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Abstract

Recent decades saw a huge increase in the number of personal devices, wearables,

edge devices, etc which led to increased data collection and increased connectivity at

the edge. This collected data can be used to make insights about health, the economy,

and business and help us make better decisions at the individual, organizational

and global levels. With the proliferation of these devices, there are also numerous

challenges associated with making use of these devices and the data to train useful

models. The challenges could be due to privacy regulations or other constraints

determined by the particular learning setup. These constraints make it difficult to

extract the required insights from the data and the edge systems. The goal of this

thesis is to understand these challenges or resource constraints and develop efficient

algorithms that enable us to train models while adhering to the constraints. This

thesis makes the following contributions

• Propose an efficient algorithm FedCMA for model heterogeneous Federated

Learning under resource constraints, showed the convergence and generalization

properties, and demonstrated the efficacy against state-of-the-art algorithms in

the model heterogeneity setting.

• Proposed a two-timescale aggregation algorithm that does not require the knowl-

edge of the number of adversaries for defending against Byzantine adversaries in
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the distributed setup, proved the convergence of the algorithm, and demonstrated

the defense against state-of-the-art attacks.

• We highlight the challenges posed by resource constraints in the Offline Reinforce-

ment Learning setup where the observation space during inference is different

from the observation space during training. We propose a simple algorithm

STPI (Simultaneous Transfer Policy Iteration) to train the agent to adapt to

the changes in the observation space and demonstrated the effectiveness of the

algorithm on MuJoCo environments against simple baselines.
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Chapter 1: Introduction

In the past two decades, there has been a steady increase in the use of digital

devices, such as cell phones, wearable devices, watches, IoT (internet of things) devices,

smart home appliances, remote sensing devices, etc. Some estimates say that there

are around 7 billion IoT devices and 3 billion smartphones in the world [2]. With

the use of these devices coupled with increased internet connectivity, there is an

abundant collection of data that captures several aspects of human behavior, and

human interactions with one another or with systems. Various facets of human lives be

it work, education, entertainment, or leisure, are highly intertwined with these digital

systems. It is next to impossible to imagine spending one’s day without accessing any

of these ”smart” devices, to the extent that digital detox became a thing.

With this abundance of data comes a huge business opportunity to extract patterns

of human behavior/physical phenomenon and monetize such patterns. For example,

Fig 1.1 shows the tremendous increase in online advertising revenue over the last

two decades. This became possible due to the increasing interaction of humans on

the internet, with each other on digital platforms, etc. This trend is only expected

to increase, with newer technologies like 5G, social media, self-driving vehicles, and

blockchain mechanisms showing the potential to integrate even more tightly into human

lives. Extracting patterns from data is not just an opportunity for monetization, but

1



Figure 1.1: Online advertising revenue in the USA [1]

it also impacts (positively or negatively) several other fields such as health care [3],

climate change [4], elections [5], etc. The techniques used to extract these patterns

and make predictions have been popularly dubbed as Artificial Intelligence (AI).

One straightforward approach to extracting these patterns using the data across

scores of such edge devices is to pool the data at a central location or server and train

the algorithms using the aggregated data. However, this is not a practical solution,

due to several reasons. Two of the most prominent reasons are

2



1. Sending the data from the edge devices to the central server may involve huge

communication costs, or may not be feasible at all times due to intermittent

connectivity.

2. Sharing the data from the edge devices with the central server may not be safe

for the users concerned.

While the first reason is relatively straightforward, the second one demands more

discussion. Monetizing user data is very lucrative and drove innovation so fast that the

regulations to control the impact of such businesses (including safeguarding the privacy

of the users) could not catch up. Several popular cases showed catastrophic and wide-

ranging effects of data breaches, from stolen trade secrets [6] to election interference [7].

Only recently did regulations such as General Data Protection Regulation (GDPR)

and California Consumer Privacy Act (CCPA) come into effect. The idea of GDPR or

CCPA is to collect only data that is consented to by the user and absolutely necessary

for the functionality, to safeguard the personal data such that the user can not be

identified by using the data for any application.

Studying user/data privacy dates back to the seminal works on secure multi-party

computing (MPC) [8] in the 1980s. Yao (1982) [8] poses the Millionaire problem

where two millionaires want to know which of them is richer, without revealing their

wealth to the other millionaire. More generally, each user i has private data xi. Each

user wants to query a function f(x1, · · · , xi, · · · , xn) that uses the private data of the

other users. Differential privacy [9] is a popularly used theoretical notion to study

and provide privacy guarantees. While data privacy was studied earlier for practical

applications, such as information retrieval, safeguarding census data, and data mining
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[10], it became more important than ever with the success of Machine Learning (ML)

or Artificial Intelligence (AI) algorithms in the 2000s and 2010s.

The alternative to storing all the data at the central server is to communicate

other useful information such as aggregate statistics of the data, noisy data, model

parameters, etc. Machine Learning algorithms require a lot of data and recent works

show that the models leak information about training data [11]. With the increasing

penetration of ML algorithms into several aspects of business decision making such as

credit card, mortgage, and loan approvals, the risk of data leakage has become a real

threat to privacy. This problem has been further exacerbated due to the increasing

deployment of edge devices that collect, store and process user information.

The focus of this thesis is to study the various aspects of learning involving the

edge devices (without sharing the data), with particular emphasis on obeying several

resource constraints some of which are generic to edge deployment, and some are

problem-dependent constraints.

1.1 The edge

Edge is a term used to describe any device that is capable of collecting data directly,

interacting with the end user directly and is far away from a cloud or a centralized

server. Edge devices can be ranging from mobile phones, smart watches, to self-driving

cars, drones, nanosatellites, etc. See Fig 1.2 for an illustration. Edge deployment is

crucial to integrate smart algorithms into real-world applications since they perform

key tasks such as collecting data, making predictions, and serving the users.

However, edge devices come with several inherent constraints such as limited

memory, computation, power, connectivity to the cloud, and the requirement to
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Figure 1.2: Illustration of Edge devices

make faster predictions. Depending on different applications, some or more of these

constraints become more important and the learning algorithms need to be explicitly

curated to obey these constraints.

Earlier studies provide a detailed survey on edge computing [2], resource constraints

[12] and categorize challenges into several different ways. For the purpose of this thesis,

we shall use the following broad categories to illustrate the challenges associated with

learning at the edge:

1. Training data: non-iid, limited in size, corrupted observations

2. Hardware: limited capacity and power, heterogeneous and private computa-

tional resources

3. Communication: poor connectivity, limited communication bandwidth

4. Security and privacy: prone to attacks and can not share data.
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We collectively dub these challenges as Resource Constraints that affect learning

at the edge. It is possible that these categories may be interdependent on each other.

For example, an edge device with a poor sensor (hardware) may lead to corrupted

observations that affect the quality of the training data. Similarly, an edge device

with poor communication may not be able to update security patches frequently and

is therefore more prone to attacks. Later, in the thesis, we will discuss each of the

resource constraints in detail, with motivating examples.

1.1.1 Learning at the edge

While we use the term learning at the edge to collectively refer to all types of

computing at the edge, it is important to make an important but nuanced differentiation

between (i) inference at the edge and (ii) training at the edge.

Challenges with inference at the edge: Inference or making predictions is one

of the most important jobs of an edge device. For example, due to poor hardware

(sensors), the observations made by the edge device may be corrupted, and therefore

the input data may be from a different distribution than what the algorithm is trained

for. This can cause degradation in the performance of the algorithm. Similarly,

consider the case where a cloud server trains a huge model and sends it to the edge

device for inference. However, due to hardware constraints, the edge device may not

have enough memory or computing resources to load the model or to provide real-time

predictions (which is a key aspect of edge devices). Therefore, the server must also

train a model that fits the hardware of the edge device, which may lead to performance

trade-offs.
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Challenges with training at the edge: Due to strict regulations to keep the data

private, edge devices are often required to train a model on the device. In this case,

the device communicates its trained model to a central server or to other partnering

edge devices to get a better-aggregated model. This leads to additional challenges such

as data heterogeneity where the training data distributions at the different devices

are different. In such cases, the training algorithm may not converge properly. In

addition to statistical heterogeneity, the training may also be affected by stale updates,

adversarial users, etc. Moreover, if the edge device is also tasked to make predictions,

the above challenges are compounded by the challenges related to inference.

Please note that in this thesis, unless otherwise specified, training at the edge

always refers to training at the edge where there are multiple users that take part in

the training. On the other hand, inference at the edge refers to only a single user

deployment to make decisions.

Examples of Learning at the edge Let us now list down a few example applica-

tions of edge-based learning along with the type of constraints that these applications

may encounter.

1. Auto-correct, auto-complete, or next word prediction: Consider an auto-complete

feature for an application such as social media messenger, mobile keyboard,

email, or document editor that greatly enhances the user experience of using

the application. In such cases, efforts are made to tailor the predictions for

the user, such as the language, context, etc. For example, WhatsApp and

Telegram are two famous messaging apps in India, and many users type regional

language words (for example Telugu) typed in English to communicate instead
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of changing to the native language on the mobile keyboard. In many cases, the

auto-corrected word for an actual English prompt may be completely different

from the auto-corrected result for a Telugu word prompt. In such cases, the

mobile application greatly benefits from the user’s past typing data and similar

users’ typing data since a single user may have very little data. Moreover, there

is a wide range of mobile devices with varying computing power and therefore

the app designer needs to take this heterogeneity into consideration.

2. Keystroke detection for mobile keyboard: Popular mobile keyboards such as

Microsoft’s SwiftKey keyboard, Google’s Gboard, and Swype enable a feature

to predict a word based on the swiping pattern on the keyboard which enables

faster typing on tablets and smartphones. Similar to auto-correct, keystroke

detection also varies with language, and slang and is therefore personalized for

each user using the user’s past data and other similar users’ behaviors. The

constraints faced are similar to the example above.

3. Photo organizer applications: A key challenge for any photographer is to properly

organize the photographs for fast retrieval. A less sophisticated approach is

to tag every photograph with the time, date, and other keywords that the

user enters so that the photos can be retrieved based on the tags. However,

it is too tiresome to tag each of the 100s of photos that a regular smartphone

user captures every day. Therefore, object recognition algorithms and image

description algorithms are used to auto-generate tags for every photograph,

thereby enabling faster retrieval. Since photographs are considered private data,

it is often required that the images do not leave the smartphone or computer,
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and therefore fast algorithms that can run on mobile devices are required. The

heterogeneity of the computing power on mobile devices is also an important

constraint in this application.

4. Health diagnostics applications on smart watches, or wearable devices: Smart-

watches are used increasingly to track user vitals and these vitals are used to

detect or warn a user of any abnormal pattern that may be a symptom of a

health ailment. The limited power and memory on a smartwatch constrain the

type of models/algorithms that one can use to raise such warnings. Moreover,

each user has very limited data and may not have experienced any abnormal

patterns in the past. Therefore, it is important for such apps to maintain the

privacy and security of the user data while also learning useful models to make

accurate predictions.

5. Autonomous vehicles: An autonomous vehicle must make several decisions every

second, such as whether to brake or to accelerate, to stop at a signal or to

yield to a pedestrian, to accelerate or to slow down at a speed breaker, etc.

At every instant, the sensors on the vehicle provide information about the

surroundings and the onboard algorithms determine what course of action to

take. A fraction of a second delay in making a decision can be fatal, therefore

low latency is a key requirement. Moreover, it is important that these systems

are secure since an adversarial attack on the algorithm of one autonomous

vehicle can cause an accident affecting several more vehicles on the road. Note

that, while the real-world adoption of fully autonomous and self-driving cars

is not yet a certainty (due to lack of appropriate regulations), level 2 and 3
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autonomous driving systems are already widely used that use sophisticated radar

and computer vision algorithms to detect obstacles on the road.

6. Diagnostics and Prognostics for mechanical and electronic devices: Detecting

and predicting faults is an important way to make devices more reliable and

robust to failures. Since the on-device computation is limited and the devices

may not always be connected to the internet, the algorithms for fault detection

need to fit on the limited memory chips.

7. UAVs (Unmanned aerial vehicles) and Remote sensing: UAVs are often used

to map a geographical area and to collect sensor readings where it is difficult

for humans to be present and record data. In addition to collecting data, UAVs

may also be tasked to execute some actions based on the observed data, such as

extinguishing fires. Due to the remoteness of the tasks, the UAVs may not always

communicate frequently, which leads to several agents having older versions of

the models.

8. Online advertising: A search platform displays ads relevant to queries entered

by a user by allowing advertisers to bid on each query. An auto-bidding agent

is an automated algorithm that determines a bid (dollar value) depending on

the relevance of the user query to the advertiser’s choice of bidded keywords.

Whenever an ad is clicked by a user, the advertiser pays some amount to the

search platform that is determined by the auction mechanism. The goal of

the agent is to maximize the number of ad clicks on a given day where the

spending is constrained by a fixed daily budget. The agent must therefore

balance between aggressively bidding for the current search query and saving
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budget for future search queries. The agent must perform this optimization in

the order of milliseconds since the users expect the search results to be displayed

almost instantly.

9. Nanosatellites: Consider the example of deep space probes and nanosatellites

that are extremely limited in their sensors and on-device power. They are

required to collect useful data or execute actions within these constraints.

10. Robot vacuum cleaners and food delivery robots: It is very interesting to watch

a food delivery robot trying to navigate through a busy traffic intersection. This

use case is very similar to the autonomous vehicle example, however, the impact

of a crash is less severe due to the low speeds at which these robots move. The

computing power is much lesser in this case, however, the latency is not as much

of an issue.

11. Industrial robots: Industrial tasks are increasingly automated to increase the

pace of manufacturing and also since it is a cheaper form of labor. Some examples

of the tasks are identifying objects, picking and placing them in their respective

piles, etc. The algorithms are often trained on simulation environments that

allow the collection of large amounts of data which is otherwise not possible using

the actual robots. This leads to a shift between the data distribution (simulated)

used at training and the data distribution observed during deployment. This

shift affects the performance of the algorithms.

Please note that each of these examples can involve either training at the edge,

inference at the edge, or both depending on the application. For example, mobile

applications (auto-correct, keystroke detection, photo organizer, health diagnostics)
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may need to collaboratively train with other users since each user’s data is very

limited and therefore not sufficient to train a good model. For a new user using these

applications, the app may default to performing inference using a pre-trained model

until enough data is collected to personalize it to the particular user. For robots,

UAVs, nanosatellites, and autonomous vehicles, the devices must be able to perform

inference despite some sensor failures which requires training the algorithm to cater

to the challenges that arise during inference.

In this thesis, we shall discuss the resource constraints from the lens of two aspects:

(i) distributed training at the edge and (ii) inference at the edge. We consider the two

broad categories of learning: supervised and reinforcement learning. The resource

constraints affect both of them in many similar ways and some unique ways particular

to the problem.

1.2 Distributed Supervised Learning

Traditional centralized machine learning assumes a central server/cloud where all

the data is aggregated/pooled. The learning algorithm is trained on this centralized

data and the trained model is communicated to the edge devices/user devices for

inference/deployment. This paradigm does not ensure the privacy of the user data

and has other drawbacks such as high communication costs. The alternative is to

train the models at the edge devices [13, 14] through a central server that coordinates

training. Sometimes in the absence of a central server, fully decentralized learning

methods are also used where the users communicate with each other directly [15]. A

usual requirement in these algorithms is that every user is available for aggregation at

every time step. This is not true in practice, since the compute times of each client
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vary and the connectivity of the clients also varies. This need for synchronization

offsets the speedup offered by having multiple users in the setup as it leads to stale

users or asynchronous updates [16] that lead to poor convergence.

Distributed optimization has been studied for a long duration with applications to

control systems, wireless sensor systems, network routing, communication systems,

etc., [17, 18]. Distributed learning in the presence of practical challenges like non-iid

data at the users, asynchronous updates/client unavailability [19, 20, 21, 22] are

studied under Federated Learning (FL).

1.2.1 Background of Federated Learning

In the FL setup, each client has Di := {xj, yj}Ni
j=1, such that xj ∼ Di, yj = c(xj)

where c is a ground truth labeling function. Let pi ∈ [0, 1] such that, Ni = piN , where

N =
∑M

i=1 Ni. The model space is denoted by W and the function f :W ×X → Y is

used to make the prediction.

We denote w(i,t) as the weights at client i at time t. We simply write wi when

time is clear from the context and w when worker and time are clear from the

context. Given a loss function l : Y × Y → R, we overload the loss function definition

l :W×X ×Y → R for each worker as l(wi, x, y) = l
(
f(wi, x), y

)
and when we do not

need to mention x, y, we simply use ξ = (x, y) as l(wi, x, y) = l(wi, ξ). Given a finite

dataset Di = {(xj, yj)}Ni
j=1, we define the population loss Li and the empirical loss L̂i

as Li(wi) = E(x,y)∼Di

[
l(wi, x, y)

]
; L̂i(w, Di) =

1
Ni

∑Ni

j=1 l
(
w, xj, yj

)
. The objective of

FL is to learn w∗ such that

w∗ = arg min
w∈W

M∑
i=1

αiLi(wi). (1.1)
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where αi ≥ 0,
∑M

i=1 αi = 1. Popular choices for αi are
1
M

or pi. Some popularly used

algorithms are Federated Averaging (FedAvg) [19], and FedProx [23].

1.2.2 Challenges due to Resource Constraints

When learning at the edge, each user may have a different setup that is used

for data collection, learning, communication, and inference. This variation in these

properties leads to a mismatch when the user needs to participate in a distributed

or federated setup. Most commonly studied challenges are due to mismatches in the

data distribution of the edge devices, infrequent communication updates to the server,

user scheduling, insufficient computing power at the users, compression of models,

heterogeneous hardware, security and privacy [12, 24, 25]. These constraints broadly

fall into the four types of constraints we discussed in Section 1.1.

In this work, we particularly focus on the challenges that arise due to model

heterogeneity, i.e., each user model lies in a different space. Federated Averaging

algorithms require some aggregation of the parameters of the users, but for this to

work, all the users’ parameters must lie in the same model space. This is a very

important criterion for any of the previously proposed algorithms to work, however,

realistic constraints make this condition often difficult to satisfy. For example, some

users have very little computation power and can afford only a smaller model as

compared to powerful users with powerful hardware. These situations are examples of

model heterogeneity that make existing algorithms futile.

In addition to this, distributed learning setups also suffer from attacks on the

learning system which can derail the training process. For example, a user can send

arbitrarily malicious data instead of sending the actually computed parameters. In
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such cases, the aggregation of the users’ parameters can be offset from the actual value

of the parameters without attacks and thus lead to slow convergence or divergence of

the model. In this thesis, we shall consider situations where such attacks are possible

when especially an estimate of the number of adversaries is not known in the learning

system.

1.3 Reinforcement Learning

1.3.1 Background of Reinforcement Learning

Let us define a Markov Decision Process (MDP) by the tuple (S,A, R, P, γ), where

S is the state space (which can be a finite state space or a general state space), A be

the action space (finite or general). Let ηinit be the distribution of the starting state.

At a state s ∈ S, the set of feasible actions is given by Γ(s) ⊆ A. We use B to denote

the feasible state-action pairs: B = {(s, a) ∈ S ×A | a ∈ Γ(s)}. The reward function

is denoted by R : B → [0, Rmax] (most practical applications have a bounded reward).

The transition kernel of the MDP which determines the state dynamics is denoted by

P : B → ∆(S), where ∆(S) denotes the set of all probability distributions over S.

We use γ ∈ (0, 1] to denote the discount factor.

Let V π : S → R denote the value function defined by

V π(s) = E

[
∞∑
h=1

γh−1R(sh, ah)
∣∣∣s1 = s, ah ∼ π(·|sh)

]

The goal is to learn a stationary policy π : S → ∆(A) that maximizes vπ :=

Es∼ηinit [V
π(s)]. Let Qπ : B → R denote the state-action value function (also called Q

function) as

Qπ(s, a) = E

[
∞∑
h=1

γh−1R(sh, ah)|s1 = s, a1 = a, ah ∼ π(·|sh), h ≥ 2

]
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The objective can also be defined as,

π∗ = argmax
π∈Π

E(s,a)[Q
π(s, a)]

where Π is the set of feasible stationary policies.

1.3.2 Challenges due to Resource Constraints

The resource constraints that we consider for RL in this thesis are slightly different

from those that we considered for FL. In particular, we focus on the inference problem,

where the goal is to deploy one agent at the edge which faces resource constraints.

In the RL setting, the data takes the form of interactions between the agent and

the environment ({(st, at, rt, st+1)}t). A key element to the success of Reinforcement

Learning in the game-playing framework is the availability of high-fidelity simulators

that can mimic the transition dynamics of the RL environments. With access to such

simulators, the agents can interact millions of times with the environment during

training. This is often not practical for other real-world tasks. Even for the case of

robotic tasks where building such simulators is actively pursued, it is often difficult to

transfer the learned policies to the real world (also called Sim2Real problem) [26, 27].

On-policy algorithms require continual interaction between the agent and the

environment and require fresh samples at each iteration. One such example is SARSA

(or semi-gradient SARSA in the function approximation case). The convergence

properties of on-policy methods require that the data comes from the on-policy

distribution.

Off-policy algorithms on the other hand do not need fresh samples at every

iteration as is required by the on-policy methods. Instead, off-policy algorithms learn

from past interactions between the agent and the environment. Deep Q Learning is an
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example of an off-policy method where a memory replay buffer is stored that collects

interactions between the agent and the environment on a rolling basis. The algorithm

samples interactions from the replay buffer and uses them in the update to the Q

function parameters. The convergence of off-policy algorithms is not as robust as the

on-policy algorithms, especially in the case of function approximation. While on-policy

RL offers robust convergence guarantees, several applications of RL to real-world

settings require an off-policy approach. It is impractical to collect the data in the

on-policy setting due to the lack of a simulator and safety concerns with deploying

a non-optimal policy in real-world operations. To collect data without access to a

simulator, it is possible to deploy an arbitrary policy in real-time operation and collect

data from the interactions. While deploying a random policy is possible, it may not

be desirable primarily due to safety concerns, and it is a waste of resources to deploy

such policies due to the cost of procuring data (device failure). Off-policy learning also

requires collecting on-policy data that goes into the replay buffer. Data collected from

off-policy learning often comprises trajectories of samples from a mixture of policies

encountered during the training process.

Contrarily, there are scenarios where it is not possible to get more training data,

and one only has access to a fixed dataset of interactions with the environment using

some fixed behavior policy. This is often referred to as Batch RL or offline RL [28].

An important problem studied in the offline setting is off-policy evaluation (which is

also relevant in the off-policy setting).

There are several challenges with efficiently learning from offline data, and the

most important one is the data distributional shift. This distributional shift occurs

because the data is collected from a different fixed policy, whereas the updates are
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made to the value function of a different policy. This issue is addressed by several

techniques such as Importance Sampling (IS), policy constraints, and uncertainty

estimation methods. It is possible that if the dataset coverage is not sufficient, then

function approximation extrapolates the action values of unseen state-action pairs,

thereby incorrectly overestimating the values of such state-action pairs. Recent works

[29], [30] take a pessimistic approach to address this issue, whereas [31] show that by

increasing the size of the dataset conservative approaches are not required. In this

thesis, we consider the challenges faced by training an offline RL agent that needs to

be deployed in a resource-constrained edge environment.

1.4 Organization of the thesis

The rest of the thesis is organized as follows. Please refer to Fig 1.3 for the focus

area of each chapter.

The focus of Chapter 2 is model heterogeneous Federated Learning (FL) for

classification where different clients have different model architectures. Unlike existing

works on model heterogeneity, we neither require access to a public dataset nor

do we impose constraints on the model architecture of clients. We ensure that

the clients’ model architectures and data are private. We propose a theoretically

grounded algorithm Federated Conditional Moment Alignment (Fed-CMA ) that

aligns conditional distributions of each client in the feature space and achieves a

consensus on the final layer classification weights. The proposed algorithm requires

communicating only the mean embeddings of the feature space and the classification

layer weights, resulting in very little communication overhead. Under mild assumptions,

we derive convergence and generalization properties of the algorithm to understand
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Figure 1.3: Flow chart describing the organization of the thesis

when participation in FL benefits the client. We provide fundamental insights into

the role of the representations in the convergence and generalization of the algorithm.

Empirical results on CIFAR-10, MNIST, EMNIST, FEMNIST, and synthetic datasets

illustrate the efficacy of the proposed method.

In Chapter 3, the issue of security while learning at the edge is studied. Training

distributed machine learning algorithms is prone to Byzantine attacks where the

adversarial workers send corrupted model updates to derail the training. In this work,

a reputation score-based gradient aggregation is proposed as a possible solution. We
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introduce a class of novel stochastic gradient descent algorithms, ByGARS (Byzantine

Gradient Aggregation using Reputation Scores) that involve computing reputation

scores (of workers) using an auxiliary dataset at the server. These reputation scores

are then used for aggregating the gradients (model updates) at the server. Under

reasonable assumptions, we show that using these reputation scores is robust to

any number of adversaries and prove the convergence of a representative algorithm,

ByGARS++ for strongly convex objective functions using results from two-timescale

stochastic approximation theory. The computational complexity of ByGARS++ is

the same as the usual distributed stochastic gradient descent method with only an

additional inner product computation in every iteration. We also demonstrate the

effectiveness of the algorithms for non-convex learning problems using MNIST and

CIFAR-10 datasets against almost all state-of-the-art Byzantine attacks.

In Chapter 4, we introduce the offline reinforcement learning problem and study

the finite sample complexity bounds for offline reinforcement learning with general

state, general function space, and state-dependent action sets. The algorithm analyzed

does not require knowledge of the data-collection policy as compared to earlier works.

We show that one can compute an ϵ-optimal Q function (state-action value function)

using O(1/ϵ4) i.i.d. samples of state-action-reward-next state tuples.

In Chapter 5, Offline reinforcement learning is used to train policies in scenarios

where real-time access to the environment is expensive or impossible. As a natural

consequence of these harsh conditions, an agent may lack the resources to fully observe

the online environment before taking an action. This leads to situations where the

offline dataset (available for training) can contain fully processed features (using

powerful language models, image models, complex sensors, etc.) that are not available
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when actions are actually taken online. In this resource-constrained setting, this

disconnect leads to an interesting and unexplored problem in offline RL: Is it possible

to use a richly processed offline dataset to train a policy that has access to fewer

features in the online environment? In other words, this problem is an instantiation

of the challenges described with inference at the resource-constrained edge. In this

work, we introduce and formalize this novel resource-constrained problem setting. We

highlight the performance gap between policies trained using the full offline dataset

and policies trained using limited features. We advocate the use of transfer learning

to address this performance gap by training a teacher agent using the offline dataset

where features are fully available, and simultaneously distilling the knowledge to a

student agent that only uses the resource-constrained features through a transfer loss.

We evaluate the proposed approach on three diverse set of tasks for the MuJoCo suite

(continuous control). Our analysis shows the proposed approach improves over the

considered baselines and unlocks interesting insights.
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Chapter 2: Model Heterogeneous Federated Learning

2.1 Introduction

In the paradigm of federated learning (FL), it is quite often that the client models

have different architectures due to the heterogeneity of computational hardware devices

(such as GPU memory, and smartphones). In such cases, naive parameter aggregating

as in federated averaging (FedAvg) [19] or FedProx [23] might be no longer possible for

achieving satisfactory generalization performance as in the homogeneous case. Even

though some knowledge distillation approaches use a public dataset to address this

issue, this type of dataset may not always be available and the role of the public

dataset on the generalization performance is not yet understood well. Also, which

type of architecture is used in deep learning has a huge impact on performance. The

clients may consider the architecture as a trade secret (often due to the number of

resources spent in designing it) and may not be willing to share the model architecture

because of intellectual property concerns. We term this as model privacy. This also

implies that the users are free to choose any type of (agnostic) model architecture

without sharing it.

In this work, we consider the data and model heterogeneous FL scenario with

facing the following possible additional constraints: (i) model privacy, (ii) no public
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Training under model heterogeneity Retaining model privacy

No access to public dataset No constraints on model space

Figure 2.1: Constraints considered in this work

dataset, and (iii) unrestricted model space. See Fig 2.1 for an illustration of the

constraints and see Table 2.1 for a summary of relevant works. Note that, while model

heterogeneity refers to a more general case where the users can have different model

spaces such as random forests, decision trees, and neural networks, we restrict our

study to the use of neural networks (since the only way to learn in the general case

is with distillation techniques which require a public dataset). Below, we provide a

motivating example for this work.

(Motivating use case) Consider the following application where a product manu-

facturer works with multiple original equipment manufacturers (OEMs) from different

countries (due to regulatory restrictions) for developing a new product line. The

product manufacturer intends to improve the diagnostics and prognostics which is
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often a supervised classification task. Since it is a new product line, data is scarce at

every OEM (no public dataset), thus requiring the OEMs to collaborate. The OEMs

may differ in the type of sensors leading to data heterogeneity and cannot share the

data due to the data privacy constraint. They may also have the model heterogeneity

issue due to various distributed computing resources that restrict the type of model

architectures they would deploy. Moreover, in such scenarios, the OEMs may not be

willing to share the model architecture as they may consider it as a trade secret and

due to the number of resources spent in designing it manually or using techniques

such as Neural Architecture Search [32].

Work Model Model Public Restricted
Heterogeneity Privacy Dataset Model Space Convergence

[33] ✓✓✓ ✓✓✓ ✓✓✓ ××× ×××

[34]
[35] ✓✓✓ ××× ✓✓✓ ××× ×××

[36] ✓✓✓ ××× ××× ✓✓✓ ×××

[37]
[38] ✓✓✓ ××× ××× ✓✓✓ ✓✓✓

[39] ✓✓✓ ✓✓✓ ××× ✓✓✓ ×××

[40] ✓✓✓ ✓✓✓ ××× ××× ×××

Ours ✓✓✓ ✓✓✓ ××× ××× ✓✓✓

Table 2.1: Summary of previous work in model heterogeneous FL. The desirable properties
are highlighted in green.

In this work, we propose a fundamentally different approach than the works in

Table 2.1 to address model heterogeneity with a new algorithm that is motivated by

theoretical results in the domain adaptation (DA) literature. In our case since the
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client models are heterogeneous, we separate the client model architecture as a feature

extractor that projects the input data into a latent space (common for all clients) and

a classifier that acts on the latent space. We summarize our contributions as follows:

• A thorough theoretical generalization analysis is provided for model homogeneous

and model heterogeneous FL highlighting the difficulty in the latter case. To the

best of our knowledge, this is the first theoretical generalization error bound for

the model heterogeneous FL setup, which justifies the advantage of participating

in FL and the importance of aligning the latent space distributions across the

clients.

• The proposed simple algorithm (Fed-CMA) can align the latent space conditional

distributions and the classification weights across all clients in a federated way

with convergence guarantees for finding the first-order stationary points to

general non-convex problems.

• Multiple detailed numerical experiments are performed under different FL set-

tings over both synthetic and real datasets. It can be observed that Fed-CMA

outperforms the considered baselines achieves reduced communication complexity

as compared to other model heterogeneous FL algorithms.

2.2 Preliminaries

2.2.1 Model Heterogeneous Federated Learning

Consider a K-class classification task, T := ⟨D, c⟩, where D is the distribution on

X ⊂ Rd and c is the ground truth labeling function that maps X to Y := {1, · · · , K}.

We consider the model heterogeneous FL problem with M workers where each worker
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has an individual task Ti := ⟨Di, c⟩ ∀i ∈ [M ]. Each client owns Di := {xj, yj}Ni
j , such

that xj ∼ Di, yj = c(xj). Let pi ∈ [0, 1] such that, Ni = piN , where N =
∑M

i=1Ni.

Also, each client has a model wi in a hypothesis class Wi ⊂ Rdi ( where di is the

dimensionality of the model space Wi) and a function fi :Wi ×X → Y which is used

to make a prediction on a given data point. We denote w(i,t) as the weights at client i

at time t. We simply write wi when time is clear from the context and w when worker

and time are clear from the context. Given a loss function l : Y × Y → R, we define

the loss function li :Wi ×X × Y → R for each worker as li(wi, x, y) = l
(
fi(wi, x), y

)
. Given a finite dataset Di = {(xj, yj)}Ni

j=1, we define the population loss (true

loss) Li and the empirical loss L̂i (the subscript i refers to Di at the worker i) as

Li(wi) = E(x,y)∼Di

[
li(wi, x, y)

]
and L̂i(w, Di) =

1
Ni

∑Ni

j=1 li

(
w, xj, yj

)
. We simply use

L̂i(w) when Di is clear from the context. We use the terms “loss”, error, and risk

interchangeably. The objective of model heterogeneous FL is to simultaneously learn

{w∗
i }Mi=1 such that

(w∗
1,w

∗
2, · · · ,w∗

M) = arg min
{wi}Mi=1

M∑
i=1

αiLi(wi), (2.1)

where αi ≥ 0,
∑M

i=1 αi = 1. Popular choices for αi are
1
M

or pi.

The challenge in solving (2.1) is because {wi}Mi=1 share different network archi-

tectures, meaning that the existing algorithms on parameter aggregation (such as

FedAvg, FedProx) cannot be used. Under model heterogeneity, we only assume a

common latent space (Z ⊆ Rde) for all workers. In other words, each worker i has a

model wi = (ui,vi) ∈ Wi where ui ∈ Ui, vi ∈ V. We define the prediction function

as fi(wi, x) := h
(
vi, gi(ui, x)

)
where gi(ui, ·) : X → Z projects X to the latent space

and h(vi, ·) : Z → Y makes the prediction. In general, dim(Ui)≫ dim(V). Typically,

consider a neural network where ui corresponds to the weights of the feature extractor
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and vi corresponds to the weights of the classification layer (see Fig 2.2). For example,

[41] and [42] consider a similar setup for personalizing the input representation learning

layers while sharing the classification layer with the server.

Server Aggregates  
 using   

 using 

Data

logits

Client 

feature 
extractor

features classification  
weights

Figure 2.2: Illustration of Fed-CMA .

2.2.2 Domain Adaptation

In DA, a classifier is trained on a sufficiently large source dataset (task) such

that it is expected to perform well on a target dataset (task) with few or no labeled
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data points. For the purpose of understanding the DA perspective and studying

the generalization, we shall consider a binary classification task. Let X ⊂ Rd and

Y = [0, 1], which is construed as the probability of having the label 0. Let us denote

the random variables in X ,Y as X and Y respectively. We use the terms “task”,

“domain”, and “client” interchangeably from hereon. Consider that the clients have the

same model class (or hypothesis) denoted byW and hence the same prediction function

f :W×X → Y . We define the disagreement between two modelsw,w′ ∈ W ⊆ {0, 1}X

as Li(w,w′) = Ex∈Di

[
|f(w, x)− f(w′, x)|

]
. Suppose that the target labeling functions

{ci : X → Y} are different for every client, then the error of a model w ∈ W on a

client i is Li(w) := Li(w, ci). The error of a model w on clients i, j can be related as

[43]

Lj(w) ≤ Li(w) + dW∆W(Di,Dj) + min
{
Ex∈Di

[
|ci(x)− cj(x)|

]
,Ex∈Dj

[
|ci(x)− cj(x)|

]}
,

(2.2)

where dW∆W is used to measure the divergence between the two distributions Di,Dj

[44] (see the appendix for formal definitions). If the divergence is small, it is hard

to discriminate between the two data distributions. This shows that, if the labeling

functions ci, cj are close, and dW∆W is small, then a model trained on one client i

(source) can perform well on another client j (target). Let qi(X, Y ) denote the joint

distribution of X, Y for client i. Suppose that the labeling functions {ci} are the

same for all the clients, then qi(Y |X) = qj(Y |X), but the marginals of X are not

equal. This is called the covariate shift assumption [45] which we consider in this

work. Under this assumption, the last term in (2.2) is zero, and only dW∆W needs

to be small. However, given two tasks, the divergence between the distributions in

X is fixed. This motivated the learning of domain invariant representations such
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that the divergence of distributions in the representation space (or latent space) is

minimized. Broadly, these methods take the following approaches. (i) Minimizing

an integral probability metric (IPM): Along with the classification loss on source

data, the network is explicitly trained to minimize an IPM such as maximum mean

discrepancy (MMD [46]) [47, 48, 49] or a central moment discrepancy (CMD) [50]

between the source and target datasets at the representation layer. (ii) Adversarial

methods: [51, 52, 53] train the network by minimizing the label classification loss

and maximizing a domain classification loss.

Let Z ⊂ Rde be a latent space, g(u, ·) : X → Z be a representation function where

u ∈ U and Z be a random variable in Z. Given a task ⟨D, c⟩, u induces the distribution

D̃(u) on Z and the labeling function c̃u : Z → Y such that Ez∈D̃(u)

[
IB(z)

]
=

Ex∈D
[
IB(g(u, x))

]
, where B ⊂ Z is a measurable set, IB is an indicator function over

B, and c̃u(z) := Ex∈D
[
c(x)|g(u, x) = z

]
, ∀z ∈ Z. Let qi(Z, Y ) be the joint distribution

at client i using a representation ui. Under this setup, the induced labeling functions

in the latent space may not be equal even when the labeling functions in the input

space are the same [43] and several works followed to address this shortcoming by

assuming a generalized label shift condition [54, 55] where qi(Z|Y ) = qj(Z|Y ). This

motivates our conditional alignment technique to solve (2.1). In contrast with DA

(even the multi-source) setting, we have the following challenges: (i) restriction on

data sharing and model sharing, (ii) learning simultaneously for all clients.

In classic multi-source DA, the goal is to train a classifier on all sources so that it can

generalize well on the target task. In our Federated setting, every client simultaneously

solves a multi-source DA problem viewing itself as the target. On the other hand,
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each client has a labeled dataset unlike in unsupervised DA, where the target has no

labeled data and one might need to estimate label distribution ratios.

2.3 Generalization Result for Model Heterogeneous FL

Next, we will first discuss the existing results for generalization in FL and highlight

the limitations of these results. Let us consider the case where all the client models are

homogeneous, and the client weights can be shared. The weighted data distribution

is denoted as Dααα =
∑M

i=1 αiDi. Let ααα = (α1, α2, · · · , αM) be the domain weights for

each user such that
∑M

j=1 αi = 1, and let j be the target domain (which can be one

of the clients). There are two types of existing generalization results for FL in the

literature where the final prediction (i) uses a weighted average of the client model

weights i.e., f
(∑

i αiwi, x
)
[56], (ii) uses an ensemble of the predictions on the client

models, i.e.,
∑

i αifi(wi, x) [34, 35].

Averaged model weights Following Section 2.2.1, the empirical loss is defined as

L̂i(wi) :=
1
Ni

∑
(x,y)∈Di

|f(wi, x) − y| and the ααα empirical weighted loss as L̂ααα(w) =∑M
i=1 αiL̂i(w). The true weighted loss Lααα can be defined similarly by following

Section 2.2.1. Theorem 2 of [56] shows a generalization bound for FL (when j is the

target): with probability at least 1− δ,

Lj(wj) ≤ L̂ααα

( M∑
i=1

αiwi

)
+

M∑
i=1

αi

(1
2
dW∆W(Di,Dj)

)
+O

( log 1
δ√

N

)
. (2.3)

Here, O(·) hides logarithmic terms and model class complexities that are constant.

For the same model class, if the target domain j only uses the data available locally,

from standard results in generalization, we know that the user’s generalization error

can be bounded as Lj(wj) ≤ L̂j(wj) +O
(

log 1/δ√
Nj

)
with probability at least 1− δ. The
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benefit of joining FL can be seen from the 1√
N

term in (2.3) since N ≫ Nj when M is

large. The L̂ααα(
∑

i αiwi) (empirical loss at all users) and dW∆W (captures heterogeneity

among users) terms must be smaller than L̂j(wj) for this benefit to be realizable. This

encourages the FL objective to solve argmin L̂ααα(w) by sharing the model weights.

However, this result has a major drawback. It only holds for model homogeneous

FL, since the result is with respect to the weighted model
∑

i=1 αiwi, which is clearly

not possible in model heterogeneous (or model private) FL.

Ensembled model predictions We slightly abuse the notation for this discussion

by defining the loss as follows: L̂i(fi) :=
1
Ni

∑
(x,y)∈Di

|fi(wi, x)−y|. The generalization

result where the target distribution is Dj can be summarized as follows (although there

are subtle variations in Theorem 5.1 in [34] and Theorem 1 in [57]): with probability

at least 1− δ,

Lj

( M∑
i=1

αifi

)
≤

M∑
i=1

αiL̂i(fi) +
M∑
i=1

αi

2
dW∆W(Di,Dj) +

M∑
i=1

O
(αi log

1
δ√

Ni

)
. (2.4)

Although this result holds for the model heterogeneous case, the result fails to

capture the advantage of performing FL for the following reasons. Firstly, the bound

contains the term
∑M

i=1O
(

1√
Ni

)
which is worse than O

(
1√
Nj

)
, while also containing

the divergence terms dW∆W and the local loss terms
∑

i ̸=j αiL̂i(fi). Therefore, the

result does not show any improvement over local training. The result also holds

when the models are trained locally and the ensemble is used only during prediction.

This does not motivate the distillation loss (with communication during training) in

[34, 35]. Even more importantly, the impact of the public dataset distribution (used

for distillation) is not captured in the result. Therefore, this bound is uninformative

and fails to justify the benefit of FL.
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Also note that the original results in [56, 34, 35] include an additional term λ

which quantifies the best oracle loss. However, we observe that this λ term can be

avoided and thus we omitted it from the generalization results in (2.3) and (2.4).

We shall now address the limitations mentioned above by (i) decoupling the

representation layer from the classification layer which allows us to study model

heterogeneity in FL and (ii) using results from multi-source domain adaptation which

allows us to show 1√
N

dependence without assuming a centralized dataset. While

Theorem 1 of [40] follows (i), they still show a 1√
Ni

dependence and only consider the

model homogeneous case.

2.3.1 Model Homogeneous FL

Let us first show the result for the model homogeneous case, where averaging the

model weights is optimal. Given a representation function u, denote the induced

distribution of the ith client as D̃i(u) and the induced labeling function as c̃u. The

empirical risk of the ith client for the model (u,v) is defined as L̂i,u(v, c̃u) :=

1
Ni

∑
x∈Di
|h(v, g(u, x))− c̃u(g(u, x))| and the true risk Li,u(v, c̃u) is the expectation

of L̂i,u(v, c̃u) taken with respect to the draw of Di. The domain-weighted empirical

risk is defined similarly as L̂ααα(v) =
∑M

i=1 αiL̂i,u(v, c̃u) and the true weighted risk is

defined similarly as Lααα(v). We denote the mixture of the induced client distributions

defined as D̃ααα =
∑M

i=1 αiD̃i(u). Let the target distribution be given by Dj and the

induced distribution is D̃j(u). We now state the generalization bound.
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Theorem 1 (Model Homogeneity). Given u, let v̂ = argminv∈V L̂ααα(v) and v∗
j =

argminv∈V Lj,u(v, c̃u). Then for any δ > 0, w.p. > 1− δ, we have

Lj,u(v̂)− Lj,u(v
∗
j ) ≤ 4

√√√√ M∑
i=1

α2
i

pi
O
(√ log 1

δ

2N

)
+B,

where B =
∑M

i=1 αidV∆V
(
D̃i(u), D̃j(u)

)
.

Let αi = pi, then the generalization error decays as O
(√

1/N
)
. Therefore, the

dependence on the number of data points shows that the client attains better gen-

eralization error by participating in the FL setup provided the divergence term is

small. Note that, as compared to (2.3), we have divergence between the induced

distributions dV∆V(D̃i(u), D̃j(u)) as compared to dW∆W(Di,Dj) which is fixed for the

given client datasets. The divergence term in Theorem 1 can be minimized by learning

invariant feature representations u which is the topic of interest in domain invariant

representation learning [49, 43].

The following result provides a way to empirically estimate the dV∆V divergence

based on the data samples.

Lemma 1 ([44],[58]). Let V be a hypothesis space on Z with VC dimension dV . If

U and U ′ are samples of size n from D and D′ respectively. Then, for any δ ∈ (0, 1)

with probability at least 1− δ,

dV∆V(D,D′) ≤ 4

√
d log(2n) + log(2

δ
)

n

+ 2
(
1−min

v∈V

{ 1
n

∑
z:h(v,z)=0

I[z ∈ U ] + 1

n

∑
z:h(v,z)=1

I[z ∈ U ′]
})

.

We train a classifier to identify the distribution to which the data points belong.

The divergence term is large when the learned function is able to classify properly

between the distributions, and the divergence term is small when we are unable to

learn a hypothesis that can distinguish between the distributions.
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Intuition behind controlling dV∆V : We now present a simple example to illustrate

when dV∆V is small. Let us consider two clients whose datasets are drawn from two

homoscedastic Gaussian distributions Ni(µi,Σ), i ∈ {1, 2} in Rd. Let us consider a

1-hidden layer network with identity activation functions. The hidden layer dimension

is dh and the output dimension is 1 and the weights of the two layers are given by

W1 ∈ Rdh×d, W2 ∈ R1×dh). For simplicity, consider a model homogeneous case, where

the weights (W1,W2) are shared between the two clients. The projections of the two

datasets in the hidden space are also Gaussian since we are just doing an affine transfor-

mation, i.e., the hidden layer projections are drawn from Ni(W1µi,W1ΣW
T
1 ), i ∈ {1, 2}.

The output of the network is the projection of the hidden layer onto a single dimension.

We know that the Bayes error for 2 homoscedastic classes with equal priors is given by

2Φ
(

−|W2W1µ1−W2W1µ2|
2
√

W2W1ΣWT
1 W2

)
, where Φ is the cdf of the standard normal distribution. Since

no classifier can do better than the Bayes error, we have

min
v∈V

[ 1
n

∑
z:h(v,z)=0

I[z ∈ U ] + 1

n

∑
z:h(v,z)=1

I[z ∈ U ′]
]
≥ 2Φ

(
−|W2W1µ1 −W2W1µ2|

2
√

W2W1ΣW T
1 W2

)
.

Thus, when the distance between the means in the latent space,W1µ1 andW1µ2, is high,

then the Bayes error 2Φ
(

−|W2W1µ1−W2W1µ2|
2
√

W2W1ΣWT
1 W2

)
is low. As a result, to keep the divergence

dV∆V small, the latent space means must be closer, so that 2Φ
(

−|W2W1µ1−W2W1µ2|
2
√

W2W1ΣWT
1 W2

)
is

large.

2.3.2 Model Heterogeneous FL

It is important to understand that due to model heterogeneity, we can not show a

bound similar to (2.3) since the model weights of different clients can not be averaged.

Since in our setup, only the classification layer weights are shared, therefore we

need to decouple the representation layers from the classification layers to show the
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generalization bound. We use the same approach as Theorem 1 to consider the latent

space distributions induced by the clients’ private representation functions {ui}Mi=1.

For the model heterogeneous case (since there is no global model), let ui be the

representation layer weights of the ith user. We then define the induced distributions

D̃i(ui), labeling functions c̃ui
, empirical risk L̂i,ui

(vi, c̃ui
) with respect to ui for every

client. The weighted empirical risk is then L̂ααα(v) =
∑M

i=1 αiL̂i,ui
(v, c̃ui

) . A major

difference is that the induced labeling functions c̃ui
are different for every client whereas

in Theorem 1, it is the same for all clients due to shared u. Let the target distribution

be given by Dj and the corresponding representation be uj that induces D̃j(uj) and

c̃uj
. We now state the generalization bound as follows.

Theorem 2 (Model Heterogeneity). Let v̂ = argminv∈V L̂ααα(h) and

v∗
j = argminv∈V Lj,uj

(v, c̃uj
) be the minimizer of the true target risk. Then for any

δ > 0, w.p. > 1− δ, we have

Lj,uj
(v̂)− Lj,uj

(v∗
j ) ≤ 4

√√√√ M∑
i=1

α2
i

pi
O
(√ log 1

δ

N

)
+ 2A+B,

where A =
∑M

i=1 αi min
{
Ez∈D̃i(ui)

[
|c̃ui

(z) − c̃uj
(z)|
]
, Ez∈D̃j(uj)(z)

[
|c̃ui

(z) − c̃uj
(z)|
]}

and B =
∑M

i=1 αidV∆V(D̃i(ui), D̃j(uj)).

The bound is similar to that of Theorem 1 with two key differences: (i) the addition

of term A and (ii) the divergence in B is computed between the induced distributions

on private representations ui of the clients. These two differences are inherently due to

the presence of model heterogeneity. The term A determines the closeness of c̃uj
with

every other c̃ui
. Observe that in the model homogeneous case where u is shared among

the clients, A = 0 since all the induced labeling functions are equal to c̃u. Similarly, as

compared to the model homogeneous case, B here is measured between the D̃i(ui) and
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D̃j(uj) for ui ̸= uj leading to a higher divergence. Due to these differences, achieving

good generalization in model heterogeneous FL is more challenging than in model

homogeneous FL. Observe that, in Theorem 1 and 2, the error measured is dependent

on the representations since v̂,v∗
j are dependent on the representations. Showing

the result without fixing the representations is more challenging and we leave this as

future work.

Role of the representations {ui}: The term B is non-zero when the data

distributions are non-iid. If the given representations {uj} are such that in the latent

space Z, the induced distribution of the target D̃j(uj) is close to the induced D̃i(ui),

then dV∆V(D̃i(ui), D̃j(uj)) is small. The A term, determines the closeness of c̃uj
with

every other c̃ui
. Observe that in the model homogeneous case where u is shared among

the clients, λααα = 0 since all the induced labeling functions are equal to c̃u. Even when

the representations are shared and the dV∆V is small, this is not guaranteed to be

small [43]. The goal of representation learning should therefore be to simultaneously

reduce the divergence between the marginal distributions and the distance between

the labeling functions. While the divergence can be minimized by minimizing an IPM

(such as MMD), the distance between the induced labeling functions is difficult to

measure. Therefore, in Fed-CMA , we propose to minimize the divergence between

the class conditional latent space distributions to bring the induced labeling functions

closer.

While FL research primarily focuses on improving the convergence rate by ad-

dressing issues such as variance reduction or client drift [59], the role of the feature

extractors in reducing the degree of heterogeneity in the latent space receives rare

attention. To the best of our knowledge, our work is the first to show generalization
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bounds for FL, which provide these fundamental insights and highlight the benefits of

participating in FL.

The generalization result can be further improved by adopting the clustering

structure implies sufficiency result of [54] and the optimal transport bound of [55]

which uses the Wasserstein metric to measure the divergence between the latent space

distributions without requiring to measure the difference between the induced labeling

functions.

2.4 Proposed Algorithm

2.4.1 Maximum Mean Discrepancy (MMD)

MMD [46] is a popular and powerful choice to compute the distance between two

distributions. Define a feature map ϕ : X → Hk where Hk is a reproducing kernel

Hilbert space (RKHS) endowed with a characteristic kernel k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩Hk
.

The MMD between two distributions D,D′ is defined as MMD(D,D′) =
∥∥∥Ex∼D[ϕ(x)]−

Ex′∼D′ [ϕ(x′)]
∥∥∥
Hk

. The empirical estimate of the MMD given two datasets D,D′ of

size N each is given by MMD(D,D′) = 1
N

∑
xi,xj∈D k(xi, xj) +

1
N

∑
x′
i,x

′
j∈D′ k(x′

i, x
′
j)−

2
N

∑
xi∈D,x′

j∈D′ k(xi, x
′
j). A popular choice for the kernel k is a radial basis kernel or a

gaussian kernel, k(x, y) = exp− ∥x−y∥22
2γ , where γ is the bandwidth parameter. For every

client i with data Di = {xj, yj}Ni
j=1 and weights (ui,vi), we define the dataset in the

latent space induced by u(i,t) at time t as D̃(i,t) = {
(
zj, yj

)
|zj = gi(u(i,t), xj) ∀(xj, yj) ∈

Di}. Suppose, if clients can communicate the latent space datasets to the other clients,

then the MMD distance can be used as a regularizer to align the distribution of a

client’s latent space representations to that of the other clients j. More precisely,

at every local iteration t, client i minimizes L̂i(w(i,t)) +
∑M

j=1,j ̸=i MMD(D̃(i,t), D̃(j,τj))
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where τj is the last time step at which client j communicated the latent dataset to

client i. This way, each client can train their representation layers ui such that the

latent space distributions are aligned with those of other clients. Furthermore, from

the insights from the previous section, clients can compute MMD between the class

conditional datasets of every client.

However, to practically use this algorithm, there are some challenges. The accuracy

of empirical MMD improves with the number of data samples, but the computation

complexity of MMD is quadratic in the number of data points (i.e., O(N2) if N is

the number of data points used in MMD). This is a huge computational overhead

considering that the clients may be resource constrained, not to mention the difficulty

in tuning the bandwidth parameter for each MMD computation (especially when class

conditional alignment is used). It was also shown that MMD is more effective when

using multiple kernels [49] which further increases the complexity. Moreover, there

maybe privacy issues with sharing the latent space datasets. While techniques like

differentially private dataset release [60] can be employed, it further increases the

computation complexity at the clients, which is not desirable. In the next section, we

propose an algorithm based on matching just the first order moments of the latent

space datasets to assist in aligning the latent space conditional distributions.

2.4.2 FedCMA

We recall the example from [43] (Fig 1) which shows that marginal alignment

of distributions is insufficient when the labeling functions are different. The goal of

representation learning should therefore be to simultaneously reduce the terms A

and B. Towards this, we propose conditional alignment of distributions in the latent
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space which aims to learn representation weights {ui} such that the induced labeling

functions are closer and the latent space distributions are closer (see Fig 2.3 for an

illustration).
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Figure 2.3: Illustration of conditional alignment

As compared to simultaneously minimizing the MMD between all pairs of clients,

we propose a simple algorithm that maintains a global variable that tracks the

weighted average of the empirical conditional mean embeddings of all the clients and

we minimize the distance of each client’s empirical mean embeddings with the global

variable.
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Let pki denote the fraction of data points of label k available at client i out of all

data points of label k at all clients. At the beginning of the training, each client i

samples a fixed i.i.d minibatch Bk
i ∼ Di for each kth label in the dataset Di with

bki points. The size of bki can be much smaller than the size of the original dataset

Ni. This minibatch is used throughout the training. The class conditional mean

embedding vector eki ∈ Rde is computed as eki = 1
bki

∑
x∈Bk

i
gi(ui, x). We abuse the

notation slightly, by using eki (u) when the parameter u is of interest. These vectors

are the class conditional empirical means of each class available at each client.

Further, principled approaches such as adding calculated noise to the mean embed-

dings can be performed to achieve rigorous differential privacy guarantees; however

this is outside the scope of this work. We maintain a global variable e = {ek}Kk=1

that stores a weighted average of the means of all the clients. This global variable

is used to achieve consensus among the clients and align the client distributions in

the latent space. Similarly, we maintain a global variable v̄ for the classification layer

weights. The population local loss at worker i is

Φi(wi, v̄, e) = Li(wi) +
λ1

2
pi

∥∥∥vi − v̄
∥∥∥2
2
+

λ2

2

K∑
k=1

pki
bki

∑
x∈Bk

i

∥∥∥gi(ui, x)− ek
∥∥∥2
2
. (2.5)

Note that, the computation here is just linear in the number of data points as compared

to quadratic in the case of MMD. Let w(i,t) := (u(i,t),v(i,t)) be the parameters at ith

worker and η(t) be the learning rate at time t. We define et = {ek(t)}Kk=1 and v̄(t). Note

that we use (t) to highlight that the subscript refers to the time. In Fed-CMA , we
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perform the following updates on w(i,t), v̄(t), e(t) simultaneously,

(Local update)
{
w(i,t+1) = w(i,t) − η(t)∇wi

Φ̂i(w(i,t), v̄(t), e(t)); (2.6)

(Global update)


v̄(t+1) = v̄(t)(1− λ1η(t)) + λ1η(t)

(∑M
i=1 piv(i,t)

)
;

ek(t+1) = ek(t)(1− λ2η(t)) + λ2η(t)

(∑M
i=1 p

k
i e

k
i

(
u(i,t)

))
,

(2.7)

where the empirical gradient Φ̂i is computed using a minibatch ξi that is drawn i.i.d.

from Di and 0 < λ1η(t) ≤ 1 and 0 < λ2η(t) ≤ 1. The complete algorithm is given in

Algorithm 1. We study the convergence properties of this algorithm in Section 2.5.

Algorithm 1 Fed-CMA

1: At Server:
2: for t = 1, · · · , T do
3: Collect mean embeddings {ek(i,t)}Kk=1 and classification layer weights v(i,t) for

all i ∈ [M ]
4: Update ē and v̄ using (2.7)
5: Broadcast {ek(t)}Kk=1 and v̄(t) to the workers.
6: end for
7: At Worker i:
8: for t = 1, · · · , T do
9: Receive {ek(t)}Kk=1 and v̄(t) from the server.

10: Pick random minibatch ξ(t) from Di and compute ∇Φ̂i.
11: Update w(i,t) according to (2.6)
12: Compute {ek(i,t)}Kk=1 using eki =

1
bki

∑
x∈Bk

i
gi(u(i,t), x) for k ∈ [K].

13: Share with server: mean embeddings {ek(i,t)}Kk=1 and classification layer weights
v(i,t).

14: end for

2.5 Convergence Results

Let us denote a = ({wi}Mi=1, v̄, e) and we can write the global objective as

argmin
a

Φ(a) := arg min
{wi}Mi=1,v̄,ē

M∑
i=1

Φ(wi, v̄, e). (2.8)
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Unless otherwise specified, ∥·∥ is ∥·∥2 for vectors and ∥·∥F for matrices. When

we consider a, we assume that all {wi}Mi=1, v̄, e are vectorized and concatenated such

that a ∈ RMdi+2(de+1)K . We place the following assumptions on the loss functions and

embedding maps.

Assumption 1. The local losses {Li(wi)}Ni=1 are βl Lipschitz continuous, and βs

smooth in wi. Note that ∥wi∥2 = ∥ui,vi∥2 = ∥ui∥+ ∥vi∥. The losses Li are lower

bounded uniformly by a scalar Linf .

Assumption 2. The function gi(ui, x) is βe Lipschitz continuous and βg smooth

∀i ∈ [M ] with respect to ui. Moreover, we assume that gi(ui, x) ∈ [0, 1]de.

Assumption 3. The empirical gradient is an unbiased gradient of the population loss

E[∇aΦ̂({wi}Mi=1, v̄, e)] = ∇aΦ({wi}Mi=1, v̄, e). The variance of the stochastic gradient

is bounded, i.e.,

E
[∥∥∥∇aΦ̂({wi}Mi=1, v̄, e)−∇aΦ({wi}Mi=1, v̄, e)

∥∥∥2] ≤ G1

∥∥∥∇aΦ({wi}Mi=1, v̄, e)
∥∥∥2 +G2

2.

Assumption 1 is commonly used in analyzing non-convex SGD. Assumption 2

implies that the output of gi(ui, x) is bounded and this is easily satisfied in deep neural

networks where the activation function is a sigmoid function. While the boundedness

of the activation function is not necessary, it makes some parts of the proof simpler.

The more general ReLU activation can be used by making some changes to the loss

function; more details are provided in the discussion after Lemma 13. Assumption 3

follows from assuming that the local dataset at each client i is drawn i.i.d from Di.

For simplicity, we consider only one local update (2.6) before computing the global

update (2.7). We now state the convergence theorem.
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Theorem 3. Let Assumptions 1, 2, and 3 hold and run the algorithm with T

timesteps. If we chose a constant learning rate η =
√

2C1

TC0G2
2
that satisfies 0 < η ≤

min
{

1
λ1
, 1
λ2
, 1
C0(G1+1)

}
, where E[Φ(a(1))]−E[Φ(a(T ))] ≤ E[Φ(a(1))]−Φ∗ ≤ C1, and C0

is a problem specific constant, then we have mint:1,··· ,T E
[
∥∇aΦ(a(t)∥2

]
≤
√

2C1C0G2
2

T
.

We defer the proof to Appendix. Note that here the algorithm converges to a

first-order stationary point since we are dealing with smooth and non-convex functions.

We now restrict the training only to the latent space to obtain convergence to the

global optimum which we will then use to prove the generalization result.

Continuing FL in the latent space

Let
(
{(u∗

i ,v
∗
i )}Mi=1, v̄

∗, e∗
)
be the output from solving (2.8). We now freeze the

representation functions {u∗
i }Mi=1 for all the clients. For every dataset Di = {xj, yj}Ni

j=1,

we define a projected dataset D̃i = {
(
zj, yj

)
|zj = gi(u

∗
i , xj) ∀(xj, yj) ∈ Di}. We

now define the local objective as argminFi(v) :=
1
Ni

∑
(x,y)∈Di;z=gi(u∗

i ,x)
l(v, z, y). The

global objective is then defined as

argmin
v

F (v) :=
M∑
i=1

piFi(v). (2.9)

To solve (2.9), we initialize with v(i,0) = v̄∗, follow the FedAvg algorithm [61] and

update the local weights v(i,t) at i−th worker and the global weights v as

v(i,t+τ+1) = v(i,t+τ) − η(t+τ)∇F̂i(v(i,t+τ), ξ(i,t+τ)); v(t+E) =
M∑
i=1

piv(i,t+E), (2.10)

where τ is the local iteration number, ∇F̂i(v(i,t+τ), ξ(i,t+τ ) is the stochastic gradient at

time t+ τ by sampling a local minibatch ξ(i,t+τ) and η(t+τ) is the learning rate. After

every E local update, the server aggregates the local weights and for simplicity, we

assume full device participation in updating the weights. After the global update,
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the server assigns v(i,t+E) = v(t+E) to every client. Before stating the convergence

theorem, we make the following assumptions.

Assumption 4. The local loss functions Fi are all L−smooth and µ strongly convex

for all i ∈ [M ].

Assumption 5. The second moment of the stochastic gradients of the i− th worker

at time t is bounded as: E
[∥∥∥∇F̂i(v(i,t), ξ(i,t))−∇Fi(v(i,t))

∥∥∥2] ≤ σ2
i , for all i ∈ [M ].

Assumption 6. The expected squared norm of the stochastic gradients is uniformly

bounded as E
[∥∥∥∇F̂i(v(i,t), ξ(i,t))

∥∥∥2] ≤ G2 for all i ∈ [M ].

The problem we solve in (2.9) is convex since the cross entropy loss is convex and

we are only optimizing the final layer (classification) weights v (keeping the u∗
i fixed).

Moreover, we can assume that each local objective uses an L2 regularization term,

thus satisfying strong convexity. The Assumptions 4, 5, 6 are standard for analyzing

FedAvg for non-iid scenarios [61].

Definition 1 ([61]). Let F ∗, F ∗
i be the minimum values of F and Fi respectively. The

degree of non-iid (heterogeneity) is defined as Γ = F ∗ −
∑M

i=1 piF
∗
i .

When the data D̃i are all i.i.d, then the degree of heterogeneity Γ goes to zero

as the sample size increases. Here, the degree of heterogeneity between {D̃i}Mi=1 is

determined by the degree of heterogeneity between {Di}Mi=1 and the learned {u∗
i }Mi=1.

We now state the convergence theorem.

Theorem 4 (Theorem 1 [61]). Let Assumptions 4 to 6 hold and L, µ, σi, G be defined

therein. Choose κ = L
µ
, γ = max{8κ,E} and the learning rate η(t) =

2
µ(γ+t)

. Then

solving (2.10) with full client participation satisfies E[F (v(T ))] − F ∗ ≤ κ
γ+T−1

(
2B
µ

+
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µγ
2
E[∥v̄∗ − v∗∥2]

)
, where B =

∑M
i=1 p

2
iσ

2
i + 6LΓ + 8(E − 1)2G2, v∗ is the unique

minimizer of (2.9).

Theorem 4 states that applying FedAvg to the problem (2.9), the resultant iterate

v(T ) convergences with a rate of O( 1
T
). The faster rate compared to Theorem 3 is due

to the simplification of the problem to the strongly convex case by freezing the {ui}Mi=1.

Moreover, unlike Theorem 3, where the algorithm converges to a local optimum, here

the convergence is to the global optimum of (2.9). However, (2.9) itself depends on

the frozen representations at which the latent space training took place. The rate

of convergence slows with higher values of Γ, thus implying that the frozen {u∗
i }

from solving (2.8) also play a role in the convergence of v(T ). Also, observe that the

convergence rate depends on ∥v̄∗ − v∗∥2. Suppose, the freezing is done when ui are

far away from minimizing (2.8), then v̄∗ is also far away from the optimal point and

therefore it slows down convergence. Note that, while this dependence on u∗
i is not

desirable from the convergence perspective, we want to highlight that we are dealing

with model heterogeneity and this decoupling of ui,vi is required to show a reasonable

generalization result.

2.6 Numerical Simulations

We first evaluate Fed-CMA on a synthetic dataset to illustrate the conditional

alignment in the latent space. We then compare Fed-CMA against other FL algorithms

in the model heterogeneity setting on various image datasets. The details of the

experimental setup is provided in Section A.4.1.
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(a) Worker 0 (b) Worker 1

(c) Worker 2 (d) Worker 3

Figure 2.4: Local input space decision boundaries

(a) Worker 0 (b) Worker 1

(c) Worker 2 (d) Worker 3

Figure 2.5: Local latent space decision boundaries
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(a) Worker 0 (b) Worker 1

(c) Worker 2 (d) Worker 3

Figure 2.6: FedCMA input space decision boundaries

(a) Worker 0 (b) Worker 1

(c) Worker 2 (d) Worker 3

Figure 2.7: FedCMA latent space decision boundaries
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Figure 2.8: Discriminator classification accuracy (smaller the better)

Synthetic dataset We solve a 4-class classification problem, where we generate a

synthetic dataset in R2 from a mixture of four Gaussian distributions and distribute

them in a non-i.i.d. way among 4 clients (see Fig 2.4, 2.6). We use Linear(2,2)→

Linear(2,2) → Linear(2,4) at every client for simplicity. After training, we plot

the decision boundaries in the original and latent spaces (both R2). We see that the

distributions and decision boundaries in the latent space are aligned for Fed-CMA

(see Fig 2.7) resulting in much better decision boundary in the original space, even for

workers with scarce data (see Fig 2.6). We empirically approximate dV∆V by training

a classifier to discriminate between the latent space data of the four clients (motivated

from [58], see supplementary material for more details). As we observe from Fig 2.8a,

as the training progresses the accuracy of the discriminator reaches that of a random

classifier which means the latent space data among the workers are more aligned and

it gets difficult to tell from which client the data came from.
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MNIST datasets We perform an evaluation on MNIST, EMNIST and FEMNIST

[21] datasets. For MNIST and EMNIST, we consider M = 20 clients, and to simulate

data heterogeneity, we follow [62] where a Dirichlet distribution DirM (α) is used to

partition among the M clients. For smaller values of α, the data is more heterogeneous

and for larger values of α the data is more homogeneous across the clients. For the

MNIST and EMNIST datasets, we consider full client availability. In the FEMNIST

experiment, we consider around 25% of the FEMNIST dataset which contains 923

clients with 50% client participation at each round.

Note that it is hard to compare the performance of Fed-CMA with earlier works such

as Fed-ET [35], FedDF [34], and KT-pFL [33] since they utilize additional information

in the form of a public dataset that is used for knowledge distillation. Moreover,

these works may involve sharing the parameters with the server. Therefore, we do not

provide a comparison with these works. While the main results of FedGen [40] require

sharing all the model weights with the server, FedGen also accommodates limited

parameter sharing (such as sharing only the classification layer weights vi). Therefore,

in this section, we compare Fed-CMA with FedGen under the limited parameter

setting. Additionally, we also provide a comparison against local training and against

FedAvg which simply shares the final layer weights (called FedAvgSim in [41]). We

use the same network and setup used in [40] using the official implementation1 and

allowed multiple local client updates between communication rounds.

From the results in Table 2.2, we observe that Fed-CMA outperforms all the

baselines in the limited parameter setting. The improvement offered by Fed-CMA over

the other baselines is much higher in the high data heterogeneity (small α) setting and

1https://github.com/zhuangdizhu/FedGen
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the improvements diminish as α increases. This shows that in more practical settings,

Fed-CMA can provide much-needed gains to justify participating in the FL setup. We

provide detailed experimental setup and ablations (marginal alignment vs conditional

alignment, advantage of sharing mean embeddings) in the supplementary material.

dataset α Local FedAvg FedGen FedCMA

MNIST

0.02 76.28 (0.39) 76.14 (0.48) 75.95 (0.06) 79.22 (0.74)
0.03 59.89 (0.26) 59.82 (0.23) 60.08 (0.61) 64.03 (0.26)
0.05 61.36 (0.71) 61.26 (0.70) 60.82 (0.50) 62.57 (0.39)
0.10 62.27 (0.48) 62.26 (0.35) 62.84 (0.07) 63.94 (0.42)

EMNIST

0.02 50.2 (0.10) 49.77 (0.11) 49.93 (0.06) 51.0 (0.29)
0.03 47.95 (0.33) 47.46 (0.24) 47.5 (0.32) 49.26 (0.15)
0.05 52.73 (0.35) 52.2 (0.36) 52.48 (0.33) 53.96 (0.48)
0.10 47.31 (0.35) 46.84 (0.29) 46.35 (0.34) 46.5 (0.32)

FEMNIST - 62.49 (0.64) 63.50 (0.79) - 64.50 (1.2)

Table 2.2: Comparison on MNIST, EMNIST, and FEMNIST datasets with data hetero-
geneity and limited parameter sharing

CIFAR-10 dataset We also compare our work against the personalized FL algo-

rithms pFedHN, pFedHN-PC in [63] for the CIFAR-10 dataset. We use the same

non-i.i.d. data split, networks, and setup used in the official implementation of [63]2.

The comparison is provided in Table 2.3 and we observe that Fed-CMA outperforms

the compared algorithms in two out of the three cases. Additionally, we also provide

a comparison of the communication cost (in terms of the number of parameters) for

the three algorithms in Fig 2.9. We observe that Fed-CMA achieves similar accuracy

as the other two algorithms despite requiring an order of communication lesser. Note

2https://github.com/AvivSham/pFedHN
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Workers pFedHN pFedHN-PC FedCMA

10 88.34 89.05 91.36
50 83.62 83.62 84.24
100 82.73 80.81 80.92

Table 2.3: Comparison on CIFAR10 with data heterogeneity and limited parameter sharing
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Figure 2.9: Comparison of communication performed during training for CIFAR10 (x-axis)
vs accuracy (y-axis)

that, the communication complexity of Fed-CMA at each round is O(K ×M × de)

irrespective of the dimension of the feature extractor weights. We also empirically

approximate dV∆V by training a domain discriminator in the latent space and conclude

from Fig 2.8b that the reduced accuracy of the domain discriminator is due to a

better alignment in the latent space for Fed-CMA (which improves the generalization

performance). Observe that for local training, the domain discriminator has 100%

accuracy, implying that there is zero alignment of latent space distributions.
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Chapter 3: Byzantine resilience to an arbitrary number of

attackers

3.1 Introduction

With increasing data size and model complexity, the preferred method for training

machine learning models at scale is to use a distributed training setting. This involves

a parameter server that coordinates the training with multiple worker machines by

communicating gradients and parameters. However, this setting is prone to fail in

the presence of dishonest workers or non-malicious failed workers [20]. Under the

more general setting, it is studied as the Byzantine general problem which dates

back to reliable computing in distributed systems [64, 65, 66]. Recently, there has

been a significant interest in devising distributed machine learning schemes to defend

Byzantine adversaries [67, 68, 69, 70]. In this setting, a certain fraction of the workers

are assumed to be adversarial; instead of sending the actual gradients computed using

a randomly sampled mini-batch to the server, the adversarial workers send arbitrary

or potentially adversarial gradients that could derail the optimization at the server.

This problem has been studied under different settings such as gradient encoding

[71], asynchronous updates [72, 73], heterogeneous datasets [74, 75], decentralized

learning [76], [77, 78], Federated Learning [79, 80]. There has also been some work in
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developing attack techniques that break existing defenses [79, 81, 82]. Please refer to

[20] for a detailed list of references.

Fraction of
Adversaries f

Type Attack f < 0.5 f ∈ [0.5, 1)
Omniscient / Collusion IPM [81]

√ √

Omniscient / Collusion LIE [82]
√

-
Omniscient / Collusion OFOM [79]

√ √

Omniscient / Collusion PAF [79]
√ √

Local / Failure Sign Flip/Reverse [69]
√ √

Local / Failure Random Sign Flip
√ √

Local / Failure Gaussian Attack [69]
√ √

Local / Failure Constant Attack [74]
√ √

Data Poisoning Label Flipping
√ √

Mixed Attacks Multiple types of attacks
√

-

Table 3.1: Summary of various attacks that ByGARS or ByGARS++ is robust to.

Fraction of adversaries < 0.5 : One of the main assumptions in past studies

about Byzantine attacks in machine learning is that the number of adversarial workers

is less than half of the total number of workers. The fundamental reason for this

assumption is that the majority-based robust statistics approaches require at least

more than half of the samples to be correct to give a good estimate. For example, the

underlying concept of geometric median [68] yields a robust estimator as long as less

than half of the data (used for aggregation) is corrupted, and when more than half

the data is corrupted, it provably fails.

Distance (between workers gradients) based methods such as Krum [69], and

Bulyan [83] were proposed with convergence guarantees. Several robust statistics

based approaches such as median of means [68], coordinate-wise median and trimmed
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Figure 3.1: Comparison of the top-1 accuracy of ByGARS and ByGARS++ using CIFAR-
10 dataset with one benign worker and seven attackers using different attack strategies. The
seven attackers include one Gaussian adversary, two Sign flip adversaries, one random sign
flip adversary, two label flip adversaries, and one constant value adversary.

mean [84], Lipschitz inspired coordinate median [77], majority-based SignSGD [85] and

history based approaches [67], [86] were also shown to have strong convergence guar-

antees. Despite such guarantees, the above median and majority-inspired approaches

fail to apply to an arbitrary number of attackers.

Arbitrary number of adversaries: A more practical and challenging problem

is to ensure convergence even in the presence of an arbitrary number of adversaries.

One way to address this is to assume the availability of auxiliary data at the server

and filter out the adversarial gradients [87, 88, 73] by computing some score using

the auxiliary data that differentiates adversarial gradients from benign ones. Jin et

al. [89] consider the asynchronous update setting without an auxiliary dataset, but

assume that every worker knows the gradients of every other worker and uses this

information to locally filter out the adversarial gradients.

However, these methods require the number of adversaries (or an upper bound)

which is crucial to filtering out the adversarial workers but this information may not
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be available in practical scenarios. Moreover, if the estimate is inaccurate, it either

leads to filtering out benign workers (reduction in effective data size thus affecting

generalization) or allows more adversarial gradients to be considered as benign (thus

affecting convergence).

In contrast, we propose a reputation score based aggregation, obviating the need to

know the number of adversaries which makes the proposed approach more applicable

to practical scenarios. The reputation score of a worker signifies how relevant the

corresponding gradient direction is to the optimization problem, with the intuition

being that workers with positive reputation score as being helpful towards the op-

timization and reputation scores with zero or negative values as being irrelevant or

adversarial towards the optimization respectively. Concurrent to our work, Cao et al.

[90] also develop a similar concept of reputation score to defend an arbitrary number of

attackers in the Federated Learning setting. Ji et al. [91] also use an auxiliary dataset

to aggregate gradients using an LSTM. In comparison, we use a simple reputation

score-based aggregation, with theoretical guarantees.

We compute the reputation score of each worker using the auxiliary dataset. We

expect that two stochastic gradients (computed on small mini-batches of the two

datasets with similar distributions) would make a small angle with each other with

high probability. On the other hand, a random vector will be almost orthogonal to the

correct stochastic gradients due to the intrinsic properties of random high-dimensional

vectors. This intuition allows us to compute the reputation score for each worker

reliably early on in the training process. We summarize our main contributions as

follows
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1. We propose a novel reputation score-based gradient aggregation method for dis-

tributed machine learning with learnable reputation scores.

2. We show that our algorithm is Byzantine tolerant (in the sense of [81]) to an

arbitrary number of attackers. Unlike previous works (that filter out adversaries)

that require an upper bound on the number of adversaries, we do not assume such

knowledge.

3. We use two time-scale stochastic approximation theories to establish the convergence

of the proposed algorithm under reasonable assumptions (with strongly convex loss

function)

4. Empirical evidence on strongly convex and non-convex objectives suggests that our

proposed algorithms are robust to almost all state-of-the-art Byzantine attacks.

We also show that our algorithms can defend some mixed attacks where multiple

different attacks are performed at the same time (see Fig 3.1).

3.2 Problem setup

We consider distributed machine learning with a parameter server - worker setup.

The parameter server maintains the model parameters and updates the parameters

with gradients received from the workers. We denote the model parameters by

w ∈ W ⊂ Rd and the number of workers by m. We assume that each worker j

has access to dataset, Dj := {xj
i , y

j
i }

nj

i=1 ∼ D, where N =
∑

j nj is the total number

of data points. In the traditional distributed machine learning scenario, the server

assigns the data partitions to the workers uniformly at random. In the Federated

Learning scenario, this translates to each worker having its own dataset, which is not
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shared with anyone (not even the server). Given a loss function f(·, x, y) : Rd → R,

x, y ∼ D, the objective is to minimize the population loss F (w) := Ex,y∼D[f(w, x, y)],

i.e., w∗ = argminw∈Rd F (w). We denote the true gradient of the population loss at wt

by ∇F (wt). A good worker samples a subset of the data Dj,t ⊂ Dj, and computes a

stochastic gradient h̃t,j :=
1

|Dj,t|
∑

x,y∈Dj,t
∇f(wt, x, y). The good workers communicate

the stochastic gradient ht,j := h̃t,j to the server, whereas adversarial workers send an

arbitrary vector drawn from some distribution (either by computing the stochastic

gradient on its subset of data and modifying the gradient adversarially or by sending

an arbitrary random vector). We assume that this attack distribution remains fixed for

the adversary throughout the training. We denote the set of gradients received by the

server as HT
t = [ht,1, · · · , ht,m] ∈ Rd×m. Note that we assume a synchronous setting

here, i.e. all the workers communicate the gradients at the same time to the server.

We assume that the server has access to an auxiliary dataset Daux := {xi, yi}ni=1 ∼ D.

The server can sample a subset ξaux,t of the auxiliary dataset and compute auxiliary

loss Lt(w) = 1
|ξaux,t|

∑
(x,y)∈ξaux,t f(w, x, y), such that E[∇Lt(wt)] = ∇F (wt) when the

expectation is taken with respect to the draw of the dataset.

3.3 Algorithm

In this section, we first motivate the importance of using a reputation score for

gradient aggregation and introduce the ByGARS class of algorithms to compute the

reputation scores and aggregate gradients.

The idea of the reputation score is to ensure that the aggregated gradient is a

descent direction for the population loss F . Suppose, at time t, the reputation score

vector is qt = [qt,1, . . . , qt,m]
T and the received gradients are Ht, then the weighted
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aggregation of the gradients with the reputation score is HT
t qt =

∑m
i=1 qt,iht,i. Consider

the non-adversarial case where all workers correctly send the computed gradients.

Then qt,i = 1/m, and −HT
t qt is a descent direction (and an unbiased estimate of the

gradient). Consider the case where we know which workers are adversarial, simply

making the reputation scores qt,i for those workers equal to 0 is enough to defend

against the attacks. The problem now is to compute a good reputation score for the

workers using only the gradients sent to the server, such that the aggregated gradient

is a descent direction for the objective. We propose the ByGARS (Byzantine Gradient

Aggregation using Reputation Scores) class of algorithms.

3.3.1 ByGARS

Algorithm 2 ByGARS: Byzantine Gradient Aggregation using Reputation Scores

1: w0 initialized randomly and sent to workers
2: q0 = 000
3: for t = 1, · · · , T do
4: receive HT

t = [ht,1, · · · , ht,m] from workers
5: q0

t+1 = qt

6: for i = 1, · · · , k do
7: ŵt+1 ← wt − γtH

T
t q

i−1
t+1 ▷ pseudo update

8: qi
t+1 ← qi−1

t+1 + αtγtHt∇Lt(ŵt+1) ▷ meta update
9: end for
10: qt+1 = qk

t+1

11: wt+1 ← wt − γtH
T
t qt+1 ▷ actual update

12: Send wt+1 to workers
13: end for
14: Return wT+1

We start with an initial reputation score of q0 = 000 ∈ Rm, and iteratively improve

the estimate of the reputation score. At step t, we perform a pseudo update to wt (γt
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is a step size parameter) as

ŵt+1 ← wt − γtH
T
t qt. (3.1)

If qt is a good reputation score and γt is sufficiently small, then −HT
t qt is a descent

direction and thus F (ŵt+1) must be lower in value than F (wt) or other points in

its neighborhood. However, we neither have access to the true function F nor the

data from the workers. Instead, we have a small auxiliary dataset that is drawn from

the same distribution as the data at the workers. This auxiliary dataset allows us

to construct the loss function Lt(·) (see Section 3.2), and we can solve the following

optimization problem to compute a better reputation score q∗
t+1:

qt+1 = arg min
q∈Rm

Lt(wt − γtH
T
t q). (3.2)

Using the current estimate qt, we use an iterative update rule. We compute the loss

on a random mini-batch of the auxiliary dataset Daux using ŵt, which is denoted as

Lt(ŵt) = Lt(wt− γtH
T
t qt), and henceforth referred to as auxiliary loss. The objective

is to find a descent direction on the auxiliary loss at the current iterates. We do this

by performing a first-order update to qt by computing the gradient of the auxiliary

loss evaluated at ŵt wrt qt. We refer to this gradient as the auxiliary gradient denoted

by ∇Lt(ŵt). The gradient computation and meta update to qt (αt is a step size

parameter) is given by

qt ← qt − αt
d

dqt

Lt(wt − γtH
T
t qt)

= qt − αt(−γtHt)∇Lt(wt − γtH
T
t qt)

= qt + αtγtHt∇Lt(ŵt).

(3.3)

59



The updated reputation score is used to find the updated gradient aggregation

HT
t qt which is used for the actual update. This is summarized in Algorithm 2 (note

the change in notation, eg. superscript i, due to the meta updates).

3.3.2 ByGARS++: Computationally Efficient

Algorithm 3 ByGARS++: Faster algorithm to compute Reputation Scores

1: w0 initialized randomly and sent to workers
2: q0 = 000
3: for t = 1, · · · , T do
4: Receive HT

t = [ht,1, · · · , ht,m] from workers
5: Compute ∇Lt(wt) using a subset of the auxiliary data
6: wt+1 ← wt − γtH

T
t qt ▷ actual update

7: Send wt+1 to workers
8: qt+1 ← (1− αt)qt + αtHt∇Lt(wt) ▷ meta update
9: end for
10: Return wT+1

Algorithm 2 has an additional computational overhead due to multiple parameter

updates and multiple gradient computations to update the reputation score in the meta

updates. This increased computation at the server keeps the workers idle and waiting,

thus negating the computational speed-up achieved from distributed learning. In order

to overcome this limitation, and driven by the motivation of ByGARS, we propose

a computationally efficient algorithm and use it to prove theoretical convergence

guarantees (Section 3.4).

We propose Algorithm 3 (ByGARS++), in which we avoid computing multiple

pseudo updates ŵt used for performing meta updates, by simulataneously updating

wt,qt as given by eq (3.4). Note that we perform an update to qt using the auxiliary
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gradients evaluated at wt (and not at ŵt), and we use a stochastic approximation for

the update.

wt+1 ← wt − γtH
T
t qt,

qt+1 ← (1− αt)qt + αtHt∇Lt(wt)
(3.4)

In this case, the reputation score of each worker is updated using only the inner

product between the gradient sent by the worker, and the auxiliary gradient, both

evaluated at wt. The only additional computation as compared to traditional dis-

tributed SGD is the update of qt which takes O(md) time. However, the server can

update qt when the workers are computing the gradients for the next time step (line

7, 8 of Algorithm 3), therefore ByGARS++ has the same computational complexity

as traditional distributed SGD.

3.3.3 Reputation Scores

If a worker consistently sends gradients that are not in the descent direction (of

the optimization at the respective iterates), then the reputation score is either zero or

accumulates negative values (since the inner product between the worker gradient and

auxiliary gradient is either negative or close to zero in expectation). Therefore, by

multiplying the received worker gradient by the reputation score, either its impact

on the aggregated gradient is reduced (when the reputation score is close to zero) or

recover the actual direction of descent (when the reputation score is negative and the

worker sends gradients that make an obtuse angle with the auxiliary/true gradient in

expectation).

When the parameters are far away from the optima, the inner product between the

benign gradients and the auxiliary gradients are positive and higher in magnitude, and
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therefore contribute heavily towards the reputation scores. Whereas when we are closer

to the optima, the inner product value is random [92] (due to the directions of the

stochastic gradients being random) and hence does not contribute to the reputation

score. This phenomenon can destroy the reputation of good workers/boosts that of

adversaries, therefore we employ a decaying learning rate schedule for both γt and αt.

Thus, by the time the parameters are close enough to the optima or a flat region (in

non-convex settings), the learning rates would have decayed significantly. This enables

the reputation score to accumulate over time and converge; therefore, the score is

robust to the noisy inner products near the optima. As we will see in Section 3.4,

the decaying learning rate is required for the analysis of the algorithm under the

two-timescale stochastic approximation theory.

It is important to note that the algorithms rely on the availability of the auxiliary

dataset. It is a reasonable assumption, for example, this data can be taken from

publicly available datasets (that match the distribution of the data available at

the workers), from prior data leaks (that is now publicly available), or data given

voluntarily by workers. We provide more analysis on the effect of auxiliary dataset

size on the performance of our algorithms in Section 3.5.5 and observe that a very

small auxiliary dataset size is sufficient.

3.4 Convergence of ByGARS++

We first state the assumptions that are important to show convergence of Algo-

rithm 3. We first define a filtration. Let (Ω,F ,P) be a standard probability space
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and let Ft be the σ-algebra generated by all the randomness realized up to time t:

F0 =σ{w0,q0},

Ft =σ{w0, h1,0, . . . , hm,0,q0, . . . ,wt−1, h1,t−1, . . . , hm,t−1,qt−1,wt,qt}.

It is easy to see that Ft ⊂ Ft+1, and thus, {Ft}t∈N is a filtration.

Assumption 1. The Byzantine adversaries corrupt the gradients using multiplicative

noise. If the worker i computes a stochastic gradient h̃t,i which is an unbiased estimate

of ∇F (wt), the worker sends ht,i := κ̃t,ih̃t,i to the parameter server, where κ̃t,i is an

i.i.d multiplicative noise with mean κi and finite second moment. The random noise

satisfies |κ̃t,i| ≤ κmax almost surely for all the workers. The workers have the following

types:

1. Benign worker: E[ht,i|Ft] = ∇F (wt) with κi = 1;

2. Scaled adversary: E[ht,i|Ft] = κi∇F (wt), where κi is a real number (negative or

positive);

3. Random adversary: E[ht|Ft] = 0,where adversary sends random gradients with

mean 0 (i.e. κi = 0).

There is at least one benign or scaled adversary with κi ̸= 0 among the workers.

Further, we assume the adversaries’ noise distributions do not change with time.

Assumption 2. The iterates are bounded, i.e., supt ∥wt∥, supt ∥qt∥ <∞.

Assumption 3. The stochastic gradients computed at the server (using the auxiliary

dataset) are unbiased estimates of the true gradient ∇F (wt), i.e., E[∇Lt(wt)|Ft] =

∇F (wt). Moreover, all the stochastic gradients have bounded noise variance, i.e.,

E[∥∇Lt(wt)−∇F (wt)∥2|Ft] ≤ σ̄2 and E[∥h̃t,i−∇F (wt)∥2|Ft] ≤ σ̄2 where σ̄ ∈ (0,∞).

63



Assumption 4. The population loss F is c-strongly convex, with w∗ as the unique

global minimum with ∇F (w∗) = 0. Further, ∇F is a locally Lipschitz function with

bounded gradients.

Assumption 1 is motivated by Xie et al. [81] where the adversary sends a negatively

scaled gradient of the sum of the gradients of benign workers. This is a reasonable

assumption as the goal of the attacker is to derail the training progress by corrupting

the aggregate gradient so that it is not a descent direction. This also includes system

failures, where the sign bit of the gradient is flipped erroneously during communication

[88]. This adversary model is used in several works including [85, 74, 73]. Although

this assumption is restrictive, it is important to emphasize that it is required only for

the theoretical analysis, but our empirical results show that the proposed algorithms

are robust to different types of attacks (summarized in Table 3.1). Assumption 2 of

bounded iterates is typical in stochastic approximation literature; see, for instance,

[93, 94, 95]. To avoid making this assumption, a typical workaround is to project

the iterates back to a very large set in case the iterates go outside the set [96, 94].

For single timescale stochastic approximation, [97] derives some sufficient conditions

under which the iterates would be automatically bounded almost surely. However,

we are unable to leverage this result since this method has not been extended to

two-timescale stochastic approximation. Assumptions 3, 4 are standard assumptions

to show the convergence results.

3.4.1 Main Result

We can now establish the following result.
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Lemma 2. The following holds under Assumptions 1, 3:

E[Ht|Ft] = κκκ∇F (wt)
T (3.5a)

E[Ht∇Lt(wt)|Ft] = κκκ∥∇F (wt)∥2 (3.5b)

Proof. We know that ht,i = κ̃t,ih̃t,i, where κ̃t,i and h̃t,i are independent of each other.

Therefore, E[Ht|Ft] = κκκ∇F (wt)
T due to the unbiasedness of the stochastic gradients

h̃t,i. Moreover, the randomness in ∇Lt(wt) is independent of the randomness in Ht

given Ft, therefore, E[Ht∇Lt(wt)|Ft] = E[Ht|Ft]E[∇Lt(wt)|Ft] = κκκ∥∇F (wt)∥2.

We now state the main convergence result.

Theorem 5. Suppose that {αt}, {γt} are diminishing stepsizes, that is,
∑

αt =

∞,
∑

γt = ∞,
∑

α2
t < ∞,

∑
γ2
t < ∞, with γt/αt → 0 as t → ∞. If Assump-

tions 1, 2, 3, 4 are satisfied, then {wt} generated by ByGARS++ converges almost

surely to w∗.

The proof leverages two-timescale stochastic approximation to establish the above

result. Observe that the results requires γt
αt
→ 0 as t→∞, i.e., the learning rate γt

(to update qt) decays faster than the learning rate αt (to update wt). In other words,

we want qt to converge faster to a stable value than wt and the importance of this

can be observed from the proof of the theorem. We now prove Theorem 5.

3.4.2 Proof of Theorem 5

We use κκκ = [κ1, . . . , κm]
T to denote the mean vector of the random multiplicative

noises of the workers. We show that all the hypotheses of Theorem 2 of [95] are

satisfied by ByGARS++, which leads to the desired convergence result. Consider the
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two functions and the corresponding differential equations (here w,q are functions of

continuous time and ẇ(t) denotes differentiation with respect to time t):

G1(w,q) = −(κκκTq)∇F (w), ẇ(t) = G1(w(t), q̄(t)) (3.6)

G2(w,q) = −q+ κκκ∥∇F (w)∥2, q̇(t) = G2(w,q(t)). (3.7)

Lemma 3. The differential equation in (3.7) has a unique globally asymptotically

stable equilibrium, which is denoted by ϕ(w) and is given by ϕ(w) = κκκ∥∇F (w)∥2. The

differential equation in (3.6) with q̄(t) = ϕ(w(t)) has a unique globally asymptotically

stable equilibrium w∗.

Proof. To see the first result, note that for any w, the solution to the differential

equation is q(t) = (q(0) − κκκ∥∇F (w)∥2) exp(−t) + κκκ∥∇F (w)∥2, which is globally

asymptotically stable with ϕ(w) = q(∞) = κκκ∥∇F (w)∥2. We now use the Lyapunov

stability theory to establish the second statement. Let us substitute into (3.6) q̄(t) =

ϕ(w(t)). Now define the Lyapunov function V (w) := F (w)− F (w∗), which is a valid

Lyapunov function since F is strongly convex by Assumption 1. We get

∇V (w(t))TG1(w(t), ϕ(w(t))) =

− ∥κκκ∥2∥∇F (w(t))∥4 < 0 for all w(t) ̸= w∗.

Thus, the differential equation has a unique globally asymptotically stable equilibrium

where the Lyapunov function is 0, that is, at w∗.
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Define ut = −G1(wt,qt)−HT
t qt and vt = Ht∇Lt(wt)− κκκ∥∇F (wt)∥2. Using the

definition of ut and vt, the algorithm ByGARS++ is re-written as

wt+1 = wt − γtH
T
t qt

= wt + γtG1(wt,qt) + γtut

(3.8)

qt+1 = (1− αt)qt + αtHt∇Lt(wt)

= qt + αtG2(wt,qt) + αtvt.
(3.9)

We now need to show that ut and vt are martingale difference stochastic processes.

From (3.5a), we observe that E[Ht|Ft] = κκκ∇F (wt)
T , which implies that E[ut|Ft] = 0.

Further, it is easy to deduce that E[∥ut∥2|Ft] ≤ M(1 + ∥qt∥2) which follows from

Assumption 3 and for a large M > 0 that depends on the bounds on ∥∇F (wt)∥ and

∥κ∥. Thus, ut is a martingale difference noise. Next, from (3.5b), E[Ht∇Lt(wt)|Ft] =

κκκ∥∇F (wt)∥2, therefore, E[ut|Ft] = 0. Again, it is easy to show that E[∥vt∥2|Ft] ≤

M(1 + ∥qt∥2). This implies {vt} is also a martingale difference noise.

It is clear from the expressions that since ∇F is locally Lipschitz, G1 and G2 are

locally Lipschitz maps. In addition, ϕ(w) is also a locally Lipschitz map. Theorem 5

now follows from the result in Lemma 3 and Theorem 2 of [95].

3.5 Simulations

For the theoretical results, we assume strongly convex loss functions and multi-

plicative noise adversaries. However, for the empirical results, we show that these

assumptions are not required. In particular, we consider non-convex loss functions

and several different attacks and show the efficacy of the proposed algorithms. We

present the results of our algorithms on CIFAR-10 [98] for multi-class classification

using supervised learning. We used a two convolutional layer CNN for CIFAR-10. For

each dataset, we set aside a small auxiliary dataset of size 250 (sampled randomly
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from the training data) at the server, and the remaining training data is distributed

uniformly to the workers. We assume a setup with 1 server and 8 workers. In order to

show the robustness of our proposed algorithms to an arbitrary number of attackers,

we consider the number of attackers ∈ {3, 6, 8}.

3.5.1 Attack mechanisms (Table 3.1)

The attacks were grouped broadly into (i) Omniscient / Collusion attacks, (ii)

Local attacks / System failures, and (iii) Data Poisoning attacks. We further propose

a mixed attack, where we combine multiple Local attacks and Data Poisoning attacks.

In the Omniscient / Collusion attacks, the adversaries have complete information

about all other workers including the benign ones, or only about the other adversaries.

In LIE attack [82], the adversary adds well-crafted perturbations to the empirical

mean of the benign gradients that is sufficient to avoid convergence. In OFOM, PAF

[79] a large arbitrary vector is added to the empirical mean of the benign gradients

and sent to the server. In Inner Product Manipulation, Xie et al. [81] multiply the

empirical mean of benign gradients and in IPM [81] the empirical mean of the benign

gradients is multiplied with a negative value.

In Local attacks, the attacker doesn’t have any information about the other

workers. Instead, the worker either sends an arbitrary gradient to the server or uses

the gradient it computed. Examples of the first case include a Gaussian Attack (a

vector drawn from a Gaussian distribution of mean 0, covariance 200) [69], or Constant

attack (a vector of all 1s multiplied by an arbitrary scalar, say 100) [74]. In the second

case, the attacker can compute the local stochastic gradient h̃t,i, and send κ̃t,ih̃t,i where

κ̃t,i = −1 is known as sign flip attack [69, 74, 85, 89]. Hardware/communication
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failures that corrupt the gradients (unintentionally) by flipping the sign bit can also

be included under these attacks. In addition to the sign flipping attack, we propose a

random sign flip attack where κ̃t,i ∼ N (µ, σ2). In our simulations, we used µ = −2

and σ = 1. Note that the mean of the distribution can take negative as well as positive

values.

In Data Poisoning attacks, the underlying data used to compute the gradients is

poisoned so that the model outputs the attacker-chosen targets during inference [82].

There are several varieties of data poisoning (also called backdooring) attacks, but

we only consider label-flipping attacks in this work. Under the label flipping attack,

for example in the MNIST dataset, the attacker maps the labels as l → (9 − l) for

l ∈ {0, · · · , 9}, and uses these labels for computing the gradients. Note that, label

flipping attack is also a Local attack.

In addition to these attacks, we propose a Mixed Attack where seven attackers use

different attacks (one Gaussian, two Sign flips, one random sign flip, two label flips,

and one constant attacker). This is motivated by the need to develop algorithms that

are robust to several different types of attacks at the same time. We summarize all

these attacks in Table 3.1.

3.5.2 Baselines

The generalization performance of SGD improves with the size of the dataset

[99]. Since existing techniques for an arbitrary number of Byzantines filter out the

gradients that are sent by the adversarial workers, (in a truly distributed Setting)

the generalization performance of those techniques is limited by the data at benign

workers (and the number of byzantine attackers perceived by the algorithm) and the
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amount of data available with them. In the case where all workers are adversaries,

the only available truthful data is the auxiliary dataset. Hence, we consider plain

averaging of the gradients available at these benign workers (and auxiliary gradient)
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Figure 3.2: This figure shows the top-1 accuracy of models trained on CIFAR-10 dataset
under No Attack.
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(a) 3 IPM adversaries
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(b) 3 Label flip adversaries
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(c) 3 Constant attack adver-
saries
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(d) 6 IPM adversaries
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(e) 6 Label flip adversaries
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(f) 6 Constant attack adversaries

Figure 3.3: Top-1 accuracy of CIFAR-10 under IPM, label flip, and constant attack
adversaries. Note the reduction in performance from the top row to the bottom row, due to
the increase in the number of adversaries.
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(a) 3 Random sign flip adver-
saries
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(b) 3 OFOM adversaries
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(c) 3 LIE adversaries
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(d) 6 Random sign flip adver-
saries
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(e) 6 OFOM adversaries
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(f) 4 LIE adversaries

Figure 3.4: Top-1 accuracy of CIFAR-10 under random sign flip, OFOM, and LIE
adversaries. Note the reduction in performance from the top row to the bottom row, due to
the increase in the number of adversaries.
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(a) 3 Sign flip adversaries

0 2 5 7 10
epochs

0.1

0.2

0.3

0.4

0.5

0.6

ac
cu

ra
cy

ByGARS++
ByGARS
Baseline
Average
Median

(b) 6 Sign flip adversaries
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Figure 3.5: This figure shows the top-1 accuracy of models trained on the CIFAR-10 dataset
under different Sign flip adversaries. Note that, despite the presence of 100% adversaries, we
are able to recover the performance of No Attack. Also note that the only truthful gradients
available to the baseline in (c) are from the auxiliary data, and hence the worse performance.

as the Baseline. Note that this is the best any Byzantine resilient algorithm that

relies on filtering out adversarial gradients can do. Primarily for this reason, along
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with other implementation-specific details required for other works that consider an

arbitrary number of adversaries (Zeno requires trim parameter b that needs knowledge

of the number of adversaries), we chose to compare our algorithm with Baseline

(described above) as the gold standard. In addition to this, for illustration purposes,

we also consider plain averaging of all gradients (no defense) denoted by Average, and

coordinate-wise median [84] denoted by Median in our empirical analysis.

3.5.3 Distributed Setup

Throughout this section, we assume a setup with 1 server and 8 workers. We first

compare the performance of the algorithms in the absence of any attacks (termed

as No Attack). In order to show the robustness of our proposed algorithms to an

arbitrary number of attackers, we consider a different number of attackers (3, 6, 8).

We consider the case of all 8 adversaries for Sign Flipping attack. As we will see,

by allowing negative reputation scores for these workers, our algorithms will achieve

similar performance as that of No Attack.

3.5.4 Implementation Details and Hyperparameters

We scheduled the learning rate (γt used to update wt) to decay as: γt = γ0 × 1
1+βt

,

and meta learning rate (αt used to update qt) as : αt = α0 × 1
1+βmt0.9

. Note that

we only change the meta-update parameters for the two algorithms. We used the

following hyperparameters: For CIFAR10 we used γ0= 0.2, β= 0.9, (α0= 0.2, βm = 0.5

for ByGARS) and (α0= 0.001, βm = 0.1 for ByGARS++).

In order to avoid NaN, Inf values (due to adversaries), we normalize all the

gradients (irrespective of adversarial or benign or auxiliary) during training. Specifi-

cally, we normalize the auxiliary gradients always to have a unit norm, for ByGARS
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all worker gradients are normalized to the unit norm, for ByGARS++ all worker

gradients are normalized to value 2, and for the rest (Baseline, Average, Median) all

worker gradients are normalized to value 5. Since our objective is to illustrate the

effectiveness of the proposed algorithms against the adversaries, we did not perform

hyperparameter tuning to obtain the best test accuracy. Instead, we show that for

appropriately chosen hyperparameters, the proposed algorithms converge and are

Byzantine resilient. Unless otherwise mentioned, all the results mentioned use an

auxiliary dataset of size 250, and k = 3 meta iterations (for ByGARS).
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Figure 3.6: Ablations on the auxiliary dataset and meta iterations for 3 Label flip
adversaries.

3.5.5 Results and Ablations

We present the mean and standard deviation (shared) of the results for 4 different

trials for the CIFAR-10 dataset. An advantage of our proposed methods is that, for a

given dataset and model, we used the same learning rate, and learning rate decay for

all types of attacks, with the only difference being the meta-learning rate and meta-

learning rate decay schedules for ByGARS, and ByGARS++ (Section 3.5.4). From
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this, it is clear that the proposed algorithms are robust to all types of attacks discussed

and do not require attack-specific information to fine-tune the hyper-parameters. Also,

from Fig. 3.2 it is evident that there is no trade-off in employing our algorithm in the

case of No Attack. This shows that our proposed algorithms can serve a much more

general purpose in distributed learning applications.

We can observe from Fig. 3.3, 3.4, 3.5 of CIFAR-10 results that both ByGARS

and ByGARS++ achieve Byzantine robustness against all of the threat models used

under a varying number of adversaries (with the exception of LIE attack in a few

cases). As expected, the median fails to defend when the fraction of adversaries is

> 0.5 under all attacks. ByGARS and ByGARS++ on the other hand, do not see a

lot of degradation wrt Baseline when the fraction of adversaries is > 0.5.

Note that, LIE attack [82] was only defined for fraction of adversaries ≤ 0.5, so we

evaluated our algorithms against LIE attack with 3 attackers (< 0.5), and 4 attackers

(= 0.5). We observe that ByGARS is robust to 3 attackers for the CIFAR-10 dataset,

and suffers some degradation in performance when there are 4 attackers. ByGARS++,

on the other hand, suffers some degradation on CIFAR-10 with 3 attackers and fails

to defend against 4 attackers. Also, it is interesting to observe that Median, Average

(no defense) perform reasonably well against LIE with 3 attackers. This was also

observed in [82] and the authors point out that LIE is crafted to break defenses like

Krum, Bulyan, etc. The authors explain that using plain averaging, the small noise

added to the gradients gets averaged out and the impact on the aggregated gradient

is minimal. Perhaps, ByGARS performs well against LIE due to the reputation

score-based aggregation (weighted averaging) as it was observed that the reputation

scores were almost equal for all the workers in this case.
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We also present results when different types of attacks are carried out at the

same time, called mixed attack. We considered one benign worker and the seven

attackers include one Gaussian adversary, two Sign flip adversaries, one random sign

flip adversary, two label flip adversaries, and one constant value adversary. From

Fig. 3.1, we observe that the proposed algorithms can defend this mixed attack. To the

best of our knowledge, we are the first to show robustness against different types of

attacks acting at the same time without requiring separate tuning of the parameters

to defend against the attacks. The fact that we used the same hyperparameters

against all attacks (including the mixed attack) makes our algorithm more applicable

to practical scenarios. Note that, the mixed attacks that include the LIE attack were

not defended properly since the performance degrades even when only the LIE attack

is present.

It is important to note that, one would expect the Baseline to be the best in all

scenarios. However, we point out that by using the reputation scores, we are directly

affecting the step size of each update performed, and hence it is not surprising to

observe that our algorithms perform better than the Baseline under No Attack or

weaker adversary models such as Sign Flip.

Additionally, in order to understand the impact of the auxiliary dataset and the

meta updates on the proposed algorithms, we perform an ablation analysis. We chose

the label flip attack (with 3 attackers) and fixed it for all the ablation analysis.

Size of Auxiliary Dataset

The key to the effectiveness of ByGARS and ByGARS++ is the availability of an

auxiliary dataset that is drawn from the same distribution as the testing and training

data. We study the dependence of the algorithms on the auxiliary dataset by repeating
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experiments with different sizes of the auxiliary dataset. From Fig. 3.6a, 3.6b we can

observe that a very small amount of auxiliary dataset is sufficient to face any number

of adversarial workers, and the performance increases with an increase in the size

of the auxiliary dataset. However, we observe that the algorithm is quite robust to

the size of the auxiliary dataset once a sufficient size is reached. Also, we conclude

that only a small auxiliary dataset is sufficient to efficiently compute the reputation

scores (CIFAR-10 has 50,000 data points, whereas we require 250 data points for the

auxiliary dataset). Note that the default size used in all other experiments is 250.

Number of meta iterations (ByGARS)

In order to study the dependence of ByGARS on the number of meta iterations,

we repeated the experiments with a number of meta iterations ranging from 1 to 4 (we

don’t do this for ByGARS++ since there is only one meta update). From Fig. 3.6c,

we can observe that the higher the number of meta iterations, the better the test

accuracy. We observe that 3 meta iterations are sufficient and use them in the rest of

the experiments. However, when we further increase the meta-iterations, we overfit

the auxiliary data set.

3.5.6 Discussion

In this paper, we proposed two algorithms that compute the reputation scores

of workers in a distributed machine-learning setup, in order to defend against any

number of byzantine adversaries. However, the proposed idea of using reputation

scores is much more general as it provides a way to quantify the importance of using

a particular local dataset for optimizing a global model even in the non-adversarial

case. We also provide more experimental results on the MNIST dataset [100] and a
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synthetic dataset (strongly convex loss function) in the full version and show that

similar observations hold for these two datasets.

Note that the robustness of our algorithm comes from the fact that we did not

design the defense based on any particular criteria such as norm difference, or majority-

based ideas. We devised the algorithm in order for the optimization to find a descent

direction, and hence the superior performance across a range of attacks. However, it is

important to note that in this paper, we assumed that the behavior of the attackers is

stationary and this limits the ability of the attackers to adapt to the defense algorithm

used on the server. With the knowledge of the defense algorithm of the server, a

more intelligent adversary can employ a non-stationary attack distribution (simply

turn benign when the reputation score is sufficiently negative, and flip back when the

reputation score is positive), which is a more challenging problem for the server. We

believe that the proposed reputation score-based aggregation provides a good platform

to address this challenging setting and we consider this as a potential future direction.
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Chapter 4: Finite Sample Analysis of Minmax Variant of

Offline Reinforcement Learning for General MDPs

4.1 Introduction

Reinforcement learning (RL) has attracted significant interest from the research

community in the last decade, inspired by the early successes of deep reinforcement

learning [101, 102]. However, online RL algorithms require access to the real envi-

ronment throughout training and require large datasets, which are generated through

interactions with the environment. This either requires a high-fidelity simulator that

mimics the environment or requires the cost of interactions with the environment to

be low. These are not practical for many real-world problems. Building a high

fidelity simulator for physical systems is very expensive [103, 104]. Many simulators

also suffer from generalization issues due to the gap between the simulation and the

real environment [105, 106]. Similarly, the cost of interactions with the environment in

tasks related to healthcare and autonomous driving is very expensive and sometimes

impractical [107]. Moreover, in such safety-critical applications, it is not safe to deploy

semi-trained policies in real environments making online RL difficult to deploy for

learning optimal policies. This has been a major hindrance to the adoption of rein-

forcement learning algorithms for deployment in sequential decision-making problems
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[107]. One solution to this is to learn the policy from logged data which is often called

Batch Reinforcement learning or Offline Reinforcement learning (ORL) [108, 107].

Fitted value iteration is a class of approximate dynamic programming algorithms

that approximate the value function [109, 110, 111, 28, 112] using a finite set of data and

a suitable function approximating class. The finite dataset typically comprises state,

action, next state, and reward obtained over long periods of time. Fitted Q Iteration

is a special case where the function approximated is the state-action value function or

the Q function. Several studies have been conducted on analyzing the finite sample

properties of the fitted value iteration under various settings [113, 111, 110, 114, 115].

For Fitted Value Iteration in [111], the authors assume availability for multiple data

points at a given state (or state-action pair if using for ORL) enabling sufficient data

coverage. However, this is a strong assumption in practical offline RL setups where the

data coverage may not be sufficient. More recently [116] provided a simpler method

to compute the finite sample analysis for ORL and a min-max variant algorithm, and

provided sharp convergence guarantees by using specialized concentration inequalities.

Moreover, [116] does not assume the availability of multiple samples as in [111].

However, [116] analysis only holds for the case when the function space is finite-

dimensional. Reference [113] also studies the min-max variant algorithm for general

function space and single sample path case, but assumes that the data collection policy

is known (which is not always possible in real-world examples). Reference [117] and

[118] studied sharp convergence guarantees of Fitted Q Iteration for general function

space.

In the aforementioned analyses, the action space is assumed to be unconstrained by

the state the agent is in. This does not hold true in several real-world problems where
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there are physical or safety constraints that govern the permissible actions in any

given state. These constraints are commonplace in robotics, economics, e-commerce,

inventory management, [119, 120, 121, 122, 123], etc. Recent work by [124] addresses

this by studying the asymptotic analysis of fitted Q iteration with multiple samples

per state-action pair and under the state-dependent action set constraints by assuming

some smoothness properties on the function approximation space and the MDP. In

this work, we further generalize the work and derive the sample complexity guarantees

for a min-max variant of Fitted Q Iteration for general function space. We assume

the availability of an i.i.d. dataset about the state, action, reward, and next state, no

knowledge of the policy used to collect the dataset, and some other mild assumptions

on the MDP with denumerable state and action spaces.

4.1.1 Examples of State-Constrained MDPs

We provide here four practical applications where state and action spaces are

denumerable and the permissible actions are dependent on the state of the system.

Eco-driving in Connected and Automated Vehicles (CAVs): Consider an

automated vehicle that can receive future signal phase and timing information and

traffic information via vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V)

communication respectively. Using this information, the CAV can optimize the vehicle

speed and battery state-of-charge, which are the states of the optimal control problem

aimed at minimizing the energy consumption [125, 126]. The control actions are the

engine and electric motor torques which are generally computed from the non-linear

engine and motor torque-speed curves respectively. Both engine and motor speed

eventually depend on the vehicle speed as formulated in [127] and [128]. In this
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application, the set of actions is constrained by the current state of the system, the

policy used for collecting data is generally not available due to complex interactions

among the subsystems, and a huge amount of offline data is available.

Vehicle rebalancing in ride-hailing systems: Consider a vehicle rebalancing

problem, where vehicles are relocated to meet customers’ demands. In [129], each

vehicle is modeled as an agent and the state of each vehicle consists of (i) vehicle state

(empty, hasPassengers, full) (ii) presence of current active requests. The action set is

{pickUp, rebalance, doNothing} and it is state-dependent. E.g., pickup action can

only be executed when the last passenger is dropped off or the relocation destination

is reached. Offline reinforcement learning with state-dependent action constraint can

be used to derive the optimal rebalancing policies for the vehicles [130].

Robotics: Robotic vehicles and manipulators in industrial settings have to navigate

tight spaces and meet safety regulations. Recent works have focused on robotic safety

constraints in reinforcement learning, where the agent uses some constraint barrier

functions or is constrained to explore within a safe set of policies [119, 120, 121, 122],

among several others. Typically, these safety constraints appear as constraints on

actions (and future states) and are dependent on the current state.

Online advertisements: Consider the problem of search-based online advertising

[131]. Here, a search platform displays ads relevant to queries entered by a user by

allowing advertisers to bid on each query. An auto-bidding agent is an automated

algorithm that determines a bid (dollar value) depending on the relevance of the user

query to the advertiser’s choice of bidded keywords. Whenever an ad is clicked by a
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Knowledge of
Work Function Space data collection Sample

policy Complexity

[113] General
√

O
(

1
ϵ4

)
[116] Finite × O

(
1
ϵ2

)
This paper General × O

(
1
ϵ4

)

Table 4.1: A summary of prior works on the analysis of the min-max variant.

user, the advertiser pays some amount to the search platform that is determined by

the auction mechanism. The goal of the agent is to maximize the number of ad clicks

on a given day where the spending is constrained by a fixed daily budget. The agent

must therefore balance between aggressively bidding for the current search query and

saving budget for future search queries. We studied this problem recently in the offline

RL setting where the auto-bidding agent is trained from past data of the bids [132].

The auto-bidding agent has information about the past spend (on that particular day)

along with several other features about the query and the likelihood of a click. The

past spend is used to determine the budget remaining for the day which is a key factor

in determining the bid amount for future queries on that day. The auto-bidding agent

can not bid more than the daily budget and the participation of the auto-bidding

agent stops when the daily budget is depleted. In this setting, the admissible actions

are constrained by the current state.

4.1.2 Notation

Let X be a measurable space. We use ∆(X ) to denote the set of all probability

measures on the space X . Let f : X → R be a measurable function and µ ∈ ∆(X ).
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We denote the (p, µ) norm of the function f as

∥f∥p,µ = p

√∫
|f(x)|pdµ.

Let X be a random variable taking values in X with distribution µ ∈ ∆(X ). Let

f : X → R. Define V as the variance

Vx∼µ[f(X)] =

∫ (
f(x)− E[f(X)]

)2
dµ (4.1)

The set of all continuous and bounded functions f : X → R is denoted by Cb(X ) and

measurable functions f : X → R is denoted byM(X ).

4.2 Problem Formulation

Let the MDP be defined by the tuple (S,A, R, P, γ), where S is the state space

(which can be finite or continuous), A be the action space (finite or continuous). Let

ηinit be the distribution of the starting state. At a state s ∈ S, the set of feasible

actions is given by Γ(s) ⊆ A. We use B to denote the feasible state-action pairs:

B = {(s, a) ∈ S ×A | a ∈ Γ(s)}. The reward function is denoted by R : B → [0, Rmax].

This is common since in most practical applications, the reward is bounded. The

transition kernel of the MDP which determines the state dynamics is denoted by

P : B → ∆(S), where ∆(S) denotes the set of all probability distribution s over S.

We use γ to denote the discount factor.

Let V π : S → R denote the value function defined by

V π(s) = E

[
∞∑
h=1

γh−1R(sh, ah)
∣∣∣s1 = s, ah ∼ π(·|sh)

]

The goal is to learn a stationary policy π : S → ∆(A) that maximizes vπ :=

Es∼ηinit [V
π(s)]. Let Qπ : B → R denote the state-action value function (also called Q
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function) as

Qπ(s, a) = E

[
∞∑
h=1

γh−1R(sh, ah)|s1 = s, a1 = a, ah ∼ π(·|sh), h ≥ 2

]
.

It is clear that since the reward is bounded by Rmax and due to the discount factor, we

have ∥V π∥∞ ≤ Vmax =
Rmax

1−γ
and ∥Qπ∥∞ ≤ Vmax. We make the following assumptions

for our analysis.

Assumption 7. The following holds:

1. The set B is a compact subset of Euclidean space.

2. The reward function R is continuous.

3. The correspondence Γ : S → A is upper hemicontinuous.

4. The state transition kernel P is weakly continuous when ∆(S) is endowed with

the usual weak topology.

It is a common assumption to make when the state space and action spaces are

denumerable; see, for example, Assumption 3.3.3 in [133, p. 28]. Under these

assumptions, there exists an optimal policy π∗ (see Chapter 4 [133] for more details).

Let V ∗, Q∗ denote the corresponding value and state-action value functions. Denote

by v∗ = Es∼ηinit [V
∗(s)].

For a function f ∈ Cb(B), let Vf (s
′) = maxa′∈Γ(s′) f(s

′, a′). We define the Bellman

operator T :M(B)→M(B) as

(T f)(s, a) := R(s, a) + γEs′∼P (s,a)[Vf (s
′)].

The optimal Q function satisfies Q∗ = T Q∗. The goal of the agent is to design

an algorithm to compute Q∗ that reduces the Bellman error to 0, that is, satisfies

∥Q∗ − T Q∗∥2,µ = 0.
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4.2.1 Data Collection Policy and ORL Problem

The offline dataset is constructed by using a stationary policy πb : S → ∆(A) with

the environment. We refer to this as the data collection policy or the behavior policy.

The past interactions with the environment using the behavior policy are logged as

the dataset D1:n := (si, ai, ri, s
′
i)

n
i=1, which we assume is independent and identically

distributed. We use µ ∈ ∆(B) to denote the stationary distribution (occupation

measure of state-action pair) of the MDP under the stationary policy πb. Therefore,

it follows that (si, ai) is drawn i.i.d from µ for i ∈ [n]. Note that since in practical

settings, the behavior policy is not known, here we do not assume the knowledge of πb.

Consider two function approximating classes F ,G ⊂ {f : B → [0, Vmax] : f ∈

Cb(B)}. These function classes could be neural networks, RKHS, non-parametric

function approximators, etc. The ORL problem is to learn a state-action value

function f ∈ F using dataset D such that the Bellman residual ∥f − T f∥2,µ is

minimized. Fitted Q iteration attempts to solve the ORL problem by using a rich

function approximating class and iterative use of Bellman residual minimization on

the empirical risk

LD(f, f
′) =

1

n

n∑
i=1

(
f(si, ai)− ri − γVf ′(s′i)

)2
.

We now define the operator T̂G : F → G such that

T̂Gf = argmin
g∈G
LD(g, f), where f ∈ F . (4.2)

Fitted Q Iteration (FQI) using the function approximating class F involves iteratively

applying the operator T̂F , i.e.,

ft+1 = T̂Fft.
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Remark 1. In some cases, the dataset D1:n may be very large. In this case, at

iteration t, techniques can be used to create a smaller dataset D′
t ⊂ D1:n, which is used

for evaluating the operator in (4.2). We do not analyze this setting in this paper.

4.2.2 Key Difficulties and Solution Approach

Unlike supervised learning problems, Bellman residual minimization can not be

solved using empirical risk minimization. In other words, the expectation of the

empirical risk does not equal to ∥f − T f∥22,µ – it over-estimates the Bellman error

by a variance term as has been demonstrated in [116, 113]. To see this, let us define

Lµ(f ; f
′) = E[LD(f, f

′)] where the expectation is taken with respect to the draw of

the dataset D1:n, i.e., (s, a) ∼ µ, s′ ∼ P (s, a). For completeness, we show in Appendix

B.3 that

Lµ(f ; f) = ∥f − T f∥22,µ + E(s,a)∼µ

[
Vs′∼P (s,a)[Vf (s

′)]
]
.

One approach to addressing this is to draw two uncorrelated samples in the computation

of LD(f, f) [113], i.e., for every state-action pair, two next states should be sampled

according to P (s, a). However, this assumption is not practical in the continuous-state

continuous-action ORL setting since we can not guarantee that multiple next states

can be sampled for a given state-action pair or that the same state-action pair is

visited twice while collecting the dataset.

Another approach followed is to estimate the variance and subtract it from the

empirical objective, and this approach results in the following min-max formulation of

the offline RL algorithm [116]

f̂ := arg inf
f∈F

sup
g∈G
LD(f ; f)− LD(g; f) (4.3)
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where G ⊂ {g : B → [0, Vmax]|g ∈ Cb(B)} is another rich function class that is

continuous in the actions. In this work, we study the finite sample complexity of this

algorithm in the general state space and general function space setting.

Reference [116] study this algorithm under the finite state space, finite action space,

and when the function space is finite. The finite function space assumption allows

them to use a simple union bound argument along with the Bernstein inequality to get

the sharp sample complexity. In this paper, we assume a general function space and

use a covering number argument to achieve the sample complexity bound. Reference

[113] study a similar algorithm, however, the algorithm there requires the knowledge

of the behavior policy (another difference being that they study the case where the

data is generated from a single sample path and for finite action space). In particular,

their objective is

arg inf
f∈F

sup
g∈G

1

n

n∑
i=1

1

πb(ai|si)

[(
f(si, ai)− ri − γVf ′(s′i)

)2
−
(
g(si, ai)− ri − γVf ′(s′i)

)2]
where πb is the behavior policy used to collect the single sample path data. In contrast,

here we analyze the algorithm when such knowledge of the data collection policy is

unknown. For a general state space and general action space, estimating the data

collection policy from the finite data leads to high variance estimates, subsequently

affecting the fitted learning objective.

4.2.3 Preliminaries

We now introduce the following two quantities that capture the strength of the

function approximation spaces F and G:

ϵF = inf
f∈F
∥f − T f∥22,µ, ϵF ,G = sup

f∈F
inf
g∈G
∥g − T f∥22,µ.
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If Q∗ is realizable in F , i.e., Q∗ ∈ F , then ϵF = 0. When F = G, ϵF ,G is called the

inherent Bellman error. We provide the finite sample guarantees based on ϵF and ϵF ,G ,

therefore it is inherently assumed that these quantities are small in order to control

the bounds.

A distribution ν ∈ ∆(B) is admissible in MDP, if there exists h ≥ 1, and a

potentially non-stationary and stochastic policy π := (π1, π2, . . .) such that

ν(ds, da) = P[sh ∈ ds, at ∈ da|s1 ∼ ηinit, at ∼ πt(·|st)]

We denote s′ ∼ P (ν) as a shorthand for (s, a) ∼ ν, s′ ∼ P (s, a). Also, we define

πf,f ′(s) as

πf,f ′(s) = arg max
a∈Γ(s)

max{f(s, a), f ′(s, a)}. (4.4)

For every given f ∈ F , denote g∗f = argming∈G∥g − T f∥2,µ and observe that ∥g∗f −

T f∥22,µ ≤ ϵF ,G.

Definition 2. Define the class of functions ZF = {Zf : B×R×S → R |f ∈ F} such

that

Zf (s, a, r, s
′) :=(

f(s, a)− r − γVf (s
′)
)2 − ((T f)(s, a)− r − γVf (s

′)
)2 (4.5)

Definition 3. Define a function class XF : {Xg,f,g∗f
: B × R × S → R | f, g ∈ F}

where

Xg,f,g∗f
(s, a, r, s′)

:=
(
g(s, a)− r − γVf (s

′)
)2 − (g∗f (s, a)− r − γVf (s

′)
)2
.

(4.6)

Definition 4. Define the function class YF ,G : {Yg,f : B×R×S → R | g ∈ G, f ∈ F}

such that

Yg,f (s, a, r, s
′)

=
(
g(s, a)− r − γVf (s

′)
)2 − ((T f)(s, a)− r − γVf (s

′)
)2
.

(4.7)
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We use dXF , dZF and dYF,G to be the pseudo-dimension of the function classes

described above. These notations are introduced in Definition 11 (Appendix B.2).

4.3 Assumptions and Main Results

Our main assumption on the MDP is that we assume the existence of a finite

concentrability coefficient from [116] (for the case of finite state and finite action

space). We now state the assumption adapted to the current setup of state-dependent

action sets.

Assumption 8 (Concentrability coefficient). For all admissible ν ∈ ∆(B), we assume

that C <∞ such that ∥ dν
dµ
∥∞ ≤ C.

The above assumption implies that the transitions are sufficiently stochastic and

ν(·, ·) ≤ Cµ(·, ·), ∀ (s, a) ∈ B. Note that this assumption is much stronger than the

usual discounted average concentrability of future states [111].

We next assume the finiteness of the capacity of the function approximation class

since our sample complexity bounds depend on the function class capacity.

Assumption 9 (Finite capacity of function classes). The pseudo-dimensions dXF ,

dZF and dYF,G are all assumed to be finite.

Remark 2. A sufficient condition that ensures that the function classes have finite

capacity is discussed in [134, 124]. In [134], the author shows that the optimal value/

Q function (under state-dependent action constraints) is Lipschitz continuous under

the following assumptions: the transition function is Lipschitz continuous in (s, a), the

reward function is Lipschitz in (s, a), the correspondence Γ is Lipschitz continuous

under the Hausdorff metric, and the Bellman operator is a contraction. In addition,
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if we assume F and G are Lipschitz continuous function classes and Γ is Lipschitz

continuous correspondence, then it can be shown that ZF , XF , YF ,G are also Lipschitz

continuous using Lemma 3.2 in [134]. The finite capacity of the Lipschitz and uniformly

bounded function class follows from Theorem 2.7.1 and 2.7.11 of [135].

We now state the finite sample analysis result of the offline RL algorithm (4.3).

Theorem 6 (Error bound for min-max). Suppose Assumptions 7, 8, and 9 hold.

Given a dataset D = {(si, ai, ri, s′i)}ni=1, two classes of bounded functions F , G and

ϵ, δ > 0, then with probability at least 1− δ, the output policy of (4.3), πf̂ satisfies

v∗ − vπf̂ ≤ 2
√
C

(1− γ)2

(√
ϵ+ ϵF + ϵF ,G

)
(4.8)

when

n ≥ K1V
4
max

ϵ2

[
log

16e

δ
+ log

(
2(dXF + 1)

(K2eV
2
max

ϵ

)dXF

+ (dYF,G + 1)
(K2eV

2
max

ϵ

)dYF,G

+ (dZF + 1)
(K2eV

2
max

ϵ

)dZF

)]
,

where dXF , dYF,G , dZF are the pseudo-dimensions of the spaces XF , YF ,G, ZF respectively,

and K1 = 64× 128× 36 and K2 = 6× 64.

Remark 3. The sample complexity does not get affected by arbitrary re-scaling of

the reward function as long as ϵ is scaled by the square of the scaling factor for the

reward, and each function in the function classes F and G also get rescaled by the

same factor. Observe that when we rescale the reward function R by p > 0 and ϵ by

p2, (i) Vmax, v
∗, and vπf̂ also get rescaled by p, (ii) V 2

max

ϵ
does not get rescaled, and

(iii) the ϵF and ϵF ,G terms get rescaled as by p2. Thus, if we scale ϵ to p2ϵ, then the
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scaling term appears on the sides of the inequality in (4.8) and the lower bound on n

remains the same. Consequently, the sample complexity result remains unchanged.

Dependence on function class We can observe that, the error depends on ϵF , ϵF ,G .

When the function class considered is sufficiently rich (such as a neural network class

or RKHS), we can assume that Q∗ ∈ F and T f ∈ F , which results in ϵF = 0 and

ϵF ,G = 0.

When F = G, observe that the function classes ZF and YF ,G are the same, i.e.

(dZF = dYF,G). In addition, when the function class is sufficiently rich where ϵF ,G = 0,

then g∗f = T f which implies that the function class XF is equal to ZF and YF ,G. The

result then is simplified as follows: The following holds with probability at least 1− δ,

v∗ − vπf̂ ≤ 2
√
C

(1− γ)2

(√
ϵ
)

when

n ≥ K1V
4
max

ϵ2

[
log

64e(dXF + 1)

δ
+ dXF

(K2eV
2
max

ϵ

))]
.

Dependence on ϵ Ignoring log terms in the sample complexity bound, we observe

that

v∗ − vπf̂ ≤ O(
√
ϵ)

when n ≥ O( 1
ϵ2
). This shows that, we can achieve an error of ϵ by using approximately

O( 1
ϵ4
) data samples. This result is consistent with the earlier results [113].

4.4 Proof of Theorem 6

In this section, we prove the main result of the paper. We follow the analysis

of [116], however, unlike [116] the focus is not to obtain fast rates of convergence
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( 1
ϵ2

dependence instead of 1
ϵ4
), but to obtain convergence rates for the general state

space and state-dependent action space setting. Although challenging, with some

additional effort, it may be possible to obtain the fast rates such as those in [116],

[117] using specialized concentration inequalities (see Section 4.5).

4.4.1 Proof Outline

It is evident that v∗ − vπf̂ is related to Lµ(f̂ ; f̂)− Lµ(T f̂ ; f̂). Thus, we need to

bound Lµ(f̂ ; f̂)−Lµ(T f̂ ; f̂) in terms of its empirical counterpart LD(f̂ ; f̂)−LD(T f̂ ; f̂)

using concentration inequalities. Accordingly, we first derive a decomposition of the

empirical term LD(f̂ ; f̂)− LD(T f̂ ; f̂) into three terms I, II, III and bound each of

these terms separately. We state the decomposition lemma below.

Lemma 4 (Decomposition Lemma). For f ∗ ∈ F s.t, ∥f ∗ − T f ∗∥22,µ ≤ ϵF , we have

LD(f̂ ; f̂)− LD(T f̂ , f̂) ≤ LD(f
∗; f ∗)− LD(T f ∗, f ∗)︸ ︷︷ ︸

I

+ |LD(T f̂ , f̂)− LD(T̂G f̂ , f̂)|︸ ︷︷ ︸
II

+ |LD(T f ∗, f ∗)− LD(T̂Gf ∗; f ∗)|︸ ︷︷ ︸
III

(4.9)

Proof. This result is established in Appendix B.1.

In what follows, we divide the proof of Theorem 6 into three steps. We derive an

upper bound on v∗ − vπf̂ as a function of Lµ(f̂ ; f̂)− Lµ(T f̂ ; f̂) in Subsection 4.4.2.

We then bound the three terms noted in Subsection 4.4.4 using the concentration

of measures results derived in Subsection 4.4.3. Finally, we prove Theorem 6 in

Subsection 4.4.5.
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4.4.2 Relation between v∗ − vπf̂ and Lµ(f̂ ; f̂)− Lµ(T f̂ ; f̂)

We shall first show the relation between, v∗ − vπf̂ and Lµ(f̂ ; f̂)− Lµ(T f̂ ; f̂), that

will be used to prove the main theorem.

Lemma 5. The following holds true,

1. Let ν be any admissible distribution. Then ∀ f : S ×A → R,

∥f∥2,ν ≤
√
C∥f∥2,µ.

2. We denote ηπh := P[sh = s|s1 ∼ η1, π], and πf as the policy greedy with respect to

the state-action value function f : B → R , i.e., πf (s) := argmaxa∈Γ(s) f(s, a).

Then we have

v∗ − vπf ≤
∞∑
h=1

γh−1
(
∥Q∗ − f∥

2,η
πf
h ×π∗ + ∥Q∗ − f∥

2,η
πf
h ×πf

)
.

3. Let f, f ′ : B → R. Then we have ∀ ν ∈ ∆(B),

∥Vf − Vf ′∥2,P (ν) ≤ ∥f − f ′∥2,P (ν)×πf,f ′
.

4. For an exploratory distribution µ ∈ ∆(B), any distribution ν ∈ ∆(B), policy π,

and f, f ′ : B → R, we have

∥f −Q∗∥2,ν ≤
√
C

1− γ
∥f − T f∥2,µ.

Proof. The results can be adapted directly from [116] to the general state space setting

in this paper using Assumptions 7 and 8.
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Lemma 6. For f, g ∈ F , we have ∥g − T f∥22,µ = Lµ(g; f)− Lµ(T f ; f).

Proof. From the definitions in Lµ and LD, we have

Lµ(g; f)− Lµ(T f ; f) = E
[
LD(g, f)− LD(T f ; f)

]
= E

(s,a)∼µ,

s′∼P (s,a)

[
(g(s, a)− r − γVf (s

′))2 − (T f(s, a)− r − γVf (s
′))2
]

= E
(s,a)∼µ,

s′∼P (s,a)

[
(g(s, a)2 − T f(s, a)2)

+ 2(r + γVf (s
′))(T f(s, a)− g(s, a))

]
i
= E

(s,a)∼µ

[
(g(s, a)2 − T f(s, a)2) + 2T f(s, a)(T f(s, a)− g(s, a))

]
= E

(s,a)∼µ,

[
(g(s, a)− T f(s, a))2

]
= ∥g − T f∥22,µ

where (i) follows from the definition of the operator T . The proof is complete.

Lemma 7.

v∗ − vπf̂ ≤ 2
√
C

(1− γ)2

(√
Lµ(f̂ ; f̂)− Lµ(T f̂ , f̂)

)
. (4.10)

Proof. Substituting f = f̂ in the result of Lemma 4, we get

∥f̂ −Q∗∥2,ν ≤
√
C

1− γ
∥f̂ − T f̂∥2,µ.

The proof then follows by applying Lemmas 5 and 6 to the above equation.

From the above Lemma, we observe that it is sufficient to bound Lµ(f̂ , f̂) −

Lµ(T f̂ , f̂) to prove the main theorem.
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4.4.3 Using Concentration Inequality

Recall the definition of ZF from Definition 2. It is straight forward that the class

of functions ZF is bounded, and using the bounds on R(·, ·) and F , we can observe

that ∀f ∈ F , |Zf(·, ·, ·, ·)| ≤ 3V 2
max. For f ∈ F and (si, ai, ri, s

′
i) ∈ D, we can denote

an i.i.d random variable Zi
f := Zf(si, ai, ri, s

′
i). Now, we can observe from Lemma 6

that

1

n

n∑
i=1

Zi
f̂
= LD(f̂ ; f̂)− LD(T f̂ , f̂);

E[Z1
f̂
] = Lµ(f̂ ; f̂)− Lµ(T f̂ ; f̂) = ∥f̂ − T f̂∥22,µ.

Reference [116] assume a finite function space F and proceed to bound E[Z1
f̂
]−

1
n

∑n
i=1 Z

i
f̂
using Bernstein’s inequality and apply a union bound over the function

space F (consequently the bound depends on |F|). However, we can not do this

for a general function space. Instead, we use the Pollard’s concentration inequality

(Lemma 19) to bound E[Z1
f̂
]− 1

n

∑n
i=1 Z

i
f̂
.

Lemma 8. With probability at least 1− δ1, we have

E[Z1
f̂
] ≤ 1

n

n∑
i=1

Zi
f̂
+ ϵ/8,

where δ1 = 8E[N1(
ϵ
64
, ZF , D

1:n)] exp
(

−nϵ2

64×128×36 V 4
max

)
.

Proof. We can directly apply Lemma 19 (along with Remark 4) on the class of

functions ZF with B = 6V 2
max and ϵ/8 instead of ϵ. We get

P

{
sup
f∈F

(
E[Z1

f ]−
1

n

n∑
i=1

Zi
f

)
> ϵ/8

}

≤ 8E[N1(ϵ/64, ZF , D
1:n)] exp

( −nϵ2

64× 128× 36 V 4
max

)
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Since the above inequality holds for all f ∈ F , it certainly holds for a given f̂ ∈ F .

Note that, every Zf ∈ ZF is defined by a f ∈ F . The result follows by taking the

value of δ1 equal to the right-hand side of the above equation.

We now bounded Lµ(f̂ , f̂) − Lµ(T f̂ , f̂) in terms of LD(f̂ ; f̂) − LD(T f̂ , f̂) by

using Pollard’s concentration inequality. In the next subsections, we will continue to

bound LD(f̂ ; f̂)− LD(T f̂ , f̂) using the Lemma 4 and repeated use of the Pollard’s

concentration inequality.

4.4.4 Bounding terms I, II, III

In this section, we bound the terms in Lemma 4.

Lemma 9 (Term I in (4.9)). With probability at least 1− δ1, we have

LD(f
∗; f ∗)− LD(T f ∗; f ∗) =

1

n

n∑
i=1

Zi
f∗ ≤

ϵ

8
+ ϵF (4.11)

where δ1 = 8N1(
ϵ
64
, ZF , D

1:n) exp
(

−nϵ2

64×128×36 V 4
max

)
.

Proof. From Lemma 6, E[Z1
f∗ ] = Lµ(f

∗; f ∗) − Lµ(T f ∗; f ∗) = ∥f ∗ − T f ∗∥22,µ ≤ ϵF .

Therefore, applying Lemma 19 (along with Remark 4) and since E[Z1
f∗ ] ≤ ϵF ,

P

{
1

n

n∑
i=1

Zi
f∗ >

ϵ

8
+ ϵF

}

≤ 8E[N1(
ϵ

64
, ZF , D

1:n)] exp
( −nϵ2

64× 128× 36 V 4
max

)
.

The result follows similarly by taking the value of δ1 as the right-hand side of the

above equation. This bounds term (I) in (4.9).

We are left to compute bounds on the terms II, III. Observe that both the

terms II, III in Lemma 4 are of the form |LD(T f, f)− LD(T̂Gf ; f)| where term II
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considers f̂ and term III considers f ∗. Therefore, in the following Lemma, we want

to bound for any f ∈ F ,

|LD(T f, f)− LD(T̂Gf ; f)|.

This can then be used to bound each of the terms II and III. Before stating the

Lemma, we first discuss the function classes XF and YF ,G.

Recall the definition of XF from Definition 3. Similar to ZF , we can show that

XF is a bounded class of functions, and ∀f, g ∈ F , |Xg,f,g∗f
(·, ·, ·, ·)| ≤ 3V 2

max. For each

(si, ai, ri, s
′
i) ∈ D, we denote an i.i.d random variable X i

g,f,g∗f
:= Xg,f,g∗f

(si, ai, ri, s
′
i).

Now, from the definition of LD and Lµ,

1

n

n∑
i

X i
g,f,g∗f

= LD(g; f)− LD(g
∗
f , f);

E[X1
g,f,g∗f

] = Lµ(g; f)− Lµ(g
∗
f , f).

Recall the definition of YF ,G from Definition 4. Similarly, we can again show that

YF ,G is a bounded class of functions, and ∀f ∈ F , g ∈ G, |Yg,f(·, ·, ·, ·)| ≤ 3V 2
max. For

each (si, ai, ri, s
′
i) ∈ D, we denote an i.i.d random variable Y i

g,f := Yg,f(si, ai, ri, s
′
i).

Now, from the definition of LD and Lµ,

1

n

n∑
i

Y i
g,f = LD(g; f)− LD(T f, f);

E[Y 1
g,f ] = Lµ(g; f)− Lµ(T f, f).

We are now ready for the next Lemma.

Lemma 10 (Terms II, III in (4.9)). With probability at least 1− 2δ2 − δ3, we have

|LD(T f ; f)− LD(T̂Gf ; f)| ≤ ϵF ,G +
3ϵ

8

where δ2 = 8E[N1(
ϵ
64
, XF , D

1:n))] exp
(

−nϵ2

64×128×36 V 4
max

)
and

δ3 = 8E[N1(
ϵ
64
, YF ,G, D

1:n))] exp
(

−nϵ2

64×128×36 V 4
max

)
.
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Proof. Observe that

|LD(T f ; f)− LD(T̂Gf ; f)| =
∣∣∣ 1
n

n∑
i=1

(
X i

T̂Gf,f,g∗f
+ Y i

g∗f ,f

)∣∣∣
≤
∣∣∣ 1
n

n∑
i=1

X i
T̂Gf,f,g∗f

∣∣∣+ ∣∣∣ n∑
i=1

Y i
g∗f ,f

∣∣∣ (4.12)

Using Lemma 19 for the function space XF with B = 6V 2
max and ϵ/8 instead of ϵ,

we get

P

{
sup
f,g∈F

∣∣∣ 1
n

n∑
i=1

X i
T̂Gf,f,g∗f

− E[X1
T̂Gf,f,g∗f

]
∣∣∣ > ϵ

8

}

≤ 8E[N1(ϵ/64, XF , D
1:n))] exp

( −nϵ2

64× 128× 36 V 4
max

)
.

Observe that for a, b ∈ R, |a| − |b| ≤ |a− b|. From this (and using the same argument

as in Remark 4), we get with probability greater than 1− δ2,∣∣∣ 1
n

n∑
i=1

X i
T̂Gf,f,g∗f

∣∣∣ ≤ ∣∣∣E[X1
T̂Gf,f,g∗f

]
∣∣∣+ ϵ

8
(4.13)

where δ2 = 8E[N1(
ϵ
64
, XF , D

1:n))] exp
(

−nϵ2

64×128×36 V 4
max

)
.

Now, observe that 1
n

∑n
i=1X

i
T̂Gf,f,g∗f

≤ 0, since 1
n

∑n
i=1X

i
T̂Gf,f,g∗f

= LD(T̂Gf, f) −

LD(g
∗
f , f) ≤ 0 where the inequality follows due to the optimality of T̂Gf given dataset

D. Therefore, applying Lemma 19 to the function space XF again we get,

∣∣∣E[X1
T̂Gf,f,g∗f

]
∣∣∣ ≤ ϵ

8
(4.14)

with probability at least 1− δ2.

Now by combining (4.13) and (4.14), we have with probability at least 1− 2δ2,∣∣∣ 1
n

n∑
i=1

X i
T̂Gf,f,g∗f

∣∣∣ ≤ ϵ/4

where δ2 = 8E[N1(
ϵ
64
, XF , D

1:n))] exp
(

−nϵ2

64×128×36 V 4
max

)
.
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Now, we bound the second term
∣∣∣ 1n∑n

i=1 Y
i
g∗f ,f

∣∣∣ in (4.12). We have, E[Y i
g∗f ,f

] =

∥g∗f − T f∥22,µ ≤ ϵF ,G.

Applying Lemma 19 to the function space YF ,G similarly as above, we have with

probability at least 1− δ3,

∣∣∣ 1
n

n∑
i=1

Y i
g∗f ,f

∣∣∣ ≤ E[Y 1
g∗f ,f

] +
ϵ

8
≤ ϵF ,G +

ϵ

8

for δ3 = 8E[N1(
ϵ
64
, YF ,G, D

1:n))] exp
(

−nϵ2

64×128×36 V 4
max

)
. The result follows by combining

the bounds on
∣∣∣ 1n∑n

i=1X
i
T̂Gf,f,g∗f

∣∣∣ and ∣∣∣∑n
i=1 Y

i
g∗f ,f

∣∣∣.
Lemma 11. With probability at least 1− δ1 − 4δ2 − 2δ3,

LD(f̂ ; f̂)− LD(T f̂ , f̂) ≤ ϵF + ϵF ,G +
7ϵ

8
(4.15)

where δ1 is as defined in Lemma 9; δ2 and δ3 are defined as in Lemma 10.

Proof. Let us recall that, both the terms II and III can be bounded using Lemma 10.

The result follows from Lemmas 4, 9 and 10. Note that we apply Lemma 10 twice,

therefore the coefficients of δ2 and δ3 are multiplied by 2.

4.4.5 Proof of Theorem 6

We now have all the intermediate results to prove the main theorem. From

Lemmas 4, 8, and 11, with probability at least 1− 2δ1 − 4δ2 − 2δ3,

E[Z1
f̂
] ≤ ϵF + ϵF ,G + ϵ.
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Substituting this result in (4.10), with K1 = 64× 128× 36 , we get

P
{
v∗ − vπf̂ >

2
√
C

(1− γ)2
√
ϵF + ϵF ,G + ϵ

}
≤ exp

( −nϵ2
K1V 4

max

)(
16E[N1(ϵ/64, ZF , D

1:n)]

+ 32E[N1(ϵ/64, XF , D
1:n)]

+ 16E[N1(ϵ/64, YF ,G, D
1:n)]

)
.

We then apply Lemma 18 in the Appendix and let K2 = 6× 64, we get

P
{
v∗ − vπf̂ >

2
√
C

(1− γ)2
√

ϵF + ϵF ,G + ϵ
}

≤ exp
( −nϵ2
K1V 4

max

)(
16e(dZF + 1)

(K2 eV 2
max

ϵ

)dZF

+ 32e(dXF + 1)
(K2 eV 2

max

ϵ

)dXF

+ 16e(dYF,G + 1)
(K2 eV 2

max

ϵ

)dYF,G

)
.

Now consider the right-hand side term to be δ, applying log and rearranging the

terms, we get with probability at least 1− δ,

v∗ − vπf̂ ≤ 2
√
C

(1− γ)2

(√
ϵ+ ϵF + ϵF ,G

)
when

n ≥ K1V
4
max

ϵ2

[
log

16e

δ
+ log

(
2(dXF + 1)

(K2eV
2
max

ϵ

)dXF

+ (dYF,G + 1)
(K2eV

2
max

ϵ

)dYF,G

+ (dZF + 1)
(K2eV

2
max

ϵ

)dZF

)]
.

The proof is complete.
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4.5 Discussion

4.5.1 Experimental Results

In this section, we perform numerical simulations to study how the sample com-

plexity materializes in practice. We adopt the optimal charging schedule for a battery

pack example from [124]. Here, the battery pack is used to serve some random user

demands and is charged using a random renewable source. The maximum capacity of

a battery pack is given by a real value B ∈ R+. The state of charge of the battery

pack is denoted by Gt ∈ [0, 1] which is the fraction of charge as compared to the

maximum capacity. We represent the net generation at time t (renewable generation

minus demand) as Gt. We assume that Gt is a bounded random variable, that is

uniformly distributed between [Gmax, Gmin]. The state of the system is given by

st = [SoCt, Gt−1]
T , and the action is given by at, which determines what fraction of

the net demand (generation) is served. At every time step, the state [SoCt, Gt−1 is

observed and an action at is taken. When Gt−1 > 0, since there is a net generation,

the battery charge is increased by atGt−1. When Gt−1 ≤ 0, since there is net demand,

the battery charge decreases by atGt−1. Note that, even when Gt−1 > 0, at need not

be very high, since the battery can get damaged due to overheating. At every time

step, the battery also self discharges determined by some parameter β ∈ [0, 1]. The

state update equation is given by,

SoCt+1 := min
{
βSoCt + at

Gt−1

B
, 1
}
.

For every action taken, the reward is specified by

r(st, at) = at

(
tanh

(
ξGt−1

)(r2− r1)

2
+

(r1 + r2)

2

)
,
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where ξ > 0 is a scale parameter, r1 is the reward of using renewable energy, r2 is

the utility of serving the user demand and 0 ≤ r1 < r2. Also, observe that the action

space is constrained by the current state. Here, it depends on the current state of

charge, i.e., at needs to be chosen such that SoCt ≥ 0 since more charge can not be

extracted from the battery than what is present. Formally,

Γ(st) =
{
at ∈ [0, 1] : βSoCt + at

Gt−1

B
≥ 0
}
.

The goal of the RL problem is to maximize the reward until the battery doesn’t

run out of charge.

Offline Dataset

Here, we outline the method used to collect the offline dataset for this environment.

We train a policy in the online setting using the TD3 algorithm [136]. We used the

following parameters of the environment: Gt ∼ Unif(−10, 10), B = 10, ξ = 0.01, r1 =

5, r2 = 15, β = 0.97. For online training, we used γ = 0.9 and used the same parameters

as the original TD3 paper. We used the same function approximation class for F

and G: we used a neural network with two hidden layers each of width 4 and ReLU

activation functions.

We use the output of the above algorithm and deploy it in the environment and

log the interactions (s, a, r, s′). We now, use the logged dataset to solve (4.3).

Algorithm

To solve the min-max optimization in (4.3), we perform a bilevel optimization

routine by alternating the updates on f, g.

This is written as

gt = argmin
g∈G
LD(g, ft−1)
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n vπf̂ vπb

100 4.3 2.9
1000 5.0 2.9
10000 5.7 2.9

Table 4.2: Comparison of sub-optimality with the number of data points n. Note that πb
is fixed for all three cases.

ft = argmin
f∈F
LD(f, f)− LD(gt, f)

At each iteration t, we sample a mini-batch of size 256 from the offline dataset D.

We then use the samples to update the neural network weights (of gt and ft) using

the Stochastic Gradient Descent (SGD) algorithm with a learning rate of 1e-5. We

iterate until t = 105.

Results

To show the impact of the dataset size, we take different dataset sizes, i.e. n ∈

[500, 1000, 10000], and train three different algorithms using these datasets. Since we

do not have the true V ∗, it is difficult to compute v∗ for this environment. Therefore,

instead of measuring v∗−vπf̂ , we simply measure vπf̂ where πf̂ is the policy greedy with

respect to the output of (4.3). To compute vπf̂ , we used the initial state distribution,

where Gt ∼ Unif(−10, 10) and SoC0 = 1.0. We present the results of the algorithm in

Table 4.2. We can observe that v∗ − vπf̂ reduces as the number of data points in the

offline dataset increases which is in line with the theoretical results.
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Figure 4.1: We plot the loss LD(ft; ft) − LD(gt; ft) at every iteration t of the bi-level
optimization algorithm.

4.5.2 Sharp Concentration Results

While earlier works [111, 113] obtain a dependence on the number of samples

as O( 1
ϵ4
), recent works were able to improve on the sample complexity to O( 1

ϵ2
)

[116, 117, 118]. The key result that leads to an improvement in the sample complexity

is the sharper concentration inequality (stated below) as compared to using Pollard’s

concentration inequality (Lemma 19).

Lemma 12 (Lemma 11.6 [137]). Let B ≥ 1 and let G be a set of functions g : Rd →

[0, B]. Let Z,Z1, · · · , Zn be i.i.d Rd valued random variables. Assume ϵ > 0, 0 < α < 1

and n ≥ 1. Then

P

{
sup
g∈G

1
n

∑n
i=1 g(Zi)− E[g(Z)]

ϵ+ 1
n

∑n
i=1 g(Zi) + E[g(Z)]

> α

}

≤ 4E
[
N1

(αϵ
5
,G, Zn

1

)]
exp

(
− 3ϵα2n

40B

)
.

Reference [117, 118] decompose the error v∗− vπf̂ in a way that exploits this sharp

concentration result (notice the exponent of ϵ in exp term as compared to Pollard’s
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theorem reviewed in Theorem 19), thereby deriving a sharper sample complexity.

Decomposing the error for the min-max variant studied in this paper to apply this

result is challenging and we leave it as future work.

4.5.3 Single sample path

In this work, we assumed that the offline data available with the agent is sampled

independently from a distribution µ ∈ ∆(S ×A). This assumption can be practical

in several applications where the agent is highly scalable and deployed in a large

number of environments to collect data. For example, in e-commerce/web applications,

millions of users may query in parallel independent of one another and the deployed

agent also responds independently of the other queries. However, there are several

applications where a single controller/agent collects a single (long) trajectory of data

in applications such as building energy management. Here the deployed agent is

highly customized to the particular environment (e.g., building, factory) because each

environment has different dynamics than the others. In these situations, one needs to

deal with a long trajectory of data where the (s, a) pairs are no longer independent.

[113] studies such a setting by assuming some mixing properties in the process. The

sample complexity itself remains the same, however, the bound includes an additional

term dependent on the mixing coefficient of the process.

4.5.4 Removing Concentrability Assumption

In this work, we consider the stricter condition (Assumption 8) of concentrability

where every admissible ν ∈ ∆(B) is absolutely continuous with respect to µ. A more

general condition is the discounted concentrability of future state-action distribu-

tions where the distribution of future state-action pairs is assumed to be absolutely
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continuous with respect to µ. Let P π be an operator acting on f : B → R s.t.

(P πf)(s, a) =
∫
B f(s

′, π(s′))P (ds′|s, a). For m ≥ 0, and any arbitrary sequence of

stationary policies {π1, · · · , πm}

Cµ(m) = sup
π1,··· ,πm

∥d(ηinitP
π1P π2 · · ·P πm)

dµ
∥∞.

The discounted concentrability assumption requires Cµ = (1−γ2)
∑

m≥1mγm−1Cµ(m) <

∞. The sample complexity analysis under discounted concentrability assumption

requires substantially different arguments and thus is left as a future work.
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Chapter 5: Resource Constrained Offline Reinforcement

Learning

5.1 Resource Constraints

There have been many recent successes in the field of Reinforcement Learning

[101, 138, 139, 140, 141]. In the online RL setting, an agent takes action, observes the

outcome from the environment, and updates its policy based on the outcome. This

repeated access to the environment is not feasible in practical applications; it may be

unsafe to interact with the actual environment, and a high-fidelity simulator may be

costly to build. Instead, offline RL, consumes fixed training data which consists of

recorded interactions between one (or more) agent(s) and the environment to train a

policy [107]. An agent with the trained policy is then deployed in the environment

without further evaluation or modification. Notice that in offline RL, the deployed

agent must consume data in the same format (for example, having the same features)

as in the training data. This is a crippling restriction in many large-scale applications,

where, due to some combination of resource/system constraints, all of the features

used for training cannot be observed (or misspecified) by the agent during online

operation. In this work, we lay the foundations for studying this Resource-Constrained

setting for offline RL. We then provide an algorithm that improves performance by

107



transferring information from the full-featured offline training set to the deployed

agent’s policy acting on limited features. We first illustrate a few practical cases where

resource-constrained settings emerge.

Raw Inputs

Online Features Offline Features

Light-weight feature

extractors

Rule based features

Powerful Feature

extractors

Human Annotation

Figure 5.1: Example of system constraints
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Figure 5.2: Histogram of rewards in online data collected by agents trained with online
versus offline features

System Latency A deployed agent is often constrained by how much time it

has to process the state of the environment and make a decision. For example, in

a customer-facing web application, the customer will start to lose interest within a
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fraction of a second. Given this constraint, the agent may not be able to fully process

more than a few measurements from the customer before making a decision. This

is in contrast to the process of recording the training data for offline RL, where one

may take sufficient time to generate an abundance of features by post-processing

high-dimensional measurements.

Power Constraints Consider a situation where an RL agent is being used in deep

space probes or nano-satellites ([142]). In this case, an RL agent is trained on Earth

with rich features and a large amount of sensory information. But when the agent is

deployed and being used on these probes, the number of sensors is limited by power

and space constraints. Similarly, consider a robot deployed in a real-world environment.

The limited computing power of the robot prevents it from using powerful feature

extractors while making a decision. However, such powerful feature extractors can be

used during the offline training of the robot (Fig 5.1).

In the resource-constrained setting, one can simply ignore the offline features and

only train the offline agent with the online features that are available during deployment.

This strategy has the drawback of not utilizing all of the information available during

training and can lead to a sub-optimal policy. To confirm this, we performed the

following simple experiment. We consider an offline RL dataset for the OpenAI gym

MuJoCo HalfCheetah-v2 environment and simulate the resource-constrained setting by

removing a fixed set of randomly selected features during deployment (see Section 5.5.1

for more details). We train an offline RL algorithm, TD3+BC [143] using only the

online features and collect online data in the environment using the trained policy.

We repeat this assuming all features available during deployment, train a TD3+BC

agent using the same offline dataset with all features, and collect online data in the
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environment. We plot the histogram of rewards in the two datasets in Fig 5.2. We

observe that the agent trained only with online features obtains a much smaller reward

than the agent trained with offline features.

Traditionally, scenarios, where the observability of the state of the system is limited,

are studied under the Partially Observable Markov Decision Process (POMDP) setting

by assuming a belief over the observations [144]. In contrast, we have an offline dataset

(which records rich but not necessarily full state transitions) along with partially

obscured (with respect to the offline dataset) observations online. Our goal is to

leverage the offline dataset to reduce the performance gap caused by the introduction

of resource constraints. Towards this, we advocate using a teacher-student transfer

algorithm. Our main contributions are summarized below:

• We identify a key challenge in offline RL: in the resource-constrained setting,

datasets with rich features cannot be effectively utilized when only a limited

number of features are observable during online operation.

• We propose the transfer approach that trains an agent to efficiently leverage the

offline dataset while only observing the limited features during deployment.

• We evaluate our approach on a diverse set of tasks showing the applicability of the

transfer algorithm. We also highlight that when the behavior policy used by the

data-collecting agent is trained using a limited number of features, the quality of

the dataset suffers. We propose a data collection procedure (RC-D4RL) to simulate

this effect.
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5.2 Resource-Constrained online systems

In the standard RL framework, we consider a Markov Decision Process (MDP)

defined by the tuple (S,A, R, P, γ) where S is the state space, A is the action space,

R : S ×A → R is the reward function, P : S ×A → ∆(S) is the transition function,

∆(S) denotes the set of all probability distributions over S, and γ ∈ (0, 1) is the

discount factor. We consider the discounted infinite horizon MDP in this paper. We

consider the continuous control setting and assume that both S and A are compact

subsets of a real-valued vector space. The transition at time t, is given by the tuple

(st, at, R(st, at), st+1). Each policy π : S → ∆(A), has a value function Qπ : S×A → R

that estimates the expected discounted reward for taking action a in state s and uses

the policy π after that. The goal of the agent is to learn the policy π that maximizes

the expected discounted reward Eπ[
∑∞

t=0 γ
tR(st, at)]. In online RL, this problem is

solved by interacting with the environment.

In offline (or batch) RL [108], instead of having access to the environment, the

agent is provided with a finite dataset of trajectories or transitions denoted by

D = {(si, ai, ri, s′i)}Ni=1. The data is collected by one or many behavior policies that

induce a distribution µ on the space of S × A. The goal of the agent is to learn a

policy using the finite dataset to maximize the expected discounted reward when

deployed in the environment.

In the resource-constrained setting, the agent does not have access to the full state

space or features during deployment. Instead, the agent can only observe from Ŝ

(another bounded subset of the real-valued vector space) that is different from S. It is

assumed that the space S is rich in information as compared to Ŝ. For example, Ŝ

might have fewer dimensions, or some entries may include extra noise (see Figure 5.1).
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We will use online/limited features, to refer to observations from the online space

Ŝ, offline/rich features to refer to observations from the offline space S.

We assume that both online features and offline features are available in offline

data.

The goal of the agent is to use the offline data and train a policy π : Ŝ → ∆(A).

The agent can use the offline features from S during training but is constrained to only

use the online features from Ŝ while making a decision. A similar paradigm of Learning

Under Privileged Information (LUPI) [145] has been studied in the supervised learning

setting, where the privileged information is provided by a knowledgeable teacher.

5.3 Related Work

Offline RL There has been an increasing interest in studying offline RL algorithms

due to its practical advantages over online RL algorithms [31, 146, 147, 148]. Offline

RL algorithms typically suffer from an overestimation of the value function as well

as a distribution shift between the offline data and on-policy data. [149] and [29]

advocate a pessimistic approach to value function estimation to avoid over-estimation

of rarely observed state-action pairs. To constrain the on-policy data to be closer to

offline data, several techniques have been explored, such as restricting the actions

inside the expectation in the evaluation step to be close to the actions observed in

the dataset [150], adding a regularization term during policy evaluation or iteration

[151], [152],[153], adding a constraint of the form MMD(µ(·|s), π(s)) [154, 155, 156]

on the policy [157], using behavior cloning [143], adding an entropy term in the value

function estimation [152], and model-based approaches that learn a pessimistic MDP

[158]. A thorough review of these techniques is presented in an excellent tutorial by
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[107]. To the best of our knowledge, there is no existing work that addresses the

resource-constrained offline RL setting where there is a mismatch between the offline

features and online features.

Knowledge Transfer Knowledge transfer/distillation is widely studied in various

settings including vision, language, and RL domains [159, 160]. In RL, under the

domain transfer setting [161, 162], the teacher is trained on one domain/task and the

student needs to perform on a different domain/task [163, 164, 165, 166]. [167] train

a model so that features from different domains have similar embeddings, and [168]

perturb the feature using a random noise centered at the privileged information. An

offline RL algorithm for domain transfer has been proposed by [169]. Policy distillation

is studied in the setting where the knowledge from a trained policy (teacher) is imparted

to an untrained network (student) [170, 171]. This leads to several advantages such

as model compression and the ability to learn from an ensemble of trained policies to

improve performance [172].

One distinguishing feature of the resource-constrained setting that differentiates it

from other transfer settings is that the teacher has access to the privileged information

and the student needs to adapt using the data available without interactive learning.

In most of the existing approaches, the difference between teacher and student was

either the network size (which is also present in our setting due to the difference in

input features) or the dynamics (as in the domain transfer case). To the best of our

knowledge, we are the first to study policy distillation in the offline RL framework

under the resource-constrained setting. Another interesting line of work is called

Sim2Real [173, 174]. In these papers, they train a model using a simulator and then

transfer the knowledge to real data. However, this work requires an accurate simulator
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which results in a fairly expert teacher model. However, in the offline RL setting,

depending on the data quality, the teacher itself might be weak.

Partially Observable MDP POMDP generalizes the MDP framework where

the agent does not have access to the full features and only partially observes the state

space [144, 175, 176]. More recently, [177] studied a model-based offline RL algorithm

for image data under the POMDP setup. Our setting resembles this setup, but our

agent also has access to the full privileged features in the offline dataset while training.

This availability of the offline dataset with privileged information differentiates our

setting and enables the student to inherit the knowledge from the rich space while

only using the limited features during deployment.

5.4 Proposed Algorithm

5.4.1 TD3+BC (0, 1)

Let us first discuss TD3+BC [143] which is a recent state of the art algorithm for

continuous control offline RL. Then we discuss a simple way to extend it to the resource-

constrained setting. TD3+BC maintains two critic networks Qθ1 , Qθ2 : S × A → R

with parameters θ1, θ2 and a deterministic actor network πϕ : S → A with parameters

ϕ. TD3+BC shows that by adding an additional behavior cloning term to an existing

online RL algorithm TD3 [136] (that learns a deterministic policy), it is possible

to attain state-of-the-art performance on the D4RL benchmark datasets [178]. The

policy evaluation step in TD3+BC is the same as TD3 where the minimum of two Q

functions is used to reduce the over-estimation bias of the value function (lines 7-9 in

Algorithm 4). In the policy iteration step (5.1), the behavior cloning term (πϕ(s)−a)2

regularizes the policy to take actions similar to the actions observed in the dataset,
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Algorithm 4 TD3+BC

1: Given: offline dataset D with full feature observations
2: Given: policy update frequency d; weighted average parameter τ , noise parameter

σ̄
3: Initialize critic networks Qθ1 , Qθ2 and an actor network πϕ

4: Initialize target networks θ
′
1 ← θ1, θ

′
2 ← θ2, ϕ

′ ← ϕ.
5: for t = 1, · · · , T do
6: Sample mini-batch of N transitions (s, a, r, s′) ∈ D

7: ã← πϕ′(s′) + min(max(ϵ,−c), c) where ϵ ∼ N (0, σ̃)

8: y ← r + γmini=1,2Qθ′i
(s′, ã)

9: Update critics θi ← argminθi
1
N

∑N
i=1

(
y −Qθi(s, a)

)2
10: if t mod d == 0 then
11: Update ϕ by deterministic policy gradient optimizing the objective
12:

argmax
ϕ

1

N

N∑
i=1

[
λQθ1(si, πϕ(si))−

(
πϕ(ŝi)− a

)2]
(5.1)

13: Update target networks:
14: θ′i ← τθi + (1− τ)θ′i
15: ϕ′ ← τϕ+ (1− τ)ϕ′

16: end if
17: end for

where λ is given by

λ =
α

1
N

∑
(si,ai)

|Qθ1(si, ai)|
,

where α is a hyper-parameter.

Proposed Algorithm We now propose our transfer algorithm that adopts

TD3+BC to the resource-constrained setting. We add an additional regularization

term during the policy iteration step, that tries to keep actions predicted by the

trained policy close to the actions taken by the teacher policy. This knowledge can be

imparted to the student policy through the regularization term below (see (5.2) for
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the full equation)

Behavior Cloning︷ ︸︸ ︷
β1

(
πϕ(ŝ)− a

)2
−

Transfer︷ ︸︸ ︷
β2

(
πϕteacher (s)− πϕ(ŝ)

)2
.

We weigh the two terms with weights β1, β2. The transfer term is beneficial in learning

because the teacher (trained using offline RL algorithm on full features) often predicts

a better action than those available in the dataset (depending on the quality of the

dataset) as observed in earlier offline RL works [29]. To keep all terms in (5.2) at

comparable magnitudes, we add a constraint that β1 + β2 = 1. If β1 = 1 and β2 = 0,

the proposed algorithm is equivalent to the TD3+BC algorithm. For the purpose of

this work, we consider the TD3BC(0, 1) algorithm.

5.4.2 Simultaneous Transfer Policy Iteration

The proposed algorithm incorporates a knowledge transfer technique into the

TD3+BC algorithm to train the network to deal with online features. Usually

knowledge transfer algorithms (like TD3BC(0,1) in the previous section) first train a

teacher network and then distill the teacher’s knowledge into a student network. The

proposed algorithm is different, in the sense that, we train the teacher network and

the student network simultaneously. The policy evaluation step of the teacher is the

same as in TD3. The student network only learns the actor-network, since during

inference, the agent only needs to use the actor-network πϕ to make a prediction.

Note that the proposed algorithm is an apt example for the inference at the edge

challenge we discussed in Chapter 1. Here, despite being able to train an actor using

TD3+BC using offline features, during inference due to the feature mismatch, the

trained actor can not be used. Therefore, there is a need to adapt the trained actor

to use the online features.
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The key to the proposed algorithm is to introduce a transfer loss term that enables

distilling the knowledge of the teacher network to the student network. Before that,

let us denote the student actor network using the parameters ϕstudent . Note that

the teacher parameters are denoted by θ1, θ2, ϕ as earlier. Additionally, we also use

πϕ−1 : S → Rde , to denote the output of the last but one layer of the actor network,

where de is the dimension of the last but one layer. The transfer loss is then defined

as the mean squared distance between the last layer embeddings of the teacher actor

network (evaluated using the offline features) and the last layer embeddings of the

student actor network (evaluated using the corresponding online features). Formally,

we write the transfer loss as
∥∥∥πϕ−1(s)− πϕstudent

−1
(ŝ)
∥∥∥2. The policy iteration step of the

proposed algorithm can then be written as in (5.2).

arg max
ϕ,ϕstudent

1

N

N∑
i=1

[
λQθ1(si, πϕ(si))−

(
πϕ(si)− a

)2
︸ ︷︷ ︸

teacher loss

+ λQθ1(ŝi, πϕstudent (ŝi))−
(
πϕstudent (ŝi)− a

)2
︸ ︷︷ ︸

student loss

+
∥∥∥πϕ−1(s)− πϕstudent

−1
(ŝ)
∥∥∥2︸ ︷︷ ︸

transfer loss

]
.

(5.2)

Here, the teacher loss is the same as in the policy iteration step of TD3+BC. In

addition to the teacher loss, the teacher actor network ϕ is optimized to minimize

the transfer loss as well. The student network ϕstudent is optimized to minimize

the student loss and the transfer loss. The key insight behind the transfer loss is

that, for a given observation, the embeddings for the teacher actor network (using

full features) and student actor-network (using online features) must be close. The

transfer loss regularizes the training of the teacher and student networks. The teacher
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Figure 5.3: Simultaneous Transfer Policy Iteration

network is therefore incentivized to learn embeddings that can be represented using

the information present in only the online features. The teacher actor network also

influences the training of the teacher critic network (which in term features in the

teacher loss and student loss terms). Therefore, the teacher’s critic and actor networks

are both trained to optimize the transfer loss. In this way, the student network learns

better embeddings using the online features and we observe from experiments that
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this is an effective way to perform the transfer. The complete algorithm is provided

in Algorithm 5 and an illustration of the algorithm is provided in Figures 5.3.

Algorithm 5 Proposed transfer algorithm

1: Given: offline dataset D with full feature observations
2: Given: policy update frequency d; weighted average parameter τ , noise parameter

σ̄
3: Initialize teacher critic networks Qθ1 , Qθ2 and an teacher actor network πϕ

4: Initialize student actor network πϕstudent

5: Initialize target networks θ
′
1 ← θ1, θ

′
2 ← θ2, ϕ

′ ← ϕ, ϕ
′student ← ϕstudent .

6: Note that πϕ−1(s) outputs the embeddings of the last but one layer of the actor-
network ∀ϕ.

7: for t = 1, · · · , T do
8: Sample mini-batch of N transitions (s, a, r, s′) ∈ D
9: Online features for this transition is given as (ŝ, a, r, ŝ′)

10: ã← πϕ′(ŝ′) + min(max(ϵ,−c), c) where ϵ ∼ N (0, σ̃)

11: y ← r + γmini=1,2Qθ′i
(ŝ′, ã)

12: Update critics θi ← argminθi
1
N

∑N
i=1

(
y −Qθi(ŝ, a)

)2
13: if t mod d == 0 then Solve (5.2)
14: Update target networks:
15: θ′i ← τθi + (1− τ)θ′i
16: ϕ′ ← τϕ+ (1− τ)ϕ′

17: end if
18: end for

5.5 Experimental Results

We designed our experimental analysis to answer the following questions.

• Do the proposed transfer algorithms outperform a baseline algorithm that is trained

only on the limited online features? See Figures 5.4 and 5.5.

• How do the improvements offered by the transfer algorithms vary with the dataset

difficulty? See Figures 5.7, 5.8, 5.9.
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• How do the improvements offered by the transfer algorithms vary with the number

of offline features that are left out of the online setting? See Figures 5.7, 5.8, 5.9.

We performed experiments on continuous control tasks, from the OpenAI gym

MuJoCo [103] suite to study the resource-constrained setting. Before we discuss the

resource-constrained setup used for the MuJoCo environments in Section 5.5.1, it is

important to note that the data-collecting agent plays a vital role in determining the

quality of the dataset (coverage of state-action pairs) and subsequently the performance

of any offline RL algorithm. In the D4RL suite [178], datasets were collected using

behavior policies of varying expertise to simulate the variation in data quality as

follows

• medium: Data collected by deploying a policy that is not trained to expert level.

• expert: Data collected by deploying an expertly trained policy in the environment

• medium-replay: Data collected from the replay buffer of an agent trained to a

medium level (approximately half of the expert score).

• medium-expert: Data collected by merging the medium-level dataset and expert-

level dataset.

These dataset difficulty levels have an impact on the performance of an offline RL

agent due to the level of exploration present in each dataset. In general, the quality

of the dataset (in terms of average rewards observed in the dataset) follows the order:

medium-replay < medium < medium-expert < expert.

Note that, each of these behavior policies was trained online using the full feature

set. Thus, these policies can use all of the information and explore the environment
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online. The quality of the offline dataset collected by these behavior policies is thus

relatively high thereby improving the performance of offline RL algorithms on them.

In the resource-constrained setting, however, the behavior policy of the data-collecting

agent does not have access to the full features online. The agent may only explore

and navigate using the limited feature set during training. Using this behavior policy

to collect data results in a relatively lower-quality dataset. However, for the scope of

this work, we consider the case where the data-collecting agent is trained using the

full offline features.

5.5.1 Simulation of Resource-Constrained Setting

We simulate the resource-constrained setting by reducing the feature space available

during the deployment of the agent. We do this by dropping a fixed set of features

from the full features available (this is possible in the system latency as well as the

nano-satellite example). For instance, consider the MuJoCo environment Hopper-v2

where the original state space is 11 dimensional. We consider four scenarios where

the online observable feature dimensions are reduced to 5, 7, 9, and 10 by randomly

picking a subset of the features of the given dimension. For each of these scenarios, we

consider 3 random seeds to simulate different features getting dropped in each seed.

We summarize this setting for the three environments in Table 5.1.

Environment Original Dim Resource-Constrained Number of
Dimensions Seeds

Hopper 11 5, 7, 9, 10 3

HalfCheetah, Walker2d 17 9, 11, 13, 15 3

Table 5.1: Resource-Constrained Simulation using gym MuJoCo tasks
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5.5.2 Training and Evaluation

When reporting the performance of the algorithm, we assume online access to the

gym MuJoCo simulator for evaluation. The agents are restricted to using the limited

features (defined by the combination of the offline dataset used during training) to

make a decision. Given a policy to evaluate, we perform 10 different rollouts using this

simulator with random initial states and compute the mean of the cumulative rewards.

We perform one round of evaluation of the policy (student or baseline) during training

at a fixed frequency. We take the average value of the last 10 evaluation rounds during

training and report the mean and the standard deviation of the score. Lastly, since

we run multiple trials (for each configuration), we compute the mean and standard

deviation of the results of the three random trials for the given configuration. In order

to facilitate easier understanding and comparison of the results across datasets and

environments, we adopt the normalized score computation [179] [178]

normalized score = 100× score - score of random policy

score of expert online policy - score of random policy
.

Comparison

We term as baseline the case where only the online features are available during

deployment and we train the TD3+BC algorithm (Algorithm 4) using all the features.

In addition to this baseline, we also evaluate a pure behavior cloning algorithm that

takes a teacher policy as input and learns to imitate the teacher. The new policy is

learnt by minimizing

argmin
ϕ

Esi∼D

[
(πteacher(si)− πϕ(ŝi))

2
]
.
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The policy πϕ uses a similar architecture as the teacher, with the exception that the

input number of features is reduced due to the online features available.

We also consider an additional baseline that predicts the missing features (offline

features) from the available online features. We do this by first training an autoencoder

that takes the online features as input and predicts the offline features by minimizing

the MSE loss between the predicted offline features and the actual offline features.

The trained autoencoder is than passed to the offline RL algorithm (that is trained for

deployment). During every step of training, the algorithm takes the online features,

predicts the offline features using the autoencoder and uses the predicted features as

the state observation. Similarly, during evaluation, the trained agent first predicts the

features using online features and uses them to take an action.

We adopted the base hyperparameters from TD3 since hyperparameter tuning in

offline RL is a difficult task without the access for the environment during training.

We used the normalized score [178] for evaluating the algorithm.

From Figures 5.4 and 5.5, we can see that the proposed transfer algorithms

significantly outperform the considered algorithms for all three environments considered.

Similarly, in Fig 5.6, we observe that the proposed algorithms outperform the other

algorithms for all difficulties of the datasets. Occasionally, we also observe that the

PureBC or the Autoencoder algorithms are also on par with the proposed algorithms

(and better in some cases). Since these algorithms also use some kind of transfer, it

supports our view that using additional information from the offline features improves

over the performance of just using the online features. A more detailed summary of the

results for each environment, difficulty and online dimension combination is provided

in Figures 5.7, 5.8 and 5.9. It can be observed that, when the online dimension is
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Figure 5.4: Comparison of normalized scores for all the experiments per environment

very small, the overall performance of all the algorithms considered is poor, which

is expected. However, even in that case, the proposed algorithms provide a decent

improvement over the baseline by leveraging the offline information.
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Chapter 6: Conclusion

In this thesis, I have discussed some challenges that arise out of the deployment of

learning algorithms at the resource-constrained edge. In summary, the contributions

are as follows:

1. Model heterogeneous FL setup: I studied this problem without assuming a public

dataset, without imposing restrictions on the choice of the model architectures,

and keeping the model architectures private. I proposed Fed-CMA based on

conditional distribution alignment in the latent space in a federated way. I

prove the convergence and generalization properties of the algorithm with an

emphasis on the role of the learned representations. These insights are helpful

in designing better FL algorithms and the proposed algorithm can be used

along with existing FL algorithms in the weight-sharing setup, and/or use an

adversarial loss to improve the performance. Moreover, our work opens up several

intriguing questions: (i) What level of model heterogeneity can be tolerated to

achieve a reasonable improvement in the FL setup?, (ii) What is the role of the

latent space in tolerating this model heterogeneity?

2. Robust defenses for distributed setup: I propose reputation score-based aggrega-

tion for distributed machine learning that is resilient to any number of adversarial

130



workers. I showed that under reasonable assumptions, ByGARS++ converges to

the optimal solution using results from two-timescale stochastic approximation

theory. Through simulations, I showed that the proposed algorithms exhibit

remarkable robustness properties even for non-convex problems under a wide

range of Byzantine attacks. Although ByGARS and ByGARS++ are devel-

oped for the Byzantine attack setting, I believe that these algorithms serve a

much more general purpose. This algorithm can be modified to train models in

other cases such as learning from heterogeneous datasets, learning under privacy

constraints, and other adversarial settings (such as adaptive adversaries).

3. Offline Reinforcement Learning for resource-constrained setup: In the resource-

constrained setting that is motivated by real-world applications, the features

available during training offline may be different than the limited features

available online during deployment. I highlighted a performance gap between

offline RL agents trained using only the online features and agents trained using

all the offline features. To bridge this gap, I proposed a student-teacher-based

policy transfer learning approach. The proposed algorithm improves over the

baseline significantly even when the dataset quality is lacking in the resource-

constrained setting. The simplicity of the approach (with just one additional

hyperparameter) makes it easy to extend it to other offline RL algorithms. It

would be interesting to study other transfer learning approaches (e.g., policy

transfer with other divergence regularizations for stochastic policies) in the future.

Moreover, I observe that the proposed approach benefits especially when the

dataset quality is low which is often the case with real-world datasets. Despite
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this, the performance gap with the teacher is still high (in the low-quality data

regime) and this suggests more tailored approaches are required.

6.1 Future Work

Let us now spend some time understanding what are some interesting business

problems that might spur new research directions in the future.

Assisted Learning Consider a small business entity that wants to deploy a spe-

cialized machine-learning model. For example, it could be an online store that wants

to provide better search suggestions based on the users’ inputs. It could be a small

lender that operates in a niche lending market (debt consolidation or refinancing

loans for very low credit score customers) that wants to predict that a new user

defaults on the loan. It could be a small chain of retail stores (with a physical and

online presence) that wants to forecast demand and stockpile an inventory distributed

across its stores. It could be a new healthcare company that wants to integrate AI

assistance to its radiologists. It could be a service company that provides Interactive

Voice Response System for regional languages that require speech recognition for the

respective language. It could a chatbot provider for mobile applications in a regional

language. For example, India has 20+ officially recognized languages and there is a

considerable user base for each regional language. A large multinational corporation

that specializes in state-of-the-art chatbot services (in major languages like English,

French, and Spanish) may not have the incentive and expertise to adapt its services

to different regional languages. On the other hand, a small regional language chatbot

provider may not have the huge data corpus (from previous interactions with millions
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of users) that the larger corporation has. Note that the large corporation’s model may

not work directly for the smaller corporation.

In such cases, the entity concerned here is neither too big to have tonnes of data that

can provide sharp insights, nor too small to ignore. Especially, if the entity is relatively

new, it lacks a lot of historical data. However, there are larger corporations for each

of these examples, that have huge amounts of data which the corporations are already

monetizing by incorporating ML models for predictions, pattern recognition, etc. The

larger corporation in question here can be a consortium of smaller companies/entities

that collaborate together to train better models. For the scope of this discussion,

we consider it to be a single entity that has huge amounts of data and an already

trained model that performs relatively well for the larger corporation. The business

opportunity here is that the larger entity can monetize its data/trained model (without

actually competing in the smaller market) and the smaller entity can use the larger

entity’s model/data to benefit itself by paying some cost. Please note that the data

and the model of the large entity are considered to be private, so they can not be

shared with the smaller entity.

One business model is to provide an API to serve the smaller business where the

smaller business pays per prediction to use the API. However, it has several drawbacks.

• The model for the large entity may not specialize to the smaller business.

Consider the English chatbot with a Telugu chatbot. The high-level patterns of

interactions (between the users and the chatbot) remain the same in a semantic

space, but not in the actual speech space.
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Figure 6.1: Illustration of Assisted Learning

• The smaller business may not want to reveal its data to the API and it may not

be economical for the business to keep paying the larger entity for its predictions.

Developing an in-house model may be cheaper.

[180] propose the assisted learning framework where the larger corporation provides

a service that helps the smaller entities to train on their private data. See Figure 6.2

for a connection to the theme of this work. Consider that the larger corporation has a

huge dataset DL = {(xi, yi)}NL
i=1 and a well trained model wL := (uL,vL) ∈ WL such

that uL ∈ UL and vL ∈ V. The smaller entity has a dataset DS = {(xi, yi)}NS
i=1 and

the model space of the smaller corporation is WS = (US,V). The assumption here is

that the latent space embedding dimension of both models is the same. The objective
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is to solve

arg min
uS∈US ,vs∈V

NS∑
i=1

F (wS,vS, xi, yi, P (wL, DL))

where P (wL, DL) is some private way to access the knowledge embedded inside

the model wL of the larger corporation and F is a function that incorporates this

knowledge into the training loss for the smaller entity. One example of P (wL, DL)

is to provide predictions on a data point that is available to both entities. Another

example could be to share the class conditional mean embeddings of the larger entity

with the smaller entity as in the FedCMA algorithm. See Figure 6.1 for an illustration

of the interaction between the corporations. Algorithm 6 in Section A.4.7 provides

an example algorithm for this assisted learning using the FedCMA prototype. From

the results in Section A.4.7, we observe that FedCMA is a suitable fit for the assisted

learning setup since FedCMA is designed to improve the generalization performance

of the users. While in FedCMA, we observed that aligning the conditional moments in

the latent space is sufficient, it is possible to improve the alignment process by using

higher moments as well which remains to be explored.

However, this business opportunity opens avenues to some interesting and broad

research problems on incentivizing users to participate in Federated Learning.

1. How should the new users/small business entities be charged for availing the

learning services?

2. How can a small business entity determine if the large entity’s model is indeed

useful before paying for the service?
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Appendix A: Chapter Two Proofs

A.1 Additional Preliminaries

MMD: Define a feature map ϕ : X → Hk where Hk is a reproducing kernel

Hilbert space (RKHS) endowed with a characteristic kernel k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩Hk
.

The Maximum Mean Discrepancy (MMD) between two distributions D,D′ is de-

fined as MMD(D,D′) =
∥∥∥Ex∼D[ϕ(x)] − Ex′∼D′ [ϕ(x′)]

∥∥∥
Hk

. The empirical estimate

of the MMD given two datasets D,D′ of size N each is given by MMD(D,D′) =

1
N

∑
xi,xj∈D k(xi, xj) +

1
N

∑
x′
i,x

′
j∈D′ k(x′

i, x
′
j) − 2

N

∑
xi∈D,x′

j∈D′ k(xi, x
′
j). When ϕ is an

identity map, minimizing the MMD is equivalent to minimizing the first order moments

and when ϕ is a gaussian kernel, then it is equivalent to minimizing all moments. In

this work, we consider minimizing the distance between the first order moments (and

the algorithm/analysis can be easily extended to a gaussian kernel case).

A.2 Convergence Results

Let us denote a = ({wi}Mi=1, v̄, e) and we can write the global objective as

argmin
a

Φ(a) := arg min
{wi}Mi=1,v̄,ē

M∑
i=1

Φ(wi, v̄, e). (A.1)
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(Local update)
{
w(i,t+1) = w(i,t) − η(t)∇wi

Φ̂i(w(i,t), v̄(t), e(t)); (A.2)

(Global update)


v̄(t+1) = v̄(t)(1− λ1η(t)) + λ1η(t)

(∑M
i=1 piv(i,t)

)
;

ek(t+1) = ek(t)(1− λ2η(t)) + λ2η(t)

(∑M
i=1 p

k
i e

k
i

(
u(i,t)

))
,

(A.3)

Let us restate the assumptions for completeness.

Assumption 10. The local loss functions {Li(wi)}Ni=1 are βl Lipschitz continuous,

and βs smooth in wi. Note that ∥wi∥2 = ∥ui,vi∥2 = ∥ui∥+ ∥vi∥. The loss functions

Li are lower bounded uniformly by a scalar Linf .

Assumption 11. The function gi(ui, x) is βe Lipschitz continuous and βg smooth

∀i ∈ [M ] with respect to ui. Moreover, we assume that gi(ui, x) ∈ [0, 1]de ,∀i.

Assumption 12. The empirical gradient is an unbiased gradient of the popula-

tion loss i.e., E[∇aΦ̂({wi}Mi=1, v̄, e)] = ∇aΦ({wi}Mi=1, v̄, e). The variance of the

stochastic gradient is bounded, i.e., E
[∥∥∥∇aΦ̂({wi}Mi=1, v̄, e)−∇aΦ({wi}Mi=1, v̄, e)

∥∥∥2] ≤
G1

∥∥∥∇aΦ({wi}Mi=1, v̄, e)
∥∥∥2 +G2

2.

A.2.1 Proof of Convergence Result

We now state some useful lemmas towards showing the convergence of the proposed

algorithm. Unless otherwise specified, ∥·∥ is ∥·∥2 for vectors and ∥·∥F for matrices.

When we consider a, we assume that all {wi}Mi=1, v̄, e are vectorized and concatenated

such that a ∈ RMdi+2(de+1)K .

Lemma 13. When Assumptions 10,11 are satisfied, the function Φ(a) is C0−smooth

function wrt a with C0 =
(
βs + λ2Kβe(βe + 1) + λ2Kβg

√
de + 4λ1 +

√
Kλ2(1 + βe)

)
.
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Proof. We will show that Φ(a) is smooth wrt a by showing that ∇aΦ is Lipschitz,

i.e. ∥∇aΦ(a) − ∇aΦ(a
′)∥ ≤ C0∥a − a′∥. Consider a = ({wi}Mi=1, v̄, e) and a′ =

{w′
i}Mi=1, v̄

′, e′. To show this, we need to show that ∇Φ is Lipschitz with respect to

{wi}Mi=1, v̄ and e.

Firstly, observe that∇ekΦ({wi}Mi=1, v̄, e) = λ2

∑M
i=1

pki
bki

∑
x∈Bk

i
(gi(ui, x)−ek). Clearly,

∥∇ekΦ(a)−∇ekΦ(a
′)∥ ≤ λ2∥e− e′∥+

M∑
i=1

∑
x∈Bk

i

λ2p
k
i

bki
∥gi(ui, x)− gi(u

′
i, x)∥

≤ λ2(∥e− e′∥+ βe∥ui − u′
i∥) ≤ λ2(1 + βe)∥a− a′∥.

where the second inequality follows from the Lipschitz property of gi in Assumption 11,

and since ∥ek − e
′k∥ ≤ ∥e− e′∥ ≤ ∥a− a′∥ and ∥ui − u′

i∥ ≤ ∥a− a′∥. Therefore, we

can write

∥∇eΦ(a)−∇eΦ(a
′)∥2 =

K∑
k=1

∥∇ekΦ(a)−∇ekΦ(a
′)∥2 ≤ Kλ2

2(1 + βe)
2∥a− a′∥2.

(A.4)

Therefore, Φ is smooth in e with parameter λ2(1 + βe)
√
K. Similarly, consider

∇v̄Φ(a) =
∑M

i=1 piλ1(v̄ − vi). Therefore,

∥∇v̄Φ(a)−∇v̄Φ(a
′)∥ ≤ λ1∥v̄ − v̄′∥+ λ1

M∑
i=1

pi∥vi − v′
i∥ ≤ 2λ1∥a− a′∥, (A.5)

since ∥v̄ − v̄′∥ ≤ ∥a− a′∥ and ∥vi − v′
i∥ ≤ ∥a− a′∥. Therefore Φ is 2λ1 smooth in v̄.

Now, let us show that Φ is smooth in every wi. Clearly, ∇wi
Φ(a) = ∇wi

Φi(wi, v̄, e).

Therefore, let us consider smoothness of Φi with respect to wi. Since wi = (ui,vi),

note that

∇wi
Φi(wi, v̄i, e)

= pi∇wi
Li(wi) +∇wi

(
pi
λ1

2
∥vi − v̄∥2 + λ2

2

K∑
k=1

∑
x∈Bk

i

pki
bki
∥gi(ui, x)− ek∥2

)

= pi∇wi
Li(wi) +

[
∇ui

(
λ2

2

∑K
k=1

∑
x∈Bk

i

pki
bki
∥gi(ui, x)− ek∥2

)
pi∇vi

(
λ1

2
∥vi − v̄∥2

) ]
.

(A.6)
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We know from the smoothness of Li from Assumption 10 that ∥∇wi
Li(wi) −

∇wi
Li(w

′
i)∥ ≤ βs∥wi − w′

i∥. Also, it is easy to note that ∥∇vi

(
λ1

2
∥vi − v̄∥2

)
−

∇vi

(
λ1

2
∥v′

i − v̄′∥2
)
∥ ≤ (λ1∥vi − v′

i∥+ ∥v̄ − v̄′∥) ≤ 2λ1∥a− a′∥.

Now consider the term

∇ui

(λ2

2

K∑
k=1

∑
x∈Bk

i

pki
bki
∥gi(ui, x)− ek∥2

)
=

K∑
k=1

∑
x∈Bk

i

λ2p
k
i

bki
∇ui

gi(ui, x)
T (gi(ui, x)− ek).

We can write∥∥∥∇ui
gi(ui, x)

T (gi(ui, x)− ek)−∇ui
gi(u

′
i, x)

T (gi(u
′
i, x)− e

′k)
∥∥∥

(i)

≤
∥∥∥∇ui

gi(ui, x)
T (gi(ui, x)− ek)−∇ui

gi(ui, x)
T (gi(u

′
i, x)− e

′k)
∥∥∥

+
∥∥∥∇ui

gi(ui, x)
T (gi(u

′
i, x)− e

′k)−∇ui
gi(u

′
i, x)

T (gi(u
′
i, x)− e

′k)
∥∥∥

(ii)

≤ ∥∇ui
gi(ui, x)∥∥(gi(ui, x)− ek)− (gi(u

′
i, x)− e

′k)∥

+ ∥∇ui
gi(ui, x)

T −∇ui
gi(u

′
i, x)∥∥(gi(u′

i, x)− e
′k)∥

(iii)

≤ βe(βe∥ui − u′
i∥+ ∥e− e′∥) + βg∥ui − u′

i∥
√
de

(iv)

≤
(
βe(βe + 1) + βg

√
de

)
∥a− a′∥.

(A.7)

where (i) follows from adding and subtracting a term and applying triangle inequality,

(ii) follows from submultiplicativity of the norm, (iii) follows from the smoothness and

Lipschitz properties of gi from Assumption 11 and that gi(ui, x), e
k ∈ [0, 1]de , and (iv)

follows because ∥ui − u′
i∥ ≤ ∥a− a′∥.

Substituting these smoothness results in (A.6), we get∥∥∥∇wi
Φi(wi, v̄, e)−∇wi

Φi(w
′
i, v̄

′, e′)
∥∥∥

≤ βs∥ai − a′
i∥+ λ2K

(
βe(βe + 1) + βg

√
de

)
∥a− a′∥+ 2λ1∥a− a′∥

≤ (βs + λ2Kβe(βe + 1) + λ2Kβg

√
de + 2λ1)∥a− a′∥.

(A.8)

Therefore, finally from (A.4), (A.5), (A.8), we have
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∥∥∥∇aΦ(a)−∇aΦ(a
′)
∥∥∥

≤
M∑
i=1

∥∥∥∇wi
Φ(a)−∇wi

Φ(a′)
∥∥∥+ ∥∇v̄Φ(a)−∇v̄Φ(a

′)∥+ ∥∇eΦ(a)−∇eΦ(a
′)∥

≤
(
(βs + λ2Kβe(βe + 1) + λ2Kβg

√
de + 2λ1) + 2λ1 +

√
Kλ2(1 + βe)

)
∥a− a′∥.

(A.9)

Hence, Φ is C0-smooth in a.

Note that, we use boundedness of gi(ui, x), e
k in (A.7)(iii) to show that this

term is smooth. However, it is not necessary to assume that gi(ui, x) is bounded in

Assumption 11. Instead, we can modify the loss as

Φi(wi, v̄, e) = Li(wi) +
λ1

2
pi

∥∥∥vi − v̄
∥∥∥2
2
+

λ2

2

K∑
k=1

pki
bki

∑
x∈Bk

i

∥∥∥σ(gi(ui, x)
)
− ek

∥∥∥2
2
, (A.10)

where σ(x) = 1
1+e−x is the element wise sigmoid function with values in [0, 1]. The

update equation in (A.3) then becomes

ek(t+1) = ek(t)(1− λ2η(t)) + λ2η(t)

(
M∑
i=1

pki
bki

∑
x∈Bk

i

σ
(
gi(u(i,t), x)

))
.

The smoothness result in (A.7) follows with a little more effort.

Lemma 14. When Assumptions 10, 11, 12 are satisfied, we have

eq ≤ Φ(a(t))−

(
η(t) −

η2(t)C0(G1 + 1)

2

)
∥∇aΦ(a(t))∥2 +

η2(t)C0G
2
2

2
(A.11)

where Ft is a filtration accounting for the randomness (in sampling the mini-batches)

until time t.

Proof. Using the smoothness property of Φ from Lemma 13, we can write

Φ
(
a(t+1)

)
≤ Φ

(
a(t)

)
+∇aΦ(a(t))

T
(
a(t+1) − a(t)

)
+

C0

2
∥a(t+1) − a(t)∥2.
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Taking expectation with respect to randomness at time t, we get

E
[
Φ(a(t+1))|Ft

]
≤ Φ(a(t)) + E

[
∇aΦ(a(t))

T
(
a(t+1) − a(t)

)
|Ft

]
+

C0

2
E
[
∥a(t+1) − a(t)∥2|Ft

]
≤ Φ(a(t))− η(t)∇aΦ(a(t))

TE
[
∇aΦ̂(a(t))|Ft

]
+

η2(t)C0

2
E
[
∥∇aΦ̂(a(t))∥2|Ft

]
≤ Φ(a(t))− η(t)∥∇aΦ(a(t))∥2 +

η2(t)C0

2

(
E
[
∥∇aΦ̂(a(t))−∇aΦ(a(t))∥2|Ft

]
+ ∥∇aΦ(a(t))∥2

)
≤ Φ(a(t))− η(t)∥∇aΦ(a(t))∥2 +

η2(t)C0

2

(
(G1 + 1)∥∇aΦ(a(t))∥2 +G2

)
≤ Φ(a(t))−

(
η(t) −

η2(t)C0(G1 + 1)

2

)
∥∇aΦ(a(t))∥2 +

η2(t)C0G
2
2

2

(A.12)

where the second inequality follows from the update rule and the third inequality

follows from Assumption 12.

We state the theorem here for completeness.

Theorem 7. Let Assumptions 10, 11, and 12 hold and run the algorithm with T

timesteps. If we chose a constant learning rate η =
√

2C1

TC0G2
2
that satisfies 0 < η ≤

min
{

1
λ1
, 1
λ2
, 1
C0(G1+1)

}
, where E[Φ(a(1))]−E[Φ(a(T ))] ≤ E[Φ(a(1))]−Φ∗ ≤ C1, and C0

is as defined in Lemma 13, then we have mint:1,··· ,T E
[
∥∇aΦ(a(t)∥2

]
≤
√

2C1C0G2
2

T
.

Proof. Taking expectation on both sides of (A.12) from Lemma 14 and since ηC0(G1+1)
2

≤

1
2
, we have

E
[
Φ(a(t+1))

]
≤ E

[
Φ(a(t))

]
− η

2
E
[
∥∇aΦ(a(t))∥2

]
+

η2(t)C0G
2
2

2
.

By summation over t = 1 to T followed by telescoping the sum and rearranging, we

can write
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T∑
t=1

η

2
E[∥∇aΦ(a(t))∥2] ≤ E[Φ(a(1))]− E[Φ(a(T ))] +

T∑
t=1

η2
(C0G

2
2

2

)
.

Choosing a constant learning rate η and dividing both sides by T , we get

T∑
t=1

E[∥∇aΦ(a(t))∥2]
T

≤
2
(
E[Φ(a(1))])− E[Φ(a(T ))]

)
ηT

+ ηC0G
2
2.

Now, if E[Φ(a(1))]−E[Φ(a(T ))] ≤ E[Φ(a(1))]−Φ∗ ≤ C1, we can choose η =
√

2C1

TC0G2
2

which results in convergence to a first order stationary point with a rate of 1√
T
.

Observe that the rate depends on C0 where C0 =
(
βs+λ2Kβe(βe+1)+λ2Kβg

√
de+

4λ1 +
√
Kλ2(1 + βe)

)
. For non-zero values of λ1 and λ2, the convergence rate gets

affected. For non-zero values of λ2 (the moment alignment term), the convergence rate

slows down for high values of K and de. We study the performance of the algorithm

by varying the size of the embedding dimension de in the experimental section.

A.2.2 Continuing FL in the latent space

Let
(
{(u∗

i ,v
∗
i )}Mi=1, v̄

∗, e∗
)
be the output from solving (2.8). We now freeze the

representation functions {u∗
i }Mi=1 for all the clients. For every dataset Di = {xj, yj}Ni

j=1,

we define a projected dataset D̃i = {
(
zj, yj

)
|zj = gi(u

∗
i , xj) ∀(xj, yj) ∈ Di}. We

now define the local objective as argminFi(v) :=
1
Ni

∑
(x,y)∈Di;z=gi(u∗

i ,x)
l(v, z, y). The

global objective is then defined as

argmin
v

F (v) :=
M∑
i=1

piFi(v). (A.13)

To solve (A.13), we initialize with v(i,0) = v̄∗, follow the FedAvg algorithm [61] and

update the local weights v(i,t) at i−th worker and the global weights v as

v(i,t+τ+1) = v(i,t+τ) − η(t+τ)∇F̂i(v(i,t+τ), ξ(i,t+τ)); v(t+E) =
M∑
i=1

piv(i,t+E), (A.14)
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where τ is the local iteration number, ∇F̂i(v(i,t+τ), ξ(i,t+τ ) is the stochastic gradient at

time t+ τ by sampling a local minibatch ξ(i,t+τ) and η(t+τ) is the learning rate. After

every E local updates, the server aggregates the local weights and for simplicity, we

assume full device participation in updating the weights. After the global update,

the server assigns v(i,t+E) = v(t+E) to every client. Before stating the convergence

theorem, we make the following assumptions.

Assumption 13. The local loss functions Fi are all L−smooth and µ strongly convex

for all i ∈ [M ].

Assumption 14. The second moment of the stochastic gradients of the i− th worker

at time t is bounded as: E
[∥∥∥∇F̂i(v(i,t), ξ(i,t))−∇Fi(v(i,t))

∥∥∥2] ≤ σ2
i , for all i ∈ [M ].

Assumption 15. The expected squared norm of the stochastic gradients is uniformly

bounded as E
[∥∥∥∇F̂i(v(i,t), ξ(i,t))

∥∥∥2] ≤ G2 for all i ∈ [M ].

The problem we solve in (A.13) is convex since the cross entropy loss is convex

and we are only optimizing the final layer (classification) weights v (keeping the u∗
i

fixed). Moreover, we can assume that each local objective uses an L2 regularization

term, thus satisfying strong convexity. The Assumptions 13, 14, 15 are standard for

analyzing FedAvg for non-iid scenarios [61].

Definition 5 ([61]). Let F ∗, F ∗
i be the minimum values of F and Fi respectively. The

degree of non-iid (heterogeneity) is defined as Γ = F ∗ −
∑M

i=1 piF
∗
i .

When the data D̃i are all i.i.d, then the degree of heterogeneity Γ goes to zero

as the sample size increases. Here, the degree of heterogeneity between {D̃i}Mi=1 is

determined by the degree of heterogeneity between {Di}Mi=1 and the learned {u∗
i }Mi=1.

We now state the convergence theorem.

144



Theorem 8 (Theorem 1 [61]). Let Assumptions 13 to 15 hold and L, µ, σi, G be defined

therein. Choose κ = L
µ
, γ = max{8κ,E} and the learning rate η(t) =

2
µ(γ+t)

. Then

solving (A.14) with full client participation satisfies E[F (v(T ))] − F ∗ ≤ κ
γ+T−1

(
2B
µ
+

µγ
2
E[∥v̄∗ − v∗∥2]

)
, where B =

∑M
i=1 p

2
iσ

2
i + 6LΓ + 8(E − 1)2G2, v∗ is the unique

minimizer of (A.13).

Theorem 8 states that applying FedAvg to the problem (A.13), the resultant iterate

v(T ) convergences with a rate of O( 1
T
). The faster rate compared to Theorem 7 is due

to the simplification of the problem to the strongly convex case by freezing the {ui}Mi=1.

Moreover, unlike Theorem 7, where the algorithm converges to a local optima, here

the convergence is to the global optimum of (A.13). However, (A.13) itself depends

on the frozen representations at which the latent space training took place. The rate

of convergence slows with higher values of Γ, thus implying that the frozen {u∗
i }

from solving (2.8) also play a role in the convergence of v(T ). Also, observe that the

convergence rate depends on ∥v̄∗ − v∗∥2. Suppose, the freezing is done when ui are

far away from minimizing (2.8), then v̄∗ is also far away from the optimal point and

therefore it slows down convergence. Note that, while this dependence on u∗
i is not

desirable from the convergence perspective, we want to highlight that we are dealing

with model heterogeneity and this decoupling of ui,vi is required to show a reasonable

generalization result.

A.3 Generalization Result

A.3.1 Preliminaries

For this section, we consider the space Z as the input space and consider the

prediction function h(v, ·) : Z → Y for v ∈ V. We first present the divergence
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between two distributions for a given model space. Note that, the notation is slightly

changed to be consistent with the rest of the notation in this paper. This divergence

is presented in [44] as H− divergence.

Definition 6 ([44]). Let AV be the set of subsets of Z that are the support of some

model in V, i.e., AV = {B ⊂ Z : ∀z ∈ B, h(v, z) = 1}. Given two distributions D,D′

on Z, we define

dV(D,D′) = 2 sup
A∈AV

|PD[A]− PD′ [A]| = 2 sup
v∈V
|PD[I(h(v, ·))]− PD′ [I(h(v, ·))]|.

where I is the indicator function.

From the above definition for H− divergence, we can similarly write the divergence

between two induced distributions D̃1(u1), D̃2(u2) induced by two different represen-

tation functions u1,u2 respectively as dV(D̃1(u1), D̃2(u2)) = 2 supA∈AV
|PD̃1(u1)

[A]−

PD̃2(u2)
[A]|.

Definition 7 (Symmetric Hypothesis space). Given a hypothesis space/model space

V, we define the symmetric hypothesis space V∆V as follows

g ∈ V∆V ⇐⇒ g(z) = h(v, z)⊕ h(v′, z), for some v,v′ ∈ V .

The indicator function of such g is the set of all z ∈ Z where v,v′ disagree.

We can now derive the relation between the difference in loss on two distributions

and the divergence between the distributions as follows.

Lemma 15. For v,v′ ∈ V, given two distributions D1,D2 and the respective represen-

tation functions u1,u2, we have |L1,u1(v,v
′)− L2,u2(v,v

′)| ≤ 1
2
dV∆V

(
D̃1(u1), D̃2(u2)

)
.
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Proof. Recall that L1,u1(v,v
′) = Ez∼D̃1(u1)

[
|h(v, z)− h(v′, z)|

]
. Therefore,

|L1,u1(v,v
′)− L2,u2(v,v

′)|

=

∣∣∣∣∣Ez∼D̃1(u1)

[
|h(v, z)− h(v′, z)|

]
− Ez∼D̃2(u2)

[
|h(v, z)− h(v′, z)|

]∣∣∣∣∣
=

∣∣∣∣∣PD̃1(u1)

[
I{z:h(v,z) ̸=h(v′,z)}

]
− PD̃2(u2)

[
I{z:h(v,z)̸=h(v′,z)}

]∣∣∣∣∣
≤ sup

g∈V∆V

∣∣∣∣∣PD̃1(u1)

[
I(g)

]
− PD̃2(u2)

[
I(g)

]∣∣∣∣∣
=

1

2
dV∆V(D̃1(u1), D̃2(u2)).

The first two equalities follow from the definition. The inequality follows from the

definition of the symmetric difference hypothesis space and taking a supremum.

The following result gives a uniform convergence bound for the empirical weighted

error across multiple sources relative to the true error.

Lemma 16 ([58]). For each i ∈ {1, · · · ,M}, let Di be a labeled sample of size βiN

generated by drawing βiN points from Di and labeling them according to c. For any

fixed weight vector ααα, let L̂ααα(w) be the empirical α-weighted error of some fixed model

w on this sample, and let Lααα(w) be the true α−weighted error. Then for any δ ∈ (0, 1),

with probability at least 1− δ,

P
[
|L̂ααα(w)− Lααα(w)| ≥ ϵ

]
≤ 2 exp

(
−2Nϵ2∑N

i=1
α2
i

βi

)
.

The following result provides a way to empirically estimate the dV∆V divergence

based on the data samples.

Lemma 17 ([44],[58]). Let V be a hypothesis space on Z with VC dimension dV . If

U and U ′ are samples of size n from D and D′ (two distributions in the space Z)

147



respectively. Then, for any δ ∈ (0, 1) with probability at least 1− δ,

dV∆V(D,D′) ≤ 2
(
1−min

v∈V

[ 1
n

∑
z:h(v,z)=0

I[x ∈ U ] + 1

n

∑
z:h(v,z)=1

I[x ∈ U ′]
])

+ 4

√
dV log(2n) + log(2

δ
)

n
.

We train a classifier to identify the distribution to which the data points belong.

The divergence term is large, when the learnt function is able to classify properly

between the distributions, and the divergence term is small when we are unable to

learn a hypothesis that can distinguish between the distributions. We generalize this

result to multiple number of clients and show the results in Fig 9 of main paper.

[49] provides a relation between the dH∆H divergence and two sample testing using

MMD in Theorem 1 (eq 11). However, the bound appears vacuous, since the risk is

bounded by 1 but there is a term with value 2 in eq 11.

A.3.2 Proof of main result

The generalization result for the model homogeneous case is a special case of the

result for the heterogeneous case where ui = u, ∀i ∈ [M ]. Therefore, we only show

the proof for the model heterogeneous case. We now state the Theorem formally.

Theorem 9. For private representations {ui}Mi=1 and j as the target, let v̂ =

argminv∈V L̂ααα(v) and v∗
j = argminv∈V Lj,uj

(v, c̃uj
) be the minimizer of the true target

risk. Then for any δ > 0, w.p. > 1− δ, we have

Lj,uj
(v̂, c̃uj

)− Lj,uj
(v∗

j , c̃uj
) ≤ 4

√√√√ M∑
i=1

α2
i

pi

√
2dV log(2(N + 1)) + log(8

δ
)

N

)

+ 2
(
λα +

1

2

M∑
i=1

αidV∆V(D̃i(ui), D̃j(uj))
)
,
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where λα =
∑M

i=1 αimin
{
Ez∈D̃i(ui)

[
|c̃ui

(z)− c̃uj
(z)|
]
,Ez∈D̃j(uj)

[
|c̃ui

(z)− c̃uj
(z)|
]}

.

Proof. The proof follows that of Theorem 4 in [58] with some changes. Note that, we

have induced distributions D̃i(ui) instead of the actual distributions Di. We write

the result in terms of the induced distributions using Lemma 15 as follows. For every

i ∈ [M ], we have ∀v ∈ V ,

Lj,uj
(v, c̃uj

) ≤ Li,ui
(v, c̃uj

) +
1

2
dV∆V

(
D̃j(uj), D̃i(ui)

)
≤ Li,ui

(v, c̃ui
) + Li,ui

(c̃ui
, c̃uj

) +
1

2
dV∆V

(
D̃j(uj), D̃i(ui)

)
,

where the first inequality follows from Lemma 15 and second inequality follows from

triangle inequality. Similarly, by first using the triangle inequality and then Lemma 15,

we can write,

Lj,uj
(v, c̃uj

) ≤ Li,ui
(v, c̃ui

) + Lj,uj
(c̃ui

, c̃uj
) +

1

2
dV∆V

(
D̃j(uj), D̃i(ui)

)
.

Therefore, combining both the equations, we have

Lj,uj
(v) ≤ Li,ui

(v) + min{Lj,uj
(c̃ui

, c̃uj
), Li,ui

(c̃ui
, c̃uj

)}+ 1

2
dV∆V

(
D̃j(uj), D̃i(ui)

)
.

(A.15)

This is similar to (2) in the main paper, but we have the induced distributions

and the induced labeling functions with respect to the private representations {ui}Mi=1.

This gives us the freedom to interpret the bounds in terms of the private representation

functions of every client.

Now, we have

∣∣Lj,uj
(v)− Lααα(v)

∣∣ = ∣∣Lj,uj
(v)−

M∑
i=1

αiLi,ui
(v)
∣∣ ≤ M∑

i=1

αi

∣∣Lj,uj
(v)− Li,ui

(v)
∣∣,
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and substituting (A.15), we get

∣∣Lj,uj
(v)− Lααα(v)

∣∣ ≤ M∑
i=1

αimin{Lj,uj
(c̃ui

, c̃uj
), Li,ui

(c̃ui
, c̃uj

)}︸ ︷︷ ︸
A

+
1

2

M∑
i=1

αi dV∆V
(
D̃j(uj), D̃i(ui)

)
︸ ︷︷ ︸

B

(A.16)

Now, taking the one side inequality, we get

Lj,uj
(v) ≤ Lααα(v) + A+

B

2
, (A.17)

and now we apply the usual recipe for uniform convergence for empirical risk minimizers

(apply Lemma 16 to the Lααα(v) term and bound the growth function using the VC

dimension dV). We get for δ ∈ (0, 1), with probability > 1− δ/2,

Lj,uj
(v) ≤ L̂ααα(v) + 2

√√√√ M∑
i=1

α2
i

pi

(
2dV log(2(N + 1)) + log(8

δ
)

N

)
+ A+

B

2
. (A.18)

Suppose αi = pi, the bound can be written as (ignoring log terms)

Lj,uj
(v) ≤ L̂ααα(v) + 2O

(√
log(1

δ
)

N

)
+ A+

B

2
.

This bound shows us that, if we have good private representations {ui}Mi=1, such that

the terms A and B are small, then one can achieve a good generalization error by solving

for v̂ = argminv∈V L̂ααα(v) where L̂ααα(v) =
∑M

i=1 αiL̂i,ui
(v, c̃ui

). Compare this with the

results in equations (3, 4) in the main paper; we allow model heterogeneity which is

not possible in (3) and we show the 1√
N

dependence which is not shown in (4). The

minimize the bound in (3), we solve argminw∈W L̂ααα(
∑M

i=1 αiwi). However, since the

objective is non-convex, it is not possible to guarantee convergence to a global optima.
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However, while solving for argminv∈V L̂ααα(v), we have fixed representation weights

{ui}Mi=1 which allows us to transform the problem into a strongly-convex objective

(refer to Section A.2.2) which can guarantee the convergence of argminv∈V L̂ααα(v) to

the global minima.

We shall now show the bound in terms of v∗
j := argminv∈V Lααα(v) which is the

minimizer (in the latent space) of the combined induced true risk (due to the private

representations {vi}Mi=1). Since v̂ is the empirical minimizer of L̂ααα, we have L̂ααα(v̂) ≤

L̂ααα(v
∗
j ), then with probability > 1− δ/2,

Lj,uj
(v̂) ≤ L̂ααα(v

∗
j ) + 2

√√√√ M∑
i=1

α2
i

pi

(
2dV log(2(N + 1)) + log(8

δ
)

N

)
+ A+

B

2
.

Applying Lemma 16 again to L̂ααα(v
∗
j ), with probability > 1− δ,

Lj,uj
(v̂) ≤ Lααα(v

∗
j ) + 4

√√√√ M∑
i=1

α2
i

pi

(
2dV log(2(N + 1)) + log(8

δ
)

N

)
+ A+

B

2
.

Finally, substituting v∗
j in (A.16) (taking the one sided inequality), we get with

probability > 1− δ,

Lj,uj
(v̂) ≤ Lj,uj

(v∗
j ) + 4

√√√√ M∑
i=1

α2
i

pi

(
2dV log(2(N + 1)) + log(8

δ
)

N

)
+ 2A+B.

The proof is complete.

Please note that, in the result, we show the error Lj,uj
(v̂) relative to the true

error (induced by uj) Lj,uj
(v∗

j ). However, Lj,uj
(v∗

j ) may not be optimal if uj is not

a good representation. Let w∗ = argminLj(w) where w∗ := (u∗
j ,v

∗∗
j ). Then, using
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Lemma 15, we can write,

Lj,uj
(v∗

j , c̃u∗
j
)− Lj,u∗

j
(v∗

j , c̃u∗
j
) ≤ 1

2
dV∆V

(
D̃j(uj), D̃j(u

∗
j)
)

(A.19)

Lj,uj
(v∗

j , c̃u∗
j
) ≤ Lj,u∗

j
(v∗

j , c̃u∗
j
) +

1

2
dV∆V

(
D̃j(uj), D̃j(u

∗
j)
)

(A.20)

Lj,uj
(v∗

j , c̃uj
) ≤ Lj,u∗

j
(v∗

j , c̃u∗
j
) + Lj,uj

(c̃uj
, c̃u∗

j
) (A.21)

+
1

2
dV∆V

(
D̃j(uj), D̃j(u

∗
j)
)
. (A.22)

The first inequality follows from Lemma 15, the third inequality follows from triangle

inequality. Therefore, we can write the result of the theorem as, with probability at

least 1− δ,

Lj,uj
(v̂) ≤ Lj,u∗

j
(v∗

j , c̃u∗
j
)︸ ︷︷ ︸

True error

+ Lj,uj
(c̃uj

, c̃u∗
j
)︸ ︷︷ ︸

distance between labeling functions induced by uj ,u∗
j

+
1

2
dV∆V

(
D̃j(uj), D̃j(u

∗
j)
)

︸ ︷︷ ︸
divergence between distributions induced by uj ,u∗

j

+ 4O

(√
log 1

δ

N

)
+ 2A+B.

This shows that, the representations should be learnt such that uj is closer to u∗
j

and also to minimize the term B.

A.4 Experiments

In this section, we explain the experimental setup and provide additional analysis

to understand the algorithm. Specifically, we aim to answer the following questions.

1. Is there an advantage of minimizing MMD on the conditional distributions

instead of the marginal distributions? See Section A.4.2.
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2. Is communicating both v̄ and e with the server important for the improved

performance? What happens if only one of them is communicated? See Sec-

tion A.4.3.

3. How does the dimension de of the embedding space affect the algorithm? See

Section A.4.5.

Before we address these questions, we first describe the experimental setup and the

choice of the hyperparameters in Section A.4.1. We will revisit some of these questions

again for the synthetic data experiments and provide a more thorough summary in

Section A.4.6.

A.4.1 Experimental Setup
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Figure A.1: Dirichlet non-iid split for 20 workers for different values of α

MNIST, EMNIST, FEMNIST

In this section, we provide the setup for comparing Fed-CMA with FedGen,

FedAvg and Local training. We follow the training setup of FedGen [40] available

at https://github.com/zhuangdizhu/FedGen. FedGen uses a batch size of 32 and

performs 20 local iterations at every client before the global round. For MNIST
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Figure A.2: Dirichlet non-iid split for 50 workers for different values of α

and EMNIST, we only consider 20 clients, and assume full client participation. For

FEMNIST however, we assume that roughly 50% of the 923 clients participate at

every round. We follow the same architecture used in FedGen here: Conv2d(6,3,2)−

BatchNorm2d() − ReLU − Conv2d(16,3,2) − BatchNorm2d() − ReLU − Flatten −

Linear(784,32)− Linear(32,10). Here the latent space dimension is 32. Note that

all the users have the same architecture in this experiment (following FedGen) but the

users do not share the feature extractor weights and can only share the classification

layer (i.e.,Linear(32,10)). We run every algorithm for 400 global iterations and three

random seeds. We present the results of our experiments in Table 2 of main paper.

To highlight that every algorithm only shares the final classification layer with the

server, we denote FedAvg-partial, FedGen-partial, FedCMA-partial. We also provide

a comparison of the runtimes and communication complexity for the algorithms in

Fig A.3. FedGen-partial takes the most time at both the server and user, because it

involves training a generator. Fed-CMA has only a small runtime overhead as compared

to FedAvg since we compute the class conditional mean embeddings and update the

global variables. FedGen-partial needs to communicate the generator between the

users and the server, whereas in Fed-CMA we only need to communicate the final layer
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Figure A.3: Comparison of runtimes and communication complexity of Fed-CMA , FedAvg-
partial and FedGen-partial.

weights and the mean embeddings resulting in an improved communication complexity.

Please note that while the convergence analysis uses one local update and one global

update simultaneously, in the experiments we consider multiple local updates per

global update. Showing the convergence result for the multiple local update case is

considered as future work.

CIFAR-10 comparison with pFedHN

For comparison with [63], we follow the same data split, model architecture and

hyperparameters followed in the pFedHN paper. While pFedHN considers just one

client is available at every communication round, we consider full client participation

for FedCMA and compare the amount of communication required during training.
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Despite needing full client availability, FedCMA requires much less communication as

compared to pFedHN.

CIFAR-10 with model heterogeneity

The open source code for pFedHN does not include training with model hetero-

geneity. Therefore, to perform empirical analysis for the model heterogeneous case, we

omit pFedHN and consider the following setup. To simulate data heterogeneity, we

follow [62] where a Dirichlet distribution DirM(α) is used to partition the CIFAR-10

dataset [181] among M clients for M ∈ {10, 20, 50, 100}. Larger values of α indicate a

more homogeneous distribution (Fig A.1,A.2). While allotting the train dataset to

each user, we allot 90% of the data as train data and 10% of the data as validation

data randomly uniformly. Note that the train data and validation data have the same

distribution which is different than the test distribution (since in the test distribution

all labels have equal number of data points).

In the experiments, we assume full user availability (i.e., every user participates

at every global update), however each user runs a different number of local updates

due to the difference in the size of the datasets. This simulates user heterogeneity in

terms of the number of local updates at every global update. In the implementation,

instead of weighing the local losses Li with pi, we give an equal weightage of 1
M

to

avoid changing the hyperparameters for every different choice of M,α, seed.

Each client’s test set is comprised of the original test data points for all the classes

in the client’s training set. To simulate model heterogeneity, we consider the four

networks: CNN1: Conv2D(3,6,5)−Conv2D(6,16,5)−Lin(400,120)−Lin(120,84)−

Lin(84,10), CNN2: Conv2D(3,6,5)−Conv2D(6,16,5)−Lin(400,84)−Lin(84,10),

MLP1: Lin(924,512)−Lin(512,84)−Lin(84,10), MLP2: Lin(924,256)−Lin(256,84)−
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Lin(84,10). In all the networks, we use sigmoid in the last but one layer to keep

the embeddings bounded and ReLU activation for all other layers. We consider two

setups: (i) Setup I clients use either CNN1 or CNN2 and (ii) Setup II clients use any

of the four networks at random, i.e., Setup I: the clients models ∈ {LeNet1, LeNet2}.

Setup II: the clients models ∈ {LeNet1, LeNet2, TwoLayer1, TwoLayer2}. For each

setup, we run Fed-CMA and local training in which the clients do not communicate.

We compute the average of the local classification accuracy of all the clients . We

repeat the experiments for three seeds and present the summary in Table A.1.

We can observe that for different levels of data heterogeneity, Fed-CMA outperforms

local training. The improvement achieved by Fed-CMA in Setup II is less due to

higher model heterogeneity since the capacity of the function class of CNNs and MLPs

are different and therefore the alignment of distributions in the latent space shared

between these networks is a tougher task than when the models consisted only of

CNNs. In Figure A.4a, we plot the histogram of improvement in classification accuracy

of every client (compared to local training) for Setup I with 100 clients and α = 0.1.

We observe that almost every client benefits from participating in the FL setup as

compared to training locally. Number of clients: In Figure A.4b, we measure

the norm of the updates in (A.3) to understand how fast a consensus is reached on

e and v̄ and we observe that as the number of clients increases, the norm of the

updates converges faster and to a smaller value showing the advantage of having more

clients in the setup. Communication: In KD based approaches (such as KT-pFL

[33] that communicate logits), the number of parameters communicated per client

per communication round is K × |P | where P is the public dataset (KT-pFL uses

|P | = 3000); for weight aggregation it is ≈ dim(Hi); and for Fed-CMA it is 2K × de.
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Setup I Setup II

M α Local Fed-CMA Local Fed-CMA

10 0.05 51.9 (0.6) 54.1 (0.8) 39.3 (12.6) 40.3 (13.0)
10 0.10 50.3 (0.2) 52.9 (0.5) 38.3 (12.6) 39.1 (13.3)

20 0.05 50.5 (0.1) 53.9 (0.9) 47.8 (0.9) 48.7 (1.1)
20 0.10 40.3 (1.9) 45.7 (1.9) 36.5 ( 1.2) 39.6 (0.9)

50 0.05 56.0 (0.4) 59.8 (0.2) 52.8 ( 0.7) 55.6 (0.8)
50 0.10 42.1 (0.3) 47.5 (0.4) 38.0 ( 1.0) 40.9 (0.9)

100 0.05 58.8 (0.4) 63.1 (0.3) 56.7 ( 0.3) 59.4 (0.4)
100 0.10 43.3 (0.1) 48.0 (0.1) 41.0 ( 0.4) 44.3 (0.5)

Table A.1: Summary of the results on CIFAR-10 dataset.

In general, de is much smaller than dim(Hi) and is comparable or smaller than |P |,

hence very little communication overhead for Fed-CMA .

We implemented Fed-CMA using Pytorch and can be easily used with other existing

algorithms. We used an Nvidia Quadro RTX 6000 GPU for the simulations, and the

GPU RAM required to run any experiment is less than 2GB and can be run on even

smaller GPUs. We simulate the distributed setup regarding dataset availability, but

run the user updates sequentially so that the experiments can finish on a single GPU

without requiring a cluster (since we run for different numbers of users upto 100). We

will include the data splits and the code upon acceptance. Please note that, we use

this experimental setup and use the CIFAR-10 dataset in all the experiments, unless

otherwise specified. For all other ablations in the next sections, we use the setting

with M = 20, α = 0.1, seed = 0, and Setup I model heterogeneity.
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To choose the hyperparameters, we selected the setup (M = 20, α = 0.1, seed = 0)

and used the model heterogeneous Setup I. We can this as the hyperparam setup. We

fixed the batch size for the experiments to be 256. We chose the learning rate as

0.01 by performing a grid search over [0.001, 0.01, 0.1] during Local only training and

selected the value with the best validation accuracy. These hyperparameters are then

fixed for all different setups (varying M,α, seed and for Setup I, II).

We chose Bk
i at the beginning by randomly sampling a mini-batch of size 256 from

the training dataset of each worker. Then we split the chosen minibatch for every class

k. We chose the values λ1, λ2 through hyperparameter selection by training Fed-CMA

for the hyperparam setup. We performed grid search over the values λ1 ∈ [0.5, 1, 5]

and λ2 ∈ [0.5, 1, 5]. We chose a different learning rate for the user model parameters

(η = 0.01) and the global variables v̄, e. The learning rate of λ1, denoted by ηλ1 is

fixed to be 0.2 and the learning rate of λ2, denoted by ηλ2 is fixed to be 0.18. These

values were chosen such that ηλ1λ1 ∈ [0, 1] and ηλ2λ2 ∈ [0, 1].. The values for λ1 and

λ2 are selected such that the average validation accuracy across all the clients is higher

(good classification accuracy) and simultaneously ∥et+1 − et∥, ∥v̄t+1 − v̄t∥ are small

(reach consensus on e, v̄). The selected values λ1 = 5.0, λ2 = 1.0 are used throughout

all the CIFAR-10 experiments in this paper.

A.4.2 Conditional Distribution Alignment vs Marginal Dis-
tribution Alignment

In this section, we shall examine the importance of performing conditional dis-

tribution alignment as compared to just aligning the marginal distributions of the

representations. For this experiment, we consider the setting with 20 users, α = 0.1,

and use the Setup I model heterogeneity. The rest of the experiment setup is the
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Figure A.4: (a) Histogram of per worker improvements for Setup I, (b) Norm of the global
updates

same as described in Section A.4.1, and we run only for one seed. From Table A.2, we

can observe that minimizing MMD on marginal distributions does not improve the

performance, whereas minimizing MMD on conditional distributions provides a boost

in performance.

#Clients α Average Accuracy

Conditional (Fed-CMA ) 20 0.1 47.16
Marginal 20 0.1 39.0
Local 20 0.1 41.6

Table A.2: Comparison of conditional distribution alignment and marginal alignment

A.4.3 Importance of v̄ and e

In this Section, we perform an ablation on sharing v̄ and e in Fed-CMA . We follow

the same experiment setup described in Section A.4.2. In the algorithm where v̄ is not
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#Clients α Average Accuracy

Fed-CMA 20 0.1 47.16
Fed-CMA (e) 20 0.1 39.56

Fed (v̄) 20 0.1 35.03
Local 20 0.1 41.6

Table A.3: Ablation on sharing only v̄ and only e.

shared (only e is shared), we only minimize the λ2

2

∑K
k=1

pki
bki

∑
x∈Bk

i

∥∥∥gi(ui, x) − ek
∥∥∥2
2

along with Li at each client. Note that v̄ is not updated at the global level since

it does not play any role. We denote this algorithm by Fed-CMA (e). Similarly, in

the algorithm where e is not shared (we only share v̄), we only minimize λ1∥v̄ − vi∥

at each client. We denote this algorithm Fed(v̄) since we are only sharing the final

classification layer weights. We compare these two algorithms with Fed-CMA and

Local training and present the results in Table A.3. We can observe that these two

algorithms perform poorly compared to Local training only. This is possible since, in

Fed (v̄), the latent space distributions of all the clients are not homogenized/aligned,

therefore learning a classifier for these heterogeneous distributions does not result in a

good classifier and the clients are better off not participating in the FL algorithm. In

the case of Fed-CMA (e), the latent space distributions are aligned, however the final

classification layer weights are not shared, therefore the clients do not have a chance

to improve their decision boundaries by using the classification weights of the other

clients. Note that in this case, the performance is slightly affected compared to Local

only training, and this may be avoided by a better choice of the hyperparameters.
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A.4.4 Pathogenic non-iid split

We present the results for a pathogenic non-iid split here. We sample 10% of the

CIFAR10 dataset and divide the dataset among two workers such that the first worker

gets classes 0,1,2,3,4 and the second worker gets classes 5,6,7,8,9. The following table

shows that even in this pathogenic non-iid scenario, FedCMA provides an improvement

over local only training.

Num Workers Local FedCMA

2 74.6 76

Table A.4: Pathogenic non-iid split

A.4.5 Dimension of the embedding space

The latent space plays an important role in aligning the conditional distributions

and subsequently learning the classification weights. Therefore, it is important to

understand what impact the latent space has on the algorithm, especially since we

are not sharing the feature extractor weights and the data is heterogeneous at all

clients. We vary the dimension de of the latent space and evaluate Fed-CMA and

Local training and present the results in Table A.5.

We also plot the norms of the updates to the global variables for different values of

the latent space dimension de, i.e., we plot ∥v̄t+1 − v̄t∥ and ∥et+1 − et∥. We observe

from Fig A.5, v̄ and e converge differently for different values of de. Norm of the

classifier update v̄: For higher values of de, the convergence is faster for v̄. In other

words, a richer space enables a faster convergence of the classification weights. Norm
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Algorithm 8 16 32 64 84 128 200

Fed-CMA 43.7 46.21 47.18 46.72 47.17 45.29 45.57
Local 36.69 37.72 40.37 41.22 41.61 41.93 41.84

Table A.5: Varying the dimension of embedding space

of the mean embeddings update e: For higher values of de, the convergence is

slower for e. In other words, it is easier to obtain a consensus on the mean embeddings

when the latent space is small. While a small latent space (small de) makes it easier to

push the mean embeddings closer, it may not lead to a good classification boundary

since the complexity of the hypothesis space is reduced, therefore the convergence of

the classification weights is slowed down. On the other hand, for a relatively large de,

the complexity of the hypothesis space is increased and the quality of the decision

boundaries increase making the convergence of v̄ faster. However, since the latent

space is now relatively larger, it becomes harder to bring the mean embeddings close to

each other, slowing down the convergence of e. This tradeoff in the convergence of the

global variables shows us that choosing the latent space dimension is very important

to the success of the algorithm. Note that, the performance of Fed-CMA is relatively

stable across all the different values of de chosen as compared to that of Local training

only.

A.4.6 Synthetic Data Experiments

We first generated four 2D Gaussian distributions with µ1 = (0, 2.5),Σ1 =

[(0.5, 0), (0, 1)], µ2 = (2.5, 0),Σ2 = [(1, 0), (0, 0.5)], µ3 = (−2, 2),Σ3 = [(1,−0.5), (−0.5, 1)]

and µ4 = (2, 2),Σ4 = [(0.5, 1), (1, 0.5)]. We consider each Gaussian distribution to be
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Figure A.5: Norm of the updates to v̄ and e for different values of the dimension of the
latent space de.

representing a class in a 4 class classification problem. The four classes are represented

using the symbols [+,x,-,.]. The data is then split across the four workers using

Dirichlet allocation as shown in Fig 4, 7 of the main paper. Note that, not all workers

have the data of all four labels. In some extreme cases, some workers may posses

very few data points of a particular class (see class - for Workers 2 & 3). We use

Linear(2,2)→ Linear(2,2)→ Linear(2,4) at every client for simplicity. We train

the algorithms for 3000 epochs. For every epoch, each worker has a different number

of iterations since the number of data points at every worker is different. At the end of

the epoch, the workers communicate with the server. We chose a learning rate of 0.1

and batch size of 64 for the synthetic experiments. We chose Bk
i at the beginning by

randomly sampling a mini-batch of size 256 from the training dataset of each worker.

Then we split the chosen minibatch for every class k. We chose λ1 = 0.01, λ2 = 1.0 for

Fed-CMA . The learning rates for v̄, e are chosen separately as 1
λ1
, 1
λ2

respectively. We

also train Fed-CMA (e) and Fed (v̄) similar to Section A.4.3 and present the results

in Table A.6.
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Num Workers Local Fed (v̄) Fed-CMA (e) Fed-CMA

4 53.15 (5.97) 52.65 (5.39) 55.58 (4.95) 58.44 (7.6)

Table A.6: Summary of Synthetic data experiments

(a) Local Training (b) Fed (v̄)

(c) Fed-CMA (e) (d) Fed-CMA

Figure A.6: Visualizing decision boundaries in latent space

Similar to the observations in Section A.4.3, we can see that sharing both e and v̄

is important to get a significant boost in performance. In this case however, Fed (v̄)

and Fed-CMA (e) perform better than Local training, but significantly worse than Fed-

CMA . In Figures A.6, we illustrate the decision boundaries learnt by the respective

clients. From Fig A.6a and A.6b, we can see that the latent space distributions of the
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clients are not aligned properly. In Fig A.6c, the latent space distributions are aligned,

however, since v̄ is not shared and the decision boundaries of every client are different

and are overfit to their local training data. In Fig A.6d, the decision boundaries also

align well along with the latent space distributions, thus resulting in a much better

overall decision boundary in the input space (see Fig 7 of main paper). Observe that,

for workers 2 & 3, even with very little data for the - class, the corresponding decision

boundary is well formed and aligns with that of worker 0 who has an abundance of -

class. Note that, for Fed (v̄), despite the latent space decision boundaries aligning

roughly, the input space decision boundaries are poorly formed since the latent space

distributions are not aligned.

A.4.7 Inference and adding new clients

Consider the inference problem at the edge. There is an existing federation of

some users which are trained together using FedCMA. Now, a new user is deployed

at the edge, which is previously not a part of the federation. In this case, the new

user model may be lying in a different space than the models of all the other users.

Therefore, the new user faces the inference challenge, since it needs the knowledge of

the trained models in the federation. Below, we shall propose a method to add a new

client to the federation, or transfer the knowledge of the federation to a new client for

inference.

For every new client that is added, the server first communicates the global mean

embeddings and the global final layer weights to the new client. The client then trains

locally using the proposed algorithm until the local mean embeddings are ϵ away from

the global mean embeddings (where ϵ is determined by the server based on the global
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training statistics). After this point, the client is free to participate in the federation.

The detailed algorithm is presented in Algorithm 6.

Below, we present results when new clients are added to the federation using the

CIFAR dataset setup in the previous section. For example, there are N − 2 clients

in the beginning of training and 2 new clients join towards the end of the training.

The 2 new clients train locally using the global mean embeddings and final layer

weights using the proposed algorithm (they do not communicate with each other or

with the server yet). From Table A.7, we see that, using the information provided

by the server, the new clients were able to significantly improve their performance as

compared to training locally. These results show that Fed-CMA is an effective way to

add new clients to a federation, and to efficiently transfer knowledge for inference at

the resource constrained edge.

Algorithm 6 Fed-CMA with new clients

1: Time steps T elapsed with existing clients [M ].
2: New Client M + 1 joins the federation.
3: Given: Mean embeddings {ek(T )}Kk=1 and final classification layer weights v̄(T )

4: Server: Broadcast {ek(T )}Kk=1 and v̄(T ) to client M +1. Send threshold parameters
ϵ1 and ϵ2.

5: At new client M + 1:
6: for t = 1, · · · , T do
7: Pick random minibatch ξ(t) from DM+1 and compute ∇Φ̂M+1.
8: Update w(M+1,t) according to (2.6)
9: Compute {ek(M+1,t)}Kk=1 using ekM+1 =

1
bkM+1

∑
x∈Bk

M+1
gM+1(u(M+1,t), x) for k ∈

[K].
10: Continue until:

∑K
k=1∥ek(M+1,t) − ek(T )∥2 ≤ ϵ1 and ∥v(M+1,t) − v̄(T )∥2 ≤ ϵ2.

11: end for
12: Join Federation and share with server: mean embeddings {ek(M+1,t)}Kk=1 and classi-

fication layer weights v(M+1,t).
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Num Workers (N) Local Fed-CMA

20 32.1 (1.7) 37.5 (0.9)
50 18.0 (1.5) 26.9 (1.5)
100 25.5 (0.1) 34.8 (0.2)

Table A.7: Accuracy of the new clients when trained locally vs using Algorithm 6 for
different values of N .
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Appendix B: Chapter Four Proofs

B.1 Proof of Lemma 4

By the optimality of f̂ , we can write

LD(f̂ ; f̂)− LD(T̂G f̂ , f̂) ≤ LD(f
∗; f ∗)− LD(T̂Gf ∗; f ∗)

Adding and subtracting LD(T f̂ , f̂) on LHS and LD(T f ∗, f ∗) on RHS, we get

LD(f̂ ; f̂)− LD(T f̂ , f̂) + LD(T f̂ , f̂)− LD(T̂G f̂ , f̂)

≤ LD(f
∗; f ∗)− LD(T f ∗, f ∗)

+ LD(T f ∗, f ∗)− LD(T̂Gf ∗; f ∗)

The result is obtained by rearranging the terms.

B.2 Capacity of Function Classes and Results from Empirical
Process Theory

Definition 8 (Covering Number). Let (M, d) be a pseudo-metric space, and let ϵ > 0.

Let M1, · · · ,Mk be balls of radius ϵ > 0 inM. We say that {Mi}ki=1 is a covering of

(M, d) ifM⊆ ∪ki=1Mi. The covering number N(ϵ,M, d) is defined as the smallest k

such that the set of ϵ balls {M}k1 is a covering of (M, d). If no such finite k exists,

then the covering number is ∞.
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Definition 9 (Empirical Covering Number). Let H be a class of functions with domain

R, and let points R1:n := (R1, · · · , Rn) be points in R. The empirical covering number

is defined with respect to the pseudo metric lR1:N (f, g) = 1
N

∑N
i=1 |f(Ri)− g(Ri)|; g ∈

F and denoted by N1(ϵ,F , R1:N).

Definition 10 (VC dimension[182]). Let H denote a class of functions from X →

{0, 1}. The growth function is defined as, for any non-negative m,

s(H,m) := max
x1,··· ,xm∈X

|{(h(x1), · · · , h(xm)) : h ∈ H}|.

If for any {x1, · · · , xm}, |{(h(x1), · · · , h(xm)) : h ∈ H}| = 2m, we say H shatters the

set {x1, · · · , xm}. The VC dimension of H is defined as the largest number of points

m that it can shatter, i.e.,

VC-dim(H) := sup{m ∈ N : s(H,m) = 2m}.

For a real-valued function class, the capacity is defined in terms of the pseudo-

dimension.

Definition 11 (pseudo-dimension[182]). Let F : {f : X → R}. The pseudo-dimension

dF is defined as the largest integer m for which there exists (x1, · · · , xm, y1, · · · , ym) ∈

Xm × Rm such that for any (b1, · · · , bm) ∈ {0, 1}m there exists f ∈ F such that

∀i : f(xi) > yi ⇐⇒ bi = 1. For cases where the function class F is generated by a

neural network with a fixed architecture and activation function, we can also write

dF = VC-dim(sign(F)), where sign(F) = {sign(f) : f ∈ F} and sign(x) = 1 if x ≥ 0

and sign(x) = 1 if x < 0.

The following lemma relates the pseudo dimension of a function class to the

empirical covering number.
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Lemma 18 (see [183]). Consider a set Z and a class F ⊂ {f : Z → [0, C̄]} of

functions on Z with pseudo-dimension dF <∞. For any points z1:n ∈ Zn and ϵ > 0,

N1(ϵ,F , z1:n) ≤ e(dF + 1)
(2eC̄

ϵ

)dF
.

Lemma 19 ( Pollard’s tail inequality: Theorem 9.1 [137]). Let H be a class of

functions that map R into [−B/2, B/2], and let µ be a probability measure on R. Let

R1, · · · , Rn are i.i.d with distribution µ. For every ϵ > 0,

P

{
sup
h∈H

∣∣∣ 1
n

n∑
i=1

h(Ri)− E[h(R)]
∣∣∣ > ϵ

}

≤ 8E
[
N1(ϵ/8,H, R1:n)

]
exp

(
− nϵ2

128B2

)
where N1(·,H, R1:n) is the empirical covering number of H given data points R1:n.

Remark 4. Note that, during the proofs, we often consider

P

{
sup
h∈H

( 1
n

n∑
i=1

h(Ri)− E[h(R)]
)
> ϵ

}
instead of the absolute value. Observe that,

sup
h∈H

( n∑
i=1

h(Ri)− E[h(R)]

n

)
≤ sup

h∈H

∣∣∣ n∑
i=1

h(Ri)− E[h(R)]

n

∣∣∣
and this shows that {

sup
h∈H

( 1
n

n∑
i=1

h(Ri)− E[h(R)]
)
> ϵ

}

⊆

{
sup
h∈H

∣∣∣ 1
n

n∑
i=1

h(Ri)− E[h(R)]
∣∣∣ > ϵ

}
.

Therefore, we simply use

P

{
sup
h∈H

( 1
n

n∑
i=1

h(Ri)− E[h(R)]
)
> ϵ

}

≤ 8E
[
N1(ϵ/8,H, R1:n)

]
exp

(
− nϵ2

128B2

)
.
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B.3 Difference between Lµ(f ; f) and ∥f − T f∥22,µ

In this section, we show that Lµ(f ; f) overestimates ∥f − T f∥22,µ by a variance

term. First, we have

Lµ(f, f) = E[LD(f, f)]

= E
[
f(s, a)−R(s, a)− γVf (s

′)
]2

= E
[(
f(s, a)−R(s, a)

)2
+ γ2V 2

f (s
′)

− 2γf(s, a)Vf (s
′) + 2γR(s, a)Vf (s

′)
]

= Eµ

[(
f(s, a)−R(s, a)

)2]
+ γ2E[V 2

f (s
′)]

− 2γE[f(s, a)Vf (s
′)] + 2γE[R(s, a)Vf (s

′)].

Further, we note that ∥f − T f∥22,µ is expanded as

∥f − T f∥22,µ

=

∫ (
f(s, a)−R(s, a)− γEs′∼P (s,a)[Vf (s

′)]
)2
dµ

=

∫
(f(s, a)−R(s, a))2dµ

+ γ2

∫ (
Es′∼P (s,a)[Vf (s

′)]
)2
dµ

− 2γ

∫
f(s, a) Es′∼P (s,a)[Vf (s

′)] dµ

+ 2γ

∫
R(s, a) Es′∼P (s,a)[Vf (s

′)]dµ

=

∫
(f(s, a)−R(s, a))2dµ

+ γ2

∫ (
Es′∼P (s,a)[Vf (s

′)]
)2
dµ

− 2γE[f(s, a) Vf (s
′)] + 2γE[R(s, a) Vf (s

′)].

The two equations above yield the desired results.
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D. Filliat, “Continual reinforcement learning deployed in real-life using policy
distillation and sim2real transfer,” arXiv preprint arXiv:1906.04452, 2019.

[175] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial intelligence, vol. 101, no. 1-2,
pp. 99–134, 1998.

187



[176] R. Ortner, D. Ryabko, P. Auer, and R. Munos, “Regret bounds for restless
markov bandits,” in International conference on algorithmic learning theory,
pp. 214–228, Springer, 2012.

[177] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn, “Offline reinforcement learning
from images with latent space models,” in Learning for Dynamics and Control,
pp. 1154–1168, PMLR, 2021.

[178] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets for deep
data-driven reinforcement learning,” arXiv preprint arXiv:2004.07219, 2020.

[179] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in
International conference on machine learning, pp. 1861–1870, PMLR, 2018.

[180] C. Chen, J. Zhou, J. Ding, and Y. Zhou, “Assisted learning for organizations
with limited data,” arXiv preprint arXiv:2109.09307, 2021.

[181] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

[182] P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian, “Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks,” The Journal
of Machine Learning Research, vol. 20, no. 1, pp. 2285–2301, 2019.

[183] D. Haussler, “Sphere packing numbers for subsets of the boolean n-cube with
bounded vapnik-chervonenkis dimension,” Journal of Combinatorial Theory,
Series A, vol. 69, no. 2, pp. 217–232, 1995.

188


	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	Introduction
	The edge
	Learning at the edge

	 Distributed Supervised Learning
	Background of Federated Learning
	Challenges due to Resource Constraints

	Reinforcement Learning
	Background of Reinforcement Learning
	Challenges due to Resource Constraints

	Organization of the thesis

	Model Heterogeneous Federated Learning
	Introduction
	Preliminaries
	Model Heterogeneous Federated Learning
	Domain Adaptation

	Generalization Result for Model Heterogeneous FL
	Model Homogeneous FL
	Model Heterogeneous FL

	Proposed Algorithm
	Maximum Mean Discrepancy (MMD)
	FedCMA

	Convergence Results
	Numerical Simulations

	Byzantine resilience to an arbitrary number of attackers
	Introduction
	Problem setup
	Algorithm
	ByGARS
	ByGARS++: Computationally Efficient
	Reputation Scores

	Convergence of ByGARS++
	Main Result
	Proof of Theorem 5

	Simulations
	Attack mechanisms (Table 3.1)
	Baselines
	Distributed Setup
	Implementation Details and Hyperparameters
	Results and Ablations
	Discussion


	Finite Sample Analysis of Minmax Variant of Offline Reinforcement Learning for General MDPs
	Introduction
	Examples of State-Constrained MDPs
	Notation

	Problem Formulation
	Data Collection Policy and ORL Problem
	Key Difficulties and Solution Approach
	Preliminaries

	Assumptions and Main Results
	Proof of Theorem 6
	Proof Outline
	Relation between v*-v and L(f"0362f;f"0362f) - L(Tf"0362f;f"0362f)
	Using Concentration Inequality
	Bounding terms I, II, III
	Proof of Theorem 6

	Discussion
	Experimental Results
	Sharp Concentration Results
	Single sample path
	Removing Concentrability Assumption


	Resource Constrained Offline Reinforcement Learning
	Resource Constraints
	Resource-Constrained online systems
	Related Work
	Proposed Algorithm
	TD3+BC (0, 1)
	Simultaneous Transfer Policy Iteration

	Experimental Results
	Simulation of Resource-Constrained Setting
	Training and Evaluation


	Conclusion
	Future Work

	Appendices
	Chapter Two Proofs
	Additional Preliminaries
	Convergence Results
	Proof of Convergence Result
	Continuing FL in the latent space

	Generalization Result
	Preliminaries
	Proof of main result

	Experiments
	Experimental Setup
	Conditional Distribution Alignment vs Marginal Distribution Alignment
	Importance of  and e
	Pathogenic non-iid split
	Dimension of the embedding space
	Synthetic Data Experiments
	Inference and adding new clients

	Chapter Four Proofs
	Proof of Lemma 4
	Capacity of Function Classes and Results from Empirical Process Theory
	Difference between L(f;f) and f-Tf2,2

	Bibliography


