

Quantifying SAT Attack Resiliency in Circuits

A Thesis

Presented in Partial Fulfllment of the Requirements for the Degree
Master of Science in the Graduate School of The Ohio State

University

By

Lucas Nestor, B.S.

Graduate Program in Department of Electrical and Computer Engineering

The Ohio State University

2023

Master’s Examination Committee:

Dr. Waleed Khalil, Advisor

Dr. Eslam Tawfk

© Copyright by

Lucas Nestor

2023

Abstract

The SAT attack is a powerful and infuential hardware attack on logic locking

that iteratively eliminates groups of keys until only the correct keys remain. Most

locking techniques base their SAT attack resiliency on the time to compromise, or

the time taken to recover a correct key. The time taken by the attack is not a

consistent measure across researchers or trials as it depends on the strength of the

computer used, the software implementation of the attack, the chosen SAT solver,

etc. This work proposes the minimum number of iterations required by the SAT

attack as a more consistent metric to be used since it algorithimically determined.

The minimum number of iterations for diferent confgurations of key gates, including

a single key gate, non-interfering key gates, and directly interfering key gates, has

been derived and measured. The minimum number of iterations for a single key

gate can be calculated using the total number of keys, number of incorrect keys, and

probability an incorrect key corrupts the circuit. When multiple key gates are present,

the minimum number of iterations for each key gate separately can be used to fnd

the minimum number for all the key gates as a group. These fndings indicate that

the minimum number of iterations can be used as a metric to compare results across

researchers, and the placement of key gates can have an efect on the SAT resiliency

of the circuit.

ii

To Grandpa Nestor and his many stories.

iii

Acknowledgments

I would like to thank Dr. Waleed Khalil for giving me this opportunity and pro-

viding guidance through this journey. Had he not taken a chance on me, I would not

be able to present you this work today. His suggestions and insight have made me a

better researcher and student and I am very grateful for his help.

Secondly, I would like to thank Dr. Chris Taylor. He willingly took time out of

his schedule with no personal incentive to help guide and mentor me through my

research. His recommendations have opened up new avenues to explore and saved me

from doing countless hours of manual work. I greatly appreciate everything he has

done for me.

I would also like to thank Dr. Eslam Tawfk for serving on my thesis committee.

Lastly, I would like to thank Lindsey Spangler, my colleague who started at the

same time as me. Entering graduate school during the peak of COVID was interesting

to say the least, but being able to navigate it with somebody else made it easier.

iv

Vita

March 5, 1997 . Born - Orrville, OH, USA

2020 .B.S. Physics, Computer Science and
Engineering
The Ohio State University

2020-2023 . Graduate Research Associate,
The Ohio State University

Fields of Study

Major Field: Department of Electrical and Computer Engineering

v

Table of Contents

Page

Abstract . ii

Dedication . iii

Acknowledgments . iv

Vita . v

List of Tables . viii

List of Figures . x

1. Introduction . 1

1.1 Organization of this Thesis . 2

2. Background . 3

2.1 Random Logic Locking . 3
2.2 Fault-Based Logic Locking . 4
2.3 Sensitization Attack . 5
2.4 Strong Logic Locking . 6
2.5 SAT Attack . 8
2.6 Anti-SAT . 10
2.7 SAT-Attack Resistant Locking Locking (SARLock) 12
2.8 Signal Probability Skew Attack . 13
2.9 Removal Attack . 14
2.10 Traceless and Tenacious Logic Locking (TTLock) 14
2.11 Stripped Functionality Logic Locking (SFLL) 15

vi

3. Single Key Gate . 17

3.1 Derivation . 18
3.2 Input-Dependent Gate . 19

3.2.1 Comparison with Existing Locking Schemes 21
3.3 Input-Independent Gate . 22

4. Multiple Key Gates . 23

4.1 No Interference . 23
4.2 Direct Interference . 26

4.2.1 DIP Group 1 . 29
4.2.2 Hidden Key Categories . 32
4.2.3 DIP Group 2 . 34
4.2.4 Early Repeat Optimization 39
4.2.5 Input-Independent Gates 43

4.3 Indirect Interference . 45

5. Results . 48

5.1 Single Key . 48
5.2 No Interference . 52
5.3 Direct Interference . 53
5.4 Indirect Interference . 57
5.5 Arbitrary Circuits . 60

6. Contributions and Future Work . 62

6.1 Contributions . 62
6.2 Future Work . 63

Bibliography . 65

vii

List of Tables

Table Page

4.1 The inputs for each key gate can be chosen from the DIPs used to solve
those key gates individually. 25

4.2 The minimum number of iterations for non-interfering gates is deter-
mined by the gate with the largest number of individual iterations. . 26

4.3 An example DIP group 1. For iteration 1, the total DIP would be
(Ia1, Ib1, Ic1, Id1) . 30

4.4 Key gate C is the limiting factor with 5 DIPs needed. Therefore, this
DIP group 1 needs to take 5 iterations. 31

4.5 All pairs of inputs that result in hidden keys for iteration 1 of DIP
group 1. 35

4.6 An example DIP group 2. For iteration 1, the total DIP would be
(Ia1, Ib2, Ic3, Id4). 36

4.7 An example DIP group 2 showing redundancy. There are 3 key gates,
but each key gate has 6 iterations needed to be solved independently.
The highlighted inputs show that every iteration from DIP Group 1
has 3 inputs repeated. 37

4.8 An example DIP group 2 without redundancy. The inputs are shifted
inside a “group,” yielding one less iteration than the previous DIP group. 38

4.9 When gates have a diferent number of inputs needed to be solved,
empty “spaces” occur in DIP group 1. 39

4.10 The empty spots in DIP group 1 can be flled with inputs from previous
iterations to start to repeat the inputs that cause hidden keys. 40

viii

4.11 When inputs have been repeated in DIP group 1, the number of repeats
needed for DIP group 2 is reduced. 41

4.12 Using the dominant key gate to help repeat inputs can further reduce
the number of iterations in DIP group 2. 42

4.13 The truth table for a normal AND gate and one where the inputs have
been fipped. 46

4.14 The truth table for a normal OR gate and one where the inputs have
been fipped. 46

4.15 The truth table for a normal XOR gate and one where the inputs have
been fipped. 47

5.1 Choosen the inputs to be applied based on DIP groups 1 and 2 mini-
mized the number of iterations needed for the SAT attac. 55

5.2 SAT attack iterations for 2 indirectly interfering gates. Three diferent
types of convergent gates were tested. 59

ix

List of Figures

Figure Page

2.1 An example XOR key gate placed using RLL. 4

2.2 Sensitization attack performed on (a) a single key gate, and (b) two
interfering key gates. 7

2.3 An example of a mutable key gate. Key bit k0 can be muted by con-
trolling primary input I4. 8

2.4 An example miter circuit used in the SAT attack. 9

2.5 A type-0 Anti-SAT block. 11

2.6 A SARLock block showing the comparator and mask. 13

2.7 A TTLock block showing the comparator and modifed circuit logic.
The circuit does not produce the correct output for the protected input
pattern and relies on the comparator to restore the correct value to the
output. 15

3.1 A generalized key gate. 19

4.1 (a) No Interference: The two key gates have disjoint fan-out cones and
afect diferent outputs. (b) Direct Interference: One key gate is in the
fan-in cone of another. (c) Indirect Interference: The outputs of both
key gates converge at a third gate. 24

4.2 Each input pattern I (Y-axis) for this example Anti-SAT block maps
to a unique set of keys K(I) (X-axis). 28

4.3 The notation described abstracts individual keys into groups of keys
behaving the same. 34

x

5.1 A circuit that has a variable number of total keys, incorrect keys, and
fip probability. 49

5.2 The number of iterations when the percentage of correct keys is varied
showcases a linear relationship. 50

5.3 The number of iterations when the percentage of correct keys is varied
showcases a linear relationship. 51

5.4 The number of iterations when the Hamming distance is varied show-
cases an inverse relationship. 52

5.5 Circuits locked with 3 non-interfering gates showing the minimum num-
ber of iterations for the SAT attack. 53

5.6 Circuits locked with 2-4 non-interfering Anti-SAT gates showing a de-
pendency on the number of interfering key gates. 54

5.7 The number of iterations for directly interfering gates approaches the
calculated minimum number of iterations shown by the dotted line. . 56

5.8 The number of iterations grows with the number of directly interfering
key gates. Choosing the most efcient inputs each iteration lowers the
iterations required. 57

5.9 A circuit showing how outputs are tied together to create indepen-
dently interfering gates. Here, outputs O1 and O2 are removed as
outputs from the circuit and replaced with a new output, Onew. . . . 58

5.10 The circuits with XOR convergent gates have a more consistent number
of iterations required by the SAT attack. The values are similar to
those required by directly interfering gates. 60

5.11 The SAT attack was run against circuits locked with arbitrary key
gates. 61

xi

Chapter 1: Introduction

As circuit design companies have moved to becoming fabless, they have opened

themselves up to unwanted and illegal use use of their IP. This can include overpro-

duction by an untrusted foundry, trojan insertion by a malicious employee, or reverse

engineering by a competitor. To prevent this, it is desirable to protect the function of

the circuit even if the netlist is available. This can be accomplished via a technique

called logic locking, where additional gates and inputs, called key inputs, are added

to the circuit. The correct values for the key inputs, collectively known as the key, are

only known by the designer, and if an incorrect value is applied, the function of the

circuit is corrupted. Thus, both the netlist and key value must be known to achieve

the correct function of the circuit.

Attacks can be performed on locked circuits to recover some or all of the secret

key. One such attack, the SAT attack, is a infuential and powerful threat to locking

techniques. As such, it is important to measure the resilience against the SAT attack

for new and existing locking algorithms. Most of these metrics are based on the time

that elapses while the attack is running. This, however, depends on many factors,

such as the speed of the computer used and the software implementation of the attack.

These can vary across research groups or between trials, which makes using only the

time to compromise as a metric less efective.

1

Since the SAT attack is iterative in nature, the time to compromise is determined

by two factors - the time taken for each iteration and the number of iterations required.

This work proposes an alternative metric to quantify the run time of the SAT attack

- the minimum number of iterations required to uncover the secret key. This metric

represents how the attack would run if an intelligent attacker took the optimal choices

and minimized redundancy between iterations. Some logic locking techniques have

proven their resiliency based on the minimum number of iterations, and this work

extends that concept to most locking techniques. The minimum number of iterations

is deterministic and algorithmically computed. It is a constant value for each circuit

and does not depend on the speed of computer or software implementation used.

Therefore, it can be a useful metric when comparing results between research groups.

1.1 Organization of this Thesis

The rest of this thesis is organized as follows.

Chapter 2 will introduce the various locking techniques and attacks. Chapter 3

describes the process to calculate the minimum number of iterations needed for a cir-

cuit that contains only a single key gate. Chapter 4 then discusses how the minimum

number of iterations changes as multiple key gates are added, taking into account the

diferent ways key gates can interfere with one another. Chapter 5 contains results

comparing the minimum number of iterations measured for a circuit and the actual

number of iterations taken by a SAT attack. Lastly, Chapter 6 provides a conclusion

and future directions for this research.

2

Chapter 2: Background

This section details a chronological ordering of several diferent logic locking tech-

niques and the various attacks that can be used to recover the keys for those tech-

niques. An attack is considered successful if it is able to determine part or all of the

key to a circuit. The defenses and attacks presented here are only a subset of the

many options available and were chosen because they form a “lineage” related to the

the focus of this thesis, the SAT attack.

2.1 Random Logic Locking

The frst combinational logic locking defense developed was EPIC [1], also called

Random Logic Locking (RLL). In this technique, XOR/XNOR key gates are inserted

on random, non-critical traces in the circuit. If wi is the original trace in the circuit

and ki is the key bit, a modifed trace wi
′
is inserted in the circuit such that, in the

case of an XOR gate, wi
′
= wi ⊕ ki. When a correct value is applied to the key bit, the

key gate passes through the original signal, so the modifed trace equals the original

trace. If an incorrect value is applied, the signal is fipped, corrupting the function

of the circuit. If the fipped signal alters the output of the circuit, then it can be

rendered unusable and protected.

3

Figure 2.1 shows an example placement of one such key gate. When a 0 is applied

′
to key input ki, the function of the gate becomes wi = wi⊕0 = wi, and the signal is not

changed. When a 1 is applied to ki, the function of the gate becomes wi
′
= wi ⊕1 = wi,

corrupting the signal. The correct key bit value for an XOR key gate is a 0, and the

correct value for an XNOR key gate is a 1, since those values cause the output to

equal the other input to the gate.

wi
iwik
′

Figure 2.1: An example XOR key gate placed using RLL.

Using only an XOR or XNOR gate would not be secure, as the attacker could

easily guess the value of the key based on the type of gate used. Instead, an inverter

can be placed after the key gate to change the value of the correct key. For an XOR

gate, an inverter would change the correct key to a 1, as that would ofset the efect

of the inverter. When the circuit is synthesized, the inverters can be integrated into

the rest of the design to hide its trace. Thus, an attacker cannot know what the key

bit should be when only looking at the type of key gate used.

2.2 Fault-Based Logic Locking

When key gates are inserted randomly, as they are in RLL, there is no way to

control their efects on the output. On one extreme, the key gates could have no efect

on the outputs, and the circuit behaves normally no matter the inputted key. On

the other extreme, the key gates could fip every single output. Both situations are

4

equally as insecure because the attacker is able to completely correlate the outputs

of the locked circuit with the outputs of the original circuit.

The Hamming distance (HD) between an incorrect output and the correct output

can be used as a metric to measure a circuit’s security. If HD = 0 or HD = N ,

where N is the number of outputs, the incorrect output is completely correlated with

the correct output. Thus, an attacker could recover the original circuit easily. At the

ideal Hamming distance of HD = N/2, the attacker has maximum ambiguity over

which output bits are incorrect.

To allow designers to have control over a key gate’s efects on the outputs of a

circuit, Fault-based Logic Locking (FLL) [2] was proposed. In this technique, the key

gates are iteratively placed on the traces that have the highest likelihood to modify the

primary outputs of a circuit. This likelihood metric is calculated by simulating stuck-

at-0 and stuck-at-1 faults on each trace. Once a key gate is inserted, an incorrect key

is applied to that key input for all future iterations to prevent fault-masking - where

the efects of two faults (key gates) ofset each other. The result is that, for each

iteration, the trace that maximally changes the output will be chosen. This process

continues until the Hamming distance approaches N/2. Compared with random gate

insertion, FLL can achieve this Hamming distance with less key gates because it

choose the traces that corrupt the outputs with maximum probability.

2.3 Sensitization Attack

One method an attacker can use to exploit the weaknesses of RLL and FLL is

called the Sensitization Attack [3]. In this attack, a specifc input pattern is chosen

such that the output of a key gate can be directly observed at a primary output of

5

the circuit. The same input pattern can be applied to a circuit bought of the market

that already has the correct key applied. By comparing the output bits of the locked

circuit and bought circuit, the correct key bit can be determined.

Figure 2.2a shown an example of a circuit vulnerable to the sensitization attack.

When the input 1100 is applied to the primary inputs, the output of the key gate in

red is directly propagated to the primary output of the circuit. If this input pattern

is applied to an unlocked circuit, the primary output would be a 1. The attacker can

correct determine that the key bit k0 should be a 0 because a value of 1 produces a

diferent output than the unlocked circuit for the same primary input pattern. On

larger circuits, this process can be continued for all key gates to recover the key.

To protect against the sensitization attack, key gates can be placed such that

the interfere with each other in a way that prevents their outputs to be directly

propagated to a primary output of the circuit, as shown in Figure 2.2b. In this

case, the attacker can no longer infer the key bit k0 because they would also need

to know k1. Instead, they must search through the key space of the interfering key

gates together. When many keys interfere with each other, the search space grows

exponentially. RLL and FLL are particularly vulnerable to the Sensitization Attack

because they do not guarantee that key gates interfere with each other nor do they

give the circuit designer the control to place key gates in an interfering way.

2.4 Strong Logic Locking

To protect against the Sensitization Attack, Strong Logic Locking (SLL) [4] was

created to maximize the number of interfering gates in a circuit, forcing an attacker

to brute force the solution on a large number of key bits. A brute force attack is

6

G2

k0

I0

I1

I2

I3

(a)

(b)

Figure 2.2: Sensitization attack performed on (a) a single key gate, and (b) two
interfering key gates.

needed if two key gates are nonmutable convergent key gates. Nonmutable means

that neither key gate can be muted, when the efect of the key gate is stopped before

it reaches the next key gate. For example, in Figure 2.3, applying I4 = 1 will mute

key bit k0, as the output of G2 will always be 1. Thus, the key gates cannot interfere

since the efects of k0 will never reach gate G5, meaning the sensitization attack can

be used on this circuit.

The SLL algorithm iteratively places key gates such that the each key gate’s

relationship with all previously placed key gates is nonmutable. If no nonmutable

G2

k0

k1

I0

I1

I2

I3

7

I3

I2

k1

G5

I1 I4

I0
k0

G2

Figure 2.3: An example of a mutable key gate. Key bit k0 can be muted by controlling
primary input I4.

net on the circuit is found, the key gate is inserted randomly. This results in groups

with large numbers of nonmutable convergent key gates, forcing an attacker to brute

force a large portion of the key. If the number of gates in a group is large enough,

the sensitization attack is unfeasible to perform.

2.5 SAT Attack

The SAT attack [5] was developed next and reduced the time to break all existing

locking techniques at the time by an order of magnitude. It uses a boolean satisfabil-

ity (SAT) solver to iteratively prune the key space by eliminating groups of incorrect

keys until only correct keys are remaining. This is in contrast with a brute force

attack, which only eliminates a single key at a time. It is an oracle guided attack,

meaning an attacker must have access to an unlocked circuit in order to perform it.

To begin the SAT attack, a miter circuit is constructed, as shown in Figure 2.4.

This circuit compares the outputs of two copies of the locked circuit. If both sets of

outputs are exactly the same, then the output of the miter circuit will be a 0. If any

output bit difers between the two, then the output of the miter circuit will be a 1.

8

The same input is fed to both copies of the circuit, while a diferent key is applied.

Thus, the output of the miter circuit will be 1 if and only if the two key values K1

and K2 produce diferent outputs. When this happens, it is guaranteed that at least

one of these sets of outputs is incorrect since they difer. However, it is possible that

neither output is correct.

Circuit Copy 2

Circuit Copy 1

diff

K1

K2

IN

. .
 .

. .
 .

. .
 .

Figure 2.4: An example miter circuit used in the SAT attack.

In each iteration of the SAT attack, the miter circuit is given to the SAT solver to

fnd an input pattern IN and two key patterns K1 and K2 such that the output of

the miter circuit is 1. The input pattern IN is referred to as a distinguishing input

pattern (DIP). The DIP is then applied to an oracle circuit and the correct output is

observed.

On subsequent iterations of the SAT attack, a clause is added to the SAT solver to

prevent the SAT attack from considering any key that produces an incorrect output

for the previously found DIPs. This is how the SAT attack is able to eliminate

groups of keys at a time - any key that produces an incorrect output for an input

found in previous iterations is eliminated from consideration. This process continues,

9

−−
− −

− −
−

− −

with each iteration eliminating more keys through its DIP, until no more keys can be

found that cause the output of the miter circuit to be a 1. When this happens, all

remaining keys in the search space are correct.

The algorithm for the SAT attack can be seen in Algorithm 1, where the required

inputs to the algorithm are the locked circuit function C and oracle circuit function

eval. The sat assignment function applies a DIP to the oracle and observes the

output. After the algorithm terminates, a correct key can be found by using all DIPs

found during the iterative part of the attack.

Algorithm 1 SAT Attack

Input: C, eval −→
Output: K C

i ← 1 −→ −→ −−→ V −→ −→ −−→
F1 ← C(IN, K 1, OUT 1) C(I , K 1, OUT 1)V −−→ −−→
while sat[Fi (OUT 1 ≠ OUT 2)] do
−→d V −−→ −−→
IN i ← sat assignment[Fi (OUT 1 ̸= OUT 2)]
−−→d −→d
OUT ← eval(IN)i V −→

i
d −→ −−→ V −→d −→ −−→

Fi+1 ← Fi C(IN i , K 1, OUT 1) C(IN i , K 1, OUT 1)
i ← i + 1

end while −→
K C ← sat assignment[Fi]

2.6 Anti-SAT

The key insight of the SAT attack is that it can unlock circuits in a small number

of iterations (relative to the total number of key combinations) because it eliminates

multiple keys per iteration. One way to increase the time taken by the SAT attack

is to reduce the number of keys it can eliminate each iteration, causing an increase

in the the number of iterations it performs. Anti-SAT [6], a SAT attack resistant

10

locking technique, achieves this by using two complementary functions, g and g, as

shown in Figure 2.5. In order for a key to be incorrect, the output of both g and g

must be 1 (for a type-0 Anti-SAT). If there are p input patterns that make g = 1,

then there are 2n − p input patterns that make g = 1, where n is the number of input

to the circuit. Thus, there are a total of p(2n − p) input patterns that cause the signal

in the circuit to be fipped each iteration. The value p(2n − p) is minimized when p

approaches 1 or 2n − 1. A minimum value for this expression causes an increase in

the number of iterations needed by the SAT attack.

I1 In

g

g

K2n

Kn+1

Kn

K1

To Circuit Output

. .
 .

. .
 .

Figure 2.5: A type-0 Anti-SAT block.

One way to implement the function g is to use an AND function. Since the output

of an AND gate is only asserted when all of its inputs are 1, if g is an AND gate,

then p = 1. Similarly, g can be made a NAND gate to make p = 2n − 1. When

this happens, the total number of keys that can fip the signal each iteration will be

2n − 1, a relatively small number compared to the 22n total keys.

11

A correct key for this type of Anti-SAT block occurs when the output is 0 for all

possible inputs. An equivalent way to state this is that one of the outputs of the g

or g function needs to be 0. Since g and g are complementary, this will only occur

for all possible input patterns when the inputs to both blocks are exactly the same.

Thus, the correct keys are such that Ki = Ki+n, meaning the ith key to g is equal to

the ith key to g. To add variation in the key, some XOR gates can be converted into

XNOR gates, which will invert the equality dependence between g and g for that bit.

2.7 SAT-Attack Resistant Locking Locking (SARLock)

While Anti-SAT increases the number of iterations by using complementary func-

tions, SARLock [7] uses comparators to make it so only a single key corrupts the

signal in the circuit each iteration. Figure 2.6 shows an example SARLock block.

The primary inputs are compared to the key inputs. If they match, shown by the

IN = K? block below, the output is asserted, and the XOR key gate fips the signal.

However, when the primary input happens to equal the same pattern as the correct

key, also called the protected input pattern, applying the correct key will also fip the

signal. To prevent this, a mask block is inserted that will always output a 0 when

the correct key is applied. Thus, for the signal to be fipped, the key must equal the

input and also not be the correct key.

Because a SARLock block only fips the signal for a single key per input pattern, all

2n−1 (excluding the protected input pattern) input patterns must be iterated through

to eliminate every key. Therefore, the number of iterations increases exponentially

with the size of the key. The key can be diferentiated from the protected input

pattern by not doing a bit-wise equality comparison. Instead, specifed bits of the

12

To Circuit OutputIN

K
IN = K?

K = CK?

Figure 2.6: A SARLock block showing the comparator and mask.

key and primary inputs can be checked for equality, while the other bits can be

checked for inequality.

2.8 Signal Probability Skew Attack

An Anti-SAT block requires g and g to have a p value as close to 1 or 2n − 1 as

possible. This can be exploited by searching for a gate whose inputs have a very large

absolute diference in probability skew. A net’s signal probability skew (SPS) can be

defned to be s = P (x = 1) − 0.5. So, for a signal that is always 1, the SPS is 0.5,

while for a signal that is always 0, the SPS is -0.5. Since the outputs of the g and g

block have a high skew towards 0 or 1, the absolute diference of their SPS will also

be large. The signal probability skew attack [8] searches the circuit for the gates with

the highest SPS diference on its inputs. If an Anti-SAT block is in the circuit, it will

likely be detected by this attack. An attacker could then remove the Anti-SAT block

from the circuit or netlist, recovering the original.

13

2.9 Removal Attack

A removal attack [9] can be used to mitigate the efects of a SARLock block in

a circuit. If an attacker is able to identify which inputs are key inputs, they can

trace the fanouts of those inputs to fnd the comparator, masking block, and single

XOR key gate. With knowledge of where the original insertion point is, an attacker

can recover the original netlist by removing both the comparator and mask blocks,

rendering SARLock inefective.

2.10 Traceless and Tenacious Logic Locking (TTLock)

TTLock [9] protects SARLock from the removal attack by modifying the original

circuit logic so that if the locking circuitry were removed, the attacker would recover a

corrupted design. In the TTLock technique, there is still a comparator that compares

the key with the primary input. However, the masking circuitry, which was inserted

to prevent the correct key from fipping the signal, is not present. Instead, the original

circuit is modifed such that, for the single protected input pattern, the function of

the circuit itself is fipped. When the correct key and protected input pattern are

applied, the XOR key gate will fip the signal of the corrupted circuit back to the

original value. When an incorrect key is applied to the protected input pattern, the

TTLock block will not fip the corrupted signal back, and the circuit will remain

unusable.

Because a comparator is still used, the TTLock block only eliminates a single

key in most iterations, and therefore is SAT resilient. Additionally, removing the

TTLock block will result in a circuit that does not function correctly for the protected

input pattern, protecting against a removal attack. However, the primary diference

14

ModifiedCircuit IN Output

IN = K?
K

Figure 2.7: A TTLock block showing the comparator and modifed circuit logic. The
circuit does not produce the correct output for the protected input pattern and relies
on the comparator to restore the correct value to the output.

between TTLock and SARLock comes from a SAT attack analysis of the protected

input pattern. In SARLock, the protected input pattern could not eliminate any

keys, rendering it useless for the SAT attack. However, in TTLock, the protected

input pattern eliminates every incorrect key because only the correct key will restore

the circuit’s function to the proper value. Therefore, if the SAT attack happened to

choose the protected input pattern as a DIP during an iteration, it would immediately

solve the circuit. For a large input search space, this is unlikely.

2.11 Stripped Functionality Logic Locking (SFLL)

SFLL [10] is an extension to TTLock that allows for more than a single input

pattern to be protected. While TTLock used a comparator to compare a key with

the protected input pattern, SFLL compares the Hamming distance of the key with a

specifed input pattern. If the key is within a specifc Hamming distance, the XOR key

gate fips the signal. Like in TTLock, all inputs within the same Hamming distance

as the central protected input result in corrupted function of the circuit. A correct

15

key must be applied to restore the signal to its correct value. This makes TTLock

the special case of SFLL where the Hamming distance is 0.

The correct key and Hamming distance are both parameters controlled by the

designer, giving them greater control of the locking scheme when compared to TT-

Lock. The choice of Hamming distance will afect the attack resiliency of the circuit.

A larger Hamming distance will decrease the number of iterations the SAT attack

requires because more keys will modify the signal per input. Therefore, for a constant

number of total keys, less iterations will be needed. However, it will increase the out-

put corruptibility because more incorrect keys will cause the output to be changed

from its true value. Additionally, because the logic of the circuit is changed for all

inputs within the specifed Hamming distance instead of a single input pattern, the

circuit is more protected against the removal attack.

16

Chapter 3: Single Key Gate

While more exotic logic locking defenses and advanced attacks are being intro-

duced, the SAT attack still remains infuential. The resiliency of all new locking

techniques against the SAT attack must be measured in order to accurately char-

acterize that technique’s security. Additionally, every circuit designed should be re-

sistant against the SAT attack or else risk being broken quickly. This remainder of

this thesis will investigate using the minimum number of iterations the SAT attack

is required to take as a metric for circuit resiliency. The lower bound of the attack

can be determined algorithmically based on the properties of each key gate and their

arrangements relative to one another.

When determining a lower bound on the SAT attack, the defender assumes a

powerful attacker because the minimum security for a circuit occurs when the attacker

has the maximum amount of information. Specifcally, the attack model used by the

defender in this work assumes the attacker:

• has access to an oracle circuit

• has access to a locked netlist

• can determine which gates are key gates

• can determine which gates are in a key block

• can determine which inputs are key inputs

17

• can determine which inputs go to specifc key gates

• can determine which outputs are driven by specifc key gates

• knows the number of correct keys for each individual key gate

3.1 Derivation

Before we consider the minimum number of iterations for an entire circuit, we

should analyze the simplest locking technique: a single key gate. Consider the key

gate shown in Figure 3.1, which is a generalized version of other locking techniques.

It is integrated into the circuit at a single XOR gate such that one input of the XOR

gate is an existing net in the original circuit, as many existing locking techniques are.

The other input to the XOR gate is the output of what is called a key block. This key

block performs some function on the primary inputs and key inputs of the circuit and

can assert the signal to the XOR gate, corrupting the original net in the circuit. For

example, in RLL, this key block would simply be a wire from the key input to the key

gate. In Anti-SAT, this key block would be the complementary functions g and g that

form the Anti-SAT block. In SARLock, the key block would be the comparator and

key mask. As you can see, many locking techniques ft into this generalized defnition

of a key gate.

We will assume that the output of the key gate is a primary output of the circuit

for simplicity. Because of the nature of the SAT attack, only primary input and key

combinations that cause the output to be changed will be considered. Thus, it does

not matter where in the circuit the key gate is placed because the SAT attack will

seek out inputs that propagate errors to the output. Any input patterns that do not

propagate the errors will not be considered.

18

Key Block

CircuitIN

KEY

OUT

Figure 3.1: A generalized key gate.

3.2 Input-Dependent Gate

Gates that are input-dependent have a key block whose inputs are both key inputs

and primary inputs of the circuit. On any given iteration i of the SAT attack, the

probability a key corrupts the signal can be written as P (change)i. The number of

incorrect keys that can be eliminated in this iteration i, denoted by IKi is given by

equation 3.1. The number of unique keys that can be eliminated in iteration i is given

by the inequality UIKi ≤ IKi. This is because some keys may have been eliminated

in previous iterations, so the unique keys eliminated in this iteration could be less.

IKi = KP (change)i (3.1)

The sum of all unique, incorrect keys eliminated in each iteration will equal the

total number of incorrect keys for the circuit. Since only unique keys are considered,

all keys that have been eliminated previously will not be double counted. Thus, the

total number of incorrect keys for the circuit can be given by equation 3.2.

19

X X
UIKi = IK ≤ KP (change)i (3.2)

i i

One simplifying assumption that we can make is to consider the probability a

key is incorrect to be constant over all iterations. This assumption is valid in many

common locking techniques, such as Anti-SAT and RLL, and can be used as a very

good approximation for others, such as SARLock. The probability can then be pulled

out of the sum over i since it no longer depends on the current iteration. This sum

over i now equals the total number of iterations, λ, as shown in equation 3.3.

X
IK ≤ KP (change) 1 = KP (change)λ (3.3)

i

This inequality can be rearranged to fnd a lower limit on the number of iterations

required by the SAT attack, shown in equation 3.4. If each factor in the equation is

varied with the others staying constant, the results of this expression logically make

sense. The more incorrect keys there are while eliminating the same number of keys

per iteration, the more iterations will be needed to eliminate them all. Likewise, as

the number of keys increase, the number of keys eliminated each iteration will increase

(assuming the elimination probability does not change), decreasing the total number

of iterations. Lastly, if the probability that a key is eliminated increases, then the

number of iterations will also decrease, as more keys are eliminated each iteration.

IK
λ ≥ (3.4)

KP (change)

20

3.2.1 Comparison with Existing Locking Schemes

The above equation is valid for all locking techniques that have a constant P (change)

over each iteration and can be used as an approximation for locking schemes where

P (change) is near constant. It can be useful to compare to the expected results

from existing locking schemes to ensure that they ft this model. In this section,

equation 3.4 will be compared with Anti-SAT and SARLock.

22nIn Anti-SAT, the total number of keys is K = , where n is the number of

primary inputs used. The number of incorrect keys is given by 22n − 2n . For each

iteration, a given key is incorrect if both the g and g function output a 1 (for a

type-0 Anti-SAT block). If p input vectors to the g block cause it to output a 1,

then 2n − p input vectors cause the g block to also output 1. Thus, there are a total

of p(2n − p) input vectors to the Anti-SAT block that cause it to be incorrect on a

single iteration. The total number of input vectors for the Anti-SAT block is 22n , so

P (change) = p(2n − p)/22n . Using these values with equation 3.4, the lower bound

of the number of iterations is given by equation 3.5. This result is the same lower

bound as found in [6].

22n − 2n 22n − 2n

λ ≥
2n p(2n−p)

2n

=
p(2n − p)

(3.5)

In SARLock, the total number of keys is equal to the number inputs used, n, while

the number of incorrect keys is given by n − 1. In this case, though, the probability

a key changes the signal is not constant for every iteration. In n − 1 iterations, the

probability is given by P (change) = 1/2n . However, for a single input pattern, the

protected input pattern, the signal can never be fipped, so P (change) = 0. This

analysis will make the approximation that all iterations have the same probability

21

by ignoring the protected input pattern. Thus, the minimum number of iterations

required by the SAT attack is given in equation 3.6. Note that, while this was done

using an approximation, the result derived is the exact result quoted in [7].

2n − 1
λ ≥ 1 = 2n − 1 (3.6)

2n
2n

3.3 Input-Independent Gate

Key gates that are input-independent have a key block whose inputs are only the

key bits for that specifc gate. Thus, for a circuit only containing a single input-

independent gate, the SAT attack is able to choose any input on any iteration since

the primary inputs have no efect on the key gate. On the frst iteration, all keys

that cause the output to be fipped will be eliminated. Since fipping the signal is

only a function of the key inputs, this will eliminate every incorrect key. Thus, each

input-independent gate only takes a single iteration of the SAT attack to solve.

22

Chapter 4: Multiple Key Gates

While the previous chapter discussed how to lower bound the SAT attack for a

single key gate, this chapter considers when multiple key gates are present. The way

the key gates are arranged and afect each other must be taken into account when

analyzing such a circuit. We will call the way key gates interact with one another

interference. This chapter will analyze three types of interference: no interference,

direct interference, and indirect interference.

Two key gates do not interference, or exhibit no interference, when both their

fan-in and fan-out cones are disjoint sets of gates. Gates directly interfere with one

another when one key gate is present in the fan-in cone of another key gate. Lastly,

indirect interference occurs when the fan-out of two key gates converge at some other

net in the circuit. Figure 4.1 shows a simple example of all three types of interference.

4.1 No Interference

To determine a lower bound for non-interfering key gates, we consider the simplest

possible case: only two key gates present in the circuit. Since they do not interfere,

both the inputs that drive each gate and the outputs each gate afects do not overlap.

Therefore, an intelligent attacker can manipulate the inputs to one key gate and

observe the outputs for that key gate independently of the other. Take the inputs in

23

I0

K0
O0

I1

K1
O1

(a)

I0

K0
K1

O0

(b)

I0

K0

I1

K1

O0

(c)

Figure 4.1: (a) No Interference: The two key gates have disjoint fan-out cones and
afect diferent outputs. (b) Direct Interference: One key gate is in the fan-in cone of
another. (c) Indirect Interference: The outputs of both key gates converge at a third
gate.

the fan-in of key gate KG1 to be I1 and the outputs in the fan-out of KG1 to be O1,

and similarly for KG2. If the value of the outputs O1 are diferent than those of the

corresponding outputs on the oracle, then the attacker knows that the key provided

to KG1 was incorrect because KG2 cannot afect O1.

Since an attacker knows when an individual gate KG1 or KG2 corrupts the signal

and can also manipulate I1 and I2 independently, that attacker can solve for keys K1

and K2 simultaneously. They can apply input patterns to I1 that will solve KG1 as

if KG2 was not present in the circuit. The set of DIPs that can be used to solve both

24

gates individually can be applied to each gate’s respective subset of all the primary

input bits.

Table 4.1 shows an example of solving two gates simultaneously. KG1 uses bits

0-3 of the primary inputs and can be solved in 4 iterations independently. KG2 uses

input bits 4-7 and can also be solved in 4 iterations. The frst two columns display a

set of DIPs that solves the circuit when the respective key gate is the only one present.

The bold part of the input pattern shows which bits are specifc to that individual

key gate. The last column shows a set of DIPs where each gate’s respective range of

the input pattern uses the values that solve that gate independently in the frst two

columns. Because each key gate is still receiving the same input patterns as in the

frst two columns, this circuit will still be solved in four iterations, even when both

key gates are present.

DIP 1 DIP 2 Combined DIP

0000 1101 10 0101 0000 11 0000 0000 00
0001 1100 01 1110 0001 10 0001 0001 00
0010 1101 00 0010 0010 01 0010 0010 00
0011 1110 10 0101 0011 00 0011 0011 00

Table 4.1: The inputs for each key gate can be chosen from the DIPs used to solve
those key gates individually.

From this derivation, the number of iterations for non-interfering key gates can

be lower bounded when the SAT attack chooses the same input patterns for each

key gate that would solve that gate independently. Since the attack must still iterate

through every input pattern needed by all key gates, the gate requiring the largest

25

number of iterations will set the lower bound for the entire circuit. Table 4.2 shows an

example where the gates require diferent numbers of iterations. Here, KG2 requires 6

iterations, while KG1 still requires 4. The SAT attack is lower bounded to 6 iterations

because that it what is required to solve KG2. During iterations 5 and 6, the input

to KG1 has no function and can be any value.

DIP 1 DIP 2 Combined DIP

0000 1101 10 0101 0000 11 0000 0000 00
0001 1100 01 1110 0001 10 0001 0001 00
0010 1101 00 0010 0010 01 0010 0010 00
0011 1110 10 0101 0011 00 0011 0011 00
0000 0010 00 1101 0100 00 0000 0100 00
0001 0110 10 1111 0101 00 0001 0101 00

Table 4.2: The minimum number of iterations for non-interfering gates is determined
by the gate with the largest number of individual iterations.

4.2 Direct Interference

When two key gates are directly interfering, they can no longer be solved inde-

pendently like was possible for non-interfering gates. To see why, consider the four

possible cases that can occur with two key gates: neither key gate fips the signal,

only key gate 1 fips the signal, only key gate 2 fips the signal, and both key gates

fip the signal. When neither gate fips the signal, the output will not be changed,

and thus no information can be discerned about the correctness of the key applied.

When either gate 1 or gate 2 fips the signal, the output will be changed, and the key

applied is known to be incorrect. When both gates fip the signal, the second gate

26

will revert the signal back to its correct value. Thus, from the perspective of the SAT

attack, the output has not been changed, and no information can be determined. The

two gates have ofset each other’s efects.

Next, consider applying an single input pattern to the locked circuit. That input

pattern will map to a set of keys that produce an incorrect output for that input.

In many locking schemes, this set of keys is mutually exclusive from the set of keys

mapped to by every other input, meaning an applied key will corrupt the signal if

and only if the corresponding primary input pattern is applied. We can denote this

mapping as I → K(I), where I is the primary input pattern and K(I) is the set of

keys that change the output when that input pattern is applied. When I is applied

along with a key from K(I), the output will be changed. However, when I is applied

with a key not in K(I), the output will not be changed. Likewise, applying K(I)

with an input that is not I will not change the output.

This mapping can be visualized using a plot such as Figure 4.2. In this fgure, the

rows represent diferent primary input patterns, while the columns represent diferent

key input patterns. A square is dark when that combination of key and primary input

corrupts the signal. Light squares occur when the key gate does not fip the signal.

As can be seen in this fgure, each input maps to a specifc set of keys since no column

contains two dark squares. The plot shown is for an Anti-SAT block that requires 8

iterations to be solved.

The concept of 1-to-n primary input to key mappings can be used to see why

directly interfering key gates cannot be solved independently. A primary input pattern

I for a circuit with two key gates can be split into subsets I = (Ia, Ib), where Ia and Ib

are the bits of the input that go to key gate A and key gate B, respectively. Likewise,

27

� �

� �

Figure 4.2: Each input pattern I (Y-axis) for this example Anti-SAT block maps to
a unique set of keys K(I) (X-axis).

the total key for the circuit K can be split in this manner. We denote the key set

K(Ia, Ib) as the keys that would cause both gates to fip the signal when input (Ia, Ib)

is applied. Similarly, the key set K(Ia, Ib) represents all keys that cause neither

gate to corrupt the signal for that input. This notation cam be extended to any

number of gates.

Now, once again consider an iteration in the SAT attack where the DIP applied

is (Ia, Ib). The keys in sets K(Ia, Ib) and K(Ia, Ib) would both fip a single key

gate, ultimately changing the output of the circuit. Therefore, both sets of keys will

be eliminated when the SAT attack adds the clauses that prevent keys from being

inconsistent with previous DIPs from being considered in future iterations. We will

call these keys “eliminated keys.” However, a key from the set K(Ia, Ib) would cause

both key gates to corrupt the signal and ofset each other, preventing the output from

changing. Even though the keys from this set are ultimately incorrect, they will not

be eliminated in this iteration of the SAT attack. These keys are called “hidden keys”

because they are hidden from elimination for this iteration and must be eliminated in

the future. This analysis shows that directly interfering key gates cannot be solved

simultaneously using only the DIPs that can solve each gate independently.

28

� �

�

�

In order to eliminate the hidden keys in K(Ia, Ib), either key gate A or key gate B

needs to corrupt the signal, but not both. Therefore, an input of (Ia, Ib) or (Ia, Ib)

must be applied on a subsequent iteration. In the frst case, (Ia, Ib) is guaranteed to

fip key gate A and not key gate B for keys in the hidden set K(Ia, Ib) because of the

mutually exclusive mapping from input to key set. Likewise, (Ia, Ib) is guaranteed

to fip key gate B and not key gate A. In general, to eliminate a hidden key caused by

a pair of gates, only one input from either key gate must be repeated in an iteration.

A simple way to estimate the SAT attack lower bound for directly interfering gates

is to group the DIPs needed to solve the circuit by the type of key they eliminate.

The initial group, which we will call DIP group 1, will unavoidably create hidden

keys. Therefore, DIP group 2 is created to eliminate all hidden keys from DIP group

1. Likewise, DIP group 3 eliminates all hidden keys from DIP group 2, and so on. As

the number of gates grows, so does the number of DIP groups needed to completely

eliminate all keys. In this work, we’ll analyze DIP group 1 and 2 and determine how

many iterations are required by each and present the remaining hidden keys that need

to be eliminated.

4.2.1 DIP Group 1

DIP group 1 is the starting point of the SAT attack. Any combination of inputs

used for the DIPs in this group will result in hidden keys that will be need to be

eliminated in future groups. A simple starting point is to use the inputs that solve

each gate individually, similar to no interference. We denote the inputs using the

following nomenclature: Ia1 represents the frst input to key gate A that would solve

it independently, Ia2 represents the second input, etc. Therefore, an input such as

29

Id6 represents the 6th input to key gate D (the 4th gate in the directly interfering

sequence) that is used to solve that key gate without the presence of the other gates.

This notation is used because the specifc value of the input does not matter, but the

iteration it was applied does. Therefore, when looking at which iteration an input

was applied, one only needs to consult the numerical subscript.

At a minimum, all of the inputs that solve each gate individually must be iterated

through during the SAT attack. Table 4.3 shows an example DIP group 1 for 4

key gates. As can be seen, DIP group 1 is identical to the DIPs used to solve non-

interfering key gates.

Iteration Gate A Gate B Gate C Gate D

1 Ia1 Ib1 Ic1 Id1

2 Ia2 Ib2 Ic2 Id2

3 Ia3 Ib3 Ic3 Id3

4 Ia4 Ib4 Ic4 Id4

5 Ia5 Ib5 Ic5 Id5

Table 4.3: An example DIP group 1. For iteration 1, the total DIP would be
(Ia1, Ib1, Ic1, Id1)

The minimum number of iterations for each DIP group needs to be determined

to arrive at a lower bound for the total SAT attack. Since DIP group 1 is identical

to the inputs needed by non-interfering key gates, the lower bound is set by the gate

with the largest number of iterations. Table 4.4 shows an example where key gate C

is the dominant gate in the sequence. The other gates can complete their DIPs in

the time that key gate C needs to iterate through all of its DIPs.

30

Iteration Gate A Gate B Gate C Gate D

1 Ia1 Ib1 Ic1 Id1

2 Ia2 Ib2 Ic2 Id2

3 Ia3 Ib3 Ic3 · · ·
4 · · · Ib4 Ic4 · · ·
5 · · · · · · Ic5 · · ·

Table 4.4: Key gate C is the limiting factor with 5 DIPs needed. Therefore, this DIP
group 1 needs to take 5 iterations.

In addition to the number of iterations required for each DIP group, the hidden

keys that are produced also need to be known so that future DIP groups can be

created to eliminate those keys. When analyzing these hidden keys, we must also

take into account the presence of correct keys, which will not corrupt the signal in

the circuit for any input. The symbol used for a correct key will be C. For example,

the key set K(Ia1, Ib1, C, C) represents all keys that fip the frst two gates for inputs

Ia1 and Ib1 and never fip the last two gates.

As stated previously, a hidden key will occur on an iteration when every key gate

that fips the signal is ofset by another key gate. For example, in the DIP group

shown in Table 4.4, the key sets K(Ia1, Ib1, Ic3, Id3) and K(Ia1, Ib1, C, C) will both

remain hidden because each iteration has an even number of key gates corrupting the

signal. Meanwhile, the key set K(Ia1, Ib1, C, Id2) will be eliminated because the last

key gate will be the only gate corrupting the signal in iteration 2, causing these keys

to be eliminated.

In DIP group 1, the requirement that all gates are ofset by another gate is equiva-

lent to having an even number of each numerical subscript in a key set. For example,

31

the above key set K(Ia1, Ib1, Ic3, Id3) has two 1s and two 3s, meaning the two gates

will fip the signal on iterations 1 and 3. However, the key set K(Ia1, Ib1, C, Id2) has

two 1s and one 2. So, since there is an odd number of 2s, this key will be eliminated

in iteration 2.

4.2.2 Hidden Key Categories

While determining which keys remain hidden, the relationship between when in-

puts were applied in DIP group 1 is more important than the actual iteration in which

they were applied. In other words, two keys, such as K(Ia1, Ib1) and K(Ia2, Ib2) can

be considered as the same since they both have two inputs from the same iteration,

even though the iteration is diferent. It will be useful to categorize all types of keys

like this. The notation we will use is as follows: the letters W-Z will indicate inputs

used in diferent iterations in DIP group 1 without pointing to a specifc iteration.

For example, K(W) represents key sets K(I1), K(I2), etc. Inputs that have the same

letter indicate those inputs were applied in the same iteration during DIP group 1.

For example, K(WWC) describes the key sets K(Ia1, Ib1, C) and K(Ia2, Ib2, C), etc.

However, when inputs have diferent letters, that indicates those inputs were not from

the same iteration. So, K(WWX) can describe the key sets K(Ia1, Ib1, Ic2) but not

K(Ia1, Ib1, Ic1).

Additionally, which input was applied to which gate during DIP group 1 is not

important. For example, two key sets such as K(Ia1, Ib1, C, C) and K(C, Ib2, Ic2, C)

can be treated as functionally the same. They both have a single pair of ofsetting

gates and two correct keys applied. They can be considered as the same “category”

even though the exact placement of the inputs is diferent between the two. So, using

32

the notation described above, the location of the letters W-Z and C does not imply

a specifc key gate. Instead, a key set such as K(WWC) describes all keys that have

two gates ofsetting each other and the third key correct. This includes both the key

set K(Ia1, Ib1, C) and K(C, Kb3, Kc3), among many others.

The requirement that all hidden keys must have ofsetting gates can be easily

transferred into this new key category notation. A key set with input W applied has

an ofsetting gate if there is another W present in that key. For a key to remain hidden

in DIP group 1, there must be an even number of every letter W-Z. For example,

K(WWCC) has a even number of W s, and thus will remain hidden because the

gates with the W inputs applied will always ofset. However, K(WWXC) will be

eliminated because the X input will fip a single key gate during whatever iteration

X corresponds to in DIP group 1. This means that all key sets that ft into the

K(WWXC) do not need to be considered in DIP group 2 because they will all have

been eliminated.

Finally, the number of correct keys being applied to key gates does not afect a key

set being hidden or eliminated. Since the gates that have these correct keys applied

can never fip the signal, they can essentially be ignored. For example, the keys

from key sets K(WWCC) and K(WWCCCC) are functionally the same because

they both have 2 inputs applied from the same iteration. In our notation, we will

designate an arbitrary amount of correct keys by using C+. For example, the two key

categories shown above can both represented by K(WWC+). This is a shorthand

notation that is useful because it is able to describe an arbitrary amount of keys.

An important note is that our notation using X-Z as a placeholder for the iteration

number only supports up to 4 diferent iterations in a single key. This can support

33

Actual
Key

Pattern

Iteration
Index

Correct
Keys

Key
Category

Arbitrary
Length

0101 1011 K(Ia1, Ib1) K(Ia1, Ib1, C, C) K(WWXCC) K(WWXC+)

Figure 4.3: The notation described abstracts individual keys into groups of keys
behaving the same.

up to 8 directly interfering key gates because all gates must be at a minimum ofset

by a single other key gate to be considered beyond DIP group 1. So, the largest

key category that can be fully supported in this notation is K(WWXXY Y ZZC+).

Keys that are larger than this key will be unable to be described by this notation.

However, this work will not analyze such keys. A fully extendable notation could be

created with numbers or the entire alphabet to denote the variable iteration number.

However, it could cause confusion with the actual iteration number (if 1, 2, 3, etc.

were used), or the key gate label (if A, B, C, etc. were used) when compared with an

input such as Ia1, so the letters W-Z were chosen for minimum ambiguity.

Figure 4.3 shows a summary of the key abstraction techniques described in this

section. This notation allows us to talk about many diferent types of keys at the

same time without having to refer to the exact value of the key. As we examine more

DIP groups, it is easier to discuss which iteration a key was applied without referring

to any specifc iteration.

4.2.3 DIP Group 2

DIP group 2 can be crafted to eliminate the simplest keys hidden during DIP group

1, which take the form K(WWC+). That is, two key gates have inputs corresponding

34

to the same iteration during DIP group 1, and all other gates have correct keys

applied. As stated previously, a single input from the WW pair must be repeated to

eliminate that specifc key set. Similarly, a key set remains hidden any time two Ws

are repeated. For example, the input (Ia1, Ib2, Ic1, Id3) will not eliminate keys of the

form K(Ia1, C, Ic1, C) because key gates A and C will collide. Therefore, it is required

for DIP group 2 that every iteration does not repeat an input twice.

It can be useful to look at all possible pairs for one instance of a K(WWC+) key

to determine how DIP group 2 should be created. An example shown for the frst

iteration of DIP group 1 is shown in Table 4.5. For the four key gates shown, there

are 6 total pairs of WW inputs. Three inputs must be repeated in order to repeat a

single input from every pair. This is visualized as choosing any three columns from

the table below will include an entry from every row. In general, for n key gates,

n − 1 inputs must be repeated to eliminate all hidden pairs created by the iterations

in DIP group 1.

Gate A Gate B Gate C Gate D

Ia1 Ib1 · · · · · ·
Ia1 · · · Ic1 · · ·
Ia1 · · · · · · Id1

· · · Ib1 Ic1 · · ·
· · · Ib1 · · · Id1

· · · · · · Ic1 Id1

Table 4.5: All pairs of inputs that result in hidden keys for iteration 1 of DIP group
1.

35

The general format of DIP group 2 is now fully defned - each iteration must

not repeat an input pattern twice, and each input pattern must be applied to n − 1

gates. Thus, each iteration in DIP group 2 can be created by using an input from a

unique DIP group 1 iteration for each key gate. These inputs can then be shifted left

or right on subsequent iterations, as seen in Table 4.6. In this table, the numerical

subscripts, which represent the iteration that specifc input was applied in DIP group

1, shift to the left every row. All numbers are used at least 3 times, and no number

is repeated twice in the same row. Thus, the set of DIPs shown below will eliminate

all K(WWC+) keys for this specifc circuit.

Iteration Gate A Gate B Gate C Gate D

5
6
7
8

Ia1

Ia2

Ia3

Ia4

Ib2

Ib3

Ib4

Ib1

Ic3

Ic4

Ic1

Ic2

Id4

Id1

Id2

Id3

Table 4.6: An example DIP group 2. For iteration 1, the total DIP would be
(Ia1, Ib2, Ic3, Id4).

As the number of inputs needed to be repeated grows beyond the number of key

gates in the circuit, shifting the inputs every iteration will create redundancy. This

can be seen in Table 4.7. The highlighted inputs all come from iteration 3 during

DIP group 1. As was discussed above, only 2 inputs need to be repeated for 3 key

gates. Thus, the input Ia3 that is applied on iteration 9 to key gate A below will not

eliminate any keys. In this example, the inputs with subscripts 2, 3, 4, and 5 are all

repeated 3 times, causing redundancy and additional iterations that are not needed.

36

Iteration Gate A Gate B Gate C

7 Ia1 Ib2 Ic3

8 Ia2 Ib3 Ic4

9 Ia3 Ib4 Ic5

10 Ia4 Ib5 Ic6

11 Ia5 Ib6 Ic1

Table 4.7: An example DIP group 2 showing redundancy. There are 3 key gates, but
each key gate has 6 iterations needed to be solved independently. The highlighted
inputs show that every iteration from DIP Group 1 has 3 inputs repeated.

The above DIP group 2 can be changed into the inputs shown in Table 4.8 to

eliminate redundancy. Here, each subscript number is repeated only twice, which still

eliminates all hidden keys of the form K(WWC+) without using extra iterations. The

diference between this group and the previous group is that the shifting of inputs only

occurs locally in a chunk of iterations. Iterations 7 and 8 are chunked together and

shifted to the left from each other. After iteration 8, no more inputs with subscripts

1, 2, or 3 are needed since those subscripts have all been repeated twice. Therefore,

iterations 9 and 10 can be chunked and shift the inputs with subscript 4, 5, and 6. In

general, for n key gates, a chunk can be made with n − 1 iterations that shift inputs

locally within the chunk and apply each input the ideal number of times. This results

in minimized redundancy and the least number of iterations for DIP group 2.

Now that the form for DIP group 2 is fully described, we must determine the lower

bound on its size. Each iteration in DIP group 1 creates n − 1 pairs of hidden inputs

that must be repeated. Since each pair only needs a single input to be repeated,

n − 1 inputs must be repeated in DIP group 2 per iteration in DIP group 1. For m

iterations in DIP group 1, this results in (n − 1)m inputs needing to be repeated in

37

Iteration Gate A Gate B Gate C

7
8
9
10

Ia1

Ia2

Ia4

Ia5

Ib2

Ib3

Ib5

Ib6

Ic3

Ic1

Ic6

Ic5

Table 4.8: An example DIP group 2 without redundancy. The inputs are shifted
inside a “group,” yielding one less iteration than the previous DIP group.

DIP group 2. Each iteration in DIP group 2 is able to repeat n inputs since each of

the n gates can have an input applied to it. Therefore, the total number of iterations

λ2 needed by DIP group 2 is given by equation 4.1, below. In the special case that

m = n, this reduces to λ2 = n − 1.

(n − 1)m
λ2 = (4.1)

n

After DIP group 2, all keys of the form K(WWC+) are guaranteed to be elimi-

nated. Additionally, all keys of form K(W + C+), where an arbitrary number of W s

are applied, are also eliminated. This is because each DIP in DIP group 2 can only

have a single input from each iteration in DIP group 1. Thus, any key set correspond-

ing to all inputs from a single iteration, like K(WWWW) or K(WWWWWWW),

will only fip a single gate in DIP group 2.

The remaining hidden keys after DIP group 2 must have two letters from W-Z.

The simplest form of these is K(WWXXC+). One important note is that, when

there are two letters W-Z in the key, all keys where the number of Ws does not equal

the number of Xs are eliminated by DIP group 2. For example, K(WWWWXX) is

eliminated because there are 4 Ws and 2 Xs. Therefore, the remaining keys after DIP

38

group 2 are those that have an equal number of inputs from each iteration in DIP

group 1, such as K(WWXX) and K(WWWWXXXX). Note that this does not

apply to keys where there are 3 letters W-Z, such as K(WWWXXX), because those

would have fipped an odd number of gates in DIP group 1 and been eliminated.

4.2.4 Early Repeat Optimization

When the gates in a directly interfering chain have a diferent number of iterations

required to solve each gate independently, the gate with the largest number of inputs,

which we will call the dominant gate, will still need to iterate through all inputs in

DIP group 1. This will cause several iterations to have empty input “spaces” where

no input is defned for the other gates, as shown in Table 4.9. In this example, key

gate A is the dominant gate, and the other key gates iterate through all their inputs

before the end of DIP group 1. The spaces are indicated by dashes. While these

spaces will need some sort of input value applied, DIP group 1 does not defne what

they need to be. In fact, they can take any input and still eliminate every key DIP

group 1 is crafted to eliminate.

Iteration Gate A Gate B Gate C Gate D

1 Ia1 Ib1 Ic1 Id1

2 Ia2 Ib2 Ic2 Id2

3 Ia3 Ib3 Ic3 Id3

4 Ia4 Ib4 Ic4 −−
5 Ia5 Ib5 −− −−
6 Ia6 −− −− −−

Table 4.9: When gates have a diferent number of inputs needed to be solved, empty
“spaces” occur in DIP group 1.

39

The way DIP group 2 eliminates hidden keys created from DIP group 1 is by

repeating a single input from each pair of WW inputs. Since any input is able to go

in the empty spaces in DIP group 1, those spaces can be used to start repeating the

inputs that DIP group 2 needs to repeat before DIP group 2 even starts. This reduces

the number of repeats that DIP group 2 needs to make, lowering the minimum number

of iterations it requires. Table 4.10 shows such an example DIP group 1, where the

highlighted inputs are being repeated. Each of these inputs no longer need to be

repeated in DIP group 2.

Iteration Gate A Gate B Gate C Gate D

1 Ia1 Ib1 Ic1 Id1

2 Ia2 Ib2 Ic2 Id2

3 Ia3 Ib3 Ic3 Id3

4 Ia4 Ib4 Ic4 Id1

5 Ia5 Ib5 Ic1 Id2

6 Ia6 Ib1 Ic2 Id3

Table 4.10: The empty spots in DIP group 1 can be flled with inputs from previous
iterations to start to repeat the inputs that cause hidden keys.

Take the number of inputs a specifc gate requires to be solved as mi, where i

is the index of the key gate. The number of inputs that can be repeated in DIP

group 1 for that key gate is given by λ1 − mi, where λ1 is the number of iterations

in DIP group 1, which is determined by the dominant gate. Since mi inputs must be

repeated, there are mi − (λ1 − mi) = 2mi − λ1 inputs left that DIP group 2 needs

to repeat for each key gate. If it so happens that 2mi < λ1, then all inputs can be

repeated in DIP group 1 for that key gate, and DIP group 2 is no longer necessary.

40

The number of iterations needed for DIP group 2 is then given by the maxi-

mum number of inputs left to be repeated for each key gate, given by the equation

max(2mi − λ1). Table 4.11 shows the DIP group 2 for the example key gates that

were used in Table 4.10. Key gate D was able to repeat all 3 inputs in DIP group 1,

so it does not have any more inputs to repeat. Key gate C was able to repeat 2 of 4

inputs in DIP group 1, so it must repeat only 2 more in DIP group 2. Lastly, key gate

B repeated a single input in DIP group 1, meaning it must repeat 4 inputs in DIP

group 2. Thus, this DIP group 2 would take 4 iterations instead of the 5 iterations

had inputs not been repeated in DIP group 1.

Iteration Gate A Gate B Gate C Gate D

7
8
9
10

−−
−−
−−
−−

Ib2

Ib3

Ib4

Ib5

Ic3

Ic4

−−
−−

−−
−−
−−
−−

Table 4.11: When inputs have been repeated in DIP group 1, the number of repeats
needed for DIP group 2 is reduced.

The fnal optimization that can be made is using the dominant key gate to also

repeat inputs during DIP group 2. In the previous example, shown by Table 4.11, key

gate B takes 4 iterations to repeat all remaining input patterns while key gate A, the

dominant key gate, has no useful inputs being applied. Additional input patterns can

be ofoaded onto the dominant key gate to further reduce the number of iterations

necessary. Table 4.12 shows an example. Here, the inputs Ib4 and Ib5 have been

ofoaded onto key gate A. This can be done because it does not matter which key

41

gate repeats inputs, all that matters is that n − 1 inputs from each iteration are

repeated. So, key gate A repeating inputs from iterations 4 and 5 removes the need

for key gate B to repeat those inputs. Thus, this DIP group 2 only takes 2 iterations

instead of the original 5.

Iteration Gate A Gate B Gate C Gate D

7 Ia4 Ib2 Ic3 −−
8 Ia5 Ib3 Ic4 −−

Table 4.12: Using the dominant key gate to help repeat inputs can further reduce the
number of iterations in DIP group 2.

To fnd the number of iterations required for DIP group 2, the number of inputs

needed to be repeated for each key gate must be tracked. During each iteration, every

gate can repeat a single input. However, the dominant gate can be used to repeat an

extra input for the gate requiring the most iterations in DIP group 2. The algorithm

for this can be seen in Algorithm 2. The input to this algorithm is an array of the

number of inputs remaining to be repeated for each key gate.

Algorithm 2 DIP Group 2 Iterations

Input: inputs remaining
Output: min iterations
iterations ← 0
while any(inputs remaining > 0) do

largest index ← indexofmaxinputs remaining
inputs remaining[largest index] ← inputs remaining[largest index] − 2
inputs remaining[!largest index] ← inputs remaining[!largest index] − 1
iterations ← iterations + 1

end while
min iterations ← iterations

42

4.2.5 Input-Independent Gates

As was seen in the previous chapter, an input-independent gate can be solved in

a single iteration because every incorrect key will fip the signal. To see how this

can be extended to directly interfering gates, consider two directly interfering, input-

independent key gates. When an incorrect key is applied to both key gates, the

original signal of the circuit will be restored. However, unlike input-dependent gates,

this efect will happen for every input on the circuit. Thus, this set of two keys has

become a correct key since there is no combination in which it will cause the output

to be corrupted. Even though both parts of the key are incorrect with respect to

their own key gate, their combination has become correct.

Therefore, whenever a chain of directly interfering, input-independent gates fips

the signal an odd number of times, that key is incorrect. When the chain fips the

signal an even number of times, that key is now correct. As these keys have no input

dependence, any input chosen by the SAT attack will eliminate all incorrect keys for

this chain. Thus, only a single iteration is needed for the entire directly interfering

set of gates.

Input-independent gates can also be combined in direct interference with input-

dependent gates. When this happens, the chain of input-independent gates can be

modelled as a single gate with some number of incorrect keys and some number of

correct keys. This model is valid since both a single input-independent gate and chain

of input-independent gates take a single iteration to solve, and it also helps decrease

the complexity of the total chain by reducing all input-independent gates into a single

unit.

43

�

�

�

�

�

� �

� �

To see how the addition of an input-independent gate afects the minimum number

of iterations for directly interfering key gates, consider the simplest case: a single

input-dependent gate. On the frst iteration of the SAT attack, the SAT solver

chooses input Ia1 for the input-dependent gate. There is no input chosen for the

input-independent gate, but it is still useful to list it in the gate notation used in this

section, so the pseudo-input I0 will represent no input. Thus, the DIP provided to

the circuit on iteration 1 is (Ia1, I0).

During this iteration, the keys that remain hidden are the ones that fip neither

gate or fip both gates. The frst category contains keys of the form K(Ia1, F), where

K(F) represents keys that do not fip the input-independent gate. The keys that ft

into the second category are K(Ia1, T) where K(T) represents keys that do fip the

input-independent gate. A key will be eliminated when it fips only a single gate, and

these keys take the form K(Ia1, F) or K(Ia1, T).

In the second iteration, Ia2 is chosen as the input. Like the frst iteration, the keys

that are hidden in the second iteration take the form K(Ia2, F) or K(Ia2, T). The

keys that are eliminated take the form K(Ia2, F) or K(Ia2, T). The insight needed

is that the key set K(Ia2, T) contains all of the keys in K(Ia1, T), which were hidden

in iteration 1. Likewise, the keys eliminated in iteration 1 contain all the keys hidden

in iteration 2of the form K(Ia2, T).

Therefore, after 2 iterations, the only keys that are remaining to be eliminated are

of the form K(Ia1 ∧ Ia2, F). Since the key applied to the input-independent gate

K(F) never fips the signal, it can be essentially ignored. The keys that remain are the

ones that would have been hidden had the input-independent gate not been present

in the circuit, given by K(Ia1 ∧ Ia2). In other words, the SAT attack proceeds as

44

normal without interference from the input-independent gate after iteration 2. The

presence of this gate only required two iterations to eliminate all additional hidden

keys that it added. Any directly interfering gates that require more than a single

iteration to solve will not be afected by the presence of input-independent gates.

4.3 Indirect Interference

To understand how to analyze indirect interference, again consider the simplest

possible case: the signal output of two key gates converge at some later gate. If

the two gates never mask the efect of the other key gate, they are able be solved

independently in the same manner as non-interfering gates. However, if there is a

case where a fipped signal from one key gate is stopped from propagating to the

output because of the other key gate, more analysis must be done.

Since the gates are not directly in each other’s signal path, both gates fipping

does not guarantee a collision. Instead, the chance of a collision depends on the type

of convergent gate. The truth tables for 3 gate types are shown below: AND, OR,

and XOR gates. In each truth table, the traditional inputs and outputs are shown

on the left. On the right, the truth table where each input has been corrupted by a

key gate is shown. In every output that is highlighted, the fipped output (Out ′) is

the same as the original output, even though both inputs have been modifed. This

indicates that the two key gates have interfered and produced hidden keys because

the output has not been changed.

Therefore, like direct interference, indirect interference can produce hidden keys

and require additional iterations to solve. However, unlike direct interference, this

is input dependent as it depends on the original signal to the converging gate in

45

A B Out A ′ B ′ Out ′

0 0 0 1 1 1
0 1 0 1 0 0
1 0 0 0 1 0
1 1 1 0 0 0

Table 4.13: The truth table for a normal AND gate and one where the inputs have
been fipped.

A B Out A ′ B ′ Out ′

0 0 0 1 1 1
0 1 1 1 0 1
1 0 1 0 1 1
1 1 1 0 0 0

Table 4.14: The truth table for a normal OR gate and one where the inputs have
been fipped.

addition to its type. On one extreme, the unmodifed input to a converging AND

gate can always be (0, 0), producing zero hidden keys. In this example, the two key

gates would be able to be solved simultaneously. On the other extreme, the inputs

could be such that a hidden key is always produced, either through a specifc input to

an AND or OR gate or any input pattern to an XOR gate. In this example, hidden

keys would be produced in the same way directly interfering gates, and the same DIP

groups would be needed to eliminate all hidden keys.

Because the SAT solver has the freedom to choose the values applied to each

primary input, it is likely that an optimized SAT attack can create the conditions

necessary to not produce hidden keys, assuming the convergent gate is an AND or

46

A B Out A ′ B ′ Out ′

0 0 0 1 1 0
0 1 1 1 0 1
1 0 1 0 1 1
1 1 0 0 0 0

Table 4.15: The truth table for a normal XOR gate and one where the inputs have
been fipped.

OR gate. However, there may be edge cases where the structure of the circuit makes

it impossible to avoid hidden keys. Thus, we can approximate the minimum number

of iterations required to complete an attack by assuming the two gates can be solved

independently for AND and OR converging gates. When the convergent gate is an

XOR gate, there will always be hidden keys, and the analysis from direct interference

can be used.

47

Chapter 5: Results

5.1 Single Key

To control the number of incorrect keys, total keys, and probability of fipping

the signal for a single key gate, a modifed SARLock block was used. This key block

can be seen in Figure 5.1. To change the total number of keys, the number of key

bits can be increased or decreased. In the SARLock block, a comparator is used to

compare the applied key to a single correct value. This can be changed to compare to

a set of values, allowing the number of incorrect keys to be controlled by increasing

or decreasing the size of the set. Lastly, the probability the signal is corrupted can

be varied by using the Hamming distance comparator from SFLL. A larger Hamming

distance will increase the number of keys that fip the signal for a given input, while

a smaller Hamming distance will decrease the number of keys.

To test the number of iterations needed for a single key gate, the circuit described

above was created using 8 key bits. First, the number of correct keys was varied

while keeping the Hamming distance to be a constant. Figure 5.2 shows the number

of SAT attack iterations needed for a Hamming distance of 0. When the Hamming

distance is 0, the signal is fipped when the applied key equals the input. Thus, this

is similar a SARLock block except that it contains more correct keys. The frst thing

48

IN Circuit
OUT

HD = h?
KEY

Key != k1, k2, ...?

Figure 5.1: A circuit that has a variable number of total keys, incorrect keys, and fip
probability.

that can be noticed is that the measured minimum number of iterations equals the

actual number of iterations taken for every circuit. This is because the keys K(I)

that can be eliminated by each input I are mutually exclusive from each other. So, no

iteration will eliminate a key that has already been eliminated. Thus, UIKi = IKi,

and the number of iterations λ will exactly equal the expression in equation 3.4.

49

Figure 5.2: The number of iterations when the percentage of correct keys is varied
showcases a linear relationship.

Figure 5.3 shows the same setup used on a circuit testing for a Hamming distance

of 1. For 8 key bits, a Hamming distance of 1 means that there are 8 keys that will

be fipped for every input. Thus, the chance of any key fipping for a given input

is 8/28 = 1/32. Dividing that by the total number of keys gives an expected slope

of 1/8 for the minimum number of iterations. Here, the number of actual iterations

used by the SAT attack is not equal to the minimum number because each input will

eliminate redundant keys that have already been eliminated. The actual iterations

also form a linear relationship, though with a diferent slope than the minimum.

50

Figure 5.3: The number of iterations when the percentage of correct keys is varied
showcases a linear relationship.

Next, the Hamming distance was varied while keeping the number of correct keys

to be 20. Each Hamming distance maps to a certain p(Change) value, and as such,

the data measured cannot be extracted to arbitrary p(Change) values. Additionally,

multiple Hamming distances map to the same p(Change) value. For example, a

Hamming distance of 1 and 7 both have 8 keys that can be eliminated each iteration.

Therefore, only Hamming distances of 1-4 were tested. Figure 5.4 shows the results

for this test. As expected, all circuits with a Hamming distance of 0 required the

exact minimum number of iterations to complete, while all other Hamming distances

took more iterations than the minimum.

51

Figure 5.4: The number of iterations when the Hamming distance is varied showcases
an inverse relationship.

5.2 No Interference

The minimum number of iterations for no interference was frst tested by placing

three key gates on random outputs of a circuit. Figure 5.5 shows the measured number

of iterations performed by an actual SAT attack compared to the minimum number

of iterations calculated. The dotted line has a slope of 1, where the measured number

equals the minimum number for any data point on that line. Every circuit took at

least the calculated minimum number of iterations to complete the SAT attack.

To see how the number of key gates afects the actual number of iterations, mul-

tiple Anti-SAT blocks were placed on the outputs of a circuit. The number of gates

placed varied from 2-4 gates, while each gate individually had a minimum number

of iterations of 16, 32, 64, 128, or 256. Figure 5.6 shows the results split by the

52

Figure 5.5: Circuits locked with 3 non-interfering gates showing the minimum number
of iterations for the SAT attack.

total circuit’s minimum number of iterations as well as the number of gates. In each

group, the average number of iterations taken by the SAT attack increased with the

number of locking gates added. Having more gates in the circuit increases the num-

ber of input patterns that eliminate redundant keys. When inputs eliminate mostly

redundant keys, the number of iterations increases.

5.3 Direct Interference

Direct interference was frst tested by verifying that DIP group 1 and 2 produce

a set of inputs that minimizes the number of iterations needed to complete the SAT

attack. A chain of 2-6 directly interfering Anti-SAT gates were placed on the output

of a random circuit. Each gate had 2-8 input bits in its Anti-SAT block. Because of

53

Figure 5.6: Circuits locked with 2-4 non-interfering Anti-SAT gates showing a depen-
dency on the number of interfering key gates.

the nature of Anti-SAT, an increase in the number of input bits doubles the number

of iterations needed to solve that key gate independently. Thus, every gate in the

circuit can be completely solved in the time it takes the largest gate to be solved, as

the extra space in DIP group 1 can be used to completely repeat inputs from DIP

group 2. This assumes that two gates do not both share the largest number of inputs,

and this constraint was enforced for this test.

The SAT attack on each circuit created was run twice. In the frst run of the SAT

attack, the SAT solver was free to choose input patterns to the circuit as normal. This

gave an accurate picture for how many iterations each circuit took to solve. In the

second run of the SAT attack, the inputs from DIP groups 1 and 2 were used, after

which the SAT solver chose the inputs itself. The result of this is to show how the

54

iterations for direct interference can be minimized. Table 5.1 compares the iterations

for each run of the SAT attack. For the majority of circuits, the SAT attack was

minimized to the number of iterations needed by the dominant gate because the other

gates were able to be completely solved simultaneously in DIP group 1. A few circuits

with greater than 3 key gates took additional iterations because the K(WWXXC+)

keys were not completely eliminated, as DIP group 2 only ensures K(WWC+) keys

are eliminated.

Number Gates Largest # Inputs Normal Iterations Chosen Iterations

4 5 134 64
5 5 86 45
2 8 378 256
4 7 198 128
5 8 329 265

Table 5.1: Choosen the inputs to be applied based on DIP groups 1 and 2 minimized
the number of iterations needed for the SAT attac.

Another way to visualize that DIP groups 1 and 2 minimize the number of itera-

tions in a SAT attack is shown in Figure 5.7. In this plot, chains of modifed SARLock

gates were added to an output of a circuit. Each gate in the chain had a randomized

number of iterations needing to solve that key independently by changing the number

of input bits and number of correct keys for that gate. The minimum line presented

is the sum of the number of iterations needed by DIP group 1 and DIP group 2. As

can be seen, the number of iterations needed to solve each circuit approaches the

minimum value. As in the last set of data, DIP group 3 is not represented here, so

55

the minimum presented is underestimating the true minimum number of iterations

for circuits with 4 or more key gates.

Figure 5.7: The number of iterations for directly interfering gates approaches the
calculated minimum number of iterations shown by the dotted line.

Lastly, the efect on the number of key gates in a chain was tested for direct

interference. On each circuit, 2-6 Anti-SAT gates with 6 inputs each was placed on

the primary output of a circuit. Again, the SAT attack was run using randomized

inputs and the chosen inputs from DIP groups 1 and 2. Figure 5.8 shows the results

grouped by the number of gates in each chain. The blue boxes show the natural run

of the SAT attack, while the orange boxes show when specifc inputs were applied

each iteration. For the group of 2 and 3 gates in the chain, every SAT attack with the

supplied DIPs from DIP groups 1 and 2 took the minimum number of iterations, as

shown by the single red line in those groups. This is because DIP group 2 eliminates

56

all possible keys when there are less than 4 key gates. Once there are 4 key gates, keys

of type K(WWXX) are present, and DIP group 2 does not eliminate those keys. In

the future, with DIP group 3 accounted for, the minimum number of iterations for

chains with 4 or more key gates would be greater than what is shown here, as this is

truncating the minimum after DIP group 2.

Figure 5.8: The number of iterations grows with the number of directly interfering
key gates. Choosing the most efcient inputs each iteration lowers the iterations
required.

5.4 Indirect Interference

Since the minimum number of iterations for indirectly interfering gates depends

on the type of the convergent gate, the three primary types of convergent gates were

tested (AND, OR, and XOR). For every circuit tested, a random number of outputs

57

to the circuit were converted to internal nets and applied to the input of a newly

created convergent gate. The output of the convergent gate was added to the outputs

of the circuit. Each original output, now the inputs to the convergent gate, had an

Anti-SAT key gate placed on it, creating a variable number of indirectly interfering

gates. Figure 5.9 shows an example of this being applied to a circuit that uses 2 key

gates.

CircuitI

O1

O2

Orest

CircuitI
Onew

Orest

Figure 5.9: A circuit showing how outputs are tied together to create indirectly
interfering gates. Here, outputs O1 and O2 are removed as outputs from the
circuit and replaced with a new output, Onew.

First, the minimum number of iterations for all three diferent types of converging

key gates was verifed. Table 5.2 shows the results of the SAT attack for 5 trials of

each type of gate. These circuits were locked with 2 Anti-SAT gates containing 5

input bits each. In each trial, two SAT attacks were ran against in the circuit. In

the frst run, the SAT attack was allowed to choose inputs naturally. In the second

run, the inputs were provided for the SAT attack to use. For AND/OR gates, only

DIP group 1 inputs were provided since those gates can behave like non-interfering

58

gates. Therefore, any inputs beyond the 32nd iteration were chosen naturally. For

XOR gates, both DIP groups 1 and 2 were both applied since XOR gates act like

directly interfering gates.

While the natural number of iterations varied, all three gates had some trials

take the minimum number of iterations expected. For AND/OR gates, reaching the

minimum number of iterations depends on the primary inputs chosen each iteration,

so there is variation in the number of iterations when the DIPs were chosen. In

contrast, XOR gates always behave like directly interfering gates, and so every trial

takes the minimum number.

AND Gate OR Gate XOR Gate

Trial Natural Chosen Natural Chosen Natural Chosen
1 71 53 69 32 63 48
2 68 32 70 55 63 48
3 67 32 72 35 62 48
4 69 32 67 32 62 48
5 71 51 68 74 61 48

Table 5.2: SAT attack iterations for 2 indirectly interfering gates. Three diferent
types of convergent gates were tested.

Next, the impact of the number of gates was analyzed by using a variable number

of 5 bit Anti-SAT gates. The results for this method can be seen in Figure 5.10.

The number of iterations taken by the SAT attack varied greatly between trials for

AND/OR gates, while the number of iterations was more constant for XOR gates.

This is due to the fact that the number of keys eliminated each iteration for AND/OR

gates is dependent on the value of the inputs to the convergent gate. In one SAT

59

attack, the inputs might be chosen to have relatively few iterations, while in another

SAT attack, the worst case inputs can be chosen. Meanwhile, there is no preferred

input values for XOR gates, meaning the value of the inputs do not afect the number

of iterations.

Figure 5.10: The circuits with XOR convergent gates have a more consistent number
of iterations required by the SAT attack. The values are similar to those required by
directly interfering gates.

5.5 Arbitrary Circuits

Lastly, all types of interference were combined to create arbitrarily locked circuits.

For each circuit, a random amount of gates were added and locked with randomized

locking techniques. In the frst iteration of locking, gates were placed at randomized

60

locations. Then, subsequent gates were placed in specifc locations to create create no

interference, direct interference, and indirect interference with the initial key gates.

Figure 5.11 contains the results for arbitrarily locked circuits. The circuits were

locked to target the minimum number of iterations to be less than 150 iterations. As

can be seen, the actual number of iterations approaches the minimum number but

never crosses it. No correlation can be made between the two. There are several

groups of circuits with similar minimum number of iterations, most notably around

128 and 64 iterations. This was because these circuits were locked with an Anti-SAT

gate that was the dominant factor is determining the minimum number of iterations.

Figure 5.11: The SAT attack was run against circuits locked with arbitrary key gates.

61

Chapter 6: Contributions and Future Work

In this thesis, the minimum number of iterations required to complete the SAT

attack was proposed as a metric for measuring circuit security. The contributions of

this work and suggestions for future research will be summarized to conclude.

6.1 Contributions

This work showed that the number of iterations for a SAT attack can be lower

bounded based on the structure of the circuit. The actual number of iterations,

which is determined by running a SAT attack on the circuit, can be greater than the

calculated minimum. For a single key gate, the iterations required to uncover the key

is linearly proportional to the percentage of incorrect keys and inversely proportional

to the probability a key corrupts the output. The number of iterations taken by an

actual SAT attack followed these relationships.

When multiple key gates are placed together, their arrangement determines how

many iterations are required to solve them. Gates that are not interfering can be

solved simultaneously, and the iterations required to solve is determined by the largest

key gate. When key gates are directly interfering, additional iterations are needed

because hidden keys are always produced. The number of extra iterations needed

depends on the number of gates in the chain and can be determined through the DIP

62

groups presented in this work. Key gates that are indirectly interfering can behave

anywhere between non-interfering gates and directly interfering gates depending on

the type of the convergent gate.

A designer can use these results to optimally place key gates to increase the mini-

mum number of iterations required by a SAT attack to break a circuit. These results

show that increasing the number of key bits for a single gate is more efective than

adding additional key gates as it exponentially increases the number of iterations re-

quired. When additional key gates are added, direct interference provides the greatest

minimum security, but it does not increases exponentially with the number of key bits.

6.2 Future Work

While this work establishes a minimum number of iterations in many cases, there

are additional edge cases that need to be analyzed. One such of these we call hybrid

interference, where two types of interference patterns collide. For example, two chains

of directly interfering gates can converge and only share some of their gates. This

example would be not only indirect interference or direct interference but a combina-

tion of the two. Additionally, a directly interfering chain of gates can split into two

and have, say, 5 gates in one chain and 6 gates in the other that both share the 3 ini-

tial gates. The minimum number of iterations for these confgurations is ambiguous

and needs to be determined in order to allow this metric to be valid for all possible

circuits.

Future work can also be conducted on DIP groups 3 and beyond for directly in-

terfering gates. The analysis in this work only eliminated keys up to K(WWC+),

and so the minimum number of iterations calculated serves as an underestimate

63

to the true minimum number of iterations for larger circuits. Under the assump-

tion that the amount of hidden keys not accounted for remains small, this estimate

closely approximates the minimum. However, incorporating more key types, such as

K(WWXXC+), will give a more accurate estimate.

Another aspect that is not accounted for in this thesis is the prevention of prop-

agation of corrupt signals in the circuit. This work only analyzes circuits where an

incorrect signal is always propagated to the next key gate or output. However, there

can be cases where the structure of the circuit blocks the propagation. For example,

a corrupt signal can be an input to an AND gate where the other input is a 0. Thus,

the output of the AND gate will always be a 0, and the corruption is not propagated.

This can allow for an even number of gates in a directly interfering chain to fip the

signal and still corrupt the output if some of the efects of the gates are stopped before

they reach the other key gates.

64

Bibliography

[1] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. Epic: Ending piracy
of integrated circuits. In 2008 Design, Automation and Test in Europe, pages
1069–1074, 2008.

[2] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S. Rose, Youngok Pino,
Ozgur Sinanoglu, and Ramesh Karri. Fault analysis-based logic encryption. IEEE
Transactions on Computers, 64(2):410–424, 2015.

[3] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu, and Ramesh Karri.
Security analysis of logic obfuscation. In DAC Design Automation Conference
2012, pages 83–89, 2012.

[4] Muhammad Yasin, Jeyavijayan JV Rajendran, Ozgur Sinanoglu, and Ramesh
Karri. On improving the security of logic locking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35(9):1411–1424,
2016.

[5] Pramod Subramanyan, Sayak Ray, and Sharad Malik. Evaluating the security of
logic encryption algorithms. In 2015 IEEE International Symposium on Hard-
ware Oriented Security and Trust (HOST), pages 137–143, 2015.

[6] Yang Xie and Ankur Srivastava. Anti-sat: Mitigating sat attack on logic lock-
ing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 38(2):199–207, 2019.

[7] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan J V Rajendran, and
Ozgur Sinanoglu. Sarlock: Sat attack resistant logic locking. In 2016 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST),
pages 236–241, 2016.

[8] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu, and Jeyavijayan
Rajendran. Security analysis of anti-sat. In 2017 22nd Asia and South Pacifc
Design Automation Conference (ASP-DAC), pages 342–347, 2017.

65

[9] Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion Schafer, Yiorgos
Makris, Ozgur Sinanoglu, and Jeyavijayan (JV) Rajendran. What to lock? func-
tional and parametric locking. Proceedings of the on Great Lakes Symposium on
VLSI 2017, May 2017.

[10] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed
Ashraf, Jeyavijayan (JV) Rajendran, and Ozgur Sinanoglu. Provably-secure
logic locking: From theory to practice. Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, Oct 2017.

66

