly the same or even

worse performance compared with the QA models trained on the emrQA dataset. Though

the Beam Search and sampling strategies could boost the diversity of generated questions to

25DocReader: https://github.com/facebookresearch/DrQA
26ClinicalBERT: https://github.com/EmilyAlsentzer/clinicalBERT
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some extent, and thus lead to the improvement of QA models, our proposed QPP module

can improve the QA performance by a larger margin. For example, training DocReader

using questions generated by NQG++ with our QPP module outperforms that using the

emrQA dataset by around 8% under EM and 4% under F1 on the overall test set. Moreover,

the results on human-generated portion are consistently better than that on human-verified.

It’s attributed to the fact that human-created questions are more readable and sensible while

human-verified questions are a bit of less natural though correctness is ensured.

All these results indicate that generating a diverse QA corpus is useful for downstream

QA on new contexts, and our simple QPP module can help existing QG models achieve

such a goal.

6.6.2 Why QG Boosts QA on New Contexts?

To further explore why QG can boost QA, we consider three major factors when

generating a QA corpus: the number of documents, the number of answer evidences per

document, and the number of generated questions per answer evidence. When we test one

factor, we fix the other two. For example, we fix the number of answer evidences and

questions at 20 and 6 when we test the influence of the number of documents. We use

NQG++ and DocReader as our base QG and QA models to instantiate our QVE framework

and report the performance on the Dev set.

As can seen from Fig 6.4, the performance steadily increases when we use more doc-

uments and more answer evidences during QA corpus generation. This can demonstrate

the first hypothesis: The generated corpus enables a QA model to see more new contexts

during training, which can help the QA model get a better understanding of similar contexts

during testing. The more contexts it sees, the more benefits it could obtain. We can also see
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Figure 6.4: Influence of the number of documents, number of evidences per document,
number of QA pairs per evidence on QA performance.

that with the increase of the number of generated questions per evidence, the performance

generally rises up. This indicates that multiple diverse questions are essential for boosting

QA performance.

A Closer Look at Generated Question Types. To further demonstrate QPP module

can help generate diverse questions, we show the distribution over the types of questions

generated by NQG-based models in Fig 6.3.

We observe that questions generated by base NQG and NQG+BeamSearch are limited

in terms of the question types. However, more types of questions (e.g., “How", “Why") can

be generated when enabling sampling strategies. Furthermore, when being equipped with

our QPP module, the NQG model can even generate questions of an extremely rare type, i.e.,

"When" questions. Though Top-k and Nucleus sampling methods also generate questions of

less frequent types, our QPP module could cover even more types.

In summary, we think seeing many new contexts and diverse questions are the two main

reasons why QA models are boosted.

115



Context: ... he was guaiac negative on admission. hematocrit
remained stable overnight. 5. abd pain: suspect secondary to
chronic pancreatitis. amylase unchanged from previous levels. ...

-emrQA: 5. abd pain
-NQG: 5. abd pain:
-NQG+BeamSearch: 5. abd pain:
-NQG+Top-k: 5. abd pain:
-NQG+Nucleus: 5. abd pain:
-NQG+QPP: 5. abd pain: suspect secondary to chronic pancreatitis.

QA Example from MIMIC-III

Question: Why did the patient get abd pain?
Answer by QA model trained on

-NQG: Does the patient have any pain?
-NQG+BeamSearch: Does the patient have any pain history? Does the
patient have pain? Does the patient have any pain?
-NQG+Top-k: Has the patient ever had any pain? Has the patient ever
reported pain? Does the patient have a history pain?
-NQG+Nucleus: Has the patient ever gone into pain? What happened
when she was given morphine? Is there mention pain anywhere in the
record?
-NQG+QPP: Why did the patient have acetaminophen? What
treatment has the patient had for his pain? How was pain treated? Does
the patient have any pain? ...

QG Example from MIMIC-III
Context: ... the patient was taking at home prior to admission were
not restarted. 25. acetaminophen 325-650 mg po/ng q6h:prn pain
26. dabigatran etexilate 150 mg po bid...

Questions generated by

Figure 6.5: QA and QG examples. The red parts in contexts are ground-truth answer
evidences.

6.6.3 Diverse Questions Really Matter for QA: Two Real Cases.

In Fig 6.5, we present a QA example and a QG example from MIMIC-III for qualitative

analysis.

In the QA example, this “why" question can be correctly answered by the QA model

(DocReader) trained on the “NQG+QPP" generated corpus while the QA models trained

on other generated corpora fail. This is because, as shown in Fig 6.3, the NQG model

and “NQG+BeamSearch" cannot generate any “why" questions and sampling strategies
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Table 6.3: The QA performance on MIMIC-III test set when QPP is employed with sampling
strategies

QA Datasets

DocReader [37]
Human

Generated
Human
Verified

Overall
Test

EM F1 EM F1 EM F1
NQG 66.99 79.67 64.71 79.36 65.26 79.43
+ QPP 74.36 85.18 68.82 82.89 70.09 83.44
+ Top-k 71.58 83.48 66.77 80.45 67.94 81.19
+ Tok-k + QPP 72.52 84.98 67.67 81.79 68.84 82.56
+ Nucleus 70.62 83.68 67.16 80.37 68.00 81.17
+ Nucleus + QPP 74.12 85.08 68.10 81.36 69.56 82.26

could only help generate a limited number of “why” questions. Thus QA models trained on

such corpora cannot answer questions of less frequent types. Though the emrQA dataset

contains diverse questions (including “why" questions), its contexts might be different from

MIMIC-III in terms of topic, note structures, writing styles, etc. So the model trained on

emrQA struggles to answer some questions as well.

In the QG example, the base model NQG can only generate one question. Though

utilizing the Beam Search enables the model to explore multiple candidates, the generated

questions are quite similar and are less likely to help improve QA. Sampling strategies,

though further diversifying the generation during decoding, suffer from generating irrelevant

contents (e.g., “NQG+Nucleus” generates a irrelevant “morphine” token). Enabling our QPP

module helps generate relevant and diverse questions including “Why", “What", “How", etc.

6.6.4 Ablation Study

Performance of QPP with Sampling Strategies. Since our QPP is compatible with

sampling strategies, we further study the performance after combining these two techniques.
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Table 6.4: Choosing seq2seq-based QPP over alternative multi-label classification methods.
HL: Hamming Loss.

Models HL Precision Recall F1
Binary Relevance 0.0524 99.22 90.89 94.87
Classifier Chain 0.0524 99.22 90.89 94.87
QPP 0.0346 97.28 96.20 96.74

Table 6.3 shows the results, which indicate that combining two techniques can improve the

sampling strategies’ performance but do not lead to further improvement compared with

using QPP only. This demonstrate that our QPP module is good enough to generate diverse

useful questions for improving QA.

Alternative Approaches for QPP. There are many model options for the QPP task, e.g.,

those for multi-label classification. To justify our choice of a seq2seq model, we compare

it with two commonly-adopted multi-label classification methods: binary relevance (BR)

and classifier chain (CC) [22, 199]. BR develops multiple binary classifiers independently

while CC builds a chain of classifiers and predicts labels sequentially. We use multi-layer

perceptron as the base model for both BR and CC. For each answer evidence, the input is

the representation from the same LSTM encoder as our QPP module.

From Table 6.4, we can see: (1) The seq2seq design in our QPP module performs

better overall and especially in terms of Recall, which is particularly important since we

aim for generating diverse question types; (2) A simple seq2seq model achieves great

performance across all metrics, which renders developing more complex models for this

task less necessary.
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6.7 Conclusion

This chapter proposes a simple yet effective framework for improving clinical QA on

new contexts. It leverages a seq2seq-based question phrase prediction module to enable QG

models to generate diverse questions. Our comprehensive experiments and analyses allow

for a better understanding of why diverse question generation can help QA on new clinical

documents.
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Chapter 7: Synthetic Question Value Estimation for Domain

Adaptation of Question Answering

Synthesizing QA pairs with a question generator (QG) on the target domain has become

a popular approach for domain adaptation of question-answering (QA) models. Since

synthetic questions are often noisy in practice, existing work adapts scores from a pre-

trained QA (or QG) model as criteria to select high-quality questions. However, these scores

do not directly serve the ultimate goal of improving QA performance on the target domain.

In this paper, we introduce a novel idea of training a question value estimator (QVE) that

directly estimates the usefulness of synthetic questions for improving the target-domain

QA performance. By conducting comprehensive experiments, we show that the synthetic

questions selected by QVE can help achieve better target-domain QA performance, in

comparison with existing techniques. We additionally show that by using such questions and

only around 15% of the human annotations on the target domain, we can achieve comparable

performance to the fully-supervised baselines.

7.1 Introduction

Question answering (QA) systems based on pretrained language models such as BERT

[50] have recently achieved promising performance in machine reading comprehension.

However, neural QA systems trained on one domain may not generalize well to another,
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Question: What was the nickname of the woman
who allegedly provided call girls for prostitution?  

RTC LM QVEGenerated Questions

Context: ...Turbiville called herself the "Heidi Fleiss
of Houston," referring to a woman who was dubbed
the "Hollywood Madam" for providing call girls to...

Question: Who is the founder of CNN?
Context: ...CNN founder Ted says he is
"encouraged" by the results of last week's election... 

✘

Question: Who is recommended for Supreme Court?
Context: ...The nomination of Elena Kagan to fill the
seat of retiring Supreme Court Justice Stevens... 
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Figure 7.1: Existing work repurposes a pretrained QA (or QG) model to evaluate the
quality of the generated questions, which is not directly associated with the target-domain
QA performance and may select questions that are semantically-mismatched or ask about
a simple fact. In contrast, our Question Value Estimator (QVE) learns to select useful
questions with target-domain QA performance gain as direct feedback.

leaving it challenging to deploy such systems on new domains that lack large-scale QA

training data27. In this chapter, we are interested in semi-supervised domain adaptation: we

aim to build a target QA model with source-domain data and a small number of target-domain

annotated QA pairs.

Due to high annotation costs, existing work [81, 53, 246, 183, 40, 280] proposes to

synthesize target-domain QA pairs via neural question generation (QG) models. The

synthetic data are then used to train a QA model on the target domain. In practice, however,

27Large-scale training data are typically 60-100K in size.
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the generated questions are often of low quality, such as being semantically mismatched with

their paired answers or asking about simple facts (Figure 7.1). Including all such questions

for QA training is less likely to bring substantial improvements. This inspires us to study a

crucial problem:

Given a set of target-domain synthetic QA pairs, how to select high-quality ones that are

useful to improve target-domain QA training?

To address the problem, Alberti et al. [2] propose the Roundtrip Consistency (RTC)

method, which filters28 questions that cannot be correctly answered by a pretrained QA

model. Other work [212] considers using the generation log-likelihood by the QG model

(LM Score) as a metric to filter noisy questions (Figure 7.1, top). Although these filtering

techniques have been shown to improve the question quality to some extent [202], they

are not directly optimized for selecting questions that can improve QA performance on

the target domain. For example, some useful but difficult questions (e.g., the last example

in Figure 7.1) may be filtered by the Roundtrip method, since they cannot be answered

correctly by the pretrained QA model. However, these questions are often crucial to further

improving QA performance when added into training.

In this chapter, we propose a question value estimator (QVE) (Figure 7.1, middle) to

select questions that can improve QA performance on the target domain. QVE takes in

generated QA examples and outputs real-valued scores (i.e., question values), which are

expected to represent the usefulness of generated questions in terms of improving target-

domain QA performance. However, training the QVE model towards this goal is challenging

due to the lack of supervision (i.e., true question values).

28We interchangeably use “filter” (noisy/low-quality questions) and “select” (useful/high-quality questions).
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To solve the problem, we propose to train the QVE with direct QA feedback from the

target domain. Intuitively, if a batch of synthetic questions (when used for training) leads to

increasing accuracy of the target-domain QA model, QVE should assign high values to them;

the more the accuracy increases, the higher the question values should be. Thus, we optimize

QVE with the target-domain QA performance gain after adding the selected questions into

training. More formally, given the discrete and non-differentiable question selection process,

we formulate the question selection of QVE as a reinforcement learning [257] problem

(Figure 2.1). The QVE receives a batch of synthetic samples each time and learns to select

high-quality ones based on their estimated values. The selected samples are then used to

train the target-domain QA model, with the resulting performance gain (on the available

target-domain annotations) as the reward. The reward guides the optimization of QVE such

that it will eventually make proper question value estimation and selection.

To evaluate the QVE model, we instantiate the QG and the QA model based on the

pretrained BART [130] and BERT [50], respectively. By carrying out comprehensive

experiments on four commonly-used reading comprehension datasets [235, 107, 273, 123],

we show that: (1) our QVE model trained with the target-domain QA feedback substantially

outperforms the question selection techniques trained without direct QA feedback [2, 212].

(2) When using our QVE model to select synthetic questions, QA models can achieve

comparable performance to fully-supervised baselines while using only 15% of the full

target-domain annotations, which indicates that our method can greatly alleviate human

annotation effort in practice. (3) To understand why QVE brings superior improvement, we

conduct human evaluation and find that QVE can better identify semantically-matched and

difficult questions.
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7.2 Related Work

Domain Adaptation of Question Answering. In this field, some work [255, 46, 90, 27]

assumes that target-domain annotated questions are available, however, manually creating

questions is costly. Therefore, another line of research work [81, 246, 125, 212] investigates

a domain adaptation setting where annotated questions are not available on the target domain.

A commonly-adopted approach of this line is to leverage a neural question generation (QG)

model [55, 289, 226, 287, 164, 237] to automatically synthesize questions given unlabeled

contexts [54, 283, 246, 141, 81, 246, 125, 212, 280]; see more discussions in Section

7.3. However, it is very challenging to achieve satisfying performance without any target

annotations. In our work, we study semi-supervised domain adaptation of QA, and assume

a small number of target annotations are available, which can greatly help models adapt to

the target domain while requiring minimal human effort.

Unsupervised and Semi-supervised QA are two other research topics relevant to our work

[65, 139, 133, 52]. Unlike domain adaptation, these two settings do not assume the existence

of the “source domain” and synthesize cloze-style questions via rule-based methods for

building QA models. Since rule-based QG methods typically have much worse performance

than neural ones (pretrained on the source data), we do not compare with these two lines of

research in experiments.

Data Selection methods aim to select a useful subset from the (noisy) training data. Though

(RL-based) data selection methods were explored in other NLP tasks [205, 186, 142],

none of them can be directly applied with trivial efforts to our QA scenario and semi-

supervised setting. For example, [205] and [142] reward or measure the selection with the

distribution distance between the selected data and target data, while we reward the selection

by measuring how large the improvement the selected data can bring for target-domain QA
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training, which is more aligned with the end goal. Our work is mostly inspired by recent

research on data selection in machine learning community [79, 103], particularly [275].

However, the significant differences between our work and [275] are as follows: 1) we study

a very challenging task, domain adaptation of question answering, which was not studied in

[275]. How to develop a method in a similar spirit for this task is unexplored. 2) In order to

study the task, we begin our method by first proposing two data selection methods that are

not covered in [275] but achieve comparable results to existing baselines. We then introduce

our RL-based method with a carefully-designed reward, which is well connected to the end

goal of improving target-QA performance.

7.3 Background

7.3.1 Domain Adaptation of QA via QG

Semi-supervised Domain Adaptation. We study the semi-supervised domain adaptation

of extractive question answering, where the source-domain and a small number29 of target-

domain QA annotations are provided. Formally, we denote the source-domain QA dataset

as Ds = {(csi, qsi , asi)}Ni=1, where large-scale tuples of context csi, question qsi , and answer

asi are available. For the target domain, only a small set of annotated QA pairs Dt =

{(ctj, qtj, atj)}Mj=1 are available (M ≪ N ). Since unlabeled contexts are easy to collect, we

assume that they are largely available: Ct = {ctl}Ll=1 (L≫ M ). The task is to build a QA

model that can accurately answer questions on the target domain, given Ds, Dt, and Ct.

Domain Adaptation via Question Generation. Given the lack of large-scale target-domain

annotations, an intuitive approach to domain adaptation is first synthesizing target-domain

QA data Dt
syn = {(ctl , qtl , atl)}Ll=1 automatically from the unlabeled contexts Ct, and then

29In our experiments, we assume 1,000 target annotations available, which is around 1-1.5% of the original
training data.
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training a target-domain QA model on the synthetic (Dt
syn) and the small-size annotated (Dt)

target-domain data. In such an approach, a question generator (QG) gϕ is first pretrained on

the source training data and further finetuned on the available target-domain annotated QA

pairs. A well-trained QG model then takes target-domain context-answer pairs as input to

generate a question: qtl = gϕ(c
t
l , a

t
l).

Although this approach has been shown promising, in practice, its effectiveness is

restricted by the quality of synthetic questions. Thus, learning to select ones that can lead to

a better target-domain QA model becomes a crucial problem.

With respect to how to obtain atl for QG, here we assume an answer atl (i.e., a text span

in the context ctl) is given, following Du et al. [55]. When the answer atl is not given, it can

be extracted from the given context by using an entity recognition tool [54], a classifier

[183] or a seq2seq model [212]. Note that noise caused by such answer extraction tools will

further lower the overall quality of the synthesized questions. In this chapter, we focus on

how to select useful synthetic questions in general (i.e., those questions can be synthesized

by any QG process) and assume answers are given for simplicity.

7.3.2 Synthetic Question Selection

Given the synthetic target-domain QA data Dt
syn, the task is to select high-quality pairs

from Dt
syn that are useful to improve target-domain QA training. Such a selection decision

is often made based on some scores that can indicate the quality of the pairs. For example,

Roundtrip filtering [2] selects questions based on the extracted answer’s correctness by

a pretrained QA model. Similarly, LM filtering [212] selects questions with high log-

likelihood scores in the generation. However, these scores do not directly serve the goal of

improving target-domain QA training. Inspired by recent research on data selection in the
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Figure 7.2: Illustration of QVE training based on the direct feedback from QA. Specifically,
in the forward pass, QVE estimates the question values of a batch of synthetic questions
and draws a Bernoulli sampling to select questions. The selected questions are then used to
finetune a pretrained QA model. The performance gain (before and after the QA finetuning)
on the target annotations is calculated as the reward for REINFORCED QVE training.

machine learning community [79, 103, 275], we propose a new idea of training a question

value estimator, which predicts the usefulness of a synthetic question for target-domain QA.

7.4 Question Value Estimator (QVE)

Formally, we design a question value estimator (QVE), eγ , which takes in a synthetic QA

example (cl, ql, al) (for simplicity, we omit the superscript t) and outputs a score indicating

its “value,” i.e., vl = eγ(cl, ql, al). The “value” can imply “the potential for improving the

target-domain QA performance when being used as a training sample”. With this score, one

can select most useful synthetic examples for the target-domain QA training.

We use a BERT model as the backbone of the QVE. Specifically, we concatenate the

context, question and answer as input to the QVE, and use BERT to encode the sequence

[50].

h = BERT [<CLS> q <ANS> a <SEP> c]
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where q, a, c represent the question, answer, and context, respectively. h ∈ RH denotes the

hidden representation of the input sequence derived from the “<CLS>” token. <ANS> and

<SEP> are two special tokens used as delimiters.

In our preliminary experiments, we find that adding the answer (start index and end

index) probabilities (ps, pe) by a pretrained QA model as additional features to the hidden

representation h can accelerate the QVE training convergence and lead to better performance.

Thus, we add these two features (ps, pe) followed by linear transformations of the original

hidden representation, and then build a linear classifier to output the question value.

h′ = σ(W2σ(W1h+ b1) + b2)

h′′ = σ(W3(h
′ ⊕ ps ⊕ pe) + b3)

vl = W4h
′′ + b4

where W1 ∈ RH1×H ,W2 ∈ RH2×H1 ,W3 ∈ RH3×H2 ,W4 ∈ RH3 , b1 ∈ RH1 , b2 ∈ RH2 , b3 ∈

RH3 , b4 ∈ R are trainable parameters of linear layers. σ is the activation function tanh.

Learning such a question value estimator is challenging because we do not have di-

rect supervision on the true value or usefulness of a synthetic question. We discuss two

straightforward baselines to train QVE in Section 7.4.1, and a more advanced one based on

reinforcement learning in Section 7.4.2.

7.4.1 QVE Training: Two Baselines

Binary Classifier: One straightforward solution is to treat QVE as a binary classifier and

train it based on the human-annotated (positive) and the machine-synthesized (negative) QA

pairs. Given the scarcity of target-domain data, we first pretrain the classifier on the source

domain and then finetune it on the target domain. More specifically, we train a QG model

on 70% of the source training data and generate synthetic questions on the remaining 30%
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of the source training contexts. The generated questions and the source-domain annotated

questions are used to train this binary classifier. The classifier is then finetuned based on the

small set of target-domain annotations (positive) and the samples synthesized on the same

target-domain contexts (negative).

However, not all of the generated questions are bad. Simply treating all synthetic samples

as negatives may mislead the classifier. Thus, we loose this assumption and introduce a

ranking baseline.

Ranking Baseline: We assume that the quality of human-annotated questions is not inferior

than that of machine-synthesized ones. Thus, we train QVE based on a ranking triplet loss

defined as follows:

Lr =
∑

max(0,m+ vs − vh)

where vs, vh are the estimated question values of the machine-synthesized sample and

human-annotated sample. m is set to 0.15 as the margin.

The two baseline methods have two obvious drawbacks: (1) they are trained to differ-

entiate between human-annotated and machine-synthesized samples, which is mismatched

with our goal of selecting high-quality samples among machine-synthesized data; (2) similar

as [2, 212], the two baselines are not trained with direct signals that can represent the

usefulness of a synthetic question. In the next section, we will introduce a task-specific

training method, which directly uses the target-domain QA feedback to optimize QVE.

7.4.2 QVE Training: Direct Feedback from QA

A well-trained QVE is expected to assign high values to synthetic questions that can

improve the target-domain QA performance. Therefore, an intuitive way to measure the

value of a synthetic question is to consider the downstream QA performance gain (on
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Algorithm 4 QVE REINFORCED Training
Input: pretrained QA model fθ; target synthetic QA pairs Dt

syn; small target annotations
Dt.
Hyperparameters: outer iterations Io, outer batch size Bo, inner iterations In, inner batch
size Bn, QVE learning rate αo, QA learning rate αn.
Output: QVE eγ .

1: Randomly initialize eγ
2: Store θ0 ← θ (pretrained QA checkpoint)
3: for outer iteration = 1 to Io do
4: ▷ 1 Sample a batch of synthetic QA pairs:
5: Sample D = {(cl, ql, al)}Bo

l=1 from Dt
syn

6: ▷ 2 Estimate question values:
7: V = eγ(D)
8: ▷ 3 Sample selection vector:
9: S ∼ Bernoulli(V)

10: ▷ 4 Update QA on selected samples:
11: for inner iteration = 1 to In do
12: Sample {(cl, ql, al)}Bn

l=1 ∼ D
13: θ ← θ − αn

Bn

∑Bn

l=1 sl · ∇θLqa

14: end for
15: ▷ 5 Calculate QA gain as QVE reward:
16: rqve = reward_fn(fθ0 , fθ, D

t)
17: ▷ 6 Update QVE based on Eq. 7.1:
18: γ ← γ − αo · ∇γLγ

19: Reset θ ← θ0
20: end for
21: return eγ

the available target annotations) before and after this question is included in the training

set. However, this “leave-one-out” formulation is computationally expensive and time-

consuming, given that it can estimate the value of only one single synthetic question in each

forward pass. In light of this challenge, we instead estimate question values in a batch-wise

fashion. Algorithm 4 and Figure 7.2 describe the learning process.

Generally speaking, we frame the QVE model learning as a reinforcement learning

problem [257], and stimulate QVE to assign higher values to more useful questions by

using performance-driven rewards. Specially, for a batch of synthetic examples D =
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{(cl, ql, al)}Bo
l=1 in the outer training iteration (Line 4-5), the QVE model selects a subset of

examples that are most likely to boost the QA performance on the target domain, based on

its judgment on their values.

Mathematically, the decision-making outcome is represented by the selection vector

S = (s1, s2, ..., sBo), where sl ∈ {0, 1} l = 1, ..., Bo (Line 6-9). The whole batch-level

decision making policy πγ is described as follows:

vl = eγ(cl, ql, al)

sl ∼ Bernoulli(vl)

πγ(S|D) =
Bo∏
l=1

[vsll · (1− vl)
1−sl ],

where the selection of a certain example (cl, ql, al) is formulated as sampling from a Bernoulli

distribution of probability vl (i.e., its estimated question value). We adopt the Bernoulli

sampling based on the estimated value vl instead of setting a hard threshold to encourage

the policy exploration.

The model is rewarded based on how much performance gain the selected examples

could bring when they are used to train the target-domain QA model. To this end, we

finetune the QA model fθ on the selected batch samples based on Lqa, which typically is a

cross-entropy loss:

Lqa = −
Bo∑
l

logP (al|ql, cl; θ)

In practice, to stabilize the QVE training, we choose a large outer batch size Bo in each

outer training iteration. For finetuning the QA model, we pick a relatively smaller inner

batch size Bn and repeat the training for In times, such that the QVE-selected samples are

fully utilized (Line 10-14).
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The reward rqve is defined as the QA performance gain on the target-domain annotations

Dt before (fθ0) and after (fθ) finetuning (Line 15-16),

rqve = reward_fn(fθ0 , fθ, D
t)

where reward_fn is Exact Match (EM) gain30.

Given the discrete and non-differentiable question selection process, we update the QVE

model using the REINFORCE algorithm [257]. Mathematically, we aim to minimize:

Lγ = − E
S∼πγ(·|D)

[rqve].

The gradient of the loss function is derived as:

∇γLγ = − E
S∼πγ

[rqve∇γ log πγ(S|D)]

= − E
S∼πγ

[rqve∇γ

Bo∑
l=1

log[vsll (1− vl)
1−sl ]].

(7.1)

Notably, to mitigate the instability in reinforcement learning, we reset the QA model to its

pretrained checkpoint at the end of each outer iteration (Line 19), and keep the pretrained

QG model unchanged.

After training QVE, we can use it to calculate the question value for all the synthetic

questions on the target domain. Then we can select top K% synthetic QA pairs as the

training corpus to train the target-domain QA model.

7.5 Experimental Setup

7.5.1 Datasets

We use datasets in the MRQA 2019 Shared Task [72], a popular challenge focusing on

generalization in reading comprehension. Specifically, following [212], we use SQuAD 1.1

30We also tried F1 gain and loss drop as the reward_fn and the EM gain is slightly better than the other
two.
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[193] as the source-domain dataset. For the target-domain datasets, we consider NewsQA

[235], Natural Questions (NQ) [123], HotpotQA [273] and TriviaQA [107] as they are

commonly used and have sufficient contexts for the QG model to generate synthetic samples.

Since there is no test set available for each dataset, we use the original dev set as the test set.

Detailed descriptions of each dataset are in Appendix F.1.

For the target-domain datasets, we assume all the contexts and n annotated QA pairs

in the original training sets are available for training. We set n = 1000 (about 1%-1.5% of

original training sets) as default and discuss the impact of n in Section 7.6.2.

7.5.2 Implementation Details

We implement models using the Hugging Face transformers [261] library. We instantiate

the QA model with BERT-base-uncased [50], and the QG model with BART-base [130].

For training QVE (Algorithm 4), we use BERT-base-uncased model and set H1 = H3 =

H = 768 and H2 = 64 for linear layers. To enable a large batch size Bo, we use gradient

checkpointing [38], a technique used for reducing the memory footprint when training deep

neural networks. We set Io = 2000, Bo = 80, In = 20, Bn = 4, and αo = αn = 3e−5.

To select the best QVE checkpoint, we pick the one that achieves the highest reward on

the target annotations or the one that leads to the lowest QA training loss. When training

(finetuning) QA and QG models (either on source or target domain), we set training epochs

as 2 and 3 respectively. Other hyperparameters are set as default in the transformers library.

7.5.3 Compared Baselines

We evaluate the following QA models built on different training data:

(1) Source Only Baseline: we train a QA model on the source-domain data.
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Different Filtering Methods
Dataset NoFilter RTC LM QVE
NewsQA 74,160 33,756 44,485 44,485
NQ 104,071 62,888 62,443 62,443
HotpotQA 72,928 46,273 43,757 43,757
TriviaQA 61,688 26,361 37,013 37,013

Table 7.1: Number of synthetic examples selected by different methods. NoFilter: QG
baseline (no filtering); RTC: Roundtrip Filtering; LM: LM Filtering.

(2) Source + Target Annotations Baseline: we further finetune the “(1) Source Only

Baseline” on the available target annotated QA pairs.

(3) QG Baseline (no filtering): we first pretrain a QG model on the source-domain data

and finetune it on the available target annotations. The QG model is then used to generate

synthetic QA samples on the target contexts. We finetune a QA model sequentially on all

available data with the order of “source→target synthetic→target annotated” for all the

datasets except TriviaQA31. The same QA finetuning strategy will also be used for (4)-(8).

(4) RoundTrip Filtering [2]: we use the “(2) Source + Target Annotation Baseline” to

extract answers for target synthetic questions and select the ones, whose extracted answers

are correct, as the target synthetic training corpus.

(5) LM Filtering [212]: we use the log likelihood scores of synthetic questions produced

by the QG model in (3) as the filtering criterion. We select top K% samples as the target

synthetic training corpus.

(6) QVE (binary classifier): we train QVE as a binary classifier (Section 7.4.1) and then

use it to select top K% target synthetic samples.

31For the TriviaQA dataset, we merge the target synthetic and target annotated dataset into one training
file since directly finetuning on the target annotated dataset would hurt the QA performance based on our
preliminary experiments.
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No. Methods
NewsQA NQ HotpotQA TriviaQA

EM F1 EM F1 EM F1 EM F1
(1) Source Only Baseline 40.2 56.2 45.2 59.1 43.3 60.3 49.5 59.3
(2) Source + Target Annotations Baseline 43.7 59.8 54.2 68.2 51.7 69.2 55.7 62.0
(3) QG Baseline (no filtering) 45.3 60.7 60.5 72.6 52.9 70.0 58.3 63.9
(4) +RoundTrip Filtering [2] 45.4 60.8 58.6 71.2 53.9 70.5 58.7 64.4
(5) +LM Filtering [212] 45.3 61.2 60.0 72.1 53.9 70.5 56.0 61.7
(6) +QVE (binary classifier) 45.2 60.7 60.1 72.3 53.7 70.4 58.2 63.8
(7) +QVE (ranking baseline) 45.8 61.3 60.6 72.8 53.9 70.9 58.4 63.9
(8) +QVE (RL) 46.2 61.6 61.3 73.2 54.5 71.7 62.3 68.5
(9) Fully-supervised Baseline 50.0 64.6 65.8 78.1 56.8 73.9 64.6 70.3

Table 7.2: Semi-supervised domain adaptation performance of different models where 1,000
target-domain annotations (around 1-1.5% of the original training data) are used.

(7) QVE (ranking baseline): we train QVE based on a ranking function (Section 7.4.1),

and then use it to select top K% synthetic samples.

(8) QVE (RL): we train QVE based on the direct feedback from target annotations using

RL (Section 7.4.2), and then use it to select top K% target synthetic samples.

(9) Fully-supervised Baseline: we train a QA model on the original target training data.

Note that we report the fully-supervised performance here only as the reference and (1)-(8)

are not directly comparable to this.

The number of the selected synthetic examples of RoundTrip Filtering is determined by

the QA model and varies for each dataset. For LM Filtering and QVE, we select top K%

(K=60) samples among all synthetic ones and discuss the impact of the synthetic dataset

size in Appendix F.2. We show the statistics of filtered datasets in Table 7.1.
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Figure 7.3: Impact of the number of target annotated QA pairs. We also show the fully-
supervised performance (and #train) as the reference. With 10K target annotations (around
15% of the full training set), our method can achieve comparable performance to the
supervised ones (as shown at the top of each sub-figure).

7.6 Results

7.6.1 Overall Results

We first discuss the domain adaptation results on the 4 target-domain QA datasets under

a semi-supervised setting where n = 1, 000 target-domain QA examples are available. Table

7.2 shows the overall results of different methods. We summarize key findings as follows:

(1) Compared with RoundTrip and LM Filtering, our QVE (RL) achieves the best perfor-

mance. This is because both baselines are not specifically trained to select useful examples

for improving QA performance on the target domain. Our QVE, on the contrary, is trained

with a signal that directly reflects the QA performance, which can more accurately estimate

the question value and select useful pairs for target-domain QA.

(2) Two QVE baselines (binary classifier and ranking baseline) can select some useful

questions and achieve comparable performance with RoundTrip and LM Filtering. However,

due to the lack of direct QA evaluation feedback, they underperform QVE (RL), which

demonstrates the usefulness of the QA feedback during training QVE.
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7.6.2 How many target QA pairs do we need?

In Table 7.2, we showed that with n (n=1,000) target annotated QA pairs and the selected

high-quality synthetic QA pairs, we can finetune a better QA model on the target domain.

In this section, we discuss the influence of n on the target-domain QA performance. The

results are shown in Figure 7.3, and interesting findings include:

(1) In general, the performance of all models improves as more target annotations are

used. This is intuitive as more annotated pairs can improve both QA and QG training. With

a better QG model, the quality of the synthetic questions is improved, which could also lead

to better QA models.

(2) Our QVE model can often outperform the QG baseline and the filtering baselines.

With an optimization objective considering the downstream QA performance, QVE can

select more useful questions for improving target-domain QA.

(3) The improvement of our QVE compared with baselines is usually larger when more

annotated QA pairs are available. This is because our QVE training (with RL) relies on

the QA feedback based on the available annotated pairs. With more annotated pairs, the

feedback can be more accurate, thus leading to a better QVE for selecting more useful

synthetic questions.

(4) With 10,000 (around 15% of the original training set) target annotations and the

synthetic questions selected by QVE, we can achieve comparable performance with the

fully-supervised baseline. This indicates that one can save more annotation budgets when

building a target-domain QA model based on our QVE in practice.

137



Setups Methods
NQ HotpotQA

EM F1 EM F1

QA:Large Model
QG:Base Model

Source Only 50.7 65.0 46.2 64.0
+ Target Annot. 58.7 72.1 54.3 72.2
+ QG Baseline 61.6 73.4 55.5 72.5
+ Roundtrip 59.8 71.9 55.9 72.8
+ LM Filtering 60.6 72.5 55.7 72.7
+ QVE (RL) 62.4 74.5 56.3 73.4

QA:Base Model
QG:Large Model

Source Only 45.2 59.1 43.3 60.3
+ Target Anno. 54.2 68.2 51.7 69.2
+ QG Baseline 61.0 72.8 53.2 70.9
+ Roundtrip 59.9 71.7 54.1 71.1
+ LM Filtering 60.6 72.2 54.2 71.2
+ QVE (RL) 62.1 73.8 55.2 72.0

Table 7.3: Results on larger capacity QG and QA models.

7.6.3 Experiments with Larger Models

The results presented in the previous sections are based on BERT-base and BART-base.

In this section, we test whether our QVE can still be effective when working with larger

models, and select BERT-Large and BART-Large as QA and QG model respectively. When

changing the QA (QG) model to its larger alternative, we keep the other one as the base

model to better show the difference. We use NaturalQuestions (NQ) and HotpotQA as

representative datasets, and show results on them (with 1,000 target annotations). As shown

in Table 7.3, our QVE model can still help improve the performance for larger instantiations

of QG/QA.

7.6.4 Human Study: Why can QVE help QA?

In this section, we aim to gain a better understanding of why QVE helps QA and verify

that QVE selects more semantically matched and non-trivial questions, thus benefiting

downstream QA.
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Question ID
in the dataset Context Question Human Labels Selected by models?

Matched
Non-

Trivial Roundtrip LM
QVE

(Ours)

NewsQA

./cnn/stories/
6573f73a89
7ec00e2c03
7f959d832d
04aa1a5ab3
.story#1

...Police arrested alleged ringleaders
Deborah Turbiville and her husband,
Charlie, as part of a two-year investigation,
the affiliate reported. Turbiville called
herself the "Heidi Fleiss of Houston,"
referring to a woman who was dubbed
the <ANS>"Hollywood Madam"
<ANS>for providing call girls to
famous and wealthy clients, police said.

What was the
nickname given
to the woman
who allegedly
provided call
girls for
prostitution?

1 1 0 0 1

NQ

aeee2c92
647541da
963bdb80
c5efc375

...I ’m singing ’ Pretending someone else
can come and save me from myself ’ during
it because it ’s supposed to feel like an
apology letter , as though I ’m moving on
but I want people to remember the goodthings
and not the bad things. <ANS>A lot of the song
is about humility <ANS>. ”...

What is a lot
of the song
about?

1 0 1 1 0

Table 7.4: Two synthetic questions labeled by human and different question selection
models.

Since automatic metrics cannot often reflect the actual quality of the question selections,

we sample 50 generated examples from each target-domain dataset (200 in total), and ask

three human annotators to label whether a generated QA pair is semantically matched (i.e.,

can be selected to train QA) and (if yes) whether it asks about a simple fact. To lower the

annotation bias in determining whether a generated question asks about a simple fact or

not, we provide the ground-truth question (the question in the original dataset created by

humans) as a reference. If the generated question is simpler than the ground truth, then it

would be marked as “trivial”; otherwise, it is a “non-trivial” one. Three annotators work

independently and we adopt the majority vote for deciding the final labels of a generated

QA pair (if disagreement appears).

We calculate the precision, recall and F1 between predictions32 by each filtering method

and human labels (for both “semantically matched” and “non-trivial”). As shown in Table

7.5, though three methods obtain a similar precision on all sampled questions, our method

has a better recall, especially on the “non-trivial” questions. This means that our method

32We treat it as a binary classification problem here: if a question is selected, the prediction is 1; 0 otherwise.
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Methods
Semantically-Matched Non-trivial

P R F1 P R F1
RoundTrip 87.9 60.0 71.2 82.6 47.5 60.3
LM Filtering 85.7 64.6 73.6 78.9 51.7 62.5
QVE(RL) 88.2 70.0 78.0 83.3 59.3 69.3

Table 7.5: Agreement with question selection by humans.

can select more semantically matched and non-trivial questions, which explains why it leads

to better QA performance. We also show some real cases in Figure 7.1 and Table 7.4 to

further illustrate this point. For example, our QVE selects “What was the nickname given to

the woman who allegedly provided call girls for prostitution?” while the baselines do not

pick this semantically matched and non-trivial question. For another example, “Who is the

founder of CNN”, both baselines select it while our QVE filters it out since such a simple

question would probably not help further improve QA.

7.7 Conclusion

We propose a question value estimator to estimate the usefulness of synthetic questions

and select useful ones for improving target-domain QA training. We optimize QVE with

the target-domain QA performance gain after adding the selected questions into training.

Our comprehensive experiments demonstrate the superiority of QVE compared with other

question selection methods. Additionally, using the synthetic questions selected by QVE

and only around 15% of the human annotated data on each target domain, we can achieve

comparable performance to the fully-supervised baselines.
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Part V: Conclusions and Future Work
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Chapter 8: Conclusions and Future Work

In the previous chapters, we have introduced our work on generating and utilizing

synthetic data to boost utility and privacy in Natural Language Processing with minimal

human effort and cost. In this chapter, we will first summarize our key contributions, and

then discuss the limitations and future work.

8.1 Summary of Key Contributions

In summary, we have made the following contributions towards using synthetic data to

address privacy concerns and improve the utility of NLP models in three stages of the NLP

life cycle. Specifically, we summarize our key contributions as follows.

Data Collection. Privacy concerns have been gaining increasing attention in data-driven

products and services. Current legislation prohibits the arbitrary processing of personal

data collected from individuals. To address these concerns, one solution is to generate

synthetic data with formal privacy guarantees, such as differential privacy. In this approach,

we propose a token-by-token text sanitization method based on DP. The sanitized texts

also contribute to our sanitization-aware pretraining and fine-tuning, enabling privacy-

preserving natural language processing using the BERT language model with promising

utility. Interestingly, the high utility does not increase the success rate of inference attacks.
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We also show another simple, practical, and effective approach: fine-tuning a generative

language model with DP allows us to generate useful synthetic text while protecting privacy.

Through extensive empirical analysis, we demonstrate that our method produces synthetic

data that is competitive in terms of utility with non-private methods and provides strong

protection against potential privacy breaches.

Model Training and Evaluation. General self-supervised language modeling pre-training

objectives often do not align with the downstream task fine-tuning objectives. As a result,

task-specific knowledge cannot be learned during the pre-training phase. To overcome this

challenge, we leverage synthetic data to pre-train NLP systems that have similar training

objectives to the downstream tasks, leading to better performance, particularly when labeled

data is not widely available. Specifically, we consider the problem of pre-training a two-

stage open-domain question-answering (QA) system (retriever + reader) with strong transfer

capabilities. We automatically construct a large-scale pre-training corpus by generating

millions of pseudo question-answer-document triplets based on references cited within

Wikipedia. The well-aligned pre-training signals benefit both the retriever and the reader

significantly.

Model Deployment. The performance of a well-trained NLP model can often decrease

significantly when deployed in real-world scenarios due to the domain shift between the

source training data and the target testing data. To address this issue, we propose generating

synthetic data on the target domain that can serve as a useful training corpus to boost the

model’s performance. Specifically, we study the problem of machine reading comprehension,

which involves automatically answering questions given a document. We first use question

generation (QG) to synthesize QA pairs in new contexts, allowing us to improve QA models
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without requiring manual annotations. In order to generate diverse types of questions

that are essential for training QA models, we introduce a seq2seq-based question phrase

prediction module that can be used together with most existing QG models to diversify the

generation. Since synthetic questions are often noisy in practice, we train a question value

estimator (QVE) that directly estimates the usefulness of synthetic questions for improving

QA performance on the target domain. Our comprehensive experimental results show that

the (selected) QA corpus synthesized by machines can improve QA models in new contexts.

8.2 Limitations and Future Work

In this section, we will discuss the limitations of our current work and further talk about

promising research directions for boosting utility and privacy in NLP with synthetic data.

Data Collection. In Part II, we discussed how to generate synthetic text with differential

privacy. Though the proposed methods can produce synthetic text with both privacy and

utility preservation, they can be further improved. For example, the token-by-token mapping

approach in Chapter 2 does not consider “context” when sanitizing the text, which often

leads to text that is difficult to read. The method proposed in Chapter 3 is not very efficient,

as fine-tuning a large language model with DP can consume a lot of memory and training

resources. Therefore, it is important to find ways to produce high-utility synthetic text

in a more efficient manner while still preserving privacy. Recent research [277, 137] has

shown promise in efficiently fine-tuning language models with differential privacy. On the

other hand, prompt-based tuning methods have been successful in many natural language

processing tasks [24, 129, 135], but few studies have explored their use with differential

privacy.
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Model Training and Evaluation. Synthetically generated data can be very useful for

training models, especially when labeled data is not readily available. In Part III, we

discussed an approach for using synthetic question-answer-document triplets to pre-train

open-domain QA systems. In the future, we plan to extend this approach to more general

cases. For example, we want to generate pre-training data instances using GPT-3 [24] for

different downstream tasks. We will do this by proposing a "task2prompt" module that takes

a natural language task description or several examples as input and outputs a prompt that is

used to generate synthetic data with GPT-3. In this way, we can automatically generate large

amounts of high-quality synthetic data for pre-training purposes. By having more control

over the prompts used to generate synthetic data, we can design them to be similar to the

downstream fine-tuning tasks.

Model Deployment. In Chapter 6, we discussed how synthetic data can be used to improve

the performance of QA models in a target domain. While this approach can increase accuracy,

the use of synthetic data that has been generated using data from the source domain can still

result in domain mismatch issues. In future work, we plan to investigate ways to address

these issues and improve the use of synthetic data for domain adaptation. Additionally, we

discussed the importance of selecting high-quality synthetic data for domain adaptation in

Chapter 7. In future work, we will also explore other approaches for using synthetic data,

such as domain mapping [43] and domain invariant feature learning, which can include

divergence-based [286], reconstruction-based [78], and adversarial-based methods [92], as

well as target discriminative methods [238].
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Appendix A: Differential Privacy for Text Analytics via Natural Text

Sanitization

A.1 Supplementary Formalism Details

A.1.1 Definition of ULDP

Definition A.1.1 ((VS,VP , ϵ)-ULDP [160]). Given (VS = VP ) ⊆ V , a privacy parameter

ϵ ≥ 0,M satisfies (VS,VP , ϵ)-ULDP if it satisfies the properties:

i) for any x, x′ ∈ V and any y ∈ VP , we have

Pr[M(x) = y] ≤ eϵ Pr[M(x′) = y];

ii) for any y ∈ VU , there is an x ∈ VN such that

Pr[M(x) = y] > 0; Pr[M(x′) = y] = 0 for x ̸= x′.

A.1.2 Qualitative Observations

Below, we focus on SANTEXT sanitizing a single token x. We first make two extreme

cases explicit.

(1) When ϵ = 0, the distribution in Eq. (2.1) becomes Pr[M(x) = y] = 1
|V| ,∀y ∈ V .

SANTEXT is perfectly private since y is uniformly sampled at random, independent of x.

Yet, such a y does not preserve any information of x.
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Dataset: SST-2

Mechanisms ϵ
Original Text:
it ’s a charming and often affecting journey .

SANTEXT

1 heated collide. charming activity cause challenges beneath tends
2 worse beg, charming things working noticed journey basically
3 all ’s. charming and often already journey demonstrating

SANTEXT+

1 it unclear a charming and often hounds journey
2 it exaggeration a charming feelings often lags journey .
3 it ’s a tiniest picked often affecting journey .

Dataset: QNLI

Mechanisms ϵ

Original Text:
When did Tesla move to New York City?
In 1882, Tesla began working for the Continental Edison Company in France,
designing and making improvements to electrical equipment.

SANTEXT

1
43 trapper Gaga MCH digest sputtering avenged Forced Laborers
Homage Ababa afer psychic 51,000 intercity lambasting nightmare–confederate Frontier
Britian Manor Londres shards pilot Mining faster alone Thessalonica Bessemer Lie Columbus

2
blame least ethos did tenth ballot Condemnation critical filmed
In 1883 3200 Conversion pushing 7:57 enabling Town stamp Time downwards Peterson France,
GSA emulating addresses appealing 47.4 electrical pull refreshing

3
Wave did Tesla It way Dru Tully breaking?
Tupelo 1875, Tesla began escaped for announcing Continental Edison Company in France
However designing and making improvements to electrical Chongqing add

SANTEXT+

1
Rodgers did Sung move to New plantation City ?
In K. innumerable Gunz began working sliding the Sultans Edison Company structured France
beaching designing disseminate making tribunals to lackluster equipment 40-foot

2
vaults did Tesla chunks introduces Teknologi Eyes City ?
In 866 , Tesla began working for the Analytical Edison Company Butterfly France ,
designing Sias siblings Noting circumventing electrical orient .

3
When did Tesla guideline to New York City ?
In 1885 , Tesla MG working for the Continental Edison Company in France ,
translating and dreamed improvements ascertain electrical lookout .

Table A.1: Qualitative examples from the SST-2 and QNLI datasets: Sanitized text by our
mechanisms at different privacy levels based on GloVe embeddings

(2) When ϵ→∞, we have Pr[M(x) = x]≫ Pr[M(x) = y], y ∈ V \ {x}. Pr[M(x) = x]

dominates others since d(x, x) = 0 and d(x, y) > 0. This loses no utility as x almost stays

unchanged, yet provides no privacy either.

For a general ϵ ∈ (0,∞), the distribution has full support over V , i.e., we have a

non-zero probability for any possible y ∈ V such thatM(x) = y. Also, given y, y′ ∈ V

with d(x, y) < d(x, y′), we have Pr[M(x) = y] > Pr[M(x) = y′]. As ϵ increases,

Pr[M(x) = y] for the y’s with large d(x, y) goes smaller (and even approaches 0). This
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means that the output distribution becomes “skewed,” i.e., the outputs concentrate on those

y’s with small d(x, y). This is good for utility, which stems from the semantics preservation

of every token. On the contrary, too much concentration weakens the privacy.

For SANTEXT+, the above results directly apply to the case x ∈ VS (as SANTEXT is

run over VS and VP ). There is an extra p determining whether a x ∈ VN is mapped to a

y ∈ VP . If so, the results are similar except with an extra multiplicative p. A larger p leads

to stronger privacy as the probability (1− p) of x being unchanged becomes smaller.

A.2 Qualitative Examples

Table A.1 shows two examples of sanitized texts output by SANTEXT and SANTEXT+

at different privacy levels from the SST-2 and QNLI datasets.

A.3 Supplementary Related Works

Privacy is a practically relevant topic that also poses research challenges of diverse

flavors. Below, we discuss some “less-directly” relevant works, showcasing some latest

advances in AI privacy.

Cryptographic Protection of (Text) Analytics. There has been a flurry of results im-

proving privacy-preserving machine-learning frameworks (e.g., [146]), which make use of

cryptographic tools such as homomorphic encryption and secure multi-party computation

(SMC) for general machine/deep learning. These cryptographic designs can be adapted

for many NLP tasks in principle. Nevertheless, they will slow down computations by

orders of magnitude since cryptographic tools, especially fully homomorphic encryption,

are generally more heavyweight than the DP approaches. One might be tempted to replace
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cryptography with ad hoc heuristics. Unfortunately, it is known to be error-prone (e.g., a

recently proposed attack [262] can recover model parameters during “oblivious” inference).

A recent trend (e.g., [243]) relies on multiple non-colluding servers to perform SMC for

secure training. However, SMC needs multiple rounds of communication. It is thus more

desirable to have a dedicated connection among the servers.

Albeit with better utility (than DP-based designs), cryptographic approaches mostly

consider immunity against membership inference [215] to be out of their protection scope

since DP mechanisms could be applied over the training data before the cryptographic

processing.

There is a growing interest in privacy-preserving analytics in the NLP community too.

Very recently, TextHide [97] devises an “encryption” layer for the hidden representations.

Unfortunately, it is shown to be insecure by cryptographers and privacy researchers Carlini

et al. [30].

Hardware-Aided Approaches. GPU can compute linear operations in a batch much

faster than CPU. Nevertheless, we still need a protection mechanism in using GPU, another

protection mechanism for the non-linear operations, and their secure integration. In general,

utilizing GPU for privacy-preserving machine-learning computations is non-trivial (e.g.,

see [167] for an extended discussion).

To exploit the parallelism of GPU while minimizing the use of cryptography, one can

resort to a trusted processor (e.g., Intel SGX) for performing non-linear operations within its

trusted execution environment (TEE) Note that one still needs to use cryptographic protocols

to outsource the linear computation to (untrusted) GPU. Slalom [234] is such a solution that

supports privacy-preserving inference. Training is a more challenging task that was left as
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an open challenge. Recently, it is solved by Goten [168]. Notably, both works are from

cryptographers but also get recognized by the AI community.

Finally, we remark that the use of TEE is not a must in GPU-enabled solutions. For

example, GForce [167] is one of the pioneering works that proposes GPU-friendly protocols

for non-linear layers with other contributions.
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Appendix B: Synthetic Text Generation with Differential Privacy: A

Simple and Practical Recipe

B.1 Hyperparameters

B.1.1 Models trained without DP

We specify the hyperparameters for the models trained without DP in Table B.1.

Model Epochs LR Batch size
GPT2 5 5e-5 32

GPT2-M 5 5e-5 32
GPT2-L 5 2e-5 32

Table B.1: Hyperparameter setting for models trained without DP.

B.1.2 Models trained with DP

We specify the hyperparameters for the models trained with DP in Table B.2.

B.1.3 Models for downstream text classification tasks

We use Roberta-base model for all downstream text classification tasks. We set the

batch size as 64, the learning rate as 3e-5, and the number of epochs as 5.
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Model Epochs LR Batch size Clip norm
GPT2 50 1e-4 4096 1.0
GPT2-M 25 1e-4 4096 1.0
GPT2-L 20 1e-4 4096 1.0

Table B.2: Hyperparameter setting for models trained with DP.

B.2 Canary Sequences

Type Canary Sequence

Name
My name is Chelsey Ann. I had a hard
time finding a good restaurant like this.

Address
The food took 6 hours to arrive to
1940 W State St Boise! Like literally!

Number
Driver couldn’t find my house, even tho
I told him my number is 208-344-2163

Email

My issue is not with the driver 99% of
the time however I just discovered they
often send me phishing email to my personal
account truss25@tuxreportsnews.com

Plate
I get my vehicle registered and
they give me a new plate D76HTH

Table B.3: The 5 canary sequences we inserted into the Yelp training set for the privacy
leakage analysis
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Appendix C: C-MORE: Pretraining to Answer Open-Domain Questions

by Consulting Millions of References

C.1 Question Phrase Replacement Rules
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NER Type Candidate Question Phrases
CARDINAL "what",

DATE
"when","what time",
"what date",

EVENT
"what event","what",
"which event",

FAC "where","what buildings",
GPE "where", "what country",
LANGUAGE "what language","which language",
LAW "which law","what law",

LOC
"where", "what location",
"which place", "what place",

MONEY "how much money","how much",
NORP "what", "what groups", "where",
ORDINAL "what rank","what",

ORG
"which organization",
"what organization", "what",

PERCENT "what percent", "what percentage",
PERSON "who", "which person",
PRODUCT "what", "what product",
QUANTITY "how many", "how much",
TIME "when", "what time",
WORK_OF_ART "what", "what title"

Table C.1: Question phrase replacement rules for different types of entities.
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Appendix D: Automatically Evaluating Attribution by Large Language

Models

D.1 Data Simulation

D.1.1 Simulation - QA

Attributable. Since we have questions, and their ground truth answers and reference

contexts, we can directly treat them as “Attributable” examples.

Contradictory. To simulate contradictory errors, we consider two methods. The first

method involves modifying the correct answer by replacing it with a different candidate

generated from an off-the-shelf QA model, an answer substitution model, or a random

span generator. The second method involves keeping the original answer and replacing the

answer span in the reference context with a similar candidate. The QA model, the answer

substitution model, and the random span generator are all implemented by prompting a

FLAN-T5-XL (3B) [45] with different task prompts in Appendix Table D.1.

Extrapolatory. To simulate extrapolatory errors, we employ a BM25 retriever to retrieve

external documents that do not contain ground truth answers from knowledge sources like

Wikipedia or the Web. And then we replace the original paragraph with one of the retrieved

documents. For the answer, we either keep the original ground truth answer or leverage a
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QA model to generate an answer. Here are more details for constructing negative retrieved

documents in each dataset.

Following previous work [112], we utilize the passages from Wikipedia dumps for

constructing evidence for NaturalQuestions [122], WebQuestions [14], and TREC [13]

datasets. In particular, we regard the highest-ranked passage including answers from BM25

as positive evidence and the top passage without answers as negative evidence.

For TriviaQA [108], we select the passage with the highest overlap with answers from

web texts as positive evidence and the top-ranked wiki passage without answers from BM25

as negative evidence. We exclude examples where the positive evidence has an overlap ratio

of less than 0.5 with answers. For HotpotQA [272], we combine the ground truth passages

provided as positive evidence and randomly select two out of eight passages provided as

negative evidence. Similarly, in PopQA [150], we find positive evidence from Wikipedia

content through the provided link and retrieve negative evidence from Wikipedia dumps

using BM25. In EntityQuestions [209], we match positive evidence in Wikipedia texts

searched by the question entity and retrieve negative evidence via BM25.

Converting short answers to long sentences. Since many of the attributed LLMs generate

long sentences to the query, to make it our simulated data more realistic, we convert

short answers to long answers using ChatGPT. Specifically, we prompt ChatGPT with the

instruction “Convert a given question and answer pair into plain sentences. [Question]

[Answer]”.
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D.1.2 Simulation - Fact Checking

With provided Wiki content as evidence in FEVER [232] and Adversarial FEVER

datasets [233], we repurpose ‘SUPPORTS’ examples as attributable, ‘REFUTES’ as contra-

dictory, and ‘NOT ENOUGH INFO’ as extrapolatory. Using the same label mapping, we

apply this approach to the claim and evidence provided in VITAMINC [208], after removing

duplicated examples as shown in FEVER. For FEVEROUS [6], we concatenate all pieces of

evidence, including tables and texts, and prepend an increasing index as the final evidence.

We then ground the label into our three categories using the same label mapping. Regarding

natural claim datasets with various label spaces, we keep the top 6 classes out of 117 in

MultiFC [10] and map them to our defined three categories. In PUBHEALTH [118], we

consider both ‘unproven’ and ‘mixture’ classes as extraplanetary. We also regard the abstract

of the article as evidence. For SciFact [242], we repurpose ‘SUPPORT’ as attributable and

‘CONTRADICT’ as contradictory. Additionally, we randomly select one sentence from the

abstract of other articles as evidence for the ‘Not enough information’ class to construct

extrapolatory examples.

D.1.3 Simulation - NLI

Natural language inference (NLI) aims to determine whether a hypothesis is true given a

premise. In NLI datasets such as SNLI [23], MultiNLI [256], ANLI [170], and SciTail [115],

the hypothesis is considered the claim and the premise is regarded as the evidence. The

original labels in NLI datasets, namely ‘Entailment’, ‘Contradictory’, and ‘Neutral’, are

mapped to ‘Attributable’, ‘Contradictory’, and ‘Extrapolatory’.
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D.1.4 Simulation - Summarization

Summarization involves condensing a given passage or article into brief sentences while

preserving its original meaning. To simulate contradictory examples, we use datasets with

annotations of hallucinations. In terms of XSum-Hallucination [151], we merge examples

with the same ID and consider those with the most intrinsic hallucination as contradictory

and those with the most extrinsic hallucination as extrapolatory. Paired full articles and

ground truth summaries are treated as attributable examples. For XENT [26], ‘Non-factual

Hallucination’ and ‘Intrinsic Hallucination’ are seen as contradictory, ‘Factual Hallucination’

as extrapolatory, and ‘Non-hallucinated’ as attributable. Each article and reference are paired

as attributable examples. Finally, we resplit the manually annotated dev and test sets for

training and evaluation in FactCC [120], with ‘INCORRECT’ labeled as extrapolatory and

‘CORRECT’ as attributable.

Tasks Prompts

QA
Context: [Context]\n
Based on Context, [Question]

Answer
Substitution

Please provide a related term or substitution for the given input, which should be different from the input.\n
"Input: Biden; Output: Obama\n"
"Input: 1949; Output: 1358\n"
"Input: University of Maryland; Output: University of Cambridge\n"
"Input: 09/12/2014; Output: 03/30/2008\n"
"Input: $431; Output: $769;\n"
"Input: [Ground Truth Answer]; Output: ",

Random Span
Generation Extract a phrase from the given passage. \n Passage: [Context]

Table D.1: Prompts for QA, answer substitution, and random span generation when simulat-
ing contradictory errors
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Figure D.1: Label distribution of training and test sets.
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Figure D.2: Data source distribution of combined training and AttrEval-Simulation sets.

D.2 Label and Subset Distributions of Training and Test Sets

We show the label and data sources’ distributions of training and AttrEval-Simulation

sets in Figure D.1 and Figure D.2.
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D.3 Prompts for LLMs as AttributionLens

We show different kinds of prompts for using LLMs as AttributionLens in Table D.2.

And we show the few-shot demonstrations in Table D.3.
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D.4 Generative Search Engine Examples Annotation Protocol

We show the detailed annotation guidelines in the following.
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Annotation Guidelines

Overview
Thank you for participating in this annotation task. The goal of this task is to create a query and verify whether
a given reference document fully supports the generation of the query.

There are two sub-annotation tasks:
1. Create a query based on a few given keywords under a topic.
2. Verify whether a given answer to a query is fully supported by its references.

Task 1: Create a query for a specific domain.
You will be shown a list of keywords (e.g., inflation rate, CPI, GDP, unemployment rate, etc.) from a specific
domain or topic (e.g., economics) and a demo question (e.g., What was the unemployment rate in Germany in
2020?) as an inspiration. Then you will be asked to create a new query based on these keywords.

Task 2: Verify whether the generated statement is supported by its reference.
You will be shown a user query, a generative search engine’s response, and associated references. You will
need to read the query, response, and reference carefully and verify whether the cited evidence fully supports
the generation of the query.

You will be given three options:
a. ‘‘Attributable’’: The reference fully supports the generation of the query.
b. ‘‘Extrapolatory’’: The generation contradicts the reference.
c. ‘‘Contradictory’’: The reference does not contain sufficient information to infer the correctness of the

generation.
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Consider the following examples:
(1) ‘‘Attributable’’
Query: What is the temperature range on the moon?
Response: The average temperature on the moon can range from -298 degrees F (-183 degrees C) at night to
224 degrees F (106 degrees C) during the day [1].
Reference: The average temperature on the Moon (at the equator and mid latitudes) varies from -298 degrees
Fahrenheit (-183 degrees Celsius), at night, to 224 degrees Fahrenheit (106 degrees Celsius) during the day.
Because the Moon has no...
Annotation: Attributable

(2) ‘‘Extrapolatory’’
Query: What is the highest price of a gallon of regular gas in the US in 2022?
Response: According to a news article by NPR, as of June 2022, the highest average price of a gallon of
regular gas in the US was $6.34 in California [1].
Reference: U.S. gas prices hit a new record on Monday, with a gallon of regular gas costing an average of
$4.865 (not adjusting for inflation), according to the most recent data from the American Automobile
Association...
Annotation: Extrapolatory

(3) ‘‘Contradictory’’
Query: What was the unemployment rate in Germany in 2020?
Response: According to [1], the unemployment rate in Germany for 2020 was 4.31%, which was a 1.17%
increase from 2019. However, it is important to note that the COVID-19 pandemic had a significant impact on
unemployment rates in Germany and around the world.
Reference: Germany unemployment rate for 2020 was 3.81%.
Annotation: Contradictory
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D.5 Additional Qualitative Analysis

The qualitative results of ChatGPT are shown in Table D.4. Our first observation is that

a significant portion (79.4%) of errors happen due to ChatGPT overlooking the context clues

and does not make judgments by conditioning on the reference (e.g., potentially relying

on its own parametric knowledge). For the remaining error cases, they are: 1) fine-grained

information insensitivity (13.8%): failure in comparing very fine-grained information such

as numerical values, numbers, dates, and time; 2) failure in performing symbolic operations

(6.8%): the model fails to verify the claim which requires performing symbolic operations

over the reference, such as verifying set relationships.
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Prompt Types Prompts

Attribution

### Instruction:

As an Attribution Validator, your task is to verify whether a given context can support the claim.
A claim can be either a plain sentence or a question followed by its answer. Specifically, your
response should clearly indicate the relationship: Attributable, Contradictory or Extrapolatory.
A contradictory error occurs when you can infer that the answer contradicts the fact presented
in the context, while an extrapolatory error means that you cannot infer the correctness of the
answer based on the information provided in the context.

### Input:
Claim: [Question Answer] or [Plain Sentence] \n\n
Context: [Context]

### Response:

Fact-Checking

### Instruction:
Fact-check a claim based on the given evidence.
Options: Supported, Refuted or Not Enough Information

### Input:
Claim: <Claim>\n\n
Evidence: <Evidence>

### Response:

NLI

### Instruction:
Read the following and determine if the hypothesis can be inferred from the premise.
Options: Entailment, Contradiction, or Neutral

### Input:
Hypothesis: <Hypothesis>\n\n
Premise: <Premise>

### Response:

Summarization
Hallucination
Detection

### Instruction:
Read the following and determine whether the source text can support the summary.
Options: Support, Contradicts, or Not Enough Information

### Input:
Summary: <Summary>\n\n
Source: <Source>

### Response:

Table D.2: Prompt variations for test the sensitivity of different prompts on the results. We
use the “Attribution” prompt for our main experiments as default as it achieves the best
performance overall.
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Few-shot demonstrations

Here are some demonstration examples for you.

### Input:
Claim: In what year was the writer of the opera "Mazeppa" born? The writer of the opera "Mazeppa" was born in 1840.

Reference: Mazeppa, properly Mazepa, is an opera in three acts (six scenes) by Pyotr Ilyich Tchaikovsky. The libretto
was written by Victor Burenin and is based on Pushkin\’s poem "Poltava". Pyotr Ilyich Tchaikovsky (25 April/7 May
1840 – 25 October/6 November 1893), often anglicized as Peter Ilich Tchaikovsky, was a Russian composer of the
romantic period, some of whose works are among the most popular music in the classical repertoire. He was the first
Russian composer whose music made a lasting impression internationally, bolstered by his appearances as a guest
conductor in Europe and the United States. Tchaikovsky was honored in 1884, by Emperor Alexander III, and awarded
a lifetime pension.

### Response:
Attributable. From the given reference, Pyotr Ilyich Tchaikovsky was the writer of "Mazeppa", who was born in 1840
as stated in the given claim.

-

### Input:
Claim: In what part of Buenos Aires Province is the city that has The Juan Carlos Castagnino Municipal Museum
of Art located? It is located in the southeast part.

Reference: The Juan Carlos Castagnino Municipal Museum of Art is a museum of fine arts in Mar del Plata, Argentina.
Mar del Plata is an Argentine city in the east part of Buenos Aires Province located on the coast of the Atlantic Ocean.
It is the head of General Pueyrredón Partido. Mar del Plata is the second largest city in Buenos Aires Province. The name
"Mar del Plata" has the meaning of "sea of the Silver region" or "adjoining sea to the (River) Silver region". Mar del Plata
is one of the major fishing ports and the biggest seaside beach resort in Argentina.

### Response:
Contradictory. The reference says that Mar del Plata is in the east part of Buenos Aires, so The Juan Carlos Castagnino
Municipal Museum of Art is also in the east part of Buenos Aires, not southeast.

-

### Input:
Claim: In what year was Louis Joseph de Frances\’s mother born? Louis Joseph de Frances’s mother was born in 1755.

Reference: Lakshman Joseph de Saram is a film composer and classical musician. Born in Colombo, Sri Lanka and
educated at the Royal College, Colombo, the High School of Performing Arts, Manhattan School of Music and Juilliard
Pre-College in New York City, Joseph de Saram is influential in the music of South Asian art cinema, having scored many
international award-winning films like \’Between Two Worlds\’ and \’Akasa Kusum.\’ His best-known score is to the 2012
film "Bel Ami". Joseph de Saram is also artistic director of The Chamber Music Society of Colombo. Louis Joseph de
Lorraine "Duke of Guise" and Duke of Angoulême, (7 August 1650 – 30 July 1671) was the only son of Louis, Duke of
Joyeuse and Marie Françoise de Valois, the only daughter of Louis-Emmanuel d\’Angoulême, Count of Alès, Governor of
Provence and son of Charles de Valois Duke of Angoulême, a bastard of Charles IX of France.

### Response:
Extrapolatory. The answer to the question cannot be inferred from the given reference since the person "Louis Joseph de
Frances" is not mentioned. We also cannot find any evidence in the Reference which contradicts with the provided answer.

-

Now here is the example that needs your response:

Table D.3: Few-shot demonstrations for prompting LLMs as AttributionLens.
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Error Type
(percent-
age)

Example

Overlooking
contextual
cues
(79.4%)

Query: Was ketchup a medicine before?
Answer:: Yes, that’s true! Ketchup was sold as a remedy for indigestion, diarrhea, jaundice and rheumatism in the 1830s
Reference: Decades later, in the 1870s, American entrepreneur Henry Heinz created a modern version of ketchup with ripe
tomatoes, distilled vinegar, brown sugar, salt and a variety of spices. By 1905, the company had sold five million bottles of
ketchup, cementing its place as the condiment we know and love today.
Ground Truth: Extrapolatory
ChatGPT: Attributable. The reference supports the claim that ketchup was sold as a remedy for various ailments in the
1830s, indicating that it was used as a medicine before.

Fine-
grained
information
insensitivity
(13.8%)

Query: How many total miles of coastline does Norway have?
Answer: The official length was recalculated in 2011 as 100,915 km , including fjords and islands.
Reference: A straight line along Norway’s sea borders (the coastal perimeter) is 2,650 kilometers (1,650 mi) long. Along the
coast there are many fjords, islands, and bays, resulting in a low-resolution coastline of over 25,000 kilometers (16,000 mi).
Ground Truth: Contradictory
ChatGPT: Attributable. The reference provides information that the official length of Norway’s coastline, including fjords and
islands, is 100,915 km. Therefore, the claim that Norway has a total of 100,915 km of coastline is supported by the Reference.

Failing on
symbolic
operators
(6.8%)

Query: Is Andrew Ng an author of the recent chapter “generative agents: interactive simulacra of human behavior”?
Answer: Yes, Andrew Ng is one of the authors of the chapter “Generative agents: Interactive simulacra of human behavior”.
Reference: Computer Science > Human-Computer Interaction [Submitted on 7 Apr 2023] Gen-
erative Agents: Interactive Simulacra of Human Behavior Joon Sung Park, Joseph C. O’Brien,
Carrie J. Cai, Meredith Ringel Morris, Percy Liang, Michael S. Bernstein .

Ground Truth: Contradictory
ChatGPT: Attributable. The reference clearly states that Andrew Ng is one of the authors of the chapter "Generative Agents:
Interactive Simulacra of Human Behavior", which supports the claim that he is an author of the chapter.

Table D.4: Qualitative analysis on misclassified examples from prompting ChatGPT in
AttributionLens.
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Appendix E: CliniQG4QA: Generating diverse questions for domain

adaptation of clinical question answering

E.1 Post-Processing of Extracted Answer Evidences

This section is dedicated to the discussion of heuristic rules developed to improve the

quality of the extracted answer evidence.

We observe that when we directly apply the ClinicalBERT [4] system described in

Section 3.2 (in the main content) on clinical texts, the extracted answer evidences sometimes

are broken sentences due to the noisy nature and uninformative language (e.g., acronyms)

of clinical texts. To make sure the extracted evidences are meaningful, we designed a

“merge-and-drop” heuristic rule to further improve the extractor’s accuracy. Specifically,

for each extracted evidence candidate, we first examine the length (number of tokens) of

the extracted evidence. If the length is larger than the threshold η, we keep this evidence;

otherwise, we compute the distance, i.e., the number of tokens between the current candidate

span and the closest span. If the distance is smaller than the threshold γ, we merge these two

“close-sitting” spans; otherwise, we drop this over-short evidence span. In our experiments,

we set η and γ to be 3 and 3, respectively, since they help the QA system achieve the best

performance on the dev set
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QPP acc QG acc
NQG / 74.32
NQG++ / 74.54
BERT-SQG / 79.78
QPP-NQG 99.2 85.15
QPP-NQG++ 99.17 85.27
QPP-BERT-SQG 99.19 88.15

Table E.1: QPP and QG performance on dev set in terms of per-token accuracy. All numbers
are percentages.

The intuitions behind this heuristic rule are listed as follows: 1) we should discard as

few useful answer evidence spans as possible, so we first resort to merging before simply

dropping a span; 2) Commonly, if two spans (and at least one is a short span) are sitting close

to each other, they should have been recognized as a single answer evidence. For example,

the BIO label of a snippet “chief complaint: altered mental status major” is predicted as “B O

B I I O”, whereas, a clinical expert will label it as “B I I I I O”. However, if they sit far away,

merging would introduce noisy information; 3) long spans are always more informative and

contain less misleading information compared with short spans (e.g., “the patient had left

leg pain” v.s. “pain”).

E.2 Implementation Details

We provide very detailed implementation details to foster reproducibility.
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QVE QG QA overall
NQG&DocReader 6 17 24.5
NQG++&DocReader 7.5 20 29
BERT-SQG&DocReader 13 18 32.5
NQG&CliniBERT 6 3.5 11
NQG++&CliniBERT 7.5 4 13
BERT-SQG&CliniBERT 13.5 3.5 18.5

Table E.2: The running time (hour) of QPP-augmented QG, QA and overall QVE based on
our selected QG & QA combinations

Parameter Search Trials Best
Dropout [0.3,0.45,0.6,0.75,0.9] 0.75
LSTM Layers [1,2,3,4] 3
QP Length [1,2,3] 2

Table E.3: Hyperparameter searches for Question Phrase Prediction (QPP) Module

E.2.1 Prepossessing
Dataset Prepossessing

emrQA33 We prune the emrQA set by removing QA pairs whose question is an indicator

(e.g., “meds”) so that all remaining QA pairs contain valid questions. We also leverage SciS-

pacy34, a package containing spaCy models for processing clinical text, to do tokenization

in order for the trained QG models to have a better understanding over clinical notes.

MIMIC-III35 Similarly, we also leverage SciSpacy to do tokenization.

33https://github.com/panushri25/emrQA
34https://allenai.github.io/scispacy/
35https://mimic.physionet.org/gettingstarted/access/

170



Parameter Search Trials Best
length (η) [1,3,5,10] 3
distance (γ) [1,3,5,10] 3

Table E.4: Hyperparameter searches for “merge-and-drop" method

Question Phrases Identification

In order to utilize our Question Phrase Prediction (QPP) module and make our QPP

module generic enough without loss of generality, we identify valid n-gram Question Phrases

in an automatic way.

To prepare an exhaustive list of valid n-gram Question Phrases, we first collect all of the

first n words appearing in Ground Truth Questions in emrQA, forming three (i.e., n=1, 2, 3)

raw Question Phrases set.

We observe that all uni-grams are valid question phrases (e.g., “How”, “When”, “What”),

so we don’t do any pruning and keep the uni-gram question phrases set as it is.

As for n-gram (n ≥ 2) Question Phrases set, we conduct fine-grained filtering. We only

consider n-grams with occurrence frequency greater than the threshold ζ as valid n-gram

Question Phrases. In our experiment, we set ζ as 0.02%. Less frequent n-gram words

(i.e., frequency < 0.02%) will degrade to unigram Question Phrases in accordance with

corresponding question types (e.g., “Has lasix”→ “Has”*) so as to maintain lossless. In the

end, n-gram (n ≥ 2) Question Phrases sets, without any information loss, are consisting of

both n-gram Question Phrases and degraded unigram Question Phrases.

E.2.2 Models Implementation

Base QA & QG Models We re-implement the three base QG models using Pytorch and

have ensured that they achieve comparable performance as originally reported. The best QG
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Table E.5: Distributions of the generated questions of different models and the ground truth
in the emrQA dataset. QPP: Question Phrase Prediction; KL: Kullback–Leibler divergence.
All numbers are percentages.

Models What When Has Was Why How Is Did Can Any Does KL
(Gen||GT)

NQG 0.00 0.00 3.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 96.05 84.2
+BeamSearch 29.94 0.00 5.54 0.00 0.00 0.00 1.38 0.00 0.00 0.00 63.14 45.2
+QPP (Ours) 8.39 0.01 25.37 4.44 0.91 0.87 9.09 0.27 4.03 12.72 33.89 11.0
NQG++ 0.09 0.00 3.53 0.00 0.00 0.10 0.00 0.00 0.00 0.00 96.28 84.3
+BeamSearch 44.04 0.00 0.09 0.00 0.00 0.22 2.01 0.00 0.00 0.00 53.64 66.4
+QPP (Ours) 8.09 0.01 25.54 4.42 0.75 0.81 9.16 0.23 4.05 12.80 34.13 11.2
BERT-SQG 0.72 0.00 6.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 92.96 74.5
+BeamSearch 29.31 0.00 0.03 0.00 0.00 0.00 25.05 0.00 0.00 0.00 45.62 47.4
+QPP (Ours) 8.01 0.01 25.56 4.44 0.82 0.80 9.17 0.25 4.05 12.74 34.16 11.2
GT 13.80 0.01 26.73 1.94 0.63 1.16 13.24 0.14 1.31 4.11 36.93 -

model is selected using the per-token accuracy of both the QPP module (if applicable) and

QG on dev set, and dev results are listed in Table E.1.

For QA models, we used their open-sourced implementation.36 The best QA model is

selected using EM and F1 on dev set, and dev results are also included in Table 3 (in the

main content). Hyperparameters of QG models are set to be the same as in the original paper

and hyperparameters of QA models are set according to the guidance of [278].

Question Phrase Prediction (QPP) Module. Word embeddings are initialized by Glove

300d vectors37. We adopt a feature-rich Encoder38 to effectively encode Clinical lexical

information. We set the LSTM hidden unit size to 600 and set the number of layers of

LSTMs to 3 in both encoder and decoder. Optimization is performed using stochastic

gradient descent (SGD) for 20 epochs, with an initial learning rate of 1.0. After each epoch,

we evaluate the per-label accuracy on the dev set. If the accuracy does not improve, we

36DocReader: https://github.com/facebookresearch/DrQA. ClinicalBERT:
https://github.com/EmilyAlsentzer/clinicalBERT.

37http://nlp.stanford.edu/data/glove.840B.300d.zip
38Lexical features are extracted by [165]
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halve the learning rate. The mini-batch size is set at 128. Dropout with probability 0.75

is applied between vertical LSTM layers. The gradient is clipped when its norm exceeds

5. Besides, we set the length of a question phrase l to 2, which gives the best performance

on validation. The total number of parameters is around 17M under our best-performing

setting.

Answer Evidence Extractor. We fine-tune a ClinicalBERT model in Named Entity Recog-

nition (NER) fashion using BIO tagging scheme39. When conducting fine-tuning on our

QG train set, we set max length, batch size, number of epochs, and random seed to be

510, 16, 20 and 6, respectively. We adopt the official NER evaluation script40 to do the

evaluation on QG dev set, and obtained 80.17 F1 score. We then deployed this system to

extract raw answer evidence spans. After raw extraction, we utilized our own heuristic rules

(i.e., “merge-and-drop”) to further polish the raw spans as described in Appendix E.1.

Multi-Label Classification (MLC) Comparison. We implement Binary Relevance (BR)

and Classifier Chain (CC) by means of Scikit-Multilearn [181], an open-source library for

the MLC task.

Computational Resources. All experiments are conducted using one single GeForce GTX

2080 Ti 12 GB GPU (with significant CPU resources). We train the QPP module and QG

model together though they can be trained separately. The overall running time of our QVE

system depends on the particular QG and QA models adopted. For our selected QG and

QA models, the approximated overall running time of QVE is listed in Table E.2. However,

training a QPP module separately is fast, which only takes less than 1 hour with the current

39https://github.com/huggingface/transformers/tree/master/ examples/token-classification
40http://deeplearning.net/tutorial/code/conlleval.pl
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setting. Meanwhile, the running time of our Answer Evidence Extractor roughly takes 1.5

hours on average.

E.2.3 Hyperparameter Search

In order to have a best-performing Question Phrase Prediction (QPP) module, we

manually tuned the hyperparameters listed in Table E.3. The hyperparameters are tuned

on QG dev set using Relevance and Diversity Metrics listed in Section 4.3 (in the main

content).

In order to have a best-performing post-processing method (i.e., “merge-and-drop”) in

Answer Evidence Extraction module, we manually tuned the hyperparameters listed in Table

E.4. The hyperparameters are tuned on the QA dev set using Exact Match (EM) and F1.

E.3 Distributions of Generated Questions of Different QG Models

The detailed distributions of the generated questions of different models and the ground

truth in emrQA dataset are listed in table E.5.
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Appendix F: Synthetic Question Value Estimation for Domain

Adaptation of Question Answering

F.1 Details of Datasets

Specifically, following Shakeri et al. [212], we use SQuAD 1.1 [193], a large reading

comprehension dataset that consists of 100k questions on more than 500 articles from

Wikipedia, as the source-domain dataset. For the target-domain datasets, we consider the

following 4 datasets since they are commonly used and have sufficient contexts to train the

models.

NewsQA [235] consists of questions and answers based on a set of over 10k news articles

from CNN News.

Natural Questions (NQ) [123] contains questions extracted from Google user search

queries and passages from Wikipedia.

HotpotQA [273] is a multi-hop question answering dataset based on Wikipedia passages.

TriviaQA [107] includes QA pairs authored by trivia enthusiasts, as well as evidence

documents independently gathered from Web search results and Wikipedia articles.
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Figure F.1: Impact of synthetic dataset size.

F.2 Impact of Synthetic Dataset Size

In Figure F.1, we show how the synthetic dataset size (i.e., the number of selected QA

pairs) impacts the QA performance, based on our QVE (RL) filtering. As we expect, at the

beginning, the target QA performance improves when more synthetic data is added to the

training set. However, the performance reaches the peak at 60-70% and then goes down.

This is reasonable since adding less valuable QA pairs from the noisy synthetic data will

hurt the QA model training. We suggest 60%-70% (50K-70K QA pairs) for setting the

synthetic data size in practice.
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