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Abstract

Working in the context of operadic algebras in modules over the sphere spectrum, we study com-
pletions with respect to invariants centered away from the base point—that is, centered at a fixed
operadic algebra Y. We show that for retractive objects admitting 0-connected structural maps
Y — X, the Bousfield-Kan completion map X — Xék sk 1s an equivalence for 1 < k < oo. This
generalizes completion results of Blomquist and Ching—ﬁarper when Y = *%. The manner of our
attack will require us to pick up and develop Hovey’s stabilization machinery and carefully study
the homotopy theory and stabilization of categories of retractive objects.
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Chapter 1

Introduction

To fix concepts, we will work with operads in spectra as developed by Harper [26], Harper-Hess [27]
and Ching-Harper [15]. The word “space” will always mean simplicial set and we model spectra of
spaces by symmetric spectra [37].

The main theorem of this paper is the following.

Theorem 1.0.1. If O is a (—1)-connected operad in spectra, Y is a (—1)-connected O-algebra
and X is a retractive O-algebra over Y which is 0-connected relative to Y, then the Bousfield-Kan
completion map

N
X—>XQ

VI
s an equivalence for 1 < k < oo.

The case of k < oo and k = co, which corresponds to stabilization in the sense of Goodwillie [24],
must be treated separately. This theorem generalizes work of Ching-Harper in |14] and Blomquist

in |7]. In [14], Ching and Harper study the special cases of our theorem for Y = % and k = oo,



whereas in [7], Blomquist studies the special case of Y = % and 1 < k < o0.

These theorems are not without antecedents. The general idea is as follows. In homotopy
theory, many comparison maps come to us in the form of an adjunction. For instance, the Hurewicz
map comparing homotopy groups with homology groups 7.(X) — H.(X) of a pointed space X is

implemented on the level of spaces by an adjunction

S, =2 sAb

The unit of this adjunction X — ZX implements, on the level of homotopy, the Hurewicz map
m(X) = H,(X). The appropriate thing to do with such comparison maps is to iterate them and
thereby build a resolution of the original object X by a coaugmented cosimplicial object (with only

coface maps shown)

X — (ZX —3 72°X == 723X --+)

and glue the data of this resolution together with a homotopy limit. With this procedure, Bousfield

and Kan show in [12, IIL.5.4] that the Z-completion map

X = X}

is an equivalence for simply-connected spaces.

The other classical comparison map of algebraic topology compares homotopy groups with



homotopy groups—this is the Freudenthal suspension homomorphism

T (X) = g1 (XX).

As is well-known, this map is implemented on the level of pointed spaces from the loops-suspension
adjunction as the derived unit

X — QXX,

where () indicates the derived loops functor. By iterating this map, we may form a resolution of X

X — (05X —= (092X == (223X --+)

which, upon taking homotopy limits, gives us the Bousfield-Kan completion map

X = Xis.

This map has been studied by Bousfield in |11] as well as Hopkins in unpublished work, but see

[11]. Bousfield has shown that for finite k, the Q*>*-completion map

X = X

is an equivalence for simply-connected spaces.

There is still another classical comparison map in algebraic topology which compares the ho-



motopy groups of a space with its stable homotopy groups

T (X) = mi(X),

and, as before, this map is implemented on the level of spaces by the derived unit of the stabilization
adjunction

X — QY X.

In this case, Carlsson has shown in [13] that, in the case of spaces, the Bousfield-Kan completion
map

X = Xooxo

is an equivalence for simply-connected X. This was also studied by Arone-Kankaanrinta in [2].

For 1 < k < o0, it is known by work of Ching-Harper [14] and Blomquist [7] that the completion
map

X = Xlesn

is an equivalence for 0-connected O-algebras X with O (—1)-connected. This forms the starting
point for the work of this paper. Our main theorem generalizes the work of Blomquist and Ching-
Harper. We now allow our category of O-algebras to be centered away from the basepoint and
allow for non-trivial homotopy information in degree 0. It is worth pointing out here that our
method in the case of stabilization k& = oo is entirely different from that of Ching-Harper in [14]

and conceptually much simpler. Using model categorical methods, the crux of our stabilization



approach is establishing an S,-enriched stable fibrant replacement monad on the corresponding

category of spectra of retractive O-algebras.



Chapter 2

Model Structures and Stabilization

In this chapter, we introduce the basic framework in which our work will take place and establish
necessary technical results. As these may be of independent interest, we will elaborate upon them

with more generality than is strictly necessary for our results.

2.1 Categories of Retractive Objects

While almost everything here goes through for categories consisting of factorizations of a general

map f: ¢ — ¢, we restrict our attention to the case of f = id,, which is our primary focus in this

paper.

Definition 2.1.1. Given a category C and object ¢ € C, the category of retractive objects over

¢, denoted by C./ /. or simply C(id.), has as its objects all pairs of maps (s, co, ) where



and a morphism f: (s, co,70) — (s1,¢1,71) of such objects is simply an element f € homc(cg,c1)

compatible with the structure maps. Respectively, this may be displayed diagrammatically as

c c c
bk
co co —f—
P
c c c

where each diagram is required to commute.

Remark 2.1.2. The category C(id.) has a distinguished (but not necessarily unique) zero object and

hence is pointed. Namely

which, as indicated, we may choose to denote by ..

The following simple observation, while not essential, simplifies arguments in what is to come by

recognizing categories of retractive objects as a special instance of another operation on categories.

Lemma 2.1.3. For any category C and object ¢ € C, the category of retractive objects over c,

denoted by C(id.) is isomorphic to the iterated slice category (Cc)iq, /-

Proof. This amounts to unraveling the definitions. An object of (C/.)iq, ; is a morphism




which therefore forces fg = id.. This datum is precisely that specified by an object in C(id.).
Similarly, since id. is terminal in C/., morphisms of such diagrams amount precisely to the data of

a morphism in C(id.). Namely, a morphism f for which the following diagram commutes

This is precisely the data determining the morphisms of C(id.). The procedure is identical in
the reverse direction, mutatis-mutandis, and each is functorial. These procedures are manifestly

inverse. o

Specifying functors into this category is also particularly easy, in a sense.

Lemma 2.1.4. There is an isomorphism of categories

Fun(D, C(id.)) = Fun(D, C)(c)

natural in D. More generally, there are isomorphisms

Fun(D, C./) = Fun(D, C)./, Fun(D, C/.) = Fun(D,C) /.

natural in D.

Proof. The pattern of the argument is the same, mutatis-mutandis, in either the retractive or slice

cases, so let us consider the retractive case.



Let U: C(id.) — C be the forgetful functor and let us denote the image of the object d under a
functor F': D — C(id.) by

Fd= (Sd,UFd,T'd).

The association in one direction sends a functor F': D — C(id.) to the functor UF with the
evident structure maps S: ¢ — UF and R: UF — ¢ given on an object d as Sq = sq and Ry = ry,
using the notation established just above. To see this is well-defined, we must check S and R
are natural. For this, we must only check for f: d — d' that Sy = UFf o Sy and similarly
R; = Ry o UFf. This follows from functorality of F since S; = sq and Ry = rq for all objects

d € D. The association on morphisms is defined in the evident way.

The reverse association takes a functor G with natural transformations s: ¢ — G and r: G — ¢
and assembles a functor G: D — C(id.) by mapping G(d) = (sq, Gd, rq) and is defined on morphisms

by letting G(f) be the underlying morphism G(f).

These two procedures are functorial and manifestly inverse and natural. O

Remark 2.1.5. The above may also be seen from the properties of the join and slice constructions.

An important property of retractive categories is that many limits and colimits are computed as
in C for bicomplete C. In fact, in a certain sense, all limits and colimits in C(id.) may be computed
in C.

To fix ideas, let us consider the category of pointed spaces S, = S(id,). This following a simple

example that needs no explanation.



Ezample 2.1.6. The coproduct (wedge product) X Y in S, is computed as the pushout in S

I

*
Y *

_
— X Y

The structure map * — X _Y is simply the composite map from the pushout square.
Coequalizers may be computed in the same manner.

Example 2.1.7. The coequalizer of two maps f,g: X — Y in S, may be computed in S as the

Loy

where the maps * — X and * — Y are the basepoint maps. The diagram commutes since the maps

colimit in C of the diagram

f and g are pointed. The colimit of this diagram in S is simply the coequalizer of the two maps f

and g—call the object Z and the coequalizing map h.

*k
>
X - Y —— 7

If we give Z the basepoint coming from coequalizing diagram above, then we claim that
f h
X ? Y — 7

is coequalizing in S,. This is, of course, a simple computation.
These two examples suggest that the retractive categories of a bicomplete category C are them-

10



selves bicomplete, as long as we guarantee that the structure maps “take care of themselves.” In
fact, these examples suggest a little more—namely, that limits and colimits in C(id.) are closely
related to limits and colimits in C.

The remainder of this section is essentially an elementary categorical exercise, but we give

details anyways. Let us begin by briefly collecting some relevant definitions.

Definition 2.1.8. A functor U: E — C is said to create limits of shape D if for every diagram
F: D — E for which UF has a limit in C, a cone n: ¢ — F' is a limiting cone in E if and only if
Un: Ue — UF is a limiting cone in D. In other words, U,: Fun(D,E) — Fun(D, C) preserves and

reflects limit cones.

Definition 2.1.9. For any category D, let DY = A[0] * D and D* = D % A[0], the join of categories.
Here, DY is the category formed from D by freely adjoining an initial object and D* the category
freely formed by adjoining a terminal object. We denote these new objects e and call them the

cone points of the categories D and D”.

Remark 2.1.10. The notation < and > is supposed to be evocative of the shape of the new category.

Definition 2.1.11. If C is a category having an initial object () and terminal object *, then for any

category D, we define functors

(—)®: Fun(D,C) — Fun(D%, C), (—)": Fun(D,C) — Fun(D", C)

by declaring F'<: DY — C to be the functor with the property that F”|D = F and is defined on the

cone point by F<(e) = (). The functor F* is defined dually.

11



Lemma 2.1.12. If C is complete category, then for any small category D, following diagram

commutes up to natural isomorphism

Fun(D,C) —1 C

ol ]

Fun(D>,C) —— C

lim

Moreover, (—)* is an isomorphism of categories onto its image. The dual assertion holds for C

cocomplete.

Proof. This follows from the fact that the limit cone
n:lim F — F
may be uniquely extended to a cone
n': lim F — F®

which one may easily check is a limit cone. The first assertion now follows by uniqueness of
adjoints. The second assertions follows easily by noting that there a unique morphism between

terminal objects. O
Lemma 2.1.13. Let C be a bicomplete category and ¢ € C any object.
(a) C(id.) is bicomplete.

(b) The forgetful functor U: C(id.) — C preserves all colimits (resp. limits) of shape D for which
the inclusion D — DY (resp. D — D”) is final (resp. cofinal).

12



(¢) The forgetful functor U: C(id.) — C creates colimits (resp. limits) for all functors whose

domain category D has the property that the inclusion D — DY (resp. D — D”) is final (resp.

cofinal).

Remark 2.1.14. For such a category C, essentially all that goes wrong with the computation of
colimits in the underlying category of C is that we have not yet provided a natural map from c into
the colimiting object. To get a feel for what this is saying, one may consider that this statement
is true for coproducts in pointed spaces S, = S*. This is a good example to keep in mind to avoid

getting bogged down in notation while reading the following proof.

Proof. The two cases are dual, so we consider colimits.

(a) Given F: D — C(id.), let F'¥: DY — C(id.) be the (unique) cone corresponding to the
(unique) natural transformation x. — F' and denote the cone point of DY by e.

Let ¢y be any colimit of UF< in C with cone n: UFY — cp. Let s =ne: ¢ = cpand let r: cg — ¢
be the map induced from the cone UF< — ¢ of Lemma Then rs = id. since for any d € D,
the map s factors as s = ngosq where sg: ¢ — UFd is the structure map and r: ¢y — ¢ is induced
by the maps rqy: UFYd — ¢ of the cone UF? — ¢ where r4sq = id, for all d.

We claim that (s, co,r) along with the maps 7ng: UFd — ¢y exhibiting ¢ as the colimit of U F
exhibits (s, co,r) as the colimit of F' in C(id.). From the analysis in the preceding paragraph, we
at least know that morphisms comprising 1 assemble into a cone n: F — (s,c¢o,r). Note that by

the construction above, the evident extension n': F¥ — (s, cg,r) satisfies that

Un =n.

13



We must now show 7’ is the initial such cone. Given any other cone 7: F — (s',c/,1’), let 7/: F< —
(s',c/,r") be the evident extension as before. Since ¢y = colim UF?, there is a unique morphism
f:co— ¢ for which foUrn = Ur'. It suffices to show that f respects the structure maps. Since
the natural transformation UF< — ¢ factors through the map 7’': ¢ — ¢ on account of naturality
of 7/ and since ¢y — ¢ satisfies the same, induced by the colimit property of ¢, it follows that
r’ o f = r by universal properties of the colimit. That s’ = f o s follows from the fact that s’ = U7

and s = Ur,,.

(b) This statement, for when D — D< is final, follows immediately from the above analysis and

formula for colimits.

(c) Fix a functor F': D — C(id.) and let n: F — (s,cp,r) be a cone. Then n admits a (unique)

extension to a cone n': F* — (s,¢p,r) where F is as above.

Suppose first Un: UF — ¢p = U(s,cp,r) is a colimit cone in C. We must show that n is a
colimit cone in C(id.). By finality, U(#’) is a colimit cone if and only if Un = U(n)| D is a colimit
cone, so we may just as well suppose that U(n'): UF< — ¢ is a colimit cone and show that 1’ is a

colimit cone.

Note that Un, = s. This is because x. is the terminal object of C(id.). By finality, ¢y =
colimUF'. Hence, to provide a map ¢y — c is the same as specifying a natural transformation
UF — c¢. Since r: ¢g — ¢ commutes with the structure maps maps Ung: UFd — cp, this map is
determined by the natural transformation UF — ¢ of Lemma [2.1.4 Note that rs = id.. This is

because for any d € DY,

To see that 7' must be a colimit cone in C(id.), consider any other cone 7: F — (s',c/,r'). As

14



a colimit in C, there is a unique map f: ¢ — ¢ for which f o Urn' = Ur. We must show it respects
the structure maps. For this, note that, as before, 7, = s’ and hence, f o Un, = U, or, in other
words, f os = s'. By assumption, r’ o 7 is the natural transformation UF< — ¢ of Lemma
Hence, since Un': UF? — ¢y is the initial cone out of UF<, the map f: ¢y — ¢ satisfies 7’ o f =r.

Conversely, suppose n: F' — (s,¢o,r) is a colimit cone in C(id.). It follows from (a) that

Un: UF — Ucp is a colimit cone. O
Inspecting the proof of (a) carefully reveals the following.
Lemma 2.1.15. Suppose C is bicomplete.
(a) C.) and C,. are bicomplete.

(b) The colimit of a diagram F: D — C., is computed in C as the colimit of the augmented
diagram F<: D — C. The limit of a diagram F: D — C,. is computed in C as the limit of

the augmented diagram F”: D* — C.

(¢) The forgetful functor U: C.; — C preserves and creates small colimits for all functors whose
domain category D has the property that the inclusion D — D< is final. The forgetful functor
U: Cj. — C preserves and creates small limits for all functors whose domain category D has

the property that the inclusion D — D* is cofinal.

The following observation will allow us to characterize limits and colimits in categories of re-

tractive objects.
Lemma 2.1.16. If D has an initial (resp. terminal) object, the inclusion D — D (resp. D — D")
is final (resp. cofinal).

15



Proof. Let () denote an initial object of D. For any d € D, the comma category (d | D) is connected
because it has an initial object id4: d — d. If e denotes the cone point of DY, then the unique map

e — () is an initial object in this category. O

Corollary 2.1.17. If C is complete, then the limit of a diagram F: D — C(id.) may be computed,

up to isomorphism, as the limit of the unique extension F”: D — C and this limit is created in C.

The following are special cases of Lemma [2.1.16] that we will use.

Corollary 2.1.18. Limits and colimits of punctured cubes in C(id.) are computed as in C. For
any infinite reqular cardinal k, k-cofiltered limits and k-filtered colimits in C(id.) are computed as

in C.

2.2 Model Structures on Retractive Objects

As alluded to above, the benefit of our description of C(id.) as an iterated slice category is that it

allows us to equip C(id.) with a model structure whenever C has a model structure.

Definition 2.2.1. An object ¢ of a cocomplete category C is said to be k-compact, where k is an

infinite regular cardinal, if for any x-filtered diagram, F': J — C,

colim homc¢ (¢, F') — homc (¢, colim F')

is an isomorphism. When x = w, the first infinite cardinal, we say such an object is compact.

16



When C is enriched over S or S,, if the natural map

colim Hom(e¢, F') — Hom(c, colim F')

is an isomorphism, then we say c is simplicially compact—note that in all cases we will consider,
it is irrelevant whether we use the pointed mapping space or the unpointed mapping space. We
also say an object ¢ is sequentially compact if for every sequence ¢y — ¢; — ---, the natural
map

colim; homc(C, ¢;) — homc(c, colim; ¢;)

is an isomorphism.

Definition 2.2.2. Following Hovey in [35], we call a cofibrantly generated model structure on a
category C finitely generated if the domains and codomains of the generating cofibration and

generating acyclic cofibrations are sequentially compact.

Definition 2.2.3. A category C is said to be locally presentable if it is cocomplete and there
is an infinite regular cardinal k and a set of k-compact objects S such that every object of the
category is a k-filtered colimit of objects in S. In this case, C is also said to be locally k-
presentable. When x = w, the first infinite cardinal, C is said to be locally finitely presentable.
A cofibrantly generated model category that is locally presentable is said to be a combinatorial

model category.

Remark 2.2.4. The property of being locally presentable may be thought of as a point-set tameness

condition, whereas being cofibrantly generated is a homotopical tameness condition. Combinatorial

17



model categories are therefore particularly well-behaved and, in practice, most well-behaved model

categories (such as simplicial sets) are combinatorial.

The following is [1, Prop. 1.57].

Proposition 2.2.5. If C is a locally k-presentable category, then for every c € C, C). and C.; are

both once again locally k-presentable.

This fact, along with the main theorems of [32] have the following interesting implication.

Proposition 2.2.6. Suppose C is a locally k-presentable, finitely generated model category with set

of generating cofibrations I and acyclic cofibrations J.

(a) Then C(id.) is again a locally k-presentable, finitely generated model category in which the
classes of weak equivalences, cofibrations and fibrations in C(id.) are underlying in C. In

particular, the set of generating cofibrations 1¢ for C(id.) consists of all maps

18



for which j € J.

(b) More generally, if ¢ is any compact object of C, then any object of the form

Co cC — C1

ro+ide r1+ide

E.

Q— — O

o — O
=]

is compact in C(id.).

(c¢) If the domains of the generating cofibrations or generating acyclic cofibrations are cofibrant,

then the same is true in C(id.).

(d) If C is left (resp. right) proper, then so too is C(id.).

Proof. (a) The description of the generating cofibrations and acyclic cofibrations follow directly from
the iterated slice description of C(id.) of Lemma and an application of the descriptions of the
generating cofibrations and acyclic cofibrations for slice categories provided in [32]. Similarly, the

fact that C(id.) is once again locally k-presentable follows directly from directly from the iterated
slice description of C(id.) of Lemma and Proposition

The only thing that remains to be shown is that C(id.) is almost finitely generated. To take

care of this, we will show that a larger class of objects in C(id.) are sequentially compact. Suppose

19



co is a compact object in C and let r: ¢y — c. It suffices for us to show that

€o

r+ide

=]

is compact in C(id.). This object is obtained from 7: ¢y — ¢ by applying the free functor F': C,, —

(C/e)ia, ) = C(id.) taking an object such as r: co — ¢ to

lr—i—idc
C

and this functor is left adjoint to the forgetful functor U: C(id.) = (C/)iq. ; — C/.. Hence, for any
sequence

o=y =y — -

in C(id.), on account of how colimits of such sequences are computed by Corollary [2.1.18 we have
homca,) (o [ [ ¢, colim“(4) ¢f) = homc ,_(co, colim®/« ¢}),

where we have decorated where these colimits are computed (at least on underlying objects, this

does not make a difference).

20



But the mapping set homc, (co, colim ¢;) is the pullback

homc,, (co, colim ¢;) —— homc (co, colim® ¢})

| |

* {r: cozvel homc¢(co, ¢)

and, by assumption, cg is compact in C. Hence, this diagram is a pullback

homc , (co, colim ¢;) —— colim homc(co, ¢;)

J’ {r: co—c} J/

* homc¢(co, ¢)

and since filtered colimits and finite limits commute in the category of sets, this shows that the
natural map homc,, (co,colim¢}) — colimhomc,, (co, ;) is an isomorphism. Hence, the natural
map colim homcq.y(co ¢, ¢;) — homcgq,)(co ¢, colimc]) is an isomorphism, as desired.

(b) This follows in precisely the same way as the proof just given above, mutatis-mutandis—simply

replace the graphical depiction of the sequential colimit by a filtered diagram.

(c¢) The underlying object of the domains of the generating cofibrations and generating acyclic

cofibrations are given by the following pushout in C

) —— ¢
co — (o C
where ¢y € dom(/)Udom(.J). Thus, since ¢g is cofibrant, the left-hand vertical arrow is a cofibration

and therefore the left-most arrow is a cofibration. It follows immediately that the domains of the

generating cofibrations and generating acyclic cofibrations are cofibrant in C(id.).

21



(d) The forgetful functor creates pushouts and pullbacks by Corollary [2.1.18, Moreover, the
forgetful functor preserves and reflects all classes of distinguished morphisms. Suppose C is right

proper. Hence, given a pullback in C(id.), displaying underlying objects only,

c#co

b

Cl%)CQ

the forgetful functor sends it to a pullback in C, where since C is right proper, f is a weak equivalence.

The assertion is dual for left properness. O

In homotopy theory, it is often preferable for our model categories to be suitably enriched over
a monoidal model category—in particular, we might ask how a simplicial model structure on C
passes to one on C(id.) and, in particular, a pointed simplicial model structure on C(id.). Such
questions have been addressed in Schwede’s thesis work [48] and later in [34].

The following definition is adapted from Hovey in [34], but see also [22] for an equivalent
definition. We will only ever consider closed modules, so we have dropped the word ‘closed’ from
the definition. Similarly, we shall only every be interested in the case when the symmetric monoidal
model category in question is spaces S or pointed spaces S.. Before giving the definition, let us

make a remark.

Remark 2.2.7. There are at least two equivalent ways to define a (pointed) simplicial model category
having a notion of a tensoring. As noted, we will state the one given by Hovey in [34]. As for the
other possible definition such as that found in the appendices of [41] or in [47], which is predicated

upon a enrichment with a tensoring instead of a module structure in the definition below, the
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equivalence between these definitions will follow by the equivalence specified in |25, [38]. We will

say more about this equivalence in a remark following the definition.

Definition 2.2.8. Given a closed monoidal category (C,x*,a,p, A, e), a (closed) C-module is a
category D along with a cotensor (hom: C x D — D), tensoring (®: D x C — D) and hom-object

Hom: D°? x D — C having natural (unenriched) isomorphisms ¢ and 9
homp (X, homp (K, Y)) +—— homp(X ® K,Y) —2— homc (K, Homp (X, Y))
along with natural isomorphisms
a: (X®K)®L— X ® (Kx*L)

and

rX®e—>X
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such that the following three diagrams commute

(X@K)QL) oM —— (X@K)®(LxM) —— X @ (K * (L M))

a®idJ{ 1®o¢]\

(X® (K*L)®M X @ (K * L) * M)

(X ®e) (ex K)

® K 2 X ®
X x K

(XoK)®e

® (K *e)

= X
XxK

A functor of C-modules F': D — D’ is a functor F' of the underlying categories along with a natural
assembly map

assemb ;1 F(X)® K — F(X ® K),

which is associative and unital. A natural transformation of C-module functors n: F — F’ is a

natural transformation of the underlying functors which, additionally, respects the assembly maps.

If, furthermore, C is a closed monoidal model category and D a model category, thenif f: A — B
is a cofibration in D and g: K — L is a cofibration in C, we say that D is a C-model category if

the induced pushout product map

(A®L) [[(B®K)—»B®K
ARK

is a cofibration in D which is acyclic if either of f and g are acyclic cofibrations.
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A few remarks are in order. The first two are easy technical points on the definition above.

Remark 2.2.9. When C is a symmetric monoidal category, it is known that the braiding 7: C*C’ =
C'+C satisfies that p = Ao7. This implies that the first unit compatibility diagram (second diagram
above) is subsumed by the second unit compatibility diagram (third diagram above) and conversely,

as noted in [38].

Remark 2.2.10. If %p is the terminal object of D, then homp(K,*p) = xp naturally in K by

Yoneda, since there is a natural isomorphism
hom (X, hom(K,*p)) = hom(X ® K,*p) = * = hom(X, *p),

and since, therefore, all objects hom(K, *p) is terminal in D for each K, there is a unique such
natural isomorphism and naturality in K is immediate.
Similarly, for any object Y, hom(e,Y) 2 Y naturally. This likewise follows by Yoneda since

there is an isomorphism
p! (ridy)
hom(X,hom(e,Y)) — hom(X ® e,Y) — hom(X,Y)

natural in X. As it happens, this map is simply the one adjoint to the natural unit isomorphism

Y ® e =Y. We defer a discussion of this to later, where we actually need it.

The last remark clarifies the precise nature of the equivalence mentioned above and our use of
it.
Remark 2.2.11. Up to a suitable notion of equivalence as in [25, 38| and, the above definition may
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instead be taken to be a cotensored and tensored C-enriched category satisfying the pushout-product
axiom above. Indeed, the natural adjunction isomorphisms ¢ and 1 of this definition may be made
to be natural for the enriched hom-functors. See the discussion in [38, §2] and [25]. Indeed, the
main theorem of [25] may be understood as saying that, for a closed symmetric monoidal category
C—understood as a bicategory by way of its delooping—there is an equivalence of 2-categories via
a 2-functor

K: C—Cat® — MOdC

between tensored C-enriched categories and C-modules where, in particular, the functor K amounts
only to making certain canonical choices for unit, assembly and associativity natural transforma-
tions. Effectively, this means that with some additional canonical choices, C-enriched categories,
functors and natural transformations all already satisfy the module conditions. See 25} §3] or the
appendix of [38] for details. More recent treatments may be found in |17, |45, 40|, where it should
be noted that |17] corrects an error in [45] which found its way into [40]. It should also be noted
that there is an explicit construction of an inverse equivalence that is spelled out, for instance, in
[25, |17, |45], among other places and, under this inverse equivalence, the resulting endofunctor on
Modc is the identity—the reverse construction is quite simple and is exactly the first thing the
reader will think of, essentially amounting to a forgetful functor, so we leave these details to the

interested reader to discover or read about themselves, from the references already mentioned.

The upshot of this is the following observations. All facts about enriched functors of tensored
C-enriched categories and enriched natural transformations between them hold for functors and

natural transformations of C-modules (because the functors K amounts only to certain canonical
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choices). There are certain canonical choices such that C-modules are tensored C-categories and
for these choices module functors and natural transformations are enriched and preserved by the
2-functor K: C-Catg — Modc.

Because this is a result that is not often spelled out in its entirety, the module characterization
of functors and natural transformations will be more natural in our work in certain places and C-
modules and their functors and natural transformations being somewhat more frequently occurring
in nature, we will prefer the definition given above. To briefly elaborate, there may not be an obvious
choice for composition if one wants to construct a simplicial model category from an ordinary model
category—morally, this is because there is a rigidification problem that requires one to specify all
coherences in a way compatible with the given model structure. If one, instead, looks for a module
structure—so a tensoring of the sort above—then there is an essentially unique (because of the
equivalence above) tensored simplicial model structure occurring on the given model category. We
will defer some longer discussions about the content of this remark and what happens when there

is, additionally, a cotensoring—as in the definition above—to Remarks [3-3.11] and [3.3-4]

In light of these remarks, we make the following (somewhat abusive) definition.

Definition 2.2.12. Fix a closed monoidal category (C,*,a, p, A,e). We will call a functor of C-
modules as given in Definition [2.2.8 a C-enriched functor. We will call a natural transformation

between functors of C-modules as given in Definition a C-enriched natural transformation.

As mentioned before, there are two important cases of the above definition that deserve special

attention.

Definition 2.2.13. If C = S with its Cartesian monoidal model structure, then a S-model category
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is also called a simplicial model category. If C =S, with its monoidal structure inherited from

the smash product, then a S,-model category is also called a pointed simplicial model category.

We collect two simple observations.

Lemma 2.2.14. Every pointed simplicial model category is naturally a simplicial model category

by way of the disjoint basepoint functor (—)4+: S — Ss.

Proof. This is because (—)4 is a strong symmetric monoidal Quillen functor. O

Lemma 2.2.15. Every pointed simplicial model category C is pointed as a category (i.e., has a

zero object).

Proof. There is an isomorphism hom(X A x,Y) = homg, (¥, Hom(X,Y)) = % natural in Y’; hence,
by Yoneda, X A % = (), the initial object of C. On the other hand, the unique map S° — * induces
for every X € C a map

X2XASY 5 X Ax

Hence, when X = x¢, the terminal object of C, this is a map

*CH@-

The only way such a map can exist is if it is an isomorphism. O

The following idea is relatively straightforward, if one keeps in mind the special case of spaces
S. We are going to generalize the process of passing a simplicial model structure on S to one on

S.. In particular, we should also like to generalize how the pointed simplicial model structure on
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S, may be obtained from its simplicial model structure. Accordingly, the key observation is that

the smash product

X x K

=~ @)

of pointed spaces, along with its distinguished basepoint, is obtained from the product X x Y as

the following pushout in S

x g dentleide) o g

| |

* XANK

This sort of procedure has been observed by Hovey.

Proposition 2.2.16 ([34, Prop. 4.2.9]). If (C,®, e) is a symmetric monoidal model category whose
terminal object * is cofibrant, then (Cy, A, (%)+) is a symmetric monoidal model category, where

C. = C,, with the following constructions.

(a) For objects X, Y € Cy, X NY is defined by the following pushout in C

idy ®(x—Y)

* XANY

(b) Homc, (X,Y) is defined as the pullback in C given by

Homc, (X,Y) ——— Homc¢(X,Y)

‘ ‘(*—}X,ldy)

* = Homc (*, *) (da 2 =2¥) Homc(*,Y)
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with the structure map x+ — Homc, (X,Y) obtained from universal properties by way of
the map * — Homc(X,Y) adjoint to X @ x — = — Y or, equivalently, the map * =
Hom(X,x) - Hom(X,Y) induced by * — Y.

(¢) homc, (X,Y) is defined as the pullback in C given by

homc, (X,Y) —— hom¢(X,Y)

‘ h(*—)X,ldy)

* = homc (*, *) (ider=¥) homc(*,Y)

with the structure map * — homc, (X,Y) obtained from universal properties.

Remark 2.2.17. For instance, the category of spaces satisfies the hypotheses of this proposition. This

produces the usual symmetric monoidal model structure on S, with tensor the smash product.
The same recipe, guided by the case of spaces, provides a manner of inducing a pointed simplicial

model structure on C,.

Proposition 2.2.18 (|34, Prop. 4.2.19]). If C is a simplicial model category, then C, is naturally
a pointed simplicial model category with the following constructions.

(a) For objects X € Cy and K € S,, X N K is defined by the following pushout in C

(idx ®(+—K))
X@x *®K +H(x=X)®idk) X®K

| |

* XNK
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(b) Homc, (X,Y) is defined as the pullback in S given by

Homc, (X,Y) ———— Homc¢(X,Y)

‘/ ‘/(*%X,idy)

* thndd, Homc (*,Y)

with the structure map x — Homc, (X ,Y) picking out the evident map X — x — Y.
(¢) homc, (K, X) is defined as the pullback in C given by

homc, (K, X) ——— homc(K, X)

* = homc (*, %) (e X) homc (x, X)

with the structure map *+ — homc, (K, X) obtained from universal properties.

Remark 2.2.19. Any simplicial model category C which is pointed as a category is naturally a

pointed simplicial model category by way of this construction since for such a category, C = C,.

Conversely, a pointed simplicial model category C acquires the structure of a simplicial model

category under the strong symmetric monoidal Quillen functor (—)4: S — S,.

Thus, in light of Proposition [2.2.18, to provide C(id.) = (C/.)iq,; With a pointed simplicial

model structure, we only need to show that C,. admits a simplicial model structure.

Lemma 2.2.20. If C is a simplicial model category, then for any object c € C, so too is C,. with

the following constructions.

(a) Given objects X € C). and K € S, X ® K € C/, has underlying object in C X ®¢ K with
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structure map the evident composite
XK —->X®x=2X —c,

where the isomorphism X ® x — X is the natural one and the map X — c the structure map.

(b) Homc, (X,Y) is defined as the pullback in S given by

Homc, (X,Y) ———— Homc(X,Y)

l l(id x,Y =)

* o Homc (X, ¢)

(¢c) homc (K, X) is defined as the pullback in C given by

homc, (K,X) ——— homc(K, X)

‘/ ‘/(ld}( ,X—}C)

c = homc(*,c) W homC(K,C)

with the structure map to c as displayed.

Proof. First note that we may define the associativity and unit isomorphism for C,. to be on the

underlying objects the same as the one in C. To define a natural isomorphism hom /(X ® K,Y’) —
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hom /(X , hom.(K,Y’)), observe that hom . is naturally the pullback

hom .(X,Y) —— homc(X,Y)

J{ J{Y%c
* W} homc (X, C)

and, similarly, hom . is naturally the pullback

homc, (K,X) ———— homc(K, X)

‘/ ‘/(ld[{ ,X—}C)

¢ = homc(*,c) BTETTRE homc¢ (K, ¢)

This means that the pullback diagram for hom (X, hom .(K,Y))

hom (X, hom .(K,Y)) —— hom(X, hom . (K,Y))

| |

* hom(X, c)

expands by continuity of the hom-functor to a pasting of pullback diagrams, using the natural

isomorphism hom(X ® K,Y) = hom(X, hom(K,Y)), as

hom (X, hom/.(K,Y)) —— hom(X,hom/.(K,Y)) —— hom(X ® K,Y)

| | |

* hom(X,¢) ——— hom(X ® K, ¢)

where the composite map * — hom(X ® K, ¢) picks out the structure map X ® K — c¢. Hence,

since all constructions in sight are natural, we obtain a natural isomorphism hom /C(X R K,)Y)=
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hom /.(X, hom/.(K,Y)), as desired. The argument is identical, mutatis-mutandis, for the natural
isomorphism hom /(X ® K,Y) = hom .(K,Hom .(X,Y)).

The unit isomorphism r: X ® * — X and the associativity isomorphism a: (X ® K) ® L —
X ® (K x L) are inherited from the ones in C. It follows easily that these provide C, with the
structure of an S,-module.

All that remains to be checked is that the enrichment is suitably compatible with the model
structure on C. Recall that pushouts in C/. are computed as in C. Since cofibrations and weak
equivalences in the slice model structure are underlying, this follows from C being a simplicial model

category and the fact that the tensoring X ® K in C/, is the same as the one in C. O
The important, immediate consequence of the preceding discussion is the following.

Proposition 2.2.21. If C is a simplicial model category, then for any object ¢ € C, C(id.) is a

simplicial model category and, in fact, a pointed simplicial model category.

Proof. By Lemma|2.2.20} C /. is a simplicial model category. In this category, there is a distinguished
terminal object id.: ¢ — c. Hence, by Proposition [2.2.18} (C/.)iq, ; = C(id.) is a pointed simplicial
model category. Since C(id.) is pointed, it inherits a simplicial model structure under the strong

symmetric monoidal Quillen functor (—);:S — S,. O

Remark 2.2.22. In particular, this means that there are simplicial models for the loops and suspen-

sion functors, which we denote by 2. = homcjq,) (S 1'—)and ¥. = — A S1, respectively.

It is prudent to compare the models given by this construction for loops and suspension to

the ones provided by Schwede in [48]. For a simplicial model category C, Schwede gives C(id.) a
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simplicial model structure with its simplicial tensoring X ®¢ K defined as the pushout

cQK — X®K

|

Cc *

|

c— XK

with the evident structure maps and, similarly, defines the simplicial mapping object hom%(idc) (K, X)

as the pullback

homg(idc)(K,X) hom¢ (K, X)
¢ ———=— homc(x,¢) —— homc(K,c)

with the evident structure maps.

Lemma 2.2.23. For a simplicial model category C, X ®° K is naturally isomorphic to X N K

and homg(idc)(K, X) is naturally isomorphic to homcq,) (K4, X) in C(id.)
Proof. Since pushouts in C(id.) are computed as in C on underlying objects, X A K is the pushout

(X®%) (c@x ¢cK)— XK

:

where the unlabeled maps are the evident ones. We have used the natural isomorphism ¢ ® K =

c®% c¢® K. We then have a map of diagrams

c— (X®%) (c®@%x ¢c®K) — X% XK
l lidx ®(x—=K)+idxgr

c c® K XK
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where the middle arrow is the map given on components by

(X—=20)x—>K): X®x—>c®K and id.®(— K)+idegxk-

This map is furthermore natural in X € C(id.) and K € S and therefore induces a natural map
on pushouts. A simple check of universal properties verifies that this map X A K; — X ®° K is
an isomorphism in C and commutativity of the map of diagrams enforces that the isomorphism
commutes with the structure maps coming from ¢. That it also commutes with the structure maps

to ¢ follows in each case since the maps are induced by id.: ¢ — ¢ and

XK —=>c®x*x=c,

for X @° K and X ®+* X ® K — c¢ given on components by (displayed graphically for conciseness)

(X —=2c@x=c)+ (XK = c®x*=c).

These maps make the following cube commute

K

X+ (c@*x c®K) c®
T~
l X®
:
i !
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and thus the induced map commutes with the structure maps. This means that, as objects in
C(id.), there is a natural isomorphism X A K; =2 X ®° K. The argument for the mapping object

is argued similarly. O

Remark 2.2.24. Schwede further defines a loops functor on C(id.) by the pullback of

hom,.(A[1], X)

!

c—— hom%(idc)(ﬁA[l},X)
and a suspension functor on C(id.) by the pushout of

X @°0A[1] —— X ®° A[l]

!

c

An immediate corollary of the preceding lemma is that these constructions are themselves naturally
isomorphic to the simplicial models provided by the pointed simplicial model structure on C(id..).
Indeed, X ®° K = X A K, naturally and x¢c = X A (). Hence, the suspension functor is the

pushout of
X NOA[llf —— X ANA[1]+

!

XA(0)+
and since X A— is a left adjoint, it follows that Schwede’s suspension functor is naturally isomorphic
to X A (A[1]+/0A[1]4) =2 X A SY, as desired. The same analysis, mutatis-mutandis shows that the

loops functor is defined appropriately—alternatively, this follows by uniqueness of adjoints.
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2.3 Semi-model Categories and Left Bousfield Localization

A key part of our arguments will involve constructing the stabilization of retractive objects via
Hovey’s stabilization machine [36]. While many of the results of this chapter may be phrased
for semi-model categories—perhaps satisfying some additional properties—we elect to avoid them
whenever possible.

We take the following definition from [4].

Definition 2.3.1. A semi-model category is a bicomplete category C along with three classes
of maps ¥, % and # of cofibrations, fibrations and weak equivalences, respectively, which are

required to satisfy the following properties.
(SM1) Fibrations are closed under pullback.
(SM2) 7 is closed under the two-out-of-three property.
(SM3) ¢,.# and # contains all isomorphisms and are closed under composition and retracts.

(SM4) Cofibrations have the left lifting property with respect to acyclic fibrations; acyclic cofibrations

with cofibrant domain have the left lifting property with respect to fibrations.

(SM5) Morphisms in C admit a functorial factorization into a cofibration followed by an acyclic
fibration; morphisms with cofibrant domain admit functorial factorizations into an acyclic

cofibration followed a fibration.

Such a semi-model structure is said to be cofibrantly generated if there are sets of morphisms [

and J such that the class of acyclic fibrations are the maps that have the right lifting property with
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respect to I and the class of fibrations are the maps that have the right lifting property with respect
to J, the domains of I are small relative to transfinite compositions of pushouts of elements of I
and the domains of J are small relative to those transfinite compositions with cofibrant domains

of pushouts of elements of J.

Remark 2.3.2. Every semi-model category admits functorial fibrant and cofibrant replacement func-
tors. In particular, it is only the acyclic cofibrations and fibrations that are not necessarily pinned
down by lifting properties in a semi-model category—however, among maps with cofibrant domain,
the strong acyclic cofibrations are pinned down as the maps having the left lifting property with
respect to fibrations. In a cofibrantly generated semi-model category, this means the weakly satu-
rated class generated by the set J does not necessarily contain all acyclic cofibrations, despite the

class of fibrations being the right complement of J.

Definition 2.3.3. Following Goerss and Hopkins in [44, Def. 1.1.8], we will say a semi-model
structure C is simplicial if it is simplicially enriched, tensored and cotensored such that for any
strong cofibration (i.e., a cofibration with cofibrant source) i: A — B and fibration p: X — Y the

pullback corner map

Hom(B, X) — Hom(B,Y') Xtom(4,y) Hom(4, X)

is a fibration which is acyclic if either of 7 or p are acyclic. We will say a pointed semi-model

category is a pointed simplicial semi-model category if the analogous axiom holds.

The following is due to Batanin and White as [4, Thm. 4.2], which will allow us to localize
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our category of spectra in SpN(AIgg) at a set of maps defined further below. It is also possible to
construct this localization of SpN(AIgg) using the cellular arguments of Harper-Zhang [28] once it

has been established that the local equivalences of Sp™(Algh) are mé-isomorphisms.

Proposition 2.3.4. Suppose C is a locally finitely presentable, cofibrantly generated model category
such that the domains of the gemerating cofibrations are cofibrant. Then for any set of morphisms
S, the left Bousfield localization LgC exists exists as a cofibrantly generated semi-model structure.
The weak equivalences are the S-local equivalences, the cofibrations in LgC are the same as in C
and the fibrant objects of LsC are the S-local objects. The set of generating cofibrations are the

same as in C and the set of generating acyclic cofibrations all have cofibrant domains.

Remark 2.3.5. Every S-local object is fibrant in C. This is because there are more weak equivalences
in LgC, so there are more acyclic cofibrations in LgC and the class of all such acyclic cofibrations

contains the class of acyclic cofibrations in C.

We introduce some terminology, which we adapt from [28, 39].

Definition 2.3.6. Fix a set S of maps in a simplicial model category C and a map f: X — Y in

C.
(a) We say f is a strong cofibration if it is a cofibration in C between cofibrant objects.

(b) We say f is a S-local fibration if it has the right lifting property with respect to every

cofibration that is an S-local equivalence.

(c) We say f is weak S-local fibration if it has the right lifting property with respect to every

strong cofibration that is an S-local equivalence.
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As in [28] Prop. 3.6], the following implications holds.

Proposition 2.3.7. Fiz a set S of maps in a cofibrantly generated simplicial model category C and

suppose that the domains of the generating acyclic cofibrations of C are cofibrant.

(a) Every strong cofibration is a cofibration.

(b) Every weak equivalence is an S-local equivalence.

(¢) Every S-local fibration is a weak S-local fibration and every weak S-local fibration is a fibration.

Proof. The proof follows as in Harper-Zhang with only minor modifications. O

Remark 2.3.8. Only the implication that every weak S-local fibration is a fibration requires the
hypothesis that C be cofibrantly generated having generating acyclic cofibrations with cofibrant
domain. The implication that every S-local fibration is a fibration follows since the class of S-local
equivalences contain the class of weak equivalences in C. In fact, all that is required of C it have
a set of J of acyclic cofibrations between cofibrant objects such that the class of fibrations is the

class of maps having the right lifting property with respect to J.

The following is due to Harper and Zhang in [28, Prop. 3.8]. An analogue of this was also

noticed by Barwick in |3, Lem. 1.7.1].

Proposition 2.3.9. Fiz a set S of maps in a cofibrantly generated simplicial model category C and
suppose that the domains of the generating cofibrations of C are cofibrant. For a map f: X — Y,

the following are equivalent.

(a) f is a weak S-local fibration and S-local equivalence.
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(b) f is an S-local fibration and S-local equivalence.
(c) f is an acyclic fibration in C.

Remark 2.3.10. Similar to Remark following Proposition only the implication (a)=-(c)
requires the hypothesis that C is cofibrantly generated with each generating cofibrations having a
cofibrant domain. Unlike Proposition [2.3.7], it is the generating cofibrations this is imposed upon.

A similar weakening of this assumption as in Remark is possible.

Proof. The proof of this proposition likewise follows just as in Harper-Zhang with only minor

modifications. O

As it turns out, we have a better handle on this localization when the category we are localizing

has a compatible simplicial structure.

Proposition 2.3.11. Suppose C is a locally finitely presentable, cofibrantly generated, (pointed)
simplicial model category whose generating cofibrations have cofibrant domain and let S be a set of
maps in C. Then the acyclic fibrations of LgC are precisely the acyclic fibrations in C and LgC is
a cofibrantly generated, (pointed) simplicial model category with the same mapping space functor as

C.

Proof. Say by Proposition [2.3.9] we know that acyclic fibrations of LgC are precisely the acyclic
fibrations in C. Since any two functorial models for a derived mapping space are connected to
each other by a zig-zag of natural equivalences as a consequence of [31, Thm. 17.5.7], we may
use the mapping space functor Hom of the original category to detect S-local objects and S-local

equivalences, and we do so. Note that in a pointed simplicial model category, the pointed simplicial
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mapping space Hom(X,Y') is simply the unpointed mapping space equipped with basepoint the
unique map X — % — Y.
Let i: A — B be a strong cofibration and p: X — Y an S-local fibration. In this case, all

that needs to be checked is that pullback powering is a fibration of simplicial sets and is a weak

equivalence when either of i or p are a weak equivalence. We consider the former first.

Let us show the pullback power map is a fibration. To do this, consider a lifting problem

Ak [n] Hom(B, X)

jj e 7 me

Aln] *> Hom(B,Y) X Hom(A,Y) Hom(A, X)
which, by adjunction, is equivalent to

B @Al agamA®A] — X

il:ljJ{ '

B®AM N Y

bS]

but since A — B is a cofibration—thus, a cofibration in C—and j is an acyclic cofibration of
simplicial sets, i[Jj is an acyclic cofibration in C, since C is a simplicial semi-model category. But
then, in particular, :[]j is a cofibration and an S-local equivalence. Since p is an S-local fibration,

the dotted arrow exists.

If p is additionally a weak equivalence, then it is an acyclic fibration in C and we are done
since C is a simplicial semi-model category, so we suppose that i is an acyclic cofibration between
cofibrant objects. As before, to test that the resulting map is an acyclic fibration, it is enough

to check it lifts against the generating cofibrations in simplicial sets. For this, we adjoint to the
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following lifting diagram

B®0An]  agonm A®A[R] —— X

mgi

B ® Aln] Y

iS]

Since p is an S-local fibration, we must check that i[Jj—which is a cofibration as before—is an
S-local equivalence. To do this, note that i[Jj has cofibrant domain since C is simplicial semi-model

category. Hence, it suffices to show that for every S-local object W, the map

(:0j)*: Hom(B ® A[n], W) — Hom (B ®0An] [ A®An], W)
AGOA[n]

is a weak equivalence of Kan complexes. The target of this map is the pullback

Hom(B ® 0A[n]  4goa[ A ® Aln],W) —— Hom(B ® 0A[n], W)

Hom(A ® A[n], W) Hom(A ® 0A[n|, W)

which is, by adjunction, a pullback

Hom(B ® 0A[n]  4goa[m A ® Aln], W) —— Hom(9A[n], Hom(B, W))

| |

Hom(A[n],Hom(A,W)) ————— Hom(9A[n|, Hom(A, W))

and this shows that the left-most vertical map (*) is an acyclic fibration—this follows since A — B is
an S-local cofibration between cofibrant objects and W is S-local, so that the map Hom(B, W) —

Hom(A, W) is a weak equivalence by definition of the S-local equivalences and that it is a fibration
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follows from our preceding analysis since W — % is an S-local fibration. Hence, by stability under
pullback, (xx) is an acyclic fibration.

We claim now that the map Hom(B ® A[n], W) - Hom(A ® Aln], W) is an acyclic fibration.
This follows by exactly the same analysis we used when showing (x) is an acyclic fibration.

Putting this all together, we have a diagram

Hom(B ® Aln], W)

T

Hom(B ® 0A[n]  4goa[) A ® Aln], W) —— Hom(B ® 0A[n], W)

Nl LV

Hom(A ® Aln|, W) Hom(A ® 0A[n], W)

and thus by two-out-of-three, the dotted arrow is a weak equivalence and acyclic fibration, as
desired.

Since any S,-enriched model category is pointed (see Lemma and has a natural S-
enriched model structure for which the pointed simplicial mapping spaces are simply the simplicial
mapping spaces with the zero map as a basepoint, it is easy to see nothing changes when we ask

that C be a pointed simplicial model category. O

A careful inspection of the argument above reveals that when C is a simplicial model category,
requiring i: A — B to be a strong cofibration is only required to show the pullback power map is

an acyclic fibration when 7 is an acyclic cofibration. We may therefore deduce the following.

Corollary 2.3.12. Suppose C is a locally finitely presentable, cofibrantly generated, (pointed) sim-

plicial model category whose generating cofibrations have cofibrant domain and let S be a set of
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maps in C. Then LgC is a (pointed) simplicial semi-model category with the same set generat-
ing cofibrations and a set of generating acyclic cofibrations having cofibrant domain. Moreover, if
i: A — B is any cofibration and p: X — Y an S-local fibration, then the pullback corner map p™*

s a fibration which is acyclic if p is an acyclic fibration.

Corollary 2.3.13. Suppose C is a locally finitely presentable, (pointed) simplicial semi-model cat-
egory whose generating cofibrations have cofibrant domain and let S be a set of maps in C. Then
LsC admits a (pointed) simplicial monad R which is a fibrant replacement functor on cofibrant

objects.

Proof. The proof of the simplicial case follows exactly as in [9, Thm. 6.1] because we may assume
the generating acyclic cofibrations in LgC have cofibrant domains. Hence, for any simplicial set K
and generating acyclic cofibration j, 7 ® K is once again an acyclic cofibration. More generally, in
light of [47, Thm. 13.2.1, Cor. 13.2.4, Rem. 13.4.3], it follows that the same holds in the pointed
simplicial case. The point is that strong acyclic cofibrations are closed under pushout and transfinite

composition when restricted to mapping to cofibrant objects. O

Remark 2.3.14. The enriched cofibrant replacement comonad on LgC above may simply be taken

to be the on on C.

Remark 2.3.15. It follows easily that if X is cofibrant, so too is RX since cofibrations in a semi-

model category are preserved under transfinite composition and pushout in a semi-model category.
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Chapter 3

Stabilization of Retractive Model

Structures

With this said, Hovey’s stabilization machine [36] in the finitely generated case carries over without
change. The purpose of this chapter is to explain these consequences and develop some more

machinery that will be necessary for our completion results.

3.1 Categories of Spectra

Definition 3.1.1. Fix a pointed simplicial category C. The category of spectra SpN(C) in C is the
category whose objects consist of sequences (Xg, X1,...) of objects in C along with structure maps
gi: X; NSt = XX, — X;+1—equivalently, adjoint structure maps maps o;: X; — QX;41. The
morphisms are the morphisms of sequences respecting the structure maps—equivalently, respecting

the adjoint structure maps.
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Definition 3.1.2. For a pointed simplicial category C, the category SpN(C) admits several inter-

esting functors. This category has (underived) shifted suspension spectrum functors

F, =% C— SpN(Q)

given by

X A (Sl)/\mfn m>n
(FnX)m =

* else

where x is the zero object of C which are left adjoint to the (underived) shifted infinite loop space
functors

Ev,, = Q®™"

defined by Ev,, X = X, and, furthermore, Ev,, is left adjoint to the functor M,: C — SpN(C)

defined by
Q"X m<n
* else.
Pictorially, with left adjoints on top,
Fr
C — Bu, — SpN(C)
M,

Lemma 3.1.3. If C has all limits or colimits of shape D, then so too does SpN(C). In particular,

these limits and colimits are created in the category of sequences CN and, hence, levelwise, under
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the forgetful functor.

Proof. In this case, the limits and colimits may be computed pointwise in SpN(C). That the
forgetful functor creates the relevant colimits follows from the fact that ¥: C — C is a left adjoint.
That the forgetful functor creates the relevant colimits follows from the fact that Q: C — Cis a

right adjoint, using the adjoint structure maps. O

Lemma 3.1.4. If C is a pointed simplicially enriched category which is locally finitely presentable

and has all pullbacks, then so too is SpN(C) locally finitely presentable.

Rather than making an ad-hoc argument by hand, we will refer to the following basic fact about

locally finitely presentable categories to make quick work of this. First, we collect a definition.

Definition 3.1.5. A generating set G of a category C is said to be strong if for each object X € C
and each proper subobject i: X¢g — X, there is a G € G and a morphism g: G — X which does

not factor through <.

Proposition 3.1.6 ([1, Thm. 1.11]). A category C is locally finitely presentable if and only if it
is cocomplete and has a strong generating set of compact objects G. In particular, if G denotes the
closure of the full subcategory spanned by G under finite colimits, then G is a set of compact objects

and C is generated under filtered colimits by G.

This is a mild condition that most well-behaved categories satisfy. This proposition may be
thought of roughly as a necessary and sufficient condition for a category to admit “categories of

~Y

simplices” for each object X. In simplicial sets, a simplicial set X is the filtered colimit X
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colima [, x A[n], and this proposition guarantees that a similar situation occurs in the category

C.

Proof of Lemma[3.17 Tt is easy to see Sp™(C) has all pullbacks since we can compute them lev-

elwise by the preceding lemma.

If an object ¢ € C is compact, then so too is F,,c for each ¢ by an adjunction argument. Let G
be a generating set of objects for C. Then Sp(G) = 5 FuG is a generating set for SpN(C), we

claim.

Note that in any category with pullbacks, to call a map 7: X¢9 — X a monomorphism is precisely

the same as saying that the following square is a pullback

id
Xo —= Xp

ol |

XoﬁX

In particular, a monomorphism in SpN(C) is precisely a level monomorphism. Since isomorphisms
are levelwise, a proper subobject of a spectrum X is a monomorphism i: Xg — X which is not an
isomorphism and, hence, for some level n, is a proper subobject. Given such a proper subobject, a

factorization
F,c —— X

o

Fo,c — X
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is equivalent, by adjunction, to a factorization

c — (X

0)n
I
Xn

cC ——

Since i is a proper subobject, there is an n such that i, is a proper subobject and therefore there
is an object ¢ € G and a map ¢ — X,, for which the factorization above does not exist. It follows

that the adjoint of this map F,c — X does not factor through 4. O

It turns out that for a cofibrantly generated, pointed simplicial model category, its category
of spectra inherits a cofibrantly generated, pointed simplicial model structure from C. This is the

content of the following result from [36, Thm. 1.13, Thm. 6.3].

Proposition 3.1.7. Let C is a cofibrantly generated, pointed simplicial model category with sets of

generating cofibrations I and generating acyclic cofibrations J.

(a) SPN(C) is a cofibrantly generated model category in the projective model structure, in

which the weak equivalences and fibrations are levelwise.

(b) The set of generating cofibrations for the projective model structure is given by o Fy(I)
and the set of generating acyclic cofibrations for the projective model structure is given by

n>0 Fn(J)

(¢) The Si-tensoring is given levelwise by (X N K), = X, A K and with structure maps

(Xn ANK)AS' 2 X, @ (KASHY 2 X, @ (S'AK) 2 (X, ASHAK = X1 AK,
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using the associativity isomorphism.

(d) The S-cotensoring is given levelwise by hom (K, X ), = hom(K, X,,) and with adjoint struc-

ture maps

hom(K, X,,) - hom(K,QX, ;1) 2 hom(KAS', X,,,1) =2 hom(S'AK, X,,11) = Qhom(K, X, 11),

using the adjoint associativity isomorphism (see Remark .
(e) If C is left or right proper, then so too is Sp™(C).
(f) The unit and associativity maps for the S.-module structure on Sp™(C) are given levelwise.

Remark 3.1.8. Hovey states in [36, Thm. 6.3] that the stable model structure on Sp™ (C)—under
suitable hypotheses on C to guarantee its left Bousfield localization exists as a model category—is
a pointed simplicial model structure. However, Hovey’s argument shows that the projective model
structure above is simplicial since the acyclic cofibrations in the projective model structure are
acyclic cofibrations in the stable model structure, since every level equivalence is a stable equiva-
lence. This is independent of the assumptions Hovey places upon C to guarantee its left Bousfield

localization exists as a model category.

In order to begin our discussion on the stabilization of this model structure, we first introduce
the class of maps we wish to invert on the level of homotopy. The class of maps is picked out by

Hovey in 36, Def. 3.3.].

Definition 3.1.9. Suppose C is a cofibrantly generated, pointed simplicial model category in which

the domains of the generating cofibrations are cofibrant. Let S be the set of maps in SpN(C) given
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S= ¢Y: F,1(2C) = F,C : C € dom(I)Ucod(I),n >0

where (¢ is the map adjoint to the identity map idgc: £C — C. Then we say amap f: X — Y
in SpN(C) is a stable equivalence if it is an S-local equivalence. If the left Bousfield localization
at the set S of maps of the projective model structure on SpN(C) exists as a semi-model category,

we will call it the stable semi-model structure.

One way of thinking about this set of maps is the following, which is due to Hovey in [36].

Definition 3.1.10. Let C be a pointed simplicial model category. In SpN(C), an ()-spectrum is a
level-fibrant spectrum X such that the adjoint structure maps X,, — QX 41 are weak equivalences

in C.

Proposition 3.1.11. Suppose C is a cofibrantly generated, pointed simplicial model category in
which the domains of the generating cofibrations are cofibrant. Let S be the set of maps of Defini-

tion |3.1.9. Then S-local objects are precisely the Q)-spectra.

Proof. The functors and adjunctions of Definition [3.1.2] are all simplicial. Hence, if W is S-local,
then the map

(Cr?)* HomSp(FnCa W) — Homsp(Fn.HZC, W)

is an equivalence for all n > 0 and C € dom(I) U cod([). By adjunction, this means, equivalently,
that the map
Ons: Home(C, W,,) - Homc(C, QW,,41)
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is an equivalence for all n > 0 and C € dom(/) U cod([). Thus, it is clear the S-local objects at
least contain the (2-spectra. On the other hand, since the domains of the generating cofibrations
are assumed to be cofibrant, |36, Prop. 3.2] shows that this is equivalent to requiring the adjoint
structure o, : W,, — QW,, 11 be equivalences for n > 0. Hence, the S-local objects are precisely the

Q-spectra. O

The following proposition is now an immediate consequence of Corollary [2:3.12]

Proposition 3.1.12. Let C be a locally finitely presentable, finitely generated, pointed simplicial
model category in which the domains of the generating cofibratons are cofibrant. Then the stable

semi-model structure on SpN(C) exists as a pointed simplicial semi-model category.

We now end this section with the following stability theorem for SpN(C), justifying our use of

the word ‘stable’

Theorem 3.1.13 (|36, Thm. 10.3]). Let C be a pointed simplicial semi-model category which is
locally presentable and cofibrantly generated such that the generating cofibrations have cofibrant
domains. Then the stable semi-model structure on Sp™(C) exists and is stable—the simplicial

suspension functor — A S =3 on SpN(C) 1s a Quillen equivalence.

Remark 3.1.14. As before, nothing in Hovey’s arguments really requires that the category C in
question be left proper and cellular, in light of Proposition 2.3.11] The only part of Hovey’s
argument where the particulars of the model structure really comes into play is when an acyclic
cofibration is pushed out along another map where all objects are cofibrant—in this case, the
pushout of the acyclic cofibration remains an acyclic cofibration in a semi-model structure. See

also [53| pg. 7] for a brief discussion.
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3.2 The Functor O

Under mild hypotheses, Hovey provides a characterization of the stable equivalences in SpN(C) in
terms of level equivalences. To do this, we first introduce a sort of spectrification functor. We first

introduce some auxiliary functors.

Definition 3.2.1. Let C be a pointed simplicial model category. Define shift functors sy, s_: SpN(C) —

SpN(C) on objects as follows

The functors s; and s— commute with all limits and colimits. We denote the k-fold iterates of the

shift functors by s’i and s” .
Lemma 3.2.2 ([36, Lem. 3.8]). Let C be a pointed simplicial model category.

(a) The shift functor si is left adjoint to s* .

(b) sk commutes with the S-tensoring and cotensoring on Sp™(C). s

commutes with the S-
tensoring and cotensoring on Sp™ (C)—in fact, there are equalities s* (X N L) = s* (X) A L

and s* hom(L, X) = hom(L, s* X)

(c) s+ F,, = Fyi1 and Evy, s = Evy41.
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Proof. The only part of this that requires words is (b). Note that hom(L,—) and — A L are
defined levelwise on the spectrum and that s_ shifts the objects and structure maps. Hence,
s_hom(L, X) = hom(L,s_X). On the other hand, s shifts the structure maps but also introduces
new objects in the spectrum in degree 0. Since x A L is only naturally isomorphic to * (the

distinguished zero object), but by a unique natural isomorphism, this shows that sﬁ(X AL =

s% (X A L) uniquely. O

Definition 3.2.3. Let

0=0s_=s5_Q:SpN(C) — SpN(C).

This is the functor given by mapping a spectrum X = (Xg, X1, ...) to the spectrum (Q2X1,QX5,...)
with the evident structure maps. There are natural maps iy : X — ©X. Let ©* be the endofunctor
of Sp™N(C) defined by

0™ X = colim(X X5 X X 02X — ...).
Let jx: X — ©*°X be the evident natural transformation induced from the colimiting cone.

Remark 3.2.4. Levelwise, (0%°X),, 2 colim(X,, — QX,11 — Q?X,,40 — ---), which is the classical
spectrification procedure for spectra of topological (say, CW-complexes) spaces.

Remark 3.2.5. Since © = s_ 0 Q) = Qo s_ is a composite of right adjoints, it is a right adjoint to
the functor ® = s, 0¥ = ¥ o s,. More generally, ©F is right adjoint to the functor ®* = sﬁ o Xk,

Lemma 3.2.6 (|36, Lem. 4.5]). For any X, the maps iox and Oix coincide.

Hovey has shown this functor exhibits excellent properties.
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Proposition 3.2.7 ([36, Prop. 4.6]). Suppose C is a finitely generated, pointed simplicial model
category and suppose € preserves sequential colimits in C. Then the map ©*X — O(O®X) is
an isomorphism. If, in addition, C is finitely generated and X is level fibrant, then ©*°X is an

Q-spectrum.

As an immediate corollary, it follows that ©°° may be used to give stable fibrant replacements.

Corollary 3.2.8. Suppose C is a locally finitely presentable, finitely generated, pointed simplicial
model category and suppose ) preserves sequential colimits in C. For any level fibrant spectrum
X, O%°X is a stable fibrant replacement of X. In particular, if R’ is any functorial level fibrant

/

replacement functor, ©*° o R’ is a functorial stable fibrant replacement functor.

This functor allows us to detect stable equivalences as level equivalences.

Proposition 3.2.9 ([36, Thm. 4.9, Cor. 4.11]). Let C be a finitely generated, pointed simplicial
model category in which the domains of the generating cofibrations are cofibrant, sequential colimits

preserve finite products and ) preserves sequential colimits.

(a) If f: A — B is a map in Sp™(C) such that ©®f is a level equivalence, then f is a stable

equivalence.

(b) The natural map ja: A — OA is a stable equivalence.

Remark 3.2.10. While Hovey does not specify in |36, Thm. 4.9, Cor. 4.11] that the model structure
should satisfy the hypotheses of [36, Prop. 3.2], all argument still go through go through by inter-

preting a stable equivalence to mean a map f: A — B in SpN(C) such that for all Q-spectra W,

57



Qf": Hom(QB,W) - Hom(QA, W) is a weak equivalence, where () is some choice of projective

cofibrant replacement functor. Note that (a)=-(b) by applying ©> and the preceding proposition.

The following corollary is essentially [36, Thm. 4.12].

Corollary 3.2.11. Let C be a finitely generated, pointed simplicial model category in which the
domains of the generating cofibrations are cofibrant, sequential colimits preserve finite products and

Q preserves sequential colimits. Let L be any level fibrant replacement functor.

(a) A map f: A — B is a stable equivalence if and only if ©>f is a stable equivalence. In

particular, O preserves weak equivalences.
(b) A map f: A — B is a stable equivalence if and only if ©CLf is a level equivalence.

Proof. (a) We have a commutative diagram

EEEENYOLY

I

B —— O*B

JB

The maps j4 and jp are stable equivalences from the preceding proposition. Suppose f is a stable
equivalence. Then by two-out-of-three, ©°° f is a stable equivalence. Conversely, suppose O f is
a stable equivalence, then by two-out-of-three, f is a stable equivalence.

(b) We have a commutative diagram

A LA 4, @A

~ ~

|

B —— LB —— O*LB

JB

58



The maps A — LA and B — LB are level equivalences and, hence, stable equivalences. The
maps jr4 and jrp are stable equivalences from the preceding proposition. Suppose f is a stable
equivalence. Then by two-out-of-three, Lf is a stable equivalence. By (a), ©>Lf is a stable
equivalence. But ©° LB and O LB are {2-spectra and thus local objects. Hence, @ Lf is a level
equivalence. Conversely, suppose O Lf is a level equivalence. Then it is a stable equivalence and

by (a), Lf is a stable equivalence; by two-out-of-three, it follows that f is a stable equivalence. [

Remark 3.2.12. The utility of this corollary is in (b). For instance, level equivalences between
Q-spectra of pointed spaces are precisely 7i-isomorphisms. (b) of the preceding corollary allows us

to characterize the stable equivalences in terms of algebraic data.

As an indication of a more general argument, we collect a corollary. This corollary will follow

from a proposition due to Dan Dugger in [18], who attributes it to Jeff Smith.

Proposition 3.2.13 (|18, Prop. 7.3|). Let C be a cofibrantly generated model category in which the
domains and codomains of the generating cofibrations are compact. Then any colimit functor for

filtered diagrams is a model for the point-set homotopy colimit functor.

Proof. Given filtered diagrams Fi, Fo: D — C and a level equivalence n: F; — F5, we may form,

in the projective model structure on Fun(D, C) the following commutative square

QF —— Fy

NJ JN

QFy —» Iy

where the left-most vertical map is a level equivalence by the two-out-of-three property. Taking
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colimits, since colim QQF; — colim Q) F» is an equivalence, we have a commutative diagram

colim QF} —— colim I}

L e

colim QFy; —— colim Fy

and to show that (%) is a weak equivalence, it suffices to show that colim QF; — colim F; is an

acyclic fibration for each ¢ = 1,2, since then, by two-out-of-three, (%) is a weak equivalence.

For this, set ¢ = 1, without loss of generality, and set QF; = Fy. Then for each generating

cofibration i: Cy — C1 and solid commutative diagram

90 .
Cop —— colim Fj

Lo

(& — colim I

we must check the dotted lift exists. By compactness of the C;, there is a d; € D and a map

fi: C; — Fy(d;) for which we have a factorization

gi

C; AN F;(d;) . colim F}

Similarly, the composite map Cy — colim Fj factors through some Fids as

Co L2 Fy(dy) — colim Fy
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Since D is filtered, there there exists a cospan

and we claim that we my pick it such that the following diagram commutes

90

Foa

fo Fodo F(]dg L colim FO

| w |

Cl 7 F1d1 13 Fldg T> colimF1

g1

It is at least true that the right-most square and outer rectangle commute. If the left-hand rectangle
does not commute, we may at least make the following observation. The composites represented
by 14, © Foaro fo and Fy 5o fi oi represent the same element of colim hom(Cy, F}) because, as maps

into colim F} they are determined by the two composites

Co fo Fodo Foo F(]dg L COliInFo
Fldg T> colimF1
and
Co
|
Cl 2 F1d1 I F1d2 T> COlimFl

and we know these are equal. Hence, there is a map 7: do — d3 such that the following diagram
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commutes

1, Fody 2% Fudy —25 Fydy

i |

Fir
Cl R F1d1 I F1d2 E— F1d3

Hence, by naturality of n, we have the following solid commutative diagram

Co FO(Ta)OfO Fodg in colim FQ

| e ]

Cy N Fids = colim F}

so that the dotted lift exists. This provides a lift in the original diagram and thereby shows that

colim QF; — F; is an acyclic fibration, as desired. ]

As promised, the functor ©*° allows us to characterize stable equivalences in terms of algebraic
data in good cases. Note that the following corollary does not use any of the model categorical
properties of the stable model category of spectra and goes through if we only knew it was a stable

model category.

Corollary 3.2.14. The left Bousfield localization of Sp = SpN(S*) at the set of maps S described
above has weak equivalences precisely the 72-isomorphisms. In particular, the map ja: A — O A

is a mi-isomorphism.

Remark 3.2.15. We must be precise about what we mean by the homotopy groups of a spectrum in
this context. For a simplicial set X, its homotopy groups are the homotopy groups of its geometric
realization | X|, since the adjunction between geometric realization and the singular simplicial set

functors respects basepoints and are pointed simplicial functors. For instance, for pointed simplicial
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sets, | X | may be defined as the coend in S, given by the coend

| X| = Xn Aa |An] | =Xy Aa Aln] 4|

where, for a pointed discrete set X,,, we consider it as a pointed discrete space generated by X, in
degree 0 in each of the displayed isomorphisms. The simplicial structure follows by Fubini for coends
and the fact that the smash product X A— is a left adjoint, giving a natural isomorphism |K|A|X| =
|K A X|. The pointed simplicial structure on the corresponding Sing = homs, (|A[n]4|, —) arises
using this isomorphism and an adjunction argument.

Thus, we could define the homotopy groups of a spectrum as 75(X) = 7y | Xi1x|. However,
not every model category C has such a functor with the properties these two have. We will work a

little more generally.

Proof. Let L be a level fibrant replacement functor. Define the stable homotopy groups of a

spectrum X to be the colimit

73(X) = colim 7,41 (LX) = colim m, Q% (LX)y.

This is independent of the choice of functorial level fibrant replacement functor as a consequence of
[31, Thm. 14.6.9]. It is, moreover, naturally isomorphic to the description given by colim 7, x| Xk|

because Sing |—| is a level fibrant replacement functor. Let us define, additionally,

75 X) = colim 7,4 Xj, = colim m, Q% (X},)
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for “underived” stable homotopy groups of a spectrum X. We will say a map of f of spectra is
a mi-isomorphism if Lf is a w3 “-isomorphism. This satisfies the two-out-of-three property since
isomorphisms satisfy this property.

We claim the natural map i4: A — LA is a wi-isomorphism. To see this, it is enough to show

that Lig: LA — LLA is a wy“-isomorphism. Of course, this follows since

U LA = colimm, Q8 (LA), and 75“LLA = colim 7, QF(L2A);

and since LA — L?A is a level weak equivalence, the map Li 4 induces level 7¢-isomorphism between
these two colimits. When X is a level fibrant spectrum, a similar argument implies that the natural

map ix: X — LX induces an isomorphism

X Z2ri X =ap"LX.

by applying 7y, For level fibrant spectra X, we are therefore free to understand their stable
homotopy groups prior to level fibrant replacement. For level fibrant spectra, note that the natural
map jx: X — O®X is a 7wj-isomorphism. To see this, note that X and ©>°X are both level

fibrant, so we may check this using 3. For this,

U X = colimy, m QF X,

and
T3O® X = colimy, 7. (QF (colim,, Q" X, 1)).
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By Proposition [3.2.7, we know the colimit in & of the right-hand side above consists only of iso-

morphisms. Hence, there is a natural isomorphism

TUO® X = 7, colimy QF Xy,

As a consequence of the preceding proposition, we know that the natural map colimy, m,QF X, —
7, colimy, QF X, is an isomorphism, since homotopy groups commute with filtered homotopy col-
imits. This is the map implemented levelwise on the level of spaces by jx: X — ©%°X and so

ix: X — %X is a wf-isomorphism.

Now fix f: A — B a map of spectra and consider the commutative diagram

A——— L —— O*LA
|l e
B LB ——— ©O*LB

~

From we have seen, the maps C' — LC and LC — O LC are wi-isomorphisms and, additionally,

stable equivalences for C' = A, B.

Suppose f is a stable equivalence. Then by two-out-of-three, Lf is a stable equivalence and it
follows that ©°Lf is a level equivalence between (2-spectra. But the level equivalences between
()-spectra are precisely the 7wy “-isomorphisms. Since the Q-spectra are level fibrant, @Lf is in
fact a mi-isomorphism. By two-out-of-three, L f is a mf-isomorphism and hence by two-out-of-three,
f is a myst®-isomorphism.

Conversely, suppose f is a mi-isomorphism. Then by two-out-of-three, Lf is a 7}-isomorphism

and so by two-out-of-three, ©@*°Lf is a mj-isomorphism. But for level fibrant spectra, a -
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isomorphism is, in particular, a 7y “-isomorphism and for Q-spectra, 73 “-isomorphisms are level
equivalences. Hence, Lf is a stable equivalence by two-out-of-three and hence f is a stable equiv-

alence by two-out-of-three. O

Precisely the same pattern of argument will show the stabilization of the categories of retractive

O-algebras have as their stable equivalences the 72-isomorphisms.

3.3 The QX Construction and Enriched Stable Fibrant Replace-

ment Monads

In this section, we show that, under suitable hypotheses on the category C, the functor ©*° may
be used to compare the classical (derived) stabilization construction QX = hocolim Q¥¥¥X with
(derived) stabilization modeled as Q2°°¥>°X. Moreover, we show that ©> may be used to construct
an S,-enriched stable fibrant replacement monad for the stable model structure on SpN(C), under

suitable hypotheses on C.

Theorem 3.3.1. Let C be a finitely generated, pointed simplicial model category in which the
domains of the generating cofibrations are cofibrant, sequential colimits preserve finite products and

Q preserves sequential colimits.

(a) Let R be an Si-enriched fibrant replacement monad on C. Then R prolongs to a level fibrant,

S.-enriched fibrant replacement monad on SpN(C), which we also denote R.
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(b) Set Q = QR with R as above. Let

QX =colim(X — WXy X - B ¥EX —...)

where the bonding maps of the colimit are obtained from the derived unit maps. Then there

is a natural comparison map

c=cx: QX — QCOCRE*X

which is a weak equivalence when X is cofibrant.

(¢) The comparison map c respects the structure maps X — QX and X — QPOCRE*X —in
other words, it makes the evident diagram commute. In particular, for cofibrant X, this

means comparison equivalence respects the structure map X — QX and the derived unit map

X =5 QFO®RY>X.

Remark 3.3.2. We will assume X is cofibrant in the proof—the resulting construction will necessarily
be natural in X. By Corollary the evident map Z — ©*°RZ is a stable fibrant replacement
of a spectrum Z (hence, a stable equivalence), so the map X — QO RX*°X in part (c) really is

the derived unit map.

Proof. Inlight of [47, Thm. 13.2.1, Cor. 13.2.4, Rem. 13.4.3], we may pick a level fibrant replacement
functor on C which is a pointed simplicial monad. This means that, in particular, the monad’s nat-

ural transformations are all pointed simplicial natural transformations—or, more simply, S,-natural
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transformations. As in |37, Def. 1.2.8], this means that the natural objectwise weak equivalences

uw:id S R and p=pup: RPSR

respecting the assembly natural transformations

assembx g: F(X)ANK - F(X ANK)

equipped on each functor appearing—for id, the assembly maps are the identity. Equivalently, they

respect the adjoint assembly natural transformations (defined further below)

assembx i : F(hom(K, X)) - hom(K, FX).

Note that u and ug are objectwise weak equivalences. That ug is an objectwise weak equivalence
follows from the unit diagram for the monad R, since the unit map w is an objectwise weak
equivalence as R is a fibrant replacement functor. In fact, for cofibrant X, the assembly map R(X)A
K — R(X A K) is a weak equivalence; equivalently, the adjoint assembly map R(hom(K, X)) —
hom(K, RX) is weak equivalence for fibrant X. These follow using the unit pointed simplicial

natural transformation.

hom(K, X) hom(K, X)
unitl lhom(K,unit) (*)
Rhom(K,X) —— hom(K, RX)

assemb

The diagram commutes because u is a pointed simplicial natural transformation, the vertical arrows
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are weak equivalences because C is a pointed simplicial model category (all pointed simplicial sets

are cofibrant) and X is fibrant.

Note that to say ur: R?> = R is a pointed simplicial natural transformation means that the

following diagram commutes for X € AIg% and K €S,

Rassemb x assembpr x K

R?hom(K,X) ——— Rhom(K, RX) ——— hom(K, R?X)
#Rl lhom(KwR)
Rhom(K, X) hom(K,RX)

assemb x i

Now, as promised, we define the adjoint assembly map

Rhom(K, X) 22 hom(K, RX)

to be the map adjoint to

assemb

R(hom(K, X)) A K 2 p(hom(K, X) A K) 25 RX
using the counit of the adjunction. Explicitly, it is the map
(Re)X

ROXH) s (R(XK) A KK 2emb pox K a gy B B0, gk,

It follows using naturality of the unit map and the triangle identities that the given assembly map
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RX NK — R(X A K) is the map adjoint to

—

RX 22 R(hom(K, X A K)) 2™, hom(K, R(X A K))

using the unit of the adjunction. This follows by meditating upon the following commutative

diagram

RX A K M Rhom (K, X A K) A K* S hom (K, R(X A K)) A K

asseme{ J{assemb J{E

R(X NK) —— R(hom(K, X AK)ANK) — 5 R(X AK)
R(nAK)

The left-hand square commutes by naturality of the assembly map. As for the right-hand square,

it commutes by taking adjoints and using the triangle identities. By definition, the adjoint of

the counterclockwise composite is assemb. As for the clockwise composite, its adjoint fits into a

commutative diagram using naturality of n as

—_—

R((X AEK)¥) —— (R(X A K))®

dl [ Te—

(RUX A K AR s (ROX A N KR s (ROCAK))®

The triangle commutes by the triangle identities. The square commutes by naturality of 1. Hence,

—_—

the adjoint composite is simply assemb, as desired.

This choice of R and the particular properties it enjoys is really the key point. The rest of
the proof of this theorem amounts to checking that everything that should commute really does

commute.
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As in 37, Def. 1.2.8], R prolongs to a pointed simplicial endofunctor of Sp™N(C) and the S,-
natural transformations v: id — R and p: R?> — R prolong to ones on SpN(C)—the prolongation of
u and p are defined to be given levelwise by u and u as defined in C. By abuse of notation, call this
prolongment R. That the prolongation of R remains an S,-enriched functor may be seen using the
underlying assembly map for R: C — C—it is a simple matter of applying the associativity axiom
for this functor several times to see that the assembly map prolongs to natural transformation of
functors SpN(C) x S, — Sp™N(C). Explicitly, this may be seen by meditating upon the following

(sparsely) labeled diagram

R(Xpi1 ANK) — R(Xp ASHAK) +— R(XpA(S'AK)) +— R(XpA(KASYH) +— R(Xp, AK)ASY

I I

ey RO A (S AK) T ROX) A (K A S7)

SHYAK  (R(X)AK)AS' —s R(X, AK)AS!

where the dotted arrows are the composites which are the relevant structure maps. The diagram
commutes by naturality of the assembly map and the associativity condition the assembly map
satisfies. It is manifestly natural in the spectrum X and pointed simplicial set K. Hence, the
associativity condition for the prolonged assembly map is satisfied as all relevant natural transfor-
mations are given levelwise. The unit condition for the prolongation of R is likewise satisfied. It
follows easily that the prolongation of the maps u: id — R and u: R?> — R are level equivalences

and themselves S,-natural transformations on Sp™(C) as all relevant natural transformations are
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defined levelwise.

Then, in particular, R is an Si-enriched level fibrant replacement functor and a monad. Since
the colimits in question for QX and Q2O R¥*°X are, in particular, homotopy colimits, it suffices

to exhibit a level equivalence between them by Proposition [3.2.13]

To begin, we claim the following diagram commutes.

RX —'  QYRX
Rni J{Qassemb ()

ROYX —— QRYX

assemb

This is the dual version of what we just showed above and, consequently, it has what is essentially

a dual proof. Indeed, to see this, note that the clockwise composite is adjoint to

SRX — 21, wORRX EQassemb v pyy

YRX —— R¥X
assemb

where the square commutes since € is natural. For the counterclockwise composite, we have seen
that the assembly map is adjoint to this composite, whence the square commutes. Note that
Q®O®RY>®X is the colimit of the sequence of maps QF(assembo Ry): QFRYFX — QFHIRYFH X

Hence, in all degrees k > 0, (%) shows that this map is, equivalently QF(Qassemb o 7).

Define an auxiliary sequence

RX — QRYX — Q*R*¥2X — ... (%)
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as follows. The first map is the composite

RX — ROYXX — QRYX

of (xx). In higher degrees,

QFRFYFX — QFFI RFHISRH X

is the composite

QbR x PR ok ks y QR ok pl ke y QFassemb F o1 1yl

xk
where assemb  is the evident k-fold application of the assembly map

RF—Lassemb, k_1 i
(Ro---oR)(QZ) ————— R QRZ — --- — QR"Z.

-1

—~—— Xk —~— xk
This is natural in Z and has the property that assemb o RF~lassemb = assemb

There is a naturally occurring level equivalence between the colimit defining @X and (x). In
degree 0 the map is the unit v: X — RX and in degree 1 the map is the identity. Commutativity

of the relevant square is then enforced by naturality of the unit map and ().

In higher degrees k > 2, it is formed using the natural (k — 1)-fold assembly assembly maps

(QR)F¥FZ = OFRFYFZ | which are weak equivalences. The commutativity of the square involving
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the first and second terms of the sequences is immediate. For k > 3, compatibility of the maps is

likewise essentially immediate by naturality of the n-fold assembly map and naturality of u.

We claim that there is a level equivalence from the sequence (x) to the sequence defining
Q*O>®RYX>*°X. The first two terms (the Oth and 1st objects in the sequences) may be taken to be
the identity. We let the next map Q?R?Y2X — Q?R¥2X be Q%up. To see this makes the evident
diagram commute, note that we have the following solid commutative diagram

QRNX —, qrOS2X —%, ORORY2Y

o Qas/s:rr/lb —
N Qassemb

, QPRY2X —> O2R232X

assemq \ |~

QREX — 2 PNRNX —— Q?RY2X

Q2assemb

The dotted maps composite maps are the bonding maps for each sequence, where we have used

(#%) to see this for the bottom map. The big rectangle on the left commutes by applying Q to

(*). The top small square commutes on account of naturality of assemb. The bottom small square

commutes because ur o Ru = idg, because R is a monad.

In general, we define the maps

Q"R"Y"X = Q"RY"X

to be induced by the (n — 1)-fold R multiplication R® = R going from right to left. These will

produce weak equivalences between the objects since 2 is a right Quillen functor.

However, we do not yet know this is a well-defined map of spectra. To get a feeling for the
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general pattern of the argument, we consider the very next case of n = 3. This contains all the
ingredients of the general pattern. We must use both () and (* % %). Consider the following

commutative diagram

CRI2X s 2R205PX T 2 poy pys A b 2wt XSS (s pposs

Q2 R(assemboRn) J QQRQuRl Nlﬂg’RuR
O2RORY3X O2RORYEX ~ny Q3RZYBX
02 assemb
Q2R3
O2ROY3X

W assemb

O2RY2X O3YRYZX Q3RZ3X
Q2 3 assemb

The dotted composite maps are the bonding maps for each sequence. The upper rectangle com-
mutes because of (x * x). The upper-right square commutes by naturality of the assembly map.
The lower triangle commutes by (#%). Thus, the whole diagram commutes because the squiggled
composites are equal. This is a consequence of naturality of 7 and the fact that pp is an S,-natural

transformation.
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Explicitly, we may expand the squiggly part to the following commutative diagram.

2Ry x RN, 2 proys x CRasanb 2 popydx Lesamk o3 p2y3 y

Q2MR§N NlQQMR N\%QBMR

O2RY2X Sy Q2R3 X —~rmmmmmmmmmsmsmnsmsmnmsssssmssnnns Q3 RY3 X
Q" Rn Q2assemb

The left-most square commutes by naturality of n and the right-most since pug is an S,-natural

transformation.

For the next step of n = 4, one first recognizes the overall application of Q2 to the diagrams
above. Thus, by removing Q2 and then applying Q3R to the diagrams above, one fits the map
Q3Rpup of the right-most column in the big diagram above into a bigger commutative diagram. By
then using naturality of ug, this shows the next step commutes as well. This pattern continues

and the argument is finished by an induction.

This establishes an explicit sequence of weak equivalences for cofibrant X

QX = colim(x) = QPO®RE®X

between the colimits as a consequence of Proposition [3.2.13} therefore it composes to an equivalence
QX = Q®OPRY>®X, as desired. Moreover, the map QX — Q®O®RY.*X is clearly natural in
X because all maps used to construct the level equivalence between the underlying sequences for

the colimits are natural in X.

We now wish to show that, for cofibrant X, the derived unit map X — QO RX*°X factors
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as X = QX — QO RY*°X; in other words, that the following diagram commutes

X — 5 QX

| i

X —— Q®O®RE>*X

Note that the map X — Q®X*X = EvgX*X is the identity map. The map Q®°X*°X —
Q®O®RY>X is simply the composite map X — RX — colim Q*RY*X where the latter map
is the structure map of the colimit and the former the unit map for R. Since X — QX is the

structure map for the colimit and, on the level of underlying colimit sequences, the map in degree

0 for QX — QO RYX*°X is induced by the unit map for R, this follows immediately. O

Remark 3.3.3. This is effectively a point-set version of [29, Lem. 2.10(c)] for compactly generated co-
categories qua quasicategories. Namely that stabilization as P; Id agrees with 2°°X°°. In fact, the
underlying oco-category of /—\Igg and really, let us say, any pointed simplicial, cofibrantly generated
model category having domains and codomains of the generating cofibrations simplicially small
and cofibrant and the domains and codomains of the generating acyclic cofibrations simplicially
compact—is compactly generated in the sense of |41, Def. 5.5.7.1]. The underlying co-category of
such a model category is indeed bicomplete by standard facts and the domains and codomains
of the generating cofibrations generate the underlying oo-category under filtered colimits as a
consequence of [43, Cor. 5.1]. A variant of Proposition shows that filtered homotopy limits
of fibrant objects are once again fibrant, which additionally shows that domains and codomains of
the generating cofibrations are indeed compact in the underlying oco-category. These conclusions

follows from say |42 Tag 01LE] and some model categorical reasoning we are suppressing for brevity.
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Hence, filtered homotopy colimits commute with finite homotopy limits in this co-category and it

therefore supports a good theory of functor calculus.

For us, the utility of this theorem is that we may now understand the connectivity of the
(derived) maps X — Q°°X>°X in a precise way. In particular, for L a stable fibrant replacement

monad, §° LY is an iterable model, which will be amenable to our completion methods.

Remark 3.3.4. In [37, Def. 1.2.9] and in our proof above, we have used a notion of a pointed
simplicially enriched natural transformation ' — G and pointed simplicially enriched functors
that is slightly different from the standard definition —mamely a pointed simplicially enriched
functor is one equipped with assembly maps and unit maps for the S, action which are required to
make the two evident diagram commute and a natural transformation which respects the assembly
maps F(X)AN K — F(X A K). Since our categories are tensored and cotensored over pointed
simplicial sets, this is essentially equivalent to the usual formulation. As before, a good place for a

much more detailed and thorough discussion on this may be found in |25, [38].

However, there is still a simple way to see this in the case of pointed simplicial sets. Fix
such a functor F': C — D between tensored S-enriched categories. For fixed X, the maps the
maps Fy y: Hom(X,Y) - Hom(FX, FY) are natural in Y and so give a natural transformation
Fx _:Hom(X,—) - Hom(FX, F-). Since Hom(X, —) = hom(X A A[—]4,Y), such a natural
transformation is equivalent, by Yoneda, to specifying assembly maps FX AA[n]y — F(X AA[n]4+)
which are natural in A. This is likewise natural in X since the maps Fx y are natural in X as

well—in particular, this follows by making judicious choices for Y. In the general case, a pointed
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simplicial set K is the coend

[n]leA
K= Al As Ko [ ( Y, Am),

*#UGK’n

where K, is considered as a discrete pointed simplicial set say with basepoint * € K,,. Note that
Aln]4+ A K, is simply a coproduct (wedge) in S, of copies of A[n]; with the copy indexed by the
basepoint collapsed—A[n]+ A Kn & cf, Aln]+. This decomposition of the simplicial set as a

coend is, furthermore, natural in K. Hence, since X AY is a left adjoint in both variables,

[n]leA
FXANK = (FX AA[n]4) Aa Kp g/ ( \/ FX/\A[n]+)
*#UEKTL

and there are maps FX A Aln]; A K, — F(X A K) given by

F(idx /\cr)

FXANARLAKy, = F(XANARJ)AK, =2\ F(X AAn]4) F(X AK).
*#0€Ky

Since the assembly map is natural in X and A, these give a cone to F(X A K) and thus a map
FX NK — F(X A K) which is natural in X and K. Using properties of colimits and the fact
that the tensoring — A — is a left adjoint in each variable, it is not hard to see that this assembly
map respects the associativity and unit isomorphisms, appropriately defined. See, for instance, |47,
Props. 10.1.4, 10.1.5], the appendix of [38], [25] or [17] 45] for treatments.

In fact, the naturality condition on any such assembly map forces us to define it this way—at
least when the categories in question are tensored as shall always be the case for us. This follows

from the evident universal properties. Since F(X) A K is the coend above, a map F(X) A K —
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F(X AN K) is completely determined by its values on the terms F'(X) A A[n]4+. By naturality, then,

the following diagram would have to commute

F(X) A Aln]y 2% p(X A Aln)y)
F(X)AUJ J{F(X/\U)
F(X)NK » F(X AK)

assemb

which shows that the assembly map F(X) A K — F(X A K) is completely determined by the
assembly maps F(X) A A[n]y — F(X A Aln]4).

For pointed simplicially enriched categories, the usual notion of a pointed simplicial natural
transformation is simply a choice of map 7.: F'c — Gc which make the naturality diagram of pointed
mapping spaces commute. The equivalence with respecting assembly maps. This is equivalently
to the usual notion—this is argued similarly to the above with the very same judicious choice

indicated.

We now investigate investigate the properties of the functor ©> a little more carefully.

Theorem 3.3.5. Let C be a finitely generated, pointed simplicial model category in which the
domains of the generating cofibrations are cofibrant, sequential colimits preserve finite products
and Q) preserves sequential colimits. The functor ©%° naturally has the structure of an S.-enriched
endofunctor. It, moreover, has the structure of a pointed simplicial monad whose unit and assembly

maps are isomorphisms.

Remark 3.3.6. As ©% is a colimit of S,-enriched functors, this is no surprise. The real work is
verifying © is, additionally an S,-enriched monad and for this we may as well be explicit about

the S,-enriched structure ©° acquires.
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Proof. Since SpN(C) is not only enriched but tensored and cotensored over pointed simplicial sets,
it suffices to provide a natural assembly map a: ©>°(X)A K — 0% (X A K) such that the following

associativity and unit diagrams commute

(O®(X)ANK)ANL —— O®(X)A (KAL) —— (X A (K AL))

a/\idJ{ T@O"oa

OX(XANK)ANL m OX(XANK)ANL
O®X A S° z 0> (X A SY)
\ %

O*X

where u is the unit map and « the associativity isomorphism for the simplicial action. A nice

discussion on this equivalence may be found in [38, 25] and additionally [47].

To do this then, let us define a map O°(X) A K — ©°(X A K) natural in X and K.

Since Sp™(C) is simplicial, (colimy ©%X) A K 22 colimy, (©F(X) A K) and it suffices to produce
maps OF(X)A K — ©F(X AK). Recall from Remark that ©F = Q¥ o 5% ; it is easy to see that
s* is naturally a simplicial functor since s* (X A K) = s* (X) A K (the simplicial action is levelwise
in the spectrum). Now, by Remark this is the same as providing a map X¥(0F(X) A K) —
s* (X A K). The left-hand side is, by using the associativity natural isomorphism and the twist

natural isomorphism,

YRFOFMX)AK) = (QFs" (X) A K) A SF = (8FQFs (X)) A K
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and the counit map Y¥QFs* (X) — s* (X) provides a map
SFOMX)ANK) - s X NK = 5% (X AK).

For each k, let ©F(X)A K — ©%(X A K) be the map adjoint to this one. This is natural in X and
K because the associativity and twist isomorphisms are natural in X and K and the map ex Aidg

is natural in X and K. We must check that the following diagram commutes for k& > 1

M X)NK —— OF (X AK)
@k(ix)/\KT:iekx/\K iek(XAKJ:@kiXAK

FX)NK —— OF(X AK)

where the upwards maps are the labeled natural maps arising from applying ©F to the adjoint
structure maps X, +x A K — Q(X,,1x+1 A K) or, in other words, applying O©F to the map X A K to

Q(s_X A K). Writing ©F = QF 0 s* | this diagram commutes if and only if its adjoint

YEOFO(X)ANK) —— s O(X AK)

I |

YEOFX)ANK) —— s (X AK)

commutes, and this commutes by naturality of the counit, and the associativity and twist isomor-
phisms—the general flavor of the argument is immediate from the case of £k = 1 and for cases of
k > 2, the only additional step uses the fact that the counit of the (X, Q¥)-adjunction is the k-fold

iterate of the counit for the (3, Q)-adjunction.

We must also check the case of k& = 0, which corresponds to requiring that the the following
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diagram commutes

OX)ANK —— O(X AK)

iX/\KT TiXAK

This is essentially by definition, since the adjoint structure maps for X A K factor through the
suspension of the assembly maps just given. Explicitly, the adjoint of the clockwise composite is

given levelwise by

S(0XAK) >

(Xp A K) (X1 AK) 22X ) AK L5 X AK

and since o\ is the map adjoint to the structure map o;\ : ¥X,, — X,11, this composite is easily

XAK

S as desired.

seen to be o

Now we must check that the action map is compatible with the simplicial action. For this, it
is also easy to check since — A K is a left adjoint and the action map is built levelwise between
the colimits defining ©°°. The unit map is similarly defined levelwise between the colimits and the

evident unit diagram commutes using the fact that — A S° is a left adjoint.

To see that ©%° is, additionally, a pointed simplicial monad, recall that the natural map
Joxx: ©®X — (0%)2X is an isomorphism—this is the structure map O®X — ©%(0®X).
Define a unit map

w: id - O by ux = jx
and define
g (02X - 0°X by pux =joky-
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We claim this gives ©°° the structure of a monad.

Recall that the natural maps ix: X — ©X satisfy that igny = O"ix—this is [36, Lem. 4.5].
Now, note that since 2 and thus ® commute with sequential colimits, a quick computation shows
that the natural map igex: O°X — OO>X is the map induced by way of the following commu-

tative diagram
ky _'obx. gk+l
"X —— 0" X

=0OFix
ln(_)kXJ/ J{@ lnekX

Since inx = jx, this means that

Ojx = iex~xjx

we claim. To see this, note that © commutes with directed colimits. Hence, ©0©°° X has colimit
cone given by the maps © ingk x : OFf1X — ©O>X, from which this follows in the case of k = 0

(ie., @0 =id).

The map igex has inverse given on the components of the colimits (OO*X), — (0*X),
simply by the identity maps id: @*t1X — ©**1X or, in other words, id: Q*X,, ., — Q¥ X, —this
follows from a simple check of universal properties. All together, this means that zéio y°0jx = ingx

and this pattern holds in the sense that

inekX = @ij .
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This shows that ©*°ux = ugw~x or, in other words, ©*°jx = jgwx by writing this as
@ki@oox 9} il’l@k = @k]X

and taking colimits in k—the left-hand side is jg~x and the right-hand side is ©*°jx.

The upshot, or slogan, here is the following.

The transfinite composites jx exhibit the same properties as the natural maps

igkx: OFX — ©FLX that they are built out of, transfinitely.

To see that the associativity diagram for the asserted monad structure on ©° commutes, note
that this amounts to showing that j(_gloo)gx = @Oojéiox or, in other words, jig=y2x = O joxx.

Hence, this follows from the above. The above discussion likewise verifies the unit condition.

To see that u is an S,-isomorphism is relatively straightforward. It follows since, on the level of
colimits, the unit diagram already commutes—this is essentially by definition, since ignxy = O"ix

by Lemma [3.2.6) and, as we have seen above, the following diagram commutes for all X

OX)AK —— O(X AK)

I I

That p is an S,-natural transformation (isomorphism, even) is slightly more opaque. Since
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p = (0%jx)~1 is an isomorphism, it is equivalent for us to show the following diagram commutes.
(O°0®(X)) A K -250mb, goo@oo( ) A K)@Zasembgoogoo (X A K)
@oojx/\KTZjeoox/\K :j@oo (X/\K)TQOOJX/\K

O®(X)ANK 0% (X A K)

assemb

On the level of underlying colimit sequences, the map ©>jx A K is induced by the maps

(©Fjx) A K. Thus, the following solid diagram then commutes

—

OF(O® (X)) A K 2591, ok (9o X)) A K) 2asemb gk (@oo(X A K))
D
(ijx)/\KT T@k(ijK_) »

OFX NK —2emb |, gk(X A K)

OFjx nK

Upon taking colimits, the outside part of this diagram induces the associativity diagram we wish
to show commutes. Since the unit condition is an S.-enriched functor, this implies that assemb o

(jx N K) = jxak. Hence, the dotted arrow does indeed make this diagram commute, whence the

conclusion. n

Remark 3.3.7. In fact, the functors ©F are S,-enriched functors for essentially the very same reason.
The adjoint assembly maps ©@*hom (K, X) — hom(K, ©%X) are given as follows. First, note that
there is a natural assembly isomorphism s* (X) A K = s* (X A K), as the smash product is defined
levelwise—in fact, this map is simply an equality. Hence, there is a natural assembly isomorphism

s* hom (K, X) = hom(K, s* X) defined as the map adjoint to

sk
s* hom (K, X) A K = s* (hom(K, X) A K) — s* X,
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and this is easily seen to be an isomorphism—an equality, even. The adjoint assembly map is then

simply the composite of natural isomorphisms

©*hom(K, X) = Q*hom(K, s* X) =2 hom(S* A K, s* X) = hom(K, ©FX),

using the twist isomorphism and the adjoint associativity isomorphism. We will say more about this

associativity isomorphism in a remark following the theorem statement below and in Remark|3.3.11

Theorem 3.3.8. Let C be a locally finitely presentable, finitely generated, pointed simplicial model
category in which the domains of the generating cofibrations are cofibrant, sequential colimits pre-
serve finite products and € preserves sequential colimits. Suppose the domains and codomains of
the generating acyclic cofibrations are simplicially compact. There exists a level fibrant, pointed
simplicial fibrant replacement monad L on SpN(C) such that ©%° o L is a pointed simplicial, stable

fibrant replacement monad.

Remark 3.3.9. Throughout the proof, we will implicitly identify the k-fold application of the functor

Q—namely, QF—with the functor hom(S*, —) under the natural associativity isomorphism

a:hom(K AL, X) = hom(K,hom(L, X)).

This is the map adjoint to

XEMN o KoL % XEMN o KAL S X.
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We are at liberty to do this because for an S,-enriched functor the adjoint assembly maps are
compatible with «. While this adjoint associativity should be easy to believe, we will nevertheless

give an extended discussion on this point in Remark [3.3.11] following the proof.

Proof. Let R be an S,-enriched fibrant replacement monad on C. In this case, we may assume R
commutes with filtered colimits—this follows exactly as in [16, Lem. 1.3], except Garner’s small
object argument is run with respect to the generating acyclic cofibrations and we restrict to the
map to the terminal (zero) object. Note that Garner’s small object argument runs if the category
is locally presentable, but the commutation with filtered colimits step only requires the domains
and codomains of the generating sets of cofibrations to be simplicially compact. Let L be the
prolongation of R. Then L also commutes with filtered colimits since these are computed objectwise.
As we have seen in Theorem L remains an S,-enriched level fibrant replacement monad on

the category of spectra. Hence, ©°°L and LO> are S,-enriched functors.

In particular, we claim there is an S,-natural transformation LO* — ©>L. To see this, note

that since L is Sy-enriched, it as has natural assembly maps

—

assembp x

L(hom(K, X)) hom(K,LX).

Note that ©® = colim ©F where OF = s¥QF = QFsk. The functor s* shifts a spectrum by
(s* X), = Xpqr, and this functor commutes with all limits and colimits, as these are computed
objectwise. Hence, Ls* = s* L, since L is a functor built out of various colimits, all of which

s® naturally commutes with. We define the map LO®X — O®LX as follows. First note that
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LO>®X = colimy, LOF X since L commutes with filtered colimits. In particular,

colimy, LO* X = colimy, Ls* QX = colimy, s* LOFX.

Using the assembly map, we obtain a map s* LO*X — s* Q*LX = ©FLX. These maps commute
with the structure maps of the colimit by naturality of assemb and the manner in which the

adjoint structure maps LX,, — Q2L X, 11 structure maps are defined for L—namely, this map is the

composite

e~

assemb

LX, — LOXpp1 2220 QLX, 1,

and the relevant commutative diagram is

LOFOX 0y 2500k Ok x, Qfasemb gktiy x|

kX k X
LO onT TQ LU/Q%{;'X

LOkX, —assemb , okpx

A separate analysis is needed for k = 0, in which case the bottom map above is the identity.
Commutativity of the square when k = 0 follows since L is the prolongation of an S.-enriched

functor on C. In particular, this first square is given levelwise by

X
LX, 2% 10X,

‘ ’ J{assemb

and this diagram commutes precisely because of how the structure maps for the prolongation of L

are defined.
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In particular, in the colimit, this gives us a natural assembly map

—~— 0O

assemb = swap: LO®X — O LX.

Now we must show that this assembly map is Sy-natural in X.

Recall that ©F is an S,-enriched functor as well. Since the swap map for LO™ is built from
the swap maps LOF under a colimit, the easiest way to see that swap: LO® — O>L is S,-natural
is to check that it is S,-natural for the assembly maps LO¥ — OFL, since it then follows for swap
upon taking colimits. To check compatibility with the S,-module adjoint assembly maps for LO*

and ©FL, since s* pulls out of each, this amounts to showing the following diagram commutes

LO%hom(K, X) 2% Ok Thom(K, X)

E it

Lhom(K,QFX) QOFhom (K, LX)

o 2|

hom(K, LO*X) —— hom(K,Q*LX)
hom(K ,assemb)

where the top and bottom horizontal maps are simply coming from the natural assembly map
LOF — ©FL and the columns are S,-module adjoint assembly maps for these functors. Note that
adjoint assembly map assemb for L is suitably associative—this is the adjoint property of associative

on the level of the S,-tensoring. More precisely, as s* pulls out of everything and unpacking the
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assembly map for QF, we may blow this diagram up to the following one.

LQk(XK) assemh QkL(XK) QFassemb Qk(L(X)K) o L<X>Sk/\K T L(X)K/\Sk

assemb

assemb

LX) =5 LX) == L((QFX)F) (LOFX)K
T (o}
as/s?rgbl assemb assemb
L(X)S"MC — ()K" (QFL(X)F
« «

Each subdiagram here commutes by naturality of the adjoint assembly map assemb for L or the

fact that L is an S,-enriched functor, using the adjoint associativity condition for assemb.

Give ©°L the S,-enriched monad structure derived from the composition of units maps X —
LX — ©O%LX and with multiplication p: @ LO*L — O%L using the swap S,-natural trans-
formation just constructed. If this is indeed a monad, then it is an S,-monad as all natural
transformations appearing in its unit and multiplication maps are S,-natural. It is now a straight-
forward—if not tedious—exercise to show this natural swap map is a distributive law as in [6] from

the properties of the various assembly maps assemb of L and thus that ©*°L is an S,-enriched

monad. For the sake of completeness, we conclude with this argument.

For L?0©>, we wish for the diagram

swap

[20> P, rgeer, TP, k2
ML@OOJ J{@oouL

LO*> O*L

swap

91



to commute, and this follows since for each k, the underlying diagrams

swap

L2ek 2P, rokp WP, gkr2
'U‘L@kJ/ J{GkP‘L

LOk eFL

swap

commute. To see this, note that since ©OF = s* O, we may write this as s* applied to the following

diagram
swap

L2QF 2P rokp SR, k2

“Lﬂkl leﬂL

LOk QFL

swap

and this commutes since p” is an S,-natural transformation. Both unit maps are transfinite com-
posites, so similar reasoning shows compatibility of the units. For the unit for ©°°, the following
diagram commutes

LJ/ JjLx

LO>®X O*LX

swap

for the following reason. Since L is commutes with colimits, being built out of various colimits, the

following is a colimiting diagram for LO*° X, displaying only the first structure map

Ljx
Lx X, reox Lo .. LO®X
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and the following diagram commutes from what we saw before in our analysis of the swap map.

Ljx
Lx B, regx ex, .. LO®X
‘ ’ Jassemb Ja;c;—n/lb szap
LX ——— OLX 2% OLX, .. O®LX
JjLx
To see the following diagram commutes
X
LO>*X swap O*LX

note that since L commutes with colimits, the left-hand map is in fact the colimit of the following

commuting ladder of maps, we claim.

ingx x‘
/

x X sox X, 92x ... O®X
J{“% luéx l éQX J “éoox
LX—>L@X—>@2X*>--- LO®X

The squares all commutes by naturality of u”. To show that uém y is the colimiting map, we note

that by universal properties there is only one such map making the evident diagram commute, so
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it suffices to show that the following diagram commutes for all £ > 0

oFx lehx, geox

L L
u
J{ ekx Jueoo X

LOFX —  LO®X

Lingy 5

and this follows precisely from naturality of u”. Hence, uéoo y is the colimit of the unit maps
uék - As before, this reduces us to checking commutativity at the level of the underlying diagrams
defining various maps. But then, since u”: id — L is, in particular, an S,-natural transformation,

the following diagram commutes by pulling out copies of s*

kX ——— OFX

L k, L
uekXJ( J{@ Ux

LOFX —— OFLX

assemb

which shows that the composite

uL
Ok x _OFX, rokx assemb, gk v (%)

is simply @kuﬁ%. the composite map O°X — LO®X — ©*LX is induced by (x), and since the
composite (k) is simply @kug?, it follows by taking the colimit in k the resulting map is precisely

©%°u%, which is what was to be shown.

Recall that
IR = deex = (©%jx) 7"
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Thus, for the last diagram, it is equivalent to show the following diagram commutes

L(©%>)2 TP, geopgoe P, (gooy2,
Lj@OOT j@ooLT: 0%jL,

LO>® wap O®L

The map Ljg~yxy = LO®jx is induced by the maps LOFjy: LOFX — LO*O>®X and the map
©>j, is induced by the maps ©Fjrxy: OFLX — ©FO>®LX. However, we saw that jrx =

swap oLjx in the course of this proof. Hence,
0% jrx = OF swapo®FLjx.

We therefore have the following commutative diagram

. k o
LOkEeX P, gkrgee x TSP gkgoe, x

L@ijT @ijXT /
O%jrx

LOFX ———— OFLX

swap

and this shows that, on the level of the underlying colimiting sequences, the two composites are

equal—hence, the diagram commutes, as desired. O

Remark 3.3.10. What is remarkable is that this composite is therefore a pointed simplicial, stable
fibrant replacement monad for the stable semi-model structure on SpN(C); that is, an honest,
enriched, spectrification monad for the stable semi-model structure—we are not guaranteed that
this exists in general when we do left Bousfield localization of a semi-model structure. This heavily

exploits the fact that we may suppose L is an S,-enriched, level fibrant replacement monad that is
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prolonged from one on C as well as the particularly simple and amenable description of ©*°. The
only downside is that we cannot possibly expect the unit map X — ©°°LX to be a cofibration, in

general.

It was convenient for us to use a slightly different notion of an S,-enriched functor above. It is

worthwhile, albeit quite tedious, to say a few words about this.

Remark 3.3.11. Consider F': C — C some S,-enriched endofunctor such as L or ©* above—while
the restriction that the domain and codomain of F' be the same is not necessary, it simplifies our
discussion. Let a: (X ® K) ® L — X ® (K A L) be the associativity isomorphism for the simplicial

tensor on C.
We can define the adjoint associativity natural transformation a: X% — (XT)K to be the
adjoint to

(XK o K)yo L % XEM @ (KAL) S X,
Namely, the map

KAL i (@)% KAL K DX INK
(X R K®L)")" — (X ® K ANL)")" —— (X*)

]

(XK/\L ® K)K

|

XK/\L

This map is inverse to the map f: (XXX — XK adjoint to

XOE @ (KAL) S (X eoKkeL 2L xLoL 5 X.
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In particular, this means it is the composite

(XE)E s (X0)F (K A LM (XK @ K L)<
J(e@L)KAL
(XL ® L)K/\L
e
XK/\L

Consider the composite a3: (X)X — (XI)K. This is the identity by naturality of o, 7, € and the
triangle identities. Concisely and with somewhat imprecise labeling, the crucial point is that the

following diagram commutes.

(XL)K n ((XL)K ® K/\L)K/\L

(XHYE @ K @ L)!)YE 1 (XD)E @ K A L)SM @ K @ L)F)K

Ja’l a1

(XM e KAL)MS —= (XM @ KAL) @ K AL)YK

§§§§§§§§ .

(XHF e K AL)HE

(xXH* e Ko L)h)r

The first vertical arrows are the evident composites involving the unit of the adjunction. That the

composite Sa is the identity follows from similar considerations.

Now consider the endofunctor F' above. The unit condition is simpler than the associativity
condition. If the unit natural isomorphism is p: X®S5% — X, let p: X — X 5% be the adjoint natural

. . . . . . o, e . _ 0
isomorphism—it remains a natural isomorphism because it is inverse to the map eop™!: X% — X.
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Write the adjoint unit diagram

J{assemb

FX —— F(X)""
P

X

and note that on account of how the assembly map is itself suitably adjoint to the adjoint assembly

map as in the proof of Theorem the adjoint of this diagram is, slightly blown up,

F(pAS?)
F(X ASY)
assemb
F(X) A SO TS p(xs0) g0 assemb po x5 5 g0y
| o
F(X) A S° F(X)

and eopASY = p, essentially by definition. Hence, this diagram commutes since F is an S,-enriched

functor.

The adjoint associativity condition for the functor F' is to require the following diagram com-

mutes

F(XKM) 2 F((X1)K) —=emb, p(xh)K

as/s\e—n/lbl lassembK
(X< - (F(X)M)K

—_—

Adjointing the counterclockwise composite and using the definition of o and assemb as adjoints,
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the resulting composite augments to a commutative diagram

F(XEMY@ K@ L —2s F(XKMYy@ K AL 2 p(XEM @ KAL)

J{agsgrgb@)K@L J{a@b@K/\L lF(E)
FX)KMN@K@L — F(X)K"N @ KNL ——— F(X)

To see that the right-hand square commutes, note that the clockwise composite is the adjoint of

assemb: F(XKNY) — F(X)EMNthe counterclockwise composite has the same adjoint by virtue
of the triangle identities—this is completely analogous to the verification of (xx) in the proof of
Theorem Similarly, we may augment the adjoint of the clockwise composite as the following

solid commutative diagram.

Fa)®K®L assemb®K QL
—_— s

F(XEMY@ K® L F(XHEYo K@ L FXHEg KoL

assembl lassemb LE@L
F(XMM @ K)o L T px K g )y o p — P90 pxtygp —asemb | poxlg )
asseme/ J/assemb /J/( J{
assemb®

FXEMN @ K®L) —— F(XE e K®L) FX)feL z F(X)

and the right-most square on top commutes because the counterclockwise composite is the adjoint

—_—

of assemb tensored with L and the clockwise composite is the very same since € o assemb is the
adjoint of assembly map composed with F' of the counit from what we saw in Theorem |3 The
same reasoning shows the last big square on the bottom commutes. The quadrilateral commutes

by naturality of the assembly maps.

Consider the counterclockwise, outside composite above and call it (x). Since F'is an S,-enriched
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functor, the left-hand column of (x) fits into the associativity diagram

FXKEMYo KQL —2—— F(XKMY@ K AL
lassemb

F(XKAL (039 K) ® L assemb

lassemb

F(XKM @ KoL) —

F(XEMN @ KAL)

We wish to show the adjoint map now under consideration is equal to F'(¢) o assemb o o. From
the counterclockwise direction in the associativity diagram above, it now suffices to show that

coa=coe®Loa® K ® L, we claim.

To see this, suppose it is so. Then by applying F, it follows that (%) is equal to the coun-
terclockwise composite of the associativity diagram above post-composed with F'(¢). Hence, by

commutativity of this diagram, (x) is equal to F'(g) o assemb o «a, as desired.

The adjoint of the left-hand side is the adjoint associativity isomorphism, by definition. The
adjoint of the right-hand side is the very same, it happens. This follows because, upon taking the

adjoint, we get a commutative diagram

K
X KAL n (XK/\L ® K)K n (XK/\L QK ® L)L)K

b L a
(XD "y (XB)K @ K)K 7 (XD @ K © L)E)K
\ jeK (e®L)L)K

(XT)K "—>\((XL @ L)F)K
(eMX

(xh)%
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which shows the adjoint is likewise «, as claimed.

Arguments similar in spirit to the above show that the adjoint condition to be an S.-enriched
natural transformations between S,-enriched functors—namely, respect for the the adjoint assembly
map—holds and is equivalent to the usual tensor condition, at least when the module category in
question is both tensored and cotensored over S,. At this point, we hope the reader has seen enough
to believe the adjoint conditions are equivalent and omit a further discussion on this, leaving it as

an easy exercise for the interested reader.
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Chapter 4

Spectra of Retractive Operadic

Algebras

We now specialize many of the preceding results to Algy. Along the way, we will pick up some nice
facts about these categories of O-algebras. This chapter, along with the preceding one, comprise
one part of the technical heart of this paper. We work in the context of operads in symmetric

spectra, using the framework of of [26].

4.1 Properties of the Category Alg,

Rather than making certain constructions by hand, we will again refer to Definition and
Proposition with which we can easily show that categories of (J-algebras in spectra are

locally finitely presentable.

Proposition 4.1.1. The categories Sp™ and Algy are locally finitely presentable with strong sets
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of compact generators
Gy, ={F.(Alm];+) :n,m e N} and Gop ={O0(F,(A[m]4+)):n,m € N},
respectively.

Proof. Since both categories are bicomplete, it is enough to show, in light of Proposition [3.1.6]
that Gy, = {F.(A[m]4+) : n,m € N} and Go = {O(F,,(A[m]+)) : n,m € N} are strong generators
of compact objects. It is clear that both sets consist of compact objects by an adjunction argument,

so we need only show that the given sets are strong generators for the categories.

Note that in any category with pullbacks, to call a map 7: X¢g — X a monomorphism is precisely

the same as saying that the following square is a pullback

id
Xo —= Xp

ol |

XoﬁX

Since limits in Alg, are created in Sp™ under forgetful functors U, the forgetful functor preserves
and reflects monomorphisms. Hence, if i: Xqg — X is a proper subobject in Algy, then so too is
Ui: UXy — UX in Sp”. If we know that Gy is a strong generating set, then we can find some map

f: Fo(Alm]4) — UX for which there is no factorization

Fu(Afm]s) —— UXo

B Jo
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But then, by adjunction, there can be no factorization

O(Fn(Alm]+)) —— Xo

o I

O(Fu(Alm):)) — X

so it suffices to prove Gy is a strong generating set. For this, simply note that if i: Xg — X is a
proper subobject of a symmetric spectrum, then there is a simplex € (X,,),, not in the image of 4
for some n,m € N. It follows that the map h: F,,(A[m];) — X specified by this simplex does not
factor through i. Similarly, if f,g: X9 — X are such that f # g, then there is a simplex = € (X,,)m
for some n,m € N for which f(z) # g(z) and, once again, letting F,(A[m]+) — X be the map

specified by this simplex shows that fh # gh. O

Remark 4.1.2. Alternatively, noting that Algy is the category of algebras for the monad UO o (—)
associated to the adjunction

S Oo(—)
Sp ? Algo,

we have that UOo(—) preserves filtered colimits since Oo(—) is a left adjoint and by |46}, Prop. 2.3.5]
and [15, Prop. 2.16], the forgetful functor creates filtered colimits, the monad UQO o (—) preserves
filtered colimits and thus, since Sp™ is locally finitely presentable, it follows by [10, Thm. 5.5.9]

that Algy is locally finitely presentable as well.

As is shown in |27, Thm. 6.18], the category Algy is a cofibrantly generated simplicial model
category in both the positive stable and positive flat stable model structures, building upon the

work of Harper in [26]. Since every positive stable cofibration is a positive flat stable cofibration,
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we will focus on the latter. To do this, we first introduce some notation, following Harper in [26].

Definition 4.1.3. Let ¥ = | 5(3,. For each m > 0 and subgroup H < ¥, let GH.s, — S*
be the functor sending a pointed space X to the symmetric sequence concentrated in degree m as

Ym g X where X has the trivial H-action. Explicitly, this is given by

(Em/H)+/\X n=m,

* else.

This functor is left adjoint to the functor
Evil = 1111}1 o Resﬁm 0Ev,,: ST =S,

sending a symmetric sequence (Xo, X1, ...) to BvE (X) = limg Resﬁm X, which we will also denote

by XH.

The positive flat stable model structure has the following explicit description, due to Harper in
[26], following the recipe given by Schwede and Shipley in [50] for the model structures established

by Shipley in [49]. First, we give the positive flat stable model structure on symmetric spectra Sp~.

Definition 4.1.4. The positive flat stable model structure on Sp™ is the cofibrantly generated,
simplicial model category having as its weak equivalences the stable equivalences and generating

cofibrations

I= SoGHOAKL) - SoGHEAK]L) :m>1, k>0, H<Y,, asubgroup
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and generating acyclic cofibrations of two types J = J; U Jyr, where the type one maps are
Jr= S®GHA kL) = S®GHEA[K]ly):m>1, r>0, k>0, H<Y,, asubgroup

and the type two maps are

Jir = Ka

n>1
where

K, = {c,O(0A[K]s — Alk]L) : k> 0}

Here, the square indicates the pushout product map and ¢, : Fj, 115" — F,S? is the map obtained

in the pushout

Fpi1SY A A[0]y —2s F,S0

L

Fn+151 /\A[l]+ E— M)\n

where A\, = A Aidp go: FnHSl — F,S% and X is the map F1.S' — FyS adjoint to the identity

map idg1.

The category Alg, inherits a model structure from the positive flat stable model structure on

Sp”™ in the following way.

Definition 4.1.5. The positive flat stable model structure on Alg, is the cofibrantly generated,
simplicial model category having as its weak equivalences and fibrations the underlying stable

equivalences and fibrations in the positive flat stable model structure on Sp*. Note that this model
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structure is not stable. This has generating cofibrations

1° = 0(I)

and generating acyclic cofibrations

JO = O(J[) U O(J[[).

where I, J;r and Jj; are the sets of maps defined in the preceding definition.

Let us declare S ® G = FH.

Lemma 4.1.6. For eachn >0 and H < %, the functor S GH = FI1. S, — Sp™ is a left Quillen

functor where Sp> is equipped with the positive flat stable model structure.

Proof. From the analysis given in [26], the functor F!! is left adjoint to the functor sending a
spectrum X to X,{I = limg Resﬁ" X, thinking of X, as a functor 3, — S,. Since S, is cofibrantly
generated, it suffices to show that F/! preserves the generating cofibrations and generating acyclic
cofibrations—since every other cofibration is a retract of one built out of transfinite compositions

of these—and this occurs essentially by definition. O

This has the following consequence.

Lemma 4.1.7. The domains of the generating cofibrations and generating acyclic cofibrations are

cofibrant in Algy.
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Proof. Harper constructs this model structure in [26] according to the recipe provided by Schwede
and Shipley in [50]. It follows that O is a left Quillen functor and so it suffices to show that the
corresponding generating cofibrations and acyclic cofibrations in Sp™ in the positive flat stable
model structure are cofibrant. Since FX is a left Quillen functor, this is true for the generating
acyclic cofibrations J; and generating cofibrations I, so it remains to show that it the generating
acyclic cofibration Jr; have cofibrant domain.

For this, taking H = e in the pushout defining M \,, it follows that ¢, is a cofibration in
the positive flat stable model structure on Sp™. Since this model structure is simplicial, the map
F,S° N OATK]+ — Fn,S° A A[k]4 for n > 1 is likewise a positive flat stable cofibration and hence

the basechange map

My NOATKLy = FoSOAAKL. [ MM AOATK]4
F,SONOA[K] 4+

is a positive flat stable cofibration. The source is cofibrant since M A, is and thus the target is
cofibrant. But the target is the domain of the map ¢,J(0A[k]+ — A[k]+), which shows that the

domains of the generating acyclic cofibrations of the second type have cofibrant domains. O

The generating cofibrations and acyclic cofibrations are likewise all compact. To prove this, the

following two lemmas are needed.

Lemma 4.1.8. Suppose X has finitely many non-degenerate simplices. Then X is compact in S.

If X is additionally pointed, then X is compact in Sy.

Proof. This follows easily by induction on the smallest integer n for which X = sk,, X, using the
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skeletal filtration. O

Lemma 4.1.9. Let m > 0 and H < X, be a subgroup. The functor EV% commutes with filtered

colimits.

Proof. The functors Ev,,: S — S and ResIE{m: S¥m — SH create colimits, so we must check
that limg: S¥ — S, commutes with filtered colimits. This follows since H is a finite group and

filtered colimits and finite limits commute in sets. O

Proposition 4.1.10. The category Algy is finitely generated. In fact, the domains and codomains

of the generating cofibrations and acyclic cofibrations are all compact objects.

Remark 4.1.11. Since the forgetful functor creates filtered colimits by [46, Prop. 2.3.5] and [15]
Prop. 2.16], it suffices to prove something slightly weaker—that O o (—) preserves compact objects.

We will not explicitly make this reduction even though it is implicit in the following argument.

Proof. Fix a filtered diagram G: D — Algy. Let us consider the domains and codomains of
generating cofibrations or generating acyclic cofibrations of the first type to begin with. An object
of this sort has the form O(F(A)). We then have adjunction isomorphisms colim hom(O(A), G) =
colim hom(F!(A),UG) = colim hom(A, (UG)H). But now A € S, is a compact object and, hence,

the natural map
colim hom(A, (UG)H) — hom(A4, colim(li}rfn Resi (UG),))

is an isomorphism. But now finite limits and filtered colimits commute in the category of sets and,
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hence, also in the category of pointed sets. It follows easily that
hom (A, colim((UG)H)) 2 hom(A4, (colim UG)) = hom(FH (A), colim UG).

Note that the natural map colim UG — U colim G is an isomorphism, since G is filtered and by

[46, Prop. 2.3.5] and |15, Prop. 2.16], the forgetful functor creates filtered colimits. Hence,
hom(FH (A), colim UG) = hom(FH (A), U colim G) = hom(O(FH (A)), colim G).

Unraveling this amounts to the following commutative diagram

colim hom(O(EFH (A)), G) —— hom(O(FH(A)), colim G)

~| E

colim hom(4, (UG)E) ——— hom(A4, colim((UG)[))

which, since all marked arrows are isomorphism, so too must the top arrow be an isomorphism,

which is the natural map we sought to show is an isomorphism.

It therefore remains to show that the domains and codomains of the generating acyclic cofi-
brations of type two O(J;r) are compact. We will argue this in the case of the target, with the

argument for the source having the same shape, mutatis-mutandis.

To see that targets O(M A, A A[k]+) are compact, note that since M\, is a pushout and since
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— N Alk]4 = — A FoAlk]+, we may write this object as the pushout

Fi1(SYAA0]y AA[K]y) —— Fu(SOAA[K]L)

| !

Fopr(SYA ALy AA[K]L) —— MA, AA[K]4

Since ST AA[0] L AA[E]4, SYAA[1] L AA[E]+ and S° AA[E]4 have finitely many non-degenerate sim-
+

plices, they are compact in S,. By universal properties, it follows that hom(O(M A, A Alk]1), G)
hom(MM\, A Alk]+,UQG) is the pullback
hom(F,(S° A Alk] 1, UG)

hom(Fp 1 (ST A A[l]4 A A[K]L), UG) —— hom(Fps1 (S A A0+ A AK]L), UG)

Hence, since, as above, U creates filtered colimits, since finite limits and filtered colimits commute
in the category of sets and since each object in the above fork is compact, colim hom(O(MA\, A

Alk]4+), G) is the pullback

hom(O(F,(S° A A[k]4), colim G)

|

hom(O(Foi1 (S A A1y A A1), colim G) —— hom(O(Fys1(S* A A[0]4 A A[k]4)), colim G)

and so it that the natural map
colim hom(O(M A, A A[k]+), G) = hom(O(M A, A Alk]4), colim G)

is an isomorphism. O
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Proposition 4.1.12. Filtered colimits and finite limits commute in Algy.

Proof. The forgetful functor creates both filtered colimits and limits in Sp™ where they commute.

O

Proposition 4.1.13. For any finite, pointed simplicial set K, the mapping object hompyg,, (K, —)

preserves filtered colimits.

Proof. Let U: Algy — Sp” be the forgetful functor. Here, the mapping object in Algy is defined
as in 27, §6.1]. Namely, homA|gO(Sl,X) is the mapping symmetric spectrum Homg (XS, X)

where the map O o (Homg(X*S!, X)) — Homg(X>*S!, X) is the map adjoint to the composite

O o (Homg(E%5Y, X)) AS®5' % 0o (Homg(575", X) A 5251 2 06 (x) 2%, X,

However, Homg (XK, X) = hom(K, X ) natural in K and X, where hom(K, X),, = homg, (K, X,,)
with the evident X, action. This is because a simple computation shows that, in symmetric spectra,
the smash product X A X*°K = X A K natural in X and K, where the right-hand is the pointed

simplicial action. Hence, there are natural isomorphism

hom (X, Homg(X*K,Y)) = hom(X A K,Y) = hom(X,hom(K,Y))

12

natural in X, K and Y. By Yoneda, this means there is a natural isomorphism Homg(X*°—, —)
hom(—, —). Hence, homag o (K, X) is the O-algebra whose underlying spectrum is the sequence
(homs, (K, Xy), homs, (K, X7),...).
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Since filtered colimits in Algy are created in spectra and since Uhompg, = hom, it suffices
to show that hom(K,—) commutes with filtered colimits in spectra. This now follows since, in

spectra, colimits are computed levelwise in S, and
homs, (K, colim; A;) = colim; homs, (K, A;)

since S' A Aln]; is a compact object in S, for each n > 0 by Lemma In particular, this

means that the natural map

colim;(homs, (K, A;)), = colimhom (K A Aln]4, 4;)

— hom(K A Aln]4, colim 4;) = (homs, (K, colim 4;)),,

is an isomorphism for all n. O

Proposition 4.1.14. The domains and codomains of the generating cofibrations and generating

acyclic cofibrations of Algy are simplicially compact.

Proof. We have seen they are compact, we now wish to show for any such domain or codomain,
which therefore has the form O(X), O(X)AA[n]+ is a compact object. Harper and Hess endow Algy
with the structure of a simplicial model category in [27, Thm. 6.18]. The relevant constructions
are as follows. The simplicial tensoring X ® K is given by Harper and Hess [27, Def. 6.2] as the

reflexive coequalizer (which is therefore computed in the underlying category of spectra)

O(X) @ K = colim(O(O(X) A K.) ﬁj: O(O(O(X))) A K+)
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The smash products appearing in this coproduct are the ones arising from the simplicial tensoring
on the category of symmetric spectra as in [37]. The map d; is induced from the action on X and
the map dy is induced by the operad multiplication map pu: O o O — O and the assembly map
v: O(X)AN Ky — O(X A K4) induced from the diagonal maps K — K*". The mapping object
hompg,, (K, X) has as its underlying spectrum homg » (K, X) = Homg »(X* K, X) with action

map adjoint in Sp” to the composite

O(hom(K, X)) A Ky % O(hom(K, X) A K+) 2 0(x) 2% x.

We claim that for any X, O(X)® K =2 O(X A K4 ), natural in X and K. This is an adjunction

argument.

homayg, (O(X) ® K,Y) = homajg,,(O(X), hompjg,, (K, Y)) = homg » (X, Uhompy,, (K,Y))

= homg = (X, homg » (K,UY)) = homag,, (X A K1,UY) = homayg,, (O(X A K4),Y).

All isomorphisms above are natural in X, K and Y from which we obtain an isomorphism O(X) ®
K — O(X A K,). In particular, if X € Sp™ is a compact object, then X A A[n], is compact by
an adjunction argument. Since the forgetful functor creates filtered colimits, O(X A A[n]4) is a
compact O-algebra. It follows that the domains and codomains of the generating cofibrations and

generating acyclic cofibrations are simplicially compact. O
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4.2 Properties of the Category Algg
We use the preceding results to deduce properties of the category retractive O-algebras.

Corollary 4.2.1. The category Algg is locally finitely presentable and the domains of the generating

coftbrations and acyclic cofibrations are cofibrant.

Proof. Algg is locally finitely presentable by Proposition[d.1.1and Proposition[2.2.5] The statement

about the domains and the generating sets follows from Proposition [2.2.6 O

Corollary 4.2.2. Filtered colimits and finite limits commute in Algg for any Y.

Proof. Recall that this is true in Algg by Proposition The forgetful functor U : Algg — Algp
creates filtered colimits. Let D be filtered and J be finite and consider a diagram F': D x J — Algg.
Let F~: D x J* — Alg} be the evident extension as in Definition Then lim; F*(—,j) =
lim; F'(—, j). Since the forgetful functor U: Algly — Algy creates limits of shape J” and colimits
of shape D, where they commute, it follows that filtered colimits and finite limits commutes in

Algh. O

Corollary 4.2.3. For any finite, pointed simplicial set K, the mapping object homAlgg(K, =)

preserves filtered colimits.

Proof. According to our recipe for building hom AlgY, (K, —), it is enough to show that homayg,, Iy (K,
preserves filtered colimits, but according to our recipe for building this object, it suffices to show

homA|gO(K , —) preserves filtered colimits, and so we are done by Proposition [4.1.13 O
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Corollary 4.2.4. The domains and codomains of the generating cofibrations and generating acyclic

cofibrations in Algg are simplicially compact.

Proof. By Propositions [£.1.14] and [2.2.6] it suffices to prove that for any retractive O-algebra over

Y of the form

with X simplicially compact in Alg, is once again simplicially compact. Recall that the coproduct

in the middle is taken in Alg,. We claim that for K € S,

OX)[[V)AK=O(XAKy) [[ Y
O(X)

natural in X and K. First note that, as O-algebras, (O(X) YY) K =2 O(XANKy) (Y ®K).

This is because — ® K is a left adjoint and therefore commutes with colimits. Now, to see this,

Y
note that by Lemma [2.2.20] and Proposition [2.2.18] (O(X) Y)A K is computed as the following

pushout in (Algy)/y—hence, the following pushout in Algn—given by

(O(X) Y)ox) MeyeoK — (0(X) Y)®K

| !

y O(X) Y)AK
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but we may write this as

(XA(S°=K ) +Y®@(—K)

+inygx

OX A8 Yor YKo

!

OXANKy) YK

By universal properties, a cone out of the above pushout fork with cone point Z is the same as a
map Y — Z and a map O(X A Ky) — Z commuting with the maps from Y 2 Y ® x and thus out

of the pushout indicated. Hence,

OX)[V)AE 20X AKy) [] V-
O(X)

The structural map ¥ — (O(X A K) o(x) Y) is simply the structural map of the coproduct and
the map (O(X®K4) oY) Y — Y isinduced by universal properties by the map id: Y — Y

and the evident composite
OXAKL) = OXAAD])=0(XASH)=2O0X)SY,

where the first map is induced by the pointed surjective map K {+} — {0} {+}. Since U com-
mutes with filtered colimits, it suffices to show that for compact O(X), O(X A (A[n]+)+) ox)Y

is compact in Algh. Note that (K, ), = K, S+ 60 where this coproduct occurs in S, as indicated.
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Hence, for a spectrum X,

XANE) =2 XAELJ][S) 2x AKX,

with the final coproduct occurring in spectra. Since, O o (=) is a left adjoint, it happens that

OX A(A[nl)4) TT Y= (O AaR)[Tox) IT v =ox AaRl) [Ty
O(X) o(x)

We are thereby reduced to showing that O(X A A[n],) Y is compact. As an object in Alg)), it
is obtained from the left adjoint (Algp)/y — Algé described in the proof of Proposition An
adjunction argument reduce us to showing that O(X A A[n],) is compact in (Algy),/y. However,
the map O(X A A[n]y) — Y factors through the map O(X A An]y) — O(X A S?) induced by the
unique, surjective, pointed map A[n]; — SY. Hence, an element of hom(ajg,,) ,, (O(X A Aln]4), Z)
is, by adjunction, precisely the same as a map in spectra f: X A A[n]y — UZ (U the forgetful

functor) making the following diagram commute

where Ug = g is the structure map of Z and is a map of O-algebras and c: A[n]; — S© is the

unique pointed, surjective map. In other words, the set of such fillers f is, up to isomorphism,
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simply the pullback

hom, (O(X AN Aln]4), Z) —— homg = (X A Aln]4,UZ)

l v

* homg » (X A Aln]4,UZ)

aopo X Ac

Algo)y

where p: X A SY — X is the unit isomorphism. Since X is compact in Sp™, X A A[n]4 is compact
in Sp™. A quick argument using commutativity of filtered colimits and finite products in sets shows
that X A A[n]4 is compact.

In particular, chasing back through the adjunction, this shows that the domains and codomains

of the generating cofibrations and generating acyclic cofibrations are simplicially compact, as

Hom(O(X) [[ Y. Z)u = homyy,y (O(X) [TY) A Alnls. 2).

We are now ready to construct the stabilization of categories of retractive O-algebras over Y.

Later, we will impose the mild assumption that Y is bifibrant. For now, this is not needed.

Proposition 4.2.5. Given an O-algebra Y, the category of retractive O-algebras over Y Algg 18
a locally finitely presentable, finitely gemerated, pointed simplicial, model category such that the
domains and codomains of all generating cofibrations and generating acyclic cofibrations are sim-

plicially compact and have cofibrant domains.

Proof. The proposition follows as a simple matter of stringing together our preceding results. [
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Proposition 4.2.6. The stable semi-model structure on SpN(AIgg) exists and is a pointed simpli-
cial, stable semi-model category. The weak equivalences are characterized as the mwi-isomorphisms.

Here, we may take 75(X) = colimy 7, (% LX,, 1) for any level fibrant replacement functor L.

Proof. The first assertion is Proposition and Theorem The second assertion follows
exactly as in Corollary [3.2.14] mutatis-mutandis. The fact that we are only working with a semi-

model structure, in this case, does not factor into the proof. ]

Remark 4.2.7. The characterization of the S-local equivalences for the stable semi-model structure

on SpNY (Algg) is independent of the existence of the stable model structure. All that was
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Chapter 5

Higher Blakers-Massey Theorems and
Homotopy Excision and Their

Consequences

In this chapter, we investigate consequences of the higher Blakers-Massey and homotopy excision

theorems of Ching and Harper in [15]. We make the following convention in this chapter.

Convention 5.0.1. Wherever Algg is mentioned, the object Y and spectral operad O of the re-
tractive category satisfy the following hypotheses, unless otherwise specified. The object Y is
(—1)-connected and bifibrant (cofibrant and fibrant). The operad O is (—1)-connected—in other

words, for each k > 0, the spectrum of k-ary operations O[k]| is (—1)-connected.

Remark 5.0.2. Any operad in spectra arising from one in spaces satisfies this property, such as the

E-operads and the E,-operad.
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5.1 Retractive Forms of Homotopy Excision and Higher Blakers-

Massey Theorems

To begin, let us see that the variants of of the main theorems in [15] hold. This will follow from a

few useful lemmas.

Lemma 5.1.1. If Fun(D, C) admits the injective model structure, then so too does Fun(D,C(id.))
and the natural isomorphism Fun(D,C(id.)) = Fun(D,C)(id.) respects the model structures. The

evident dual assertion likewise holds.

Proof. The isomorphism of Lemma is essentially an identity, so this follows immediately by
noting that the cofibrations and weak equivalences of the injective model structure on Fun(D, C(id.))

are objectwise in the sense that they are preserved and reflected by the forgetful functor Fun(D, C(id.)) —

Fun(D, C). 0

Lemma 5.1.2. Suppose Fun(D,C) admits the injective model structure. Then for any fibrant
F:D — C(id.), the functor F': D* — C(id.) obtained from the procedure of Definition |2.1.11| is
likewise fibrant in Fun(D”, C(id;)). If ¢ is additionally fibrant in C, then UF: D* — C is fibrant in

Fun(D®>, C). The evident dual assertion with the projective model structure likewise holds.
Proof. Denote the cone point of D be % and let A — B be an acyclic cofibration of functors

D* — C(id.). Since F(x) = id. is the zero object, there is a unique lift

A(%) s F(x) = ide

| H

B(%) ---------= > id,
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where the dashed arrows are the unique ones. Since # is terminal in D" it follows easily that any
lift

AID —— F

| ]

B|D — id.

which exists as A — B restricts to an acyclic cofibration, extends uniquely to a lift

which means F' is fibrant.

If ¢ is fibrant, then since by the preceding lemma, the fibrations of Fun(D", C(id.)) are simply
the fibrations of Fun(D”, C)(id.), which are created by the forgetful functor, it suffices to show that

¢ — *c is a fibration in Fun(D”, C) and this follows since D” has a terminal object *, so it is easy

to observe that for any acyclic cofibration A — B in

o

e
I
—

& +— o

the dotted lift is completely determined by a lift

and this dotted arrow exists as ¢ is fibrant in C.
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Lemma 5.1.3. Suppose C is a model admitting the injective model structure for all small categories
D. Suppose ¢ € C fibrant. Then for any category D such that D — D is cofinal the forgetful functor

U: C(id.) — C creates homotopy limits of shape D.

Remark 5.1.4. This lemma has the evident dual with cofibrant ¢ and homotopy colimits. Algg
admits projective and injective model structure for all small categories as it is cofibrantly generated
and combinatorial, as we have seen. Note that we do not require D — D" to be homotopy left
cofinal—we only need to assume the path-connected criterion (i.e., my criterion) on the relevant

slice categories.

Proof. Let F': D — C(id.) and suppose without loss of generality F' is fibrant in C(id.). The
preceding lemmas now have the following consequence. The homotopy limit of a fibrant functor
F: D — C(id,.) is the same as the homotopy limit of the associated F*: D> — C(id.). In particular,
both of these homotopy limits may be computed as their limits for which we have lim F' = lim F*
and, moreover, for U: Algg — Algn the forgetful functor, it follows that UF® and UF are still

fibrant functors. Hence,

holimUF ~limUF 2 Ulim F 2 Ulim F* 2 lim UF” ~ holim UF®

and both Ulim F' ~ U holim F' and U lim F* ~ U holim F*. It follows that

holim UF ~ U holim F' ~ U holim F* ~ holim U F”. (%)

Now suppose X — F' is a homotopy limit cone in Algé. Then UX — UF is a homotopy
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limit cone as X — lim F' ~ holim F' is a weak equivalence and the induced map UX — limUF ~
holim U F' is a weak equivalence. It follows immediately from (x) that this map is U(X — lim F') and
and hence is a weak equivalence as U creates these. Conversely, if X — F' is such that UX — UF
is a homotopy limit cone, then since U creates weak equivalences, it follows immediately that

X — holim F' is a weak equivalence by (). O

Thus, this lemma, and its evident dual, allows us to avail ourselves of the higher homotopy
excision and higher Blakers-Massey theorems for structured ring spectra of Ching and Harper [15]
in the retractive case under mild hypotheses on Y. We recall the necessary results below, but before
doing this, we collect the obvious corollary of this. As always, part of this corollary has a dual

which we suppress.

Corollary 5.1.5. The forgetful functor U: Algg — Sp” creates filtered homotopy colimits and
homotopy limits of cubes with the initial vertex removed. More generally, U creates homotopy

limits of shape D for any D for which the inclusion D — D* is cofinal.

Proof. By the above, it suffices to that U: Algy, — Sp™ creates homotopy limits and filtered
homotopy colimits. For this, note that filtered colimits in Alg, and Sp™ are already homotopy
colimits by Proposition [3.2.13] so since U creates filtered colimits, it is enough to verify this for
homotopy limits and this argument is essentially identical to the one given in the preceding lemma

since the forgetful functor U: Algy, — Sp> creates fibrations and weak equivalences. O

Warning 5.1.6. While Algy is right proper, we will still need Y to be both cofibrant and fibrant in
Algs to guarantee the compatibility of homotopy limits and colimits in Algg with homotopy limits

and colimits computed in Alge,, where the higher Blakers-Massey theorems apply.
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Theorem 5.1.7 (Higher homotopy excision for structured ring spectra). Let O be an operad in
R-modules and W a nonempty finite set. Let O be a strongly co-cocartesian W -cube of O-algebras
(resp. left O-modules). Assume that R, O, Xy are (—1)-connected. Let k; > —1 for each i € W. If

each Xy — Xy is ki-connected (i € W), then
(a) X is l-cocartesian in Modg (resp. SymSeq) with | = |W| -1+ oy ki,
(b) X is k-cartesian with k = oy k.
Proof. This is |15, Thm. 1.6]. O

Theorem 5.1.8 (Higher Blakers-Massey theorem for structured ring spectra). Let O be an operad
in R-modules and W a nonempty finite set. Let X be a W-cube of O-algebras (resp. left O-

modules). Assume that R, O, Xy are (—1)-connected, and suppose that

i) for each nonempty subset V.C W, the V-cube ) X (formed by all maps in X between X,
0 0

and Xy ) is ky -cocartesian,
(ii) —1 < ky < ky for each U C V.

Then X is k-cartesian, where k is the minimum of —|W|+  ycy\(kv + 1) over all partitions X of

W by nonempty sets.
Proof. This is |15, Thm. 1.7]. O

Theorem 5.1.9 (Higher dual Blakers-Massey theorem for structured ring spectra). Let O be an
operad in R-modules and W a nonempty finite set. Let X be a W-cube of O-algebras (resp. left

O-modules). Assume that R, O, Xy are (—1)-connected, and suppose that
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(i) for each nonempty subset V. C W, the V-cube OV, _,X (formed by all maps in X between

Xw_v and Xy ) is ky-cartesian,

(i) —1 < ky < ky for each U C V.

Then X is k-cocartesian, where k is the minimum of kw + |W| —1 and |W|+ <y kv over all

partitions A of W by nonempty sets not equal to W.

Proof. This is [15, Thm. 1.11]. O

To this list, we add the following.

Corollary 5.1.10. The preceding theorems hold in Alg};.

Proof. This is a consequence of Lemma ]

We also have the following proposition, which is a corollary of homotopy excision, that implies
by elementary arguments—one of which we give below—that the cubical homotopy of retractive,
(—1)-connected O-algebras and (—1)-connected maps between them enjoys the same properties

just like that of spaces.

Proposition 5.1.11. Let Y be a cofibrant O-algebra. If X: P(2) — Alg}é is a homotopy pushout
cube such that Xy is (—1)-connected and each Xy — Xy is ki-connected with ki > —1, then the

map X — X(19y is kj-connected, where i,j € {1,2}, i # 5.

Proof. We may just as well work in Alg,. Letting U: Algp — Sp™ be the forgetful functor, we
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have, by homotopy excision, the following diagram in Sp>.

UX@ L UX{l}

uf Jo

U?C{Q} — X
ko ~
k1+ka+1

UX{L2}

where X is the homotopy pushout in spectra of this fork. Since k; > —1, k1 + ko +1 > —1 and it

follows that the arrow UXp; — U&Xyy 2y is kj-connected where 4,5 € {1,2}, i # 5. O

Again, informally, this means the cubical homotopy theory of (—1)-connective objects and (—1)-
connected maps between them have the same types of connectivity properties as spaces do when
all objects and maps involved—except, perhaps, the retract object Y—are (—1)-connected. As an
example, we show that this category of (—1)-connected objects and maps is closed under all cubical
homotopy colimits (the case of cubical homotopy limits follows from the analogous case as pushed

into spectra). We will only ever be interested in this for the case that Y is also (—1)-connected.

Corollary 5.1.12. Let Y be a cofibrant O-algebra. If X: Pi(n) — Algé lands in the full sub-
category of (—1)-connected objects and (—1)-connected maps between them. Then hocolim X is

(—1)-connected, and, moreover, each map Xy — hocolim X is (—1)-connected.

Remark 5.1.13. In fact, if m > —1, the same assertion holds by the very same argument if, instead,

we restrict to the full subcategory of m-connected objects and m-connected maps between them.

Proof. Without loss of generality, we may assume our n-cubes X are punctured cofibration cubes—as

in [15, Def. 3.4], this means each for each proper subset V' C n, the map colimp, (y) X —
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colimpyy) X = Xy is a cofibration. In particular, this means every object Xy is cofibrant and
every map X1 — Xy where T' C U C n is a cofibration. The strict colimit of such cubes compute
homotopy colimits as the cofibrant objects in the projective model structure on P;(n) and there-
fore, in particular, for any subset V' C n, colimp, () X =~ hocolimp, 1y X'. A good reference for the

properties of this particular projective model structure may be found in [21, §10.13].

The proof is by induction on n. If n = 0,1, there is essentially nothing to prove, noting that
we reserve the word connectivity to mean connectivity relative to the map * — X. The true base
case of n = 2 is taken care of by the hard work homotopy excision. Now suppose the statement is
true for punctured n-cubes and let us consider the case punctured (n + 1)-cubes. Fix a punctured,

cofibration (n + 1)-cube X': Py(n + 1) — Algd.

Any subset S C n of size n — 1 determines a codimension 1 face of X as the face spanned
the subsets ) C n and {k} C n where k € S. There are n-such faces. We adapt the notation of
Ching-Harper [15, Def. 3.3] to the present situation. In this case, it is the cube S-cube 852( defined
on objects U C S by

UH(@SX)U:XU, Ucs.

Note that while X is not properly a cube, since have excluded the final vertex, this still makes
sense. Note that

P(n) x P(1) = P(S) x P({k}) = P(n+1).

More generally, for any proper subset W C n + 1, we define 9y X to the be the punctured ((n +
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1) — |W])-cube given on objects U for any W C U C n+ 1 (note the properness of U C n+ 1) by

U~ (8@X)U = Ayp.

Pick any codimension 1 face 65 X of X. Say this is determined by excluding k£ € n + 1 from S (the

choice of k is immaterial). Form a cube

X:P(S) x P({k}) = P(n+ 1) — Algh,

which we view as an S-cube (i.e., n-cube) of 1-cubes, built on objects as follow. For any proper
subset V C S, &y = Ay and on S, Xg = colim 8@9 X. For each proper subset U C n containing k,
Xy = Xy and on n+ 1, X411 = colim Xy,. For proper subsets U C S, the map Xy — Xpyyqy is
simply the map Xy — Apyyqry. The map Xs — Aj 41 is the map induced by universal properties.
By induction,

Xg = colim 8@9)( = colimp, (5) X > hocolimp, (5) X.

and is therefore (—1)-connected and the maps Xy — Xg are also (—1)-connected. Similarly, by
induction,

X@ = colim 8{k}X = COlimpl (n+1\{k}) X ~ hOCOliHlfpl (n+1\{k}) X

and is therefore (—1)-connected and for k € U C n + 1, the maps Xy — X411 are (—1)-connected.
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An argument with universal properties shows that colim X = hocolim X' is the pushout

Xy —— Xpp1

J l ()

Xg —— hocolim X

where the map Xg — Xg is the comparison map induced by universal properties. This is because
the map Xg — &4 1 is precisely what is encoded by the cone from the punctured diagram X'|7P;(.S)
to Ajy1, and this cone factors through the map of punctured cubes X'|P1(S) — OpX. Hence a cone
out of the above pushout fork encodes a cone 9y X — Z as well as a cone 8@? X — Z compatible with
the map of punctured cubes X'|P1(S) — dpX'. This is because the map Xs = colimp, gy X' — Xg

is precisely the same as the commutative diagram 85 X represents.

We claim that (%) is, in fact, a homotopy pushout in Algg. To see this, note that every
object of (x) is cofibrant. From our assumption that X is a cofibration cube, the map Xg —
Xs is a cofibration. That the map Xs — &j41 is a cofibration follows since it is induced by
applying the colimit functor to a cofibration of punctured n-cubes in the projective model structure
on Fun(Pyi(n),Algh). Alternatively, all objects in (x) are cofibrant and the map X — Xg is a
cofibration, it follow by standard model categorical results such as [41, Prop. A.2.4.4.(i)], the strict

pushout is indeed a homotopy pushout.

In particular, since every map appearing in X is (—1)-connected, the map Xy — Xg is (—1)-
connected being a composite of such maps similarly the map X — Xpy is (—1)-connected.
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Hence, from the induction hypothesis, there is a factorization with connectivities displayed

Xy — Xg

N
Xs
which shows the natural map Xs — Xg in (%) is (—1)-connected as well. Similarly, the map

XS%X@

is (—1)-connected since all maps in X are (—1)-connected, so there is a factorization with connec-

tivities displayed
-1
Xy —— Xy

T

XS%X@

which shows the composite map & — Ajy1 is (—1)-connected and therefore the natural map

Xs — X, 11 in (x) is (—1)-connected as well.

This foregoing work shows that (x) satisfies the hypotheses of Proposition [5.1.11f and so we
may apply it to (). It follows that the map A}, 41 — hocolim X' is (—1)-connected and the map
Xg — hocolim X is (—1)-connected. Since Xg is (—1)-connected by induction hypothesis, it follows

that so too is hocolim X'. Since all maps in the cube X" are (—1)-connected, this shows that for any
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UCn+1suchthat k€ U or U admitsamap U CUU{k} #n+1,

Xy —— Xnt1

~

hocolim X

and thus the map Xy — hocolim X is (—1)-connected. The only remaining map excluded by
this analysis is Xg — hocolim X, which is already known to be (—1)-connected by homotopy

excision. n

5.2 Consequences of the Higher Blakers-Massey Theorems and

Homotopy Excision
Now we collect the necessary consequences of our new tools. First, we collect some notation and
definitions.

Definition 5.2.1. Fix an S,-enriched fibrant replacement monad F and an S,-enriched cofibrant

replacement comonad on C' on Alglh. Define
Qy = QyF and Ey = Eyc

Definition 5.2.2. Let us say a retractive O-algebra X & Alglé is k-connected relative to Y if
the structure map Y — X is k-connected. We will say X is k-connected if the map * — X in

spectra is k-connected

Remark 5.2.3. The point is that by taking Y = %, this recovers the usual notion of connectivity,
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so long as O is reduced (i.e., O[0] = *) so that the category of O-algebras is pointed by point in

spectra.

Proposition 5.2.4. Consider Algh as in Convention |5.0.1,

(a) Suppose Y (—1)-connected and suppose X € Algl is k-connected relative to Y where k > —1.
For eachn > 1, ¥3.X is (k+n)-connected relative to Y. Moreover, ¥ increases connectivity

of —1 < m-connected maps between (—1)-connected objects relative to'Y by n.

(b) Let X € Algy and suppose X is k-connected relative to Y. Then Q%X is (k — n)-connected

relative to Y. Moreover, ). decreases connectivity of maps by n.

Proof. (a) Since Y — X is k-connected, X — Y is (k + 1)-connected. Moreover, X is O-connected

as an (O-algebra. We may computed ¥y X as the homotopy pushout of the fork

x My
k+1l
Y

so by Proposition|5.1.11} the map Y — ¥y X is (k4 1)-connected. Since ¥y X is a retractive object,

Yy X — Y is (k 4+ 2)-connected. By repeating this process, the general statement follows.

To see that >y increases connectivity of maps between such objects, let f: X — Z be an
n-connected map of retractive O-algebras over Y and assume that X and Z are kx > —1 and

kz > —1 connected relative to Y, respectively. We have the following commutative diagram with
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connectivities displayed.

X kxtl Y

kx+1 \

Z
00
kz+1 kz+1
S
Y YvZ

Let us consider the solid portion of the above cube as punctured 2-cube of 1-cubes X': P;(2) —
Fun(P(1),Algy). Let us write this as X'(U,V) where U C 2. The back face of the cube above
corresponds to V' = () and the front face corresponds to V' = {1}. By |15, Prop. 3.8] and [23,

Prop. 1.22], it follows that the map Xy f is ng-connected where

no =min{2 — |U| -1+ ky : U C 2}.

Since the only map that is not infinitely connected is f, this means

n=2-0-1+n=n+1,

as desired. By iterating this, ¥y, will raise connectivity of maps by n.
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(b) Similarly, Qy X may be computed as the homotopy pullback of the fork

>~<

«—
-

|

Since this homotopy pullback is created in Alg, and hence in Sp™, the map Qy X — Y is k-
connected. Since Qy X is a retractive object, the map Y — Qy X is (k — 1)-connected. That Qy
decreases connectivity of maps by 1 follows by the argument dual to the one given above. As before

we can repeat this to obtain the general result. O

The following corollary has also been observed by Beardsley and Lawson in [5].

Corollary 5.2.5 (Retractive Hurewicz). Suppose Y is (—1)-connected and cofibrant in Algy. If
X e Alg}é is k-connected relative to Y where k > —1, then derived unit map X — Qy Xy X is

(2k + 2)-connected and Qy Yy X is k-connected relative to 'Y .

Proof. This map is implemented on the level of homotopy as the map into the homotopy pullback

of the homotopy pushout displayed in the diagram below.

X k41 v
: k41
A
k41 Qv X k+1
k+1
Y k+1 2y X
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By the higher Blakers-Massey theorem, the dotted arrow is n-connected where

n=min{(-2+ (k+2)+ (k+2), -2+ o0} =2k + 2,

as claimed. Since Qy Yy X — Y is (k + 1)-connected, the map Y — Qy Xy X is k-connected since

the composite Y — Qy Yy X — Y is the identity. O

Lemma 5.2.6. Suppose Y is (—1)-connected. Suppose X € Algg is k-connected relative to' Y where
k> —1. The map QX% X — QEPISUHLX obtained from the derived unit map 23X — Qy Sp1 X

is (2k + n + 2)-connected.

Proof. Since 23X is (k + n)-connected relative to Y, the derived unit map %X — Qy S5 X is
(2(k +n) 4 2)-connected. Looping this down n-times decreases connected by n and hence the map

is (2k + n + 2)-connected, as desired. O

Corollary 5.2.7. Suppose Y is (—1)-connected. If X € Algg is k-connected relative to Y where

k > —1, then derived unit map X — QVXVX is (2k + 2)-connected.
Proof. This follows by observing that, on the point-set level, the unit of the underived (XY, Qf)-
adjunction is the composite map

X -y X - 03%3X — . = QUYL X,

where the maps Q434 X — QUS4 X are obtained by applying Q4 to the unit map 2§ X —
Qy2€,+1X . The analogous thing is true for the derived version, for which we know that maps
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Q420X — QQHZ?AX are (2k + ¢ + 2)-connected. Hence, the composite map X — QX3 X is

2k + 2)-connected. O
(

Corollary 5.2.8. Suppose Y is (—1)-connected. If X € Algg is k-connected relative to Y where

k > —1, then derived unit map X — QXX is (2k + 2)-connected.

Proof. This is one of the important consequences of Theorem [3.3.1] alluded to previously. Since
for cofibrant X, the derived unit map X — Q37X is, equivalently, for a choice of a fibrant
replacement monad, the map into the colimit colim Q’{/RkE’f/X , it is enough to observe that the
maps Q{,EéX — Qg,“i]i/HX have increasing connectivity. In particular, the map X — Qy ¥y X
is (2k + 2)-connected. This now follows from the fact that homotopy groups commute with filtered

homotopy colimits. O

Remark 5.2.9. Is is important to note that when Y — X is (—1)-connected, then X — Qy Xy X is
O-connected. This ends up throwing a wrench in the strategy (explained in the next chapter) we
intend to use to analyze completions. This is because we will not be able to show that the maps to
the completion tower have increasing connectivity and thus that the completion tower converges

strongly.
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Chapter 6

Completions With Respect to Q¥ %%

and Stabilization

We are now ready to begin investigating completion phenomena, and the point of this chapter
is to prove the main theorems of this paper. Our strategy is motivated by Dundas [19, §2.6],
subsequently written up by Goodwillie-Dundas-McCarthy in [20, §A.8.3]. This strategy has also

been deployed in [8].

Fixing a Si-enriched fibrant and cofibrant replacement monad F and comonad C n Algg7 we
may build a cosimplicial resolution of a retractive O-algebra X over Y using the associated functors
Ef/ and QF. Here, we may use an S,-enriched stable fibrant replacement monad on Sp™ (Algg) for

the case of stabilization (i.e., k = c0). We suppress this now in favor of ease of exposition. This
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resolution assembles into a coaugmented cosimplicial object using the adjunction (Eg‘“}, Q]f/)

X —— (b x —= (Qbxh)2X == (Qbxh)3X...)

and the appropriate thing to do with such resolutions is to glue the datum of the resolution together
in a homotopical manner—in other words, taking homotopy limits, we obtain the Bousfield-Kan
completion map

AN
X—>XQ

VI
where the target is the Bousfield-Kan completion of X with respect to Q’{,Elf/

To make this precise, we need everything above to be sufficiently derived. Fortunately, this
may done for every case 1 < k < oo. This follows by work of Riehl-Blumberg [9] and Blomquist
[7] for 1 < k < co. When k = oo, we have shown that Algl, admits an S,-enriched stable fibrant
replacement monad. While this functor does not have the property that its unit map is an acyclic
cofibration in the stable semi-model structure on Algl, this is irrelevant to the construction of the

cosimplicial objects associated to the fundamental adjunction (X5°,Q5°).

Convention 6.0.1. Whenever Alg}, is mentioned, we assume Y is cofibrant and fibrant in Alg}, as
well as (—1)-connected. We additionally assume the spectral operad O is (—1)-connected. We
furthermore restrict our attention only to the subcategory of objects in Algg that are at least
(—1)-connected relative to Y. This is the same as Convention but with the addition of a

connectivity assumption on Y and the objects in Algé.
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6.1 The General Strategy

The key to analyzing this is the following observation, which is proved in [13, §6], [52] and was

deployed by Hopkins in [33].

Proposition 6.1.1. For each n > 0, let [n] denote the set of elements {0, ...,n}. The composite

Co: Po([n]) = PA[n] - A2 C A"

res

is homotopy left cofinal. Here, PAln| denotes the poset of non-degenerate simplices of A[n] and
AZD is the restriction of AS™ to the coface maps. The composite is given on objects by U + [|[U]—1]

res

and on arrows by [|[U| — 1] = U C V 2 [|V] — 1] in the sense given in the following remark.

Remark 6.1.2. In particular, this reduces our computations to punctured (n + 1)-cubes. Given
a coaugmented, truncated cosimplicial object d’: X_; — X, with X € C2, the corresponding
truncated punctured 3-cube, along with the coaugmentation maps making is a cube, are given

under the above composite as

@ i > {2} X,1 a > XO
0 ; do
4 \ dO‘v \
A P o g
d° {1} {1,2} d° Xo —F—— X
Jdo Jdo
{0} ——|—— 0,2} o R ek )
\do w‘ \do Y
dl dl
{0,1} — {0,1,2} X1 — X3
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The right-hand side is the composite functor X o £5. The left-hand side displays the coface cube
corresponding the map Py([n]) — AS", where the size of the set indicates which elements [k] € A
the element of Py([n]) maps to. The coface maps d* should be interpreted as skipping the i-th

element in the (ordered) set, so that all displayed maps are simply subset inclusions.

In particular, this means that for X € C2, ¢, induces a weak equivalence

hOhmAgn X — hOlimpO([n]) X,

at least on the level of homotopy categories.
To make this precise on a point-set level, we will adopt the Bousfield-Kan model for homotopy

limit. This has the following consequence.

Corollary 6.1.3. Given a simplicial model category C, and X € C2 objectwise fibrant, the natural
map induced by £y,

holim8%, X — holim%’f([n]) X,
is a weak equivalence.

Remark 6.1.4. A nice discussion of the Bousfield-Kan model may be found in |12, |30, 51].

The reason why this will be useful for us is the following proposition, which really amounts to

our grand strategy.

Proposition 6.1.5. Fix a coaugmented, cosimplicial object X _1 — X with X objectwise fibrant in
Algh.
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(a) There is a commutative diagram

holim,, holima <» X ~ holima X

/ hOlimAgz X ~ holimpo(m) X
/ hOlimAgl X ~ hOhmpO(m) X

X_1 — — hOlimAgo X ~ hOIimPO([O]) X ~ X()

where the comparison map X_1; — holim, holima<. X s equivalent to the comparison map

X_1 — holima X.

(b) If the maps (x,,) are strictly increasing in connectivity, then the map X_1; — holima X is a

weak equivalence.

Proof. Using the Bousfield-Kan model, each homotopy limit of fibrant objects is again fibrant.
Hence, the first statement follows commutativity of limits and the second follows since Y is fibrant,
so homotopy limits may be computed in spectra as a consequence of Lemma [5.1.3] and the remark
immediately following it. The sequence satisfies the Mittag-Leffler condition on homotopy groups

and therefore the lim'-exact sequence is simply an isomorphism. ]

Remark 6.1.6. Thus, to study the connectivity of the Bousfield-Kan completion map, we will study
the the connectivity of the maps (*,) when the cosimplicial object is built from derived composites

of Q%% . In light of Remark the connectivity of the maps (x,,) are precisely the cartesianness
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of the corresponding coface (n + 1)-cube. This will be our strategy.

Let us now formally define these coface cubes.

Definition 6.1.7. Given a coaugmented cosimplicial object X_1 — X with X € ¢C, the coface
(n + 1)-cube associated to X is the (n + 1)-cube formed from composite functor X o ¢, and the

augmentation map X_; — X/, ({k}) = Xy for each 0 < k < n.

6.2 Low-Dimensional Examples

As a warm-up, let us consider the case of k = 1 with X 0-connected relative to Y. In this case, the

coaugmented cosimplicial object R(X) associated to X has the form

R(X) : X+~ CX QS X —= (O 2h)2X == (S =h)3X .-

The zig-zag from X is essentially unavoidable but irrelevant—this zig-zag is the derived unit. If X
is bifibrant, then so too is its cofibrant replacement under our cofibrant and fibrant replacement
scheme and so the map from C'X has a homotopy inverse. To avoid clutter, we may assume without
loss of generality that X is bifibrant and thereby consider the coaugmentation to come from X itself.
Let us call this cosimplicial object R(X) as indicated.

Suppose X is O-connected relative to Y. The first map to analyze in the tower of Proposi-
tion is the map X — Qy Xy X and this is the Hurewicz map which is 2-connected by Corol-
lary [5.2.5] Indeed, from what we have seen in Corollary [5.2.5] Lemma [5.2.6] and Proposition [5.2.4]

every coface map R(X); — R(X)g+1 is k + 1-connected
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Let X' be the 1-cube X — Qy Xy X. The next step is to analyze X — holimp )y R(X). This

is then the square

X Xy ———— Xy
QyEyX: QyEyX@ E— QyZyX{l}

The downwards maps are the derived unit maps for the adjunction. It is difficult to analyze the
cartesianness of this cube directly, so we will augment this diagram. Let C' be the homotopy cofiber

in Algg of X and C be the cube Y — C. Then the following square

X X@%X{l}
C: Y —— C

is co-cocartesian, being a homotopy pushout. Since Xy — Xy is 2-connected and Xy — YV is
1-connected, it follows that ¥ — (' is 2-connected and X} — C' is 1-connected. We now consider

the diagram

x (a)

ol l©

QyZyX W Qyzyc

This commutes by naturality of the unit map. We want to analyze the cartesianness of (x). To do
so, we will analyze the cartesianness of the cubes labeled by (a), (b) and (c) in the indicated order.
By the higher Blakers-Massey theorem, cube (a) is n-cartesian where

n=min{-24+2+1)+(1+1),00} =3
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Cube (b) is handled similarly, Since ¥y increases connectivity of maps by 1, it increases cocarte-
sianness by 1. Hence, the cube ¥y X — Xy C is oo-cocartesian and by the higher Blakers-Massey

theorem, it is n-cartesian where

n=min{-24+(3+4+1)+ (24 1),00} =5.

Since Qy decreases connectivity of maps by 1 and therefore cartesianness by 1, this implies (b) is

4-cartesian.

Finally, for cube (c), since QyY ~ Y ~ ¥y this is equivalent to the cube

The map C' — Qy >y C is 6-connected since we have seen C' is 2-connected relative to Y. Taking

homotopy fibers in Algg horizontally, this becomes the map

QyC — QyQyEyC

which is 5-connected as €2y decreases connectivity of maps. Since the total homotopy fiber is the

iterated homotopy fiber, this shows that C — Qy 3y C is 5-cartesian.
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Amalgamating these results, we have

xX—32 ¢

ol b

Qyzy)( T> Qyzyc

It follows that the composite X — Qy Xy C is 3-cartesian, and, hence, cube (x) is 3-cartesian.

To get a feeling for the cases following from this one, let us continue and consider the next step.
Keep X as above and let Z = (X — Qy Xy X') be the cube (x) of the preceding step. The relevant

coface cube now has the form

(*)

Z: X ———— Qy ¥y X
QyQyZ : Qyzy/l) E— QyEyX

The downwards maps are the derived unit maps. The top cube (x) is the one from the preceding
step. As before, it is difficult to analyze the cartesianness of this cube directly so we augment it in

the analogous manner.

Let C be the iterated cofiber of Z, computed in Algg and let C be the 2-cube
Y _

Y

Q=

|
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As before, the cube Z — C is oo-cocartesian and we augment our picture to

z (a)

ol l©

QyEyZ W Qyzyc

and proceed in analyzing this cube as in the preceding case.

This time, however,it is not obvious what the connectivity of C' is relative to Y. The key to
analyzing this will be to determine the cocartesianness of C indirectly. If we estimate the cocarte-
sianness of Z, then since Z — C is oco-cocartesian, we will be able to estimate the cocartesianness

of C by [15, Prop. 3.8]. To do this, we use the higher dual Blakers-Massey theorem.

The 2-cube Z is the cube (x) and therefore 3-cartesian. Writing out Z with all connectivities

displayed,

X —2 5 QyayX

2| E

QyEyX T> QZYZ%/X
Hence, by the higher dual Blakers-Massey theorem, Z is n-cocartesian where

n=min{5+2—-1,2+3+4} =min{6,9} = 6.

It follows from [15, Prop. 3.8] that C is 6-cocartesian and, hence, the maps Y — C are 6-connected.
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Recall that we are analyzing the following diagram of 2-cubes

(a)

z—2 ¢

ol l©

QyZyZ W Qyzyc

Consider cube (a). We apply the higher Blakers-Massey theorem [5.1.8. To organize our work, we
will adopt the notation ki of this theorem. For us, the cube Z corresponds to (%{2’3}(2 — C). The

3-cube (a) is n-cartesian where n is the minimum of

=3+ (kpy + 1)+ (kpyy +1) + (ky +1) =1+2+2=5
~3+ (kpy +1) + (kg +1)=-1+1+5=5
3+ (ko + 1)+ (kpigy + 1) =—-1+2+3=4
—3+ (kgzy + 1)+ (kpioy +1) = -1+2+3 =4

=3+ (kpig3y +1) =00

Thus n = 4. Note that the computation of kyj 9y and ky; 3y uses the fact that for a retractive
object, if Y — X is n-connected, then X — Y is (n+ 1)-connected or, alternatively, |15, Prop. 3.8].
In general, the cocartesianness of a cube X — Y of the sort considered above may be estimated by
|15, Prop. 3.8] as precisely the cocartesianness of X' plus 1, since the constant cube Y is already
oo-cocartesian. For cube (b), we proceed as before. Since Yy raises connectivity of maps by 1

and, hence, cocartesianness by 1, the cube Xy Z — 3y C is co-cocartesian and by the higher dual
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Blakers-Massey theorem, it is n-cartesian where n is the minimum of

“34 (kg + 1)+ (hpgy + 1) + (kzy +1) =2+3+3=8
=3+ (kpy +1) + (ko +1) =—1+2+46=7
3+ (kpy +1) + (kpay+1) =—-1+3+4=6
3+ (kpy+ 1)+ (kpoy+1)=-1+3+4=6

=3+ (k123 +1) =00

Hence, n = 6. Since Qy decreases connectivity of maps by 1 and therefore cartesianness by 1, this

implies (b) is 5-cartesian.

Cube (c) may be written as

S

We computed that C' is 6-connected relative to Y. Hence, the map C — Qy Xy C is 14-connected.

Taking homotopy fibers horizontally and then into the page gives the map

0(C) = Q3 (Qy Sy C)
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which is therefore 12-connected. Hence C — 2y 3y C is 12-cartesian. Putting this together

z—* ¢

o] SN e

QyEyZ T) Qyzyc

it follows that the composite Z — Qy 3y C is 4-cartesian and, hence, the map (x) is 4-cartesian.
This has shown that the maps (xg), (*1) and (*2) in the tower of Proposition exhibit
increasing connectivity for ¥ — X 0-connected. The first map is 2-connected, the second 3-

connected and the third 4-connected.

6.3 Retractive Higher Freudenthal Suspension and Retractive Uni-

formity Correspondence

The sticking points of the general case are evident from our estimations above. We must estimate,
in general, the connectivity of the total homotopy cofiber relative to Y and we must estimate the
cartesianness of cubes X — C. We need a uniform way to do this. In lieu of making an ad hoc
argument, we will recognize the fundamental feature at play here. We follow closely the arguments
of [§].

Let us recall the following definitions from [19, 20]; see also [§].

Definition 6.3.1. Let C be a category. A T-subcube of a W-cube X: P(W) — C is a T-cube
arising as the composite of X with an injection ¢: P(T) — P(W). If |T'| = d, then we also refer to

a T-subcube of X as a d-subcube. Note that we permit d =0 (i.e., T = ().
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Definition 6.3.2. Given f: N — N any function, we say a W-cube X: P(W) — Alg) is f-

cartesian (resp. f-cocartesian) if every d-subcube of X' is f(d)-cartesian (resp. f(d)-cocartesian).
We need the following easy observations.

Lemma 6.3.3. Let f: N — N be a function and suppose X: P(W) — Algg is f-cartesian (resp.
f-cocartesian), then map of X is 0-connected and every object Xy is (—1)-connected. In particular,

each map Y — Xy is (—1)-connected (resp. 0-connected).

Proof. For the maps, this follows since f(d) > 0 for all d € N. For the objects, in the cartesian
case, note that 0-subcubes of X correspond to the objects and the homotopy limit of the empty
diagram in Algg is simply Y. Hence, in the cocartesian case, each map Y — Ay is 0-connected and
in the cartesian case, each map Ay — Y is 0-connected which means the structure map Y — Ay is
(—1)-connected. Since we assumed Y is (—1)-connected, this means each object is (—1)-connected,

in each case because we have a composite of (—1)-connected maps

O

Lemma 6.3.4. Let f: N — N be a function. If X: P(W) — Algl, is an f-cartesian (resp.
f-cocartesian) W -cube, then for any subcube Y of X, Y is f-cartesian (resp. f-cocartesian).
Proof. This is likewise a simple matter of unpacking definitions. O

The essential feature of our computation above is the following theorem. Note that this is also

proved in the non-retractive setting in [7, Thm. 3.4].
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Theorem 6.3.5 (Higher Retractive Freudenthal Suspension). Let k > 1 Suppose X : P(W) — Algh
is a ((k+1)(id +1))-cartesian W-cube. Then for each 1 <r < oo, so too is X — Q33 X obtained

by applying the derived unit.
Before giving the proof, let us observe a corollary.

Corollary 6.3.6. Let k > 0 and X be k-connected relative to Y. The coface (n + 1)-cube associ-
ated to the cosimplicial resolution of X from the derived (0, ¥%)-adjunction is ((k + 1)(id +1))-

cartesian.

Proof. Since X is at least O-connected relative to Y, the map X — Y is at least 1-connected. The

coface (n + 1)-cube is built from X by iterated the Freudenthal suspension map X — Qy.Q¥. X, so

this follows from Theorem [6.3.) O
Theorem will be a consequence of this next essential feature of our above computation.

This correspondence is proved in the non-retractive setting in (7, Prop. 3.3|.

Proposition 6.3.7 (Retractive Uniformity Correspondence). Let k > 0. A W-cube X: P(W) —
Algy is ((k+1)(id +1))-cartesian if and only if it is ((k+ 2) id +k)-cocartesian (equivalently, ((k +

2)(id +1) — 2)-cocartesian).

Proof. When |W| = 0, this amounts to saying that a retractive object has structure map X — Y
k + 1-connected if and only if its other structure map Y — X k-connected and this is true. When
|W| = 1, the numbers in question are (k+1)(1+1) =2k+2 and (k+2)(2) -2 =2k+4—-2 =2k +2
and this therefore checks out as cartesianness and cocartesianness of 1-cubes is simply connectivity

of maps. Thus, we may suppose without loss of generality that W] > 2.
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(=) We induct on |W| where we may suppose |W| > 2, say |W| = n. By induction hypothesis,
all we need to check is that X" is ((k 4+ 2)n + k)-cocartesian. By the higher dual Blakers-Massey

theorem, this is m-cocartesian where

m = min {{(k+ in+1)+n—-1}U {n+ (k+1)(VI+1):Xe Par?g@’#W(W)})}.

Vea

Since any partition A of W, where |W| = n into non-empty subsets has the property 1, |V] = n,

n+ (k+D(|V|+1) =n+(k+1) (V|+1)=n+k+1) N+ (E+1)n=(k+2)n+(k+1)|\|
Vel Vel

and |A| > 1, so the minimum of this sum over the partitions X is (k4 2)n + (k + 1). Then

m=min{(k+1)(n+1)+n—-1,(k+2)n+ (k+1)} =min{(k+2)n+k,(k+2)n+ k + 1}

= (k+2)n+k,

as desired.

(<) We induct on |W| where we may suppose |W| > 2, say |W| = n. By induction hypothesis,
all we need to check is that X' is ((k+1)(n+ 1))-cartesian. By the higher Blakers-Massey theorem,
X is m-cartesian where m is the minimum

m:min{—n—i— (k+2)|V]+k)+1) :)\eParﬂ(W)}

Vel

:min{—n+(/€+1)|)\]—|—(k‘+2) \4 :)\EParﬂ)(W)}

Vel

154



Once again, vy |V|=n, so
m =min —n+ (k+ 1) [A[+ (K +2)n: X € Par»(W)
Hence, taking A\ to be the coarsest partition consisting of only W minimizes this. But then
m=-n+k+1)+k+2n=>k+1)n+(k+1)=(k+1)(n+1)
as claimed. O

With this we can prove Theorem [6.3.5] The manner of attack will be closely related to the

cases we worked out above.

Proof of Theorem[6.3.5. We induct on |W/|. If |W| = 0, this is simply the retractive Freudenthal
suspension theorem, so suppose n = |W| > 1. Let C be the iterated homotopy cofiber of X and
let C be the W-cube with Cy =Y for U # W and Cy = C. Then X — C is oo-cocartesian and we

consider the following commutative diagram

X —¢C

of ]

QS X —— QUYC

where the name of the game is to estimate the cartesianness of (). By the uniformity correspon-
dence, Proposition we know X is ((k+2) id +k)-cocartesian. In particular, X is ((k+2)n+k)-

cocartesian and thus C is ((k + 2)n + k)-cocartesian by [15, Prop. 3.8], which amounts to saying
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that C' is ((k + 2)n + k)-connected relative to Y.

For any d-subcube T" C P(W) of X such that W ¢ T (so |T'| = d < n — 1), it follows that
X|T — C|T ~Y is ((k + 2)d + k + 1)-cocartesian by [15, Prop. 3.8]. If W € T, then C|T is
((k 4+ 2)n + k)-cocartesian from the above and for any k > 0and d <n—1, (k+2)d+k+1 <

(k 4+ 2)n + k, we claim. This is a simple matter of arithmetic as

k+2)d+k+1<(k+2)(n—1)4+k+1=(k+2n+k—(k+2)+1

=(k+2n+k—k—-2+1=(k+2n—-1<(k+2n+k

Exactly as claimed.

Hence, for each such T" where |T'| = d < n with W € T, as X|T is ((k 4+ 2)d + k)-cocartesian
and C|T is at least ((k+ 2)d + k + 1)-cocartesian, it follows by |15, Prop. 3.8] that X|T — C|T is
at least ((k+ 2) +d + k + 1)-cocartesian. Since (k+2)d+k < (k+2)d+ k+ 1 for all £ > 0, it

follows by the higher Blakers-Massey theorem, the whole cube X — C is at least m-cartesian where

m:min{—n—l— (k+2)|V]+Ek)+1) :)\EParﬂ)(W)}

Ve

=min —n+ (k+2)n+ (k+1) |\ : X € Pary(W)

and this is minimized by taking A = {W7} the coarsest partition. Hence, X — C is at least

m-cocartesian where

m=-n+k+2n+(k+1)=(k+1)n+(k+1)=(k+1)(n+1).
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Since Xy raises cocartesianness by r, it follows similarly that X3 X — X5.C is at least ((k+1)(n +

1) 4+ r)-cartesian. Hence, QX7 X — Qy.X7C is at least ((k + 1)(n + 1))-cartesian.

Since C'is ((k+2)n+ k)-connected relative to Y, C' — Q3. Qy.C is (2(k+2)n+ 2k +2)-connected

by Corollary [5.2.7] By taking iterated fibers, it follows that the map
Oy (C) = (X5 C)

is (2(k 4+ 2)n + 2k + 2 — n)-connected. In other words, ((2k + 3)n + 2k + 2)-connected. Hence,

C — QL OQC is ((2k + 3)n + 2k + 2)-cartesian.

We claim that for alln > 2 and k£ > 0, (k+1)(n+1) < (2k + 3)n+ 2k + 2 and this follows since

it is, equivalently, the assertion that n < kn + 3n + k + 1 and this evidently holds even with k£ = 0.

Putting this all together then, with cartesianness labeled, we have

(htD)(ntD)

(*) ‘(2k+3)n+2k+2

™~

W IYX o O C

where the composite map is ((k + 1)(n + 1))-cartesian by [15, Prop. 3.9]. It follows that (x) is

((k+ 1)(n+ 1))-cartesian, as claimed.

We showed this in the case that the subcube is the whole cube. The analysis is the same, almost

verbatim, on all subcubes, and this gives the result. ]
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6.4 Proof of the Main Theorem
In particular, by way of our grand strategy and Corollary [6.3.6] the preceding proves the following.

Theorem 6.4.1. Let1 <r <oo. If X € Alg{g 1s 0-connected relative to Y, then the Bousfield-Kan
completion map

X = XOrsr
s an equivalence.

We now turn our attention to the case of completion with respect to stabilization 23°¥5°. In a
certain sense, this is a special case of what we have shown for Q@EI)‘} This is made precise by the
following corollary of the retractive higher Freudenthal suspension theorem.

We will give two proofs of this corollary, with the second deferred to a remark. The first is
somewhat reminiscent of maneuvers Goodwillie makes in [24]. The second is based on stability of

SpN(AIgg). The equivalence of the two arguments is guaranteed by Theorem m

Corollary 6.4.2 (Higher Stabilization). If X' is a ((k+1)(id +1))-cartesian n-cube where k,n > 0,

then so too is X — QY X, where the map is the derived unit.

Proof. Without loss of generality, we may suppose & is an n-cube of cofibrant objects. In this case,
we may suppose, without loss of generality, that Q¥ X = colim Q% ¥4 X by Theorem Let
us consider the cartesianness of the whole cube first.

Note that filtered homotopy colimits and finite homotopy limits of punctured cubes in Algg are

computed in Algy, where they are computed in spectra, where they commute, and so they commute

158



in Alg}, as a consequence of Corollary Recall that the derived unit map X — Q&YX X factors
through the derived unit maps X — Qy Xy X — -+ — QX XL X as in Corollary Denote the
(n 4 1)-cube

Zr= X - Qhxbx .

Hence, we have a commutative diagram

Xy Xy
(’””(”*% l(’““)("“)

holi Z holi Z
Ponal) F (+D)(n42) Po(nan))  FH

where each of the vertical maps are ((k + 1)(n + 2))-connected by Theorem [6.3.5] Hence, the
horizontal map is also ((k+ 1)(n + 2))-connected. By commutativity of filtered homotopy colimits
and finite homotopy limits, the map Xy — holimp (4 1)(X — QFFEFX) may be written as the

homotopy colimit of the map of sequences

Xy Xy Xy
(k+1)(n+2)l l(k+1)(n+2) l(k+1)(n+2)

holim Z holim Z holim Z
Potnid)) =1 D42} By oupl)) <2 R+ (+2) yurd)) 2 (krD)(nt2)

Since homotopy groups commute with filtered homotopy colimits, this shows that A} ~ hocolim Xj —
hocolimy, holimyp 11y (X — QESEX) ~ QPNPX is ((k + 1)(n + 2))-connected. This shows that
X = QFYPX is ((k+ 1)(n + 2))-cartesian. Repeating this argument on every subcube gives the

result. O

Remark 6.4.3. Alternatively, this can be shown using stability of SpN(Algg), since X3° preserves
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connectivity of objects and maps. Hence, by the uniformity correspondence, if J is ((k+1)(id 4+1))-
cartesian (n+1)-cube, then it is ((k+2) id +k)-cocartesian and so 33°) is ((k+2) id +k)-cocartesian.
By applying |15, Prop. 3.10] to each subcube, it follows that ¥°Y is ((k + 2)id+k —id+1) =
((k+1)id+k+1)-cartesian. Hence, QXY is ((k+2)id +k —id +1)-cartesian or, in other words,
((k+1)id +k + 1)-cartesian. Hence, by taking J = (X — C) as in the proof of Theorem the

very same argument of Theorem [6.3.5] proves the preceding corollary.

In particular, by way of our grand strategy, this proves the following.

Theorem 6.4.4. If X € Algg 18 0-connected relative to Y, then the Bousfield-Kan completion map

A

is an equivalence.

Proof. The coface (n+ 1)-cube is built from X by iterating the derived unit, starting first with the
map X — QX X, which is at least 2-connected. The preceding corollary then shows the labeled

maps of Proposition [6.1.5] are increasing in connectivity. O
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