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Abstract 

 

  Visual Odometry has been a popular research topic for the last 40 years. 

Odometry alone has shown robustness across different sensor modalities including 

LiDAR and vision. In the automated vehicle setting, VO can provide an alternative to 

sensors like GPS that are prone to large errors in the presence of urban canyons and poor 

weather. Recent approaches focus on deep learning and the estimation of uncertainty 

from forward-facing cameras. In this research, Visual Odometry from downward-facing 

cameras is revisited to produce a simple yet robust alternative to forward-facing methods. 

Visual Odometry from downward-facing cameras has applications across many robotic 

platforms including UAVs, AUVs, and UGVs due to the relative location of prominent 

features in their respective environments. However, in the automated vehicle setting, this 

is particularly challenging due to severe motion blur, variable lighting conditions, and 

varying texture. In this thesis, a comprehensive review of odometry approaches is 

discussed. Several approaches for estimating a camera’s pose from a downward-facing 

camera were explored. And finally, a geometric Visual Odometry pipeline from a 

downward-facing camera is proposed. 
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Chapter 1. Introduction 

 

 

 

 

 

 

1.1 Background 

 
Over the last few decades, the robotics industry and automated vehicles have grown 

in popularity. Ideas of autonomous robots and self-driving cars have been ever present in 

science fiction mediums for nearly a century [1]. However, real world manifestations of 

these ideas have not been present until recently. In the early 2000s, the Defense 

Advanced Research Projects Agency (DARPA) initiated a sequence of challenges to 

bring self-driving technologies to the military [3]. The DARPA Grand Challenges of 

2004 and 2005 (and later the DARPA Urban Challenge in 2007) led to several prominent 

business ventures for the development of autonomous vehicles in a consumer setting. 

However, today there remain challenges to bringing these technologies to market.  

 Autonomous vehicles from a systems perspective are typically designed under 3 

major paradigms: Perception and Localization, Motion Planning and Decision Making, 

and Control. Vehicle perception systems seek to detect, track, and glean high level 

knowledge from obstacles and a traversable path in their environment. Localization 

pipelines often utilize high-definition maps and a sensor suite to localize the vehicle 
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globally and locally for vehicle control and motion planning actions. Poorly localized 

vehicles can be extremely dangerous for passengers and the public.  

 It is now commonplace for consumer vehicles to have GPS, cameras, and radar 

for Advanced Driver Assistance Systems (ADAS). For more advanced automated 

vehicles like robotaxis, these sensors can also include LiDAR and high-end inertial 

sensors. GPS technology is essential for self-driving technology. Even with the 

knowledge of a high-definition map vehicles still require global references to localize 

within the map and plan routes to a desired destination. However, consumer grade GPS 

suffers from large errors that make it unreliable for vehicle localization [4]. These errors 

can exceed several meters and in extreme scenarios hundreds of meters. These errors in 

large part are caused by urban canyons, poor weather, multipath, and other environmental 

challenges [4]. Consequently, sensor redundancy is essential for highly automated 

vehicles (HAVs).  

 

 

1.2 Motivation 

 

 GPS Localization is essential for the safety and practicality of HAVs. However, 

they produce a localization signal prone to large errors. These errors can be caused by the 

presence of urban canyons, multipath, or severe weather. To ensure the safety of 

passengers in HAVs, and pedestrians, localization sensor redundancy is required. Visual 

Odometry is an increasingly important approach to localizing vehicles, due to the 

ubiquity of cameras, their inexpensiveness, and versatility for perception problems. The 

VO literature has been dominated by forward-facing VO pipelines that experience 
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challenges with uncertainty, brought on by dynamically moving obstacles, occlusions, 

severe weather, and varying sources of illumination changes. Downward-facing VO 

pipelines have been scarcely studied in the HAV literature. Other robotics platforms 

including UAVs, AUVs, and UGVs have shown that downward-facing cameras can 

provide localization signals for their respective use cases and are sometimes a 

requirement [92-94]. My research focuses on two major components: 

 

• Given advances in visual odometry from higher compute resources, can visual 

odometry from downward facing cameras show significant improvements from 

earlier methods?  

• And can a relatively simple model be used to give a robust odometry output 

where GPS localization fails?  

 

1.3 Contributions 

 

In this thesis research, a comprehensive review of Vehicle Localization (Chapter 

2) and the Visual Odometry problem from forward-facing and downward-facing cameras 

(Chapter 3) is discussed. Several approaches for geometric, direct, and deep learning VO 

pipelines from downward-facing cameras are proposed that showcase the challenges of 

the problem. Experiments for classic feature extraction approaches and their results are in 

Chapter 4. Lastly, a VO pipeline that leverages the downward-facing view from a single 

monocular camera is proposed along with its experimental results (Chapter 5.) Chapter 6 

concludes this thesis and discusses future work. 
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Chapter 2. Vehicle Localization Literature Review 

 

There are two major fields of study that are relevant to this research. This chapter is a 

literature review on Vehicle Localization, and in Chapter 3 a Visual Odometry literature 

review and fundamentals are discussed. In this chapter, a general overview of vehicle 

localization methods will be discussed, motivating the need for sensor redundancy and 

accurate localization pipelines in vehicles, particularly self-driving and highly automated 

vehicles. In Chapter 3, major paradigms and advances in Visual Odometry will be 

discussed. This will underscore the need for cameras in localization pipelines for self-

driving.  

 

2.1 Vehicle Localization 

 

Vehicle localization is a major paradigm for the development of automated 

vehicles. Localization is needed for a wide range of perception, control, and motion 

planning tasks. There are a multitude of approaches to both sensing methods, and the 

design of algorithms. Ego-localization was used as early as the 3rd century B.C. for 

surveying land with basic wheel odometry techniques as described by Vitruvius in his 

writings [5]. These techniques were also extended for ships to navigate large bodies of 

water [6]. For most of human history, the use of landmarks, stars, maps and basic 

odometry were used to estimate the relative location of a vehicle. And with the invention 
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of the car, not much had changed. However, with the invention of Radio Detection and 

Ranging (Radar) technology, large military vehicles on land and sea (and eventually air) 

began to localize targets. These observations were constrained relative to the vehicle and 

were primarily used for object detection and tracking. Although rarely used for ego-

vehicle localization, the use of radar in localizing with respect to other objects and 

landmarks has been useful in automating vehicles, particularly with the integration of 

radar for Advanced Driver Assistance Systems (ADAS) [7].  In the 1950s, inertial 

navigation systems were invented for military use for the navigation of air vehicles [8]. In 

the early 1970’s, the invention of GPS made it possible to give a vehicle’s position within 

a global reference frame [9]. 

Reliable global localization is paramount for the widespread use of automated 

vehicles. Without a global reference point, vehicles can’t reliably plan trips to different 

destinations. However, GPS is only accurate up to several meters. Urban canyons, 

multipath, and severe weather can contribute to these errors. RTK systems that can 

achieve centimeter level accuracy are expensive and require a ground station for 

operation. This motivates the need for redundant localization sensors that are relatively 

inexpensive. Other sensor modalities use the process of odometry to incrementally 

calculate the pose of the ego-vehicle across its time samples.  

 

2.1.1 Wheel Odometry  

 

In Wheel Odometry, a wheeled robot uses encoders to track wheel revolutions. 

The wheel revolutions are used to calculate the relative position from the initial starting 
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position of the robot to its current position [10]. Wheel Odometry has a few weaknesses. 

It is susceptible to position drift caused, in part, by lateral and longitudinal wheel slip. 

The error measurements over time are cumulative making it impractical for long range 

odometry as a stand-alone method. It also isn’t suitable for applications where precise 

measurements are needed. For uneven or rough terrain, Wheel Odometry performs 

poorly. Any environmental disturbance that can cause slippage will have a significant 

impact on the trajectory calculation. One of its major strengths is that it’s an inexpensive 

method for localization. It’s often used to benchmark other odometry algorithms (e.g., 

Visual Odometry.) It also has a simple model and calculations. Overall, this method is 

well suited for vehicles of any size or budget and works well with other forms of 

odometry.  

 

2.1.2 Inertial Odometry  

 

Inertial Odometry (IO) utilizes an Inertial Navigation System (INS), namely 

inertial measurement unit (IMU) sensors to determine position, orientation, altitude, and 

linear velocity of a robot. Automotive grade IMU sensors are typically 

microelectromechanical systems (MEMS) devices with a 3-axis accelerometer and 3-axis 

gyroscope [10]. The accelerometer measures non-gravitational acceleration. The 

gyroscope measures orientation based on gravity and magnetism or angular rate of 

rotation [10,132]. Inertial Odometry is often used in combination with Visual Odometry 

[11-14]. IMUs are small and low power which makes Inertial Odometry feasible for 

vehicles of all sizes that operate at longer mission lengths. IMUs are relatively accurate 
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without external sensors or other references. However, they still experience drift errors 

that are inherent to odometry problems. Constant gyroscope and accelerometer error can 

accumulate in the integration process producing position and velocity errors. 

Consequently, over long periods of time this integration error can lead to poor 

performance.  

 

2.1.3 Laser Odometry  

 

In Laser Odometry point clouds are generally preprocessed and registered to 

recover the motion of an ego-vehicle [133]. These point clouds are often collected from 

LiDAR (Light Detection and Ranging) sensors. For this reason, Laser Odometry is often 

called LiDAR Odometry (LO). LiDAR has multiple packaging types (e.g., scanning, 

solid state) with varying size and field of view. LiDAR provides large amounts of 

detailed position data relative to the ego-vehicle. These properties make LiDAR 

Odometry a suitable choice for ego-vehicle localization. A classic approach to this 

problem is the Iterative Closest Point (ICP) algorithm [133,134]. In this approach the 

distance to keypoints from a transformed source point cloud to keypoints in a target point 

cloud are measured. Points that are sufficiently close together based on a dissimilarity 

metric are weighted more heavily in the cost function. The objective is to find the 

transformation that minimizes the sum of squared errors for the point cloud 

correspondences [133]. There are several methods that improve this approach [135-137]. 

In addition to point correspondences, LO pipelines can also utilize distribution 

correspondences [138] and network correspondences [139] to estimate the pose of an 
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ego-vehicle [133]. There are a few weaknesses to LO pipelines. Lidar Odometry is 

nonoptimal for highly occluded scenes and large planar surfaces. Lidar Odometry is more 

suitable for well-structured environments. Lidar Odometry is also computationally 

expensive and power hungry [10].  

 

2.1.4 Radar Odometry  

 

Radar Odometry estimates motion by analyzing radar scans. Radar sensors are 

unique in that they can measure velocity, range, and angle of arrival from the sensor 

itself. Radar sensors come in pulse and continuous wave formats [10]. Pulse wave radar 

emits short bursts of pulses and listens for echo returns. Frequency modulated-continuous 

wave (FMCW) radar transmits multiple streams of modulated continuous wave signals. 

Radar fused with IMU or RGB Cameras is a good option for odometry and overall 

vehicle position estimation [15,16]. Continuous Wave radar has relatively high-resolution 

images compared to Pulse Wave radar [10]. Continuous Wave radar also has low 

sampling rate, low power consumption and minimum target range. Radars in general are 

long range, immune to poor weather, and perform well in low textured environments. 

Radars are good standalone sensors for motion estimation. There are also 1D and 2D 

radar options available. For the Pulse Wave radar, there are blind spots. For some feature 

extraction methods (e.g., Hough Transform) radar data processing becomes 

computationally expensive [10]. Non-flat terrain and road infrastructure can lead to 

misleading returns from the radar (i.e., outliers are significant.)  
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2.1.5 Visual Odometry  

 

Visual Odometry estimates a camera’s pose from image sequence features. Visual 

Odometry is related to Structure from Motion (SfM) in that image features are often used 

to calculate depth (i.e., structure), but this is often done to aid in the calculation and 

refinement of the camera pose and scale [17]. In Structure from Motion these features are 

used to estimate the 3D structure of the scene as its primary objective. Visual Odometry 

works well with the fusion of IMU and LiDAR data as well [10-14]. In general, stereo 

visual odometry outperforms monocular visual odometry approaches due to the lack of 

scale ambiguity and ability to calculate depth more easily. For monocular VO the 

translation vector between image sequences has scale ambiguity so additional algorithms 

are needed to estimate scale. In general, VO struggles in scenarios with low texture, non-

Lambertian surfaces, and overall poor lighting conditions [17]. However, due to the 

sensor’s inexpensiveness, versatility, and ubiquity, VO remains an active area of research 

and is essential for automated driving. 
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Chapter 3. Visual Odometry Fundamentals 

 

Visual Odometry (VO) is the process of estimating the ego motion of a vehicle, 

human, or other agent from the image frames of a camera or multiple cameras attached to 

the agent [17]. VO in the last few decades has been heavily researched [18-28]. The first 

relative pose estimation approach from images was proposed by Erwin Kruppa in 1913 

[29,30]. In this work, Kruppa finds the relative pose of a 3D object between two 

calibrated images from five feature point correspondences [29,30]. The first VO system 

was credited in [31] to Hans Moravec for his PhD dissertation and work at the Stanford 

AI Lab in 1980 (Figure 1.) This research and following works were focused on 

applications for NASA’s Mars Rover missions. Remote control from Earth to Mars is 

impractical due to the latency in RF signals. Likewise, on Earth relying solely on RF 

signals provided by technologies like GNSS are insufficient for robotics operation. Hence 

the need for more sophisticated, unmanned robots with adequate sensor redundancy. In 

his work, Moravec equipped a small electric cart with a TV camera. The motion 

estimation was done using a sliding stereo approach, where the camera took 9 images 

over a 52 cm track to recover the motion. Although this approach was slow, it marked the 

first known use of cameras to estimate motion for robotics applications. 
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Figure 1. An image of the electric cart used by Hans Moravec to conduct his initial visual 

odometry experiments [31]. 

 

In 1989, researchers at Carnegie Mellon University published the first known use 

of camera pose networks for use in automated vehicles [2]. This work, called ALVINN 

(Autonomous Land Vehicle In a Neural Network) was published at NeurIPS, and utilized 

a camera and range finder as input to a backpropagation neural network to estimate the 

pose of the vehicle (Figure 2a.) The test vehicle was a large truck equipped with many 

computers. This work is credited for being one of the first visual odometry use cases in 

automated vehicles, in addition to being one of the first examples of the use of neural 

networks for the problem. The input images and range data were small (30x32 and 8x32 

pixels, respectively) to accommodate the neural network. The network output consisted 

of 45 direction nodes (Figure 2b.)  
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(a)                                                                 (b) 

Figure 2. (a) An image of the NAVLAB test vehicle at Carnegie Mellon for their work on 

ALVINN and (b) the proposed neural network architecture for the pose estimation [2]. 

 

3.1 Advantages and Disadvantages 

 

There are a few major advantages to utilizing VO pipelines over other localization 

methods in automated vehicles. The first major benefit is that cameras are ubiquitous and 

cheap on the market. This makes the sensors easily accessible due to low relative cost and 

ease of access. In contrast, although LiDAR odometry methods might generally 

outperform VO methods, their high cost makes them impractical to use at larger scales. 

Hence why many self-driving cars with LiDAR are limited to research settings and 

robotaxis (e.g., Waymo) whereas even vehicles with limited levels of autonomy still use 

cameras for ADAS applications [32]. Developing robust and accurate VO pipelines can 

help bring self-driving cars to market by providing a redundant source of localization 

information. It can complement GNSS data to help mitigate errors caused by RF 

interference (e.g., urban canyons, overcast skies.)  
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Another major advantage of using cameras for odometry is that the data can be 

shared across multiple tasks relatively efficiently. For example, many perception tasks in 

self-driving like object detection, object tracking, action recognition, image 

segmentation, and more utilize images in their perception stack. Although these tasks can 

be done with point clouds, it remains an active area of research [33]. Again, the use of 

cameras for vehicle localization can make self-driving more practical for consumers. 

Cameras also offer rich information beyond the resolution of radar, GPS, INS, 

and other sensors. They are an attractive option due to their data diversity. Camera 

sensors take on the form of RGB, RGB-D, infrared, stereo, event, omnidirectional, and 

multi-view stereo camera systems (Figure 3a-g.) Each modality has its own advantages 

and disadvantages for VO.   

RGB-D cameras offer rich color and depth content, usually through an additional 

active sensing method (e.g., structured light with lasers.) This gives RGB-D VO pipelines 

the advantage of depth information without the need for significant computational 

overhead. However, texture less and non-Lambertian surfaces remain an issue for this 

camera modality in the context of VO. Likewise, stereo VO pipelines can recover depth 

information more easily than monocular camera methods. Well calibrated stereo camera 

systems also don’t have a scale ambiguity problem, because of the known stereo baseline 

between camera sensors. However, these methods require accurate calibration that can 

change in varying environments, and like RGB-D methods, have a limited range of depth. 

Multi-view stereo VO pipelines use multiple cameras (with two being the special case of 

stereo) to calculate odometry. 
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Figure 3. Different camera modalities for VO pipelines and examples of their respective 

data: (a) RGB, (b) RGB-D (c) Stereo, (d) Event, (e) Infrared, (f) Omnidirectional, and (g) 

Multi-View Stereo [34-40]. 

 

(c) 

(g) 

(f) (e) (d) 

(a) (b) 
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In general, these methods are the most accurate because the redundancy of several 

cameras can help constrain the geometry of the VO problem. However, the addition of 

multiple cameras is often a heavy computational load, and modelling can be complex 

(e.g., [41].) Event cameras in VO pipelines are a relatively new approach [42]. These 

cameras record the motion of a scene, don’t experience motion blur, have high dynamic 

range, and have low latency. Despite these promising features and performance in 

relatively recent works [43,44], its major disadvantage is that they are less accessible, and 

for the moment are inaccessible for large scale robotics endeavors like self-driving cars. 

For omnidirectional camera approaches, the large field of view can lead to better 

retainment of features and information. These methods are also more robust to rotation-

only motion, which is a challenge in most monocular VO pipelines with smaller fields of 

view. Again, these cameras are relatively expensive compared to their narrower field of 

view counterparts. In addition, another major disadvantage of omnidirectional VO 

pipelines is the more complex system modeling [45]. 

In contrast to the more specialized camera modalities, monocular RGB cameras 

are ubiquitous, cheap, and versatile. The major disadvantage of monocular VO pipelines 

is the added overhead of computing depth and the well-known scale ambiguity problem 

[17]. Monocular depth estimation and scale recovery have been an ongoing topic recently 

[46]. Infrared cameras are less utilized in the automated vehicles body of research for 

localization. Their major advantage is the ability to work in nighttime scenarios where 

RGB cameras tend to struggle, even in the presence of streetlights and head lights. 

However, they tend to have lower dynamic range and are only used when needed (e.g., 
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localization for nighttime driving.) This thesis primarily focuses on the monocular RGB 

camera setting.  

 

3.2 Visual Odometry, Structure from Motion, and SLAM 

 

Visual Odometry is a major component of Simultaneous Localization and 

Mapping (SLAM) and Structure from Motion (SfM) (Figure 4.) Structure from Motion 

describes the calculation of both depth (structure) and relative camera poses (motion) in a 

scene. Classical SfM pipelines are often used to jointly reconstruct the 3D structure of the 

environment and poses of the cameras. This approach is usually adopted to reconstruct 

objects of interest, rather than moving dynamic scenes. The cameras involved in the 

reconstruction can also have different intrinsic properties. In this case, the well-known 

bundle adjustment problem can be employed to refine the estimated structure (depth), 

camera poses, and camera intrinsics [47]. Bundle adjustment is a back-end optimization 

scheme that minimizes the reprojection error of camera observations (pixels or 3D 

points.) The SfM problem is related closely to VO and SLAM in that the computation 

and refinement of depth and pose are similar in nature. However, the end goal of SfM is 

to reconstruct a presumably static environment with a generalized set of cameras. These 

cameras can be unordered, where VO and SLAM pipelines assume a sequential set of 

cameras. In VO and SLAM, it is also generally assumed that there is one camera with the 

same set of intrinsics, and the end goal is to localize an agent within its environment. SfM 

pipelines also tend to run offline, due to the incorporation of all the depth, poses, and 

intrinsics being formulated into one bundle adjustment problem. For VO and SLAM 
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pipelines, there are real time constraints. To reduce the optimization runtime, typically 

bundle adjustment is implemented in a windowed fashion.  

 SLAM algorithms are critical for highly automated vehicles (HAVs). HAVs 

typically have a high-definition map of its operation environment. This map provides the 

ego-vehicle with a globally consistent way to localize itself (e.g., [18-20].) Due to 

dynamic obstacles, season changes, and non-rigid bodies within a vehicle’s environment, 

the map is subject to change. Consequently, a method for updating maps is needed to 

ensure the vehicle can safely operate in this environment. SLAM as the name implies, 

computes the vehicle’s pose (localization), and generates a depth map to update the high-

definition map of its environment (mapping.) These processes are done simultaneously. 

Additionally, many SLAM algorithms implement a variation of loop closure and map 

update scheme. Loop closure is the process of detecting previously encountered 

landmarks and refining the calculated trajectory to close loops caused by the inherent 

error drift of odometry algorithms [17]. This process is usually done in a back-end 

optimization step. VO algorithms typically do not include a loop closure step, because it 

requires the building and tracking of a map. However, the usage of other back-end 

optimization algorithms like bundle adjustment and pose graph optimization are used to 

help refine the calculated trajectory [18-28].  

SLAM algorithms also differ from Visual Odometry pipelines in how depth 

information is processed and tracked. Both SLAM and VO pipelines tend to use depth 

estimation techniques to aid in the calculation of pose estimation through image and point 

warping. However, VO pipelines do not require a map to be built, processed, or 
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maintained. This thesis is primarily concerned with the localization of an ego vehicle, and 

not the overall system in self-driving vehicles. For this reason, this work primarily 

focuses on odometry when discussing pose estimation approaches. Some major 

breakthroughs in SLAM include MonoSLAM [48], PTAM [49], ORB-SLAM [18-20], 

LSD-SLAM [22] and many more. Overall, SfM is a 3D reconstruction approach from 

generalized, unordered sets of cameras. Whereas VO and SLAM pipelines can be 

considered local and global approaches for estimating an ego-vehicle’s trajectory [17] 

(Figure 4.) 

 

 

                       

 

Figure 4. An example of the data output for the (a) Structure from Motion, (b) Visual 

Odometry, and (c) Simultaneous Localization and Mapping problems [50, 18, 28]. 

(a) 

(b) (c) 
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3.3 Classical Visual Odometry Methods 

 

There are three major classes of VO algorithms: Classical, Direct, and Deep 

Learning. The first set of algorithms are considered classical or geometric VO methods. 

These VO methods start with a pipeline frontend that consists of feature extraction, 

feature matching, outlier rejection, motion estimation and optimization steps (Figure 5.) 

Many early methods use this schema. Classical methods tend to be accurate for large 

interframe motion and utilize sparse features to estimate ego-motion. However, they tend 

to lack robustness for significant photometric noise across image frames, motion blur, 

high and low frequency patterns. These methods rely on significant scene structure and 

static observations. These methods also tend to outright fail under these conditions and no 

odometry estimates are produced.  

 

 

Figure 5. A high-level view of classical VO pipelines. 

 

In the feature extraction step, interest points or corners are extracted from the 

image. There are several approaches to extracting corners from an image sequence. 



20 

 

Common methods include SURF [51], SIFT [52], ORB [53], Harris [54], and Shi-Tomasi 

[55] corner detection. These are all classical feature extraction approaches that use 

heuristics to identify feature points. In recent years, deep learning-based feature 

extraction methods have been proposed that are more robust to photometric 

inconsistencies (e.g., LoFTR [56]). These features are then matched between image 

frames with an algorithm like Brute Force Matching or FLANN [57]. These 

correspondences can be erroneous for many reasons. Consequently, an outlier rejection 

scheme is introduced to filter out correspondences that will negatively impact the pose 

estimation. Random Sample Consensus (RANSAC) is the standard in this area and has 

many proposed variants [58]. These features are triangulated by utilizing epipolar 

geometry. The final step includes a non-negotiable bundle adjustment formulation that 

optimizes the camera intrinsic and extrinsic parameters of the image sequence. The 

following sections will detail the inner workings of this classical approach. 

 

3.3.1 Camera Model 

 

 Real camera systems have complex lens hardware that distorts incoming light 

rays for better camera functionality. For example, for the convenience of the 

photographer, cameras can have zoom capabilities so that objects within a scene can be 

placed within a proper depth of field [132]. This can help reduce blur for out of focus 

subjects in images. These lenses make camera modeling challenging, and in practice, 

cameras are assumed to follow a ‘thin lens model’ where these distortions are negligible 

[132]. As seen in Figure 6, a 3D point, P is projected into the camera after passing 
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through a lens, and is projected to 2D image point, p’ . As the lens becomes thinner, point 

z’ and focal length f become approximately the same, and this assumption can hold in 

practice. The point, z’ is the distance from the lens to the projected point, p’. The focal 

length is the distance from the lens to the point where light rays converge on the camera’s 

principal axis. In this work, the thin lens model and the commonly adopted pinhole 

camera approximation will be used to model how 3D points are projected onto a camera’s 

image plane. This model is used in practice, because the size of the camera aperture and 

the depth of field are inversely proportional. For an infinitesimally small aperture, (i.e., 

pinhole) the model can have a large depth of field [132]. This simplifies the camera 

projection model. In this model all light rays converge to the center of the camera. The 

image plane to the camera center can be considered the focal length. And the principal 

point, p is the point where the camera’s principal axis intersects the image plane. This 

approach helps form simple relationships between the 3D observations and projected 

pixel points with similar triangles (Figure 7.) 

 

Figure 6. A basic model of a modern camera with focal length (f), 3D observation (P), 

depth (z), projected point (p’), and distance from lens to projection plane (z’). The light 

rays observed from 3D observations converge at point F on the principal axis [17]. 
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Figure 7. The Pinhole Camera Model used in many computer vision tasks. [47]. 

 

The 3D points observed in the camera frame can be projected onto the image plane using 

the focal length and principal point of a calibrated camera. This is done by constructing 

the intrinsic camera matrix, K (Eq. 1.2.) The projected points are then normalized by 

dividing the vector by its last element to put it into homogeneous form (last element is 1.) 

The homogeneous form is convenient for matrix operations.  

 

𝑝′ = 𝐾𝑃′                                                        (1.1) 

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝐶𝑎𝑚𝑒𝑟𝑎 𝑀𝑎𝑡𝑟𝑖𝑥, 𝐾 = [
𝑓𝑢 0 𝑐𝑢

0 𝑓𝑣 𝑐𝑣

0 0 1

  0
  0
  0

]                      (1.2)  

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡, 𝑝′ = [
𝑢
𝑣
𝑤

] → 𝑝′ = [
𝑢/𝑤
𝑣/𝑤
1

]                           (1.3) 

3𝐷 𝑝𝑜𝑖𝑛𝑡, 𝑃′ =  [

𝑋
𝑌
𝑍
1

]                                              (1.4) 
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For 3D points expressed in the world coordinate frame, these points can be projected into 

the current camera by applying a rigid body transformation with rotation matrix R and 

translation vector t. This transformation with both intrinsics, K and extrinsics R and t, 

form what is known as the Projection Matrix. (Eq. 2.1-2.2.) 

 

𝑥′ = 𝑃𝑋′                                                          (2.1) 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥, 𝑃 = 𝐾[𝑅|𝑡]                                     (2.2) 

 

The rotation matrix is an orthonormal matrix that describes the rotation of a point in nth 

dimensions. This matrix belongs to the Special Orthogonal Group, SO(n) [60]. For this 

work 2D and 3D rotation matrices are used to describe rotations among 2D/3D Euclidean 

points and pixel locations. The rotation matrix can be decomposed into Euler angles: roll, 

pitch, and yaw. These angles describe the rotation about the x, y, and z axes respectively 

(Eq. 3.1-3.2) The translation vector, t is an nth dimension change in Euclidean distance. 

The combination of the rotation matrix and translation vector form the transformation 

matrix (Eq. 3.4.) The transformation matrix provides a convenient form to concatenate 

rigid body transformations. This matrix belongs to the Special Euclidean Group, SE(n). 

The SE(2) and SE(3) manifold parameterizations are often used in the VO literature to 

represent relative camera poses [60]. 

 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥, 𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] =  𝑅𝛾𝑅𝛽𝑅𝛼                             (3.1) 
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𝑅𝛼 = [
1 0 0
0 cos(𝛼) −sin(𝛼)

0 sin(𝛼) cos(𝛼)
], 𝑅𝛽 = [

cos(𝛽) 0 sin(𝛽)
0 1 0

−sin(𝛽) 0 cos(𝛽)
],                      (3.2) 

𝑅𝛾 = [
cos(𝛾) −sin(𝛾) 0

𝑠𝑖𝑛 cos(𝛾) 0
0 0 1

] 

𝑟𝑜𝑙𝑙: 𝛼, 𝑝𝑖𝑡𝑐ℎ: 𝛽, 𝑦𝑎𝑤: 𝛾 

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑡 = [

𝑡𝑥
𝑡𝑦
𝑡𝑧

]                                      (3.3) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥, 𝑇 = [
𝑅 𝑡
0 1

]                                 (3.4) 

 

Quaternions can also be used in tandem with translation vectors to represent rigid body 

transformations. These rotations reside on the tangent space of the Special Unitary 

Group, SU(2) [60]. This representation is common in computer graphics for its compact 

form. However, the quaternion is less common for VO pipelines, and for this reason, the 

main rotation parameterization used is the rotation matrix and its corresponding Euler 

angles in this research. 

 

3.3.2 Feature Detection and Matching  

 

 Feature points, salient points, keypoints, and corners are all used to describe 

points of interest in an image. It’s a basic component of many computer vision 

algorithms. Likewise, feature detection is a key component in classical, geometric VO 

pipelines. In contrast to area-based or patch-wise comparisons in computer vision that 
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seek to acquire some global or high-level information about the image, the objective of 

feature detection is to extract local information in images. These features can be used for 

tasks including image registration, matching, warping, etc. Global information in an 

image can be sensitive to occlusions and photometric changes [61]. The benefit of having 

local features is that algorithms have fine grain information about the image. In general, 

after feature extraction, an area around the feature point is extracted and a descriptor is 

computed to match these keypoints.  

To compare these features across images, there needs to be some notion of 

repeatability and uniqueness to reliably match features across images [59]. This often is 

the case in descriptor-based feature extraction where extracted features are assigned 

values that gauge the uniqueness of the feature. Feature detection methods should also be 

able to produce a large quantity of features from an image, to cover different objects, 

structures, etc. An insufficient number of detected features can lead to challenges 

downstream in a VO pipeline. In general, these features should also be relatively efficient 

so that performance in real time scenarios is possible. In VO and SLAM this is 

particularly important because pose estimates are often needed in excess of 10 Hz. 

Features that are computationally inefficient can make these approaches difficult to use in 

practice.  Feature detectors also need to be rotation, translation, and scale invariant. In 

practice, cameras and object motion cause features to change location and size across 

image frames. Therefore, feature detectors need to detect features after they experience 

transformations from movement. Geometric and photometric variation are also an 

important consideration for the design of feature detectors. Images can experience 
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changes in lighting, noise, and blur across image frames [47]. And in some settings the 

presence of low and high frequency texture can further complicate the detection and 

matching process. Detectors that are robust to these inconsistencies are considered 

reliable for general computer vision tasks, and VO pipelines. 

 There are many notable feature detectors in the computer vision literature [52-56]. 

In general, these detectors can be classified by how they extract features as gradient, 

intensity, curvature, and learning based detectors. In gradient-based detectors, the image 

gradients are used to define a metric that reflects the ‘cornerness’ of a feature. Corners 

are desirable feature primitives to detect because matching features on lines leads to 

ambiguity. A pixel might be localized anywhere along the line in the next image frame. 

For corners of objects in an image, the pixels have locally high gradients which makes 

them easier to track across image frames. In intensity-based feature detectors the pixel’s 

local intensity values are used to develop a notion of cornerness. In curvature-based 

detectors the objective is to extract information based on structure. In particular, edges, 

contours, and regions are used as features [62]. In learning-based methods machine 

learning and deep learning are used to extract features from images by learning from 

data. Deep learning feature detectors have become a recent trend across many computer 

vision tasks (including feature detection and matching) for their robustness and ability to 

extract higher level features from images (e.g., [56].) In contrast to hand crafted features 

and heuristics, these methods require less parameter tuning in practice (at inference time) 

and are more robust to changing environments, blur, brightness changes, and more (e.g., 

[56].)  In indoor environments, line-based and blob detectors can be used to help track 
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low texture regions and groups of pixels with similar content [63,62]. This research 

focuses on outdoor environments in the context of automated driving, and therefore, this 

body of literature is not considered in this research. 

 A notable feature detector, called Features from Accelerated Segment Test 

(FAST) is commonly used in general computer vision tasks and the VO literature [64]. 

As the name implies, it is computationally efficient. It works by extracting a local, 

circular region of pixels and comparing the candidate feature to the pixels on the 

perimeter of the circle (Figure 8.) If most of the perimeter pixels are within a predefined 

intensity threshold, then the pixel is considered a reasonable feature to track.  

 

Figure 8. The local feature extraction approach of the well-known FAST feature detector 

[64]. 

 

 Another notable feature detector, called the Harris detector is based on the 

correlation matrix of image gradients [54]. The intuition for this approach is that image 

gradients carry information about the cornerness of a feature. A score of zero suggests 



28 

 

that the gradients are near zero, which is common for low texture regions. Low texture 

regions are not good candidates for tracking, because matching is generally ambiguous 

since many pixels could be matched in the target frame. When one of the eigenvalues of 

the correlation matrix is much larger than the other, this suggests that there are strong 

gradients in one direction and not the other. This observation is common for edges, which 

are also ambiguous for matching since a pixel can be localized in many places along the 

edge in the target frame. Good features to track (i.e., corners) have two large eigenvalues 

in the correlation matrix, since image gradients tend to be larger in both image plane 

axes. This intuition is used for the Harris detector response function to extract features.  

 The Shi-Tomasi feature detector is an improvement on the Harris detector [55]. If 

the minimum eigenvalue is above a noise threshold, the feature is considered a good 

feature to track. The intuition is that the overall geometry of the feature primitive is not a 

concern, and if the eigenvalues are above the noise floor, then it’s a reliable feature to 

track. Like the Harris detector, the Shi-Tomasi feature detector is rotation invariant, but 

not scale invariant.  

 The Scale Invariant Feature Transform (SIFT) detector and descriptor approach 

was considered state of the art for many years [52]. The approach uses Difference of 

Gaussians (DoG) to search an image for candidate feature points that are scale and 

rotation invariant. The keypoints are localized by determining their location and scale. 

Stable observations are selected. Local image gradients are used to determine orientation 

information. This approach makes the feature extraction method rotation, translation, and 

scale invariant. The descriptor uses the local orientation information based on the 
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gradients and is robust to deformation and illumination changes [52]. Later, Speeded Up 

Robust Features (SURF) was proposed as a fast approximation to SIFT [51]. This was 

done using Haar wavelets. It also outperformed its predecessors in robustness, and 

repeatability.  

 The Oriented FAST and Rotated BRIEF (ORB) feature detector was proposed as 

an efficient alternative to the SIFT and SURF features [53]. It is based on the binary 

descriptor BRIEF [65] and builds on the FAST keypoint detector. The implementation is 

robust to noise and two orders of magnitude faster than SIFT [53]. It is an essential 

component of the state-of-the-art geometric SLAM method, ORB-SLAM. Which is often 

used (without loop closure) for VO pipelines across multiple camera configurations [18-

20].  

 Another notable feature extraction approach in the literature is the famous 

Kanade-Lucas-Tomasi (KLT) Tracker that uses the concept of optical flow [66]. In 

practice, the KLT Tracker is fast and a common approach for tracking features across 

multiple image frames in VO pipelines. The intuition behind sparse optical flow is that 

feature points experience small motion across image frames. Therefore, the KLT tracker 

seeks to minimize the image alignment error introduced by this incremental motion. As 

motions become larger this assumption of small movements begins to break down.  

 There are also recent works in deep learning for feature correspondences and 

matching. The Linear Invariant Feature Transform (LIFT) [67] models the detection, 

orientation estimation and descriptor pipeline altogether. The MagicPoint network was 

proposed in [68] and was an early use case for learning deep features for geometric 
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SLAM. Other methods include, D2Net [69], R2D2 [70], DISK [71], DRC-Net [72], 

LoFTR [56], and more. These approaches can also model multiple sections of the feature 

detection and matching pipeline. LoFTR is used in this research for its robustness to 

motion blur, and both high and low frequency texture.  

 There are several approaches to matching the previously mentioned descriptors. 

One such approach is brute force matching by seeking to exhaustively match a feature 

extracted in the source image to a feature in the target image for every target feature 

point. This method is simple but very inefficient. Another approach is to use the k-

Nearest Neighbor (KNN) method [73] and match local candidates. Some methods use an 

area-based approach where pixel intensities are directly used for matching. This approach 

can be observed in basic stereo vision setups where matches are known to be observed 

row-wise, which makes the search less exhaustive. However, feature point matching 

across time (like in monocular VO) tends to avoid area-based matching. Feature 

matching can also be done with graphs by assigning features to nodes and 

correspondence distances to the edges of the graph [62]. Deep learning has also been 

used for matching correspondences [62].  

 

3.3.3 Outlier Rejection 

 

 Point correspondences can contain many outliers throughout the feature detection 

and matching pipeline. This can be due to feature detectors, descriptors or matchers that 

lack robustness to geometric and photometric variation throughout the image. As a 

consequence, geometric VO pipelines require some notion of outlier rejection to 
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maximize the number of inlier point correspondences. For many years, the state-of-the-

art outlier rejection scheme has been RANSAC. The algorithm starts by collecting the set 

of feature correspondences. A random sample of the feature correspondences are then 

taken, and a least squares model is fit to these points. The Euclidean distance to this 

model is calculated for all feature correspondences. The correspondences that are under a 

distance threshold are considered the inliers.  This process is repeated until a predefined 

threshold is met. This threshold can be set to a max number of iterations based on 

probability of inlier success, outlier ratio, and number of points sampled [47]. The 

correspondence set with the most inliers (the most consensus) is used [58]. In the case of 

1-point RANSAC only one iteration is needed and as the minimum number of points 

increases so does the number of iterations [74]. More recent methods relax the 

termination criterion to make the rejection process less conservative [78]. 

In general, the minimum number of correspondences required for relative camera 

motion is five-point correspondences, and the algorithm is thus sometimes referred to as 

5-point RANSAC. For wheeled vehicles, by exploiting nonholonomic constraints, only 

one point correspondence is needed. In [74], Scaramuzza et. al. propose this method and 

call it 1-point RANSAC. Raguram et. al. propose Universal RANSAC (USAC), a general 

purpose framework for outlier rejection [75]. The N-adjacent Points Sample Consensus 

(NAPSAC) algorithm proposed in [76] relies on the intuition that inliers tend to be close 

together while outliers tend to be much farther away. The approach is effective at 

drawing inlier samples; however, it is prone to degeneracies [75]. In [77], the Progressive 

Sample Consensus (PROSAC) algorithm is proposed. In this algorithm, point 
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correspondences with a higher quality metric are used from the start instead of 

stochastically like RANSAC. The algorithm eventually progresses into the RANSAC 

scheme [77]. In [78], the Marginalizing Sample Consensus (MAGSAC) approach is 

proposed to improve on RANSAC. The model uses noise marginalization instead of 

thresholding. The model is considerably accurate, but rather slow. In [79], MAGSAC++ 

was proposed to speed up the algorithm. It uses several least squares fittings while 

marginalizing over the noise. The model is constructed using the Iteratively Reweighted 

Least Squares (IRLS) algorithm. Its quality metric improves on MAGSAC by using a 

lookup table for gamma functions instead of computing them at inference time [79].  

 

3.3.4 Motion Estimation  

 

 Following outlier rejection in the classical, geometric VO pipeline, a motion 

estimation step is used to get a rough initial estimate of the camera’s motion. There are 

different approaches to getting an initial estimate. However, the standard is to use 

epipolar geometry to form a constraint with the inlier set of pixel correspondences. The 

epipolar geometry connects pixels and 3D observations across multiple image frames. 

The epipolar plane can be constructed with the camera centers, and a 3D point observed 

in each frame. With a single image frame, the depth of a 3D point can’t be localized from 

its projected pixel. Another view of this 3D point must be observed in another image 

frame in order to estimate the location of the 3D point. The epipolar line for a 

corresponding 3D point is a projection of the possible location of a 3D point in space, 

observed in another image frame. This can be observed by drawing a line from the 
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epipole to the pixel location of interest. An epipole is a point on the image plane where 

the line from camera center to camera center intersects. The relationship between the 

epipolar plane, epipolar lines, and epipoles can be observed in Figure 9. 

 

  

Figure 9. A basic depiction of the epipolar geometry used in classical VO pipelines [47]. 

 

The Fundamental Matrix constrains point correspondences between two image 

frames. The relationship in Eq. 4.1-2 essentially constrains the epipolar line to be 

orthogonal to any pixel observed in the image plane of the other image, where point 

correspondences x and x’ are given. 

 

𝑒𝑝𝑖𝑝𝑜𝑙𝑎𝑟 𝑙𝑖𝑛𝑒, 𝑙′ = 𝐹𝑥                                              (4.1) 

𝑒𝑝𝑖𝑝𝑜𝑙𝑎𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, 𝑥′𝑇𝐹𝑥 = 0                                     (4.2) 
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The Fundamental Matrix, F can be decomposed into a rigid body transformation 

and the camera intrinsics. The rigid body transformation is in the form of the Essential 

Matrix (Eq. 5.1-3.) 

 

𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑀𝑎𝑡𝑟𝑖𝑥, 𝐹 = 𝐾′−𝑇𝐸𝐾−1                                (5.1) 

𝐸𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑀𝑎𝑡𝑟𝑖𝑥, 𝐸 =  [𝑡]𝑥𝑅                                        (5.2) 

𝑆𝑘𝑒𝑤 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑥 𝑀𝑎𝑡𝑟𝑖𝑥, [𝑡]𝑥 = [

0 −𝑡𝑧 𝑡𝑦
𝑡𝑧 0 −𝑡𝑥

−𝑡𝑦 𝑡𝑥 0
]                  (5.3) 

 

The estimation of the Fundamental Matrix and Essential Matrix are commonly 

solved via the 8-point algorithm [47]. Given a set of N point correspondences (x’, x), a 

Least Squares solution can provide the appropriate estimate of the parameters for each 

matrix. Once the Essential Matrix is computed, the rotation matrix and translation vector 

can be extracted using a singular value decomposition approach. In general, there are four 

possible solutions for each Essential Matrix decomposition (Eq. 6.1-2.) 

 

𝑇 = [𝑈𝑊𝑉𝑇|𝑢3], [𝑈𝑊𝑉𝑇| −𝑢3], [𝑈𝑊𝑇𝑉𝑇|𝑢3], 𝑜𝑟  [𝑈𝑊𝑇𝑉𝑇| −𝑢3]      (6.1) 

𝑊 = [
0 −1 0
1 0 0
0 0 1

]                                                       (6.2) 

 

In Eq. 6.1, the U and V are the left and right matrices of the singular value 

decomposition. The third column of the left matrix, U is denoted as u3. The estimated 
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translation vector is a unit vector, and a scale estimation approach must be implemented 

to get the true translation to scale. The Fundamental Matrix estimation approach for 

motion estimation is degenerate for planar motion, low parallax, and zero motion. Under 

the zero-motion case, the translation vector makes the skew symmetric matrix the zero 

matrix (Eq. 5.3.) Consequently, the epipolar constraint is satisfied without the need for 

computing rotation. This is an undesirable property for VO pipelines. In some VO 

pipelines, model selection is used to select a different motion model under these scenarios 

[18]. One such model is the Homography Matrix. A Homography is a perspective 

transformation, where the points observed are on a plane. Under this motion model, 

planar motion and zero-motion are not an issue. The Homography Matrix can be 

calculated in a similar fashion to the Fundamental and Essential Matrices. A classic 

approach is through the Direct Linear Transform [47], however, this approach is not 

robust to outliers. The Homography Matrix can be decomposed as seen in Eq. 7.2. Given 

the relative plane normal, n and the depth of the point(s) with respect to the camera the 

Planar Homography can be computed. This can be done similarly to the decomposition to 

the Essential Matrix by using the singular value decomposition [47]. There are also 

methods in the literature for Homography, Fundamental, and Essential Matrix estimation 

that formulate the problem as a point reprojection problem. Where the reprojection error 

of points is used to estimate the matrices [80,81]. There are also recent works that seek to 

estimate these matrices in a more robust fashion by leveraging deep learning [82,83]. 

 

𝑥′ = 𝐻𝑥                                                       (7.1) 
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𝐻 = 𝐾′ (𝑅 −
𝑡𝑛𝑇

𝑑
)𝐾−1                                          (7.2) 

 

 

 

3.3.5 Optimization  

 

Rigid body transformations computed from the Fundamental or Homography 

Matrix are rough estimates of a camera’s motion. Even with robust outlier rejection 

schemes, outliers can still contaminate the point correspondences used to calculate the 

pose estimates. This error in the pose estimation process can accumulate quickly over 

several image frame pairs and is known as error drift in odometry problems [17]. This 

error can be from systematic uncertainties in the VO pipeline and noise observed in the 

environment. An optional, but highly encouraged backend optimization scheme is often 

implemented in VO and SLAM pipelines. Like the SfM problem, bundle adjustment is 

often used to refine the pose and depth of the scene over several images. For VO 

pipelines, a windowed bundle adjustment is usually implemented to reduce 

computational load. Unlike stereo VO pipelines, monocular VO pipelines can’t estimate 

depth from a single time instance. Multiple frames are needed to estimate and refine the 

depth. In bundle adjustment, the reprojection error of the point correspondences is often 

used as the objective for the optimization problem. 

 

min
𝑇,𝑑

∑ 𝜌(𝑥′
𝑖 −  𝜋(𝑥𝑖, 𝑇, 𝐾, 𝑑))

2𝑁
𝑖                                    (8.1) 
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𝜌(∙) ∶ 𝑟𝑜𝑏𝑢𝑠𝑡 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝜋(𝑥𝑖, 𝑇, 𝐾, 𝑑) = 𝐾𝑇𝑑𝐾−1𝑥𝑖                    (8.2) 

 

The optimization problem can be formulated with a robust cost function, ρ. Often 

the robust cost function of choice is the Huber loss [84]. It behaves like the L2 loss within 

a radius, and like L1 loss beyond this region. This makes it robust to large outliers like 

the L1 loss, and more accurate within a region of confidence like the L2 loss. The 

projection function backprojects a pixel into the camera frame using intrinsics and depth. 

This 3D point is transformed given the estimated pose and then projected into the image 

plane of the other camera frame. The cost function is often minimized using the popular 

Gauss-Newton or Levenberg Marquardt methods [47]. This approach is the basis for 

many geometric optimization problems in VO. This approach can be modified to work 

for 3D-3D and 2D-3D correspondences as well.  

 

3.3.6 Notable Geometric Visual Odometry and SLAM Methods 

 

There are many monocular VO pipelines that have been proposed in the literature 

[18-28]. In monocular Visual SLAM (VSLAM), the first real-time case was in 

MonoSLAM [48]. Their proposed method was efficient, working at around 30Hz, and 

could produce smooth camera trajectories. Their method is a probabilistic SLAM 

approach that tracks the state translation, quaternion, velocity, and angular velocity 

vectors. Their states are approximated by a multivariate Gaussian probability distribution. 
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The authors use a general constant velocity and constant angular velocity model for state 

estimation. And they use an active feature measurement and map update scheme.  

Another notable approach in the VO and VSLAM literature at this time was 

Parallel Tracking and Mapping [49]. This VSLAM approach was designed for 

Augmented Reality settings (i.e., indoor, and small desktop settings.) In this work, the 

authors parallelize the VSLAM pipeline on a dual-core machine to track camera motion 

and the map at the same time. Prior to this work, methods have operated sequentially, 

where map updates were done after the camera motion was determined. This 

parallelization made it possible to track motion and the map in real-time. 

Many VO and VSLAM pipelines cite the work in LIBVISO2 [21] as a baseline in 

their research. Their approach is a stereo VO pipeline that has real-time scene flow 

estimation and dense stereo matching capability. The authors utilize a simple reprojection 

minimization problem and Kalman Filtering [85] for ego-motion estimation. This VO 

approach, although not a monocular method, is used to compare against many works in 

the monocular VO literature.  

In addition to LIBVISO2, Mur-Artal et. al. in [18] proposed a state-of-the-art 

monocular VSLAM approach called ORB-SLAM. Their method utilizes ORB features 

across the tracking, mapping, relocalization, and loop closing portions of the pipeline. 

Their method works well for large scale environments due to their adoption of the 

Covisibility Graph. The Covisibility Graph is an undirected weighted graph that 

preserves the local structure of image frames [18]. They implement the model with a 

model selection scheme that uses classic epipolar geometry and the decomposition of the 
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Essential Matrix to recover pose with sufficient parallax motion. For limited motion and 

low parallax motion they use the Homography matrix for motion estimation instead. 

Their pipeline is parallelized over three threads to accommodate the demands of tracking, 

mapping, and loop closing. A high-level view of the architecture can be seen in Figure 

10. Their work also extends to visual-inertial and stereo settings in the following works 

[19,20]. This method is the standard for geometric VSLAM pipelines and is often used as 

a baseline for monocular VO pipelines with loop closure disabled.  

 

 

Figure 10. A high-level view of the ORB-SLAM architecture as seen in [18]. 

 

 In recent years, other approaches have been proposed in lieu of the classic 

Fundamental and Essential Matrix decomposition for motion estimation. Kneip et. al. 

[86] propose an alternative to this problem by utilizing bearing vectors to help recover 

rotation separately from translation instead of epipolar lines (Figure 11.) The 
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Fundamental and Essential Matrix decompositions degenerate under planar motion and 

zero-motion scenarios. By decoupling the estimation of rotation and translation, frame-to-

frame rotation and translation estimates can be accurate. In prior work, multiple frames 

were needed to get accurate pose estimates for monocular VO. Recently, the Probabilistic 

Normal Epipolar Constraint (PNEC) approach was proposed by Muhle et. al., where they 

reformulate the problem by adding uncertainty to the observed feature points [87]. 

 

 

Figure 11. A depiction of the bearing vectors, f in the Normal Epipolar Constraint (NEC) 

and Probabilistic Normal Epipolar Constraint (PNEC) work. As seen in [87]. 

 

 Overall, geometric VO and VSLAM pipelines have shown promising results for 

large motions and are relatively efficient. Under the constraints of real-time performance, 

the desire to use sparse features and efficient parallelization methods has shown to be 

effective in addressing the challenges in VO and VSLAM. Their use of sparse features 

incorporated in efficient front end and back-end optimization frameworks has also been 

shown to make these methods fairly accurate. However, these methods are still delicate 
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and tend to breakdown under the presence of photometric errors like inconsistent 

illumination from shadows, non-Lambertian surfaces, and dynamically moving objects 

[17,47]. Performance in low texture regions has also shown poor performance.  

 

3.4 Direct Visual Odometry Methods 

 

 Geometric, Monocular VO and VSLAM have shown promising results with real-

time performance and robustness against large camera motions. However, many of these 

methods lack robustness to motion blur, low texture, and changes in illumination. These 

methods also sacrifice the quality of information extracted from images by using sparse 

feature points. For these reasons, Direct VO pipelines have been proposed to leverage 

more information from the images. Rather than extracting sparse features throughout an 

image frame, the images are aligned through direct photometric optimization, by iterating 

over the SE(3) manifold. These Direct methods have shown to be highly accurate. 

However, their region of convergence tends to be smaller than the optimization schemes 

in geometric VO pipelines and are often prone to getting stuck in local minima. These 

methods also require careful attention to camera modeling for this reason. Many of these 

methods seek to calculate affine brightness parameters to address changing levels 

illumination across image frames [23]. And in some cases, camera parameters like 

gamma correction and exposure time are addressed to help enforce interframe 

photometric consistency [23]. Implementation of these algorithms often requires the use 

of low-level programming (e.g., SIMD Intrinsics) to achieve real time performance.  
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 One early method, Dense Tracking and Mapping (DTAM), uses whole image 

alignment to track pose across image frames, and calculates a dense depth map [88]. This 

model was designed for indoor environments like PTAM. Although the approach 

considers illumination changes in their tracking scheme, it is not robust to global 

illumination changes. An example of the typical cost function for tracking in direct VO 

can be seen in Eq. 9.1. The intensities of the source image are warped using the estimated 

depth and pose. A robust cost function, 𝜌 is chosen depending on the problem. Common 

choices are L1 loss [88], and more recently the Huber loss [23]. The projection function, 

𝜋 is the same as the projection function used in geometric bundle adjustment problems.  

 

𝐶(𝑢, 𝑑) =  
1

𝑁
∑ 𝜌 (𝐼𝑡𝑎𝑟𝑔𝑒𝑡(𝑢) − 𝐼𝑠𝑜𝑢𝑟𝑐𝑒𝜋(𝐾𝑇𝜋−1(𝑢, 𝑑)))𝑢                  (9.1) 

 

Engel et. al. proposed Large Scale Direct SLAM (LSD-SLAM) that uses a direct 

VSLAM framework and achieves accurate performance over large-scale environments 

[22]. For their pose tracking they down weight their residuals with the variance of the 

residual error to help with robustness to outliers. Their final cost function also tracks 

depth in a similar fashion along with Sim(3) manifold optimization for tracking the pose 

and scale. They achieve real-time performance by leveraging SIMD Intrinsics for 

efficient low-level programming, and only tracking regions of the image with high 

gradients. A more detailed view of the high-level architecture can be seen in Figure 12. 
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Figure 12. The high-level VSLAM architecture for LSD-SLAM as seen in [22]. 

 

In [23], Direct Sparse Odometry (DSO) is proposed as a pure direct VO pipeline. 

This approach differs from most direct VO pipelines in that it uses a full photometric 

calibration to effectively model photometric inconsistencies, which includes modeling the 

inverse response function and lens attenuation. It is sparse and direct because the 

optimization scheme operates directly on pixel intensities but does not use a geometric 

prior that leads to correlations in the Hessian matrix [23]. This approach is considered 

state of the art for direct VO. There are also hybrid approaches that leverage geometric 

and direct techniques. In particular, Semi-direct Visual Odometry (SVO) [24], proposed 

by Scaramuzza et. al. extracts FAST corners to do an indirect optimization on the points. 

And then this pose estimate is refined by doing a direct optimization, locally around the 

extracted features. This approach is fast and robust to high frequency textures, commonly 

found on ground images [24]. 
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3.5 Deep Learning-based Visual Odometry Methods 

 

 In recent years, forward-facing, monocular VO and SLAM pipelines have started 

to incorporate deep learning into their pipelines. In these methods, a large corpus of data 

is prepared for training. In contrast to online learning methods, where statistical inference 

is done in a real-time fashion, deep learning methods learn through a training process 

where data is randomly fed into a neural network architecture over many epochs. These 

architectures often contain a large set of parameters. The learning process takes place by 

updating a loss function through backpropagation.  

An early work has been proposed using a downward-facing camera and a range 

finder [2]. In this work, a multilayer perceptron network is fed this data, and the network 

predicts 45 directional outputs to predict the change in pose. In more recent years, the 

progress of Convolutional Neural Network (CNN) architectures has prompted the rebirth 

of deep learning for the VO and SLAM problem. In [89], an approach called PoseNet, 

uses a pose encoder to address the problem of camera relocalization in a supervised 

manner. This eventually led to works like DeepVO [25] that use pose encoders and Long 

Short-Term Memory units to create a VO pipeline in a supervised end-to-end manner. 

Supervised learning methods have shown evidence of model overfitting, and therefore 

lack robustness against out of distribution datasets. There have been many works since 

then that seek to solve the VO problem with unsupervised learning. The most effective 

approaches exploit the image warping relationship utilized in geometric and photometric 

bundle adjustment to learn both depth and pose during the training process. This process 
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does not require pose labels, and this joint learning approach has shown better robustness 

against unseen data distributions [26-28]. There are also some hybrid deep learning 

approaches that utilize deep camera pose networks as a robust front end to the VO 

problem, and bundle adjustment for the VO backend. In particular, D3VO is considered 

state of the art for deep camera pose networks. Despite being a monocular VO model, it 

is competitive against stereo and LiDAR approaches that often outperform monocular 

VO pipelines. It achieves this by learning aleatoric uncertainty throughout the training 

process to down weight residual errors caused by non-Lambertian surfaces and moving 

objects [28]. They incorporated this learned uncertainty map into their back end pose 

graph optimization framework to down weight large residuals in an online manner. This 

approach currently remains the best monocular VO method on the KITTI benchmark 

[90].  

Overall, camera pose networks have shown great robustness towards many of the 

challenges in traditional geometric and direct VO pipelines. They also require less 

camera and environmentally dependent fine tuning that is common in these traditional 

methods, at the expense of large training times. General research trends continue to favor 

camera pose networks. Approaches like D3VO that leverage concepts from direct VO 

and deep learning VO pipelines have shown to be effective. And across all classes of VO 

pipelines uncertainty estimation has been shown to be effective at reducing errors.  

 

3.6 Downward-Facing Camera Methods 
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Forward-facing cameras have dominated the general VO and VSLAM literature for 

both general scenarios and in automated driving applications. A major reason for this is 

because many feature extraction methods are not robust to some of the challenges that 

looking at the ground may introduce. In many cases for automated vehicles, ground plane 

images introduce severe motion blur, low and high frequency texture, large 

displacements, and changes in illumination. However, downward-facing approaches can 

also be appealing because they lack large moving obstacles and occlusions. They also 

typically have simpler models because motion is parallel to the image plane. And in some 

scenarios the lateral and longitudinal motion of the ego-vehicle are the only axes that are 

of interest. For Unmanned Aerial Vehicles (UAVs), Autonomous Underwater Vehicles 

(AUVs), and other Unmanned Ground Vehicles (UGVs), downward-facing cameras are 

often used because their environments of operation require it [92-94]. For example, 

UAVs at high altitudes need to localize themselves using buildings, vegetation, roads, 

etc., because their line of sight does not contain many features (e.g., clouds, skyline). 

Drones like Skydio use a downward facing camera (amongst others) to help constrain its 

motion [95]. Likewise, AUVs need downward-facing cameras because in deep bodies of 

water there might be few features to track in the open water, and tracking the seabed in 

some scenarios might be the only option. For UGVs in space like the Mars rover, 

downward facing cameras are also appealing, because many of the available features are 

present on the ground, and not the rover’s immediate line of sight.  

In HAVs, this problem has also been addressed but with little success [101,103]. 

There appears to be multiple reasons for these challenges. In contrast to these other 
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robotics platforms, HAVs typically operate at higher speeds, while the camera is fixed at 

the same height. As a result, the observable features are often small, severely blurred, and 

present with both low and high frequency textures. At heights less than 2 meters, the 

observable motion also leads to large motions which can be challenging for techniques 

used in more recent VO pipelines. This work seeks to overcome these challenges by 

implementing a more robust VO front end for the problem.   

There are several approaches for addressing the VO problem from downward-facing 

cameras in an automated vehicle setting. Some of these methods utilize correlation, 

optical flow, dense point correspondence, ground plane estimation and hybrid methods. 

As mentioned earlier, in [2] ALVINN was proposed. This is considered the first example 

of using deep learning for camera pose estimation in an automated vehicle setting. The 

vehicle was equipped with a camera tilted downward to observe the road and a range 

finder. This data was given to a multi-layer perceptron network and yielded 45 directional 

outputs to estimate the direction of the vehicle. Later, in [105] the AURORA land 

departure system was proposed. This method used a downward-facing camera on the side 

of a vehicle to detect when a vehicle was leaving its current lane. This was done by using 

correlation and template matching to detect lane lines. Nourani-Vatani and Borges [96] 

proposed a correlation-based visual odometry method for an Ackerman-steering model. 

The method converts changes in pixels from the features to distances and transforms 

these distances to the vehicle reference frame. Then the robot pose is incremented. The 

changes in pixel locations are calculated with correlation-based shift detection and 

templates are determined by the template quality measure (TQM). TQM considers auto-
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correlation, variance, median absolute difference, and entropy to evaluate the 

effectiveness of the template. The template with the highest TQM is used. This method 

works best for surfaces with high variability rather than smooth surfaces. However, as 

discussed in [102], these methods are susceptible to error from shadows and other 

lighting disturbances.  

Aqel et. al. also uses a correlation-based method for testing an optimal configuration 

for a downward-looking camera [101]. Their work also includes a designed light source 

used at different times of day. They evaluate the quality of correlation between these 

different configurations. Yoshida et. al. [97] approach the Structure from Motion problem 

with an integrated approach that combines the correspondence and 3D recovery stages of 

SfM. At the correspondence stage, rather than using image feature correspondences, 

optical flow is considered according to a Gestaltian measure [97]. In general, optical flow 

works well when there are less image features available. This integrated approach gives a 

more reliable solution, but if certain constraints are not met, the entire reconstruction fails 

and provides no solution. Zucchelli et. al. proposed a constrained minimization problem 

for SfM from optical flow to better capture the constraints of man-made and naturally 

occurring structures [98]. Their solution is stable and efficient. Fakih and Zelek use a 

hybrid method where feature correspondences and optical flow are used [99]. The 

method works well when feature correspondences are low or noisy. This is particularly 

applicable to downward-facing cameras because the ground features are typically fine 

and difficult to extract consistently across image sequences. In general, feature 
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correspondences are more accurate than optical flow, however, optical flow works when 

feature correspondences are sparse.  

Swank proposed a monocular, downward-looking camera that used feature detection 

and optical flow [94]. The optical flow analysis was done with a Pyramidal 

implementation of the Lucas-Kanade optical flow technique. To avoid large variations in 

light intensity across frames a light source was added with the camera. This method 

doesn’t ensure consistent trajectory calculations because image sequences might lack the 

features for reliable detection. Zienkiewicz and Davison proposed a downward-facing 

camera on a small robot for VO. They assume that the ground is planar. They used an 

iterative dense alignment approach which utilizes all the data from an image to provide 

correspondences [100,104]. They also provide details on an auto-calibration process. 

Problems arise when objects on the ground don’t appear flat. Other methods like Hong et. 

al. use shadow removal to address issues with light variation that the other authors have 

discussed [102]. They achieved better results for their downward-facing method than 

their forward-facing method. In [105], Lee et. al. use a downward-facing and oscillating 

camera to recover the velocity of the moving vehicle. Their method uses the pattern 

created by the modulation in the frequency domain to recover the velocity magnitude and 

direction. This method is fast and robust to changes in climate like rain and snow. 

Following the major trend in recent years for forward-facing methods, some 

approaches have used deep learning for camera pose estimation. In [106], Gilles and 

Ibrahimpasic propose a camera pose network in an unsupervised learning manner for a 

downward-facing camera on a differential drive mobile robot. They propose networks 
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that use both short and longer sequences of images for pose estimation. They leverage the 

spatial transformer and differentiable bilinear sampling to warp images [107]. In [108], 

the authors reformulate the common bundle adjustment problem for a downward-facing 

stereo camera on a mobile platform by using planar motion constraints. And in [109], the 

authors seek to also estimate the camera’s tilt angle to later use for creating a rectified 

map in a SLAM pipeline. In other works, with forward-facing cameras, the ground plane 

is used for scale estimation [110,111]. 

Unfortunately, the current state of the literature on downward-facing cameras in VO 

is sparse. Many of the existing methods operate in low-speed scenarios, and over short 

trajectories due to challenges with motion blur. Many of these methods also use special 

lighting or cameras to make the problem more optimal under varying illumination [94,96-

106,108-111]. This research seeks to overcome these challenges while maintaining a 

simple model. 
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Chapter 4. Feature Extraction Experiments 

 

In this chapter, a series of experiments for different feature extraction approaches are 

benchmarked to get a baseline understanding of the challenges that current methods face 

in contrast to forward-facing VO scenarios. In Experiment 1a, different feature detection 

and matching methods commonly used in geometric, forward-facing VO pipelines are 

benchmarked to gauge the robustness of these features on downward-facing camera 

images. In Experiment 1b, sparse and dense optical flow are tested on downward-facing 

camera images to demonstrate the effectiveness of different optical flow methods that 

work well in tracking for forward-facing VO pipelines. In Experiment 1c, a downward-

facing VO method for drones is adapted to the HAV setting to gauge its feasibility in 

estimating planar motion. In Experiment 1d, an end-to-end camera pose network that 

replaces the classical VO pipeline is proposed to compare how feasible the problem is in 

comparison to recent forward-facing methods. In Experiment 1e rather than choose 

feature extractors that are robust to motion blur, motion blur is leveraged for motion 

estimation. Each section begins with the problem formulation followed by the results of 

the experiment. 
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4.1 Problem Setup 

These experiments were on data collected from the Carla Simulator [91], Oxford 

Robotcar Dataset [35], and KITTI Dataset [90]. There are not any popular datasets 

specifically used for downward-facing cameras in an automated vehicle setting. In the 

Carla Simulator cameras are fixed in a downward rotation to simulate downward-facing 

cameras. In the Oxford Robotcar Dataset and KITTI the images are warped from a 

downward-facing camera to produce a downward-facing view. Every experiment consists 

of an ego-vehicle with a camera fixed at a height h.  

 

4.1.1 Carla Simulator Dataset 

 

Carla is a simulator designed to emulate autonomous driving scenarios. It was 

built with Unreal Engine and has support for ROS plugins. In this research Carla is used 

to generate images of a simulated town and provide ground truth for both a forward-

facing and downward-facing camera. The data was collected on prebuilt towns called 

Town 01 through Town 05. The vehicle is a model of the Tesla Model 3. The front-facing 

and downward-facing camera are placed at a height of 1.4 meters. At this height the 

downward-facing camera needs to be moved forward to avoid capturing the hood of the 

ego-vehicle. For this reason, the downward-facing camera was placed 4 meters ahead. 

The forward-facing camera was also placed 4 meters ahead to make the transformation 

between the two cameras a pure rotation. The downward-facing camera’s orientation was 

set to -90 degrees down (Figure 13.)  
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Figure 13. The vehicle setup in the Carla Simulator. [112]. 

 

4.1.2 Oxford Robotcar Dataset 

 

The Oxford Robotcar Dataset is a large-scale dataset for autonomous driving [35]. 

The data was collected over a year, traversing similar routes. The dataset’s purpose is to 

aid in the research and development of long-term localization solutions. It is useful for 

change detection across seasons, and changing environments (e.g., construction.) The 

dataset covers over 1000 kilometers of driving across different seasons, weather, and time 

of day. They also provide a variety of data sources including GPS, RTK, INS, LiDAR, 

radar, and cameras retrofitted onto a Nissan LEAF ego-vehicle. The Grasshopper2 on the 

rear of the vehicle is used for experiments in this research (Figure 14.) The camera has a 

1:1 aspect ratio at a size of 1024x1024 pixels, making it a good option for observing 

ground features since the height is sufficiently large in the main axes of motion. The 

images from the rear camera are warped downward and translated 3.2 meters to view the 

ground plane. The camera height is 1.44 meters. Unlike the other datasets, the real 
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vehicle extrinsics show that the camera is pitched down approximately 15 degrees. This 

is considered warping the camera downward.  

 

 

Figure 14. A diagram of the vehicle sensor setup in the Oxford Robotcar Dataset that is 

relevant for this research [35]. 

 

4.1.3 KITTI Dataset 

 

The KITTI Dataset is the most well-known dataset in the VO and SLAM 

literature [90] as well as other areas in computer vision for automated vehicles (e.g., 

segmentation, tracking, depth completion.) The dataset has become the standard for the 

comparison of algorithms. It provides 11 image sequences (00-10) with labeled ground 

truth. The KITTI benchmark uses the remaining sequences (11-21) to fairly evaluate 

algorithms on unseen ground truth data. In this research, the KITTI Dataset is used to 

help assess the quality of the trajectories produced by the proposed methods. The left 

color stereo camera is used for forward-facing and downward-facing VO methods. The 
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downward-facing camera is warped virtually downward by translating it 6 meters 

forward and rotating the camera 90 degrees downward. The height of the forward-facing 

camera is 1.65 meters, and the downward-facing camera is raised another meter (2.65 

meters above ground plane) since the height of the original image is small. This increases 

the area of the ground plane that is visible in the downward-facing camera (Figure 15.) 

 

 

Figure 15. A diagram of the sensor setup for the forward-facing camera in the KITTI 

Dataset and the virtually warped downward-facing camera [90,113]. 

 

4.2 Phase 1 Experiments 

 

 In this section there are five experiments that showcase the challenges of 

extracting features from ground plane images taken from downward-facing cameras. 

Each experiment is outlined in its problem formulation section where the relevant theory 

and motivation is discussed. Immediately afterwards the results of each experiment are 

discussed.  
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4.2.1 Experiment 1a: Feature Detection and Matching 

 

4.2.1.1 Problem Formulation 

 

 In geometric VO pipelines from forward-facing cameras, the classic approach is 

to extract salient features from the image, and then match these features to form 

constraints from the epipolar geometry. There are many challenges that can arise from 

taking this approach. In real world scenarios camera observations can contain motion 

blur, changing illumination from non-Lambertian surfaces, and moving obstacles. All of 

these issues can violate the photometric consistency assumption that is used in computer 

vision. Motion blur distorts images across image frames, making the overall shape of its 

features inconsistent across frames. Shadows, intense sun rays, and non-Lambertian 

surfaces can make large portions of an image suddenly dark, saturated, or otherwise 

inconsistent across image frames. Moving obstacles are not guaranteed to move at the 

same speed of the ego-vehicle, and can therefore contaminate the motion estimation step, 

worsening the quality of the pose estimate. These phenomena are well known in the VO 

literature. To address these issues, different generalized approaches have been proposed 

to create both unique descriptors and robust outlier rejection to yield the best matches.  

 In the downward-facing VO setting, motion blur is more severe since the 

camera’s motion and image plane are parallel. At higher speeds, the ego-vehicle 

experiences large and quick motions within the exposure time of the camera, causing the 

light that’s collected to be blurred. Additionally, the ground plane for most streets and 
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roads contains low texture, making it difficult for many gradient-based approaches to 

detect features that can be tracked. Ground plane images can also have images with very 

fine grain texture that is highly repetitive. High frequency texture is also a challenge in 

traditional VO settings, because it is difficult to produce descriptors that can distinguish 

between highly repetitive features that are often observed in man-made environments. 

The combination of large motions, severe motion blur, and varying degrees of texture 

frequency make detecting features from downward-facing cameras challenging.  

 Following this information, several classical feature extraction methods are tested 

to gauge how severe these issues are. FAST [64], SIFT [52], and ORB [53] feature 

detectors are the classical feature detection methods chosen to test. The SURF feature 

detector is currently not available in the commonly used OpenCV library due to its 

patent, and since its major benefit is speed over SIFT, we exclude it in this experiment. 

The FAST detector uses ORB descriptors since it is a pure feature detection method. The 

SIFT and ORB feature detection methods have their own descriptors. For fairness, all 

approaches use a brute force matcher that matches each point against points in the other 

image. Since the purpose of this experiment is to gauge the robustness of the feature 

detection method, faster matching methods are not considered. For outlier rejection, the 

traditional RANSAC scheme is also used for all methods. 

 

4.2.1.2 Experiment Results 

 

In this experiment a few classic feature detection and matching pipelines and a 

modern approach are used for feature extraction on the Carla Dataset. The feature 
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detection and matching pipelines are tested on 15,000 images each. The goal was to 

gauge how robust each pipeline was to limited road textures. Feature detection, 

description and matching are foundational to geometric VO pipelines and without robust 

feature extraction a VO pipeline can’t reliably recover the motion of the vehicle. The 

mean feature count was tracked to quantify how many features were detected. Low 

feature counts after outlier rejection suggest the feature detectors aren’t reliably 

extracting repeatable features. The standard deviation of the feature count is tracked to 

quantify the spread of the number of features for the image pairs. A low standard 

deviation relative to its mean suggests that the detector can consistently extract features 

from image pairs. The minimum and maximum feature counts are tracked to get a sense 

of the best- and worst-case scenarios for feature extraction. The failure count is important 

for understanding how often features can’t be extracted from an image pair. During a 

failure zero features are extracted (or matched) which leads to odometry failure and no 

motion estimation. The results are shown in Table 1. For fairness and speed, the FAST 

feature detector is coupled with ORB descriptors. All methods except for the LoFTR 

matcher use brute force matching. All methods used the classic RANSAC algorithm for 

outlier rejection.  

 The FAST feature detector pipeline had the most features extracted at 7,562.7 

features extracted on average with an inlier count of 1,046.5 on average. Following this 

observation, are LoFTR, SIFT, and ORB in that order. The number of features varies 

largely for most methods relative to their feature count. ORB performed the worst over 

all by failing to extract features for 361 image pairs. It also failed to produce matches for 



59 

 

1,835 image pairs. Likewise, SIFT had a high failure rate. FAST had few failures for both 

feature extraction and matching. However, LoFTR was the most consistent, and only had 

failures for degenerate Carla images as seen in Figure 16, where the Carla Simulator 

lagged, and the camera simulation incorrectly returned an image from inside the vehicle. 

Overall, FAST extracts a large quantity of features and is relatively robust to low texture 

images. However, LoFTR is the most consistent with no failures on non-degenerate 

images. This suggests that LoFTR is the most suitable for motion estimation over longer 

sequences where methods like SIFT and ORB don’t work well for feature extraction on 

ground plane images. 

 

Carla Dataset Feature Extraction Results Feature Count | Inlier Count 

Detector+Descriptor+Matcher Mean Std. Dev. Min Max Fails 

FAST+ORB+BF 7562.7 | 1046.5 4725 | 881.2 0 | 0 22843 | 5329 4 | 9 

SIFT+SIFT+BF 484.3 | 141.9 783.5 | 288.9 0 | 0 12276 | 4676 731 | 1246 

ORB+ORB+BF 296.4 | 9.1 
 

126.6 | 9.3 0 | 0 500 | 122 361 | 1835 

LoFTR 3211.4 | 3211.4 627.3 | 627.3 3 | 0 4008 | 4008 0 | 2 

 

Table 1. The results for different feature extraction, description, and matching pipelines 

from classic and a more modern method. The left-hand side has the statistics for the 

unfiltered features and the right-hand side has the statistics for the inliers. BF: Brute 

Force Matcher. 
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Figure 16. An example failure mode for feature extraction in the Carla Dataset. 

 

4.2.2 Experiment 1b: Sparse and Dense Optical Flow 

 

4.2.2.1 Problem Formulation 

 

In this experiment, optical flow was proposed as a basic approach to recovering 

camera motion. In a downward-facing camera with a fixed camera height, the motion is 

parallel to the image plane. The intuition is that if optical flow can accurately recover the 

change in pixels, then that can be backprojected to the camera’s reference frame to 

recover the camera’s pose. In the first experiment, Lucas-Kanade optical flow with Shi-

Tomasi features is used to estimate the camera motion. Lucas-Kanade optical flow works 

on the assumption that little motion occurs across image frames (i.e., photometric 

consistency.) This can be expressed by the partial differential equation in Eq. 10.1.    

 

𝜕𝐼

𝜕𝑥

𝜕𝑥

𝜕𝑡
 +  

𝜕𝐼

𝜕𝑦

𝜕𝑦

𝜕𝑡
 + 

𝜕𝐼

𝜕𝑡
 =  0                                          (10.1) 
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 For N point correspondences this can be expressed as an over-constrained matrix 

equation and can be solved using least squares (Eq. 11.1.) 
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                                             (11.1) 

 

Eq. 11.1 can be rewritten in a simplified form: 

 

[
∑ 𝐼𝑥𝐼𝑥 ∑ 𝐼𝑥𝐼𝑦
∑ 𝐼𝑥𝐼𝑦 ∑𝐼𝑦𝐼𝑦

] [
𝑢
𝑣
] = − [

∑ 𝐼𝑥𝐼𝑡
∑ 𝐼𝑦𝐼𝑡

]                                     (12.1) 

𝐼𝑥 = 
𝜕𝐼

𝜕𝑥
 , 𝐼𝑦 = 

𝜕𝐼

𝜕𝑦
 , 𝐼𝑡 = 

𝜕𝐼

𝜕𝑡
 , 𝑢 =  

𝜕𝑥

𝜕𝑡
 , 𝑣 =  

𝜕𝑦

𝜕𝑡
                            (12.2) 

 

If the leading matrix in Eq. 12.1 is invertible and well-conditioned, then the optical flow 

can be computed. To get the camera pose from the optical flow, the flow is treated as 

pure pixel translations. 

 

𝑃𝑖 = 𝐷𝐾−1𝑝𝑖                                                  (13.1) 

𝑃𝑖 = [

𝑥𝑖

𝑦𝑖

𝑧𝑖

] ,  𝑝𝑖 = [
𝑢𝑖

𝑣𝑖

1
]                                             (13.2) 

𝑃2 − 𝑃1 =   𝐷𝐾−1(𝑝2 − 𝑝1)                                      (13.3) 

[

𝑥2 − 𝑥1 
𝑦2 − 𝑦1

𝑧2 − 𝑧1

] = 𝐷𝐾−1 [
𝑢2 − 𝑢1

𝑣2 − 𝑣1

1 − 1
] = ℎ [

𝑓𝑢 0 𝑐𝑢

0 𝑓𝑣 𝑐𝑣

0 0 1

]

−1

[
𝑢2 − 𝑢1

𝑣2 − 𝑣1

0
] = ℎ [

(𝑢2 − 𝑢1)/𝑓𝑢
(𝑣2 − 𝑣1)/𝑓𝑣

0

] (13.4) 
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[
𝑑𝑥
𝑑𝑦
𝑑𝑧

] = ℎ [
𝑢/𝑓𝑢
𝑣/𝑓𝑣
0

]                                              (13.5) 

 

As seen in Eq. 13.5, the translation of the ego-vehicle can be estimated with optical flow 

given the camera height and focal length. For dense optical flow, rather than extracting 

sparse feature points to track, the pixels are used to directly calculate optical flow. In 

[114], Farneback, dense optical flow works by assuming that pixels undergo a locally 

quadratic motion model (Eq. 14.1-2).  

 

𝑓𝑖(𝑥) = 𝑥𝑇𝐴𝑖𝑥 + 𝑏𝑖
𝑇𝑥 + 𝑐𝑖                                     (14.1) 

𝑓𝑖+1(𝑥) = 𝑓𝑖(𝑥 − 𝑑) = (𝑥 − 𝑑)𝑇𝐴𝑖+1(𝑥 − 𝑑) + 𝑏𝑖+1
𝑇 (𝑥 − 𝑑) + 𝑐𝑖+1     (14.2) 

 

A displacement field, d introduced to this model creates a linear constraint as seen in Eq. 

15.1. 

 

𝐴(𝑥)𝑑(𝑥) =  ∆𝑏(𝑥)                                          (15.1) 

 

This problem can be solved using weighted least squares. Under an affine motion model 

this problem becomes: 

 

𝑑(𝑥) = 𝑆𝑝 = [
1 𝑥 𝑦  
0 0 0

    0 0 0
    1 𝑥 𝑦

      𝑥2 𝑥𝑦

      𝑥𝑦 𝑦2] [𝑎1 𝑎2 …     𝑎7 𝑎8]𝑇    (16.1) 
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The new objective for the weighted least squares optimization becomes: 

 

∑𝑤‖𝐴𝑖𝑑(𝑥) − ∆𝑏𝑖‖
2
                                               (17.1) 

 

The solution for this objective: 

 

𝑝 = (∑𝑤𝑖𝑆𝑖
𝑇𝐴𝑖

𝑇𝐴𝑖𝑆𝑖)
−1 ∑𝑤𝑖𝑆𝑖

𝑇𝐴𝑖
𝑇∆𝑏𝑖                                   (18.1) 

 

The dense optical flow approach from Farneback [114] is used for the initial camera 

motion estimate in pixels. A histogram of pixels for magnitude and angle is created and 

the bin with the maximum magnitude and angle count is used for the optical flow 

estimate. Using backprojection as seen in Eq. 13.5, the camera’s pose in the camera’s 

reference frame can be calculated.  

 

4.2.2.2 Experiment Results 

 

For this experiment, the Lucas-Kanade Optical Flow method was used for feature 

extraction. The sparse optical flow method implemented in OpenCV [126] was used for 

experimentation. A maximum of 100 corners and a minimum distance of 0.1 was used. A 

partial trajectory of Town 03 in the Carla Dataset was used to test the proposed method. 

In Figure 17, the estimated trajectory is seen on the left, and the ground truth is seen on 

the right. The camera pose estimate is qualitatively poor. This is likely because the Carla 
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Dataset has large translations between image frames. Consequently, the motion estimates 

are poor for vanilla optical flow. In Experiment 1a, for the Carla Dataset, feature 

extraction was prone to failures for some methods. This experiment motivates the need to 

also have a robust motion estimation scheme when feature detection and matching is 

possible. 

 

 

(a)                                                         (b) 

Figure 17. The Lucas-Kanade Optical Flow method with Shi-Tomasi Corners: (a) 

Estimated Trajectory (b) Ground Truth on Carla Town 03. 

 

 Next, Farneback Dense Optical Flow was used to estimate the camera motion. For 

many of the images in the Carla Dataset, there are both high and low frequency textures. 

Despite the absence of motion blur, this alone made it difficult to extract features in 

previous experiments. A sample image pair can be seen in Figure 18. The vehicle is 

moving forward as can be observed from the movement of the rough patches on the 

ground. In Figure 18, the dense optical flow is shown with images for its magnitude and 

angle. Despite the clear transition, the magnitude of the optical flow is low. In smoother 
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regions, the optical flow is estimated to be approximately zero. The angle measurements 

are highly varying and appear to be random. Both observations can be seen from the 

histograms in Figure 19. The magnitude is highly contaminated by zero-valued flow 

pixels, making it hard to extract the correct magnitude, even when camera motion can be 

visually observed within the image (Figure 20a.) For the angle histogram, there are two 

distinct peaks that don’t correspond to the correct angle of flow (Figure 20b.) This 

behavior was shown across many image runs. For this reason, dense optical flow is 

considered not to be a feasible approach for estimating a camera’s pose from downward-

facing cameras. 

 

      

Figure 18. A pair of images for the dense optical flow input. 
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Figure 19. The magnitude of the optical flow (left) and the angle (right) for the image. 

Dark blue represents small magnitude or angle. Bright green represents large magnitude 

or angle. 

. 

 

                                         (a)                                                             (b)      

Figure 20. The histogram for the magnitude (a) and angle (b) of the optical flow. 

 

4.2.3 Experiment 1c: Power Spectrum Analysis 

 

4.2.3.1 Problem Formulation 

 

 In Experiments 1a and 1b, sparse and dense features were used for feature 

extraction for the downward-facing VO problem. This approach attempts to build on the 

work in [92], that uses power spectrum analysis for the localization of a drone. Their 

method also uses a downward-facing, monocular camera (Figure 21a.) The major 

innovation for this approach is the use of the cross-power spectrum to estimate the 

motion of the camera and drone. Given an image pair that is related by a planar motion, 
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their Fourier Transforms are calculated. A translation (i.e., shift) in the spatial domain is 

equivalent to modulating the frequency domain by a complex exponential. These Fourier 

Transform images are related in this way in two dimensions, where u and v are the 

change in pixels across the horizontal and vertical axes of the image plane (Eq. 19.1.) 

 

𝐼𝐴(𝜔𝑥, 𝜔𝑦) = 𝑒−𝑗(𝑢𝜔𝑥+𝑣𝜔𝑦)𝐼𝐵(𝜔𝑥, 𝜔𝑦)                               (19.1) 

 

 The displacement is obtained by calculating the cross-power spectrum of images 

IA and IB (Eq. 20.1.) The inverse Fourier Transform is the Dirac impulse (u, v) pixels 

away from the origin (Figure 16b.) The displacement is obtained by finding the 

maximum of the inverse Fourier Transform (Eq. 20.2.) This approach is called Phase 

Correlation Matching [92]. The image is divided into patches, and their image centers 

and the locations of the Dirac impulses are used as points to calculate a Homography. 

The Homography is decomposed to get the pose estimate [92].  

 

𝐼𝐴𝐼𝐵
∗

|𝐼𝐴||𝐼𝐵|
= 𝑒−𝑗(𝑢𝜔𝑥+𝑣𝜔𝑦)                                          (20.1) 

𝐹−1[𝑒−𝑗(𝑢𝜔𝑥+𝑣𝜔𝑦)] =  𝛿(𝑥 − 𝑢, 𝑦 − 𝑣)                              (20.2) 
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(a)                                                                            (b)                

Figure 21. (a) A diagram of the drone and camera setup. (b) An image of the cross-power 

spectrum for an image patch pair [92]. 

4.2.3.2 Experiment Results  

 

In this experiment, the Carla Dataset was used to generate downward-facing 

camera images and ground truth trajectories. These images are free of motion blur, with 

data containing both low and high frequency texture. Figure 22 shows an example of an 

image pair that has road markings and shadows, and subtle texture that should have 

sufficient features to track motion. From the lane marking it is clear to see that the 

vehicle is moving. 

 Algorithms 1-3 in [92] were directly applied both patch-wise and for entire image 

pairs. In Figure 23, example images of the power spectrum magnitude are shown. Both 

power spectrums are concentrated in the middle of the image with the first image 

appearing to be slightly rotated. These power spectral images are common for many of 

the images in the Carla Dataset. An inverse FFT sample is shown in Figure 24. In Figure 

24a, the expected output is shown. Following the results of [92], there should be a small 

signal resembling the 2D Dirac impulse. However, many of the images tested appear like 
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Figure 24b., where no Dirac impulse is present. As a result, no motion was observed for 

any images, despite the presence of motion in the images. This is likely because these 

images are relatively smooth and lack significant structures. Even for images with lane 

markings, it is difficult to gauge how far the camera has moved. In a drone setting, 

buildings, trees, cars, and other objects might be clear indicators of motion within the 

image. However, it appears that for the automated vehicle setting, this approach does not 

work.  

       

Figure 22. A sample image pair used from the Carla Dataset. 

       

Figure 23. A sample image pair with power spectrum magnitude displayed. 



70 

 

       

                                        (a)                                                        (b) 

Figure 24. (a) The expected inverse FFT of the power spectrum. (b) The output for many 

of the inverse FFTs. 

 

4.2.4 Experiment 1d: End-to-End Deep Learning 

 

4.2.4.1 Problem Formulation 

 

 Camera pose networks have been increasingly more common in the VO literature. 

Particularly for their robustness against photometric inconsistencies caused by non-

Lambertian surfaces, moving obstacles, and more. They’re also easier to deploy because 

they require much less fine tuning of parameters after training compared to geometric and 

direct VO pipelines that often require fine tuning of parameters for their environments of 

operation. Unsupervised camera pose networks have shown to be the most robust to 

photometric inconsistencies. Many of these networks jointly learn camera pose and depth 

through variations of the image warping loss (e.g., [28].) In downward facing VO in the 

automated vehicle setting, the height is fixed, and the camera is observing the ground 
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plane. The camera’s depth is approximately constant from frame to frame and equal to 

the camera’s height. For this reason, it is not useful to learn depth for downward facing 

VO. In [106], an unsupervised learning approach is used to estimate the odometry in 

SE(2). Their method uses the spatial transformer [107] to learn the yaw angle. They 

propose two networks that use a single image pair and another that uses five images to 

estimate the pose (Figure 25.) Likewise, in this work, methods that learn camera pose 

from CNN encoders were considered. For the proposed network the approach in DeepVO 

was considered [25]. DeepVO is an early case in the VO literature of a supervised 

learning approach for camera pose networks.  It consists of a CNN encoder, LSTM 

modules, and MLP output layer. CNN encoders are common neural network architectures 

that are effective at learning filters for local dependencies in images and have shown 

much success across classification, segmentation, monocular depth estimation [46], 

camera pose networks [28], and more. LSTM modules retain memory of their hidden 

states over long sequences, and in DeepVO they are used to learn longer term 

dependencies for the CNN features [25]. The MLP network is used to transform the 

LSTM output to the lie algebra of the SE(3) manifold. For this experiment, the DeepVO 

model architecture is used to train the camera pose network (Figure 26.) Rather than 

learning in a supervised manner, the common image warping loss [28] is used (Eq. 21.1.) 

that calculates the L1 loss and Structural Similarity Index Metric (SSIM) [115] between 

the target and warped source images. This experiment is used as a baseline for deep 

learning under the downward-facing VO scenario.  
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𝐿 = (1 − 𝛼)‖𝐼2(𝑝) − 𝐼1(𝑤(𝐾, 𝑑, 𝑝))‖
1
+  𝛼𝑆𝑆𝐼𝑀 (𝐼2, 𝐼1(𝑤(𝐾, 𝑑, 𝑝)))  (21.1) 

 

 

Figure 25. A diagram of the architecture in [106] for their unsupervised camera pose 

network from a downward-facing camera. The EarlyBird network uses two image pairs 

to regress camera pose, and the SlowBird network uses five image pairs to regress 

camera pose. 
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Figure 26. A diagram of DeepVO as outlined in [25]. 

 

4.2.4.2 Experiment Results 

 

In this experiment, an unsupervised camera pose network is proposed following 

the work of the supervised learning method, DeepVO [25]. DeepVO was chosen, because 

unlike many unsupervised camera pose networks, DeepVO doesn’t require a monocular 

depth estimation network. For downward-facing VO the depth is approximately constant. 

The loss function in [106] is used to learn the camera pose in an unsupervised manner. 

Instead of learning the lie algebra of SE(3), the lie algebra of SE(2) is learned. Following 

the work of [127], instead of attempting to train the heading directly, the cosine and sine 

of the heading were learned to mimic the elements of the 2D rotation matrix. This yields 

an output for cos(θ), sin(θ), tx, and ty. The model can be seen in Table 2.  
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Layer Name Input Features Output Features Kernel Size Stride 

Conv3d 1 16 (2,3,3) (1,1,1) 

MaxPool3d - - (1,2,2) (1,1,1) 

Conv3d 16 32 (2,3,3) (1,1,1) 

MaxPool3d 32 64 (1,3,3) (1,1,1) 

Conv3d 64 128 (1,3,3) (1,1,1) 

MaxPool3d - - (1,2,2) (1,1,1) 

Conv3d 128 256 (1,3,3) (1,1,1) 

Conv3d - - (1,2,2) (1,1,1) 

LSTM cell 181 1024 - - 

LSTM cell 181 1024 - - 

Linear 1024 4 -  

Linear 67072 1 - - 

 

Table 2. The final proposed network architecture. 

 

The model is trained on downward-facing camera images from the Carla Dataset. 

This dataset was chosen because the images are relatively simple in structure and do not 

contain motion blur. The dataset contained 30,000 images from Town 01-04. Town 05 

was left for testing after training. This dataset is similar in size to the training split for 

many camera pose networks trained on KITTI. The images were resized to 150x200 to be 

sufficiently small for the network. Larger images can have redundant information that 
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isn’t useful for learning at the price of more computation. The network is fed a pair of 

three images. The model is trained with the Adam optimizer [128] with a learning rate of 

1e-4 for 10 epochs. The qualitative results can be seen in Figure 30. 

 

      

Figure 27. Qualitative results for the proposed camera pose network. On the left is the 

Carla Ground Truth, and on the right is the predicted model trajectory. 

 

In Figure 27, it is clear that the trained model didn’t learn the camera pose well. This 

is likely because the model was not trained on as many trajectories as [106]. Due to the 

high number of output features in the LSTM cells, this could have also led to overfitting, 

that was not a clear concern during training. For future work, the LSTM model could be 

replaced with the spatial transformer as originally proposed in [106]. Another issue was 

the availability of the data and length of the trajectories. It is likely that although forward-

facing methods can learn pose with only 30k images, for downward-facing methods it 

might require much more data as suggested by [106]. In the future, more trajectories can 

be used for training in addition to more epochs. 
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4.2.5 Experiment 1e: Motion from Blur 

 

4.2.5.1 Problem Formulation 

 

 In previous experiments, there were major challenges with attempting to extract 

features from downward-facing images. A major source of these challenges seemed to be 

the presence of severe motion blur. The final experiment in Phase 1 seeks to leverage 

motion blur to estimate the pose of the ego-vehicle, rather than seek methods that are 

robust to motion blur. There are a few works that use motion blur to estimate optical flow 

or camera pose [116-118]. In general, computer vision tasks seek to deblur images to 

improve the quality of images for their respective problems. Methods like DeblurGAN 

[119] and DeblurGAN v2 [120] achieve this through adversarial learning. Where models 

like SelfDeblur [121] jointly learn a deblurring module and optical flow network to 

deblur images in an automated vehicle setting. These methods were tested and failed to 

deblur ground plane images in the Oxford Robotcar Dataset. This is likely because the 

images were out of distribution for the training samples of the network. Many of the 

images used have significant structures (e.g., people, buildings) that might also make it 

easier to reconstruct the original image. For downward-facing cameras a lot of the blur is 

of fine-grained particles, possibly making it harder to deblur. 

 There are at least two VO pipelines that leverage motion blur to estimate camera 

pose. The first is Motion Blur Aware Visual Odometry (MBA-VO) [122], that reblurs 

images instead of deblurring them. By reblurring the pose can be estimated through direct 

photometric optimization of the blurry and reblurred image. However, this method is 
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designed for indoor use where motion blur is inconsistent, and often from sudden jerks of 

the camera. For this reason, there are blur free images present to help reblur the image. In 

the automated vehicle setting there is consistent, severe blur over long trajectories, which 

makes this approach impractical for this research. In World from Blur [117] an ensemble 

of networks for deblurring, depth estimation and camera pose estimation are used to 

reconstruct a world from blurry images. Again, the use of deblurring modules doesn’t 

seem to be well suited for this setting, and this approach is left for future work.  

 In [118], a simple method for extracting optical flow from a blurred image is 

proposed. In this method the authors observe that an image blurred in a planar motion 

creates a rotated 2D sinc function in the frequency domain. This is because, for simple 

particles that are blurred, they take on the form of rectangles. The uniform rectangular 

function is a sinc in the frequency domain. Following this observation, they use steerable 

gaussian filters (Table 3) to extract the orientation of the blur (Eq. 22.1-4), and then use 

the cepstrum to calculate the magnitude of the blur, producing the optical flow of the 

blurred image. This method was chosen as a baseline for its ability to recover motion 

from blurred images with simple particles.  

 The optical flow estimation starts by applying a gaussian blur to the image to help 

eliminate artefacts at the edge of the image in the frequency domain. Then, the power 

spectrum is calculated (Eq. 22.5), and a steerable gaussian filter is exhaustively applied to 

the image for angles 0 through 180 degrees. The angle with the maximum response is 

used for the orientation. Then the cepstrum is calculated of the 1D slice of the image set 

at the extracted orientation. The minimum of the cepstrum is the magnitude of the motion 
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blur. Similar to Experiment 1b, the optical flow is backprojected to get a motion estimate 

(Eq. 13.5.) To speed up rotation estimation instead of exhaustively searching for theta, 

the search is done with Gauss-Newton Optimization and restricted to [0,2π] (Eq. 23.1-5.) 

The overall system is shown in Figure 28. 

 

 

Table 3. The set of Gaussian basis filters, G2x and steerable kernels, kx [118]. 

 

𝑅𝐺2𝑎 = ∑ 𝐺2𝑎(𝑥, 𝑦)𝐹𝐼𝑚𝑔(𝑥, 𝑦)𝑥,𝑦                                     (22.1) 

𝑅𝐺2𝑏 = ∑ 𝐺2𝑏(𝑥, 𝑦)𝐹𝐼𝑚𝑔(𝑥, 𝑦)𝑥,𝑦                                     (22.2) 

𝑅𝐺2𝑐 = ∑ 𝐺2𝑐(𝑥, 𝑦)𝐹𝐼𝑚𝑔(𝑥, 𝑦)𝑥,𝑦                                     (22.3) 

𝑅𝐺2
𝜃 = 𝑘𝑎(𝜃)𝑅𝐺2𝑎 + 𝑘𝑏(𝜃)𝑅𝐺2𝑏 + 𝑘𝑐(𝜃)𝑅𝐺2𝑐                       (22.4) 

Power Spectrum, P = log (𝐹𝑇{𝐼(𝑥, 𝑦)} ∗ 𝐹𝑇{𝐼(𝑥, 𝑦)}∗)                  (22.5)  

 

𝜃𝑘+1 = 𝜃𝑘 +  𝛿𝜃,                                               (23.1) 

𝛿𝜃 =  −( 𝐽𝑇𝐽)−1𝐽𝑇𝑟(𝜃𝑘),                                         (23.2) 

𝑟(𝜃𝑘) =  −(𝑅𝐺2
𝜃)

2
, 𝐽 =  

𝜕𝑟(𝜃𝑘)

𝜕𝜃𝑘                                     (23.3) 
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𝛿𝜃 =  
−𝑟(𝜃𝑘)

∇𝑟(𝜃𝑘)
= −

1

2

𝑅𝐺2
𝜃

∇𝑅𝐺2
𝜃 ,                                         (23.4) 

𝜃𝑘+1 = 𝜃𝑘  −
1

2
𝜇

𝑅𝐺2
𝜃

∇𝑅𝐺2
𝜃                                           (23.5) 

 

 

 

Figure 28. A diagram of the motion from blur baseline illustrated in [118]. 

 

4.2.5.2 Experiment Results 

 

Previous experiments show that the presence of varying texture and motion blur 

make it difficult to recover motion. Several of the classic approaches to solving this 

problem don’t produce accurate features, flow, or camera pose. In this experiment, rather 

than finding robust features to reduce the impact of motion blur, it is used to estimate 

camera motion instead. A baseline experiment for the approach in [118] is reproduced. 

The image presented in the work is a motion blurred image of noise (Figure 29.) This is 

similar to downward-facing camera images of a road because many of the blurred 
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particles are fine grain in nature. The algorithm is run on patches of the sample image and 

the entire image. 

 The original image has size 256x256. For the patch-wise experiment 64x64 image 

patches are used to estimate the flow of the image. As seen in Figure 30, the optical flow 

results for the patch-wise approach are spread from 44-47 degrees. This is expected based 

on the reported error in [118]. For the full image 45 degrees exactly is estimated. This 

illustrates that for simple motion blurred images with planar motion, this method can 

produce reasonable estimates of the orientation of the optical flow. 

 

 

Figure 29. The sample image presented in [118] that is used for the baseline experiment. 
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Figure 30. Baseline experiment results for patch-wise and whole image optical flow 

estimation. Results are consistent with the results in [118].  

 

This approach was also repeated with data from the Oxford Robotcar Dataset. 

Rear-facing camera images were taken from sequence 2015-10-30-13-52-14 and warped 

downward to produce downward-facing camera images. The images have size 

1024x1024. For the patch-wise experiment 256x256 kernels are used. The image in 

Figure 31 shows significant motion blur, which is common for this dataset. The vehicle is 

moving forward on an urban road in Oxford.  
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Figure 31. A sample image from the Oxford Robotcar Dataset warped downward. 

 

 For the Oxford Robotcar Dataset, similar results can be observed in this baseline 

experiment (Figure 32.) The vehicle is moving forward, and the algorithm estimates that 

the vehicle is moving with 0 or 180 degrees of rotation. Throughout these experiments, 

this ambiguity between 0 and 180 degrees can be observed. This is because at 0 and 180 

degrees the max response is the same. For the whole image experiment, only 180 degrees 

is estimated. 
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Figure 32. Baseline experiment results for the Oxford Robotcar Dataset. 

 

 In another experiment, the magnitude estimation is evaluated. To estimate the 

magnitude of the flow, the cepstrum of the image was calculated. In this experiment, 

Carla images were artificially blurred by averaging and warping intermediate images 

along the desired change in pose. This way the exact flow magnitude is known. As can be 

seen in Figure 33, the magnitude of the flow is the first peak after the initial signal 

attenuates.  
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Figure 33. Artificially blurred Carla Images with the minimum of their cepstrum shown. 

 

 This process was done over 1,000 synthetically blurred images. The translation 

was done in the y axis of the image plane, varying by 50-100 pixels with 180 degrees of 

rotation. The mean error for the magnitude was 2.096 pixels which is equivalent to 0.72 

cm in the camera’s reference frame. The standard deviation was 1.293 pixels (0.46 cm). 

The mean error for the orientation was 154.8 degrees with a standard deviation of 58.3 
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degrees. The angle orientation is high, because of the ambiguity between 0 and 180 

degrees. The results can be seen in Figure 34. 

 

        (a) 

 

    (b) 
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Figure 34. The results of synthetically blurring 1000 Carla images from a downward-

facing camera and measuring the frame’s optical flow from motion blur. (a) Magnitude 

Estimation and (b) Angle Estimation Results. 

 

 The magnitude estimation works well for a vehicle that is moving in a straight 

line, however, when the vehicle moves in both the x and y axes (e.g., a turn) the approach 

begins to breakdown. This method was run on the Oxford Robotcar Dataset for a subset 

of the 2015-10-30-13-52-14 sequence. The flow was backprojected as in Eq. 13.5. And a 

constant velocity ego-vehicle model was used to estimate the odometry from optical flow 

in a single image. As seen in Figure 35, the rotation of the trajectory is not recovered. 

This might be because the real images have shadows, and other varying illumination 

changes and sources of blur. This can introduce more low frequency content in the image, 

making the response function the largest at 0 or 180 degrees consistently. For this reason, 

this method is also not a good choice for estimating odometry from downward-facing 

cameras.  

 



87 

 

 

Figure 35. A sample subsequence ran on the Oxford Robotcar Dataset,  

Sequence: 2015-10-30-13-52-14. 

 

4.3 Summary 

Overall, these experiments show that extracting features from ground plane images 

is a challenging problem. In Experiment 1a classical feature detection, description and 

matching pipelines that used ORB and SIFT failed to produce reliable features for 

simulated Carla images. However, FAST with ORB descriptors was robust throughout the 

experiment with few failures and a high inlier match count on average. The deep learning 

matcher LoFTR was the most consistent, producing feature matches with few outliers and 

failure cases only during simulation failures. In Experiment 1b sparse optical flow failed 

to produce accurate trajectories. This is because for downward-facing camera images there 



88 

 

are large motions from frame to frame. In the forward-facing case the axes of the image 

plane experience little motion making it adequate for feature tracking. For dense optical-

flow there were many zero-motion flow estimates in smooth regions and random phase 

estimates that made it difficult to extract the correct flow estimate. In Experiment 1c the 

power spectrum analysis approach failed to produce Dirac impulses to recover the motion 

estimate. Unlike drone images with significant structures from buildings, cars, vegetation 

and other obstacles, ground plane images have little structure and varying degrees of 

texture making it difficult to recover motion with this method. In Experiment 1d an end-

to-end camera pose network was proposed like DeepVO but trained in an unsupervised 

manner. This approach also failed to produce an adequate trajectory. Lastly, in Experiment 

1e rather than finding features robust to motion blur, motion blur was leveraged to recover 

motion. For simple images proposed by the original work and synthetically blurred images 

showed promising results. However, for real world images this approach failed to produce 

accurate orientation estimates. Following the observations of Experiments 1a-e in the next 

chapter, the deep learning matcher LoFTR is used for a geometric VO pipeline from a 

downward-facing camera.  
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Chapter 5. Deep Learning based Feature Detection and Matching 

  

 In this chapter, the observations from experiments detailed in Chapter 4 will be 

used to create a geometric VO pipeline from a downward-facing camera. Many of these 

experiments failed to produce features or trajectories that were sufficient for a VO 

pipeline. However, in Experiment 1a the deep learning matcher LoFTR was consistent 

and robust compared to other feature detection, description and matching pipelines. For 

this reason, it is used to produce robust feature correspondences for the pipeline. These 

features are used in optimization scheme to recover motion estimates for the odometry. 

The following sections detail the problem formulation and results for the experiment. 

 

5.1 Problem Formulation 

 

 In Phase 1, several experiments were conducted to showcase the challenges 

associated with VO from downward-facing cameras. Feature extraction methods from 

both geometric and direct approaches under varying paradigms struggled with producing 

useful information for this research problem. In this experiment, a geometric approach for 

VO from downward-facing cameras is proposed. The method utilizes more recent 

advances in deep feature detection, description, and matching. The detector-free 

matching approach called Local Feature Transformer (LoFTR) is used for robust feature 
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extraction and matching in the VO pipeline [56]. The LoFTR module uses self-attention 

and cross-attention layers popularized by the Transformer architecture [123]. A vanilla 

attention layer utilizes query, key, and value vectors as input to an attention model. The 

query vector retrieves information from the value vector based on the dot product of the 

query and key vectors. Elements of the value vector are weighted by the similarity of the 

query and key vectors. This is generally how attention works (Figure 36.) LoFTR extracts 

features with its multi-level, coarse-to-fine Local Feature CNN (Figure 37.) The coarse 

layer is flattened, and positional encodings are applied. Positional encodings give 

positions a unique sinusoidal format. This is important for LoFTR to successfully match 

in regions that aren’t distinctive [56]. These features are passed into the LoFTR Module, 

and that output is passed to the differentiable matching layer [56]. The Coarse-to-Fine 

Module takes the fine features from the Local Feature CNN and passes them to a LoFTR 

Module. These output features are correlated (center vector of first set of features to all 

other feature vectors) and softmax is applied. This produces a heat map that can be used 

to localize matches in the matching module. This approach can achieve subpixel 

correspondence matches. 

 

Figure 36. Basic attention layer for transformers [56,123]. 
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Figure 37. Overall architecture of the LoFTR framework proposed in [56]. This approach 

is used to match features in the geometric VO front end of this thesis research. 

 

 The LoFTR matcher is robust to low texture regions, repetitive features, and 

motion blur unlike many classic feature detection, description, and matching pipelines. 

This makes it a great candidate for feature extraction and matching in a geometric VO 

pipeline from downward-facing cameras. The model is also open source and available 

through the Kornia computer vision library [124] for Pytorch [125]. The outlier rejection 

used for this pipeline is MAGSAC++. 

 As discussed earlier, traditional Essential Matrix decomposition is degenerate for 

planar motion and pure rotation scenarios. For this reason, estimating the Fundamental 

Matrix from LoFTR matches isn’t feasible for the downward-facing camera setting. The 

Homography Matrix is the motion estimation model chosen for this research, because of 

these reasons. The depth of the camera is fixed at the camera height, and the normal 

vector of the observed plane is assumed to be n = [0, 0, -1]T . Instead of using the Direct 
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Linear Transform [47] and then decomposing the Homography into multiple pose 

solution [47] like traditional approaches, the problem is reformulated as a weighted least 

squares problem (Eq. 24.1-3.) Due to the robustness of LoFTR, outliers don’t tend to 

dominate the matching process, but are still present and can be observed by outliers in the 

correspondence distances. For this reason, the correspondences are weighted based on 

how close they are to the mean (i.e., residual error). This technique is used in direct VO 

pipelines to reject outlier poses [28]. It is similar to down weighting the correspondences 

by their inverse covariance. Rather than calculate pose and scale separately like some 

methods [111], the pose and scale are directly calculated through the optimization 

problem (Eq. 24.1.)  

It’s common in VO pipelines to use a strategy for keyframe selection [17]. 

Keyframe selection is the process of choosing target frames that vary significantly from 

the source frame. Without keyframe selection, image pairs with little relative motion can 

lead to odometry that is computationally inefficient and odometry with significantly more 

error drift. In this experiment the keyframes for the odometry are calculated when the 

weighted average of the point correspondence distance exceeds a threshold. In the 

experiments this is generally set to 5 pixels since this tends to translate to an average 

velocity of greater than 1 mph and suggests significant motion.  

 

𝐶 = ∑ 𝜔𝑖(𝑝2,𝑖 − 𝐻(𝑇, 𝐾, 𝑛, ℎ)𝑝1,𝑖 )
2𝑝

𝑖                                 (24.1) 

𝐻(𝑇, 𝐾, 𝑛, ℎ) = 𝐾 (𝑅 − 
𝑡𝑛𝑇

ℎ
)𝐾−1                                   (24.2) 
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𝜔𝑖 = 
1

1+‖𝛴𝑟𝑒𝑠‖2
2                                                  (24.3) 

 

5.2 Experiment Results 

 

 In the Phase 1 experiments of this research, there were many challenges to 

estimating odometry from ground plane images. Feature point extraction, optical flow, 

power spectral analysis, and a basic deep learning approach were not feasible solutions 

for estimating camera pose. However, the LoFTR feature matching approach in 

Experiment 1a showed robustness across 15,000 images in the Carla Dataset, with only 

failures from severe glitches in the simulator. For this reason, this matching approach is 

used again to formulate a geometric VO pipeline for downward-facing cameras.  

 The LoFTR detector-free matching approach leverages transformers to match 

deep features. The matcher is robust to motion blur and varying texture frequency. 

Similar to geometric bundle adjustment, inlier feature point matches are used in a 

weighted optimization problem to estimate the odometry directly from a reprojection 

error formulated for Planar Homographies, similar to [129]. The Oxford Robotcar 

Dataset is used for estimating odometry. The height is fixed at 1.44m and the plane 

normal vectors are all set to n = [0 ,0, -1]T . The cost function in Eq. 24.1 is minimized 

using the Levenberg-Marquardt algorithm [47] which is common in Homography 

estimation problems, in contrast to Gauss-Newton optimization for typical optimization 

problems that handle pose estimation. In early experiments, Gauss-Newton failed to 

minimize the error and remained in its initial local minima. The optimization was 
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implemented using the Theseus optimization library for Pytorch [130]. The max number 

of iterations was set to 150 with a learning rate of 0.05. Pose regularization was applied 

to reduce divergence with a damping factor of 0.005.  

 The trajectory results can be seen in Figure 38. The trajectory is measured over 

200 samples, similar in length to [108] and longer than [106]. The overall trajectory is 

smooth and lacks large jumps like [106]. Unfortunately, it is difficult to compare 

downward-facing VO methods in detail. Many methods do not release their datasets, and 

don’t use full trajectories like KITTI which are the standard. This is because most 

downward-facing VO methods drift quickly, and don’t produce accurate trajectories over 

several hundred or thousands of meters. In [106], their differential drive robot only 

traverses trajectories less than 4 meters. And in [108] their trajectories can produce 

odometry at similar lengths to this work but are more unstable. Despite the smoothness of 

the trajectories for this approach it still has trouble recovering accurate rotation. In future 

work, a more robust initialization can be applied from a forward-facing camera. This 

might leverage the benefit of more accurate rotation from forward-facing methods, and 

the benefit of relatively accurate translation estimation from downward-facing methods. 

This all can be done from a single camera since this method virtually projects each 

camera downward. 
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Figure 38. An estimated trajectory for the Oxford Robotcar Dataset, Sequence: 2015-10-

30-13-52-14. 
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Chapter 6. Conclusion and Future Work 

 

6.1 Conclusion 

 Visual Odometry has been a popular research topic for the last 40 years. 

Odometry alone has shown robustness across different sensor modalities including 

LiDAR and vision. In the automated vehicle setting, VO can provide an alternative to 

sensors like GPS that are prone to large errors in the presence of urban canyons and poor 

weather. Recent approaches focus on deep learning and the estimation of uncertainty 

from forward-facing cameras. In this research, VO from downward-facing cameras is 

revisited in an attempt to produce a simple yet robust alternative. VO from downward-

facing cameras has applications across many robotic platforms including UAVs, AUVs, 

and UGVs due to the relative location of prominent features in their respective 

environments. However, in the automated vehicle setting, this is particularly challenging 

due to sever motion blur and varying texture. 

In this thesis, several approaches for estimating a camera’s pose from a 

downward-facing camera were explored. In Experiment 1a, many classical approaches 

failed to produce reliable features for simulated images in Carla. A deep-learning 

approach to feature point matching called LoFTR made it possible to extract features 

from downward-facing camera images for both simulated and real images. In Experiment 

1b, sparse and dense optical flow were used to estimate camera motion. Both methods 
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proposed for the frontend of a VO pipeline produced inaccurate flow estimates. For the 

sparse method, large motions made it difficult to accurately produce the correct flow. In 

the dense flow experiment many zero-motion estimates made it difficult to estimate 

motion in general. In Experiment 1c, a power spectral analysis method for drones failed 

to produce any pose estimates. Likely due to the lack of structure in ground plane images. 

In Experiment 1d, a deep learning approach like DeepVO, but trained under an 

unsupervised learning scheme is proposed. This method also failed to produce accurate 

camera pose estimates. This was likely due to insufficient data and overfitting. In 

Experiment 1e, a motion from blur front end was proposed, but failed to produce rotation 

estimates on real images. 

 In Phase 2, a geometric VO pipeline was produced based on the observations 

from Phase 1 experiments. This includes the selection of LoFTR matching and an 

optimization scheme for Planar Homography estimation. This method didn’t fail to 

extract features from images unlike methods in Phase 1. It produced smooth trajectories 

in contrast to other downward-facing cameras. However, rotation estimates were still not 

accurate and significant drift was observed over time.  

Overall, the VO problem from downward-facing cameras is still ill-posed and 

challenging. However, the use of cross-view information from forward-facing methods 

and downward-facing methods in an automated vehicle setting may be an interesting 

topic for future research.  

 



98 

 

6.2 Future Work 

 As previously discussed, an interesting direction might be using both forward-

facing methods and downward-facing methods for VO from a single camera. The 

emergence of robust deep learning matching schemes like LoFTR make this possible as 

shown in this research for the downward-facing view. The combination of these views 

might lead to more accurate estimation, similar to other multi-view odometry methods.  

 Another interesting direction might be the use of the downward-facing approach 

in Experiment 2 to create a GPS anomaly detection pipeline. Since the odometry is still 

locally accurate up to centimeter level, it could still be a sufficient reference in the 

presence of large GPS errors that might exceed several meters.  

 It also might be interesting to incorporate this Homography estimation approach 

in a loss function for a deep camera pose network to enforce consistency across a 

forward-facing camera and downward-facing camera. This intuition could also work for 

pose graphs where the downward-facing camera is an additional factor. 
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