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Abstract

Competing risks data sometimes arise in the clinical setting when the primary event

of interest competes with one or possibly several other events. The goal is to model the

time to the primary event of interest, for example, death due to a specific cause, using

available predictors. In gene expression studies, the number of genes often far exceeds

the number of subjects, thus it is challenging to select a parsimonious set of features that

predicts the outcome. Here, we propose a variable selection method based on the proportional

subdistribution hazards model that maximizes the log-partial likelihood function, coupled

with a non-convex penalty function. The smoothly clipped absolute deviation (SCAD),

minimax concave penalty (MCP) and smooth integration of counting and absolute deviation

(SICA) penalty functions are used for variable selection. Optimal tuning parameters are

selected using cross-validation. Using simulation studies, we compare this method to the

CoxBoost, fastcmprsk and randomForestSRC R packages and show that it works well in

high-dimensional settings and generally selects slightly fewer true positives but much fewer

false positives.

An issue that further complicates a high-dimensional competing risks model is that some

predictors might have missing values. The most common way of dealing with missing data is

multiple imputation. However, when applying the variable selection method to the imputed

datasets, each imputed dataset may yield a different set of selected predictors. We extend our

method to the scenario with missing data, where in the end one set of predictors is selected

over multiple imputed datasets. Using simulation studies, we show that this method works

well in high-dimensional settings and generally selects the important predictors and few

unimportant predictors. We demonstrate these methods when modeling time-to-relapse for

acute myeloid leukemia patients who have achieved complete remission using demographic,

clinical, and genomic features.
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Chapter 1: Introduction and Literature Review

1.1 Motivation

This dissertation is motivated by the need to analyze clinical outcome of acute myeloid

leukemia (AML) patients to enhance current prognostic risk stratification systems such as

the European LeukemiaNet (ELN) [23]. Relevant clinical outcomes and data included are

whether the patients achieved a complete remission, date of complete remission, whether the

patients who achieved a complete remission relapsed, date of relapse, date of last follow-up,

whether the patients were alive at the time of last follow-up, date of death, some demo-

graphic, clinical and cytogenetic variables, mutation statuses of known prognostic genes and

expression of tens of thousands of transcripts from RNA-sequencing assays. Our research

goal then is to identify covariates that have an important association with the time from

complete remission to relapse for those who achieved complete remission. Not everyone

who achieved complete remission relapsed; some patients were lost to follow-up and oth-

ers died without relapse. If a patient dies without relapse, they can never relapse. In this

case death without relapse is called a competing event because it precludes relapse from

happening. Methods for modeling competing risks exist when the number of observations

is greater than the number of covariates. However, methods are lacking when the number

of observations is less than the number of covariates, such as when including mRNA ex-
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pression values from high-throughput genomic assays. Thus, a statistical method that can

select variables predictive of a time-to-event outcome with possible censoring and competing

events is needed for high-dimensional covariate spaces. Because some values in the dataset

are missing, imputation methods are also needed. Relevant literature regarding the pro-

portional hazards model, competing risks models, variable selection methods for competing

risks models, methods for imputing missing data and variable selection methods on multiply

imputed data will be reviewed in this chapter.

1.2 Proportional Hazards Model in Survival Analysis

Cox (1972) proposed the famous proportional hazards model for survival analysis [19]. Let

n be the sample size, T and C be the failure and censoring times, respectively, X =

min(T,C), ∆ = I(T ≤ C) and z be a length-p covariate vector. Let λ(t) be the hazard

function. That is

λ(t) = lim
∆t→0+

P (t ≤ T < t+∆t|t ≤ T )

∆t
.

The proportional hazards model assumes that

λ(t|z) = λ0(t) exp(z
Tβ),

where β is a length-p vector and λ0(t) is the baseline hazard function. The set of individuals

at risk before time t is called the risk set at time t and denoted by R(t). The log-partial

likelihood is defined as

l(β) =
∑
∆i=1

zTi β − log

 ∑
l∈R(ti)

exp(zTl β)

 .

β represents the log hazard of the covariates and are obtained by maximizing l(β).
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1.3 Competing Risk Models

The setting for competing risk models is the same as for general survival analysis, and the

only difference is that a subject may fail from any of K causes. Let ϵ ∈ (1, ..., K) be the

cause of failure.

1.3.1 Cause-specific Hazard Models

Holt (1978) proposed two models based on the cause-specific hazard function [45]. The

cause-specific hazard function for cause j is defined by

λ(t, j) = lim
∆t→0+

P (t ≤ T < t+∆t, ϵ = j|t ≤ T )

∆t
.

The first model is

λ(t, j|z) = λ0(t) exp(z
Tβj)

assuming that the cause-specific hazards have the same shape. Inference about β is made

from maximizing the marginal likelihood

L1(β) =
∏
∆i=1

exp(zTi βj(i))/
∑

h∈R(ti)

K∑
j=1

exp(zThβj),

where j(i) indicates the cause of failure of the i-th person and R(t) is the same as in the

proportional hazards model. The second model is

λ(t, j|z) = λj0(t) exp(z
Tβj)
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allowing the shape to depend on the cause of failure. Inference about β is made from

maximizing the partial likelihood

L2(β) =
K∏
j=1

kj∏
i=1

exp(zTj(i)βj)/
∑

h∈R(tj(i))

exp(zThβj),

where tj(1), ..., tj(kj) are the kj ordered observed survival times by cause j.

In addition, Prentice et al. (1978) proposed two different models [79]. The first is an

accelerated failure time model given by

λ(t, j) = λj0[t exp(z
Tβj)] exp(z

Tβj).

Because of the factorization of the likelihood, inference on a particular βj can proceed by

any of the single failure type procedures used to analyze models linear in the logarithm

of failure time. Possibilities include parametric approaches based on exponential, Weibull

or log-normal distribution or rank procedures based on generalized Wilcoxon or log-rank

statistics or other generalized rank tests. A specialization of Holt’s (1978) second model is

given by

λ(t, j|z) = λ0(t) exp(γj) exp(z
Tβj).

The hazard functions are restricted to be proportional to each other with proportionality

factor exp(γj) with, for uniqueness, γ1 = 0. A partial likelihood can be written

K∏
j=1

kj∏
i=1

exp(γj + zTj(i)βj)/
K∑
k=1

∑
h∈R(tj(i))

exp(γk + zThβk).
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1.3.2 Exponential Model

Lagakos (1978) proposed an exponential model [58]. It assumes that there exist inde-

pendent “potential” times until failure from causes 1, 2, ..., K: T 1, T 2, ..., TK and T =

min(T 1, T 2, ..., TK). T j is assumed to be exponentially distributed with rate parameter

λj. Given z, assume that λj(z) = exp(αj + zTβj). Let λ. =
∑K

j=1 λj. The likelihood

contribution of observation i is given by

K∏
j=1

λj(zi)
∆iϵi=j exp[−λ.(zi)Xi].

Let fj be the number of failures from cause j. The likelihood function can be written as

L =
K∏
j=1

Lj,

where

log(Lj) = αjfj + [
n∑

i=1

ziI(∆iϵi = j)]Tβj −
n∑

i=1

xi exp(αj + zTi βj).

L can be maximized by separately maximizing each Lj.

1.3.3 Parametric Mixture Model

Larson and Dinse (1985) proposed a parametric mixture model [61]. It assumes that

Pj(z) = P (ϵ = j|z) = exp(µj + zTπj)∑K
l=1 exp(µl + zTπl)

.

For uniqueness, µK is set to 0 and πK is set to 0. Assume

Qj(t|z) = P (T > t|z, ϵ = j) = exp[−
∫ t

0

hj(x) exp(z
Tβj)dx],
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where hj(x) is the null hazard function for failure type j. hj(x) is assumed to be a step

function:

hj(x) = exp(αjm) if x ∈ Im,

where I1, ..., IM are M (prespecified) mutually exclusive intervals that totally exhaust the

non-negative real line. An individual who experiences a type j failure at time t contributes

hj(t) exp(z
Tβj)Pj(z)Qj(t|z) to the likelihood. An individual who is censored at time t con-

tributes
∑K

l=1 Pl(z)Ql(t|z).

An EM algorithm was proposed to obtain the maximum likelihood solution by iteratively

solving the simpler problem in which all censored observations are partially complete. The

expectation (E) step of the algorithm involves creating a set of “pseudo-data” in which the

uncensored observations are left intact and the unit mass associated with each censored

observation is fractionated and assigned to K partially complete pseudo-observations of the

form (ϵ = j, T > t). Specifically the fractional mass assigned to this pseudo-observation is

Wj(t|z) = P (ϵ = j|z, T > t) =
Pj(z)Qj(t|z)∑K
l=1 Pl(z)Ql(t|z)

.

For the i-th individual, let gi be a vector with length K with the j-th element gij = I(∆iϵi =

j)+I(∆i = 0)Wj(ti|zi). The maximization (M) step of the algorithm involves calculating the

parameter values that maximize the log-likelihood of the pseudo-data: L(P ) +
∑K

j=1 Lj(Q),

where

L(P ) =
n∑

i=1

K∑
j=1

gij log[Pj(zi)]

and

Lj(Q) =
n∑

i=1

I(∆iϵi = j){log[hj(xi)] + zTi βj}+ gij log[Qj(xi|zi)].

Each gij is treated as a known constant and separate Newton-Raphson procedures are used

to find the values of {(µj,πj), j = 1, ..., K − 1} that maximize L(P ) and the values βj

6



and αjm, m = 1, ...,M that maximize Lj(Q) for j = 1, ..., K. The EM algorithm is an

iterative procedure that begins by choosing initial estimates of Pj(z) and Qj(t|z) such as

those obtained by ignoring the censored observations. At each subsequent iteration, the

algorithm’s E-step treats the current estimates of Pj and Qj as known in order to update

each estimate of Wj(t|z) and thus the value of gij, and then the M-step treats the current

gij values as known and updates the estimates of Pj and Qj. Under suitable regularity

conditions, these estimates of Pj and Qj eventually converge to the true ML estimates. The

convergence criteria can be based on relative changes in the parameter estimates or the

log-likelihood of the pseudo-data.

Ng and McLachlan (2003) gave more details in the M-step of the EM algorithm [75]. Let

g
(s)
ij be the estimate of gij after the s-th iteration,

Q0 =
n∑

i=1

K∑
j=1

[I(∆iϵi = j) + I(∆i = 0)g
(s)
ij ] log[Pj(zi)],

Qj =
n∑

i=1

I(∆iϵi = j) log[hj(ti) exp(z
T
i βj)Qj(ti|zi)] + I(∆i = 0)g

(s)
ij log[Qj(ti|zi)]

for j = 1, ..., K.

L(P ) +
K∑
j=1

Lj(Q) =
K∑
j=0

Qj.

It implies that the estimates of (µj,πj), j = 1, ..., K − 1 and β1, ...,βK can be updated

separately by maximizing Q0 and Q1, ..., QK , respectively. Let Hj(t) =
∫ t

0
hj(u)du. Then for

j = 1, ..., K,

Qj =
n∑

i=1

I(∆iϵi = j){log[hj(ti)] + zTi βj} − [I(∆iϵi = j) + I(∆i = 0)g
(s)
ij ]Hj(xi) exp(z

T
i βj).

The maximization of Qj for j = 1, ..., K is implemented using a conditional approach, and

the resulting algorithm can be viewed as an expectation-conditional maximization algorithm.
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The M-step is replaced by two conditional maximization (CM) steps. The first involves the

calculation of H
(s+1)
j (t) by maximization of Qj with βj fixed at β

(s)
j . The second CM step

calculates β
(s+1)
j by maximization of Qj with Hj(t) fixed at H

(s+1)
j (t). Now rearrange the

failure time observations in increasing order and denote the kj distinct failure times due to

the j-th cause by tj(1), ..., tj(kj). By assuming a step function for hj(t) with discontinuities

at each observed failure time due to the j-th cause and considering censored observations as

censored at the preceding uncensored failure time, it can be shown that, for fixed βj, Qj is

maximized with respect to Hj(t) at

H
(s+1)
j (tj(m)) =

m∑
i=1

dij∑
r∈R(tj(i))

[I(∆rϵr = j) + I(∆r = 0)g
(s)
rj ] exp(z

T
r βj)

for m = 1, ..., kj, where dij is the number of failures due to cause j at time tj(i) and R(tj(i)) is

the risk set at time tj(i). The solution to the second CM-step, however, does not exist in closed

form. As the likelihood function usually has multiple maxima with mixture models, the ECM

algorithm should be applied from different initial values to obtain the global maximum, which

is usually taken to be the largest of the local maxima obtained.

Chang et al. (2007) also proposed an algorithm based on this model [13]. Assuming

there are two competing risks, it considers the likelihood Ln =
∏n

i L̄(i), where

L̄(i) ={P1(zi)[H1(xi)−H1(xi−)] exp[zTi β1 −H1(xi) exp(z
T
i β1)]}I(∆iϵi=1)

× {P2(zi)[H2(xi)−H2(xi−)] exp[zTi β2 −H2(xi) exp(z
T
i β2)]}I(∆iϵi=2)

× {P1(zi) exp[−H1(xi) exp(z
T
i β1)] + P2(zi) exp[−H2(xi) exp(z

T
i β2)]}I(∆i=0).

Ln is maximized to estimate the parameters. Only step functions are considered for H1 and

H2. However, from the definition, H1 and H2 have to be continuous and cannot be step

functions and Ln would be equal to 0. This likelihood does not seem very reasonable.
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Salesi et al. (2016) specified the parametric forms of hj(t) [82]. Suppose there are two

competing risks. It assumes that given ϵ = 1, T follows the Weibull distribution and given

ϵ = 2, T follows the Gompertz distribution. However, no explanation was given as to why

T would follow different distribution families for each cause of failure.

1.3.4 Semiparametric Mixture Model

Kuk (1992) generalized the parametric mixture model by allowing hj(x) to be arbitrary

hazard functions. The full likelihood

L∗ = [
K∏
j=1

∏
∆iϵi=j

hj(ti) exp(z
T
i βj)Pj(zi)Qj(ti|zi)]

∏
∆i=0

[
K∑
j=1

Pj(zi)Qj(ti|zi)].

Consider a particular realization of causes of failure for censored observations ϵc = {ϵi, ∆i =

0}. The likelihood based on this realization and the observed data is given by

L∗(ϵc) = [
K∏
j=1

∏
∆iϵi=j

hj(ti) exp(z
T
i βj)Pj(zi)Qj(ti|zi)]

K∏
j=1

∏
∆i=0

[Pj(zi)Qj(ti|zi)]I(ϵi=j).

Let nc be the number of censored observations and Ω the nc-fold Cartesian product of the

set {1, ..., K}. It can be verified that

L∗ =
∑
ϵc∈Ω

L∗(ϵc).

Rewrite L∗(ϵc) as

L∗(ϵc) = P (ϵ)
K∏
j=1

likj(t),

where

likj(t) =
∏

∆iϵi=j

hj(ti) exp(z
T
i βj)Pj(zi)Qj(ti|zi)

∏
∆i=0

[Qj(ti|zi)]I(ϵi=j).
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The paper proposed to replace likj(t) by the marginal likelihood likj(r) based on all possible

rank vectors consistent with the uncensored and censored observations from cause j. The

rank likelihood likj(r) is computed with respect to the conditional distribution of T given ϵ =

j. Since the conditional distribution of failure time given failure type follows a proportional

hazards model, the result of Kalbfleisch and Prentice (1973) is applicable [52]. Assume there

are no ties among the uncensored observations. Let tj(1), ..., tj(kj) denote the uncensored

type j failure times arranged in increasing order. Set tj(0) = 0 and tj(kj+1) = ∞ and define

Cjl = {i : ∆i = 0, tj(l) ≤ xi < tj(l+1)}, l = 0, ..., kj. Applying the result of [52], the paper

obtains

likj(r) =

kj∏
m=1

exp(zTj(m)βj)∑kj
l=m[exp(z

T
j(l)βj) +

∑
i∈Cjl

I(ϵi = j) exp(zTi βj)]
.

Substituting likj(r) for likj(t) in L∗(ϵc) gives L(ϵc) = P (ϵ)
∏K

j=1 likj(r) and L =
∑

ϵc∈Ω L(ϵc).

The computation of L is infeasible in practice so it is approximated by the Monte Carlo

method

L = Knc
∑
ϵc∈Ω

K−ncL(ϵc) = KncE[L(ϵc)],

where the expectation is taken with respect to the distribution that assigns equal probability

to each ϵc ∈ Ω. Let ϵc1, ..., ϵ
c
r be r independent realizations of ϵc from the above distribution.

Then a Monte Carlo approximation of L is L̃ = Knc

r

∑r
i=1 L(ϵ

c
i).

Escarela and Bowater (2008) proposed an EM algorithm based on a profile likelihood con-

struction to fit this model [27]. Assuming that cause of failure ϵ is observed for censored

observations, the complete likelihood

Lc =
n∏

i=1

{
K∏
j=1

[hj(ti) exp(z
T
i βj)Pj(zi)Qj(t|zi)]∆iI(ϵi=j) × [Pj(zi)Qj(ti|zi)](1−∆i)I(ϵi=j)}

= Lp × LS,
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where Lp =
∏n

i=1

∏K
j=1 Pj(zi)

I(ϵi=j) and LS =
∏n

i=1

∏K
j=1[hj(ti) exp(z

T
i βj)]

∆iI(ϵi=j)Qj(ti|zi)I(ϵi=j).

The E-step in the EM algorithm calculates the expectation of the logarithm of Lc given

current estimates of hj, βj and Pj : lc = lp + lS, where

lp =
n∑

i=1

K∑
j=1

gij log[Pj(zi)]

and

lS =
n∑

i=1

K∑
j=1

∆iI(ϵi = j){log[hj(ti)] + zTi βj}+ gij log[Qj(ti|zi)],

where gij = ∆iI(ϵi = j) + (1−∆i)
Pj(zi)Qj(ti|zi)∑K
l=1 Pl(zi)Ql(ti|zi)

is the expectation of ϵi given Pj(zi) and

Qj(ti|zi). Let tj(1) < · · · < tj(kj) denote the distinct uncensored failure times from cause j

and Rjl denote the set of subjects at risk just prior to tj(l). lS is approximated by

log
K∏
j=1

kj∏
l=1

exp(zTj(l)βj)∑
m∈Rjl

gmj exp(zTmβj)
.

When tied failure times occur from the same cause, a possible approximation is

log
K∏
j=1

kj∏
l=1

exp[(
∑

i∈Djl
zi)

Tβj]

[
∑

m∈Rjl
gmj exp(zTmβj)]

|Djl|
,

where Djl denotes the set of tied uncensored failures from cause j that occur at time tj(l).

The M-step involves maximizing the log-likelihood with respect to β given the current

values for gmj. Let tj(0) = 0. The nonparametric product-limit estimator is adopted which

specifies the conditional baseline survival distribution for cause j as

Q0j(t) =
∏

m: tj(m)≤t

αjm, m = 1, ..., kj,
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where αjm ≥ 0 and αj0 = 1. This is a discontinuous function. But the assumption that

Qj(t|z) = exp[−
∫ t

0
hj(x) exp(z

Tβj)dx] implies that Q0j(t) = exp[−
∫ t

0
hj(x)dx], which is

a continuous function. This is contradictory to the assumption. The paper states that

M-step involves maximizing the approximated lS but in fact it should be maximizing the

approximated lp + lS. It is unclear what algorithm is used to perform the M-step.

Lu and Peng (2008) used estimating equations to estimate the parameters [69]. Suppose

there are two competing risks. Let Yi(t) = I(Xi ≥ t), Nji(t) = I(Xi ≤ t,∆iϵi = j) and

z̃ = (1, z)T . The estimating equations are

n∑
i=1

[dNji(t)− Yi(t)Wj(t|zi) exp(zTi βj)hj(t)dt] = 0,

n∑
i=1

∫ ∞

0

zi[dNji(t)− Yi(t)Wj(t|zi) exp(zTi βj)hj(t)dt] = 0,

n∑
i=1

z̃i[I(∆iϵi = 1) + I(∆i = 0)W1(Xi|zi)− P1(zi)] = 0,

for j = 1, 2. However it is unclear what dNji(t) means because it is not differentiable at Ti

if ∆iϵi = j.

1.3.5 Proportional Subdistribution Hazards Models

Fine and Gray (1999) proposed a proportional subdistribution hazards model, which has

been widely used for modeling competing risks data [32]. The interest is modeling the

cumulative incidence function (CIF) for failure from cause j conditional on the covariates,

Fj(t|z) = P (T ≤ t, ϵ = j|z).
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The subdistribution hazard, originally described by Gray (1988) [42], is defined as

λj(t|z) = lim
∆t→0+

1

∆t
P [t ≤ T < t+∆t, ϵ = j|T ≥ t ∪ (T < t ∩ ϵ ̸= j), z]

=
F ′
j(t|z)

1− Fj(t|z)

= −d log[1− Fj(t|z)]/dt

The proportional subdistribution hazards model assumes that

λj(t|z) = λj0(t) exp(z
Tβ),

where λj0(t) is an unspecified function and β is the parameter vector. Then

Fj(t|z) = 1− exp[−
∫ t

0

λj0(s) exp(z
Tβ)ds].

β is estimated by solving

U(β) :=
n∑

i=1

∫ ∞

0

[
zi −

∑n
k=1wk(s)Yk(s)zk exp(z

T
kβ)∑n

k=1wk(s)Yk(s) exp(zTkβ)

]
wi(s)dNi(s) = 0, (1.1)

where Ni(t) = I(Ti ≤ t, ϵi = j), Yi(t) = 1 − Ni(t−), wi(t) = ri(t)Ĝ(t)/Ĝ(Xi ∧ t) is the

weight associated with individual i, ri(t) = I(Ci ≥ Ti ∧ t) denotes knowledge of vital status

on individual i at time t and Ĝ is the Kaplan-Meier estimate of the survival function of

C. U(β) is the gradient of a well-behaved objective function. The solution is calculated by

using a modified Newton algorithm to maximize the objective function.

He et al. (2016) studied this model with adjustments for covariate-dependent censoring

[43]. The only difference is that He et al. (2016) estimated the distribution of the censoring

13



time C using Cox proportional hazards model

λC(t|z) = λC0(t) exp(z
Tγ).

Let γ̂ be the maximum partial likelihood estimate of γ. ΛC0(t) =
∫ t

0
λC0(u)du. Let Λ̂C0(t)

be the Breslow estimator of ΛC0(t). Then the survival function of C is estimated by

Ĝ(t|z) = exp[−Λ̂C0(t) exp(z
T γ̂)].

Then the weight associated with individual i becomes

ŵi(t) =
ri(t)Ĝ(t|zi)
Ĝ(Xi ∧ t|zi)

.

This weight is plugged in the estimating equation U(β) = 0 to estimate β.

1.3.6 Semiparametric Transformation Models

Fine (2001) proposed a semiparametric transformation model for the crude probabilities [31].

Let Fj(t|z) = P (T ≤ t, ϵ = j|z). Assuming the existence of a known, differentiable function

g(·), the model is

g[Fj(t|z)] = h(t)− zTβ,

where h(t) is unspecified, invertible and strictly increasing in t. Define the improper variable

Y = T × I(ϵ = 1) +∞× I(ϵ ̸= 1). Suppose

h(Y ) = zTβ + v,
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where v is a continuous variable with h(∞) < ∞. But this is impossible because P (Y =

∞) > 0 so P (v = h(∞) − zTβ) > 0. But P (v = h(∞) − zTβ) must be 0 since v is a

continuous variable.

Similarly, Choi et al. (2021) assumes in [18] that

log(Y ) = zTβ + v.

But it also suffers from the same issue.

Mao and Lin (2017) presented a class of semiparametric transformation models [71]. Let

gj be a known increasing function and Qj be an arbitrary increasing function. Assume

gj[Fj(t|z)] = Qj(t) + zTβj.

The same likelihood function in Jeong and Fine (2007) [51] is used.

1.3.7 Regression Modeling Based on Pseudovalues of the Cumu-

lative Incidence Function

Klein and Anderson (2005) proposed a method based on the pseudovalues from a jackknife

statistic constructed from the cumulative incidence curve [55]. Define Nj(t) as number of

individuals who have experienced a type j event prior to time t and let Y (t) be the number

at risk at time t. The cumulative incidence function for cause j, Fj(t) is estimated by

F̂j(t) =

∫ t

0

∏
Xi<u

[
1−

∑K
h=1 dNh(Xi)

Y (Xi)

]
dNj(u)

Y (u)
.

It is unclear if Nj(t) is defined as
∑n

i=1 I(Ti ≤ t, ϵi = j) or
∑n

i=1 I(Xi ≤ t,∆iϵi = j). It

would not be calculable if defined the former way. Let F̂
(i)
j (t) be the estimated cumulative
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incidence function based on the sample obtained by deleting the i-th observation. For a grid

of points τ1, ..., τM , define the pseudovalue for the i-th subject at time τh as

θ̂ih = nF̂j(τh)− (n− 1)F̂
(i)
j (τh), i = 1, ..., n, h = 1, ...,M.

Let g(·) be a link function. Assume a generalized linear model with

g(θih) = αh + zTi γ := zTihβ, i = 1, ..., n, h = 1, ...,M.

Define the inverse link by

θih = g−1(zTihβ) := µ(zTihβ).

Let θ̂i = (θ̂i1, ..., θ̂iM) and fij = (Fj(τ1|zi), ..., Fj(τM |zi)). Let dµi(θ) be the (M + p) × M

matrix of partial derivatives of (µ(zTi1β), ..., µ(z
T
iMβ))T with respect to the parameters. Let

Vi(β) be a working covariance matrix. The estimating equations to be solved are

n∑
i=1

dµi(θ)V
−1
i (β)(θ̂i − fij) = 0.

But it is unclear what Fj(τh|zi), h = 1, ...,M mean since Fj is what needs to be modeled.

1.3.8 Additive Models

Klein (2006) proposed two additive models for the hazard rates or the cumulative incidence

functions [54]. The cause-specific hazard function for cause j

λ(t, j) = lim
∆t→0+

P (t ≤ T < t+∆t, ϵ = j|t ≤ T )

∆t
.
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The first model assumes that

λ(t, j) = α0(t) + zTβ.

Let Yi(t) = I(Ti ≥ t), Ni(t) = I(Xi ≤ t, ϵi = j) and z̄(t) =
∑n

i=1 Yi(t)zi∑n
i=1 Yi(t)

. The estimator of β is

given by

β̂ =

∑n
i=1

∫∞
0

zi − z̄(t)dNi(t)∑n
i=1

∫∞
0

Yi(t)[zi − z̄(t)]T [zi − z̄(t)]dt
.

However this estimator is not calculable if some observations are censored since Yi(t) cannot

be calculated.

The cumulative incidence function for cause j is

Fj(t|z) = P (T ≤ t, ϵ = j|z).

Set a grid of time points, τ1, ..., τM . The second model assumes that

Fj(τh|z) = Fj0(τh|z) + zTα.

Let γh = Fj0(τh|z), β = (γ1, ..., γM , α1, ..., αp)
T , θih = γh + zTi α and θi = (θi1, ..., θiM)T .

Let F̂j(t) be the estimated cumulative incidence function and F̂
(i)
j (t) be the estimated cu-

mulative incidence function based on the sample with the i-th observation removed. Let

θ̂ih = nF̂j(τh)− (n− 1)F̂
(i)
j (τh). An estimator of β is the solution to

n∑
i=1

(
dθi

dβ

)T

V−1
i (θ̂i − θi) = 0,

where Vi is a working covariance matrix for θ̂i.

Li, Xue and Long (2017) proposed an additive hazard model for the subdistribution [66].
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Let the subdistribution hazard be λj(t|z). It assumes that

λj(t|z) = λj0(t|z) + zTβ.

Let Ni(t) = I(Ti ≤ t, ϵi = 1), Yi(t) = 1 − Ni(t−), ri(t) = I(Ci ≥ Ti ∧ t). Let Ĝ be

the Kaplan-Meier estimate of the survival function of the censoring time C. Define weight

wi(t) = ri(t)Ĝ(t)

Ĝ(Ti∧t)
. Denote τ as the maximum follow-up time such that P (T ≥ τ) > 0. Let

z̄(t) =
∑n

i=1 wi(t)Yi(t)zi∑n
i=1 wi(t)Yi(t)

. β is estimated by solving

n∑
i=1

∫ τ

0

wi(t)[zi − z̄(t)][dNi(t)− Yi(t)z
T
i β] = 0.

However, the left-hand side does not seem to be a properly defined integral.

1.3.9 Parametric Regression Analysis of Cumulative Incidence

Function

Jeong and Fine (2007) proposed parametric regression analysis of cumulative incidence func-

tion [51]. For cause-j, let Fj(t|z) = P (T ≤ t, ϵ = j|z). The paper considered

gj[Fj(t|z)] = uj(t) + zTβj, j = 1, ..., K,

where gj(v) = log{[(1 − v)−αj − 1]/αj}. The paper said that −∞ < αj < ∞. But gj(v)

cannot be defined when αj = 0. Then the paper claimed that

Fj(t|z) = 1− [1 + αj exp(z
Tβj)uj(t)]

−1/αj .
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But actually Fj(t|z) should be equal to 1−{1+ αj exp[z
Tβj + uj(t)]}−1/αj . Then the paper

let uj(t) = τ [exp(ρt)− 1]/ρ with τ > 0 and

Fj(t|z) = 1− [1 + αj exp(z
Tβj)uj(t)]

−1/αj .

However, given this form, when αj < 0, 1 + αj exp(z
Tβj)uj(t) could become negative and

[1 + αj exp(z
Tβj)uj(t)]

−1/αj may not be defined. The authors state that the likelihood

function is given by

n∏
i=1

{[
2∏

k=1

F ′
k(xi|zi)I(∆iϵi=k)][1−

2∑
k=1

Fk(xi|zi)]I(∆i=0)}

though it is not clear why the likelihood function would take this form.

1.3.10 Competing Risks Quantile Regression

Peng and Fine (2009) proposed a competing risks quantile regression [78]. For cause-j, let

Fj(t|z) = P (T ≤ t, ϵ = j|z). Define the conditional quantile Qj(τ |z) = inf{t : Fj(t|z) ≥ τ}.

Let z̃ = (1, zT )T . Suppose g(·) is a known monotone link function and 0 < τL ≤ τU < 1, for

τ ∈ [τL, τU ], assume

Qj(τ |z) = g[z̃Tβ0(τ)].

Let G(t|z) = P (C ≥ t|z) and Ĝ(t|z) be the Kaplan–Meier estimator. The paper suggested

the estimating equation:

n∑
i=1

z̃i

(
I{Xi ≤ g[z̃Ti β0(τ)]}I(∆iϵi = j)

Ĝ(Xi|zi)
− τ

)
= 0.

However, this estimating equation may not have a solution. Let M be an extremely large

positive number selected to bound |bT ∑n
i=1

z̃iI(∆iϵi=j)

Ĝ(Xi)
| from above for all b in the compact
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parameter space for β0(τ). The paper claimed that this equation can be reformulated as

locating the minimizer of

U(b, τ) =
n∑

i=1

I(∆iϵi = j)

∣∣∣∣∣g−1(Xi)

Ĝ(Xi)
− bT z̃i

Ĝ(Xi)

∣∣∣∣∣+
∣∣∣∣∣M + bT

n∑
i=1

z̃iI(∆iϵi = j)

Ĝ(Xi)

∣∣∣∣∣+|M−bT
n∑

i=1

2z̃iτ |.

However, the paper did not discuss what the compact parameter space for β0(τ) would be.

1.3.11 Absolute Risk Regression

Gerds, Scheike and Andersen (2012) proposed absolute risk regression [37]. It models the

cumulative incidence function Fj(t|z) = Fj0(t) exp(z
Tβ). However, Fj(t|z) could exceed 1

with extreme values of zTβ after some value of t.

1.3.12 Fully Specified Subdistribution Model

Ge and Chen (2012) proposed a fully specified subdistribution model [36]. Two competing

risks are considered. Let Tj be the time to failure due to cause j for j = 1, 2 and T =

min(T1, T2). It assumes that

P (T1 ≤ t, ϵ = 1) = 1− exp[−H10(t) exp(z
Tβ1)]

and

P (T2 ≤ t|ϵ = 2) = 1− exp[−H20(t) exp(z
Tβ2)].
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Then it claims that the likelihood function is

L(β1,β2, h10, h20|x,Z,∆ϵ)

=
n∏

i=1

{h10(xi) exp(z
T
i β1) exp[−H10(xi) exp(z

T
i β1)]}I(∆iϵi=1)

× {h20(xi) exp(z
T
i β2) exp[−H20(xi) exp(z

T
i β2)−H10(∞) exp(zTi β1)]}I(∆iϵi=2)

× (exp[−H10(xi) exp(z
T
i β1)]

− {1− exp[−H20(xi) exp(z
T
i β2)]} × exp[−H10(∞) exp(zTi β1)])

I(∆i=0).

This is the same likelihood function as in Jeong and Fine (2007) [51].

1.3.13 Constrained Parametric Model for Simultaneous Inference

of Two Cumulative Incidence Functions

Shi, Cheng and Jeong (2013) proposed a parametric regression model for the cumulative

incidence functions [84]. Assume there are two possible causes of failure and cause 1 is of

primary interest. It assumes that the cumulative incidence function for cause 1

F1(t|z) = 1−
{
1− p1 exp[b1(t− c1)]− p1 exp(−b1c1)

1 + exp[b1(t− c1)]

}exp(zTβ1)

and

F2(t|z) =
(1− p1)

exp(zTβ1){exp[b2(t− c2)]− exp(−b2c2)}
1 + exp[b2(t− c2)]

.

The same likelihood function in Jeong and Fine (2007) [51] is used.
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1.3.14 Semiparametric Mixture Component Models

Choi and Huang (2014) considered semiparametric analysis of mixture component models

on cumulative incidence functions [17]. Assuming there are two competing risks, the paper

assumes that

P (ϵ = 1|z) = exp(zTγ)

1 + exp(zTγ)
.

Let T ∗
k be the latent event time for cause k. Define Λk(t) = − log[P (X ≥ t|ϵ = k, z)]. Let

G(t) = log(1+rt)
r

for r > 0 and G(t) = t for r = 0. Let Ak be an increasing but unspecified

function with Ak(0) = 0. The model posited for the failure times is

Λk(t) = G[

∫ t

0

I(T ∗
k ≥ s) exp(zTβk)dAk(s)].

But Λk(t) is a function of t while the right hand side of the equation is a stochastic process

that not only depends on t but also on the random variable T ∗
k . This equation cannot hold

since a deterministic function cannot be equal to a stochastic process.

1.3.15 Proportional Odds Cumulative Incidence Model

Eriksson et al. (2015) suggested an estimator for the proportional odds cumulative incidence

model [26]. Let Fj(t) = P (T ≤ t, ϵ = j). Consider

logit[Fj(t|z)] = log[H(t)] + zTβ,

where H(t) is an increasing positive function with H(0) = 0. Define Ni(t) = I(Ti ≤ t, ϵi =

j), Yi(t) = 1 − Ni(t−), ri(t) = I(Ci ≥ Ti ∧ t). Let G be the Kaplan–Meier estimator of

survival function for the censoring time C. Define wi(t, G) = ri(t)G(t−)
G[(Xi∧t)−]

. Let τ denote a finite
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maximum follow-up time. Consider the estimating equations

n∑
i=1

zi

∫ τ

0

wi(t, G)

[
dNi(t)−

Yi(t)dH(t)

exp(−zTi β) +H(t−)

]
= 0,

and
n∑

i=1

wi(t, G)

[
dNi(t)−

Yi(t)dH(t)

exp(−zTi β) +H(t−)

]
= 0, t ∈ [0, τ ].

H is estimated by a non-decreasing function with jumps only at observed cause-j event

times. The estimating equation is solved by a Fisher scoring algorithm.

1.3.16 Flexible Parametric Modelling of Cause-specific Hazards

Hinchliffe and Lambert (2013) advocated the use of the flexible parametric survival model

to model the cause-specific hazards [44]. A restricted cubic spline function, s(log(t)|γ,n0)

with N knots, a vector of knots n0 and parameters γ0, ..., γN−1 can be written as

s(log(t)|γ,n0) = γ0 + γ1y1 + ...+ γN−1yN−1.

Let ϕj =
nN−nj

nN−n1
. The derived variables y1, ..., yN−1 are calculated as follows

y1 = log(t)

yj = [log(t)− nj]
3
+ − ϕj[log(t)− n1]

3
+ − (1− ϕj)[log(t)− nN ]

3
+, j = 2, ..., N − 1.

Let hj(t) = lim∆t→0+
P (t≤T<t+∆t,ϵ=j|T≥t)

∆t
and Hj(t) =

∫ t

0
hj(u)du. The paper assumes that

log[Hj(t)] = s(log(t)|γ,n0) + zTβ.
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1.3.17 Flexible Parametric Modelling of the Cause-specific Cumu-

lative Incidence Function

Lambert et al. (2017) proposed the use of flexible parametric survival models to model the

cause-specific CIF [60]. Let the subdistribution hazard function for cause j be

hj(t|z) = lim
∆t→0+

P (t ≤ T < t+∆t, ϵ = j|T ≥ t ∪ (T < t ∩ ϵ ̸= j), z)

∆t
.

Let Hj(t|z) =
∫ t

0
hj(u|z)du. Like in Hinchliffe and Lambert (2013) [44], the paper assumes

that

log[Hj(t)] = s(log(t)|γ,n0) + zTβ,

where s(log(t)|γ,n0) is the restricted cubic spline function. In fact the paper wrote the

model as

log[Hj(t)] = log[s(log(t)|γ,n0)] + zTβ,

which is perhaps a typo, as s(log(t)|γ,n0) could be negative. The estimate of the censoring

distribution is obtained by fitting a flexible parametric model where being censored is con-

sidered as the event. Let G(t) = P (C ≥ t). This gives a parametric expression for G(t). The

time-dependent weights wi(t) = I(t ≤ xi)+
G(t)
G(xi)

I(t > xi). Suppose there are two competing

risks and the first one is of interest. The contribution of the i-th subject to the likelihood is

defined as

log(Li) = I(∆iϵi = 1) log[h1(xi|zi)]−[1−I(∆iϵi = 2)]H1(xi|zi)−I(∆iϵi = 2)

∫ τ

0

wi(u)h1(u)du,

where τ the maximum observed follow-up time. But this does not seem like a reasonable

likelihood. For example, if the i-th subject is censored, log(Li) would be −H1(xi|zi), then
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Li = exp[−H1(xi|zi)] = 1 − P (Ti ≤ xi, ϵi = 1) = P (Ti ≤ xi, ϵi = 2) + P (Ti > xi). But

P (Ti > xi) would be the contribution to likelihood if the i-th subject is censored at xi. The

paper also mentions that different link functions g() could be used for the model

g[F1(t|z)] = s(log(t)|γ,n0) + zTβ,

where F1 is the cause-1 cumulative incidence function.

1.3.18 Weighted NPMLE for the Subdistribution

Bellach et al. (2019) introduced a weighted likelihood function that allows for a direct

extension of the Fine–Gray model to a broad class of semiparametric regression models

[6]. Let A(t) be the cumulative subdistribution hazard, A0 be an unspecified increasing

function and g be a thrice continuously differentiable and strictly increasing function with

g(0) = 0, g′(0) > 0 and g(∞) = ∞. The model proposed is

A(t) = g[exp(zTβ)A0(t)].

Let Ni(t) = I(Ti ≤ t, ϵi = j), Yi(t) = 1 − Ni(t−), Ĝ be the Kaplan–Meier estimator of

P (C > t), wi(t) = I(Ci≥Ti∧t)Ĝ(t)

Ĝ(Ti∧t)
and τ be the duration of the study. The weighted log-

likelihood function is

l(β, A0) =
n∑

i=1

(

∫ τ

0

log{exp(zTi β)A′
0(t)g

′[exp(zTi β)A0(t)]}I(Ci ≥ t)Yi(t)dNi(t)

−
∫ τ

0

wi(t)Yi(t) exp(z
T
i β)g

′[exp(zTi β)A0(t)]dA0(t)).

It is unclear how this function was obtained. A0 is approximated by a sequence of step

functions A0
n, with jumps at the observed events of interest.
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1.3.19 Copula-based Model

Vasquez and Escarela (2021) proposed Copula-based constructions of the joint distribution of

the overall survival time and the cause-specific failure [96]. A copula is a bivariate distribution

function with uniform marginals. Suppose there are two competing risks. Let fT (t) be the

probability density function of T , FT (t) be the cumulative distribution function of T and

Fϵ(ϵ) be the cumulative distribution function of ϵ. The paper claims that there exists a

copula function CP such that the joint density function of (T, ϵ)

fT,D(t, d) = fT (t){CP ′[FT (t), Fϵ(ϵ)]− CP ′[FT (t), Fϵ(ϵ− 1)]}I(t > 0), d = 1, 2,

where CP ′(x, y) = ∂
∂x
CP (x, y). However, it is unclear what the joint density function of (T, ϵ)

means since ϵ cannot have a probability density function as a discrete random variable.

1.4 Variable Selection for High-dimensional Compet-

ing Risk Data

In this section, existing methods for selecting variables when censoring and competing risks

are present are briefly described.

1.4.1 Boosting for High-dimensional Time-to-event Data With

Competing Risks

Binder et al. (2009) proposed a boosting approach for fitting proportional subdistribution

hazards models for high-dimensional data [8]. High-dimensional data are data that have

more covariates than observations. The proposed approach is based on two main ideas: first,

there are M boosting steps, where in each step some elements of the estimated parameter
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vector are updated. The updates are determined by penalized maximum partial likelihood

estimation, where the previous boosting steps are incorporated as an offset. Second, there is

a distinction between a set of indices of mandatory covariates Smand ⊂ {1, ..., p} and the set of

indices of optional covariates Sopt = {1, ..., p}\Smand. In each boosting step, only one element

of the estimated parameter vector, corresponding to one optional covariate, is updated. The

elements corresponding to the mandatory covariates are updated simultaneously before each

boosting step. Suppose the cause of interest is cause 1. The details of the algorithm are as

follows:

1. Initialize the offset η̂0,i = 0, i = 1, ..., n and the estimated parameter vector β̂0 = 0.

2. For each boosting step m = 1, ...,M ,

(a) Update the elements s ∈ Smand of β̂m−1 by one maximum partial likelihood New-

ton–Raphson step and update the offset via η̂m−1,i = zTi β̂m−1.

(b) Estimate the parameters γm,s in candidate models

λ1(t|zi) = λ10(t) exp(η̂m−1,i + γm,szis), s ∈ Sopt.

(c) Determine the best candidate model s∗ with parameter estimate γ̂m,s∗ and perform

the update

β̂m,s =


β̂m−1,s + γ̂m,s∗ if s = s∗

β̂m−1,s otherwise

(d) Update the offset via η̂m,i = zTi β̂m.

To avoid boosting steps that are too large, the parameters γ̂m,s are determined by penalized

estimation. The partial log-likelihood provided by Fine and Gray (1999) [32] is augmented
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by a penalty term, resulting in

lpen(γm,s) =
n∑

i=1

I(∆iϵi = 1){η̂m−1,i + γm,szis − log[
∑
l∈Ri

wl(Xi) exp(η̂m−1,i + γm,szls)]}+
λ

2
γ2
m,s,

where Ri = {l : Xl ≥ Xi or ∆lϵl > 1} is the risk set that arises when the competing risks

process for an individual is stopped just before the time of a competing event and λ is a

penalty parameter that determines the size of the boosting steps. The formula for wl(t) is

given by Ĝ(t)I(Xl≤t)∆l

Ĝ(Xl)
in the paper, different from that in Fine and Gray (1999) [32], which

is probably a typo. λ is typically chosen such that the number of boosting steps, selected

e.g. by cross-validation, is larger than 50, as this number limits the maximal number of non-

zero coefficients of the fitted model. The estimates are determined by one Newton–Raphson

step, i.e. γ̂m,s =
Upen(0)

Ipen(0)
, where Upen(γ) = l′pen(γ) is the score function and Ipen(γ) = l′′pen(γ).

Correspondingly, the best candidate model is taken to be the one that maximizes the score

statistic
U2
pen(0)

Ipen(0)
. This method is implemented in the R package CoxBoost, available on

GitHub.

1.4.2 Penalized Proportional Subdistribution Hazard Model

Fu, Parikh and Zhou (2017) proposed a general penalized variable selection strategy that

simultaneously handles variable selection and parameter estimation in the proportional sub-

distribution hazards model [35]. The log-partial likelihood is defined as

l(β) =
n∑

i=1

∫ ∞

0

{zTi β − log[
n∑

q=1

wq(s)Yq(s) exp(z
T
q β)]} × wi(t)dNi(t)

The authors proposed a generalized objective function

Q(β) = l(β)− n

p∑
m=1

pλ(|βm|),
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where pλ(·) is the penalty function. The penalized estimator is given by β̃ = argmaxQ(β).

To maximize Q(β), the authors approximate the log-partial likelihood function by the

Newton-Raphson update, and at each iteration, solve an iterative reweighted least square

problem subject to penalties. Denote η = Zβ and define u = ∂l/∂η and H = −∂2l/∂η∂ηT .

The pseudo response vector is y = η+H−1u. The authors claim that by second order Taylor

expansion,

−l(β) ≈ 1

2
(y− η)TH(y− η).

However, this approximation is flawed as demonstrated in Chapter 2 and a correct approxi-

mation is presented as part of this dissertation. They use BIC = −2l(β̃) +

log(n)
∑p

m=1 I(β̃m ̸= 0) as the criterion to select the tuning parameter λ. How this criterion

works in the competing-risks setting and especially for high-dimensional data is unknown.

Therefore, cross-validation type scores are used in this dissertation. Further, the authors

only applied this method to low-dimensional data but did not explore how it works for

high-dimensional data, which will be studied as part of this dissertation.

Sun and Wang (2022) applied the elastic net penalty to the proportional subdistribution

hazards model [89]. The elastic net penalty is

pλ(β) = λ[
1

2
(1− α)β2 + α|β|],

where 0 < α < 1. Given b, l(β) can be approximated by

l(b) + (β − b)T∇l(b) +
1

2
(β − b)TH l(b)(β − b),

where ∇l(β) and H l(β) are the gradient and Hessian matrix of l(β), respectively. H l(b)

is approximated by its expected value E[H l(b)] := −J. Let β̃ be the maximum likelihood

estimator that maximizes l(β). Denote Σ as the asymptotic covariance matrix of β̃ and Σ̃
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as a consistent estimate of Σ. They claimed that J = Σ−1. Then J is approximated by Σ̃
−1
.

Then they approximated l(β) by

l(β̃)− 1

2
(β − β̃)T Σ̃

−1
(β − β̃).

However, this argument is flawed. First, H l(b) only depends on b, given the dataset, so

there is no need to calculate its expectation. Second, l(β) cannot be maximized in a high-

dimensional data. Third, it is unclear what form Σ̃ takes and why J = Σ−1. Finally, the

final approximate failed to include the (β− β̃)T∇l(β̃) portion. This method is implemented

in the R package RAEN, available on GitHub.

1.4.3 Scalable Algorithms for Large Competing Risks Data

Kawaguchi et al. (2021) developed a scalable surrogate l0-based method for simultaneous

variable selection and parameter estimation for the large p problem [53]. As a scalable

approximation to l0-penalized regression, the broken adaptive ridge (BAR) estimator, defined

as the limit of an l0-based iteratively reweighted l2-penalization algorithm, has been studied

for simultaneous variable selection and parameter estimation. Let the log-partial likelihood

be defined as in Fu, Parikh and Zhou (2017) [35]. The BAR estimator of β starts with an

initial l2-penalized (or ridge) estimator

β̂
(0)

= argmin{−2l(β) + ξn

p∑
m=1

β2
m},

which is updated iteratively by a reweighted l2-penalized estimator

β̂
(s)

= argmin

{
−2l(β) + λn

p∑
m=1

β2
m

(β̂
(s−1)
m )2

}
, s ≥ 1,
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where ξn and λn are nonnegative penalization tuning parameters. The BAR estimator of β

is defined as the limit of this iterative algorithm:

β̂ = lim
s→∞

β̂
(s)
.

The authors derived a fast cyclic coordinate-wise BAR algorithm that results in the elimina-

tion of performing multiple ridge regressions and avoids using a cutoff to introduce sparsity as

required by the original BAR algorithm. For a consistent estimate β̃ of β, they considered the

Cholesky decomposition −H(β̃) = X̃
′
X̃, whereH(β) is the Hessian matrix of l(β) and define

ỹ = (X̃
′
)−1[−H(β̃)β̃ + ∇l(β̃)] as the pseudo-response vector, where ∇l(β) is the gradient

of l(β). Approximating the negative log-partial likelihood by −l(β) ≈ 1
2
(ỹ− X̃β)′(ỹ− X̃β)

using a second-order Taylor expansion, they showed that solving the BAR estimator leads

to the following solution

β̂
(s)

= g(β̂
(s−1)

),

where g(β) = [X̃
′
X̃+λnD(β)]−1X̃ỹ and D(β) = diag(1/β2

1 , ..., 1/β
2
p). Hence, as s → ∞, the

limit of the sequence {β̂
(s)
} is the fixed point of the function g(·) or the solution to g(β) = β.

They showed that each component of the fixed-point solution of g can be expressed as a

function of all the other components in the next theorem.

Theorem 1. Let β̂ be the fixed-point solution of g(·). Then, for each m = 1, ..., p, the m-th

component of β̂ can be expressed as follows

β̂m = gm(β̂−m) :=


0, |bm| < 2

√
λnx̃

′
mx̃m,

bm+sign(bm)
√

b2m−4λnx̃′mx̃m

2x̃′mx̃m
, |bm| ≥ 2

√
λnx̃

′
mx̃m,

where bm = x̃′
m(ỹ−

∑
i ̸=m x̃iβ̂i).
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In their algorithm, X̃ and ỹ are initially estimated using the initial ridge estimate β̂
(0)

and then subsequently updated at step s using the previous estimate β̂
(s−1)

. Consequently,

at step s,

b(s)m = x̃′
m(ỹ−

∑
i ̸=m

x̃iβ̂
(s−1)
i )

= − ∂2l

∂β2
m

(β̂
(s−1)

)β̂(s−1)
m +

∂l

∂βm

(β̂
(s−1)

)

for m = 1, ..., p.

Then their algorithm proceeds as follows

1. Set β̂
(0)

= β̂ridge.

2. For s = 1, 2, ...:

(a) For m = 1, ..., p

i. Calculate b
(s)
m = − ∂2l

∂β2
m
(β̂

(s−1)
)β̂

(s−1)
m + ∂l

∂βm
(β̂

(s−1)
).

ii. If |b(s)m | < 2
√

−λn
∂2l
∂β2

m
(β̂

(s−1)
), then β̂

(s)
m = 0;

otherwise β̂
(s)
m =

b
(s)
m +sign(b

(s)
m )

√
(b

(s)
m )2+4λn

∂2l

∂β2m
(β̂

(s−1)
)

−2 ∂2l

∂β2m
(β̂

(s−1)
)

.

(b) If ||β̂
(s)

− β̂
(s−1)

|| < tol, then β̂BAR = β̂
(s)

and stop.

Suppose the cause of interest is cause 1. The score function is given by

∂l

∂βm

(β) =
n∑

i=1

I(∆iϵi = 1)zim −
n∑

i=1

I(∆iϵi = 1)

∑
k∈Ri

zkmwk(Xi) exp(z
T
kβ)∑

k∈Ri
wk(Xi) exp(zTkβ)

and the Hessian diagonals are given by

∂2l

∂β2
m

(β) =
n∑

i=1

I(∆iϵi = 1)


∑

k∈Ri
z2kmwk(Xi) exp(z

T
kβ)∑

k∈Ri
wk(Xi) exp(zTkβ)

−

[∑
k∈Ri

zkmwk(Xi) exp(z
T
kβ)∑

k∈Ri
wk(Xi) exp(zTkβ)

]2 ,
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where Ri = {y : (Xy ≥ Xi) ∪ (Xy ≤ Xi ∩∆yϵy > 1)}. A lemma is given in the paper:

Lemma 2. Assume that no ties are present. Then, for any r,m = 1, ..., p and u, v = 0, 1

∑
k∈Ri

zukrz
v
kmwk(Xi) exp(z

T
kβ) =

∑
k∈Ri(1)

zukrz
v
km exp(zTkβ)+Ĝ(Xi)

∑
k∈Ri(2)

zukrz
v
km exp(zTkβ)/Ĝ(Xk),

where Ri(1) = {y : (Xy ≥ Xi)} and Ri(2) = {y : (Xy < Xi ∩∆yϵy > 1)}.

While Ri(1) grows cumulatively as the event times decrease from largest to smallest,

Ri(2) grows cumulatively as the event times increase from smallest to largest. Thus, the

ratio of summations for the score and diagonal Hessian values can be calculated in linear

time via a forward-backward scan where one scan goes in one direction to calculate the

cumulative sums associated with Ri(1) and the other scan goes in the opposite direction to

calculate the cumulative sum associated with Ri(2). Therefore, the number of operations

can be effectively reduced from O(n2) to O(n). The BAR algorithm is implemented in the R

package pshBAR and the forward–backward scan algorithm is implemented in the R package

fastcmprsk, both available on GitHub.

1.4.4 Random Survival Forests

Ishwaran et al. (2014) proposed an approach that builds on the framework of random survival

forests (RSF) [50]. A single competing risk tree is grown in each bootstrap sample under

some splitting rule. Let δ = ∆ϵ. Let x(1) < x(2) < ... < x(k) be the distinct event times.

Suppose that the proposed split for the root node is of the form z ≤ c and z > c for a

continuous predictor z (this can be generalized to categorical variables). Such a split forms

two daughter nodes containing two new sets of competing risk data. To indicate these data,

subscripts of l and r are used for the left and right daughter nodes. The cause specific hazard
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function for cause j is given by

αj(t) = lim
∆t→0+

P (t ≤ T ≤ t+∆t, ϵ = j|T ≥ t)

∆t
.

Denote by αjl(t) and αjr(t) the cause j specific hazard rates in the left and right daughter

nodes, respectively. The number of individuals at risk at time t in the left and right daughter

nodes are, respectively Yl(t) and Yr(t), where Yl(t) =
∑n

i=1 I(Xi ≥ t, zi ≤ c), Yr(t) =∑n
i=1 I(Xi ≥ t, zi > c). Y (t) =

∑n
i=1 I(Xi ≥ t). The number of type j events at time t for

the left and right daughters is, respectively,

dj,l(t) =
n∑

i=1

I(Xi = t, δi = j, zi ≤ c), dj,r(t) =
n∑

i=1

I(Xi = t, δi = j, zi > c),

and dj(t) =
∑n

i=1 I(Xi = t, δi = j). Define x(m), x(m)l , x(m)r to be the largest times on study

in the parent node and the two daughters, respectively.

The first splitting rule is the log-rank test. This is a test of H0 : αjl(t) = αjr(t) for

t ≤ x(k). The test is based on the weighted difference of the cause-specific Nelson–Aalen

estimates in the two daughter nodes. Specifically, for a split at the value c for variable z,

the splitting score is

LLR
j (z, c) =

1

σ̂LR
j (z, c)

m∑
i=1

Wj(x(i))

[
dj,l(x(i))−

dj(x(i))Yl(x(i))

Y (x(i))

]
,

where the variance estimate is given by

(σ̂LR
j (z, c))2 =

m∑
i=1

Wj(x(i))
2dj(x(i))

Yl(x(i))

Y (x(i))

[
1−

Yl(x(i))

Y (x(i))

] [
Y (x(i))− dj(x(i))

Y (x(i))− 1

]
.

Time-dependent weights Wj(t) > 0 are used to make the test more sensitive to early or late

differences between the cause-specific hazards. The choice Wj(t) = 1 corresponds to the
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standard log-rank test which has optimal power for detecting alternatives where the cause-

specific hazards are proportional. The best split is found by maximizing |LLR
j (z, c)| over z

and c.

The cause-j specific log-rank splitting rule is useful if the main purpose is to detect

variables that affect the cause-j specific hazard. It may not be optimal if the purpose is also

prediction of cumulative event probabilities. In this case, better results may be obtained with

splitting rules that select variables based on their direct effect on the cumulative incidence.

For this reason, they modeled the second splitting rule after Gray’s test [42], which tests

H0 : Fjl(t) = Fjr(t) for t ≤ x(k), where Fjl(t) and Fjr(t) are cumulative incidence functions

for the left and the right daughter nodes, respectively. For notational simplicity, consider

analysis of event j = 1 and assume the number of causes of failure K = 2. Gray’s statistic

for testing the null hypothesis is

∫ x(k)

0

Wj(s)Rl(s)

[
dF̂jl(s)

1− F̂jl(s)
− dF̂j(s)

1− F̂j(s)

]
,

where

Rl(t) = I(x(m)l ≥ t)Yl(t)[1− F̂jl(t−)]/Ŝl(t−),

and F̂j(t) is the Aalen–Johansen estimator [1]

F̂j(t) =

m(t)∑
i=1

Ŝ(x(i−1))dj(x(i))/Y (x(i)),

where Ŝ(t) is the Kaplan–Meier estimator for the survival function of T and m(t) = max{i :

x(i) ≤ t}.

The steps required to construct a competing risks forest can be summarized as follows.

1. Draw B bootstrap samples from the learning data.
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2. Grow a competing risk tree for each bootstrap sample. At each node of the tree,

randomly select M ≤ p candidate variables. The node is split using the candidate

variable that maximizes a competing risk splitting rule.

3. Grow the tree to full size under the constraint that a terminal node should have no

less than n0 > 0 unique cases.

The concordance index and the prediction error defined by the integrated Brier score (BS)

are used to assess prediction performance. The concordance index (C-index) estimates the

probability that, in a randomly selected pair of cases, the case that fails first had a worse

predicted outcome. The BS is the squared difference between actual and predicted outcome.

The cause-j mortality Mj(x(k)|z) =
∫ x(k)

0
Fj(t|z). Let ci,b be the number of times case i

occurs in the bootstrap sample used to grow the b-th tree. To define the CIF for the b-th

tree, take a subject’s covariate vector z and drop it down the tree. Let hb(z) denote the

indices for cases from the learning data whose covariates share the terminal node with z.

Denoting node-specific event counts by Nj,b(t|z) =
∑

i∈hb(z)
ci,bI(Xi ≤ t, δi = j) and the

number at risk by Yb(t|z) =
∑

i∈hb(z)
ci,bI(Xi ≥ t), this subject’s CIF is defined as

F̂j,b(t|z) =
∫ t

0

Ŝb(u− |z)
Yb(u|z)

dNj,b(u|z),

where Ŝb(t|z) =
∏

u≤t[1−
∑

j dNj,b(u|z)/Yb(u|z)] is this subject’s Kaplan–Meier estimate of

event-free survival. The ensemble estimate of the CIF and the cause-j mortality, respectively,

equal

F̄j(t|z) =
1

B

B∑
b=1

F̂j,b(t|z), M̄j(x(k)|z) =
∫ x(k)

0

F̄j(t|z)dt.

Subjects are ranked by ensemble cause-j mortality. Subject i is said to have a higher risk of

event j than case i′ if M̄j(x(k)|zi) > M̄j(x(k)|zi′). [100] described a time-truncated concor-
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dance index for competing risks, which in the current setting is

Cj(x(k)) = P [M̄j(x(k)|zi) > M̄j(x(k)|zi′)|Ti ≤ x(k), ϵi = j and (Ti < Ti′ or ϵi′ ̸= j)].

The time-dependent BS ([41] and [38]) and its integral (IBS) are also considered to assess

the performance of the ensemble CIF:

IBSj(x(m)) =

∫ x(m)

0

BSj(t)dt =

∫ x(m)

0

E[I(Ti ≤ t, δi = j)− F̄j(t|z)]2dt.

For reporting an internal error rate, out-of-bag (OOB) ensembles are used. The OOB data

are used to construct the OOB ensemble. Let Oi ⊂ {1, ..., B} be the index set of trees where

ci,b = 0; i.e., Oi records trees where subject i is OOB. The OOB ensemble estimate of the

CIF is

F̄ oob
j (t|zi) =

1

|Oi|
∑
b∈Oi

F̂j,b(t|zi).

Denote (Xi, δi, zi), 1 ≤ i ≤ n′ for a validation dataset of size n′. Based on these data, the

prediction error can be estimated using inverse probability of censoring weights (IPCWs)

([38] and [100]). Let Ĝ(t) be the Kaplan–Meier estimate of the censoring distribution of

censoring time. The OOB-IPCW estimate of Cj at x(k) is

Ĉj(x(k)) =

∑
i

∑
i′(Aii′/ŵii′,1 +Bii′/ŵii′,2)Q

oob
ii′ I(Xi ≤ x(k), δi = j)∑

i

∑
i′(Aii′/ŵii′,1 +Bii′/ŵii′,2)I(Xi ≤ x(k), δi = j)

,

where ŵij,1 = Ĝ(Xi−)Ĝ(Xi), ŵij,2 = Ĝ(Xi−)Ĝ(Xj−), Aij = I(Xi < Xj), Bij = I(Xi ≥

Xj and ∆jϵj ̸= j), Qoob
ij = I[L̄oob(x(k)|zi) < L̄oob(x(k)|zj)] and L(x(k)|z) =

∑K
j=1

∫ x(k)

0
Fj(t|z)dt.

The definition of ŵij,1 probably contains a typo and its correct expression is most likely

Ĝ(Xi−)Ĝ(Xj) or Ĝ(Xj−)Ĝ(Xi). Using weights ŵi(t) = I(Xi ≤ t,∆i = 1)/Ĝ(Xi) + I(Xi >
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t)/Ĝ(t) ([8]), the OOB estimate of the integrated BS for event j is given by

ÎBS
oob

j (x(k)) =

∫ x(k)

0

1

n

n∑
i=1

ŵi(t)[I(Xi ≤ t, δi = j)− F̄ oob
j (t|zi)]2dt.

Note that extremely large weights may occur, but can be avoided by evaluating the IPCW

statistics at an earlier time point t < x(k).

RSF variable selection typically involves filtering variables on the basis of variable impor-

tance (VIMP). VIMP measures the increase (or decrease) in prediction error for the forest

ensemble when a variable is randomly “noised-up” [12]. A large positive VIMP shows that

the prediction accuracy of the forest is substantially degraded when a variable is noised-up;

thus a large VIMP indicates a potentially predictive variable. The authors calculated VIMP

by random node assignment [49]. In random node assignment, cases are dropped down a

tree and randomly assigned to a daughter node whenever the parent node splits on the tar-

get variable. To compute event-specific VIMP, first estimate the prediction error. Then the

data are noised up by random node assignment, and the prediction error is recomputed. The

difference in these two values gives the VIMP for each variable for each event j. Minimal

depth assesses the predictiveness of a variable by the depth of the first split of a variable

relative to the root node of a tree. Variables are selected using minimal depth variable selec-

tion [48]. Those variables whose event-specific VIMP are positive, and that meet a minimal

depth threshold (estimated from the forest), represent the final selected set of variables. This

method is implemented in the R package randomForestSRC [47].

1.4.5 Penalized Binomial Regression Model

Ambrogi and Scheike (2016) attempted to directly model cause-1 cumulative incidence func-

tion F1(t|z) assuming [3]

logit[F1(t|z)] = α(t) + zTβ.
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LetNi(t) = I(Xi ≤ t,∆iϵi = 1), N(t) = (N1(t), ..., Nn(t)) and F1(t|z) = (F1(t|z1), ..., F1(t|zn)).

Let Dα,i(t) =
∂F1(t|zi)
∂α(t)

and Dβ,i(t) =
∂F1(t|zi)

∂β
. Let Dα(t) = (Dα,1(t), ..., Dα,n(t))

T and Dβ(t)

be a n × p matrix with the i-th row being Dβ,i(t). Define inverse probability of censoring

weighting weight matrix W(t) = diag(Wi(t)) with Wi(t) = ∆i(t)/SC(min(t,Xi)|zmand,i),

where ∆i(t) = I(min(Ti, t) ≤ Ci), SC(t|zmand) = P (C > t|zmand) and zmand is the set

of covariates that have to be included in the model. The estimated quantity is Ŵ(t) with

Ŵi(t) = ∆i(t)/ŜC(min(t,Xi)|zmand,i). The regression function α(t) and regression parameter

β can be estimated based on the following estimating equations:

Uα(t) := DT
α(t)Ŵ(t){N(t)− F1(t|z)} = 0 (1.2)

Uβ(t) :=

∫ τ

0

DT
β(t)Ŵ(t){N(t)− F1(t|z)}dt = 0 (1.3)

where τ is the last time point considered. Note that the estimates of α(t) will be piecewise

constant functions that change their value only after events of type 1 so only the score

equations for α(t) in the jump times need to be considered. In the case of high-dimensional

covariates, a specific set of time-points is considered only to reduce the computations, and

the baseline α(t) is thus reduced to a finite-dimensional parameter. When profiling out both

the baseline and βmand, Uα(t) becomes Up,mand(βoption), where βoption is the parameter vector

corresponding to the covariates that do not have to be included in the model. However, how

this “profiling out” exactly works seems unclear. The penalized estimating functions for β

can be written as

Up,mand(β)− nqλ(βoption)sign(βoption)

where qλ(βoption) = (qλ,1(β1), ..., qλ,poption(βpoption)) and qλ,m() for m = 1, .., poption are func-

tions depending on the coefficients. The interest here is in cases where qλ,m() is the derivative

of some penalty function.
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1.4.6 Penalized Cause-specific Hazards Models

Saadati et al. (2018) [81] considers modeling competing risks data in high dimensions using

a penalized cause-specific hazards (CSHs) approach. The CSH for cause j is given by

λ(t, j|z) = lim
∆t→0

P (t ≤ T < t+∆t, ϵ = j|T ≥ t)

∆t
.

The proportional CSH model for cause j is given by

λ(t, j|z) = λ0j(t) exp(z
Tβj),

where λ0j(t) is the baseline hazard for cause j at time t and βj is the vector of cause-specific

regression coefficients. The partial likelihood for cause j is defined in [79] as

Lj(βj) =

kj∏
i=1

exp(zj(i)βj)∑
l∈R(tj(i))

exp(zlβj)
,

where tj(i), i = 1, ..., kj denote the kj times of failure of cause j, zj(i) denotes the corresponding

covariates, R(tj(i)) is the set of study subjects known to be at risk just prior to tj(i). lj(βj) =

log[Lj(βj)]. The LASSO-penalized log-partial likelihood for cause j is maximized:

max{lj(βj)− λj||βj||1}.

The tuning parameters λj are obtained via cross-validation with respect to minimal deviance

(i.e., the penalized log-partial likelihood) as defined by [85].

Suppose there are two causes of failure. As an extension, the authors attempt to link the

two independently penalized CSH models by choosing the optimal tuning parameters λ1 and

λ2 with respect to minimal prediction error of the event of interest at a fixed time s. Schoop
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et al. (2011) [83] defined prediction error (a.k.a. Brier score) for the event of interest j as

PEj(t) = E[I(T ≤ t, ϵ = j)− πj(t|z)]2,

where πj(t|z) denotes the predicted cumulative incidence function Fj(t|z). The suggested

algorithm works as follows:

1. Set up a grid of lambda values that ranges from the smallest to the largest: λji, j = 1, 2,

i = 1, ..., I.

2. Partition the data into, for example, 10 folds. For each fold

(a) use 9 of 10 folds to fit cause-specific penalized regression model for the cause of

interest for all i = 1, ..., I.

(b) predict for each patient in the 10th fold the probability of event 1.

3. Calculate the prediction error PE1(s) at some time point s.

4. Select the pair (λ1r∗1
, λ2r∗2

) with the smallest average prediction error and fit the final

CSH model using the optimal tuning parameters.

The authors advocate to choose s as a clinically/biologically relevant time point. In the

absence of such a time point related to the clinical context, it is also possible to use the

integrated Brier score rather than choosing an arbitrary time point s.

1.4.7 Penalized Quantile Regression

Li, Tian and Tang (2019) developed a variable selection procedure based on penalized esti-

mating equations for competing risks quantile regression [64]. Let F1(t|z) be the cumulative

incidence function for cause 1. The conditional quantile is defined as Q1(τ |z) = inf{t :
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F1(t|z) ≥ τ}. Let g(·) be a known monotone increasing and continuously differentiable link

function. Let z̃ = (1, z)T , for τ ∈ [τL, τU ], Q1(τ |z) is modeled as

Q1(τ |z) = g[z̃Tβ0(τ)].

Define T ∗
1 = I(ϵ = 1)×T +I(ϵ ̸= 1)×∞. The authors present the following modified model:

g−1(T ∗
1 ) = Q1(τ |z) + ẽ

= z̃Tβ0(τ) + ẽ,

where ẽ is an error term with τ -quantile assumed to be zero. However this model is con-

fusing as it seems to imply that Q1(τ |z) = z̃Tβ0(τ) and it is not clear that this is correct.

Additionally, P (T ∗
1 = ∞) > 0 so P (g−1(T ∗

1 ) = ∞) > 0 and then P (ẽ = ∞) > 0. This is

impossible for a proper random variable.

Li et al. (2023) studied variable selection based on penalized weighted quantile regres-

sion [65]. The paper assumes that Q1(τ |z) = g[z̃Tβ0(τ)]. The penalized weighted objective

function is minimized to estimate β0(τ):

Qp[β(τ), wi(F̂1)] =
n∑

i=1

{wi(F̂1)ρτ [g
−1(xi)− zTi β(τ)] + [1− wi(F̂1)]ρτ [g

−1(x∞)− zTi β(τ)]}

+

p∑
m=1

pλ(|βm(τ)|),

where x∞ is any value sufficiently large to exceed all zTi β(τ), ρτ (u) = u[τ − I(u ≤ 0)] is

called the “check” function, F̂1(t) =
1
n

∑n
i=1

I(xi≤t,∆iϵi=1)

Ĝ(xi)
is the IPCW estimator for F1(t), Ĝ

is the Kaplan–Meier estimator for the survival function of C and pλ is a penalty function.
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The estimated weights

wi(F̂1) =


1, ∆iϵi = 1

0, ∆iϵi ̸= 1, F̂1(ci) > τ

τ−F̂1(ci)

1−F̂1(ci)
, ∆iϵi ̸= 1, F̂1(ci) ≤ τ.

However, it is unclear how to determine x∞. And, when ∆iϵi > 1, ci is unobserved so F̂1(ci)

cannot be calculated thus wi(F̂1) cannot be calculated.

1.4.8 Regularized Weighted Nonparametric Likelihood Approach

Tapak et al. (2021) proposed a penalized weighted nonparametric likelihood approach [90]

based on the model of Bellach et al. (2019) [6]. Let l(β, A0) be the weighted log-likelihood

function defined in Bellach et al. (2019) [6]. The regularized estimator is defined as

β̂ = argmax[l(β, A0)−
p∑

m=1

pλ(|βm|)],

where pλ(·) is a penalty function. A0 is approximated by a sequence of step functions (A0
n)

with jumps at the observed events of interest. In the original paper, only g(x) = x and

g(x) = log(1 + x) were considered. The maximization in this paper was utilized through

the algorithm proposed by Goeman (2010) [40], which is a combination of gradient ascent

optimization with the Newton-Raphson algorithm. This algorithm follows the gradient of

the likelihood from a given starting value of β. The algorithm automatically switches to a

Newton-Raphson algorithm when it gets close to the optimum to avoid slow convergence.
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1.5 Penalty Functions

1.5.1 Least Absolute Shrinkage and Selection Operator

Tibshirani (1996) proposed a method for penalized estimation in linear models and thus

permits fitting over-parameterized models [93]. Let y1, ..., yn be the responses. For a tuning

parameter s, the least absolute shrinkage and selection operator (LASSO) is defined by

(α̂, β̂) = argmin{
n∑

i=1

(yi − α−
p∑

m=1

zimβm)
2}, subject to

p∑
m=1

|βm| ≤ s.

Tibshirani (1997) then extended this method to the Cox model [94]. Let l(β) be the log

partial likelihood and assume that the zim are standardized so that
∑n

i=1 zim = 0,
∑n

i=1 z
2
im =

n. The author proposed to estimate β via the criterion

β̂ = argmin l(β), subject to

p∑
m=1

|βj| ≤ s.

Implementations of this model have included the R packages glmnet [33, 85] and glmpath

[77], among others. The LASSO penalty was used in competing risks models in Ambrogi

and Scheike (2016) [3], Fu, Parikh and Zhou (2017) [35] and Saadati et al. (2018) [81].

1.5.2 Smoothly Clipped Absolute Deviation Penalty

Fan and Li (2001) proposed the smoothly clipped absolute deviation (SCAD) penalty [29].

The continuous differentiable penalty function pλ(β) is defined by

p′λ(β) = λ[I(β ≤ λ) +
(aλ− β)+
(a− 1)λ

I(β > λ)]
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for some a > 2 and β > 0. Fan and Li (2002) then extended this method to the Cox model

[28] and obtained the penalized log partial likelihood

l(β)− n

p∑
m=1

pλ(|βm|).

The SCAD penalty was used in competing risks models in Ambrogi and Scheike (2016) [3],

Fu, Parikh and Zhou (2017) [35], Li, Tian and Tang (2019) [64], Kawaguchi et al. (2021)

[53], implemented in the R package fastcmprsk, and Tapak et al. [90].

1.5.3 Smooth Integration of Counting and Absolute Deviation

Penalties

Lv and Fan (2009) proposed the smooth integration of counting and absolute deviation

(SICA) penalties [70]. For a > 0, the family of penalties are given by

pλ(β) =
λ(a+ 1)β

a+ β
, β ≥ 0.

The SICA penalty has not been used in competing risks models.

1.5.4 Minimax Concave Penalty

Zhang (2010) proposed the minimax concave penalty (MCP) [104]. The MCP is defined as

pλ(β) = λ

∫ β

0

(1− x

γλ
)+dx

with a regularization parameter γ > 0 for β ≥ 0. The MCP penalty was used in competing

risks models in Fu, Parikh and Zhou (2017) [35], Kawaguchi et al. (2021) [53], implemented

in the R package fastcmprsk, and Tapak et al. [90].
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1.5.5 Simulation Study Comparing Penalty Functions Applied to

Cox Model

Bradic et al. (2011) conducted a simulation study comparing variable selection performance

of LASSO, SCAD, SICA and MCP when applied to the Cox model [10]. LASSO always

performed worse than SCAD, selecting fewer true positives and more false positives than

SCAD, in the high-dimensional scenario, with 100 observations and 5000 predictors. Thus,

only SCAD, SICA and MCP will be used in this dissertation.

1.6 Coordinate Descent Algorithm

Friedman et al. (2007) considered “one-at-a-time” coordinate-wise descent algorithms for

a class of convex optimization problems including L1 (LASSO)-penalized regression [34].

Simon et al. (2011) extended the method to Cox model, regularized by the elastic net

penalty [85], which has been implemented in the R package glmnet. Breheny and Huang

(2011) applied the algorithm for fitting linear and logistic regression with MCP and SCAD

[11], implemented in the R package ncvreg. The coordinate descent algorithm will be used in

this dissertation to fit penalized competing risks models using the SCAD, SICA, and MCP

penalties.

1.7 Missing Data Imputation

In this section, methods for imputing missing data with both continuous and categorical vari-

ables, assuming the data are missing at random, that might be able to handle high-dimensioal

data and have been implemented in R packages are reviewed. Let Ds, s = 1, ..., q, be q possi-

bly incomplete variables and D = (D1, ..., Dq). Let D−s = (D1, ..., Ds−1, Ds+1, ..., Dq) denote
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the collection of the q−1 variables in D except Ds. Denote ms the indices of the observations

that are missing in variable Ds and os = {1, ..., n} \ms.

1.7.1 Iterative Stepwise Regression Imputation

Templ, Kowarik and Filzmoser (2011) proposed an algorithm called IRMI for iterative model-

based imputation using robust methods [92]. The algorithm can be summarized as follows:

1. Initialize the missing values using a simple imputation technique (e.g. k-nearest

neighbor or mean imputation; the median is used by default).

2. Sort the variables according to the amount of missing values in decreasing order.

3. If the response is continuous, a robust regression method is applied; if the response is

categorical, generalized linear regression is applied using all the other variables as covariates

(optionally, a robust method can be selected). Optionally, it is possible to use a stepwise

model selected by AIC, to include only the k most important variables in the regression.

4. Estimate the regression coefficients with the corresponding model and use the esti-

mated regression coefficients to replace the missing values.

5. Repeat steps 3-4 for each variable with missing values.

6. Repeat steps 3–5 until the imputed values stabilize.

There is an option to add a random error term to the imputed values, creating the

possibility for multiple imputation. The error term has mean 0 and a variance corresponding

to the (robust) variance of the regression residuals from the observations of the observed

response. To provide adequate variances of the imputed data, the error term has to be

multiplied by a factor
√

1 + |ms|0
n

. Additionally, the level of noise can be controlled by a

scale parameter. This method is implemented in the R package VIM [57].
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1.7.2 MissForest

Stekhoven and Bühlmann (2012) proposed an iterative imputation method based on a ran-

dom forest called missForest [86]. To begin, an initial guess for the missing values in

D is made using mean imputation or another imputation method. Then, the variables

Ds, s = 1, ..., q are sorted according to the amount of missing values starting with the lowest

amount. For each variable Ds, the missing values are imputed by first fitting a random

forest with response dos
s and predictors dos

−s; then, the missing values dms
s are predicted by

applying the trained random forest to dms
−s . The stopping criterion is met as soon as the

difference between the newly imputed data matrix and the previous one increases for the

first time with respect to both continuous and categorical variables. The difference for the

set of continuous variables N is defined as

∆N =

∑
s∈N(D

imp
s,new −Dimp

s,old)
2∑

s∈N(D
imp
s,new)

2

and for the set of categorical variables F as

∆F =

∑
s∈F
∑n

i=1 I(D
imp
i,s,new ̸= Dimp

i,s,old)

#NA
,

where #NA denotes the number of missing values in the categorical variables. It is a

little unclear how exactly ∆N is calculated. This method is implemented in the R package

missForest [87].

1.7.3 Fully Conditional Specification

van Buuren and Groothuis-Oudshoorn (2011) implemented the fully conditional specification

method in the R package mice [95]. The MICE algorithm samples iteratively from condi-

48



tional distributions of the form P (D1|D−1, θ1), ..., P (Dq|D−q, θq). The parameters θ1, ..., θq

are specific to the respective conditional densities. Starting from a simple draw from ob-

served marginal distributions, the t-th iteration of chained equations is a Gibbs sampler that

successively draws

θ
∗(t)
1 ∼ P (θ1|Do1

1 , D
(t−1)
2 , ..., D(t−1)

q )

D
∗(t)
1 ∼ P (D1|Do1

1 , D
(t−1)
2 , ..., D(t−1)

q , θ
∗(t)
1 )

...

θ∗(t)q ∼ P (θq|Doq
q , D

(t)
1 , ..., D

(t)
q−1)

D∗(t)
q ∼ P (Dq|Doq

q , D
(t)
1 , ..., D

(t)
q−1, θ

∗(t)
q ),

where D
(t)
s = (Dos

s , D
∗(t)
s ) is the s-th imputed variable at iteration t. Note that in the paper

D
∗(t)
q ∼ P (Dq|Doq

q , D
(t)
1 , ..., D

(t)
q , θ

∗(t)
q ), which may be a typo as D

(t)
q = (D

oq
q , D

∗(t)
q ) and D

∗(t)
q

is what is to be drawn. This method is also implemented in the mi package [88].

1.7.4 Multiple Imputation With Denoising Autoencoders

Lall and Robinson (2022) proposed an approach called Multiple Imputation with Denoising

Autoencoders (MIDAS) [59]. MIDAS implements multiple imputation with the aid of arti-

ficial neural networks. A neural network consists of a series of nested nonlinear functions

usually depicted as interconnected nodes organized in layers. Input data are fed into the

network through an input layer, processed by nodes in one or more hidden layers, and re-

turned via nodes in an output layer. The model for a “forward pass”—or computation of

output values given input data—through layer h of a neural network is:

y(h) = σ(W(h)y(h−1) + b(h)),
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where y(h) is a vector of outputs from layer h, y(0) is the input, W(h) is a matrix of weights

connecting the nodes in layer h−1 with the nodes in layer h, b is a vector of biases for layer

h, and σ is a nonlinear activation function. It is unclear if y(0) is the data from one subject or

the data from one variable. The final-layer activation function is Φ, which might be different

from σ. The parameters are trained to minimize a loss function that measures the distance

between actual and predicted outputs. Training involves four steps, collectively known as an

epoch, which are repeated until some convergence criterion is met: (1) performing a forward

pass through the network using current parameters; (2) calculating the loss function; (3)

using the chain rule to calculate error gradients with respect to weights in each layer, a

technique called backpropagation; and (4) adjusting weights in the direction of the negative

gradient for the next forward pass.

One class of neural networks is the denoising autoencoders (DA). Classical autoencoders

consist of two parts. First, an encoder deterministically maps an input vector y(0) to a lower-

dimensional representation y by compressing it through a series of shrinking hidden layers

that culminate in a “bottleneck” layer. Second, a decoder maps y back to a reconstructed

vector v with the same probability distribution and dimensions as y(0) by passing it through

a parallel series of expanding hidden layers culminating in the output layer. To map v

as closely as possible to y(0), weights are adjusted by backpropagation to minimize a loss

function.

DA were developed to prevent autoencoders from learning an identical representation of

the input while enabling them to extract more robust features from the data. They achieve

these benefits by partially corrupting inputs through the injection of stochastic noise.

MIDAS modifies the standard DA model in two key ways. First, as part of the initial

corruption process, it forces all missing values—in addition to a random subset of inputs—to

0. The task of the DA is thus to predict corrupted values that were both originally missing

and originally observed using a loss function that only includes the latter. Second, to further
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reduce the risk of overfitting, MIDAS regularizes the DA with the complementary technique

of dropout. Dropout involves randomly removing nodes in the hidden layers of a network

during training, typically by multiplying outputs from each of these layers by a Bernoulli

vector. Dropout training proceeds by sampling an arbitrary number of “thinned” networks,

with a different set of nodes dropped in each iteration. To produce multiple imputations,

MIDAS samples multiple thinned networks. The default activation function is exponential

linear unit. The final-layer activation function is chosen according to the distribution of

the input data, with identity and softmax functions assigned to continuous and categorical

variables, respectively. MIDAS employs root mean squared error (RMSE) and cross-entropy

loss functions for continuous and categorical variables, respectively.

The algorithm proceeds in three stages. In the first stage, the input data are prepared for

training. Categorical variables are converted into separate dummy variables for each unique

class and continuous variables are rescaled between 0 and 1. A missingness indicator matrix

M is constructed for the input data. All missing values are set to 0. A DA is then initialized

according to the dimensions of the data; the default architecture is a three-layer network

with 256 nodes per layer. In the training stage, the following five steps are repeated: (1)

the input data and M are shuffled and sliced rowwise into paired mini-batches to acceler-

ate convergence; (2) mini-batch inputs are partially corrupted through multiplication by a

Bernoulli vector with default probability of taking the value 1 set to 0.8; (3) outputs from

half of the nodes in hidden layers are corrupted using the same procedure; (4) a forward pass

through the DA is conducted and the reconstruction error on predictions of the corrupted

values that were originally observed is calculated using the loss functions; and (5) loss values

are aggregated into a single term and backpropagated through the DA, with the resulting

error gradients used to adjust weights for the next epoch. Finally, once training is complete,

the whole of the input data is passed into the DA, which attempts to reconstruct all cor-

rupted values. A completed dataset is then constructed by replacing the missing values with
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predictions from the network’s output. This stage is repeated multiple times. This method

is implemented in the R package rMIDAS [80].

1.8 Variable Selection on Multiply Imputed Data

In this section, methods of selecting variables on multiple imputed datasets when there are

missing values are reviewed.

1.8.1 Multiple Imputation-Least Absolute Shrinkage and Selec-

tion Operator

Chen andWang (2013) proposed a multiple imputation-least absolute shrinkage and selection

operator (MI-LASSO) variable selection method as an extension of the LASSO method to

multiply-imputed data [14]. The linear regression model is assumed:

Yi = β0 +

p∑
j=1

zijβj + ϵi, i = 1, ..., n

Let m be the number of imputed datasets. Let β̂1,j, ..., β̂m,j denote the estimated coefficients

for zj on the m imputed datasets. The following function is minimized to estimate the

coefficients
m∑
d=1

n∑
i=1

(yi − β0 −
p∑

j=1

zd,ijβd,j)
2 + λ

p∑
j=1

√√√√ m∑
d=1

β2
d,j.

The penalty function used is called the group LASSO penalty. The estimated coefficients

(β̂1,j, ..., β̂m,j) for each covariate zj will either be all exactly zero or be all nonzero. The local

quadratic-approximation method is used to solve the optimization problem. Suppose we

already have the estimates β̂
(t)
d,j, d = 1, ...,m at the t-th iteration. As long as

∑m
d=1(β̂

(t)
d,j)

2 > 0,
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we have the following approximation

√√√√ m∑
d=1

β2
d,j ≈

∑m
d=1 β

2
d,j√∑m

d=1(β̂
(t)
d,j)

2

.

Then the optimization problem can be approximated by

m∑
d=1

 n∑
i=1

(yd,i − β0 −
p∑

j=1

zd,ijβd,j)
2 + λ

p∑
j=1

β2
d,j√∑m

d=1(β̂
(t)
d,j)

2

 .

It can be seen that the estimated coefficients can be obtained by solving m separate ridge

regressions. The iterations continue until convergence. One possible limitation for this

approximation is that once a group of coefficients are shrunken to zero, they will stay at

zero. To avoid this inflexibility, β̂
(t)
1,j, ..., β̂

(t)
m,j are set to 10−10 when

∑m
d=1(β̂

(t)
d,j)

2 ≤ m10−20.

This method has a couple of drawbacks. First, it is unclear what the initial estimates

are obtained. Second, ridge regression does not force coefficients to 0 so it is unclear how

variables are selected. Third, setting β̂
(t)
1,j, ..., β̂

(t)
m,j to 10

−10 when
∑m

d=1(β̂
(t)
d,j)

2 ≤ m10−20 forces

coefficients to always be nonzero, preventing variables from being excluded from the model.

Du et al. (2022) also considered another penalty, called the group adaptive LASSO penalty:

λ

p∑
j=1

âj

√√√√ m∑
d=1

β2
d,j

where âj = (
√∑m

d=1 β̂
2
d,j +

1
nm

)−γ, γ = ⌈ 2ν
1−ν

+1⌉ and ν = log(pm)
log(nm)

[24]. β̂d,j is estimated using

the group LASSO penalty.
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1.8.2 Stability Selection Combined With Bootstrap Imputation

Long and Johnson (2015) proposed a resampling approach that combines bootstrap impu-

tation and stability selection in the linear regression setting [68]. First, a series of bootstrap

datasets {(y(b),Z(b)), b = 1, ..., B} are generated of the original data. Then, for each boot-

strapped dataset, impute the missing values in Z(b) and the resultant imputed datasets are

denoted by {(y(b),Z
(b)
I ), b = 1, ..., B}. For the b-th imputed dataset, find β̂

(b)

λ that minimizes

||y(b) − Z
(b)
I β||22 + λ

p∑
j=1

|βj|
w

(b)
j

,

where w
(b)
j ’s are independently identically distributed random variables in [α, 1] with α ∈

(0, 1). Denote the set of non-zero parameter estimates in β̂
(b)

by Ŝ
(b)

λ . Let Λ denote a set of

feasible values for λ. The final estimated active set is defined as

Ŝπ = {j : max
λ∈Λ

(Πλ
j ) ≥ π},

where Πλ
j =

∑B
b=1 I(j∈Ŝ

(b)
λ )

B
and π ∈ (0, 1) is a threshold for selecting a predictor and is often

set to between 0.6 and 0.9 in practice.

1.8.3 Multiple Imputation-based Weighted Elastic Net

Wan et al. (2015) proposed a multiple imputation-based weighted elastic net method based

on stacked MI data and a weighting scheme for each observation in the stacked data set in

the linear regression setting [98]. Let m be the number of imputed datasets. It minimizes

the following function:

1

2n

n∑
i=1

m∑
d=1

wi(yi − β0 −
p∑

j=1

zd,ijβj)
2 + λPα(β),
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where Pα(β) = α
∑p

j=1 |βj| + 1−α
2

∑p
j=1 β

2
j and wi =

fi
m
, where fi is the fraction of observed

values for subject i.

Du et al. (2022) also considered setting wi =
1
m

and the stacked elastic net penalty

α

p∑
j=1

|βj|+ (1− α)

p∑
j=1

β2
j

and the stacked adaptive elastic net penalty

α

p∑
j=1

âj|βj|+ (1− α)

p∑
j=1

β2
j ,

where âj = (
√∑m

d=1 |β̂j|+ 1
nm

)−γ, γ = ⌈ 2ν
1−ν

+ 1⌉ and ν = log(p)
log(nm)

[24]. β̂j is estimated using

the stacked elastic net penalty.

1.8.4 Multiple Imputation Random LASSO

Liu et al. (2016) propose a multiple imputation random LASSO method in the linear re-

gression setting [67]. Impute the dataset m times. For each imputed data set, generate B

bootstrap samples. For the b-th bootstrap sample in the i-th imputation, apply lasso-OLS

to obtain estimates β̂
(b)
ij for βj, i = 1, ..,m, j = 1, ..., p. Compute the importance measure

of variable zj by

Ij =
|
∑m

i=1

∑B
b=1 β̂

(b)
ij |

mB
.

For the b-th bootstrap sample, randomly select ⌈p/2⌉ candidate variables with selection

probability of zj proportional to its importance measure Ij. Let Λ be a grid of K exponential

decaying sequence of tuning parameters λ’s, apply lasso-OLS to obtain estimates β̂
(b)
ijλ for
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βj, j = 1, ..., p, λ ∈ Λ. Then calculate the empirical probability

Π̂λ
j =

∑m
i=1

∑B
b=1 I(β̂

(b)
ijλ ̸= 0)

mB
,

where β̂
(b)
ijλ = 0 if varaible j is not sampled. The important variables are those in the stable

variable set: {j : maxλ∈Λ Π̂
λ
j ≥ πthr}, where a threshold πthr is chosen by cross-validation

with the one-standard error rule. The lasso-OLS estimator is a two-step procedure. First,

compute the lasso estimator, where the tuning parameter λ is chosen from cross-validation.

Next, the lasso-OLS estimator is the ordinary least squares estimator obtained by regressing

the outcome on the subset of variables chosen by lasso.

1.8.5 Use the Magnitude of the Parameter Estimates for Selection

Zahid et al. (2020) proposed to use the magnitude of the parameter estimates of each candi-

date predictor across all the imputed datasets for its selection [103]. LASSO regression (or

some other variable selection technique) is fit to each imputed dataset. All those predictors

which appear in all models of the m imputed datasets are selected. For the rest of the

predictors, a continuous predictor zj is selected if

∑m
d=1 |β̂d,j|∑p

j=1

∑m
d=1 |β̂d,j|

≥ 1

p
.

For a categorical predictor zj with Caj+1 categories, Caj dummy variables are created. Let

βd,jk be the parameter associated with the k-th dummy variable. zj is selected if

∑Caj
k=1

∑m
d=1 |β̂d,jk|∑p

j=1

∑Caj
k=1

∑m
d=1 |β̂d,jk|

Caj

≥ 1

p
.

It is unclear if continuous predictors are included in the calculation of the denominator.
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1.9 Summary

In this chapter the proportional hazards model, competing risks models, methods to select

variables for competing risks data, relevant penalty functions, coordinate descent algorithm,

methods for imputing missing data in high-dimensional data and methods for selecting vari-

ables when the data contain missing values were reviewed. In Chapter 2, a penalized pro-

portional hazards model with cross-validation is proposed for variable selection. In Chap-

ter 3, the method proposed in Chapter 2 is evaluated by simulations and applied to the

AML dataset. In Chapter 4, the penalized proportional hazards model with cross-validation

method is extended to the situation when there are missing values in the data. In Chapter

5, the method proposed in Chapter 4 is evaluated by simulations and applied to the AML

dataset. In Chapter 6, we comment on the proposed methods and possible direction of future

research.
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Chapter 2: Penalized Proportional Subdistribution

Hazards Model Selecting Tuning Parameter With

Cross-validation

2.1 Proposed Method

In this chapter, a method is proposed to select predictors based on the proportional subdis-

tribution hazards model in Fine and Gray (1999) [32] for high-dimensional data. We choose

to focus on the proportional subdistribution hazards model because it directly models the

cumulative incidence function thus the predictor effects have relatively simple interpretation.

As before, let n be the sample size, T and C be the failure and censoring times, respectively,

X = min(T,C), ∆ = I(T ≤ C), z be a length-p covariate vector and ϵ ∈ (1, ..., K) be

the cause of failure. Assuming cause 1 is the cause of interest, the model is solved by the

following equation

U(β) :=
n∑

i=1

∫ ∞

0

[
zi −

∑n
m=1wm(s)Ym(s)zm exp(zTmβ)∑n
m=1wm(s)Ym(s) exp(zTmβ)

]
wi(s)dNi(s) = 0, (2.1)

where Ni(t) = I(Ti ≤ t, ϵi = 1), Yi(t) = 1−Ni(t−), wi(t) = ri(t)Ĝ(t)/Ĝ(Xi∧ t) is the weight

associated with individual i, ri(t) = I(Ci ≥ Ti ∧ t) denotes knowledge of vital status on
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individual i at time t and Ĝ is the Kaplan-Meier estimate of the survival function of C.

Let’s simplify U(β) first. If ∆i = 0, then Ni(t) = 0 when t ≤ Ci and ri(t) = 0 when

t > Ci thus wi(t) = 0. If ∆i = 1 but ϵi ̸= 1, then Ni(t) = 0, t ∈ [0,∞). Otherwise,

Ni(t) = I[Ti,∞)(t). As long as no observation is censored at any Ti, s.t. ∆iϵi = 1, which

is usually the case, the integrand in each of the integrals in the expression of U(β) is left-

continuous at any Ti, s.t. ∆iϵi = 1. Then

U(β) =
∑

∆iϵi=1

[
zi −

∑n
m=1 wm(Ti)Ym(Ti)zm exp(zTmβ)∑n
m=1 wm(Ti)Ym(Ti) exp(zTmβ)

]
. (2.2)

Now define l(β) =
∑

∆iϵi=1{zTi β − log[
∑n

m=1wm(Ti)Ym(Ti) exp(z
T
mβ)]}. Let ∇l(β) be the

gradient of l(β). We can see that ∇l(β) = U(β). We call l(β) the log-partial likelihood

function. Now we prove that l(β) is concave.

Theorem 3. l(β) is concave.

Proof. For any h = 1, ..., p

∂l

∂βh

=
∑

∆iϵi=1

[
zih −

∑n
s=1ws(Ti)Ys(Ti) exp(z

T
s β)zsh∑n

m=1 wm(Ti)Ym(Ti) exp(zTmβ)

]

=
∑

∆iϵi=1

[
zih −

n∑
s=1

zsh
ws(Ti)Ys(Ti) exp(z

T
s β)∑n

m=1 wm(Ti)Ym(Ti) exp(zTmβ)

]

=
∑

∆iϵi=1

[zih −
n∑

s=1

zshvis(β)]

=
∑

∆iϵi=1

[zih − z̄ih(β)],

where vis(β) =
ws(Ti)Ys(Ti) exp(z

T
s β)∑n

m=1 wm(Ti)Ym(Ti) exp(zTmβ)
and z̄ih(β) =

∑n
s=1 zshvis(β).
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For any q = 1, ..., p,

∂2l

∂βh∂βq

= −
∑

∆iϵi=1

n∑
s=1

zsh
∂vis(β)

∂βq

= −
∑

∆iϵi=1

n∑
s=1

zsh{
ws(Ti)Ys(Ti) exp(z

T
s β)zsq

∑n
m=1wm(Ti)Ym(Ti) exp(z

T
mβ)

[
∑n

m=1wm(Ti)Ym(Ti) exp(zTmβ)]
2

− ws(Ti)Ys(Ti) exp(z
T
s β)

∑n
m=1 wm(Ti)Ym(Ti) exp(z

T
mβ)zmq

[
∑n

m=1wm(Ti)Ym(Ti) exp(zTmβ)]
2

}

= −
∑

∆iϵi=1

{
∑n

s=1 zshws(Ti)Ys(Ti) exp(z
T
s β)zsq∑n

m=1wm(Ti)Ym(Ti) exp(zTmβ)

− [
∑n

s=1 zshws(Ti)Ys(Ti) exp(z
T
s β)][

∑n
m=1 wm(Ti)Ym(Ti) exp(z

T
mβ)zmq]

[
∑n

m=1 wm(Ti)Ym(Ti) exp(zTmβ)]
2

}

= −
∑

∆iϵi=1

[∑n
s=1 zshws(Ti)Ys(Ti) exp(z

T
s β)zsq∑n

m=1 wm(Ti)Ym(Ti) exp(zTmβ)
− z̄ih(β)z̄iq(β)

]
= −

∑
∆iϵi=1

[

∑n
s=1ws(Ti)Ys(Ti) exp(z

T
s β)zshzsq∑n

m=1wm(Ti)Ym(Ti) exp(zTmβ)
−

z̄ih(β)z̄iq(β)
∑n

s=1ws(Ti)Ys(Ti) exp(z
T
s β)∑n

m=1 wm(Ti)Ym(Ti) exp(zTmβ)
].

Note that

n∑
s=1

ws(Ti)Ys(Ti) exp(z
T
s β)[zsh − z̄ih(β)][zsq − z̄iq(β)]

=
n∑

s=1

ws(Ti)Ys(Ti) exp(z
T
s β)zshzsq −

n∑
s=1

ws(Ti)Ys(Ti) exp(z
T
s β)zshz̄iq(β)

−
n∑

s=1

ws(Ti)Ys(Ti) exp(z
T
s β)z̄ih(β)zsq +

n∑
s=1

ws(Ti)Ys(Ti) exp(z
T
s β)z̄ih(β)z̄iq(β).
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Also note that

z̄ih(β) =
n∑

s=1

zsh
ws(Ti)Ys(Ti) exp(z

T
s β)∑n

m=1wm(Ti)Ym(Ti) exp(zTmβ)

=

∑n
s=1 zshws(Ti)Ys(Ti) exp(z

T
s β)∑n

m=1wm(Ti)Ym(Ti) exp(zTmβ)
.

So
∑n

s=1 zshws(Ti)Ys(Ti) exp(z
T
s β) = z̄ih(β)

∑n
m=1wm(Ti)Ym(Ti) exp(z

T
mβ).

Then

n∑
s=1

ws(Ti)Ys(Ti) exp(z
T
s β)[zsh − z̄ih(β)][zsq − z̄iq(β)]

=
n∑

s=1

ws(Ti)Ys(Ti) exp(z
T
s β)zshzsq − z̄iq(β)z̄ih(β)

n∑
s=1

ws(Ti)Ys(Ti) exp(z
T
s β)

− z̄ih(β)z̄iq(β)
n∑

s=1

ws(Ti)Ys(Ti) exp(z
T
s β) + z̄ih(β)z̄iq(β)

n∑
s=1

ws(Ti)Ys(Ti) exp(z
T
s β)

=
n∑

s=1

ws(Ti)Ys(Ti) exp(z
T
s β)zshzsq − z̄ih(β)z̄iq(β)

n∑
s=1

ws(Ti)Ys(Ti) exp(z
T
s β).

So

∂2l

∂βh∂βq

= −
∑

∆iϵi=1

∑n
s=1ws(Ti)Ys(Ti) exp(z

T
s β)[zsh − z̄ih(β)][zsq − z̄iq(β)]∑n

m=1wm(Ti)Ym(Ti) exp(zTmβ)

= −
∑

∆iϵi=1

n∑
s=1

ws(Ti)Ys(Ti) exp(z
T
s β)∑n

m=1wm(Ti)Ym(Ti) exp(zTmβ)
[zsh − z̄ih(β)][zsq − z̄iq(β)]

= −
∑

∆iϵi=1

n∑
s=1

vis(β)[zsh − z̄ih(β)][zsq − z̄iq(β)].

Then the Hessian matrix of l(β)

Hl(β) = −
∑

∆iϵi=1

n∑
s=1

vis(β)[zs − z̄i(β)][zs − z̄i(β)]
T ,
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where z̄i(β) = (z̄i1(β), ..., z̄ip(β)). [zs− z̄i(β)][zs− z̄i(β)]
T is positive-semidefinite, vis(β) ≥ 0

for any s = 1, ..., n and i s.t. ∆iϵi = 1. Thus −Hl(β) is positive-semidefinite. Then Hl(β)

is negative-semidefinite. Therefore l(β) is concave.

Then β̂ is a global maximum point of l(β) if and only if ∇l(β) = 0, i.e. U(β) = 0.

So to solve U(β) = 0 is equivalent to maximizing l(β). To select important predictors,

we maximize l(β) − n
∑p

h=1 p(βh), where p(β) is a penalty function. l(β) is a relatively

complicated function so it will be approximated by Taylor polynomial.

Given an approximate value of β, β̃, l(β) can be approximated by l(β̃) + (β− β̃)T∇l(β̃) +

1
2
(β − β̃)TH l(β̃)(β − β̃). Define lη(η) :=

∑
∆iϵi=1{ηi − log[

∑n
m=1wm(Ti)Ym(Ti) exp(ηm)]}.

Let Z be the design matrix. We can see that l(β) = lη(Zβ). Using chain rule, we can

show that ∇l(β̃) = ZT∇lη(η̃) and H l(β̃) = ZTH lη(η̃)Z, where η̃ = Zβ̃, ∇lη(η) is the

gradient of lη(η) and H lη(η) is the Hessian matrix of lη(η). So l(β) can be approximated

by l(β̃) + (Zβ − η̃)T∇lη(η̃) +
1
2
(Zβ − η̃)TH lη(η̃)(Zβ − η̃).

To simplify the expression, notice that

(Zβ − η̃)T∇lη(η̃) +
1

2
(Zβ − η̃)TH lη(η̃)(Zβ − η̃)

= (βTZT − η̃T )∇lη(η̃) +
1

2
(βTZT − η̃T )[H lη(η̃)Zβ −H lη(η̃)η̃]

= βTZT∇lη(η̃)− η̃T∇lη(η̃) +
1

2
βTZTH lη(η̃)Zβ − 1

2
βTZTH lη(η̃)η̃ − 1

2
η̃TH lη(η̃)Zβ

+
1

2
η̃TH lη(η̃)η̃

=
1

2
βTZTH lη(η̃)Zβ + [∇lη(η̃)

TZ− η̃TH lη(η̃)Z]β +
1

2
η̃TH lη(η̃)η̃ − η̃T∇lη(η̃).
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When defining y(η̃) = η̃ −H lη(η̃)
−1∇lη(η̃),

1

2
[y(η̃)− Zβ]TH lη(η̃)[y(η̃)− Zβ]

=
1

2
[y(η̃)T − βTZT ][H lη(η̃)y(η̃)−H lη(η̃)Zβ]

=
1

2
[y(η̃)TH lη(η̃)y(η̃)− y(η̃)TH lη(η̃)Zβ − βTZTH lη(η̃)y(η̃) + βTZTH lη(η̃)Zβ]

=
1

2
βTZTH lη(η̃)Zβ − y(η̃)TH lη(η̃)Zβ +

1

2
y(η̃)TH lη(η̃)y(η̃)

=
1

2
βTZTH lη(η̃)Zβ − [η̃ −H lη(η̃)

−1∇lη(η̃)]
TH lη(η̃)Zβ +

1

2
y(η̃)TH lη(η̃)y(η̃)

=
1

2
βTZTH lη(η̃)Zβ − [η̃T −∇lη(η̃)

TH lη(η̃)
−1]H lη(η̃)Zβ +

1

2
y(η̃)TH lη(η̃)y(η̃)

=
1

2
βTZTH lη(η̃)Zβ + [∇lη(η̃)

TZ− η̃TH lη(η̃)Z]β +
1

2
y(η̃)TH lη(η̃)y(η̃).

Then l(β̃)+(Zβ− η̃)T∇lη(η̃)+
1
2
(Zβ− η̃)TH lη(η̃)(Zβ− η̃) = 1

2
[y(η̃)−Zβ]TH lη(η̃)[y(η̃)−

Zβ] +C(β̃, η̃), where C(β̃, η̃) is a function of β̃ and η̃. So maximizing l(β)− n
∑p

h=1 p(βh)

is approximately equivalent to maximizing 1
2
[y(η̃)−Zβ]TH lη(η̃)[y(η̃)−Zβ]−n

∑p
h=1 p(βh).

We replace H lη(η̃) by a diagonal matrix with the i-th diagonal entry hi(η̃) = (H lη(η̃))ii to

speed up the computation. Then 1
2
[y(η̃)−Zβ]TH lη(η̃)[y(η̃)−Zβ]−n

∑p
h=1 p(βh) becomes

f(β) := 1
2

∑n
i=1 hi(η̃)[yi(η̃)− zTi β]

2 − n
∑p

h=1 p(βh).

SCAD, MCP and SICA penalty functions will be used. SCAD, MCP and SICA are all

nonconvex penalty functions and other nonconvex penalty functions could also be applied.

In the following subsections, each penalty function is described.
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2.1.1 SCAD

The SCAD penalty function is defined in [29] as

p(β) =



(a+1)λ2

2
, β < −aλ

−β2−2aλβ−λ2

2(a−1)
, −aλ ≤ β < −λ

−λβ, −λ ≤ β < 0

λβ, 0 ≤ β < λ

−β2+2aλβ−λ2

2(a−1)
, λ ≤ β < aλ

(a+1)λ2

2
, β ≥ aλ

for some a > 2. Then

p′(β) =



0, β < −aλ

−aλ+β
a−1

, −aλ ≤ β < −λ

−λ, −λ ≤ β < 0

λ, 0 < β ≤ λ

aλ−β
a−1

, λ < β ≤ aλ

0, β > aλ
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p′′(β) =



0, β < −aλ

− 1
a−1

, −aλ ≤ β < −λ

0, −λ ≤ β < 0

0, 0 < β ≤ λ

− 1
a−1

, λ < β ≤ aλ

0, β > aλ

2.1.2 MCP

The MCP penalty function is defined in [104] as

p(β) =



γλ2

2
, β < −γλ

−λ(β + β2

2γλ
), −γλ ≤ β < 0

λ(β − β2

2γλ
), 0 ≤ β < γλ

γλ2

2
, β ≥ γλ

for some γ > 0. Then

p′(β) =



0, β < −γλ

−λ(1 + β
γλ
), −γλ ≤ β < 0

λ(1− β
γλ
), 0 < β ≤ γλ

0, β > γλ
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p′′(β) =



0, β < −γλ

− 1
γ
, −γλ ≤ β < 0

− 1
γ
, 0 < β ≤ γλ

0, β > γλ

2.1.3 SICA

The SICA penalty function is defined in [70] as

p(β) =


−λ(a+1)β

a−β
, β < 0

λ(a+1)β
a+β

, β ≥ 0

for some a > 0. Then

p′(β) =


−λa(a+1)

(a−β)2
, β < 0

λa(a+1)
(a+β)2

, β > 0

and

p′′(β) =


−2λa(a+1)

(a−β)3
, β < 0

−2λa(a+1)
(a+β)3

, β > 0

The coordinate ascent algorithm will be used to maximize f(β). Specifically, for each q =

1, ..., p, fix βk, k ̸= q and maximize f(β). To find the global maximum points of f(β),

we need to find the local maximum points first. To find possible local maximum points in

(−∞, 0) ∪ (0,∞), we take the partial derivative of f(β) with respect to βq

∂f(β)

∂βq

= −
n∑

i=1

ziqhi(η̃)[yi(η̃)− zTi β]− np′(βq)
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For SCAD

∂f(β)

∂βq

=



−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β], βq < −aλ

−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β] +
n(aλ+βq)

a−1
, −aλ ≤ βq < −λ

−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β] + nλ, −λ ≤ βq < 0

−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β]− nλ, 0 < βq ≤ λ

−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β]−
n(aλ−βq)

a−1
, λ < βq ≤ aλ

−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β], βq > aλ

Set ∂f(β)
∂βq

= 0 and solve for βq while fixing βk, k ̸= q gives

β̂q =



∑n
i=1 hi(η̃)ziq [yi(η̃)−

∑
k ̸=q zikβk]∑n

i=1 hi(η̃)z2iq
, βq < −aλ

(a−1)
∑n

i=1 hi(η̃)ziq [yi(η̃)−
∑

k ̸=q zikβk]−naλ

(a−1)
∑n

i=1 hi(η̃)z2iq+n
, −aλ ≤ βq < −λ

∑n
i=1 hi(η̃)ziq [yi(η̃)−

∑
k ̸=q zikβk]−nλ∑n

i=1 hi(η̃)z2iq
, −λ ≤ βq < 0

∑n
i=1 hi(η̃)ziq [yi(η̃)−

∑
k ̸=q zikβk]+nλ∑n

i=1 hi(η̃)z2iq
, 0 < βq ≤ λ

(a−1)
∑n

i=1 hi(η̃)ziq [yi(η̃)−
∑

k ̸=q zikβk]+naλ

(a−1)
∑n

i=1 hi(η̃)z2iq+n
, λ < βq ≤ aλ

∑n
i=1 hi(η̃)ziq [yi(η̃)−

∑
k ̸=q zikβk]∑n

i=1 hi(η̃)z2iq
, βq > aλ
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If there is at least one local maximum point in (−∞, 0) ∪ (0,∞), the second-order partial

derivative must be checked

∂2f(β)

∂β2
q

=



∑n
i=1 z

2
iqhi(η̃), βq < −aλ∑n

i=1 z
2
iqhi(η̃) +

n
a−1

, −aλ ≤ βq < −λ∑n
i=1 z

2
iqhi(η̃), −λ ≤ βq < 0∑n

i=1 z
2
iqhi(η̃), 0 < βq ≤ λ∑n

i=1 z
2
iqhi(η̃) +

n
a−1

, λ < βq ≤ aλ∑n
i=1 z

2
iqhi(η̃), βq > aλ

If ∂2f(β)
∂β2

q
|β̂q

< 0, then β̂q is a local maximum point.

Define fq(βq) = f(β) given fixed βl, l ̸= q. Note that fq(βq) is not differentiable at 0

but is left and right differentiable at 0. If the left derivative of fq(βq) at 0: ∂−fq(0) :=

limβq→0−
fq(βq)−fq(0)

βq
> 0, then there exists a δ1 > 0 such that for any−δ1 < βq < 0, fq(βq)−fq(0)

βq

> 0. Then fq(βq) − fq(0) < 0 or fq(0) > fq(βq). Similarly, if the right derivative of fq(βq)

at 0: ∂+fq(0) := limβq→0+
fq(βj)−fq(0)

βq
< 0, then there exists a δ2 > 0 such that for any
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0 < βq < δ2, fq(0) > fq(βq). Then 0 is a local maximum point.

∂−fq(0) = lim
βq→0−

1

βq

({1
2

n∑
i=1

hi(η̃)[yi(η̃)−
∑
k ̸=q

zikβk − ziqβq]
2 − n

p∑
k=1

p(βk)}

− {1
2

n∑
i=1

hi(η̃)[yi(η̃)−
∑
k ̸=q

zikβk]
2 − n

∑
k ̸=q

p(βk)− np(0)})

= lim
βq→0−

1

βq

[(
1

2

n∑
i=1

hi(η̃){[yi(η̃)−
∑
k ̸=q

zikβk]
2 − 2ziqβq[yi(η̃)−

∑
k ̸=q

zikβk] + (ziqβq)
2}

− np(βq))− {1
2

n∑
i=1

hi(η̃)[yi(η̃)−
∑
k ̸=q

zikβk]
2}]

= lim
βq→0−

1

2

n∑
i=1

hi(η̃){−2ziq[yi(η̃)−
∑
k ̸=q

zikβk] + z2iqβq} −
np(βq)

βq

= −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk]− n lim
βq→0−

p(βq)

βq

.

Similarly, ∂+fq(0) = −
∑n

i=1 hi(η̃)ziq[yi(η̃)−
∑

k ̸=q zikβk]− n limβq→0+
p(βq)

βq
.

For SCAD,

∂−fq(0) = −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk]− n lim
βq→0−

−λβq

βq

= −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk] + nλ

∂+fq(0) = −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk]− n lim
βq→0+

λβq

βq

= −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk]− nλ

So if −
∑n

i=1 hi(η̃)ziq[yi(η̃)−
∑

k ̸=q zikβk]+nλ > 0 and −
∑n

i=1 hi(η̃)ziq[yi(η̃)−
∑

k ̸=q zikβk]−

nλ < 0, or |
∑n

i=1 hi(η̃)ziq[yi(η̃)−
∑

k ̸=q zikβk]| < nλ, 0 is a local maximum point.
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For MCP,

∂f(β)

∂βq

=



−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β], βq < −γλ

−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β] + nλ(1 + βq

γλ
), −γλ ≤ βq < 0

−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β]− nλ(1− βq

γλ
), 0 < βq ≤ γλ

−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β], βq > γλ

β̂q =



∑n
i=1 hi(η̃)ziq [yi(η̃)−

∑
k ̸=q zikβk]∑n

i=1 hi(η̃)z2iq
, βq < −γλ

γ{
∑n

i=1 hi(η̃)ziq [yi(η̃)−
∑

k ̸=q zikβk]−nλ}
γ
∑n

i=1 hi(η̃)z2iq+n
−γλ ≤ βq < 0

γ{
∑n

i=1 hi(η̃)ziq [yi(η̃)−
∑

k ̸=q zikβk]+nλ}
γ
∑n

i=1 hi(η̃)z2iq+n
, 0 < βq ≤ γλ

∑n
i=1 hi(η̃)ziq [yi(η̃)−

∑
k ̸=q zikβk]∑n

i=1 hi(η̃)z2iq
, βq > γλ

If there is at least one local maximum point in (−∞, 0) ∪ (0,∞), check the second-order

partial derivative

∂2f(β)

∂β2
q

=



∑n
i=1 z

2
iqhi(η̃), βq < −γλ∑n

i=1 z
2
iqhi(η̃) +

n
γ
, −γλ ≤ βq < 0∑n

i=1 z
2
iqhi(η̃) +

n
γ
, 0 < βq ≤ γλ∑n

i=1 z
2
iqhi(η̃), βq > γλ

If ∂2f(β)
∂β2

q
|β̂q

< 0, then β̂q is a local maximum point.

∂−fq(0) = −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk]− n lim
βq→0−

−λ(βq +
β2
q

2γλ
)

βq

= −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk] + nλ
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∂+fq(0) = −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk]− n lim
βq→0+

λ(βq −
β2
q

2γλ
)

βq

= −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk]− nλ

So if |
∑n

i=1 hi(η̃)ziq[yi(η̃)−
∑

k ̸=q zikβk]| < nλ, 0 is a local maximum point.

For SICA,

∂f(β)

∂βq

=


−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β] +
nλa(a+1)
(a−βq)2

, βq < 0

−
∑n

i=1 ziqhi(η̃)[yi(η̃)− zTi β]−
nλa(a+1)
(a+βq)2

, βq > 0

β̂q is the solution to



[
∑n

i=1 hi(η̃)z
2
iq]β

3
q − {2a

∑n
i=1 hi(η̃)z

2
iq +

∑n
i=1 hi(η̃)ziq[yi(η̃)−

∑
k ̸=q zikβk]}β2

q+

{a2
∑n

i=1 hi(η̃)z
2
iq + 2a

∑n
i=1 hi(η̃)ziq[yi(η̃)−

∑
k ̸=q zikβk]}βq− βq < 0

a2
∑n

i=1 hi(η̃)ziq[yi(η̃)−
∑

k ̸=q zikβk] + nλa(a+ 1) = 0,

[
∑n

i=1 hi(η̃)z
2
iq]β

3
q + {2a

∑n
i=1 hi(η̃)z

2
iq −

∑n
i=1 hi(η̃)ziq[yi(η̃)−

∑
k ̸=q zikβk]}β2

q+

{a2
∑n

i=1 hi(η̃)z
2
iq − 2a

∑n
i=1 hi(η̃)ziq[yi(η̃)−

∑
k ̸=q zikβk]}βq− βq > 0

{a2
∑n

i=1 hi(η̃)ziq[yi(η̃)−
∑

k ̸=q zikβk] + nλa(a+ 1)} = 0.

If there is at least one local maximum point in (−∞, 0) ∪ (0,∞), check the second-order

partial derivative

∂2f(β)

∂β2
q

=


∑n

i=1 z
2
iqhi(η̃) +

2nλa(a+1)
(a−βq)3

, βq < 0∑n
i=1 z

2
iqhi(η̃) +

2nλa(a+1)
(a+βq)3

, βq > 0
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If ∂2f(β)
∂β2

q
|β̂q

< 0, then β̂q is a local maximum point.

∂−fq(0) = −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk]− n lim
βq→0−

−λ(a+1)βq

a−βq

βq

= −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk] +
nλ(a+ 1)

a

∂+fq(0) = −
n∑

i=1

hi(η̃)ziq[yi(η̃)−
∑
k ̸=q

zikβk]− n lim
βq→0+

λ(a+1)βq

a+βq

βq

= −
n∑

i=1

hi(η̃)ziq[yi(η̃ −
∑
k ̸=q

zikβk)]−
nλ(a+ 1)

a

So if−
∑n

i=1 hi(η̃)ziq[yi(η̃)−
∑

k ̸=q zikβk]+
nλ(a+1)

a
> 0 and−

∑n
i=1 hi(η̃)ziq[yi(η̃)−

∑
k ̸=q zikβk]−

nλ(a+1)
a

< 0 or |
∑n

i=1 hi(η̃)ziq[yi(η̃)−
∑

k ̸=q zikβk]| < nλ(a+1)
a

, 0 is a local maximum point.

If there are more than one local maximum points, calculate fq(β̂q) for each of the local

maximum points and the one that has the largest value of fq(β̂q) is the global maximum

point.

If one wishes to leave some predictor βq unpenalized, we can simply maximize 1
2

∑n
i=1 hi(η̃)

[yi(η̃)− zTi β]
2 fixing βk, k ̸= q, which is maximized at

∑n
i=1 hi(η̃)[yi(η̃)−

∑
k ̸=q zikβk]∑n

i=1 hi(η̃)z2iq
.

In each iteration, β′
qs are updated successively. To eliminate the possible effect of the

order of updates, the β′
qs are randomly ordered to be updated. Once a β̂q remains the

same as its value in the previous iteration, it’s considered to have converged and will not

be updated again. To prevent the algorithm from running without converging in a timely

fashion, the algorithm may be terminated after a predetermined number of iterations. 1,000

is used in subsequent simulation studies and the analysis of the AML data in Chapter 3.

Thus, the coordinate ascent algorithm of estimating penalized proportional subdistribu-

tion hazards model is:
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1. Initialize β̃ = β0, calculate h(η̃) and y(η̃). Set the index set of β′
qs to be updated

I = {1, ..., p}. Set the maximum number of iterations Niter.

2. Let Ip be a random permutation of I. In the order of Ip:

(a) Update β̃q by maximizing fq(βq).

(b) Remove q from I if β̃q remains the same as its value in the previous iteration.

(c) Update η̃ = Zβ̃.

(d) Update h(η̃) and y(η̃).

3. Repeat step 2 until I = ∅ or the algorithm has run Niter iterations.

Cross-validation is recommended to determine an optimal choice for λ. For each of a pro-

posed set of values of λ, we performed cross-validation and the value having the best cross-

validated score was used. Two types of cross-validation scores have been proposed in the

literature. In the Cox model setting, Simon et al. (2011) proposed the cross-validation

score CV =
∑nfold

fold=1 l(β̂−fold) − l−fold(β̂−fold), where nfold is the number of folds used in

the cross-validation, β̂−fold is the β estimated on the training data, l−fold is the log-partial

likelihood defined on the training data and l(β) is the log-partial likelihood defined on the

complete data [85]. The value of λ that yields the largest CV will be selected. Bradic, Fan

and Jiang (2011) proposed a sparse approximation to the generalized cross-validation score

SGCV =
∑nfold

fold=1

[
l(β̂−fold)

n(1−s/n)2
− l−fold(β̂−fold)

n−fold(1−s/n−fold)2

]
, where s is the number of nonzero elements

in β̂ and n−fold is the sample size of the training data [10]. The value of λ that yields the

largest SGCV will be selected. Both of these two types of scores will be used in the sub-

sequent study. This method will be studied in a simulation study and applied to the AML

dataset in the Chapter 3.
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Chapter 3: Simulation Study and Application to the

AML Dataset

3.1 Simulation Study

3.1.1 Setup

In the simulation study, the sample size n was set to 200, 300 and 400. The number of

predictors p was set to 5000. The predictors were grouped into 100 blocks of size 50. Within

each block, the predictors were generated following a N(µ,Σ) distribution, where µ = 0

and Σiq = 0.5|i−q|, i, q = 1, ..., 50. F1(t|z) was set to 1−{1− c[1− exp(−t)]}exp(zTβ) for some

0 < c < 1. Then

λ1(t|z) = −d log({1− c[1− exp(−t)]}exp(zTβ))/dt

= − exp(zTβ)d log({1− c[1− exp(−t)])/dt

= − exp(zTβ)
−c exp(−t)

1− c[1− exp(−t)]

=
c exp(−t)

1− c[1− exp(−t)]
exp(zTβ)

λ1(t|z) follows the assumption made by the proportional subdistribution hazards model.

Assume there are two competing risks. Then P (ϵ = 1) = limt→∞ F1(t|z) = 1− (1− c)exp(z
Tβ)
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and P (ϵ = 2) = 1− P (ϵ = 1) = (1− c)exp(z
Tβ).

For each observation i, ϵi was randomly drawn from the Bernoulli distribution with

P (ϵi = 1) = 1− (1− c)exp(z
T
i β) and P (ϵi = 2) = (1− c)exp(z

T
i β). Ten predictors were randomly

selected to have nonzero βq while for the remaining 4990 predictors, βq = 0. Three values

of |βq| were used for the 10 important predictors: 0.75, 1 and 1.25 with the sign randomly

chosen as positive or negative. c was set to 0.9999999 to mimic the motivating data, in which

about 86% of the patients who were not censored relapsed. If ϵi = 1, Ti was drawn from the

distribution P (Ti ≤ t) = F1(t|z)/P (ϵi = 1). If ϵi = 2, Ti was drawn from the exp(λ = 1)

distribution. Ci was drawn from an exp(0.4) distribution. The parameter was set to 0.4 to

mimic the motivating data, in which about 30% of the patients were censored.

For SCAD, the parameter a was set to 3.7 following the previous recommendation [29].

For MCP, γ was set to 3 following a previous recommendation [11]. For SICA, a was set

to 0.1 since it worked well in a published simulation study [70]. In each simulation, 100

values of λ were used. The values of λ were chosen to form a geometric progression, so

λi = maxλ ∗ ratio(i−1)/99 for i = 1, ..., 100. The minimum λ = ratio ∗maxλ.

To determine the candidate values of λ, a useful starting value is that which makes the

algorithm select none of the predictors given β0 = 0. That means 0 is the global maximum

point of fq(βq) for any q = 1, ..., p given βk = 0, k ̸= q. Then 0 must also be a local maximum

point. Setting the initial parameter vector β0 = 0 such that η0 = Zβ0 = 0. For SCAD

and MCP, that means |
∑n

i=1 hi(0)ziqyi(0)| < nλ so
|
∑n

i=1 hi(0)ziqyi(0)|
n

was used as the largest

value. For SICA, that means |
∑n

i=1 hi(0)ziqyi(0)| < nλ(a+1)
a

, so
a|

∑n
i=1 hi(0)ziqyi(0)|

n(a+1)
was used

as the largest value. In the simulation study, this method worked well for SCAD and MCP

but not for SICA. When λ =
a|

∑n
i=1 hi(0)ziqyi(0)|

n(a+1)
, 0 usually is not the global maximum point

of l(β) and the algorithm would select several predictors. So for SICA, trial and error was

used to find the largest value.

For SCAD and MCP, the ratio was set to be 0.3 so that the algorithm selects more than
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10 predictors but fewer than 100 when using the minimum value of λ. From previous genomic

applications this range is a reasonable number of predictors and lends well to development of

smaller assays. For SICA, different values of maximum λ are used for each of the 9 settings

and ratio was set to 0.1.

Since the solutions for the same dataset with slightly different values of λ are expected

to be similar, in cross-validation, the algorithm is run for each training set using λ from the

largest to the smallest. The β̂ obtained from using the last value of λ will be set as the

initial value for the next value of λ, known as the warm start approach. 0 was used as the

initial value when using the largest value of λ.

Notice that

∂lη
∂ηi

(η̃) = I(∆iϵi = 1)−
∑

∆kϵk=1

wi(Tk)Yi(Tk) exp(η̃i)∑n
q=1wq(Tk)Yq(Tk) exp(η̃q)

and

hi(η̃) =
∂2lη
∂η2i

(η̃)

= −
∑

∆kϵk=1

wi(Tk)Yi(Tk) exp(η̃i)
∑n

q=1wq(Tk)Yq(Tk) exp(η̃q)− [wi(Tk)Yi(Tk) exp(η̃i)]
2

[
∑n

q=1wq(Tk)Yq(Tk) exp(η̃q)]2

=
∑

∆kϵk=1

[
wi(Tk)Yi(Tk) exp(η̃i)∑n

q=1 wq(Tk)Yq(Tk) exp(η̃q)
]2 − wi(Tk)Yi(Tk) exp(η̃i)∑n

q=1 wq(Tk)Yq(Tk) exp(η̃q)
.

In the simulation study, some exp(η̃i) can get so large that R treats them as infinity. In

this case, the way that ∇lη(η̃) and h(η̃) are calculated in the code needs to be modified.

For each k s.t. ∆kϵk = 1, let η̃m = max{η̃q, q = 1, ..., n|wq(Tk)Yq(Tk) > 0}. If exp(η̃m)

is treated as finite in R, then wq(Tk)Yq(Tk) exp(η̃q) can be directly calculated for η̃q ≤ η̃m.

Otherwise, subtract a factor from this η̃m and all smaller elements of η̃. Now calculate

wq(Tk)Yq(Tk) exp(η̃q) for these η̃q. For η̃q > η̃m, wq(Tk)Yq(Tk) = 0 so wq(Tk)Yq(Tk) exp(η̃q) =
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0. Then we can calculate
∑n

q=1wq(Tk)Yq(Tk) exp(η̃q) and wi(Tk)Yi(Tk) exp(η̃i)∑n
q=1 wq(Tk)Yq(Tk) exp(η̃q)

. Since the

same factor is subtracted from each η̃q, it’s equivalent to dividing each of exp(η̃q) by the

same positive number. As this happens to both the numerator and the denominator, so they

cancel out and the value of wi(Tk)Yi(Tk) exp(η̃i)∑n
q=1 wq(Tk)Yq(Tk) exp(η̃q)

remains the same. Since R can compute

exp(709) but treats exp(710) as infinity, the factor is set to be η̃m − 709 so after subtracting

the factor η̃m becomes 709. Occasionally, although wq(Tk)Yq(Tk) exp(η̃q), q = 1, ..., n are

now all finite,
∑n

q=1wq(Tk)Yq(Tk) exp(η̃q) was treated as ∞ by R for some k. In this case,

define ratio =
∑n

q=1 wq(Tk)Yq(Tk) exp(η̃q)

10308
, since 10308 is finite in R but 10309 is treated as ∞. Then

divide each of wq(Tk)Yq(Tk) exp(η̃q), q = 1, ..., n by this ratio so that their sum after dividing

this ratio is 10308. Now wi(Tk)Yi(Tk) exp(η̃i)∑n
q=1 wq(Tk)Yq(Tk) exp(η̃q)

can be calculated.

To calculate y(η̃), H lη(η̃)
−1 needs to be calculated. In the simulation study, H lη(η̃)

often has a determinant very close to 0 so R cannot invert it. So H lη(η̃) is replaced by its

corresponding diagonal matrix. Then yi(η̃) = η̃i − 1
hi(η̃)

∂lη
∂ηi

(η̃). Realizing that yi(η̃) only

appears in hi(η̃)yi(η̃) when calculating β̂q, only hi(η̃)yi(η̃) is calculated instead of yi(η̃).

hi(η̃)yi(η̃) = hi(η̃)η̃i − ∂lη
∂ηi

(η̃).

Ten-fold cross-validation was performed to choose the optimal value of λ. After finding

the optimal value of λ, the algorithm was applied to the the entire dataset using the optimal

value with 0 as the initial value. 100 datasets were generated for each setting of sample size

and effect size.

For comparison, other competing methods were also run on 100 datasets generated under

each of the 9 settings. The method proposed in Binder et al. (2009) [8] was implemented

in the R package CoxBoost, available on GitHub. The penalty value was determined using

the “optimCoxBoostPenalty” function with minstepno set to 0 and maxstepno set to 200.

The method in Ishwaran et al. (2014) [50] is implemented in the R package randomForest-

SRC [47]. The “var.select” function was used to select variables. The “method” argument

was set to “md” and the “conservative” argument was set to “medium”. Those variables
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that had positive “vimp.event.1” were taken to be the final set of selected predictors. The

forward–backward scan algorithm in [53] is implemented in the R package fastcmprsk, avail-

able on GitHub. SCAD and MCP penalties are used. Values of a in SCAD and γ in MCP

are the same and the λ values were generated using the same method as in the proposed

algorithm. The cyclic coordinate-wise BAR algorithm is implemented in the R package psh-

BAR, available on GitHub. However, the paper did not discuss how the tuning parameters

ξn and λn should be chosen so it was not used in the simulation studies. The method in Fu,

Parikh and Zhou (2017) [35] was implemented in the R package crrp but it has been removed

from The Comprehensive R Archive Network. The method in Sun and Wang (2022) [89] is

implemented in the R package RAEN, available on GitHub. However, since this method is

not very well-established and the package’s reference manual is not clearly written, it was

not used.

The Unity cluster maintained by Arts and Sciences Technology Services and Ohio Su-

percomputer Center were used to perform all computations.

3.1.2 Results

The results are summarized in Table 3.1. In the table, n stands for sample size, |β| stands

for the absolute value of the coefficients of the 10 predictors with nonzero coefficients, PPSH

(penalized proportional subdistribution hazards model) indicates the method proposed in

this chapter, “TP” indicates the number of true positives, “FP” indicates the number of

false positives, “CV” indicates that the CV score was used as the criterion and “SGCV”

indicates that the SGCV score was used as the criterion. All the numbers were averaged

over 100 replications. The fastcmprsk package produced errors in some of the replications.

“Errors” denotes the number of replications that gave error out of the 100 replications for

fastcmprsk. The “TP” and “FP” were averaged over the rest of the replications. Note that
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the CV and SGCV scores were not used for the randomForestSRC package but its results

were also included in the same table for comparison.

Table 3.1: Mean of TP and FP over 100 replications (for fastcmprsk, runs with errors were
excluded)

n |β| Method TP(CV) FP(CV) TP(SGCV) FP(SGCV) Errors

PPSH SCAD 8.18 4.15 8.53 5.52 0

PPSH MCP 6.17 1.09 4.34 0.54 0

PPSH SICA 4.75 0.52 2.31 0.13 0

0.75 CoxBoost 9.67 34.55 9.95 66.72 0

fastcmprsk SCAD 9.76 32.94 9.96 41.55 1

fastcmprsk MCP 9.62 7.79 9.11 4.58 47

randomForestSRC 3.02 704.6 3.02 704.6 0

200 1

PPSH SCAD 8.59 1.59 9.05 2.94 0

PPSH MCP 6.52 0.47 5.69 0.44 0

PPSH SICA 5.44 0.46 4.33 0.25 0

CoxBoost 9.97 38.34 9.99 70.47 0

fastcmprsk SCAD 9.99 29.36 10 39.78 1

fastcmprsk MCP 9.96 6.75 9.16 3.29 31

randomForestSRC 3.26 734.72 3.26 734.72 0

1.25

PPSH SCAD 8.62 0.6 9.15 1.79 0

PPSH MCP 6.28 0.3 5.89 0.14 0

PPSH SICA 5.66 0.33 4.51 0.17 0

CoxBoost 9.98 41.02 10 70.44 0

fastcmprsk SCAD 10 23.15 10 34.99 0
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Table 3.1: Continued

n |β| Method TP(CV) FP(CV) TP(SGCV) FP(SGCV) Errors

fastcmprsk MCP 10 4.9 9.06 2.14 28

randomForestSRC 3.36 689.9 3.36 689.9 0

PPSH SCAD 9.17 0.66 9.87 6.04 0

PPSH MCP 7.57 0.1 8.43 0.26 0

PPSH SICA 6.82 0.14 5.01 0.11 0

0.75 CoxBoost 10 43 10 81.72 0

fastcmprsk SCAD 10 25.12 10 67.14 0

fastcmprsk MCP 10 5.29 10 13.32 18

randomForestSRC 4.2 927.98 4.2 927.98 0

PPSH SCAD 9.20 0.15 9.95 3.05 0

PPSH MCP 7.02 0.05 8.18 0.09 0

PPSH SICA 6.37 0.13 4.77 0.04 0

300 1 CoxBoost 10 44.62 10 80.52 0

fastcmprsk SCAD 10 14.32 10 59.49 0

fastcmprsk MCP 10 2.18 10 10.33 8

randomForestSRC 4.46 897.8 4.46 897.8 0

PPSH SCAD 9.10 0.07 9.94 1.38 0

PPSH MCP 7.25 0.02 7.48 0.04 0

PPSH SICA 5.55 0.03 4.39 0.05 0

1.25 CoxBoost 10 46.47 10 72.07 0

fastcmprsk SCAD 10 9.33 10 55.07 0

fastcmprsk MCP 10 1.44 9.91 7.23 6

randomForestSRC 4.63 930.63 4.63 930.63 0
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Table 3.1: Continued

n |β| Method TP(CV) FP(CV) TP(SGCV) FP(SGCV) Errors

PPSH SCAD 9.58 0.1 9.97 8.52 0

PPSH MCP 7.96 0.04 9.79 0.19 0

PPSH SICA 8.99 0.13 5.31 0.04 0

0.75 CoxBoost 10 43.36 10 88.67 0

fastcmprsk SCAD 10 16.53 10 72.19 0

fastcmprsk MCP 10 3.28 10 21.03 1

randomForestSRC 5.57 976.76 5.57 976.76 0

1

PPSH SCAD 9.58 0.09 9.99 4.08 0

PPSH MCP 7.83 0.03 9.31 0.06 0

PPSH SICA 8 0.09 4.76 0.01 0

400 CoxBoost 10 49.33 10 87.2 0

fastcmprsk SCAD 10 6.58 10 61.66 0

fastcmprsk MCP 10 1.18 10 17.39 0

randomForestSRC 5.79 1013.02 5.79 1013.02 0

PPSH SCAD 9.35 0.07 10 1.61 0

PPSH MCP 7.72 0.01 8.58 0.01 0

PPSH SICA 6.75 0.02 4.52 0.01 0

1.25 CoxBoost 10 47.16 10 87.51 0

fastcmprsk SCAD 10 3.89 10 57.79 0

fastcmprsk MCP 10 0.82 10 14.01 0

randomForestSRC 6.15 986.24 6.15 986.24 0

Boxplots are also produced of TP and FP. randomForestSRC is not included because its

large number of false positives would make the results of the other methods undistinguishable.
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Figure 3.1: Boxplot of TP when n = 200 and |β| = 0.75 using CV score

Figure 3.2: Boxplot of FP when n = 200 and |β| = 0.75 using CV score
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Figure 3.3: Boxplot of TP when n = 200 and |β| = 0.75 using SGCV score

Figure 3.4: Boxplot of FP when n = 200 and |β| = 0.75 using SGCV score

83



Figure 3.5: Boxplot of TP when n = 200 and |β| = 1 using CV score

Figure 3.6: Boxplot of FP when n = 200 and |β| = 1 using CV score
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Figure 3.7: Boxplot of TP when n = 200 and |β| = 1 using SGCV score

Figure 3.8: Boxplot of FP when n = 200 and |β| = 1 using SGCV score
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Figure 3.9: Boxplot of TP when n = 200 and |β| = 1.25 using CV score

Figure 3.10: Boxplot of FP when n = 200 and |β| = 1.25 using CV score
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Figure 3.11: Boxplot of TP when n = 200 and |β| = 1.25 using SGCV score

Figure 3.12: Boxplot of FP when n = 200 and |β| = 1.25 using SGCV score
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Figure 3.13: Boxplot of TP when n = 300 and |β| = 0.75 using CV score

Figure 3.14: Boxplot of FP when n = 300 and |β| = 0.75 using CV score
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Figure 3.15: Boxplot of TP when n = 300 and |β| = 0.75 using SGCV score

Figure 3.16: Boxplot of FP when n = 300 and |β| = 0.75 using SGCV score
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Figure 3.17: Boxplot of TP when n = 300 and |β| = 1 using CV score

Figure 3.18: Boxplot of FP when n = 300 and |β| = 1 using CV score
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Figure 3.19: Boxplot of TP when n = 300 and |β| = 1 using SGCV score

Figure 3.20: Boxplot of FP when n = 300 and |β| = 1 using SGCV score
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Figure 3.21: Boxplot of TP when n = 300 and |β| = 1.25 using CV score

Figure 3.22: Boxplot of FP when n = 300 and |β| = 1.25 using CV score
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Figure 3.23: Boxplot of TP when n = 300 and |β| = 1.25 using SGCV score

Figure 3.24: Boxplot of FP when n = 300 and |β| = 1.25 using SGCV score

93



Figure 3.25: Boxplot of TP when n = 400 and |β| = 0.75 using CV score

Figure 3.26: Boxplot of FP when n = 400 and |β| = 0.75 using CV score
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Figure 3.27: Boxplot of TP when n = 400 and |β| = 0.75 using SGCV score

Figure 3.28: Boxplot of FP when n = 400 and |β| = 0.75 using SGCV score
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Figure 3.29: Boxplot of TP when n = 400 and |β| = 1 using CV score

Figure 3.30: Boxplot of FP when n = 400 and |β| = 1 using CV score
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Figure 3.31: Boxplot of TP when n = 400 and |β| = 1 using SGCV score

Figure 3.32: Boxplot of FP when n = 400 and |β| = 1 using SGCV score
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Figure 3.33: Boxplot of TP when n = 400 and |β| = 1.25 using CV score

Figure 3.34: Boxplot of FP when n = 400 and |β| = 1.25 using CV score
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Figure 3.35: Boxplot of TP when n = 400 and |β| = 1.25 using SGCV score

Figure 3.36: Boxplot of FP when n = 400 and |β| = 1.25 using SGCV score
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We can see that using the proposed algorithm, SCAD always selects both more true

positives and more false positives, than MCP. SCAD always selects more true positives

when using the CV score as criterion and more true positives and false positives when using

the SGCV score as criterion than SICA. MCP always selects more true positives than SICA

when using the SGCV score as criterion. SCAD would select more true positives and fewer

false positives, using the CV score as criterion, as sample size increases. As effect size

increases, SCAD selects fewer false positives. MCP selects more true positives and fewer

false positives, using either CV score or SGCV score as criterion, as sample size increases.

SICA selects fewer false positives using the CV score as criterion, as effect size increases.

CoxBoost tends to select more true positives than the proposed method but at the cost of

much more false positives. randomForestSRC performs poorly at variable selection, selecting

few true positives and a rather large number of false positives. fastcmprsk has difficulty fitting

models to very high-dimensional, low signal data, especially with MCP. For those replications

where fastcmprsk could successfully run, like CoxBoost, it selects more true positives but

many more false positives too.

3.2 Application to the AML Dataset

3.2.1 Setup

The AML patients are from a nationally representative, well-phenotyped cohort whereby all

patients were enrolled onto Cancer and Leukemia Group B (CALGB) or Alliance for Clin-

ical Trials in Oncology (Alliance) clinical trials and companion studies. RNA-sequencing

assays were performed through The Ohio State University Comprehensive Cancer Center’s

Genomics Shared Resource, which used ribosomal RNA-depleted RNA-seq protocols to cap-

ture RNA transcripts independent of polyadenylation status. Quality of total RNA was

100



assessed on an Agilent 2100 Bioanalyzer (BioA) using the RNA 6000 Nanochip and quantity

was assessed on a Qubit 2.0 Fluorometer (Agilent Technologies, Santa Clara, CA) using

the RNA HS Assay Kit. Samples with an RNA Integrity Number (RIN) greater than four,

with no visible sign of genomic DNA (gDNA) contamination and a concentration of > 40

ng/L were used for total RNA library generation. RNA-seq libraries were prepared using the

Illumina TruSeq Stranded Total RNA Sample Prep Kit with RiboZero Gold (#RS1222201)

according to the manufacturer’s instructions. Sequencing was performed with the Illumina

HiSeq 2500 system using the HiSeq version 3 sequencing reagents to an approximate cluster

density of 800,000/mm2. Image analysis, base calling, error estimation, and quality thresh-

olds were performed using the HiSeq Controller Software (version 2.2.38) and the Real Time

Analyzer software (version 1.18.64). Martin (2011) [72] was used for adapter trimming and

FastQC was used for quality control of the FASTQ files. After removing reads that aligned

to repeats, mitochondria, rRNAs, and other sequences that are not of interest, paired-end

reads were aligned to the human genome (GENECODE ver22) using STAR for aligning the

short reads [21]. Thereafter, Htseq was used to quantify mRNA expression [4]. Data were

then voom normalized and log2 transformed [62].

Variables used as predictors included sex, white blood cell count (wbc), hemoglobin,

platelet count, percent of blasts in bone marrow (bmblasts), percent of blasts in peripheral

blood (pbblasts), age at complete remission, cytogenetic group (cyto group), mutation sta-

tus of ASXL1, mutation status of BCOR, indicator of whether there is a double mutation

in CEBPα (cebpa double), mutation status of DNMT3A anywhere but the R882 position

(DNMT3A nonR882), mutation status of DNMT3A in the R882 position (DNMT3A R882),

indicator of presence of FLT3-internal tandem duplication (FLT3-ITD), mutation status of

FLT3-TKD, mutation status of GATA2, mutation status of IDH1, mutation status of IDH2,

mutation status of NPM1, mutation status of NRAS, mutation status of PTPN11, mutation

status of RUNX1, mutation status of SRSF2, mutation status of TET2, mutation status
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of TP53, mutation status of WT1 and 35226 mRNA expression variables. Race was not

used because it has so many levels with many having too few patients included. European

LeukemiaNet prognostic group membership based on [23] was not used because it is not

a primary measure on the patients, rather it is derived using cytogenetic and the selected

mutation data. For categorical variables, the most frequently observed category serves as the

reference. 583 patients achieved complete remission out of 816 patients. There were three

patients who relapsed but their relapse dates were not recorded so they were not included in

the analysis. Thus 580 patients were included in the subsequent analysis. Among them, 348

patients relapsed, 57 patients died without relapse, and 175 patients were lost to follow-up

without relapse or death. The baseline characteristics of these 580 patients are summarized

in Table 3.2. “Overall” denotes the number of patients in each level and its percentage for a

categorical variable, and mean and standard deviation for a continuous variable. “Missing”

denotes the percentage of missing values.

Table 3.2: Summary of baseline characteristics of the patients who achieved complete remis-
sion

level Overall Missing

n 580

cyto group (%) 2 unbalanced rearrangements 24 ( 4.1) 0

complex 32 ( 5.5)

inv(16) 65 (11.2)

inv(3) 0 ( 0.0)

normal 292 (50.3)

other 11q23 14 ( 2.4)

other balanced rearrangements 6 ( 1.0)
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Table 3.2: Continued

level Overall Missing

other possible similar to inv(3) 2 ( 0.3)

other sole deletions 7 ( 1.2)

other sole trisomies and monosomies 7 ( 1.2)

other translocaton and inversions 18 ( 3.1)

other unbalanced 5 ( 0.9)

sole deletion/loss 20q 1 ( 0.2)

sole deletion/loss 5q 3 ( 0.5)

sole deletion/loss 7q 5 ( 0.9)

sole deletion/loss 9q 6 ( 1.0)

sole loss of Y 5 ( 0.9)

sole monosomy 7 7 ( 1.2)

sole trisomy 11 2 ( 0.3)

sole trisomy 13 3 ( 0.5)

sole trisomy 21 3 ( 0.5)

sole trisomy 4 2 ( 0.3)

sole trisomy 8 20 ( 3.4)

t(6;9) 1 ( 0.2)

t(8;21) 33 ( 5.7)

t(9;11) 16 ( 2.8)

t(9;22) 1 ( 0.2)

Sex (%) Female 249 (42.9) 0

Male 331 (57.1)

bmblasts (mean (SD)) 63.15 (20.29) 0.2
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Table 3.2: Continued

level Overall Missing

pbblasts (mean (SD)) 51.46 (28.06) 0.7

wbc (mean (SD)) 43.40 (52.34) 1.2

platelet (mean (SD)) 74.05 (65.48) 1.6

ASXL1 (%) No 544 (93.8) 1.6

Yes 27 ( 4.7)

<NA> 9 ( 1.6)

BCOR (%) No 550 (94.8) 1.6

Yes 21 ( 3.6)

<NA> 9 ( 1.6)

DNMT3A nonR882 (%) No 530 (91.4) 1.6

Yes 41 ( 7.1)

<NA> 9 ( 1.6)

DNMT3A R882 (%) No 466 (80.3) 1.6

Yes 105 (18.1)

<NA> 9 ( 1.6)

GATA2 (%) No 536 (92.4) 1.6

Yes 35 ( 6.0)

<NA> 9 ( 1.6)

IDH1 (%) No 533 (91.9) 1.6

Yes 38 ( 6.6)

<NA> 9 ( 1.6)

IDH2 (%) No 522 (90.0) 1.6

Yes 49 ( 8.4)
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Table 3.2: Continued

level Overall Missing

<NA> 9 ( 1.6)

NRAS (%) No 477 (82.2) 1.6

Yes 94 (16.2)

<NA> 9 ( 1.6)

PTPN11 (%) No 528 (91.0) 1.6

Yes 43 ( 7.4)

<NA> 9 ( 1.6)

RUNX1 (%) No 530 (91.4) 1.6

Yes 41 ( 7.1)

<NA> 9 ( 1.6)

TET2 (%) No 512 (88.3) 1.6

Yes 59 (10.2)

<NA> 9 ( 1.6)

TP53 (%) No 549 (94.7) 1.6

Yes 22 ( 3.8)

<NA> 9 ( 1.6)

WT1 (%) No 532 (91.7) 1.6

Yes 39 ( 6.7)

<NA> 9 ( 1.6)

NPM1 (%) No 343 (59.1) 1.7

Yes 227 (39.1)

<NA> 10 ( 1.7)

SRSF2 (%) No 543 (93.6) 2.2
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Table 3.2: Continued

level Overall Missing

Yes 24 ( 4.1)

<NA> 13 ( 2.2)

hglobin (mean (SD)) 9.36 (2.03) 2.8

FLT3.TKD (%) No 513 (88.4) 2.8

Yes 51 ( 8.8)

<NA> 16 ( 2.8)

FLT3.ITD (%) No 435 (75.0) 3.3

Yes 126 (21.7)

<NA> 19 ( 3.3)

cebpa double (%) No 387 (66.7) 23.8

Yes 55 ( 9.5)

<NA> 138 (23.8)

age (mean (SD)) 46.26 (13.67) 0

The histogram of correlations between the mRNA expression variables is plotted in Figure

3.37.

The cumulative incidence functions of relapse and death without relapsed are estimated

and plotted using the cmprsk package, shown in Figure 3.38.

The mRNA expression data are complete but there are some missing values in some of the

other variables thus we need to impute them first. The VIM package could not be installed

on Unity or Ohio Supercomputer Center. The mice package can run on low-dimensional

data but gives an error on our high-dimensional data. The rMIDAS package could not be

installed on Unity and though it could be installed it gave an error when running on Ohio
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Supercomputer Center. The only available R package that can handle our high-dimensional

data is the missForest package so it was used to impute the missing data. The “mtry”

argument, the number of variables randomly sampled at each split, was set to 100 per the

package’s recommendation and all the other arguments were set to the default values, in the

“missForest” function. Thirty copies of imputed datasets were obtained from running the

function.

Categorical variables were transformed into dummy variables using the R package fastDum-

mies. The maximum values of λ for SCAD and MCP were set using the same formula used in

the simulation study. The maximum values of λ for SICA was set to be 0.05. The minimum

value of λ was set to be 0.5× the maximum λ for SCAD, 0.4× the maximum λ for MCP and

0.2× the maximum λ for SICA. 100 candidate values of λ were used and generated in the

same way as in the simulation study. 10-fold cross-validation was performed to choose the

optimal value of λ. Different folds were used in the cross-validation for each of the 30 copies

of imputed datasets but the same 10 folds were used for each of the three penalty functions

in each dataset.

Mathematically, hi(η̃) < 0, i = 1, ..., n but when running my code on the AML dataset, when

λ gets smaller, the range of β̃q, q = 1, ..., p gets larger and some values of η̃i, i = 1, ..., n can

get very large. Then wi(Tk)Yi(Tk) exp(η̃i)∑n
q=1 wq(Tk)Yq(Tk) exp(η̃q)

gets very close to 1 or 0 for each k s.t. ∆kϵk = 1.

Then [ wi(Tk)Yi(Tk) exp(η̃i)∑n
q=1 wq(Tk)Yq(Tk) exp(η̃q)

]2 − wi(Tk)Yi(Tk) exp(η̃i)∑n
q=1 wq(Tk)Yq(Tk) exp(η̃q)

gets very close to 0. Hence hi(η̃) gets

very close to 0. Sometimes, unfortunately, hi(η̃) is too close to 0 that R treats it as 0.

Occasionally, even more unfortunately, all hi(η̃), i = 1, ..., n might be treated as 0 by R.
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This happened to MCP on most of the 30 imputed datasets but not to SCAD or SICA.

f(β) =
1

2

n∑
i=1

hi(η̃)[y
2
i (η̃)− 2yi(η̃)z

T
i β + (zTi β)

2]− n

p∑
q=1

p(βq)

=
1

2
[

n∑
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hi(η̃)y
2
i (η̃)− 2

n∑
i=1

hi(η̃)yi(η̃)z
T
i β +

n∑
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hi(η̃)(z
T
i β)

2]− n

p∑
q=1

p(βq)

Fix βk, k ̸= q,

fq(βq) =
1

2
[

n∑
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hi(η̃)y
2
i (η̃)− 2

n∑
i=1

hi(η̃)yi(η̃)
∑
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zikβk − 2
n∑

i=1

hi(η̃)yi(η̃)ziqβq

+
n∑
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hi(η̃)(z
T
i β)

2]− n

p∑
k=1

p(βk)

= −[
n∑

i=1

hi(η̃)yi(η̃)ziq]βq +
1

2

n∑
i=1

hi(η̃)(z
T
i β)

2 − np(βq) + c,

where c does not depend on βq. When hi(η̃), i = 1, ...n are treated as 0 by R,

fq(βq) = −[
n∑

i=1

hi(η̃)yi(η̃)ziq]βq − np(βq) + c.

Remember that only hi(η̃)yi(η̃) = hi(η̃)η̃i− ∂lη
∂ηi

(η̃) is calculated so even if hi(η̃) is treated as 0

in R, hi(η̃)yi(η̃) may not necessarily equal 0. If
∑n

i=1 hi(η̃)yi(η̃)ziq = 0, fq(βq) is maximized

when βq = 0. Otherwise fq(βq) doesn’t have a maximum point because [
∑n

i=1 hi(η̃)yi(η̃)ziq]βq

can go to ∞ when βq goes to ∞ and p(βq) is bounded for SCAD, MCP and SICA so fq(βq)

can go to ∞ when βq goes to ∞.

To address this issue, the algorithm was rerun without using the warm start approach.

Instead, 0 is used as the initial value for each value of λ. This issue was then avoided in

most cases but in a few cases this still happened, in which case the algorithm was terminated

and the current value of β̃ was used as the estimate of β̂ for the current value of λ. The
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resulting η̂ usually included large elements treated as ∞ by R so the way l(β̂) is calculated

also required modification. Note l(β̂) = lη(η̂), where η̂ = Zβ̂. For i s.t. ∆iϵi = 1, let

η̂m = max{η̂q, q = 1, ..., n|wq(Ti)Yq(Ti) > 0}. If exp(η̂m) is treated as finite in R, then

wq(Ti)Yq(Ti) exp(η̂q) can be directly calculated for η̂q ≤ η̂m. Otherwise, calculate

(η̂i − factor)− log[
n∑

q=1

wq(Ti)Yq(Ti) exp(η̂q − factor)]

= (η̂i − factor)− log[
n∑

q=1

wq(Ti)Yq(Ti) exp(η̂q)/ exp(factor)]

= (η̂i − factor)− {log[
n∑

q=1

wq(Ti)Yq(Ti) exp(η̂q)]− factor}

= η̂i − log[
n∑

q=1

wq(Ti)Yq(Ti) exp(η̂q)].

where factor is chosen to be η̂m − 709. For η̂q > η̂m, wq(Ti)Yq(Ti) exp(η̂q) = 0.

3.2.2 Results

The predictors that were at least selected once and their number of times of being selected

using SICA, MCP and SCAD are listed in Tables 3.4-3.6, respectively. Times CV denotes

the number of times being selected using the CV score as the criterion in cross-validation and

Times SGCV denotes it when using the SGCV score as the criterion. “cyto group complex”

is a dummy variable created from the categorical variable “cyto group”. The reference

category is “normal”.

Table 3.3: Number of times predictors selected using SICA on 30 imputed datasets

Predictor Times CV Times SGCV
SCN9A 12 0

ENSG00000223528 11 0
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Figure 3.37: Histogram of correlations between mRNA expression variables
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Figure 3.38: Estimated cumulative incidence functions
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Table 3.4: Number of times predictors selected using MCP on 30 imputed datasets

Predictor Times CV Times SGCV

ENSG00000233451 29 21

ENSG00000271857 16 9

ENSG00000248347 14 11

ENSG00000223528 12 12

RPS3AP41 12 4

CD109 11 9

PTMAP5 10 13

SCN9A 10 10

SSPN 9 3

RPS2P21 8 3

LINC01770 7 4

ALDH2 7 2

LINC01979 5 3

GARRE1 4 1

EGFEM1P 3 4

RN7SKP32 3 1

PLCB4 2 4

HOPX 2 1

GAS6 2 1

SDHAP3 1 3

PTMAP3 1 3

ENSG00000262172 1 3
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Table 3.4: Continued

DDX19B 1 2

CLIC4 1 2

CALCRL 1 1

CIBAR1 1 1

PTMAP4 1 1

SPAG6 1 0

KIF1A 1 0

IL2RA 1 0

CIBAR1P1 1 0

CENPV 1 0

FRG2C 1 0

CD34 1 0

PTMAP9 1 0

ENSG00000228201 1 0

EIF5AL1 1 0

LINC02421 1 0

LINC01415 1 0

ENSG00000255232 0 3

EREG 0 2

C1QL1 0 2

ZNF355P 0 2

INSYN2A 0 2

LINC00676 0 2

PCDHGC5 0 2
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Table 3.4: Continued

CCDC179 0 2

MADCAM1-AS1 0 2

LINC02080 0 2

NXF2 0 2

ENSG00000279024 0 2

LINC02359 0 2

cyto group complex 0 2

WT1 0 2

APOL4 0 1

FOXP2 0 1

ITGB4 0 1

MIP 0 1

THRB 0 1

IRX1 0 1

PLEKHD1 0 1

TIMM22 0 1

PPP1R42 0 1

SAGE1 0 1

OR1J2 0 1

ENSG00000203334 0 1

SNORD51 0 1

GPR166P 0 1

C10orf55 0 1

LOC112268293 0 1
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Table 3.4: Continued

PSMD2P1 0 1

CCT5P2 0 1

LOC101927143 0 1

ZNRF3-IT1 0 1

OLMALINC 0 1

RPL36AP26 0 1

ENSG00000237301 0 1

RNU7-169P 0 1

ENSG00000242795 0 1

RPSAP3 0 1

ENSG00000243744 0 1

RPS24P17 0 1

SCARF2 0 1

TARS1-DT 0 1

ENSG00000251293 0 1

ENSG00000274303 0 1

IGHV2-70 0 1

ENSG00000275216 0 1

GXYLT1P5 0 1

Table 3.5: Number of times predictors selected using SCAD on 30 imputed datasets

Predictor Times CV Times SGCV

GARRE1 30 30
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Table 3.5: Continued

RPS2P21 30 30

ENSG00000233451 30 30

RPS3AP41 30 30

ENSG00000271857 30 28

SSPN 28 26

CD109 28 26

SDHAP3 27 28

ENSG00000262172 27 28

SCN9A 27 24

ENSG00000248347 25 26

ENSG00000223528 24 17

ENSG00000228303 23 27

ENSG00000275216 23 26

CLIC4 21 25

ALDH2 21 16

PTMAP5 21 13

C1QL1 19 28

LINC01979 19 17

TUBB2BP1 18 23

GAS6 17 16

LINC01770 16 11

HOPX 14 16

TMEM217 14 8

PLCB4 13 13
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Table 3.5: Continued

KIF1A 12 18

cyto group complex 12 16

CENPV 12 10

STAR 11 10

PTMAP3 10 17

LINC00676 10 17

CLEC3B 10 15

ENSG00000228201 10 13

MSLN 10 9

CYCSP23 9 12

EGFEM1P 9 10

IL2RA 9 9

ZNF355P 8 22

DDX19B 8 9

LINC01415 8 6

ENSG00000229664 7 14

MADCAM1-AS1 7 11

ENSG00000251293 7 9

ENSG00000251467 7 7

ENSG00000261346 7 5

CASP10 6 14

RBM3 5 10

MPZ 5 9

MIR155HG 5 8
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Table 3.5: Continued

RN7SKP32 5 5

CIBAR1P1 5 3

TPM3P1 5 3

INTS6-AS1 5 2

OLMALINC 4 4

DDIT4 4 3

HSPE1P22 4 3

VSTM4 3 10

ENSG00000243744 3 9

PTMAP4 3 6

PTMAP9 3 5

CD82 2 2

TRIM9 2 7

APOL4 1 5

PTMAP12 2 4

CIBAR1 2 2

TMEM273 2 1

PTMA 2 0

EREG 1 7

DOCK1 1 7

SDCBP2 1 3

ENSG00000242951 1 3

INSYN2A 1 2

MIR1244-3 1 2
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Table 3.5: Continued

CALCRL 1 1

SMAD5 1 1

GAPDHP59 1 1

C10orf55 0 6

IL17RE 0 3

PSG2 0 3

PSMC1P9 0 3

LINC01978 0 3

ST7/ST7-OT3 0 2

CCDC68 0 2

ACTBP11 0 2

C10orf105 0 2

ZNF460-AS1 0 2

LINC02359 0 2

RBM23 0 1

THG1L 0 1

ENPP2 0 1

CD34 0 1

DMRTC1B 0 1

PTMAP2 0 1

CHP1P1 0 1

HNRNPA1P55 0 1

RAC1P2 0 1

EIF5AL1 0 1
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Table 3.5: Continued

PRORP 0 1

ENSG00000271882 0 1

PACERR 0 1

FLT3.ITD 0 1

We can see that SCAD selects the most predictors while SICA selects the fewest predic-

tors.

For comparison, the proposed method and other competing methods were also applied to

the complete dataset, containing only those patients who had no missing value on any of the

predictors. The randomForestSRC package can be downloaded on the Ohio Supercomputer

Center but not on Unity. But the AML data can’t be loaded on the Ohio Supercomputer

Center so it was not used. The fastcmprsk package did not select any predictor, using either

MCP or SCAD as the penalty function under either the CV or SGCV score as criterion.

The proposed method selected 4, 8, 21 predictors, using SICA, MCP and SCAD, respec-

tively, under the CV criterion, and 1, 4 and 19 predictors, using SICA, MCP and SCAD,

respectively, under the SGCV criterion. The CoxBoost package selected 58 predictors under

the CV criterion, including all predictors selected by the proposed method using SICA, and

6 and 18 predictors selected by MCP and SCAD, respectively. It selected 90 predictors

under the SGCV criterion, including all predictors selected by the proposed method using

SICA and MCP, and 17 predictors selected by SCAD. The Venn diagrams of the predictors

selected by the proposed method using SCAD and CoxBoost, under the CV and SGCV

criteria, respectively were plotted in Figures 3.39-3.40.

120



Figure 3.39: Venn diagram of the predictors selected by the proposed method using SCAD
and CoxBoost under the CV criterion

Figure 3.40: Venn diagram of the predictors selected by the proposed method using SCAD
and CoxBoost under the SGCV criterion
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To evaluate the predictive performance of the methods, the complete dataset was randomly

partitioned into two parts of roughly equal sizes. One of them was used as the training

data, on which each of the methods was applied, while the other was the testing data. The

fastcmprsk package gave error using SCAD and did not select any predictor using MCP

under either the CV or SGCV score. Our proposed method did not select any predictor

using SICA under either the CV or SGCV score. Then the probabilities of having relapsed

by 3 and 5 years since complete remission were predicted for each patient in the testing

data, respectively. The cumulative baseline subdistribution hazard function was estimated

using the recommended formula in Fine and Gray (1999) [32]. Then the performance of the

predictions was compared using Area Under the ROC Curve (AUC) and the expected Brier

score (BS) proposed by Blanche et al. (2015) [9], implemented in the riskRegression package

[39]. The results are summarized in Table 3.6.

Table 3.6: AUC and BS for each method at 3 and 5 years on the testing data

Method AUC (3 years) BS (3 years) AUC (5 years) BS (5 years)
fastcmprsk MCP 0.5 0.244 0.5 0.241
PPSH SICA 0.5 0.244 0.5 0.241

PPSH MCP CV 0.577 0.257 0.593 0.255
PPSH MCP SGCV 0.577 0.269 0.593 0.26
PPSH SCAD CV 0.645 0.237 0.653 0.233

PPSH SCAD SGCV 0.645 0.237 0.653 0.233
CoxBoost CV 0.653 0.235 0.667 0.23

CoxBoost SGCV 0.671 0.267 0.675 0.266

The prediction is more accurate if the AUC score is higher and the BS score is lower. The

CoxBoost package under the SGCV score gave the highest AUC scores of 0.671 and 0.675

for 3 and 5 years, respectively, while the fastcmprsk package using MCP and our proposed

method using SICA, which did not use any predictor thus predicted the same probability for
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each patient, gave the lowest AUC score of 0.5. The CoxBoost package under the CV score

gave the lowest BS scores of 0.235 and 0.23 for 3 and 5 years, respectively. Our proposed

method using MCP under the SGCV score gave the highest BS score of 0.269 at 3 years and

the CoxBoost package under the SGCV score gave the highest BS score of 0.266 at 5 years.

Note that the null model, which used the Aalen-Johansen estimator [1] for all patients, gave

BS scores of 0.243 and 0.24 for 3 and 5 years, respectively.

3.3 Discussion

SCAD, MCP and SICA all require the specification of a tuning parameter other than λ.

How to properly choose the values of these tuning parameters deserves further research. The

result is influenced by the choice of initial value for the parameter vector β, β0. Setting β0

to be a vector other than 0 might select more predictors. The choice of the optimal value of

λ highly depends on the folds used in the cross-validation. To get more convincing results,

multiple runs of the algorithm using different folds might be necessary. When λ gets small,

β̃ and η̃ could have very wide ranges, causing trouble to the coordinate ascent algorithm.

How to deal with very large magnitudes of β̃ might be worth more consideration.
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Chapter 4: Variable Selection for High-dimensional

Competing Risk Data With Missing Data

When there are missing values in the data and multiple complete datasets are obtained from

imputation, the same method may not select the same set of predictors when applied to each

complete dataset. However, it is usually desirable to select a single set of predictors from all

the imputed datasets.

Let m represent the number of imputed datasets. Let ld(β) be the log-partial likelihood

function defined on the d-th imputed dataset. We propose to maximize
∑m

d=1 ld(β) −

mn
∑p

q=1 p(βq) to select predictors. For the d-th imputed dataset Zd, define η̃d = Zdβ̃.

ld(β) can be approximated by 1
2

∑n
i=1 hi(η̃d)[yi(η̃d) − zTdiβ]

2 + Cd(β̃, η̃d), where Cd(β̃, η̃d)

is a function of β̃ and η̃d. So maximizing
∑m

d=1 ld(β) − mn
∑p

q=1 p(βq) is approximately

equivalent to maximizing fm(β) :=
1
2

∑m
d=1

∑n
i=1 hi(η̃d)[yi(η̃d)− zTdiβ]

2 −mn
∑p

q=1 p(βq).

Similarly, the coordinate ascent algorithm will be used to maximize fm(β). We take the

partial derivative of fm(β) with respect to βq

∂fm(β)

∂βq

= −
m∑
d=1

n∑
i=1

zdiqhi(η̃d)[yi(η̃d)− zTdiβ]−mnp′(βq)
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For SCAD

∂fm(β)

∂βq

=



−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ], βq < −aλ

−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ] +

mn(aλ+βq)

a−1
, −aλ ≤ βq < −λ

−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ] +mnλ, −λ ≤ βq < 0

−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ]−mnλ, 0 < βq ≤ λ

−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ]−

mn(aλ−βq)

a−1
, λ < βq ≤ aλ

−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ], βq > aλ

Set ∂fm(β)
∂βq

= 0 and solve for βq while fixing βk, k ̸= q gives

β̂q =



∑m
d=1

∑n
i=1 hi(η̃d)zdiq [yi(η̃d)−

∑
k ̸=q zdikβk]∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq

, βq < −aλ

(a−1)
∑m

d=1

∑n
i=1 hi(η̃d)zdiq [yi(η̃d)−

∑
k ̸=q zdikβk]−mnaλ

(a−1)
∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq+mn

, −aλ ≤ βq < −λ

∑m
d=1

∑n
i=1 hi(η̃d)zdiq [yi(η̃d)−

∑
k ̸=q zdikβk]−mnλ∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq

, −λ ≤ βq < 0

∑m
d=1

∑n
i=1 hi(η̃d)zdiq [yi(η̃d)−

∑
k ̸=q zdikβk]+mnλ∑m

d=1

∑n
i=1 hi(η̃d)z

2
dij

, 0 < βq ≤ λ

(a−1)
∑m

d=1

∑n
i=1 hi(η̃d)zdiq [yi(η̃d)−

∑
k ̸=q zdikβk]+mnaλ

(a−1)
∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq+mn

, λ < βq ≤ aλ

∑m
d=1

∑n
i=1 hi(η̃d)zdiq [yi(η̃d)−

∑
k ̸=q zdikβk]∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq

, βj > aλ
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If there is at least one local maximum point in (−∞, 0) ∪ (0,∞), the second-order partial

derivative is checked

∂2fm(β)

∂β2
q

=



∑m
d=1

∑n
i=1 z

2
diqhi(η̃d), βq < −aλ∑m

d=1

∑n
i=1 z

2
diqhi(η̃d) +

mn
a−1

, −aλ ≤ βq < −λ∑m
d=1

∑n
i=1 z

2
diqhi(η̃d), −λ ≤ βq < 0∑m

d=1

∑n
i=1 z

2
diqhi(η̃d), 0 < βq ≤ λ∑m

d=1

∑n
i=1 z

2
diqhi(η̃d) +

mn
a−1

, λ < βq ≤ aλ∑m
d=1

∑n
i=1 z

2
diqhi(η̃d), βq > aλ

If ∂2fm(β)
∂β2

q
|β̂q

< 0, then β̂q is a local maximum point.

Define fmq(βq) = fm(β) given fixed βk, k ̸= q. fmq(βq) is not differentiable at 0 but is left

and right differentiable at 0. If its left derivative at 0 ∂−fmq(0) > 0, and its right derivative

at 0 ∂+fmq(0) < 0, then 0 is a local maximum point.

∂−fmq(0) = lim
βq→0−

1

βq

({1
2

m∑
d=1

n∑
i=1

hi(η̃d)[yi(η̃d)−
∑
k ̸=q

zdikβk − zdiqβq]
2 −mn

p∑
k=1

p(βk)}

− {1
2

m∑
d=1

n∑
i=1

hi(η̃d)[yi(η̃d)−
∑
k ̸=q

zdikβk]
2 −mn

∑
k ̸=q

p(βk)−mnp(0)})

= lim
βq→0−

1

βq

[(
1

2

m∑
d=1

n∑
i=1

hi(η̃d){[yi(η̃d)−
∑
k ̸=q

zdikβk]
2 − 2zdiqβq[yi(η̃d)−

∑
k ̸=q

zdikβk]

+ (zdiqβq)
2} −mnp(βq))− {1

2

m∑
d=1

n∑
i=1

hi(η̃d)[yi(η̃d)−
∑
k ̸=q

zdikβk]
2}]

= lim
βq→0−

1

2

m∑
d=1

n∑
i=1

hi(η̃d){−2zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk] + z2diqβq} −
mnp(βq)

βq

= −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk]−mn lim
βq→0−

p(βq)

βq

.
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Similarly, ∂+fmq(0) = −
∑m

d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk]−mn limβq→0+

p(βq)

βq
.

For SCAD,

∂−fmq(0) = −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk]−mn lim
βq→0−

−λβq

βq

= −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk] +mnλ

∂+fmq(0) = −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
l ̸=q

zdilβl]−mn lim
βq→0+

λβq

βq

= −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
l ̸=q

zdikβl]−mnλ

So if −
∑m

d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk] +mnλ > 0 and

−
∑m

d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk]−mnλ < 0, or

|
∑m

d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk]| < mnλ, 0 is a local maximum point.

For MCP,

∂fm(β)

∂βq

=



−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ], βq < −γλ

−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ] +mnλ(1 + βq

γλ
), −γλ ≤ βq < 0

−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ]−mnλ(1− βq

γλ
), 0 < βq ≤ γλ

−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ], βq > γλ
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β̂q =



∑m
d=1

∑n
i=1 hi(η̃d)zdiq [yi(η̃d)−

∑
k ̸=q zdikβk]∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq

, βq < −γλ

γ{
∑m

d=1

∑n
i=1 hi(η̃d)zdiq [yi(η̃d)−

∑
k ̸=q zdikβk]−mnλ}

γ
∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq+mn

−γλ ≤ βq < 0

γ{
∑m

d=1

∑n
i=1 hi(η̃d)zdiq [yi(η̃d)−

∑
k ̸=q zdikβk]+mnλ}

γ
∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq+mn

, 0 < βq ≤ γλ

∑m
d=1

∑n
i=1 hi(η̃d)zdiq [yi(η̃d)−

∑
k ̸=q zdikβk]∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq

, βq > γλ

If there is at least one local maximum point in (−∞, 0) ∪ (0,∞), check the second-order

partial derivative

∂2fm(β)

∂β2
q

=



∑m
d=1

∑n
i=1 z

2
diqhi(η̃d), βq < −γλ∑m

d=1

∑n
i=1 z

2
diqhi(η̃d) +

mn
γ
, −γλ ≤ βq < 0∑m

d=1

∑n
i=1 z

2
diqhi(η̃d) +

mn
γ
, 0 < βq < γλ∑m

d=1

∑n
i=1 z

2
diqhi(η̃d), βq ≥ γλ

If ∂2fm(β)
∂β2

q
|β̂q

< 0, then β̂q is a local maximum point.

∂−fmq(0) = −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk]−mn lim
βq→0−

−λ(βq +
β2
q

2γλ
)

βq

= −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk] +mnλ

∂+fmq(0) = −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk]−mn lim
βq→0+

λ(βq −
β2
q

2γλ
)

βq

= −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk]−mnλ

So if |
∑m

d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk]| < mnλ, 0 is a local maximum point.
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For SICA,

∂fm(β)

∂βq

=


−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ] +

mnλa(a+1)
(a−βq)2

, βq < 0

−
∑m

d=1

∑n
i=1 zdiqhi(η̃d)[yi(η̃d)− zTdiβ]−

mnλa(a+1)
(a+βq)2

, βq > 0

β̂q is the solution to



[
∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq]β

3
q − {2a

∑m
d=1

∑n
i=1 hi(η̃d)z

2
diq+∑m

d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk]}β2

q+

{a2
∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq + 2a

∑m
d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk]}βq− βq < 0

a2
∑m

d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk] +mnλa(a+ 1) = 0,

[
∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq]β

3
q + {2a

∑m
d=1

∑n
i=1 hi(η̃d)z

2
diq−∑n

i=1 hi(η̃d)zdiq[yi(η̃d)−
∑

k ̸=q zdikβk]}β2
q βq > 0

+{a2
∑m

d=1

∑n
i=1 hi(η̃d)z

2
diq − 2a

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk]}βq

−{a2
∑m

d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk] +mnλa(a+ 1)} = 0.

If there is at least one local maximum point in (−∞, 0) ∪ (0,∞), check the second-order

partial derivative

∂2fm(β)

∂β2
q

=


∑m

d=1

∑n
i=1 z

2
diqhi(η̃d) +

2mnλa(a+1)
(a−β)3

, βq < 0∑m
d=1

∑n
i=1 z

2
diqhi(η̃d) +

2mnλa(a+1)
(a+β)3

, βq > 0
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If ∂2fm(β)
∂β2

q
|β̂q

< 0, then β̂q is a local maximum point.

∂−fmq(0) = −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk]−mn lim
βq→0−

−λ(a+1)βq

a−βq

βq

= −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk] +
mnλ(a+ 1)

a

∂+fmq(0) = −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk]−mn lim
βq→0−

λ(a+1)βq

a+βq

βq

= −
m∑
d=1

n∑
i=1

hi(η̃d)zdiq[yi(η̃d)−
∑
k ̸=q

zdikβk]−
mnλ(a+ 1)

a

So if −
∑m

d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk] +

mnλ(a+1)
a

> 0 and

−
∑m

d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk]− mnλ(a+1)

a
< 0 or

|
∑m

d=1

∑n
i=1 hi(η̃d)zdiq[yi(η̃d)−

∑
k ̸=q zdikβk]| < mnλ(a+1)

a
, 0 is a local maximum point.
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Chapter 5: Simulation Study and Application to the

AML Dataset

5.1 Simulation Study

5.1.1 Setup

Simulations were conducted following the same setting in Chapter 3. Missing values were

generated in the design matrix with probability of missing set to 1% and 10%, respectively.

10 imputed datasets were generated for each dataset using the MissForest package. For

each imputed dataset, each covariate was standardized to have mean 0 and variance 1. The

maximum number of iterations in the algorithm was set to 100 due to time constraints.

100 replications were used in each scenario. Again, a value that would make the algo-

rithm select none of the predictors given β0 = 0 was used as the largest value of λ. That

means 0 is the global maximum point of fmq(βq) for any q = 1, ..., p given βk = 0, k ̸= q.

ηd,0 = Zdβ0 = 0. For SCAD and MCP, that means |
∑m

d=1

∑n
i=1 hi(0)zdiqyi(0)| < mnλ. So

|
∑m

d=1

∑n
i=1 hi(0)zdiqyi(0)|

mn
was used as the largest value. For SICA, the same values of λ were

used as in Chapter 3.
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5.1.2 Results

The simulation results are summaried in the following Tables 5.1-5.27. The results from

Chapter 3 without missing values are also included for comparison. Boxplots are also pro-

vided for TP and FP.

Table 5.1: Mean of TP and FP using SCAD over 100 replications when n = 200 and |β|=0.75
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 8.18 4.15 8.53 5.52
1% 8.28 4.11 8.34 5.84
10% 7.05 6.74 7.7 9.65

Table 5.2: Mean of TP and FP using SCAD over 100 replications when n = 200 and |β|=1
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 8.59 1.59 9.05 2.94
1% 8.53 1.6 8.87 2.99
10% 7.94 4.3 7.98 5.42

Table 5.3: Mean of TP and FP using SCAD over 100 replications when n = 200 and |β|=1.25
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 8.62 0.6 9.15 1.79
1% 8.57 0.85 9.05 1.9
10% 8.31 2.83 8.35 4.11
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Table 5.4: Mean of TP and FP using SCAD over 100 replications when n = 300 and |β|=0.75
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 9.17 0.66 9.87 6.04
1% 9.24 0.54 9.9 5.8
10% 9.35 2.58 9.73 7.91

Table 5.5: Mean of TP and FP using SCAD over 100 replications when n = 300 and |β|=1
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 9.2 0.15 9.95 3.05
1% 9.33 0.2 9.95 2.77
10% 9.24 0.58 9.79 5.13

Table 5.6: Mean of TP and FP using SCAD over 100 replications when n = 300 and |β|=1.25
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 9.1 0.07 9.94 1.38
1% 9.19 0.12 9.93 1.54
10% 9.2 0.31 9.88 3.88

Table 5.7: Mean of TP and FP using SCAD over 100 replications when n = 400 and |β|=0.75
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 9.58 0.1 9.97 8.52
1% 9.62 0.15 10 8.16
10% 9.71 0.63 9.97 11.72
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Table 5.8: Mean of TP and FP using SCAD over 100 replications when n = 400 and |β|=1
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 9.58 0.09 9.99 4.08
1% 9.63 0.1 10 4.54
10% 9.59 0.12 9.96 7.38

Table 5.9: Mean of TP and FP using SCAD over 100 replications when n = 400 and |β|=1.25
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 9.35 0.07 10 1.61
1% 9.62 0.04 9.99 2.51
10% 9.45 0.1 9.96 5.22

Table 5.10: Mean of TP and FP using MCP over 100 replications when n = 200 and |β|=0.75
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 6.17 1.09 4.34 0.54
1% 6.08 0.86 4.74 0.5
10% 4.92 1.02 3.27 0.71

Table 5.11: Mean of TP and FP using MCP over 100 replications when n = 200 and |β|=1
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 6.52 0.47 5.69 0.44
1% 6.42 0.38 5.62 0.16
10% 5.63 0.74 3.65 0.34
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Table 5.12: Mean of TP and FP using MCP over 100 replications when n = 200 and |β|=1.25
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 6.28 0.3 5.89 0.14
1% 6.26 0.23 5.7 0.19
10% 5.93 0.52 3.63 0.25

Table 5.13: Mean of TP and FP using MCP over 100 replications when n = 300 and |β|=0.75
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 7.57 0.1 8.43 0.26
1% 7.54 0.12 8.33 0.22
10% 7.85 0.46 8.01 0.46

Table 5.14: Mean of TP and FP using MCP over 100 replications when n = 300 and |β|=1
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 7.02 0.05 8.18 0.09
1% 7.17 0.02 7.83 0.06
10% 7.31 0.07 7.63 0.14

Table 5.15: Mean of TP and FP using MCP over 100 replications when n = 300 and |β|=1.25
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 7.25 0.02 7.48 0.04
1% 7.29 0.02 7.53 0.03
10% 7.08 0.05 6.84 0.05
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Table 5.16: Mean of TP and FP using MCP over 100 replications when n = 400 and |β|=0.75
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 7.96 0.04 9.79 0.19
1% 7.9 0.02 9.67 0.13
10% 8.84 0.09 9.54 0.28

Table 5.17: Mean of TP and FP using MCP over 100 replications when n = 400 and |β|=1
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 7.83 0.03 9.31 0.06
1% 7.8 0.01 9.21 0.02
10% 7.67 0.01 8.98 0.01

Table 5.18: Mean of TP and FP using MCP over 100 replications when n = 400 and |β|=1.25
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 7.72 0.01 8.58 0.01
1% 7.57 0.01 8.51 0.01
10% 7.54 0.02 8.31 0.03

Table 5.19: Mean of TP and FP using SICA over 100 replications when n = 200 and |β|=0.75
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 4.75 0.52 2.31 0.13
1% 4.36 0.48 1.93 0.11
10% 2.69 0.45 0.8 0.04
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Table 5.20: Mean of TP and FP using SICA over 100 replications when n = 200 and |β|=1
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 5.44 0.46 4.33 0.25
1% 5.3 0.41 3.74 0.2
10% 4.16 0.48 1.59 0.12

Table 5.21: Mean of TP and FP using SICA over 100 replications when n = 200 and |β|=1.25
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 5.66 0.33 4.51 0.17
1% 5.53 0.35 4.33 0.23
10% 4.61 0.45 2.34 0.08

Table 5.22: Mean of TP and FP using SICA over 100 replications when n = 300 and |β|=0.75
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 6.82 0.14 5.01 0.11
1% 7.17 0.2 5.68 0.18
10% 6.68 0.35 5.61 0.21

Table 5.23: Mean of TP and FP using SICA over 100 replications when n = 300 and |β|=1
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 6.37 0.13 4.77 0.04
1% 6.37 0.1 5.15 0.05
10% 6.34 0.16 5.29 0.08
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Table 5.24: Mean of TP and FP using SICA over 100 replications when n = 300 and |β|=1.25
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 5.55 0.03 4.39 0.05
1% 6.37 0.1 5.15 0.05
10% 5.71 0.05 4.47 0.03

Table 5.25: Mean of TP and FP using SICA over 100 replications when n = 400 and |β|=0.75
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 8.99 0.13 5.31 0.04
1% 8.91 0.13 4.83 0.03
10% 7.97 0.12 5.86 0.1

Table 5.26: Mean of TP and FP using SICA over 100 replications when n = 400 and |β|=1
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 8 0.09 4.76 0.01
1% 7.84 0.1 4.67 0
10% 7.64 0.15 5.12 0.02

Table 5.27: Mean of TP and FP using SICA over 100 replications when n = 400 and |β|=1.25
without and with missing data

Missing probability TP(CV) FP(CV) TP(SGCV) FP(SGCV)
0 6.75 0.02 4.52 0.01
1% 6.6 0.02 4.5 0
10% 7.01 0.06 5.14 0.02
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Figure 5.1: Boxplot of TP using SCAD when n = 200 and |β|=0.75 without and with missing
data

Figure 5.2: Boxplot of FP using SCAD when n = 200 and |β|=0.75 without and with missing
data
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Figure 5.3: Boxplot of TP using SCAD when n = 200 and |β|=1 without and with missing
data

Figure 5.4: Boxplot of FP using SCAD when n = 200 and |β|=1 without and with missing
data
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Figure 5.5: Boxplot of TP using SCAD when n = 200 and |β|=1.25 without and with missing
data

Figure 5.6: Boxplot of FP using SCAD when n = 200 and |β|=1.25 without and with missing
data
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Figure 5.7: Boxplot of TP using SCAD when n = 300 and |β|=0.75 without and with missing
data

Figure 5.8: Boxplot of FP using SCAD when n = 300 and |β|=0.75 without and with missing
data
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Figure 5.9: Boxplot of TP using SCAD when n = 300 and |β|=1 without and with missing
data

Figure 5.10: Boxplot of FP using SCAD when n = 300 and |β|=1 without and with missing
data
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Figure 5.11: Boxplot of TP using SCAD when n = 300 and |β|=1.25 without and with
missing data

Figure 5.12: Boxplot of FP using SCAD when n = 300 and |β|=1.25 without and with
missing data
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Figure 5.13: Boxplot of TP using SCAD when n = 400 and |β|=0.75 without and with
missing data

Figure 5.14: Boxplot of FP using SCAD when n = 400 and |β|=0.75 without and with
missing data
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Figure 5.15: Boxplot of TP using SCAD when n = 400 and |β|=1 without and with missing
data

Figure 5.16: Boxplot of FP using SCAD when n = 400 and |β|=1 without and with missing
data
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Figure 5.17: Boxplot of TP using SCAD when n = 400 and |β|=1.25 without and with
missing data

Figure 5.18: Boxplot of FP using SCAD when n = 400 and |β|=1.25 without and with
missing data
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Figure 5.19: Boxplot of TP using MCP when n = 200 and |β|=0.75 without and with missing
data

Figure 5.20: Boxplot of FP using MCP when n = 200 and |β|=0.75 without and with missing
data
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Figure 5.21: Boxplot of TP using MCP when n = 200 and |β|=1 without and with missing
data

Figure 5.22: Boxplot of FP using MCP when n = 200 and |β|=1 without and with missing
data
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Figure 5.23: Boxplot of TP using MCP when n = 200 and |β|=1.25 without and with missing
data

Figure 5.24: Boxplot of FP using MCP when n = 200 and |β|=1.25 without and with missing
data
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Figure 5.25: Boxplot of TP using MCP when n = 300 and |β|=0.75 without and with missing
data

Figure 5.26: Boxplot of FP using MCP when n = 300 and |β|=0.75 without and with missing
data
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Figure 5.27: Boxplot of TP using MCP when n = 300 and |β|=1 without and with missing
data

Figure 5.28: Boxplot of FP using MCP when n = 300 and |β|=1 without and with missing
data
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Figure 5.29: Boxplot of TP using MCP when n = 300 and |β|=1.25 without and with missing
data

Figure 5.30: Boxplot of FP using MCP when n = 300 and |β|=1.25 without and with missing
data
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Figure 5.31: Boxplot of TP using MCP when n = 400 and |β|=0.75 without and with missing
data

Figure 5.32: Boxplot of FP using MCP when n = 400 and |β|=0.75 without and with missing
data
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Figure 5.33: Boxplot of TP using MCP when n = 400 and |β|=1 without and with missing
data

Figure 5.34: Boxplot of FP using MCP when n = 400 and |β|=1 without and with missing
data
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Figure 5.35: Boxplot of TP using MCP when n = 400 and |β|=1.25 without and with missing
data

Figure 5.36: Boxplot of FP using MCP when n = 400 and |β|=1.25 without and with missing
data
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Figure 5.37: Boxplot of TP using SICA when n = 200 and |β|=0.75 without and with
missing data

Figure 5.38: Boxplot of FP using SICA when n = 200 and |β|=0.75 without and with missing
data
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Figure 5.39: Boxplot of TP using SICA when n = 200 and |β|=1 without and with missing
data

Figure 5.40: Boxplot of FP using SICA when n = 200 and |β|=1 without and with missing
data
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Figure 5.41: Boxplot of TP using SICA when n = 200 and |β|=1.25 without and with
missing data

Figure 5.42: Boxplot of FP using SICA when n = 200 and |β|=1.25 without and with missing
data
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Figure 5.43: Boxplot of TP using SICA when n = 300 and |β|=0.75 without and with
missing data

Figure 5.44: Boxplot of FP using SICA when n = 300 and |β|=0.75 without and with missing
data
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Figure 5.45: Boxplot of TP using SICA when n = 300 and |β|=1 without and with missing
data

Figure 5.46: Boxplot of FP using SICA when n = 300 and |β|=1 without and with missing
data
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Figure 5.47: Boxplot of TP using SICA when n = 300 and |β|=1.25 without and with
missing data

Figure 5.48: Boxplot of FP using SICA when n = 300 and |β|=1.25 without and with missing
data
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Figure 5.49: Boxplot of TP using SICA when n = 400 and |β|=0.75 without and with
missing data

Figure 5.50: Boxplot of FP using SICA when n = 400 and |β|=0.75 without and with missing
data

163



Figure 5.51: Boxplot of TP using SICA when n = 400 and |β|=1 without and with missing
data

Figure 5.52: Boxplot of FP using SICA when n = 400 and |β|=1 without and with missing
data
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Figure 5.53: Boxplot of TP using SICA when n = 400 and |β|=1.25 without and with
missing data

Figure 5.54: Boxplot of FP using SICA when n = 400 and |β|=1.25 without and with missing
data

This method works reasonably well compared to the method for complete data in Chapter
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3. In some cases, when the probability of missing was set to 1%, it was even better than the

case with no missing data, selecting more true positives and fewer false positives.

5.2 Application to the AML Dataset

The method proposed in Chapter 4 was applied to the AML data. 10 copies of imputed

datasets were obtained using the MissForest package and analyzed. Cross-validation was

performed 10 times with a different set of folds used each time. The maximum number of

iterations in the algorithm was set to 1000. 100 was used instead if the job could not be

finished within the maximum time allowed: 14 days. The warm start approach resulted in

numerical issues for some of the 10 cross-validations for MCP and SICA so 0 was used as

the initial value for each value of λ instead for these jobs. The algorithm could not finish

running for a couple of training data in the cross-validations when using SICA and SCAD.

In this case, 0 was used as the initial value for each value of λ for these training data. The

predictors that were at least selected once and their number of times of being selected using

SICA, MCP and SCAD are listed in Table 5.28-5.30, respectively. Times CV denotes the

number of times being selected using the CV score as the criterion in cross-validation and

Times SGCV denotes it when using the SGCV score as the criterion.

Table 5.28: Number of times predictors selected using SICA on 10 imputed datasets with 10
times of cross-validation

Predictor Times CV Times SGCV

ENSG00000233451 4 2

ENSG00000271857 2 1

CD109 2 0
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Table 5.28: Continued

cyto group complex 1 2

SDHAP3 1 2

SPAG1 1 1

SSPN 1 1

SCN9A 1 1

TMEM217 1 1

C10orf55 1 1

RN7SKP32 1 1

ENSG00000251293 1 1

ENSG00000275216 1 1

ENSG00000223528 1 0

ENSG00000229418 1 0

PTMAP4 1 0

INTS6-AS1 1 0

PTMAP2 1 0

TPM3P1 1 0

LINC01979 1 0

PTMAP12 1 0

FHL1 1 0

METTL16 1 0

DDX19B 1 0

DDIT4 1 0

ENSG00000223528 0 3

B4GALNT3 0 2
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Table 5.28: Continued

CLEC3B 0 2

RNU6-31P 0 2

HMGB3P22 0 2

ENSG00000228303 0 2

C1QTNF9 0 2

RPS24P17 0 2

TARS1-DT 0 2

ENSG00000255232 0 2

cyto group 2 unbalanced rearrangements 0 1

cyto group sole deletion/loss 9q 0 1

CASP10 0 1

CDK11A 0 1

PREX2 0 1

BCAR1 0 1

SPAG6 0 1

PTPRH 0 1

MECOM 0 1

CUX2 0 1

IL1R1 0 1

PTGIS 0 1

EREG 0 1

WNT1 0 1

MYO1B 0 1

C1QL1 0 1
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Table 5.28: Continued

STAR 0 1

KCTD15 0 1

PPP4R1 0 1

GPR78 0 1

RALGDS 0 1

IL17RE 0 1

GARRE1 0 1

GLOD4 0 1

ZNF355P 0 1

ENSG00000170165 0 1

GTSF1 0 1

RXFP1 0 1

LINC02904 0 1

LOC102723701 0 1

SCN5A 0 1

ZFTA 0 1

OR1J2 0 1

MIR367 0 1

SNORD51 0 1

APTR 0 1

PTCHD3P3 0 1

DAZAP2P1 0 1

AKR1C5P 0 1

TMA7B 0 1
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Table 5.28: Continued

ZNF277-AS1 0 1

MYL12BP2 0 1

HMGN2P3 0 1

C1DP1 0 1

ENSG00000231868 0 1

MGAT2P1 0 1

RPL36AP26 0 1

ENSG00000236391 0 1

ENSG00000237301 0 1

RPL14P3 0 1

ENSG00000242795 0 1

ENSG00000242951 0 1

ENSG00000243744 0 1

HNRNPA1P55 0 1

ENSG00000250362 0 1

RN7SKP57 0 1

ENSG00000255487 0 1

PSMC1P9 0 1

ENSG00000256139 0 1

PSMA2 0 1

PRORP 0 1

RN7SL45P 0 1

MADCAM1-AS1 0 1

LINC02080 0 1
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Table 5.28: Continued

ATXN7L3-AS1 0 1

ENSG00000272343 0 1

ENSG00000272400 0 1

ENSG00000272849 0 1

ENSG00000272865 0 1

ENSG00000276026 0 1

ENSG00000276248 0 1

ENSG00000279024 0 1

LINC02341 0 1

LINC02767 0 1

Table 5.29: Number of times predictors selected using MCP on 10 imputed datasets with 10
times of cross-validation

Predictor Times CV Times SGCV

ENSG00000233451 8 4

ENSG00000271857 8 2

PTMAP5 7 5

SCN9A 6 6

ALDH2 4 3

CD109 3 1

SSPN 3 0

GARRE1 3 0

RN7SKP32 3 0

RPS3AP41 3 0
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Table 5.29: Continued

ENSG00000223528 2 7

SPAG6 2 0

RPS2P21 2 0

ENSG00000248347 1 3

LINC01770 1 2

CASP10 1 0

CALCRL 1 0

SDHAP3 1 0

ENSG00000228201 1 0

ENSG00000242951 1 0

ENSG00000251293 1 0

ENSG00000262172 1 0

PLCB4 0 2

INSYN2A 0 1

Table 5.30: Number of times predictors selected using SCAD on 10 imputed datasets with
10 times of cross-validation

Predictor Times CV Times SGCV

RPS2P21 10 10

ENSG00000233451 10 10

RPS3AP41 10 10

ENSG00000271857 10 10

CD109 10 9

SDHAP3 10 9
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Table 5.30: Continued

GARRE1 10 9

GAS6 10 5

SSPN 9 10

SCN9A 9 10

ALDH2 9 9

PTMAP5 9 7

ENSG00000262172 8 8

ENSG00000248347 7 7

LINC01979 7 5

ENSG00000228303 6 10

C1QL1 6 9

ENSG00000275216 6 9

IL2RA 6 3

PLCB4 5 7

RBM3 5 6

KIF1A 5 5

STAR 5 4

ENSG00000228201 5 4

CASP10 4 9

ENSG00000223528 4 6

CLIC4 4 6

CENPV 4 5

TUBB2BP1 4 5

HOPX 4 4
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Table 5.30: Continued

MSLN 4 1

INTS6-AS1 4 0

TRIM9 3 5

ACTBP11 3 3

RN7SKP32 3 3

LINC01770 3 1

ENSG00000229664 3 1

PTMAP3 3 1

TPM3P1 3 0

DDX19B 2 5

CLEC3B 2 5

LINC00676 2 4

TMEM217 2 3

EGFEM1P 2 3

LINC01415 2 1

ZNF355P 1 8

cyto group complex 1 6

ENSG00000243744 1 3

SDCBP2 1 2

CYCSP23 1 2

MPZ 1 1

VSTM4 1 1

TMEM273 1 1

ENSG00000251467 1 1
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Table 5.30: Continued

CIBAR1 1 0

ENSG00000242951 1 0

CIBAR1P1 1 0

ENSG00000261346 0 4

MADCAM1-AS1 0 4

RBM23 0 3

MIR155HG 0 3

CCDC68 0 2

ENSG00000251293 0 2

PTMAP12 0 2

FLT3.ITD 0 2

ST7/ST7-OT3 0 1

THG1L 0 1

SMAD5 0 1

IL17RE 0 1

DMRTC1B 0 1

INSYN2A 0 1

PTMAP2 0 1

PTMAP9 0 1

C10orf55 0 1

PTMAP4 0 1

HSPE1P22 0 1

PSMC1P9 0 1
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Consistent with the previous results, SICA selects the smallest number of predictors

while SCAD selects the most. We focused on the 11 predictors that were always selected

by SCAD, using either the CV or the SGCV score as criterion. Expression of the SCN9A

gene has been shown to be related to prostate, gastric and ovarian cancer [2, 20, 74, 101,

105]. SSPN has been shown to be related to childhood acute lymphoblastic leukemia [7,

25]. Expression of the GAS6 gene has been reported to be an adverse prognostic marker in

cytogenetically normal AML [99]. Expression of the CD109 gene has been reported to be a

prognostic factor in acute myeloid leukaemia [73, 97, 76, 22].

We also tried to validate the results on a dataset on the Gene Expression Omnibus

with GEO accession: GSE146173 [5]. Of the 202 patients in the dataset, 132 achieved

complete remission. One of them lacks information on whether the patient relapsed so was

excluded from analysis. Of these 131 patients, 66 relapsed and 65 were censored without

relapse. 5 of the 11 predictors that we focused on are present in this dataset. One of them,

ENSG00000228303 takes the value of 0 for all patients so it was not analyzed. Because for

this dataset death was not a competing risk given all patients who died also relapsed before

death, we fit univariate Cox models for time from complete remission to relapse using each

of the 4 predictors and list their p-values in Table 5.31. “LRT” stands for likelihood ratio

test. “Wald” stands for Wald test. “Score” stands for score test.

Table 5.31: p-values for 4 predictors when fit on the GSE146173 data

Predictors p-value (LRT) p-value (Wald) p-value (Score)
RPS2P21 0.08 0.05 0.05

ENSG00000233451 0.6 0.6 0.6
RPS3AP41 0.5 0.6 0.5

ENSG00000271857 0.009 0.001 0.0003

ENSG00000233451 and RPS3AP41 were not confirmed. RPS2P21 was marginally sig-

nificant. ENSG00000271857 was highly significant. ENSG00000271857 is a long non-coding
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RNA, located on chromosome 6 and is antisense to the RUNX2 gene. This might be worth

further research.

5.3 Discussion

Because the method proposed in Chapter 4 is fit on multiple imputed datasets, it takes

much longer to run than the method proposed in Chapter 2. When the dataset is too large,

the algorithm may not be able to finish running within the maximum allowed time on a

computing cluster. In this case, it would be necessary to reduce the number of predictors by

screening before running the algorithm.
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Chapter 6: Conclusions and Future Research

In this thesis, we developed methods to select variables for high-dimensional competing-risks

data without or with missing data, based on the Fine-Gray model. Simulation studies show

that our methods performed fairly well when identifying truly associated predictors and

identified fewer false positive predictors in comparison to competing methods: fastcmprsk,

CoxBoost, and randomForestSRC. Then we applied the developed methods to an AML

dataset which contains missing values.

Other than the Fine-Gray model, competing risks data are also oftened analyzed using the

proportional cause-specific hazards model. This dissertation focused on the Fine-Gray model

because, unlike cause-specific hazards model, it directly models the cumulative incidence

function thus the predictor effects can be more simply interpreted. In real data analysis, one

can use both models to gain more insight into the data.

When the tuning parameter λ gets very small, the warm start approach might encounter

numerical issues. This is due to the large number of predictors. When the dataset is too

big, the algorithm may not be able to finish running within the maximum allowed time

on a computing cluster. To avoid these numerical issues and to be able to finish in time,

one might consider screening the predictors to get a smaller number of candidates before

selecting variables. One could fit a univariate Fine-Gray model on each of the predictors,

calculate its p-value and select those predictors with smaller p-values, possibly controlling
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the false discovery rate, for subsequent variable selection. Li, Mei and Tian (2018), Chen

et. al. (2020) and Chen et al. (2022) proposed screening methods for competing risk data,

which could also be used [63, 15, 16].

After selecting variables, it would be nice if we could perform inference on their corre-

sponding coefficients in the model, constructing confidence intervals and testing hypotheses.

Fang, Ning and Liu (2017), Taylor and Tibshirani (2018), Yu, Bradic and Samworth (2021)

and Kong et al. (2021) studied post-selection inference in Cox model [30, 91, 102, 56]. Hou,

Bradic and Xu (2019) studied post-selection inference in Fine-Gray model with LASSO

penalty [46]. Future work should include developing a method for nonconvex penalty func-

tions.

This dissertation focused on variable selection. As demonstrated by application to the

complete AML data, none of the proposed methods, CoxBoost package and fastcmprsk

package seems very accurate in terms of prediction. If one is more interested in prediction,

the randomForestSRC package or some other machine learning-based method might be worth

trying.

Note that a patient will still die after relapse. Time to relapse and time to death are

collectively known as semi-competing risks data. If both events are of interest, one could

employ one of the models developed for semi-competing risks data in the literature to analyze

them. Future work should also include development of a variable selection method for semi-

competing risks data.

Note that in the AML dataset, there are some patients who did not achieve complete

remission. Their ultimate fate would be death without complete remission. One could also

include them for an analysis using a multi-state model. Variable selection could also be

performed for each transition of states.

179



References

[1] Odd O Aalen and Søren Johansen. “An empirical transition matrix for non-homogeneous

Markov chains based on censored observations”. In: Scandinavian Journal of Statistics

(1978), pp. 141–150.

[2] Hatice Gumushan Aktas and Huda Ayan. “Oleuropein: A potential inhibitor for

prostate cancer cell motility by blocking voltage-gated sodium channels”. In: Nu-

trition and Cancer 73.9 (2021), pp. 1758–1767.

[3] Federico Ambrogi and Thomas H Scheike. “Penalized estimation for competing risks

regression with applications to high-dimensional covariates”. In: Biostatistics 17.4

(2016), pp. 708–721.

[4] Simon Anders, Paul Theodor Pyl, and Wolfgang Huber. “HTSeq—a Python frame-

work to work with high-throughput sequencing data”. In: Bioinformatics 31.2 (2015),

pp. 166–169.

[5] Stefanos A Bamopoulos et al. “Clinical presentation and differential splicing of SRSF2,

U2AF1 and SF3B1 mutations in patients with acute myeloid leukemia”. In: Leukemia

34.10 (2020), pp. 2621–2634.

[6] Anna Bellach et al. “Weighted NPMLE for the subdistribution of a competing risk”.

In: Journal of the American Statistical Association 114.525 (2019), pp. 259–270.

180



[7] Deepa Bhojwani et al. “Methotrexate-Induced Neurotoxicity and Leukoencephalopa-

thy in Childhood Acute Lymphoblastic Leukemia”. In: Journal of Clinical Oncology

32.9 (2014), pp. 949–959.

[8] Harald Binder et al. “Boosting for high-dimensional time-to-event data with compet-

ing risks”. In: Bioinformatics 25.7 (2009), pp. 890–896.

[9] Paul Blanche et al. “Quantifying and comparing dynamic predictive accuracy of joint

models for longitudinal marker and time-to-event in presence of censoring and com-

peting risks”. In: Biometrics 71.1 (2015), pp. 102–113.

[10] Jelena Bradic, Jianqing Fan, and Jiancheng Jiang. “Regularization for Cox’s propor-

tional hazards model with NP-dimensionality”. In: Annals of Statistics 39.6 (2011),

p. 3092.

[11] Patrick Breheny and Jian Huang. “Coordinate descent algorithms for nonconvex pe-

nalized regression, with applications to biological feature selection”. In: The Annals

of Applied Statistics 5.1 (2011), p. 232.

[12] Leo Breiman. “Random forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

[13] I-Shou Chang et al. “Non-parametric maximum-likelihood estimation in a semipara-

metric mixture model for competing-risks data”. In: Scandinavian Journal of Statis-

tics 34.4 (2007), pp. 870–895.

[14] Qixuan Chen and Sijian Wang. “Variable selection for multiply-imputed data with ap-

plication to dioxin exposure study”. In: Statistics in Medicine 32.21 (2013), pp. 3646–

3659.

[15] Xiaolin Chen et al. “Model-free feature screening for ultra-high dimensional compet-

ing risks data”. In: Statistics & Probability Letters 164 (2020), p. 108815.

181



[16] Xiaolin Chen et al. “On correlation rank screening for ultra-high dimensional com-

peting risks data”. In: Journal of Applied Statistics 49.7 (2022), pp. 1848–1864.

[17] Sangbum Choi and Xuelin Huang. “Maximum likelihood estimation of semiparametric

mixture component models for competing risks data”. In: Biometrics 70.3 (2014),

pp. 588–598.

[18] Sangbum Choi et al. “Weighted least-squares regression with competing risks data”.

In: Statistics in Medicine 41.2 (2022), pp. 227–241.

[19] David R Cox. “Regression models and life-tables”. In: Journal of the Royal Statistical

Society: Series B (Methodological) 34.2 (1972), pp. 187–202.

[20] James KJ Diss et al. “Expression profiles of voltage-gated Na+ channel α-subunit

genes in rat and human prostate cancer cell lines”. In: The Prostate 48.3 (2001),

pp. 165–178.

[21] Alexander Dobin et al. “STAR: ultrafast universal RNA-seq aligner”. In: Bioinfor-

matics 29.1 (2013), pp. 15–21.

[22] T Roderick Docking et al. “A clinical transcriptome approach to patient stratification

and therapy selection in acute myeloid leukemia”. In: Nature Communications 12.1

(2021), p. 2474.
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