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Abstract 

As increases in frequency, duration, intensity, and geographical location of 

cyanobacterial harmful algal blooms (HABs) have been observed, more timely 

monitoring and targeted treatment of HABs and their cyanotoxins are crucial for 

freshwater bodies that are used for drinking water, recreation, and food production 

sources. To combat this, new management practices with tools that can handle the spatial 

and temporal variability of HABs are needed for water treatment plants and other sectors 

to ensure human health and ecosystem health. Unmanned Aerial Vehicles (UAVs), also 

known as drones, serve as one solution for near real-time monitoring of HABs. Recently, 

UAVs have gained increasing interest in research and development due to their many 

applications, efficiency in data collection, and the ability to customize these systems to 

specific needs.  

While research has shown that UAVs can accurately estimate chl-a and 

phycocyanin values -HAB indicators- little research has been conducted analyzing UAV 

imagery in parallel with microbiome data. In chapter 1, major relevant topics are 

summarized related to cyanoHABs, public health, and UAV systems. This provides a 

holistic view of current knowledge, methods, and limitations in cyanoHAB monitoring 

and detection. Chapter 2 seeks to explore the microbial community in parallel with 

environmental data, by analyzing seasonal dynamics, composition, and interactions 



 

iii 

 

within the microbial community in a hypereutrophic urban lake. In chapter 3, the 

feasibility and accuracy of using an UAV system for monitoring a hypereutrophic, urban 

water body was assessed. Objectives of this chapter include 1) proposing an UAV system 

and imagery processing framework that can be utilized by non-geospatial experts, 2) 

assess the accuracy of UAV derived chlorophyll-a values by regressing ground sampled 

fluorometer values and remotely sensed values, and 3) determine what algorithms and 

buffer sizes perform the best for cyanobacteria quantification.  

To accomplish this, fourteen field sampling campaigns were conducted at an 

urban lake in Columbus, OH, USA from April 2022 through September 2022. During 

each field visit aerial imagery, water samples, meteorological data, and water quality data 

were collected. Microcystin quantification was employed utilizing ELISA kits to evaluate 

cyanotoxin levels for each visit. Microbial source tracking (MST) was utilized to evaluate 

major fecal contamination sources (human, canine, and geese). Droplet digital PCR was 

utilized to quantify the level of MST host contamination. 16S and 18S rRNA gene 

sequencing was conducted so shifts in the microbial community could be analyzed. All 

data was analyzed and correlations between UAV aerial imagery, microbial community, 

and water quality/meteorological data were discovered. Results found that microbial 

community composition changes seasonally, including the cyanobacteria community. 

This study shows that UAV imagery is an efficient tool for monitoring HABs, but more 

research needs to be conducted to better understand factors negatively affecting the 

accuracy of UAV derived chlorophyll-a values.   
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Chapter 1. Introduction 

1. Cyanobacteria, Harmful Algal Blooms, and Water Quality 

1.1 Introduction to Cyanobacteria 

Cyanobacteria, also referred to as blue-green algae, are an ancient phylum of prokaryotic 

microorganisms, with fossil evidence dating back approximately 3.5 billion years (Schopf, 1987, 

Barwant, 2022). The term “blue-green algae” is derived from their characteristic blue-green 

pigmentation, which is a result of the presence of a unique pigment known as phycocyanin (PC) 

(Hachicha et al., 2022). Cyanobacteria are oxygenic phototrophs, meaning they perform 

oxygenic photosynthesis, a process that utilizes sunlight to convert carbon dioxide into organic 

compounds, while releasing oxygen as a byproduct (Sánchez-Baracaldo & Cardona, 2020). It is 

believed that these microorganisms played a critical role in the first major oxygenation event on 

Earth, allowing for the emergence and evolution of aerobic organisms such as plants and animals 

(Lyons et al., 2014). Cyanobacteria are extremely adaptable microorganisms, occupying many 

different environments, including freshwater systems, marine environments, ice caps, and hot 

springs. This adaptability has resulted in cyanobacteria occupying almost every habitable 

environment on Earth (Díez & Ininbergs, 2014). In addition to the historical roles filled by 

cyanobacteria, they still play crucial ecological roles today such as global carbon and nutrient 

cycling. In fact, these organisms account for 20-30% of Earth’s photosynthetic productivity (Lee 

et al., 2017). Some species can fix atmospheric nitrogen, converting it into biologically available 



 

2 

 

forms useful to other microorganisms. This aids in the growth and proliferation of these other 

microorganisms (Sahu et al., 2012).  

Beyond their ecological roles, cyanobacteria have recently attracted industrial interest, due to 

their potential applications as a new biotechnology in many fields. Researchers have explored 

cyanobacterial cell mass and their associated pigments as a source of biofuel, biofertilizers, 

pharmaceuticals, cosmetics, food colorants, food sources, and antibody labeling (Gierhart n.d., 

Nagarkar et al. nn.d., Rastogiet al., 2016). Currently, many researchers are focused on enhancing 

the variety, productivity, and concentration of cyanobacteria derived products by utilizing 

metabolically and genetically engineered strains (Saini et al., 2018). Despite these beneficial 

attributes of cyanobacteria, many challenges still exist in harnessing their full potential. In 

addition, climate change and anthropogenic impacts, such as over nutrification, due to 

agricultural runoff, dumping, and effluent from sewage treatment plants have led to an increase 

in cyanobacterial harmful algal blooms (cyanoHABs) (Brown et al., 2021). This results in 

negative impacts within aquatic ecosystems, local economies, and public health.  

1.2 Freshwater CyanoHABs: Bloom Formation, Persistence, and Impacts 

1.2.1 Formation 

Due to anthropogenic impacts and climate change, increases in frequency, duration, 

intensity, and geographical location of cyanoHABs have been observed (Shi et al., 2019). This 

has resulted in freshwater cyanoHABs becoming a growing concern worldwide, due to their 

negative effects on aquatic ecosystems, local economies, and human health. Cyanobacterial 

cyanoHABs are defined as abundances of cyanobacterial biomass that are significantly higher 

than a water bodies’ average bacterial population. Simply put, cyanoHABs are the excessive 
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growth of cyanobacteria in water (Cheung et al., 2013). Due to their extensive evolutionary 

history, cyanobacteria have many traits enabling them to adapt to climatic and anthropogenic 

impacts on water systems such as eutrophication, changing water levels, and salinization (Paerl 

& Otten, 2013). For example, many species can fix atmospheric nitrogen (dinitrogen) during 

aerobic conditions in response to certain environmental cues (Herrero et al., 2001). This provides 

cyanobacteria with a competitive advantage when the ratio of nitrogen and phosphorus is low 

and nitrogen availability is the limiting factor for phytoplankton growth (Dolman et al., 2012). 

The formation of cyanoHABs is influenced by a combination of physical, chemical, and 

biological factors. Although still an ongoing area of research, it is thought that nutrient loadings, 

light intensity, temperature, oxidative stressors, and interactions with other microbiota all 

contribute to cyanoHAB formation (Cheung et al., 2013). While cyanoHAB formation is 

complex, research has shown that high nutrient concentrations are required for cyanobacteria to 

obtain high biomasses. Specifically, phosphorus and nitrogen have been shown to be limiting 

factors in cyanoHAB formation (Andersson et al., 2015). It has been known for some time that 

phosphorus is essential for cyanoHAB formation, but more recently nitrogen has been shown to 

be a limiting nutrient in freshwater systems. Especially in water systems harboring cyanobacteria 

species without the ability to fix atmospheric nitrogen, including Microcystis and Planktothrix 

(Paerl & Otten, 2013). Additionally, research has shown that nitrogen is essential for cyanotoxin 

production (Chaffin et al., 2018). This has led to many researchers advocating for management 

of both phosphorus and nitrogen in cyanoHAB mitigations strategies (McCarthy et al., 2016). 

These nutrients can originate from various sources such as agricultural runoff, urban stormwater, 
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and wastewater discharges. Figure 1.1 illustrates the many interacting environmental variables 

contributing to CyanoHAB formation and proliferation within water systems. 

 

 
Figure 1.1 Factors involved include nutrient availability, water column transparency, water 

column mixing, temperature, and grazing (Retrieved from (Paerl & Paul, 2012)). 

 

 

1.2.2 Persistence and Influence of Climate Change 

In addition to increased nutrient loadings, research indicates climate change is another 

catalyst for cyanoHAB formation. This is because global warming has caused water 

temperatures and heavy precipitation events to increase globally (Paerl et al., 2017). 

Cyanobacteria are adapted for warm water conditions and have optimal growth rates at relatively 

high-water temperatures (25° C) and continue to show high growth rates at temperatures beyond 

this. In eutrophic waters, this provides cyanobacteria an advantage over nutrient-loving 

eukaryotic organisms, when competition is highest. As eukaryotic organisms’ growth rates begin 

to decline in response to higher water temperatures, cyanobacteria growth rates reach their 
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optima (Paerl & Otten, 2013). In addition, warmer water temperatures intensify and lengthen 

periods of vertical stratification, resulting in stratification occurring earlier in the spring and 

continuing longer into the fall (Peeters et al., 2007). Vertical stratification refers to the layering 

of water based on chemical and physical properties, such as temperature, dissolved oxygen, and 

density, relative to depth. In a typical freshwater system, vertical stratification consists of three 

main layers, these being the epilimnion, metalimnion, hypolimnion. The epilimnion is the 

uppermost layer of the water column and is directly exposed to sunlight. It is characterized by 

warmer water temperatures and higher dissolved oxygen levels. This layer supports primary 

productivity and is typically occupied by species of phytoplankton, such as cyanobacteria 

(Dodds, 2019). Many cyanoHAB forming species can exploit stratified water conditions by 

controlling their buoyancy using gas vesicles. This allows the formation of dense surface 

blooms, providing cyanobacteria access to high levels of irradiance, optimizing photosynthesis. 

Also, surface-dwelling cyanobacteria contain photoprotective pigments and UV absorbing 

compounds allowing for long term survival under intense irradiance conditions (Paerl & Paul, 

2012). Additionally, cyanobacteria may locally increase water temperatures due to their 

photosynthetic and photoprotective pigments. Both Ibelings et al. 2003 and Kahru et al. 1993 

found that surface water temperatures were higher than surrounding water temperatures when 

blooms were present. Besides water temperatures increasing globally, climate change has also 

increased the number and intensity of heavy precipitation events globally. These events trigger 

the movement of nutrients across land, leading to elevated nutrient loadings in surrounding water 

systems. In addition, extreme precipitation events can cause rapid influxes of water, resulting in 

short term dilution and flushing of cyanoHABs. Nonetheless, as discharge diminishes, water will 
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remain in these bodies for longer durations, allowing accumulated nutrient loads to be captured 

and circulated, increasing the potential of cyanoHAB formation (Paerl & Paul, 2012).  

1.2.3 Ecological and Economical Impacts 

 The formation of cyanoHABs can have negative impacts on both aquatic ecosystems and 

local economies. Ecologically, cyanoHABs can disrupt the balance of freshwater ecosystems, 

negatively impacting the organisms living within them. One of the most common consequences 

of cyanoHABs in ecosystem is the depletion of dissolved oxygen (Yan et al., 2022). As 

cyanoHABs proliferate rapidly, dense mats can be formed on the water’s surface, preventing 

sunlight from penetrating to deeper depths (Anderson et al., 2000). This leads to a decrease in 

photosynthetic activity of submerged plants and other phytoplankton, resulting in hypoxic 

conditions. Also, as cyanoHABs decompose, this fuels respiration in other species of bacteria, 

further exacerbating oxygen loss. Large fish kills can be a direct result of hypoxic layers, or due 

to changes in fish behavior in which hypoxic layers are avoided at the cost of reduced food 

sources and growth (Scavia et al., 2014). Additionally, some cyanoHABs can produce 

cyanotoxins that can be released into the water. These can be harmful to many aquatic 

organisms, such as other invertebrates, fish, and amphibians. These toxins can bioaccumulate 

within the tissues of other organisms, potentially posing risks to organisms further up the food 

chain (Zhang et al., 2007). Furthermore, as cyanoHABs dominate a freshwater system, they 

outcompete native plant species, leading to a reduction in plant habitat, and consequently 

biodiversity (Amorim & Moura, 2021). This can have cascading effects for the entire ecosystem, 

affecting all organisms that rely on the water system for survival.  
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Beyond the ecological impacts of cyanoHABs, these blooms can negatively impact local 

economies, including costs associated with fisheries, tourism, recreation, real estate, water 

treatment, and public health. Fisheries and other aquaculture industries are negatively affected by 

cyanoHABs due to large fish kills, which directly impact fish populations, and consequently the 

livelihoods of fisherman and fish farmers (Qin et al., 2010). Even non-toxic cyanoHABs can 

cause oxygen depletion resulting in hypoxic environments, or clog fish gills (Munir et al., 2022). 

This results in a reduction of catches, fish quality, and profits for fishing communities and 

seafood industries. Additionally, recreation and tourism can be negatively impacted due to 

cyanoHAB occurrences. Recreational waterbodies used for swimming, boating, fishing, and 

other water activities may be closed due to health risks associated with cyanotoxin exposure. 

Closure of these areas results in lost revenue for local businesses dependent on tourism, such as 

hotels, waterfront restaurants, and touring services. Furthermore, waterfront property values may 

decrease if cyanoHABs become persistent (Hamilton et al., 2013). Blooms can produce foul 

odors, limit recreational use, and ruin the aesthetics associated with owning a waterfront 

property. The reduction in water quality and associated health risks could deter potential buyers, 

resulting in a reduction in property value. Water treatment facilities may incur increased 

treatment costs as well. As cyanoHABs decompose, organic matter and toxins may be released, 

affecting the taste, odor, and overall quality of the drinking water. These can also increase the 

amount of chemical needed for adequate treatment, microbial growth within water supply lines, 

and disinfection by-product formation (Cheung et al., 2013). To combat this, water treatment 

facilities must invest in additional monitoring and water treatment technologies, to ensure 

effective removal of cyanobacterial cells and toxins (Anderson et al., 2000). These new additions 
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result in increased water treatment costs, leading to higher water bills for consumers. Besides the 

economic impacts already discussed, public health costs can be increased due to cyanoHAB 

events. Exposure to cyanotoxins can cause many negative short-term and long-term health 

effects (Lee et al., 2017). In cases of severe symptoms or complications, individuals may require 

hospital visits, hospitalization, treatment, and further monitoring. If treatment is required, over 

the counter or prescription medications contribute to overall healthcare expenses. To assess and 

mitigate future cyanoHABs, public health surveillance and monitoring programs must be 

established. These programs involve routine sampling and analysis for recreational bodies of 

water, contributing to overall public health expenses (Shi et al., 2019). Additionally, educating 

the public about the associated health risks of cyanoHABs is crucial for preserving public health. 

The costs associated with creating education materials and facilitating outreach events contribute 

to public health expenses as well. 

1.2.4 Effects on Microbial Communities 

Aquatic microbiomes are complex and dynamic communities of microorganisms that 

play a critical role in maintaining the health of freshwater ecosystems. For example, aquatic 

microbiomes shape the biogeochemistry of aquatic systems by processing and recycling both 

organic and inorganic matter (Marmen et al., 2021). These microbiomes are highly dependent on 

environmental conditions, such as water temperature and nutrient availability. In general, more 

diverse microbial communities have increased productivity, higher temporal stability, and longer 

nutrient retention. Therefore, biodiversity loss diminishes aquatic ecosystem’s benefits and 

services (Amorim & Moura, 2021). That said, the formation of cyanoHABs can negatively 

impact microbial communities by altering chemical and physical water features (Toporowska & 
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Pawlik-Skowrońska, 2014). CyanoHABs can cause increases in pH and redox potential, while 

decreasing light penetration through the water column, resulting in microbial biodiversity 

reduction. Besides altering environmental conditions, cyanoHABs can impact phytoplankton and 

zooplankton dynamics, by blocking energy transfer from primary producers to zooplankton (Tian 

et al., 2017). Also, grazing of zooplankton of phytoplankton can be interrupted during 

cyanoHABs due to the presence of cyanotoxins, formation of large colonies, and lower 

nutritional availability (Amorim & Moura, 2021). Additionally, Grey et al., 2000 showed that if 

the dominant phytoplankton taxa shift to be cyanobacteria, carbon assimilation by zooplankton is 

hindered, resulting in a carbon limited community. These disruptions cause imbalances within 

the microbial community, having cascading effects on aquatic ecosystem and ultimately human 

health.  

2. CyanoHABs and Implications for Human Health 

2.1 Exposure Pathways 

Figure 1.2 illustrates the main routes of exposure to cyanotoxins, which are through 

ingestion of cyanoHAB affected waters, inhalation of bioaerosols, and dermal contact (Lee et al., 

2017). Routes of exposure represented include ingestion (water and food), inhalation 

(recreational water activities and bathing), and dermal (recreation, bathing, and aquaculture). 
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Figure 1.2 Visual representation of the different routes of exposure to cyanotoxins for humans in 

freshwater environments. Retrieved from (Lee et al., 2017). 

 

 

2.1.1 Ingestion 

Ingestion is the most common route of exposure for humans to cyanotoxins. Ingestion of 

cyanotoxins can occur during recreational activities, consumption of contaminated drinking 

water, and food (Cheung et al., 2013). Individuals participating in recreational activities such as 

swimming, boating, or skiing can accidentally ingest contaminated water, although ingestion of 

contaminated drinking water and food is a more frequent route for cyanotoxin intake. If a water 

treatment facility is utilizing surface waters during a cyanoHAB event, it is possible that drinking 

water could contain cyanotoxins even after treatment. In locations without adequate water 

treatment technology, individuals could ingest both extracellular and intracellular cyanotoxins, 

providing a route for both short-term and long-term exposure (Drobac et al., 2013). Additionally, 

cyanotoxins are known to bioaccumulate in both aquatic invertebrates and vertebrates such as 

zooplankton, mollusks, crustaceans, and fish (Corbel et al., 2014). Bioaccumulation of 
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cyanotoxins in zooplankton could lead to the transfer of these toxins through the food web, 

although few studies have provided evidence of this (Lehman et al., 2010, Ferrão-Filho et al., 

2002, Ibelings et al., 2005). Bioaccumulation within the other organisms mentioned can lead to 

human ingestion, resulting in negative health effects. For example, microcystins have been 

detected in both freshwater shrimps and red crayfish (Chen & Xie, 2005, Chen & Xie, 2005). 

Additionally, cyanotoxins can accumulate within the liver, muscles, gills, guts, and kidneys of 

fish (Drobac et al., 2013). Kozlowsky-Suzuki et al., 2012 found that zooplanktivorous fish had 

exceptionally high microcystin concentrations compared to others, indicating these are of highest 

concern. Furthermore, the accumulation of cyanotoxins in agricultural crops is of recent concern. 

Spraying crops with water sourced from locations experiencing cyanoHABs could lead to the 

uptake and accumulation of cyanotoxins within plants (Corbel et al., 2014). Although research is 

ongoing, studies have suggested this is possible and warrants further investigation (Ai et al., 

2020).  

2.1.2 Inhalation and Dermal Contact 

Although inhalation and dermal contact are lesser routes of exposure for cyanotoxins 

these should not be ignored. Swimmers and individuals participating in water contact sports are 

most susceptible, with cases reported from Japan, Hawaii, Florida, and Australia. Surface 

cyanobacterial mats can be broken apart by waves. These filaments can then accumulate in 

swimmers bathing suits, having acute and negative effects. Additionally, exposure to 

cyanotoxins can occur via inhalation. Cyanobacterial mats can be broken apart by waves, 

releasing cyanoHAB associated aerosols. These aerosols have been shown to have negative 

health effects in animal models and can be transported long distances dependent on weather 
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conditions (Bilyeu et al., 2022). Also, recreational activities such as water skiing could result in 

contaminated water entering through the nasal cavity. This is of concern because intranasal 

administration of cyanotoxins in mice showed 10 times the sensitivity when compared to oral 

exposure. Therefore, the potential for cyanotoxin inhalation during recreational activities should 

not be ignored (Drobac et al., 2013).  

2.2 Cyanotoxins and Human Health Impacts 

CyanoHABs are known to produce a variety of different toxins, with several being some 

of the most toxic compounds known (Table 1.1) (Cheung et al., 2013). These can be harmful to 

microorganisms, plants, animals, and humans. Many different cyanobacteria taxa can produce 

toxins, and the same toxins can be produced by different taxa (Cheung et al., 2013). Also, some 

taxa can produce multiple types of cyanotoxins. Cyanotoxins can be placed into five distinct 

categories, these are: 1) hepatotoxins; 2) neurotoxins; 3) dermatotoxins; 4) cytotoxins and 5) 

irritant toxins (Lee et al., 2017). Cyanotoxins are placed into these categories based on their 

mechanism of toxicity. In addition to the different types of cyanotoxins, each one has structural 

variants.  

 

Table 1.1 LD50s (ppb) of different cyanotoxins for rodents (24-h intraperitoneal) in comparison to 

other well-known toxins. LD50 refers to the median lethal dose. Table adapted from (Hudnell 

2010, Cheung et al., 2013). 

 

 

Cyanotoxin LD50 (Cyanotoxin) Comparison LD50 (Comparison) 

Microcystin-LR 50 Sarin 218 

Cylindrospermopsin 300/180 Strychnine 2500/980 

Anatoxin-a 200 Curare 500 

Anatoxin-a(s) 20 Cobra Venom 185 

Saxitoxin 10 Ricin 22 
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2.2.1 Hepatotoxins 

The most common cyanotoxin encountered globally, a cyclic heptapeptide hepatotoxin 

known as microcystin (MC), has more than 240 structural variants (Spoof & Catherine, 2016). 

Out of these, the best known and most toxic variant is MC-LR, which has leucine and arginine 

residues in amino acid positions 2 and 4 (Svirčev et al., 2017). Microcystins are produced by 

many different cyanobacterial taxa, including Microcystis, Dolichospermum, Planktothrix, 

Anabaenopsis, Nostoc, and Aphanizomenon. Cylindrospermopsin is another common 

hepatotoxin, and is a tricyclic alkaloid, consisting of a tricyclic guanidine moiety, 

hydroxymethyluracil, and sulfate. These are characterized as being water soluble and stable 

when exposed to UV light (Westrick et al., 2010). Cylindrospermopsin is produced by 

Cylindrospermopsis, Aphaznizomenon, Dolichospermum, Lyngbya, Phaphidiopsis, and 

Umezakia (Lee et al., 2017). A third hepatotoxin, referred to as nodularins, are cyclic 

pentapeptides containing d-MeAsp, L-arginine, Adda, D-glutamate and N-

methyldehydrobutyrine (Ufelmann et al., 2012, Mazur-Marzec et al., 2006). These toxins are 

mainly reported in Australia, New Zealand, and the Baltic Sea. The biosynthesis of nodularins is 

performed non-ribosomally, like mechanisms involved in MC production. Currently, 9 variants 

of this toxin have been identified, with these only being produced by Nodularia spumigena 

(Merel et al., 2013). 

The health effects associated with cyanoHAB exposure are dependent on the 

concentration of cyanotoxin, route of exposure, and type of cyanotoxin. Additionally, 

cyanotoxins can have both acute and chronic effects on human health (Cheung et al., 2013). In 

the United States, the first documented cases of human illnesses due to cyanoHAB exposure took 
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place in Charleston, West Virginia in 1931, where 5000–8000 people experienced gastroenteritis 

after using water sourced from the Ohio River (Svirčev et al., 2017). The cyanotoxin responsible 

for this was a hepatotoxin, microcystin. Generally, cyanobacterial hepatotoxins are unable to 

penetrate vertebrate cell membranes. This requires the toxins be taken up via the bile acid 

transport system found in liver cells and cells lining the inside of the small intestine (Runnegar et 

al., 1991). Due to this, the toxicity of these cyanotoxins is confined to organs that have the 

organic anion transporter expressed on their cell membranes, such as the liver (Corbel et al., 

2014). This results in symptoms, such as weakness, diarrhea, vomiting, abdominal pain, liver 

inflammation, pneumonia, dermatitis, and liver failure leading to death (Lee et al., 2017, Lopez 

et al., 2008). Batista et al. 2003 found that treating human liver cells with microcystins led to 

blebbing and separation. Additionally, there is evidence that microcystins aid in the formation of 

reactive oxygen species causing DNA damage, promote tumor growth, and have negative 

impacts on reproduction via disruption of the endocrine system (Zegura et al. 2003, Li et al. 

2016, Chen et al. 2016). Studies conducted on chronic exposure of microcystins have shown 

high correlations between microcystin exposure and liver or colon cancer incidents (Lee et al., 

2017). Additionally, a study conducted by Zhang et al. 2015 revealed that the risk of non-

alcoholic liver disease deaths was significantly correlated with cyanoHAB bloom coverage in the 

United States. Cylindrospermopsin, another hepatotoxin produced by cyanoHABs, also affects 

the liver. Following ingestion, the toxin primarily affects the liver by inducing irreversible 

inhibition of protein synthesis, ultimately culminating in cell death. The most famous instance of 

cylindrospermopsin intoxication occurred in Australia in 1979. Algaecide was used to eradicate a 

cyanoHAB in a water treatment facilities source water. This inadvertently led to the release of 
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intracellular toxins. Consequently, over 100 children were admitted to the nearby hospital and 

treated for gastroenteritis (Merel et al., 2013). 

2.2.2 Neurotoxins 

In addition to hepatotoxins, cyanoHABs can produce neurotoxins. Three neurotoxins associated 

with cyanoHABs are anatoxin-a, saxitoxins, and β-N-methylaminoL-alanine (BMAA). 

Anatoxin-a is a bicyclic secondary amine, has the smallest molecular mass of all cyanotoxins, 

contains two functional groups susceptible to oxidation, is soluble in most natural water systems, 

and unstable in most environments with a half-life less than 24 hours (Westrick et al., 2010). 

This toxin can be produced by Dolichospermum, Planktothrix, Aphanizomenon, 

Cylindrospermopsis, and Oscillatoria (Lee et al., 2017). Although this toxin is extremely potent, 

comparable to cobra venom or curare (Table 1.1), it is studied less than other toxins due to its 

instability in natural environments (Cheung et al., 2013). Saxitoxins are neurotoxins produced by 

both freshwater and saltwater cyanobacteria. These toxins are commonly associated with “red 

tides” and shellfish poisonings in saltwater environments. Saxitoxins are tricyclic and can be 

non-sulphated, monosulfonated, or disulfonated (Merel et al., 2013). In freshwater systems, 

cyanobacteria taxa that perform biosynthesis of these include Aphanizomenon, Dolichospermum, 

Lyngbya, and Cylindrospermopsis (Westrick et al., 2010). These toxins are water soluble and can 

persist in freshwater environments for over 90 days. High water temperatures can chemically 

alter these toxins into more toxic variants (Merel et al., 2013). A third neurotoxin produced by 

cyanoHABs, BMAA, is a nonproteinogenic amino acid and is far less potent than anatoxins or 

saxitoxins (Sivonen and Jones, 1999). While research on BMAA is limited, recent research 
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indicates that this toxin may be produced by every recognized cyanobacterium group (Merel et 

al., 2013). 

Acute exposure to cyanobacterial neurotoxins can cause death within a few minutes to 

hours, depending on the weight and overall health of the organism (Lee et al., 2017). Anatoxin-a, 

a common cyanobacterial neurotoxin, is a potent neuromuscular blocking agent that affects both 

nicotinic and muscarinic acetyl cholineacetylcholine receptors (Corbel et al., 2014). This toxin 

mimics acetylcholine but is not broken down by acetylcholinesterase, leading to overstimulation 

of muscles and consequently, muscle paralysis. If respiratory muscles are affected, respiratory 

arrest can occur, starving the brain of oxygen and leading to death (Corbel et al., 2014, Lee et al., 

2017). Saxitoxins, produced by both marine and freshwater cyanobacteria, block sodium 

channels along nerve cells, inhibiting the transmission of nerve impulses. This results in the 

under stimulation of muscles, including those required for respiration, inducing respiratory 

paralysis (Christensen & Khan, 2020). Other less acute effects associated with saxitoxin 

exposure include nausea and weakness. Additionally, Sun et al., 2021 evaluated the neurotoxicity 

effects of long-term low-dose saxitoxin exposure via drinking water in mice. The results of this 

study showed that exposed mice had decreased neuronal cells and thinner pyramidal cell layers 

in the hippocampal CA1 region when compared to control mice, suggesting brain neuronal 

damage. In addition, a total of 29 proteins were significantly altered, some of which indicated 

that chronic, low dose saxitoxin exposure can cause neurol inhibition, resulting in spatial 

memory impairment. However, the chronic effects of saxitoxin exposure, specifically 

carcinogenic and reproductive effects, are understudied (Lee et al., 2017). When compared to 

other cyanotoxin toxicity levels, saxitoxin is the most potent freshwater cyanotoxin, causing an 
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annual estimated 2000 cases of paralytic shellfish poisoning globally, with a mortality rate of 

15% (Pearson et al., 2010). Reports of illnesses related to saxitoxin contaminated food are 

increasing globally, with many human intoxications resulting in numbness, complete, paralysis, 

and even death (Lee et al., 2017, Kuiper-Goodman et al., 1999). However, no intoxication 

through drinking water has been documented so far (Merel et al., 2013). BMAA is an additional 

neurotoxin associated with cyanoHABs. In humans, BMAA mostly acts as a glutamate agonist, 

altering neural communication, regulation, and memory formation (Corbel et al., 2014). In 

addition, it could catalyze neurodegeneration through misfolding of intraneuronal proteins 

(Banack et al., 2010). BMAA is known to cause different neurodegenerative disorders, including 

the amyotrophic lateral sclerosis/parkinsonism dementia complex in Guam, and Alzheimer's 

disease (Merel et al., 2013). For example, cycad plants produce BMAA and are consumed by 

flying fox bats in Guam. The Chamarro people of Guam consume flying fox bats regularly in 

their diet. As a result, many Chamarro have developed Parkinsonism dementia (Cox et al. 2005, 

Lee et al., 2017). However, BMAA is understudied, and more research is needed to understand 

its presence in human diets globally (Lee et al., 2017). 

2.2.3 Dermatotoxins, Cytotoxins, and Irritant Toxins 

Additional toxins produced by cyanoHABs include dermatotoxins, cytotoxins, and irritant 

toxins. Dermatoxins are mainly produced by Lyngbya, Oscillatoria, and Schizothrix. These 

include both aplysiatoxins and lyngybyatoxins and have only been detected in marine waters 

(Merel et al., 2013). These toxins are acute, and mainly affect swimmers coming into contact 

with benthic cyanobacteria species, causing severe dermatitis (Sivonen and Jones, 1999). 

Cytotoxins include additional toxins produced by cyanobacteria that are harmful to cells. These 
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are not only effective against eukaryotic cells, but also effective against viruses and other 

bacteria, including cyanobacteria. This group of toxins has a variety of different chemical 

structures and new bioactive compounds are still being found (Sivonen and Jones, 1999). Irritant 

toxins, also referred to as lipopolysaccharides, are found in the outer membranes of 

cyanobacterial cell walls. Research is ongoing, but the few results available suggest that 

cyanobacterial lipopolysaccharides are equal to, or less toxic than lipopolysaccharides found in 

other bacteria such as Salmonella spp and Escherichia coli (Lee et al., 2017). Additionally, 

research has shown that most of the lipopolysaccharides present during cyanoHABs originate 

from bacteria other than cyanobacteria (Sivonen and Jones, 1999).  

These toxins are usually characterized as having acute effects. For example, swimmers 

encountering dermatotoxins producing cyanoHABs develop severe contact dermatitis rapidly. 

Within a few minutes to a few hours itching a burning of the skin occurs, followed by visible 

redness and dermatitis (Drobac et al., 2013). Additionally, oral and gastrointestinal inflammation 

can occur causing diarrhea in exposed individuals (Merel et al., 2013). Lipopolysaccharides can 

have many negative effects in humans such as allergies, endotoxemia, gastrointestinal disease, 

and autoimmune disease (Lee et al., 2017). Also, research has shown that lipopolysaccharides 

are significantly associated with type 2 diabetes and obesity (Cani et al., 2007). Furthermore, 

these toxins are thought to have a tumor promoting factor and can cause liver damage resulting 

in decreased liver function (Lee et al., 2017). These results indicate that increases in cyanoHABs 

globally and their associated toxins can have negative effects for human health.  
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3. Current Regulations and Guidelines 

Due to the increased frequency and duration of cyanoHABs and associated toxins in 

waterways globally, the World Health Organization (WHO) has established guidelines for 

cyanobacteria and cyanotoxin levels in recreational waters (see Table.1.2). WHO derived 

microcystin levels based on cyanobacterial cell density. 

 

 

Table 1.2 WHO established guidelines for cyanobacteria and cyanotoxin levels in recreational 

waters. Adapted from (Recommended Human Health Recreational Ambient Water Quality 

Criteria or Swimming Advisories for Microcystins and Cylindrospermopsin, 2019). 

 
 

These guidelines are based on cyanobacterial cell counts and chlorophyll-a (chl-a) levels (US 

EPA, 2018). Soon after, other countries and states created their own guidelines to better suit their 

unique situations. For example, in the United States, the 1996 Safe Drinking Water Act 

(SDWA), requires that the US EPA publish a list of contaminants every five years that are 

known to occur and may need regulation in public water systems. This list of contaminants is 

called the Contaminant Candidate List (CCL) and is used to identify and prioritize contaminants 

for regulatory decision making and data collection needs (US EPA, 2016). In 1998, the US EPA 

listed cyanobacteria on CCL1 (1998) and CCL2 (2005). For CCL3 (2009), CCL4 (2016), and 

CCL5 (2022) cyanotoxins were added, including microcystins, cylindrospermopsin, anatoxin-a, 

Relative Probability 

of Acute Health 

Effects 

Cyanobacteria 

(Cells/mL) 

Chl-a (µg/L) Estimated 

Microcystin Levels 

(µg/L) 

Low < 20,000 < 10 < 10 

Moderate 20,000-100,000 10-50 10-20 

High >100,000-10,000,000 50-50,000 20-2,000 

Very High > 10,000,000 >5,000 > 2,000 
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and saxitoxin (US EPA, 2016). Furthermore, in the United States, national and state water 

quality agencies have developed monitoring and management frameworks to mitigate the 

hazardous effects of cyanoHABs and associated toxins for the protection of public health. In 

2015, the United States Environmental Protection Agency (EPA) established health advisories 

for the cyanotoxins cylindrospermopsin and microcystins in drinking water (Mehinto et al., 

2021). These advisories are based on a 10-day exposure period and are accepted as adequate for 

mitigating the potential health effects of cyanotoxin exposure. For microcystins and 

cylindrospermopsins, the 10-day thresholds for bottle-fed infants and pre-school children are 0.7 

µg/L and 0.3 µg/L respectively. For school age children and adults, these thresholds are slightly 

higher, with thresholds of 3.0 µg/L for cylindrospermopsins and 1.6 µg/L for microcystins (US 

EPA, 2018). Several years later, in 2019, the EPA set water quality thresholds for recreational 

waters for microcystins and cylindrospermopsins at 8 µg/L and 15 µg/L respectively (US EPA, 

2019). However, these guidelines vary from state to state. To view all state recreational advisory 

thresholds, including those set in Ohio, see Table A.1. Due to the health risks linked to the 

exposure of cyanotoxins, the Ohio EPA continually monitors all public water systems (PWS) for 

the protection of public health. 

4. Detection and Monitoring Techniques 

4.1 Cyanobacteria Detection and Monitoring 

4.1.1 Traditional Methods and On-site Monitoring Networks 

Generally speaking, there are four main ways that HABs are monitored: 1) ground 

sampling and analysis, 2) on-site monitoring network systems 3) satellite remote sensing and 4) 

airborne remote sensing (Lyu et al., 2017). Each of these has benefits and shortcomings, so a 



 

21 

 

multi-scale and multi-modal approach is best for adequate cyanoHAB monitoring (Figure 1.3). 

Ground sampling and lab analysis is the traditional monitoring method for HABs. This method 

requires an individual to collect a water sample, transport the sample to a laboratory, and 

perform analysis. The most common analyses include quantification of chlorophyll-a (chl-a) and 

cyanotoxins using high performance liquid chromatography (HPLC) and immunoassays (most 

common assay is ELISA) respectively (Chorus, 2021). This process requires transportation, 

vehicle costs, tools for sample collection, shipping costs, lab supplies, waste generation, and 

multiple days to analyze the samples (Silvarrey Barruffa et al., 2021). There is general consensus 

among water resource managers that traditional ground sampling methods do not provide an 

adequate number of samples or frequency of sampling to accurately assess risks posed by HABs 

(Zhang et al., 2019). However, traditional water sampling methods do allow for cyanotoxin 

identification and quantification. Additionally, some methods, such as liquid chromatography 

tandem mass spectrometry can quantify specific cyanotoxin congeners with minimal interference 

(Douglas Greene et al., 2021). On-site monitoring network systems utilize automatic monitoring 

technology, such as monitoring buoys with chl-a and PC sensors, to collect water quality data. 

This method has the advantage of being automated, but the data collected only represents water 

quality near that station and is not representative of the entire water body.  

4.1.2 Satellite and Airborne Remote Sensing 

Satellite remote sensing utilizes satellites equipped with multispectral or hyperspectral 

sensors for measuring indicative parameters of water quality such as chl-a, PC, and color 

dissolved organic matter (CDOM). Although satellites can handle the spatial variability of 

HABs, unlike the other methods mentioned previously, there are two main limitations when 
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utilizing satellites. The first is that satellites cannot provide the necessary temporal flexibility to 

adequately monitor HABs. This is because atmospheric effects (i.e. extensive cloud cover, sun 

position, shadows) can negatively affect satellite image quality, resulting in inaccurate 

estimations of the desired water quality parameter. This is a significant problem for high latitude 

areas because nearly 50% of the year is cloudy and water bodies are covered with snow for 

approximately seven months of the year (El-Alem et al., 2021). In addition, satellites have 

routine revisitation times, meaning users are unable to acquire imagery as needed. Popular 

satellite platforms such as Moderate Resolution Imaging Spectroradiometer (MODIS) and 

Medium Resolution Imaging Spectrometer (MERIS) have revisitation times of 16 and 35 days, 

respectively (Wu et al., 2019). This results in water resource managers having no information for 

extended periods of time (Cillero Castro et al., 2020). The second disadvantage of satellite 

imagery is that the resolution can be too coarse for monitoring smaller bodies of water. The 

fourth way that HABs are currently monitored is using airborne remote sensing. Traditionally 

this method requires the use of a manned aerial vehicle equipped with the necessary sensor. 

Manned aerial vehicles can collect imagery at much higher resolutions than satellites and can fly 

at lower altitudes to avoid negative effects on data acquisition caused by atmospheric conditions. 

Although airborne remote sensing has these advantages, their use is limited due to high costs, the 

level of intrusion on wildlife, associated dangers due to abrupt changes in weather conditions, 

and the absence of a robust operational infrastructure. In recent years, unmanned aerial vehicles 

(UAVs) have emerged as a low-cost, safe, and flexible option in airborne remote sensing (Gaffey 

& Bhardwaj, 2020). UAVs can be deployed as needed, can collect imagery with spatial 

resolutions at centimeter scale, and fly at lower altitudes avoiding negative atmospheric effects 
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such as cloud cover. In addition, UAVs can be equipped with many different attachments 

Red/Green/Blue cameras (RGB), thermal, Light Detection and Ranging (LiDAR), multispectral, 

hyperspectral, sampling devices, water quality sensors, etc.) per monitoring needs. However, 

UAVs have the disadvantages of water image processing being difficult, a lack of standardized 

methods, and limited spatial coverage when compared to other remote sensing techniques (El-

Alem et al., 2021). Nonetheless, in recent years UAVs have increasingly been used in HAB 

research and assessed as an early warning monitoring system for protecting public health. 

 

 

 
Figure 1.3 Summary of current cyanobacteria monitoring techniques. The advantages and 

disadvantages of each are highlighted. Figure design adapted from (Douglas Greene et al., 2021). 
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4.2 Cyanotoxin Detection and Monitoring 

4.2.1 Biological Approaches 

A wide range of methods are available for detecting and quantifying cyanotoxins in 

environmental samples, each varying widely in sensitivity, rapidity, cost, and level of expertise 

required to implement the method (Bone, 2019). Methods available can be placed into two 

distinct categories, these being biological and physicochemical approaches. Biological 

approaches include immunological and biochemical assays (Kaushik & Balasubramanian, 2013, 

Merel et al., 2013). Currently, a popular method for detection and quantification of cyanotoxins 

is the use of commercially available immunological assays such as Enzyme-Linked 

ImmunoSorbant Assay (ELISA) (Bone, 2019). The benefits of this method are that it is 

extremely sensitive and can distinguish between different types of toxins (Kaushik & 

Balasubramanian, 2013). However, detection methods based on ELISA have some limitations 

such as the inability to distinguish between cyanotoxin variants and interference from other 

compounds in the sample can result in overestimation of cyanotoxins (Fayad et al., 2015). 

Another biological approach for cyanotoxin quantification are biochemical assays. This approach 

takes advantage of microcystins and nodularins being potent inhibitors of protein phosphatase 

and is referred to as a protein phosphate inhibition assay (PPIA) (Moore et al., 2016). ELISA kits 

are available for this method, but the toxin detection technique differs. For ELISA kits using 

immunological assays, toxins are detected and measured through antibody screening, while 

ELISA kits utilizing PPIA measure the rate of formation of p-nitrophenol and measures all 

protein phosphatases inhibitors present in a sample. To do this, an aliquot of the sample being 

tested is exposed to the enzyme and then incubated with the relevant substrate. Absorbance of 
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the mixture is then measured at a designated wavelength, allowing detection of the substrate and 

enzymatic activity. Enzymatic activity is inversely related to toxin concentrations (Merel et al., 

2013). Benefits of this method are that it allows for toxin detection in many samples within a few 

hours and is very sensitive. Some drawbacks to this method are that it can only detect 

microcystins and nodularins but cannot distinguish between them (Sundaravadivelu et al., 2022). 

Additionally, it is not possible to distinguish between toxin variants. Furthermore, PPIA 

measurements can be influenced by other compounds within the sample of interest, leading to 

under or overestimation of cyanotoxins (Koreivienė & Belous, 2012). Research has shown that 

on average, PPIA results for microcystin concentrations are lower than those measured using 

ELISA (Gaget et al., 2017). It is suggested to use a combination of biological approaches to 

ensure accurate results regarding cyanotoxin concentrations (Bone, 2019).  

4.2.2 Physiochemical Approaches 

Physiochemical approaches for detecting cyanotoxins include the use of  UV 

absorbance/fluorescence and mass spectrometric techniques. Before conducting either of these, it 

is common to perform some type of separation technique, allowing distinction between several 

different toxins in a single analysis (Merel et al., 2013). Common separation techniques include 

liquid (LC) or gas chromatographic (GC) techniques (Koreivienė & Belous, 2012). Out of the 

separation methods, liquid chromatographic techniques are the most common (Sundaravadivelu 

et al., 2022). Once separation is complete, an option for cyanotoxin quantification is the use of 

absorbance or fluorescence techniques. This method was one of the first techniques implemented 

for cyanotoxin detection, and measures cyanotoxins using characteristic absorbances. UV 

absorbance offers limited sensitivity and low specificity since the UV spectra of some 
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cyanotoxins are very similar (Sundaravadivelu et al., 2022). Furthermore, as with some of the 

biological techniques mentioned previously, compounds within samples can affect quantification 

accuracy (Merel et al., 2013). To improve sensitivity, detection by fluorescence can be used. 

Although, a drawback to this method is that a derivatizing reagent must be added before sample 

analysis since cyanotoxins do not fluoresce naturally (Kaushik & Balasubramanian, 2013, 

Sundaravadivelu et al., 2022). This adds an additional step during sample preparation. A more 

current physiochemical approach used for cyanotoxin quantification are mass spectrometric 

methods (MS). These methods directly measure the concentrations of toxins, by comparing 

target compounds with analytical standards. Methods that use LC combined with MS can 

precisely and accurately quantify specific cyanotoxin congeners if standards are available, with 

minimal sample matrix interference (Bone, 2019). Currently, mass spectrometric methods are the 

physicochemical method of choice for quantitative analysis of cyanobacterial toxins within 

complex matrices due to their specificity, sensitivity, and rapidity. Out of these, liquid 

chromatography-tandem mass spectrometry (LC–MS/MS) is the most common chromatographic 

method used for cyanotoxin detection (Sundaravadivelu et al., 2022). This is a method developed 

by the EPA for detection of cyanotoxins in drinking water (EPA Method 544). This method 

reduces the chances of false positive identifications, by utilizing compounds’ features, such as 

charge and mass, as well as fragmentation patterns (Bone, 2019). Drawbacks to this method are 

that it requires expensive equipment, highly qualified staff, and a relatively long analysis time 

(Koreivienė & Belous, 2012). Although many techniques are available for cyanotoxin 

quantification, there is a need for automated sampling and detection. A promising solution to this 

is the use of biosensors, but currently these are fluorescence-based like remote sensing systems, 
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and not mature enough to replace traditional methods (Kaushik & Balasubramanian, 2013, 

Miglione et al., 2021). 

5. UAVs as a New Tool for HAB Monitoring 

5.1 Applications of Drones for Protecting Public Health  

UAVs have been applied for monitoring of HABs in many ways due to their flexibility, 

relatively low costs, and ease in data collection. Table A.2 summarizes studies from 2017-

present that utilized UAVs for HAB monitoring. In addition, the potential of each studies’ results 

for informing public health policies is discussed. Studies are listed in chronological order. UAVs 

were utilized in research globally, with South Korea being the most popular. Figure 1.4 shows 

the geographical locations for all the studies discussed here. In addition to the differing 

geographical locations, many different water bodies were assessed using UAVs, including both 

saltwater and freshwater sources. Figure 1.5 shows the different types of water bodies assessed. 

The various areas of study and objectives of the studies included here highlight the broad range 

of applications for UAVs. For example, many of the studies were focused on accurately 

quantifying photosynthetic pigments related to cyanobacteria presence, but the pigment of choice 

varied between studies. Photosynthetic pigments selected include chl-a, PC, color dissolved 

organic matter, total suspended solids, lutein, fucoxanthin, and zeaxanthin (Pyo et al., 2022). 

Some of these studies combined UAV imagery data with water quality data to create predictive 

models (Hong et al., 2021). Almost all these studies mentioned different techniques used during 

image correction and analysis and stated that a standardized processing workflow is needed. 

(Windle & Silsbe, 2021) focused on this need and evaluated four different approaches for 

removing sun glint in UAV imagery, with the goal of improving UAV derived chl-a estimates. 
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Other studies were focused on combining UAV imagery data with more traditional remote 

sensing methods, such as satellite imagery, to create a multi-scale monitoring tool (Cillero Castro 

et al., 2020, El-Alem et al., 2021). This framework allows for both regional and local monitoring. 

Satellite imagery provides regional data while UAV imagery provides local data on HABs. A 

few studies utilized UAVs for collecting environmental samples such as water and aerosol 

samples. These studies reported that UAVs drastically reduced the time needed for sample 

collection (Bilyeu et al., 2022, Hanlon et al., 2022, Kimura et al., 2019). Other, less prominent 

areas of research utilized UAVs to designate sampling locations or to validate data acquired 

using novel methods of HAB detection (Stoyneva-Gärtner et al., 2020, Son et al., 2020). A single 

study utilized a UAV to detect, determine the direction, and velocity of HABs near a desalination 

plant (Kim et al., 2019). This provided the desalination plant with a real-time monitoring tool, 

allowing the plant to make better informed decisions. To assess the extent of HABs, UAVs were 

applied in many ways. Some studies had multiple uses for the UAV, while others did not. Figure 

1.6 represents the different purposes of UAVs in these studies. If a study used an UAV for 

multiple purposes, all purposes were included. The most popular application of UAVs in these 

studies was for chl-a estimation. 
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Figure 1.4 Geographical distribution of studies utilizing UAVs for HAB research. 
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Figure 1.5 The different types of water bodies researched in the studies. “WW Lagoon” stands 

for “Waste-water Lagoon”. If a study conducted research on multiple types of water bodies, all 

were included. 
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Note: CDOM stands for “color dissolved organic matter”, CC for “cyanobacteria concentration”, TSS for “total suspended solids”, 

DOC for “dissolved organic carbon”, SD for “secchi disk depth”, TN for “total nitrogen”, and TP for “total phosphorus”. 

 

Figure 1.6 Represents the different research areas from all studies included. If a paper had multiple areas of focus, all were included. 
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5.1.1 Studies Focused on Chl-a  

Chl-a estimation was by far the most common application for UAVs in HAB research, 

despite the lack of standardization and difficulties in image processing. Out of the 27 studies 

included, 16 performed some type of chl-a analysis. Of those 16, seven focused solely on chl-a 

estimation and did not assess other parameters using an UAV. As mentioned previously, there is 

a need to standardize UAV imagery processing, so a few studies implemented novel techniques 

to retrieve chl-a estimations based on corrected reflectance measurements. (Shang et al., 2017) 

developed a novel approach for obtaining remote sensing reflectance (Rrs) in a nearshore 

environment when using UAVs equipped with spectroradiometers. Simply put, this approach 

reduces the error in derived Rrs by accounting for environmental interference within the imagery 

(i.e atmospheric scattering, wave white caps, moving clouds). Before deriving Rrs, a two-step 

quality control method was performed to remove outliers, by first implementing wavelet 

transform (Ebadi & Shafri, 2015) and then removing land data. A novel radiometric technique 

was also implemented by (Cheng et al., 2020) when using UAVs equipped with RGB digital 

cameras. Raw digital number (DN) values were converted to corrected DN utilizing a calibration 

panel. These values were then used to derive chl-a concentrations. (Shang et al., 2017) converted 

UAV derived Rrs to chl-a concentrations utilizing an empirical algorithm. The difference 

between UAV estimates and in situ measurements was <20%. This deviation was much lower 

than that between MODIS and in situ measurements, which had an average error of 136%. 

(Cheng et al., 2020) derived chl-a concentrations based on a linear, power, and exponential 

regressions between in situ chl-a concentrations and water reflectance ratios between two bands. 
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Six band ratio combinations were evaluated. The results showed that red/blue is the optimal band 

ratio for estimation of chl-a when using a RGB digital camera. In addition, the model’s 

prediction is less satisfactory for chl-a concentrations greater than 15-20 μg/L. Both studies 

concluded that UAVs are promising tools for more effective HAB early warning systems and 

provide a basis for risk assessment during HAB outbreaks. Future research should focus on 

standardizing and validating imagery processing workflows.  

Three studies focused on chl-a estimations utilizing UAVs equipped with multispectral 

cameras. The first created a chl-a estimation algorithm using the relationship between Rrs of 

each wavelength observed by the multispectral sensor on the UAV and in-situ chl-a 

measurements (Baek et al., 2019). This relationship was derived using a multiple linear 

regression model. Once the new chl-a estimation algorithm was applied to the UAV imagery, 

UAV and in-situ chl-a values had high agreement. The correlation between these values was 0.94 

and had a root mean square error (RMSE) of approximately 0.8 μg L-1. Another study used a 

linear regression model to examine the relationship between chl-a concentrations and the 

normalized difference vegetation index (NDVI) (Choo et al., 2018). The results showed that in-

situ chl-a concentrations agreed well with NDVI values, with R2 of 0.7. The third study defined 

algal concentrations with three camera outputs, light level, irradiance, and reflectance (Tóth et 

al., 2021). Chl-a concentrations were determined using blue/green and near infrared (NIR)/red 

ratios. A first order equation was established between the two ratios and laboratory derived chl-a 

values. A multiplier that would produce a perfectly accurate lab result was obtained and applied 

to all camera output and ratio combinations. The deviation from the laboratory and UAV derived 

chl-a values was analyzed. It is important to note, this study was evaluating multiple water 
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bodies with different physical characteristics. This required the measurements be split into 5 

distinct areas and fitting the model for each of these areas. Results showed that the highest 

correlation coefficient was obtained when using blue/green ratio-based light levels. This study 

also highlighted the UAVs efficiency, showing approximately a 50% reduction in required time 

between UAV and laboratory measurements. All three studies concluded that UAVs are 

beneficial tools for water quality monitoring, but that future research is needed to validate these 

techniques.  

Optical sensors with the ability to estimate chl-a values are gaining popularity in water 

resource management but are limited by data availability and locality when developing models. 

Most models need to be reparametrized from water body to water body. With this knowledge, 

(El-Alem et al., 2021) developed a UAV data-based model for chl-a estimation and applied it to 

Sentinel-2 imagery without reparameterization. To do this, an ensemble-based system algorithm 

was used to train the model. Three lakes with different trophic statuses underwent in-situ 

sampling, to provide a wide range of in situ chl-a measurements for model calibration. In 

addition, a blind dataset was created using 94 chl-a data sampling points across 89 waterbodies. 

This approach was evaluated at both a local and regional scale utilizing cross-validation and the 

blind dataset respectively. It is important to note, UAV imagery underwent unique pre-

processing steps to make it comparable to Sentinel-2 imagery. Briefly, these steps were 1) 

geometric and radiometric correction 2) upscaling UAV imagery to equal Sentinel-2 imagery 

resolution 3) Sentinel-2 band simulation and 4) Sentinel bands reflectance computation. In 

another study, a multi-scale and multi-sensor monitoring tool was developed using multiple 

multispectral satellite sensors, UAV equipped with multispectral sensor, and in situ sampling. 
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Empirical models were developed for retrieving chl-a values for all types of imagery. Linear 

relationships between Rrs at different wavelengths and in situ chl-a data were derived. Sixteen 

different spectral band combinations were evaluated (Cillero Castro et al., 2020). To statistically 

evaluate model performance, both studies utilized RMSE and bias. In addition to these, Nash 

criterion and relative error were applied by (El-Alem et al., 2021), while normalized root mean 

square error (NMSE) and mean absolute percentage error (MAPE) were applied by (Cillero 

Castro et al., 2020). Both studies found the performance of their models satisfactory, but it is 

necessary to have a large, diverse data set for adequate model training. Also, model performance 

was lower when estimating higher chl-a values. In addition, turbid waters make chl-a estimation 

difficult. Future research should be on developing algorithms calibrated with a higher, broader 

range of chl-a values. These methods provide tools to accurately estimate and predict chl-a in 

water bodies at local and regional scales. This could allow public health resources to be 

dispersed to afflicted locations in a timelier manner.   

5.1.2 Studies Focused on Phycocyanin 

Although PC is more indicative of cyanobacterial presence, less studies focused on PC 

estimation (Almuhtaram et al., 2021). This is because most sensors do not have the spectral 

resolution necessary for estimating PC concentrations. Sensors that have this capability are 

usually hyperspectral, resulting in an increase in cost and UAV carrying capacity requirements. 

All studies estimating PC also estimated chl-a concentrations (Aguirre-Gómez et al., 2017, 

Kwon et al., 2020, Hong et al., 2021). In addition to PC and chl-a, one study evaluated other 

pigment concentrations such as lutein, fucoxanthin, and zeaxanthin (Pyo et al., 2022). One study 

utilized an UAV equipped with an RGB sensor for PC concentration estimation. Briefly, this 
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process utilized the PC absorption peak at 619 nm in combination with in-situ hyperspectral 

radiometer measurements and cyanobacterial lab analysis. Mean value maps were produced with 

the inverse distance weighting method for the PC absorption peak. This method views non-

sampled locations as a function of values gathered from sampled locations within a designated 

radius (Aguirre-Gómez et al., 2017). The results indicated that UAVs combined with in-situ can 

be a powerful tool for detecting and predicting HABs in water reservoirs. These methods could 

be applied to generate predictive spatial maps of HABs, allowing for proactive decisions to be 

made by public health officials. In addition, this method uses an RGB sensor, which is a cheaper 

option than a multispectral or hyperspectral sensor. 

Three studies used hyperspectral sensors for PC estimation. (Kwon et al., 2020) explored 

how diel vertical migration of cyanobacteria may affect UAV derived PC estimations. To do this, 

a vertical pigment concentration profile was created for surface and three subsurface depths 

utilizing a portable Rrs sensor and UAV surface reflectance. Then bio-optical algorithms were 

developed and compared. The best performing bio-optical algorithm was used to determine 

spatial and temporal distribution of PC. A two-band ratio algorithm using the 709 and 620 nm 

band was used to estimate PC pigment concentration. A PC distribution map was generated 

using a linear-regression-based bio-optical algorithm from UAV surface-reflectance data, 

portable Rrs sensor PC concentrations, and cumulative PC concentration. Both (Pyo et al., 2022) 

and (Hong et al., 2021) applied deep learning models to UAV hyperspectral data for estimating 

PC concentrations. Similar to (Kwon et al., 2020), (Hong et al., 2021) was interested in 

monitoring the vertical distribution of PC using UAV data. To do this, four different deep neural 

network models were applied to estimate the vertical distribution of PC. These models used 
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UAV and meteorological data as input datasets and provided vertical water quality profile data as 

the output dataset. After hyperparameter optimization, the trained models were applied to UAV 

imagery to map PC spatial distribution. (Pyo et al., 2022) applied a one-dimensional 

convolutional neural network to estimate PC concentrations, along with chl-a, lutein, 

fucoxanthin, and zeaxanthin. After training, the model was applied to UAV reflectance maps to 

generate an absorption coefficient map. Then, drone input maps with pixels containing 

reflectance and absorption spectra were applied to the trained deep learning model to produce 

spatial distribution maps for the pigments of interest. Both studies implementing deep learning 

models utilized R2 and RMSE to assess model performance. (Hong et al., 2021) used MAPE, 

MAE, and Wilmote Agreement Index (WAI) additionally. All three studies state that UAVs 

equipped with hyperspectral sensors are useful for analyzing algal phenomenon both quantitively 

and qualitatively.  

5.1.3 Studies with Other Applications 

The remaining 16 studies applied UAVs for HAB monitoring by focusing on parameters 

other than chl-a and PC, although some studies chose to assess these as well. These can be 

divided into 5 broad categories being microcystin evaluation, HAB sampling, HAB detection, 

algal biomass/concentration estimation, and evaluation of different water constituents. A single 

paper attempted predicting microcystin concentration distributions using a UAV equipped with a 

multispectral sensor. To do this, in situ and remote sensed values were analyzed and correlations 

drawn between chl-a content and microcystin concentrations for seven vulnerable Iowa lakes. 

The results suggested that the relationship between chl-a and microcystin vary significantly 

between lakes, with microcystin concentrations predicted within 33%. The researchers concluded 
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that although possible, multispectral imagery is presently insufficient for predicting microcystin 

concentrations due to inadequate spectral resolution (Douglas Greene et al., 2021).  

Although the majority of research utilized UAVs for remote sensing purposes, three studies 

utilized them for HAB sample collection. (Kimura et al., 2019) developed an early detection 

system for HABs using two UAVs. The first UAV was used to detect the HAB, while the second 

UAV was equipped with a custom sampling device for collecting seawater samples. This device 

was able to collect seawater samples at 1M, 3M, and 5M in depth during one flight. (Hanlon et 

al., 2022) utilized a custom 3-D printed DrOne Water Sampling SystEm (DOWSE) to collect 

180 water surface samples from 3 different water bodies. In addition, the UAV was able to 

photograph water quality conditions and collect GPS locations of samples simultaneously with 

sample collection. The UAV greatly improved water sampling efficiency, taking approximately 

12 minutes to collect 10 samples. (Bilyeu et al., 2022) developed and deployed an Airborne 

DROne Particle-monitoring System (AirDROPS) to monitor, collect, and characterize airborne 

particles over HABs. Particle counts acquired by the AirDROPS were robust and consistent with 

those simultaneously acquired by a commercially available particle counter. All three studies 

concluded that UAVs can be outfitted with custom attachments to aid water resource managers 

and public health professionals by providing critical and timely information for regulatory 

decisions. 

Four studies focused on detecting cyanobacterial blooms with UAVs. Both (Stoyneva-

Gärtner et al., 2020) and (Son et al., 2020) flew UAVs to visually identify the presence of a 

HAB. (Stoyneva-Gärtner et al., 2020) conducted aerial observations to help choose water 

sampling locations. (Son et al., 2020) were interested in forecasting HAB prone regions using 
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data collected by an acoustic Doppler current profiler (ADCP). Before the development of a 

HAB, an ADCP mounted to a boat was used to collect data along the river, then airborne 

monitoring was conducted using an UAV to visually verify the previously derived HAB prone 

regions. A third study focused on developing a framework for HAB detection by understanding 

flight parameters influencing UAV performance and image quality. Results provide guidance for 

successful UAV design and flight parameter choices (Lyu et al., 2017). A real-time HAB 

detection technique was designed and implemented by (Kim et al., 2019). HABs were detected 

near desalination plants using UAV imagery and The HSV Color Detection Image Processing 

Algorithm. Once detected, the velocity and direction of HABs were determined. HAB extraction 

from the UAV imagery was over 80%, but minor improvements need to be made for the velocity 

and directional analysis. Once completed, this research could provide an early warning tool for 

desalination plant managers, preventing HABs from entering the plants. 

Algal biomass and concentration were evaluated in four studies, with two focusing on 

algal biomass and the other two focusing on concentration. (Xu et al., 2018) identified green 

algae using UAV equipped with RGB camera, then a biomass estimation model was proposed 

based on S2A imagery. Red algae biomass estimation was conducted by (Che et al., 2021) using 

an UAV equipped with multispectral sensor. Four vegetation indices were calculated from the 

multispectral imagery and regressed to estimate biomass. Both (Silvarrey Barruffa et al., 2021) 

and (Becker et al., 2019) looked to estimate CC using UAVs equipped with a multispectral 

sensor and spectroradiometer respectively. (Silvarrey Barruffa et al., 2021) implemented a novel 

image processing workflow and established regression models to find the optimal correlations 

between band or band ratios and water quality parameters. The result of this research suggests it 
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is possible to identify cyanobacteria among other photosynthetic organisms using a 4-band 

multispectral camera. Two custom built UAVs equipped with spectroradiometers were deployed 

by (Becker et al., 2019) for CC estimation. After imagery processing, four algorithms were 

applied to the imagery, and CI products derived. High agreement between ground-based surface 

reflectance values and UAV reflectance values was observed, indicating that UAVs could soon 

be a common tool in water resource managers toolbox. 

Although the four remaining studies evaluated chl-a, apart from (Luo et al., 2021), other 

water quality parameters were also assessed. (Windle & Silsbe, 2021) sought to evaluate the 

efficacy of methods that remove surface reflected light (LSR) in UAV hyperspectral imagery to 

improve the accuracy of remotely sensed water constituents, specifically chl-a and TSS. Results 

demonstrated that the blue, red, rededge, and NIR bands were most important for estimating TSS 

concentrations. In addition to the water quality parameters discussed above, (Arango & Nairn, 

2019) evaluated TP, TN, and SD. Models were developed using single and multiple variable 

linear regressions and validated. (McEliece et al., 2020) was interested in estimating the spatial 

distribution of chl-a and turbidity in a marine environment using a UAV equipped with a 

multispectral sensor. Calibration functions were formulated and variability in parameter 

estimates were used to evaluate this methodology. Then, this methodology was implemented on 

an independent dataset. (Luo et al., 2021) evaluated the spatiotemporal distribution and causes of 

eutrophication in a desert lake. CDOM was estimated using a UAV equipped with RGB camera. 

The CDOM absorption coefficient was used as an indicator for CDOM concentration. Blue and 

green band ratios were most successful for CDOM estimation. For all the studies mentioned in 

this section, once optimal band ratios were discovered and the developed algorithms were 
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validated, spatial distribution maps of the desired parameters were generated. All studies 

concluded that UAVs have the ability to fill current HAB monitoring gaps and should be 

combined with in situ monitoring and laboratory analysis to verify UAV collected data.  

5.2 Hardware and Software 

5.2.1 Types of UAV 

UAVs (unmanned aerial vehicle less than 55lbs (Small Unmanned Aircraft Systems (UAS) 

Regulations (Part 107) | Federal Aviation Administration, n.d.)) come in many different forms. 

Each unique design has benefits and shortcomings, so the nature of the research should match the 

choice of UAV (Gaffey & Bhardwaj, 2020). The three broad categories of commercially 

available UAVs are fixed wing aircraft, rotorcraft, and vertical takeoff/landing system (VTOL) 

(Mohsan et al., 2022). It is important to note, “blimp” systems are also available, but these are 

much less common. Here, blimps are categorized as rotorcrafts since the system was tethered and 

is capable of hovering. Only one study included utilized a blimp system (Kim et al., 2019). Fixed 

wing aircrafts can cover large distances in a single flight due to longer battery life. Rotorcrafts 

have a shorter battery life but are more agile and easily deployed than fixed wing systems 

(Bernard et al., 2017, Boon et al., 2017). For example, if there is a need to deploy the UAV from 

a smaller area (i.e from a boat or small opening in a canopy) then a rotorcraft would be the better 

solution of these two. VTOLs are hybrids between rotorcrafts and fixed wing aircrafts. They are 

capable of vertical takeoff but have a fixed wing design to increase flight times. Once a VTOL 

aircraft reaches the desired flight elevation, the aircraft will turn, making its belly parallel to the 

ground. It will then rely on its fixed wing design to increase flight duration. The disadvantages to 

this type of UAV are that they are generally expensive, not as controllable as other models, and 
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the transition between vertical to horizontal flight requires the UAV to reach a certain altitude 

(Zhang et al., 2019). Payload size should also be considered before choosing a UAV. Larger 

payloads reduce battery life, and subsequently flight time. Flight capabilities are specified by 

UAV manufacturers and should be reviewed before selection. Regardless of UAV type, aircraft 

performance is heavily dependent upon environmental conditions. Flight time is a function of 

battery life, which is greatly affected by air temperature, flight elevation, humidity, and wind 

speeds. Table 1.3 summarizes advantages and disadvantages between these three systems. 

 

Table 1.3 Summary of the advantages and disadvantages between the three main UAV designs: 

fixed wing aircraft, rotorcraft, and VTOL. 
 FIXED WING ROTORCRAFT VTOL 

ADVANTAGES: Longer flight times Perform closer 

analysis 

Vertical take-off 

and landing 

 Survey larger areas Vertical take-off and 

landing 

Longer flight times 

 Carry heavier 

payloads 

Higher spatial 

resolution 

Survey larger areas 

  More stable in high 

winds 

 

  Can be automated  

DISADVANTAGES: Difficult takeoff and 

landing 

Shorter flight times. Expensive 

 Low maneuverability   User control limited 

 Inability to hover  Altitude 

requirement for 

transition to occur 
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Figure 1.7 shows the different types of UAVs selected for the studies. It should be noted, 

rotorcraft has been divided into three subcategories: quadcopter, hexacopter, and octocopter. 

These categories denote how many rotors the UAV possesses, these being 4,6, and 8 

respectively. Of the studies selected, 93% utilized rotorcrafts and 7% fixed wings. For the 

rotorcraft subcategories, 66% utilized quadcopters, 17% hexacopters, and 10% octocopters 

(Figure 1.7). Rotorcrafts were the most popular UAV choice, with quadcopters being the most 

popular rotorcraft selected. Some reasons for this could be that rotorcrafts are generally less 

expensive than fixed wing vehicles, and quadcopters are the cheapest rotorcraft option (Gaffey & 

Bhardwaj, 2020). Also, many studies were conducted from boats so there may not have been 

adequate room for a fixed wing to take off and land. In addition, some studies flew at low 

altitudes and hovered in single positions, which fixed wings are unable to do. No VTOL was 

used in any of the studies selected. Reasons for this could be that they are more expensive than 

both rotorcraft and fixed wing systems, there are less VTOL products commercially available, 

and less flight software is available for VTOLs. However, with advancements in technology 

these systems could become more prevalent in future research. 
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Figure 1.7 The UAV types used by the studies. Percentages represent the frequency of use in the 

studies. If a study utilized multiple UAV platforms, all were included. 

 

 

To tailor UAV systems for specific tasks, some researchers customized UAVs that were 

commercially available or built custom UAVs. (Windle & Silsbe, 2021) 3-D printed custom 

camera mounts for their UAV systems, allowing both researchers to equip their UAVs with 

multispectral sensors. Additionally, (Tóth et al., 2021) printed landing gear extensions to prevent 

the newly equipped sensor from hitting the ground upon landing. (Becker et al., 2019) built a 

completely custom UAV. This system was waterproof and relatively inexpensive, costing under 

$2000 to build (not including a sensor). The UAV was controlled by a Pixhawk PX4 flight 
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controller and equipped with a hyperspectral camera. A drone particle monitoring system was 

developed by (Bilyeu et al., 2022). The system consisted of an impinger, an optical particle 

counter, and an environmental sensor. It was mounted on top of the UAV frame to limit the 

effects of downwash from the UAV propellers. The impinger was based on a design previously 

developed by (Powers et al., 2018) and was powered using a lithium-ion battery. The optical 

particle counter recorded six particle size bins and the environmental sensor measured ambient 

temperature, relative humidity, and barometric pressure.  

Both (Hanlon et al., 2022, Kimura et al., 2019) customized UAVs to collect water 

samples. (Hanlon et al., 2022) retrofitted a commercially available quadcopter to collect surface 

water samples in three large freshwater lakes. This sampling device, referred to as DOWSE, 

consisted of a 3-D printed sampling apparatus and a 4.6 m tether line. The sampler was lowered 

to the water’s surface until the tube filled with water, and an image was taken of the sampling 

location simultaneously. This provided an opportunity to visually inspect the sampling sites and 

collect GPS locations for all samples. The UAV would then transport the sample back to the 

researchers, where a new sterile tube was inserted into the sampling device. (Kimura et al., 2019) 

created a custom UAV with a custom water sampling device. The UAV developed was a 

quadcopter using a DJI (DJI - Official Website, n.d.) flight controller. The water sampling device 

consisted of a pulley attached to the frame of the drone by a wire. The sampling device could be 

lowered and raised remotely. It consisted of three bottles with valves that automatically open at a 

certain water pressure. This allows water samples to be collected at predetermined depths by 

adjusting the length of a spring using a bolt in advance. The device could sample at three depths 

(1, 3, and 5 m). Ultimately microscopic images of the samples were taken, HAB densities 
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quantified, and real time alert notifications sent to relevant people. This provided public health 

officials and water resource managers with a real-time notification system.   

Although rotorcrafts were the most popular UAV of choice in these studies, that does not 

mean it is the better platform. In fact, for general monitoring of algal blooms (Kislik et al., 2018) 

reports that systems were used equally. In some instances, the goal and requirements of the 

research will determine which platform is the best fit. In situations where both platforms are 

appropriate, multiple factors can be considered, such as cost and ease of deployment. Currently, 

no study has directly compared products derived from fixed wings, rotorcrafts, and VTOLs, 

making it difficult to select the best overall performing platform (Harder et al., 2016). 

5.2.2 Types of Attachments 

UAVs, especially rotorcrafts, can be equipped with many different attachments. The two 

types of attachments equipped to UAVs in these studies were sampling devices and sensors. 

Sampling devices consisted of water samplers and aerosol samplers. Sensors used included RGB, 

thermal, multispectral, and hyperspectral sensors. Since the previous section highlighted 

different UAV sampling attachments, this section will focus on the different sensors used 

throughout the studies. The most popular sensor used throughout the studies was RGB (41%), 

followed by multispectral (35%), hyperspectral (21%), and thermal (3%) (Figure 1.8). RGB 

cameras were the most popular sensor used. Some reasons for this could be that almost all 

commercial UAVs come pre-assembled with an RGB camera and this is the cheapest sensor 

option. 
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Figure 1.8 The different types of sensors used by the studies. Percentages represent the frequency 

of use in the studies. If a study utilized multiple sensors, all were included. 

 

 

 

Each sensor type has strengths and weaknesses. Although inexpensive, RGB cameras are limited 

in the type of data that can be collected. These cameras only include three bands (i.e red, green, 

and blue) limiting the type of analysis that can be conducted. A thermal camera was utilized in a 

single study (Tóth et al., 2021) and coupled with a multispectral sensor. The advantage of these 

cameras is that they allow algal warming events to be analyzed (Song et al., 2022). Multispectral 

sensors are more expensive than RGB cameras but allow data to be collected outside the visible 
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light spectrum. These sensors utilize imaging technology and spectral technology to obtain data 

from images using several or dozens of spectral bands. Using photoelectric detection technology, 

electromagnetic waves are divided into narrower spectral sections. Then information from 

different bands can be acquired for a desired target. Targets can then be extracted using the 

spectral differences between target and other features within the imagery (Wang et al., 2019). 

For example, (Silvarrey Barruffa et al., 2021) research indicates that it is possible to identify 

cyanobacteria among other photosynthetic organisms when using a multispectral camera. The 

benefits of this type of sensor are that it provides more spectral data than RGB cameras, at a 

lower price point than a hyperspectral sensor. Although still quite expensive, an advantage of 

hyperspectral sensors is that many products can be derived from the data. This is because these 

sensors can use hundreds of bands. In addition, satellite algorithms can be tested using 

hyperspectral data by resampling the data, and simulating satellite bands (Becker et al., 2019). 

Disadvantages to these sensors are that they are expensive and larger than other sensors, which 

reduces the UAV’s flight time. 

  As with UAV platform selection, many times the goals of the research will determine 

what type of attachment is needed. If sampling is the goal, custom attachments will most likely 

need to be developed, as commercially available options are limited. If passively monitoring 

HABs with sensors, determining what information needs to be extracted will aid in sensor 

choice. If looking to visually monitor HABs or locate optimal sampling locations, RGB cameras 

would be the best choice. If looking to quantify HABs using chl-a or PC, multispectral solutions 

would be an adequate and cost-effective solution. When greater precision is needed, such as 
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examining genus compositions of HABs, hyperspectral sensors would be the best choice (Kislik 

et al., 2018).     

5.2.3 Software and Programming Languages for Imagery Processing 

General steps for processing UAV imagery include reflectance calibration, photo 

alignment, radiometric calibration, atmospheric correction, and post processing (Eskandari et al., 

2020). It is important to note that UAV imagery processing has not been standardized, so many 

different methodologies can be found in the literature. To aid in deriving meaningful products 

from UAV imagery, certain software or programming languages can be utilized. Different 

options are available depending on the sensor type used. In general, software that processes 

multispectral imagery can also process RGB and thermal images. Hyperspectral data requires 

different processing techniques, as there is a larger amount of data, and it is formatted 

differently. For hyperspectral processing, SpectralView Software was the only software used 

throughout the studies. For RGB, thermal, and multispectral image processing there was more 

variation in software and programming language choices. Figure 1.9 shows the frequency of 

different software and programming languages used from all studies. Of the studies selected, 

46% utilized Pix4D, 13% Agisoft, 13% Python, and 7% for all four-remaining software.  
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Note: If a study utilized multiple software’s all were included. If the study did not generate 

spatial products or did not specify the software used it was not included.  

 

Figure 1.9 The different software and programming languages used by the studies. Percentages 

represent the frequency of use in the studies. 

 

 

Software and programming languages can be used together to create desired spatial products. For 

example, (Douglas Greene et al., 2021) utilized python code to geo-reference, rotate, and convert 

images to reflectance. Then the Erdas Imagine Software was used to mosaic and apply band 

math algorithms to the imagery. Although no studies directly compared products derived from 

different software, others have. (Isacsson, n.d.) used Agisoft and Pix4D to generate orthomosaics 

from raw images. Agisoft aligned 142 images, while Pix4D successfully aligned 108 images out 

of a total of 203. When error reports were compared it showed Agisoft had higher error in the x 

and y position, while Pix4D had a higher error in the z position. A review on image-based 
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surface reconstruction workflows conducted by (Eltner et al., 2016) showed that Agisoft was the 

most popular software choice by far. To our knowledge, no studies monitoring HABs for 

protecting public health have directly compared products derived from different image 

processing software. Mapping HABs poses unique difficulties due to the homogenous nature and 

movement of water. It is possible that one software could better handle these issues, generating 

higher quality UAV imagery products.   

5.3 Quantitative Analysis of Cyanobacteria Related Parameters 

5.3.1 Indices Used for Cyanobacteria Quantification 

Many different spectral band combinations were utilized for HAB detection and 

monitoring. Spectral band combinations are either an index, a band ratio, or an algorithm (Cillero 

Castro et al., 2020). A full list of indices used, and the associated band math can be viewed in 

Table 1.4. If a study did not apply or mention indices used it was excluded from the table. In 

addition, studies who did not use pre-defined indices, but generated their own, utilizing band 

ratios or algorithms, were not included in the table. Studies not included in the table will be 

discussed in more detail in section 5.3.3. 
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Table 1.4 Spectral indices used for distinguishing HAB from all studies reviewed. Only pre-

defined indices were included in this table. If multiple researchers used the same index, all were 

cited under “reference”. 
Index Formula Reference 

Normalized Difference 

Vegetation Index (NDVI) 

(NIR − Red)/(NIR + Red) Choo et al. (2018), Silvarrey 

Barruffa et al. (2021), Che et al. 

(2021), Douglas Greene et al. 

(2021), Cillero Castro et al. 

(2020) 

Normalized Green Red 

Difference Index (NGRDI) 

(Green − Red)/(Green + Red) Xu et al. (2018) 

Normalized Green Blue 

Difference Index (NGBDI) 

(Green − Blue)/(Green + Blue) Xu et al. (2018) 

Green Leaf Index (GLI) (2 * Green – Red − Blue)/(2 * 

Green + Red + Blue) 

Xu et al. (2018) 

Excess Green (EXG) 2 * Green − Red − Blue Xu et al. (2018) 

Cyanobacteria Index (CI) CI = −SS (681)  Becker et al. (2019) 

The Colour Producing 

Algorithm (CPA-A) 

Bio-optical inversion model Becker et al. (2019) 

Surface Scum Index (SSI) SSI = ((NIR)-

(VIS)/(NIR)+(VIS)) 

Becker et al. (2019) 

Kab 1 1.67–3.94 ∗ ln(Blue) + 3.78 ∗ 

ln(Green) 

Cillero Castro et al. (2020), 

Douglas Greene et al. (2021) 

Surface Algal Index (SABI) (NIR − Red) / (Blue + Green) Cillero Castro et al. (2020), 

Douglas Greene et al. (2021) 

KIVU (Blue − Red) / Green Cillero Castro et al. (2020), 

Douglas Greene et al. (2021) 

Normalized Difference 

Chlorophyll Index (NDCI) 

(RE−Red)/(RE + Red) Cillero Castro et al. (2020) 

2BDA_1 (2 band algorithm) NIR/Red Cillero Castro et al. (2020) 

2BDA_2 (2 band algorithm) RE/Red Cillero Castro et al. (2020) 

Continued 
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Table 1.4 continued 
3BDA_1 (3 band algorithm) (Red-1  − RE-1)*NIR Cillero Castro et al. (2020) 

3BDA_MOD (3 band 

algorithm modified) 

Red-1  − RE-1 Cillero Castro et al. (2020) 

B3B1 (normalized index) (Green − Blue)/(Green + Blue) Cillero Castro et al. (2020) 

GB1 (Simple ratio) Green/Blue Cillero Castro et al. (2020) 

GR (Simple ratio) Green/Red Cillero Castro et al. (2020) 

Normalized Difference of Red 

Edge(NDRE) 

(NIR − RE)/(NIR + RE) Che et al. (2021), Douglas 

Greene et al. (2021) 

Difference Vegetation Index 

(DVI)  

NIR − Red Che et al. (2021) 

Ratio Vegetation Index (RVI) NIR/Red Che et al. (2021) 

Blue Normalized Difference 

Vegetation Index (BNDVI) 

(NIR − Blue) / (NIR + Blue) Douglas Greene et al. (2021) 

Fluorescence Line Height 

(FLH Blue) 

Green − (Red + (Blue − Red)) Douglas Greene et al. (2021) 

SHI Index (eRed − eNIR)/(eRed +eNIR) Douglas Greene et al. (2021) 

 

 

Five of the seven studies utilizing pre-defined indices applied multiple, allowing the optimal 

index to be determined. (Silvarrey Barruffa et al., 2021) only applied NDVI but used the index as 

an initial image correction step to distinguish between water pixels, emergent plants, and 

submerged vegetation. (Choo et al., 2018) also applied NDVI and found reasonable agreement 

between the index and measured chl-a values (R2=0.7031). Out of the 16 indices analyzed by 

(Cillero Castro et al., 2020) the best performing models for retrieving chl-a were B3B1, GB1, 

and G/R. Out of these, B3B1 produced the highest Pearson correlation coefficient (r=0.9907), 

highest R2 (0.98), and highest significance level (****). These results suggest that the 
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combination of blue-green bands is best for discriminating between very different chl-a 

concentrations. (Xu et al., 2018) found that NGRDI had the highest accuracy out of the four 

vegetation indices tested. In addition, NGBDI was able to distinguish blue nylon ropes from 

algae, but incorrectly classified some shadows and water as algae. With this information, both 

indices were combined to identify algae. All four of the indices examined by (Che et al., 2021) 

exhibited strong positive correlations with algal biomass, indicating that DVI, RVI, NDVI, and 

NDRE are all promising indicators of biomass estimation. (Douglas Greene et al., 2021) found 

that all eight of the indices tested resulted in poor relationships with measured chl-a values. The 

SHI index produced the highest R2 value at 0.18. These low values were attributed to poor 

weather conditions during UAV imagery acquisition. This study highlights the need for ideal 

conditions (i.e clear weather, wide range of HAB concentrations) when calibrating and testing a 

new model.   

5.3.2 Validation Techniques 

All studies employed some form of validation. This is because UAV imagery processing 

has yet to be standardized and is still a relatively new technology, so results should be compared 

to traditional quantification methods (Silvarrey Barruffa et al., 2021). Most studies collected 

water samples directly before or after the UAV flights. GPS locations were taken for all 

sampling locations as well. Samples were taken for lab analysis of chl-a using either a 

spectrophotometer or fluorometer. Some studies used microscopy to identify specific algal 

species. In addition to chl-a validation, some studies used handheld spectroradiometers to collect 

“at surface” reflectance values. These values can then be compared to post-processed UAV 

imagery reflectance values to evaluate how effective the implemented imagery processing 
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workflow was. In summary, when conducting UAV research for HABs, some form of validation 

should be used.  

5.3.3 Modelling Approaches 

Since advancements in UAV platforms and sensors, many HAB detection algorithms 

have been developed. These fall into three categories: empirical, semi-empirical (ratio-based), 

and more sophisticated statistical algorithms, such as those utilizing spectral derivatives (El-

Alem et al., 2021, Sawtell et al., 2019). Several developed algorithms have been shown to 

perform well for chl-a estimation. For example, both (Kim et al., 2019) and (Shang et al., 2017) 

implemented previously developed algorithms with success. (Kim et al., 2019) utilized an HSV-

based color detection algorithm to extract HABs from UAV imagery with over 80% efficiency. 

The perk of using this algorithm is it allows for the same color to be tracked in imagery, even if 

its position and brightness changes. (Shang et al., 2017) generated an empirical algorithm for 

chl-a estimation based on previously developed wavelength-shift (Gitelson, 1992) and a 

fluorescence line height algorithm (Letelier, 1996). Results suggested that UAVs were a good 

option to meet urgent needs during HAB outbreaks. Out of the studies selected, most utilized 

empirical or semi-empirical methods to estimate HAB indicators. A few utilized more 

sophisticated statistical methods such as Ensemble-based systems or deep learning models. 

Studies were categorized as using three main approaches for quantitative assessment of UAV 

gathered data: linear regression, multiple linear regression, and machine learning models.  

Linear regression was the most popular method, most likely due to its ease of 

implementation. (Luo et al., 2021) extracted CDOM absorption coefficients from UAV imagery 

as a proxy for lake eutrophication during three stages of crop growth. The CDOM absorption 
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coefficient was modelled using the B/G band ratio. To evaluate the accuracy of the estimated 

CDOM absorption coefficients, fluorescent dissolved organic matter (fDOM) values taken using 

a YSI water quality probe were used. Regressions showed a strong correlation during all three 

crop growth stages between the two (r=0.85, 0.86, 0.71 respectively). This suggested that the 

B/G band ratio was best for estimating CDOM at this location. Similarly, (Tóth et al., 2021) 

found that B/G band ratio using light level data (rather than irradiance or reflectance) was a 

better input than NIR/R band ratios when estimating chl-a concentrations, producing a r=0.96. 

Using 450 surface chl-a measurements, (Cheng et al., 2020) developed a chl-a concentration 

model using linear, power, and exponential regressions. It was found that R/B was the best input 

for the chl-a estimation model at this site when utilizing a UAV with RGB camera. This linear 

model produced a R2=0.84 and a RMSE of 3.17 µg/L. (Cheng et al., 2020) notes that the model’s 

prediction accuracy is less adequate for chl-a concentrations greater than 20 µg/L. Using a 

hyperspectral sensor and in situ vertical pigment concentrations, a semi-empirical algorithm was 

developed by (Kwon et al., 2020) for PC and chl-a. For PC, the 709 and 620 nm bands were 

used, while 709 and 665 nm were utilized for chl-a. Coefficients for algorithms were obtained 

using linear regressions between band ratios and measured pigment concentrations. The best 

performing bio-optical algorithm produced an R2=0.82. Orthogonal regression was utilized by 

(McEliece et al., 2020) to calibrate their chl-a estimation algorithm. Best model fits were 

achieved when utilizing wavelength bands centered around 448 and 550 nm. The percentage of 

variance explained by the fitted function was 78%.  

(Silvarrey Barruffa et al., 2021) utilized multiple linear regression models to find optimal 

correlations between band ratios and water quality parameters. All band ratios were evaluated as 
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limnological properties can influence remotely estimated chl-a values (Zhao et al., 2011). For 

linear regression the best model utilized G, RE, G/RE, R/NIR, RE/NIR, R/NIR2, R2, RE/NIR2 

band ratios and resulted in R2 equal to 0.79 for chl-a and 0.77 for CC. Single and multiple linear 

regression models were utilized by (Arango & Nairn, 2019) for TSS, chl-a, SDD, TP, and TN 

estimation. The highest performing model for chl-a estimation (R2=0.846) was a multiple linear 

regression model using green and red bands. (Baek et al., 2019) took a similar approach for chl-a 

estimation utilizing blue, green, and red wavelengths. In addition, red edge was used for 

distinguishing suspended matters and NIR utilized for sun glint corrections. The best performing 

model produced an R2=0.942 for UAV derived chl-a and in situ chl-a measurements. A multiple 

linear regression model developed by (Windle & Silsbe, 2021) for chl-a produced an R2=0.43 

and RRMSE=37%. These results were compared to other studies (Gons, 2002, Sawtell et al., 

2019, Gitelson et al., 2007) whose results were standard error of 9.2 µg/L, relative root mean 

square error (RRMSE) 37%, and RRMSE=51.9% respectively. 

More advanced statistical methods used for estimations included the application of 

ensemble-based system and deep learning models. (El-Alem et al., 2021) developed a chl-a 

estimation model based on UAV imagery data utilizing an EBS. This model was applied to both 

UAV imagery, and satellite imagery, providing local and regional estimations. To improve 

accuracy, specific models were made for three different trophic levels of waterbodies: 

oligotrophic, mesotrophic, and eutrophic. (Tóth et al., 2021) took a similar approach for linear 

regression model development, dividing measurements into five unique water level categories. 

This approach suggests that categorizing measurements and developing models specific to each 

could enhance the quality of estimates. The EBS developed by (El-Alem et al., 2021) performed 
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well at a local scale and regional scales, producing R2= Nash = 0.94 and RMSE = 5.6 μg/L and 

R2 = 0.85, RMSE= 2.4 μg/L, and Nash = 0.79 respectively. It is worth noting, the model failed to 

correctly estimate chl-a in highly turbid waters. Both (Pyo et al., 2022) and (Hong et al., 2021) 

applied deep learning models for estimations. (Pyo et al., 2022) utilized a one-dimensional 

convolutional neural network (CNN) to generate spatial maps and estimate concentrations of chl-

a, PC, lutein, fucoxanthin, and zeaxanthin. Bio optical algorithms were also applied to the data, 

and results of all models were compared. The CNN utilized UAV gathered absorption and 

reflectance data as inputs. The network performed well in estimating concentration for all 

pigments, showcasing the highest R2 when estimating chl-a (R2=0.87). Comparatively, the bio-

optical algorithms showed relatively low performance when estimating chl-a (R2=0.66). (Hong et 

al., 2021) monitored the vertical distribution of HABs using four different CNN structures 

(ResNet-18, ResNet-101, GoogleNet, and inception v3). To do this, chl-a, PC, and turbidity were 

estimated by the CNN using hyperspectral drone imagery as the input. The ResNet-18 model 

performed the best with R2=0.7. Although not applied to UAV imagery, (Kimura et al., 2019) 

utilized a CNN to classify five different classes of plankton found in water samples collected by 

a UAV. After the model was trained, classification accuracy of plankton was 99.5%. This 

allowed hazardous species to be detected and quantified.  

5.4 Discussion and Recommendations 

5.4.1 Issues Encountered in Using UAVs for CyanoHAB Monitoring 

The main issues encountered by researchers were adverse weather conditions affecting 

UAV flights, the inability to stitch images over water, and removing external influences from 

spectral data (Douglas Greene et al., 2021) performed UAV flights during cloudy days, with 
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intensifying winds and light rain. It was noted, these weather conditions negatively affected 

model development, and highlights the need for optimal environmental conditions when 

developing models based on UAV data. High winds, rain, and changing lights conditions can 

negatively affect UAV gathered data by adding additional noise or altering reflectance values 

(Stoyneva-Gärtner et al., 2020, Wierzbicki et al., 2015). In addition, lag between UAV collected 

data and in situ data should be minimized (Becker et al., 2019). This is because solar 

illumination can greatly affect many properties of water, resulting in different reflectance values 

(Sekrecka et al., 2020), Choo et al., 2018). In addition, solar illumination can cause sunglint 

(specular reflection), which makes reflectance values in this area higher, leading to inaccurate 

estimations. Solar illumination can also cause shadows to be present in the imagery, resulting in 

inaccurate reflectance values. To avoid this, (Silvarrey Barruffa et al., 2021) suggested 

conducting flights mid-morning or mid-afternoon.  

To overcome the issue of stitching images over water, (Douglas Greene et al., 2021) 

developed a novel geometry-based image stitching framework for overwater images and 

implemented it successfully. Briefly, images were georeferenced by generating words files for 

each image containing dimension of pixels in x-direction, rotation in x-direction, x-coordinate of 

the upper left pixel, dimension of pixels in y-direction, rotation in y-direction, and y-coordinate 

of the upper left pixel. Once created, these were read by Erdas Imagine Software to facilitate 

imagery stitching. (Douglas Greene et al., 2021) published the python code for this framework, 

making it publicly available, potentially removing a substantial obstacle for others by providing 

an effective method for overwater image stitching. Other options for improving overwater image 

stitching include flying at higher elevations and including other forms of terrain in each image. 
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Doing this allows for more features to be in a single image, providing higher chances for key 

points to be detected (Elhadary et al., 2022).  

Removing undesired influences from spectral data was the most common issue faced in 

the studies. Aguirre-Gómez et al., 2017 found that absorption and reflectance peaks can be 

slightly shifted by external factors. In this case, small islands and a waterfront restaurant were 

presumably responsible for shifts. (McEliece et al., 2020) highlights major limitation in 

measuring water quality with UAVs in complex, shallower waters, which is the issue of bottom 

reflectance. Bottom reflectance can cause deviations in reflectance data between shallow and 

deepwater locations. In addition, aquatic vegetation can influence UAV derived data in shallow 

waters, causing overestimation of HAB indicators such as chl-a (Zeng et al., 2017). Currently, 

there is no simple solution for removing the influence of bottom reflectance in optically 

complex, shallow waters. Water quality parameters can also influence UAV data quality. (El-

Alem et al., 2021) found that the EBS failed to accurately estimate chl-a concentrations in highly 

turbid waters. However, it was discovered that highly turbid waters reflect strongly in the red 

portion of the spectrum, instead of green. With this information, it is possible to identify highly 

turbid waters and exclude these before chl-a modelling. In future research of turbid waters, 

researchers may benefit from sensor packages that utilize longer wavelengths (e.g. shortwave 

infrared, SWIR) (Windle & Silsbe, 2021).  

5.4.2 Regulations 

The Federal Aviation Administration (FAA) is a United States government agency that 

regulates all aspects of aviation in the country, including in scientific research. The FAA 

categorizes UAV usage as either “recreational” or “commercial”. Scientific research is usually 
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categorized as “commercial” usage, subjecting it to Part 107 regulations. These require the 

researcher to become Part 107 certified by passing an aeronautical knowledge test (Small 

Unmanned Aircraft Systems (UAS) Regulations (Part 107) | Federal Aviation Administration, 

n.d.). Following Part 107 guidelines ensures safety for researchers, and other pilots who may be 

in the area. For individuals engaged in international collaborations, it is important to note that 

UAV regulations differ internationally (Gaffey & Bhardwaj, 2020). Nations may have different 

regulations regarding operational requirements and limits (Cracknell, 2017). Understanding these 

and meeting these is essential for avoiding legal consequences and ensuring desired outcomes 

are met. In addition, international UAV regulations may be concerned with privacy and data 

collection, especially in protected or restricted locations. For example, the FAA restricts any 

UAV be flown in National Parks without pre-approval. Also, certain UAV models are 

completely restricted from flying in certain locations. Researchers should be aware of these 

restrictions, and coordinate with local governing entities to meet requirements (Duffy et al., 

2018). Staying up to date with current regulations is also important for individuals engaging in 

UAV research, as laws are constantly being adapted. For example, as of September 16, 2023, the 

FAA requires all UAVs be equipped with remote ID (UAS Remote Identification | Federal 

Aviation Administration, n.d.). Remote ID provides information on UAVs in flight, such as 

identity, location, altitude, and take-off location. In addition, authorized individuals from public 

safety organizations may request UAV information from the FAA. In summary, the FAA has 

provided a general framework for safe UAV usage within the United States. Researchers 

engaging in global collaborations should recognize that regulations can vary drastically 

internationally, impacting research feasibility and objectives. Proactively addressing these 



 

62 

 

regulations will lead to the best outcomes, ensuring that UAV based research is conducted safely 

and legally across borders (Cracknell, 2017).    

5.4.3 Considerations Before an UAV Mission 

Several factors should be considered before conducting a UAV flight to ensure safe and 

effective research. Key factors for consideration include type of UAV and attachments, sensor 

type, flight location characteristics, altitude of flight, weather conditions, and ground control 

station requirements (Mohsan et al., 2022, Duffy et al., 2018, Gaffey & Bhardwaj, 2020). 

Selecting the appropriate UAV is crucial for HAB quantification. Depending on the objectives of 

the research, one type of UAV may be a better fit. Factors to consider include flight stability, 

payload capacity, GPS capabilities, and the ability to integrate custom attachments or sensors. 

Refer to section 3.1 for in-depth discussion of UAV types. Payload capacity is an important 

factor to consider. Understanding a UAVs’ payload capacity will result in longer and safer 

flights (Mohsan et al., 2022). Having GPS capabilities aboard the drone is optimal. This will 

provide geolocation data for all images or samples collected by the UAV, aiding in data analysis 

and map generation (Hanlon et al., 2022). If special modifications or attachments are necessary, 

these should be evaluated and tested before research is conducted. After-market modifications 

can affect flight times and aerodynamics of the system, so UAV manufacturers or experts should 

be consulted before modifications are made. In addition, if commercial sensors are being 

purchased, understanding the limitations of the sensor is important. Refer to section 3.2 for 

discussion of the different sensor types, and ideal applications of each. Ensuring that the sensor 

is compatible with the UAV is crucial. Most UAV and sensor manufacturers can provide 

necessary information on this. 
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In addition to UAV parameters, flight location characteristics such as size and volume of 

air traffic should be evaluated and understood thoroughly. The size of the study site will 

influence flight planning and flight time requirements, such as appropriate flight paths, data 

collection strategy, and battery requirements. To avoid gaps in data collection, flight paths 

should extend over the entire area of interest and beyond, as data collected on the edges of the 

flight area tend to be lower quality (Eskandari et al., 2020). Also, waypoints can be strategically 

placed within flight planning software to better fit the shape of the study site minimizing 

unnecessary overlap or gaps in data acquisition (Duffy et al., 2018). This helps reduce data 

processing time and results in higher quality UAV products. In addition, choosing the correct 

“overlap” is necessary for generating maps from UAV data. “Overlap” is a term used to describe 

how much forward and side overlap there is between each image. In general, a front and side 

overlap between 60-80% is adequate for generating high quality UAV map products, but sensor 

guidelines should be reviewed for guidance (Eskandari et al., 2020). Increasing overlap requires 

longer flights to take place and more images to be taken, while smaller overlap values will result 

in faster flights with fewer images (Elhadary et al., 2022). A final characteristic to consider about 

study location is the volume of air traffic in that area. The UAV pilot is responsible for knowing 

what other aerial vehicles are in the area and avoiding them. Flights should be scheduled to 

minimize conflicts with manned aerial vehicles (Duffy et al., 2018). Many tools are available to 

help with this such as airspace maps and mobile applications. In addition, it is the pilot’s 

responsibility to ensure compliance with local regulations and avoid restricted flight zones unless 

a permit has been acquired. Discussing these with aviation authorities, environmental agencies, 
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and local authorities will help ensure all requirements are met and prevent any legal 

consequences.  

UAV flight altitude is also an important factor to consider when planning a UAV mission 

(Elhadary et al., 2022). Higher flight altitudes will negatively impact battery life resulting in 

short flight durations. Conversely, higher flight altitudes allow for larger areas to be covered by 

the UAV in a shorter amount of time. Flight altitude directly impacts GSD as well (Eskandari et 

al., 2020). GSD refers to the distance between pixel centers measured on the ground, usually in 

units of cm/pixel. Of the studies selected, GSD varied from 3 cm to 20 cm, with most studies 

utilizing a GSD below 10 cm. The selected GSD will affect resolution of the imagery and is 

usually smaller than the effective resolution due to image blur and changes in lighting conditions 

(Lyu et al., 2017). Higher GSD values allow for faster data acquisition but result in lower 

resolution, while lower GSD values provide higher resolution at the cost of longer flight times 

and increased data processing requirements (Choo et al., 2018). GSD should be determined 

based on research objectives and hardware limitations. Conducting test flights prior to data 

collection can help determine the optimal flight altitude that balances data quality, flight 

durations, and required GSD.   

Briefly mentioned previously, weather conditions such as wind speed, precipitation, 

visibility, and temperature will affect UAV capabilities (Duffy et al., 2018). UAVs should not be 

flown in adverse weather conditions that could affect UAV stability or data quality. Doing so 

could endanger individuals in the area or result in the destruction of the UAV and accompanying 

equipment. If wind speeds are relatively high, but still within UAV flight capabilities, consider 

flying perpendicular or at an angle to the wind direction (Coombes et al., 2020). This will help 
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minimize power consumption and prolong battery life. Currently, many commercially available 

UAVs are waterproof to an extent, so it is possible to fly during light precipitation events. 

Although this is the case, it is not recommended as it will reduce data quality (Douglas Greene et 

al., 2021). Also, extreme temperature conditions can impact UAV performance (Silvarrey 

Barruffa et al., 2021). Cold temperatures can reduce battery capacity, while high temperatures 

can increase the chances of equipment overheating. Consider using some form of temperature 

regulation if operating UAVs in extreme temperatures. Monitoring weather forecasts and 

selecting flight times with suitable weather conditions is crucial for the safety and effectiveness 

of UAV data collection.    

A final factor to consider when planning a UAV flight is ground control station 

requirements (GCS). A reliable GCS provides researchers with the ability to monitor UAV 

status, control flight parameters, and oversee data collection. In addition, ground control points 

(GCPs) in conjunction with global navigation satellite systems (GNSS) can be utilized to aid in 

post processing of UAV imagery. Ground control points are distinct markers that can be located 

within the imagery. These can be unique features naturally in the image or manually placed in 

open canopy locations by the researcher. GCPs can improve imagery stitching and improve the 

accuracy of georeferenced data (Awasthi et al., 2020). For some study sites, such as flights over 

open water, placing GCPs may be unrealistic, as GCPs should not move during flights, or they 

are useless. (Gaffey & Bhardwaj, 2020) notes four different methods to aid in georeferencing 

when using GCPs. No matter the method selected, it is important to ensure that the GCS selected 

is compatible with both the UAV and sensor being used. 
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5.4.4 Future Opportunities 

The most common recommendation for future studies is the standardization of UAV imagery 

processing. Both (Kimura et al., 2019) and (Shang et al., 2017) state that obtaining accurate 

surface reflectance values can be challenging, so data processing protocols should be 

standardized, and new techniques developed. Improvements could be made to prevent 

interferences on surface reflectance so that true surface reflectance values can be determined 

accurately. Also, as mentioned previously, the influence of the seabed on reflection values 

should be corrected for, but no simple solution exists for this yet, so future research could 

provide a solution to this problem (McEliece et al., 2020). (Baek et al., 2019) mentions that 

future work could be done to evaluate the effects of atmospheric interference on UAV imagery 

and create methods for correcting these effects. Other future areas of research include validating 

current models with more data and UAV hardware improvements. Both (Xu et al., 2018) and 

(Son et al., 2020) state that more data must be collected to improve and validate the models 

developed. A way to do this, proposed by (Luo et al., 2021), is combine more lab analysis data 

with UAV data. (Cheng et al., 2020) states that future research should explore the effects of 

suspended solids and algal species on models developed, while (Cillero Castro et al., 2020) 

mentions a need for more data to be collected on waterbodies with different eutrophication 

levels. Similarly, (Pyo et al., 2022) mentions a need for the model developed to be applied to 

different waterbodies, assessing the model’s performance at other locations. Furthermore, future 

research should consider weather data with UAV data, as (Hong et al., 2021) showed that 

weather factors affected water quality parameters at both surface and subsurface levels in the 

water. (Douglas Greene et al., 2021, Che et al., 2021, Lyu et al., 2017) all state that future 
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research could be conducted on improving UAV and sensor performance. If lightweight 

hyperspectral sensors become more common, spectral libraries could be developed, aiding HAB 

monitoring using UAVs.  

6. Major Objectives of the Thesis 

As increases in frequency, duration, intensity, and geographical location of harmful algal 

blooms (HABs) have been observed, more timely monitoring and targeted treatment of HABs 

and their cyanotoxins are crucial for freshwater bodies that are used for drinking water, 

recreation, and food production sources. To combat this, new management practices with tools 

that can handle the spatial and temporal variability of HABs are needed (Shi et al., 2019) for 

water treatment plants and other sectors to ensure human health and ecosystem health. As 

reviewed, UAVs are emerging as a low cost and efficient tool for monitoring HABs, but UAVs 

alone are not adequate as they cannot provide insight on cyanobacterial genera present or 

cyanotoxin concentrations in water. In addition, the seasonal dynamics and microbial roles filled 

by cyanobacteria should be evaluated, as seasonal succession could affect UAV derived 

cyanobacteria levels. Therefore, there is a need for a multi-scale and multi-modal (multiple 

methods, each with different spatial extents) approach for detection and monitoring of 

cyanoHABs in PWS. To my knowledge, this is the first attempt at detecting and monitoring 

cyanobacteria using both microbial and geospatial techniques. Molecular and sequencing 

techniques employed here go beyond standardized lab testing (ELISA, LCS/MS, etc.), and 

instead analyze the whole microbial community, not just cyanobacteria and associated toxins.  

In chapter 1, major relevant topics are summarized related to cyanoHABs, public health, 

and UAV systems. This provides a holistic view of current knowledge, methods, and limitations 
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in cyanoHAB monitoring and detection. In chapter 2, microbial techniques are used to explore 

the microbiome within an urban, hypereutrophic lake. The objectives of chapter 2 are to 1) 

analyze the seasonal dynamics of water quality, cyanobacteria, and microbial community, 2) 

determine the microbial community composition, with a focus on the cyanobacterial community, 

using 16S and 18S rRNA sequencing data, and 3) analyze cyanobacterial interactions within the 

microbial community to provide insight on the seasonal variation within cyanobacterial 

communities, and how cyanobacteria taxa interact and impact other microorganisms within a 

hypereutrophic waterbody. In chapter 3, the feasibility and accuracy of using an UAV system for 

monitoring a hypereutrophic, urban water body was assessed. The objectives of this chapter are 

to 1) propose a UAV system and imagery processing framework that can be used by non-

geospatial experts, 2) evaluate the relationship between ground sampled fluorometer values and 

remotely sensed values, and 3) determine best algorithms and buffer sizes for cyanobacteria 

quantification.  
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Chapter 2. Seasonal Dynamics and Relationships of Water Quality, Microbial Community, and 

Cyanobacteria in a Hypereutrophic Urban Lake 

1. Abstract 

The occurrence of cyanobacterial harmful algal blooms (cyanoHABs) in urban water 

bodies is relatively under studied. Most studies are focused on large bodies of water such as Lake 

Erie and Grand Lake St. Mary’s in Ohio, United States, and the same trend has been shown in 

other countries. However, small urban waterbodies are intensively used by relatively dense 

populations and are in close proximity to nearby residents. Thus, they can pose a risk to public 

health. This study aimed  to get a wholistic view of potential cyanoHAB drivers and 

cyanobacterial interactions within microbial communities in a small urban lake located in 

Columbus, Ohio. For this, bi-weekly samples were collected from the beginning of April to the 

end of September 2022. The temporal dynamics of the microbial community were analyzed 

using 16S and 18S rRNA gene sequencing data, with a focus on the cyanobacterial community. 

Additionally, variations in environmental variables were analyzed and correlated with microbial 

diversity indices. Our results showed that seasonal variations affected diversity indices. 

Planktothrix NIVA-CYA 15 was the dominant cyanobacteria genus throughout the entire 

sampling period. Digital droplet polymerase chain reaction (ddPCR) assay results showed the 

presence of toxic cyanobacteria that possess microcystin-, anatoxin- and saxitoxin-producing 

genes. Analyses indicated that seasonal shifts were caused by multiple environmental variables, 

with the most apparent one being increasing water temperature. Our study observed seasonal 
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dynamics of cyanobacteria and confirmed the association between temperature and average 

relative abundances of cyanobacteria genera.  Although cyanotoxins (microcystin, anatoxin, and 

saxitoxin) were under recreational water advisory levels, certain environmental parameters could 

trigger the production and release of these toxins, posing a risk for public health. Thus, 

continuous monitoring is recommended during the warm season. 

Keywords: microcystin, microbiome, anatoxin, saxitoxin, microbial diversity, recreational water 

2. Introduction 

Microorganisms are the most abundant organisms on Earth and play crucial roles within 

freshwater ecosystems (Konopka, 2009). Microorganisms rarely exist in isolation, but instead 

form complex, interconnected communities. Recently, anthropogenic impacts have negatively 

impacted microbial communities, specifically by decreasing biodiversity (Ghoul & Mitri, 2016, 

Amorim & Moura, 2021). For example, non-pervious surfaces have led to over nutrification of 

water systems, resulting in more frequent and intense cyanoHABs. These can negatively impact 

biodiversity within aquatic ecosystems (Toporowska & Pawlik-Skowrońska, 2014). This loss in 

biodiversity diminishes the efficiency of microbial ecosystem services, including those beneficial 

for human health (Amorim & Moura, 2021). Therefore, to protect microbial diversity and 

subsequently human health, regular monitoring of cyanoHABs is necessary. Methods for 

monitoring cyanoHABs in the environment include molecular methods, amplicon sequencing, 

and fluorescence techniques (Chorus, 2021). A current molecular method used is ddPCR. This 

method is targeted, quantifying a specific DNA sequence. This method indicates the potential for 

cyanotoxin production but does not provide information about actual toxin concentrations in the 

water body (Chorus, 2021). Nevertheless, this method can be implemented as an early warning 
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tool, indicating the potential for toxin production of a developing cyanoHAB. In addition, 

ddPCR can be used for microbial source tracking (MST), which helps identify sources of fecal 

pollution (Hart et al., 2023). Excess amounts of fecal pollution can lead to over nutrification, 

aiding in cyanoHAB formation (Ballesté et al., 2021). Identifying sources of fecal input is 

necessary for mitigating cyanoHAB formation and the protection of human health.  

Amplicon sequencing approaches include, but are not limited to, 16S and 18S rRNA gene 

sequencing. The 16S rRNA region provides information on all bacteria present, not just 

cyanobacteria. This allows for analysis of the microbial community as a whole and provides 

insight into what portion is comprised of cyanobacteria (Casero et al., 2019). Additionally, 

different genera of cyanobacteria can be distinguished, providing information on dominant 

cyanobacteria taxa. Furthermore, sampling throughout the development of cyanoHABs can 

provide insight into cyanoHAB dynamics, and how the formation of these alters the microbial 

community. 18S rRNA gene sequencing provides information on eukaryotic microbes present in 

a waterbody. This provides information on non-toxic algae taxa and potential cyanobacteria 

grazers (Santhakumaran et al., 2019). Amplicon sequencing techniques are widely used due to its 

convenience in taxonomic classification and ability to derive information on microbial diversity 

(Escobar-Zepeda et al., 2015). It is well known that aquatic ecosystem health is affected by 

microbial diversity. Thus, understanding the role cyanobacteria play in altering microbial 

diversity is necessary to develop proper management strategies. Disadvantages of amplicon 

sequencing methods include low taxonomic resolution at the species level and difficulties in 

amplification of the desired gene when samples have a low abundance of genomic sequences 

(Bodilis et al., 2012, Nalbantoglu et al., 2014).  
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Multiple methods for quantifying cyanoHABs based on fluorescent characteristics are 

available. These include the use of handheld fluorometers, on-site monitoring network, and 

remote sensing applications (Almuhtaram et al., 2021). These methods measure the fluorescence 

of specific pigments such as chlorophyll-a (chl-a) and phycocyanin (PC). Chl-a is a pigment 

present in all phytoplankton, making it useful for estimating phytoplankton biomass and the 

eutrophication status of a waterbody (Gupana et al., 2021). PC is more specific to cyanobacteria, 

making it useful for determining cyanobacterial biomass (Chorus, 2021). Many commercially 

available handheld fluorometers are capable of measuring both pigments, providing an efficient 

method for monitoring eutrophication and cyanobacterial biomass in aquatic systems (Thomson-

Laing et al., 2020). Disadvantages to this method are that it only provides point data and requires 

field personnel for sample collection. To overcome these, on-site monitoring networks can be 

utilized. These systems are suited for online real-time monitoring, eliminating the need for 

concurrent field sampling (Almuhtaram et al., 2021). These can be placed at areas of importance, 

such as water intakes, for constant monitoring as well as automated alerts if chl-a or PC 

thresholds are exceeded. Although these systems provide high frequency monitoring, they are 

unable to address the spatial extent of cyanoHABs, as they are inconsistent in space and time 

(Chorus, 2021).  Remote sensing applications are a solution to this. Remote sensing applications 

include satellite remote sensing, manned aerial surveys, and unmanned aerial vehicles. For more 

information on the advantages and disadvantages of each of these, refer to chapter 1 section 

4.1.2. As highlighted, each method mentioned has advantages and disadvantages, so it is 

necessary to use a combination of these for adequate monitoring and quantification of 

cyanoHABs.  
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Based on this information, a hypereutrophic urban lake located in Columbus, Ohio was 

selected as the research site for the implementation of a multi-method monitoring framework for 

cyanoHABs. In addition, environmental, meteorological, and water quality parameters were 

examined for their influence on the cyanobacterial community, as it is well known seasonality 

affects cyanoHAB development (Yang et al., 2020). The main objectives for this study were to 

1) evaluate which parameters showed the strongest correlation with cyanobacterial presence, 2) 

determine microbial community composition, with a focus on the cyanobacterial community, 

and 3) assess cyanobacteria taxa’s interactions within the microbial community. The hypotheses 

for each of these objectives are that 1) water temperature and microbial evenness will be strongly 

correlated with parameters indicative of cyanobacterial presence 2) that the cyanobacteria 

community will be dominated by Microcystis (one of the most common cyanobacteria genera in 

Ohio), and 3) a genus of cyanobacteria will be a keystone species within the water body. This is 

because cyanobacteria are primary producers, which fulfill critical roles within the microbial 

community. To our knowledge, no prior research has been conducted at this site, heightening the 

need to examine the cyanobacterial community using multiple methods. Analyzing the body of 

water over an extended period is necessary for implementing effective monitoring strategies. 

Additionally, it is possible that seasonal shifts in microbial diversity could affect unmanned 

aerial vehicle (UAV) acquired data, so better defining these shifts, and associated microbial 

community compositions could be beneficial for UAV data interpretation in Chapter 3. 
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3. Materials and Methods 

3.1 Study Site, Water Quality Measurements, and Meteorological Data 

Acquisition 

This study was conducted in Schiller Park which is in Columbus, Ohio United States. In 

the park there is a one-acre freshwater lake with a max depth of approximately 1.8 meters 

(Figure 2.1). Its water level is maintained by a well running several hours a day. Additionally, if 

the water level gets too high, there is an overflow system to drain excess water. This results in 

the lake maintaining a constant water level year-round. Furthermore, according to The City of 

Columbus Recreation and Parks Department, fertilizer applications are not applied near the lake, 

indicating other sources of nutrient input. This site was chosen to study for a few reasons, these 

being 1) the lake is hypereutrophic, possibly due to an overabundance of cyanobacteria 2) the 

lake is too small for other remote sensing applications such as satellites (chapter 3), 3) there is an 

island located in the middle of the body of water which aids in imagery processing (chapter 3), 

and 4) the lake is located in the middle of a public park frequently visited by individuals and 

companion animals, so there is a public health concern. 
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Figure 2.1 Satellite image of the lake located in Schiller Park, Columbus, Ohio United States 

(Google Earth Pro V 7.3.6.9345 (64-bit), Schiller Park, Columbus, Ohio United States Lat: 

39.941317°, Long: -82.993250° Eye alt: 410ft [August 31, 2022]). 

 

 

A total of 12 field sampling campaigns were conducted bi-weekly from April to 

September in 2022. During each field visit, four locations were sampled. Each of these locations 

were equally separated from one another and located in the four cardinal directions. To match 

sample numbers for ddPCR data, these values were averaged and used as representative for the 

entire water body. Duplicate water surface samples were collected in 50ml amber glass vials for 

toxin analysis. Directly after collection, these samples were wrapped in aluminum foil, placed on 

ice, and kept out of direct sunlight. Physical water quality parameters were measured at each 
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location using a YSI 650 MDS with a 600XL sensor (Yellow Springs, OH, USA). Water quality 

parameters measured included pH, water temperature, secchi disc depth, and conductivity. 

Furthermore, chl-a and PC fluorescence were measured at each location in duplicate using the 

Aquafluor handheld fluorometer (Turner Designs, San Jose, CA, USA). Additionally, within 

three days of the initial sampling date, a 1-liter composite surface water sample was collected in 

a plastic Nalgene bottle. These were immediately placed on ice and transported to the lab for 

analysis. Meteorological data was downloaded from the National Oceanic and Atmosphere 

Administrations’ (NOAA) Climate Data Online (CDO) website (Climate Data Online (CDO) - 

National Climatic Data Center (NCDC), n.d.). Weather parameters downloaded included 

average daily wind speed, fastest 5-second wind speed, 3-day cumulative rainfall, average, 

maximum, and minimum daily temperatures. The weather station collecting this data is located 

at the John Glenn International Airport in Columbus, Ohio (Lat: 39.99068, Long: -82.87703). 

This station was chosen because it was the closest weather station to the study site.  

3.2 Cyanotoxin Analysis 

Cyanotoxin analysis was conducted for three different toxin classes: microcystin, 

anatoxin-a, and saxitoxin (separately). Before analysis, all samples underwent three freeze thaw 

cycles (Rushford et al., 2022). This process lyses all cells within the sample, allowing 

quantification of both extra and intra-cellular toxins. Cyanotoxins were quantified using the 

enzyme-linked immunosorbent assay (ELISA) (Abraxis Microcystins/Nodularins, Abraxis 

Anatoxin-a, and Abraxis Saxitoxin (PSP) ELISA kits, Gold Standard Diagnostics, Davis, CA, 

USA) in a BioTek EL808 Microplate Reader (Agilent Technologies, Santa Clara, CA, USA) 

within 15 minutes after the addition of the “stop” solution. Absorbance was read at 450 nm. 
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Instructions included in each kit were followed during analysis (These methods have been 

widely adopted for cyanotoxin quantification in water samples (Zhang et al., 2022, Rushford et 

al., 2022). The detection limits for the microcystin, anatoxin-a, and saxitoxin ELISA test kits are 

0.1 µg/L, 0.1 µg/L, and 0.015 µg/L respectively.  

3.3 DNA Extraction and ddPCR Analyses 

Microbial DNA was extracted from the 12 composite water samples with the DNEasy 

PowerSoil Kit (Qiagen, Valencia, CA, USA). Before extraction, 150 mL and 50 mL of water 

from each sample were concentrated through a sterile, IsoporeTM 0.2 μm pore-sized filter (Merck 

KGaA, Darmstadt, Germany). DNA was extracted from the filters immediately. Differences in 

volumes filtered were accounted for later in data analysis. DNA concentration and quality were 

measured using the NanoDrop™ 2000 Spectrophotometer (ThermoFisher Scientific, Waltham, 

Massachusetts). Samples with DNA concentrations above 5 ng/μL were used for gene 

quantification. For gene sequencing, the maximum threshold for DNA concentration was 100 

ng/μL, so samples exceeding this concentration were diluted to 100 ng/μL with sterile PCR-

grade water.  

To determine the concentrations of cyanotoxin-producing cyanobacteria and quantifying 

the major sources of fecal pollution in water samples, several cyanobacteria, cyanotoxin 

producing cyanobacteria genes, and MST gene markers were quantified using a ddPCR system 

(Bio-Rad, Hercules, CA, USA). Microcystin producing Planktothrix and microcystin producing 

Microcystis were determined by targeting the mcyE gene which encodes microcystin production 

(Lee et al., 2021, Ai et al., 2020). Total Microcystis concentrations were determined by targeting 

the phycocyanin intergenic spacer (PC-IGS) (Ai et al., 2020). In addition, anatoxin and saxitoxin 
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producing cyanobacteria concentrations were quantified by targeting anatoxin-a synthetase C 

(anaC) gene and saxitoxin-biosynthesis (sxtA) gene respectively (Kelly et al., 2019, Kim et al., 

2022). All ddPCR amplifications were performed using 20 μL reaction mixtures. For measuring 

concentrations of the mcyE of Microcystis, mcyE of Planktothrix, and PC-IGS, mixtures 

contained ddPCR mastermix for probes (Bio-Rad, Hercules, CA, USA), sterile PCR grade water, 

Bio-Rad primer-probe mix (Bio-Rad, Hercules, CA, USA), and DNA templates. For 

quantification of anaC and sxtA, amplification reaction mixtures contained ddPCR mastermix for 

Evagreen (Bio-Rad, Hercules, CA, USA), sterile PCR grade water, respective primer-probes, and 

DNA templates (Nshimyimana et al., 2019, Ai et al., 2020). MST assays included GFD (goose), 

BacCan (dog), and HF183 (human) (Rytkönen et al., 2021). For GFD, one sample was diluted 

using sterile PCR water at 1:25 ratio. No dilutions were made for BacCan or HF183 as it was not 

necessary. GFD reaction mixture consisted of ddPCR mastermix for Evagreen (Bio-Rad, 

Hercules, CA, USA), sterile PCR grade water, Biorad primer-probe mix (Bio-Rad, Hercules, 

CA, USA), and DNA template. BacCan and HF183 reaction mixtures were the same as GFD, 

except mastermix for probes was utilized in place of Evagreen mastermix. Droplets were 

generated with the QX200 Droplet Generator (Bio-Rad, Hercules, CA, USA). Then target genes 

were amplified using a Bio-Rad C1000 PCR thermal cycler (See Table A.3 and A.4) (Bio-Rad, 

Hercules, CA, USA). After amplification, target gene concentrations were obtained using a 

QX200 droplet reader (Bio-Rad, Hercules, CA, USA) and QuantaSoft version 1.7 (Bio-Rad, 

Hercules, CA, USA). 
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3.4 DNA sequencing and Bioinformatics 

The V4-V5 region of the 16S rRNA gene and 18s rRNA gene were sequenced at the 

Molecular and Cellular Imaging Center at the Ohio State University (Wooster, OH) on an 

Illumina MiSeq platform (Illumina Inc., San Diego, CA). The primers used for the 16S rRNA 

gene were 515F (5′-GAGTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-

ACGGACTACHVGGGTWTCTAAT-3′). For the 18S rRNA gene, the V3-V4 protozoal region 

was targeted. Primers P-SSU-316F (5’-GCTTTCGWTGGTAGTGTATT-3’) and GIC758R (5’-

CAACTGTCTCTATKAAYCG-3’) were used (see Figure A.5). Raw reads for both were 

analyzed using the QIIME2 pipeline (Bolyen et al., 2019). DADA2 was used for quality control, 

by removing lower quality portions of reads (Callahan et al., 2016). The base cutoff for forward 

reads for 16s rRNA reads was 246 and the cutoff for reverse reads was 247. For 18S rRNA reads 

the cutoff for forward and reverse reads were 248. To normalize for alpha diversity analysis, the 

rarifying threshold for 16s rRNA reads was set at a depth of 19,496, which was the lowest library 

size in the samples. For 18s rRNA reads this threshold was set at 8201. Sequences were clustered 

using 99% identity and taxonomic classification referenced against the SILVA high quality 

rRNA database (Quast et al., 2013). A total of 49 non-prokaryotic taxa were removed before 

diversity calculations. Although not targeted, these taxa were present due to chloroplast and 

mitochondrial DNA being sequenced. Alpha diversity was measured via Shannon's diversity 

index, richness, and Pielou Evenness in QIIME2 (Bolyen et al., 2019). Significant differences 

were assessed using the Kruskal Wallis tests (p < 0.05). Taxonomy for both 16s and 18s rRNA 

genes were classified using the 99% SILVA database (Bolyen et al., 2018, Amin et al., 2023).  
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3.5 Statistical Analysis 

Statistical analysis and figures were generated using the R software (version 4.2.1). 

Diversity outputs from QIIME2 were tested for normality using the Shapiro-test function in the 

“stat” R package (version 4.0.3). Additionally, normality was examined visually using the “hist” 

function, which is part of base R. To test if data was homoscedastic, the “nvcTest” function in 

the “car” R package (version 3.1.2) was used. Spearman’s correlation coefficient was used to 

explore correlations between diversity indices, water quality, ddPCR, cyanotoxin, and 

meteorological data. The t.test function in base R (version 4.2.1) was used to conduct unpaired 

two-sample t-test to test significant differences by season for all data. Seasons were defined 

using the solar calendar to have statistically comparable groups. Each season, spring and 

summer, had six sampling campaigns. Additionally, principal component analysis (PCA) was 

conducted to further explore the statistical significance between seasons. To do this, all data was 

scaled, and principal components obtained using the “prcomp” function in the “stats” (version 

4.0.3) R package. To investigate taxa contributing to the differences in the microbial 

communities between seasons, linear discriminant analysis effect size (LEfSe) was performed 

using the tool hosted online (Segata et al., 2011) (hosted on Galaxy 

huttenhower.sph.harvard.edu/galaxy). Analysis was conducted at a phylum and genus level with 

a threshold of 2 for the logarithmic LDA score, and an alpha value for the pairwise Wilcoxon test 

of 0.05 (Mills et al., 2022).  

3.6 Microbial Network Analysis 

For analyzing the microbial networks, microbial taxa (OTUs) less than 1% of the largest 

OTU count in each sample were removed. These taxa are considered rare and can negatively 
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affect network analysis methods (Beiko et al., 2018). Additionally, taxa not classified to a phyla 

level were removed. The network analysis was run at the family level using the sparse 

neighborhood algorithm. Model selection was conducted using the Stability Approach to 

Regularization Selection (StARS) method with 50 repetitions (Kurtz et al., 2015). The estimation 

method used was neighborhood selection (Meinshausen & Bühlmann, 2006). All network 

analyses were conducted using the “SpiecEasi” and “igraph” (version 1.4.3) R packages (Kurtz 

et al., 2015). Clusters within the network were detected “multilevel.community” functions. With 

this method, communities are not merged, but instead nodes are moved between communities so 

that each node maximizes its contribution to the modularity score (Blondel et al., 2008). To test 

the strength of these clusters, the “modularity” function was used. Link-analysis methods 

“page_rank” and “hub_score” were used to determine keystone species within the network. The 

number of nodes and edges within the network were examined using functions “num.nodes” and 

“num.edges” respectively. The average nearest neighbor degree (ANND) of a given node (or a 

set of nodes) can be calculated using the “knn” function. ANND is a measure of the 

dependencies between degrees of neighbor nodes (Beiko et al., 2018). This was done for the 

cyanobacteria within the network. To find nodes directly or indirectly reachable by nodes of 

interest, the “subcomponent” function was utilized. To assess whether the network consisted of 

multiple disconnected parts, the “components” function was employed. The degree of nodes and 

distribution of degrees amongst all nodes was analyzed and visualized using the “degree” and 

“plot” function respectively. Visualization of the network was achieved using “plot_network” 

function.  
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4. Results 

4.1 Seasonal Dynamics in the Hypereutrophic Urban Lake 

4.1.1 Environmental Variations 

Both ambient and water temperature exhibited a typical seasonal pattern with the lowest 

values being observed in the early spring (April) and highest values being in the middle of the 

summer season (late June/ early July). The largest temperature variation observed in a single day 

was 18.6 °C. Towards the end of the summer season (end of July- early August), temperatures 

began to decrease, but never reach values as low as those measured in April. Secchi disc depth 

showed a similar trend, with the highest values in April, and slowly decreasing until mid-July. 

After, secchi disc values gradually increased, but never reached those observed in April. Secchi 

disc depth showed the greatest range of values among all variables sampled. Conductivity 

showed low values observed at the beginning of the sampling period (starting in April) and 

decreasing into the middle of the summer (early July). Towards the end of the sampling period 

conductivity began increasing. pH showed the smallest range of values, ranging between 8.56 

and 9.26, indicating that the lake is a basic freshwater system year-round. Average wind speeds 

and fastest 5 second wind gusts did not show strong trends throughout the sampling season. Only 

secchi disc depth showed a significant difference between seasons (p < 0.1). A summary of all 

environmental parameters is shown in Table 2.1.  
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Table 2.1 Summary statistics for all environmental parameters gathered during the sampling 

period. All variables are in metric values. Wind speed and all air temperature measurements are 

daily averages. 
Variable Mean Standard 

Deviation 

Median Minimum Maximum Range 

Precipitation (3 

previous days) 

(mm) 

8.60 16.6 3.80 0.00 59.9 59.9 

Average Wind 

Speed (m/s) 

2.61 0.80 2.45 1.70 4.00 2.30 

Fastest 5 second 

Wind Speed 

(m/s) 

9.47 3.09 8.90 6.30 17.9 11.6 

Average Ambient 

Temperature  

(°C) 

18.4 7.25 21.2 3.20 25.7 22.5 

Max Ambient 

Temperature 

(°C) 

24.3 7.43 26.4 10.0 33.3 23.3 

Minimum 

Ambient 

Temperature 

(°C) 

12.7 7.70 15.3 -3.80 20.0 23.8 

Water 

Temperature 

(°C) 

23.8 5.62 25.2 10.3 30.3 20.0 

Secchi Disc 

Depth (m) 

0.29 0.14 0.26 0.13 0.65 0.52 

Conductivity 

(μS) 

503.06 67.58 505.6 414.8 617.8 203.0 

pH 8.91 0.220 8.85 8.56 9.26 0.680 

 

 

4.1.2 Cyanotoxins, Cyanobacteria, and Microbial Source Tracking 

Microcystin concentrations were above the detection limit in all 12 samples. 

Additionally, saxitoxin and anatoxin-a were above the detection limit in 10 and 9 of the samples, 

respectively (Figure 2.2).  
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A                                                                                                                                         continued 

Figure 2.2 Cyanotoxin concentrations detected throughout the sampling period by date. A) 

microcystin concentrations, B) saxitoxin concentrations, and C) anatoxin-a concentrations. Solid 

line on figures represents the detection limit of ELISA kit used.  
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Figure 2.2 continued 

 
B                                                                                                                             continued 
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Figure 2.2 continued 

 
C 

 

 

No concentrations were observed above the recreational limit set by EPA (US EPA, 

2019). Spearman correlations were used to analyze monotonic relationships between cyanotoxin 

concentrations and environmental parameters. Saxitoxin concentrations were not significantly 

correlated with any environmental parameters except conductivity (rs=-0.52, p-value = 0.05). 

Both microcystin and anatoxin-a showed strong statistically significant correlations with 

temperature parameters. Microcystin showed the strongest correlations with water temperature 

and max daily temperature (rs=0.88, p-value < 0.001 & rs=0.84, p-value < 0.001) respectively. 
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Anatoxin-a showed the strongest correlations with water temperature and average daily 

temperature (rs=0.73, p-value < 0.05 & rs=0.85, p-value < 0.001) respectively. Additionally, 

microcystin showed strong statistically significant negative associations with secchi disc depth 

and average daily wind speeds (rs=-0.83, p-value < 0.001 & rs=-0.97, p-value < 0.001), 

respectively. Anatoxin showed similar correlations with conductivity secchi disc depth (rs=-0.61, 

p-value < 0.05), cumulative rain from three previous days (rs=-0.71, p-value < 0.05), and 

conductivity (rs=-0.61, p-value < 0.05). No cyanotoxin concentrations showed statistically 

significant differences between seasons.  

 Cyanobacteria and toxic cyanobacteria analyzed include PC-IGS, microcystin producing 

Microcystis, microcystin producing Planktothrix, anaC, sxtA. Additionally, MST measured 

include GFD, BacCan, and HF183. Out of the cyanotoxin producing genes, microcystin 

producing Microcystis was the most prevalent overall. Out of the MST results, BacCan was the 

most prevalent followed closely by GFD, which means dog-associated and goose-associate fecal 

contamination was frequent in the water. Both microcystin producing Microcystis and sxtA were 

significantly different between seasons (p < 0.05). Higher values of sxtA were observed during 

the summer, while microcystin producing Microcystis showed higher concentrations in the 

spring. No fecal indicators were significantly different between seasons. Trends for both 

cyanobacteria genes and fecal indicators can be seen in Figure 2.3.  
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A                                                                                                                                                                                                     continued 

Figure 2.3 Trends for A) cyanobacteria and toxic cyanobacteria concentrations, and B) MST result for the entire sampling period. 

Values are in log10 gene copies per 100 mL. 
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Figure 2.3 continued 

 
B
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Additionally, correlations between MST and cyanobacteria genes were examined as fecal input 

may contribute some nutrients into the body of water (Lee et al., 2016). Microcystin producing 

Microcystis, PC-IGS, and sxtA showed the strongest correlations with fecal indicator BacCan. 

Additionally, these showed strong positive correlations with one another. Microcystin producing 

Planktothrix had strong negative correlations with microcystin producing Microcystis. 

Furthermore, sxtA showed strong positive and statistically significant correlations with all fecal 

indicators and PC-IGS. Associated correlation coefficients and p-values for these can be viewed 

in Figure 2.4. 
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Figure 2.4 Spearman’s correlation heatmap between cyanobacteria related genes and fecal 

indicators. * and ** represent p-values of 0.1 and 0.05, respectively. 

 

 

4.2 Microbial Community Structure 

A total of 657 and 19 unique taxa were identified after pre-processing of 16S and 18S 

rRNA gene sequencing data using the QIIME2 pipeline, respectively (Bolyen et al., 2019). 

Initially, to examine relationships between 16S and 18S communities Spearman’s correlations 
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for alpha diversity values between the two were examined. Results showed that evenness for 16S 

and 18S rRNA gene sequencing showed strong negative and statistically significant correlations. 

Additionally, 18S rRNA gene sequencing richness and evenness showed strong negative and 

statistically significant associations. Measures for evenness of 16S rRNA gene sequencing were 

strongly positive and statistically significant with 18S rRNA gene sequencing richness. 0.05) 

respectively. Furthermore, Shannon diversity and richness for 16S rRNA gene sequencing 

showed strong positive and statistically significant correlations. Associated correlation 

coefficients and p-values can be seen for these in Figure 2.5. 
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Figure 2.5 Spearman’s heatmap for 16S and 18S rRNA gene sequencing data. Symbols * and ** 

represent p-values of 0.1 and 0.05, respectively. 

 

 

After examining correlations for alpha diversity between the two communities, the microbial 

community was examined further. The most significant factor in describing the microbial 

communities analyzed via 16S rRNA gene sequencing was season. Shannon index (p-value < 

0.05), richness (p-value < 0.001), and Pielou evenness (p-value < 0.05 ), all measures of alpha 

diversity, were significantly different by season, measured via unpaired t-test (Figure 2.6). For 
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all alpha diversity indices, values were higher during the summer, revealing that the microbial 

community within the water is more diverse during the summer months. 

 

 

 
A                                                                                                                                         continued 

Figure 2.6 Summary of microbial community alpha diversity analysis by season using A)  

Shannon Diversity B) richness, and C) Pielou Evenness. 
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Figure 2.6 continued 

 
 

B                      continued 
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Figure 2.6 continued 

 
C            

 

 

The composition of the microbial community was also analyzed. To start, the relative 

abundance of different phyla was analyzed for all 12 samples. Results showed that the top five 

phyla present in the water included Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, 

and Planctomycetes. The relative abundances for each of these were 41%, 26%, 13%, 7%, and 

4% respectively. Additionally, the relative abundances for all 12 samples were analyzed at the 
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genus level. The analysis showed that the top five genera present included unknown genera, hgcl 

clade, Planktothrix NIVA-CYA 15, Sphaerotilus, and Mycobacterium. The relative abundances 

for each of these were 35%, 6%, 5%, 5%, and 4%, respectively. Visualization of these results can 

be seen in Figure 2.7. Unknown genera occur due to low phylogenetic power of 16S rRNA 

sequencing data at lower taxonomic levels (16S rRNA Gene Sequencing for Bacterial 

Identification in the Diagnostic Laboratory, n.d.).  

 

 

 
Figure 2.7 Averaged relative abundances for taxa in all 12 samples at the A) phyla and B) genus 

level. 
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Since the cyanobacteria phylum was of interest, further analysis was conducted on this 

phylum specifically. To begin, the average relative abundances in all 12 samples of 

cyanobacteria genera was examined. Results showed that the top 5 cyanobacteria genera present 

were Planktothrix NIVA-CYA-15, Cyanobium PCC-6307, Tychonema CCAP 1459-11B, 

Microcystis PCC-7914, and Gleocapsa. The average relative abundance of each of these were 

82%, 8%, 6%, 3%, and 1%, respectively (Figure 2.8A). Next, the differences in cyanobacteria 

genera by season were examined. Results showed that Planktothrix NIVA-CYA 15 showed the 

highest average relative abundances in both seasons. Although, during the spring, other 

cyanobacteria genera average relative abundances increased (Figure 2.8B). During the spring, the 

average relative abundance for Planktothrix NIVA-CYA 15 was 83%, while in the summer it 

decreased to 59%. During the spring, the average relative abundances for other top cyanobacteria 

genera were Cyanobium PCC-6307 (7%), Tychonema CCAP 1459-11B (6%), and Microcystis 

PCC-7914 (2%). While in the summer, top cyanobacteria genera average relative abundances, 

besides Planktothrix NIVA-CYA 15, were Microcystis PCC-7914 (18%), Cyanobium PCC-6307 

(13%), and Gleocapsa (7%). Since Planktothrix NIVA-CYA 15 represents a large portion of 

both the entire microbial community, and the cyanobacteria community, LEfSE was used to 

determine whether this taxon had significant differences in abundance between the spring and 

summer groups. Additionally, the entire cyanobacteria phyla were tested for the same purpose. 

Results showed that both cyanobacteria, and Planktothrix NIVA-CYA 15 contributed to 

differences in the microbial community for seasons (Figure 2.9).  
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Figure 2.8 Average relative abundances of cyanobacteria for A) all 12 samples and B) season. 
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Figure 2.9 Pairwise statistical comparisons of microbial community composition via LEfSE 

(LDA > 2.0, p < 0.05) for A) all bacterial phyla and B) all genera. 
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4.3 Eukaryotic Microbial Community Structure 

To further analyze the microbial community in the water, 18S rRNA gene sequencing 

data was utilized. As mentioned previously, 19 unique taxa were identified after pre-processing 

utilizing the QIIME2 pipeline (Bolyen et al., 2019). To begin, alpha diversity indices were 

examined using unpaired t-tests to see if there were significant differences between seasons. Out 

of the three diversity indices utilized, only the Shannon diversity index showed a statistically 

significant difference (p-value < 0.05) (Figure 2.10). The Shannon diversity index results showed 

similar trends to those seen in the microbial community analysis (16S rRNA gene sequencing 

data). Lower diversity values were observed during the spring season, while diversity increased 

during the summer. 
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Figure 2.10 Differences in eukaryotic microbial community diversity by season using the 

Shannon diversity index. 

 

 

Additionally, the community composition was analyzed. It should be noted, in lower taxonomic 

levels, there were high percentages of “unknown” reads, meaning that the sequenced DNA could 

not be classified at lower taxonomic levels. This is common for 18S rRNA gene sequencing data, 

and one of the limitations of this method. This is due to 18S rRNA gene sequencing libraries not 

being as complete as those for 16S rRNA gene sequencing, making it difficult to classify at 

lower taxonomic levels (Meyer et al., 2010). Nevertheless, the 18S rRNA data provided useful 

information about the eukaryotic microbial community dynamics, and taxa present within 

samples. At a phyla level, the  community was completely dominated by the Stramenopiles, 
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Alveolates, and Rhizarians (SAR) supergroup (99%). This is a large and diverse group of 

microorganisms including photoautotrophs, mixotrophs, and chemoheterotrophs (Gad et al., 

2022). Analysis at the family level shows that Haptoria dominated, with an average relative 

abundance of 91%. At the genera level, 45% of the community was classified as “unknown”. 

Identified taxa with significant average relative abundances included Arcuospathidium (23%), 

Didinium (19%), and Teuthophyrs (1%) (Figure 2.11). 
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Figure 2.11 Average relative abundances of taxa for all 12 samples at the A) phyla B) family, and C) genus level. 
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In addition, differences in average relative abundances by season were explored at the genus 

level (Figure 2.12). Results showed that Arcuospathidium had lower average relative abundance 

in the spring (4%) than in the summer (35%), while Didinium showed a higher average relative 

abundance in the spring (24%) than in the summer (15%). Additionally, Teuthophyrs were nearly 

undetectable in the spring samples (1%) but had a large increase in average relative abundance 

during the summer (16%). For both the spring and summer samples “unknown” genera 

composed much of the community with average relative abundances of 71% and 32% 

respectively. 
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Figure 2.12 Average relative abundances for different genera based on 18S rRNA gene 

sequencing data by season. 

 

 

The overall differences between seasons were high, therefore principal component analysis 

(PCA) was used to help understand data variability. All data was used for PCA analysis 

including water quality, meteorological, cyanobacteria genes, fecal indicators, and diversity data. 
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A total of 12 principal components were required to explain all the variance in the data set. The 

first two principal components (PC1 and PC2) together only explained 50% of the data 

variability; together with PC3 and PC4, the explained variance is 75%. Other PCs explain less 

than 10% of the variance (Figure A.6). PC1 is negatively correlated with 16S rRNA gene 

sequencing diversity indices and water temperature, while positively correlated with secchi disc 

depth. PC2 is negatively correlated with cumulative precipitation, pH, and fecal indicators. 

Variables impacting PC2 and showing positive associations include 18S rRNA gene richness and 

conductivity. Samples for each season have clear separation from one another, with spring 

samples showing larger spread across the PCA plot (Figure 2.13).  
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Figure 2.13 2-D PCA plot showing variables effects for PC1 and PC2. Large points in the middle 

of each ellipse represent the centroid, while smaller points contained within the ellipse represent 

individual samples. 
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4.4 Network Analysis of the Microbial Population 

A microbial network analysis was conducted to understand the overall microbial matrix 

using 16S rRNA gene sequencing data. Overall, the network showed that the microbial 

community in the water is very diverse and composed of many interactions between different 

taxa. A total of 137 nodes and 130 edges were detected within the network. These represent 

individual taxa and interactions between taxa respectively. Using the multi-level community 

algorithm 31 clusters were detected. Clusters represent communities within the network that 

interact within that community, but do not necessarily interact with other communities in the 

network. Modularity represents how readily a network can be divided into subnetworks. The 

modularity score for the clusters detected was 0.79. Next, centrality vectors were sorted to 

identify keystone species within the network. Four unique taxa were identified as having a 

probability over 70% of being keystone species. Ordered from highest probability to lowest, 

these at a family level (with phyla in parenthesis) were Erysipelotrichaceae (Firmicute), 

Phormidiaceae (Cyanobacteria), Burkholderiaceae (Proteobacteria), and Sporichthyaceae 

(Actinobacteria). Since Cyanobacteria was of interest, the genus for this keystone species was 

derived, showing it was Planktothrix NIVA-CYA 15. The number of connections, both direct 

and indirect, for Planktothrix NIVA-CYA 15 was examined. This showed that this taxon was 

connected to 92 other taxa either directly or indirectly. In some cases, a network consists of 

multiple disconnected components. The microbial network in the lake consisted of 7 

disconnected subcomponents, with two of these including most taxa. One subcomponent 

consisted of 92 taxa, while the next largest consisted of 17. The degree of a node in a network 

represents how many direct connections it has to other nodes. The degree distribution represents 
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the probability of these connections throughout the whole network. Results of the degree 

distribution show that taxa have high probability of two direct connections (~90%), but there is a 

sharp decrease in the probability of three direct connections, and an even larger decrease in the 

probability for four direction connections (Figure 2.14). 

 

 
Figure 2.14 Degree distribution plot showing the degree probability distribution over the entire 

microbial network. 
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ANND, which is a measure of dependencies between degrees of neighbor nodes, was calculated 

for all cyanobacteria within the network. Results showed that values for the five cyanobacteria 

within the network ranged from 1-4. A visualization of the network can be viewed in Figure 

2.15. 
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Figure 2.15 Visual representation of the microbial network. Colors indicate unique phyla. Nodes or individual taxa are represented by 

points. Lines between nodes represent direct interactions between taxa. Cyanobacteria taxa are marked using a *. 
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5. Discussion 

Collecting water quality, meteorological, molecular, and sequencing data allowed us to 

determine significant factors affecting both prokaryotic and eukaryotic microbial communities, 

with a focus on the cyanobacterial community, within the urban lake (Rousso et al., 2020). 

Environmental variables were assessed initially, as previous research has not been conducted on 

at this study site. It was necessary to observe changes in water quality parameters as it is well 

known these can affect microbial communities, and result in cyanoHAB eutrophication events 

(Xu et al., 2022). Secci disc was the only environmental parameter showing statistically 

significant differences between seasons. This parameter is associated with eutrophication, 

indicating eutrophication was heightened during the summer (Ding et al., 2023). Although not 

significantly different by season, water temperature, MST genetic markers, pH, and cumulative 

precipitation from the three previous days were important water quality parameters contributing 

to seasonal differences within both communities according to PCA results and Spearman 

correlations. High pH, favors non-nitrogen fixing cyanobacteria such as Microcystis PCC-7914 

and Planktothrix NIVA-CYA 15 as they are bicarbonate adapted (Visser et al., 2016). At pH 

levels higher than 8.8 dissolved inorganic carbon is only present as bicarbonate, causing 

photosynthesis to cease for other aquatic photosynthetic microorganisms. Due to their 

adaptations, Microcystis PCC-7914 and Planktothrix NIVA-CYA 15 continue to 

photosynthesize, further increasing pH levels, negatively affecting water chemistry and other 

microorganisms (Gibbs et al., 2022). This could be one reason these genera dominate the 

cyanobacterial community in this lake. It is well known that nutrients, specifically nitrogen and 

phosphorus, are necessary for cyanoHAB formation. Both BacCan and GFD were positively and 
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significantly correlated with PC-IGS, which represents total Microcystis. This indicates that 

increases in BacCan and GFD concentrations are associated with an increase in PC-IGS. 

Furthermore, the first four principal components only explain 75% of the data variability, 

indicating that interactions in the aquatic system are complex, and many factors are involved. 

Cyanobacteria require high water temperatures, between 25°-35°C, for optimal growth rates 

(Smucker et al., 2021). Additionally, there is evidence supporting cyanobacteria species can 

adapt to high water temperatures faster than other environmental microorganisms (Barton et al., 

2020). In the study site, the maximum temperature observed was 30.4°C, and median 

temperature of 25.2°C. As water temperature increased, the cyanobacteria community became 

more diverse according to the 16S rRNA gene sequencing data. In spring, when water 

temperatures were lower, Planktothrix NIVA-CYA 15 completely dominated the cyanobacterial 

community (83%), but as water temperatures began warming, the average relative abundance of 

Microcystis PCC-7914 increased from 3-18%. Additionally, Spearman’s correlations revealed 

Microcystin showed the strongest correlation with water temperature (rs=0.88, p-value < 0.001), 

and Microcystin producing Microcystis genes were significantly different between seasons (p-

value < 0.05.) Furthermore, LEfSE analysis indicates a reduction in Planktothrix NIVA-CYA 15 

contributes to the differences seen within the microbial community by season. These results 

indicate that Microcystis PCC-7914 is better adapted for higher water temperatures, and as the 

summer season continues, it will become more abundant in the water. Other research confirms 

this finding, as (Mowe et al., 2015) states Microcystis shows optimal growth rates between 28.8–

30.5°C, while Planktothrix’s optimal growth rates occur between 23–25°C. Nevertheless, 

Planktothrix NIVA-CYA 15 was the dominant cyanobacteria genera during the sampling period. 
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A possible explanation for this is due to the constant mixing in the water. The lake has five 

bottom diffusers, which continually mix the water column. Research has shown that Planktothrix 

often has high biomasses in bodies of water with constant mixing compared to other 

cyanobacteria (Chen et al., 2022). Although relatively high levels of cyanobacteria cyanotoxin 

producing genes were detected, cyanotoxin concentrations were low throughout the sampling 

season. No sample had cyanotoxin concentrations above the US EPA recreational limit (US 

EPA, 2019). Although high concentrations of toxins were not detected this is still of concern, as 

environmental parameters and pressures can induce toxin production.  

Both the microbial communities represented by 16S and 18S rRNA gene sequencing data 

showed diversity increases from the spring to summer. Evenness for both microbial communities 

were negatively correlated when analyzed using Spearman’s correlation, suggesting that as one 

increased the other decreased. Additionally, 16S rRNA evenness and 18S rRNA richness were 

positively correlated. Also, 18S rRNA evenness showed negative and statistically significant 

correlations with microcystin producing Microcystis genes. These results indicate that there 

could be some form of competition between the microbial communities defined by 16S rRNA 

and 18S rRNA gene sequencing. This competition results in shifts within these communities as 

environmental parameters change with the season. The 18S rRNA gene sequencing results show 

that much of the community is Haptoria (91%), which are free living predatory ciliates (Vďačný 

et al., 2014). These organisms would graze on cyanobacteria and other microorganisms. In 

addition, microorganisms within the microbial communities would be competing for necessary 

resources such as nutrients and sunlight. Further research would need to be conducted to validate 
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this statement. Overall, the transition from spring to summer resulted in increases in all diversity 

indices for both microbial communities.  

Microbial network analysis was conducted to understand relationships between microbial 

taxa within the urban lake. Interestingly, the taxa with the second highest probability of being a 

keystone species was Planktothrix NIVA-CYA 15. This taxon was connected to 6 taxa directly, 

and 86 indirectly. This indicates that Planktothrix NIVA-CYA 15 has high interactions with 

other microbes. Furthermore, Planktothrix NIVA-CYA 15 was indirectly connected to two other 

cyanobacteria genera located in a different cluster, these being Tychonema CCAP 1459-11B and 

Cyanobium PCC-6307. Planktothrix NIVA-CYA 15 and Tychonema CCAP 1459-11B belong to 

the same family and are often present in the same water bodies (Millar et al., 2022, Shardlow, 

n.d.). Additionally, both can produce cyanotoxins. Since microcystin producing Planktothrix 

genes were not detected in almost all samples, it is possible these two genera are responsible for 

the anatoxin-a and saxitoxin levels detected in the lake. Gleocapsa, another genus of 

cyanoabcteria, was in a separate cluster comprised of mainly proteobacteria, with no connections 

to other cyanobacteria genera. Microcystis exhibited the least amount of interaction with other 

taxa, only being connected to one other. Overall, the network analysis indicated a complex, 

highly interconnected microbial community.  

We acknowledge the following shortcomings in this experiment, as well as provide 

recommendations for future studies. The first is that the sampling period could have been longer, 

extending into the colder months and one more year. Additionally, seasons transition between 

one another and are not usually abrupt changes. Therefore, future studies should consider 

sampling for a longer period, and from unique locations, so a larger number of samples can be 
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acquired, and better comparisons made. Furthermore, this study utilized 16S and 18S rRNA gene 

sequencing data. For a more comprehensive understanding of the microbial community, other 

sequencing methods such as shotgun metagenomics and longread sequencing could be used. 

These enable genomic analysis of all microbes within a sample, allowing whole genome 

sequences, taxonomic composition, and metabolic potentials to be derived. More quantitative 

methods could be used in future research so stronger statistical analyses can be conducted. 

Nevertheless, this study provides a foundation for future research, indicating important 

environmental parameters, and highlighting unique relationships within aquatic communities that 

warrant future investigation.   

6. Conclusion 

Higher measures of diversity were observed in the summer for both microbial 

communities defined by 16S and 18S rRNA gene sequencing data. Our result suggests that 

seasonal variations in water temperatures, pH, MST, and cumulative rainfall contributed to 

microbial diversities. Interestingly, Planktothrix NIVA-CYA 15 was the dominant cyanobacteria 

genus throughout the entire sampling period. Furthermore, network analysis results show that 

Planktothrix NIVA-CYA 15 has a high probability of being a keystone species within the study 

site. Overall, this study indicates that microbial communities are affected by seasonal changes. 

Additionally, interactions within these aquatic ecosystems are complex. Although this is a 

baseline study of the prokaryotic and eukaryotic microbial communities, our study provides 

foundational microbiological and ecological information for hypereutrophic urban waterbodies.  
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Chapter 3. Evaluation of UAVs as an Emerging Tool for Cyanobacteria Detection and 

Monitoring 

1. Abstract 

Currently, traditional monitoring techniques may not be adequate for proper monitoring 

of cyanobacterial harmful algal blooms (cyanoHABs). This is because cyanoHABs’ spatial 

distribution can change rapidly due to high winds, water currents, and microbial population 

dynamics. Therefore, new monitoring technologies are needed to supplement the monitoring 

techniques in place. Unmanned aerial vehicles (UAVs) are a possible solution, as they can be 

deployed rapidly, are relatively cost-effective, and can monitor large areas in a short amount of 

time. To evaluate the efficacy and accuracy of UAVs, this study used an UAV equipped with a 

5-band multispectral camera for imagery acquisition over a five-month span. A small, 

hypereutrophic urban lake was selected for the study site, as it is too small for traditional remote 

sensing techniques. Five band algorithms, the Normalized Vegetation Difference Index (NDVI), 

Blue Normalized Vegetation Index (BNDVI), Surface Algal Bloom Index (SABI), Normalized 

Red-edge Difference Index (NDRE), and KIVU were evaluated for their accuracies in 

chlorophyll-a (chl-a) and phycocyanin (PC) quantification. These algorithms were selected 

because they each utilize different wavelengths, ensuring all bands were tested for accuracy. 

Linear regression analysis indicated that the SABI algorithm was the best performing for both 

chl-a and PC quantification. Additionally, results indicated that Ln transforming values 

substantially improves the accuracy of these algorithms. We concluded that UAVs equipped with 

multispectral cameras are a promising technology for cyanoHAB quantification and monitoring, 
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but more advanced imagery processing techniques are needed for accurate quantification. 

Additionally, multispectral sensors designed for water applications could greatly improve the 

accuracy of UAV data products. Nevertheless, with frequent flights over the same location, and 

the combination of traditional monitoring techniques, UAVs could be a beneficial tool for water 

resource managers.  

Keywords: multispectral, UAV, cyanoHAB, phycocyanin, chlorophyll-a 

2. Introduction 

UAVs have emerged as a new technology with applications in various fields. UAVs are 

revolutionizing many industries such as agriculture, cinematography, law enforcement, 

emergency services, construction, surveying, mining, archaeology, delivery, and environmental 

conservation (Wu et al., 2019). This is occurring for many reasons, one being that UAVs are a 

cost-effective solution for increasing accessibility (Kislik et al., 2018). Traditionally, aerial data 

collection and monitoring required the use of manned aircraft or satellites, both of which are 

expensive and impractical for smaller-scale operations (Gaffey & Bhardwaj, 2020). UAVs, 

however, are relatively cost effective, enabling organizations to acquire aerial data without the 

need for expensive equipment or extensive planning. Furthermore, UAVs offer higher levels of 

flexibility and precision than other methods of aerial data collection (Kimura et al., 2019). This is 

because UAVs can be equipped with many different cameras, sensors, and niche attachments. 

This allows UAVs to be modified for specific use cases, providing the user with the ability to 

collect data at the desired resolution and in whatever manner is needed (Bilyeu et al. 2022, 

Hanlon et al. 2022). Also, the use of UAVs can enhance safety and reduce risks. For example, in 

industries such as law enforcement and disaster management, UAVs can enter hazardous 
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locations in search of individuals, provide aerial viewpoints to enhance situational awareness, 

and autonomously locate and follow individuals of interest. Moreover, some UAVs are equipped 

with audio devices, allowing emergency response professionals to provide instructions virtually, 

before arriving on scene (DJI Law Enforcement, n.d.). Additionally, UAVs offer significant time 

savings. Traditional methods for data collection and monitoring often require extensive field 

work and time-consuming laboratory analysis. With UAVs, these tasks can be completed much 

faster and autonomously (Kislik et al., 2018). This accelerated and routine analysis allows for 

informed and prompt decision making. Like other industries, the public health sector has been 

greatly impacted by the development of UAVs. Water resource managers and researchers are 

finding that UAVs are a cost-effective solution for efficiently and safely monitoring water 

resources globally (Sibanda et al., 2021). Currently, one of the many applications for UAVs 

within this sector is the detection and monitoring of cyanoHABs. 

The main objectives for this study were to 1) propose a modified UAV system and simple 

imagery processing framework that could be used as a standard for non-geospatial experts (such 

as water resource managers), 2) evaluate five well known indices, these being NDVI, BNDVI, 

SABI, NDRE, and KIVU, all of which have been noted in prior literature for cyanobacteria 

quantification, and 3) analyze the effects of three different buffer sizes (2.5 m, 3.0 m, and 3.5 m) 

on cyanobacteria quantification when using UAV. For objectives 2 and 3, it is hypothesized that 

2) the SABI index will show the best correlation with in-situ fluorometer values, and 3) that a 

buffer size of 3 m will produce the most accurate results. Overall, this study aims to assess the 

potential of UAVs as an efficient and practical monitoring tool for cyanoHABs.   
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3. Materials and Methods 

3.1 Water Quality and Multispectral Imagery Data Collection 

Refer to chapter 2, section 3.1 for additional information about the study site. In addition 

to the collection of water quality, meteorological, molecular, and amplicon sequencing data 

mentioned previously, in-situ fluorometer measurements were taken at four different locations 

around the lake. This resulted in a total of 48 in-situ fluorometer measurements. These were 

collected in duplicate using the Aquafluor handheld fluorometer (Turner Designs, San Jose, CA, 

USA). Fluorometer readings for both chl-a and PC were acquired. Additionally, GPS coordinates 

were collected for each sampling location using a Garmin GPSMAP 66S (Garmin & 

subsidiaries, Olathe, KS, USA). This device has a minimum error of 2.5 m, with one sampling 

location never providing a lower positional error than 3 m. Additionally, secchi disc 

measurements were taken at the deepest part of the lake. These values were used to determine 

the first optical depth and the 1% light level. Furthermore, 12 UAV flights were conducted 

directly before sampling (Table 3.1).  

 

Table 3.1 Summary of all flights including date, start/stop time, number of images acquired, 

cloud cover percentage, and any notes about lighting changes during the flight. 

Date Flight 

Start 

Flight 

Stop 

Cloud 

Cover 

(%) 

Lighting Changes Number 

of 

Images 

4/2/2022 15:04 15:19 76 No lighting changes 89 

4/17/2022 16:36 16:57 0 Sunny clear skies 86 

5/2/2022 15:19 15:41 25 No lighting changes 86 

5/13/2022 11:32 12:15 0 No lighting changes 84 

5/29/2022 13:53 14:19 76 No lighting changes 78 

Continued 
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Table 3.1 continued 

6/13/2022 13:08 13:22 39 Slight lighting 

changes halfway 

through flight  

80 

6/30/2022 15:02 15:24 0 No lighting changes 82 

7/16/2022 17:16 17:30 81 No lighting changes 76 

7/31/2022 14:33 14:52 76 Slight lighting 

changes, very slight 

73 

8/17/2022 13:13 13:30 49 Lighting changes 

for two flight lines 

in middle of lake 

82 

9/11/2022 14:38 14:57 89 Lighting changes 

throughout flight, 

panel pic taken in 

sun and shade 

71 

9/24/2022 13:18 13:30 76 No lighting changes 76 

 

 

All flights were conducted following Micasense’s guidelines for optimal data capture (Best 

Practices, 2023). Before each flight, four ground control points (GCPs) were dispersed evenly on 

the edges of the lake. This aids in pre-processing of the images. Also, a Trimble R8 Global 

Navigation Satellite System (GNSS) was used to measure the center of these (Trimble Inc, 

Westminister, CO). The center coordinates were then used during pre-processing to georectify all 

images using the NAD83 / Ohio South (ftUS) - EPSG:3735 coordinate system. All flights were 

at 91 m in elevation, using 75% forward and side overlap. This resulted in a ground sampling 

distance of 6.3 cm/pix. If weather conditions allowed, all flights were conducted within two 

hours of solar noon to reduce the effect of shadows and sun glint on the imagery. Additionally, 

flights were flown during constant lighting conditions. Partly cloudy days were avoided, or 

flights would be delayed until the cloud cover was gone. The best conditions to fly in were 

completely overcast days, as this reduced the effects of sunglint, while providing constant 
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lighting conditions. The UAV was controlled with a tablet, using DJI Ground Station Pro (DJI, 

Shenzhen, China). This is a flight planning software that makes the UAV autonomous. Within 

the software, a custom camera setting was used to match the parameters of the Micasense 

RedEdge-MX camera (Micasense, Seattle, Washington) (Table 3.2). Additionally, the “hover 

and capture mode” was used for imagery acquisition. This ensures that no image blur occurs due 

to the UAV moving too fast in comparison to the shutter speed. 

 

Table 3.2 Custom camera parameter settings for Micasense RedEdge-MX multispectral sensor. 

These were retrieved from (Camera Parameters for Mission Planning Apps (DJI Pilot, GS Pro, 

Etc.), 2023). 

Micasense RedEdge-MX Value 

Image Width (pix) 1280 

Image Height (pix) 960 

Sensor Width (mm) 4.8 

Sensor Height (mm) 3.6 

Focal Length (mm) 5.4 

Min Shutter Interval (seconds) 1 

 

 

All flights were conducted using a DJI Matrice 200 (DJI, Shenzhen, China). This UAV has a 

vertical positional accuracy of 0.5 m and a horizontal accuracy of 1.5m, with a max flight time of 

roughly 27 minutes. Additionally, the UAV has landing gear that prevents the camera from 

hitting the ground during landing. The UAV was equipped with a Micasense RedEdge-MX 

multispectral camera (Micasense, Seattle, Washington). This camera has five independent lenses, 
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each used to capture a different wavelength. The five wavelengths (λ) observed by the camera 

include: blue (475 nm), green (560 nm), red (668 nm), red edge (717 nm), and near-infrared 

(NIR= 840 nm) (Table 3.3). 

 

Table 3.3 Indicates the center wavelength and bandwidth associated with each band. Information 

was retrieved from (What Is the Center Wavelength and Bandwidth of Each Filter for MicaSense 

Sensors?, 2023). 

 

Band Name 

Center 

Wavelength 

(nm) 

 

Bandwidth (nm) 

Blue 475 20 

Green 560 20 

Red 668 10 

Red Edge 717 10 

NIR 840 40 

 

 

Furthermore, the camera has a GPS/IMU, which records the position and the posture of the 

camera at each image taken. Also, the camera produces its own wifi, which can be connected to 

using the tablet. This allows for manual control of the camera, and to be sure the camera has 

memory before flights are conducted.  Additionally, the camera is connected to a DLS sensor. 

This DLS has small, circular sensors all around it. The DLS measures the irradiance associated 

with every image taken and stores this information in the image’s metadata. This allows for 

corrections in light intensity during imagery processing. The DLS was mounted on top of the 

UAV to ensure it was not covered by any shadows. Additionally, to aid image reflectance 

calibration, a Micasense reflectance calibration panel was used (Micasense, Seattle, 

Washington). The reflectance panel is a Lambertian surface, meaning it reflects light equally in 
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all directions, no matter what angle the light enters at. Images were taken of this directly before 

and after every flight. Special care was taken to be sure images taken were not shadowed. If 

lighting conditions did change during the flight, an image of the calibration panel was taken 

during each lighting condition. In addition to the attachments and equipment mentioned 

previously, a DJI Skyport was installed on the drone (DJI, Shenzhen, China). This device is 

incredibly important as it keeps the camera facing the ground at a 90° angle (nadir) and allows 

the UAV to communicate with the camera. This allows for control of the camera through the 

flight planning software. An overview of the entire UAV system can be seen in Figure 3.1. 

 

 

 
Figure 3.1 Overview of the UAV system implemented during the study. Images gathered from 

DJI and Micasense websites (Matrice 200 Series - Download Center - DJI, n.d., RedEdge-MX 

Integration Guide, 2022). 
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3.2 UAV Imagery Pre-processing 

All imagery pre-processing was conducted in Agisoft Metashape Pro version 2.0.2 

(Metashape, St. Petersburg, Russia). To begin, a radiometric calibration model provided by 

Micasense was utilized. The spectral radiance for each pixel value was computed using the 

following equation: 

𝐿 = 𝑉(𝑥, 𝑦) ∗
𝑎1
𝑔
∗

𝑃 − 𝑃𝐵𝐿
𝑡𝑒 + 𝑎2𝑦 − 𝑎3𝑡𝑒𝑦

 

This model compensates for sensor black level (𝑃𝐵𝐿), sensitivity and gain (𝑔), exposure settings 

(𝑡𝑒), and lens vignette effects (𝑉(𝑥, 𝑦)). Coefficients 𝑎1, 𝑎2, and 𝑎3 are the radiometric 

calibration coefficients. Pixel column and row number are represented by 𝑥 and 𝑦 respectively. 

These parameters are stored within the metadata of each image. The lens vignette model 

(𝑉(𝑥, 𝑦)) used is a radial vignette model that corrects for fall off in light intensity for pixels 

farther from the center of the image. The radiometric calibration uses a normalized pixel value 

(p) in the range of 0 to 1. To compute this value, the raw digital number for each pixel is divided 

by 2N. In this study N is equal to 65,536, as the sensor used produces 16-bit images. After 

radiometric calibration was performed, raw pixel values are in units of radiance. To convert these 

to reflectance values, images taken of the reflectance calibration panel before and after each 

flight are used. The average values of radiance for the calibration panel are acquired, then the 

transfer function for radiance to reflectance is calculated using the following equation: 

𝐹𝑖 =
𝜌𝑖

𝑎𝑣𝑔(𝐿𝑖)
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Where 𝐹𝑖  represents the reflectance calibration factor for the selected band, 𝜌𝑖 is the average 

reflectance value acquired for the calibration panel for a specific band, and 𝑎𝑣𝑔(𝐿𝑖) is the 

average value of the radiance for pixels in the calibration panel. Once this process was complete, 

images were aligned, and cameras optimized. Next, a high-quality point cloud was generated. 

This was then used to create a DEM. After DEM, creation, the DEM was flatted using a constant 

elevation for the water’s surface. After, an orthomosaic was generated for the entire flight area. 

3.3 UAV Imagery Post-processing 

Once orthomosaics were obtained for all 12 flights, areas not representative of the 

waterbody were removed. Additionally, any areas including shadows or vegetation cover were 

removed. No atmospheric corrections were applied as there are no commercially available 

solutions designed for aquatic purposes or UAV imagery. Additionally, the purpose of this work 

is to deliver a simple imagery processing solution for non-geospatial experts. Furthermore, 

previous studies have shown that scattered irradiance from the atmosphere is negligible for UAV 

flights conducted at low altitudes. Therefore, the effect of the thin atmosphere between the 

sensor and water surface was neglected (Del Pozo et al., 2014; Zeng et al., 2017). Five 

algorithms were then applied to each image, these being the NDVI, BNDVI, SABI, NDRE, and 

KIVU. Multiple algorithms were selected to ensure that a range of band combinations were 

included. Algorithms using the red and NIR bands were selected, such as NDVI and NDRE. 

Other algorithms were selected using known features in the blue and green bands, as well as 

those in the NIR and red. Algorithms in this category include BNDVI, SABI, and KIVU. 

Additionally, these algorithms were selected because prior literature had shown success while 

implementing these for cyanoHAB quantification (Cillero Castro et al., 2020, Choo et al., 2018, 
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Brivio et al., 2001, Silvarrey Barruffa et al., 2021, Brivio et al., 2001). All algorithms were 

applied using Agisoft Metashape’s “raster transform” function (Metashape, St. Petersburg, 

Russia). Once algorithms were applied, orthomosaics were loaded into ArcGIS Pro version 2.9 

for further analysis (ESRI, Redlands, CA). To begin, sampling locations for each in-situ 

fluorometer measurement were imported. These locations were used as the center point, to create 

2.5, 3, and 3.5 m circular buffers for the extraction of imagery information. These buffer sizes 

were selected to compensate for the error of the GPS unit being used, and for any drift that might 

have occurred between UAV flights and water sampling. The mean values within the circular 

radius were then exported for further analysis. All band algorithms and associated equations can 

be seen in Table 3.4. 

 

Table 3.4 Band ratio algorithms implemented for all 12 orthomosaics. 

Index Formula 

Normalized Difference Vegetation Index (NDVI) (NIR − Red)/(NIR + Red) 

Surface Algal Index (SABI) (NIR − Red) /(Blue + Green) 

KIVU (Blue − Red) /Green 

Normalized Difference of Red Edge (NDRE) (NIR − RE)/(NIR + RE) 

Blue Normalized Vegetation Index (BNDVI) (NIR-B)/(NIR+B) 

 

 

3.4 Statistical Analysis 

Once imagery information was extracted, linear fits were applied to analyze the 

relationship between reflectance and values gathered at each of the in-situ fluorometer sampling 
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sites for both chl-a and PC. In addition, linear fits were assessed for Ln(chl-a) and Ln(PC) data. 

This approach is being tested by many other researchers to account for the non-normal 

distribution of chl-a and PC values (Boucher et al., 2018, Cillero Castro et al., 2020). After 

removal of shadows and vegetative overgrowth during post-processing, a total of 39 observations 

were used for regression analysis. Statistical analysis and figures were generated in Excel 

(version 2307).  

4. Results 

4.1 Water Quality and UAV System Performance 

The study site is a hypereutrophic waterbody with reoccurring cyanoHABs according to 

the lake management companies who have overseen the site for some years. The research in 

chapter 2 showed that during 2021, Planktothrix NIVA-CYA was the most abundant 

cyanobacteria genera throughout the sampling period. In addition, Microcystis PCC-7914 and 

Tychonema CCAP 1459-11B were also present. All these cyanobacteria genera are capable of 

producing multiple kinds of cyanotoxins, posing a risk to public health. During the sampling 

period chl-a and PC concentrations were rather high, with minimum values for chl-a and PC 

being 47.54 and 10.68 RFU, with maximums for these parameters being 3,893 and 355 RFU 

respectively. The general trend for both parameters were exponential increases starting at the 

beginning of June 2022, followed by an exponential decrease at the end of July 2022 (Figure 

3.2).   
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Note: Note, the left and right axis have different scales for better representation of the data. The 

scale on the left side is representative of PC concentrations, while the left scale is representative 

of chl-a values. 

 

Figure 3.2 Line graph representing the temporal trends for PC and chl-a. 

 

 

In addition to chl-a and PC measurements, secchi disc measurements were taken as well. These 

were taken at the deepest part of the lake during each sampling visit. The minimum and 

maximum secchi disc measurements taken during the sampling period were 0.13 and 0.65 mm 
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respectively. The average secchi disc measurement was 0.29 m, indicating that the lake suffered 

from eutrophication for much of the sampling period. Additionally, the first optical density and 

1% light level were calculated using secchi disc measurements. The first optical density is 

equivalent to secchi disc depth, while the 1% light level can be calculated as 3*secchi disc depth 

(Roos & Pieterse, 1994). The mean first optical density for the study site was 0.18 m, with 

minimum and maximums of 0.076 and 0.39 m respectively. For the 1% light level, minimum and 

maximum values of 0.39 and 1.95 m respectively were observed. Table 3.5 summarizes these 

water quality parameter statistics and others. 

 

 Table 3.5 Summary statistics for UAV related water quality parameters measured during the 

sampling period. Secchi disc measurements are representative of the first optical depth.  
 Mean Standard 

Deviation 

Median Minimum Maximum Range 

PC (RFU) 62.02 70.84 37.19 10.68 355.0 344.3 

Chl-a (RFU) 652.6 936.9 281.9 47.54 3893 3845 

Secchi Disc 

(m) 

0.29 0.14 0.26 0.13 0.65 0.52 

1% Light 

Level (m) 

0.87 0.42 0.78 0.39 1.95 1.56 

 

 

In addition, the performance of the UAV system and accompanying flight software implemented 

was assessed. Overall, the integrated UAV system performed well. To begin, the use of a tablet 

as a ground control station (GCS) made it possible to move around the site as the UAV was in 

flight to ensure safety and improve the visual line of sight. This is of importance as the FAA 

requires UAV pilots to maintain a constant line of sight with the UAV during flights. 

Additionally, the use of DJI Ground Station Pro allowed for flight planning and ensured that 
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during each site visit the same area was flown. Additionally, this software allowed for 

appropriate overlap, elevation, and flight speed to be maintained for the duration of the flight. 

Furthermore, using the “hover and capture mode” was beneficial, as no images exhibited image 

blur. These were checked at the end of every flight. Integrating the DLS sensor into the UAV 

allowed for measurements of irradiance to be associated with each image. This was confirmed by 

viewing the metadata associated with each image. Additionally, the use of the DJI Skyport 

substantially improved image acquisition. This device allowed the Micasense Red-EdgeMX 

camera and UAV to communicate with one another. This allowed for real time monitoring of 

image acquisition, camera memory, and automatic triggering of the camera. Also, this device 

always keeps the camera in a nadir position during flights. Without this device, the camera 

would have to be triggered manually. Furthermore, the user would have to manually place the 

camera in a nadir position, which could introduce error and result in difficulties during imagery 

pre-processing.  

4.2 Regression Analysis and Statistics  

Thirty-nine data points were used for linear regression analysis. In addition, three 

different buffer sizes were implemented to assess how this may affect data extraction from UAV 

imagery. In total, five different indices were utilized to compare UAV derived values to in-situ 

chl-a and PC fluorometer values. Linear fits were made with both non-transformed and Ln 

transformed in-situ data, with the latter providing substantially better results. For all buffer sizes 

and data types, SABI algorithm provided the best results. For non-transformed chl-a data, SABI 

showed the best fit based on all metrics (Table 3.6, Figure 3.3). Buffer size did not substantially 

impact the results. This algorithm was statistically significant with all three buffer sizes, with the 
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highest R2 value (0.38) when using a buffer size of 3.5 m. Additionally, SABI had the strongest 

Pearson (r > 0.6). The second-best performing algorithm was BNDVI. Like SABI, this algorithm 

was statistically significant using all three buffer sizes, with the best results (R2 = 0.22, r = 0.47, 

p-value=0.002) obtained when using a 3.5 m buffer. NDVI, NDRE, and KIVU all fit poorly, 

with R2 < 0.07. KIVU produced slightly higher Pearson correlation values than NDVI and 

NDRE. 

 

Table 3.6 Linear fit parameters for all algorithms tested for the retrieval of chl-a. These results 

are with non-transformed chl-a (N=39). (*) p < 0.1, (**) p < 0.05, (***) p< 0.01, (****) p < 

0.001. 

Algorithm Buffer Size 

(m) 

R2 Pearson r p-value Significance 

Level 

NDVI 2.5 0.020 0.16 0.34 
 

3.0 0.020 0.15 0.35 
 

3.5 0.020 0.15 0.36 
 

BNDVI 2.5 0.21 0.46 0.0040 *** 

3.0 0.21 0.46 0.0030 *** 

3.5 0.22 0.47 0.0020 *** 

KIVU 2.5 0.070 0.27 0.10 * 

3.0 0.070 0.26 0.16 
 

3.5 0.070 0.27 0.10 * 

SABI 2.5 0.36 0.60 0.000060 **** 

3.0 0.37 0.60 0.000050 **** 

3.5 0.38 0.62 0.000030 **** 

NDRE 2.5 0.030 -0.17 0.31 
 

3.0 0.040 -0.19 0.24 
 

3.5 0.040 -0.22 0.18 
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A 

 

 
B 

Figure 3.3 Scatter plots for the best performing models for retrieving chl-a when using a 3.5m 

buffer and non-transformed chl-a data, A) SABI, and B) BNDVI. 
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All algorithms showed better fits with Ln transformed chl-a data. SABI showed the best fit, with 

R2 values greater than 0.53 (p-value < 0.001). Additionally, the best results were obtained when 

using a 3.5 m buffer. As with non-transformed chl-a data, BNDVI was the second-best 

performing algorithm, with the highest R2 and Pearson correlation coefficient obtained when 

using the 3.5 m buffer. NDVI showed slight improvement when using Ln transformed chl-a data, 

but linear fit parameters were still quite low. NDRE was mostly unaffected by the data 

transformation, and still produced poor results. KIVU was the only algorithm that produced the 

worst results when regressed with Ln transformed chl-a data, showing a decrease in all linear fit 

parameters (Table 3.7, Figure 3.4).  

 

Table 3.7 Linear fit parameters for all algorithms tested for the retrieval of chl-a. These results 

are with Ln transformed chl-a (N=39). (*) p < 0.1, (**) p < 0.05, (***) p< 0.01, (****) p < 

0.001. 

Algorithm Buffer Size R2 Pearson r p-value Significance 

Level 

NDVI  2.5 0.14 0.37 0.11 
 

3.0 0.13 0.37 0.020 * 

3.5 0.13 0.36 0.020 * 

BNDVI  2.5 0.38 0.62 0.000030 **** 

3.0 0.39 0.62 0.000020 **** 

3.5 0.40 0.63 0.000020 **** 

KIVU  2.5 0.060 0.21 0.20 
 

3.0 0.050 0.21 0.20 
 

3.5 0.050 0.22 0.18 
 

SABI  2.5 0.53 0.73 0.00000010 **** 

3.0 0.55 0.74 0.000000080 **** 

3.5 0.56 0.75 0.000000080 **** 

NDRE  2.5 0.040 -0.20 0.22 
 

3.0 0.050 -0.21 0.18 
 

3.5 0.060 -0.24 0.14 
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Figure 3.4 Scatter plots for the best performing models using a 3.5 m buffer and Ln transformed 

chl-a data, A) SABI, and B) BNDVI. 
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As with non-transformed chl-a data, SABI preformed best out of all algorithms when regressed 

with non-transformed PC data. The highest R2 value and Pearson correlation coefficient was 

obtained with the 3.5m buffer (R2=0.26, r = 0.51). The next best performing algorithm was 

BNDVI, although it showed poor regression metrics (highest R2=0.16 and r = 0.4). All other 

algorithms showed poor regression metrics, with NDVI being the worst (R2 < 0.02 and r = 0.04). 

A summary of all non-transformed PC regression metrics can be viewed in Table 3.8, and scatter 

plots of the two best performing algorithms in Figure 3.5.  

 

Table 3.8 Linear fit parameters for all algorithms tested for the retrieval of PC. These results are 

with non-transformed PC values (N=39). (*) p < 0.1, (**) p < 0.05, (***) p< 0.01, (****) p < 

0.001. 

Algorithm Buffer Size R2 Pearson r p-value Significance 

Level 

NDVI  2.5 0.020 0.040 0.78 
 

3.0 0.0010 0.040 0.80 
 

3.5 0.0010 0.040 0.80 
 

BNDVI  2.5 0.15 0.39 0.020 
 

3.0 0.16 0.40 0.010 *** 

3.5 0.16 0.40 0.010 *** 

KIVU  2.5 0.070 0.27 0.050 ** 

3.0 0.080 0.28 0.090 
 

3.5 0.080 0.29 0.060 
 

SABI  2.5 0.24 0.49 0.0020 *** 

3.0 0.25 0.50 0.0010 **** 

3.5 0.26 0.51 0.00080 **** 

NDRE  2.5 0.020 -0.13 0.45 
 

3.0 0.020 -0.15 0.36 
 

3.5 0.030 -0.17 0.27 
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Figure 3.5 Scatter plots for the best performing models using a 3.5 m buffer and PC data, A) 

SABI, and B) BNDVI. 
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Ln transforming PC data improved linear fit parameters for SABI, BNDVI, and NDVI. SABI 

and BNDVI produced the best linear parameters. For SABI, the 3.5m buffer produced the 

highest R2 and Pearson correlation coefficient (R2=0.42, r = 0.65), while the 3m buffer produced 

the best results for the BNDVI algorithm (R2=0.29, r = 0.54) (Figure 3.6). NDVI values did not 

show any variation with different buffer sizes and were only slightly improved when regressed 

with Ln transformed PC data (R2=0.05, r=0.22). Both KIVU and NDRE produced lower R2 and 

Pearson correlation coefficients when applied to the transformed PC data (Table 3.9). Overall, 

the best performing algorithms were SABI and BNDVI. These produced the best linear fit 

parameters for all data and showed the best results when applied to Ln transformed chl-a data. 

 

Table 3.9 Linear fit parameters for all algorithms tested for the retrieval of PC. These results are 

with Ln transformed PC values (N=39). (*) p < 0.1, (**) p < 0.05, (***) p< 0.01, (****) p < 

0.001. 

  

Algorithm Buffer Size R2 Pearson r p-value Significance 

Level 

NDVI  2.5 0.050 0.22 0.17  

3.0 0.050 0.22 0.17  

3.5 0.050 0.22 0.18  

BNDVI  2.5 0.15 0.52 0.020 * 

3.0 0.29 0.54 0.00040 **** 

3.5 0.28 0.54 0.00060 **** 

KIVU  2.5 0.060 0.24 0.14  

3.0 0.060 0.25 0.12  

3.5 0.070 0.26 0.11  

SABI  2.5 0.38 0.62 0.000030 **** 

3.0 0.40 0.64 0.000010 **** 

3.5 0.42 0.65 0.0000090 **** 

NDRE  2.5 0.010 -0.11 0.52  

30 0.020 -0.13 0.44  

3.5 0.020 -0.15 0.36  
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Figure 3.6 Scatter plots for the best performing models using a 3.5 m buffer and Ln transformed 

PC data, A) SABI, and B) BNDVI. 
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5. Discussion 

Overall, the UAV system and flight planning methodologies implemented in this study 

performed well. All field sampling campaigns were completed with a single flight. After flights, 

images were manually checked for irregularities, and no images ever exhibited blur or other 

inconsistencies. This indicates the “hover and capture” mode is a useful technique for reducing 

inconsistencies that may arise during image acquisition. Although, the trade off to this is longer 

flight times, and consequently the need for more UAV batteries. Additionally, during the pre-

processing steps, all images aligned with no failures indicating the overlap values were adequate. 

It is important to use the optimal overlap to ensure efficient flight times and avoid issues during 

pre-processing. Additionally, the use of the DJI skyport streamlined image acquisition and 

allowed for monitoring of the sensor while the UAV was in flight. Using an integrated UAV 

system can result in more efficient and accurate data acquisition.  

Compared to other bodies of water, the study site was highly eutrophic for the entire 

sampling period. This could be one explanation for the relatively low correlations between UAV 

data and in-situ sampling values represented in this study. Peaks in chl-a and PC were observed 

in late June and in early July. Additionally, secchi disc measurements support this, as the average 

value was 29.22 cm. Furthermore, secchi disc depth is a measure of turbidity. Multiple studies 

have indicated that high turbidity levels make it difficult to extract desired data from UAV 

imagery (El-Alem et al., 2021, McEliece et al., 2020). Prior research has indicated that 

hypereutrophic bodies of water are difficult to quantify using UAV imagery. For example, 

Cheng et al., 2020 reported that model prediction was less satisfactory for chl-a values greater 

than 15 µg/l. Additionally, Tóth et al., 2021 and Cillero Castro et al., 2020 found it necessary to 
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implement different models for certain ranges of chl-a values. Sampling for longer periods of 

time and from waterbodies with different eutrophication levels is a possible solution for 

mitigating this problem (El-Alem et al., 2021). Furthermore, deeper integration of UAVs with 

other technologies such as artificial intelligence and automation technologies could aid in 

mitigating these issues (Wu et al., 2019).   

Although out of the scope of this study, UAV imagery processing techniques are far from 

mature, and future research is needed to improve these (Shang et al., 2017). No advanced post-

processing was implemented in this study, which could account for the low regression analysis 

results, however this study did show that Ln transformation of chl-a and PC data significantly 

improved estimations. This is implemented to address the non-normal distribution of chl-a and 

PC data values (Cillero Castro et al., 2020). Another interesting finding is that band algorithms 

using the green and blue bands performed much better than those relying on the red, NIR, or red-

edge bands. In this study the SABI and BNDVI algorithms performed the best, especially when 

applied to Ln transformed data. SABI produced the best results for both chl-a and PC estimation. 

This makes sense, as this algorithm was designed for surface algal blooms, and for most of the 

sampling period the water body was highly eutrophic, with algal mats on the surface. Similar 

results, regarding band combinations were found by Tóth et al., 2021, where a simple blue/green 

band combination performed the best. Cillero Castro et al., 2020 found that band ratio algorithms 

correlated better with Ln transformed data as well. These results could indicate that UAV 

imagery data collected in highly eutrophic water bodies could be better analyzed using blue and 

green band ratios in combination with Ln data transformations. Furthermore, differing buffer 
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sizes did not significantly alter data acquired from UAV images in this study. On average, a 

larger buffer size improved regression result.  

We acknowledge the following shortcomings in this experiment, as well as provide 

recommendations for future studies. The first is that data loss occurred during the removal of 

shadows and overhanging vegetation. This resulted in samples being dropped for further 

analysis. In addition, sun glint was not corrected during imagery post processing. This is because 

the areas where in-situ sampling took place did not exhibit high sun glint effects upon visual 

inspection. In addition, an objective of this study was to assess the accuracy of a simple 

methodology for UAV imagery acquisition that could be implemented by non-geospatial experts. 

Nevertheless, a sun glint correction technique could have improved UAV imagery data and is 

worth investigating in future research. Furthermore, in-situ fluorometer measurements were 

taken using an older technology, and more accurate sensors are now available. A newer sensor, 

less affected by biomass in the water could potentially improve the results. Also, samples were 

taken from the shore as boats are not permitted in the lake. In-situ samples scattered throughout 

the lake could have also produced better results. Future research should focus on implementing 

more sophisticated techniques, such as machine and deep learning, to aid in analysis. Also, there 

is a need to standardize UAV imagery processing so results from research can be compared 

directly.  

6. Conclusion 

The SABI algorithm performed well, indicating the UAVs could be a useful tool for 

water resource managers. The UAV system implemented in this study would require little 

training, as it is autonomous and conducts flights without the need for manual control. This can 
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increase the safety of UAV flights, as well as make the data acquired during flights more 

consistent. Our analysis indicates that the SABI algorithm performed best, confirming our 

original hypothesis. Buffer size did not really affect UAV imagery data as much as anticipated. 

Originally, we hypothesized that the 3 m buffer would provide the best results, as this would 

account for any error in the GPS unit. However, the results indicate that the largest buffer size, 

3.5 m, provided the best results. Overall, this study indicates that could be a beneficial tool for 

water resource managers, but more work is needed on imagery processing techniques. 
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Appendix A: Supplementary Data 

Table A.1 Summary of all human-health related guidelines in each state for cyanotoxins as of 

June 2021. This table was adapted from (Mehinto et al., 2021). 

 

Some states employ a tiered approach, while others do not. States with only one level of 

guidance are represented using x* and placed under Tier II (typically, the equivalent for these are 

tier II recreational advisories for states using a tiered approach). Tier I is a general warning that 

toxic cyanobacteria are present in a waterbody, and it is advised to avoid impacted bodies of 

water. Tier II restricts primary contact recreation (e.g., swimming) but allows for secondary 

contact activities such as fishing or boating. Tier III restricts all primary and secondary 

recreational activities on the water body, and usually results in closure of the water body. 

 
Toxin Water 

Concentration 

State Recreational Advisory Tier 

Tier I Tier II Tier III 

 

 

 

 

 

 

 

 

 

Microcystin 

0.8 µg/L California x   

3 µg/L New Jersey  x*  

<4 ug/L Kansas x   

<4 ug/L Montana x   

4 µg/L 

 

Idaho  x*  

Kansas x   

New York x   

Rhode Island   x 

6 µg/L 

 

California  x  

Minnesota  x*  

Pennsylvania x   

Vermont  x  

Continued 
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Table A.1 continued 
  Washington  x  

     

8 µg/L US EPA 

(federal) 

 x*  

Arkansas  x*  

Colorado  x*  

Indiana  x  

Illinois  x*  

Iowa  x*  

Kansas  x  

Kentucky  x*  

Missouri  x*  

Nebraska  x*  

Ohio  x*  

Oregon  x*  

South Carolina  x*  

South Dakota  x*  

Virginia  x*  

Utah    

Wisconsin  x*  

Wyoming x   

10 µg/L 

 

Maryland  x*  

New York (open 

Water) 

x   

North Dakota  x  

14 µg/L Massachusetts  x*  

Continued 
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Table A.1 continued 
 20 µg/L 

 

California   X 

Indiana  x  

Michigan  x*  

New York 

(shore) 

x   

Oklahoma x x  

Pennsylvania x x  

West Virginia  x  

>20 ug/L Montana  x  

2000 µg/L Kansas   x 

2000 µg/L Utah   x 

      

 

 

 

 

 

 

 

 

 

 

Cylindro-

spermopsin 

 

1 µg/L California x   

4 µg/L California  x  

4.5 µg/L Washington  x  

5 µg/L 

 

Pennsylvania x   

N/A West Virginia x   

8 µg/L 

 

Idaho  x*  

Oregon  x*  

New Jersey  x*  

10 µg/L Vermont  x  

15 µg/L 

 

US EPA 

(federal) 

 x*  

Arkansas  x*  

Colorado  x*  

Continued 
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Table A.1 continued 
  Illinois  x*  

Indiana  x  

Kentucky  x*  

Minnesota  x*  

Missouri  x*  

Ohio  x*  

Oregon  x*  

South Carolina  x*  

Wisconsin  x*  

Wyoming x   

17 µg/L California   x 

20 µg/L 

 

Indiana   x 

Pennsylvania   x 

West Virginia   x 

      

 

 

 

 

 

 

 

 

 

Anatoxin-a 

Non-detect Montana x   

≤ 1 µg/L 

Detection 

California x   

Detect Montana  x  

1 µg/L Washington  x  

7 µg/L Minnesota  x*  

8 µg/L Ohio  x*  

10 µg/L Vermont  x  

15 µg/L 

 

Colorado  x*  

Oregon  x*  

Utah  x  

Continued 
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Table A.1 continued 
 20 µg/L 

 

California  x  

Missouri  x*  

>20 ug/L Montana   x 

80 µg/L 

 

Indiana  x  

Kentucky  x*  

Pennsylvania x   

West Virginia x   

90 µg/L 

 

California   x 

Utah   x 

300 µg/L 

 

Indiana   x 

Pennsylvania   x 

West Virginia   x 

      

 

 

 

 

Saxitoxin 

0.8 µg/L 

 

Ohio x   

Pennsylvania x   

West Virginia x   

Indiana  x  

3 µg/L 

 

Indiana   x 

Pennsylvania  x  

West Virginia  x  

8 µg/L 

 

Colorado  x*  

Oregon  x*  

10 µg/L Missouri  x*  

75 µg/L Washington  x  

 

 

 



 

168 

 

Table A.2 Summary of studies utilizing UAVs for HAB monitoring from 2017-present. 

Implications for public health of each is also discussed. 

UAV 

Platform(s) 

UAV 

Attachment(s) 

Summary Potential Public 

Health 

Application 

Study 

DJI Phantom 3 RGB camera Aimed to show the 

potential of using in 

situ and UAV aerial 

remote-sensing data to 

analyze the temporal 

and spatial scale of 

cyanobacteria  

The main activities 

on the lake are 

recreational, such 

as rowing and boat 

recreation, so a 

tool is needed that 

can handle the 

spatial distribution 

of HABs. 

Aguirre-

Gómez et 

al. (2017) 

Custom 

octocopter  

Sony ILCE-

6000 

Exhaustively tested 

how UAV hardware 

settings affect quality 

of the data captured. 

UAV was then 

deployed to evaluate if 

UAVs are a viable tool 

for early and timely 

cyanobacteria 

detection. 

Timely, flexible, 

and cost-effective 

tool for monitoring 

of HABs using 

novel algorithm 

for separating 

cyanobacteria 

from other 

photosynthesizing 

organisms.  

Lyu et al. 

(2017) 

LT-150 

TOPRS 

Technology 

AvaSpec-dual 

spectroradiomet

er 

UAV assessment of a 

phytoplankton 

(Phaeocystis globosa) 

bloom in an estuary 

using hyperspectral 

sensors.  

Weitou bay is full 

of fishing and 

aquaculture 

activities. HABs 

negatively impact 

human health and 

the health of local 

and regional 

economies, so a 

tool is needed for 

accurately 

quantifying HABs. 

Shang et 

al. (2017) 

Continued 
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Table A.2 continued 

DJI Inspire 1  DJI X3 RGB 

camera 

Green algae were 

identified with an 

UAV. A biomass 

estimation model was 

proposed for green 

algae biomass based on 

Sentinel-2A image 

(S2A) and UAV 

images. 

For 10 consecutive 

years the world’s 

largest green tide 

disaster has been 

occurring in the 

South Yellow Sea, 

causing nearly 10 

billion RMB in 

economic and 

ecological losses, 

so an early 

warning model is 

needed. 

Xu et al. 

(2018) 

FireFLY6 

BirdsEyeView 

Aerobotics 

Micasense 

RedEdge 

This study utilized 

remote sensing 

techniques using an 

UAV with 

multispectral sensor to 

monitor the Nakdong 

River. 

Sincheon river 

experiences severe 

algal blooms every 

years effecting 

nearby 

communities, 

researcher sought 

to use UAV on 

body of water too 

small to be 

monitored by 

satellite 

Choo et 

al. (2018) 

Custom 

quadcopter & 

hexacopter 

Ocean Optics 

STS 

Hyperspectral 

Vis-NIR 

Spectroradiome

ter 

Deployed two different 

UAV platform 

configurations, 

utilizing Ocean Optics 

STS 

spectroradiometers, to 

measure optical 

properties of river and 

lake water for 

monitoring HAB. 

Rapid deployment 

of this system, low 

initial cost, high 

quality of data, 

ability to take 

measurements 

without disturbing 

water’s surface, 

and low 

operational costs 

make UAVs a 

useful tool for 

water resource 

managers. 

Becker et 

al. (2019) 

Continued 
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Table A.2 continued 

Custom blimp RGB camera An UAV with a camera 

was connected to the 

ground by a rope to 

detect, determine 

velocity, and determine 

movement direction of 

HABs. 

Real time 

monitoring tool for 

HABs allowing the 

location, 

movement 

velocity, and 

movement 

direction of HABs 

to be determined 

around a water 

desalination plant. 

Kim et al. 

(2019) 

DJI Inspire 2 Micasense 

RedEdge 

Developed a new chl-A 

estimation algorithm 

based on multispectral 

camera signals. 

A chl-a algorithm, 

more accurate than 

others discussed in 

previous research, 

was developed in 

this study, and 

could be used for 

chl-a monitoring to 

improve public 

health. 

Baek et al. 

(2019) 

ATI AgBot  Micasense 

RedEdge 

Sought to create 

different predictive 

algorithms of trophic 

state for optical and 

non-optical water 

quality indicators in an 

oligotrophic system 

and a eutrophic system 

using images from an 

UAV equipped with a 

multispectral sensor. 

UAV imagery 

used to create 

statistical models 

for optical and 

non-optical water 

quality properties, 

indicating UAVs 

could be a useful 

tool for water 

resource managers 

around the world. 

Arango & 

Nairn 

(2019) 

Continued 
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Table A.2 continued 

DJI Matrice 

200 & custom 

quadcopter 

named Akabot 

II 

RGB camera & 

3 bottle 

sampling 

mechanism  

An early detection 

system for HABs using 

an UAV that locates 

anomalies in sea 

surface reflectance, 

then an aerial water 

sampling UAV collects 

a water sample. 

Risk level of HAB 

is ranked as alert 

or caution based 

on reference 

values, this 

notification is sent 

to water resource 

managers and 

saved in cloud-

based system and 

used for real-time 

notification. 

Kimura et 

al. (2019) 

DJI Mavic Pro RGB Camera The first use of aerial 

observations by a drone 

as an additional means 

for choosing sampling 

points during field 

studies of HABs in 

Bulgaria. 

Ability to speed up 

detection and 

reduce sampling 

efforts while 

enabling valuable 

information to be 

gathered on HABs. 

Stoyneva-

Gärtner et 

al. (2020) 

DJI Matrice 

600 Pro 

Nano 

Hyperspec 

hyperspecrtal 

imaging sensor  

Generated a vertical 

pigment-concentration 

profile with a portable 

sensor and utilized 

UAV-based surface 

reflectance to develop 

an improved bio-

optical remote sensing 

method. 

Daechung 

reservoir supplies 

water to 

surrounding cities 

for domestic and 

industrial use, so 

monitoring is 

crucial for 

preserving public 

health. 

Kwon et 

al. (2020) 

DJI Phantom 4 RGB camera For the first time, this 

study demonstrates the 

use of an UAV to 

quantitatively map 

surface water Chl-a 

distribution in coastal 

waters from a low 

altitude utilizing an 

estimation model for 

Chl-a concentration. 

Blooms in this 

area can lead to 

massive fish kills 

within the coastal 

fish farms and can 

lead to beach 

closures. Research 

provides a tool to 

quantitively map 

HABs. 

Cheng et 

al. (2020) 

Continued 
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Table A.2 continued 

Octocopter 

Atyges FV8 

Micasense 

RedEdge 

Researchers sought to 

combine the 

affordability, stability, 

quality and continuity 

of ESA and NASA 

missions (satellite) with 

the flexibility and 

spatial resolution 

provided using UAV 

platforms. 

Since 2000, the 

reservoir has 

maintained a 

drinking water 

supply service for 

households and 

facilities in the 

municipality. The 

reservoir also has a 

river park and 

recreational areas. 

Tool developed to 

combine satellite 

and UAV 

monitoring. 

Cillero 

Castro et 

al. (2020) 

DJI Phantom 3 

Pro 

Sentera 

Multispectral 

Sensor 

Aimed to evaluate the 

ability of UAVs 

equipped with 

multispectral sensors 

for inferring the spatial 

distribution of Chl-A 

concentration and 

turbidity in surface 

waters. 

Provides the 

ability to estimate 

the spatial 

distribution of Chl-

a concentrations. 

McEliece 

et al. 

(2020) 

DJI Phantom 4 RGB camera Aimed to develop a 

practical and rapid 

countermeasure to 

HABs by identifying 

HAB prone regions 

with acoustic doppler 

current profiler 

measurements and 

visually inspecting 

HAB prone regions 

with UAV. 

The Chilseo WTP 

is in operation 

downstream 

providing water to 

Daegu and Busan, 

and is affected by 

these blooms, 

harmful 

microcystins could 

affect the public 

water drinking 

system. Began 

developing rapid 

countermeasure 

for HABs. 

Son et al. 

(2020) 

Continued 
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Table A.2 continued 

DJI Phantom 4 

Pro 

Parrot Sequoia 

multispectral 

(Parrot SA) 

Used a UAV equipped 

with multispectral 

sensor to estimate Chl-

a and cc concentrations 

using many different 

band combinations. 

De Los Cisnes 

Lagoon supplies 

drinking water to 

more than 95 

percent of the 

fixed population. 

This study shows 

it is possible to 

identify 

cyanobacteria 

among other 

photosynthetic 

organisms using an 

UAV equipped 

with a four-band 

multispectral 

camera.   

Silvarrey 

Barruffa 

et al. 

(2021) 

Mavic 2 

Enterprise 

Thermal dual 

camera & 

BD2Vision 

LaQuinta 

multipsectral 

Developed a new 

methodology to 

determine algal 

concentrations in lakes, 

utilizing a UAV 

equipped with a 

multispectral camera. 

The quick-process 

measurements 

obtained in this 

study can be done 

as frequently as 

required with a 

markedly lower 

budget. 

Tóth et al. 

(2021) 

DJI Inspire 1  Zenmus X3 

optical camera 

The seasonal shoreline 

and eutrophication of a 

desert lake were 

monitored using an 

UAV and water 

sampling during three 

crop growth stages. 

Desert lakes cover 

a small portion of 

the desert 

landscape but 

provide important 

ecological services 

and benefits to 

residents. UAVs 

can be a tool for 

better 

understanding the 

eutrophication of 

these water 

resources.   

Luo et al. 

(2021) 

Continued 
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Table A.2 continued 

DJI Inspire 1  Micasense 

Rededge-3 

Proposed the use of a 

multiscale, 

multimethod approach 

using near-range 

imaging, bioassay, and 

chromatography 

methods to best capture 

bloom dynamics. 

Sought to generate 

multi-platform 

framework for 

predicting 

microcystins in 

water sources. 

Douglas 

Greene et 

al. (2021) 

Custom 

hexacopter 

Hyperspectral 

Pika 2 & Pika 

NIR 

Presented a 

development effort for 

a regional/local EBS-

based model for Chl-a 

estimates in freshwater 

bodies that can be run 

on both data acquired 

by an UAV and 

Sentinel-2 data. 

An algorithm is 

developed that can 

be applied to both 

sentinel-2 data and 

UAV imagery; 

Satellite data could 

be used for 

analysis at regional 

scale while water 

managers could 

utilize UAVs at a 

local scale. 

El-Alem 

et al. 

(2021) 

DJI Phantom 4 

Pro 

Micasense 

RedEdge-MX 

Presents a comparison 

of four approaches to 

remove sun glint and 

surface reflected light 

that can be applied to 

UAS remote sensing to 

derive water quality 

parameters such as Chl-

A concentration. 

Improved water 

quality monitoring 

of coastal and 

inland water 

bodies to 

effectively track 

trends, identify 

and mitigate 

pollution sources, 

and discern 

potential human 

health risks. 

Windle & 

Silsbe 

(2021) 

Continued 
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Table A.2 continued 

Matrice 600 

Pro 

Nano 

Hyperspec 

hyperspecrtal 

imaging sensor 

Applied a deep neural 

network model to 

monitor the vertical 

distribution of Chl-A, 

PC, and turbidity using 

drone borne 

hyperspectral imagery, 

in-situ measurements, 

and meteoroidal data. 

 

Deep learning 

models could be 

used to better 

understand and 

predict vertical 

migration of 

HABs. This could 

allow for more 

informed early 

warning systems. 

 

Hong et 

al. (2021) 

Ecodrone 

UAS-8 m 

Micasense 

RedEdge-M & 

FireFly 8 s 

camera 

Aimed to establish an 

algorithm model of 

biomass based on 

multispectral imaging 

data, which could be 

used for estimating P. 

yezoensis biomass in 

an accurate, high-

throughput, and non-

destructive way.  

Accurate 

estimations of 

macroalgae 

production are 

economically 

important for 

providing food, 

medicine, 

cosmetics, and 

biofuel.  

Che et al. 

(2021) 

DJI Inspire 2 Impinging 

device & 

optical particle 

counter 

An Airborne DROne 

Particle-monitoring 

System (AirDROPS) 

was developed and 

used to monitor, 

collect, and 

characterize airborne 

particles over two 

HABs. 

Lake spray 

aerosols can 

contain toxins, 

which can be 

transported inland 

to communities, 

negatively 

impacting public 

health. UAVs 

could be a new 

tool for evaluating 

the toxicity of 

HAB aerosols. 

Bilyeu et 

al. (2022) 

Continued 
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Table A.2 continued 

DJI Phantom 4 RGB camera & 

water sampling 

tube  

Utilized drone-based 

water sampling 

methods to characterize 

cyanotoxins, PC, and 

nutrients in three 

freshwater lakes in the 

United States with 

active HABs. 

Demonstrates the 

potential for 

drone-based water 

sampling 

technologies to be 

used by public 

health and water 

quality experts to 

provide critical 

and timely 

information for 

regulatory 

decisions and 

health advisories. 

Hanlon et 

al. (2022) 

Matrice 600 

Pro 

Nano 

Hyperspec 

hyperspecrtal 

imaging sensor  

Evaluated the potential 

of deep learning 

models to estimate 

biomass pigments (i.e. 

Chl-a and PC) and 

accessory pigments (i.e. 

lutein, fucoxanthin, and 

zeaxanthin). 

Deep learning 

model could 

accurately analyze 

algal phenomenon 

quantitatively and 

qualitatively when 

using UAV 

imagery spatial 

information input 

of HABs.  

Pyo et al. 

(2022) 
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Table A.3 Bio-Rad C1000 PCR thermal cycler conditions used for DNA amplification of 

cyanotoxin-producing cyanobacteria. 

 

Note: “Infinite” refers to the holding temperature for samples after amplification is complete. In 

each process there is a “return to” portion. This denotes what step must be returned to, and the 

value beside this (i.e. 37 X) denotes how many times those steps must be repeated.   

 

Targeted Gene Step Temperature (C°) Time 

 

 

 

mcyE Microcystis 

1 95 10 minutes 

2 94 30 seconds 

3 56 30 seconds 

4 60 30 seconds 

5 Return to step 2 37 X 

6 98 10 minutes 

7 4 Infinite 

 

 

 

 

mcyE Planktothrix 

1 95  10 min  

2 94  30 sec  

3 59  30 sec  

4 60  30 sec  

5 Return to 2  37 x  

6 98  10 min  

7 4  infinite  

 

 

 

 

PC-IGS 

1 95 10 minutes 

2 94 30 seconds 

3 59 30 seconds 

4 60 30 seconds 

5 Return to step 2 37 x 

6 98 10 minutes 

7 4 Infinite 

 

 

 

 

anaC 

1 95  5 min  

2 95  30 sec  

3 57  30 sec  

4 60  30 sec  

5 Return to 2  37 x  

6 4  5 min  

7 90  5 min  

8 4  infinite  

Continued 
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Table A.3 continued 
 

 

 

 

sxtA 

1 95  5 min  

2 95  30 sec  

3 57  30 sec  

4 60  30 sec  

5 Return to 2  37 x  

6 4  5 min  

7 90  5 min  

8 4  infinite  

 

 

Table A.4 Bio-Rad C1000 PCR thermal cycler conditions used for DNA amplification of MSTs 

 

Note: “Infinite” refers to the holding temperature for samples after amplification is complete. In 

each process there is a “return to” portion. This denotes what step must be returned to, and the 

value beside this (i.e. 37 X) denotes how many times those steps must be repeated.  

 

Targeted Gene Step Temperature (C°) Time 

 

 

 

GFD 

1 95  10:00  

2 95  0:30  

3 56  0:30  

4 60  0:30  

5 Return to 2  39x  

6 90  5:00  

7 4  infinite  

 

 

 

BacCan 

1 95  10:00  

2 94  0:30  

3 60  1:00  

4 Return to 2  44x  

5 98  10:00  

 

 

 

HF183 

1 95  10:00  

2 94  0:30  

3 60  1:00  

4 Return to 2  44x  

5 98  10:00  

6 4  infinite  
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Figure A.5 List of primers for 16S/TS rRNA genes amplicons for bacteria, archea, fungi and 

protozoa. Figure was obtained from 

(https://mcic.osu.edu/sites/mcic/files/imce/documents/MicrobialrRNAgenesAmpliconPrimers_M

CIC.pdf.)   
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Figure A.6 Scree plot showing the percentage of variance explained by all 12 principal 

components.


