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Abstract 

Introduction: One of the most widely used assessments of orthodontic treatment need is 

the Index of Orthodontic Treatment Need (IOTN). Multiple studies have verified the 

reliability and validity of the IOTN. The IOTN-Aesthetic Component (AC) defines 

esthetic impairment into ten levels; Level 1 represents the least treatment need, while 

Level 10 represents great need. However, the grading of IOTN is subjective. In this 

project, we propose the use of artificial intelligence (AI) to augment IOTN assessment 

which would allow for objective diagnoses, a reduced workload for orthodontists, at-

home assessments of orthodontic treatment need, and potential utilization by third-party 

payers. 

Objectives: The specific aim of this study was to collect a dataset of patients’ oral 

images with the corresponding IOTN-AC classification and propose a deep-learning 

based algorithm that could identify the need for orthodontic treatment using intraoral 

photos.  

Methods: 500 pre-treatment frontal intraoral photos with corresponding overjet values 

were collected. Each photo with overjet was graded by a gold standard IOTN rater. Intra-

rater reliability was assessed. ResNet AI was trained using the verified intraoral images, 

overjet, and two different schemes (Scheme 1 and Scheme 2). The training data was 

annotated as 1-10 (representing IOTN-AC Level) in Scheme 1 and as 1-3 (representing 

“No need, borderline need, and great need” as described in the literature) in Scheme 2. 
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Both schemes were tested to predict ternary groups of “no need”, “borderline need”, or 

“great need”. 

Furthermore, both schemes were tested to predict binary groups of IOTN <6 or IOTN ≥ 6 

(a classification used by the National Health Service). In addition, we tested how the 

model would perform without an overjet value. Finally, our dataset was increased to 

n=564, and statistical analyses were re-run. 

Results: Our gold standard rater had intra-rater reliability using weighted kappa of 0.84 

(95% CI 0.76-0.93). Scheme 1 had an average of 62% sensitivity, 79% specificity, 68% 

accuracy, a positive predictive value (PPV) of 74%, and a negative predictive value 

(NPV) of 83% in predicting the ternary groups (“no need”, “borderline need”, or “great 

need”). Scheme 1 had 95% sensitivity, 52% specificity, 76% accuracy, a PPV of 72%, 

and a NPV of 88% in predicting the binary groups (IOTN <6 or IOTN ≥ 6). Scheme 2 

had an average of 52% sensitivity, 78% specificity, 67% accuracy, a PPV of 82%, and a 

NPV of 84% for predicting the ternary groups. Scheme 2 had 77% sensitivity, 66% 

specificity, 72% accuracy, a PPV of 74%, and a NPV of 69% in predicting the binary 

group. When overjet was omitted, accuracy decreased by 1% in both ternary and binary 

predictions. When the dataset was supplemented, on average, the tests increased in 

accuracy by 2% for the binary predictions and by 3% in the ternary predictions.  

Conclusion: We have developed a ResNet AI system that can automatically predict 

treatment need based on IOTN-AC reference standards. Results can presumably be 

improved with an increase in sample and training size.
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CHAPTER 1: INTRODUCTION 

ORTHODONTIC TREATMENT AND THE INDEX OF ORTHODONTIC TREATMENT 

NEED 

In 2016, total orthodontic expenditures in the United States neared $20 billion.1 

Following diagnostic and restorative procedures, visits for orthodontic procedures are the 

third largest treatment category in dentistry.2 The importance of a smile is widely 

accepted not only by society but also by scientific literature. 

In a study by Shaw3, it was found that children’s dental features affect viewer’s 

perception of their attractiveness and personal characteristics such as intelligence and 

aggressiveness. Similar results were confirmed by Papio et al.4 in the adult population. 

Another study in 20115 found that ratings of attractiveness, intelligence, 

conscientiousness, agreeableness, and extraversion differed significantly depending on 

dental relationships or occlusion. Subjects with normal occlusion were rated the most 

positively in these categories. Because of this evidence, orthodontic treatment to improve 

esthetics and related social, intellectual, and integrity judgements is sought by patients 

and also recommended by orthodontists.  

One of the most widely used assessments of orthodontic treatment need is The 

Index of Orthodontic Treatment Need (IOTN). Multiple studies have verified the 

reliability of the IOTN and its use on international populations.6–8 The IOTN has two 

components: the Dental Health Component (DHC) and the Aesthetic Component (AC).  

The DHC consists of a 5-point scale based on occlusal traits such as missing 
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teeth, crossbites, displacement of contact points, overjet, and overbite, where Grade 1 

signifies “no treatment need” and Grade 5 signifies “very great treatment need”. This 

evaluation can be completed using physical or digital casts.9 

The AC consists of a 10-point scale illustrated by a series of photographs that 

represent different levels of dental attractiveness (Figure 1).9 In utilizing the IOTN-AC, a 

rating of 1-10 is assigned for overall dental attractiveness rather than particular 

similarities to the photographs. The final value should reflect treatment need on the 

grounds of esthetic impairment and, consequently, the psychosocial need for orthodontic 

treatment.10 These photographs were evaluated by a group of lay judges and deemed to 

be equidistantly spaced between Grades 1-10.11 
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Figure 1. The Aesthetic Component of the Index of Orthodontic Treatment Need consists 

of 10-point scale illustrated by a series of photographs that represent different levels of 

dental attractiveness, where 1 represents an overall impression of little to no treatment 

need, and 10 represents an impression of great treatment need.11 

With the use of a validation exercise, Richmond et al.12 reported that the IOTN-

AC grades could be partitioned into 3 treatment need subgroups: no need, borderline 
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need, and definite treatment need. IOTN-AC Grades 1-4, 5-7, and 8-10 were combined to 

signify no treatment need, borderline need, and great need, respectively, in this modified 

grouping.13  

In the 2018 study by Papio et al.4, the IOTN-AC was used to quantify how dental 

esthetics contribute to overall facial attractiveness. Patients with attractive, average, and 

unattractive faces, and with dental esthetics ranging from 1 to 10 according to the IOTN-

AC, were rated with a lips together and lips apart pose. The differences provided a 

quantification of what esthetic dental alignment added to facial attractiveness. In females, 

only nearly ideal teeth (IOTN 1) can improve overall facial attractiveness. When dental 

esthetics were less than ideal (at IOTN 5 or more), dental impact was neutral or negative 

for all background facial attractiveness. On more attractive faces, low dental esthetics had 

a greater effect on overall attractiveness. This study also reported that men with an 

attractive face can camouflage dental deficits better than female counterparts.  

Certain occlusal disharmonies, such as hypodontia or posterior crossbites, may 

have dental implications but are not considered esthetic effects in the IOTN, as they may 

not been seen from a frontal intraoral photo. Furthermore, using frontal intraoral 

photographs in the IOTN-AC rating limits overjet and incisor-to-lip evaluations.14 These 

discrepancies can lead to disagreements between DHC and AC grades. In a recent study, 

it was demonstrated that only a moderate agreement between DHC and AC exists.9 This 

level of agreement and the evaluation of only the frontal view of occlusion highlighted 

the subjective nature of the AC. In practical use, however, practitioners are calibrated for 
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IOTN using dental casts, so overjets and overbites are more precise than those portrayed 

in photographs. Additionally, when grading IOTN clinically, measurements for both 

DHC and AC are taken directly on the patient. Therefore, for some applications of the 

IOTN-AC, overjet is provided along with the frontal photograph. This accounts for 

inconsistencies in images and type of photoflash used.15 

The IOTN is arguably most relevant in England and Wales, as it is currently used 

by the National Health Service (NHS) to determine whether children qualify for covered 

orthodontic treatment.  Patient’s with IOTN-DHC of 4 or 5 are eligible for NHS 

orthodontic treatment. However, the decision on treatment for borderline malocclusions, 

such as those with DHC of 3, is known to be difficult.16,17 In 2006, a prioritization system 

was introduced so that these borderline cases (DHC=3) required an AC of Grade 6 or 

more in order to receive access to care with the NHS.18 It is clear the AC evaluation 

impacts the ability of patients to receive care.  

MACHINE LEARNING 

Certain limitations exist in the conventional method of patient diagnosis. 

Information gathered from models, interviews, radiographs, and chair-side examinations 

are interpreted by clinicians with potential variations present at each step. Due to the 

individuality of the doctor’s experience, these methods of data gathering and analysis 

provide large variations in decision outcomes and are largely empirical.  

Today, artificial intelligence (AI), can be used to teach human learning processes 

to a machine. AI attempts to recognize human behavioral patterns in order to close 
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educational gaps and reduce variations intrinsic to human learning.19     

Machine learning is a branch of AI. Traditional machine learning requires a large 

amount of data and is computationally expensive. Random forest and support vector 

machine (SVM) are popular machine learning methods. Deep learning, and specifically 

transfer learning, on the other hand, is more efficient and can be used with a smaller data 

set. Deep learning uses multiple layers of neural network algorithms to extract higher-

level features from the data set. Transfer learning utilizes a pre-trained model to initiate a 

model for a new task. “Transfer learning refer(s) to the situation where what has been 

learned in one setting…is exploited to improve generalization in another setting.”20 

Transfer learning is increasingly common and it is now rare to train a model from scratch. 

Common pre-trained models that exist and are successful at classifying images include 

ImageNet, AlexNet, Inception, and ResNet. These are examples of neural networks. This 

study took advantage of transfer learning and utilized the ResNet pre-trained model or 

neural network. 

MACHINE LEARNING IN MEDICINE AND DENTISTRY 

The use of AI has aided the medical field in diagnosis automation. Features of 

diabetic retinopathy, macular degeneration, and glaucoma can be identified with high 

sensitivity and specificity. In CT scans and chest x-rays used in respiratory medicine, 

pathology such as lung nodules or cancers can be identified by AI. Deep learning also has 

high diagnostic accuracy for breast cancer in multiple imaging modalities, such as 

mammogram, ultrasound, and digital breast tomosynthesis.21 
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 Research on the use of AI in dentistry is encouraging for diagnosis of dental 

caries, identification of cephalometric landmarks, segmentation of maxillofacial cysts and 

tumors, diagnosis of root fractures, periapical pathology, and bone resorption.22–24  

Orthodontics may be one of the earliest dental specialties to adapt AI into its 

practice.19 Lateral cephalometric radiographs are routinely used by orthodontists to 

evaluate skeletal features, such as the relationship of the jaws to each other, the 

relationship of the jaws to the face, and the relationship of the jaws to the teeth. Lateral 

cephalometric films are also extremely important in orthognathic surgical planning.25 

When analyzing cephalometric films, a major task is landmark identification. Automating 

this task reduces the workload for orthodontists and surgeons, and has been identified as 

useful.26 A systematic review and meta-analyses was conducted in 2021 to examine the 

accuracy of deep learning for detecting landmarks on cephalometric radiographs. From 

the 19 included studies, 80% of the landmarks were identified within 2mm, 

demonstrating that deep learning shows relatively high accuracy for detecting landmarks 

on lateral cephalometric radiographs.27 This review even noted that deep learning 

performs similar to seasoned clinicians, and perhaps even better than inexperienced 

ones.28,29 

The decision to extract or not extract teeth is another important part of orthodontic 

practice. Recent studies have explored the use of neural networks to predict 5 patterns of 

tooth extraction: non-extraction, all first premolars, all second premolars, maxillary first 

premolars only, or maxillary first premolars with mandibular second premolars. The AI 
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was able to predict extraction vs. non-extraction with 94% accuracy, and the extraction 

pattern with 84% accuracy.30 

Analyzing facial characteristics is also an important aspect of orthodontics. In a 

Japanese population, Murata et al. 31 used an AI system to identify clinically useful facial 

traits (e.g., facial asymmetry, lip protrusion, vertical proportions, and profile shape). In 

this study, an experienced orthodontist evaluated 1000 lateral and frontal images of 

patients for certain facial traits. The average number of facial traits identified by the 

experienced orthodontist was 6.5 and ranged from 1-18 traits. 900 of the patient images 

were used to train the model, and 100 were used to test the model. In testing the AI, the 

AI was able to identify these facial traits with 95% accuracy, 39% sensitivity, and 97% 

specificity.  

Finally, AI’s ability to assess orthodontic treatment need has been explored. In 

another study by Murata et al.32,  AI was able to classify patients into 5 orthodontic 

treatment need categories with 45% accuracy. The categories ranged from 1 (no need for 

treatment) to 5 (need for treatment) and were based on intraoral images taken from five 

different angles. 

PRESENT STUDY 

In this project, we proposed the use of artificial intelligence (AI) to augment the 

IOTN-AC assessment which would allow for more objective diagnoses, a reduced 

workload for orthodontists, at-home patient assessments, and potential utilization by 

third-party payers. The purpose of this study was to collect a dataset of US patient’s oral 
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images with the corresponding IOTN-AC classification and develop a deep-learning 

based algorithm that could identify the IOTN-AC using frontal intraoral photos.
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CHAPTER 2: MATERIALS AND METHODS 

This project was exempt from the Institutional Review Board review.  

DATA COLLECTION 

500 intraoral images were gathered from The Ohio State University’s Graduate 

Orthodontic Clinic and the University of North Carolina’s Graduate Orthodontic Clinic. 

The 500 intraoral images were gathered in a quota-sampling manner, such that they 

mirrored the US population according to race and overjet values established from the 

epidemiological literature (Table 1).33–35  

Race Overjet Range (mm) Total 

 ≤ -3 -2 to 0 1 to 2 3 to 4 5 to 6 7 to 10 >10  

White 6 15 127 116 39 13 2 318 

Hispanic 1 5 30 45 6 2 1 90 

Black 1 5 23 26 7 2 1 65 

Asian 0 3 9 12 2 1 0 27 

        500 

Table 1. Demographic data of the sample (n=500) that was representative of the US 

population based on race and overjet values. 

The 500 intraoral images with a corresponding overjet range (Figure 2) were then 

sent to Dr. Stephen Richmond, who served as our gold-standard IOTN-AC rater. Our 

gold-standard rater assigned each photo an IOTN-AC grade of 1-10. After a two-week 

wash-out period, our gold standard rater re-graded 100 images in order to test for 
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reliability using kappa agreement. Dr. Richmond is known to have helped with the 

development and implementation of the IOTN and he leads the only accredited and 

validated calibration course for the IOTN in the UK.  

 

Figure 2. Example of intraoral photo with corresponding overjet range (mm) in upper left. 

The results of our initial data collection provided a representation of IOTN-AC 

grades in the US population seeking orthodontic care (Table 2).  
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IOTN Count Percentage 

1 3 1% 

2 30 6% 

3 44 9% 

4 70 14% 

5 72 14% 

6 94 19% 

7 96 19% 

8 72 14% 

9 11 2% 

10 8 2% 

Table 2. IOTN-AC grades for our sample, which was selected in a manner to be 

representative of the IOTN-AC grades in the US population seeking orthodontic care.  

DEEP LEARNING 

We developed a deep neural network, called the IOTN network, which takes two 

inputs and has three modules. The inputs are a 2D frontal intraoral image and an overjet 

numeric value. The modules consist of: a Convolutional neural network (CNN) module, 

an overjet module, and an output module, corresponding to the two inputs (Figure 3).  
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Figure 3. The IOTN network has 2 inputs, an overjet module, a CNN module, and an 

output module. 

In the CNN module, we used Residual Network 34 (ResNet34), the most widely 

used neural network in both computer vision and medical imaging, to be the backbone to 

extract 20 hidden features.36 In the overjet module, a two-layer fully connected network 

with the hyperbolic tangent activation function was used to learn 4 hidden features in an 

abstract domain from the overjet value. The 20 CNN features and 4 hidden overjet 

features were concatenated and feed into the final classification module to output the 

prediction. The output module is comprised of two fully connected layers followed by the 

hyperbolic tangent activation function.  

It is worth noting that we consider this supervised task a regression problem 
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instead of a classification problem, since the IOTN grade implies the severity of the 

patient’s oral conditions. For regression problems, the most commonly used activation 

function is hyperbolic tangent function and sigmoid function, whereas the softmax 

function is commonly used in classification problems. The IOTN Classification system 

uses integer numbers to represent treatment need, implying an ordinal relation.  For 

example, patients with IOTN 1 (little to no need for treatment), will look more similar to 

those patients with IOTN 5-7 (borderline need for treatment) than they will to patients 

with IOTN 8-10 (great need for treatment). Therefore, the hyperbolic tangent activation 

function was adopted at the last layer in the output module instead of the softmax 

activation function. Furthermore, because the IOTN AC grades are equidistant from each 

other, it can be considered interval data. 

IMPLEMENTATION 

After our initial data collection of 500 photos, the IOTN network was trained, 

validated, and tested in a supervised learning manner. In machine learning, multiple 

models are often considered (or “trained”) before a final model is chosen (or “validated”). 

The “validated” model is the one most optimized in terms of network parameters. The 

chosen, or “validated” model, is then “tested” with new, never-before-seen data in order 

to evaluate its performance and generalizability to unseen data.37 

Of the 500 gathered, 360 images were used in the training phase, 40 images were 

used in the validation phase, and 100 were used in the testing phase. In the training phase, 

three inputs were given to the network: 1) an intraoral image, 2) an overjet value, and 3) 
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the gold standard (IOTN grade for that specific image determined by our gold standard 

orthodontic rater). Figure 4 shows a schematic of a training. The model took two inputs 

(intraoral image and overjet value) and was tasked with learning the output of IOTN. The 

predicted IOTN value was compared to the gold standard (third input) to calculate the 

discrepancy, which was back propagated to each layer of the network to update their 

parameters. To test the model, the AI was given unique, never before seen images with 

corresponding OJ values and was tasked with grading IOTN-AC. 
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Figure 4. Schematic of a training where the model took the two inputs (i.e., intraoral 

image and overjet value) and was tasked with learning the output of IOTN. The predicted 

IOTN value was compared to the gold standard (third input) to calculate the discrepancy, 

which was back propagated to each layer of the network to update their parameters. 

DATA AUGMENTATION AND TRANSFER LEARNING 
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To avoid the overfitting situation in our relatively small dataset, we adopted two 

techniques (data augmentation and transfer learning) to enhance the learning of visual 

representation. For data augmentation, we randomly applied different image filters on 

each image to “create” different images from the same source. The image filters used in 

this study include cropping and padding, sharpening, embossinig, Gaussian noise, 

Gaussian blur, contrast adjustment, and dropout (i.e., randomly removing some pixels). 

Each filter had random chances to be applied on the training images. By performing this 

heavy augmentation configuration, we expanded our training data to be 200 images for 

each grade, for a total 2000 images. 

The second technique we applied was transfer learning, which indicates the 

process of applying previously acquired knowledge to new situations. This technique has 

been widely used in medical imaging studies since it is difficult to collect a large number 

of novel medical images. The pre-trained parameters of the ResNet34 previously trained 

by ImageNet (an open dataset containing 1,281,167 training natural images, 50,000 

validation natural images, and 100,000 test natural images) for 1000 object classification 

were used in our CNN module. By doing this, our CNN module had an excellent initial 

ability to extract and recognize abstract features from intraoral photos since the network 

already could well recognize those natural images in ImageNet dataset. Then, we applied 

our augmented intraoral images to fine tune the CNN module in IOTN prediction. All the 

implementations were done by Pytorch, an open source deep learning library with Python 

programming language.38 The data augmentation was carried out by imgaug, a library for 
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image augmentation in machine learning experiments. The pre-trained ResNet34 was 

downloaded from Pytorch. Some training configurations are provided in Error! 

Reference source not found.. 

Optimizer Adam 

Learning rate 0.003 

Epoch 200 

Batch size 128 

Loss function Mean square error loss 

Table 3. Details of the training configurations used in the CNN module. 

OUTPUT AND TYPE OF PREDICTION 

Prediction of 10 IOTN-AC levels- Scheme 0 

As described in the implementation, the training model took the two inputs (i.e., 

intraoral image and overjet value) and was tasked with learning the output of IOTN. The 

predicted IOTN value was compared to the gold standard (third input to the training 

module) to calculate the discrepancy, which was back propagated to each layer of the 

network to update their parameters. In the testing phase of our first scheme, denoted as 

Scheme 0, the predicted IOTN grade 1-10 was compared to the gold standard of IOTN 1-

10. The discrepancy between the predicted IOTN value and the gold standard allowed us 

to measure the performance of the AI system based on sensitivity (SEN), specificity 

(SPE), positive predictive value (PPV), negative predictive value (NPV), and accuracy 

(ACC). Figure 5 illustrates Scheme 0. 
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Figure 5. Scheme 0 training and testing, where the testing performance was based on the 

ability to predict IOTN 1-10. 

Prediction of Simplified IOTN groups- Scheme 1 and Scheme 2 

The task of predicting each IOTN-AC level proved challenging using only 500 

intraoral photos. Therefore, instead of using 10 levels, the IOTN can be simplified to into 

binary or ternary classes. In the binary classification, group I corresponds to IOTN 1-5, 

where patients in the UK are denied treatment coverage, and group II corresponds to 

IOTN 6-10, where patients are granted orthodontic coverage with the NHS if their DHC 

is borderline (DHC=3).18 The ternary classification is divided as follows: group I 

indicates no treatment need (corresponding to IOTN-AC 1-4), group II indicates 
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borderline need (corresponding to IOTN-AC 5-7), and group III indicates great need 

(corresponding to IOTN-AC 8-10). These cut off points are described in the literature.7,13 

To utilize the simplified IOTN classes, two additional implementation schemes were 

developed, called Scheme 1 and Scheme 2, in our AI system, described below. 

In Scheme 1, the exact same training configuration as described in Scheme 0 was 

used. At the end of the testing phase, however, we added a procedure, called mapping, to 

simplify the IOTN-AC prediction and gold standard into binary (Figure 6) or ternary 

(Figure 7) classes. In the binary classification, IOTN 1-5 was simplified to I, and IOTN 

6-10 was simplified to II and in the ternary classification IOTN 1-4 was simplified to I, 

IOTN 5-7 was simplified to II, and IOTN 8-10 was simplified to III, as described above. 

The performance of the AI system was evaluated on the simplified classes instead of the 

original 10 IOTN-AC grades.  
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Figure 6. Scheme 1 with Binary Grouping, where the performance measure was based on 

simplified IOTN Classes of I (IOTN1-5) or II (IOTN 6-10). 
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Figure 7. Scheme 1 with Ternary Grouping, where performance measure was based on 

simplified IOTN Classes of I (IOTN 1-4), II (IOTN 5-7), or III (IOTN 8-10). 

 In Scheme 2, a different training scheme was used where the input to the network 

was simplified. Instead of gold standard being IOTN 1-10, it was simplified to the binary 

or ternary treatment need categories within the network itself. Therefore, the output of 

IOTN network naturally became binary (Figure 8) or ternary classes (Figure 9). 
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Figure 8. Scheme 2 with Binary Grouping, where training was based on simplified IOTN 

Classes of I (IOTN1-5) or II (IOTN 6-10). 
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Figure 9. Scheme 2 with Ternary Grouping, where training was based on simplified 

IOTN Classes of I (IOTN 1-4), II (IOTN 5-7), or III (IOTN 8-10). 

In summary, in Scheme 1 the gold standard was annotated as 1 to 10 (representing 

IOTN-AC Level) in the training phase, and in Scheme 2 the gold standard was simplified 

into binary or ternary classifications in the training phase. Both schemes performance 

measures were on the ability to categorize photos into the binary or ternary 

classifications. Scheme 1 and Scheme 2 were compared by measures of sensitivity 

(SEN), specificity (SPE), positive predictive value (PPV), negative predictive value 

(NPV), and accuracy (ACC). 

THE IOTN NETWORK VARIANT AND SUPPLEMENTED DATASET  

In addition, we also developed an IOTN network variant which only takes 
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intraoral images without overjet input (i.e., removing the overjet module in the original 

IOTN network). SEN, SPE, PPV, NPV, and ACC were used to evaluate the performance. 

To further test the influence of size of dataset on the overall AI system 

performance, 64 more intraoral images previously graded on the IOTN-AC were obtained 

from Dr. Richmond. The dataset was supplemented such that we had at least 20 images in 

each IOTN grade. See Table 2 for original dataset prior to supplementation. We trained 

and tested the IOTN network again using the Scheme 1 and calculated SEN, SPE, PPV, 

NPV, and ACC. 
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CHAPTER 3: MANUSCRIPT 

 

Artificial intelligence (AI) for predicting the Aesthetic Component (AC) 

of the Index of Orthodontic Treatment Need (IOTN) 

 

L. Stetzel1, T. Wu1, H. Fields1, F. Schumacher2, S. Richmond3, C. Ko1 

 

1Division of Orthodontics, The Ohio State University, 305 W. 12th Avenue, Columbus, OH, USA; 

2Division of Biostatistics, The Ohio State University, 1841 Neil Avenue, Columbus, OH, USA; 

3Department of Orthodontics, Cardiff University, Heath Park, Cardiff, CF14 4XY, Wales, UK 

 

Abstract 

Background: The Aesthetic Component (AC) of the Index of Orthodontic Treatment 

Need (IOTN) is internationally recognized as a reliable and valid method for assessing 

aesthetic treatment need.   

Objective: To use artificial intelligence (AI) to automate the AC assessment.  

Methods: 500 pre-treatment frontal intraoral photos with overjet values were collected. 

Each photo was graded by an experienced calibrated clinician.  AI was trained using the 

intraoral images, overjet, and two different approaches. For Scheme 1, the training data 

were AC 1-10. For Scheme 2, the training data were either 2 groups: AC 1-5 and AC 6-

10 or 3 groups: AC 1-4, AC 5-7 and AC 8-10. Sensitivity, specificity, positive predictive 

value, negative predictive value, and accuracy were measured for all approaches. The 

performance was tested without overjet values as input. Finally, the dataset was increased 

to n=564 so each AC grade had at least 20 samples in the training phase.  



   

 

      27 

Results: The intra-rater reliability for the grader using kappa was 0.84 (95% CI 0.76-

0.93). Scheme 1 had 95% sensitivity, 52% specificity, 76% accuracy, 72% PPV, and 88% 

NPV in predicting the binary groups. All other Schemes offered poor tradeoffs.  Omitting 

overjet and dataset supplementation results were mixed depending upon perspective.  

Limitations: The training data was limited by AC 1, 9, and 10’s small cell counts of the 

proportional data.  

Conclusions & Implications: We have developed deep learning based algorithms that 

can predict treatment need based on IOTN-AC reference standards. This may be a useful 

adjunct to clinical assessment of dental aesthetics. 

 

Introduction 

The National Health Service has been facing severe pressure to reduce costs due to 

consequences of the Covid-19 pandemic, chronic understaffing issues, and a deficit (1). 

Yet, a recent survey in May of 2021 of members of the British Orthodontic Society 

showed a marked increase in demand for orthodontic services (2). In 2020/21, the NHS 

expenditure on primary care orthodontic services totaled £306 million (3). It is 

increasingly important to distribute limited funds in a manner such that those in need of 

treatment are eligible for and obtain orthodontic services. 

The importance of a smile is widely accepted not only by society but also by scientific 

literature. In a study by Shaw (4), it was found that children’s dental features affect 

viewer’s perception of their attractiveness and personal characteristics such as 



   

 

      28 

intelligence and aggressiveness. Similar results were confirmed by Papio et al. (5) in the 

adult population. Another study in 2011 (6) found that ratings of attractiveness, 

intelligence, conscientiousness, agreeableness, and extraversion differed significantly 

depending on dental relationships or occlusion. Subjects with normal occlusion were 

rated the most positively in these categories. Because of this evidence, orthodontic 

treatment to improve esthetics and related social, intellectual, and integrity judgements is 

sought by patients and also recommended by orthodontists.  

One of the most widely used assessments of orthodontic treatment need is the Index of 

Orthodontic Treatment Need (IOTN). Multiple studies have verified the reliability of the 

IOTN and its use on international populations (7–9). The IOTN has two components: the 

Dental Health Component (DHC) and the Aesthetic Component (AC).  

The DHC consists of a 5-point scale based on occlusal traits such as missing teeth, 

crossbites, displacement of contact points, overjet, and overbite, where grade 1 signifies 

“no treatment need” and grade 5 signifies “very great treatment need”. The AC consists 

of a 10-point scale illustrated by a series of photographs that represent different levels of 

dental attractiveness(10). In utilizing the IOTN-AC, a rating of 1-10 is assigned for 

overall dental attractiveness rather than particular similarities to the photographs. The 

final value should reflect treatment need on the grounds of aesthetic impairment and, 

consequently, the psychosocial need for orthodontic treatment(11). 

With the use of a validation exercise, Richmond et al.(12) reported that the AC grades 

could be partitioned into 3 treatment need subgroups: no need, borderline need, and 
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definite treatment need. IOTN-AC grades 1-4, 5-7, and 8-10 were combined to signify no 

treatment need, borderline need, and great need, respectively, in this modified 

grouping(13). 

The IOTN is currently used by the National Health Service (NHS) to determine whether 

children qualify for orthodontic treatment within the National Health Service.  Patient’s 

with IOTN-DHC of 4 or 5 are eligible for NHS orthodontic treatment. However, the 

decision on treatment for borderline malocclusions, such as those with DHC of 3, is 

known to be difficult(14,15). In 2006, a prioritization system was introduced so that these 

borderline cases (DHC=3) required an AC grade of 6 or more in order to receive 

eligibility for treatment with the NHS(16). It is clear the AC evaluation impacts the 

ability of patients to receive care.  

With increasing demand for orthodontic care, reducing the workload of orthodontists and 

at-home patient assessments are appealing ideas. The use of artificial intelligence (AI) 

has aided both the medical and dental field in diagnosis automatization(17–20). 

Orthodontics may be one of the earliest dental specialties to adapt AI into its practice(21). 

A systematic review and meta-analysis were conducted in 2021 to examine the accuracy 

of deep learning (a branch of AI which utilizes neural networks) for detecting landmarks 

on cephalometric radiographs. From the 19 included studies, 80% of the landmarks were 

identified within 2mm, demonstrating that deep learning shows relatively high accuracy 

for detecting landmarks on lateral cephalometric radiographs(22). This review noted that 

deep learning performs similar to seasoned clinicians, and perhaps even better than 
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inexperienced ones(23,24). 

AI’s ability to assess orthodontic treatment need has been explored. In a study by Murata 

et al.(25),  AI was able to classify patients into 5 orthodontic treatment need categories 

with 45% accuracy. The categories ranged from 1 (no need for treatment) to 5 (need for 

treatment) and were based on intraoral images taken from five different angles. 

In this study, we proposed the use of artificial intelligence (AI) to augment the AC 

assessment which would allow for more objective assessments, a reduced workload for 

orthodontists, at-home patient assessments, and potential utilization by third-party payers. 

The purpose of this study was to collect a dataset of patients’ oral images with the 

corresponding IOTN-AC classification and develop a deep-learning based AI algorithm 

that could identify the IOTN-AC using only a frontal intraoral photo and overjet range. 

Methods 

Data Collection 

500 intraoral images were gathered in a quota-sampling manner, such that they mirrored 

the US population according to race and overjet values established from the 

epidemiological literature (26–28). The 500 intraoral images with a corresponding overjet 

range were assessed by an experienced calibrated examiner. Each photo was allocated an 

AC score. After a two-week wash-out period, 100 images were randomized to test for 

reliability using kappa. The 500 images then served as our gold standard. 

Deep Learning 

We developed a deep neural network, called the IOTN network, which takes two inputs 
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and has three modules. The inputs are a 2D frontal intraoral image and an overjet numeric 

value, which was the median value of the overjet range. The modules consist of a 

Convolutional neural network (CNN) module, an overjet module, and an output module, 

corresponding to the two inputs (Figure 1). 

In the CNN module, we used Residual Network 34 (ResNet34), the most widely used 

neural network in both computer vision and medical imaging, to be the backbone to 

extract 20 hidden features (29). In the overjet module, a two-layer fully connected 

network with the hyperbolic tangent activation function was used to learn 4 hidden 

features in an abstract domain from the overjet value. The 20 CNN features and 4 hidden 

overjet features were concatenated and fed into the final classification module to output 

the prediction. The output module is comprised of two fully connected layers followed by 

the hyperbolic tangent activation function.  

It is worth noting that we consider this supervised task a regression problem instead of a 

classification problem, since the IOTN-AC grade implies the severity of the patient’s 

dental aesthetics. For regression problems, the most used activation functions are the 

hyperbolic tangent function and the sigmoid function. Whereas for classification 

problems, the softmax function is most used. The AC uses integer numbers to represent 

aesthetic treatment need, implying an ordinal relation.  For example, patients with AC 1 

(little to no need for treatment), look more similar to those patients with AC 5-7 

(borderline need for treatment) than to patients with AC 8-10 (great need for treatment). 

Therefore, the hyperbolic tangent activation function was adopted as the last layer in the 
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output module instead of the softmax activation function. Furthermore, because the AC 

grades are equidistant from each other, it can be considered interval data. 

Implementation 

After our initial data collection of 500 photos, the IOTN network was trained, validated, 

and tested in a supervised learning manner. In machine learning, multiple models are 

often considered (or “trained”) before a final model is chosen (or “validated”). The 

“validated” model is the one most optimized in terms of network parameters. The chosen, 

or “validated” model, is then “tested” with new, never-before-seen data in order to 

evaluate its performance and generalizability to unseen data (30). 

Of the 500 gathered, 360 images were used in the training phase, 40 images were used in 

the validation phase, and 100 were used in the testing phase. In the training phase, three 

inputs were given to the network: 1) an intraoral image, 2) an overjet value, and 3) the 

gold standard (via the loss function, a measure of the difference between the gold 

standard and prediction). The discrepancy between the gold standard and the prediction 

was back propagated to each layer of the network to update their parameters. Figure 2 

shows a schematic of how the IOTN network was trained.  

To test the model, the AI was given 100 unique, new images with corresponding overjet 

value and was tasked with grading the AC. Figure 3 shows a schematic of the testing 

phase. The testing dataset mirrored the IOTN-AC distribution of our representative 

sample of 500. That is, the testing data had the same percentage of each AC grade as 

indicated in the initial data collection. 
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Data Augmentation and Transfer Learning 

To avoid overfitting (when training results exceed those for novel data) in our relatively 

small dataset, we adopted two techniques: data augmentation and transfer learning. For 

data augmentation, we randomly applied different image filters on each image to “create” 

different images from the same source. The image filters used in this study include 

cropping and padding, sharpening, embossing, Gaussian noise, Gaussian blur, contrast 

adjustment, and dropout (i.e., randomly removing some pixels). Each filter had random 

chances to be applied on the training images. By performing this heavy augmentation 

configuration, we expanded our training data to be 200 images for each grade, for a total 

2000 images. It is important to note that although each grade was augmented to have 200 

images, the diversity of these grades was not equal. 

The second technique we applied was transfer learning, which is the process of applying 

previously acquired knowledge to new situations. This technique has been widely used in 

medical imaging studies since it is difficult to collect a large number of novel medical 

images. The pre-trained parameters of the ResNet34 previously trained by ImageNet (an 

open dataset containing 1,281,167 training natural images, 50,000 validation natural 

images, and 100,000 test natural images) for 1000 object classification were used in our 

CNN module. By doing this, our CNN module had an excellent initial ability to extract 

and recognize abstract features from intraoral photos since the network already could 

recognize those natural images in ImageNet dataset. Then, we applied our augmented 

intraoral images to fine tune the CNN module in its ability to predict AC. All the 
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implementations were done by Pytorch, an open source deep learning library with Python 

programming language(31). The data augmentation was carried out by imgaug, a library 

for image augmentation in machine learning experiments. The pre-trained ResNet34 was 

downloaded from Pytorch. 

Scheme 0 

In the training phase of our first approach, denoted as Scheme 0, the gold standard was 

AC 1-10. In the testing phase of Scheme 0, the IOTN network predicted an AC grade 1-

10 for each image.  

Scheme 1 

In the training phase of Scheme 1, the exact same training configuration as Scheme 0 was 

used, where the gold standard was AC 1-10. In the testing phase, however, we added a 

procedure, called mapping, at the end to simplify the AC prediction and gold standard 

into binary or ternary classes. In the binary classification, AC 1-5 was simplified to I, and 

AC 6-10 was simplified to II. In the ternary classification, AC 1-4 was simplified to I, 

AC 5-7 was simplified to II, and AC 8-10 was simplified to III.  

Scheme 2 

In the training phase of Scheme 2, the gold standard was simplified, into the binary and 

ternary groupings as described above. In Scheme 2, the IOTN network automatically 

predicted the simplified binary and ternary classifications, and mapping was unnecessary.  

A summary of the Schemes’ trainings and tests can be found in Figure 4.  

The IOTN Network Variant and Supplemented Dataset 
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In addition, we also developed an IOTN network variant which only takes the intraoral 

image as input (i.e., removes the overjet module in the original IOTN network).  

To further test the influence of the size of the dataset on the overall AI system 

performance, 64 more intraoral images previously graded using the AC were obtained 

from the experienced calibrated examiner. The dataset was supplemented such that we 

had at least 20 images in each AC grade. 19 AC 1’s, 20 AC 9’s and 33 AC 10’s were 

added to the extremes of the dataset. The IOTN network was trained and tested again 

using Scheme 1. 

Statistical Analysis 

All schemes’ performances were measured by calculating sens, spec, PPV, NPV, and acc.    

For the binary predictions, an AC of 6-10 was considered a “positive” test and prediction, 

while AC 1-5 was considered a “negative” test and prediction.  

For the ternary predictions, sens, spec, PPV, and NPV were calculated for each treatment 

need group I-III. For example, for the treatment need group III, a true positive was when 

the actual treatment need group was III and the predicted treatment need group was III. A 

false positive was when the actual treatment need group was either I or II and the 

predicted treatment need group was III. A true negative was when the actual treatment 

need group was either I or II and the predicted treatment need group was either I or II. 

Finally, a false negative was when the actual treatment need group was III and the 

predicted treatment need group was I or II.  

Similarly, for the prediction of AC 1-10 (used in Scheme 0), sens, spec, PPV, and NPV 
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were calculated for each individual grade. 

Results 

The calibrated examiner demonstrated excellent intra-rater reliability in the identification 

of IOTN-AC grades 1-10 using kappa agreement, where the weighted kappa was 0.84 

(95% CI 0.76 to 0.93). 

The results of our initial data collection provided a representation of IOTN-AC grades in 

the US population. The most infrequent AC grade was 1, which represented 1% of our 

sample. AC 9 and 10 were also uncommon, and each represented 2% of our sample. AC 

6 and 7 were the most frequent grades in our sample, each representing 19%. Complete 

AC distribution for our sample can be found in Table 1.  

Predication of AC 1-10 

For predicting AC 1-10, Scheme 0 had poor sensitivity, positive predictive value, and 

accuracy. When analyzing the performance of Scheme 0, 89% of errors (or absolute 

difference between gold standard and prediction when >0) were of either 1 or 2.  

Prediction of AC 1-5 (I) and 6-10 (II) - Binary 

For the binary predictions, Scheme 1 outperformed Scheme 2 in sensitivity, negative 

predictive value, and accuracy. Scheme 1 was able to identify those with AC 6-10 95% of 

the time. Scheme 2 had better specificity and PPV. The results of the binary predictions 

for Scheme 1 and Scheme 2 can be visualized in Figure 5. 

Prediction of AC 1-4 (I), 5-7 (II), and 8-10 (III) - Ternary 

For the ternary predictions, on average, Scheme 1 outperformed Scheme 2 in sensitivity, 
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specificity, and accuracy. Scheme 2 outperformed Scheme 1 with an average positive 

predictive value of 82% (8% greater than Scheme 1). 

When analyzing the outcomes for each prediction group, it is evident that Scheme 1 

misclassified actual “Borderline Need” subjects into both the “No Need” and “Great 

Need” category. Whereas Scheme 2 mis-predicted actual “Borderline Need” subjects into 

only the “No Need” category. Scheme 2 had substantially low sensitivity, and 

substantially high specificity and PPV. In this case, Scheme 2 mis-predicted all but 1 of 

the actual “Great Need” subjects into the “Borderline Need” group instead. Furthermore, 

there were no false positives for “Great Need” in Scheme 2. In both Scheme 1 and 

Scheme 2, the “Borderline Need” group had the highest sensitivity and the lowest 

specificity compared to both “No Need” and “Great Need” groups. These results can be 

visualized in Figure 6. 

Predictions without overjet and with supplemented data 

Without overjet, the model’s performance decreased in every metric on average for the 

ternary predictions. For the binary predictions, specificity and positive predicative value 

increased, while every other metric decreased. 

When AC groups 1, 9, and 10 were supplemented with new images, the model’s 

performance increased in every metric on average for the ternary predictions. For the 

binary predictions, sensitivity and negative predicative value decreased, while every other 

metric increased. The results of the binary and ternary predictions with our supplemented 

data can be found in Figure 7. 
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Summary 

The performance measures for all the schemes can be found in Table 2.  

Discussion 

In this study, we proposed the use of artificial intelligence to augment the AC assessment. 

We proposed multiple schemes of training and testing, and it is clear that results are 

variable depending upon how the AI model is trained and tested.  

The experienced calibrated examiner had nearly perfect intra-rater reliability by weighted 

kappa, according to Cohen (32).  This served as a strong underpinning for the study. 

When originally attempting to classify the specific need categories of 1-10, our model 

(Scheme 0) proved inaccurate (acc=34%). However, when analyzing the discrepancies, 

or error, in this model, it was noted that 89% of errors were of only 1 or 2 grades, and a 

positive correlation was found (r=0.74). It is well-known that classification problems 

become more challenging as the number of classes increases, and a recent study suggests 

this increased complexity is due, at least in part to, the heterogeneity in decision 

boundaries.(33) 

In order to improve our results, Scheme 1 and Scheme 2 were developed where the 

artificial intelligence was tasked to identify the broader treatment need categories (binary 

and ternary classifications). Emphasis was given to predicting these broader treatment 

need categories due to their practicality. The binary classification system is especially 

useful among those 18 years or younger enrolled in the NHS. If one is considered 

borderline in the DHC, the binary AC classification can determine if you are eligible for 
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NHS-funded treatment (AC 6-10) or if you will be ineligible (AC 1-5). The ternary 

classification is more descriptive where AC 1-4 indicates little to no treatment need, AC 

5-7 indicates moderate treatment need, and AC 8-10 indicates great treatment need, but 

less useful in real application. 

Certain metrics lead to the conclusion that Scheme 1 outperforms Scheme 2, and that 

Scheme 1 should be considered practically useful. The value of the outcomes really is 

one of perspective.  If you are the payer, you do not want false positives, so high 

specificity and high PPV are critical. In fact, given the need to conserve funds for either 

the government or the administrator as net profit, you do not care about false negatives. 

From a patient or provider viewpoint, you want to minimize false negatives.  So high 

sensitivity and high NPV are most important.  You want all patients who need treatment 

to be appropriately allocated so it is of little concern if there are a few false positives, 

because all who qualify (and then some, maybe) will be funded.   

It is important to note that certain third-party payers, such as the NHS, are funded by the 

public. According to the NHS Constitution for England Principles #2 and #6, “Access to 

NHS services is based on clinical need,” and the NHS “is committed to providing the 

most effective, fair and sustainable use of finite resources”(34). Therefore, Scheme 1 

with binary prediction could be considered for use by the NHS. 

The ternary predictions may be clinically useful as they are more descriptive than the 

binary predictions. However, due to the poor sensitivity of the “Great Need” category, if 

this model was used to determine eligibility for care, many patients with true “Great 
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Need” for treatment would be mis-categorized as “Borderline Need”. This may lead to an 

excess of appeals to third-party payers. 

When analyzing at the binary grouping results (which is necessary when a patient has a 

DHC=3 in the NHS) of Scheme 1 vs. Scheme 2, Scheme 1 performed better overall. It 

would be desirable to have an automated system that can generate minimal false 

negatives (high sens), so that all of those needing treatment are identified. Furthermore, 

NPV in Scheme 1 was notably (20%) higher than in Scheme 2. This could assure 

patients, that if a negative result (IOTN-AC 1-5) is generated, likely (with 88% 

probability) a negative result was warranted. 

Overall, the results of Scheme 1 were more promising than Scheme 2 when considering 

both binary and ternary predictions. Therefore, we decided to investigate how the Scheme 

1 would perform without an overjet input. This would allow for less clinical error and 

less variation among practitioners. Accuracy decreased slightly (1%), but spec and PPV 

increased in the binary classification. From the perspective of patient and provider, 

removing the overjet input is currently not advisable, as sens and NPV decreased 

considerably without this input.  In the ternary classification, all values decreased 

slightly, except spec, which stayed the same. This slight decrease in results may not be 

clinically significant. With an increase in sample size, it may be possible to classify 

IOTN-AC ranges without needing to measure overjet. This would allow for at-home 

patient assessments using a mobile device. More studies should be conducted.  

We investigated how increasing sample or training size could impact our results. By 
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supplementing our dataset with an additional 64 images, we were able to ensure that each 

treatment need category had at least 20 images. In our original dataset (which represented 

the US population), AC Grades 1, 9, and 10 were substantially under-represented. When 

the data were supplemented, the prevalence was increased especially for AC 1, 9, and 10. 

Supplementing the dataset in this manner improved our results and it can be assumed that 

further increasing the sample size would further improve our results. Also, with an 

increase in prevalence, one would expect to see an increase in positive predictive value 

and a decrease in negative predictive value, and this was observed in the binary 

predictions. Again, this was not in the interest of the patients. 

Additional ways to improve our results include improving the convolutional neural 

network.  

Limitations of this study include a small sample size (AC 1, 9, and 10 had fewer 

representations). From a machine learning perspective, balanced training data is 

preferred. We have reason to believe that increasing the training dataset especially in 

these grades would improve the machine’s ability overall to accurately predict the AC of 

the IOTN.  

Conclusion 

We have developed deep learning based algorithms that can predict dental aesthetic need 

based on IOTN-AC reference standards. Using the AC 1-10 scale input with binary 

testing was superior when compared to other AC categorizations and judged with a 

patient-centered public policy perspective. 
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CHAPTER 4: RESULTS 

Reliability 

 The gold standard IOTN grader demonstrated excellent intra-rater reliability in 

the identification of IOTN grades 1-10 using kappa agreement, where the weighted kappa 

was 0.84 (95% CI 0.76 to 0.93). 

Prediction of 10 IOTN AC levels- Scheme 0 

Scheme 0 yielded 34% accuracy (agreement between gold standard IOTN and 

predicted IOTN). Furthermore, 89% of our errors (or absolute difference between gold 

standard and prediction when >0) were errors of either 1 or 2. For example, if the gold 

standard was IOTN 2, but our AI predicted 4, the error (or difference between “actual” 

and “predicted”) would be 2. Or if the gold standard was IOTN 3, but the AI predicted 4, 

the error would be 1. Table 4 shows the absolute difference between the gold standard 

and prediction with a count. Finally, there was a positive correlation between the gold 

standard IOTN and the predicted IOTN, represented in Figure 10 (r=0.74).  
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Table 4. Absolute difference between gold standard IOTN and predicted IOTN using 

Scheme 1, along with count of the differences. 

 
Figure 10. Scatterplot of Scheme 0. 

 

Prediction of Simplified IOTN AC levels- Scheme 1  

Scheme 1 yielded an accuracy of 76% and 68% for the binary and ternary 
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classifications, respectively.  

The binary classification results are summarized in Table 5. The binary 

classification had a sensitivity (SEN) of 95% and a specificity (SPE) of 52%. The 

positive predictive value (PPV) was 72% and the negative predictive value (NPV) was 

88%.  

SEN 0.95 

SPE 0.52 

PPV 0.72 

NPV 0.88 

Table 5. Summary of Scheme 1 Binary Classification Results. 

The ternary classification results are summarized in Table 6. The ternary 

classification’s SEN ranged from 37% to 88%, while the SPE ranged from 46% to 97%. 

The PPV ranged from 64% to 85% and the NPV ranged from 78% to 92%. Furthermore, 

results of the ternary prediction for Scheme 1 can be visualized in Figure 11 

  No need (I) 
Borderline 

Need (II) 

Great Need 

(III) 
Average 

SEN 0.37 0.88 0.61 0.62 

SPE 0.97 0.46 0.95 0.79 

PPV 0.85 0.64 0.73 0.74 

NPV 0.78 0.79 0.92 0.83 

Table 6. Summary of Scheme 1 Ternary Classification Results. 
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Figure 11. Scheme 1 with ternary grouping results. 

 A summary of Scheme 1 Binary vs. Ternary Classification can be found in Table 

7, where the ternary classification values are averaged.  

 

 Binary Classification Ternary Classification 

ACC 0.76 0.68 

SEN 0.95 0.62 

SPE 0.52 0.79 

PPV 0.72 0.74 

NPV 0.88 0.83 

Table 7. Summary of Scheme 1 Binary vs. Ternary Classification Results. 

Prediction of Simplified IOTN AC levels- Scheme 2 
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 Scheme 2 yielded an accuracy of 72% and 67% for the binary and ternary 

classifications, respectively.  

 The binary classification results are summarized in Table 8. The binary 

classification had a SEN of 77% and a SPE of 66%. The PPV was 74% and the NPV was 

69%. 

SEN 0.77 

SPE 0.66 

PPV 0.74 

NPV 0.69 

Table 8. Summary of Scheme 2 Binary Classification Results. 

The ternary classification statistical results are summarized in Table 9. The 

ternary classification’s SEN ranged from 6% to 94%, while the SPE ranged from 38% to 

100%. The PPV ranged from 62% to 100% and the NPV ranged from 83% to 86%. 

Furthermore, results of the ternary prediction for Scheme 2 can be visualized in Figure 

12. 
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  No need (I) 
Borderline 

Need (II) 

Great Need 

(III) 
Average 

SEN 0.57 0.94 0.06 0.52 

SPE 0.96 0.38 1 0.78 

PPV 0.85 0.62 1 0.82 

NPV 0.84 0.86 0.83 0.84 

Table 9. Summary of Scheme 2 Ternary Classification Results 

 

Figure 12. Scheme 2 with ternary grouping results. 

A summary of Scheme 2 Binary vs. Ternary Classification can be found in Table 

10, where the ternary classification values are averaged. 
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 Binary Classification Ternary Classification 

ACC 0.72 0.67 

SEN 0.77 0.52 

SPE 0.66 0.78 

PPV 0.74 0.82 

NPV 0.69 0.84 

Table 10. Summary of Scheme 2 Binary vs. Ternary Classification Results. 

Scheme 1 vs. Scheme 2 

 A summary of Scheme 1 vs. Scheme two results can be found in Table 11. 

Furthermore,  confusion matrices can be found for the binary results in Table 12 and 

Table 13, and for the ternary results in Table 14 and Table 15.  
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 Scheme 1 Scheme 2 

Binary Prediction  ACC: 0.76 ACC: 0.72 

SEN: 0.95 SEN: 0.77 

SPE: 0.52 SPE: 0.66 

PPV: 0.72 PPV: 0.74 

NPV: 0.88 NPV: 0.69 

Ternary Prediction  ACC: 0.68 ACC: 0.67 

SEN: [0.37, 0.88, 0.61], 

μ=62 

SEN: [0.57, 0.94, 0.06], 

μ=52 

SPE: [0.97, 0.46, 0.95], 

μ=79 

SPE: [0.96, 0.38, 1.00], 

μ=78 

PPV: [0.85, 0.64, 0.73], 

μ=74 

PPV: [0.85, 0.62, 1.00], 

μ=82 

NPV: [0.78, 0.79, 0.92], 

μ=83 

NPV: [0.84, 0.86, 0.83], 

μ=84 

Table 11. Summary of Scheme 1 vs. Scheme 2 Results. 

 Predicted Positive Predicted Negative 

Actually Positive 53 3 

Actually Negative 21 23 

Table 12. Confusion Matrix for Scheme 1 Binary. 

 Predicted Positive Predicted Negative 

Actually Positive 43 13 

Actually Negative 15 29 

Table 13. Confusion Matrix for Scheme 2 Binary. 
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 Predicted  

“No Need (I)” 

Predicted  

“Borderline Need 

(II)” 

Predicted  

“Great Need (III)” 

Actual “No Need (I)” 11 19 0 

Actual  

“Borderline Need 

(II)” 

2 46 4 

Actual  

“Great Need (III)” 

0 7 11 

Table 14. Confusion matrix for Scheme 1 Ternary. 

 Predicted  

“No Need (I)” 

Predicted  

“Borderline Need 

(II)” 

Predicted  

“Great Need (III)” 

Actual “No Need (I)” 17 13 0 

Actual  

“Borderline Need 

(II)” 

3 49 0 

Actual  

“Great Need (III)” 

0 17 1 

Table 15. Confusion matrix for Scheme 2 Ternary.  

Scheme 1 with No Overjet Values 

 When Scheme 1 was trained with no overjet input (only intraoral photo as input), 

its’s accuracy decreased by 1% in the binary classification and decreased by 1% in the 

ternary classification. In the binary classification, SEN decreased by 25%, SPE increased 

by 30%, PPV increased by 11%, and NPV decreased by 20%. 

Compared to the Scheme I ternary classification with overjet input, without 

overjet input, on average, the SEN decreased by 4% and the SPE stayed the same. In the 

no need category, SEN increased by 16% and SPE decreased by 3%. In the borderline 

need category, SEN decreased by 1% and SPE increased by 2%. In the great need 

category, SEN decreased by 28% and SPE stayed the same.  On average, PPV decreased 
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by 6% and NPV decreased by 1%. In the no need category, PPV decreased by 5% and 

NPV increased by 5%. In the borderline need category, PPV stayed the same and NPV 

decreased by 2%. In the great need category, PPV decreased by 13% and NPV decreased 

by 5%.  

A summary of Scheme 1 with and without overjet input can be found in Table 16. 

 Scheme 1 Scheme 1 w/out Overjet 

Binary Prediction  ACC: 0.76 ACC: 0.75 

SEN: 0.95 SEN: 0.70 

SPE: 0.52 SPE: 0.82 

PPV: 0.72 PPV: 0.83 

NPV: 0.88 NPV: 0.68 

Ternary Prediction  ACC: 0.68 ACC: 0.67 

SEN: [0.37, 0.88, 0.61], 

μ=62 

SEN: [0.53, 0.87, 0.33], 

μ=58 

SPE: [0.97, 0.46, 0.95], 

μ=79 

SPE: [0.94, 0.48, 0.95], 

μ=79 

PPV: [0.85, 0.64, 0.73], 

μ=74 

PPV: [0.8, 0.64, 0.6], μ=68 

NPV: [0.78, 0.79, 0.92], 

μ=83 

NPV: [0.83, 0.77, 0.87], 

μ=82 

Table 16. Summary of Scheme 1 with and without overjet input results. 
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Scheme 1 with Supplemented Dataset 

 With the additional 64 images, Scheme 1’s accuracy improved by 2% in the 

binary classification and improved by 3% in the ternary classification. 

 In the Scheme I binary classification with supplemented data, sensitivity 

decreased by 16%, specificity increased by 25%, PPV increased by 9%, and NPV 

decreased by 14%. 

For the ternary classification, on average, the SEN increased by 4% and the SPE 

increased by 3%. In the no need category, SEN increased by 16% and SPE decreased by 

6%. In the borderline need category, SEN decreased by 3% and SPE increased by 10%. 

In the great need category, SEN was not changed and SPE increased by 3%. Furthermore, 

on average, PPV increased by 1% and NPV increased by 1%. In the no need category, 

PPV decreased by 12% and NPV increased by 4% with the supplemented data. In the 

borderline need category, PPV increased by 4% and NPV decreased by 2%. In the great 

need category, PPV increased by 12% and NPV stayed the same.  

A summary of Scheme 1 vs. Scheme 1 supplemented can be found in Table 17. 

Additionally, a confusion matrix of Scheme 1 Supplemented Binary and Scheme 1 

Supplemented Ternary can be found below in Table 18 and Table 19, respectively. 
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 Scheme 1 Scheme 1 Supplemented 

Binary Prediction  ACC: 0.76 ACC: 0.78 

SEN: 0.95 SEN: 0.79 

SPE: 0.52 SPE: 0.77 

PPV: 0.72 PPV: 0.81 

NPV: 0.88 NPV: 0.74 

Ternary Prediction  ACC: 0.68 ACC: 0.71 

SEN: [0.37, 0.88, 0.61], 

μ=62 

SEN: [0.53, 0.85, 0.61], 

μ=66 

SPE: [0.97, 0.46, 0.95], 

μ=79 

SPE: [0.91, 0.56, 0.98], 

μ=82 

PPV: [0.85, 0.64, 0.73], 

μ=74 

PPV: [0.73, 0.68, 0.85], 

μ=75 

NPV: [0.78, 0.79, 0.92], 

μ=83 

NPV: [0.82, 0.77, 0.92], 

μ=84 

Table 17. Scheme 1 vs. Scheme 1 Supplemented Results 

 Predicted Positive Predicted Negative 

Actually Positive 44 12 

Actually Negative 10 34 

Table 18. Confusion Matrix for Scheme 1 Supplemented Binary. 
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 Predicted  

“No Need (I)” 

Predicted  

“Borderline Need 

(II)” 

Predicted  

“Great Need (III)” 

Actual “No Need 

(I)” 

16 14 0 

Actual  

“Borderline Need 

(II)” 

6 44 2 

Actual  

“Great Need (III)” 

0 7 11 

Table 19. Confusion Matrix for Scheme 1 Supplemented Ternary.
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CHAPTER 5: DISCUSSION 

 Esthetic impairment can have profound social implications, and dental 

attractiveness significantly affects overall attractiveness. Orthodontic treatment is aimed 

at improving not only function, but also esthetics of the teeth and smile. Many individuals 

seek orthodontic care throughout the world. 

 The NHS in England and Wales utilizes the IOTN in order to determine who is 

eligible to receive orthodontic coverage. When the IOTN DHC is borderline, the AC 

becomes an important aspect in this decision. Here we proposed the automation of the 

IOTN-AC assessment, which would provide a more objective evaluation and minimize 

inevitable variation among practitioners.  

 In this study, emphasis was given to predicting broader treatment need categories. 

This included a binary classification (IOTN 1-5 or IOTN 6-10) and a ternary 

classification (IOTN 1-4, IOTN 5-7, and IOTN 8-10). The binary classification system is 

especially useful among those 18 years or younger enrolled in the NHS. If one is 

considered borderline in the DHC, the binary IOTN-AC classification can determine if 

you will receive coverage (IOTN 6-10) or if you will be denied coverage (IOTN 1-5). 

The ternary classification is more descriptive where IOTN 1-4 indicates little to no 

treatment need, IOTN 5-7 indicates moderate treatment need, and IOTN 8-10 indicates 

great treatment need.  

 When originally attempting to classify the specific need categories of IOTN 1-10, 

our model (Scheme 0) proved inaccurate (ACC=34%). However, when analyzing the 
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discrepancies, or error, in this model, it was noted that 89% of errors were of only 1 or 2 

grades, and a positive correlation was found (r=0.74). It is well-known that classification 

problems become more challenging as the number of classes increases, and a recent study 

suggests this increased complexity is due, at least in part to, the heterogeneity in decision 

boundaries.39  

 In order to improve our results, Scheme 1 and Scheme 2 were developed where 

the artificial intelligence was tasked in identifying the broader treatment need categories 

(binary and ternary classifications). This strategy did notably improve our ACC, SEN, 

and PPV. Our SPE and NPV decreased with the simplification of classes.  

 In scheme 1, in training, the gold standard was annotated as 1 to 10 (representing 

specific IOTN-AC Grade), and in Scheme 2’s training the gold standard was simplified 

into the broader binary or ternary classifications. Scheme 1, in general, had better results 

than Scheme 2. This can be rationalized by imagining the science of human learning. 

Scheme 1 is analogous to studying a textbook or novel and Scheme 2 is analogous to 

studying a summary or CliffsNotes. Both Schemes are given the same test, so it makes 

sense that Scheme 1 would perform better.  

SCHEME 1 VS SCHEME 2 

When analyzing at the Binary grouping results (which is necessary when a patient 

has a DHC=3 in the NHS) of Scheme 1 vs. Scheme 2, Scheme 1 performed better overall. 

It would be desirable to have an automated system that can generate minimal false 

negatives (high SEN), so that all of those needing treatment are captured. Furthermore, 
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NPV in Scheme 1 is notably (20%) higher than in Scheme 2. This can assure patients, 

that if you get a negative result (IOTN 1-4), you likely (with 88% probability) are truly 

IOTN 1-4. 

Only SPE and PPV are higher in Scheme 2. From the perspective of the NHS or 

other third-party payers, it would be more costly to generate false positives. Therefore, 

Scheme 2 may be preferable to Scheme 1 from a cost standpoint, as Scheme 2 has less 

false negatives (higher SPE) than Scheme 1. Furthermore, we can be more confident that 

a positive test in Scheme 2 is truly someone that needs treatment (higher PPV).  

When analyzing the Ternary Predictions of Scheme 1 vs. Scheme 2, our focus 

resides in the great need category, as care for these patients is most clinically relevant.  

The accuracy of Scheme 1 vs. Scheme 2’s Ternary results are comparable. The sensitivity 

of Scheme 2, however, is poor and notably lower than that of Scheme 1. Scheme 2 was 

not able to identify true “great need”, and instead often categorized these patients into the 

“borderline need” category instead. The PPV is then, justifiably, 100%. This means that 

the AI is only going to classify patients as “great need” if it is very confident that the 

patient is indeed “great need”. Scheme 2 had a high specificity, meaning those who were 

true “borderline need” or true “no need” never fell into the great need category.  

While SPE and PPV were lower in Scheme 1 compared to Scheme 2, Scheme 1’s 

SPE and PPV were still promising (95% and 73%, respectively). Scheme 1 had better 

SEN and NPV than Scheme 2.  
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Overall, the results of Scheme 1 were more promising than Scheme 2 when 

considering both Binary and Ternary predictions. Therefore, we decided to investigate 

how the Scheme 1 would perform without an overjet input. This would allow for less 

clinical error and less variation among practitioners. Accuracy decreased slightly (1%), 

but SPE and PPV increased in the binary classification. In the ternary classification, all 

values decreased slightly, except SPE, which stayed the same. This slight decrease in 

results may not be clinically significant. With an increase in sample size, it may be 

possible to classify IOTN ranges without needing to measure overjet. This would allow 

for at-home patient assessments. More studies should be conducted.  

We also investigated how increasing sample or training size could impact our 

results. By supplementing our dataset with an additional 64 images, we were able to 

ensure that each treatment need category had at least 20 images. In our original dataset 

(which represented the US population), IOTN Grades 1, 9, and 10 were significantly 

under-represented. Supplementing the dataset in this manner improved our results and it 

can be assumed that further increasing the sample size would further improve our results. 

Additional ways to improve our results include improving the CNN or using a 

different training technique. 

Limitations of this study include a small sample size. We have reason to believe 

that increasing the training dataset would improve the machine’s ability to accurately 

predict IOTN-AC. Another limitation of the study is that only one gold-standard 

orthodontic rater was utilized.  
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CHAPTER 6: CONCLUSION 

We have developed AI models that can automatically predict treatment need 

based on IOTN-AC reference standards into two groups (binary) with up to 78% 

accuracy, 95% sensitivity, 82% specificity, 83% positive predictive value, and 88% 

negative predictive value, and into three groups (ternary) with up to 71% accuracy, 66% 

sensitivity, 82% specificity, 82% positive predictive value, and 84% negative predictive 

value. Results can presumably be improved with an increase in sample/training size. 

Accuracy decreases slightly with lack of overjet value. Future studies should be 

conducted with increased sample size. Potential uses for this AI system include in-office 

assessments by orthodontists, at-home assessments by patients, and utilization by third-

party payers and the NHS. 



   

 

      64 

Bibliography 

1.  Hung M, Su S, Hon ES, et al. Examination of orthodontic expenditures and trends in the 

United States from 1996 to 2016: disparities across demographics and insurance payers. 

BMC Oral Health. 2021;21(1):1-10. doi:10.1186/s12903-021-01629-6 

2.  Laniado N, Oliva S, Matthews GJ. Children’s orthodontic utilization in the United States: 

Socioeconomic and surveillance considerations. Am J Orthod Dentofac Orthop. 

2017;152(5):672-678. doi:10.1016/j.ajodo.2017.03.027 

3.  Shaw WC. The influence of children’s dentofacial appearance on their social 

attractiveness as judged by peers and lay adults. Am J Orthod. 1981;79(4):399-415. 

doi:10.1016/0002-9416(81)90382-1 

4.  Papio MA, Fields HW, Beck FM, Firestone AR, Rosenstiel SF. The effect of dental and 

background facial attractiveness on facial attractiveness and perceived integrity and 

social and intellectual qualities. Am J Orthod Dentofac Orthop. 2019;156(4):464-474.e1. 

doi:10.1016/j.ajodo.2018.10.021 

5.  Olsen JA, Inglehart MR. Malocclusions and perceptions of attractiveness, intelligence, 

and personality, and behavioral intentions. Am J Orthod Dentofac Orthop. 

2011;140(5):669-679. doi:10.1016/j.ajodo.2011.02.025 

6.  Trivedi K, Shyagali TR, Doshi J, Rajpara Y. Reliability of Aesthetic component of IOTN 

in the assessment of subjective orthodontic treatment need. J Adv Oral Res. 2011;2(1):59-

66. doi:10.1177/2229411220110111 

7.  Richmond S, Shaw WC, O’Brien KD, et al. The relationship between the index of 

orthodontic treatment need and consensus opinion of a panel of 74 dentists. Br Dent J. 

1995;178(10):370-374. doi:The relationship between the index of orthodontic treatment 

need and consensus opinion of a panel of 74 dentists 

8.  Younis J, Vig K, DJ R, RJ W. A validation study of three indexes of orthodontic 

treatment need in the United States. Community Dent Oral Epidemiol. 1997;25:358-362. 

doi:10.1111/j.1600-0528.1997.tb00955.x 

9.  Borzabadi-Farahani A. An Overview of Selected Orthodontic Treatment Need Indices. 

In: Naretto S, ed. Principles in Contemporary Orthodontics. InTech; 2011. 

doi:10.5772/19735 

10.  Stenvik A, Espeland L, Linge BO, Linge L. Lay attitudes to dental appearance and need 

for orthodontic treatment. Eur J Orthod. 1997;19:271-277. doi:0.1093/ejo/19.3.271 

11.  Evans R, Shaw WC. Preliminary evaluation of an illustrated scale for rating dental 

attractiveness. Eur J Orthod. 1987;9:314-318. 

12.  Richmond S, Shaw WC, O’Brien KD, et al. The relationship between the index of 

orthodontic treatment need and consensus opinion of a panel of 74 dentists. Br Dent J. 

1995;178(10):370-374. doi:10.1038/SJ.BDJ.4808776 

13.  Üçüncü N, Ertugay E. The use of the index of orthodontic treatment need (IOTN) in a 

school population and referred population. J Orthod. 2001;28(1):45-52. 

doi:10.1093/ortho/28.1.45 

14.  Fields H, Van W, Vig K. Reliability of Soft Tissue Profile Analysis in Children. Angle 

Orthod. 1982;52:159-165. 

15.  Richmond S. Evaluating Effective Orthodontic Care. First Numerics Ltd; 2018. 

16.  Livas C, Delli K. Subjective and objective perception of orthodontic treatment need: A 

systematic review. Eur J Orthod. 2013;35(3):347-353. doi:10.1093/ejo/cjr142 



   

 

      65 

17.  Holmes A. The subjective need and demand for orthodontic treatment. Br J Orthod. 

1992;19(4):287-297. doi:10.1179/bjo.19.4.287 

18.  Needs Assessment for Orthodontic Services in London Needs Assessment for Orthodontic 

Services in London.; 2015. 

www.gov.uk/phe%0Awww.facebook.com/PublicHealthEngland 

19.  Ko CC, Tanikawa C, Wu TH, et al. EMBRACING NOVEL TECHNOLOGIES IN 

DENTISTRY AND ORTHODONTICS. In: Craniofacial Growth Series. Vol 56. ; 

2020:117-135. 

20.  Goodfellow I, Bengio Y, Couorville A. Deep Learning. MIT Press; 2017. 

21.  Aggarwal R, Sounderajah V, Martin G, et al. Diagnostic accuracy of deep learning in 

medical imaging: a systematic review and meta-analysis. npj Digit Med. 2021;4. 

doi:10.1038/s41746-021-00438-z 

22.  Shan T, Tay FR, Gu L. Application of Artificial Intelligence in Dentistry. J Dent Res. 

2021;100(3):232-244. doi:10.1177/0022034520969115 

23.  Mohammad-Rahimi H, Nadimi M, Rohban MH, Shamsoddin E, Lee VY, Motamedian 

SR. Machine learning and orthodontics, current trends and the future opportunities: A 

scoping review. Am J Orthod Dentofac Orthop. 2021;160(2):170-192.e4. 

doi:10.1016/j.ajodo.2021.02.013 

24.  Mohammad-Rahimi H, Motamedian SR, Rohban MH, et al. Deep learning for caries 

detection: A systematic review. J Dent. 2022;122(January):104115. 

doi:10.1016/j.jdent.2022.104115 

25.  Miethke R. Possibilities and limitations of various cephalometric variables and analysis. 

In: Orthodontic Cephalometry. Mosby-Wolfee; 1995:63-103. 

26.  Lagravère MO, Low C, Flores-Mir C, et al. Intraexaminer and interexaminer reliabilities 

of landmark identification on digitized lateral cephalograms and formatted 3-dimensional 

cone-beam computerized tomography images. Am J Orthod Dentofac Orthop. 

2010;137(5):598-604. doi:10.1016/j.ajodo.2008.07.018 

27.  Schwendicke F, Chaurasia A, Arsiwala L, et al. Deep learning for cephalometric 

landmark detection: systematic review and meta-analysis. Clin Oral Investig. 

2021;25(7):4299-4309. doi:10.1007/s00784-021-03990-w 

28.  Hwang HW, Park JH, Moon JH, et al. Automated identification of cephalometric 

landmarks: Part 2-Might it be better than human? Angle Orthod. 2020;90(1):69-76. 

doi:10.2319/022019-129.1 

29.  Muraev AA, Tsai P, Kibardin I, et al. Frontal cephalometric landmarking: humans vs 

artificial neural networks. Int J Comput Dent. 2020;23(2):139-148. 

http://www.ncbi.nlm.nih.gov/pubmed/32555767 

30.  Li P, Kong D, Tang T, et al. Orthodontic Treatment Planning based on Artificial Neural 

Networks. Sci Rep. 2019;9(1):1-9. doi:10.1038/s41598-018-38439-w 

31.  Murata S, Lee C, Tanikawa C, Date S. Towards a fully automated diagnostic system for 

orthodontic treatment in dentistry. Proc - 13th IEEE Int Conf eScience, eScience 2017. 

Published online 2017:1-8. doi:10.1109/eScience.2017.12 

32.  Murata S, Ishigaki K, Lee C, Tanikawa C, Date S, Yoshikawa T. Towards a Smart Dental 

Healthcare: An Automated Assessment of Orthodontic Treatment Need. Healthinfo. 

2017;(c):35-39. 

33.  JONES N, MARKS R, RAMIREZ R, RÍOS-VARGAS M. 2020 Census Illuminates 

Racial and Ethnic Composition of the Country. U.S. Census Bureau. Published 2020. 



   

 

      66 

Accessed December 18, 2020. https://www.census.gov/library/stories/2021/08/improved-

race-ethnicity-measures-reveal-united-states-population-much-more-multiracial.html 

34.  Proffit WR, Fields HW, Moray LJ. Prevalence of malocclusion and orthodontic treatment 

need in the United States: estimates from the NHANES III survey. Int J Adult Orthodon 

Orthognath Surg. 1998;13(2):97-106. 

35.  Alhammadi MS, Halboub E, Fayed MS, Labib A, El-Saaidi C. Global distribution of 

malocclusion traits: A systematic review. Dental Press J Orthod. 2018;23(6):e1-e10. 

doi:10.1590/2177-6709.23.6.40.e1-10.onl 

36.  He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE 

Comput Soc Conf Comput Vis Pattern Recognit. 2016;2016-Decem:770-778. 

doi:10.1109/CVPR.2016.90 

37.  Myrianthous G. Training vs Testing vs Validation Sets. Towards Data Science. Published 

2021. Accessed December 15, 2022. https://towardsdatascience.com/training-vs-testing-

vs-validation-sets-a44bed52a0e1 

38.  Paszke A, Gross S, Massa F, et al. PyTorch: An Imperative Style, High-Performance 

Deep Learning Library. In: Wallach H, Larochelle H, Beygelzimer A, d\textquotesingle 

Alché-Buc F, Fox E, Garnett R, eds. Advances in Neural Information Processing 

Systems. Vol 32. Curran Associates, Inc.; 2019. 

https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-

Paper.pdf 

39.  Moral P Del, Nowaczyk S, Pashami S. Why Is Multiclass Classification Hard? IEEE 

Access. 2022;10:80448-80462. doi:10.1109/ACCESS.2022.3192514 

 

 


	Abstract
	Dedication
	Acknowledgements
	Vita
	List of Tables
	List of Figures
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: MATERIALS AND METHODS
	CHAPTER 3: MANUSCRIPT
	CHAPTER 5: DISCUSSION
	CHAPTER 6: CONCLUSION
	Bibliography



