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Abstract

This dissertation addresses two separate engineering challenges: image-inverse

problems and novelty detection.

First, we address image-inverse problems. We review Plug-and-Play (PnP) al-

gorithms, where a proximal operator is replaced by a call of an arbitrary denoising

algorithm. We apply PnP algorithms to compressive Magnetic Resonance Imaging

(MRI). MRI is a non-invasive diagnostic tool that provides excellent soft-tissue con-

trast without the use of ionizing radiation. However, when compared to other clinical

imaging modalities (e.g., CT or ultrasound), the data acquisition process for MRI

is inherently slow, which motivates undersampling and thus drives the need for ac-

curate, efficient reconstruction methods from undersampled datasets. We apply the

PnP-ADMM algorithm to cardiac MRI and knee MRI data. For these algorithms, we

developed learned denoisers that can process complex-valued MRI images. Our algo-

rithms achieve state-of-the-art performance on both the cardiac and knee datasets.

Regularization by Denoising (RED), as proposed by Romano, Elad, and Milanfar,

is a powerful image-recovery framework that aims to minimize an explicit regular-

ization objective constructed from a plug-in image-denoising function. Experimental

evidence suggests that RED algorithms are state-of-the-art. We claim, however, that

explicit regularization does not explain the RED algorithms. In particular, we show
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that many of the expressions in the paper by Romano et al. hold only when the de-

noiser has a symmetric Jacobian, and we demonstrate that such symmetry does not

occur with practical denoisers such as non-local means, BM3D, TNRD, and DnCNN.

To explain the RED algorithms, we propose a new framework called Score-Matching

by Denoising (SMD), which aims to match a “score” (i.e., the gradient of a log-prior).

Novelty detection is the ability for a machine learning system to detect signals

that are significantly different from samples seen during training. Detecting novelties

is important in any problem where it is possible for the system to encounter data that

is significantly different from the training data. In recent years, novelty detection in

high dimensional signals has been an area of significant research, with many methods

proposed. In order to leverage this tremendous body of work, we develop, Shift-

Ensembled Novelty Detection (SEND), a framework for combining multiple novelty

detection methods. Our experiments show SEND achieves state-of-the-art perfor-

mance for novelty detection of images.

We also apply SEND to the problem of radio frequency (RF) waveform novelty

detection. Recently, there has been tremendous research interest in utilizing self-

supervised neural networks for novelty detection. These methods have largely been

developed for image applications. In this work, we adapt SimCLR and CSI, two

popular self-supervised learning methods, to operate with RF waveform data. Our

experiments for RF waveform novelty detection show a significant increase in perfor-

mance over state-of-the-art methods.
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Chapter 1: Introduction

In this dissertation, we discuss two somewhat disjoint problems: image inverse

problems and novelty detection.

1.1 Image Inverse Problems

Image inverse problems occur when we want to reconstruct an unknown image

x0 ∈ Rn, from measurements of the form

y = g(A(x0)), (1.1)

where y ∈ Rm is our measurement vector, A(·) is the measurement operator and g(·)

is some form of corruption, like noise. In this dissertation, we discuss a simplified

problem where A(·) is a linear operator and the corruption is additive white Gaussian

noise. Under these assumptions, the model simplifies to

y = Ax0 +w, (1.2)

where A ∈ Rm×n and w ∈ Rm is white Gaussian noise. In many problems of interest,

rank(A) < n, resulting in an under-determined problem. Our linear model, (1.2), can

apply to many problems including deblurring, denoising, inpainting, and compressive

Magnetic Resonance Imaging (MRI).
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In chapter 2, we will specifically be looking at compressive MRI. MRI is a valuable

medical diagnostic tool because of its high soft-tissue contrast compared to other

imaging methods. The main downsides of MRI are that machines are expensive

and capture times are slow. For static imaging, these long capture times can be

prohibitive from a cost and patient well-being standpoint. For dynamic applications,

these capture times are simply not quick enough to capture fast moving processes,

such as a cardiac cycle. The need for faster collection times leads to the practice of

undersampling the data in an effort to speed up collection.

In this dissertation, we discuss image-inverse algorithms that utilize an image

“denoiser” within an iterative reconstruction algorithm. This image denoiser can

be any technique designed to recover x from noisy measurements of the form r =

x + w where w is i.i.d. zero-mean Gaussian noise. These algorithms could be a

classical algorithm, such as non-local means [9], or a machine learning approach such

as Denoising Convolutional Neural Network (DnCNN) [10]. In chapter 2, we review

the popular “Plug-and-Play” (PnP) framework and apply it to dynamic cardiac MRI

and static knee MRI. In PnP algorithms, a proximal operator on the prior of a signal

distribution is replaced by a call to an arbitrary denoiser. Our proposed MRI recovery

algorithms utilize PnP-ADMM, with learned, complex-valued denoisers.

In chapter 3, we look at another class of methods based on the Regularization

by Denoising (RED) [5] framework. With specific denoisers, Romano et al. [5] de-

signed a regularization term that utilizes a denoiser, has a gradient that is easy to

compute, and results in algorithms that perform well at standard inverse problems,

such as inpainting, deblurring, and super-resolution. However, as we discuss in this

dissertation, these claims are limited to a small number of denoisers. In fact, for

2



most denoisers tested, the gradient reported by [5] corresponds to a non-conservative

vector field. In these cases there is no scalar function that has the corresponding

gradient. In spite of these limitations, algorithms designed around the RED gradient

perform well in practice. In chapter 3, we also discuss an alternative explanation for

these RED algorithms from the standpoint of score-matching [11].

1.2 Novelty Detection

Novelty detection is the ability to detect a signal that is semantically different

from some known distribution. Interest in this problem spans many application areas:

autonomous vehicles, computer vision, Radio-Frequency (RF) waveforms, and fraud

detection. The ability to detect signals that differ from some definition of normal is

important to the design of trusted-AI systems.

Most novelty detection algorithms utilize an inlier score. This inlier score provides

a confidence in a given sample being from the inlier distribution. We can threshold

this score to perform novelty detection. If the inlier score is above the threshold, we

deem the sample an inlier, and if the score is below the threshold, we label it a novelty.

In chapter 4, we formulate Shift-Ensembled Novelty Detection (SEND), a framework

for ensembling multiple inlier scores. By utilizing SEND, we can ensemble multiple

popular, state-of-the-art inlier scores into one method. We test our method on several

standard image datasets, where these ensembles are able to achieve state-of-the-art

performance.

In chapter 5, we apply SEND and other recent advancements in novelty detection

to the problem of RF waveform novelty detection. One of these recent advances is the

utilization of self-supervised feature encoding networks [7,8,12] for novelty detection.
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Research has shown that self-supervised techniques can provide better separation be-

tween inlier and novelty samples [7,8,13]. However, self-supervised learning techniques

have primarily been developed for image data. A main contribution of this work is

adapting these techniques to work with waveform data. We utilize this self-supervised

feature encoder to evaluate several inlier scores, which are ensembled using SEND. In

experiments on communication and radar waveform data, our SEND-based method

significantly outperforms other state-of-the-art methods for RF waveform novelty de-

tection.
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Chapter 2: Plug-and-Play Methods for Magnetic Resonance

Imaging

2.1 Introduction

In this chapter1, we apply the plug-and-play framework [14] to the problem of

compressive Magnetic Resonance Imaging (MRI). MRI uses radiofrequency waves to

non-invasively evaluate the structure, function, and morphology of soft tissues. MRI

has become an indispensable imaging tool for diagnosing and evaluating a host of

conditions and diseases. Compared to other clinical imaging modalities (e.g., CT

or ultrasound), however, MRI suffers from slow data acquisition. A typical clinical

MRI exam consists of multiple scans and can take more than an hour to complete.

For each scan, the patient may be asked to stay still for several minutes, with slight

motion potentially resulting in image artifacts. Furthermore, dynamic applications

demand collecting a series of images in quick succession. Due to the limited time

window in many dynamic applications (e.g., contrast enhanced MR angiography),

it is not feasible to collect fully sampled datasets. For these reasons, MRI data

is often undersampled. Consequently, computationally efficient methods to recover

1This chapter is largely excerpted from the manuscript [2] co-authored with Rizwan Ahmad,
Charles Bouman, Gregery Buzzard, Stanley Chan, Sizhuo Liu, and Philip Schniter.
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high-quality images from undersampled MRI data have been actively researched for

the last two decades.

The combination of parallel (i.e., multi-coil) imaging and compressive sensing

(CS) has been shown to benefit a wide range of MRI applications [15,16], including

dynamic applications, and has been included in the default image processing frame-

works offered by several major MRI vendors. More recently, learning-based techniques

(e.g., [17–21]) have been shown to outperform CS methods. Some of these techniques

learn the entire end-to-end mapping from undersampled k-space or aliased images to

recovered images (e.g., [19,22]). Considering that the forward model in MRI changes

from one dataset to the next, such methods have to be either trained over a large

and diverse data corpus or limited to a specific application. Other methods train

scan-specific convolutional neural networks (CNN) on a fully-sampled region of k-

space and then use it to interpolate missing k-space samples [20]. These methods

do not require separate training data but demand a fully sampled k-space region.

Due to the large number of unknowns in CNN, such methods require a fully sampled

region that is larger than that typically acquired in parallel imaging, limiting the

acceleration that can be achieved. Other supervised learning methods are inspired

by classic variational optimization methods and iterate between data-consistency en-

forcement and a trained CNN, which acts as a regularizer [18]. Such methods require

a large number of fully sampled, multi-coil k-space datasets, which may be difficult

to obtain in many applications. Also, since CNN training occurs in the presence of

dataset-specific forward models, generalization from training to test scenarios remains

an open question [21]. Other learning-based methods have been proposed based on
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bi-level optimization (e.g., [23]), adversarially learned priors (e.g., [24]), and autore-

gressive priors (e.g., [25]). Consequently, the integration of learning-based methods

into physical inverse problems remains a fertile area of research. There are many

directions for improvement, including recovery fidelity, computational and memory

efficiency, robustness, interpretability, and ease-of-use.

This chapter focuses on “plug-and-play” (PnP) algorithms [14], which alternate

image denoising with forward-model based signal recovery. PnP algorithms facilitate

the use of state-of-the-art image models through their manifestations as image denois-

ers, whether patch-based (e.g., [26]) or deep neural network (DNN) based (e.g., [10]).

The fact that PnP algorithms decouple image modeling from forward modeling has

advantages in compressive MRI, where the forward model can change significantly

among different scans due to variations in the coil sensitivity maps, sampling pat-

terns, and image resolution. Furthermore, fully sampled k-space MRI data is not

needed for PnP; the image denoiser can be learned from MRI image patches, or pos-

sibly even magnitude-only patches. The objective of this chapter is two-fold: i) to

review recent advances in plug-and-play methods, and ii) to discuss their application

to compressive MRI image reconstruction.

The remainder of the chapter is organized as follows. We first detail the inverse

problem encountered in MRI reconstruction. We then review several PnP methods,

where the unifying commonality is to iteratively call a denoising subroutine as one

step of a larger optimization-inspired algorithm. We also review how the result of

the PnP method can be interpreted as a solution to an equilibrium equation, al-

lowing convergence analysis from the equilibrium perspective. We then apply PnP
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with learned denoisers to dynamic cardiac MRI and static knee MRI datasets. This

includes the development of 2D and 3D, complex-valued denoisers.

2.2 Image recovery in compressive MRI

In this section, we describe the standard linear inverse problem formulation in

MRI. We acknowledge that more sophisticated formulations exist (see, e.g., [27] for

a more careful modeling of physics effects). Briefly, the measurements are samples of

the Fourier transform of the image, where the Fourier domain is often referred to as

“k-space.” The transform can be taken across two or three spatial dimensions and

includes an additional temporal dimension in dynamic applications. Furthermore,

measurements are often collected in parallel from C ≥ 1 receiver coils. In dynamic

parallel MRI with Cartesian sampling, the time-t k-space measurements from the ith

coil take the form

y
(t)
i = P (t)FSix

(t) +w
(t)
i , (2.1)

where x(t) ∈ CN is the vectorized 2D or 3D image at discrete time t, Si ∈ CN×N is a

diagonal matrix containing the sensitivity map for the ith coil, F ∈ CN×N is the 2D

or 3D discrete Fourier transform (DFT), the sampling matrix P (t) ∈ RM×N contains

M rows of the N×N identity matrix, and w
(t)
i ∈ CM is additive white Gaussian noise

(AWGN). Often the sampling pattern changes across frames t. The MRI literature

often refers to R , N/M as the “acceleration rate.” The AWGN assumption, which

does not hold for the measured parallel MRI data, is commonly enforced using noise

pre-whitening filters, which yields the model (2.1) but with diagonal “virtual” coil

maps Si [28]. Additional justification of the AWGN model can be found in [29].
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MRI measurements are acquired using a sequence of measurement trajectories

through k-space. These trajectories can be Cartesian or non-Cartesian in nature.

Cartesian trajectories are essentially lines through k-space. In the Cartesian case,

one k-space dimension (i.e., the frequency encoding) is fully sampled, while the other

one or two dimensions (i.e., the phase encodings) are undersampled to reduce ac-

quisition time. Typically, one line, or “readout,” is collected after every RF pulse,

and the process is repeated several times to collect adequate samples of k-space.

Non-Cartesian trajectories include radial or spiral curves, which have the effect of

distributing the samples among all dimensions of k-space. Compared to Cartesian

sampling, non-Cartesian sampling provides more efficient coverage of k-space and

yields an “incoherent” forward operator that is more conducive to compressed-sensing

reconstruction [30]. But Cartesian sampling remains the method of choice in clinical

practice, due to its higher tolerance to system imperfections and an extensive record

of success.

Since the sensitivity map, Si, is patient-specific and varies with the location of

the coil with respect to the imaging plane, both Si and x(t) are unknown in practice.

Although calibration-free methods have been proposed to estimate Six
(t) (e.g., [31])

or to jointly estimate Si and x(t) (e.g., [32]), it is more common to first estimate Si

through a calibration procedure and then treat Si as known in (2.1). Stacking {y(t)
i },

{x(t)}, and {w(t)
i } into vectors y, x, and w, and packing {P (t)FSi} into a known

block-diagonal matrix A, we obtain the linear inverse problem of recovering x from

y = Ax+w, w ∼ N (0, σ2I), (2.2)

where N (0, σ2I) denotes a circularly symmetric complex-Gaussian random vector.

9



2.3 Signal Recovery and Denoising

The maximum likelihood (ML) estimate of x from y in (2.2) is x̂ml , arg maxx p(y|x),

where p(y|x), the probability density of y conditioned on x, is known as the “like-

lihood function.” The ML estimate is often written in the equivalent form x̂ml =

arg minx{− ln p(y|x)}. In the case of σ2-variance AWGNw, we have that− ln p(y|x) =

1
2σ2‖y −Ax‖22 + const, and so x̂ml = arg minx ‖y −Ax‖22, which can be recognized

as least-squares estimation. Although least-squares estimation can give reasonable

performance when A is tall and well conditioned, this is rarely the case under mod-

erate to high acceleration (i.e., R > 2). With acceleration, it is critically important

to exploit prior knowledge of signal structure.

The traditional approach to exploiting such prior knowledge is to formulate and

solve an optimization problem of the form

x̂ = arg min
x

{
1

2σ2
‖y −Ax‖22 + φ(x)

}
, (2.3)

where the regularization term φ(x) encodes prior knowledge of x. In fact, x̂ in

(2.3) can be recognized as the maximum a posteriori (MAP) estimate of x under the

prior density model p(x) ∝ exp(−φ(x)). To see why, recall that the MAP estimate

maximizes the posterior distribution p(x|y). That is, x̂map , arg maxx p(x|y) =

arg minx{− ln p(x|y)}. Since Bayes’ rule implies that ln p(x|y) = ln p(y|x)+ln p(x)−

ln p(y), we have

x̂map = arg min
x

{
− ln p(y|x)− ln p(x)

}
. (2.4)

Recalling that the first term in (2.3) (i.e., the “loss” term) was observed to be

− ln p(y|x) (plus a constant) under AWGN noise, the second term in (2.3) must
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obey φ(x) = − ln p(x) + const. We will find this MAP interpretation useful in the

sequel.

It is not easy to design good regularizers φ for use in (2.3). They must not only

mimic the negative log signal-prior, but also enable tractable optimization. One

common approach is to use φ(x) = λ‖Ψx‖1 with ΨH a tight frame (e.g., a wavelet

transform) and λ > 0 a tuning parameter [33]. Such regularizers are convex, and the

`1 norm rewards sparsity in the transform outputs Ψx when used with the quadratic

loss. One could go further and use the composite penalty φ(x) =
∑D

l=1 λl‖Ψlx‖1.

Due to the richness of data structure in MRI, especially for dynamic applications,

utilizing multiple (D > 1) linear sparsifying transforms has been shown to improve

recovery quality [34], but tuning multiple regularization weights {λl} is a non-trivial

problem [35].

Particular insight comes from considering the special case of A = I, where the

measurement vector in (2.2) reduces to an AWGN-corrupted version of the image x,

i.e.,

z = x+w, w ∼ N (0, σ2I). (2.5)

The problem of recovering x from noisy z, known as “denoising,” has been intensely

researched for decades. While it is possible to perform denoising by solving a regu-

larized optimization problem of the form (2.3) with A = I, today’s state-of-the-art

approaches are either algorithmic (e.g., [26]) or DNN-based (e.g., [10]). This begs

an important question: can these state-of-the-art denoisers be leveraged for MRI sig-

nal reconstruction, by exploiting the connections between the denoising problem and

(2.3)? As we shall see, this is precisely what the PnP methods do.
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2.4 Plug-and-Play Methods

In this section, we review several approaches to PnP signal reconstruction. What

these approaches have in common is that they recover x from measurements y of the

form (2.2) by iteratively calling a sophisticated denoiser within a larger optimization

or inference algorithm.

2.4.1 Prox-based PnP

To start, let us imagine how the optimization in (2.3) might be solved. Through

what is known as “variable splitting,” we could introduce a new variable, v, to decou-

ple the regularizer φ(x) from the data fidelity term 1
2σ2‖y −Ax‖22. The variables x

and v could then be equated using an external constraint, leading to the constrained

minimization problem

x̂ = arg min
x∈CN

min
v∈CN

{
1

2σ2
‖y −Ax‖22 + φ(v)

}
subject to x = v. (2.6)

Equation (2.6) suggests an algorithmic solution that alternates between separately es-

timating x and estimating v, with an additional mechanism to asymptotically enforce

the constraint x = v.

The original PnP method [14] is based on the alternating direction method of

multipliers (ADMM) [36]. For ADMM, (2.6) is first reformulated as the “augmented

Lagrangian”

min
x,v

max
λ

{
1

2σ2
‖y −Ax‖22 + φ(v) + Re{λH(x− v)}+

1

2ν
‖x− v‖2

}
, (2.7)

where λ are Lagrange multipliers and ν > 0 is a penalty parameter that affects the

convergence speed of the algorithm, but not the final solution. With u , νλ, (2.7)
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can be rewritten as

min
x,v

max
u

{
1

2σ2
‖y −Ax‖22 + φ(v) +

1

2ν
‖x− v + u‖2 − 1

2ν
‖u‖2

}
. (2.8)

ADMM solves (2.8) by alternating the optimization of x and v with gradient ascent

of u, i.e.,

xk = h(vk−1 − uk−1; ν) (2.9a)

vk = proxφ(xk + uk−1; ν) (2.9b)

uk = uk−1 + (xk − vk), (2.9c)

where h(z; ν) and proxφ(z; ν), known as “proximal maps” (see the tutorial [37]) are

defined as

proxφ(z; ν) , arg min
x

{
φ(x) +

1

2ν
‖x− z‖2

}
(2.10)

h(z; ν) , arg min
x

{
1

2σ2
‖y −Ax‖2 +

1

2ν
‖x− z‖2

}
(2.11)

= prox‖y−Ax‖2/(2σ2)(z; ν) (2.12)

=

(
AHA+

σ2

ν
I

)−1(
AHy +

σ2

ν
z

)
. (2.13)

Under some weak technical constraints, it can be proven [36] that when φ is convex,

the ADMM iteration (2.9) converges to x̂, the global minimum of (2.3) and (2.6).

From the discussion in Section 2.3, we immediately recognize proxφ(z; ν) in (2.10)

as the MAP denoiser of z under AWGN variance ν and signal prior p(x) ∝ exp(−φ(x)).

The key idea behind the original PnP work [14] was, in the ADMM recursion (2.9),

to “plug in” a powerful image denoising algorithm like “block-matching and 3D fil-

tering” (BM3D) [26] in place of the proximal denoiser proxφ(x; ν) from (2.10). If the
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plug-in denoiser is denoted by “f ,” then the PnP ADMM algorithm becomes

xk = h(vk−1 − uk−1; ν) (2.14a)

vk = f(xk + uk−1) (2.14b)

uk = uk−1 + (xk − vk). (2.14c)

A wide variety of empirical results (see, e.g., [14,38,39]) have demonstrated that, when

f is a powerful denoising algorithm like BM3D, the PnP algorithm (2.14) produces

far better recoveries than the regularization-based approach (2.9). For parallel MRI,

the advantages of PnP ADMM were demonstrated in [40]. Although the value of ν

does not change the fixed point of the standard ADMM algorithm (2.9), it affects the

fixed point of the PnP ADMM algorithm (2.14) through the ratio σ2/ν in (2.13).

The success of PnP methods raises important theoretical questions. Since f is

not in general the proximal map of any regularizer φ, the iterations (2.14) may not

minimize a cost function of the form in (2.3), and (2.14) may not be an implementation

of ADMM. It is then unclear if the iterations (2.14) will converge. And if they do

converge, it is unclear what they converge to. The consensus equilibrium framework,

which we discuss in Section 2.5, aims to provide answers to these questions.

The use of a generic denoiser in place of a proximal denoiser can be translated

to non-ADMM algorithms, such as FISTA [41], primal-dual splitting (PDS) [42], and

others, as in [43–45]. Instead of optimizing x as in (2.14), PnP FISTA [43] uses the

iterative update

zk = sk−1 −
ν

σ2
AH(Ask−1 − y) (2.15a)

xk = f(zk) (2.15b)

sk = xk +
qk−1 − 1

qk
(xk − xk−1), (2.15c)
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where (2.15a) is a gradient descent (GD) step on the negative log-likelihood 1
2σ2‖y−

Ax‖2 at x = sk−1 with step-size ν∈ (0, σ2‖A‖−22 ), (2.15b) is the plug-in replacement

of the usual proximal denoising step in FISTA, and (2.15c) is an acceleration step,

where it is typical to use qk = (1 +
√

1 + 4q2k−1)/2 and q0 = 1.

PnP PDS [44] uses the iterative update

xk = f
(
xk−1 −

ν

σ2
AHvk−1

)
(2.16a)

vk = γvk−1 + (1− γ)
(
A(2xk − xk−1)− y

)
(2.16b)

where ν > 0 is a stepsize, γ ∈ (0, 1) is a relaxation parameter chosen such that

γ ≤ ν/(ν + σ2‖A‖−22 ), and f(z) in (2.16a) is the plug-in replacement of the usual

proximal denoiser proxφ(z; ν).

Comparing PnP ADMM (2.14) to PnP FISTA (2.15) and PnP PDS (2.16), one

can see that they differ in how the data fidelity term 1
2σ2‖y −Ax‖2 is handled: PnP

ADMM uses the proximal update (2.13), while PnP FISTA and PnP PDS use the

GD step (2.15a). In most cases, solving the proximal update (2.13) is much more

computationally costly than taking a GD step (2.15a). Thus, with ADMM, it is

common to approximate the proximal update (2.13) using, e.g., several iterations of

the conjugate gradient (CG) algorithm or GD, which should reduce the per-iteration

complexity of (2.14) but may increase the number of iterations. But even with these

approximations of (2.13), PnP ADMM is usually close to “convergence” after 10-50

iterations (e.g., see Figure 2.4).

An important difference between the aforementioned flavors of PnP is that the

stepsize ν is constrained in FISTA but not in ADMM or PDS. Thus, PnP FISTA

restricts the range of reachable fixed points relative to PnP ADMM and PnP PDS.
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2.4.2 The balanced FISTA approach

In Section 2.3, when discussing the optimization problem (2.3), the regularizer

φ(x) = λ‖Ψx‖1 was mentioned as a popular option, where Ψ is often a wavelet

transform. The resulting optimization problem,

x̂ = arg min
x

{
1

2σ2
‖y −Ax‖22 + λ‖Ψx‖1

}
, (2.17)

is said to be stated in “analysis” form [16]. The proximal denoiser associated with

(2.17) has the form

proxφ(z; ν) = arg min
x

{
λ‖Ψx‖1 +

1

2ν
‖x− z‖2

}
. (2.18)

When Ψ is orthogonal, it is well known that proxφ(z; ν) = f tdt(z;λν), where

f tdt(z; τ) , ΨHsoft-thresh(Ψz; τ) (2.19)

is the “transform-domain thresholding” denoiser with

[soft-thresh(u, τ)]n , max
{

0,
|un| − τ
|un|

}
un. (2.20)

The denoiser (2.19) is very efficient to implement, since it amounts to little more than

computing forward and reverse transforms.

In practice, (2.17) yields much better results with non-orthogonal Ψ, such as when

ΨH is a tight frame (see, e.g., the references in [46]). In the latter case, ΨHΨ = I with

tall Ψ. But, for general tight frames ΨH, the proximal denoiser (2.18) has no closed-

form solution. What if we simply plugged the transform-domain thresholding denoiser

(2.19) into an algorithm like ADMM or FISTA? How can we interpret the resulting

approach? Interestingly, as we describe below, if (2.19) is used in PnP FISTA, then

it does solve a convex optimization problem, although one with a different form than
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(2.3). This approach was independently proposed in [33] and [46], where in the latter

it was referred to as “balanced FISTA” (bFISTA) and applied to parallel cardiac

MRI. Notably, bFISTA was proposed before the advent of PnP FISTA. More details

are provided below.

The optimization problem (2.17) can be stated in constrained “synthesis” form as

x̂ = ΨHα̂ for α̂ = arg min
α∈range(Ψ)

{
1

2σ2
‖y −AΨHα‖22 + λ‖α‖1

}
, (2.21)

where α are transform coefficients. Then, as β →∞ below, (2.21) can be expressed

in the unconstrained form

x̂ = ΨHα̂ for α̂ = arg min
α

{
1

2σ2
‖y −AΨHα‖22 +

β

2
‖P⊥Ψα‖22 + λ‖α‖1

}
(2.22)

with projection matrix P⊥Ψ , I − ΨΨH. In practice, it is not possible to take

β →∞ and, for finite values of β, the problems (2.21) and (2.22) are not equivalent.

However, problem (2.22) under finite β is interesting to consider in its own right,

and it is sometimes referred to as the “balanced” approach [47]. If we solve (2.22)

using FISTA with step-size ν > 0 (recall (2.15a)) and choose the particular value

β = 1/ν then, remarkably, the resulting algorithm takes the form of PnP FISTA (2.15)

with f(z) = f tdt(z;λ). This particular choice of β is motivated by computational

efficiency (since it leads to the use of f tdt) rather than recovery performance. Still,

as we demonstrate in Section 2.6, it performs relatively well.

2.5 Understanding PnP through Consensus Equilibrium

The success of the PnP methods in Section 2.4 raises important theoretical ques-

tions. For example, in the case of PnP ADMM, if the plug-in denoiser f is not the

proximal map of any regularizer φ, then it is not clear what cost function is being
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minimized (if any) or whether the algorithm will even converge. In this section, we

show that many of these questions can be answered through the consensus equilibrium

(CE) framework [1,45,48,49].

Rather than viewing (2.14) as minimizing some cost function, we can view it as

seeking a solution (x̂pnp, ûpnp) to

x̂pnp = h(x̂pnp − ûpnp; ν) (2.23a)

x̂pnp = f(x̂pnp + ûpnp), (2.23b)

which, by inspection, must hold when (2.14) is at a fixed point. Not surprisingly,

by setting xk = xk−1 in the PnP FISTA algorithm (2.15), it is straightforward to

show that it too seeks a solution to (2.23). It is easy to show that the PnP PDS

algorithm [44] seeks the same solution. With (2.23), the goal of the prox-based PnP

algorithms becomes well defined! The pair (2.23) reaches a consensus in that the

denoiser f and the data fitting operator h agree on the output x̂pnp. The equilibrium

comes from the opposing signs on the correction term ûpnp: the data-fitting subtracts

it while the denoiser adds it.

Applying the h expression from (2.13) to (2.23a), we find that

ûpnp =
ν

σ2
AH(y −Ax̂pnp), (2.24)

where y−Ax̂pnp is the k-space measurement error andAH(y−Ax̂pnp) is its projection

back into the image domain. We now see that ûpnp provides a correction on x̂pnp for

any components that are inconsistent with the measurements, but it provides no

correction for errors in x̂pnp that lie outside the row-space of A. Plugging (2.24) back

into (2.23b), we obtain the image-domain fixed point equation

x̂pnp = f
((
I − ν

σ2
AHA

)
x̂pnp +

ν

σ2
AHy

)
. (2.25)
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If y = Ax + w, as in (2.2), and we define the PnP error as êpnp , x̂pnp − x, then

(2.25) implies

x̂pnp = f
(
x̂pnp +

ν

σ2
AH (w −Aêpnp)

)
, (2.26)

which says that the error êpnp combines with the k-space measurement noise w in

such a way that the corresponding image-space correction ûpnp = ν
σ2A

H(w −Aêpnp)

is canceled by the denoiser f(·).

By viewing the goal of prox-based PnP as solving the equilibrium problem (2.23),

it becomes clear that other solvers beyond ADMM, FISTA, and PDS can be used.

For example, it was shown in [48] that the PnP CE condition (2.23) can be achieved

by finding a fixed point of the system2

z = (2G − I)(2F − I)z (2.27)

z =

[
z1
z2

]
, F(z) =

[
h(z1; ν)
f(z2)

]
, and G(z) =

[
1
2
(z1 + z2)

1
2
(z1 + z2)

]
. (2.28)

There exist many algorithms to solve (2.27). For example, one could use the Mann

iteration [37]

z(k+1) = (1− γ)zk + γ(2G − I)(2F − I)z(k), with γ ∈ (0, 1), (2.29)

when F is nonexpansive. The paper [48] also shows that this fixed point is equivalent

to the solution of F(z) = G(z), in which case Newton’s method or other root-finding

methods could be applied.

The CE viewpoint also provides a path to proving the convergence of the PnP

ADMM algorithm. Sreehari et al. [38] used a classical result from convex analysis

to show that a sufficient condition for convergence is that i) f is non-expansive,

2The paper [48] actually considers the consensus equilibrium among N > 1 agents, whereas here
we consider the simple case of N = 2 agents.
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i.e., ‖f(x) − f(y)‖ ≤ ‖x − y‖ for any x and y, and ii) f(x) is a sub-gradient

of some convex function, i.e., there exists ϕ such that f(x) ∈ ∂ϕ(x). If these two

conditions are met, then PnP ADMM (2.14) will converge to a global solution. Similar

observations were made in other recent studies, e.g., [49,50]. That said, Chan et

al. [39] showed that many practical denoisers do not satisfy these conditions, and so

they designed a variant of PnP ADMM in which ν is decreased at every iteration.

Under appropriate conditions on f and the rate of decrease, this latter method also

guarantees convergence, although not exactly to a fixed point of (2.23) since ν is no

longer fixed.

Similar techniques can be used to prove the convergence of other prox-based

PnP algorithms. For example, under certain technical conditions, including non-

expansiveness of f , it was established [45] that PnP FISTA converges to the same

fixed point as PnP ADMM.

2.6 Demonstration of PnP in MRI

2.6.1 Parallel cardiac MRI

We now demonstrate the application of PnP methods to parallel cardiac MRI.

Because the signal x is a cine (i.e., a video) rather than a still image, there are

relatively few options available for sophisticated denoisers. Although algorithmic

denoisers like BM4D [51] have been proposed, they tend to run very slowly, especially

relative to the linear operators A and AH. For this reason, we first trained an

application specific CNN denoiser for use in the PnP framework. The architecture of

the CNN denoiser, implemented and trained in PyTorch, is shown in Figure 2.1.
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For training, we acquired 50 fully sampled, high-SNR cine datasets from eight

healthy volunteers. Thirty three of those were collected on a 3 T scanner3 and the

remaining 17 were collected on a 1.5 T scanner. Out of the 50 datasets, 28, 7, 7, and

8 were collected in the short-axis, two-chamber, three-chamber, and four-chamber

view, respectively. The spatial and temporal resolutions of the images ranged from

1.8 mm to 2.5 mm and from 34 ms to 52 ms, respectively. The image size ranged from

160 × 130 to 256 × 208 pixels and the number of frames ranged from 15 to 27. For

each of the 50 datasets, the reference image series was estimated as the least-squares

solution to (2.1), with the sensitivity maps Si estimated from the time-averaged data

using ESPIRiT [52]. We added zero-mean, complex-valued i.i.d. Gaussian noise to

these “noise-free” reference images to simulate noisy images with SNR of 24 dB.

Using a fixed stride of 30 × 30 × 10, we decomposed the images into patches of size

55×55×15. The noise-free and corresponding noisy patches were assigned as output

and input to the CNN denoiser, with the real and imaginary parts processed as two

separate channels. All 3D convolutions were performed using 3×3×3 kernels. There

were 64 filters of size 3× 3× 3× 2 in the first layer, 64 filters of size 3× 3× 3× 64 in

the second through fourth layers, and 2 filters of size 3× 3× 3× 64 in the last layer.

We set the minibatch size to four and used the Adam optimizer [53] with a learning

rate of 1× 10−4 over 400 epochs. The training process was completed in 12 hours on

a workstation equipped with a single NVIDIA GPU (GeForce RTX 2080 Ti).

For testing, we acquired four fully sampled cine datasets from two different healthy

volunteers, with two image series in the short-axis view, one image series in the two-

chamber view, and one image series in the four-chamber view. The spatial and

3The 3 T scanner was a Magnetom Prisma Fit from Siemens Healthineers in Erlangen, Germany
and the 1.5 T scanner was a Magnetom Avanto from Siemens Healthineers in Erlangen, Germany.
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Figure 2.1: The architecture of the CNN-based cardiac cine denoiser operating on
spatiotemporal volumetric patches.

temporal resolutions of the images ranged from 1.9 mm to 2 mm and from 37 ms to

45 ms, respectively. For the four datasets, the space-time signal vector, x, in (2.2)

had dimensions of 192× 144× 25, 192× 144× 25, 192× 166× 16, and 192× 166× 16,

respectively, with the last dimension representing the number of frames. The datasets

were retrospectively downsampled at acceleration rates, R, of 6, 8, and 10 using

pseudo-random sampling [54]. A representative sampling pattern used to undersample

one of the datasets is shown in Figure 2.2. The data were compressed to C = 12

virtual coils for faster computation [55]. The measurements were modeled as described

in (2.1), with the sensitivity maps, Si, estimated from the time-averaged data using

ESPIRiT.

For compressive MRI recovery, we used PnP ADMM from (2.14) with f(·) as the

CNN-based denoiser described above; we will refer to the combination as PnP-CNN.

We employed a total of 100 ADMM iterations, and in each ADMM iteration, we

performed four steps of CG to approximate (2.13), for which we used σ2 = 1 = ν.

(See Figure 2.5 for the effect of σ2/ν on the final NMSE and the convergence rate.)

We compared this PnP method to three CS-based methods: CS with an undecimated

wavelet transform (CS-UWT), CS with total variation (TV),4 and a low-rank plus

4Note that sometimes UWT and TV are combined [15].
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sparse (L+S) method (see, e.g., [56]). We also compared to PnP-UWT and the

transform-learning [57] method LASSI [58].

For PnP-UWT, we used PnP FISTA from (2.15) with f(·) implemented as f tdt

given in (2.19), i.e., bFISTA. A three-dimensional single-level Haar UWT was used

as Ψ in (2.19). For CS-TV, we used a 3D finite-difference operator for Ψ in the

regularizer φ(x) = ‖Ψx‖1, and for CS-UWT, we used the aforementioned UWT

instead. For both CS-TV and CS-UWT, we used monotone FISTA [59] to solve

the resulting convex optimization problem (2.3). For L+S, the method by Otazo

et al. [56] was used. The regularization weights for CS-UWT, PnP-UWT, CS-TV,

and L+S were manually tuned to maximize the reconstruction SNR (rSNR)5 for

Dataset #3 at R = 10. For LASSI we used the authors’ implementation at https:

//gitlab.com/ravsa19/lassi, and we did our best to manually tune all available

parameters.

The rSNR values are summarized in Table 2.1. For all four datasets and three

acceleration rates, PnP-CNN exhibited the highest rSNR with respect to the fully

sampled reference. Also, compared to the CS methods and PnP-UWT, which uses

a more traditional denoiser based on soft-thresholding of UWT coefficients, PnP-

CNN was better at preserving anatomical details of the heart; see Figure 2.3. The

performance of PnP-UWT was similar to that of CS-UWT. Figure 2.4 plots NMSE

as a function of the number of iterations for the CS and PnP methods. Since the

CS methods were implemented using CPU computation and the PnP methods were

implemented using GPU computation, a direct runtime comparison was not possible.

We did, however, compare the per-iteration runtime of PnP ADMM for two different

5rSNR is defined as ‖x‖2/‖x̂− x‖2, where x is the true image and x̂ is the estimate.
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denoisers: the CNN and UWT-based f tdt described earlier in this section. When

the CNN denoiser was replaced with the UWT-based f tdt, the per-iteration runtime

changed from 2.05 s to 2.1 s, implying that the two approaches have very similar

computational costs.

For PnP-CNN, Figure 2.5 shows the dependence of the final NMSE (= rSNR−1)

and of the convergence rate on σ2/ν for one of the testing datasets included in this

study. Overall, final NMSE varies less than 0.5 dB for σ2/ν ∈ [0.5, 2] for all four

datasets and all three acceleration rates. Figure 2.6 compares CG and GD when

solving (2.13). To this end, NMSE vs. runtime is plotted for different numbers of CG

or GD inner-iterations for Dataset #3 at R = 10. For GD, the step-size was manually

optimized. Figure 2.6 suggests that it is best to use a 1 to 4 inner iterations of either

GD or CG; using more inner iterations slows the convergence rate without improving

the final performance.

The results in this section, although preliminary, highlight the potential of PnP

methods for MRI recovery of cardiac cines. By optimizing the denoiser architecture,

the performance of PnP-CNN may be further improved.

2.6.2 Single-coil fastMRI knee data

In this section, we investigate recovery of 2D knee images from the single-coil

fastMRI dataset [60]. This dataset contains fully-sampled k-space data that are

partitioned into 34 742 training slices and 7 135 testing slices. The Cartesian sampling

patterns from [60] were used to achieve acceleration rate R = 4.

We evaluated PnP using the ADMM algorithm with a learned DnCNN [10] de-

noiser. To accommodate complex-valued images, DnCNN was configured with two
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Figure 2.2: Two different views of the 3D sampling pattern used to retrospectively
undersample one of the four test datasets at R = 10. The undersampling was per-
formed only in the phase encoding direction and the pattern was varied across frames.
In this example, the number of frequency encoding steps, phase encoding steps, and
frames are 192, 144, and 25, respectively.

Acceleration CS-UWT CS-TV L+S LASSI PnP-UWT PnP-CNN

Dataset #1 (short-axis)
R = 6 30.10 29.03 30.97 27.09 30.18 31.82
R = 8 28.50 27.35 29.65 25.91 28.60 31.25
R = 10 26.94 25.78 28.29 24.98 27.06 30.46

Dataset #2 (short-axis)
R = 6 29.23 28.27 29.73 25.87 29.29 30.81
R = 8 27.67 26.65 28.23 24.54 27.75 30.17
R = 10 26.12 25.11 26.89 23.61 26.22 29.21

Dataset #3 (two-chamber)
R = 6 27.33 26.38 27.83 24.97 27.38 29.36
R = 8 25.63 24.63 26.30 23.52 25.69 28.50
R = 10 24.22 23.24 24.93 22.51 24.28 27.49

Dataset #4 (four-chamber)
R = 6 30.41 29.63 30.62 27.62 30.60 32.19
R = 8 28.68 27.76 29.00 26.33 28.94 31.42
R = 10 27.09 26.18 27.60 25.24 27.37 30.01

Table 2.1: rSNR (dB) of MRI cardiac cine recovery from four test datasets.

input and two output channels. The denoiser was then trained using only the central

slices of the 3 T scans without fat-suppression from the training set, comprising a

total of 267 slices (i.e., < 1% of the total training data). The training-noise variance

and the PnP ADMM tuning parameter σ2/ν were manually adjusted in an attempt

to maximize rSNR.
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Figure 2.3: Results from cardiac cine Dataset #1 at R = 10. Top row: a representa-
tive frame from the fully sampled reference and various recovery methods. The green
arrow points to an image feature that is preserved only by PnP-CNN and not by
other methods. Middle row: error map ×6. Bottom row: temporal frame showing
the line drawn horizontally through the middle of the image in the top row, with the
time dimension along the horizontal axis. The arrows point to the movement of the
papillary muscles, which are more well-defined in PnP-CNN.

Figure 2.4: NMSE versus iteration for two PnP and two CS algorithms on the cardiac
cine recovery Dataset #3 at R = 10.
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Figure 2.5: For PnP-CNN recovery of cardiac cine Dataset #3 at R = 10, the change
in the final NMSE (after 100 iterations) as a function of σ2/ν (left) and the NMSE
versus iteration for several σ2/ν (right).

Figure 2.6: NMSE versus time PnP ADMM with different numbers of CG and GD
inner iterations on cardiac cine Dataset #3 at R = 10.

PnP was then compared to the TV and U-Net baseline methods described and

configured in [60]. For example, 128 channels were used for the U-Net’s first layer, as

recommended in [60]. We then trained three versions of the U-Net. The first version
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was trained on the full fastMRI training set6 with random sampling masks. The

second U-Net was trained on the full fastMRI training set, but with a fixed sampling

mask. The third U-Net was trained using only the central slices of the 3 T scans

without fat-suppression (i.e., the same data used to train the DnCNN denoiser) and

with a fixed sampling mask.

To evaluate performance, we used the central slices of the non-fat-suppressed

3 T scans from the validation set, comprising a total of 49 slices. The evaluation

considered both random sampling masks and the same fixed mask used for training.

The resulting average rSNR and SSIM scores are summarized in Table 2.2. The table

shows that PnP-CNN performed similarly to the U-Nets and significantly better than

TV. In particular, PnP-CNN achieved the highest rSNR score with both random and

fixed testing masks, and the U-Net gave slightly higher SSIM scores in both tests.

Among the U-Nets, the version trained with a fixed sampling mask and full data

gave the best rSNR and SSIM performance when testing with the same mask, but

its performance dropped considerable when testing with random masks. Meanwhile,

the U-Net trained with the smaller data performed significantly worse than the other

U-Nets, with either fixed or random testing masks. And although this latter U-Net

used exactly the same training data as the PnP-CNN method, it was not competitive

with PnP-CNN. Although preliminary, these results suggest that i) PnP methods are

much less sensitive to deviations in the forward model between training and testing,

and that ii) PnP methods are effective with relatively small training datasets.

6The full fastMRI training set includes 1.5 T and 3 T scans, with and without fat suppression,
and an average of 36 slices per volume.
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Random testing masks Fixed testing mask
rSNR (dB) SSIM rSNR (dB) SSIM

CS-TV 17.56 0.647 18.16 0.654
U-Net: Random training masks, full training data 20.76 0.772 20.72 0.768
U-Net: Fixed training mask, full training data 19.63 0.756 20.82 0.770
U-Net: Fixed training mask, smaller training data 18.90 0.732 19.67 0.742
PnP-CNN 21.16 0.758 21.14 0.754

Table 2.2: rSNR and SSIM for fastMRI single-coil test data with R = 4.

2.7 Conclusion

PnP methods present an attractive avenue for compressive MRI recovery. In

contrast to traditional CS methods, PnP methods can exploit richer image structure

by using state-of-the-art denoisers. To demonstrate the potential of such methods for

MRI reconstruction, we used PnP to recover cardiac cines and knee images from highly

undersampled datasets. With application-specific CNN-based denoisers, PnP was

able to significantly outperform traditional CS methods and to perform on par with

modern deep-learning methods, but with considerably less training data. The time

is ripe to investigate the potential of PnP methods for a variety of MRI applications.
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Chapter 3: Regularization by Denoising: Clarifications and

New Interpretations

3.1 Introduction

In this chapter7, we consider the problem of recovering a (vectorized) image x0 ∈

RN from noisy linear measurements y ∈ RM of the form

y = Ax0 + e, (3.1)

where A ∈ RM×N is a known linear transformation and e is noise. This problem is

of great importance in many applications and has been studied for several decades.

One of the most popular approaches to image recovery is the “variational” ap-

proach, where one poses and solves an optimization problem of the form

x̂ = arg min
x

{
`(x;y) + λρ(x)

}
. (3.2)

In (3.2), `(x;y) is a loss function that penalizes mismatch to the measurements, ρ(x)

is a regularization term that penalizes mismatch to the image class of interest, and

λ > 0 is a design parameter that trades between loss and regularization. A prime

advantage of the variational approach is that, in many cases, efficient optimization

methods can be readily applied to (3.2).

7Work presented in this chapter is largely excerpted from the manuscript [1] co-authored with
Philip Schniter.
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A key question is: How should one choose the loss `(·;y) and regularization ρ(·) in

(3.2)? As discussed in the sequel, the MAP-Bayesian interpretation suggests that they

should be chosen in proportion to the negative log-likelihood and negative log-prior,

respectively. The trouble is that accurate prior models for images are lacking.

Recently, a breakthrough was made by Romano, Elad, and Milanfar in [5]. Lever-

aging the long history (e.g., [61,62]) and recent advances (e.g., [10,63]) in image de-

noising algorithms, they proposed the regularization by denoising (RED) framework,

where an explicit regularizer ρ(x) is constructed from an image denoiser f : RN → RN

using the simple and elegant rule

ρred(x) =
1

2
xT
(
x− f(x)

)
. (3.3)

Based on this framework, they proposed several recovery algorithms (based on steep-

est descent, ADMM, and fixed-point methods, respectively) that yield state-of-the-art

performance in deblurring and super-resolution tasks.

In this chapter, we provide some clarifications and new interpretations of the ex-

cellent RED algorithms from [5]. Our work was motivated by an interesting empirical

observation: With many practical denoisers f(·), the RED algorithms do not min-

imize the RED variational objective “`(x;y) + λρred(x).” As we establish in the

sequel, the RED regularization (3.3) is justified only for denoisers with symmetric

Jacobians, which unfortunately does not cover many state-of-the-art methods such

as non-local means (NLM) [9], BM3D [26], TNRD [63], and DnCNN [10]. In fact, we

are able to establish a stronger result: For non-symmetric denoisers, there exists no

regularization ρ(·) that explains the RED algorithms from [5].
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In light of these (negative) results, there remains the question of how to ex-

plain/understand the RED algorithms from [5] when used with non-symmetric de-

noisers. In response, we propose a framework called score-matching by denoising

(SMD), which aims to match the “score” (i.e., the gradient of the log-prior) rather

than to design any explicit regularizer. We then show tight connections between

SMD, kernel density estimation [64], and constrained minimum mean-squared error

(MMSE) denoising. In addition, we provide new interpretations of the RED-ADMM

and RED-FP algorithms proposed in [5], and we propose novel RED algorithms with

faster convergence. Inspired by [48], we show that the RED algorithms seek to satisfy

a consensus equilibrium condition that allows a direct comparison to the plug-and-

play ADMM algorithms discussed in chapter 2.

The remainder of the chapter is organized as follows. In Section 3.2 we provide

more background on RED and related algorithms such as plug-and-play ADMM [14].

In Section 3.3, we discuss the impact of Jacobian symmetry on RED and test whether

this property holds in practice. In Section 3.4, we propose the SMD framework.

In Section 3.5, we present new interpretations of the RED algorithms from [5] and

new algorithms based on accelerated proximal gradient methods. In Section 3.6,

we perform an equilibrium analysis of the RED algorithms, and, in Section 3.7, we

conclude.
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3.2 Background

3.2.1 The MAP-Bayesian Interpretation

For use in the sequel, we briefly discuss the Bayesian maximum a posteriori (MAP)

estimation framework [65]. The MAP estimate of x from y is defined as

x̂map = arg max
x

p(x|y), (3.4)

where p(x|y) denotes the probability density of x given y. Notice that, from Bayes

rule p(x|y) = p(y|x)p(x)/p(y) and the monotonically increasing nature of ln(·), we

can write

x̂map = arg min
x

{
− ln p(y|x)− ln p(x)

}
. (3.5)

MAP estimation (3.5) has a direct connection to variational optimization (3.2):

the log-likelihood term − ln p(y|x) corresponds to the loss `(x;y) and the log-prior

term − ln p(x) corresponds to the regularization λρ(x). For example, with additive

white Gaussian noise (AWGN) e ∼ N (0, σ2
eI), the log-likelihood implies a quadratic

loss:

`(x;y) =
1

2σ2
e

‖Ax− y‖2. (3.6)

Equivalently, the normalized loss `(x;y) = 1
2
‖Ax − y‖2 could be used if σ2

e were

absorbed into λ.

3.2.2 ADMM

A popular approach to solving (3.2) is through ADMM [36], which we now review.

Using variable splitting, (3.2) becomes

x̂ = arg min
x

{
`(x;y) + λρ(v)

}
s.t. x = v. (3.7)
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Algorithm 1 ADMM [36]

Require: `(·;y), ρ(·), β, λ,v0,u0, and K
1: for k = 1, 2, . . . , K do
2: xk = arg minx{`(x;y) + β

2
‖x− vk−1 + uk−1‖2}

3: vk = arg minv{λρ(v) + β
2
‖v − xk − uk−1‖2}

4: uk = uk−1 + xk − vk
5: end for
6: Return xK

Using the augmented Lagrangian, problem (3.7) can be reformulated as

min
x,v

max
p

{
`(x;y) + λρ(v) + pT(x− v) +

β

2
‖x− v‖2

}
(3.8)

using Lagrange multipliers (or “dual” variables) p and a design parameter β > 0.

Using u , p/β, (3.8) can be simplified to

min
x,v

max
u

{
`(x;y) + λρ(v) +

β

2
‖x− v + u‖2 − β

2
‖u‖2

}
. (3.9)

The ADMM algorithm solves (3.9) by alternating the minimization of x and v with

gradient ascent of u, as specified in Algorithm 1. ADMM is known to converge under

convex `(·;y) and ρ(·), and other mild conditions (see [36]).

3.2.3 Plug-and-Play ADMM

Importantly, line 3 of Algorithm 1 can be recognized as variational denoising of

xk +uk−1 using regularization λρ(x) and quadratic loss `(x; r) = 1
2ν
‖x− r‖2, where

r = xk + uk−1 at iteration k. By “denoising,” we mean recovering x0 from noisy

measurements r of the form

r = x0 + e, e ∼ N (0, νI), (3.10)

for some variance ν > 0.
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Image denoising has been studied for decades (see, e.g., the overviews [61,62]),

with the result that high performance methods are now readily available. Today’s

state-of-the-art denoisers include those based on image-dependent filtering algorithms

(e.g., BM3D [26]) or deep neural networks (e.g., TNRD [63], DnCNN [10]). Most of

these denoisers are not variational in nature, i.e., they are not based on any explicit

regularizer λρ(x).

Leveraging the denoising interpretation of ADMM, Venkatakrishnan, Bouman,

and Wolhberg [14] proposed to replace line 3 of Algorithm 1 with a call to a sophis-

ticated image denoiser, such as BM3D, and dubbed their approach Plug-and-Play

(PnP) ADMM. Numerical experiments show that PnP-ADMM works very well in

most cases. However, when the denoiser used in PnP-ADMM comes with no explicit

regularization ρ(x), it is not clear what objective PnP-ADMM is minimizing, making

PnP-ADMM convergence more difficult to characterize. Similar PnP algorithms have

been proposed using primal-dual methods [44] and FISTA [43] in place of ADMM.

See chapter 2 for a detailed review of PnP methods and their convergence properties.

Approximate message passing (AMP) algorithms [66] also perform denoising at

each iteration. In fact, when A is large and i.i.d. Gaussian, AMP constructs an

internal variable statistically equivalent to r in (3.10) [67]. While the earliest instances

of AMP assumed separable denoising (i.e., [f(x)]n = f(xn) ∀n for some f) later

instances, like [68,69], considered non-separable denoising. The paper [70] by Metzler,

Maleki, and Baraniuk proposed to plug an image-specific denoising algorithm, like

BM3D, into AMP. Vector AMP, which extends AMP to the broader class of “right
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rotationally invariant” random matrices, was proposed in [71], and VAMP with image-

specific denoising was proposed in [72]. Rigorous analyses of AMP and VAMP under

non-separable denoisers were performed in [73] and [74], respectively.

3.2.4 Regularization by Denoising (RED)

As discussed in the Introduction, Romano, Elad, and Milanfar [5] proposed a

radically new way to exploit an image denoiser, which they call regularization by

denoising (RED). Given an arbitrary image denoiser f : RN → RN , they proposed

to construct an explicit regularizer of the form

ρred(x) ,
1

2
xT(x− f(x)) (3.11)

to use within the variational framework (3.2). The advantage of using an explicit

regularizer is that a wide variety of optimization algorithms can be used to solve

(3.2) and their convergence can be tractably analyzed.

In [5], numerical evidence is presented to show that image denoisers f(·) are locally

homogeneous (LH), i.e.,

(1 + ε)f(x) = f
(
(1 + ε)x

)
∀x (3.12)

for sufficiently small ε ∈ R \ 0. For such denoisers, Romano et al. claim [5, Eq.(28)]

that ρred(·) obeys the gradient rule

∇ρred(x) = x− f(x). (3.13)

If ∇ρred(x) = x − f(x), then any minimizer x̂ of the variational objective under

quadratic loss,

1

2σ2
‖Ax− y‖2 + λρred(x) , Cred(x), (3.14)
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must yield ∇Cred(x̂) = 0, i.e., must obey

0 =
1

σ2
AT(Ax̂− y) + λ(x̂− f(x̂)). (3.15)

Based on this line of reasoning, Romano et al. proposed several iterative algorithms

that find an x̂ satisfying the fixed-point condition (3.15), which we will refer to

henceforth as “RED algorithms.”

3.3 Clarifications on RED

In this section, we first show that the gradient expression (3.13) holds if and only

if the denoiser f(·) is LH and has Jacobian symmetry (JS). We then establish that

many popular denoisers lack JS, such as the median filter (MF) [75], non-local means

(NLM) [9], BM3D [26], TNRD [63], and DnCNN [10]. For such denoisers, the RED

algorithms cannot be explained by ρred(·) in (3.11). We also show a more general

result: When a denoiser lacks JS, there exists no regularizer ρ(·) whose gradient

expression matches (3.13). Thus, the problem is not the specific form of ρred(·) in

(3.11) but rather the broader pursuit of explicit regularization.

3.3.1 Preliminaries

We first state some definitions and assumptions. In the sequel, we denote the ith

component of f(x) by fi(x), the gradient of fi(·) at x by

∇fi(x) ,
[
∂fi(x)
∂x1

· · · ∂fi(x)
∂xN

]T
, (3.16)

and the Jacobian of f(·) at x by

Jf(x) ,


∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xN

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xN

...
...

. . .
...

∂fN (x)
∂x1

∂fN (x)
∂x2

. . . ∂fN (x)
∂xN

 . (3.17)
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Without loss of generality, we take [0, 255]N ⊂ RN to be the set of possible images.

A given denoiser f(·) may involve decision boundaries D ⊂ [0, 255]N at which its

behavior changes suddenly. We assume that these boundaries are a closed set of

measure zero and work instead with the open set X , (0, 255)N \ D, which contains

almost all images.

We furthermore assume that f : RN → RN is differentiable on X , which means [76,

p.212] that, for any x ∈ X , there exists a matrix J ∈ RN×N for which

lim
w→0

‖f(x+w)− f(x)− Jw‖
‖w‖

= 0. (3.18)

When J exists, it can be shown [76, p.216] that J = Jf(x).

3.3.2 The RED Gradient

We first recall a result that was established in [5].

Lemma 1 (Local homogeneity [5]). Suppose that denoiser f(·) is locally homoge-

neous. Then [Jf(x)]x = f(x).

Proof. Our proof is based on differentiability and avoids the need to define a direc-

tional derivative. From (3.18), we have

0 = lim
ε→0

‖f(x+ εx)− f(x)− [Jf(x)]xε‖
‖εx‖

∀x ∈ X (3.19)

= lim
ε→0

‖(1 + ε)f(x)− f(x)− [Jf(x)]xε‖
‖εx‖

∀x ∈ X (3.20)

= lim
ε→0

‖f(x)− [Jf(x)]x‖
‖x‖

∀x ∈ X , (3.21)

where (3.20) follows from local homogeneity (3.12). Equation (3.21) implies that

[Jf(x)]x = f(x) ∀x ∈ X .

We now state one of the main results of this section.
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Lemma 2 (RED gradient). For ρred(·) defined in (3.11),

∇ρred(x) = x− 1

2
f(x)− 1

2
[Jf(x)]Tx. (3.22)

Proof. For any x ∈ X and n = 1, . . . , N ,

∂ρred(x)

∂xn
=

∂

∂xn

1

2

N∑
i=1

(
x2i − xifi(x)

)
(3.23)

=
1

2

∂

∂xn

(
x2n − xnfn(x) +

∑
i 6=n

x2i −
∑
i 6=n

xifi(x)

)
(3.24)

=
1

2

(
2xn − fn(x)− xn

∂fn(x)

∂xn
−
∑
i 6=n

xi
∂fi(x)

∂xn

)
(3.25)

= xn −
1

2
fn(x)− 1

2

N∑
i=1

xi
∂fi(x)

∂xn
(3.26)

= xn −
1

2
fn(x)− 1

2

[
[Jf(x)]Tx

]
n
, (3.27)

using the definition of Jf(x) from (3.17). Collecting {∂ρred(x)
∂xn
}Nn=1 into the gradient

vector (3.13) yields (3.22).

Note that the gradient expression (3.22) differs from (3.13).

Lemma 3 (Clarification on (3.13)). Suppose that the denoiser f(·) is locally homo-

geneous. Then the RED gradient expression (3.13) holds if and only if Jf(x) =

[Jf(x)]T.

Proof. If Jf(x) = [Jf(x)]T, then the last term in (3.22) becomes −1
2
[Jf(x)]x, which

equals −1
2
f(x) by Lemma 1, in which case (3.22) agrees with (3.13). But if Jf(x) 6=

[Jf(x)]T, then (3.22) differs from (3.13).

3.3.3 Impossibility of Explicit Regularization

For denoisers f(·) that lack Jacobian symmetry (JS), Lemma 3 establishes that

the gradient expression (3.13) does not hold. Yet (3.13) leads to the fixed-point
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condition (3.15) on which all RED algorithms in [5] are based. The fact that these

algorithms work well in practice suggests that “∇ρ(x) = x − f(x)” is a desirable

property for a regularizer ρ(x) to have. But the regularization ρred(x) in (3.11) does

not lead to this property when f(·) lacks JS. Thus an important question is:

Does there exist some other regularization ρ(·) for which ∇ρ(x) = x−f(x)
when f(·) is non-JS?

The following theorem provides the answer.

Theorem 1 (Impossibility). Suppose that denoiser f(·) has a non-symmetric Jaco-

bian. Then there exists no regularization ρ(·) for which ∇ρ(x) = x− f(x).

Proof. To prove the theorem, we view f : X → RN as a vector field. Theorem 4.3.8

in [77] says that a vector field f is conservative if and only if there exists a continuously

differentiable potential ρ : X → R for which ∇ρ = f . Furthermore, Theorem 4.3.10

in [77] says that if f is conservative, then the Jacobian Jf is symmetric. Thus, by

the contrapositive, if the Jacobian Jf is not symmetric, then no such potential ρ

exists.

To apply this result to our problem, we define

ρ(x) ,
1

2
‖x‖2 − ρ(x) (3.28)

and notice that

∇ρ(x) = x−∇ρ(x) = x− f(x). (3.29)

Thus, if Jf(x) is non-symmetric, then J [x − f(x)] = I − Jf(x) is non-symmetric,

which means that there exists no ρ for which (3.29) holds.
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Thus, the problem is not the specific form of ρred(·) in (3.11) but rather the

broader pursuit of explicit regularization. We note that the notion of conservative

vector fields was discussed in [38, App. A] in the context of PnP algorithms, whereas

here we discuss it in the context of RED.

3.3.4 Analysis of Jacobian Symmetry

The previous sections motivate an important question: Do commonly-used image

denoisers have sufficient JS?

For some denoisers, JS can be studied analytically. For example, consider the

“transform domain thresholding” (TDT) denoisers of the form

f(x) ,W Tg(Wx), (3.30)

where g(·) performs componentwise (e.g., soft or hard) thresholding and W is some

transform, as occurs in the context of wavelet shrinkage [78], with or without cycle-

spinning [79]. Using g′n(·) to denote the derivative of gn(·), we have

∂fn(x)

∂xq
=

N∑
i=1

wing
′
i

(
N∑
j=1

wijxj

)
wiq =

∂fq(x)

∂xn
, (3.31)

and so the Jacobian of f(·) is perfectly symmetric.

Another class of denoisers with perfectly symmetric Jacobians are those that pro-

duce MAP or MMSE optimal x̂ under some assumed prior p̂x. In the MAP case,

x̂ minimizes (over x) the cost c(x; r) = 1
2ν
‖x − r‖2 − ln p̂x(x) for noisy input r. If

we define φ(r) , minx c(x; r), known as the Moreau-Yosida envelope of − ln p̂x, then

x̂ = f(r) = r − ν∇φ(r), as discussed in [37] (See also [80] for insightful discus-

sions in the context of image denoising.) The elements in the Jacobian are therefore

[Jf(r)]n,q = ∂fn(r)
∂rq

= δn−q − ν ∂
2φ(r)

∂rq∂rn
, and so the Jacobian matrix is symmetric. In
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the MMSE case, we have that f(r) = r − ∇ρTR(r) for ρTR(·) defined in (3.52) (see

Lemma 4), and so [Jf(r)]n,q = δn−q − ∂2ρTR(r)
∂rq∂rn

, again implying that the Jacobian

is symmetric. But it is difficult to say anything about the Jacobian symmetry of

approximate MAP or MMSE denoisers.

Now let us consider the more general class of denoisers

f(x) = W (x)x, (3.32)

sometimes called “pseudo-linear” [62]. For simplicity, we assume that W (·) is differ-

entiable on X . In this case, using the chain rule, we have

∂fn(x)

∂xq
= wnq(x) +

N∑
i=1

∂wni(x)

∂xq
xi, (3.33)

and so the following are sufficient conditions for Jacobian symmetry.

1. W (x) is symmetric ∀x ∈ X ,

2.
∑N

i=1
∂wni(x)
∂xq

xi =
∑N

i=1
∂wqi(x)

∂xn
xi ∀x ∈ X .

When W is x-invariant (i.e., f(·) is linear) and symmetric, both of these conditions

are satisfied. This latter case was exploited for RED in [50]. The case of non-linear

W (·) is more complicated. Although W (·) can be symmetrized (see [81,82]), it is

not clear whether the second condition above will be satisfied.

3.3.5 Jacobian Symmetry Experiments

For denoisers that do not admit a tractable analysis, we can still evaluate the

Jacobian of f(·) at x numerically via

fi(x+ εen)− fi(x− εen)

2ε
,
[
Ĵf(x)

]
i,n
, (3.34)
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TDT MF NLM BM3D TNRD DnCNN

eJf (x) 5.36e-21 1.50 0.250 1.22 0.0378 0.0172

Table 3.1: Average Jacobian-symmetry error on 16×16 images

where en denotes the nth column of IN and ε > 0 is small (ε = 1 × 10−3 in our

experiments). For the purpose of quantifying JS, we define the normalized error

metric

eJf (x) ,

∥∥Ĵf(x)− [Ĵf(x)]T
∥∥2
F

‖Ĵf(x)‖2F
, (3.35)

which should be nearly zero for a symmetric Jacobian.

Table 3.1 shows8 the average value of eJf (x) for 17 different image patches9 of

size 16 × 16, using denoisers that assumed a noise variance of 252. The denoisers

tested were the TDT from (3.30) with the 2D Haar wavelet transform and soft-

thresholding, the median filter (MF) [75] with a 3 × 3 window, non-local means

(NLM) [9], BM3D [26], TNRD [63], and DnCNN [10]. Table 3.1 shows that the

Jacobians of all but the TDT denoiser are far from symmetric.

Jacobian symmetry is of secondary interest; what we really care about is the accu-

racy of the RED gradient expressions (3.13) and (3.22). To assess gradient accuracy,

we numerically evaluated the gradient of ρred(·) at x using

ρred(x+ εen)− ρred(x− εen)

2ε
,
[
∇̂ρred(x)

]
n

(3.36)

8Matlab code for the experiments is available at http://www2.ece.ohio-state.edu/

~schniter/RED/index.html.

9We used the center 16×16 patches of the standard Barbara, Bike, Boats, Butterfly, Cameraman,
Flower, Girl, Hat, House, Leaves, Lena, Parrots, Parthenon, Peppers, Plants, Raccoon, and Starfish
test images.
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e∇f (x) TDT MF NLM BM3D TNRD DnCNN

∇ρred(x) from (3.13) 0.381 0.904 0.829 0.790 0.416 1.76
∇ρred(x) from (3.38) 0.381 1.78e-21 0.0446 0.447 0.356 1.69
∇ρred(x) from (3.22) 4.68e-19 1.75e-21 1.32e-20 4.80e-14 3.77e-19 6.76e-13

Table 3.2: Average gradient error on 16×16 images

and compared the result to the analytical expressions (3.13) and (3.22). Table 3.2

reports the normalized gradient error

e∇f (x) ,
‖∇ρred(x)− ∇̂ρred(x)‖2

‖∇̂ρred(x)‖2
(3.37)

for the same ε, images, and denoisers used in Table 3.1. The results in Table 3.2

show that, for all tested denoisers, the numerical gradient ∇̂ρred(·) closely matches

the analytical expression for ∇ρred(·) from (3.22), but not that from (3.13). The

mismatch between ∇̂ρred(·) and ∇ρred(·) from (3.13) is partly due to insufficient JS

and partly due to insufficient LH, as we establish below.

3.3.6 Local Homogeneity Experiments

Recall that the TDT denoiser has a symmetric Jacobian, both theoretically and

empirically. Yet Table 3.2 reports a disagreement between the ∇ρred(·) expressions

(3.13) and (3.22) for TDT. We now show that this disagreement is due to insufficient

local homogeneity (LH).

To do this, we introduce yet another RED gradient expression,

∇ρred(x)
LH
= x− 1

2
[Jf(x)]x− 1

2
[Jf(x)]Tx, (3.38)

which results from combining (3.22) with Lemma 1. Here,
LH
= indicates that (3.38)

holds under LH. In contrast, the gradient expression (3.13) holds under both LH and
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TDT MF NLM BM3D TNRD DnCNN

eLH,1f (x) 2.05e-8 0 1.41e-8 7.37e-7 2.18e-8 1.63e-8

eLH,2f (x) 0.0205 2.26e-23 0.0141 3.80e4 2.18e-2 0.0179

Table 3.3: Average local-homogeneity error on 16×16 images

Jacobian symmetry, while the gradient expression (3.22) holds in general (i.e., even

in the absence of LH and/or Jacobian symmetry). We also introduce two normalized

error metrics for LH,

eLH,1f (x) ,

∥∥f((1 + ε)x)− (1 + ε)f(x)
∥∥2

‖(1 + ε)f(x)‖2
(3.39)

eLH,2f (x) ,

∥∥[Ĵf(x)]x− f(x)
∥∥2

‖f(x)‖2
. (3.40)

which should both be nearly zero for LH f(·). Note that eLH,1f quantifies LH according

to definition (3.12) and closely matches the numerical analysis of LH in [5]. Mean-

while, eLH,2f quantifies LH according to Lemma 1 and to how LH is actually used in

the gradient expressions (3.13) and (3.38).

The middle row of Table 3.2 reports the average gradient error of the gradient

expression (3.38), and Table 3.3 reports average LH error for the metrics eLH,1f and

eLH,2
f . There we see that the average eLH,1f error is small for all denoisers, consistent

with the experiments in [5]. But the average eLH,2f error is several orders of magnitude

larger (for all but the MF denoiser). We also note that the value of eLH,2f for BM3D

is several orders of magnitude higher than for the other denoisers. This result is

consistent with Fig. 3.2, which shows that the cost function associated with BM3D

is much less smooth than that of the other denoisers. As discussed below, these
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seemingly small imperfections in LH have a significant effect on the RED gradient

expressions (3.13) and (3.38).

Starting with the TDT denoiser, Table 3.2 shows that the gradient error on (3.38)

is large, which can only be caused by insufficient LH. The insufficient LH is con-

firmed in Table 3.3, which shows that the value of eLH,2f (x) for TDT is non-negligible,

especially in comparison to the value for MF.

Continuing with the MF denoiser, Table 3.1 indicates that its Jacobian is far from

symmetric, while Table 3.3 indicates that it is LH. The gradient results in Table 3.2

are consistent with these behaviors: the ∇ρred(x) expression (3.38) is accurate on

account of LH being satisfied, but the ∇ρred(x) expression (3.13) is inaccurate on

account of a lack of JS.

The results for the remaining denoisers NLM, BM3D, TNRD, and BM3D show a

common trend: they have non-trivial levels of both JS error (see Table 3.1) and LH

error (see Table 3.3). As a result, the gradient expressions (3.13) and (3.38) are both

inaccurate (see Table 3.2).

In conclusion, the experiments in this section show that the RED gradient expres-

sions (3.13) and (3.38) are very sensitive to small imperfections in LH. Although the

experiments in [5] suggested that many popular image denoisers are approximately

LH, our experiments suggest that their levels of LH are insufficient to maintain the

accuracy of the RED gradient expressions (3.13) and (3.38).

46



3.3.7 Hessian and Convexity

From (3.26), the (n, j)th element of the Hessian of ρred(x) equals

∂2ρred(x)

∂xn∂xj
=

∂

∂xj

(
xn −

1

2
fn(x)− 1

2

N∑
i=1

xi
∂fi(x)

∂xn

)
(3.41)

= δn−j −
1

2

∂fn(x)

∂xj
− 1

2

∂fj(x)

∂xn
− 1

2
xj
∂2fj(x)

∂xn∂xj

− 1

2

∑
i 6=j

xi
∂2fi(x)

∂xn∂xj
(3.42)

= δn−j −
1

2

∂fn(x)

∂xj
− 1

2

∂fj(x)

∂xn
− 1

2

N∑
i=1

xi
∂2fi(x)

∂xn∂xj
. (3.43)

where δk = 1 if k = 0 and otherwise δk = 0. Thus, the Hessian of ρred(·) at x equals

Hρred(x) = I − 1

2
Jf(x)− 1

2
[Jf(x)]T − 1

2

N∑
i=1

xiHfi(x). (3.44)

This expression can be contrasted with the Hessian expression from [5, (60)], which

reads

I − Jf(x). (3.45)

Interestingly, (3.44) differs from (3.45) even when the denoiser has a symmetric

Jacobian Jf(x). One implication is that, even if eigenvalues of Jf(x) are limited to

the interval [0, 1], the Hessian Hρred(x) may not be positive semi-definite due to the

last term in (3.44), with possibly negative implications on the convexity of ρred(·).

That said, the RED algorithms do not actually minimize the variational objective

`(x;y) + λρred(x) for common denoisers f(·) (as established in Section 3.3.8), and

so the convexity of ρred(·) may not be important in practice. We investigate the

convexity of ρred(·) numerically in Section 3.3.9.
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Figure 3.1: RED cost Cred(xk) and fixed-point error ‖AT(Axk − y)/σ2 + λ(xk −
f(xk))‖2 versus iteration k for {xk}Kk=1 produced by the RED-SD algorithm from [5].
Although the fixed-point condition is asymptotically satisfied, the RED cost does not
decrease with k.

3.3.8 Example RED-SD Trajectory

We now provide an example of how the RED algorithms from [5] do not necessarily

minimize the variational objective `(x;y) + λρred(x).

For a trajectory {xk}Kk=1 produced by the steepest-descent (SD) RED algorithm

from [5], Fig. 3.1 plots, versus iteration k, the RED Cost Cred(xk) from (3.14) and

the error on the fixed-point condition (3.15), i.e., ‖g(xk)‖2 with

g(x) ,
1

σ2
AT(Ax− y) + λ

(
x− f(x)

)
. (3.46)

For this experiment, we used the 3× 3 median-filter for f(·), the Starfish image, and

noisy measurements y = x+N (0, σ2I) with σ2 = 20 (i.e., A = I in (3.14)).

Figure 3.1 shows that, although the RED-SD algorithm asymptotically satisfies the

fixed-point condition (3.15), the RED cost function Cred(xk) does not decrease with

k, as would be expected if the RED algorithms truly minimized the RED cost Cred(·).
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This behavior implies that any optimization algorithm that monitors the objective

value Cred(xk) for, say, backtracking line-search (e.g., the FASTA algorithm [83]), is

difficult to apply in the context of RED.

3.3.9 Visualization of RED Cost and RED-Algorithm Gra-
dient

We now show visualizations of the RED cost Cred(x) from (3.14) and the RED

algorithm’s gradient field g(x) from (3.46), for various image denoisers. For this

experiment, we used the Starfish image, noisy measurements y = x+N (0, σ2I) with

σ2 = 100 (i.e., A = I in (3.14) and (3.46)), and λ optimized over a grid (of 20 values

logarithmically spaced between 0.0001 and 1) for each denoiser, so that the PSNR of

the RED fixed-point x̂ is maximized.

Figure 3.2 plots the RED cost Cred(x) and the RED algorithm’s gradient field

g(x) for the TDT, MF, NLM, BM3D, TNRD, and DnCNN denoisers. To visualize

these quantities in two dimensions, we plotted values of x centered at the RED fixed-

point x̂ and varying along two randomly chosen directions. The figure shows that

the minimizer of Cred(x) does not coincide with the fixed-point x̂, and that the RED

cost Cred(·) is not always smooth or convex.

3.4 Score-Matching by Denoising

As discussed in Section 3.2.4, the RED algorithms proposed in [5] are explicitly

based on gradient rule

∇ρ(x) = x− f(x). (3.47)

This rule appears to be useful since these algorithms work very well in practice. But

Section 3.3 established that ρred(·) from (3.11) does not usually satisfy (3.47). We
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Figure 3.2: Contours show RED cost Cred(xα,β) from (3.14) and arrows show RED-
algorithm gradient field g(xα,β) from (3.46) versus (α, β), where xα,β = x̂+αe1+βe2
with randomly chosen e1 and e2. The subplots show that the minimizer of Cred(xα,β)
is not the fixed-point x̂, and that Cred(·) may be non-smooth and/or non-convex.

are thus motivated to seek an alternative explanation for the RED algorithms. In

this section, we explain them through a framework that we call score-matching by

denoising (SMD).

3.4.1 Tweedie Regularization

As a precursor to the SMD framework, we first propose a technique based on what

we will call Tweedie regularization.

Recall the measurement model (3.10) used to define the “denoising” problem,

repeated in (3.48) for convenience:

r = x0 + e, e ∼ N (0, νI). (3.48)
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To avoid confusion, we will refer to r as “pseudo-measurements” and y as “measure-

ments.” From (3.48), the likelihood of x0 is p(r|x0; ν) = N (r;x0, νI).

Now, suppose that we model the true image x0 as a realization of a random vector

x with prior pdf p̂x. We write “p̂x” to emphasize that the model distribution may

differ from the true distribution px (i.e., the distribution from which the image x is

actually drawn). Under this prior model, the MMSE denoiser of x from r is

Ep̂x{x|r} , f̂mmse,ν(r), (3.49)

and the likelihood of observing r is

p̂r(r; ν) ,
∫
RN

p(r|x; ν)p̂x(x) dx (3.50)

=

∫
RN

N (r;x, νI)p̂x(x) dx. (3.51)

We will now define the Tweedie regularizer (TR) as

ρTR(r; ν) , −ν ln p̂r(r; ν). (3.52)

As we now show, ρTR(·) has the desired property (3.47).

Lemma 4 (Tweedie). For ρTR(r; ν) defined in (3.52),

∇ρTR(r; ν) = r − f̂mmse,ν(r), (3.53)

where f̂mmse,ν(·) is the MMSE denoiser from (3.49).
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Proof. Equation (3.53) is a direct consequence of a classical result known as Tweedie’s

formula [84,85]. A short proof, from first principles, is now given for completeness.

∂

∂rn
ρTR(r; ν) = −ν ∂

∂rn
ln

∫
RN

p̂x(x)N (r;x, νI) dx (3.54)

= −
ν
∫
RN p̂x(x) ∂

∂rn
N (r;x, νI) dx∫

RN p̂x(x)N (r;x, νI) dx
(3.55)

=

∫
RN p̂x(x)N (r;x, νI)(rn − xn) dx∫

RN p̂x(x)N (r;x, νI) dx
(3.56)

= rn −
∫
RN

xn
p̂x(x)N (r;x, νI)∫

RN p̂x(x′)N (r;x′, νI) dx′
dx (3.57)

= rn −
∫
RN

xn p̂x|r(x|r; ν) dx (3.58)

= rn − [f̂mmse,ν(r)]n, (3.59)

where (3.56) used ∂
∂rn
N (r;x, νI) = N (r;x, νI)(xn − rn)/ν. Stacking (3.59) for

n = 1, . . . , N in a vector yields (3.53).

Thus, if the TR regularizer ρTR(·; ν) is used in the optimization problem (3.14),

then the solution x̂ must satisfy the fixed-point condition (3.15) associated with the

RED algorithms from [5], albeit with an MMSE-type denoiser. This restriction will

be removed using the SMD framework in Section 3.4.3.

It is interesting to note that the gradient property (3.53) holds even for non-

homogeneous f̂mmse,ν(·). This generality is important in applications under which

f̂mmse,ν(·) is known to lack LH. For example, with a binary image x ∈ {0, 1}N mod-

eled by p̂x(x) =
∏N

n=1 0.5(δ(xn) + δ(xn − 1)), the MMSE denoiser takes the form

[f̂mmse,ν(x)]n = 0.5 + 0.5 tanh(xn/ν), which is not LH.
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3.4.2 Tweedie Regularization as Kernel Density Estimation

We now show that TR arises naturally in the data-driven, non-parametric context

through kernel-density estimation (KDE) [64].

Recall that, in most imaging applications, the true prior px is unknown, as is

the true MMSE denoiser fmmse,ν(·). There are several ways to proceed. One way

is to design “by hand” an approximate prior p̂x that leads to a computationally

efficient denoiser f̂mmse,ν(·). But, because this denoiser is not MMSE for x ∼ px, the

performance of the resulting estimates x̂ will suffer relative to fmmse,ν .

Another way to proceed is to approximate the prior using a large corpus of training

data {xt}Tt=1. To this end, an approximate prior could be formed using the empirical

estimate

p̂x(x) =
1

T

T∑
t=1

δ(x− xt), (3.60)

but a more accurate match to the true prior px can be obtained using

p̃x(x; ν) =
1

T

T∑
t=1

N (x;xt, νI) (3.61)

with appropriately chosen ν > 0, a technique known as kernel density estimation

(KDE) or Parzen windowing [64]. Note that if p̃x is used as a surrogate for px, then

the MAP optimization problem becomes

x̂ = arg min
r

1

2σ2
‖Ar − y‖2 − ln p̃x(r; ν) (3.62)

= arg min
r

1

2σ2
‖Ar − y‖2 + λρTR(r; ν) for λ =

1

ν
, (3.63)

with ρTR(·; ν) from (3.50)-(3.52) constructed using p̂x from (3.60). In summary, TR

arises naturally in the data-driven approach to image recovery when KDE is used to

smooth the empirical prior.
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3.4.3 Score-Matching by Denoising

A limitation of the above TR framework is that it results in denoisers f̂mmse,ν with

symmetric Jacobians. (Recall the discussion of MMSE denoisers in Section 3.3.4.) To

justify the use of RED algorithms with non-symmetric Jacobians, we introduce the

score-matching by denoising (SMD) framework in this section.

Let us continue with the KDE-based MAP estimation problem (3.62). Note that

x̂ from (3.62) zeros the gradient of the MAP optimization objective and thus obeys

the fixed-point equation

1

σ2
AT(Ax̂− y)−∇ ln p̃x(x̂; ν) = 0. (3.64)

In principle, x̂ in (3.64) could be found using gradient descent or similar techniques.

However, computation of the gradient

∇ ln p̃x(r; ν) =
∇p̃x(r; ν)

p̃x(r; ν)
=

∑T
t=1(xt − r)N (r;xt, νI)

ν
∑T

t=1N (r;xt, νI)
(3.65)

is too expensive for the values of T typically needed to generate a good image prior

p̃x.

A tractable alternative is suggested by the fact that

∇ ln p̃x(r; ν) =
f̂mmse,ν(r)− r

ν
(3.66)

for f̂mmse,ν(r) =

∑T
t=1 xtN (r;xt, νI)∑T
t=1N (r;xt, νI)

, (3.67)

where f̂mmse,ν(r) is the MMSE estimator of x ∼ p̂x from r = x + N (0, νI). In

particular, if we can construct a good approximation to f̂mmse,ν(·) using a denoiser

fθ(·) in a computationally efficient function class F , {fθ : θ ∈ Θ}, then we can

efficiently approximate the MAP problem (3.62).
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This approach can be formalized using the framework of score matching [11], which

aims to approximate the “score” (i.e., the gradient of the log-prior) rather than the

prior itself. For example, suppose that we want to want to approximate the score

∇ ln p̃x(·; ν). For this, Hyvärinen [11] suggested to first find the best mean-square fit

among a set of computationally efficient functions ψ(·;θ), i.e., find

θ̂ = arg min
θ

Ep̃x

{
‖ψ(x;θ)−∇ ln p̃x(x; ν)‖2

}
, (3.68)

and then to approximate the score ∇ ln p̃x(·; ν) by ψ(·; θ̂). Later, in the context of

denoising autoencoders, Vincent [86] showed that if one chooses

ψ(x;θ) =
fθ(x)− x

ν
(3.69)

for some function fθ(·) ∈ F , then θ̂ from (3.68) can be equivalently written as

θ̂ = arg min
θ

Ep̂x

{∥∥fθ(x+N (0, νI)
)
− x

∥∥2} . (3.70)

In this case, f θ̂(·) is the MSE-optimal denoiser, averaged over p̂x and constrained to

the function class F .

Note that the denoiser approximation error can be directly connected to the score-

matching error as follows. For any denoiser fθ(·) and any input x,

‖fθ(x)− f̂mmse,ν(x)‖2

= ν2
∥∥∥∥fθ(x)− x

ν
−∇ ln p̃x(x; ν)

∥∥∥∥2 (3.71)

= ν2 ‖ψ(x;θ)−∇ ln p̃x(x; ν)‖2 (3.72)

where (3.71) follows from (3.66) and (3.72) follows from (3.69). Thus, matching the

score is directly related to matching the MMSE denoiser.
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Plugging the score approximation (3.69) into the fixed-point condition (3.64), we

get

1

σ2
AT(Ax̂− y) + λ

(
x̂− fθ(x̂)

)
= 0 for λ =

1

ν
, (3.73)

which matches the fixed-point condition (3.15) of the RED algorithms from [5]. Here

we emphasize that F may be constructed in such a way that fθ(·) has a non-

symmetric Jacobian, which is the case for many state-of-the-art denoisers. Also, θ

does not need to be optimized for (3.73) to hold. Finally, p̂x need not be the empirical

prior (3.60); it can be any chosen prior [86]. Thus, the score-matching-by-denoising

(SMD) framework offers an explanation of the RED algorithms from [5] that holds

for generic denoisers fθ(·), whether or not they have symmetric Jacobians, are lo-

cally homogeneous, or MMSE. Furthermore, it suggests a rationale for choosing the

regularization weight λ and, in the context of KDE, the denoiser variance ν.

3.4.4 Relation to Existing Work

Tweedie’s formula (3.53) has connections to Stein’s Unbiased Risk Estimation

(SURE) [87], as discussed in, e.g., [88, Thm. 2] and [89, Eq. (2.4)]. SURE has been

used for image denoising in, e.g., [90]. Tweedie’s formula was also used in [91] to

interpret autoencoding-based image priors. In our work, Tweedie’s formula is used

to provide an interpretation for the RED algorithms through the construction of the

explicit regularizer (3.52) and the approximation of the resulting fixed-point equation

(3.64) via score matching.

Recently, Alain and Bengio [92] studied the contractive auto-encoders, a type of

autoencoder that minimizes squared reconstruction error plus a penalty that tries

to make the autoencoder as simple as possible. While previous works such as [93]
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conjectured that such auto-encoders minimize an energy function, Alain and Bengio

showed that they actually minimize the norm of a score (i.e., match a score to zero).

Furthermore, they showed that, when the coder and decoder do not share the same

weights, it is not possible to define a valid energy function because the Jacobian of

the reconstruction function is not symmetric. The results in [92] parallel those in this

chapter, except that they focus on auto-encoders while we focus on variational image

recovery. Another small difference is that [92] uses the small-ν approximation

f̂mmse,ν(x) = x+ ν∇ ln p̂x(x) + o(ν), (3.74)

whereas we use the exact (Tweedie’s) relationship (3.53), i.e.,

f̂mmse,ν(x) = x+ ν∇ ln p̃x(x), (3.75)

where is p̃x the “Gaussian blurred” version of p̂x from (3.51).

3.5 Fast RED Algorithms

In [5], Romano et al. proposed several ways to solve the fixed-point equation

(3.15). Throughout this chapter, we have been referring to these methods as “RED

algorithms.” In this section, we provide new interpretations of the RED-ADMM

and RED-FP algorithms from [5] and we propose new RED algorithms based on

accelerated proximal gradient methods.

3.5.1 RED-ADMM

The ADMM approach was summarized in Algorithm 1 for an arbitrary regularizer

ρ(·). To apply ADMM to RED, line 3 of Algorithm 1, known as the “proximal up-

date,” must be specialized to the case where ρ(·) obeys (3.13) for some denoiser f(·).
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Algorithm 2 RED-ADMM with I Inner Iterations [5]

Require: `(·;y),f(·), β, λ,v0,u0, K, and I
1: for k = 1, 2, . . . , K do
2: xk = arg minx{`(x;y) + β

2
‖x− vk−1 + uk−1‖2}

3: z0 = vk−1
4: for i = 1, 2, . . . , I do
5: zi = λ

λ+β
f(zi−1) + β

λ+β
(xk + uk−1)

6: end for
7: vk = zI
8: uk = uk−1 + xk − vk
9: end for

10: Return xK

To do this, Romano et al. [5] proposed the following. Because ρ(·) is differentiable,

the proximal solution vk must obey the fixed-point relationship

0 = λ∇ρ(vk) + β(vk − xk − uk−1) (3.76)

= λ
(
vk − f(vk)

)
+ β(vk − xk − uk−1) (3.77)

⇔ vk =
λ

λ+ β
f(vk) +

β

λ+ β
(xk + uk−1). (3.78)

An approximation to vk can thus be obtained by iterating

zi =
λ

λ+ β
f(zi−1) +

β

λ+ β
(xk + uk−1) (3.79)

over i = 1, . . . , I with sufficiently large I, initialized at z0 = vk−1. This procedure is

detailed in lines 3-6 of Algorithm 2. The overall algorithm is known as RED-ADMM.

3.5.2 Inexact RED-ADMM

Algorithm 2 gives a faithful implementation of ADMM when the number of inner

iterations, I, is large. But using many inner iterations may be impractical when the

denoiser is computationally expensive, as in the case of BM3D or TNRD. Further-

more, the use of many inner iterations may not be necessary.
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Figure 3.3: PSNR versus runtime for RED-ADMM with TNRD denoising and I inner
iterations.

Algorithm 3 RED-ADMM with I = 1

Require: `(·;y),f(·), β, λ,v0,u0, and K
1: for k = 1, 2, . . . , K do
2: xk = arg minx{`(x;y) + β

2
‖x− vk−1 + uk−1‖2}

3: vk = λ
λ+β
f(vk−1) + β

λ+β
(xk + uk−1)

4: uk = uk−1 + xk − vk
5: end for
6: Return xK

For example, Fig. 3.3 plots PSNR trajectories versus runtime for TNRD-based

RED-ADMM with I = 1, 2, 3, 4 inner iterations. For this experiment, we used the

deblurring task described in Section 3.5.7, but similar behaviors can be observed in

other applications of RED. Figure 3.3 suggests that I = 1 inner iterations gives the

fastest convergence. Note that [5] also used I = 1 when implementing RED-ADMM.

With I = 1 inner iterations, RED-ADMM simplifies down to the 3-step iteration

summarized in Algorithm 3. Since Algorithm 3 looks quite different than standard
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ADMM (recall Algorithm 1), one might wonder whether there exists another inter-

pretation of Algorithm 3. Noting that line 3 can be rewritten as

vk = vk−1 −
1

λ+ β

[
λ∇ρ(vk−1) + β(vk−1 − xk − uk−1)

]
(3.80)

= vk−1 −
1

λ+ β
∇
[
λρ(v) +

β

2
‖v − xk − uk−1‖2

]
v=vk−1

(3.81)

we see that the I = 1 version of inexact RED-ADMM replaces the proximal step with

a gradient-descent step under stepsize 1/(λ + β). Thus the algorithm is reminiscent

of the proximal gradient (PG) algorithm [94,95]. We will discuss PG further in the

sequel.

3.5.3 Majorization-Minimization and Proximal-Gradient RED

We now propose a proximal-gradient approach inspired by majorization minimiza-

tion (MM) [96]. As proposed in [97], we use a quadratic upper-bound,

ρ(x;xk) , ρ(xk) + [∇ρ(xk)]
T
(
x− xk

)
+
L

2
‖x− xk‖22, (3.82)

on the regularizer ρ(x), in place of ρ(x) itself, at the kth algorithm iteration. Note

that if ρ(·) is convex and ∇ρ(·) is Lρ-Lipschitz, then ρ(x;xk) “majorizes” ρ(x) at xk

when L ≥ Lρ, i.e.,

ρ(x;xk) ≥ ρ(x) ∀x ∈ X (3.83)

ρ(xk;xk) = ρ(xk). (3.84)

The majorized objective can then be minimized using the proximal gradient (PG)

algorithm [94,95] (also known as forward-backward splitting) as follows. From (3.82),
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Algorithm 4 RED-PG Algorithm

Require: `(·;y),f(·), λ,v0, L > 0, and K
1: for k = 1, 2, . . . , K do
2: xk = arg minx{`(x;y) + λL

2
‖x− vk−1‖2}

3: vk = 1
L
f(xk)− 1−L

L
xk

4: end for
5: Return xK

note that the majorized objective can be written as

`(x;y) + λρ(x;xk)

= `(x;y) +
λL

2

∥∥∥∥x− (xk − 1

L
∇ρ(xk)

)∥∥∥∥2 + const (3.85)

= `(x;y) +
λL

2

∥∥∥∥x− (xk − 1

L

(
xk − f(xk)

))
︸ ︷︷ ︸

, vk

∥∥∥∥2 + const,

(3.86)

where (3.86) follows from assuming (3.47), which is the basis for all RED algorithms.

The RED-PG algorithm then alternately updates vk as per the gradient step in (3.86)

and updates xk+1 according to the proximal step

xk+1 = arg min
x

{
`(x;y) +

λL

2
‖x− vk‖2

}
, (3.87)

as summarized in Algorithm 4. Convergence is guaranteed if L ≥ Lρ; see [94,95] for

details.

We now show that RED-PG with L = 1 is identical to the “fixed point” (FP)

RED algorithm proposed in [5]. First, notice from Algorithm 4 that vk = f(xk)

when L = 1, in which case

xk = arg min
x

{
`(x;y) +

λ

2
‖x− f(xk−1)‖2

}
. (3.88)
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For the quadratic loss `(x;y) = 1
2σ2‖Ax− y‖2, (3.88) becomes

xk = arg min
x

{
1

2σ2
‖Ax− y‖2 +

λ

2
‖x− f(xk−1)‖2

}
(3.89)

=
( 1

σ2
ATA+ λI

)−1( 1

σ2
ATy + λf(xk−1)

)
, (3.90)

which is exactly the RED-FP update [5, (37)]. Thus, (3.88) generalizes [5, (37)] to

possibly non-quadratic10 loss `(·;y), and RED-PG generalizes RED-FP to arbitrary

L > 0. More importantly, the PG framework facilitates algorithmic acceleration, as

we describe below.

The RED-PG and inexact RED-ADMM-I = 1 algorithms show interesting simi-

larities: both alternate a proximal update on the loss with a gradient update on the

regularization, where the latter term manifests as a convex combination between the

denoiser output and another term. The difference is that RED-ADMM-I=1 includes

an extra state variable, uk. The experiments in Section 3.5.7 suggest that this extra

state variable is not necessarily advantageous.

3.5.4 Dynamic RED-PG

Recalling from (3.86) that 1/L acts as a stepsize in the PG gradient step, it

may be possible to speed up PG by decreasing L, although making L too small can

prevent convergence. If ρ(·) was known, then a line search could be used, at each

iteration k, to find the smallest value of L that guarantees the majorization of ρ(x)

by ρ(x;xk) [94]. However, with a non-LH or non-JS denoiser, it is not possible to

evaluate ρ(·), preventing such a line search.

10The extension to non-quadratic loss is important for applications like phase-retrieval, where
RED has been successfully applied [98].
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Algorithm 5 RED-DPG Algorithm

Require: `(·;y),f(·), λ,v0, L0 > 0, L∞ > 0, and K
1: for k = 1, 2, . . . , K do
2: xk = arg minx{`(x;y) + λLk−1

2
‖x− vk−1‖2}

3: Lk =
(

1
L∞

+ ( 1
L0
− 1

L∞
) 1√

k+1

)−1
4: vk = 1

Lk
f(xk)− 1−Lk

Lk
xk

5: end for
6: Return xK

We thus propose to vary Lk (i.e., the value of L at iteration k) according to a fixed

schedule. In particular, we propose to select L0 and L∞, and smoothly interpolate

between them at intermediate iterations k. One interpolation scheme that works

well in practice is summarized in line 3 of Algorithm 5. We refer to this approach

as “dynamic PG” (DPG). The numerical experiments in Section 3.5.7 suggest that,

with appropriate selection of L0 and L∞, RED-DPG can be significantly faster than

RED-FP.

3.5.5 Accelerated RED-PG

Another well-known approach to speeding up PG is to apply momentum to the vk

term in Algorithm 4 [94], often known as “acceleration.” An accelerated PG (APG)

approach to RED is detailed in Algorithm 6. There, the momentum in line 5 takes

the same form as in FISTA [41]. The numerical experiments in Section 3.5.7 suggest

that RED-APG is the fastest among the RED algorithms discussed above.

By leveraging the principle of vector extrapolation (VE) [99], a different approach

to accelerating RED algorithms was recently proposed in [100]. Algorithmically, the

approach in [100] is much more complicated than the PG-DPG and PG-APG methods

proposed above. In fact, we have been unable to arrive at an implementation of [100]
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Algorithm 6 RED-APG Algorithm

Require: `(·;y),f(·), λ,v0, L > 0, and K
1: t0 = 1
2: for k = 1, 2, . . . , K do
3: xk = arg minx{`(x;y) + λL

2
‖x− vk−1‖2}

4: tk =
1+
√

1+4t2k−1

2

5: zk = xk + tk−1−1
tk

(xk − xk−1)
6: vk = 1

L
f(zk)− 1−L

L
zk

7: end for
8: Return xK

that reproduces the results in that paper, and the authors have not been willing

to share their implementation with us. Thus, we cannot comment further on the

difference in performance between our PG-DPG and PG-APG schemes and the one

in [100].

3.5.6 Convergence of RED-PG

Recalling Theorem 1, the RED algorithms do not minimize an explicit cost func-

tion but rather seek fixed points of (3.15). Therefore, it is important to know whether

they actually converge to any one fixed point. Below, we use the theory of non-

expansive and α-averaged operators to establish the convergence of RED-PG to a

fixed point under certain conditions.

First, an operator B(·) is said to be non-expansive if its Lipschitz constant is at

most 1 [101]. Next, for α ∈ (0, 1), an operator P (·) is said to be α-averaged if

P (x) = αB(x) + (1− α)x (3.91)
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for some non-expansive B(·). Furthermore, if P 1 and P 2 are α1 and α2-averaged,

respectively, then [101, Prop. 4.32] establishes that the composition P 2 ◦ P 1 is α-

averaged with

α =
2

1 + 1
max{α1,α2}

. (3.92)

Recalling RED-PG from Algorithm 4, let us define an operator called T (·) that

summarizes one algorithm iteration:

T (x)

, arg min
z

{
`(z;y) + λL

2

∥∥z − ( 1
L
f(x)− 1−L

L
x
)∥∥2} (3.93)

= prox`/(λL)
(
1
L

(f(x)− (1− L)x)
)

(3.94)

Lemma 5. If `(·) is proper, convex, and continuous; f(·) is non-expansive; and

L > 1, then T (·) from (3.94) is α-averaged with α = max{ 2
1+L

, 2
3
}.

Proof. First, because `(·) is proper, convex, and continuous, we know that the prox-

imal operator prox`/(λL)(·) is α-averaged with α = 1/2 [101]. Then, by definition,

1
L
f(z) − 1−L

L
z is α-averaged with α = 1/L. From (3.94), T (·) is the composition of

these two α-averaged operators, and so from (3.92) we have that T (·) is α-averaged

with α = max{ 2
1+L

, 2
3
}.

With Lemma 5, we can prove the convergence of RED-PG.

Theorem 2. If `(·) is proper, convex, and continuous; f(·) is non-expansive; L > 1;

and T (·) from (3.94) has at least one fixed point, then RED-PG converges.

Proof. From (3.94), we have that Algorithm 4 is equivalent to

xk+1 = T (xk) (3.95)

= αB(xk) + (1− α)xk (3.96)
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Figure 3.4: PSNR versus iteration for RED algorithms with TNRD denoising when
deblurring the starfish.

where B(·) is an implicit non-expansive operator that must exist under the definition

of α-averaged operators from (3.91). The iteration (3.96) can be recognized as a Mann

iteration [37], since α ∈ (0, 1). Thus, from [101, Thm. 5.14], {xk} is a convergent

sequence, in that there exists a fixed point x? ∈ RN such that limk→∞ ‖xk − x?‖ =

0.

We note that similar Mann-based techniques were used in [45,48] to prove the

convergence of PnP-based algorithms. Also, we conjecture that similar techniques

may be used to prove the convergence of other RED algorithms, but we leave the de-

tails to future work. Experiments in Section 3.5.7 numerically study the convergence

behavior of several RED algorithms with different image denoisers f(·).
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Figure 3.5: Fixed-point error versus iteration for RED algorithms with TNRD de-
noising when deblurring the starfish.

3.5.7 Algorithm Comparison: Image Deblurring

We now compare the performance of the RED algorithms discussed above (i.e.,

inexact ADMM, FP, DPG, APG, and PG) on the image deblurring problem consid-

ered in [5, Sec. 6.1]. For these experiments, the measurements y were constructed

using a 9 × 9 uniform blur kernel for A and using AWGN with variance σ2 = 2. As

stated earlier, the image x is normalized to have pixel intensities in the range [0, 255].

For the first experiment, we used the TNRD denoiser. The various algorithmic

parameters were chosen based on the recommendations in [5]: the regularization

weight was λ = 0.02, the ADMM penalty parameter was β = 0.001, and the noise

variance assumed by the denoiser was ν = 3.252. The proximal step on `(x;y), given

in (3.90), was implemented with an FFT. For RED-DPG we used11 L0 = 0.2 and

11Matlab code for these experiments is available at http://www2.ece.ohio-state.edu/

~schniter/RED/index.html.
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Figure 3.6: Update distance versus iteration for RED algorithms with TNRD denois-
ing when deblurring the starfish.

L∞ = 2, for RED-APG we used L = 1, and for RED-PG we used L = 1.01 since

Theorem 2 motivates L > 1.

Figure 3.4 shows

PSNRk , −10 log10

(
1

N2562
‖x− x̂k‖2

)
versus iteration k for the starfish test image. In the figure, the proposed RED-

DPG and RED-APG algorithms appear significantly faster than the RED-FP and

RED-ADMM-I = 1 algorithms proposed in [5]. For example, RED-APG reaches

PSNR = 30 in 15 iterations whereas RED-FP and inexact RED-ADMM-I = 1 take

about 50 iterations.

Figure 3.5 shows the fixed-point error

1

N

∥∥∥∥ 1

σ2
AH(Axk − y) + λ(xk − f(xk))

∥∥∥∥2
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Figure 3.7: PSNR versus iteration for RED algorithms with TDT denoising when
deblurring the starfish.

verus iteration k. All but the RED-APG and RED-ADMM algorithms appear to

converge to the solution set of the fixed-point equation (3.15). The RED-APG and

RED-ADMM algorithms appear to approximately satisfy the fixed-point equation

(3.15), but not exactly satisfy (3.15), since the fixed-point error does not decay to

zero.

Figure 3.6 shows the update distance 1
N
‖xk − xk−1‖2 vs. iteration k for the algo-

rithms under test. For most algorithms, the update distance appears to be converging

to zero, but for RED-APG and RED-ADMM it does not. This suggests that the

RED-APG and RED-ADMM algorithms are converging to a limit cycle rather than

a unique limit point.

Next, we replace the TNRD denoiser with the TDT denoiser from (3.30) and

repeat the previous experiments. For the TDT denoiser, we used a Haar-wavelet based

orthogonal discrete wavelet transform (DWT) W , with the maximum number of
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Figure 3.8: Fixed-point error versus iteration for RED algorithms with TDT denoising
when deblurring the starfish.

decomposition levels, and a soft-thresholding function g(·) with threshold value 0.001.

Unlike the TNRD denoiser, this TDT denoiser is the proximal operator associated

with a convex cost function, and so we know that it is 1
2
-averaged and non-expansive.

Figure 3.7 shows PSNR versus iteration with TDT denoising. Interestingly, the

final PSNR values appear to be nearly identical among all algorithms under test, but

more than 1 dB worse than the values around iteration 20. Figure 3.8 shows the fixed-

point error vs. iteration for this experiment. There, the errors of most algorithms

converge to a value near 10−7, but then remain at that value. Noting that RED-

PG satisfies the conditions of Theorem 2 (i.e., convex loss, non-expansive denoiser,

L > 1), it should converge to a fixed-point of (3.15). Therefore, we attribute the fixed-

point error saturation in Fig. 3.8 to issues with numerical precision. Figure 3.9 shows

the normalized distance versus iteration with TDT denoising. There, the distance

decreases to zero for all algorithms under test.
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Figure 3.9: Update distance versus iteration for RED algorithms with TDT denoising
when deblurring the starfish.

We emphasize that the proposed RED-DPG, RED-APG, and RED-PG algorithms

seek to solve exactly the same fixed-point equation (3.15) sought by the RED-SD,

RED-ADMM, and RED-FP algorithms proposed in [5]. The excellent quality of the

RED fixed-points was firmly established in [5], both qualitatively and quantitatively,

in comparison to existing state-of-the-art methods like PnP-ADMM [14]. For further

details on these comparisons, including examples of images recovered by the RED

algorithms, we refer the interested reader to [5].

3.6 Equilibrium View of RED Algorithms

Like the RED algorithms, PnP-ADMM [14] repeatedly calls a denoiser f(·) in

order to solve an inverse problem. In [48], Buzzard, Sreehari, and Bouman show that

PnP-ADMM finds a “consensus equilibrium” solution rather than a minimum of any
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explicit cost function. By consensus equilibrium, we mean a solution (x̂, û) to

x̂ = F (x̂+ û) (3.97a)

x̂ = G(x̂− û) (3.97b)

for some functions F,G : RN → RN . For PnP-ADMM, these functions are [48]

Fpnp(v) = arg min
x

{
`(x;y) +

β

2
‖x− v‖2

}
(3.98)

Gpnp(v) = f(v). (3.99)

3.6.1 RED Equilibrium Conditions

We now show that the RED algorithms also find consensus equilibrium solutions,

but with G 6= Gpnp. First, recall ADMM Algorithm 1 with explicit regularization

ρ(·). By taking iteration k → ∞, it becomes clear that the ADMM solutions must

satisfy the equilibrium condition (3.97) with

Fadmm(v) = arg min
x

{
`(x;y) +

β

2
‖x− v‖2

}
(3.100)

Gadmm(v) = arg min
x

{
λρ(x) +

β

2
‖x− v‖2

}
, (3.101)

where we note that Fadmm = Fpnp.

The RED-ADMM algorithm can be considered as a special case of ADMM Al-

gorithm 1 under which ρ(·) is differentiable with ∇ρ(x) = x − f(x), for a given

denoiser f(·). We can thus find Gred-admm(·), i.e., the RED-ADMM version of G(·)

satisfying the equilibrium condition (3.97b), by solving the right side of (3.101) under

∇ρ(x) = x−f(x). Similarly, we see that the RED-ADMM version of F (·) is identical

to the ADMM version of F (·) from (3.100). Now, the x̂ = Gred-admm(v) that solves
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the right side of (3.101) under differentiable ρ(·) with ∇ρ(x) = x− f(x) must obey

0 = λ∇ρ(x̂) + β(x̂− v) (3.102)

= λ
(
x̂− f(x̂)

)
+ β(x̂− v), (3.103)

which we note is a special case of (3.15). Continuing, we find that

0 = λ
(
x̂− f(x̂)

)
+ β(x̂− v) (3.104)

⇔ 0 =
λ+ β

β
x̂− λ

β
f(x̂)− v (3.105)

⇔ v =

(
λ+ β

β
I − λ

β
f

)
(x̂) (3.106)

⇔ x̂ =

(
λ+ β

β
I − λ

β
f

)−1
(v) = Gred-admm(v), (3.107)

where I represents the identity operator and (·)−1 represents the functional inverse. In

summary, RED-ADMM with denoiser f(·) solves the consensus equilibrium problem

(3.97) with F = Fadmm from (3.100) and G = Gred-admm from (3.107).

Next we establish an equilibrium result for RED-PG. Defining uk = vk − xk and

taking k →∞ in Algorithm 4, it can be seen that the fixed points of RED-PG obey

(3.97a) for

Fred-pg(v) = arg min
x

{
`(x;y) +

λL

2
‖x− v‖2

}
. (3.108)

Furthermore, from line 3 of Algorithm 4, it can be seen that the RED-PG fixed points

also obey

û =
1

L
(f(x̂)− x̂) (3.109)

⇔ x̂− û = x̂− 1

L
(f(x̂)− x̂) (3.110)

=

(
L+ 1

L
I − 1

L
f

)
(x̂) (3.111)

⇔ x̂ =

(
L+ 1

L
I − 1

L
f

)−1
(x̂− û), (3.112)
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which matches (3.97b) when G = Gred-pg for

Gred-pg(v) =

(
L+ 1

L
I − 1

L
f

)−1
(v). (3.113)

Note that Gred-pg = Gred-admm when L = β/λ.

3.6.2 Interpreting the RED Equilibria

The equilibrium conditions provide additional interpretations of the RED algo-

rithms. To see how, first recall that the RED equilibrium (x̂, û) satisfies

x̂ = Fred-pg(x̂+ û) (3.114a)

x̂ = Gred-pg(x̂− û), (3.114b)

or an analogous pair of equations involving Fred-admm and Gred-admm. Thus, from

(3.108), (3.109), and (3.114a), we have that

x̂ = Fred-pg

(
x̂+

1

L
(f(x̂)− x̂)

)
(3.115)

= Fred-pg

(
L− 1

L
x̂+

1

L
f(x̂)

)
(3.116)

= arg min
x

{
`(x;y) +

λL

2

∥∥∥∥x− L− 1

L
x̂− 1

L
f(x̂)

∥∥∥∥2
}
. (3.117)

When L = 1, this simplifies down to

x̂ = arg min
x

{
`(x;y) +

λ

2
‖x− f(x̂)‖2

}
. (3.118)

Note that (3.118) is reminiscent of, although in general not equivalent to,

x̂ = arg min
x

{
`(x;y) +

λ

2
‖x− f(x)‖2

}
, (3.119)

which was discussed as an “alternative” formulation of RED in [5, Sec. 5.2].
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Insights into the relationship between RED and PnP-ADMM can be obtained by

focusing on the simple case of

`(x;y) =
1

2σ2
‖x− y‖2, (3.120)

where the overall goal of variational image recovery would be the denoising of y. For

PnP-ADMM, (3.90) and (3.98) imply

Fpnp(v) =
1

1 + λσ2
y +

λσ2

1 + λσ2
v, (3.121)

and so the equilibrium condition (3.97a) implies

x̂pnp =
1

1 + λσ2
y +

λσ2

1 + λσ2
(x̂pnp + ûpnp) (3.122)

⇔ ûpnp =
x̂pnp − y
λσ2

. (3.123)

Meanwhile, (3.99) and the equilibrium condition (3.97b) imply

x̂pnp = f(x̂pnp − ûpnp) (3.124)

= f

(
λσ2 − 1

λσ2
x̂pnp +

1

λσ2
y

)
. (3.125)

In the case that λ = 1/σ2, we have the intuitive result that

x̂pnp = f(y), (3.126)

which corresponds to direct denoising of y. For RED, ûred is algorithm dependent,

but x̂red is always the solution to (3.15), where now A = I due to (3.120). That is,

y − x̂red = λσ2
(
x̂red − f(x̂red)

)
. (3.127)

Taking λ = 1/σ2 for direct comparison to (3.126), we find

y − x̂red = x̂red − f(x̂red). (3.128)
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Thus, whereas PnP-ADMM reports the denoiser output f(y), RED reports the x̂ for

which the denoiser residual f(x̂)− x̂ negates the measurement residual y − x̂. This

x̂ can be expressed concisely as

x̂ = (2I − f)−1(y) = Gred-pg(y)
∣∣
L=1

. (3.129)

3.7 Conclusion

The RED paper [5] proposed a powerful new way to exploit plug-in denoisers

when solving imaging inverse problems. In fact, experiments in [5] suggest that the

RED algorithms are state-of-the-art. Although [5] claimed that the RED algorithms

minimize an optimization objective containing an explicit regularizer of the form

ρred(x) , 1
2
xT(x − f(x)) when the denoiser is LH, we showed that the denoiser

must also be Jacobian symmetric for this explanation to hold. We then provided

extensive numerical evidence that practical denoisers like the median filter, non-local

means, BM3D, TNRD, or DnCNN lack sufficient Jacobian symmetry. Furthermore,

we established that, with non-JS denoisers, the RED algorithms cannot be explained

by explicit regularization of any form.

None of our negative results dispute the fact that the RED algorithms work very

well in practice. But they do motivate the need for a better understanding of RED. In

response, we showed that the RED algorithms can be explained by a novel framework

called score-matching by denoising (SMD), which aims to match the “score” (i.e., the

gradient of the log-prior) rather than design any explicit regularizer. We then es-

tablished tight connections between SMD, kernel density estimation, and constrained

MMSE denoising.
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On the algorithmic front, we provided new interpretations of the RED-ADMM

and RED-FP algorithms proposed in [5], and we proposed novel RED algorithms with

much faster convergence. Finally, we performed a consensus-equilibrium analysis of

the RED algorithms that lead to additional interpretations of RED and its relation

to PnP-ADMM.
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Chapter 4: SEND: A Score Ensembling Strategy for Novelty

Detection

4.1 Introduction

There are many applications where we want to be able to detect whether a signal

was drawn from a known distribution or from a different, unknown distribution. This

problem is called novelty detection, and a motivation is as follows. Advancements

in deep learning have made the classification of high-dimensional signals, such as

images [102], audio [103], and Radio-Frequency waveforms [104], a largely solved

problem when the test sample is consistent with the training distribution. As an

example, let us say we wanted to classify different types of tanks. We gather a

large dataset of images of tanks and train a deep neural network (DNN) to perform

classification. When our model is deployed, it does a great job of classifying tanks.

But, as illustrated in Fig. 4.1, what if the system is asked to classify a non-tank

vehicle, such as a school bus? A standard DNN classifier will only be able to return a

type of tank, which is obviously incorrect. The ability to recognize the school bus as

a novelty has obvious merit in this type of scenario. Novelty detection is particularly

important in problems like our tank example, where the operational domain of the

system is complex and dynamic.
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In this dissertation, we will focus on a data-driven approach to novelty detection.

We assume we have access to a training set X = {(xi, yi)}ni=1, where xi is the ith

training signal and yi ∈ {1 . . . K} is the corresponding class label. We denote the

number of known classes as K ≥ 1. We will call a signal coming from the known

class(es) an inlier and any other signal a novelty. Given the training set, our goal is to

learn a classifier that can distinguish between an inlier and a novelty. This problem

is different from standard binary classification because we do not have any examples

of novelties in the training set.

In our formulation of the problem, we allow the number of known classes K to be

any positive integer. If K = 1, this problem is called one-class classification [105]. In

one-class classification, we are only given training examples from a single class and

must use that data to learn a function to distinguish between signals from that class

and any novelties. When K > 1, we call the problem multi-class novelty detection

[106]. In this problem, the training data will be labeled and come from multiple

classes. Open set classification [107] is a related problem where the goal is to perform

multi-class novelty detection as well as classify inlier samples. Open set classification

could be achieved by combining a multi-class novelty detection algorithm, like those

discussed here, and a classification algorithm. One-class classification and multi-

class classification are illustrated in Fig. 4.2. Our experiments will be performed on

the multi-class novelty detection problem, but the developed method would also be

compatible with the one-class problem.

Almost all novelty detection methods score test samples with an “inlier score.”

The higher this score, the more confident the model is that the test sample is an inlier.

In order to perform novelty detection, they threshold this score. Any test sample with
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Figure 4.1: Example images of tanks used to train a DNN tank classifier and a test
sample, that we would not like classified as a type of tank. Images are from the
CIFAR-100 dataset [6].

Figure 4.2: Example plots of (left) one-class classification and (right) multi-class
novelty detection problems.

a score below the threshold is classified as a novelty, and a sample with a score higher

than the threshold is classified as an inlier. In this work, we propose Shift-Ensembled

Novelty Detection (SEND), a principled way to combine multiple scores. SEND

is compatible with most inlier scores. In our experiments, we demonstrate SEND

with several popular inlier score functions and show the ensembled score gives better

performance than the individual scores themselves, in most cases. This technique

allows us to leverage the large number of novelty detection techniques that have been

developed by the community.
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Figure 4.3: Diagrams of classic, low-dimensional (left) and deep, high-dimensional
(right) novelty detection. Deep novelty detection utilizes a deep neural network to
extract features before evaluating the score function s(·).

4.2 Background

4.2.1 Low-Dimensional Novelty Detection

When our signals xi are low dimensional, novelty detection is essentially a solved

problem [108]. Classical machine learning methods such as Mahalanobis distance

[109], nearest neighbor distance [110], kernel density estimation [64], one-class sup-

port vector machine (OC-SVM) [111], and support vector data description [112] are

techniques that perform well in low-dimensional settings.

These methods assume a notion of similarity between data points that is defined

as some distance function, whether that is `2 distance, Mahalanobis distance, or some

kernel function, such as the radial basis function. These assumptions work well in low

dimensions but break down in high dimensions due to the curse of dimensionality.

4.2.2 High-Dimensional Novelty Detection

Novelty detection of high-dimensional signals is an active area of research. Most

novelty detection solutions for high-dimensional signals utilize a DNN to encode the

signal into a lower-dimensional space, after which low-dimensional novelty detection
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approaches can be used [108]. In multi-class novelty detection, a common choice is

to use the features output by the penultimate layer of a supervised DNN classifier.

Novelty detection is then performed by thresholding a scoring function that takes

these low-dimensional features as an input. We will call the feature encoder fθ(·),

which is parameterized by DNN weights θ, and the score function s(·). Fig. 4.3

shows the difference between classic, low-dimensional novelty detection and deep,

high-dimensional novelty detection.

Addressing the one-class classification problem, Sohn et al. [8] train a feature en-

coder using a contrastive loss [12]. These features are then scored using Mahalanobis

distance or OC-SVM. They identify a problem with näıvely utilizing contrastively

trained features for novelty detection. Contrastive training encourages the feature

space to “fill-up” with inlier samples. For novelty detection, this is problematic be-

cause a lack of separation between novelties and inliers results in poor novelty detec-

tion performance. They propose to use smaller batch sizes and “shifting transforms,”

such as image rotations, during network training to fix this problem.

In parallel work [7], Tack et al. also train a feature encoder network with a con-

trastive loss and utilize shifting transforms. Their technique, called Contrastive Shift-

ing Instances (CSI), uses a common backbone network and two additional “head”

networks. One is the “contrastive head” and the other the “shift-classifier head.”

The contrastive head is trained using the contrastive loss, while the shift-classifier

head learns to classify which shift was used on a given sample. At test time, CSI uti-

lizes the contrastive features, as well as the activations of the shift-classifier head, to

generate multiple inlier scores. These inlier scores are subsequently ensembled using a

heuristic technique. CSI also introduces ensembling over the shifts of the test image,
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Figure 4.4: Diagram of CSI ensembling technique. Our test sample x is transformed
by nr shifting transforms, {Ri(·)}nr

i=1. These shifted versions of the test sample are
input to the feature encoder network fθ(·), which outputs corresponding feature
vectors {zi}nr

i=1. Each feature vector is scored by ns inlier scores, {si(·)}ns
i=1. Finally,

all the scores are ensembled to get one final score, which is thresholded to perform
novelty detection.

{Rj(x)}nr
j=1. For example, if using four image rotations as the shifting transform, CSI

will evaluate each test image rotated by 0◦, 90◦, 180◦, and 270◦. The three scores from

each of the four rotations are combined using a weighted sum. Fig. 4.4 illustrates the

ensembling over multiple shifting transforms and inlier scores. The experiments in [7]

show a significant benefit to ensembling inlier scores versus utilizing a single score.

For our image experiments, we follow [7,8] and utilize image rotations of 0◦, 90◦, 180◦,

and 270◦. We denote these rotations as R1(·) . . .R4(·), respectively.

4.3 Ensembling of Inlier Scores

We are motivated by the observation [7] that novelty detection performance can

be improved by ensembling several scores. We will refer to the scores in the ensemble
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as “base scores.” Let us assume we have ns different base scores {si(·)}ns
i=1. Using the

base scores, we can formulate a hypothesis test [113], where H0 is the hypothesis that

the test sample is an inlier and H1 is the hypothesis that the test sample is a novelty.

One challenge when designing an ensembling technique for novelty detection is

that different inlier base scores can have very different distributions. To illustrate

this, we show histograms of the “norm” and “cos” scores from [7] evaluated on images

from the CIFAR-10 dataset in the left plot of Fig. 4.5. These scores are described in

more detail in Section 4.4.1 below. To calibrate the inlier distributions of the various

base scores, we propose to use the quantile transform [114], which transforms the

distribution of each score to be approximately Gaussian with zero mean and unit

variance. The quantile transform for the ith base score is defined as

qi(s) , Φ−1(F̂i(s)) (4.1)

F̂i(s) ,
1

n

n∑
t=1

1(s ≤ si(xt)), (4.2)

where Φ−1(·) is the inverse Gaussian CDF, F̂i(·) is the empirical CDF of base score i

evaluated on the training set, and 1(·) is the indicator function that has a value of 1

if the statement is true, and 0 otherwise. The center plot of Fig. 4.5 shows the same

norm and cos distributions after processing by the quantile transform.

We model the quantile transformed base score using the random variable

ri , qi(si(x)). (4.3)

This allows us to define conditional inlier and novelty distributions,

p(ri|H0) , p(qi(si(x))|x is an inlier) (4.4)

p(ri|H1) , p(qi(si(x))|x is a novelty). (4.5)
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The quantile transform ensures that

p(ri|H0) ≈ N (ri; 0, 1). (4.6)

Defining r , [r1, . . . , rns ]
T , we approximate the joint score distribution for the inliers

as jointly Gaussian, i.e.,

p(r|H0) ≈ N (r; 0,Σ), (4.7)

where Σ is the covariance of r under H0. This is an approximation because the quan-

tile transform only enforces that every entry in r is marginally Gaussian. However,

we can see in the right plot of Fig. 4.5 that, for our working example, the transformed

inliers have an approximately jointly Gaussian distribution. We handle the selection

of the covariance matrix, Σ, below.

4.3.1 Generalized Likelihood Ratio Test

If we had full knowledge of the distributions p(r|H0) and p(r|H1), we would be

motivated to perform novelty detection using a likelihood ratio test (LRT) [113]

LR(r) ,
p(r|H0)

p(r|H1)
, LR(r)

H0

≷
H1

τ. (4.8)

This is because the LRT is Neyman-Pearson optimal, meaning that the probability

of detection is maximized for a fixed false-alarm rate [113]. Unfortunately, we have

no data from which to estimate p(r|H1), due to there being no novelties in the train-

ing set. Our approach will be to parameterize p(r|H1) and formulate a composite

hypothesis test [115].

We will assume that each base score has been designed such that the mean score

under H0 is no smaller than the mean score under H1. Since the quantile transform
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Figure 4.5: Left: Raw “norm” and “cos” scores from [7] evaluated CIFAR-10 training
inliers. Center: Quantile transformed versions of the scores from the left plot. Right:
Plot of “norm” score (x-axis) versus “cos” score (y-axis) for CIFAR-10 test inliers
and SVHN test novelties. Contours show the value of END score from (4.33).

is monotonic, the quantile transformed scores, ri, will also have this characteristic.

In this case, the distributions p(ri|H1) will have a non-positive mean.

Other than this non-positive mean property, we know very little about the nov-

elty distribution p(r|H1). For the sake of tractability, we will assume covariance

homogeneity between novelties and inliers, which gives

p(r|H0) ≈ N (r; 0,Σ) (4.9)

p(r|H1,α) ≈ N (r;α,Σ), αi < 0 ∀i ∈ {1 . . . ns} (4.10)

where α is unknown. We will discuss the selection of Σ below. Using (4.9) and (4.10)

we find the log LR as

log LR , −1
2
rTΣ−1r + 1

2
(r −α)Σ−1(r −α) (4.11)

= −αTΣ−1r + C, (4.12)

where C is a constant that absorbs terms that do not depend on r. A uniformly

most powerful (UMP) test exists if the Neyman-Pearson test statistic is independent

of the unknown [113]. Whenever ns > 1, a UMP test does not exist because the test
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statistic (4.12) changes with the direction of the unknown, α. When ns = 1, the

property α1 < 0 implies that a UMP exists and manifests as r1
H0

≷
H1

τ .

Because α is non-positive but otherwise unknown, we can formulate a generalized

likelihood ratio test (GLRT) [113] of the form

GLR(r) ,
p(r|H0)

maxα:αi≤0 p(r|H1,α)
, GLR(r)

H0

≷
H1

τ. (4.13)

Let us define the (non-positive) mean vector that maximizes the denominator of

GLR(r) as

α∗ , arg max
α:αi≤0

log p(r|H1,α), (4.14)

= arg min
α:αi≤0

(r −α)TΣ−1(r −α). (4.15)

Because (4.15) is a quadratic program, we can solve for α∗ using a convex solver such

as CVX [116]. We can then write the log GLR in terms of r and α∗ as

log GLR(r) = log p(r|H0)− log p(r|H1,α = α∗) (4.16)

= −1

2
rTΣ−1r +

1

2
(r −α∗)TΣ−1(r −α∗) (4.17)

=
1

2
(α∗)TΣ−1α∗ − rTΣ−1α∗ (4.18)

= (1
2
α∗ − r)TΣ−1α∗. (4.19)

We then define the GLRT score as

sGLRT(r) , (1
2
α∗ − r)TΣ−1α∗. (4.20)

4.3.2 Covariance Matrix Selection

We now discuss the choice of the covariance matrix, Σ, in the GLRT score (4.20).

One choice would be to use the sample covariance from the (inlier) training samples,

Σ̂ ,
1

n− 1

n∑
t=1

(rt − µ̂)(rt − µ̂)T + σI, (4.21)
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where {rt}nt=1 are the quantile transformed base scores, evaluated on the training set,

µ̂ is the sample mean of {rt}nt=1, and σ is a small constant to ensure Σ̂ is full rank.

For our experiments, we choose σ = 10−6. In order to study this choice, we perform

an eigenvalue decomposition of the sample covariance matrix, giving

Σ̂ = V ΛV T , (4.22)

where the columns of the orthonormal matrix V are the eigenvectors and Λ con-

tains the non-negative eigenvalues along the diagonal and zeros elsewhere. With the

eigenvalue-decomposition of (4.22), we can write the GLRT score as

sGLRT(r) = (1
2
α∗ − r)T Σ̂

−1
α∗ (4.23)

= (1
2
α∗ − r)TV Λ−1V Tα∗ (4.24)

= (V T (1
2
α∗ − r))TΛ−1V Tα∗ (4.25)

=
ns∑
l=1

(vTi (1
2
α∗ − r) · vTi α∗)

λi
. (4.26)

In this form, we see how the lth eigenvalue scales the vl directional component of

sGLRT(·).

We want to see how score performance in these sub-spaces correlates with eigen-

value. We now define what we call the “eigen-scores.”

sleig(r) , vTl r, (4.27)

where vl is the lth column of V , whose corresponding eigen-value is λl = [Λ]l,l. For

two example experiments, which will be discussed in more detail below, we plot the

AUC performance of score sleig versus eigenvalue λl, for l ∈ {1 . . . 24} in Fig. 4.6. Due

to the inherent sign ambiguity of the eigen-vectors, vl, we will take the negative of
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Figure 4.6: Plots of eigen-score performance (in AUC) vs. eigenvalue for two 24-score
experiments. We can see that there is a strong correlation between how informative
a direction is for novelty detection with its eigenvalue. Left plot has CIFAR-10 as the
inliers and SVHN samples as the novelties. The right plot has SVHN as the inliers
and CIFAR-10 as the novelties. A line is fit in the log space of the eigenvalues. The
R2 value of this regression is given on each plot.

the eigen-score if its AUC is less than one half. Both experiments show a strong

correlation between AUC performance and eigenvalue size.

The existence of an eigen-score with a large eigenvalue implies that the base scores

in r are strongly correlated in the vl direction. The larger the eigenvalue the stronger

the correlation. Fig. 4.6 then implies that, as this correlation increases, the novelty

detection performance of that base score also tends to increase. In other words, base

scores that are more correlated tend to perform better for novelty detection than

those that are less correlated.

With this knowledge, selecting the sample covariance matrix for the GLRT score

would devalue these directions that are most informative. Instead, we can get better

performance by choosing Σ = I. This choice equally weights the contributions of

each eigenvector direction.
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A further benefit of this approach is that it drastically simplifies the calculation

of α∗ from (4.15) to

[α∗]i = r−i ,

{
ri if ri < 0

0 otherwise
. (4.28)

This removes the need to perform a convex optimization to solve (4.15). Using Σ = I

and (4.28), the GLRT score (4.20) simplifies to

sGLRT(r) = (1
2
r− − r)Tr− (4.29)

=
ns∑
i=1

(1
2
r−i − ri)r−i (4.30)

=
ns∑
i=1

1
2
(r−i )2 (4.31)

= −1
2
‖r−‖2, (4.32)

where (4.31) results by observing that if ri is positive, then r−i is zero, while if ri

is negative, then r−i = ri. We call this final method Ensembled Novelty Detection

(END).

sEND(r) , −1
2
‖r−‖2. (4.33)

In Section 4.5, we compare Σ = I to Σ = Σ̂ in practical experiments to show the

superiority of Σ = I.

The right plot of Fig. 4.5 shows quantile transformed “norm” and “cos” scores, r,

for test inliers and test novelties, together with contours of the END score. From this

plot, we can see that the END score does a good job of separating the inliers from

the novelties. It is clear from the figure that thresholding the END score provides

better classification of the inliers and novelties than thresholding either base score

individually.
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4.3.3 END Analysis: White Gaussian Case

In this section, we will study the performance of END in a simple Gaussian setting:

p(r|H0) = N (r; 0, I) (4.34)

p(r|H1,α) = N (r;α, I). (4.35)

We draw 100 000 samples from each distribution and repeat the experiment for a

dense grid of α = [α1, α2]
T . We will compare END to a single score, defined as

s1(r) = r1, (4.36)

and a genie detector that knows α and then uses the Neyman-Pearson optimal log LR

from (4.12)

sgen(r) , −αTr. (4.37)

In Fig. 4.7, we plot the AUC versus α1 and α2 for each detector. We also plot the

difference between END and the genie detector, as well as the difference between END

and the single-score detector. Not surprisingly, the plots show that the genie detector

performs the best because it has additional knowledge (of α) is it uses optimally.

However, Fig. 4.7d shows that there is only a small decrease in performance for END

when compared with the genie detector.

Fig. 4.7e shows single-score vs END-ensembled AUC performance. The first take-

away from this figure is that, for most values of α, the AUC performance of END is

much better than that of the single-score detector. However, along the α2 = 0 axis we

see a light blue area where the single score, r1, performs slightly better than the END

ensemble. This makes sense because, along this line, the r2 score is uninformative,
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(a) END (b) Genie Detector (c) Single score, r1

(d) Difference between
END and genie detec-
tor performance

(e) Difference between
END and single score
performance

Figure 4.7: Sub-plots (a)-(c) show the AUC versus the novelty mean components α1

and α2. Sub-plots (d)-(e) show the AUC of END minus the AUC of the genie and
single score detectors, respectively.

but END will still try to utilize it. We also note that, along the α2 = 0 line, the single

score is equivalent to the optimal genie score. This plot suggests that the advantages

of ensembling via END are far greater than the disadvantages.

4.3.4 END Analysis: Redundant Scores

Next, we discuss the performance of END with redundant base scores. First, we

study the simple case where we have two identical base scores, r1 = r2 = r. In this

case, the single-score detector s(r) = r1 is Neyman-Pearson optimal. Meanwhile,

END simplifies to

sEND(r) = −1
2
‖r−‖2 (4.38)

= −(r−)2. (4.39)
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(a) α = −0.6 (b) α = −2.0

Figure 4.8: Performance of single score plotted against the END ensemble of redun-
dant scores when (left) α = −0.6 and (right) α = −2.0.

Because r− ≤ 0 from (4.28), thresholding sEND(r) from (4.39) is equivalent to thresh-

olding r−. For negative thresholds τ , thresholding r− is equivalent to thresholding the

original base score r. But positive thresholds τ cannot be applied to r−, nor sEND(r)

from (4.39). Therefore, the ROC curve for sEND(r) with redundant base scores will

be equivalent to that of the single score detector up to a false alarm rate of 0.5, which

is achieved by a threshold of τ = 0. Due to positive thresholds not being available

to END, false alarm rates greater than one half can be obtained only by forming a

randomized rule [113] that mixes the detectors that correspond to false alarm rates of

0.5 and 1. This can be seen from the ROC curve in Fig. 4.8. In most practical cases,

we are interested in probability of false alarm < 0.5, and in those cases the redundant

END score is equivalent to the single score, which is Neyman-Pearson optimal.

In a second study of redundant scores, we consider three base scores, where two

of the three are identical. We draw samples of [r1, r2] from distributions (4.34) and

(4.35) and set r3 = r2. This time, we construct a genie score that knows to ignore

r3 and also knows [α1, α2], which it uses to formulate the Neyman-Pearson optimal
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(a) END (b) Genie (c) GLRT w/ Σ = Σ̂

(d) Difference between
END performance and
genie detector perfor-
mance

(e) Difference between
performance of END
and GLRT with Σ =
Σ̂

Figure 4.9: Results from the redundant score experiment with three base scores. Sub-
plots (a)-(c) show the AUC versus the novelty mean components α1 and α2. Sub-plots
(d)-(e) show the AUC of END minus the AUC of the genie and the GLRT score with

Σ = Σ̂, respectively.

score in (4.37) with r = [r1, r2]
T . We repeat the experiments from Fig. 4.7, but now

with END from (4.33), the genie score, and sGLRT(r) from (4.20) with Σ = Σ̂. Recall

that END is the GLRT score from (4.20) with Σ = I.

In Fig. 4.9, when the non-redundant base score, r1, is more informative than

the redundant score, r2, the GLRT score with Σ = Σ̂ performs better than END.

However, when the redundant base score, r2, is significantly more informative than

r1, which occurs in the top left of the plots, END performs better. The eigen-score

experiments in Fig. 4.6 suggest that, in practice, redundant scores tend to perform

much better than non-redundant scores. This suggests that the top left region in

Fig. 4.9 is the region of practical interest.
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4.4 Shift Ensembled Novelty Detection

In this section, we once again take inspiration from CSI [7]. As seen in Fig. 4.4

above, CSI utilizes several base scores along with “shifting” transforms, such as image

rotations, to make a larger ensemble of scores. In the case of image rotations, CSI

evaluates each base score on the test image rotated by 0◦, 90◦, 180◦, and 270◦, giving

an ensemble with four times as many scores.

We thus propose to combine our score ensembling strategy, END, with shifting

transforms, like those used in CSI, to obtain an enhanced novelty detection framework,

which we call Shift-Ensembled Novelty Detection (SEND). Suppose we have ns base

scores, indexed by i, and nr shifting transforms, indexed by j, giving a total ensemble

of nsnr scores. For SEND, we define a version of the quantile transform indexed by i

and j,

qij(s) , Φ−1(F̂ij(s)) (4.40)

F̂ij(s) ,
1

n

n∑
t=1

1(s ≤ si(Rj(xt))) (4.41)

where Rj(·) is the jth shifting transform and F̂ij is the sample CDF for score function

i and shift j on the inlier training data {xt}nt=1. Next, we combine the END score

and the shifting transform to define the SEND score,

sSEND(x) , −1
2
‖r−(x)‖2, (4.42)

with

r(x) =



q1,1(s1(R1(x)))
...

q1,nr(s1(Rnr(x)))
q2,1(s2(R1(x)))

...
qns,nr(sns(Rnr(x)))


, (4.43)
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and r−(x) defined as the negative component of r(x), as in (4.28). We report several

experiments with SEND in the section below.

4.4.1 Inlier Scores

For our experiments, we choose several scores to ensemble with END and SEND.

These scores will be utilized as the base scores for our ensembling strategies. Our

first two experiments will utilize inlier scores that can be computed with the CSI [7]

model. CSI uses three scores, the “norm” score, “cos” score, and shift-classifier score.

The norm score is given by the norm of the features output by the SimCLR head of

the CSI network,

snorm(x) , ‖zθ(x)‖. (4.44)

Next, the “cos” score is given by the nearest-neighbor cosine distance of the SimCLR

features to the training data,

scos(x, j) , min
x′∈X

sim(zθ(x), zθ(Rj(x
′))), (4.45)

where sim(·, ·) is the cosine similarity, given by sim(x,y) = xTy
‖x‖‖y‖ , and j is the shift

index used to evaluate the training samples. The third score used in CSI is the

shift-classifier score, given by

sshift(x, j) , `θ(x)j, (4.46)

where `θ(x)j denotes the jth logit of the shift-classifier head of the CSI model. The

shift index, j, is an argument of sshift because we intend to use the jth logit when we

apply the jth shifting transform Rj(·) in SEND. The CSI score ensembles the norm,
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cos, and shift-classifier scores as follows:

scon(x, j) , snorm(x)scos(x, j) (4.47)

sCSI(x) ,
nr∑
j=1

[
λcon

j scon(Rj(x), j) + λshift

j sshift(Rj(x), j)
]

(4.48)

where λjs are weights chosen to balance the scores,

λcon

j =
n∑n

i=1 ‖zθ(Rj(xi))‖
(4.49)

λshift

j =
n∑n

i=1 `θ(Rj(xi))j
. (4.50)

We note that the CSI ensembling strategy does not extend to other scores.

As an additional score, we propose to utilize a class dependent OC-SVM [111]

trained on the backbone features of the CSI network. The backbone features are

the common layer before the contrastive and shift-classifier head networks. First,

we train an OC-SVM to perform one-class classification of each class of the inlier

dataset. At evaluation time, we score each test sample using the minimum distance

to the separating hyperplanes of the various OC-SVMs. We use the scikit-learn [114]

implementation of OC-SVM using the default model parameters.

For our large-ensemble experiments, we utilize additional inlier scores that are

now described. The first of these extra scores utilize the Sup-CSI network from [7].

The final layer of the Sup-CSI network is a linear classifier that attempts to jointly

predict the class label and shift index of the test sample. The logits of this network

will be denoted as `SupCSI(x) ∈ RK×ns . The (k, j)th index of these logits can be

interpreted as the confidence that the sample came from class k and shift j. We

define the Sup-CSI softmax-thresholding score as

ssupCSI-soft(x, j) = max
k∈{1...K}

softmax(`SupCSI(x)j)k, (4.51)
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where `SupCSI(x)j ∈ RK is the column of logits associated with shift j and the softmax

function is given by

softmax(x)i =
exp(xi)∑
j exp(xj)

. (4.52)

We can interpret this score as thresholding the confidence in the most likely class,

under the assumption that shift j was used. This score is an adapted version of the

original Sup-CSI score, from [7], that is compatible with SEND.

We also propose another score that utilizes a classification network trained to

jointly predict the class label, k, and shift label, j. In particular, we define a joint

Mahalanobis distance score,

sjoint-Mah(x) = −min
(k,j)

(fθ(x)− µ̂kj)Σ̂
−1
kj (fθ(x)− µ̂kj), (4.53)

where fθ(·) is the penultimate layer of the class-shift classification network, and µ̂kj

and Σ̂kj are the sample mean and sample covariance of joint label (k, j). This score

can be interpreted as a joint class-shift version of the class-dependent Mahalanobis

distance detector proposed in [117].

4.4.2 Ensembles

Now we define three combinations of these base scores, which we call END-4,

SEND-16, and SEND-24. The number will designate the number of base scores being

ensembled by the method. END-4 uses the norm, cos, shift-classifier, and OC-SVM

base scores using the END ensembling technique. This experiment does not consider

shifts of these base scores. For SEND-16, we will utilize the same ns = 4 base scores

used in the END-4 experiment, but we also consider nr = 4 shifts of each, using the

image-rotation shifting-transform. This gives us a total ensemble size of nsnr = 16.
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Finally, our SEND-24 ensemble uses the norm, cos, shift, and OC-SVM base scores

from END-4 and SEND-16 plus the joint Mahalanobis base score (4.53) and the

Sup-CSI softmax-thresholding base score (4.51), giving us ns = 6. Like SEND-16,

SEND-24 also utilizes the image rotation shifting transform, for nr = 4. This gives

us a total ensemble size of nsnr = 24.

4.5 Experiments

4.5.1 Setup

Our experiments will use standard image datasets like CIFAR-10, CIFAR-100 [6],

SVHN [118], ImageNet [119], and LSUN [120]. We use the versions of ImageNet and

LSUN that have been downsampled to 32 × 32 by the authors of [121]. For each

experiment, we will treat one dataset as the inliers. We train the feature encoder

networks, fit base score parameters (such as the µj,ks and Σ̂j,ks for sjoint-Mah(·)), and

fit quantile transforms with the training partition of the inlier dataset. Then, we

evaluate inlier scores with the test partition of the inlier dataset and the test partition

of another, novelty dataset. Performance is evaluated by the Area Under the receiver

operating Curve (AUC).

4.5.2 Model Training

We now describe the training of the CSI, Sup-CSI, standard classification network,

and joint class-shift classification network. All models will utilize the ResNet-18 [102]

architecture as the feature encoder. CSI and Sup-CSI are trained using the code

from the associated paper [7] following the parameter settings from the paper. The

standard classification network is trained using cross-entropy loss with inlier class

labels, and without shifting transforms. The joint classifier network is trained using
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Inlier Dataset CIFAR-10 SVHN
Novelty Dataset SVHN LSUN ImageNet CIFAR-100 LSUN ImageNet CIFAR-10 CIFAR-100 Avg.
Norm 0.9769 0.9247 0.9017 0.8339 0.5263 0.6064 0.6036 0.6467 0.7525
Cos 0.9750 0.9690 0.9571 0.8592 0.7781 0.7819 0.8120 0.7911 0.8654
Shift-Classifier 0.9791 0.9789 0.9843 0.8480 0.9422 0.9485 0.9815 0.9729 0.9544
OC-SVM 0.9013 0.8552 0.8581 0.6642 0.9629 0.9579 0.9807 0.9706 0.8939
END-4 0.9892 0.9817 0.9838 0.8479 0.9441 0.9493 0.9748 0.9643 0.9544

Table 4.1: Results from the simple ensembling experiments.

cross-entropy loss with label smoothing [122] and joint class-shift labels. We train

two versions of each model, one using CIFAR-10 and one using SVHN. We train

the networks for 100 epochs using the LARS [123] optimizer. The learning rate is

scheduled using cosine annealing [124] with initial learning rate of 0.1, a max learning

rate of 1.0, one epoch of warmup, and a final learning rate of 10−6.

For all experiments, the batch size was set to 128/nr, which makes the batch

augmented with the shifting transforms have a size of 128. We note that the training

time scales with nr, in that training a model with nr = 4 takes four times as long as

training a model with nr = 1.

4.5.3 Simple Ensemble Experiments

Our first experiments compare the END-4 ensemble to individual use of the norm,

cos, shift-classifier, and OC-SVM base scores. These experiments do not utilize a

shifting transform (nr = 1). Results can be found in Table 4.1. On average, END

and the shift-classifier tied for highest AUC. For certain experiments, like CIFAR-

10/SVHN, END-4 performed better than all the individual base scores. However,

there are a few experiments where individual base scores perform much better than

END-4, such as SVHN/LSUN. The gap between the best base score and the END-

4 performance seems to get larger when there is a poorly performing base score in
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Inlier Dataset CIFAR-10 SVHN
Novelty Dataset SVHN LSUN ImageNet CIFAR-100 LSUN ImageNet CIFAR-10 CIFAR-100 Avg.
CSI [7] 0.9950 0.9750 0.9783 0.8628 0.9571 0.9631 0.9638 0.9556 0.9563

GLRT (Σ = Σ̂) 0.9712 0.9608 0.9683 0.8239 0.9922 0.9917 0.9692 0.9618 0.9549
SEND-16 0.9950 0.9768 0.9787 0.8584 0.9888 0.9890 0.9801 0.9726 0.9674

Table 4.2: Results from the shift ensembling experiments.

the ensemble. This occurs in the SVHN/LSUN experiment, where the norm score

performed very poorly at an AUC of 0.5263, which is just better than guessing (i.e.,

AUC=0.5). We also saw an example of this behavior in our two-score synthetic

experiments in Fig. 4.7. As we will see below, our ensembling methods work better

as we increase the number of scores.

4.5.4 Shift Ensemble Experiments

Our next experiments will utilize our SEND ensembling technique with the image

rotation shifting transforms. We will compare the SEND-16 ensemble, CSI [7], and

the GLRT ensembling method (4.20) with Σ = Σ̂. The GLRT ensemble will use the

same base scores as SEND-16 (norm, cos, shift-classifier, and OC-SVM). Results from

these experiments can be found in Table 4.2. From the table, we can see that SEND-

16 gave the best performance on average. Also, SEND-16 matched or outperformed

CSI in all but one of the experiments. The SEND ensemble performed better than

the GLRT ensemble in all but two experiments, which further justifies our choice to

use Σ = I rather than Σ = Σ̂. These results suggest that, when we utilize shifting

transforms to create a larger ensemble, SEND can leverage correlation among scores,

as discussed in Section 4.3.2.
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Inlier Dataset CIFAR-10 SVHN
Novelty Dataset SVHN LSUN ImageNet CIFAR-100 LSUN ImageNet CIFAR-10 CIFAR-100 Avg.
Mah [117] 0.9041 0.7175 0.6209 0.7077 0.9069 0.9122 0.7809 0.7692 0.7899
OC-SVM [125] 0.9813 0.7581 0.6998 0.6891 0.9929 0.9921 0.9862 0.9774 0.8846
CSI [7] 0.9950 0.9750 0.9783 0.8628 0.9571 0.9631 0.9638 0.9556 0.9563
Sup-CSI [7] 0.9844 0.9787 0.9788 0.9191 0.9882 0.9904 0.9909 0.9860 0.9771
SEND-24 0.9968 0.9834 0.9841 0.9044 0.9945 0.9952 0.9926 0.9838 0.9793

Table 4.3: Results from the large ensembling experiments.

4.5.5 Large Ensemble Experiments

Finally, we perform these experiments with the SEND-24, large ensemble. We will

compare our method with CSI [7], Sup-CSI [7], OC-SVM [125], and Mahalanobis [117].

We note that the Mahalanobis and OC-SVM methods in this experiment utilize a

standard classification network trained using cross-entropy, as in the original work.

The results of these experiments can be seen in Table 4.3. The table shows that SEND-

24 performed best on average. Furthermore, it outperformed all baseline methods in

six out of the eight experiments and performed second best in the remaining two

experiments. The only method to outperform SEND-24 on any experiment was Sup-

CSI [7], which performed better on the CIFAR-10/CIFAR-100 experiment and the

SVHN/CIFAR-100 experiment. Overall, these last experiments show state-of-the-art

novelty detection performance for the proposed SEND-24 method.

4.6 Summary

In this work, we developed SEND, a score ensembling technique for novelty de-

tection. SEND has two primary motivations: i) the large number of inlier scores

that have been developed by the research community, and ii) the performance gains

achievable by expanding the set of base scores using shifting transforms [7]. We set
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out to develop a principled method for ensembling scores for novelty detection using

the framework of hypothesis testing [113]. We then performed synthetic and practical

experiments to show the potential benefits and limitations of SEND. Our practical

experiments show that SEND achieved state-of-the-art novelty detection performance

with common image datasets. We note that SEND could be easily applied to other

data types and utilize other inlier scores. In the next chapter, for example, we apply

SEND to novelty detection of radar and communication waveforms.
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Chapter 5: Novelty Detection for RF Waveforms with

Ensembled Contrastive Learning

5.1 Introduction

Radio-Frequency (RF) waveform identification is a difficult engineering problem

with many open research areas standing between the current state-of-the-art and the

deployment of real-world systems [126]. These open areas of research include detecting

dynamic signals, detecting signals in crowded spectrum, and detecting signal classes

that were not included in the training set. In this work, we focus on the last case,

known as novelty detection.

If we have a simple mathematical model for the approved modulation types, it

may be possible to design a closed-form detector [113]. However, these techniques are

not able to capture the complexity of modern radar and communication systems. For

this reason, there has been significant research into utilizing data-driven approaches

for waveform identification, such as deep neural networks (DNNs) [104,127].

One possible application of novelty detection in RF waveforms would be to monitor

spectrum for non-approved modulation types [128]. In this application, we would

have a list of approved types of modulations with any other type being illegal. It

would be near-impossible to train a binary DNN classifier for this problem because
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we would need to construct a dataset with every non-approved type of modulation,

which would be prohibitively large and ever changing as new modulation types are

developed. In this example, we want to be able to train a DNN-based detector to

flag illegal modulation types, but with a training set made-up exclusively of approved

waveforms.

Following this motivation, assume we have a dataset of approved waveforms

{(xi, yi)}ni=1, where xi ∈ Rp are waveform samples, yi ∈ {1 . . . K} the corresponding

label, and K is the number of known classes. If K > 1, our problem is an example

of multi-class novelty detection [106], and if K = 1, we call the problem one-class-

classification [105].

Recently, Tack et al. [7] introduced Contrastive Shifting Instances (CSI). CSI is

a novelty detection technique, developed for image datasets, that utilizes a feature

encoder trained on the self-supervised contrastive loss. CSI also utilizes “shifting

transforms,” which are transforms designed to semantically change a sample, which

they use to augment training and to ensemble their technique over multiple transfor-

mations of the test sample. CSI will be discussed in more detail in the background

section below, but for now, it suffices to say that, first, CSI as originally proposed

is not compatible with RF waveform data and, second, CSI uses multiple scores but

combines them in a heuristic manner.

In this chapter, we develop a technique for RF waveform novelty detection. First,

we adapt the CSI [7] framework to work with RF waveforms. An intermediate result

of this effort is self-supervised learning for RF waveforms. We then apply the SEND

framework, developed in chapter 4, to RF waveforms. In our experiments, we show

that SEND significantly outperforms other state-of-the-art techniques.
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5.2 Background

5.2.1 Low-Dimensional Novelty Detection

Low-dimension novelty detection is mostly a solved problem. There are many

popular methods such as Mahalanobis distance [109], nearest neighbor distance [110],

kernel density estimation [64], one-class support vector machine (OC-SVM) [111], and

support vector data description [112]. Later, we will utilize the Mahalanobis distance,

defined as

sMah(x) = (x− µ̂)T Σ̂
−1

(x− µ̂), (5.1)

where µ̂ is the sample mean and Σ̂ is the sample covariance matrix of the training

set X. Mahalanobis distance can be interpreted as the negative log-likelihood of a

Gaussian distribution fit to the training data. We will also use the nearest-neighbor

distance

sNN(x) = min
x′∈X

d(x,x′), (5.2)

where d(·, ·) is an arbitrary distance function such as `2 distance or cosine distance.

These low-dimensional methods assume a notion of similarity based on a distance

function, such as the `2-norm. In high-dimensional signals, such as radar waveforms,

this notion of similarity does not hold.

5.2.2 High-Dimensional Novelty Detection

In high-dimensional novelty detection it is common to use a DNN to encode the

signal into a lower-dimensional space, where a classic novelty detection technique,

like those discussed above, can be used [108]. We will call this feature encoder fθ(·),

parameterized by weights θ, and the score function s(·).

106



When class-labels are available, a common solution is to utilize a DNN classifica-

tion network as the feature extractor fθ(·). A popular inlier score is the maximum

of the softmax outputs of that DNN classifier. This technique is called softmax-

thresholding [129]. It is popular due to its simplicity, but often performs poorly due

to DNN classifiers being overconfident on samples far from the training set [130].

More sophisticated novelty detection techniques utilize the penultimate features of

a classification DNN as fθ(·). Andrew et al. [125] introduce a technique where a

OC-SVM is trained on the penultimate features of a DNN classifier to provide the

inlier score. A similar technique is applied to radar waveform data in [131]. In Lee et

al. [117], the penultimate layer of a DNN classifier is used as the features and scored

by the class-dependent Mahalanobis distance

sMah(x) = − min
j={1...K}

(fθ(x)− µ̂j)T Σ̂
−1
j (fθ(x)− µ̂j), (5.3)

where µ̂j is the sample mean of fθ(x) for class j and Σ̂j is the sample covariance

matrix for class j, both evaluated on the training set X.

Label smoothing [122] is a technique used to improve calibration and generaliza-

tion of DNN classifiers. It is shown in [132] that label smoothing results in penulti-

mate features being more compact. More recently, label smoothing has been shown

to assist with novelty detection performance [133]. During training, the target label

distribution is smoothed by taking a weighted average of the true label, y, and a

uniform distribution

pLS(y) = (1− α)ey +
α

K
, (5.4)

where ei is the unit vector with a 1 in the ith element and all other elements being

zero. The label smoothing loss is the cross-entropy between this target distribution
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and the distribution defined by the output of the DNN classifier

LLS(θ) =
1

n

n∑
i=1

K∑
k=1

−pLS(yi)k log(p̂θ(xi)k). (5.5)

Note that if α = 0, this loss simplifies to the standard cross-entropy loss.

These classifier-based methods for novelty detection are popular, but there are

several downsides to using features from a classification network for novelty detection.

The first is that we need class-labels to train the classifier. This means this technique

cannot be used for one-class classification problems. The second downside is that a

DNN classifier will learn features that are good for classification, but may learn to

ignore features important to novelty detection [13]. Thus a better option for learning

features is self-supervised learning.

5.2.3 Self-Supervised Learning

Self-supervised learning [134] is where DNN feature encoders are trained without

using class-labels. The first way to do this is to train the DNN to perform an auxiliary

task on the data. One example is to train the DNN to classify the rotation of images

that have been rotated 0, 90, 180, or 270 degrees [135]. Since natural images usually

have some notion of “up,” it is possible to train a DNN to classify these rotations.

In learning the ability to classify rotations, the DNN learns to encode semantically

important features.

Another approach to self-supervised learning is contrastive learning [136]. In con-

trastive learning, DNNs are trained so that the encoding of semantically similar im-

ages are “close” in some metric, like cosine or `2 distance. This technique requires

us to have some notion of similarity. For supervised problems, a notion of similarity

could be if two samples come from the same class [137]. However, in self-supervised

108



learning we do not have this notion of similarity built into the data. A recent im-

plementation of contrastive learning, Simple framework for Contrastive Learning of

visual Representations (SimCLR) [12], solves this problem.

In SimCLR, the authors take any batch of samples as dissimilar to one another

and use random augmentations of the same sample to create pairs of similar samples.

We will refer to these random augmentations as “similarity” transforms because they

produce samples that are semantically similar to the input. We will denote simi-

larity transforms with T j(·), where the index j captures different possible random

augmentations. When working with images, the similarity transforms would be some

combination of random crops, gray-scaling, color jitter, etc. We will develop similarity

transformations for use with RF waveform data below. SimCLR utilizes the normal-

ized temperature cross-entropy (NT-Xent) loss [138]. Given a sample x, a sample x+

that is “similar” to x, and a batch of images X− dissimilar to x, the NT-Xent loss is

given by

LNT−Xent(x,x+, X−)

= − log
exp(sim(fθ(x),fθ(x+))/τ)∑

x−∈X− exp(sim(fθ(x),fθ(x−)/τ) + exp(sim(fθ(x),fθ(x+))/τ)
, (5.6)

where sim(·, ·) is some similarity metric, such as cosine similarity, and τ > 0 is

a tunable normalizing temperature. This loss rewards features that encode similar

samples to be close in terms of sim(·, ·), while punishing dissimilar samples from being

close in terms of sim(·, ·).

The next contribution of SimCLR is the addition of a “head” network that takes

the output of the encoder fθ as its input. The head network is made up of two fully-

connected layers with a ReLU activation in between. We will denote the SimCLR

head evaluated on x as zθ(x). SimCLR shows that by encouraging “like” images
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Figure 5.1: Distribution of features where encoders are trained with (left) normal
SimCLR and (right) SimCLR augmented with shifting transforms. We can see that
by utilizing shifting transforms, novelty detection becomes easier. Figure from [8]

.

to be close in cosine similarity, given by sim(z, z′) = zT z′

‖z‖‖z′‖ , the encoding of fθ(·)

becomes better for classification.

For a batch B = {xi}nb
i=1, SimCLR augments the batch with two transforms,

x̃i,1 = T 1(xi) and x̃i,2 = T 2(xi) for all i ∈ {1 . . . nb}. We will denote the augmented

batch as B̃ = {x̃i,1}nb
i=1 ∪ {x̃i,2}

nb
i=1. The SimCLR loss can be written as

LSimCLR(B) =
1

2nb

nb∑
i=1

2∑
j=1

− log
exp(sim(zθ(x̃i,j), zθ(x̃i,3−j))/τ)∑

(i′,j′)6=(i,j) exp(sim(zθ(x̃i,j), zθ(x̃i′,j′)/τ)
. (5.7)

For our experiments, we set τ = 0.5. Each sample is randomly transformed twice and

its matching pair is used as the similar sample for the contrastive loss, while all other

samples in the batch are the negative, or unlike, samples.

5.2.4 Self-Supervised Learning for Novelty Detection

One problem with using SimCLR features for novelty detection is that the loss

will try to spread feature encodings of the inliers uniformly throughout the feature

space. This problem is illustrated in the left plot of Fig. 5.1. Sohn et al. [8] discuss

that this problem can be alleviated by reducing the batch size and utilizing “shifting”
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augmentation transforms. They augment the training with these shifting augmenta-

tions and use them as dissimilar samples during SimCLR training. This has the effect

of not filling the space with only inliers. The effects of this technique can be seen in

right plot of Fig. 5.1. A shifting transform should significantly change the data so it is

semantically different from the unshifted version. This is in contrast to the similarity

transforms that attempt to not change a sample semantically. For example, [8] use

90, 180, and 270 degree rotations for their experiments using images. A 90 degree

rotation of a natural image will be semantically different from an image that is right

side up.

In parallel work, Tack et al. [7] introduce Contrastive Shifting Instances (CSI),

which is another self-supervised novelty detection technique that utilizes shifting

transforms. We define a set of shifting transforms R = {Rj}nr
j=1 and a shifted version

of batch B as BR = {R(xt)}nb
t=1. Now we can define the contrastive-CSI loss,

Lcon−CSI = LSimCLR

(
nr⋃
j=1

BRj

)
. (5.8)

Samples evaluated on different shifting transforms are treated as negative, or unlike,

samples within the contrastive loss. To use images as an example, a 90 degree rotated

image of a dog would be a negative sample to the upright version of that same dog.

The shifting transformations also allow us to evaluate a test point multiple times.

We can augment a test point x with R, giving us {R1(x),R2(x), . . .Rnr(x)}. This

augmentation will allow us to evaluate a single novelty score nr times.

The second contribution of CSI is the addition of a shift-classification head. CSI

also uses an additional network head that acts on the features fθ(·). This layer has

an output dimension equal to the number of shifts nr. We will denote the logits of
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this layer as `θ(·). This shift-classification head is trained with cross-entropy loss

Lcon−shi =
1

2nbnr

nr∑
j=1

nb∑
t=1

2∑
l=1

− log softmax(`θ(Rj(x̃t,l)))j (5.9)

softmax(`)j =
exp(`j)∑nr

i=1 exp(`i)
. (5.10)

These losses are combined to make the CSI loss

LCSI = Lcon−CSI + λshiLcon−shi, (5.11)

where λshi > 0 trades off between the two losses. In [7], the authors found that setting

λshi = 1 worked well. We will also use this setting in our experiments.

Finally, CSI introduces several inlier scores that work well with SimCLR/CSI

trained encoders. They develop a feature norm score,

snorm(x) = ‖zθ(x)‖. (5.12)

This score is based on the observation that features of inlier samples have a larger

norm than features of novelties.

They also develop a nearest neighbor cosine similarity score. This score utilizes the

features from the training set as a dictionary. The nearest neighbor cosine similarity

score can be written as

scos(x, j) = max
x′∈X

sim(zθ(x), zθ(Rj(x
′))), (5.13)

where X is the training set. SimCLR and CSI are training the feature encodings of

semantically similar samples to be close in terms of cosine similarity. Therefore, we

assume inliers, which should be semantically similar to something in the training set,

should have an encoding that is close, in terms of cosine similarity, to a sample from

the training set.
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In CSI, these scores are combined in a product to form what they call the con-

trastive score.

scon(x, j) = snorm(x)scos(x, j). (5.14)

This product is one way the CSI authors combine scores, but there is no justification

for it, other than empirical success. CSI also utilizes the shift classifier head logits

`θ(·) with the shift score

sshift(x, j) = `θ(x)j (5.15)

where `θ(·)j is the logit corresponding to the jth shift. Inliers are more likely to have

the shift correctly identified by the shift-classifier than novelties.

CSI combines scon and sshift by performing a weighted sum over the nr shifts

sCSI(x) =
nr∑
j=1

[
λcon

j scon(Rj(x), j) + λshift

j sshift(Rj(x), j)
]

(5.16)

where λjs are weights chosen to balance the scores,

λcon

j =
n∑n

i=1 ‖zθ(Rj(xi))‖
(5.17)

λshift

j =
n∑n

i=1 `θ(Rj(xi))j
. (5.18)

Again, the authors of CSI give no justification for using this weighted sum to combine

scores other than empirical success. We are motivated by the empirical success of

CSI’s ensembling to develop a technique that is more grounded in detection theory.

CSI is summarized in Fig. 5.2. In our work, we use the CSI loss to train our one-class

models and we use the CSI score as a state-of-the-art ensembling benchmark.
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Figure 5.2: CSI uses two head networks, a SimCLR head, zθ(·), and a shift-classifier
head, `θ(·), which both utilize a common feature encoder network, fθ(·). These net-
works are jointly trained to minimize LCSI . The final CSI score performs ensembling
over the shift score, norm score, and cos score.

5.3 Contrastive Learning for RF Waveform Data

5.3.1 Similarity Transforms

Based on the success of self-supervised novelty detection techniques on images, we

want to develop self-supervised learning for RF waveform data. In this section, we will

discuss our efforts to adapt SimCLR to work with radar and communication waveform

data. First, we must develop new similarity transforms (denoted as T (·) above). The

goal of these transformations is to retain the semantic information of the signal,

such as modulation type, while inserting some of the variability present in actual

measurements. For image data, SimCLR utilizes random crops and color variation

that caputres the inherent spatialvariability from camera pointing and variability in

lighting. We want our SimCLR model to take two transformations of the same sample

and output two encodings that are close with respect to cosine similarity. In order

to design similarity transforms for RF waveforms, we started with the SIDLE radar

pulse measurement model from [139]. These waveforms are modeled as a pulse train
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given by

y(t) =
P∑
p=1

Apx(t/α− tp) exp(jω0t) + w(t) (5.19)

where x(t) is the complex-valued, base radar pulse, j =
√
−1, Ap is the pulse am-

plitude, α is a time scaling parameter, tp is a pulse-dependent time-shift, ω0 is the

carrier frequency, and w(t) is additive noise. These signals are sampled at a constant

sampling rate well above the Nyquist rate. With this knowledge of the measure-

ment model, we can design several similarity transformations. We will try using the

following transformations: adding noise, random crop (in time), and random phase

rotation.

The noise transformation is simply adding Gaussian noise to the original, noiseless

waveform x,

T noise(x) = x+w, (5.20)

where w is a realization of Gaussian random noise. We note that the training data is

noiseless. The SNR for every sample in the augmented batch is drawn independently

from a continuous uniform random distribution. The bounds of this distribution are

−12 to 12 dB for the radar waveforms and −20 to 20 dB for the communication

waveforms. By using a range of noise levels during training, the feature encoder

learns to be agnostic to noise level.

The random crop transformation is a uniformly random crop that is 100 samples

smaller than the initial window. Radar and communication signals from an unsyn-

cronized transmitter will occur at unknown timing. Therefore, the original sample

from the training set and a time-shifted version of that sample are just as likely to

be seen by our receiver.
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The random phase angle rotation transform is given by

T phase(x) = x exp(jφ), (5.21)

where φ is the phase angle uniformly drawn between 0 and 2π. This transform takes

advantage of the phase mismatch between the transmitter and receiver. If x is a valid

waveform, then T phase(x) is valid for any φ ∈ [0, 2π).

In our experiments, we will use a composition of these transforms. When a batch

is drawn during training, each transformation is performed on every sample with an

independently drawn transform realization. For example, if we are using the noise

and phase transformations, every sample will get an independent random draw of the

phase rotation and the noise realization.

To evaluate these self-supervised training methods, we train a model with the

SimCLR loss (5.7) using different combinations of the above transformations. We

then train a linear classifier on the encoding fθ(·) and report the error rate of this

classifier on a hold out test set. Experimental settings, such as learning rate schedule

and epochs, are the same as our novelty detection experiments, which are described

in the experiments section below.

Results from the SimCLR experiments can be seen in Table 5.1. For the SIDLE

data, noise + phase and noise + phase + crop are tied for best performance. For

the GNURadio data, noise + crop is the best. We notice is that the phase + crop

combination does the worst for both SIDLE and GNURadio data. This shows that

adding noise is a powerful similarity transform when training a SimCLR method on

RF waveform data. We also notice that the random phase rotation boosts perfor-

mance on the SIDLE data, and the addition of the random crop boosts performance
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Table 5.1: Performance of Linear classifier trained on SimCLR features for SIDLE
and GNURadio PSK signals.

Error Rate (%)
Transform SIDLE GNURadio
Phase + Crop 23.722 37.550
Noise 0.033 32.033
Noise + Crop 0.033 31.317
Noise + Phase 0.022 32.283
Noise + Phase + Crop 0.022 33.100

on the GNURadio data. Therefore we use all three similarity transformations (noise

+ phase + crop) when training SimCLR and CSI models for the rest of this chapter.

5.3.2 Shifting Transforms

We now consider shifting transforms for RF waveforms. As discussed above, the

shifting transform’s goal is to semantically change the signal. We develop a transform

based on (5.19), intuition about radar and communication signals, and observations

of the types of transformations that worked well for images in CSI.

In CSI, a 0, 90, 180, and 270 degree rotation operator was shown to work well for

images. For 1D signals, an analogous operation would be to “time-reverse” the signal.

For time-reverse, we have the number of transforms nr = 2, where R1(·) returns the

original signal and R2(·) returns the time-reversed signal. We note that in (5.19), our

signals are not at baseband, but at a carrier frequency ω0. If the base pulse signal

x(t) were symmetric in time and processing were done at baseband, time-reverse

would not be effective as a shifting transform, because it would not semantically

change the signal. Our experiments, in the section below, show that utilizing the
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time-reverse shifting transform significantly boosts the performance of the novelty

detection method.

5.4 SEND for RF Waveforms

We are motivated by CSI’s observation that novelty detection performance can be

improved by ensembling several scores. As discussed above, CSI uses both a weighted

sum and a product in order to combine inlier scores. The CSI ensembling method

works well for some datasets (e.g., their results are state-of-the-art for CIFAR-10), but

we find that their strategy does not perform well in general. Motivated by the partial

success of CSI’s ensembling technique we set out to develop an improved ensembling

strategy.

We now apply the SEND ensembling technique, developed in Section 4.3 and 4.4

of the previous chapter, to RF waveforms. Recall, for a collection of score functions,

{si(·)}ns
i=1 and shifting transforms, {Rj(·)}nr

j=1 the SEND score is given by

sSEND(x) = 1
2
‖r−(x)‖2 (5.22)

r(x) =



q1,1(s1(R1(x)))
...

q1,nr(s1(Rnr(x)))
q2,1(s2(R1(x)))

...
qns,nr(sns(Rnr(x)))


, (5.23)

where qi,j(·) is the quantile transform for the ith score and the jth shifting transform

and r−(x) is the negative component of r(x), defined by

r−i (x) =

{
ri(x) ri(x) < 0

0 ri(x) ≥ 0
. (5.24)

Next, we will discuss possible combinations of shifting transforms and score functions

to be used with SEND.
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1. We first introduce our one-class novelty detection strategy, One-Class SEND (OC-

SEND). For this approach, we will use a DNN trained using the CSI loss given by

(5.11). We will ensemble snorm(·), scos(·), and sshift(·) with sSEND(·). The norm and

cos scores will utilize features from the SimCLR head (zθ(·)) and the shift score will

utilize the shift-classifier head (`θ(·)). The shifting transform used for both training

and testing will be time-reverse. This gives us ns = 3 and nr = 2 for a total ensemble

of six scores. This implementation of SEND does not require access to the class-labels,

so it is compatible with the one-class classification problem.

2. Next, we introduce our Multi-Class SEND (MC-SEND) technique. For MC-SEND

we will train a classifier to learn the joint class-transform label (y, j), where y is the

class label and j is the shift transform index. If we have nr shifts, we turn a K-class

problem into a nrK-class problem. This means the final layer of the neural network is

changed to have an output of dimension nrK. This classifier will be trained using the

label smoothing loss (5.5), with α = 0.1. With this trained classifier we can evaluate

the joint class-dependent Mahalanobis distance

sjoint-Mah(x) = −min
(k,j)

(fθ(x)− µ̂kj)Σ̂
−1
kj (fθ(x)− µ̂kj), (5.25)

where µ̂kj and Σ̂kj are the sample mean and sample covariance of joint class (k, j).

For the MC-SEND ensemble we will utilize both this joint-label classification net-

work and the self-supervised network used in OC-SEND. We ensemble sjoint-Mah(·),

evaluated on the penultimate features of the joint-label classifier, snorm(·) and scos(·)

evaluated on the features of the SimCLR head (zθ(·)), and sshift(·) evaluated on the
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shift-classifier head (`θ(·)). Our experiments in the next section show that the ad-

dition of the joint-Mahalanobis score increases performance over the base OC-SEND

technique.

5.5 Experiments

5.5.1 Datasets

For our experiments, we use the SIDLE radar waveform dataset used in [131] and a

communication dataset constructed using GNURadio [140], which is an altered version

of the RadioML10a dataset [127]. The SIDLE dataset contains radar waveforms of

various types. The waveforms are either padded or cropped to a length of 5000

samples. This padding or cropping is done randomly, so that the location of the

waveform may not be centered in the window. Noise is added at training time so

that we can get different noise realizations of the same signal. SNR levels are chosen

uniformly random between −12 and 12 dB. We used classes 1-10 (excluding class 6)

of the SIDLE dataset as inlier classes, while classes 11-18 were treated as the novelty

classes.

Our GNURadio communication dataset simulates various communication mod-

ulation types. We use similar parameters to the RadioML10a dataset, except we

choose to make our signals length 1 024, in order to use similar techniques to SIDLE.

We use the GNURadio dynamic channel model, which gives us a fading channel with

random timing, frequency, and phase offsets. Noise is added at training time with

SNRs randomly chosen from between −20 and 20 dB. We use the PSK modulations

(BPSK, QPSK, 8PSK) as inliers and the analog modulations (AM-DSB, AM-SSB,
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WBFM) as novelties. For both datasets, train/test splits are selected by uniformly

sampling 10% of each class for the test set.

5.5.2 Evaluation

We will use the area under the receiver operating curve (AUC) and detection

probability (DPR) at a fixed false alarm rate to evaluate the proposed techniques.

We use AUC because it is a threshold independent metric of novelty detection per-

formance. We also report DPR at a fixed false alarm rate because it is more tangible

than AUC and gives a specific point on the receiver operating curve. DPR will be

evaluated at 1% false alarm rate on the SIDLE dataset and 5% on the GNURadio

dataset. We report results for a higher false alarm rate for GNURadio because that

detection problem is harder than the SIDLE radar waveforms problem.

5.5.3 Model Training

For the neural network architecture, we use an adapted version of ResNet-18 [102].

We use the adaptation technique specified in [104]. Waveforms are complex valued, so

we use complex multiplications in the convolutional layers. Batch norm is computed

separately for the real and imaginary components. The convolutional kernel size of

layer 1 is set to 11, while all others are set to 9. We also convert 2D operations (for

images) to 1D operations (for time series).

The self-supervised network is trained to minimize LSimCLR or LCSI . The joint-

label classifier network is trained on the label smoothing loss with joint class-shift

labels. The training samples for the joint-label classifier network are augmented with

the same similarity transforms as the self-supervised network. We train the networks
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for 100 epochs on the SIDLE data and 300 epochs on the GNURadio data. Opti-

mization is performed by the LARS [123] optimizer. The learning rate is scheduled

using cosine annealing [124] with initial learning rate of 0.1, a max learning rate of

1.0, 1 epoch of warmup, and an ending learning rate of 10−6.

For all experiments, the batch size was set to 128/nr, which makes the augmented

batch have a size of 128. We note that the training time scales with nr. Training a

model with nr = 2 takes twice as long as training a model with nr = 1.

For our experiments, we split the training set into two subsets. The first is the

“dictionary,” which is used for the cosine nearest neighbor score and Mahalanobis

distance, and the second will be used for the sample CDF (4.41) for the quantile

transform. We use 10% of the training set for the dictionary set and the remaining

90% for fitting the quantile transform. We will implement the quantile transforms

with the python sklearn [114] package, which approximates the sample CDF (4.41)

with 10 000 bins.

5.5.4 Baseline Methods

We will compare our methods to multiple baseline novelty detection methods.

For the one-class classification problem we will compare our methods to the CSI [7]

score. We note that this score utilizes the same DNN model and base inlier scores

(norm, cos, and shift) as OC-SEND, but combines the scores differently. We will also

compare to the contrastive score evaluated on a SimCLR model.

We also use two baseline multi-class novelty detection methods that utilize the

class-labels during training. Both methods use the penultimate layer of a DNN clas-

sifier, trained using cross-entropy, as the feature encoder. The first utilizes the class
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Table 5.2: Novelty detection performance for various techniques on the SIDLE and
GNURadio waveform datasets. Area under the receiver operating curve is labeled as
AUC and detection probability is labeled DPR. DPR is evaluated at 1% false alarm
rate for the SIDLE data and 5% false alarm rate for the GNURadio data.

Dataset SIDLE GNURadio
Inlier Score AUC DPR AUC DPR
Con [7] 0.9563 92.51 0.2026 1.43
CSI [7] 0.9769 76.76 0.4243 1.03
OC-SEND (ours) 0.9997 99.88 0.8456 56.70
Mah. [117] 0.9944 89.33 0.7812 23.43
OC-SVM [125,131] 0.9749 22.50 0.7676 39.45
MC-SEND (ours) 0.9998 99.99 0.8700 62.62

dependent Mahalanobis distance evaluated on the penultimate layer of the DNN clas-

sifier [117]. The second uses a class-dependent OC-SVM, trained on the penultimate

features of the DNN classifier [125]. We note that this is similar to the method used

in [131].

5.5.5 Novelty Detector Performance

We now evaluate our developed novelty detection techniques. We provide novelty

detection performance for various feature encoder/score function pairs on the SIDLE

and GNURadio datasets in Table 5.2. The table lists the training loss used to train

the model(s) and the inlier score function used. The tables are broken into two

sections. The top section includes methods that are one-class classifiers, which means

they do not use any class-labels. These methods could be used when class-labels are

unavailable or for datasets with a single class. The bottom section displays methods

that utilize the class-labels during training. These methods are limited to solving the

multi-class novelty detection problem.
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Our experiments show that our SEND framework significantly benefits novelty

detection performance. For the one-class classification methods, OC-SEND is the

best on both datasets in both DPR and AUC. For the multi-class novelty detection

methods, the Joint-LS / MC-SEND pair performs best. These results show the strong

benefit of utilizing the SEND methods to ensemble multiple inlier scores. We also see

that MC-SEND performs better than OC-SEND. This result is not surprising since

MC-SEND is able to use the joint classifier features as well as the self-supervised

CSI features. These results also show that label smoothing boosts performance of

MC-SEND. In every metric the Joint-LS version of MC-SEND beats the Joint-CE

version.

5.6 Summary

In this work, we demonstrated SimCLR and CSI for waveform data and showed

that several versions of SEND perform well on novelty detection for SIDLE radar

waveform data and GNURadio communication waveforms. The experiments demon-

strate that our ensembling method increases performance over base score functions

as well as over other novelty detection ensembling strategies.
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