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Abstract 

Working in the context of operadic algebras in modules over the sphere spectrum, we study com-

k
Y 

pletions with respect to invariants centered away from the base point—that is, centered at a fxed 
operadic algebra Y . We show that for retractive objects admitting 0-connected structural maps 

generalizes completion results of Blomquist and Ching-Harper when Y 
k
Y 

Y → X, the Bousfeld-Kan completion map X → XΩ 
∧ is an equivalence for 1 ≤ k ≤ ∞. ThisΣ 

= ∗. The manner of our 
attack will require us to pick up and develop Hovey’s stabilization machinery and carefully study 
the homotopy theory and stabilization of categories of retractive objects. 
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Chapter 1 

Introduction 

To fx concepts, we will work with operads in spectra as developed by Harper [26], Harper-Hess [27] 

and Ching-Harper [15]. The word “space” will always mean simplicial set and we model spectra of 

spaces by symmetric spectra [37]. 

The main theorem of this paper is the following. 

Theorem 1.0.1. If O is a (−1)-connected operad in spectra, Y is a (−1)-connected O-algebra 

and X is a retractive O-algebra over Y which is 0-connected relative to Y , then the Bousfeld-Kan 

completion map 

k
Y 

X → X∧ 
Ω Σk

Y 

is an equivalence for 1 ≤ k ≤ ∞. 

The case of k < ∞ and k = ∞, which corresponds to stabilization in the sense of Goodwillie [24], 

must be treated separately. This theorem generalizes work of Ching-Harper in [14] and Blomquist 

in [7]. In [14], Ching and Harper study the special cases of our theorem for Y = ∗ and k = ∞, 
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whereas in [7], Blomquist studies the special case of Y = ∗ and 1 ≤ k < ∞. 

These theorems are not without antecedents. The general idea is as follows. In homotopy 

theory, many comparison maps come to us in the form of an adjunction. For instance, the Hurewicz 

map comparing homotopy groups with homology groups π∗(X) → H∗(X) of a pointed space X is 

implemented on the level of spaces by an adjunction 

Z
S∗ sAb 

The unit of this adjunction X → ZX implements, on the level of homotopy, the Hurewicz map 

π∗(X) → H∗(X). The appropriate thing to do with such comparison maps is to iterate them and 

thereby build a resolution of the original object X by a coaugmented cosimplicial object (with only 

coface maps shown) 

X (ZX Z2X Z3X · · · ) 

and glue the data of this resolution together with a homotopy limit. With this procedure, Bousfeld 

and Kan show in [12, III.5.4] that the Z-completion map 

X → X∧ 
Z 

is an equivalence for simply-connected spaces. 

The other classical comparison map of algebraic topology compares homotopy groups with 
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homotopy groups—this is the Freudenthal suspension homomorphism 

π∗(X) → π∗+1(ΣX). 

As is well-known, this map is implemented on the level of pointed spaces from the loops-suspension 

adjunction as the derived unit 

X → ΩΣX, 

where Ω indicates the derived loops functor. By iterating this map, we may form a resolution of X 

X (ΩΣX (ΩΣ)2X (ΩΣ)3X · · · ) 

which, upon taking homotopy limits, gives us the Bousfeld-Kan completion map 

X → X∧ 
ΩΣ. 

This map has been studied by Bousfeld in [11] as well as Hopkins in unpublished work, but see 

[11]. Bousfeld has shown that for fnite k, the ΩkΣk-completion map 

X → X∧ 
Ωk Σk 

is an equivalence for simply-connected spaces. 

There is still another classical comparison map in algebraic topology which compares the ho-

3 
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motopy groups of a space with its stable homotopy groups 

π∗(X) → πs(X),∗ 

and, as before, this map is implemented on the level of spaces by the derived unit of the stabilization 

adjunction 

X → Ω∞Σ∞X. 

In this case, Carlsson has shown in [13] that, in the case of spaces, the Bousfeld-Kan completion 

map 

X → X∧ 
Ω∞Σ∞ 

is an equivalence for simply-connected X. This was also studied by Arone-Kankaanrinta in [2]. 

For 1 ≤ k ≤ ∞, it is known by work of Ching-Harper [14] and Blomquist [7] that the completion 

map 

X → X∧ 
Ωk Σk 

is an equivalence for 0-connected O-algebras X with O (−1)-connected. This forms the starting 

point for the work of this paper. Our main theorem generalizes the work of Blomquist and Ching-

Harper. We now allow our category of O-algebras to be centered away from the basepoint and 

allow for non-trivial homotopy information in degree 0. It is worth pointing out here that our 

method in the case of stabilization k = ∞ is entirely diferent from that of Ching-Harper in [14] 

and conceptually much simpler. Using model categorical methods, the crux of our stabilization 

4 



approach is establishing an S∗-enriched stable fbrant replacement monad on the corresponding 

category of spectra of retractive O-algebras. 
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Chapter 2 

Model Structures and Stabilization 

In this chapter, we introduce the basic framework in which our work will take place and establish 

necessary technical results. As these may be of independent interest, we will elaborate upon them 

with more generality than is strictly necessary for our results. 

2.1 Categories of Retractive Objects 

While almost everything here goes through for categories consisting of factorizations of a general 

′ map f : c → c , we restrict our attention to the case of f = idc, which is our primary focus in this 

paper. 

Defnition 2.1.1. Given a category C and object c ∈ C, the category of retractive objects over 

c, denoted by Cc//c or simply C(idc), has as its objects all pairs of maps (s, c0, r) where 

s : c → c0, r : c0 → c, rs = idc, 

6 



and a morphism f : (s0, c0, r0) → (s1, c1, r1) of such objects is simply an element f ∈ homC(c0, c1) 

compatible with the structure maps. Respectively, this may be displayed diagrammatically as 

c c c 
s1s s0 

c0 c0 f c1 

r r0 r1 

c c c 

where each diagram is required to commute. 

Remark 2.1.2. The category C(idc) has a distinguished (but not necessarily unique) zero object and 

hence is pointed. Namely   

c  

idc 

∗ c = ,c 

c 

idc 

which, as indicated, we may choose to denote by ∗ c. 

The following simple observation, while not essential, simplifes arguments in what is to come by 

recognizing categories of retractive objects as a special instance of another operation on categories. 

Lemma 2.1.3. For any category C and object c ∈ C, the category of retractive objects over c, 

denoted by C(idc) is isomorphic to the iterated slice category (C/c)idc /. 

Proof. This amounts to unraveling the defnitions. An object of (C/c)idc / is a morphism 

g 
c c0 

idc f 

c c 

7 



which therefore forces fg = idc. This datum is precisely that specifed by an object in C(idc). 

Similarly, since idc is terminal in C/c, morphisms of such diagrams amount precisely to the data of 

a morphism in C(idc). Namely, a morphism f for which the following diagram commutes 

s1 

c c0 c1s0 f 

idc r0 r1 

c c c 

This is precisely the data determining the morphisms of C(idc). The procedure is identical in 

∼ 

the reverse direction, mutatis-mutandis, and each is functorial. These procedures are manifestly 

inverse. 

Specifying functors into this category is also particularly easy, in a sense. 

Lemma 2.1.4. There is an isomorphism of categories 

= Fun(D, C)(c)Fun(D, C(idc)) 

∼ 

natural in D. More generally, there are isomorphisms 

= Fun(D, C)c/, ∼= Fun(D, C)/c 

natural in D. 

Proof. The pattern of the argument is the same, mutatis-mutandis, in either the retractive or slice 

cases, so let us consider the retractive case. 

Fun(D, Cc/) Fun(D, C/c) 

8 
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Let U : C(idc) → C be the forgetful functor and let us denote the image of the object d under a 

functor F : D → C(idc) by 

Fd = (sd, UFd, rd). 

The association in one direction sends a functor F : D → C(idc) to the functor UF with the 

evident structure maps S : c → UF and R : UF → c given on an object d as Sd = sd and Rd = rd, 

using the notation established just above. To see this is well-defned, we must check S and R 

are natural. For this, we must only check for f : d → d ′ that Sd ′ = UFf ◦ Sd and similarly 

Rd = Rd ′ ◦ UFf . This follows from functorality of F since Sd = sd and Rd = rd for all objects 

d ∈ D. The association on morphisms is defned in the evident way. 

The reverse association takes a functor G with natural transformations s : c → G and r : G → c 

and assembles a functor G : D → C(idc) by mapping G(d) = (sd, Gd, rd) and is defned on morphisms 

by letting G(f) be the underlying morphism G(f). 

These two procedures are functorial and manifestly inverse and natural. 

Remark 2.1.5. The above may also be seen from the properties of the join and slice constructions. 

An important property of retractive categories is that many limits and colimits are computed as 

in C for bicomplete C. In fact, in a certain sense, all limits and colimits in C(idc) may be computed 

in C. 

To fx ideas, let us consider the category of pointed spaces S∗ =∼ S(id∗). This following a simple 

example that needs no explanation. 
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Example 2.1.6. The coproduct (wedge product) X Y in S∗ is computed as the pushout in S 

∗ X 

Y X ∗ Y 

The structure map ∗ → X ∗ Y is simply the composite map from the pushout square. 

Coequalizers may be computed in the same manner. 

Example 2.1.7. The coequalizer of two maps f , g : X → Y in S∗ may be computed in S as the 

colimit in C of the diagram 
∗ 

X Y 
f 

g 

where the maps ∗ → X and ∗ → Y are the basepoint maps. The diagram commutes since the maps 

f and g are pointed. The colimit of this diagram in S is simply the coequalizer of the two maps f 

and g—call the object Z and the coequalizing map h. 

∗ 

f 
hX Y Z 

g 

If we give Z the basepoint coming from coequalizing diagram above, then we claim that 

f 
hX Y Z 

g 

is coequalizing in S∗. This is, of course, a simple computation. 

These two examples suggest that the retractive categories of a bicomplete category C are them-
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selves bicomplete, as long as we guarantee that the structure maps “take care of themselves.” In 

fact, these examples suggest a little more—namely, that limits and colimits in C(idc) are closely 

related to limits and colimits in C. 

The remainder of this section is essentially an elementary categorical exercise, but we give 

details anyways. Let us begin by briefy collecting some relevant defnitions. 

Defnition 2.1.8. A functor U : E → C is said to create limits of shape D if for every diagram 

F : D → E for which UF has a limit in C, a cone η : e → F is a limiting cone in E if and only if 

Uη : Ue → UF is a limiting cone in D. In other words, U∗ : Fun(D, E) → Fun(D, C) preserves and 

refects limit cones. 

Defnition 2.1.9. For any category D, let D◁ = ∆[0] ∗ D and D▷ = D ∗ ∆[0], the join of categories. 

Here, D◁ is the category formed from D by freely adjoining an initial object and D▷ the category 

freely formed by adjoining a terminal object. We denote these new objects • and call them the 

cone points of the categories D◁ and D▷. 

Remark 2.1.10. The notation ◁ and ▷ is supposed to be evocative of the shape of the new category. 

Defnition 2.1.11. If C is a category having an initial object ∅ and terminal object ∗, then for any 

category D, we defne functors 

(−)◁ : Fun(D, C) → Fun(D◁ , C), (−)▷ : Fun(D, C) → Fun(D▷ , C) 

by declaring F ◁ : D◁ → C to be the functor with the property that F ▷| D = F and is defned on the 

cone point by F ◁(•) = ∅. The functor F ▷ is defned dually. 

11 



Lemma 2.1.12. If C is complete category, then for any small category D, following diagram 

commutes up to natural isomorphism 

Fun(D, C) lim C 

(−)▷ 

Fun(D▷, C) lim 
C 

Moreover, (−)▷ is an isomorphism of categories onto its image. The dual assertion holds for C 

cocomplete. 

Proof. This follows from the fact that the limit cone 

η : lim F → F 

may be uniquely extended to a cone 

η ′ : lim F → F ▷ 

which one may easily check is a limit cone. The frst assertion now follows by uniqueness of 

adjoints. The second assertions follows easily by noting that there a unique morphism between 

terminal objects. 

Lemma 2.1.13. Let C be a bicomplete category and c ∈ C any object. 

(a) C(idc) is bicomplete. 

(b) The forgetful functor U : C(idc) → C preserves all colimits (resp. limits) of shape D for which 

the inclusion D → D◁ (resp. D → D▷) is fnal (resp. cofnal). 

12 
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(c) The forgetful functor U : C(idc) → C creates colimits (resp. limits) for all functors whose 

domain category D has the property that the inclusion D → D◁ (resp. D → D▷) is fnal (resp. 

cofnal). 

Remark 2.1.14. For such a category C, essentially all that goes wrong with the computation of 

colimits in the underlying category of C is that we have not yet provided a natural map from c into 

the colimiting object. To get a feel for what this is saying, one may consider that this statement 

is true for coproducts in pointed spaces S∗ 
∼= S∗ . This is a good example to keep in mind to avoid 

getting bogged down in notation while reading the following proof. 

Proof. The two cases are dual, so we consider colimits. 

(a) Given F : D → C(idc), let F ◁ : D◁ → C(idc) be the (unique) cone corresponding to the 

(unique) natural transformation ∗ c → F and denote the cone point of D◁ by •. 

Let c0 be any colimit of UF ◁ in C with cone η : UF ◁ → c0. Let s = η• : c → c0 and let r : c0 → c 

be the map induced from the cone UF ◁ → c of Lemma 2.1.4. Then rs = idc since for any d ∈ D◁, 

the map s factors as s = ηd ◦ sd where sd : c → UF ◁d is the structure map and r : c0 → c is induced 

by the maps rd : UF ◁d → c of the cone UF ◁ → c where rdsd = idc for all d. 

We claim that (s, c0, r) along with the maps ηd : UFd → c0 exhibiting c0 as the colimit of UF ◁ 

exhibits (s, c0, r) as the colimit of F in C(idc). From the analysis in the preceding paragraph, we 

at least know that morphisms comprising η assemble into a cone η : F → (s, c0, r). Note that by 

the construction above, the evident extension η ′ : F ◁ → (s, c0, r) satisfes that 

Uη ′ = η. 

13 
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′ ′We must now show η ′ is the initial such cone. Given any other cone τ : F → (s , c , r ′), let τ ′ : F ◁ → 

′ ′(s , c , r ′) be the evident extension as before. Since c0 =∼ colim UF ◁, there is a unique morphism 

′ ′ f : c0 → c for which f ◦ Uη ′ = Uτ . It sufces to show that f respects the structure maps. Since 

′the natural transformation UF ◁ → c factors through the map r ′ : c → c on account of naturality 

′of τ and since c0 → c satisfes the same, induced by the colimit property of c0, it follows that 

′ ′ ′ r ′ ◦ f = r by universal properties of the colimit. That s = f ◦ s follows from the fact that s = Uτ• 

and s = Uη•
′ . 

(b) This statement, for when D → D◁ is fnal, follows immediately from the above analysis and 

formula for colimits. 

(c) Fix a functor F : D → C(idc) and let η : F → (s, c0, r) be a cone. Then η admits a (unique) 

extension to a cone η ′ : F ◁ → (s, c0, r) where F ◁ is as above. 

Suppose frst Uη : UF → c0 = U(s, c0, r) is a colimit cone in C. We must show that η is a 

colimit cone in C(idc). By fnality, U(η ′) is a colimit cone if and only if Uη = U(η ′)| D is a colimit 

cone, so we may just as well suppose that U(η ′) : UF ◁ → c0 is a colimit cone and show that η ′ is a 

colimit cone. 

Note that Uη•′ = s. This is because ∗ c is the terminal object of C(idc). By fnality, c0 =∼ 

colim UF . Hence, to provide a map c0 → c is the same as specifying a natural transformation 

UF → c. Since r : c0 → c commutes with the structure maps maps Uηd : UFd → c0, this map is 

determined by the natural transformation UF → c of Lemma 2.1.4. Note that rs = idc. This is 

because for any d ∈ D◁, 

′ ′To see that η ′ must be a colimit cone in C(idc), consider any other cone τ : F ◁ → (s , c , r ′). As 

14 



′ a colimit in C, there is a unique map f : c → c for which f ◦ Uη ′ = Uτ . We must show it respects 

′the structure maps. For this, note that, as before, τ• = s and hence, f ◦ Uη ′ = Uτ• or, in other • 

′ ′words, f ◦ s = s . By assumption, r ◦ τ is the natural transformation UF ◁ → c of Lemma 2.1.4. 

′ ′Hence, since Uη ′ : UF ◁ → c0 is the initial cone out of UF ◁, the map f : c0 → c satisfes r ◦ f = r. 

Conversely, suppose η : F → (s, c0, r) is a colimit cone in C(idc). It follows from (a) that 

Uη : UF → Uc0 is a colimit cone. 

Inspecting the proof of (a) carefully reveals the following. 

Lemma 2.1.15. Suppose C is bicomplete. 

(a) Cc/ and C/c are bicomplete. 

(b) The colimit of a diagram F : D → Cc/ is computed in C as the colimit of the augmented 

diagram F ◁ : D◁ → C. The limit of a diagram F : D → C/c is computed in C as the limit of 

the augmented diagram F ▷ : D▷ → C. 

(c) The forgetful functor U : Cc/ → C preserves and creates small colimits for all functors whose 

domain category D has the property that the inclusion D → D◁ is fnal. The forgetful functor 

U : C/c → C preserves and creates small limits for all functors whose domain category D has 

the property that the inclusion D → D▷ is cofnal. 

The following observation will allow us to characterize limits and colimits in categories of re-

tractive objects. 

Lemma 2.1.16. If D has an initial (resp. terminal) object, the inclusion D → D◁ (resp. D → D▷) 

is fnal (resp. cofnal). 
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Proof. Let ∅ denote an initial object of D. For any d ∈ D, the comma category (d ↓ D) is connected 

because it has an initial object idd : d → d. If • denotes the cone point of D◁, then the unique map 

• → ∅ is an initial object in this category. 

Corollary 2.1.17. If C is complete, then the limit of a diagram F : D → C(idc) may be computed, 

up to isomorphism, as the limit of the unique extension F ▷ : D▷ → C and this limit is created in C. 

The following are special cases of Lemma 2.1.16 that we will use. 

Corollary 2.1.18. Limits and colimits of punctured cubes in C(idc) are computed as in C. For 

any infnite regular cardinal κ, κ-cofltered limits and κ-fltered colimits in C(idc) are computed as 

in C. 

2.2 Model Structures on Retractive Objects 

As alluded to above, the beneft of our description of C(idc) as an iterated slice category is that it 

allows us to equip C(idc) with a model structure whenever C has a model structure. 

Defnition 2.2.1. An object c of a cocomplete category C is said to be κ-compact, where κ is an 

infnite regular cardinal, if for any κ-fltered diagram, F : J → C, 

colim homC(c, F ) → homC(c, colim F ) 

is an isomorphism. When κ = ω, the frst infnite cardinal, we say such an object is compact. 

16 



When C is enriched over S or S∗, if the natural map 

colim Hom(c, F ) → Hom(c, colim F ) 

is an isomorphism, then we say c is simplicially compact—note that in all cases we will consider, 

it is irrelevant whether we use the pointed mapping space or the unpointed mapping space. We 

also say an object c is sequentially compact if for every sequence c0 → c1 → · · · , the natural 

map 

colimi homC(C, ci) → homC(c, colimi ci) 

is an isomorphism. 

Defnition 2.2.2. Following Hovey in [35], we call a cofbrantly generated model structure on a 

category C fnitely generated if the domains and codomains of the generating cofbration and 

generating acyclic cofbrations are sequentially compact. 

Defnition 2.2.3. A category C is said to be locally presentable if it is cocomplete and there 

is an infnite regular cardinal κ and a set of κ-compact objects S such that every object of the 

category is a κ-fltered colimit of objects in S. In this case, C is also said to be locally κ-

presentable. When κ = ω, the frst infnite cardinal, C is said to be locally fnitely presentable. 

A cofbrantly generated model category that is locally presentable is said to be a combinatorial 

model category. 

Remark 2.2.4. The property of being locally presentable may be thought of as a point-set tameness 

condition, whereas being cofbrantly generated is a homotopical tameness condition. Combinatorial 
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model categories are therefore particularly well-behaved and, in practice, most well-behaved model 

categories (such as simplicial sets) are combinatorial. 

The following is [1, Prop. 1.57]. 

Proposition 2.2.5. If C is a locally κ-presentable category, then for every c ∈ C, C/c and Cc/ are 

both once again locally κ-presentable. 

This fact, along with the main theorems of [32] have the following interesting implication. 

Proposition 2.2.6. Suppose C is a locally κ-presentable, fnitely generated model category with set 

of generating cofbrations I and acyclic cofbrations J . 

(a) Then C(idc) is again a locally κ-presentable, fnitely generated model category in which the 

classes of weak equivalences, cofbrations and fbrations in C(idc) are underlying in C. In 

particular, the set of generating cofbrations Ic for C(idc) consists of all maps 

c c 

c0 c c1 c 

c c 

in in 
i idc 

r0+idc r1+idc 

for which i ∈ I and the set of generating acyclic cofbrations Jc consists of all maps 

c c 

in in 
j idc 

c0 c c1 c 

r0+idc r1+idc 

c c 
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for which j ∈ J . 

(b) More generally, if c is any compact object of C, then any object of the form 

c c 

in in 
i idc 

c0 c c1 c 

r0+idc r1+idc 

c c 

is compact in C(idc). 

(c) If the domains of the generating cofbrations or generating acyclic cofbrations are cofbrant, 

then the same is true in C(idc). 

(d) If C is left (resp. right) proper, then so too is C(idc). 

Proof. (a) The description of the generating cofbrations and acyclic cofbrations follow directly from 

the iterated slice description of C(idc) of Lemma 2.1.3 and an application of the descriptions of the 

generating cofbrations and acyclic cofbrations for slice categories provided in [32]. Similarly, the 

fact that C(idc) is once again locally κ-presentable follows directly from directly from the iterated 

slice description of C(idc) of Lemma 2.1.3 and Proposition 2.2.5. 

The only thing that remains to be shown is that C(idc) is almost fnitely generated. To take 

care of this, we will show that a larger class of objects in C(idc) are sequentially compact. Suppose 
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c0 is a compact object in C and let r : c0 → c. It sufces for us to show that 

c 

in 

r+idc 

c0 c 

c 

is compact in C(idc). This object is obtained from r : c0 → c by applying the free functor F : C/c → 

∼(C/c)idc / = C(idc) taking an object such as r : c0 → c to 

c 

in 

c0 c 

r+idc 

c 

and this functor is left adjoint to the forgetful functor U : C(idc) =∼ (C/c)idc / → C/c. Hence, for any 

sequence 

′ ′ ′ c0 → c1 → c2 → · · · 

in C(idc), on account of how colimits of such sequences are computed by Corollary 2.1.18, we have 

⎝ ) ′ ′homC(idc)(c0 c, colimC(idc c ) =∼ homC/c 
(c0, colimC/c c ),i i 

where we have decorated where these colimits are computed (at least on underlying objects, this 

does not make a diference). 
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′But the mapping set homC/c 
(c0, colim c ) is the pullback i 

′ ′homC/c 
(c0, colim c ) homC(c0, colimC c )i i 

{r : c0→c}∗ homC(c0, c) 

and, by assumption, c0 is compact in C. Hence, this diagram is a pullback 

′ ′homC/c 
(c0, colim c ) colim homC(c0, c )i i 

{r : c0→c}∗ homC(c0, c) 

and since fltered colimits and fnite limits commute in the category of sets, this shows that the 

′ ′natural map homC/c 
(c0, colim c ) → colim homC/c 

(c0, c ) is an isomorphism. Hence, the naturali i 

′ ′ map colim homC(idc)(c0 c, c ) → homC(idc)(c0 c, colim c ) is an isomorphism, as desired.i i 

(b) This follows in precisely the same way as the proof just given above, mutatis-mutandis—simply 

replace the graphical depiction of the sequential colimit by a fltered diagram. 

(c) The underlying object of the domains of the generating cofbrations and generating acyclic 

cofbrations are given by the following pushout in C 

∅ c 

c0 c0 c 

in 

where c0 ∈ dom(I)∪dom(J). Thus, since c0 is cofbrant, the left-hand vertical arrow is a cofbration 

and therefore the left-most arrow is a cofbration. It follows immediately that the domains of the 

generating cofbrations and generating acyclic cofbrations are cofbrant in C(idc). 
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(d) The forgetful functor creates pushouts and pullbacks by Corollary 2.1.18. Moreover, the 

forgetful functor preserves and refects all classes of distinguished morphisms. Suppose C is right 

proper. Hence, given a pullback in C(idc), displaying underlying objects only, 

f 
c c0 

p 

∼ c1 c2f 

the forgetful functor sends it to a pullback in C, where since C is right proper, f is a weak equivalence. 

The assertion is dual for left properness. 

In homotopy theory, it is often preferable for our model categories to be suitably enriched over 

a monoidal model category—in particular, we might ask how a simplicial model structure on C 

passes to one on C(idc) and, in particular, a pointed simplicial model structure on C(idc). Such 

questions have been addressed in Schwede’s thesis work [48] and later in [34]. 

The following defnition is adapted from Hovey in [34], but see also [22] for an equivalent 

defnition. We will only ever consider closed modules, so we have dropped the word ‘closed’ from 

the defnition. Similarly, we shall only every be interested in the case when the symmetric monoidal 

model category in question is spaces S or pointed spaces S∗. Before giving the defnition, let us 

make a remark. 

Remark 2.2.7. There are at least two equivalent ways to defne a (pointed) simplicial model category 

having a notion of a tensoring. As noted, we will state the one given by Hovey in [34]. As for the 

other possible defnition such as that found in the appendices of [41] or in [47], which is predicated 

upon a enrichment with a tensoring instead of a module structure in the defnition below, the 
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equivalence between these defnitions will follow by the equivalence specifed in [25, 38]. We will 

say more about this equivalence in a remark following the defnition. 

Defnition 2.2.8. Given a closed monoidal category (C, ∗, α, ρ, λ, e), a (closed) C-module is a 

category D along with a cotensor (hom : C × D → D), tensoring (⊗ : D × C → D) and hom-object 

Hom : Dop × D → C having natural (unenriched) isomorphisms φ and ψ 

ψ φhomD(X, homD(K, Y )) homD(X ⊗ K, Y ) homC(K, HomD(X, Y ))∼ ∼= = 

along with natural isomorphisms 

a : (X ⊗ K) ⊗ L → X ⊗ (K ∗ L) 

and 

r : X ⊗ e → X 
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such that the following three diagrams commute 

a a((X ⊗ K) ⊗ L) ⊗ M (X ⊗ K) ⊗ (L ∗ M) X ⊗ (K ∗ (L ∗ M)) 
1⊗αa⊗id 

(X ⊗ (K ∗ L)) ⊗ M X ⊗ ((K ∗ L) ∗ M)a 

a(X ⊗ e) ⊗ K X ⊗ (e ∗ K) 

X ∗ K 
r⊗id id ⊗λ 

a(X ⊗ K) ⊗ e X ⊗ (K ∗ e) 

X ∗ K 
r id ⊗ρ 

A functor of C-modules F : D → D′ is a functor F of the underlying categories along with a natural 

assembly map 

assembF : F (X) ⊗ K → F (X ⊗ K),X,K 

′which is associative and unital. A natural transformation of C-module functors η : F → F is a 

natural transformation of the underlying functors which, additionally, respects the assembly maps. 

If, furthermore, C is a closed monoidal model category and D a model category, then if f : A → B 

is a cofbration in D and g : K → L is a cofbration in C, we say that D is a C-model category if 

the induced pushout product map 

⎝ 
(A ⊗ L) (B ⊗ K) → B ⊗ K 

A⊗K 

is a cofbration in D which is acyclic if either of f and g are acyclic cofbrations. 
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A few remarks are in order. The frst two are easy technical points on the defnition above. 

∼=′Remark 2.2.9. When C is a symmetric monoidal category, it is known that the braiding τ : C ∗C −→ 

C ′ ∗C satisfes that ρ = λ◦τ . This implies that the frst unit compatibility diagram (second diagram 

above) is subsumed by the second unit compatibility diagram (third diagram above) and conversely, 

as noted in [38]. 

Remark 2.2.10. If ∗D is the terminal object of D, then homD(K, ∗D) ∼= ∗D naturally in K by 

Yoneda, since there is a natural isomorphism 

hom(X, hom(K, ∗D)) ∼= hom(X ⊗ K, ∗D) = ∗ = hom(X, ∗D), 

and since, therefore, all objects hom(K, ∗D) is terminal in D for each K, there is a unique such 

natural isomorphism and naturality in K is immediate. 

Similarly, for any object Y , hom(e, Y ) ∼= Y naturally. This likewise follows by Yoneda since 

there is an isomorphism 

ψ−1 

hom(X, hom(e, Y )) −−→ hom(X ⊗ e, Y ) −(−−− 
r,idY→) hom(X, Y ) 

natural in X. As it happens, this map is simply the one adjoint to the natural unit isomorphism 

Y ⊗ e =∼ Y . We defer a discussion of this to later, where we actually need it. 

The last remark clarifes the precise nature of the equivalence mentioned above and our use of 

it. 

Remark 2.2.11. Up to a suitable notion of equivalence as in [25, 38] and, the above defnition may 
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instead be taken to be a cotensored and tensored C-enriched category satisfying the pushout-product 

axiom above. Indeed, the natural adjunction isomorphisms φ and ψ of this defnition may be made 

to be natural for the enriched hom-functors. See the discussion in [38, §2] and [25]. Indeed, the 

main theorem of [25] may be understood as saying that, for a closed symmetric monoidal category 

C—understood as a bicategory by way of its delooping—there is an equivalence of 2-categories via 

a 2-functor 

K : C-Cat⊗ → ModC 

between tensored C-enriched categories and C-modules where, in particular, the functor K amounts 

only to making certain canonical choices for unit, assembly and associativity natural transforma-

tions. Efectively, this means that with some additional canonical choices, C-enriched categories, 

functors and natural transformations all already satisfy the module conditions. See [25, §3] or the 

appendix of [38] for details. More recent treatments may be found in [17, 45, 40], where it should 

be noted that [17] corrects an error in [45] which found its way into [40]. It should also be noted 

that there is an explicit construction of an inverse equivalence that is spelled out, for instance, in 

[25, 17, 45], among other places and, under this inverse equivalence, the resulting endofunctor on 

ModC is the identity—the reverse construction is quite simple and is exactly the frst thing the 

reader will think of, essentially amounting to a forgetful functor, so we leave these details to the 

interested reader to discover or read about themselves, from the references already mentioned. 

The upshot of this is the following observations. All facts about enriched functors of tensored 

C-enriched categories and enriched natural transformations between them hold for functors and 

natural transformations of C-modules (because the functors K amounts only to certain canonical 
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choices). There are certain canonical choices such that C-modules are tensored C-categories and 

for these choices module functors and natural transformations are enriched and preserved by the 

2-functor K : C-Cat⊗ → ModC. 

Because this is a result that is not often spelled out in its entirety, the module characterization 

of functors and natural transformations will be more natural in our work in certain places and C-

modules and their functors and natural transformations being somewhat more frequently occurring 

in nature, we will prefer the defnition given above. To briefy elaborate, there may not be an obvious 

choice for composition if one wants to construct a simplicial model category from an ordinary model 

category—morally, this is because there is a rigidifcation problem that requires one to specify all 

coherences in a way compatible with the given model structure. If one, instead, looks for a module 

structure—so a tensoring of the sort above—then there is an essentially unique (because of the 

equivalence above) tensored simplicial model structure occurring on the given model category. We 

will defer some longer discussions about the content of this remark and what happens when there 

is, additionally, a cotensoring—as in the defnition above—to Remarks 3.3.11 and 3.3.4. 

In light of these remarks, we make the following (somewhat abusive) defnition. 

Defnition 2.2.12. Fix a closed monoidal category (C, ∗, α, ρ, λ, e). We will call a functor of C-

modules as given in Defnition 2.2.8 a C-enriched functor . We will call a natural transformation 

between functors of C-modules as given in Defnition 2.2.8 a C-enriched natural transformation. 

As mentioned before, there are two important cases of the above defnition that deserve special 

attention. 

Defnition 2.2.13. If C = S with its Cartesian monoidal model structure, then a S-model category 
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is also called a simplicial model category. If C = S∗ with its monoidal structure inherited from 

the smash product, then a S∗-model category is also called a pointed simplicial model category. 

We collect two simple observations. 

Lemma 2.2.14. Every pointed simplicial model category is naturally a simplicial model category 

by way of the disjoint basepoint functor (−)+ : S → S∗. 

Proof. This is because (−)+ is a strong symmetric monoidal Quillen functor. 

Lemma 2.2.15. Every pointed simplicial model category C is pointed as a category (i.e., has a 

zero object). 

Proof. There is an isomorphism hom(X ∧ ∗, Y ) ∼= homS∗ (∗, Hom(X, Y )) =∼ ∗ natural in Y ; hence, 

by Yoneda, X ∧ ∗ ∼= ∅, the initial object of C. On the other hand, the unique map S0 → ∗ induces 

for every X ∈ C a map 

X ∼= X ∧ S0 → X ∧ ∗. 

Hence, when X = ∗C, the terminal object of C, this is a map 

∗C → ∅. 

The only way such a map can exist is if it is an isomorphism. 

The following idea is relatively straightforward, if one keeps in mind the special case of spaces 

S. We are going to generalize the process of passing a simplicial model structure on S to one on 

S∗. In particular, we should also like to generalize how the pointed simplicial model structure on 
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S∗ may be obtained from its simplicial model structure. Accordingly, the key observation is that 

the smash product 

X × K 
X ∧ K = 

{(∗, k) ∼ (x, ∗)} 

of pointed spaces, along with its distinguished basepoint, is obtained from the product X × Y as 

the following pushout in S 
(idX ,∗)+(∗,idK )

X K X × K 

∗ X ∧ K 

This sort of procedure has been observed by Hovey. 

Proposition 2.2.16 ([34, Prop. 4.2.9]). If (C, ⊗, e) is a symmetric monoidal model category whose 

terminal object ∗ is cofbrant, then (C∗, ∧, (∗)+) is a symmetric monoidal model category, where 

C∗ = C∗/ with the following constructions. 

(a) For objects X, Y ∈ C∗, X ∧ Y is defned by the following pushout in C 

idX ⊗(∗→Y )
X Y X ⊗ Y 

∗ X ∧ Y 

+(∗→X)⊗idY 

(b) HomC∗ (X, Y ) is defned as the pullback in C given by 

HomC∗ (X, Y ) HomC(X, Y ) 

(∗→X,idY ) 

(id∗,∗→Y )∗ ∼= HomC(∗, ∗) HomC(∗, Y ) 
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with the structure map ∗ → HomC∗ (X, Y ) obtained from universal properties by way of 

the map ∗ → HomC(X, Y ) adjoint to X ⊗ ∗ → ∗ → Y or, equivalently, the map ∗ ∼= 

Hom(X, ∗) → Hom(X, Y ) induced by ∗ → Y . 

(c) homC∗ (X, Y ) is defned as the pullback in C given by 

homC∗ (X, Y ) homC(X, Y ) 

(∗→X,idY ) 

(id∗,∗→Y )∗ ∼= homC(∗, ∗) homC(∗, Y ) 

with the structure map ∗ → homC∗ (X, Y ) obtained from universal properties. 

Remark 2.2.17. For instance, the category of spaces satisfes the hypotheses of this proposition. This 

produces the usual symmetric monoidal model structure on S∗ with tensor the smash product. 

The same recipe, guided by the case of spaces, provides a manner of inducing a pointed simplicial 

model structure on C∗. 

Proposition 2.2.18 ([34, Prop. 4.2.19]). If C is a simplicial model category, then C∗ is naturally 

a pointed simplicial model category with the following constructions. 

(a) For objects X ∈ C∗ and K ∈ S∗, X ∧ K is defned by the following pushout in C 

(idX ⊗(∗→K))
X ⊗ ∗ ∗ ⊗ K X ⊗ K

+((∗→X)⊗idK ) 

∗ X ∧ K 
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(b) HomC∗ (X, Y ) is defned as the pullback in S given by 

HomC∗ (X, Y ) HomC(X, Y ) 

∗ HomC(∗, Y ) 

(∗→X,idY ) 

{∗→Y } 

with the structure map ∗ → HomC∗ (X, Y ) picking out the evident map X → ∗ → Y . 

(c) homC∗ (K, X) is defned as the pullback in C given by 

homC∗ (K, X) homC(K, X) 

(∗→K,idX ) 

(id∗,∗→X)∗ ∼= homC(∗, ∗) homC(∗, X) 

with the structure map ∗ → homC∗ (K, X) obtained from universal properties. 

Remark 2.2.19. Any simplicial model category C which is pointed as a category is naturally a 

pointed simplicial model category by way of this construction since for such a category, C ∼= C∗. 

Conversely, a pointed simplicial model category C acquires the structure of a simplicial model 

category under the strong symmetric monoidal Quillen functor (−)+ : S → S∗. 

Thus, in light of Proposition 2.2.18, to provide C(idc) =∼ (C/c)idc / with a pointed simplicial 

model structure, we only need to show that C/c admits a simplicial model structure. 

Lemma 2.2.20. If C is a simplicial model category, then for any object c ∈ C, so too is C/c with 

the following constructions. 

(a) Given objects X ∈ C/c and K ∈ S, X ⊗ K ∈ C/c has underlying object in C X ⊗C K with 
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structure map the evident composite 

X ⊗ K → X ⊗ ∗ ∼= X → c, 

where the isomorphism X ⊗∗ → X is the natural one and the map X → c the structure map. 

(b) HomC/c 
(X, Y ) is defned as the pullback in S given by 

HomC/c 
(X, Y ) HomC(X, Y ) 

(idX ,Y →c) 

∗ HomC(X, c){X→c} 

(c) homC/c 
(K, X) is defned as the pullback in C given by 

homC/c 
(K, X) homC(K, X) 

(idK ,X→c) 

c =∼ homC(∗, c) homC(K, c)(K→∗,idc) 

with the structure map to c as displayed. 

Proof. First note that we may defne the associativity and unit isomorphism for C/c to be on the 

underlying objects the same as the one in C. To defne a natural isomorphism hom/c(X ⊗ K, Y ) → 
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hom/c(X, hom/c(K, Y )), observe that hom/c is naturally the pullback 

hom/c(X, Y ) homC(X, Y ) 

Y →c 

∗ homC(X, c){X→c} 

and, similarly, hom/c is naturally the pullback 

homC/c 
(K, X) homC(K, X) 

(idK ,X→c) 

c =∼ homC(∗, c) homC(K, c)(K→∗,idc) 

This means that the pullback diagram for hom/c(X, hom/c(K, Y )) 

hom/c(X, hom/c(K, Y )) hom(X, hom/c(K, Y )) 

∗ hom(X, c) 

expands by continuity of the hom-functor to a pasting of pullback diagrams, using the natural 

isomorphism hom(X ⊗ K, Y ) ∼= hom(X, hom(K, Y )), as 

hom/c(X, hom/c(K, Y )) hom(X, hom/c(K, Y )) hom(X ⊗ K, Y ) 

∗ hom(X, c) hom(X ⊗ K, c) 

where the composite map ∗ → hom(X ⊗ K, c) picks out the structure map X ⊗ K → c. Hence, 

since all constructions in sight are natural, we obtain a natural isomorphism hom/c(X ⊗ K, Y ) ∼= 
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hom/c(X, hom/c(K, Y )), as desired. The argument is identical, mutatis-mutandis, for the natural 

isomorphism hom/c(X ⊗ K, Y ) =∼ hom/c(K, Hom/c(X, Y )). 

The unit isomorphism r : X ⊗ ∗ → X and the associativity isomorphism a : (X ⊗ K) ⊗ L → 

X ⊗ (K × L) are inherited from the ones in C. It follows easily that these provide C∗ with the 

structure of an S∗-module. 

All that remains to be checked is that the enrichment is suitably compatible with the model 

structure on C. Recall that pushouts in C/c are computed as in C. Since cofbrations and weak 

equivalences in the slice model structure are underlying, this follows from C being a simplicial model 

category and the fact that the tensoring X ⊗ K in C/c is the same as the one in C. 

The important, immediate consequence of the preceding discussion is the following. 

Proposition 2.2.21. If C is a simplicial model category, then for any object c ∈ C, C(idc) is a 

simplicial model category and, in fact, a pointed simplicial model category. 

Proof. By Lemma 2.2.20, C/c is a simplicial model category. In this category, there is a distinguished 

∼terminal object idc : c → c. Hence, by Proposition 2.2.18, (C/c)idc / = C(idc) is a pointed simplicial 

model category. Since C(idc) is pointed, it inherits a simplicial model structure under the strong 

symmetric monoidal Quillen functor (−)+ : S → S∗. 

Remark 2.2.22. In particular, this means that there are simplicial models for the loops and suspen-

sion functors, which we denote by Ωc = homC(idc)(S1, −) and Σc = − ∧ S1, respectively. 

It is prudent to compare the models given by this construction for loops and suspension to 

the ones provided by Schwede in [48]. For a simplicial model category C, Schwede gives C(idc) a 
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simplicial model structure with its simplicial tensoring X ⊗c K defned as the pushout 

c ⊗ K X ⊗ K 

c ⊗ ∗ 
∼= 

c X ⊗c K 

with the evident structure maps and, similarly, defnes the simplicial mapping object homS
C(idc)(K, X) 

as the pullback 

homS
C(idc)(K, X) homC(K, X) 

c homC(∗, c) homC(K, c)∼= 

with the evident structure maps. 

Lemma 2.2.23. For a simplicial model category C, X ⊗c K is naturally isomorphic to X ∧ K+ 

and homS
C(idc)(K, X) is naturally isomorphic to homC(idc)(K+, X) in C(idc) 

Proof. Since pushouts in C(idc) are computed as in C on underlying objects, X ∧ K+ is the pushout 

(X ⊗ ∗) (c ⊗ ∗ c ⊗ K) X ⊗ K 

c 

where the unlabeled maps are the evident ones. We have used the natural isomorphism c ⊗ K+ =∼ 

c ⊗ ∗ c ⊗ K. We then have a map of diagrams 

c (X ⊗ ∗) (c ⊗ ∗ c ⊗ K) X ⊗ ∗ X ⊗ K 

idX ⊗(∗→K)+idX⊗K 

c c ⊗ K X ⊗ K 
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where the middle arrow is the map given on components by 

(X → c) ⊗ (∗ → K) : X ⊗ ∗ → c ⊗ K and idc ⊗(∗ → K) + idc⊗K . 

This map is furthermore natural in X ∈ C(idc) and K ∈ S and therefore induces a natural map 

on pushouts. A simple check of universal properties verifes that this map X ∧ K+ → X ⊗c K is 

an isomorphism in C and commutativity of the map of diagrams enforces that the isomorphism 

commutes with the structure maps coming from c. That it also commutes with the structure maps 

to c follows in each case since the maps are induced by idc : c → c and 

X ⊗ K → c ⊗ ∗ ∼= c, 

for X ⊗c K and X ⊗∗ X ⊗ K → c given on components by (displayed graphically for conciseness) 

(X ⊗ ∗ → c ⊗ ∗ ∼= c) + (X ⊗ K → c ⊗ ∗ ∼= c). 

These maps make the following cube commute 

X ⊗ ∗ (c ⊗ ∗ c ⊗ K) c ⊗ K 

X ⊗ ∗ X ⊗ K X ⊗ K 

c c 

c c 
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and thus the induced map commutes with the structure maps. This means that, as objects in 

C(idc), there is a natural isomorphism X ∧ K+ =∼ X ⊗c K. The argument for the mapping object 

is argued similarly. 

Remark 2.2.24. Schwede further defnes a loops functor on C(idc) by the pullback of 

homS
C(idc)(∆[1], X) 

c homS
C(idc)(∂∆[1], X) 

and a suspension functor on C(idc) by the pushout of 

X ⊗c ∂∆[1] X ⊗c ∆[1] 

c 

An immediate corollary of the preceding lemma is that these constructions are themselves naturally 

isomorphic to the simplicial models provided by the pointed simplicial model structure on C(idc). 

Indeed, X ⊗c K ∼= X ∧ K+ naturally and ∗C 
∼= X ∧ (∅)+. Hence, the suspension functor is the 

pushout of 
X ∧ ∂∆[1]+ X ∧ ∆[1]+ 

X ∧ (∅)+ 

and since X ∧− is a left adjoint, it follows that Schwede’s suspension functor is naturally isomorphic 

to X ∧ (∆[1]+/∂∆[1]+) ∼= X ∧ S1, as desired. The same analysis, mutatis-mutandis shows that the 

loops functor is defned appropriately—alternatively, this follows by uniqueness of adjoints. 
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2.3 Semi-model Categories and Left Bousfeld Localization 

A key part of our arguments will involve constructing the stabilization of retractive objects via 

Hovey’s stabilization machine [36]. While many of the results of this chapter may be phrased 

for semi-model categories—perhaps satisfying some additional properties—we elect to avoid them 

whenever possible. 

We take the following defnition from [4]. 

Defnition 2.3.1. A semi-model category is a bicomplete category C along with three classes 

of maps C , F and W of cofbrations, fbrations and weak equivalences, respectively, which are 

required to satisfy the following properties. 

(SM1) Fibrations are closed under pullback. 

(SM2) W is closed under the two-out-of-three property. 

(SM3) C , F and W contains all isomorphisms and are closed under composition and retracts. 

(SM4) Cofbrations have the left lifting property with respect to acyclic fbrations; acyclic cofbrations 

with cofbrant domain have the left lifting property with respect to fbrations. 

(SM5) Morphisms in C admit a functorial factorization into a cofbration followed by an acyclic 

fbration; morphisms with cofbrant domain admit functorial factorizations into an acyclic 

cofbration followed a fbration. 

Such a semi-model structure is said to be cofbrantly generated if there are sets of morphisms I 

and J such that the class of acyclic fbrations are the maps that have the right lifting property with 
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respect to I and the class of fbrations are the maps that have the right lifting property with respect 

to J , the domains of I are small relative to transfnite compositions of pushouts of elements of I 

and the domains of J are small relative to those transfnite compositions with cofbrant domains 

of pushouts of elements of J . 

Remark 2.3.2. Every semi-model category admits functorial fbrant and cofbrant replacement func-

tors. In particular, it is only the acyclic cofbrations and fbrations that are not necessarily pinned 

down by lifting properties in a semi-model category—however, among maps with cofbrant domain, 

the strong acyclic cofbrations are pinned down as the maps having the left lifting property with 

respect to fbrations. In a cofbrantly generated semi-model category, this means the weakly satu-

rated class generated by the set J does not necessarily contain all acyclic cofbrations, despite the 

class of fbrations being the right complement of J . 

Defnition 2.3.3. Following Goerss and Hopkins in [44, Def. 1.1.8], we will say a semi-model 

structure C is simplicial if it is simplicially enriched, tensored and cotensored such that for any 

strong cofbration (i.e., a cofbration with cofbrant source) i : A → B and fbration p : X → Y the 

pullback corner map 

Hom(B, X) → Hom(B, Y ) ×Hom(A,Y ) Hom(A, X) 

is a fbration which is acyclic if either of i or p are acyclic. We will say a pointed semi-model 

category is a pointed simplicial semi-model category if the analogous axiom holds. 

The following is due to Batanin and White as [4, Thm. 4.2], which will allow us to localize 
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our category of spectra in SpN(AlgY ) at a set of maps defned further below. It is also possible to O 

construct this localization of SpN(AlgY ) using the cellular arguments of Harper-Zhang [28] once itO 

has been established that the local equivalences of SpN(AlgY ) are πs-isomorphisms.O ∗ 

Proposition 2.3.4. Suppose C is a locally fnitely presentable, cofbrantly generated model category 

such that the domains of the generating cofbrations are cofbrant. Then for any set of morphisms 

S, the left Bousfeld localization LS C exists exists as a cofbrantly generated semi-model structure. 

The weak equivalences are the S-local equivalences, the cofbrations in LS C are the same as in C 

and the fbrant objects of LS C are the S-local objects. The set of generating cofbrations are the 

same as in C and the set of generating acyclic cofbrations all have cofbrant domains. 

Remark 2.3.5. Every S-local object is fbrant in C. This is because there are more weak equivalences 

in LS C, so there are more acyclic cofbrations in LS C and the class of all such acyclic cofbrations 

contains the class of acyclic cofbrations in C. 

We introduce some terminology, which we adapt from [28, 39]. 

Defnition 2.3.6. Fix a set S of maps in a simplicial model category C and a map f : X → Y in 

C. 

(a) We say f is a strong cofbration if it is a cofbration in C between cofbrant objects. 

(b) We say f is a S-local fbration if it has the right lifting property with respect to every 

cofbration that is an S-local equivalence. 

(c) We say f is weak S-local fbration if it has the right lifting property with respect to every 

strong cofbration that is an S-local equivalence. 
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As in [28, Prop. 3.6], the following implications holds. 

Proposition 2.3.7. Fix a set S of maps in a cofbrantly generated simplicial model category C and 

suppose that the domains of the generating acyclic cofbrations of C are cofbrant. 

(a) Every strong cofbration is a cofbration. 

(b) Every weak equivalence is an S-local equivalence. 

(c) Every S-local fbration is a weak S-local fbration and every weak S-local fbration is a fbration. 

Proof. The proof follows as in Harper-Zhang with only minor modifcations. 

Remark 2.3.8. Only the implication that every weak S-local fbration is a fbration requires the 

hypothesis that C be cofbrantly generated having generating acyclic cofbrations with cofbrant 

domain. The implication that every S-local fbration is a fbration follows since the class of S-local 

equivalences contain the class of weak equivalences in C. In fact, all that is required of C it have 

a set of J of acyclic cofbrations between cofbrant objects such that the class of fbrations is the 

class of maps having the right lifting property with respect to J . 

The following is due to Harper and Zhang in [28, Prop. 3.8]. An analogue of this was also 

noticed by Barwick in [3, Lem. 1.7.1]. 

Proposition 2.3.9. Fix a set S of maps in a cofbrantly generated simplicial model category C and 

suppose that the domains of the generating cofbrations of C are cofbrant. For a map f : X → Y , 

the following are equivalent. 

(a) f is a weak S-local fbration and S-local equivalence. 
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(b) f is an S-local fbration and S-local equivalence. 

(c) f is an acyclic fbration in C. 

Remark 2.3.10. Similar to Remark 2.3.8 following Proposition 2.3.7, only the implication (a)⇒(c) 

requires the hypothesis that C is cofbrantly generated with each generating cofbrations having a 

cofbrant domain. Unlike Proposition 2.3.7, it is the generating cofbrations this is imposed upon. 

A similar weakening of this assumption as in Remark 2.3.8 is possible. 

Proof. The proof of this proposition likewise follows just as in Harper-Zhang with only minor 

modifcations. 

As it turns out, we have a better handle on this localization when the category we are localizing 

has a compatible simplicial structure. 

Proposition 2.3.11. Suppose C is a locally fnitely presentable, cofbrantly generated, (pointed) 

simplicial model category whose generating cofbrations have cofbrant domain and let S be a set of 

maps in C. Then the acyclic fbrations of LS C are precisely the acyclic fbrations in C and LS C is 

a cofbrantly generated, (pointed) simplicial model category with the same mapping space functor as 

C. 

Proof. Say by Proposition 2.3.9, we know that acyclic fbrations of LSC are precisely the acyclic 

fbrations in C. Since any two functorial models for a derived mapping space are connected to 

each other by a zig-zag of natural equivalences as a consequence of [31, Thm. 17.5.7], we may 

use the mapping space functor Hom of the original category to detect S-local objects and S-local 

equivalences, and we do so. Note that in a pointed simplicial model category, the pointed simplicial 
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mapping space Hom(X, Y ) is simply the unpointed mapping space equipped with basepoint the 

unique map X → ∗ → Y . 

Let i : A → B be a strong cofbration and p : X → Y an S-local fbration. In this case, all 

that needs to be checked is that pullback powering is a fbration of simplicial sets and is a weak 

equivalence when either of i or p are a weak equivalence. We consider the former frst. 

Let us show the pullback power map is a fbration. To do this, consider a lifting problem 

Λk[n] Hom(B, X) 
□ip 

which, by adjunction, is equivalent to 

∆[n] Hom(B, Y ) ×Hom(A,Y ) Hom(A, X) 

j 

B ⊗ Λk[n] A⊗Λk [n] A ⊗ ∆[n] X 

pi□j 

B ⊗ ∆[n] Y 

but since A → B is a cofbration—thus, a cofbration in C—and j is an acyclic cofbration of 

simplicial sets, i□j is an acyclic cofbration in C, since C is a simplicial semi-model category. But 

then, in particular, i□j is a cofbration and an S-local equivalence. Since p is an S-local fbration, 

the dotted arrow exists. 

If p is additionally a weak equivalence, then it is an acyclic fbration in C and we are done 

since C is a simplicial semi-model category, so we suppose that i is an acyclic cofbration between 

cofbrant objects. As before, to test that the resulting map is an acyclic fbration, it is enough 

to check it lifts against the generating cofbrations in simplicial sets. For this, we adjoint to the 
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following lifting diagram 

B ⊗ ∂∆[n] A⊗∂∆[n] A ⊗ ∆[n] X 

pi□j 

B ⊗ ∆[n] Y 

Since p is an S-local fbration, we must check that i□j—which is a cofbration as before—is an 

S-local equivalence. To do this, note that i□j has cofbrant domain since C is simplicial semi-model 

category. Hence, it sufces to show that for every S-local object W , the map 

  ⎝ 
(i□j)∗ : Hom(B ⊗ ∆[n], W ) → Hom B ⊗ ∂∆[n] A ⊗ ∆[n], W  

A⊗∂∆[n] 

is a weak equivalence of Kan complexes. The target of this map is the pullback 

Hom(B ⊗ ∂∆[n] A⊗∂∆[n] A ⊗ ∆[n], W ) Hom(B ⊗ ∂∆[n], W ) 

(∗)(∗∗) 

Hom(A ⊗ ∆[n], W ) Hom(A ⊗ ∂∆[n], W ) 

which is, by adjunction, a pullback 

Hom(B ⊗ ∂∆[n] A⊗∂∆[n] A ⊗ ∆[n], W ) Hom(∂∆[n], Hom(B, W )) 

Hom(∆[n], Hom(A, W )) Hom(∂∆[n], Hom(A, W )) 

and this shows that the left-most vertical map (∗) is an acyclic fbration—this follows since A → B is 

an S-local cofbration between cofbrant objects and W is S-local, so that the map Hom(B, W ) → 

Hom(A, W ) is a weak equivalence by defnition of the S-local equivalences and that it is a fbration 
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follows from our preceding analysis since W → ∗ is an S-local fbration. Hence, by stability under 

pullback, (∗∗) is an acyclic fbration. 

We claim now that the map Hom(B ⊗ ∆[n], W ) → Hom(A ⊗ ∆[n], W ) is an acyclic fbration. 

This follows by exactly the same analysis we used when showing (∗) is an acyclic fbration. 

Putting this all together, we have a diagram 

Hom(B ⊗ ∆[n], W ) 

Hom(B ⊗ ∂∆[n] A⊗∂∆[n] A ⊗ ∆[n], W ) Hom(B ⊗ ∂∆[n], W ) 
∼∼ 

∼ 

Hom(A ⊗ ∆[n], W ) Hom(A ⊗ ∂∆[n], W ) 

and thus by two-out-of-three, the dotted arrow is a weak equivalence and acyclic fbration, as 

desired. 

Since any S∗-enriched model category is pointed (see Lemma 2.2.15) and has a natural S-

enriched model structure for which the pointed simplicial mapping spaces are simply the simplicial 

mapping spaces with the zero map as a basepoint, it is easy to see nothing changes when we ask 

that C be a pointed simplicial model category. 

A careful inspection of the argument above reveals that when C is a simplicial model category, 

requiring i : A → B to be a strong cofbration is only required to show the pullback power map is 

an acyclic fbration when i is an acyclic cofbration. We may therefore deduce the following. 

Corollary 2.3.12. Suppose C is a locally fnitely presentable, cofbrantly generated, (pointed) sim-

plicial model category whose generating cofbrations have cofbrant domain and let S be a set of 
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maps in C. Then LS C is a (pointed) simplicial semi-model category with the same set generat-

ing cofbrations and a set of generating acyclic cofbrations having cofbrant domain. Moreover, if 

□ii : A → B is any cofbration and p : X → Y an S-local fbration, then the pullback corner map p 

is a fbration which is acyclic if p is an acyclic fbration. 

Corollary 2.3.13. Suppose C is a locally fnitely presentable, (pointed) simplicial semi-model cat-

egory whose generating cofbrations have cofbrant domain and let S be a set of maps in C. Then 

LS C admits a (pointed) simplicial monad R which is a fbrant replacement functor on cofbrant 

objects. 

Proof. The proof of the simplicial case follows exactly as in [9, Thm. 6.1] because we may assume 

the generating acyclic cofbrations in LS C have cofbrant domains. Hence, for any simplicial set K 

and generating acyclic cofbration j, j ⊗ K is once again an acyclic cofbration. More generally, in 

light of [47, Thm. 13.2.1, Cor. 13.2.4, Rem. 13.4.3], it follows that the same holds in the pointed 

simplicial case. The point is that strong acyclic cofbrations are closed under pushout and transfnite 

composition when restricted to mapping to cofbrant objects. 

Remark 2.3.14. The enriched cofbrant replacement comonad on LS C above may simply be taken 

to be the on on C. 

Remark 2.3.15. It follows easily that if X is cofbrant, so too is RX since cofbrations in a semi-

model category are preserved under transfnite composition and pushout in a semi-model category. 
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Chapter 3 

Stabilization of Retractive Model 

Structures 

With this said, Hovey’s stabilization machine [36] in the fnitely generated case carries over without 

change. The purpose of this chapter is to explain these consequences and develop some more 

machinery that will be necessary for our completion results. 

3.1 Categories of Spectra 

Defnition 3.1.1. Fix a pointed simplicial category C. The category of spectra SpN(C) in C is the 

category whose objects consist of sequences (X0, X1, . . .) of objects in C along with structure maps 

σi : Xi ∧ S1 = ΣXi → Xi+1—equivalently, adjoint structure maps maps σi : Xi → ΩXi+1. The 

morphisms are the morphisms of sequences respecting the structure maps—equivalently, respecting 

the adjoint structure maps. 
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Defnition 3.1.2. For a pointed simplicial category C, the category SpN(C) admits several inter-

esting functors. This category has (underived) shifted suspension spectrum functors 

Fn = Σ∞−n : C → SpN(C) 

given by  

(FnX)m = 
X ∧ (S1)∧m−n m ≥ n 

∗ else 

where ∗ is the zero object of C which are left adjoint to the (underived) shifted infnite loop space 

functors 

= Ω∞+nEvn 

defned by Evn X = Xn and, furthermore, Evn is left adjoint to the functor Mn : C → SpN(C) 

defned by  

Ωn−mX m ≤ n 
(MnX)m = ∗ else. 

Pictorially, with left adjoints on top, 

Fn 

C Evn SpN(C) 
Mn 

Lemma 3.1.3. If C has all limits or colimits of shape D, then so too does SpN(C). In particular, 

these limits and colimits are created in the category of sequences CN and, hence, levelwise, under 
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the forgetful functor. 

Proof. In this case, the limits and colimits may be computed pointwise in SpN(C). That the 

forgetful functor creates the relevant colimits follows from the fact that Σ: C → C is a left adjoint. 

That the forgetful functor creates the relevant colimits follows from the fact that Ω: C → C is a 

right adjoint, using the adjoint structure maps. 

Lemma 3.1.4. If C is a pointed simplicially enriched category which is locally fnitely presentable 

and has all pullbacks, then so too is SpN(C) locally fnitely presentable. 

Rather than making an ad-hoc argument by hand, we will refer to the following basic fact about 

locally fnitely presentable categories to make quick work of this. First, we collect a defnition. 

Defnition 3.1.5. A generating set G of a category C is said to be strong if for each object X ∈ C 

and each proper subobject i : X0 → X, there is a G ∈ G and a morphism g : G → X which does 

not factor through i. 

Proposition 3.1.6 ([1, Thm. 1.11]). A category C is locally fnitely presentable if and only if it 

is cocomplete and has a strong generating set of compact objects G. In particular, if G denotes the 

closure of the full subcategory spanned by G under fnite colimits, then G is a set of compact objects 

and C is generated under fltered colimits by G. 

This is a mild condition that most well-behaved categories satisfy. This proposition may be 

thought of roughly as a necessary and sufcient condition for a category to admit “categories of 

simplices” for each object X. In simplicial sets, a simplicial set X is the fltered colimit X =∼ 
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colim∆[n]→X ∆[n], and this proposition guarantees that a similar situation occurs in the category 

C. 

Proof of Lemma 3.1.4. It is easy to see SpN(C) has all pullbacks since we can compute them lev-

elwise by the preceding lemma. 

If an object c ∈ C is compact, then so too is Fnc for each c by an adjunction argument. Let G 

be a generating set of objects for C. Then Sp(G) = n≥0 FnG is a generating set for SpN(C), we 

claim. 

Note that in any category with pullbacks, to call a map i : X0 → X a monomorphism is precisely 

the same as saying that the following square is a pullback 

idXX0 X0 

X0 X 

idX i 

i 

In particular, a monomorphism in SpN(C) is precisely a level monomorphism. Since isomorphisms 

are levelwise, a proper subobject of a spectrum X is a monomorphism i : X0 → X which is not an 

isomorphism and, hence, for some level n, is a proper subobject. Given such a proper subobject, a 

factorization 
Fnc X0 

iid 

Fnc X 
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is equivalent, by adjunction, to a factorization 

c (X0)n 

c Xn 

in 

Since i is a proper subobject, there is an n such that in is a proper subobject and therefore there 

is an object c ∈ G and a map c → Xn for which the factorization above does not exist. It follows 

that the adjoint of this map Fnc → X does not factor through i. 

It turns out that for a cofbrantly generated, pointed simplicial model category, its category 

of spectra inherits a cofbrantly generated, pointed simplicial model structure from C. This is the 

content of the following result from [36, Thm. 1.13, Thm. 6.3]. 

Proposition 3.1.7. Let C is a cofbrantly generated, pointed simplicial model category with sets of 

generating cofbrations I and generating acyclic cofbrations J . 

(a) SpN(C) is a cofbrantly generated model category in the projective model structure, in 

which the weak equivalences and fbrations are levelwise. 

(b) The set of generating cofbrations for the projective model structure is given by n≥0 Fn(I) 

and the set of generating acyclic cofbrations for the projective model structure is given by 

n≥0 Fn(J). 

(c) The S∗-tensoring is given levelwise by (X ∧ K)n = Xn ∧ K and with structure maps 

(Xn ∧ K) ∧ S1 ∼= Xn ⊗ (K ∧ S1) ∼= Xn ⊗ (S1 ∧ K) ∼= (Xn ∧ S1) ∧ K → Xn+1 ∧ K, 
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using the associativity isomorphism. 

(d) The S∗-cotensoring is given levelwise by hom(K, X)n = hom(K, Xn) and with adjoint struc-

ture maps 

hom(K, Xn) → hom(K, ΩXn+1) =∼ hom(K∧S1 , Xn+1) =∼ hom(S1∧K, Xn+1) ∼= Ωhom(K, Xn+1), 

using the adjoint associativity isomorphism (see Remark 3.3.4). 

(e) If C is left or right proper, then so too is SpN(C). 

(f) The unit and associativity maps for the S∗-module structure on SpN(C) are given levelwise. 

Remark 3.1.8. Hovey states in [36, Thm. 6.3] that the stable model structure on SpN(C)—under 

suitable hypotheses on C to guarantee its left Bousfeld localization exists as a model category—is 

a pointed simplicial model structure. However, Hovey’s argument shows that the projective model 

structure above is simplicial since the acyclic cofbrations in the projective model structure are 

acyclic cofbrations in the stable model structure, since every level equivalence is a stable equiva-

lence. This is independent of the assumptions Hovey places upon C to guarantee its left Bousfeld 

localization exists as a model category. 

In order to begin our discussion on the stabilization of this model structure, we frst introduce 

the class of maps we wish to invert on the level of homotopy. The class of maps is picked out by 

Hovey in [36, Def. 3.3.]. 

Defnition 3.1.9. Suppose C is a cofbrantly generated, pointed simplicial model category in which 

the domains of the generating cofbrations are cofbrant. Let S be the set of maps in SpN(C) given 
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by 

S = ζn
C : Fn+1(ΣC) → FnC : C ∈ dom(I) ∪ cod(I), n ≥ 0 

where ζC is the map adjoint to the identity map idΣC : ΣC → ΣC. Then we say a map f : X → Yn 

in SpN(C) is a stable equivalence if it is an S-local equivalence. If the left Bousfeld localization 

at the set S of maps of the projective model structure on SpN(C) exists as a semi-model category, 

we will call it the stable semi-model structure. 

One way of thinking about this set of maps is the following, which is due to Hovey in [36]. 

Defnition 3.1.10. Let C be a pointed simplicial model category. In SpN(C), an Ω-spectrum is a 

level-fbrant spectrum X such that the adjoint structure maps Xn → ΩXn+1 are weak equivalences 

in C. 

Proposition 3.1.11. Suppose C is a cofbrantly generated, pointed simplicial model category in 

which the domains of the generating cofbrations are cofbrant. Let S be the set of maps of Defni-

tion 3.1.9. Then S-local objects are precisely the Ω-spectra. 

Proof. The functors and adjunctions of Defnition 3.1.2 are all simplicial. Hence, if W is S-local, 

then the map 

(ζC )∗ : HomSp(FnC, W ) → HomSp(Fn+1ΣC, W )n 

is an equivalence for all n ≥ 0 and C ∈ dom(I) ∪ cod(I). By adjunction, this means, equivalently, 

that the map 

σn∗ : HomC(C, Wn) → HomC(C, ΩWn+1) 
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is an equivalence for all n ≥ 0 and C ∈ dom(I) ∪ cod(I). Thus, it is clear the S-local objects at 

least contain the Ω-spectra. On the other hand, since the domains of the generating cofbrations 

are assumed to be cofbrant, [36, Prop. 3.2] shows that this is equivalent to requiring the adjoint 

structure σn : Wn → ΩWn+1 be equivalences for n ≥ 0. Hence, the S-local objects are precisely the 

Ω-spectra. 

The following proposition is now an immediate consequence of Corollary 2.3.12. 

Proposition 3.1.12. Let C be a locally fnitely presentable, fnitely generated, pointed simplicial 

model category in which the domains of the generating cofbratons are cofbrant. Then the stable 

semi-model structure on SpN(C) exists as a pointed simplicial semi-model category. 

We now end this section with the following stability theorem for SpN(C), justifying our use of 

the word ‘stable.’ 

Theorem 3.1.13 ([36, Thm. 10.3]). Let C be a pointed simplicial semi-model category which is 

locally presentable and cofbrantly generated such that the generating cofbrations have cofbrant 

domains. Then the stable semi-model structure on SpN(C) exists and is stable—the simplicial 

suspension functor − ∧ S1 = Σ on SpN(C) is a Quillen equivalence. 

Remark 3.1.14. As before, nothing in Hovey’s arguments really requires that the category C in 

question be left proper and cellular, in light of Proposition 2.3.11. The only part of Hovey’s 

argument where the particulars of the model structure really comes into play is when an acyclic 

cofbration is pushed out along another map where all objects are cofbrant—in this case, the 

pushout of the acyclic cofbration remains an acyclic cofbration in a semi-model structure. See 

also [53, pg. 7] for a brief discussion. 
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3.2 The Functor Θ∞ 

Under mild hypotheses, Hovey provides a characterization of the stable equivalences in SpN(C) in 

terms of level equivalences. To do this, we frst introduce a sort of spectrifcation functor. We frst 

introduce some auxiliary functors. 

Defnition 3.2.1. Let C be a pointed simplicial model category. Defne shift functors s+, s− : SpN(C) → 

SpN(C) on objects as follows 

s−(X)n = Xn+1  

∗ n = 0 
s+(X)n =  n ≥ 1.Xn−1 

The functors s+ and s− commute with all limits and colimits. We denote the k-fold iterates of the 

k kshift functors by s+ and s−. 

Lemma 3.2.2 ([36, Lem. 3.8]). Let C be a pointed simplicial model category. 

k k(a) The shift functor s+ is left adjoint to s−. 

k k(b) s+ commutes with the S∗-tensoring and cotensoring on SpN(C). s commutes with the S∗ -− 

k ktensoring and cotensoring on SpN(C)—in fact, there are equalities s (X ∧ L) = s (X) ∧ L− − 

k kand s hom(L, X) = hom(L, s−X)− 

(c) s+Fn = Fn+1 and Evn s− = Evn+1. 
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Proof. The only part of this that requires words is (b). Note that hom(L, −) and − ∧ L are 

defned levelwise on the spectrum and that s− shifts the objects and structure maps. Hence, 

s−hom(L, X) = hom(L, s−X). On the other hand, s+ shifts the structure maps but also introduces 

new objects in the spectrum in degree 0. Since ∗ ∧ L is only naturally isomorphic to ∗ (the 

kdistinguished zero object), but by a unique natural isomorphism, this shows that s+(X) ∧ L ∼= 

ks+(X ∧ L) uniquely. 

Defnition 3.2.3. Let 

Θ = Ωs− = s−Ω: SpN(C) → SpN(C). 

This is the functor given by mapping a spectrum X = (X0, X1, . . .) to the spectrum (ΩX1, ΩX2, . . .) 

with the evident structure maps. There are natural maps iX : X → ΘX. Let Θ∞ be the endofunctor 

of SpN(C) defned by 

iX iΘXΘ∞X = colim(X −→ ΘX −−→ Θ2X → · · · ). 

Let jX : X → Θ∞X be the evident natural transformation induced from the colimiting cone. 

∼Remark 3.2.4. Levelwise, (Θ∞X)n = colim(Xn → ΩXn+1 → Ω2Xn+2 → · · · ), which is the classical 

spectrifcation procedure for spectra of topological (say, CW-complexes) spaces. 

Remark 3.2.5. Since Θ = s− ◦ Ω = Ω ◦ s− is a composite of right adjoints, it is a right adjoint to 

kthe functor Φ = s+ ◦ Σ ∼= Σ ◦ s+. More generally, Θk is right adjoint to the functor Φk = s+ ◦ Σk. 

Lemma 3.2.6 ([36, Lem. 4.5]). For any X, the maps iΘX and ΘiX coincide. 

Hovey has shown this functor exhibits excellent properties. 
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Proposition 3.2.7 ([36, Prop. 4.6]). Suppose C is a fnitely generated, pointed simplicial model 

category and suppose Ω preserves sequential colimits in C. Then the map Θ∞X → Θ(Θ∞X) is 

an isomorphism. If, in addition, C is fnitely generated and X is level fbrant, then Θ∞X is an 

Ω-spectrum. 

As an immediate corollary, it follows that Θ∞ may be used to give stable fbrant replacements. 

Corollary 3.2.8. Suppose C is a locally fnitely presentable, fnitely generated, pointed simplicial 

model category and suppose Ω preserves sequential colimits in C. For any level fbrant spectrum 

X, Θ∞X is a stable fbrant replacement of X. In particular, if R ′ is any functorial level fbrant 

replacement functor, Θ∞ ◦ R ′ is a functorial stable fbrant replacement functor. 

This functor allows us to detect stable equivalences as level equivalences. 

Proposition 3.2.9 ([36, Thm. 4.9, Cor. 4.11]). Let C be a fnitely generated, pointed simplicial 

model category in which the domains of the generating cofbrations are cofbrant, sequential colimits 

preserve fnite products and Ω preserves sequential colimits. 

(a) If f : A → B is a map in SpN(C) such that Θ∞f is a level equivalence, then f is a stable 

equivalence. 

(b) The natural map jA : A → Θ∞A is a stable equivalence. 

Remark 3.2.10. While Hovey does not specify in [36, Thm. 4.9, Cor. 4.11] that the model structure 

should satisfy the hypotheses of [36, Prop. 3.2], all argument still go through go through by inter-

preting a stable equivalence to mean a map f : A → B in SpN(C) such that for all Ω-spectra W , 
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Qf∗ : Hom(QB, W ) → Hom(QA, W ) is a weak equivalence, where Q is some choice of projective 

cofbrant replacement functor. Note that (a)⇒(b) by applying Θ∞ and the preceding proposition. 

The following corollary is essentially [36, Thm. 4.12]. 

Corollary 3.2.11. Let C be a fnitely generated, pointed simplicial model category in which the 

domains of the generating cofbrations are cofbrant, sequential colimits preserve fnite products and 

Ω preserves sequential colimits. Let L be any level fbrant replacement functor. 

(a) A map f : A → B is a stable equivalence if and only if Θ∞f is a stable equivalence. In 

particular, Θ∞ preserves weak equivalences. 

(b) A map f : A → B is a stable equivalence if and only if Θ∞Lf is a level equivalence. 

Proof. (a) We have a commutative diagram 

jA Θ∞A 

Θ∞ff 

∼B Θ∞B 
jB 

The maps jA and jB are stable equivalences from the preceding proposition. Suppose f is a stable 

equivalence. Then by two-out-of-three, Θ∞f is a stable equivalence. Conversely, suppose Θ∞f is 

a stable equivalence, then by two-out-of-three, f is a stable equivalence. 

(b) We have a commutative diagram 

jLA
A LA Θ∞LA∼ ∼ 

A ∼ 

f Lf Θ∞Lf 

∼ ∼B LB Θ∞LB 
jB 
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The maps A → LA and B → LB are level equivalences and, hence, stable equivalences. The 

maps jLA and jLB are stable equivalences from the preceding proposition. Suppose f is a stable 

equivalence. Then by two-out-of-three, Lf is a stable equivalence. By (a), Θ∞Lf is a stable 

equivalence. But Θ∞LB and Θ∞LB are Ω-spectra and thus local objects. Hence, Θ∞Lf is a level 

equivalence. Conversely, suppose Θ∞Lf is a level equivalence. Then it is a stable equivalence and 

by (a), Lf is a stable equivalence; by two-out-of-three, it follows that f is a stable equivalence. 

Remark 3.2.12. The utility of this corollary is in (b). For instance, level equivalences between 

Ω-spectra of pointed spaces are precisely πs-isomorphisms. (b) of the preceding corollary allows us∗ 

to characterize the stable equivalences in terms of algebraic data. 

As an indication of a more general argument, we collect a corollary. This corollary will follow 

from a proposition due to Dan Dugger in [18], who attributes it to Jef Smith. 

Proposition 3.2.13 ([18, Prop. 7.3]). Let C be a cofbrantly generated model category in which the 

domains and codomains of the generating cofbrations are compact. Then any colimit functor for 

fltered diagrams is a model for the point-set homotopy colimit functor. 

Proof. Given fltered diagrams F1, F2 : D → C and a level equivalence η : F1 → F2, we may form, 

in the projective model structure on Fun(D, C) the following commutative square 

QF1 
∼ F1 

∼∼ 

QF2 ∼ F2 

where the left-most vertical map is a level equivalence by the two-out-of-three property. Taking 

59 



colimits, since colim QF1 → colim QF2 is an equivalence, we have a commutative diagram 

colim QF1 colim F1 

∼ (∗) 

colim QF2 colim F2 

and to show that (∗) is a weak equivalence, it sufces to show that colim QFi → colim Fi is an 

acyclic fbration for each i = 1, 2, since then, by two-out-of-three, (∗) is a weak equivalence. 

For this, set i = 1, without loss of generality, and set QF1 = F0. Then for each generating 

cofbration i : C0 → C1 and solid commutative diagram 

g0
C0 colim F0 

C1 colim F1 

i 

g1 

we must check the dotted lift exists. By compactness of the Ci, there is a di ∈ D and a map 

fi : Ci → Fi(di) for which we have a factorization 

Ci Fi(di) colim Fi 

gi 

fi in 

Similarly, the composite map C0 → colim F1 factors through some F1d2 as 

f2 inC0 F1(d2) colim F1 
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Since D is fltered, there there exists a cospan 

β 
d0 

α d2 d1 

and we claim that we my pick it such that the following diagram commutes 

g0 

f0 F0α inC0 F0d0 F0d2 colim F0 

∼ηd2i 

C1 f1 
F1d1 F1d2 colim F1F1β in 

g1 

It is at least true that the right-most square and outer rectangle commute. If the left-hand rectangle 

does not commute, we may at least make the following observation. The composites represented 

by ηd2 ◦ F0α ◦ f0 and F1β ◦ f1 ◦ i represent the same element of colim hom(C0, F1) because, as maps 

into colim F1 they are determined by the two composites 

f0 F0α inC0 F0d0 F0d2 colim F0 

∼ 

F1d2 colim F1in 

and 

i 

C1 F1d1 F1d2 colim F1f1 F1β in 

and we know these are equal. Hence, there is a map τ : d2 → d3 such that the following diagram 

C0 
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commutes 
f0 F0α ηd2C0 F0d0 F0d2 ∼ F1d2 

F1τi 

F1τ C1 F1d1 F1d2 F1d3f1 F1β 

Hence, by naturality of η, we have the following solid commutative diagram 

F0(τα)◦f0 inC0 F0d3 colim F0 

∼ ηd3i 

C1 F1d3 colim F1
F1(τβ)◦f1 in 

so that the dotted lift exists. This provides a lift in the original diagram and thereby shows that 

colim QFi → Fi is an acyclic fbration, as desired. 

As promised, the functor Θ∞ allows us to characterize stable equivalences in terms of algebraic 

data in good cases. Note that the following corollary does not use any of the model categorical 

properties of the stable model category of spectra and goes through if we only knew it was a stable 

model category. 

Corollary 3.2.14. The left Bousfeld localization of Sp = SpN(S∗) at the set of maps S described 

above has weak equivalences precisely the πs-isomorphisms. In particular, the map jA : A → Θ∞A∗ 

is a πs-isomorphism.∗ 

Remark 3.2.15. We must be precise about what we mean by the homotopy groups of a spectrum in 

this context. For a simplicial set X, its homotopy groups are the homotopy groups of its geometric 

realization |X|, since the adjunction between geometric realization and the singular simplicial set 

functors respects basepoints and are pointed simplicial functors. For instance, for pointed simplicial 
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sets, |X| may be defned as the coend in S∗ given by the coend 

|X| = Xn ∧∆ |∆[n]+| =∼ |Xn ∧∆ ∆[n]+| 

where, for a pointed discrete set Xn, we consider it as a pointed discrete space generated by Xn in 

degree 0 in each of the displayed isomorphisms. The simplicial structure follows by Fubini for coends 

and the fact that the smash product X ∧− is a left adjoint, giving a natural isomorphism |K|∧|X| ∼= 

|K ∧ X|. The pointed simplicial structure on the corresponding Sing = homS∗ (|∆[n]+|, −) arises 

using this isomorphism and an adjunction argument. 

Thus, we could defne the homotopy groups of a spectrum as πs(X) = π∗+k|X∗+k|. However, ∗ 

not every model category C has such a functor with the properties these two have. We will work a 

little more generally. 

Proof. Let L be a level fbrant replacement functor. Defne the stable homotopy groups of a 

spectrum X to be the colimit 

πs(X) = colim π∗+k(LX)k = colim π∗Ωk(LX)k.∗ 

This is independent of the choice of functorial level fbrant replacement functor as a consequence of 

[31, Thm. 14.6.9]. It is, moreover, naturally isomorphic to the description given by colim π∗+k|Xk| 

because Sing |−| is a level fbrant replacement functor. Let us defne, additionally, 

πs,u(X) = colim π∗+kXk = colim π∗Ωk(Xk)∗ 
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for “underived” stable homotopy groups of a spectrum X. We will say a map of f of spectra is 

a πs-isomorphism if Lf is a π∗ 
s,u-isomorphism. This satisfes the two-out-of-three property since ∗ 

isomorphisms satisfy this property. 

We claim the natural map iA : A → LA is a πs-isomorphism. To see this, it is enough to show ∗ 

that LiA : LA → LLA is a π∗ 
s,u-isomorphism. Of course, this follows since 

πs,uLA = colim π∗Ωk(LA)k and πs,uLLA = colim π∗Ωk(L2A)k∗ ∗ 

and since LA → L2A is a level weak equivalence, the map LiA induces level πs-isomorphism between ∗ 

these two colimits. When X is a level fbrant spectrum, a similar argument implies that the natural 

map iX : X → LX induces an isomorphism 

πs,uX ∼= πs 
∗X = πs,uLX. ∗ ∗ 

by applying π∗ 
s,u . For level fbrant spectra X, we are therefore free to understand their stable 

homotopy groups prior to level fbrant replacement. For level fbrant spectra, note that the natural 

map jX : X → Θ∞X is a πs-isomorphism. To see this, note that X and Θ∞X are both level ∗ 

fbrant, so we may check this using π∗ 
s,u . For this, 

πs,uX = colimk π∗ΩkXk∗ 

and 

πs,uΘ∞X = colimk π∗(Ωk(colimn ΩnXn+k)).∗ 
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By Proposition 3.2.7, we know the colimit in k of the right-hand side above consists only of iso-

morphisms. Hence, there is a natural isomorphism 

πs,uΘ∞X ∼= π∗ colimk ΩkXk.∗ 

As a consequence of the preceding proposition, we know that the natural map colimk π∗ΩkXk → 

π∗ colimk ΩkXk is an isomorphism, since homotopy groups commute with fltered homotopy col-

imits. This is the map implemented levelwise on the level of spaces by jX : X → Θ∞X and so 

jX : X → Θ∞X is a πs-isomorphism.∗ 

Now fx f : A → B a map of spectra and consider the commutative diagram 

A ∼ L ∼ Θ∞LA 

f Lf Θ∞Lf 

B ∼ LB ∼ Θ∞LB 

From we have seen, the maps C → LC and LC → Θ∞LC are πs-isomorphisms and, additionally, ∗ 

stable equivalences for C = A, B. 

Suppose f is a stable equivalence. Then by two-out-of-three, Lf is a stable equivalence and it 

follows that Θ∞Lf is a level equivalence between Ω-spectra. But the level equivalences between 

Ω-spectra are precisely the π∗ 
s,u-isomorphisms. Since the Ω-spectra are level fbrant, Θ∞Lf is in 

fact a πs-isomorphism. By two-out-of-three, Lf is a πs-isomorphism and hence by two-out-of-three, ∗ ∗ 

f is a πasts-isomorphism. 

Conversely, suppose f is a πs-isomorphism. Then by two-out-of-three, Lf is a πs-isomorphism∗ ∗ 

and so by two-out-of-three, Θ∞Lf is a π∗ 
s-isomorphism. But for level fbrant spectra, a π∗ 

s-
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isomorphism is, in particular, a π∗ 
s,u-isomorphism and for Ω-spectra, π∗ 

s,u-isomorphisms are level 

equivalences. Hence, Lf is a stable equivalence by two-out-of-three and hence f is a stable equiv-

alence by two-out-of-three. 

Precisely the same pattern of argument will show the stabilization of the categories of retractive 

O-algebras have as their stable equivalences the πs-isomorphisms.∗ 

3.3 The QX Construction and Enriched Stable Fibrant Replace-

ment Monads 

In this section, we show that, under suitable hypotheses on the category C, the functor Θ∞ may 

be used to compare the classical (derived) stabilization construction QX = hocolim ΩkΣkX with 

(derived) stabilization modeled as Ω∞Σ∞X. Moreover, we show that Θ∞ may be used to construct 

an S∗-enriched stable fbrant replacement monad for the stable model structure on SpN(C), under 

suitable hypotheses on C. 

Theorem 3.3.1. Let C be a fnitely generated, pointed simplicial model category in which the 

domains of the generating cofbrations are cofbrant, sequential colimits preserve fnite products and 

Ω preserves sequential colimits. 

(a) Let R be an S∗-enriched fbrant replacement monad on C. Then R prolongs to a level fbrant, 

S∗-enriched fbrant replacement monad on SpN(C), which we also denote R. 
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(b) Set Ω = ΩR with R as above. Let 

QX = colim(X → ΩY ΣY X → Ω2 Σ2 
Y X → · · · )Y 

where the bonding maps of the colimit are obtained from the derived unit maps. Then there 

is a natural comparison map 

c = cX : QX → Ω∞Θ∞RΣ∞X 

which is a weak equivalence when X is cofbrant. 

(c) The comparison map c respects the structure maps X → QX and X → Ω∞Θ∞RΣ∞X—in 

other words, it makes the evident diagram commute. In particular, for cofbrant X, this 

means comparison equivalence respects the structure map X → QX and the derived unit map 

X → Ω∞Θ∞RΣ∞X. 

Remark 3.3.2. We will assume X is cofbrant in the proof—the resulting construction will necessarily 

be natural in X. By Corollary 3.2.8, the evident map Z → Θ∞RZ is a stable fbrant replacement 

of a spectrum Z (hence, a stable equivalence), so the map X → Ω∞Θ∞RΣ∞X in part (c) really is 

the derived unit map. 

Proof. In light of [47, Thm. 13.2.1, Cor. 13.2.4, Rem. 13.4.3], we may pick a level fbrant replacement 

functor on C which is a pointed simplicial monad. This means that, in particular, the monad’s nat-

ural transformations are all pointed simplicial natural transformations—or, more simply, S∗-natural 
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transformations. As in [37, Def. 1.2.8], this means that the natural objectwise weak equivalences 

∼ ∼ 
u : id −→ R and µ = µR : R2 −→ R 

respecting the assembly natural transformations 

assembX,K : F (X) ∧ K → F (X ∧ K) 

equipped on each functor appearing—for id, the assembly maps are the identity. Equivalently, they 

respect the adjoint assembly natural transformations (defned further below) 

âssembX,K : F (hom(K, X)) → hom(K, FX). 

Note that u and µR are objectwise weak equivalences. That µR is an objectwise weak equivalence 

follows from the unit diagram for the monad R, since the unit map u is an objectwise weak 

equivalence as R is a fbrant replacement functor. In fact, for cofbrant X, the assembly map R(X)∧ 

K → R(X ∧ K) is a weak equivalence; equivalently, the adjoint assembly map R(hom(K, X)) → 

hom(K, RX) is weak equivalence for fbrant X. These follow using the unit pointed simplicial 

natural transformation. 
hom(K, X) hom(K, X) 

hom(K,unit) (∗)unit 

Rhom(K, X) hom(K, RX)
^assemb 

The diagram commutes because u is a pointed simplicial natural transformation, the vertical arrows 
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are weak equivalences because C is a pointed simplicial model category (all pointed simplicial sets 

are cofbrant) and X is fbrant. 

∼Note that to say µR : R2 −→ R is a pointed simplicial natural transformation means that the 

following diagram commutes for X ∈ AlgY and K ∈ S∗O 

^ ^RassembX,K assembRX,K 
R2hom(K, X) Rhom(K, RX) hom(K, R2X) 

Rhom(K, X) hom(K, RX) 

µR 

∼ 

hom(K,µR) 

^assembX,K 

Now, as promised, we defne the adjoint assembly map 

^assemb
Rhom(K, X) −−−−→ hom(K, RX) 

to be the map adjoint to 

assemb Rε
R(hom(K, X)) ∧ K −−−−→ R(hom(K, X) ∧ K) −→ RX 

using the counit of the adjunction. Explicitly, it is the map 

η assembK (Rε)K 

R(XK ) −→ (R(XK ) ∧ K)K −−−−−→ (R(XK ∧ K))K −−−→ (RX)K . 

It follows using naturality of the unit map and the triangle identities that the given assembly map 
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RX ∧ K → R(X ∧ K) is the map adjoint to 

^Rη assemb
RX −→ R(hom(K, X ∧ K)) −−−−→ hom(K, R(X ∧ K)) 

using the unit of the adjunction. This follows by meditating upon the following commutative 

diagram 

Rη∧K ^assemb∧KRX ∧ K Rhom(K, X ∧ K) ∧ K hom(K, R(X ∧ K)) ∧ K 

assemb εassemb 

RεR(X ∧ K) R(hom(K, X ∧ K) ∧ K) R(X ∧ K)
R(η∧K) 

The left-hand square commutes by naturality of the assembly map. As for the right-hand square, 

it commutes by taking adjoints and using the triangle identities. By defnition, the adjoint of 

^the counterclockwise composite is assemb. As for the clockwise composite, its adjoint fts into a 

commutative diagram using naturality of η as 

^assembR((X ∧ K)K ) (R(X ∧ K))K 

η η 

(R((X ∧ K)K ) ∧ K)K ((R(X ∧ K))K ∧ K)K
εK 

(R(X ∧ K))K 
^(assemb∧K)K 

The triangle commutes by the triangle identities. The square commutes by naturality of η. Hence, 

^the adjoint composite is simply assemb, as desired. 

This choice of R and the particular properties it enjoys is really the key point. The rest of 

the proof of this theorem amounts to checking that everything that should commute really does 

commute. 
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As in [37, Def. 1.2.8], R prolongs to a pointed simplicial endofunctor of SpN(C) and the S∗ -

natural transformations u : id → R and µ : R2 → R prolong to ones on SpN(C)—the prolongation of 

u and µ are defned to be given levelwise by u and µ as defned in C. By abuse of notation, call this 

prolongment R. That the prolongation of R remains an S∗-enriched functor may be seen using the 

underlying assembly map for R : C → C—it is a simple matter of applying the associativity axiom 

for this functor several times to see that the assembly map prolongs to natural transformation of 

functors SpN(C) × S∗ → SpN(C). Explicitly, this may be seen by meditating upon the following 

(sparsely) labeled diagram 

R(Xn+1 ∧ K) R((Xn ∧ S1) ∧ K) R(Xn ∧ (S1 ∧ K)) R(Xn ∧ (K ∧ S1)) R((Xn ∧ K) ∧ S1) 

id ∧τ 
assemb R(Xn) ∧ (S1 ∧ K) R(Xn) ∧ (K ∧ S1) 

R(Xn+1) ∧ K R(Xn ∧ S1) ∧ K (R(Xn) ∧ S1) ∧ K (R(Xn) ∧ K) ∧ S1 R(Xn ∧ K) ∧ S1 
R(σn)∧id 

where the dotted arrows are the composites which are the relevant structure maps. The diagram 

commutes by naturality of the assembly map and the associativity condition the assembly map 

satisfes. It is manifestly natural in the spectrum X and pointed simplicial set K. Hence, the 

associativity condition for the prolonged assembly map is satisfed as all relevant natural transfor-

mations are given levelwise. The unit condition for the prolongation of R is likewise satisfed. It 

follows easily that the prolongation of the maps u : id → R and µ : R2 → R are level equivalences 

and themselves S∗-natural transformations on SpN(C) as all relevant natural transformations are 
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defned levelwise. 

Then, in particular, R is an S∗-enriched level fbrant replacement functor and a monad. Since 

the colimits in question for QX and Ω∞Θ∞RΣ∞X are, in particular, homotopy colimits, it sufces 

to exhibit a level equivalence between them by Proposition 3.2.13. 

To begin, we claim the following diagram commutes. 

η 
RX ΩΣRX 

Rη Ωassemb (∗∗) 

RΩΣX ΩRΣX 
^assemb 

This is the dual version of what we just showed above and, consequently, it has what is essentially 

a dual proof. Indeed, to see this, note that the clockwise composite is adjoint to 

Ση ΣΩassemb ΣRX ΣΩΣRX ΣΩRΣX 

ΣRX RΣX 

ε ε 

assemb 

where the square commutes since ε is natural. For the counterclockwise composite, we have seen 

that the assembly map is adjoint to this composite, whence the square commutes. Note that 

Ω∞Θ∞RΣ∞X is the colimit of the sequence of maps Ωk( âssemb ◦ Rη) : ΩkRΣkX → Ωk+1RΣk+1X. 

Hence, in all degrees k ≥ 0, (∗∗) shows that this map is, equivalently Ωk(Ωassemb ◦ η). 

Defne an auxiliary sequence 

RX → ΩRΣX → Ω2R2Σ2X → · · · (⋆) 
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as follows. The frst map is the composite 

RX → RΩΣX → ΩRΣX 

of (∗∗). In higher degrees, 

ΩkRkΣkX → Ωk+1Rk+1Σk+1X 

is the composite 

ΩkRkΣkX ΩkRkΩΣk+1X ΩkRkΩRΣk+1X Ωk+1Rk+1Σk+1X. 

Ωk( ^assemb 
×k 
◦Rk (Ωu◦η)) 

ΩkRkη Ωk RkΩu Ωk ^ assemb×k 

×k^where assemb is the evident k-fold application of the assembly map 

Rk−1 ^assemb (R ◦ · · · ◦ R)(ΩZ) −−−−−−−→ Rk−1ΩRZ → · · · → ΩRkZ. 

×k−1 ×k^ ◦ Rk−1 ^ ^This is natural in Z and has the property that assemb assemb = assemb . 

There is a naturally occurring level equivalence between the colimit defning QX and (⋆). In 

degree 0 the map is the unit u : X → RX and in degree 1 the map is the identity. Commutativity 

of the relevant square is then enforced by naturality of the unit map and (∗). 

In higher degrees k ≥ 2, it is formed using the natural (k − 1)-fold assembly assembly maps 

∼(ΩR)kΣkZ −→ ΩkRkΣkZ, which are weak equivalences. The commutativity of the square involving 

73 



the frst and second terms of the sequences is immediate. For k ≥ 3, compatibility of the maps is 

likewise essentially immediate by naturality of the n-fold assembly map and naturality of u. 

We claim that there is a level equivalence from the sequence (⋆) to the sequence defning 

Ω∞Θ∞RΣ∞X. The frst two terms (the 0th and 1st objects in the sequences) may be taken to be 

the identity. We let the next map Ω2R2Σ2X → Ω2RΣ2X be Ω2µR. To see this makes the evident 

diagram commute, note that we have the following solid commutative diagram 

ΩRΣX 
ΩRη ΩRΩΣ2X ΩRΩu ΩRΩRΣ2X 

^Ωassemb ^Ωassemb

∼Ω2RΣ2X Ω2R2Σ2X
Ω2Ru 

Ω2µR ∼Ω2assemb 

ΩRΣX 
Ωη Ω2ΣRΣX Ω2RΣ2X

Ω2assemb 

The dotted maps composite maps are the bonding maps for each sequence, where we have used 

(∗∗) to see this for the bottom map. The big rectangle on the left commutes by applying Ω to 

^(∗∗). The top small square commutes on account of naturality of assemb. The bottom small square 

commutes because µR ◦ Ru = idR, because R is a monad. 

In general, we defne the maps 

∼ΩnRnΣnX −→ ΩnRΣnX 

∼to be induced by the (n − 1)-fold R multiplication Rn −→ R going from right to left. These will 

produce weak equivalences between the objects since Ω is a right Quillen functor. 

However, we do not yet know this is a well-defned map of spectra. To get a feeling for the 
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general pattern of the argument, we consider the very next case of n = 3. This contains all the 

ingredients of the general pattern. We must use both (∗∗) and (∗ ∗ ∗). Consider the following 

commutative diagram 

^Ω2R2Ωu Ω2R ^ Ω2assemb assemb 
Ω2R2Σ2X Ω2R2ΩΣ3X Ω2R2ΩRΣ3X Ω2RΩR2Σ3X Ω3RR2Σ3X 

∼Ω2RΩµR Ω3RµR 

Ω2RΩRΣ3X Ω2RΩRΣ3X Ω3R2Σ3X 
Ω2 ^assemb 

Ω2µR 

Ω2R( ^assemb◦Rη) 

Ω2Rη 

∼ 

∼ Ω3Ω2RΩΣ3X µR 

Ω2RΣ2X Ω3ΣRΣ2X 

Ω2 ^assemb 

Ω3RΣ3X
Ω2η Ω3 assemb 

The dotted composite maps are the bonding maps for each sequence. The upper rectangle com-

mutes because of (∗ ∗ ∗). The upper-right square commutes by naturality of the assembly map. 

The lower triangle commutes by (∗∗). Thus, the whole diagram commutes because the squiggled 

composites are equal. This is a consequence of naturality of η and the fact that µR is an S∗-natural 

transformation. 
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Explicitly, we may expand the squiggly part to the following commutative diagram. 

Ω2R2η Ω2R ^ Ω2 ^assemb assemb Ω2R2Σ2X Ω2R2ΩΣ3X Ω2RΩRΣ3X Ω3R2Σ3X 

Ω2RΣ2X Ω2RΩΣ3X Ω3RΣ3X 

Ω2µR ∼ Ω2µR∼ Ω3µR∼ 

Ω2Rη Ω2 ^assemb 

The left-most square commutes by naturality of η and the right-most since µR is an S∗-natural 

transformation. 

For the next step of n = 4, one frst recognizes the overall application of Ω2 to the diagrams 

above. Thus, by removing Ω2 and then applying Ω3R to the diagrams above, one fts the map 

Ω3RµR of the right-most column in the big diagram above into a bigger commutative diagram. By 

then using naturality of µR, this shows the next step commutes as well. This pattern continues 

and the argument is fnished by an induction. 

This establishes an explicit sequence of weak equivalences for cofbrant X 

∼ ∼
QX −→ colim(⋆) −→ Ω∞Θ∞RΣ∞X 

between the colimits as a consequence of Proposition 3.2.13; therefore it composes to an equivalence 

∼
QX −→ Ω∞Θ∞RΣ∞X, as desired. Moreover, the map QX → Ω∞Θ∞RΣ∞X is clearly natural in 

X because all maps used to construct the level equivalence between the underlying sequences for 

the colimits are natural in X. 

We now wish to show that, for cofbrant X, the derived unit map X → Ω∞Θ∞RΣ∞X factors 
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as X → QX → Ω∞Θ∞RΣ∞X; in other words, that the following diagram commutes 

X QX 

X Ω∞Θ∞RΣ∞X 

Note that the map X → Ω∞Σ∞X = Ev0 Σ∞X is the identity map. The map Ω∞Σ∞X → 

∼Ω∞Θ∞RΣ∞X is simply the composite map X −→ RX → colim ΩkRΣkX where the latter map 

is the structure map of the colimit and the former the unit map for R. Since X → QX is the 

structure map for the colimit and, on the level of underlying colimit sequences, the map in degree 

0 for QX → Ω∞Θ∞RΣ∞X is induced by the unit map for R, this follows immediately. 

Remark 3.3.3. This is efectively a point-set version of [29, Lem. 2.10(c)] for compactly generated ∞-

categories qua quasicategories. Namely that stabilization as P1 Id agrees with Ω∞Σ∞. In fact, the 

underlying ∞-category of AlgY and really, let us say, any pointed simplicial, cofbrantly generated O 

model category having domains and codomains of the generating cofbrations simplicially small 

and cofbrant and the domains and codomains of the generating acyclic cofbrations simplicially 

compact—is compactly generated in the sense of [41, Def. 5.5.7.1]. The underlying ∞-category of 

such a model category is indeed bicomplete by standard facts and the domains and codomains 

of the generating cofbrations generate the underlying ∞-category under fltered colimits as a 

consequence of [43, Cor. 5.1]. A variant of Proposition 3.2.13 shows that fltered homotopy limits 

of fbrant objects are once again fbrant, which additionally shows that domains and codomains of 

the generating cofbrations are indeed compact in the underlying ∞-category. These conclusions 

follows from say [42, Tag 01LE] and some model categorical reasoning we are suppressing for brevity. 
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Hence, fltered homotopy colimits commute with fnite homotopy limits in this ∞-category and it 

therefore supports a good theory of functor calculus. 

For us, the utility of this theorem is that we may now understand the connectivity of the 

(derived) maps X → Ω∞Σ∞X in a precise way. In particular, for L a stable fbrant replacement 

monad, Ω∞LΣ∞ is an iterable model, which will be amenable to our completion methods. Y Y 

Remark 3.3.4. In [37, Def. 1.2.9] and in our proof above, we have used a notion of a pointed 

simplicially enriched natural transformation F → G and pointed simplicially enriched functors 

that is slightly diferent from the standard defnition —namely a pointed simplicially enriched 

functor is one equipped with assembly maps and unit maps for the S∗ action which are required to 

make the two evident diagram commute and a natural transformation which respects the assembly 

maps F (X) ∧ K → F (X ∧ K). Since our categories are tensored and cotensored over pointed 

simplicial sets, this is essentially equivalent to the usual formulation. As before, a good place for a 

much more detailed and thorough discussion on this may be found in [25, 38]. 

However, there is still a simple way to see this in the case of pointed simplicial sets. Fix 

such a functor F : C → D between tensored S∗-enriched categories. For fxed X, the maps the 

maps FX,Y : Hom(X, Y ) → Hom(FX, FY ) are natural in Y and so give a natural transformation 

FX,− : Hom(X, −) → Hom(FX, F −). Since Hom(X, −) = hom(X ∧ ∆[−]+, Y ), such a natural 

transformation is equivalent, by Yoneda, to specifying assembly maps FX ∧∆[n]+ → F (X ∧∆[n]+) 

which are natural in ∆. This is likewise natural in X since the maps FX,Y are natural in X as 

well—in particular, this follows by making judicious choices for Y . In the general case, a pointed 
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simplicial set K is the coend 

⎫ [n]∈∆ 
  ⎪ 

K ∼= ∆[n]+ ∧∆ Kn =∼  ∆[n]+ , 
∗̸=σ∈Kn 

where Kn is considered as a discrete pointed simplicial set say with basepoint ∗ ∈ Kn. Note that 

∆[n]+ ∧ Kn is simply a coproduct (wedge) in S∗ of copies of ∆[n]+ with the copy indexed by the 

basepoint collapsed—∆[n]+ ∧ Kn =∼ ∆[n]+. This decomposition of the simplicial set as a∗̸=σ∈Kn 

coend is, furthermore, natural in K. Hence, since X ∧ Y is a left adjoint in both variables, 

⎫ [n]∈∆ 
 ⎪ 

 

FX ∧ K ∼= (FX ∧ ∆[n]+) ∧∆ Kn =∼  FX ∧ ∆[n]+ 

∗̸=σ∈Kn 

and there are maps FX ∧ ∆[n]+ ∧ Kn → F (X ∧ K) given by 

⎪ F (idX ∧σ)
FX ∧ ∆[n]+ ∧ Kn → F (X ∧ ∆[n]+) ∧ Kn 

∼= F (X ∧ ∆[n]+) −−−−−−−−→ F (X ∧ K). 
∗̸=σ∈Kn 

Since the assembly map is natural in X and ∆, these give a cone to F (X ∧ K) and thus a map 

FX ∧ K → F (X ∧ K) which is natural in X and K. Using properties of colimits and the fact 

that the tensoring − ∧ − is a left adjoint in each variable, it is not hard to see that this assembly 

map respects the associativity and unit isomorphisms, appropriately defned. See, for instance, [47, 

Props. 10.1.4, 10.1.5], the appendix of [38], [25] or [17, 45] for treatments. 

In fact, the naturality condition on any such assembly map forces us to defne it this way—at 

least when the categories in question are tensored as shall always be the case for us. This follows 

from the evident universal properties. Since F (X) ∧ K is the coend above, a map F (X) ∧ K → 
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F (X ∧ K) is completely determined by its values on the terms F (X) ∧ ∆[n]+. By naturality, then, 

the following diagram would have to commute 

assemb F (X) ∧ ∆[n]+ F (X ∧ ∆[n]+) 
F (X)∧σ F (X∧σ) 

F (X) ∧ K F (X ∧ K)
assemb 

which shows that the assembly map F (X) ∧ K → F (X ∧ K) is completely determined by the 

assembly maps F (X) ∧ ∆[n]+ → F (X ∧ ∆[n]+). 

For pointed simplicially enriched categories, the usual notion of a pointed simplicial natural 

transformation is simply a choice of map ηc : Fc → Gc which make the naturality diagram of pointed 

mapping spaces commute. The equivalence with respecting assembly maps. This is equivalently 

to the usual notion—this is argued similarly to the above with the very same judicious choice 

indicated. 

We now investigate investigate the properties of the functor Θ∞ a little more carefully. 

Theorem 3.3.5. Let C be a fnitely generated, pointed simplicial model category in which the 

domains of the generating cofbrations are cofbrant, sequential colimits preserve fnite products 

and Ω preserves sequential colimits. The functor Θ∞ naturally has the structure of an S∗-enriched 

endofunctor. It, moreover, has the structure of a pointed simplicial monad whose unit and assembly 

maps are isomorphisms. 

Remark 3.3.6. As Θ∞ is a colimit of S∗-enriched functors, this is no surprise. The real work is 

verifying Θ∞ is, additionally an S∗-enriched monad and for this we may as well be explicit about 

the S∗-enriched structure Θ∞ acquires. 
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Proof. Since SpN(C) is not only enriched but tensored and cotensored over pointed simplicial sets, 

it sufces to provide a natural assembly map a : Θ∞(X) ∧ K → Θ∞(X ∧ K) such that the following 

associativity and unit diagrams commute 

α a(Θ∞(X) ∧ K) ∧ L Θ∞(X) ∧ (K ∧ L) Θ∞(X ∧ (K ∧ L)) 
Θ∞◦αa∧id 

Θ∞(X ∧ K) ∧ L Θ∞((X ∧ K) ∧ L a 

aΘ∞X ∧ S0 Θ∞(X ∧ S0) 

Θ∞X 
u Θ∞◦u 

where u is the unit map and α the associativity isomorphism for the simplicial action. A nice 

discussion on this equivalence may be found in [38, 25] and additionally [47]. 

To do this then, let us defne a map Θ∞(X) ∧ K → Θ∞(X ∧ K) natural in X and K. 

Since SpN(C) is simplicial, (colimk ΘkX) ∧ K ∼= colimk(Θk(X) ∧ K) and it sufces to produce 

kmaps Θk(X) ∧ K → Θk(X ∧ K). Recall from Remark 3.2.5 that Θk = Ωk ◦ s ; it is easy to see that − 

k k ks is naturally a simplicial functor since s (X ∧ K) = s (X) ∧ K (the simplicial action is levelwise − − − 

in the spectrum). Now, by Remark 3.2.5, this is the same as providing a map Σk(Θk(X) ∧ K) → 

ks (X ∧ K). The left-hand side is, by using the associativity natural isomorphism and the twist − 

natural isomorphism, 

kΣk(Θk(X) ∧ K) = (Ωk s (X) ∧ K) ∧ Sk ∼= (ΣkΩk s−(X)) ∧ K− 
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k kand the counit map ΣkΩks (X) → s (X) provides a map− − 

k kΣk(Θk(X) ∧ K) → s−X ∧ K = s−(X ∧ K). 

For each k, let Θk(X) ∧ K → Θk(X ∧ K) be the map adjoint to this one. This is natural in X and 

K because the associativity and twist isomorphisms are natural in X and K and the map εX ∧ idK 

is natural in X and K. We must check that the following diagram commutes for k ≥ 1 

Θk+1(X) ∧ K Θk+1(X ∧ K) 
∧KΘk(iX )∧K =iΘkX 

iΘk(X∧K) =Θk iX∧K 

Θk(X) ∧ K Θk(X ∧ K) 

where the upwards maps are the labeled natural maps arising from applying Θk to the adjoint 

structure maps Xn+k ∧ K → Ω(Xn+k+1 ∧ K) or, in other words, applying Θk to the map X ∧ K to 

kΩ(s−X ∧ K). Writing Θk = Ωk ◦ s−, this diagram commutes if and only if its adjoint 

kΣk(Θk(Θ(X)) ∧ K) s Θ(X ∧ K)− 

Σk(Θk(X) ∧ K) sk 
−(X ∧ K) 

commutes, and this commutes by naturality of the counit, and the associativity and twist isomor-

phisms—the general favor of the argument is immediate from the case of k = 1 and for cases of 

k ≥ 2, the only additional step uses the fact that the counit of the (Σk, Ωk)-adjunction is the k-fold 

iterate of the counit for the (Σ, Ω)-adjunction. 

We must also check the case of k = 0, which corresponds to requiring that the the following 
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diagram commutes 
Θ(X) ∧ K Θ(X ∧ K) 
iX ∧K iX∧K 

X ∧ K X ∧ K 

This is essentially by defnition, since the adjoint structure maps for X ∧ K factor through the 

suspension of the assembly maps just given. Explicitly, the adjoint of the clockwise composite is 

given levelwise by 

∧ K) Σ(σn
X ∧K) ε∧KΣ(Xn −−−−−−→ Σ(ΩXn+1 ∧ K) =∼ ΣΩ(Xn+1) ∧ K −−→ Xn+1 ∧ K 

and since σX is the map adjoint to the structure map σX : ΣXn → Xn+1, this composite is easilyn n 

seen to be σX∧K , as desired.n 

Now we must check that the action map is compatible with the simplicial action. For this, it 

is also easy to check since − ∧ K is a left adjoint and the action map is built levelwise between 

the colimits defning Θ∞. The unit map is similarly defned levelwise between the colimits and the 

evident unit diagram commutes using the fact that − ∧ S0 is a left adjoint. 

To see that Θ∞ is, additionally, a pointed simplicial monad, recall that the natural map 

jΘ∞X : Θ∞X → (Θ∞)2X is an isomorphism—this is the structure map Θ∞X → Θ∞(Θ∞X). 

Defne a unit map 

u : id → Θ∞ by uX = jX 

and defne 

= j−1 µ : (Θ∞)2X → Θ∞X by µX Θ∞X . 
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We claim this gives Θ∞ the structure of a monad. 

Recall that the natural maps iX : X → ΘX satisfy that iΘnX = ΘniX —this is [36, Lem. 4.5]. 

Now, note that since Ω and thus Θ commute with sequential colimits, a quick computation shows 

that the natural map iΘ∞X : Θ∞X → ΘΘ∞X is the map induced by way of the following commu-

tative diagram 

ΘkX 
iΘkX Θk+1X 
=ΘkiX 

inΘkX Θ inΘkX 

∼=Θ∞X ΘΘ∞X 
iΘ∞X 

Since inX = jX , this means that 

ΘjX = iΘ∞X jX 

we claim. To see this, note that Θ commutes with directed colimits. Hence, ΘΘ∞X has colimit 

cone given by the maps Θ inΘkX : Θk+1X → ΘΘ∞X, from which this follows in the case of k = 0 

(i.e., Θ0 = id). 

The map iΘ∞X has inverse given on the components of the colimits (ΘΘ∞X)n → (Θ∞X)n 

simply by the identity maps id : Θk+1X → Θk+1X or, in other words, id : ΩkXn+k → ΩkXn+k —this 

follows from a simple check of universal properties. All together, this means that i− 
Θ
1 
∞X ◦ΘjX = inΘX 

and this pattern holds in the sense that 

inΘkX = ΘkjX . 
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This shows that Θ∞uX = uΘ∞X or, in other words, Θ∞jX = jΘ∞X by writing this as 

ΘkiΘ∞X ◦ inΘk = ΘkjX 

and taking colimits in k—the left-hand side is jΘ∞X and the right-hand side is Θ∞jX . 

The upshot, or slogan, here is the following. 

The transfnite composites jX exhibit the same properties as the natural maps 

iΘk X : ΘkX → Θk+1X that they are built out of, transfnitely. 

To see that the associativity diagram for the asserted monad structure on Θ∞ commutes, note 

that this amounts to showing that j−1 = Θ∞j−1 or, in other words, j(Θ∞)2X = Θ∞jΘ∞X .(Θ∞)2X Θ∞X 

Hence, this follows from the above. The above discussion likewise verifes the unit condition. 

To see that u is an S∗-isomorphism is relatively straightforward. It follows since, on the level of 

colimits, the unit diagram already commutes—this is essentially by defnition, since iΘnX = ΘniX 

by Lemma 3.2.6 and, as we have seen above, the following diagram commutes for all X 

Θ(X) ∧ K Θ(X ∧ K) 

X ∧ K X ∧ K 

That µ is an S∗-natural transformation (isomorphism, even) is slightly more opaque. Since 
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µ = (Θ∞jX )−1 is an isomorphism, it is equivalent for us to show the following diagram commutes. 

^ ^assemb Θ∞assemb (Θ∞Θ∞(X)) ∧ K Θ∞(Θ∞(X) ∧ K) Θ∞Θ∞(X ∧ K) 
Θ∞jX ∧K Θ∞jX∧K =jΘ∞X ∧K =jΘ∞(X∧K) 

Θ∞(X) ∧ K Θ∞(X ∧ K)
^assemb 

On the level of underlying colimit sequences, the map Θ∞jX ∧ K is induced by the maps 

(ΘkjX ) ∧ K. Thus, the following solid diagram then commutes 

^ Θk ^assemb assemb Θk(Θ∞(X)) ∧ K Θk(Θ∞(X) ∧ K) Θk(Θ∞(X ∧ K)) 
Θk(jX ∧K)(ΘkjX )∧K 

ΘkjX∧K^assemb ΘkX ∧ K Θk(X ∧ K) 

Upon taking colimits, the outside part of this diagram induces the associativity diagram we wish 

^to show commutes. Since the unit condition is an S∗-enriched functor, this implies that assemb ◦ 

(jX ∧ K) = jX∧K . Hence, the dotted arrow does indeed make this diagram commute, whence the 

conclusion. 

Remark 3.3.7. In fact, the functors Θk are S∗-enriched functors for essentially the very same reason. 

The adjoint assembly maps Θkhom(K, X) → hom(K, ΘkX) are given as follows. First, note that 

k kthere is a natural assembly isomorphism s (X) ∧ K ∼= s (X ∧ K), as the smash product is defned − − 

levelwise—in fact, this map is simply an equality. Hence, there is a natural assembly isomorphism 

k ks hom(K, X) ∼= hom(K, s−X) defned as the map adjoint to − 

ks ε
k k k s hom(K, X) ∧ K =∼ s−(hom(K, X) ∧ K) −−−→ s−X,− 
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and this is easily seen to be an isomorphism—an equality, even. The adjoint assembly map is then 

simply the composite of natural isomorphisms 

k kΘkhom(K, X) = Ωkhom(K, s−X) =∼ hom(Sk ∧ K, s−X) =∼ hom(K, ΘkX), 

using the twist isomorphism and the adjoint associativity isomorphism. We will say more about this 

associativity isomorphism in a remark following the theorem statement below and in Remark 3.3.11. 

Theorem 3.3.8. Let C be a locally fnitely presentable, fnitely generated, pointed simplicial model 

category in which the domains of the generating cofbrations are cofbrant, sequential colimits pre-

serve fnite products and Ω preserves sequential colimits. Suppose the domains and codomains of 

the generating acyclic cofbrations are simplicially compact. There exists a level fbrant, pointed 

simplicial fbrant replacement monad L on SpN(C) such that Θ∞ ◦ L is a pointed simplicial, stable 

fbrant replacement monad. 

Remark 3.3.9. Throughout the proof, we will implicitly identify the k-fold application of the functor 

Ω—namely, Ωk—with the functor hom(Sk, −) under the natural associativity isomorphism 

∼= 
α : hom(K ∧ L, X) −→ hom(K, hom(L, X)). 

This is the map adjoint to 

α ε
XK∧L ⊗ K ⊗ L − −→ XK∧L ⊗ K ∧ L → X. 
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We are at liberty to do this because for an S∗-enriched functor the adjoint assembly maps are 

compatible with α. While this adjoint associativity should be easy to believe, we will nevertheless 

give an extended discussion on this point in Remark 3.3.11 following the proof. 

Proof. Let R be an S∗-enriched fbrant replacement monad on C. In this case, we may assume R 

commutes with fltered colimits—this follows exactly as in [16, Lem. 1.3], except Garner’s small 

object argument is run with respect to the generating acyclic cofbrations and we restrict to the 

map to the terminal (zero) object. Note that Garner’s small object argument runs if the category 

is locally presentable, but the commutation with fltered colimits step only requires the domains 

and codomains of the generating sets of cofbrations to be simplicially compact. Let L be the 

prolongation of R. Then L also commutes with fltered colimits since these are computed objectwise. 

As we have seen in Theorem 3.3.1, L remains an S∗-enriched level fbrant replacement monad on 

the category of spectra. Hence, Θ∞L and LΘ∞ are S∗-enriched functors. 

In particular, we claim there is an S∗-natural transformation LΘ∞ → Θ∞L. To see this, note 

that since L is S∗-enriched, it as has natural assembly maps 

^assembK,X
L(hom(K, X)) −−−−−−→ hom(K, LX). 

k k kNote that Θ∞ = colim Θk where Θk = s−Ωk = Ωks−. The functor s shifts a spectrum by− 

k(s−X)n = Xn+k, and this functor commutes with all limits and colimits, as these are computed 

kobjectwise. Hence, Lsk = s−L, since L is a functor built out of various colimits, all of which− 

ks naturally commutes with. We defne the map LΘ∞X → Θ∞LX as follows. First note that− 
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LΘ∞X ∼= colimk LΘkX since L commutes with fltered colimits. In particular, 

kcolimk LΘkX = colimk Ls
k ΩkX = colimk s−LΩkX. − 

k kUsing the assembly map, we obtain a map s−LΩkX → s ΩkLX = ΘkLX. These maps commute − 

^with the structure maps of the colimit by naturality of assemb and the manner in which the 

adjoint structure maps LXn → ΩLXn+1 structure maps are defned for L—namely, this map is the 

composite 
^assemb 

LXn → LΩXn+1 −−−−→ ΩLXn+1, 

and the relevant commutative diagram is 

^ Ωk ^assemb assemb LΩkΩXn+1 ΩkLΩXn+1 Ωk+1LXn+1 

assemb LΩkXn ΩkLXn 

A separate analysis is needed for k = 0, in which case the bottom map above is the identity. 

Commutativity of the square when k = 0 follows since L is the prolongation of an S∗-enriched 

functor on C. In particular, this frst square is given levelwise by 

nLXn 
LσX 

LΩXn+1 

^assemb 

LXn
σLX 

ΩLXn+1 
n 

and this diagram commutes precisely because of how the structure maps for the prolongation of L 

are defned. 

^

LΩkσX 
n Ωk LσX 

n 
ΩkσLX 

n 

89 



In particular, in the colimit, this gives us a natural assembly map 

∞
âssemb = swap : LΘ∞X → Θ∞LX. 

Now we must show that this assembly map is S∗-natural in X. 

Recall that Θk is an S∗-enriched functor as well. Since the swap map for LΘ∞ is built from 

the swap maps LΘk under a colimit, the easiest way to see that swap : LΘ∞ → Θ∞L is S∗-natural 

is to check that it is S∗-natural for the assembly maps LΘk → ΘkL, since it then follows for swap 

upon taking colimits. To check compatibility with the S∗-module adjoint assembly maps for LΘk 

kand ΘkL, since s pulls out of each, this amounts to showing the following diagram commutes − 

^assemb LΩkhom(K, X) ΩkLhom(K, X) 
∼ Ωk ^= assemb 

Lhom(K, ΩkX) Ωkhom(K, LX) 
^assemb ∼= 

hom(K, LΩkX) hom(K, ΩkLX)
^hom(K,assemb) 

where the top and bottom horizontal maps are simply coming from the natural assembly map 

LΘk → ΘkL and the columns are S∗-module adjoint assembly maps for these functors. Note that 

^adjoint assembly map assemb for L is suitably associative—this is the adjoint property of associative 

kon the level of the S∗-tensoring. More precisely, as s pulls out of everything and unpacking the − 
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assembly map for Ωk, we may blow this diagram up to the following one. 

^ ^ α−1assemb Ωk assemb τ ∗ 
LΩk(XK ) ΩkL(XK ) Ωk(L(X)K ) L(X)Sk∧K L(X)K∧Sk 

^assemb Lα−1 
^assemb 

^assemb L(XSk∧K ) L(XK∧Sk ) L((ΩkX)K ) (LΩkX)K 
Lτ∗ 

Lα 

^ ^assemb assemb ^ 
K 

assemb 

L(X)Sk∧K L(X)K∧Sk (ΩkL(X))K 
τ∗ 

α α 

^Each subdiagram here commutes by naturality of the adjoint assembly map assemb for L or the 

^fact that L is an S∗-enriched functor, using the adjoint associativity condition for assemb. 

Give Θ∞L the S∗-enriched monad structure derived from the composition of units maps X → 

LX → Θ∞LX and with multiplication µ : Θ∞LΘ∞L → Θ∞L using the swap S∗-natural trans-

formation just constructed. If this is indeed a monad, then it is an S∗-monad as all natural 

transformations appearing in its unit and multiplication maps are S∗-natural. It is now a straight-

forward—if not tedious—exercise to show this natural swap map is a distributive law as in [6] from 

^the properties of the various assembly maps assemb of L and thus that Θ∞L is an S∗-enriched 

monad. For the sake of completeness, we conclude with this argument. 

For L2Θ∞, we wish for the diagram 

swap 

swap swap 
L2Θ∞ LΘ∞L ΘkL2 

LLΘ∞µ Θ∞µ 

swap LΘ∞ Θ∞L 
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to commute, and this follows since for each k, the underlying diagrams 

swap 

swap swap 
L2Θk LΘkL ΘkL2 

LLΘkµ Θk µ 

k kcommute. To see this, note that since Θk = s Ωk, we may write this as s applied to the following − − 

diagram 

LΘk ΘkL swap 

swap 

swap swap 
L2Ωk LΩkL ΩkL2 

LLΩkµ Ωk µ 

and this commutes since µL is an S∗-natural transformation. Both unit maps are transfnite com-

posites, so similar reasoning shows compatibility of the units. For the unit for Θ∞, the following 

diagram commutes 

LΘ∞X 

for the following reason. Since L is commutes with colimits, being built out of various colimits, the 

following is a colimiting diagram for LΘ∞X, displaying only the frst structure map 

LjX 

LΩk ΩkL swap 

LX 

Θ∞LX 

LjX jLX 

swap 

LiX LΘiXLX LΘX · · · LΘ∞X 

92 



and the following diagram commutes from what we saw before in our analysis of the swap map. 

LjX 

LiX LiΘXLX LΘX · · · LΘ∞X 
swap ^ ^assemb assemb 

LX ΘLX 
iΘLX · · · Θ∞LX 

jLX 

iLX 

To see the following diagram commutes 

Θ∞X 

LΘ∞X Θ∞LX 

uL 
Θ∞X Θ∞uL 

X 

swap 

note that since L commutes with colimits, the left-hand map is in fact the colimit of the following 

commuting ladder of maps, we claim. 

X ΘX Θ2X · · · Θ∞X 
iX 

inX 

iΘX 

inΘX 

LL uΘ 
L 
∞X 

L uu Θ2XX uΘX 

LX LΘX Θ2X · · · LΘ∞X 

L inX 

LiX LiΘX 

L inΘX 

L LThe squares all commutes by naturality of u . To show that uΘ∞X is the colimiting map, we note 

that by universal properties there is only one such map making the evident diagram commute, so 
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it sufces to show that the following diagram commutes for all k ≥ 0 

inΘkXΘkX Θ∞X 
L Lu
ΘkX uΘ∞X 

LΘkX LΘ∞X 
L inΘkX 

L Land this follows precisely from naturality of u . Hence, uΘ∞X is the colimit of the unit maps 

LuΘkX . As before, this reduces us to checking commutativity at the level of the underlying diagrams 

defning various maps. But then, since uL : id → L is, in particular, an S∗-natural transformation, 

kthe following diagram commutes by pulling out copies of s− 

ΘkX ΘkX 
L Lu
ΘkX 

ΘkuX 

LΘkX ΘkLX 
^assemb 

which shows that the composite 

Lu
ΘkX assemb̂ ΘkX −−−→ LΘkX −−−−→ ΘkLX (∗) 

Lis simply ΘkuX . the composite map Θ∞X → LΘ∞X → Θ∞LX is induced by (∗), and since the 

Lcomposite (∗) is simply ΘkuX , it follows by taking the colimit in k the resulting map is precisely 

LΘ∞uX , which is what was to be shown. 

Recall that 

Θ∞ 
µ = j−1 = (Θ∞jX )−1 .X Θ∞X 
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Thus, for the last diagram, it is equivalent to show the following diagram commutes 

swap swap 
L(Θ∞)2 Θ∞LΘ∞ (Θ∞)2L 

LΘ∞ Θ∞L 

LjΘ∞ 

swap 

jΘ∞L = Θ∞jL 

The map LjΘ∞X = LΘ∞jX is induced by the maps LΘkjX : LΘkX → LΘkΘ∞X and the map 

Θ∞jL is induced by the maps ΘkjLX : ΘkLX → ΘkΘ∞LX. However, we saw that jLX = 

swap ◦LjX in the course of this proof. Hence, 

ΘkjLX = Θk swap ◦ΘkLjX . 

We therefore have the following commutative diagram 

swap Θk swap 
LΘkΘ∞X ΘkLΘ∞X ΘkΘ∞LX 

LΘk jX ΘkLjX 
ΘkjLX 

LΘkX ΘkLX swap 

and this shows that, on the level of the underlying colimiting sequences, the two composites are 

equal—hence, the diagram commutes, as desired. 

Remark 3.3.10. What is remarkable is that this composite is therefore a pointed simplicial, stable 

fbrant replacement monad for the stable semi-model structure on SpN(C); that is, an honest, 

enriched, spectrifcation monad for the stable semi-model structure—we are not guaranteed that 

this exists in general when we do left Bousfeld localization of a semi-model structure. This heavily 

exploits the fact that we may suppose L is an S∗-enriched, level fbrant replacement monad that is 
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prolonged from one on C as well as the particularly simple and amenable description of Θ∞. The 

only downside is that we cannot possibly expect the unit map X → Θ∞LX to be a cofbration, in 

general. 

It was convenient for us to use a slightly diferent notion of an S∗-enriched functor above. It is 

worthwhile, albeit quite tedious, to say a few words about this. 

Remark 3.3.11. Consider F : C → C some S∗-enriched endofunctor such as L or Θ∞ above—while 

the restriction that the domain and codomain of F be the same is not necessary, it simplifes our 

discussion. Let α : (X ⊗ K) ⊗ L → X ⊗ (K ∧ L) be the associativity isomorphism for the simplicial 

tensor on C. 

We can defne the adjoint associativity natural transformation α : XK∧L → (XL)K to be the 

adjoint to 

α ε(XK∧L ⊗ K) ⊗ L − −→ XK∧L ⊗ (K ∧ L) → X. 

Namely, the map 

(αL)K (εL)K 

((XK∧L ⊗ K ⊗ L)L)K ((XK∧L ⊗ K ∧ L)L)K (XL)K 

ηK 

(XK∧L ⊗ K)K 

η 

XK∧L 

This map is inverse to the map β : (XL)K → XK∧L adjoint to 

α−1 ε⊗L ε(XL)K ⊗ (K ∧ L) −−→ (XL)K ⊗ K ⊗ L −−−→ XL ⊗ L → X. 
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In particular, this means it is the composite 

(α−1)K∧Lη(XL)K ((XL)K ⊗ (K ∧ L))K∧L ((XL)K ⊗ K ⊗ L)K∧L 

(XL ⊗ L)K∧L 

XK∧L 

(ε⊗L)K∧L 

εK∧L 

Consider the composite αβ : (XL)K → (XL)K . This is the identity by naturality of α, η, ε and the 

triangle identities. Concisely and with somewhat imprecise labeling, the crucial point is that the 

following diagram commutes. 

η(XL)K ((XL)K ⊗ K ∧ L)K∧L 

η(((XL)K ⊗ K ⊗ L)L)K ((((XL)K ⊗ K ∧ L)K∧L ⊗ K ⊗ L)L)K 

(((XL)K ⊗ K ∧ L)L)K ((((XL)K ⊗ K ∧ L)K∧L ⊗ K ∧ L)L)K 

(((XL)K ⊗ K ⊗ L)L)K ((XL)K ⊗ K ∧ L)L)K 

α−1 α−1 

η 

ε 

α 

The frst vertical arrows are the evident composites involving the unit of the adjunction. That the 

composite βα is the identity follows from similar considerations. 

Now consider the endofunctor F above. The unit condition is simpler than the associativity 

condition. If the unit natural isomorphism is ρ : X⊗S0 → X, let ρ : X → XS0 be the adjoint natural 

isomorphism—it remains a natural isomorphism because it is inverse to the map ε◦ρ−1 : XS0 → X. 
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Write the adjoint unit diagram 
F (ρ)

FX F (XS0 ) 
^assemb 

FX F (X)S0 

ρ 

and note that on account of how the assembly map is itself suitably adjoint to the adjoint assembly 

map as in the proof of Theorem 3.3.1, the adjoint of this diagram is, slightly blown up, 

F (ρ∧S0) 

F (X ∧ S0) 

assemb 

F (ρ)∧S0 
assemb F (X) ∧ S0 F (XS0 ) ∧ S0 F (XS0 ∧ S0) 

F (ε) 

and ε◦ρ∧S0 = ρ, essentially by defnition. Hence, this diagram commutes since F is an S∗-enriched 

functor. 

F (X) ∧ S0 F (X)ρ 

The adjoint associativity condition for the functor F is to require the following diagram com-

mutes 
^Fα assembF (XK∧L) F ((XL)K ) F (XL)K 

α 
F (X)K∧L (F (X)L)K 

^assemb ^assemb 
K 

^Adjointing the counterclockwise composite and using the defnition of α and assemb as adjoints, 

98 



the resulting composite augments to a commutative diagram 

α assemb F (XK∧L) ⊗ K ⊗ L F (XK∧L) ⊗ K ∧ L F (XK∧L ⊗ K ∧ L) 
^ ^ F (ε)assemb⊗K⊗L assemb⊗K∧L 

F (X)K∧L ⊗ K ⊗ L F (X)K∧L ⊗ K ∧ L F (X)α ε 

To see that the right-hand square commutes, note that the clockwise composite is the adjoint of 

âssemb : F (XK∧L) → F (X)K∧L—the counterclockwise composite has the same adjoint by virtue 

of the triangle identities—this is completely analogous to the verifcation of (∗∗) in the proof of 

Theorem 3.3.1. Similarly, we may augment the adjoint of the clockwise composite as the following 

solid commutative diagram. 

F (α)⊗K⊗L ^assemb⊗K⊗L
F (XK∧L) ⊗ K ⊗ L F ((XL)K ) ⊗ K ⊗ L F (XL)K ⊗ K ⊗ L 

ε⊗L 

F (α⊗K)⊗L

�
� F (ε)⊗L assemb 

assemb assemb 

F (XK∧L ⊗ K) ⊗ L F ((XL)K ⊗ K) ⊗ L F (XL) ⊗ L F (XL ⊗ L) 
F (ε)assemb assemb ^assemb⊗L 

εF (XK∧L ⊗ K ⊗ L) F ((XL)K ⊗ K ⊗ L) F (X)L ⊗ L F (X) 

and the right-most square on top commutes because the counterclockwise composite is the adjoint 

^ ^of assemb tensored with L and the clockwise composite is the very same since ε ◦ assemb is the 

adjoint of assembly map composed with F of the counit from what we saw in Theorem 3.3.1. The 

same reasoning shows the last big square on the bottom commutes. The quadrilateral commutes 

by naturality of the assembly maps. 

Consider the counterclockwise, outside composite above and call it (⋆). Since F is an S∗-enriched 
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functor, the left-hand column of (⋆) fts into the associativity diagram 

αF (XK∧L) ⊗ K ⊗ L F (XK∧L) ⊗ K ∧ L 

assemb 

F (XK∧L ⊗ K) ⊗ L assemb 

assemb 

F (α)
F (XK∧L ⊗ K ⊗ L) F (XK∧L ⊗ K ∧ L) 

We wish to show the adjoint map now under consideration is equal to F (ε) ◦ assemb ◦ α. From 

the counterclockwise direction in the associativity diagram above, it now sufces to show that 

ε ◦ α = ε ◦ ε ⊗ L ◦ α ⊗ K ⊗ L, we claim. 

To see this, suppose it is so. Then by applying F , it follows that (⋆) is equal to the coun-

terclockwise composite of the associativity diagram above post-composed with F (ε). Hence, by 

commutativity of this diagram, (⋆) is equal to F (ε) ◦ assemb ◦ α, as desired. 

The adjoint of the left-hand side is the adjoint associativity isomorphism, by defnition. The 

adjoint of the right-hand side is the very same, it happens. This follows because, upon taking the 

adjoint, we get a commutative diagram 

XK∧L η (XK∧L ⊗ K)K ηK 

(XK∧L ⊗ K ⊗ L)L)K 

α α α 

η ηK 

(XL)K ((XL)K ⊗ K)K (((XL)K ⊗ K ⊗ L)L)K 

(ε⊗L)L)KεK 

(XL)K ((XL ⊗ L)L)K 
ηK 

(εL)K 

(XL)K 
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�which shows the adjoint is likewise α, as claimed. 

Arguments similar in spirit to the above show that the adjoint condition to be an S∗-enriched 

natural transformations between S∗-enriched functors—namely, respect for the the adjoint assembly 

map—holds and is equivalent to the usual tensor condition, at least when the module category in 

question is both tensored and cotensored over S∗. At this point, we hope the reader has seen enough 

to believe the adjoint conditions are equivalent and omit a further discussion on this, leaving it as 

an easy exercise for the interested reader. 
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Chapter 4 

Spectra of Retractive Operadic 

Algebras 

We now specialize many of the preceding results to AlgO. Along the way, we will pick up some nice 

facts about these categories of O-algebras. This chapter, along with the preceding one, comprise 

one part of the technical heart of this paper. We work in the context of operads in symmetric 

spectra, using the framework of of [26]. 

4.1 Properties of the Category AlgO 

Rather than making certain constructions by hand, we will again refer to Defnition 3.1.5 and 

Proposition 3.1.6, with which we can easily show that categories of O-algebras in spectra are 

locally fnitely presentable. 

Proposition 4.1.1. The categories SpΣ and AlgO are locally fnitely presentable with strong sets 
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of compact generators 

GΣ = {Fn(∆[m]+) : n, m ∈ N} and GO = {O(Fn(∆[m]+)) : n, m ∈ N} , 

respectively. 

Proof. Since both categories are bicomplete, it is enough to show, in light of Proposition 3.1.6, 

that GΣ = {Fn(∆[m]+) : n, m ∈ N} and GO = {O(Fn(∆[m]+)) : n, m ∈ N} are strong generators 

of compact objects. It is clear that both sets consist of compact objects by an adjunction argument, 

so we need only show that the given sets are strong generators for the categories. 

Note that in any category with pullbacks, to call a map i : X0 → X a monomorphism is precisely 

the same as saying that the following square is a pullback 

X0 X0 

X0 X 

idX 

idX i 

i 

Since limits in AlgO are created in SpΣ under forgetful functors U , the forgetful functor preserves 

and refects monomorphisms. Hence, if i : X0 → X is a proper subobject in AlgO, then so too is 

Ui : UX0 → UX in SpΣ . If we know that GΣ is a strong generating set, then we can fnd some map 

f : Fn(∆[m]+) → UX for which there is no factorization 

Fn(∆[m]+) UX0 

Ui id 

Fn(∆[m]+) UX 
f 
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But then, by adjunction, there can be no factorization 

O(Fn(∆[m]+)) X0 

iid 

O(Fn(∆[m]+)) X 
f♯ 

so it sufces to prove GΣ is a strong generating set. For this, simply note that if i : X0 → X is a 

proper subobject of a symmetric spectrum, then there is a simplex x ∈ (Xn)m not in the image of i 

for some n, m ∈ N. It follows that the map h : Fn(∆[m]+) → X specifed by this simplex does not 

factor through i. Similarly, if f , g : X0 → X are such that f ̸= g, then there is a simplex x ∈ (Xn)m 

for some n, m ∈ N for which f(x) ≠ g(x) and, once again, letting Fn(∆[m]+) → X be the map 

specifed by this simplex shows that fh ̸= gh. 

Remark 4.1.2. Alternatively, noting that AlgO is the category of algebras for the monad UO ◦ (−) 

associated to the adjunction 

O◦(−)
SpΣ AlgO, 

U 

we have that UO◦(−) preserves fltered colimits since O◦(−) is a left adjoint and by [46, Prop. 2.3.5] 

and [15, Prop. 2.16], the forgetful functor creates fltered colimits, the monad UO ◦ (−) preserves 

fltered colimits and thus, since SpΣ is locally fnitely presentable, it follows by [10, Thm. 5.5.9] 

that AlgO is locally fnitely presentable as well. 

As is shown in [27, Thm. 6.18], the category AlgO is a cofbrantly generated simplicial model 

category in both the positive stable and positive fat stable model structures, building upon the 

work of Harper in [26]. Since every positive stable cofbration is a positive fat stable cofbration, 
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we will focus on the latter. To do this, we frst introduce some notation, following Harper in [26]. 

Defnition 4.1.3. Let Σ = n≥0 Σn. For each m ≥ 0 and subgroup H ≤ Σm, let GH : S∗ → S∗ 
Σ 

m 

be the functor sending a pointed space X to the symmetric sequence concentrated in degree m as 

Σm · H X where X has the trivial H-action. Explicitly, this is given by 

 

(Σm/H)+ ∧ X n = m, 
GH (X)n = m ∗ else. 

This functor is left adjoint to the functor 

EvH = lim ◦ ResΣm ◦ Evm : SΣ → S∗ m H ∗ 
H 

sending a symmetric sequence (X0, X1, . . .) to EvH (X) = limH Res
Σm Xm, which we will also denotem H 

by XH .m 

The positive fat stable model structure has the following explicit description, due to Harper in 

[26], following the recipe given by Schwede and Shipley in [50] for the model structures established 

by Shipley in [49]. First, we give the positive fat stable model structure on symmetric spectra SpΣ . 

Defnition 4.1.4. The positive fat stable model structure on SpΣ is the cofbrantly generated, 

simplicial model category having as its weak equivalences the stable equivalences and generating 

cofbrations 

I = S ⊗ GH (∂∆[k]+) → S ⊗ GH (∆[k]+) : m ≥ 1, k ≥ 0, H ≤ Σm a subgroupm m 
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and generating acyclic cofbrations of two types J = JI ∪ JII , where the type one maps are 

JI = S ⊗ GH (Λr[k]+) → S ⊗ GH (∆[k]+) : m ≥ 1, r ≥ 0, k ≥ 0, H ≤ Σm a subgroup m m 

and the type two maps are ⎩ 
JII = Kn 

n≥1 

where 

Kn = {cn□(∂∆[k]+ → ∆[k]+) : k ≥ 0} . 

Here, the square indicates the pushout product map and cn : Fn+1S1 → FnS0 is the map obtained 

in the pushout 
λnFn+1S

1 ∧ ∆[0]+ FnS
0 

cn 

Fn+1S
1 ∧ ∆[1]+ Mλn 

where λn = λ ∧ idFnS0 : Fn+1S1 → FnS0 and λ is the map F1S1 → F0S0 adjoint to the identity 

map idS1 . 

The category AlgO inherits a model structure from the positive fat stable model structure on 

SpΣ in the following way. 

Defnition 4.1.5. The positive fat stable model structure on AlgO is the cofbrantly generated, 

simplicial model category having as its weak equivalences and fbrations the underlying stable 

equivalences and fbrations in the positive fat stable model structure on SpΣ . Note that this model 
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structure is not stable. This has generating cofbrations 

IO = O(I) 

and generating acyclic cofbrations 

JO = O(JI ) ∪ O(JII ). 

where I, JI and JII are the sets of maps defned in the preceding defnition. 

Let us declare S ⊗ GH = F H .n n 

Lemma 4.1.6. For each n ≥ 0 and H ≤ Σn, the functor S ⊗GH = F H : S∗ → SpΣ is a left Quillen n n 

functor where SpΣ is equipped with the positive fat stable model structure. 

Proof. From the analysis given in [26], the functor F H is left adjoint to the functor sending an 

spectrum X to XH = limH Res
Σn Xn, thinking of Xn as a functor Σn → S∗. Since S∗ is cofbrantly n H 

generated, it sufces to show that F H preserves the generating cofbrations and generating acyclic n 

cofbrations—since every other cofbration is a retract of one built out of transfnite compositions 

of these—and this occurs essentially by defnition. 

This has the following consequence. 

Lemma 4.1.7. The domains of the generating cofbrations and generating acyclic cofbrations are 

cofbrant in AlgO. 

107 



Proof. Harper constructs this model structure in [26] according to the recipe provided by Schwede 

and Shipley in [50]. It follows that O is a left Quillen functor and so it sufces to show that the 

corresponding generating cofbrations and acyclic cofbrations in SpΣ in the positive fat stable 

model structure are cofbrant. Since F H is a left Quillen functor, this is true for the generating n 

acyclic cofbrations JI and generating cofbrations I, so it remains to show that it the generating 

acyclic cofbration JII have cofbrant domain. 

For this, taking H = e in the pushout defning Mλn, it follows that cn is a cofbration in 

the positive fat stable model structure on SpΣ . Since this model structure is simplicial, the map 

FnS
0 ∧ ∂∆[k]+ → FnS0 ∧ ∆[k]+ for n ≥ 1 is likewise a positive fat stable cofbration and hence 

the basechange map 

Mλn ∧ ∂∆[k]+ → FnS
0 ∧ ∆[k]+ 

⎝ 
Mλn ∧ ∂∆[k]+ 

FnS0∧∂∆[k]+ 

is a positive fat stable cofbration. The source is cofbrant since Mλn is and thus the target is 

cofbrant. But the target is the domain of the map cn□(∂∆[k]+ → ∆[k]+), which shows that the 

domains of the generating acyclic cofbrations of the second type have cofbrant domains. 

The generating cofbrations and acyclic cofbrations are likewise all compact. To prove this, the 

following two lemmas are needed. 

Lemma 4.1.8. Suppose X has fnitely many non-degenerate simplices. Then X is compact in S. 

If X is additionally pointed, then X is compact in S∗. 

Proof. This follows easily by induction on the smallest integer n for which X = skn X, using the 
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skeletal fltration. 

Lemma 4.1.9. Let m ≥ 0 and H ≤ Σm be a subgroup. The functor EvH commutes with fltered m 

colimits. 

Proof. The functors Evm : SΣ → SΣm and ResΣm : SΣm → SH create colimits, so we must check ∗ ∗ H ∗ ∗ 

that limH : SH → S∗ commutes with fltered colimits. This follows since H is a fnite group and ∗ 

fltered colimits and fnite limits commute in sets. 

Proposition 4.1.10. The category AlgO is fnitely generated. In fact, the domains and codomains 

of the generating cofbrations and acyclic cofbrations are all compact objects. 

Remark 4.1.11. Since the forgetful functor creates fltered colimits by [46, Prop. 2.3.5] and [15, 

Prop. 2.16], it sufces to prove something slightly weaker—that O◦ (−) preserves compact objects. 

We will not explicitly make this reduction even though it is implicit in the following argument. 

Proof. Fix a fltered diagram G : D → AlgO. Let us consider the domains and codomains of 

generating cofbrations or generating acyclic cofbrations of the frst type to begin with. An object 

of this sort has the form O(F H (A)). We then have adjunction isomorphisms colim hom(O(A), G) ∼= n 

colim hom(F H (A), UG) =∼ colim hom(A, (UG)H ). But now A ∈ S∗ is a compact object and, hence, n n 

the natural map 

colim hom(A, (UG)H ) → hom(A, colim(lim ResΣn (UG)n))n HH 

is an isomorphism. But now fnite limits and fltered colimits commute in the category of sets and, 
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hence, also in the category of pointed sets. It follows easily that 

hom(A, colim((UG)Hn )) ∼= hom(A, (colim UG)Hn ) ∼= hom(FHn (A), colim UG). 

Note that the natural map colim UG → U colim G is an isomorphism, since G is fltered and by 

[46, Prop. 2.3.5] and [15, Prop. 2.16], the forgetful functor creates fltered colimits. Hence, 

hom(FHn (A), colim UG) ∼= hom(FHn (A), U colim G) ∼= hom(O(FHn (A)), colim G). 

Unraveling this amounts to the following commutative diagram 

colim hom(O(FHn (A)), G) hom(O(FHn (A)), colim G) 
∼ ∼= = 

colim hom(A, (UG)Hn ) hom(A, colim((UG)Hn ))∼= 

which, since all marked arrows are isomorphism, so too must the top arrow be an isomorphism, 

which is the natural map we sought to show is an isomorphism. 

It therefore remains to show that the domains and codomains of the generating acyclic cof-

brations of type two O(JII ) are compact. We will argue this in the case of the target, with the 

argument for the source having the same shape, mutatis-mutandis. 

To see that targets O(Mλn ∧ ∆[k]+) are compact, note that since Mλn is a pushout and since 
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− ∧ ∆[k]+ = − ∧ F0∆[k]+, we may write this object as the pushout 

Fn+1(S1 ∧ ∆[0]+ ∧ ∆[k]+) Fn(S0 ∧ ∆[k]+) 

Fn+1(S1 ∧ ∆[1]+ ∧ ∆[k]+) Mλn ∧ ∆[k]+ 

Since S1 ∧∆[0]+ ∧∆[k]+, S1 ∧∆[1]+ ∧∆[k]+ and S0 ∧∆[k]+ have fnitely many non-degenerate sim-

plices, they are compact in S∗. By universal properties, it follows that hom(O(Mλn ∧ ∆[k]+), G) ∼= 

hom(Mλn ∧ ∆[k]+, UG) is the pullback 

hom(Fn(S0 ∧ ∆[k]+, UG) 

hom(Fn+1(S1 ∧ ∆[1]+ ∧ ∆[k]+), UG) hom(Fn+1(S1 ∧ ∆[0]+ ∧ ∆[k]+), UG) 

Hence, since, as above, U creates fltered colimits, since fnite limits and fltered colimits commute 

in the category of sets and since each object in the above fork is compact, colim hom(O(Mλn ∧ 

∆[k]+), G) is the pullback 

hom(O(Fn(S0 ∧ ∆[k]+), colim G) 

hom(O(Fn+1(S1 ∧ ∆[1]+ ∧ ∆[k]+)), colim G) hom(O(Fn+1(S1 ∧ ∆[0]+ ∧ ∆[k]+)), colim G) 

and so it that the natural map 

colim hom(O(Mλn ∧ ∆[k]+), G) → hom(O(Mλn ∧ ∆[k]+), colim G) 

is an isomorphism. 
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Proposition 4.1.12. Filtered colimits and fnite limits commute in AlgO. 

Proof. The forgetful functor creates both fltered colimits and limits in SpΣ where they commute. 

Proposition 4.1.13. For any fnite, pointed simplicial set K, the mapping object homAlgO 
(K, −) 

preserves fltered colimits. 

Proof. Let U : AlgO → SpΣ be the forgetful functor. Here, the mapping object in AlgO is defned 

as in [27, §6.1]. Namely, homAlgO 
(S1, X) is the mapping symmetric spectrum HomS (Σ∞S1, X) 

where the map O ◦ (HomS (Σ∞S1, X)) → HomS(Σ∞S1, X) is the map adjoint to the composite 

ν O◦(ev) µXO ◦ (HomS (Σ∞S1 , X)) ∧ Σ∞S1 −→ O ◦ (HomS (Σ∞S1 , X) ∧ Σ∞S1) −−−−→ O ◦ (X) −→ X. 

However, HomS (Σ∞K, X) ∼= hom(K, X) natural in K and X, where hom(K, X)n = homS∗ (K, Xn) 

with the evident Σn action. This is because a simple computation shows that, in symmetric spectra, 

the smash product X ∧ Σ∞K ∼= X ∧ K natural in X and K, where the right-hand is the pointed 

simplicial action. Hence, there are natural isomorphism 

hom(X, HomS (Σ∞K, Y )) ∼= hom(X ∧ K, Y ) ∼= hom(X, hom(K, Y )) 

natural in X, K and Y . By Yoneda, this means there is a natural isomorphism HomS (Σ∞−, −) ∼= 

hom(−, −). Hence, homAlgO 
(K, X) is the O-algebra whose underlying spectrum is the sequence 

(homS∗ (K, X0), homS∗ (K, X1), . . .). 
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Since fltered colimits in AlgO are created in spectra and since UhomAlgO 
= hom, it sufces 

to show that hom(K, −) commutes with fltered colimits in spectra. This now follows since, in 

spectra, colimits are computed levelwise in S∗ and 

homS∗ (K, colimi Ai) ∼= colimi homS∗ (K, Ai) 

since S1 ∧ ∆[n]+ is a compact object in S∗ for each n ≥ 0 by Lemma 4.1.8. In particular, this 

means that the natural map 

colimi(homS∗ (K, Ai))n = colim hom(K ∧ ∆[n]+, Ai) 

→ hom(K ∧ ∆[n]+, colim Ai) = (homS∗ (K, colim Ai))n 

is an isomorphism for all n. 

Proposition 4.1.14. The domains and codomains of the generating cofbrations and generating 

acyclic cofbrations of AlgO are simplicially compact. 

Proof. We have seen they are compact, we now wish to show for any such domain or codomain, 

which therefore has the form O(X), O(X)∧∆[n]+ is a compact object. Harper and Hess endow AlgO 

with the structure of a simplicial model category in [27, Thm. 6.18]. The relevant constructions 

are as follows. The simplicial tensoring X ⊗ K is given by Harper and Hess [27, Def. 6.2] as the 

refexive coequalizer (which is therefore computed in the underlying category of spectra) 

d0 
O(X) ⊗ K = colim(O(O(X) ∧ K+) O(O(O(X))) ∧ K+) 

d1 
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− −

The smash products appearing in this coproduct are the ones arising from the simplicial tensoring 

on the category of symmetric spectra as in [37]. The map d1 is induced from the action on X and 

the map d0 is induced by the operad multiplication map µ : O ◦ O → O and the assembly map 

ν : O(X) ∧ K+ → O(X ∧ K+) induced from the diagonal maps K → K×n. The mapping object 

homAlgO 
(K, X) has as its underlying spectrum homSpΣ (K, X) = HomSpΣ (Σ∞K+, X) with action 

map adjoint in SpΣ to the composite 

ν O(ε) µXO(hom(K, X)) ∧ K+ −→ O(hom(K, X) ∧ K+) −−→ O(X) −→ X. 

We claim that for any X, O(X) ⊗ K ∼= O(X ∧ K+), natural in X and K. This is an adjunction 

argument. 

homAlgO 
(O(X) ⊗ K, Y ) =∼ homAlgO 

(O(X), homAlgO 
(K, Y )) =∼ homSpΣ (X, UhomAlgO 

(K, Y )) 

= homSpΣ (X, homSpΣ (K, UY )) ∼= homAlgO 
(X ∧ K+, UY ) ∼= homAlgO 

(O(X ∧ K+), Y ). 

All isomorphisms above are natural in X, K and Y from which we obtain an isomorphism O(X) ⊗ 

K → O(X ∧ K+). In particular, if X ∈ SpΣ is a compact object, then X ∧ ∆[n]+ is compact by 

an adjunction argument. Since the forgetful functor creates fltered colimits, O(X ∧ ∆[n]+) is a 

compact O-algebra. It follows that the domains and codomains of the generating cofbrations and 

generating acyclic cofbrations are simplicially compact. 
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4.2 Properties of the Category AlgY 
O 

We use the preceding results to deduce properties of the category retractive O-algebras. 

O 

O 

AlgCorollary 4.2.1. The category Y 

O 

cofbrations and acyclic cofbrations are cofbrant. 

Proof. AlgO is locally fnitely presentable by Proposition 4.1.1 and Proposition 2.2.5. The statement 

about the domains and the generating sets follows from Proposition 2.2.6. 

Corollary 4.2.2. Filtered colimits and fnite limits commute in AlgY 

O 

O 

Proof. Recall that this is true in AlgY by Proposition 4.1.12. The forgetful functor U : AlgY 

creates fltered colimits. Let D be fltered and J be fnite and consider a diagram F : D × J → AlgY 

is locally fnitely presentable and the domains of the generating 

for any Y . 

→ AlgO 

. 

O 

AlgY→ O 

limj F (−, j). Since the forgetful functor U : AlgY 

Let F ▷ : D × J▷ be the evident extension as in Defnition 2.1.11. Then limj F ▷(−, j) ∼= 

→ AlgO creates limits of shape J▷ and colimits 

of shape D, where they commute, it follows that fltered colimits and fnite limits commutes in 

AlgY .O 

Corollary 4.2.3. For any fnite, pointed simplicial set K, the mapping object homAlgY (K, −)
O 

preserves fltered colimits. 

Proof. According to our recipe for building homAlgY (K, −), it is enough to show that homAlgO/Y 
(K, −)

O 

preserves fltered colimits, but according to our recipe for building this object, it sufces to show 

homAlgO 
(K, −) preserves fltered colimits, and so we are done by Proposition 4.1.13. 
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Corollary 4.2.4. The domains and codomains of the generating cofbrations and generating acyclic 

cofbrations in AlgY are simplicially compact. O 

Proof. By Propositions 4.1.14 and 2.2.6, it sufces to prove that for any retractive O-algebra over 

Y of the form 
Y 

in 

O(X) Y 

α+idY 

Y 

with X simplicially compact in AlgO is once again simplicially compact. Recall that the coproduct 

in the middle is taken in AlgO. We claim that for K ∈ S∗, 

⎝ ⎝ 
(O(X) Y ) ∧ 

Y 
K ∼= O(X ∧ K+) Y 

O(X) 

natural in X and K. First note that, as O-algebras, (O(X) Y ) ⊗ K ∼= O(X ∧ K+) (Y ⊗ K). 

This is because − ⊗ K is a left adjoint and therefore commutes with colimits. Now, to see this, 

note that by Lemma 2.2.20 and Proposition 2.2.18, (O(X) Y ) ∧ 
Y 
K is computed as the following 

pushout in (AlgO)/Y —hence, the following pushout in AlgO—given by 

AlgO Y ⊗ K((O(X) Y ) ⊗ ∗) (O(X) Y ) ⊗ K 

Y (O(X) Y ) ∧ 
Y 
K 
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but we may write this as 

O(X∧(S0→K+))+Y ⊗(∗→K)(O(X ∧ S0) Y ⊗ ∗) Y ⊗ K O(X ∧ K+) Y ⊗ K+ inY ⊗K 

(O(X) Y ) Y 

Y (O(X) Y ) ∧ 
Y 
K 

By universal properties, a cone out of the above pushout fork with cone point Z is the same as a 

map Y → Z and a map O(X ∧ K+) → Z commuting with the maps from Y ∼= Y ⊗ ∗ and thus out 

of the pushout indicated. Hence, 

⎝ ⎝ 
(O(X) Y ) ∧ 

Y 
K ∼= O(X ∧ K+) Y. 

O(X) 

The structural map Y → (O(X ∧ K+) O(X) Y ) is simply the structural map of the coproduct and 

the map (O(X ⊗K+) O(X) Y ) Y → Y is induced by universal properties by the map id : Y → Y 

and the evident composite 

αO(X ∧ K+) → O(X ∧ ∆[0]+) = O(X ∧ S0) ∼= O(X) −→ Y , 

where the frst map is induced by the pointed surjective map K {+} → {0} {+}. Since U com-

mutes with fltered colimits, it sufces to show that for compact O(X), O(X ∧ (∆[n]+)+) O(X) Y 

is compact in AlgY 
O. Note that (K+)+ =∼ K+ 

S∗ S0, where this coproduct occurs in S∗ as indicated. 
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Hence, for a spectrum X, 

∼X ∧ (K+)+ = X ∧ (K+ 

⎝ 
S0) ∼= X ∧ K+ 

⎝ 
X, 

with the fnal coproduct occurring in spectra. Since, O ◦ (−) is a left adjoint, it happens that 

⎝ ⎝ ⎝ ⎝ 
O(X ∧ (∆[n]+)+) Y ∼= (O(X ∧ ∆[n]+) O(X)) Y ∼= O(X ∧ ∆[n]+) Y. 

O(X) O(X) 

We are thereby reduced to showing that O(X ∧ ∆[n]+) Y is compact. As an object in AlgO 
Y , it 

is obtained from the left adjoint (AlgO)/Y → AlgY 
O described in the proof of Proposition 2.2.6. An 

adjunction argument reduce us to showing that O(X ∧ ∆[n]+) is compact in (AlgO)/Y . However, 

the map O(X ∧ ∆[n]+) → Y factors through the map O(X ∧ ∆[n]+) → O(X ∧ S0) induced by the 

unique, surjective, pointed map ∆[n]+ → S0. Hence, an element of hom(AlgO 
(O(X ∧ ∆[n]+), Z))/Y 

is, by adjunction, precisely the same as a map in spectra f : X ∧ ∆[n]+ → UZ (U the forgetful 

functor) making the following diagram commute 

f 
X ∧ ∆[n]+ UZ 

Ug 

α◦ρ 

X∧c 

X ∧ S0 UY 

where Ug = g is the structure map of Z and is a map of O-algebras and c : ∆[n]+ → S0 is the 

unique pointed, surjective map. In other words, the set of such fllers f is, up to isomorphism, 
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simply the pullback 

hom(AlgO 
(O(X ∧ ∆[n]+), Z) homSpΣ (X ∧ ∆[n]+, UZ))/Y 

Ug∗ 

∗ homSpΣ (X ∧ ∆[n]+, UZ)α◦ρ◦X∧c 

where ρ : X ∧ S0 → X is the unit isomorphism. Since X is compact in SpΣ , X ∧ ∆[n]+ is compact 

in SpΣ . A quick argument using commutativity of fltered colimits and fnite products in sets shows 

that X ∧ ∆[n]+ is compact. 

In particular, chasing back through the adjunction, this shows that the domains and codomains 

of the generating cofbrations and generating acyclic cofbrations are simplicially compact, as 

⎝ ⎝ 
Hom(O(X) Y , Z)n = homAlgY ((O(X) Y ) ∧ 

Y 
∆[n]+, Z). 

O 

We are now ready to construct the stabilization of categories of retractive O-algebras over Y . 

Later, we will impose the mild assumption that Y is bifbrant. For now, this is not needed. 

Proposition 4.2.5. Given an O-algebra Y , the category of retractive O-algebras over Y AlgY isO 

a locally fnitely presentable, fnitely generated, pointed simplicial, model category such that the 

domains and codomains of all generating cofbrations and generating acyclic cofbrations are sim-

plicially compact and have cofbrant domains. 

Proof. The proposition follows as a simple matter of stringing together our preceding results. 
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Proposition 4.2.6. The stable semi-model structure on SpN(AlgY ) exists and is a pointed simpli-O 

cial, stable semi-model category. The weak equivalences are characterized as the πs-isomorphisms.∗ 

Here, we may take πs (X) = colimk πn(Ωk LXn+k) for any level fbrant replacement functor L.n Y 

Proof. The frst assertion is Proposition 3.1.12 and Theorem 3.1.13. The second assertion follows 

exactly as in Corollary 3.2.14, mutatis-mutandis. The fact that we are only working with a semi-

model structure, in this case, does not factor into the proof. 

Remark 4.2.7. The characterization of the S-local equivalences for the stable semi-model structure 

on SpN(AlgY ) is independent of the existence of the stable model structure. All that was O 
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Chapter 5 

Higher Blakers-Massey Theorems and 

Homotopy Excision and Their 

Consequences 

In this chapter, we investigate consequences of the higher Blakers-Massey and homotopy excision 

theorems of Ching and Harper in [15]. We make the following convention in this chapter. 

Convention 5.0.1. Wherever AlgY is mentioned, the object Y and spectral operad O of the re-O 

tractive category satisfy the following hypotheses, unless otherwise specifed. The object Y is 

(−1)-connected and bifbrant (cofbrant and fbrant). The operad O is (−1)-connected—in other 

words, for each k ≥ 0, the spectrum of k-ary operations O[k] is (−1)-connected. 

Remark 5.0.2. Any operad in spectra arising from one in spaces satisfes this property, such as the 

Ek-operads and the E∞-operad. 

121 



5.1 Retractive Forms of Homotopy Excision and Higher Blakers-

Massey Theorems 

To begin, let us see that the variants of of the main theorems in [15] hold. This will follow from a 

few useful lemmas. 

Lemma 5.1.1. If Fun(D, C) admits the injective model structure, then so too does Fun(D, C(idc)) 

and the natural isomorphism Fun(D, C(idc)) ∼= Fun(D, C)(idc) respects the model structures. The 

evident dual assertion likewise holds. 

Proof. The isomorphism of Lemma 2.1.4 is essentially an identity, so this follows immediately by 

noting that the cofbrations and weak equivalences of the injective model structure on Fun(D, C(idc)) 

are objectwise in the sense that they are preserved and refected by the forgetful functor Fun(D, C(idc)) → 

Fun(D, C). 

Lemma 5.1.2. Suppose Fun(D, C) admits the injective model structure. Then for any fbrant 

F : D → C(idc), the functor F : D▷ → C(idc) obtained from the procedure of Defnition 2.1.11 is 

likewise fbrant in Fun(D▷, C(idc)). If c is additionally fbrant in C, then UF : D▷ → C is fbrant in 

Fun(D▷, C). The evident dual assertion with the projective model structure likewise holds. 

Proof. Denote the cone point of D▷ be ∗ and let A → B be an acyclic cofbration of functors 

D▷ → C(idc). Since F (∗) = idc is the zero object, there is a unique lift 

A(∗) F (∗) = idc 

B(∗) idc 
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where the dashed arrows are the unique ones. Since ∗ is terminal in D▷ it follows easily that any 

lift 
A| D F 

B| D idc 

which exists as A → B restricts to an acyclic cofbration, extends uniquely to a lift 

A F ▷ 

B idc 

which means F is fbrant. 

If c is fbrant, then since by the preceding lemma, the fbrations of Fun(D▷, C(idc)) are simply 

the fbrations of Fun(D▷, C)(idc), which are created by the forgetful functor, it sufces to show that 

c → ∗C is a fbration in Fun(D▷, C) and this follows since D▷ has a terminal object ∗, so it is easy 

to observe that for any acyclic cofbration A → B in 

A c 

B ∗C 

the dotted lift is completely determined by a lift 

A(∗) c 

B(∗) ∗C 

and this dotted arrow exists as c is fbrant in C. 

123 



Lemma 5.1.3. Suppose C is a model admitting the injective model structure for all small categories 

D. Suppose c ∈ C fbrant. Then for any category D such that D → D▷ is cofnal the forgetful functor 

U : C(idc) → C creates homotopy limits of shape D. 

Remark 5.1.4. This lemma has the evident dual with cofbrant c and homotopy colimits. AlgY 
O 

admits projective and injective model structure for all small categories as it is cofbrantly generated 

and combinatorial, as we have seen. Note that we do not require D → D▷ to be homotopy left 

cofnal—we only need to assume the path-connected criterion (i.e., π0 criterion) on the relevant 

slice categories. 

Proof. Let F : D → C(idc) and suppose without loss of generality F is fbrant in C(idc). The 

preceding lemmas now have the following consequence. The homotopy limit of a fbrant functor 

F : D → C(idc) is the same as the homotopy limit of the associated F ▷ : D▷ → C(idc). In particular, 

both of these homotopy limits may be computed as their limits for which we have lim F ∼= lim F ▷ 

and, moreover, for U : AlgY → AlgO the forgetful functor, it follows that UF ▷ and UF are stillO 

fbrant functors. Hence, 

holim UF ≃ lim UF ∼= U lim F ∼= U lim F ▷ =∼ lim UF ▷ ≃ holim UF ▷ 

and both U lim F ≃ U holim F and U lim F ▷ ≃ U holim F ▷. It follows that 

holim UF ≃ U holim F ≃ U holim F ▷ ≃ holim UF ▷ . (∗) 

Now suppose X → F is a homotopy limit cone in AlgY 
O. Then UX → UF is a homotopy 
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limit cone as X → lim F ≃ holim F is a weak equivalence and the induced map UX → lim UF ≃ 

holim UF is a weak equivalence. It follows immediately from (∗) that this map is U(X → lim F ) and 

and hence is a weak equivalence as U creates these. Conversely, if X → F is such that UX → UF 

is a homotopy limit cone, then since U creates weak equivalences, it follows immediately that 

X → holim F is a weak equivalence by (∗). 

Thus, this lemma, and its evident dual, allows us to avail ourselves of the higher homotopy 

excision and higher Blakers-Massey theorems for structured ring spectra of Ching and Harper [15] 

in the retractive case under mild hypotheses on Y . We recall the necessary results below, but before 

doing this, we collect the obvious corollary of this. As always, part of this corollary has a dual 

which we suppress. 

Corollary 5.1.5. The forgetful functor U : AlgY → SpΣ creates fltered homotopy colimits andO 

homotopy limits of cubes with the initial vertex removed. More generally, U creates homotopy 

limits of shape D for any D for which the inclusion D → D▷ is cofnal. 

Proof. By the above, it sufces to that U : AlgO → SpΣ creates homotopy limits and fltered 

homotopy colimits. For this, note that fltered colimits in AlgO and SpΣ are already homotopy 

colimits by Proposition 3.2.13, so since U creates fltered colimits, it is enough to verify this for 

homotopy limits and this argument is essentially identical to the one given in the preceding lemma 

since the forgetful functor U : AlgO → SpΣ creates fbrations and weak equivalences. 

Warning 5.1.6. While AlgO is right proper, we will still need Y to be both cofbrant and fbrant in 

AlgO to guarantee the compatibility of homotopy limits and colimits in AlgY with homotopy limits O 

and colimits computed in AlgO, where the higher Blakers-Massey theorems apply. 
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Theorem 5.1.7 (Higher homotopy excision for structured ring spectra). Let O be an operad in 

R-modules and W a nonempty fnite set. Let O be a strongly ∞-cocartesian W -cube of O-algebras 

(resp. left O-modules). Assume that R, O, X∅ are (−1)-connected. Let ki ≥ −1 for each i ∈ W . If 

each X∅ → X{i} is ki-connected (i ∈ W ), then 

(a) X is l-cocartesian in ModR (resp. SymSeq) with l = |W | − 1 + i∈W ki, 

(b) X is k-cartesian with k = i∈W ki. 

Proof. This is [15, Thm. 1.6]. 

Theorem 5.1.8 (Higher Blakers-Massey theorem for structured ring spectra). Let O be an operad 

in R-modules and W a nonempty fnite set. Let X be a W -cube of O-algebras (resp. left O-

modules). Assume that R, O, X∅ are (−1)-connected, and suppose that 

(i) for each nonempty subset V ⊂ W , the V -cube ∂V X (formed by all maps in X between X∅∅ 

and XV ) is kV -cocartesian, 

(ii) −1 ≤ kU ≤ kV for each U ⊂ V . 

Then X is k-cartesian, where k is the minimum of −|W | + (kV + 1) over all partitions λ ofV ∈λ 

W by nonempty sets. 

Proof. This is [15, Thm. 1.7]. 

Theorem 5.1.9 (Higher dual Blakers-Massey theorem for structured ring spectra). Let O be an 

operad in R-modules and W a nonempty fnite set. Let X be a W -cube of O-algebras (resp. left 

O-modules). Assume that R, O, X∅ are (−1)-connected, and suppose that 
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(i) for each nonempty subset V ⊂ W , the V -cube ∂W X (formed by all maps in X between W −V 

XW −V and XW ) is kV -cartesian, 

(ii) −1 ≤ kU ≤ kV for each U ⊂ V . 

Then X is k-cocartesian, where k is the minimum of kW + |W | − 1 and |W | + over all V ∈λ kV 

partitions λ of W by nonempty sets not equal to W . 

Proof. This is [15, Thm. 1.11]. 

To this list, we add the following. 

Corollary 5.1.10. The preceding theorems hold in AlgY 
O. 

Proof. This is a consequence of Lemma 5.1.3. 

We also have the following proposition, which is a corollary of homotopy excision, that implies 

by elementary arguments—one of which we give below—that the cubical homotopy of retractive, 

(−1)-connected O-algebras and (−1)-connected maps between them enjoys the same properties 

just like that of spaces. 

Proposition 5.1.11. Let Y be a cofbrant O-algebra. If X : P(2) → AlgY is a homotopy pushout O 

cube such that X∅ is (−1)-connected and each X∅ → X{i} is ki-connected with ki ≥ −1, then the 

map Xi → X{1,2} is kj -connected, where i, j ∈ {1, 2}, i ̸= j. 

Proof. We may just as well work in AlgO. Letting U : AlgO → SpΣ be the forgetful functor, we 
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have, by homotopy excision, the following diagram in SpΣ . 

k1UX∅ UX{1} 

k2 k2 

UX{2} X 
k2 

k1+k2+1 

UX{1,2} 

where X is the homotopy pushout in spectra of this fork. Since ki ≥ −1, k1 + k2 + 1 ≥ −1 and it 

follows that the arrow UX{i} → UX{1,2} is kj -connected where i, j ∈ {1, 2}, i ̸= j. 

Again, informally, this means the cubical homotopy theory of (−1)-connective objects and (−1)-

connected maps between them have the same types of connectivity properties as spaces do when 

all objects and maps involved—except, perhaps, the retract object Y —are (−1)-connected. As an 

example, we show that this category of (−1)-connected objects and maps is closed under all cubical 

homotopy colimits (the case of cubical homotopy limits follows from the analogous case as pushed 

into spectra). We will only ever be interested in this for the case that Y is also (−1)-connected. 

Corollary 5.1.12. Let Y be a cofbrant O-algebra. If X : P1(n) → AlgY lands in the full sub-O 

category of (−1)-connected objects and (−1)-connected maps between them. Then hocolim X is 

(−1)-connected, and, moreover, each map XU → hocolim X is (−1)-connected. 

Remark 5.1.13. In fact, if m ≥ −1, the same assertion holds by the very same argument if, instead, 

we restrict to the full subcategory of m-connected objects and m-connected maps between them. 

Proof. Without loss of generality, we may assume our n-cubes X are punctured cofbration cubes—as 

in [15, Def. 3.4], this means each for each proper subset V ⊊ n, the map colimP1(V ) X → 
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∼colimP(V ) X = XV is a cofbration. In particular, this means every object XU is cofbrant and 

every map XT → XU where T ⊂ U ⊊ n is a cofbration. The strict colimit of such cubes compute 

homotopy colimits as the cofbrant objects in the projective model structure on P1(n) and there-

fore, in particular, for any subset V ⊂ n, colimP1(V ) X ≃ hocolimP1(V ) X . A good reference for the 

properties of this particular projective model structure may be found in [21, §10.13]. 

The proof is by induction on n. If n = 0, 1, there is essentially nothing to prove, noting that 

we reserve the word connectivity to mean connectivity relative to the map ∗ → X. The true base 

case of n = 2 is taken care of by the hard work homotopy excision. Now suppose the statement is 

true for punctured n-cubes and let us consider the case punctured (n + 1)-cubes. Fix a punctured, 

cofbration (n + 1)-cube X : P1(n + 1) → AlgY 
O. 

Any subset S ⊂ n of size n − 1 determines a codimension 1 face of X as the face spanned 

the subsets ∅ ⊂ n and {k} ⊂ n where k ∈ S. There are n-such faces. We adapt the notation of 

Ching-Harper [15, Def. 3.3] to the present situation. In this case, it is the cube S-cube ∂SX defned∅ 

on objects U ⊂ S by 

U �→ (∂∅ 
S X )U = XU , U ⊂ S. 

Note that while X is not properly a cube, since have excluded the fnal vertex, this still makes 

sense. Note that 

P(n) × P(1) ∼= P(S) × P({k}) ∼= P(n + 1). 

More generally, for any proper subset W ⊊ n + 1, we defne ∂W X to the be the punctured ((n + 
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1) − |W |)-cube given on objects U for any W ⊂ U ⊊ n + 1 (note the properness of U ⊊ n + 1) by 

U �→ (∂∅X )U = XU . 

Pick any codimension 1 face ∂S X of X . Say this is determined by excluding k ∈ n + 1 from S (the∅ 

choice of k is immaterial). Form a cube 

X : P(S) × P({k}) ∼= P(n + 1) → AlgY 
O, 

which we view as an S-cube (i.e., n-cube) of 1-cubes, built on objects as follow. For any proper 

subset V ⊊ S, XV = XV and on S, XS = colim ∂S X . For each proper subset U ⊊ n containing k,∅ 

XU = XU and on n + 1, Xn+1 = colim X{k}. For proper subsets U ⊊ S, the map XU → XU∪{k} is 

simply the map XU → XU∪{k}. The map XS → Xn+1 is the map induced by universal properties. 

By induction, 

XS = colim ∂S X = colimP1(S) X ≃ hocolimP1(S) X .∅ 

and is therefore (−1)-connected and the maps XU → XS are also (−1)-connected. Similarly, by 

induction, 

Xn+1 = colim ∂{k}X = colimP1(n+1\{k}) X ≃ hocolimP1(n+1\{k}) X 

and is therefore (−1)-connected and for k ∈ U ⊊ n + 1, the maps XU → Xn+1 are (−1)-connected. 
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An argument with universal properties shows that colim X = hocolim X is the pushout 

XS Xn+1 

(∗) 

XS hocolim X 

where the map XS → XS is the comparison map induced by universal properties. This is because 

the map XS → Xn+1 is precisely what is encoded by the cone from the punctured diagram X|P1(S) 

to Xn+1, and this cone factors through the map of punctured cubes X|P1(S) → ∂kX . Hence a cone 

out of the above pushout fork encodes a cone ∂kX → Z as well as a cone ∂S X → Z compatible with ∅ 

the map of punctured cubes X|P1(S) → ∂kX . This is because the map XS = colimP1(S) X → XS 

is precisely the same as the commutative diagram ∂S X represents. ∅ 

We claim that (∗) is, in fact, a homotopy pushout in AlgY 
O. To see this, note that every 

object of (∗) is cofbrant. From our assumption that X is a cofbration cube, the map XS → 

XS is a cofbration. That the map XS → Xn+1 is a cofbration follows since it is induced by 

applying the colimit functor to a cofbration of punctured n-cubes in the projective model structure 

on Fun(P1(n), AlgO 
Y ). Alternatively, all objects in (∗) are cofbrant and the map XS → XS is a 

cofbration, it follow by standard model categorical results such as [41, Prop. A.2.4.4.(i)], the strict 

pushout is indeed a homotopy pushout. 

In particular, since every map appearing in X is (−1)-connected, the map X∅ → XS is (−1)-

connected being a composite of such maps similarly the map X{k} → Xn+1 is (−1)-connected. 
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Hence, from the induction hypothesis, there is a factorization with connectivities displayed 

−1X∅ XS 

−1 

XS 

which shows the natural map XS → XS in (∗) is (−1)-connected as well. Similarly, the map 

XS → Xn+1 

is (−1)-connected since all maps in X are (−1)-connected, so there is a factorization with connec-

tivities displayed 
−1X∅ X{k}
−1 

−1 −1 

XS Xn+1 

which shows the composite map X∅ → Xn+1 is (−1)-connected and therefore the natural map 

XS → X n+1 in (∗) is (−1)-connected as well. 

This foregoing work shows that (∗) satisfes the hypotheses of Proposition 5.1.11 and so we 

may apply it to (∗). It follows that the map Xn+1 → hocolim X is (−1)-connected and the map 

XS → hocolim X is (−1)-connected. Since XS is (−1)-connected by induction hypothesis, it follows 

that so too is hocolim X . Since all maps in the cube X are (−1)-connected, this shows that for any 
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U ⊊ n + 1 such that k ∈ U or U admits a map U ⊂ U ∪ {k} ̸= n + 1, 

XU Xn+1 

hocolim X 

−1 

−1 

and thus the map XU → hocolim X is (−1)-connected. The only remaining map excluded by 

this analysis is XS → hocolim X , which is already known to be (−1)-connected by homotopy 

excision. 

5.2 Consequences of the Higher Blakers-Massey Theorems and 

Homotopy Excision 

Now we collect the necessary consequences of our new tools. First, we collect some notation and 

defnitions. 

Defnition 5.2.1. Fix an S∗-enriched fbrant replacement monad F and an S∗-enriched cofbrant 

replacement comonad on C on AlgY 
O. Defne 

ΩY := ΩY F and ΣY := ΣY C. 

Defnition 5.2.2. Let us say a retractive O-algebra X ∈ AlgY is k-connected relative to Y ifO 

the structure map Y → X is k-connected. We will say X is k-connected if the map ∗ → X in 

spectra is k-connected 

Remark 5.2.3. The point is that by taking Y = ∗, this recovers the usual notion of connectivity, 
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so long as O is reduced (i.e., O[0] = ∗) so that the category of O-algebras is pointed by point in 

spectra. 

Proposition 5.2.4. Consider AlgY 
O as in Convention 5.0.1. 

(a) Suppose Y (−1)-connected and suppose X ∈ AlgY 

For each n ≥ 1, ΣnY X is (k + n)-connected relative to Y . Moreover, Σn increases connectivity 

O 

Y 

of −1 ≤ m-connected maps between (−1)-connected objects relative to Y by n. 

is k-connected relative to Y where k ≥ −1. 

(b) Let X ∈ AlgY 

relative to Y . Moreover, Ωn decreases connectivity of maps by n.Y 

Proof. (a) Since Y → X is k-connected, X → Y is (k + 1)-connected. Moreover, X is 0-connected 

O 

as an O-algebra. We may computed ΣY X as the homotopy pushout of the fork 

k+1
X Y 

k+1 

Y 

so by Proposition 5.1.11, the map Y → ΣY X is (k+1)-connected. Since ΣY X is a retractive object, 

ΣY X → Y is (k + 2)-connected. By repeating this process, the general statement follows. 

To see that ΣY increases connectivity of maps between such objects, let f : X → Z be an 

n-connected map of retractive O-algebras over Y and assume that X and Z are kX ≥ −1 and 

kZ ≥ −1 connected relative to Y , respectively. We have the following commutative diagram with 

and suppose X is k-connected relative to Y . Then Ωn X is (k − n)-connected Y 
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connectivities displayed. 

kX +1 

kX +1 

Y ΣY X 

Z Y 

Y ΣY Z 

∞ 

∞ 

kZ +1 kZ +1 

kX +1 

kX +1 

ΣY f 

n 

f 

kZ +1 

�

�
�

�

�

X Y 

Let us consider the solid portion of the above cube as punctured 2-cube of 1-cubes X : P1(2) → 

Fun(P(1), AlgO). Let us write this as X (U , V ) where U ⊊ 2. The back face of the cube above 

corresponds to V = ∅ and the front face corresponds to V = {1}. By [15, Prop. 3.8] and [23, 

Prop. 1.22], it follows that the map ΣY f is n0-connected where 

n0 = min {2 − |U | − 1 + kU : U ⊊ 2} . 

Since the only map that is not infnitely connected is f , this means 

n0 = 2 − 0 − 1 + n = n + 1, 

as desired. By iterating this, Σn will raise connectivity of maps by n.Y 
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(b) Similarly, ΩY X may be computed as the homotopy pullback of the fork 

Y 

k 

Y X 
k 

Since this homotopy pullback is created in AlgO and hence in SpΣ , the map ΩY X → Y is k-

connected. Since ΩY X is a retractive object, the map Y → ΩY X is (k − 1)-connected. That ΩY 

decreases connectivity of maps by 1 follows by the argument dual to the one given above. As before 

we can repeat this to obtain the general result. 

The following corollary has also been observed by Beardsley and Lawson in [5]. 

Corollary 5.2.5 (Retractive Hurewicz). Suppose Y is (−1)-connected and cofbrant in AlgO. If 

X ∈ AlgY is k-connected relative to Y where k ≥ −1, then derived unit map X → ΩY ΣY X isO 

(2k + 2)-connected and ΩY ΣY X is k-connected relative to Y . 

Proof. This map is implemented on the level of homotopy as the map into the homotopy pullback 

of the homotopy pushout displayed in the diagram below. 

k+1
X Y 

ΩY ΣY X 

Y ΣY X 

k+1 k+1 

k+1 

k+1 

k+1 
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By the higher Blakers-Massey theorem, the dotted arrow is n-connected where 

n = min {(−2 + (k + 2) + (k + 2), −2 + ∞} = 2k + 2, 

as claimed. Since ΩY ΣY X → Y is (k + 1)-connected, the map Y → ΩY ΣY X is k-connected since 

the composite Y → ΩY ΣY X → Y is the identity. 

Lemma 5.2.6. Suppose Y is (−1)-connected. Suppose X ∈ AlgY is k-connected relative to Y where O 

X → Ωn+1Σn+1 X → ΩY Σn+1k ≥ −1. The map Ωn Σn X obtained from the derived unit map Σn XY Y Y Y Y Y 

is (2k + n + 2)-connected. 

X → ΩY Σn+1Proof. Since Σn X is (k + n)-connected relative to Y , the derived unit map Σn X isY Y Y 

(2(k + n) + 2)-connected. Looping this down n-times decreases connected by n and hence the map 

is (2k + n + 2)-connected, as desired. 

Corollary 5.2.7. Suppose Y is (−1)-connected. If X ∈ AlgY is k-connected relative to Y where O 

k ≥ −1, then derived unit map X → Ωn ΣYn X is (2k + 2)-connected. Y 

Proof. This follows by observing that, on the point-set level, the unit of the underived (Σn , Ωn )-Y Y 

adjunction is the composite map 

X → ΩY ΣY X → Ω2 Σ2 
Y X → · · · → Ωn ΣnY X,Y Y 

X → Ωℓ+1Σℓ+1where the maps Ωℓ Σℓ X are obtained by applying Ωℓ to the unit map Σℓ X →Y Y Y Y Y Y 

ΩY Σℓ+1X. The analogous thing is true for the derived version, for which we know that mapsY 
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Ωℓ Σℓ X → Ωℓ+1Σℓ+1 ΣnX are (2k + ℓ + 2)-connected. Hence, the composite map X → Ωn X isY Y Y Y Y Y 

(2k + 2)-connected. 

Corollary 5.2.8. Suppose Y is (−1)-connected. If X ∈ AlgY 

k ≥ −1, then derived unit map X → Ω Y X is (2k + 2)-connected. 

O 

∞ 

is k-connected relative to Y where 

∞ 
Y Σ 

Proof. This is one of the important consequences of Theorem 3.3.1 alluded to previously. Since 

for cofbrant X, the derived unit map X → Ω∞ 
Y Σ∞ 

Y X is, equivalently, for a choice of a fbrant 

replacement monad, the map into the colimit colim ΩkY R
kΣYk X, it is enough to observe that the 

Y X → Ωℓ+1Σℓ+1maps Ωℓ Σℓ X have increasing connectivity. In particular, the map X → ΩY ΣY XY Y Y 

is (2k + 2)-connected. This now follows from the fact that homotopy groups commute with fltered 

homotopy colimits. 

Remark 5.2.9. Is is important to note that when Y → X is (−1)-connected, then X → ΩY ΣY X is 

0-connected. This ends up throwing a wrench in the strategy (explained in the next chapter) we 

intend to use to analyze completions. This is because we will not be able to show that the maps to 

the completion tower have increasing connectivity and thus that the completion tower converges 

strongly. 
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Chapter 6 

Completions With Respect to Ωk
Y Σk

Y 

and Stabilization 

We are now ready to begin investigating completion phenomena, and the point of this chapter 

is to prove the main theorems of this paper. Our strategy is motivated by Dundas [19, §2.6], 

subsequently written up by Goodwillie-Dundas-McCarthy in [20, §A.8.3]. This strategy has also 

been deployed in [8]. 

Fixing a S∗-enriched fbrant and cofbrant replacement monad F and comonad C n AlgY 
O, we 

may build a cosimplicial resolution of a retractive O-algebra X over Y using the associated functors 

Σk and Ωk. Here, we may use an S∗-enriched stable fbrant replacement monad on SpN(AlgY ) for Y O 

the case of stabilization (i.e., k = ∞). We suppress this now in favor of ease of exposition. This 

139 



resolution assembles into a coaugmented cosimplicial object using the adjunction (Σ kY , Ω kY ) 

X (ΩkY ΣkYX (ΩkY ΣkY )2X (ΩkY ΣkY )3X · · · ) 

and the appropriate thing to do with such resolutions is to glue the datum of the resolution together 

in a homotopical manner—in other words, taking homotopy limits, we obtain the Bousfeld-Kan 

completion map 

X → X k
YΣ

k
Y 

∧ 
Ω 

where the target is the Bousfeld-Kan completion of X with respect to Ω kY ΣkY . 

To make this precise, we need everything above to be sufciently derived. Fortunately, this 

may done for every case 1 ≤ k ≤ ∞. This follows by work of Riehl-Blumberg [9] and Blomquist 

[7] for 1 ≤ k < ∞. When k = ∞, we have shown that AlgY 
O admits an S∗-enriched stable fbrant 

replacement monad. While this functor does not have the property that its unit map is an acyclic 

cofbration in the stable semi-model structure on AlgY 
O, this is irrelevant to the construction of the 

cosimplicial objects associated to the fundamental adjunction (Σ ∞ 
Y , Ω ∞ 

Y ). 

Convention 6.0.1. Whenever AlgY 
O is mentioned, we assume Y is cofbrant and fbrant in AlgY 

O as 

well as (−1)-connected. We additionally assume the spectral operad O is (−1)-connected. We 

furthermore restrict our attention only to the subcategory of objects in AlgY 
O that are at least 

(−1)-connected relative to Y . This is the same as Convention 5.0.1 but with the addition of a 

connectivity assumption on Y and the objects in AlgY 
O. 
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6.1 The General Strategy 

The key to analyzing this is the following observation, which is proved in [13, §6], [52] and was 

deployed by Hopkins in [33]. 

Proposition 6.1.1. For each n ≥ 0, let [n] denote the set of elements {0, . . . , n}. The composite 

ℓn : P0([n]) ∼= P ∆[n] → ∆≤n ⊂ ∆≤n 
res 

is homotopy left cofnal. Here, P ∆[n] denotes the poset of non-degenerate simplices of ∆[n] and 

∆≤n is the restriction of ∆≤n to the coface maps. The composite is given on objects by U �→ [|U |−1]res 

and on arrows by [|U | − 1] ∼= U ⊂ V ∼= [|V | − 1] in the sense given in the following remark. 

Remark 6.1.2. In particular, this reduces our computations to punctured (n + 1)-cubes. Given 

a coaugmented, truncated cosimplicial object d0 : X−1 → X, with X ∈ C∆, the corresponding 

truncated punctured 3-cube, along with the coaugmentation maps making is a cube, are given 

under the above composite as 

d0 d0 
∅ {2} X−1 X0 

d0 d0 

d0 
d0 

d1 d1 
d0 {1} {1, 2} d0 X0 X1 

d0 d0 

X([|−|−1])d1 d1 

d0d0{0} {0, 2} X0 X1 
d0 d0 

d1d1 

d1d1 

{0, 1} {0, 1, 2} X1 X3 
d2 d2 
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The right-hand side is the composite functor X ◦ ℓ2. The left-hand side displays the coface cube 

corresponding the map P0([n]) → ∆≤n, where the size of the set indicates which elements [k] ∈ ∆ 

the element of P0([n]) maps to. The coface maps di should be interpreted as skipping the i-th 

element in the (ordered) set, so that all displayed maps are simply subset inclusions. 

In particular, this means that for X ∈ C∆, ℓn induces a weak equivalence 

holim∆≤n X → holimP0([n]) X, 

at least on the level of homotopy categories. 

To make this precise on a point-set level, we will adopt the Bousfeld-Kan model for homotopy 

limit. This has the following consequence. 

Corollary 6.1.3. Given a simplicial model category C, and X ∈ C∆ objectwise fbrant, the natural 

map induced by ℓn 

holimBK X → holimBK 
∆≤n P0([n]) X, 

is a weak equivalence. 

Remark 6.1.4. A nice discussion of the Bousfeld-Kan model may be found in [12, 30, 51]. 

The reason why this will be useful for us is the following proposition, which really amounts to 

our grand strategy. 

Proposition 6.1.5. Fix a coaugmented, cosimplicial object X−1 → X with X objectwise fbrant in 

AlgY 
O. 
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(a) There is a commutative diagram 

holimn holim∆≤n X ≃ holim∆ X 

... 

holim∆≤2 X ≃ holimP0([2]) X 

holim∆≤1 X ≃ holimP0([1]) X 

X−1 holim∆≤0 X ≃ holimP0([0]) X ≃ X0 

(∗1) 
(∗2) 

(∗∞) 

(∗0) 

where the comparison map X−1 → holimn holim∆≤n X is equivalent to the comparison map 

X−1 → holim∆ X. 

(b) If the maps (∗ n) are strictly increasing in connectivity, then the map X−1 → holim∆ X is a 

weak equivalence. 

Proof. Using the Bousfeld-Kan model, each homotopy limit of fbrant objects is again fbrant. 

Hence, the frst statement follows commutativity of limits and the second follows since Y is fbrant, 

so homotopy limits may be computed in spectra as a consequence of Lemma 5.1.3 and the remark 

immediately following it. The sequence satisfes the Mittag-Lefer condition on homotopy groups 

and therefore the lim1-exact sequence is simply an isomorphism. 

Remark 6.1.6. Thus, to study the connectivity of the Bousfeld-Kan completion map, we will study 

the the connectivity of the maps (∗ n) when the cosimplicial object is built from derived composites 

of Ωk ΣkY . In light of Remark 6.1.2, the connectivity of the maps (∗ n) are precisely the cartesianness Y 
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of the corresponding coface (n + 1)-cube. This will be our strategy. 

Let us now formally defne these coface cubes. 

Defnition 6.1.7. Given a coaugmented cosimplicial object X−1 → X with X ∈ cC, the coface 

(n + 1)-cube associated to X is the (n + 1)-cube formed from composite functor X ◦ ℓn and the 

augmentation map X−1 → Xℓn({k}) = X0 for each 0 ≤ k ≤ n. 

6.2 Low-Dimensional Examples 

As a warm-up, let us consider the case of k = 1 with X 0-connected relative to Y . In this case, the 

coaugmented cosimplicial object R(X) associated to X has the form 

∼R(X) : X CX (Ωk ΣkY X (Ωk Σk )2X (Ωk Σk )3X · · · )Y Y Y Y Y 

The zig-zag from X is essentially unavoidable but irrelevant—this zig-zag is the derived unit. If X 

is bifbrant, then so too is its cofbrant replacement under our cofbrant and fbrant replacement 

scheme and so the map from CX has a homotopy inverse. To avoid clutter, we may assume without 

loss of generality that X is bifbrant and thereby consider the coaugmentation to come from X itself. 

Let us call this cosimplicial object R(X) as indicated. 

Suppose X is 0-connected relative to Y . The frst map to analyze in the tower of Proposi-

tion 6.1.5 is the map X → ΩY ΣY X and this is the Hurewicz map which is 2-connected by Corol-

lary 5.2.5. Indeed, from what we have seen in Corollary 5.2.5, Lemma 5.2.6 and Proposition 5.2.4, 

every coface map R(X)k → R(X)k+1 is k + 1-connected 
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Let X be the 1-cube X → ΩY ΣY X. The next step is to analyze X → holimP0([1]) R(X). This 

is then the square 
X : X∅ X{1} 

ΩY ΣY X : ΩY ΣY X∅ ΩY ΣY X{1} 

The downwards maps are the derived unit maps for the adjunction. It is difcult to analyze the 

cartesianness of this cube directly, so we will augment this diagram. Let C be the homotopy cofber 

in AlgY of X and C be the cube Y → C. Then the following square O 

X : X∅ X{1} 

C : Y C 

is ∞-cocartesian, being a homotopy pushout. Since X∅ → X{1} is 2-connected and X∅ → Y is 

1-connected, it follows that Y → C is 2-connected and X{1} → C is 1-connected. We now consider 

the diagram 
(a)X C 

(∗) (c) 

ΩY ΣY X ΩY ΣY C(b) 

This commutes by naturality of the unit map. We want to analyze the cartesianness of (∗). To do 

so, we will analyze the cartesianness of the cubes labeled by (a), (b) and (c) in the indicated order. 

By the higher Blakers-Massey theorem, cube (a) is n-cartesian where 

n = min {−2 + (2 + 1) + (1 + 1), ∞} = 3 
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Cube (b) is handled similarly, Since ΣY increases connectivity of maps by 1, it increases cocarte-

sianness by 1. Hence, the cube ΣY X → ΣY C is ∞-cocartesian and by the higher Blakers-Massey 

theorem, it is n-cartesian where 

n = min {−2 + (3 + 1) + (2 + 1), ∞} = 5. 

Since ΩY decreases connectivity of maps by 1 and therefore cartesianness by 1, this implies (b) is 

4-cartesian. 

Finally, for cube (c), since ΩY Y ≃ Y ≃ ΣY , this is equivalent to the cube 

Y C 

ΩY ΣY CY 

The map C → ΩY ΣY C is 6-connected since we have seen C is 2-connected relative to Y . Taking 

homotopy fbers in AlgY horizontally, this becomes the map O 

ΩY C → ΩY ΩY ΣY C 

which is 5-connected as ΩY decreases connectivity of maps. Since the total homotopy fber is the 

iterated homotopy fber, this shows that C → ΩY ΣY C is 5-cartesian. 
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Amalgamating these results, we have 

3X C 

(∗) 5 

ΩY ΣY X 4 
ΩY ΣY C 

It follows that the composite X → ΩY ΣY C is 3-cartesian, and, hence, cube (∗) is 3-cartesian. 

To get a feeling for the cases following from this one, let us continue and consider the next step. 

Keep X as above and let Z = (X → ΩY ΣY X ) be the cube (∗) of the preceding step. The relevant 

coface cube now has the form 

(∗)Z : X ΩY ΣY X 

ΩY ΩY Z : ΩY ΣY X ΩY ΣY X 

The downwards maps are the derived unit maps. The top cube (∗) is the one from the preceding 

step. As before, it is difcult to analyze the cartesianness of this cube directly so we augment it in 

the analogous manner. 

Let C be the iterated cofber of Z, computed in AlgY and let C be the 2-cube O 

Y Y 

Y C 
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As before, the cube Z → C is ∞-cocartesian and we augment our picture to 

(a)Z C 

(∗) (c) 

ΩY ΣY Z ΩY ΣY C(b) 

and proceed in analyzing this cube as in the preceding case. 

This time, however,it is not obvious what the connectivity of C is relative to Y . The key to 

analyzing this will be to determine the cocartesianness of C indirectly. If we estimate the cocarte-

sianness of Z, then since Z → C is ∞-cocartesian, we will be able to estimate the cocartesianness 

of C by [15, Prop. 3.8]. To do this, we use the higher dual Blakers-Massey theorem. 

The 2-cube Z is the cube (∗) and therefore 3-cartesian. Writing out Z with all connectivities 

displayed, 
X 2 ΩY ΣY X 

2 3 

ΩY ΣY X 4 
Ω2 Σ2 XY Y 

Hence, by the higher dual Blakers-Massey theorem, Z is n-cocartesian where 

n = min {5 + 2 − 1, 2 + 3 + 4} = min {6, 9} = 6. 

It follows from [15, Prop. 3.8] that C is 6-cocartesian and, hence, the maps Y → C are 6-connected. 
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Recall that we are analyzing the following diagram of 2-cubes 

(a)Z C 

(∗) (c) 

ΩY ΣY Z ΩY ΣY C(b) 

Consider cube (a). We apply the higher Blakers-Massey theorem 5.1.8. To organize our work, we 

{2,3}will adopt the notation kU of this theorem. For us, the cube Z corresponds to ∂ (Z → C). The ∅ 

3-cube (a) is n-cartesian where n is the minimum of 

−3 + (k{1} + 1) + (k{2} + 1) + (k{3} + 1) = 1 + 2 + 2 = 5 

−3 + (k{1} + 1) + (k{2,3} + 1) = −1 + 1 + 5 = 5 

−3 + (k{2} + 1) + (k{1,3} + 1) = −1 + 2 + 3 = 4 

−3 + (k{3} + 1) + (k{1,2} + 1) = −1 + 2 + 3 = 4 

−3 + (k{1,2,3} + 1) = ∞ 

Thus n = 4. Note that the computation of k{1,2} and k{1,3} uses the fact that for a retractive 

object, if Y → X is n-connected, then X → Y is (n + 1)-connected or, alternatively, [15, Prop. 3.8]. 

In general, the cocartesianness of a cube X → Y of the sort considered above may be estimated by 

[15, Prop. 3.8] as precisely the cocartesianness of X plus 1, since the constant cube Y is already 

∞-cocartesian. For cube (b), we proceed as before. Since ΣY raises connectivity of maps by 1 

and, hence, cocartesianness by 1, the cube ΣY Z → ΣY C is ∞-cocartesian and by the higher dual 
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Blakers-Massey theorem, it is n-cartesian where n is the minimum of 

−3 + (k{1} + 1) + (k{2} + 1) + (k{3} + 1) = 2 + 3 + 3 = 8 

−3 + (k{1} + 1) + (k{2,3} + 1) = −1 + 2 + 6 = 7 

−3 + (k{2} + 1) + (k{1,3} + 1) = −1 + 3 + 4 = 6 

−3 + (k{3} + 1) + (k{1,2} + 1) = −1 + 3 + 4 = 6 

−3 + (k{1,2,3} + 1) = ∞ 

Hence, n = 6. Since ΩY decreases connectivity of maps by 1 and therefore cartesianness by 1, this 

implies (b) is 5-cartesian. 

Cube (c) may be written as 

Y Y 

Y C 

Y Y 

Y ΩY ΣY C 

We computed that C is 6-connected relative to Y . Hence, the map C → ΩY ΣY C is 14-connected. 

Taking homotopy fbers horizontally and then into the page gives the map 

Ω2 (C) → Ω2 (ΩY ΣY C)Y Y 
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which is therefore 12-connected. Hence C → ΩY ΣY C is 12-cartesian. Putting this together 

4Z C 
4

(∗) 12 

ΩY ΣY Z 6 
ΩY ΣY C 

it follows that the composite Z → ΩY ΣY C is 4-cartesian and, hence, the map (∗) is 4-cartesian. 

This has shown that the maps (∗0), (∗1) and (∗2) in the tower of Proposition 6.1.5 exhibit 

increasing connectivity for Y → X 0-connected. The frst map is 2-connected, the second 3-

connected and the third 4-connected. 

6.3 Retractive Higher Freudenthal Suspension and Retractive Uni-

formity Correspondence 

The sticking points of the general case are evident from our estimations above. We must estimate, 

in general, the connectivity of the total homotopy cofber relative to Y and we must estimate the 

cartesianness of cubes X → C. We need a uniform way to do this. In lieu of making an ad hoc 

argument, we will recognize the fundamental feature at play here. We follow closely the arguments 

of [8]. 

Let us recall the following defnitions from [19, 20]; see also [8]. 

Defnition 6.3.1. Let C be a category. A T -subcube of a W -cube X : P(W ) → C is a T -cube 

arising as the composite of X with an injection ι : P(T ) → P(W ). If |T | = d, then we also refer to 

a T -subcube of X as a d-subcube. Note that we permit d = 0 (i.e., T = ∅). 
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AlgDefnition 6.3.2. N NGiven function, -cube ( ) isY: :→ X P → -any we say af W W fO 

cartesian (resp. f-cocartesian) if every d-subcube of X is f(d)-cartesian (resp. f(d)-cocartesian). 

We need the following easy observations. 

OLemma 6.3.3. Let f : N → N be a function and suppose X : P(W ) → AlgY 

f -cocartesian), then map of X is 0-connected and every object XU is (−1)-connected. In particular, 

each map Y → XU is (−1)-connected (resp. 0-connected). 

Proof. For the maps, this follows since f(d) ≥ 0 for all d ∈ N. For the objects, in the cartesian 

case, note that 0-subcubes of X correspond to the objects and the homotopy limit of the empty 

diagram in AlgY 
O 

is f -cartesian (resp. 

is simply Y . Hence, in the cocartesian case, each map Y → XU is 0-connected and 

in the cartesian case, each map XU → Y is 0-connected which means the structure map Y → XU is 

(−1)-connected. Since we assumed Y is (−1)-connected, this means each object is (−1)-connected, 

in each case because we have a composite of (−1)-connected maps 

−1 −1∗ −→ Y −→ X. 

OIf X : P(W ) → AlgY 

f -cocartesian) W -cube, then for any subcube Y of X , Y is f -cartesian (resp. f -cocartesian). 

Proof. This is likewise a simple matter of unpacking defnitions. 

The essential feature of our computation above is the following theorem. Note that this is also 

proved in the non-retractive setting in [7, Thm. 3.4]. 

Lemma 6.3.4. Let f : N → N be a function. is an f -cartesian (resp. 
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YTheorem 6.3.5 (Higher Retractive Freudenthal Suspension). Let k ≥ 1 Suppose X : P(W ) → AlgO 

is a ((k + 1)(id +1))-cartesian W -cube. Then for each 1 ≤ r < ∞, so too is X → Ω r
YΣrY X obtained 

by applying the derived unit. 

Before giving the proof, let us observe a corollary. 

Corollary 6.3.6. Let k ≥ 0 and X be k-connected relative to Y . The coface (n + 1)-cube associ-

ated to the cosimplicial resolution of X from the derived (Ω nY , Σ nY )-adjunction is ((k + 1)(id +1))-

cartesian. 

Proof. Since X is at least 0-connected relative to Y , the map X → Y is at least 1-connected. The 

coface (n + 1)-cube is built from X by iterated the Freudenthal suspension map X → ΩnY ΩnYX, so 

this follows from Theorem 6.3.5. 

Theorem 6.3.5 will be a consequence of this next essential feature of our above computation. 

This correspondence is proved in the non-retractive setting in [7, Prop. 3.3]. 

Proposition 6.3.7 (Retractive Uniformity Correspondence). Let k ≥ 0. A W -cube X : P(W ) → 

AlgY 
O is ((k + 1)(id +1))-cartesian if and only if it is ((k + 2) id +k)-cocartesian (equivalently, ((k + 

2)(id +1) − 2)-cocartesian). 

Proof. When |W | = 0, this amounts to saying that a retractive object has structure map X → Y 

k + 1-connected if and only if its other structure map Y → X k-connected and this is true. When 

|W | = 1, the numbers in question are (k +1)(1+1) = 2k +2 and (k +2)(2)−2 = 2k +4−2 = 2k +2 

and this therefore checks out as cartesianness and cocartesianness of 1-cubes is simply connectivity 

of maps. Thus, we may suppose without loss of generality that |W | ≥ 2. 
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(⇒) We induct on |W | where we may suppose |W | ≥ 2, say |W | = n. By induction hypothesis, 

all we need to check is that X is ((k + 2)n + k)-cocartesian. By the higher dual Blakers-Massey 

theorem, this is m-cocartesian where 

 
 

 
 

m = min{(k + 1)(n + 1) + n − 1} ∪ n + (k + 1)(|V | + 1) : λ ∈ Par ̸=∅,=W (W )̸ ) 
. 

V ∈λ 

Since any partition λ of W , where |W | = n into non-empty subsets has the property V ∈λ |V | = n, 

n + (k + 1)(|V | +1) = n +(k +1) (|V | +1) = n +(k + 1) |λ| +(k + 1)n = (k + 2)n +(k + 1) |λ|
V ∈λ V ∈λ 

and |λ| ≥ 1, so the minimum of this sum over the partitions λ is (k + 2)n + (k + 1). Then 

m = min {(k + 1)(n + 1) + n − 1, (k + 2)n + (k + 1)} = min {(k + 2)n + k, (k + 2)n + k + 1} 

= (k + 2)n + k, 

as desired. 

(⇐) We induct on |W | where we may suppose |W | ≥ 2, say |W | = n. By induction hypothesis, 

all we need to check is that X is ((k + 1)(n + 1))-cartesian. By the higher Blakers-Massey theorem, 

X is m-cartesian where m is the minimum 

 
 

m = min (((k + 2) |V | + k) + 1) : λ ∈ Par =∅(W )̸−n +  
V ∈λ 

 
= min −n + (k + 1) |λ| + (k + 2) |V | : λ ∈ Par =∅(W )̸  

V ∈λ 
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Once again, V ∈λ |V | = n, so 

m = min −n + (k + 1) |λ| + (k + 2)n : λ ∈ Par=∅(W ) .̸ 

Hence, taking λ to be the coarsest partition consisting of only W minimizes this. But then 

m = −n + (k + 1) + (k + 2)n = (k + 1)n + (k + 1) = (k + 1)(n + 1) 

as claimed. 

With this we can prove Theorem 6.3.5. The manner of attack will be closely related to the 

cases we worked out above. 

Proof of Theorem 6.3.5. We induct on |W |. If |W | = 0, this is simply the retractive Freudenthal 

suspension theorem, so suppose n = |W | ≥ 1. Let C be the iterated homotopy cofber of X and 

let C be the W -cube with CU = Y for U ̸= W and CW = C. Then X → C is ∞-cocartesian and we 

consider the following commutative diagram 

X C 

(∗) 

Ωr Σr X Ωr Σr CY Y Y Y 

where the name of the game is to estimate the cartesianness of (∗). By the uniformity correspon-

dence, Proposition 6.3.7, we know X is ((k+2) id +k)-cocartesian. In particular, X is ((k+2)n+k)-

cocartesian and thus C is ((k + 2)n + k)-cocartesian by [15, Prop. 3.8], which amounts to saying 
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that C is ((k + 2)n + k)-connected relative to Y . 

For any d-subcube T ⊂ P(W ) of X such that W ∈/ T (so |T | = d ≤ n − 1), it follows that 

X| T → C| T ≃ Y is ((k + 2)d + k + 1)-cocartesian by [15, Prop. 3.8]. If W ∈ T , then C| T is 

((k + 2)n + k)-cocartesian from the above and for any k ≥ 0 and d ≤ n − 1, (k + 2)d + k + 1 ≤ 

(k + 2)n + k, we claim. This is a simple matter of arithmetic as 

(k + 2)d + k + 1 ≤ (k + 2)(n − 1) + k + 1 = (k + 2)n + k − (k + 2) + 1 

= (k + 2)n + k − k − 2 + 1 = (k + 2)n − 1 ≤ (k + 2)n + k 

Exactly as claimed. 

Hence, for each such T where |T | = d < n with W ∈ T , as X| T is ((k + 2)d + k)-cocartesian 

and C| T is at least ((k + 2)d + k + 1)-cocartesian, it follows by [15, Prop. 3.8] that X| T → C| T is 

at least ((k + 2) + d + k + 1)-cocartesian. Since (k + 2)d + k ≤ (k + 2)d + k + 1 for all k ≥ 0, it 

follows by the higher Blakers-Massey theorem, the whole cube X → C is at least m-cartesian where 

 
 

m = min −n + (((k + 2) |V | + k) + 1) : λ ∈ Par =∅(W )̸  
V ∈λ 

= min −n + (k + 2)n + (k + 1) |λ| : λ ∈ Par=∅(W )̸ 

and this is minimized by taking λ = {W } the coarsest partition. Hence, X → C is at least 

m-cocartesian where 

m = −n + (k + 2)n + (k + 1) = (k + 1)n + (k + 1) = (k + 1)(n + 1). 
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Since Σr raises cocartesianness by r, it follows similarly that Σr X → Σr C is at least ((k + 1)(n +Y Y Y 

1) + r)-cartesian. Hence, Ωr Σr X → Ωr ΣrC is at least ((k + 1)(n + 1))-cartesian. Y Y Y 

Since C is ((k +2)n+k)-connected relative to Y , C → Ωr ΩYr C is (2(k +2)n+2k +2)-connected Y 

by Corollary 5.2.7. By taking iterated fbers, it follows that the map 

Ωn (C) → Ωn (Ωr ΣrY C)Y Y Y 

is (2(k + 2)n + 2k + 2 − n)-connected. In other words, ((2k + 3)n + 2k + 2)-connected. Hence, 

C → Ωr Ωr C is ((2k + 3)n + 2k + 2)-cartesian. Y Y 

We claim that for all n ≥ 2 and k ≥ 0, (k + 1)(n + 1) ≤ (2k + 3)n +2k + 2 and this follows since 

it is, equivalently, the assertion that n ≤ kn +3n + k + 1 and this evidently holds even with k = 0. 

Putting this all together then, with cartesianness labeled, we have 

(k+1)(n+1)X C 

Ωr Y Σr Y X Ωr Y Σr 

(∗) (k+1)(n+1) (2k+3)n+2k+2 

(k+1)(n+1) 

� � �
� � � �

� �

� � � �

� �

� � � � CY 

where the composite map is ((k + 1)(n + 1))-cartesian by [15, Prop. 3.9]. It follows that (∗) is 

((k + 1)(n + 1))-cartesian, as claimed. 

We showed this in the case that the subcube is the whole cube. The analysis is the same, almost 

verbatim, on all subcubes, and this gives the result. 
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6.4 Proof of the Main Theorem 

In particular, by way of our grand strategy and Corollary 6.3.6, the preceding proves the following. 

Theorem 6.4.1. Let 1 ≤ r < ∞. If X ∈ AlgY 
O is 0-connected relative to Y , then the Bousfeld-Kan 

completion map 

X → X∧ 
Ωr

Y Σ
r
Y 

is an equivalence. 

We now turn our attention to the case of completion with respect to stabilization Ω ∞ 
Y Σ∞ 

Y . In a 

certain sense, this is a special case of what we have shown for Ω kY ΣkY . This is made precise by the 

following corollary of the retractive higher Freudenthal suspension theorem. 

We will give two proofs of this corollary, with the second deferred to a remark. The frst is 

somewhat reminiscent of maneuvers Goodwillie makes in [24]. The second is based on stability of 

SpN(AlgY 
O). The equivalence of the two arguments is guaranteed by Theorem 3.3.1. 

Corollary 6.4.2 (Higher Stabilization). If X is a ((k +1)(id +1))-cartesian n-cube where k, n ≥ 0, 

then so too is X → Ω∞ 
Y Σ∞ 

Y X , where the map is the derived unit. 

Proof. Without loss of generality, we may suppose X is an n-cube of cofbrant objects. In this case, 

we may suppose, without loss of generality, that Ω ∞ 
Y Σ∞ 

Y X = colim ΩkY ΣkY X by Theorem 3.3.1. Let 

us consider the cartesianness of the whole cube frst. 

Note that fltered homotopy colimits and fnite homotopy limits of punctured cubes in AlgY 
O are 

computed in AlgO, where they are computed in spectra, where they commute, and so they commute 
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in AlgY as a consequence of Corollary 5.1.5. Recall that the derived unit map X → Ωk Σk X factorsO Y Y 

through the derived unit maps X → ΩY ΣY X → · · · → Ωk Σk X as in Corollary 5.2.7. Denote the Y Y 

(n + 1)-cube 

Zk = X → Ωk Σk 
Y Y X . 

Hence, we have a commutative diagram 

X∅ X∅ 

(k+1)(n+2) (k+1)(n+2) 

holim Zk holim Zk+1 
P0(n+1)) (k+1)(n+2) P0(n+1)) 

where each of the vertical maps are ((k + 1)(n + 2))-connected by Theorem 6.3.5. Hence, the 

horizontal map is also ((k + 1)(n + 2))-connected. By commutativity of fltered homotopy colimits 

and fnite homotopy limits, the map X∅ → holimP0(n+1)(X → Ω∞Σ∞X ) may be written as theY Y 

homotopy colimit of the map of sequences 

X∅ X∅ X∅ · · · 
(k+1)(n+2) (k+1)(n+2) (k+1)(n+2) 

holim Z1 holim Z2 holim Z3 · · · 
P0(n+1)) (k+1)(n+2) P0(n+1)) (k+1)(n+2) P0(n+1)) (k+1)(n+2) 

Since homotopy groups commute with fltered homotopy colimits, this shows that X∅ ≃ hocolim X∅ → 

hocolimk holimP0(n+1))(X → Ωk Σk X ) ≃ Ω∞Σ∞X is ((k + 1)(n + 2))-connected. This shows thatY Y Y Y 

X → Ω∞Σ∞X is ((k + 1)(n + 2))-cartesian. Repeating this argument on every subcube gives theY Y 

result. 

Remark 6.4.3. Alternatively, this can be shown using stability of SpN(AlgY ), since Σ∞ 
O Y preserves 
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connectivity of objects and maps. Hence, by the uniformity correspondence, if Y is ((k +1)(id +1))-

cartesian (n+1)-cube, then it is ((k+2) id +k)-cocartesian and so Σ ∞ 
Y Y is ((k+2) id +k)-cocartesian. 

By applying [15, Prop. 3.10] to each subcube, it follows that Σ ∞ 
Y Y is ((k + 2) id +k − id +1) = 

((k + 1) id +k + 1)-cartesian. Hence, Ω ∞ 
Y Σ∞ 

Y Y is ((k + 2) id +k − id +1)-cartesian or, in other words, 

((k + 1) id +k + 1)-cartesian. Hence, by taking Y = (X → C) as in the proof of Theorem 6.3.5, the 

very same argument of Theorem 6.3.5 proves the preceding corollary. 

In particular, by way of our grand strategy, this proves the following. 

Theorem 6.4.4. If X ∈ AlgY 
O is 0-connected relative to Y , then the Bousfeld-Kan completion map 

X → X∧ 
Ω∞Σ∞ 

Y Y 

is an equivalence. 

Proof. The coface (n + 1)-cube is built from X by iterating the derived unit, starting frst with the 

map X → Ω ∞ 
YΣ∞ 

Y X, which is at least 2-connected. The preceding corollary then shows the labeled 

maps of Proposition 6.1.5 are increasing in connectivity. 
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