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Abstract 

Over the past several decades, vehicle manufacturers have been increasingly adding 

technological improvements to the vehicles they release to the public. While these 

advancements are well-intentioned, especially in regards to vehicular safety and secu-

rity feature upgrades, they have dramatically increased the cyber attack surface for 

malicious actors. These attackers are taking advantage of software-defned radios to 

assist in their methods. In this thesis, we aim to improve upon a well-known vehicu-

lar replay attack, the roll-jam attack, as well as develop an machine learning-assisted 

algorithm to allow a target vehicle to detect if it is being jammed. 

The traditional vehicular roll-jam attack is an efective means to gain access to 

the target vehicle by jamming and recording key fob inputs from a victim. However, 

it requires specifc knowledge of the attack surface, and delicate tuning of software-

defned radio parameters. We have developed an enhanced version of the roll-jam 

attack that uses a known noise signal for jamming, in contrast to the additive white 

Gaussian noise that is typically used in the attack. Using a known noise signal allows 

for less strict tuning of the software-defned radios used in the attack and allows for 

digital noise removal of the recorded input to enhance the replay attack. 

Next, we focus on jamming detection from the perspective of the target vehicle. 

If the vehicle is able to detect that it is being jammed and takes appropriate counter-

measures, then the roll-jam attack and other attacks like it would be thwarted. We 
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have created a jamming detection algorithm that is able to use physical layer data 

to accomplish detection. Our frst algorithm focuses on estimating the approximate 

distance from a potential attacker using received signal power as the primary metric. 

Our second method involves collecting empirical data and training a machine learning 

algorithm to perform the jamming detection. 
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Chapter 1: Introduction 

As the automotive industry continues to innovate and integrate technology into 

vehicles, the need for robust cybersecurity measures becomes increasingly vital. As a 

result, vehicle cybersecurity has become a critical area of research and development. 

The rapid advancement of connected cars and autonomous vehicles has created new 

challenges, as these vehicles are susceptible to cyber-attacks that can potentially 

compromise the safety of passengers, vehicles, and the public at large. 

1.1 Software-Defned Radio and Vehicles 

Software-defned radio (SDR) is a powerful tool that can be used to analyze wire-

less communication between components in a vehicle, and between vehicles them-

selves. SDR technology allows for the capturing and decoding of wireless signals, 

enabling researchers to investigate the behavior of various components and identify 

potential vulnerabilities. One of the key advantages of using SDR is its fexibility. 

With the ability to change frequencies and protocols on the fy, we can quickly switch 

between diferent wireless communication standards to capture and analyze data. 

This fexibility is essential when dealing with modern vehicles, which often use a wide 

range of communication standards such as Wi-Fi, Bluetooth, and cellular networks. 

Another advantage of SDR is its ability to capture and decode wireless signals in 
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real-time. This enables us to perform live analysis, allowing for the identifcation of 

potential vulnerabilities as they occur. By analyzing the behavior of wireless com-

munication in real-time, we can detect anomalies that may indicate the presence of 

an attack, allowing for timely responses to mitigate the risk of compromise. 

1.1.1 Attacking Vehicles with SDR 

While SDR technology can be used for analyzing wireless communication in ve-

hicles, it can also be used by attackers to compromise the security of these vehicles. 

SDRs have been demonstrated to be incredibly threatening to Internet of Things 

(IoT) devices, and modern vehicles with their abundant wireless systems are no ex-

ception [1]. 

One common attack is the man-in-the-middle (MITM) attack, where an attacker 

intercepts and alters communication between two devices. In the vehicular context, 

this could involve an attacker intercepting communication between a car’s sensors 

and its control unit, allowing them to manipulate sensor readings and potentially 

cause dangerous malfunctions. SDR technology can be used to perform this attack 

by capturing and altering wireless signals in real-time. 

Another attack is the denial-of-service (DoS) attack, where an attacker foods a 

vehicle’s wireless communication channels with high volumes of trafc, causing the 

vehicle’s systems to become unresponsive or malfunction. This type of attack can be 

particularly dangerous when directed at safety-critical systems such as the vehicle’s 

brakes, steering, or tire pressure management systems (TPMS). 

A third attack is the replay attack, where an attacker captures a legitimate signal 

and replays it to perform unauthorized actions. For instance, an attacker could 
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capture the signal from a key fob and replay it to unlock a car’s doors without the 

owner’s knowledge. This attack is particularly efective against modern vehicles that 

use rolling code encryption, which can be easily bypassed using SDR technology. This 

type of attack is commonly known as the roll-jam attack, because it uses an SDR to 

jam the target vehicle to bypass its rolling code security. Enhancing this attack in 

particular will be the frst focus of this thesis. 

1.1.2 Defending Against SDR Attacks on Vehicles 

Defending against SDR attacks on vehicles requires a multifaceted approach that 

includes both technological and organizational measures. With the increased avail-

ability of SDRs to the general hobbyist and consumer population, many of these 

attacks are becoming more prevalent and harder to detect and defeat. 

One of the key strategies for defending against SDR attacks is to use strong en-

cryption methods. Modern encryption standards such as AES or RSA are much more 

difcult to bypass using SDR technology, making it much harder for attackers to cap-

ture and replay signals without the use of more advanced techniques. Such encryption 

methods have been presented as a potential means to secure the otherwise exploitable 

TPMS messages [2]. Additionally, manufacturers can use secure communication pro-

tocols such as TLS or SSL to protect wireless communication channels from attacks 

such as MITM attacks. 

Organizational measures can also be efective in defending against SDR attacks. 

Manufacturers can establish strong security policies and procedures, including regular 
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security audits and penetration testing, to identify and mitigate potential vulnera-

bilities. Additionally, manufacturers can collaborate with security researchers and 

experts in the feld to identify new threats and develop efective countermeasures. 

Another strategy is that manufacturers can design vehicles with physical security 

measures that can prevent attackers from gaining physical access to critical com-

ponents. This may involve using tamper-resistant components or designing systems 

with redundancy and fail-safes that can prevent unauthorized access or manipulation. 

Without physical access to these components, attacks could be easily defeated. 

One of the key strategies is to implement intrusion detection and prevention sys-

tems that can detect and respond to attacks in real-time. These systems can be 

designed to monitor wireless communication channels for unusual or suspicious activ-

ity and automatically block or quarantine any potential threats. Intrusion detection 

systems can be particularly efective when combined with machine learning algo-

rithms that can learn to recognize patterns of behavior and identify new threats as 

they emerge, which will be the second focus of this thesis. 
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Chapter 2: The Enhanced Roll-Jam Attack 

Fundamentally, the vehicular roll-jam attack works by having an adversary target 

a victim whose vehicle they want to access without authorization. In the attack 

model, the adversary jams and records the signals transmitted from a key fob to 

access a target vehicle. It was developed specifcally to defeat the rolling code security 

measures that modern vehicles use to protect against normal replay attacks. The 

vehicular roll-jam attack has been around publicly since at least 2015, and has proven 

to be situationally efective at gaining unauthorized access to modern vehicles that use 

key fob rolling code security [3]. The increased availability of SDRs to hobbyists have 

made this attack well-known, although it has not fundamentally changed since it frst 

emerged, and car manufacturers have yet to implement any kind of real mitigation 

strategy against it. 

The attacker uses one or more SDRs to send a jamming signal to the vehicle 

to block the reception of legitimate key fob inputs, while simultaneously recording 

that legitimate input, typically an unlock signal, with the intention of replaying it 

at a later time to gain access to the vehicle, as seen in Figure 2.1. This attack 

bypasses the rolling code security of the key fob, which synchronizes key fob inputs 

with a cryptographic counter that is shared with the vehicle’s onboard computer. 

The vehicle will interpret the replayed input as legitimate since it has yet to receive 
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Figure 2.1: Roll-Jam Attack Model. 

that message, and unlock the vehicle. There have been several proposed defense 

strategies against this attack, including adding timestamps to the rolling code, but 

vehicle manufacturers have yet to make any widespread changes [4], [5]. 

While the roll-jam is a well-known attack, it still requires information from the 

victim before the adversary can execute the attack. The attacker needs to know the 

exact frequency that the vehicle key fob operates at, and then must adjust their SDR 

6 



to jam either slightly above or below that frequency and then must fnd an appropriate 

level of transmit gain for the noise signal such that the vehicle is jammed, but not so 

much that it renders the captured key fob signal unusable in the subsequent replay 

attack. Certain modern vehicles are also starting to incorporate anti-theft security 

features which can prevent the vehicle from receiving any key fob inputs if it receives 

an already used code. This means if the attack is not executed perfectly the frst 

time, further attempts are blocked. This tuning and confguration of the SDR can 

take a signifcant amount of time, during which the attacker could lose their window 

of exploitation. 

In this paper, we propose an enhanced roll-jam attack that uses a known noise 

sequence at the exact same frequency as the key fob. Unlike the traditional roll-jam, 

our new attack does not require prior knowledge of the key fob signal. It conceptually 

works for any signal, and even those with modern encryption practices with rolling 

codes. Our new attack method allows us to jam the vehicle at the exact frequency with 

even higher transmit power than the traditional roll-jam attack. Subsequently, we 

record the key fob input and perform noise removal techniques to obtain the original 

input signal. The obtained signal is later replayed to gain access to the target vehicle. 

2.1 Enhancing the Roll-Jam Attack 

One of the biggest setbacks with the traditional roll-jam attack is that it requires 

simultaneous jamming and recording within a relatively narrow bandwidth, usually 

1.5MHz, in the spectrum of either 315MHz or 433MHz [6]. The jamming signal is 

usually additive white Gaussian noise (AWGN), as it is efective at jamming over 
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a narrow bandwidth and is easy to generate with most SDR software [7]. If the at-

tacker jams at a frequency further than 1.5MHz from the key fob operating frequency, 

however, they run the risk of jamming outside of the receive window of the vehicle, 

and not jamming the vehicle at all. If the attacker jams too closely to the key fob 

frequency, they risk distorting the recorded signal to the point of being unable to 

replay it later. 

Modern vehicles have been shown to be incredibly vulnerable to being wirelessly 

jammed by a variety of techniques [8]. In our approach, the attacker uses a known 

noise sequence transmitted at the same frequency as the key fob for jamming. Since 

the noise sequence is known, the attacker uses noise removal techniques to maintain 

a sufcient signal-to-noise ratio (SNR) that enables the signal to be replayed. By 

removing the noise component from the recorded message, the attacker could replay 

the attack from much further away and with greater efciency. The noise source 

being known also gives the attacker greater fexibility in the amount of power they 

use to jam the target vehicle. As the noise signal is known to them, they will be 

able to identify and digitally remove noise sources transmitted at higher power than 

the traditional attack. This enables the attacker to have greater confdence that 

the target vehicle is in fact being jammed from receiving legitimate messages, and 

potentially interrupting the attack. Figure 2.2 details our enhanced roll-jam model. 

The attacker begins jamming the target vehicle with the known noise signal as 

soon as they are in position to wait for the victim to attempt to unlock their vehicle. 

Once they capture the unlock signals, they immediately digitally remove the noise 

component from them, and then carry out the replay attack using the enhanced 

messages. Due to the noise removal process, the vehicle is more likely to accept the 
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Figure 2.2: Enhanced Roll-Jam Attack Model. 
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replayed signals as legitimate, and give the attacker access to their target. We propose 

to use a legitimate key fob message as a template for the noise source. However, simply 

capturing and replaying old signals multiple times is not a viable option, due to anti-

theft security features on certain modern vehicles. These features automatically lock-

down the car and its accompanying key fob if the car receives previous rolling code 

messages. These constraints meant we had to record a legitimate signal, and then 

modify it sufciently such that it was efcient at jamming the vehicle and was easily 

identifable by the attacker. 

2.2 Evaluating the Enhanced Roll-Jam Attack 

2.2.1 Creating the Known Noise Source 

The frst step to generate the known noise signal was to capture several legitimate 

key fob messages from a modern vehicle that used rolling code security. For the 

purposes of this research, a 2020 Kia Sorento EX was used, and the software Universal 

Radio Hacker (URH) was used in conjunction with a Great Scott Gadgets HackRF 

One as our SDR for collecting, analyzing, and replaying data [9]. Figure 2.3 and 

Figure 2.4 show several captured and demodulated signals from the target vehicle’s 

key fob in hexadecimal form. 

This key fob operates in the 433MHz range, specifcally at 433.92MHz, and uses 

frequency-shift keying for modulation. URH has a helpful auto-detection setting that 

Figure 2.3: Breakdown of demodulated hexadecimal key fob message. 
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Figure 2.4: Demodulated key fob message from 2020 Kia Sorento. 

attempts to determine the signal parameters as long as the SNR is sufciently high 

enough. 

The key fob transmits three identical message pulses, each separated by approxi-

mately 120ms. Figure 2.3 shows the demodulated frames of data consist of a preamble, 

vehicle ID number, instruction code, and the rolling code. Each individual message 

is 54 hexadecimal digits long, and each button press on the key fob generates three 

new identical pulses. From here, URH has a function which allows generation of new 

data frames by using captured data and copying the modulation technique, carrier 

frequency, sample rate, and symbol size. Now we are free to change any of the bits in 

the message, and then compile a brand new payload consisting of specifc data. To 

make visual analysis of the decoded signal easier, we decided on generating a known 

noise payload consisting entirely of hexadecimal 5, as seen in Figure 2.5. The actual 

demodulated bit values of the known noise signal do not matter as long as they are 
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Figure 2.5: Known noise signal generated from legitimate message. 

known to the attacker and do not match an old rolling code message from the vehi-

cle. From here, we can transmit this signal indefnitely from the SDR to act as the 

jamming signal in the enhanced attack. 

2.2.2 Executing the Enhanced Roll-Jam Attack 

After generating the known noise sequence, we can execute the entire enhanced 

roll-jam attack. The frst part of the attack is carried out almost identically to the 

traditional roll-jam. The attacker selects a target vehicle, the 2020 Kia Sorento in 

this case, and transmits the known noise signal to jam the vehicle from one SDR 

while simultaneously recording the legitimate key fob input. The diferences are that 

instead of a randomly generated noise source, the known noise source is used, and 

the noise is transmitted at the exact frequency of the key fob, 433.92MHz. The URH 
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Figure 2.6: Key fob message recorded while jamming with known noise source. 

output in Figure 2.6 shows what this captured input looks like alongside the known 

noise signal. 

For our experiments, the jamming SDR was placed directly next to the receiving 

SDR, and the key fob was placed close to the SDRs in order to keep our transmitting 

power at a reasonably low level, as seen in Figure 2.7. After recording the key fob 

input while jamming, the URH autodetect function was able to automatically isolate 

the key fob message from the known noise signal. Even if the autodetect function 

had not worked, the attacker would be able to visually locate the captured message 

and could then manually adjust the parameters to fully isolate the input. With the 
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Figure 2.7: Executing the enhanced roll-jam on a 2020 Kia Sorento. 

noise foor set to the maximum amplitude of the known noise source, the attacker is 

left with the key fob message alone in its entirety. 

The next step is to generate a new payload for the replay portion of the attack 

using URH, with a similar method as was used to generate the known noise source. 

After removing the noise in URH, the outcome is a message signal with the entirety of 

the noise component removed, as seen in Figure 2.8. The attacker can then transmit 

this noise-removed signal when they want to access the victim’s vehicle. With the 

noise component completely removed from the payload, the SNR is improved signif-

cantly, and the attacker has the ability to replay the message with more fexibility. 
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Figure 2.8: Recorded key fob message with noise component removed. 

In the traditional roll-jam attack, the replayed message still contains the added 

noise component that the attacker used to jam the vehicle. While the jamming is 

at an adjacent frequency to the key fob frequency, the sidebands generated can be 

signifcant, and makes the replay attack difcult to alter if the attacker needs to 

transmit with additional power. The enhanced attack allows for the message to be 

replayed at even higher power than the original key fob recording, and from a further 

range than the key fob’s operating distance. 
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Our experiments have demonstrated that this attack works on every vehicle we 

have had available for testing. This includes vehicles with key fob frequencies operat-

ing in the 315MHz range, and that use amplitude-shift keying for modulation rather 

than frequency-shift keying. The attack performs with highest efciency when the 

jamming SDR is closer in proximity to the vehicle than the recording SDR and key 

fob, but the attack also works well even when the jamming SDR, recording SDR, and 

key fob are co-located. Figure 2.9 shows the frequency domain signals before and 

after jamming. This attack has been tested and verifed successful on the following 

modern vehicles from the United States, Asian, and European markets: 

• 2013 Ford F-150 

• 2015 Honda HRV 

• 2015 Nissan Rogue 

• 2015 Audi A3 

• 2020 Kia Sorento 

• 2020 Toyota Tacoma 

The traditional roll-jam works situationally on these vehicles as well, however, 

signifcant confguration changes to the SDR are required for every diferent vehicle. 

With the enhanced attack, all the adversary needs to know is the key fob frequency 

and then they can implement the attack with a high rate of success. 

2.2.3 Comparing the Traditional and Enhanced Attacks 

To directly compare our enhanced roll-jam attack with the traditional version, 

we used the Linux-based GNU Radio Companion (GRC), a framework that contains 
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(a) (b) 

Figure 2.9: a) Frequency domain key fob signal before jamming b) Key fob signal 
while jamming with known noise source. 

Figure 2.10: GNU Radio Companion Block Diagram used for Analysis. 

signal processing blocks for SDRs [10]. Figure 2.10 depicts the fow chart derived for 

this analysis. 

GRC contains a block for generating AWGN, which we use to compare against 

our generated known noise source. For our frst analysis, we measure the average 

SNR of a captured key fob signal when using AWGN and the known noise sequence 

to jam. We also measure the SNR of the complete enhanced roll-jam attack after we 
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have used URH to remove the noise, leaving just the key fob message. While the SNR 

of the attack is not completely indicative of its success, attacks with a higher SNR 

have more fexibility to replay the attack under conditions favorable to the attacker, 

such as being able to unlock the target vehicle from a further distance, and giving 

the attacker more confdence that the attack will succeed. 

The HackRF operates in half-duplex, so two were used to collect this data, one 

for transmitting the noise source using GRC, and one for collecting the key fob input 

using URH. Both SDRs used the same low power settings as seen in Figure 2.10 in 

the osmocom Sink block. For each noise type, ten consecutive unlock signals were 

sent from the key fob and captured by the SDR connected to URH. An average SNR 

was calculated using the analysis tools available in URH, and the results are shown in 

Table 2.1. We observe that using AWGN as the noise source provided slightly better 

results than when just using the known noise sequence alone. However, when imple-

menting the noise removal in the enhanced attack, the SNR is signifcantly higher, as 

the only noise component remaining is the ambient noise of the environment. This 

allows the attacker to easily replay the signal from further away and with a high 

degree of confdence. 

For the next analysis, we compare the highest level of transmit gain for each noise 

type that still allows for noise removal in URH. The setup for data collection is the 

same as the previous analysis, and we simply raise the transmitter power in GRC 

until URH could no longer automatically detect the captured key fob input apart 

from the noise. 

The HackRF has two transmitter gain settings that can be adjusted, a radio 

frequency (RF) gain and an intermediate frequency (IF) gain. The RF gain controls 
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Table 2.1: Signal-to-Noise Analysis 

Attack Type 
AWGN Noise Source Known Noise Source Enhanced Attack 

SNR (dB) 8.786 7.899 40.115 

the front-end amplifer of the HackRF, and it is either on or of with gain values of 

0dBm and 14dBm, respectfully, and the IF gain can be set from 0dBm to 47dBm 

[11]. Initial testing confrmed that both the AWGN and known noise sequence begin 

efectively jamming the vehicle at the same transmit power from the same distance. 

For this analysis, the front end amplifer was turned on for both noise sources, and 

the IF gain was adjusted for comparison. 

The AWGN source had a maximum transmit gain of 17dBm before the signal 

became undecipherable by URH. The key fob signal is still visibly recognizable on 

the recording, but above 17dBm the noise distorts the signal beyond recognition. Any 

recorded sequence above this gain threshold is not suitable for noise removal in URH. 

The known noise sequence, however, could be transmitted at up to 26dBm before 

URH was unable to detect a message, as seen in Figure 2.11. This 9dBm diference 

represents the ability to transmit the known noise sequence with approximately eight 

times more power than the AWGN signal. This allows the attacker to jam at higher 

power and have greater confdence that the vehicle is in fact being jammed. 

While executing the entire enhanced attack takes longer than the traditional roll-

jam due to the noise removal and signal generation process in URH, attackers would 

generally perform the collection part of the roll-jam attack frst, and then execute 
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Figure 2.11: URH detects key fob message with known noise transmitted at 26dBm. 

the replay portion of the attack at a later time when the vehicle is unattended. This 

means that there is no loss in attack efcacy as long as the replay occurs sometime 

after the collection process. The collection process itself is greatly improved by being 

able to jam the vehicle with an appropriate level of noise as soon as the attacker 

knows the key fob frequency. 
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Chapter 3: Jamming Detection 

In the previous chapter, we demonstrated that wireless jamming attacks are a 

common threat to the security of modern vehicles, with attackers using radio fre-

quency interference to disrupt communication between vehicle components and then 

using that disruption to carry out more advanced attacks. Detecting jamming attacks 

is essential for maintaining the safety and security of vehicles on the road. In this 

chapter, we will explore the use of SDR technology paired with machine learning for 

detecting jamming attacks on vehicles. 

SDR technology is well-suited for detecting jamming attacks, as it allows for the 

monitoring and analysis of wireless signals in real-time. By analyzing wireless signals 

at the physical layer, we can detect unusual or unexpected patterns of behavior that 

may indicate the presence of a jamming attack. Additionally, SDR technology can be 

used to identify the frequency and intensity of the jamming signal, allowing for the 

identifcation of the source of the attack. 

Detecting jamming attacks using SDR technology typically involves monitoring 

the wireless communication channels used by diferent components in the vehicle. In 

our case, we will be focusing on detecting jamming attacks such as the traditional and 

enhanced roll-jam attacks which target the key fob to vehicle communication link. 

Other research has shown that jamming detection and even localization is possible 
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with SDRs, however, they generally focus on using packet or bit error rate metrics 

for analysis [12] [13]. Our research is interested in performing the jamming detection 

while only using physical layer characteristics in order to simplify the detection process 

at the vehicle. 

3.1 Distance-Based Jamming Detection 

Our frst model is based on calculating a distance estimation between the vehicle 

and the attacker or legitimate user by using the received signal power. The goal is to 

set threshold values for received power and then conduct distance estimation that will 

detect jamming when the estimated distance away remains constant over a period of 

time, which would be anomalous for a legitimate user. We assume that a legitimate 

user would either strictly get further away from their vehicle, in the case they had 

just parked and were pressing the lock button on the key fob, or get strictly closer 

to their vehicle over a period of time in the case that the owner was returning to 

their vehicle and was pressing the unlock button while approaching on foot. We also 

assume that if the vehicle receives more than 5 signals per second, or that the vehicle 

receive bufer is full for 5 seconds, that jamming is present. Figure 3.1 depicts the 

jamming detection model. 

The basis for our distance estimation is using Friis equation, which is given by: 

λ 
Pr = Pt + Gt + Gr + 20log( ) (3.1)

4πd 

Where Pr is the received power measured at the vehicle, Pt is the power of the 

transmitted signal, Gt and Gr are the transmitter and receiver gains, respectively, 

and d is the distance between transmitter and receiver. λ is the wavelength of the 
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Figure 3.1: Distance-Based Jamming Detection Model. 

signal, and for our purposes with signals in either the 315MHz or 433MHz range, 

the wavelength will be between approximately 0.7 and 1 meter. It has been shown 

that using Friis equation is a viable way to perform jamming detection and even 

localization, however, for our purposes we will reorganize the equation in order to 

solve for distance [12]. This gives: 

λ Pt+Gt+Pr+Gr 
20d = ( )10 (3.2)

4π 

While this cleans up the equation, at the vehicle receiver the only values it would 

have access to naturally are Pr and Gr. We assume that Gr would be roughly equal to 

Gt, which just leaves Pt to be found. Researchers in [12] used empirical data collection 

to estimate the received power at a range of distances, and we duplicate this efort 

for our work. With one HackRF receiving, we collect the SNR from key fob inputs 

and SDR jamming transmissions from increasing distances and then average them 
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together. This average will then become the Pt for our model. Table 3.1 shows the 

results of this empirical data collection. 

With these averages we now have all of the data required to perform distance 

estimation between the vehicle and the unknown signal source. For a complete walk-

through of the model, assume the vehicle receives a signal at 433MHz. If the signal 

falls below a certain SNR threshold the vehicle will continue to wait for a stronger 

signal. If the signal is greater than a set threshold, we immediately assume that 

we are being jammed and take appropriate countermeasures. The goal is to set this 

upper bound such that it would be impossible for a key fob and legitimate user to 

generate a signal that powerful, no matter how close they are to the receiver. 

Assuming the signal then falls between the set upper and lower bounds, the vehicle 

then detects the rate of signals being received. If this signal rate is greater than 5 

messages received per second our model would detect being jammed. The reason is 

that it is generally beyond human capability to send more than 5 key fob messages in 

one second, and thus would be more likely a signal generated from a digital source. 

To calculate this message rate, we use the typical key fob message length as the 

standard. In the case of the 2020 Kia Sorento from Chapter 2, this message length is 

54 hexadecimal characters long, so for every 54 hexadecimal characters received we 

count one message. In the case of jamming being done with a signal that cannot be 

demodulated, the model will detect jamming if the vehicle’s receive bufer is full for 

5 seconds. If the signal passes all of these checks, the received power is then input 

into our Equation 3.2 to estimate the distance to the source. The last check is to 

analyze the signals received over a span of 5 seconds. Typically a legitimate user 

would be approaching or departing their vehicle when they are using the key fob to 
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Table 3.1: Empirical SNR Data 

SNR of Signal Source (dB) 
Distance (m) Key Fob Jamming SDR 

5 -13.97 -22.42 
10 -20.47 -23.57 
15 -22.06 -25.25 
20 -23.54 -26.89 
25 -25.07 -28.31 

Average -21.02 -25.29 

send messages. This would lead to either strictly increasing or strictly decreasing 

distance estimations. If, however, over this 5 second period the estimated distance 

remains constant within approximately 2 meters, or both increases and decreases, 

the model detects a jam. A jamming attacker would likely be in a fxed position 

during their attack, which would lead to a relatively constant distance estimation 

from the perspective of the vehicle. If the attacker is using more advanced jamming 

techniques, like modulating the power and frequency of their jamming signal, the 

estimated distance would not remain constant over the 5 second interval, but would 

instead both increase and decrease. In both cases our model would detect the presence 

of jamming and would take countermeasures. 

3.1.1 Jamming Countermeasures 

The main anti-jamming countermeasure we propose is to use frequency-hopping. 

Frequency-hopping has been used by the military for several decades and has proven 

to be incredibly successful at mitigating interference in a communications channel 

[14]. Two methods of frequency-hopping could be used in this model. In the frst, 
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when the vehicle detects jamming, it either raises or lowers its receive window by 

a few MHz to attempt to avoid the jamming. For instance if the vehicle normally 

receives at 433MHz, it could hop to receive at 434MHz. This hop size would be 

easier to implement on the key fob, but would potentially struggle against a wide 

bandwidth jamming device. In the second method, the vehicle would instead hop to 

the alternative industrial, scientifc, and medical (ISM) frequency band from the one 

it is currently using. In the United State both the 315MHz and 433MHz bands are 

used for vehicle key fobs, so the vehicle would simply swap to the band they are not 

currently using. This method would be more efective at mitigating a wide bandwidth 

jamming device, but would also be more difcult to implement between the vehicle 

and the key fob. 

In the end, we determined that this model was interesting and absolutely held 

applicability, but wanted to create a more advanced model that could perform the 

jamming detection in a more streamlined manner with the assistance of machine 

learning. 

3.2 Machine Learning-Assisted Jamming Detection 

In recent years, researchers have developed advanced machine learning algorithms 

that can be used in conjunction with SDR technology to detect jamming attacks [1]. 

These algorithms can learn to recognize patterns of behavior in wireless signals and 

identify anomalies that may indicate the presence of a jamming attack. By combining 

SDR technology with machine learning algorithms, we can improve the accuracy and 

efciency of jamming detection systems. 
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As in the frst model, we wanted to use physical layer data as the primary input 

into our algorithm. Other research has been done in this area of jamming detection 

with machine learning, but have primarily used metrics like packet delivery ratio and 

bit error rate to train their model [15] [16]. We chose to use in-phase and quadrature 

(I/Q) data captured with an SDR to serve as the basis for our analysis and training 

data as is easy to generate and capture in GRC. We decided to create three classes 

of data to train the machine learning algorithm: 

1. Vehicle being jammed 

2. Vehicle not being jammed (steady state) 

3. Vehicle receiving legitimate key fob message 

Next, we set up our HackRF similarly as in Chapter 2.2.3 to collect data for each 

of these classes. For the jamming case, we put our two HackRFs next to one another 

and transmitted AWGN at low power from one while recording from the other. Next, 

for the no jamming or steady state class we simply isolated the HackRF and recorded 

the ambient noise signals in the spectrum. Finally, for the class where the vehicle 

is receiving legitimate key fob input we recorded with one HackRF while pressing 

unlock signals twice per second on the key fob. This data is easily captured in GRC 

using the block diagram in Figure 3.2. 

We sampled at 2MHz for 10 seconds for each class to collect 20 million total 

I/Q samples each. In order to analyze the I/Q data we had to record the real and 

imaginary data as individual audio streams as seen in Figure 3.2, which we could then 

import into Matlab and recombine. From here, we divided each class of 20 million 

samples into 100 groups of 20 thousand samples in order to reduce the size of our 
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Figure 3.2: GRC Block Diagram for Capturing I/Q Data. 

training set. For each of these sets of 20 thousand samples for each class we computed 

the mean, standard deviation, and variance, and then recorded these values into a 

300x3 matrix. A plot of these metrics is in Figure 3.3. 

The fnal step is to then import this training data into python and execute train 

a multiclass algorithm. For our research we used the open source python library and 

learning database scikit-learn [17]. After importing our data into python, we then 

Figure 3.3: Mean, Standard Deviation, and Variance of the Training Data. 
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Table 3.2: Multiclass Algorithm Accuracy Results 

Algorithm Accuracy 
AdaBoost 99.67% 

Gradient Boosting 100% 
Extra Trees 99.67% 

K-Nearest Neighbors 94.67% 
CART 99.67% 

Naive Bayes 83.67% 
SVM 99.67% 

trained and tested our data using several multiclass algorithms, including one-vs-

one, one-vs-rest, linear, and nonlinear algorithms. The top results of these trials are 

depicted in Table 3.2 

Many of these well-known algorithms perform with a high degree of accuracy, 

but in particular, the gradient boosting classifer boasts a perfect accuracy rating. 

This is likely due in part to gradient boosting algorithms being adept at regression 

and classifcation on unclean data [18]. The high accuracy scores across the board 

suggests that the data is generally easily classifed by many algorithms, however, in 

the case of vehicular security we want the accuracy as close to perfect as possible. 

In the real-world case, as in the frst model, we would use frequency hopping as a 

mitigation technique in the event of a jamming event detected by our classifer. 
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Chapter 4: Conclusion and Future Work 

In this thesis, we propose the enhanced vehicular roll-jam attack that uses a 

known noise source, and a machine learning-assisted jamming detection algorithm. 

We demonstrate the efectiveness of this enhanced attack on diferent vehicles using 

a software-defned radio. Specifcally, we show a signifcant SNR improvement over 

the traditional roll-jam attack. This provides the adversary incredible fexibility to 

carry out the attack without requiring prior knowledge of the transmitted signal. 

While AWGN serves as an appropriate noise source for the attack, jamming becomes 

signifcantly more potent when using a noise source created and known by the at-

tacker. Indeed, cryptographic security approaches will not be able to mitigate this 

new attack, as we have shown that the key fob signal can be decoded simultaneously 

during smart jamming in a full-duplex like operation. While cryptographic methods 

will not be able to thwart our new attack, we demonstrate a gradient boosting clas-

sifer able to detect vehicular jamming with a perfect accuracy. Once detected, the 

vehicle jumps to an adjacent frequency and successfully defends against any jamming 

attack. These types of attacks, however, will remain prevalent in our society as long 

as vehicle manufacturers are unable to update their security mechanisms to defend 

against them. 
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For our future work we would like to continue to develop defense strategies for cy-

ber attacks on vehicular networks. Specifcally we would like to continue our work on 

the machine learning-assisted jamming detection algorithm presented in this thesis. 

We believe there is room for improvement by adding additional classes of data and 

further broadening the training data used to train the classifer, as well as using sta-

tistical values beyond mean, standard deviation, and variance. We are also interested 

in the use of neural networks to defend against these attacks. One potential neural 

network could be trained to perform image processing on spectrograms generated by 

a vehicle’s receiver to detect jamming. Another neural network could study the be-

havior of a key fob user over time, and develop a model that could detect anomalous 

behavior that deviates from the user’s normal patterns. Ultimately, as the number 

of wireless vehicular networks increases, it is imperative that manufacturers and re-

searchers continue to work together to identify and address potential vulnerabilities, 

implement efective defense strategies, and stay ahead of emerging threats, in order 

to ensure the safety and security of vehicles at rest and on the road. 
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