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Abstract

Past decades have witnessed the great success of modern Artificial Intelligence (AI) via

learning incredible statistical correlations from large-scale data. However, a knowledge gap

still exists between the statistical learning of AI and the human-like learning process. Un-

like machines, humans can first accumulate enormous background knowledge about how

the world works and then quickly adapt it to new environments by understanding the un-

derlying concepts. For example, given the limited life experience with mammals, a child

can quickly learn the new concept of a dog to infer knowledge, like a dog is a mammal, a

mammal has a heart, and thus, a dog has a heart. Then the child can generalize the concept

to new cases, such as a golden retriever, a beagle, or a chihuahua. However, an AI sys-

tem trained on a large-scale mammal but not dog-focused dataset cannot do such learning

and generalization. AI techniques will fundamentally influence our everyday lives, and

bridging this knowledge gap to empower existing AI systems with more explicit human

knowledge is both timely and necessary to make them more generalizable, robust, trust-

worthy, interpretable, and efficient.

To close this gap, we seek inspiration from how humans learn, such as the ability to

abstract knowledge from data, generalize knowledge to new tasks, and reason to solve

complex problems. Inspired by the human learning process, in this dissertation, we present

our research efforts to address the knowledge gap between AI and human learning with a
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systematic study of the full life cycle of how to incorporate more explicit human knowl-

edge in intelligent systems. Specifically, we need first to extract high-quality knowledge

from the real world (knowledge acquisition), such as raw data or model parameters. We

then transform various types of knowledge into neural representations (knowledge repre-

sentation). We can also transfer existing knowledge between neural systems (knowledge

transfer) or perform human-like complex reasoning to enable more transparent and gen-

eralizable inference (knowledge reasoning). All stages pose unique research challenges

but are also intertwined, potentially leading to a unified framework of knowledge-centric

natural language processing (NLP).

This dissertation demonstrates our established achievements along the previous four

directions. The introduction first elaborates on our motivation and research vision to con-

struct a holistic and systematic view of knowledge-centric natural language processing.

We describe our contributions distributed in these four directions in each chapter sepa-

rately. For knowledge acquisition, we study extracting structured knowledge (e.g., syn-

onyms, relations) from the text corpus that can be leveraged to build a better knowledge

space. We leverage the corpus-level co-occurrence statistics to preserve privacy and per-

sonal information better. Our proposed framework can fully utilize the surface form and

global context information for advanced performance. For knowledge representation, we

focus on graph representation learning and propose to learn better representations of node

pairs for pairwise prediction tasks on graphs, such as link prediction or relation classifica-

tion. Our proposed method encourages the interaction between local contexts and would

generate more interpretable results. For knowledge transfer, we present two works. The

first one transfers knowledge between structured (Knowledge Base) and unstructured (text

corpus) knowledge sources, and the second one transfers knowledge from pre-trained large
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language models (LLMs) to downstream tasks via multitask prompt tuning. For knowledge

reasoning, we present two works. The first one shows a self-interpretable framework for

medical relation prediction that can generate human-intuitive rationales to explain neural

prediction. It relied on a recall and recognition process inspired by the human memory

theory from cognitive science. We verify the trustworthiness of generated rationales by

conducting a human evaluation of the medical expert. The second one focuses on com-

monsense reasoning for better word representation learning, in which an explicit reasoning

module runs over a commonsense knowledge graph to perform multi-hop reasoning. The

learned vector representations can benefit downstream tasks and show the reasoning steps

as interpretations.

In the last chapter, we summarize our key contributions and outline future research

directions toward knowledge-centric natural language processing. Ultimately, we envision

that human knowledge and reasoning should be indispensable components for the next

generation of AI techniques.
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Chapter 1: Introduction

1.1 Motivation: A Knowledge Gap

Human intelligence is widely considered to be characterized by human language and

communication, which contribute significantly to human cognitive uniqueness (Premack,

2004; Corballis, 2014; Bickerton, 2017). Teaching machines to understand natural lan-

guage and endowing them with human-level intelligence have been long-held aspirations

for researchers in areas of Natural Language Processing (NLP), Machine learning (ML),

and, more generally, Artificial Intelligence (AI).

Understanding human text requires the ability to reason over world knowledge both

implicitly and explicitly mentioned by the text. Such knowledge, to name a few, includes

factual, linguistic, scientific, and commonsense knowledge. This core challenge can be

decomposed into several sub-problems, such as 1) how to acquire high-quality knowledge

from data, 2) how to represent knowledge in neural systems, 3) how to transfer knowledge

between systems and tasks, and 4) how to reason over knowledge for complex problem

solving, etc.

Dating back to the era of rule-based systems in the last century (Winograd, 1972; Short-

liffe, 1974; Clancey and Letsinger, 1982; Barker et al., 1989; Swartout et al., 1991), sym-

bolic systems were developed in which researchers had tried to enumerate as many rules as
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possible and built up logic-based systems to reason over them. Despite the great explain-

ability of such systems and their success in specific applications, they mainly suffer two

drawbacks, 1) the high cost of human efforts in building and maintaining the expert system

and 2) the low generalizability of them that makes them brittle for out-of-distribution sam-

ples. At that time, knowledge is explicitly defined as logical rules, and the expert system

makes the prediction by logical reasoning.

The last two decades have witnessed the rising of statistical models (Manning and

Schutze, 1999) that automatically learn relevant knowledge from data via statistical learn-

ing. In the beginning, feature engineering is still required (e.g., part-of-speech features)

to produce good results with machine learning models, like Support Vector Machines

(SVMs). With the increase of the model’s expressiveness power, less explicit knowledge

or features are needed, but the prediction model that makes predictions by fitting statistical

correlations becomes a black-box gradually.

More recently, deep learning-based or neural models (Krizhevsky et al., 2012; Gold-

berg, 2016; LeCun et al., 2015; Goodfellow et al., 2016) that take raw data (e.g., text,

images) as input have revolutionized NLP-related areas and achieved superior performance

across many tasks that were considered very hard to be solved previously, such as machine

translation, image captioning, etc. At this stage, knowledge is primarily stored in the data

implicitly, and people rely on training on large-scale data to reconstruct implicit knowledge

for better performance.

Starting from around 2018, pre-trained large language models (LLMs) (Devlin et al.,

2019) have demonstrated more impressive and expressive power on natural language under-

standing. With the fundamental building block as the Transformer (Vaswani et al., 2017),

LLMs adopts simple objectives as either traditional left-to-right language modeling (e.g.,

3



1980s 2000s 2010s 2018–

Knowledge source Human-defined
rules

Manually extracted
features Raw data Model

parameters

Prediction model Expert systems Statistical
models

Deep learning
models LLMs

Table 1.1: The evolution of knowledge sources and prediction model for machine intelli-
gence.

GPT; (Radford et al., 2018), GPT-2; (Radford et al., 2019), GPT-3; (Brown et al., 2020))

or bidirectional masked language modeling (e.g., BERT; (Devlin et al., 2019)). LLMs usu-

ally contain millions to billions of parameters and are pre-trained over large-scale text data.

A new paradigm is to first pre-train an LLM and then fine-tune it on various downstream

tasks. In this sense, the knowledge can be considered stored in the model parameters.

With a brief review of the development history in NLP-related areas, we summarize

the evolution of knowledge sources and prediction models for advanced AI models from

different eras in Table 1.1. As we can see, despite the recent advanced models’ higher and

higher performance, more and more implicit knowledge is directly learned from large-scale

data as statistical correlations and stored in large-scale model parameters as black-boxes.

On the contrary, humans can accumulate enormous background knowledge about the world

to quickly adapt to new scenarios and explain their decisions by reasoning processes and ra-

tionales. Thus, compared to human-like learning processes, what is missing for advanced

AI systems nowadays includes more explicit knowledge and the associated interpretable

reasoning processes. We refer to the difference between such two distinct learning sys-

tems as the Knowledge Gap (Bajaj et al., 2022) indicating that explicit human knowledge
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and reasoning are missed in advanced AI systems today, which lead to the following chal-

lenges.

1. Generalizability. Due to the expressive power of neural models, they tend to learn the

spurious statistical correlations between the input and training labels. Such correla-

tions make the model hard to generalize to different tasks. With explicit knowledge

and reasoning as a form of regularization, we expect the model to make a more accu-

rate prediction with a similar reasoning process as humans, which will lead to greater

generalizability.

2. Data Efficiency. Another drawback of existing neural models is that they usually

consume large-scale data for training. Since explicit knowledge will serve as a good

initialization for learning and transfer, and thus, we expect knowledge-enhanced sys-

tems would require fewer labels and have high data efficiency, which is especially

useful in the low-resource domains.

3. Interpretability. One of the biggest benefits of explicit knowledge and reasoning

is the enhanced interpretability of neural models, where there are serious concerns

about the nature of black-box models. We expect this enhanced interpretability will

obtain human trust easily due to the shared knowledge space with humans and the

straightforwardness of the reasoning process for people to understand with minimal

knowledge barrier.

To summarize, in this dissertation, we seek to ask the research question, “Can we bridge

this gap by explicit knowledge and reasoning”. And to achieve this goal, we are making
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1

(a) (b2)

(b1)

(b)

Figure 1.1: Knowledge-centric NLP (b). Compared with existing advanced AI systems
(a) that directly learn statistical correlations from the real world (left top sphere), future
NLP systems should be empowered by more explicit human knowledge (top right sphere)
with steps of knowledge accumulation including acquisition and representation (b1) and
knowledge adaptation including transfer and reasoning (b2) to augment existing AI systems.

efforts in the following directions: 1) discover explicit knowledge, 2) learn better knowl-

edge representation, 3) transfer knowledge between systems and tasks, and 4) design novel

reasoning-driven models.

1.2 Background and Problem Statement

In the previous section, we point out four directions, as shown in Figure 1.1, toward

bridging the knowledge gap between statistical learning models and humans, i.e., knowl-

edge acquisition, knowledge representation, knowledge transfer, and knowledge reasoning.

In this section, we further introduce their core research problems and define their scope in
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this dissertation. We also discuss the relationship between them to picture a blueprint for

our dissertation.

Before we dive into how to manipulate the knowledge, we first clearly define what types

of knowledge we are focusing on in this dissertation.

Structured and Unstructured Knowledge. There are many perspectives of defining types

of knowledge (Goldstein and Papert, 1977; Barnett et al., 1990; Davis and Marcus, 2015).

From the standpoint of NLP research, we focus on the external world knowledge, and with-

out the loss of generality, we define two types of knowledge in terms of their structuredness,

i.e., structured and unstructured knowledge1. Specifically, structured knowledge refers to

highly organized data with pre-defined schemas, like relations, entities, fields, etc. The

typical structured knowledge includes relational databases, graphs, etc. On the other hand,

unstructured knowledge is less organized and nosier without predetermined designs, which

mainly refers to open text in the context of NLP. We comprehensively summarize the pros

and cons for both knowledges in Table 1.2. As we can see, they are highly complementary

to each other, and how to leverage both knowledges for better understanding text becomes

the core challenge for the following four directions.

Knowledge Acquisition. The core challenge of knowledge acquisition lies in where and

how to acquire knowledge for machine intelligence. Though recent neural models can

learn implicit knowledge directly from data, they usually suffer from 1) large-scale human

supervision is required for training and 2) the learned knowledge is uninterpretable and

hard to be transferred to other tasks. In the context of language, researchers have made

extensive efforts to extract information (e.g., phrase, event, relation, entity, etc.) from text

1In the middle ground of structured and unstructured knowledge, there could be a semi-structured or par-
tially structured knowledge, such as tables. For simplicity, we can categorize them as unstructured knowledge
as they are not fully structured and still contain a significant amount of noise.
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Unstructured Knowledge Structured Knowledge

Examples Text Graphs

Organization Less organized Well organized

Expressiveness Rich Limited

Noise level High Low

Human efforts
for construction Less human intervention Need human efforts for high quality;

Automatic methods are less satisfied

Interpretability Less interpretable High interpretable

Representative
modeling methods

Recurrent Neural Networks
Language Models

Graph Embeddings
Graph Neural Networks

Table 1.2: Comparison of unstructured and structured knowledge.

data to construct structured knowledge (e.g., knowledge graphs (Suchanek et al., 2007;

Bollacker et al., 2008; Carlson et al., 2010; Lehmann et al., 2015)). Our work mainly

focuses on extracting structured knowledge from the text corpus of noisy user data with

weakly supervised labels.

Knowledge Representation. Due to the discrete nature of language, learning better neu-

ral representations for both structured and unstructured knowledge has become the core

research problem. Depending on the type of knowledge, their methodologies are dramati-

cally different. Learning the representation for words and sentences has been through the

development of word embeddings (Mikolov et al., 2013a,b; Pennington et al., 2014) and re-

current neural networks (Hochreiter and Schmidhuber, 1997; Cho et al., 2014) to the latest

LPLMs. On the other hand, representation learning on structured knowledge has focused

chiefly on graph learning, including Graph Embeddings (Perozzi et al., 2014; Grover and

Leskovec, 2016b) and Graph Neural Networks (Gilmer et al., 2017; Hamilton et al., 2017).
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Figure 1.2: An example of semantic network (Collins and Loftus, 1975). Example adapted
from Gazzaniga et al. (2006). Semantically associated words have similar colors and are
closely connected (clustered).

One example of how structure helps text understanding is presented in Figure 1.2, where the

semantic network could induce the meaning of words by their clustering. Such a semantic

network can be inferred from a large text corpus by calculating the co-occurrence statistics

of words. Our work focuses on learning advanced graph representations to support more

interpretable predictions.

Knowledge Transfer. Transferring knowledge is a crucial step in the life cycle of knowl-

edge because it allows information to be transferred between different representations. It

involves many traditional transfer learning techniques (Pan and Yang, 2009) include multi-

task learning, domain adaptation, etc (Liu et al., 2019; Clark et al., 2019b; Ruder et al.,

2019b). But more importantly, with the new pre-training and fine-tuning paradigm of

LLMs (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019; Raffel et al., 2020), how

to leverage pre-trained models for efficient adaption and better transfer their knowledge to

downstream tasks are worthy of thorough exploration. We also study how to transfer the
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knowledge between structured and unstructured knowledge sources, specifically, knowl-

edge base and text corpus, where we investigate whether we can leverage one source to

boost the performance of the other.

Knowledge Reasoning. As the core of this dissertation, we argue that explicit reasoning is

the necessary cornerstone towards artificial intelligence (Duan et al., 2020). More complex

tasks require the model to understand the relationship between high-level variables in the

data and perform interpretable reasoning to derive the prediction. The history of reasoning

can be traced back to the rule-based expert systems for pure symbolic reasoning. More

recently, probabilistic reasoning (Pearl, 2014) and neuro-symbolic reasoning(e.g., knowl-

edge graph reasoning (Xiong et al., 2017; Das et al., 2017a; Lin et al., 2018)) have enjoyed

the merge of symbolic and neural worlds as well as their benefits. Our work focuses on

neuro-symbolic reasoning, where we incorporate the neural representation of structured

symbolic knowledge. This step combines the explicit knowledge and neural representation

from previous Knowledge Acquisition and Representation. We summarize the relationship

between these steps and two types of knowledge in Figure 1.3.

With the above important research directions, in this dissertation, we seek to answer the

following research questions:

• How can we extract different structured knowledge (e.g., synonyms, relations) from

the corpus of noisy text (and what if there is a challenging setting where only the

corpus-level co-occurrence statistics are available)?

• How can we learn better knowledge representations for both structured (e.g., graph

node pairs) and unstructured ones (e.g., words) for better performance and inter-

pretability?

10



Knowledge
Acquisition 

Knowledge
Representation

Knowledge
Reasoning

Knowledge
Transfer

Unstructured
Knowledge

Structured  
Knowledge

Figure 1.3: The flow of knowledge-centric NLP for the relationship between two types of
knowledge and the manipulations.

• How can we efficiently and effectively transfer knowledge between systems to boost

performance on downstream tasks or systems?

• How can we inject a self-interpretable reasoning process into the neural prediction

with inspiration from cognitive science and verify the increased interpretability can

earn the expert’s trust?

• How can we let the machine practice the commonsense reasoning ability (e.g., via

self-supervised training) over a predefined commonsense knowledge space for better

learning and interpretability?

1.3 Contributions

This dissertation seeks to bridge the knowledge gap between AI and human-like learn-

ing by exploring the full life cycle of incorporating human knowledge into intelligent sys-

tems, i.e., acquisition, representation, transfer, and reasoning. The first two steps focus

on extracting high-quality structured knowledge from the text corpus and learning better
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Figure 1.4: An overview of the dissertation outline.

neural structural representations. The last two steps study transferring existing knowledge

between neural models or performing reasoning on structured knowledge to enable more

transparent and generalizable inference in deep learning-based AI systems.

To solve these open research questions that emerged in the previous section, we now

introduce our contributions toward bridging the knowledge gap of advanced machine learn-

ing and human learning processes. Figure 1.4 presents an overview of the contributions

described in this dissertation. We can see that our contributions are distributed in all four

directions. What is worth mentioning is that all four directions can be beneficial to others,

e.g., the reasoning engine can be integrated into the acquisition or representation for greater

interpretability.
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More specifically, in the direction of knowledge acquisition, we make the following

contributions:

• We study extracting synonyms, an essential structured knowledge, from noisy user

data (i.e., clinical text) under a new setting where only the medical terms and their co-

occurrence statistics are available (i.e., privacy-aware clinical data). It is a practical

setting given the widespread concern about patient privacy for access to clinical text

and also presents unique challenges to address for the task of synonym discovery.

• We propose a novel and effective framework named SURFCON that discovers syn-

onyms for bother In-Vocabulary (InV) and Out-of-Vocabulary (OOV) terms. SUR-

FCON jointly models two complementary types of information by neural models -

surface form information and global context information, where the former works

well for detecting synonyms that are similar in surface form, while the latter can help

better find synonyms that do not look alike but are semantically similar.

• We conduct extensive experiments on publicly available privacy-aware clinical data

and demonstrate the effectiveness of our framework in comparison with various types

of baselines and our own model variants, especially in the challenging setting of

finding synonyms for OOV terms.

In the direction of knowledge representation, we make the following contributions:

• We study pairwise predictions on graphs (e.g., link prediction) powered by a gen-

eral framework CONPI of modeling the context interaction and a new type of pair

embeddings that captures the semantics of any node pairs on homogeneous graphs.
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• The proposed framework CONPI consists of two perspectives, node-centric and pair-

centric for context interaction. It considers the mutual influence between node con-

texts and enhances the model interpretability by highlighting important context pairs.

• We conduct extensive experiments on two types of pairwise prediction tasks on

graphs, link prediction, and relation prediction with a total of 6 datasets. In com-

parison with strong baselines from different categories, our framework can achieve

very competitive performance and, more importantly, much better interpretability

In the direction of knowledge transfer, we make the following contributions:

• We propose a novel complex question answer (CQA) system, SimultQA to unify the

knowledge-based question answering (KBQA) and Text-based question answering

(TextQA) systems and study how the reasoning knowledge is transferred between

these two heterogeneous knowledge sources.

• We study the efficient adaptation of large language models and transfer knowledge

between tasks via prompt tuning. We propose multitask prompt tuning (MPT), which

first learns a single transferable prompt by decomposing and distilling knowledge

from multiple task-specific source prompts. We then learn multiplicative low-rank

updates to this shared prompt to efficiently adapt it to each downstream target task.

In the direction of knowledge reasoning, we make the following contributions.

• We propose a self-interpretable neuro-symbolic framework CogStage that produces

reasonable explanations for medical relation prediction based on corpus-level statis-

tics. The interpretability is inspired by the theory of human memory (i.e., recall

and recognition). The recall process retrieves strongly-associated medical terms, and
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the recognition process establishes significant connections between recalled terms to

make the final prediction.

• We compare CogStage with various competitive methods to show its predictive per-

formance and conduct a human evaluation with the medical expert to demonstrate

that the rationales generated by our framework can greatly help earn the expert’s

trust.

• We propose a self-supervised framework CoRReL that jointly utilizes commonsense

knowledge and knowledge reasoning to enhance the generalization and interpreta-

tion of word representations. The framework consists of a self-supervised task and

an explicit reasoning module as a Graph Neural Network. We empirically evaluate

the effectiveness of CoRReL on the CommonsenseQA dataset and demonstrate its

performance by comparing it with other basic word representations.

Finally, we release all our codes as well as newly collected or processed data for re-

search purpose2.

1.4 Dissertation Organization

Based on the core contribution of each work, we can divide this dissertation into four

parts: Acquisition–mining structured knowledge from text data, Representation–learning

neural structural representation, Transfer–transferring knowledge across systems and tasks,

and Reasoning–explicit reasoning for interpretable machine learning.

The rest of this dissertation is organized as follows.

2https://github.com/zhenwang9102
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In the first part, Chapter 2 focuses on knowledge acquisition where we extract syn-

onyms from text corpus with noisy user data. We first introduce the task of synonym dis-

covery and the new setting of privacy-aware clinical text and the accompanying challenges

for the task. We then present the proposed framework SURFCON that leverages both sur-

face form and context information for accurate synonym discovery. We conduct extensive

experiments and case studies on publicly available privacy-aware clinical data and show

that SURFCON can outperform strong baseline methods by large margins under various

settings.

In the second part, Chapter 3 presents the work on learning pair embeddings in graphs

for context interaction. We first introduce the notion of a general task as the pairwise

prediction on graphs and emphasize the importance of context interaction. We present

a unified framework with two general perspectives, node-centric and pair-centric, about

modeling context pair interactions. We also propose a novel pair-centric context interaction

model and a new pre-trained embedding, representing the pair semantics and showing many

attractive properties. We test our models on two common pairwise prediction tasks: the link

prediction task and relation prediction task, and compare them with graph feature-based,

embedding-based, and Graph Neural Network (GNN)-based baselines. Our experimental

results show the superior performance of the pre-trained pair embeddings and that the pair-

centric interaction model outperforms all baselines by a large margin.

In the third part, Chapter 4 presents the first work on knowledge transfer, which is

to transfer the multi-hop knowledge between two heterogeneous knowledge sources, the

structured knowledge base, and unstructured text corpus. We first propose a unified system

to bridge two distinct QA systems, KBQA and TextQA with a framework of retrieval and

reranking. We then leverage this system to study how knowledge is transferred between
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two KBQA and TextQA datasets. Chapter 5 presents the second knowledge transfer work,

where we study how to efficiently adapt LLMs by transferring knowledge from a set of

source tasks to a wide range of diverse downstream target tasks.

In the fourth part, Chapter 6 addresses the low interpretability of existing neural mod-

els for medical relation prediction. We first highlight the importance of interpretability and

present a new interpretable framework inspired by existing theories on how human mem-

ory works, e.g., theories of recall and recognition. We conduct experiments on a real-world

public clinical dataset. We show that our framework can not only achieve not only com-

petitive predictive performance against a comprehensive list of neural baseline models but

also present rationales to justify its prediction. We further collaborate with medical experts

deeply to verify the usefulness of our model rationales for clinical decision-making.

Chapter 7 describes the work of learning interpretable word representations by com-

monsense reasoning. We first point out the necessity of interpretable word presentations

and the advantages of commonsense knowledge and reasoning. Then, we propose CoRReL

(COmmonsense knowledge Reasoning based word REpresentation Learning) that lever-

ages commonsense knowledge and reasoning to enhance word representation learning.

CoRReL includes pre-training and testing phases. In the pre-training phase, we propose a

self-supervision task that guides CoRReL to learn competitive reasoning modules. In the

testing phase, CoRReL is able to provide word pair representations and single word repre-

sentations distilled from learned reasoning modules. Moreover, CoRReL offers reasoning

paths to justify word closeness and correlation with minimal knowledge barriers. Empirical

results on public benchmark datasets demonstrate the effectiveness and interpretability of

CoRReL.
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At last, in Chapter 8, we conclude this dissertation by first summarizing the key find-

ings and contributions, and discussing promising future research directions of pushing the

research frontier forward toward knowledge-centric natural language processing.
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Part II: Acquisition: Mining Structured
Knowledge from Text Data
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Chapter 2: Synonym Discovery on Privacy-Aware Clinical Data

Knowledge acquisition is the first stage in the life cycle of incorporating human knowl-

edge in AI systems, which plays a similar role to how humans abstract structured knowl-

edge by observing the real world. It aims to automatically collect high-quality structured

human knowledge from the noisy environment, such as raw data, which will be reused in

later applications. In this chapter, we focus on one of the most critical structured knowl-

edge, synonym, and propose to extract synonyms from a corpus of clinical texts. But note

that our methodology can be generalized to other types of structured knowledge with richer

relational semantics.

Specifically, we consider unstructured clinical texts containing rich health-related infor-

mation. To better utilize the knowledge buried in clinical texts, discovering synonyms for

a medical query term has become an important task. Recent automatic synonym discovery

methods leveraging raw text information have been developed. However, to preserve pa-

tient privacy and security, it is usually quite difficult to get access to large-scale raw clinical

texts. In this paper, we study a new setting named synonym discovery on privacy-aware

clinical data (i.e., medical terms extracted from the clinical texts and their aggregated co-

occurrence counts, without raw clinical texts). To solve the problem, we propose a new

framework SURFCON that leverages two important types of information in the privacy-

aware clinical data, i.e., the surface form information, and the global context information
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for synonym discovery. In particular, the surface form module enables us to detect syn-

onyms that look similar while the global context module plays a complementary role to

discover synonyms that are semantically similar but in different surface forms, and both

allow us to deal with the OOV query issue (i.e., when the query is not found in the given

data). We conduct extensive experiments and case studies on publicly available privacy-

aware clinical data, and show that SURFCON can outperform strong baseline methods by

large margins under various settings. We release the code as well as re-processed data on

Github: https://github.com/zhenwang9102/SurfCon.

2.1 Introduction

Clinical texts in Electronic Medical Records (EMRs) are enriched with valuable in-

formation including patient-centered narratives, patient-clinician interactions and disease

treatment outcomes, which can be especially helpful for future decision making. To extract

knowledge from unstructured clinical texts, synonym discovery (Wang et al., 2015a) is an

important task which can benefit many downstream applications. For example, when a

physician issues a query term (e.g., “vitamin C”) to find relevant clinical documents, auto-

matically discovering its synonyms (e.g., “c vitamin”, “vit c”, “ascorbic acid”) or even com-

monly misspelled variations (e.g. “viatmin c”) can help to expand the query and thereby

enhance the retrieval performance.

For the sake of patient privacy and security, it is usually quite difficult, if not impossible,

for medical institutes to grant public access to large-scale raw or even de-identified clinical

texts (Beam et al., 2018). Consequently, medical terms3 and their aggregated co-occurrence

3A medical term is a single- or multi-word string (e.g., “Aspirin”, “Acetylsalicylic Acid”).
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Figure 2.1: Task illustration: We aim to discover synonyms for a given query term from
privacy-aware clinical data by effectively leveraging two important types of information:
Surface form and global contexts.

counts extracted from raw clinical texts are becoming a popular (although not perfect) sub-

stitute for raw clinical texts for the research community to study EMR data (Finlayson et al.,

2014; Ta et al., 2018; Beam et al., 2018). For example, (Finlayson et al., 2014) released

millions of medical terms extracted from the clinical texts in Stanford Hospitals and Clinics

as well as their global co-occurrence counts, rather than releasing raw sentences/paragraph-

s/documents from the clinical text corpus. In this work, we refer to the given set of medical

terms and their co-occurrence statistics in a clinical text corpus as privacy-aware clinical

data, and investigate synonym discovery task on such data (Figure 2.1): Given a set of terms
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extracted from clinical texts as well as their global co-occurrence graph4, recommend a list

of synonyms for a query term. Developing effective approaches under this setting is partic-

ularly meaningful, as they will suggest that one can utilize less sensitive information (i.e.,

co-occurrence statistics rather than raw sentences in clinical texts) to perform the task well.

A straightforward approach to obtain synonyms is to map the query term to a knowl-

edge base (KB) entity and retrieve its synonyms or aliases stored in the KBs. However, it

is widely known that KBs are incomplete and outdated, and their coverage of synonyms

can be very limited (Wang et al., 2015c). In addition, the informal writing of clinical texts

often contain variants of surface forms, layman terms, frequently misspelling words, and

locally practiced abbreviations, which should be mined to enrich synonyms in KBs. Re-

cent works (Wang et al., 2015a; Qu et al., 2017; Zhang et al., 2018a) have been focused

on automatic synonym discovery from massive text corpora such as Wikipedia articles and

PubMed paper abstracts. When predicting if two terms are synonyms or not, such ap-

proaches usually leverage the original sentences (a.k.a. local contexts) mentioning them,

and hence do not apply or work well under our privacy-aware data setting where such

sentences are unavailable.

Despite the lack of local contexts, we observe two important types of information car-

ried in the privacy-aware data - surface form information and global context information

(i.e., co-occurrence statistics). In this work, we aim to effectively leverage these two types

of information for synonym discovery, as shown in Figure 2.1.

Some recent works (Neculoiu et al., 2016; Mueller and Thyagarajan, 2016) model the

similarity between terms in the character-level. For example, (Mueller and Thyagarajan,

2016) learn the similarity between two sequences of characters, which can be applied for

4where each node is a medical term and each edge between two nodes is weighted by the number of times
that two terms co-occur in a given context window.
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discovering synonyms that look alike such as “vit c” and “vitamin c”. However, we observe

two common phenomena that such approaches cannot address well and would induce false

positive and false negative predictions respectively: (1) Some terms are similar in surface

form but do not have the same meaning (e.g., “hemostatic” and “homeostasis”, where the

former means a process stopping bleeding while the latter refers to a constant internal

environment in the human body); (2) Some terms have the same meaning but are different

in surface form (e.g., “ascorbic acid” and “vitamin c” are the same medicinal product but

look different).

On the other hand, given a term co-occurrence graph, various distributional embedding

methods such as (Pennington et al., 2014; Tang et al., 2015; Levy and Goldberg, 2014b)

have been proposed to learn a distributional representation (a.k.a. embedding) for each term

based on its global contexts (i.e., terms connected to it in the co-occurrence graph). The

main idea behind such methods is that two terms should have similar embedding vectors if

they share a lot of global contexts. However, we observe that the privacy-aware clinical data

tends to be very noisy due to the original data processing procedure5, which presents new

challenges for utilizing global contexts to model semantic similarity between terms. For

example, (Finlayson et al., 2014) prune the edges between two terms co-occurring less than

100 times, which can lead to missing edges between two related terms in the co-occurrence

graph. (Ta et al., 2018) remove all concepts with singleton frequency counts below 10.

Hence, the noisy nature of the co-occurrence graph makes it less accurate to embed a term

based on their original contexts. Moreover, when performing the synonym discovery task,

users are very likely to issue a query term that does not appear in the given co-occurrence

5This tends to be a common issue in many scenarios as raw data has to go through various pre-processing
steps for privacy concerns.
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data. We refer to such query terms as Out-of-Vocabulary (OOV). Unlike In-Vocabulary6

query terms, OOV query terms do not have their global contexts readily available in the

given graph, which makes synonym discovery even more challenging.

In this chapter, to address the above challenges and effectively utilize both the surface

form and the global context information in the privacy-aware clinical data, we propose a

novel framework named SURFCON which consists of a bi-level surface form encoding

component and a context matching component, both based on neural models. The bi-level

surface form encoding component exploits both character- and word-level information to

encode a medical term into a vector. It enables us to compute a surface score of two

terms based on their encoding vectors. As mentioned earlier, such surface score works

well for detecting synonyms that look similar in surface form. However, it tends to miss

synonymous terms that do not look alike. Therefore, we propose the context matching

component to model the semantic similarity between terms, which plays a complementary

role in synonymy discovery.

Our context matching component first utilizes the bi-level surface form encoding vector

for a term to predict its potential global contexts. Using predicted contexts rather than the

raw contexts in the given graph enables us to handle OOV query terms and also turns out

to be effective for InV query terms. Then we generate a semantic vector for each term by

aggregating the semantic features from predicted contexts using two mechanisms - static

and dynamic representation mechanism. Specifically, given term a and term b, the dynamic

mechanism aims to learn to weigh the importance of individual terms in a’s contexts based

on their semantic matching degree with b’s contexts, while the static mechanism assigns

6Query terms that appear in the given co-occurrence graph are referred to as In-Vocabulary (InV).
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equal weights to all terms in one’s contexts. The former takes better advantage of individual

terms within the contexts and empirically demonstrates superior performance.

Our contributions are summarized in three folds:

• We study the task of synonym discovery under a new setting, i.e., on privacy-aware

clinical data, where only a set of medical terms and their co-occurrence statistics are

given, and local contexts (e.g., sentences mentioning a term in a corpus) are not available.

It is a practical setting given the wide concern about patient privacy for access to clinical

texts and also presents unique challenges to address for effective synonym discovery.

• We propose a novel and effective framework named SURFCON that can discover syn-

onyms for both In-Vocabulary (InV) and Out-of-Vocabulary (OOV) query terms. SUR-

FCON considers two complementary types of information based on neural models - sur-

face form information and global context information of a term, where the former works

well for detecting synonyms that are similar in surface form while the latter can help

better find synonyms that do not look alike but are semantically similar.

• We conduct extensive experiments on publicly available privacy-aware clinical data and

demonstrate the effectiveness of our framework in comparison with various baselines and

our own model variants.

2.2 Related Work

Character Sequence Encoding. To capture the character-level information of terms, neu-

ral network models such as Recurrent Neural Networks and Convolutional Neural Net-

works can be applied on character sequences (Ballesteros et al., 2015; Kim et al., 2016).

Further, CHARAGRAM (Wieting et al., 2016), FastText (Bojanowski et al., 2016), and
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CharNGram (Hashimoto et al., 2017) are proposed to represent terms and their morpholog-

ical variants by capturing the shared subwords and n-grams information. However, mod-

eling character-level sequence information only is less capable of discovering semantically

similar synonyms, and our framework considers global context information to discover

those synonyms.

Word and Graph/Network Embedding. Word embedding methods such as word2vec (Mikolov

et al., 2013b) and Glove (Pennington et al., 2014) have been proposed and successfully ap-

plied to mining relations of medical phrases (Wang et al., 2015a; Pakhomov et al., 2016).

More recently, there has been a surge of graph embedding methods that seek to encode

structural graph information into low-dimensional dense vectors, such as Deepwalk (Per-

ozzi et al., 2014), LINE (Tang et al., 2015). Most of the embedding methods can only

learn embedding vectors for words in the corpus or nodes in the graph, and thus fail to

address the OOV issue. On the other hand, some more recent inductive graph embedding

works, such as Planetoid (Yang et al., 2016a), GraphSAGE (Hamilton et al., 2017), and

SEANO (Liang et al., 2018), could generate embeddings for nodes that are unobserved in

the training phase by utilizing their node features (e.g., text attributes). However, most of

them assume the neighborhood of those unseen nodes is known, which is not the case for

our OOV issue as the real contexts of an OOV term are unknown. Since Planetoid (Yang

et al., 2016a) can generate node embeddings based on node features such as character se-

quence encoding vectors, it can handle the OOV issue and is chosen as a baseline model.

Synonym Discovery. A variety of methods have been proposed to detect synonyms of

medical terms, ranging from utilizing lexical patterns (Weeds et al., 2004) and cluster-

ing (Matsuo et al., 2006) to the distributional semantics models (Hagiwara et al., 2009).

There are some more recent works on automatic synonym discovery (Wang et al., 2015a;

27



Qu et al., 2017; Zhang et al., 2018a; Shen et al., 2019). For example, (Wang et al., 2015a)

try to learn better embeddings for terms in medical corpora by incorporating their seman-

tic types and then build a linear classifier to decide whether a pair of medical terms is

synonyms or not. (Qu et al., 2017) combine distributional and pattern based methods for

automatic synonym discovery. However, many aforementioned models focus on finding

synonyms based on raw texts information, which is not suitable for our privacy-aware clin-

ical data. In addition, nearly all methods could only find synonyms for terms that appear in

the training corpus and, thus cannot address the OOV query terms.

2.3 Preliminaries

In this section, we clarify several terminologies used in this chapter as well as our

problem definition:

Privacy-aware Clinical Data. Electronic medical records (EMRs) typically contain pa-

tient medical information such as discharge summary, treatment, and medical history. In

EMRs, a significant amount of clinical information remains under-tapped in the unstruc-

tured clinical texts. However, due to privacy concerns, access to raw or even de-identified

clinical texts in large quantities is quite limited. Also, traditional de-identification meth-

ods, e.g., removing the 18 HIPAA identifiers (Stubbs and Uzuner, 2015), require significant

manual efforts for the annotation (Dorr et al., 2006). Moreover, there also exists the risk

that de-identified data can be attacked and recovered by the re-identification in some cases

(Garfinkel, 2015). Thus, to facilitate research on EMRs, an increasingly popular substitute

strategy for releasing raw clinical texts is to extract medical terms and their aggregated

co-occurrence counts from the corpus (Beam et al., 2018; Ta et al., 2018; Finlayson et al.,

2014). We refer to such data as privacy-aware clinical data in this chapter. Converting
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raw sentences to co-occurrence data protects privacy as original patient records are very

unlikely to be recovered. However, the local context information contained in the raw

sentences is also lost, which makes various tasks including synonym discovery more chal-

lenging under privacy-aware datasets.

Medical Term Co-occurrence Graph. A medical term-term co-occurrence graph is de-

fined as G=(V,E), where V is the set of vertices, each representing a medical term ex-

tracted from clinical texts. Each vertex has a surface form string (e.g., “vitamin c”, “can-

cer”) which is the spelling of the medical term. E is the set of edges, each weighted by

how many times two terms co-occur in a certain context window (e.g., notes from patient

records within 1 day).

Medical Term Synonym. Synonyms of a medical term refer to other medical terms that

can be used as its alternative names (Qu et al., 2017). For example, “vit c”, “c vitamin” and

“ascorbic acid” refer to the same medicinal product, while “Alzheimer’s disease” and “se-

nile dementia” represent the same disease. In our dataset, the extracted medical terms are

mapped to the Unified Medical Language System (UMLS) (Bodenreider, 2004) Concept

Unique Identifier (CUI) by (Finlayson et al., 2014). Different terms mapping to the same

UMLS CUI are treated as synonyms for model training/development/testing.

Task Definition. We formally define our task of synonym discovery on privacy-aware

clinical data as: Given a medical term co-occurrence graph G, for a query term q (which

can be either In-Vocabulary or Out-of-Vocabulary), recommend a list of medical terms from

G that are likely to be synonyms of q.
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2.4 SURFCON Framework

In this section, we introduce our proposed framework SURFCON for synonym discov-

ery on privacy-aware clinical data.

2.4.1 Overview

We observe two important types of information carried in the privacy-aware clinical

data: surface form information of a medical term and the global contexts from the given

co-occurrence graph. On the one hand, existing approaches (Neculoiu et al., 2016) using

character-level features to detect synonyms could work well when synonyms share a high

string similarity, but tend to produce false positive predictions (when two terms look similar

but are not synonyms, e.g., “hemostatic” and “homeostasis”) and false negative predictions

(when two terms are synonyms but look very different, e.g., “ascorbic acid” and “vitamin

c”). On the other hand, the global contexts of a term under the privacy-aware setting tend

to be noisy partly due to the original data pre-processing procedure, which also presents

challenges for using them to model the semantic similarity between terms. Thus, a frame-

work that is able to effectively leverage these two types of information needs to be carefully

designed.

Towards that end, we propose SURFCON (Figure 2.2) and summarize its high-level

ideas as below:

(1) Given a query term (whether being InV or OOV), the bi-level surface form encoding

component and the context matching component score a candidate term7 respectively based

on the surface form information and global context information. The former enables us

to find synonyms that look similar to the query term by considering both character- and

7Every term in the given co-occurrence graph can be a candidate term.
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Figure 2.2: Framework overview. For each query term, a list of candidate terms will be
ranked based on both the surface and context scores.

word-level information, and the latter complements it by capturing the semantic similarity

between terms to better address the false positive and false negative problem mentioned

earlier.

(2) Considering the original global contexts being noisy as well as the existence of OOV

query terms, instead of directly leveraging the raw global contexts, the context matching

component will first utilize the surface form encoding vector of a term to predict its po-

tential global contexts8. We then investigate a novel dynamic context matching mechanism

(see Section 2.4.2 for details) to evaluate if two terms are synonyms based on their predicted

contexts.

8For terms in the co-occurrence graph, predicting contexts can be treated as denoising its original global
contexts (or edges)

31



(3) The two components are combined by a weighted score function, in which parameters

are jointly optimized with a widely used ranking algorithm ListNet (Cao et al., 2007). At

testing time, given a query term, candidate terms are ranked based on the optimized score

function.

2.4.2 Methodology

Now we describe the two components of SURFCON: Bi-level Surface Form Encoding

and Context Matching in details.

Bi-level Surface Form Encoding

The bi-level surface form encoding of our framework aims to model the similarity be-

tween two terms at the surface form level, as we observe that two terms tend to be syn-

onymous if they are very similar in surface forms. Such observation is intuitive but works

surprisingly well in synonym discovery task. Driven by this observation, we design the

bi-level surface form encoding component in a way that both of character- and word-level

information of terms are captured. Then, a score function is defined to measure the surface

form similarity for a pair of terms based on their bi-level encoding vectors. The bi-level

encoders are able to encode surface form information of both InV terms and OOV terms.

Specifically, as shown in Figure 2.2, given a query term q and a candidate term c,

we denote their character-level sequences as xq = {xq,1, ..., xq,mq}, xc = {xc,1, ..., xc,mc},

and their word-level sequences as wq = {wq,1, ..., wq,nq}, wc = {wc,1, ..., wc,nc}, where

mq, nq,mc, nc are the length of the character-level sequence and word-level sequence of

the query term and the candidate term respectively. Then we build two encoders ENCch

32



and ENCwd to capture the surface form information at the character- and word-level re-

spectively:
schq = ENCch(xq,1, ..., xq,mq), s

wd
q = ENCwd(wq,1, ..., wq,nq)

schc = ENCch(xc,1, ..., xc,mc), s
wd
c = ENCwd(wc,1, ..., wc,nc)

(2.1)

where schq , s
ch
c ∈ Rdc are the character-level embeddings for the query and candidate terms,

and swd
q , swd

c ∈ Rdw are the word-level embeddings for the query and candidate terms

respectively.

Note that there has been a surge of effective encoders that model sequential information

from character-level or word-level, ranging from simple look-up table (e.g., character n-

gram (Hashimoto et al., 2017) and Skip-Gram (Mikolov et al., 2013b)) to complicated neu-

ral network architectures (e.g., CNN (Kim et al., 2016), LSTM (Ballesteros et al., 2015) and

Transformer (Vaswani et al., 2017), etc.). For simplicity, here, we adopt simple look-up ta-

bles for both character-level embeddings and word-level embeddings. Instead of randomly

initializing them, we borrow pre-trained character n-gram embeddings from (Hashimoto

et al., 2017) and word embeddings from (Pennington et al., 2014). Our experiments also

demonstrate that these simple encoders can well encode surface form information of med-

ical terms for synonym discovery task. We leave evaluating more complicated encoders as

our future work.

After we obtain the embeddings at both levels, we concatenate them and apply a non-

linear function to get the surface vector s for the query and candidate term. Let us denote

such encoding process as a function h(·) with the input as term q or c and the output as the

surface vector sq or sc:

sq = h(q) = tanh([schq , s
wd
q ]Ws + bs),

sc = h(c) = tanh([schc , s
wd
c ]Ws + bs)

(2.2)
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where the surface vectors sq, sc ∈ Rds , and Ws ∈ R(dc+dw)×ds , bs ∈ Rds are weight matrix

and bias for a fully-connected layer.

Next, we define the surface score for a query term q and a candidate term c to measure

the surface form similarity based on their encoding vectors sq and sc:

Surface Score (q, c) = fs(sq, sc) (2.3)

Context Matching

In order to discover synonyms that are not similar in surface form, and also observing

that two terms tend to be synonyms if their global contexts in the co-occurrence graph

are semantically very relevant, we design the context matching component to capture the

semantic similarity of two terms by carefully leveraging their global contexts. We first

illustrate the intuition behind this component using a toy example:

Example 1. [Toy Example for Illustration.] Assume we have a query term “vitamin

c” and a candidate term “ascorbic acid”. The former is connected with two terms “iron

absorption” and “vitamin b” in the co-occurrence graph as global contexts, while the

latter has “fatty acids” and “anemia” as global contexts.

Our context matching component essentially aims to use a term’s contexts to represent

its semantic meaning and a novel dynamic context matching mechanism is developed to

determine the importance of each individual term in one’s contexts. For example, “iron

absorption” is closely related to “anemia” since the disease “anemi” is most likely to

be caused by the iron deficiency. Based on the observation, we aim to increase the relative

importance of “iron absorption” and “anemia” in their respective context sets when repre-

senting the semantic meaning of “vitamin c” and “ascorbic acid”. Therefore, we develop

a novel dynamic context matching mechanism to be introduced shortly.
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In order to recover global contexts for OOV terms and also noticing the noisy nature

of the co-occurrence graph mentioned earlier, we propose an inductive context prediction

module to predict the global contexts for a term based on its surface form information

instead of relying on the raw global contexts in the given co-occurrence graph.

Inductive Context Prediction Module. Let us first denote a general medical term as t.

For a term-term co-occurrence graph, we treat all InV terms as possible context terms and

denote them as {uj}|V |
j=1 where |V | is the total number of terms in the graph. The inductive

context prediction module aims to predict how likely term uj appears in the context of t

(denoted as the conditional probability p (uj|t)). To learn a good context predictor, we uti-

lize all existing terms in the graph as term t, i.e., t ∈ {ui}|V |
i=1 and the conditional probability

becomes p (uj|ui).

Formally, the probability of observing term uj in the context of term ui is denoted as:

p (uj|ui) =
exp (νTuj

· sui
)∑|V |

k=1 exp (νTuk
· sui

)
(2.4)

where sui
= h(ui) and h(·) is the same encoder function defined in section 2.4.2. νuj

∈ Rdo

is the context embedding vector corresponding to term uj and we let do = ds. The predicted

distribution p (uj|ui) is optimized to be close to the empirical distribution p̂ (uj|ui) defined

as:

p̂ (uj|ui) =
wij∑

(i,k)∈E wik

(2.5)

where E is the set of edges in the co-occurrence graph and wij is the weight between term

ui and term uj . We adopt the cross entropy loss function for optimizing:

Ln = −
∑

ui,uj∈V

p̂(uj|ui) log (p(uj|ui)) (2.6)

When the number of terms in the graph |V | is very large, it is computationally costly

to calculate the conditional probability p (uj|ui), and one can utilize the negative sampling
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algorithm (Mikolov et al., 2013a) to train our inductive context predictor efficiently. The

loss function Eqn. 2.6 can be modified as:

log σ(νTuj
· sui

) +

N0∑
n=1

Eun∼Pn(u)[log σ(−νTun
· sui

)] (2.7)

where σ(x) = 1/(1 + exp(−x)) and un is the negative sample drawn from the noise

distribution Pn(u) ∝ d
3/4
u . N0 is the number of negative samples and du is the degree of

term u in the co-occurrence graph.

Now, given a term t (either InV or OOV), we can select the top-K terms as its predicted

contexts based on the predicted probability distribution p (·|t). Next, we describe the dy-

namic context matching mechanism to model the semantic similarity of two terms based

on their predicted contexts.

Dynamic Context Matching Mechanism. Inspired by previous works on neighborhood

aggregation based graph embedding methods (Hamilton et al., 2017; Velickovic et al.,

2018), which generate an embedding vector for an InV node by aggregating features from

its neighborhood (contexts), we introduce two semantic vectors respectively for the query

term and the candidate term, vq, vc ∈ Rde , and learn them by aggregating the feature vectors

of their corresponding top-K predicted contexts from previous module.

Let us define viq ∈ Rde as the feature vector of the i-th term in query term q’s context

while vjc ∈ Rde as the feature vector of the j-th term in candidate term c’s context, and

their context sets as Φ(q) = {viq}Ki=1, Φ(c) = {vjc}Kj=1. Essentially, as we aim to capture

the semantic meaning of terms, the feature vectors viq’s and vjc’s are expected to contain

semantic information. Also noticing that all predicted context terms are InV terms (i.e., in

the co-occurrence graph), which allows us to adopt widely used graph embeddings, such

as LINE(2nd) (Tang et al., 2015) as their feature vectors.
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Figure 2.3: Dynamic Context Matching Mechanism.

One naive way to obtain the context semantic vectors, vq and vs is to average vectors

in their respective context set. Since such vq (or vc) does not depend on the other one, we

refer to such vectors as “static” representations for terms.

In contrast to the static approach, we propose the dynamic context matching mechanism

(as shown in Figure 2.3), which weighs each term in the context of q (or c) based on its

matching degree with terms in the context of c (or q) and hence the context semantic vector

representation vq (or vc) is dynamically changing depending on which terms it is comparing

with. More specifically, let us define g(x, y) = tanh(xWmy
T ) as a nonlinear function

parameterized with weight matrix Wm ∈ Rde×de to measure the similarity between two

row vectors x and y. For each context vector viq of the query term, we calculate its weight

based on how it matches with c’s contexts overall:

match [viq,Φ(c)] = Pooling [g(viq, v
1
c ), ..., g(v

i
q, v

K
c )] (2.8)

For the pooling operation, we empirically choose the mean pooling strategy as it performs

better than alternatives such as max pooling in our experiments. Then we normalize the
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weight of viq as:

αi
q =

e match[viq ,Φ(c)]∑K
k=1 e match[vkq ,Φ(c)]

(2.9)

Finally, the context semantic vector for the query term vq is calculated through a weighted

combination of q’s contexts:

vq =
K∑
i=1

αi
q · viq (2.10)

Following the same procedure, we can obtain the context semantic vector vc for the

candidate term w.r.t. the query term. Then we define the context score for a query term q

and a candidate term c to measure their semantic similarity based on vq and vc:

Context Score (q, c) = fc(vq, vc) (2.11)

2.4.3 Model Optimization and Inference

Objective Function. Given a query term q and a candidate term c, to capture their

similarity based on surface forms and global contexts, we define the final score function as:

f(q, c) = (1− γ) · fs(sq, sc) + γ · fc(vq, vc) (2.12)

fs(·) and fc(·) are similarity functions between two vectors, e.g., cosine similarity or

bilinear similarity. Now we obtain the recommendation probability of each candidate

ti ∈ {t1, ..., tN} given a query q:

p(ti|q) =
e f(q,ti)∑N
k=1 e f(q,tk)

(2.13)

where N is the size of the candidate set. Finally, we adopt the ListNet (Cao et al., 2007)

ranking framework which minimizes the cross entropy loss for query term q:

Lr = −
N∑
i=1

p∗(ti|q) log p(ti|q) (2.14)
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where p∗(ti|q) is the normalized ground-truth distribution of a list of ranking scores as

{ri}Ni=1 where ri equals to 1 if q and ti are synonyms and 0 otherwise.

Training. For efficiency concerns, we adopt a two-phase training strategy: We first train

the inductive context prediction module by loss function Ln (Eqn. 2.6) in the term-term

co-occurrence graph, and sample top-K contexts based on the predicted probability dis-

tribution and use them in the context matching component. Then, we train the ranking

framework by minimizing the ranking loss Lr (Eqn. 2.14).

Inference. At the inference stage, we treat all InV terms as candidates for a given query.

Since the dynamic representation mechanism involves pairwise term matching between the

contexts of the query term and those of each candidate term and can have a high computa-

tional cost when the candidate set size is large, we adopt a two-step strategy: (1) For a given

query term, select its top-N high potential candidates based on the surface form encoding

vector and the context semantic vector obtained by the static representation mechanism; (2)

Re-rank the selected candidates by applying our SURFCON framework with the dynamic

representation mechanism.

2.5 Experiments

Now we evaluate our proposed framework SURFCON to show the effectiveness of

leveraging both surface form information and global context information for synonym dis-

covery.

2.5.1 Datasets

Medical Term Co-occurence Graph. We adopt publicly available sets of medical terms

with their co-occurrence statistics which are extracted by (Finlayson et al., 2014) from

20 million clinical notes collected from Stanford Hospitals and Clinics(Lowe et al., 2009)
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since 1995. Medical terms are extracted using an existing phrase mining tool (LePendu

et al., 2012) by matching with 22 clinically relevant ontologies such as SNOMED-CT and

MedDRA. And co-occurrence frequencies are counted based on how many times two terms

co-occur in the same temporal bin (i.e., a certain timeframe in patient’s records), e.g., 1, 7,

30, 90, 180, 365, and∞-day bins.

Without loss of generality, we choose 1-day per-bin and∞-day per-bin9 graphs to eval-

uate different methods. We first convert the global counts between nodes to the PPMI

values (Levy and Goldberg, 2014a) and adopt subsampling (Mikolov et al., 2013b) to filter

very common terms, such as “medical history”, “medication dose”, etc. We choose these

two datasets because they have very different connection density as shown in Table 2.1,

and denote them as 1-day and All-day datasets.

Synonym Label. In the released datasets, (Finlayson et al., 2014) provided a term-to-

UMLS CUI mapping based on the same 22 ontologies as used when extracting terms. They

reduced the ambiguity of a term by suppressing its least likely meaning so as to provide

a high-quality mapping. We utilized such mapping to obtain the synonym labels: Terms

mapped to the same UMLS CUI are treated as synonyms, e.g., terms like “c vitamin”, “vit

c”, “ascorbic acid” are synonyms as they are all mapped to the concept “Ascorbic Acid”

with ID C0003968.

Query Terms. Given a medical term-term co-occurrence graph, terms in the graph that

can be mapped to UMLS CUIs are treated as potential query terms, and we split all such

terms into training, development and testing sets. Here, since all terms appear in the given

co-occurrence graph, this testing set is referred to as the InV testing set. We also create

an OOV testing set: Under a UMLS CUI, terms not in the co-occurrence graph are treated

9Per-bin means each unique co-occurring term-term pair is counted at most once for each relevant bin of
a patient. We refer readers to (Finlayson et al., 2014) for more information.
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1-day dataset All-day dataset
# Nodes 52,804 43,406
# Edges 16,197,319 50,134,332

Average # Degrees 613.5 2310.0
# Train Terms 9,451 7,021
# Dev Terms 960 726

# InV Test Terms
All 960 726

Dissim 175 152

# OOV Test Terms
All 2,000 2,000

Dissim 809 841

Table 2.1: Statistics of our datasets.

Method Category Methods
1-day Dataset All-day Dataset

Dev
InV Test OOV Test

Dev
InV Test OOV Test

All Dissim All Dissim All Dissim All Dissim

Surface form
based methods

CharNgram (Hashimoto et al., 2017) 0.8755 0.8473 0.4657 0.7427 0.4131 0.8652 0.8553 0.4615 0.7675 0.4424
CHARAGRAM (Wieting et al., 2016) 0.8705 0.8507 0.5504 0.7609 0.5142 0.8915 0.8805 0.5153 0.8119 0.5282

SRN (Neculoiu et al., 2016) 0.8886 0.8565 0.5102 0.7241 0.4341 0.8460 0.8170 0.4523 0.7110 0.4176

Global context
based methods

Word2vec (Mikolov et al., 2013b) 0.3838 0.3748 0.3188 - - 0.4801 0.476 0.4180 - -
LINE(2nd) (Tang et al., 2015) 0.4279 0.4301 0.3494 - - 0.5068 0.5043 0.4369 - -

DPE-NoP (Qu et al., 2017) 0.6222 0.6107 0.4855 - - 0.5928 0.5949 0.4938 - -
Hybrid methods

(surface+context)
Concept Space (Wang et al., 2015a) 0.8094 0.8109 0.4690 - - 0.8064 0.7924 0.5574 - -

Planetoid (Yang et al., 2016a) 0.8813 0.8514 0.5612 0.731 0.4714 0.8818 0.8765 0.6963 0.7403 0.4986

Our model
and variants

SurfCon (Surf-Only) 0.9160 0.9053 0.6145 0.8228 0.5829 0.9034 0.8958 0.6006 0.8183 0.5622
SurfCon (Static) 0.9242 0.9151 0.6542 0.8285 0.5933 0.9170 0.9019 0.6656 0.8203 0.5664

SurfCon 0.9348 0.9176 0.6821 0.8301 0.6009 0.9219 0.9199 0.7171 0.8232 0.5673

Table 2.2: Model evaluation in MAP with random candidate selection.

as OOV query terms and are paired with their synonyms which are in the graph to form

positive pairs. We sample 2,000 of such OOV query terms for experiments. In addition,

since synonyms with different surface forms tend to be more challenging to discover (e.g.,

“vitamin c” vs. “ascorbic acid”), we also sample a subset named Dissim under both InV and

OOV testing set, where query terms paired with their dissimilar synonyms10 are selected.

Statistics of our training/dev/testing sets are given in Table 2.1.

10Dissimilarity is measured by Levenshtein edit distance (Gomaa and Fahmy, 2013) with a threshold (0.8).
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2.5.2 Experimental Setup
Baseline methods.

We compare SURFCON with the following 10 methods. The baselines can be catego-

rized by three types: (i) Surface form based methods, which focus on capturing the surface

form information of terms. (ii) Global context based methods, which try to learn embed-

dings of terms for synonym discovery; (iii) Hybrid methods, which combine surface form

and global context information. The others are our model variants.

Surface form based methods. (1) CharNgram (Hashimoto et al., 2017): We borrow pre-

trained character n-gram embeddings from (Hashimoto et al., 2017) and take the average

of unique n-gram embeddings for each term as its feature, and then train a bilinear scoring

function following previous works (Qu et al., 2017; Zhang et al., 2018a). (2) CHARAGRAM

(Wieting et al., 2016): Similar as above, but we further fine-tune CharNgram embeddings

using synonym supervision. (3) SRN (Neculoiu et al., 2016): A Siamese network structure

is adopted with a bi-directional LSTM to encode character sequence of each term and

cosine similarity is used as the scoring function.

Global context based methods. (4) Word2vec (Mikolov et al., 2013b): A popular distri-

butional embedding method. We obtain word2vec embeddings by doing SVD decompo-

sition over the Shifted PPMI co-occurrence matrix (Levy and Goldberg, 2014b). We treat

the embeddings as features and use a bilinear score function for synonym discovery. (5)

LINE(2nd) (Tang et al., 2015): A widely-adopted graph embedding approach. Similarly,

embeddings are treated as features and a bilinear score function is trained to detect syn-

onyms. (6) DPE-NoP (Qu et al., 2017): DPE is proposed for synonym discovery on text

corpus, and consists of a distributional module and a pattern module, where the former

utilizes global context information and the latter learns patterns from raw sentences. Since
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raw texts are unavailable in our setting, we only deploy the distributional module (a.k.a.

DPE-NoP in (Qu et al., 2017)).

Hybrid methods. (7) Concept Space Model (Wang et al., 2015a): A medical synonym

extraction method that combines word embeddings and heuristic rule-based string features.

(8) Planetoid (Yang et al., 2016a): An inductive graph embedding method that can generate

embeddings for both observed and unseen nodes. We use the bi-level surface form encoding

vectors as the input and take the intermediate hidden layer as embeddings. Similarly, a

bilinear score function is used for synonym discovery.

Model variants. (9) SURFCON (Surf-Only): A variant of our framework which only

uses the surface score for ranking. (10) SURFCON (Static): Our framework with static

representation mechanism. By comparing these variants, we verify the performance gain

brought by modeling global contexts using different matching mechanisms.

For baseline methods (1-3 and 8) and our models, we test them under both InV and

OOV settings. For the others (4-7), because they rely on embeddings that are only available

for InV terms, we only test them under InV setting.

Candidate Selection and Performance Evaluation.

For evaluating baseline methods and our model, we experiment with two strategies: (1)

Random candidate selection. For each query term, we randomly sample 100 non-synonyms

as negative samples and mix them with synonyms for testing. This strategy is widely

adopted by previous work on synonym discovery for testing efficiency (Wang et al., 2015a;

Zhang et al., 2018a). (2) Inference-stage candidate selection. As mentioned in section

2.4.3, at the inference stage, we first obtain high potential candidates in a lightweight way.

Specifically, after the context predictor is pre-trained, for all terms in the given graph as

well as the query term, we generate their surface form vector s and context semantic vector
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v obtained by the static representation. Then we find top 50 nearest neighbors of the query

term respectively based on s and v using cosine similarity. Finally, we apply our methods

and baselines to re-rank the 100 high potential candidates. We refer to these two strategies

as random candidate selection and inference-stage candidate selection.

For evaluation, we adopt a popular ranking metric Mean Average Precision defined as

MAP = 1
|Q|

∑|Q|
i=1

1
mi

∑mi

j=1 Precision(Rij), where Rij is the set of ranked terms from 1 to

j, mi is the length of i-th list, and |Q| is the number of queries.

Implementation details

Our framework is implemented in Pytorch (Paszke et al., 2017) with Adam optimizer

(Kingma and Ba, 2015). The dimensions of character embeddings (dc), word embeddings

(dw), surface vectors (ds), and sementic vectors (de) are set to be 100, 100, 128, 128. Early

stopping is used when the performance in the dev sets does not increase continuously for

10 epochs. We directly optimize Eqn. 2.6 since the number of terms in our corpus is not

very large, and set fs(·) and fc(·) to be cosine similarity and bilinear similarity function

respectively, based on the model performance on the dev sets. When needed, string simi-

larities are calculated by using the Distance package11. Pre-trained CharNgram (Hashimoto

et al., 2017) embeddings are borrowed from the authors12. For CHARAGRAM (Wieting

et al., 2016), we initialize the n-gram embeddings by using pre-trained CharNgram and

fine-tune them on our dataset by the synonym supervision. We learn LINE(2nd) embed-

dings (Tang et al., 2015) by using OpenNE13. Heuristic rule-based matching features of

11https://github.com/doukremt/distance
12https://github.com/hassyGo/charNgram2vec
13https://github.com/thunlp/OpenNE
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Concept Space model are implemented according to (Wang et al., 2015a). Code, datasets,

and more implementation details are available online14.

2.5.3 Results and Analysis
Evaluation with Random Candidate Selection

We compare all methods under random candidate selection strategy with the results

shown in Table 2.2.

(1) Comparing SURFCON with surface form based methods.

Our model beats all surface form based methods, including strong baselines such as SRN

that use complicated sequence models to capture character-level information. This is be-

cause: 1) Bi-level encoder of SURFCON could capture surface form information from both

character- and word-level, while baselines only consider either of them; 2) SURFCON

captures global context information, which could complement surface form information

for synonym discovery. In addition, in comparison with CharNgram and CHARAGRAM,

our model variant SURFCON (Surf-Only), which also only uses surface form information,

obtains consistently better performance, especially in the OOV Test set. The results demon-

strate that adding word-level surface form information is useful to discover synonyms.

(2) Comparing SURFCON with global context based methods.

SURFCON substantially outperforms all other global context based methods (Word2vec,

LINE(2nd) and DPE-NoP). This is largely due to the usage of surface form information.

In fact, as one can see, global context based methods are generally inferior to surface form

based methods, partly due to the fact that a large part of synonyms are similar in surface

form, while only a small portion of them are in very different surface form. Thus, de-

tecting synonyms without leveraging surface information can hardly lead to good results.

14https://github.com/yzabc007/SurfCon
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Besides, our context matching component conducts context prediction and matching strate-

gies, which takes better advantage of global context information and thus lead to better

performance on the synonym discovery task.

(3) Comparing SurfCon with hybrid methods. We also compare our model with base-

lines that combine both surface form and global context information. First, SURFCON is

superior to the concept space model because the latter simply concatenates distributional

embeddings with rule-based string features, e.g., the number of shared words as features

and apply a logistic regression classifier for classification. Further, SURFCON also per-

forms better than Planetoid, partly because our framework more explicitly leverages both

surface form and global context information to formulate synonym scores, while Planetoid

relies on one embedding vector for each term which only uses surface form information as

input.

(4) Comparing SURFCON with its variants. To better understand why SURFCON works

well, we compare it with several variants. Under both datasets, SURFCON (Surf-Only)

already outperforms all baselines demonstrating the effectiveness of our bi-level surface

form encoding component. With the context matching component in SURFCON (Static),

the performance is further improved, especially under InV Test Dissim setting where syn-

onyms tend to have different surface forms and we observe around 4% performance gain.

Further, by using dynamic representation in context matching mechanism, SURFCON ob-

tains better results, which demonstrates that the dynamic representation is more effective

to utilize context information compared with the static strategy.

Evaluation at Inference Stage

To further evaluate the power of our model in real practice, we test its performance at

the inference stage as mentioned in section 2.4.3. Due to space constraint, we only show
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Methods
1-day All-day

InV Test OOV Test InV Test OOV Test
CHARAGRAM (Hashimoto et al., 2017) 0.3921 0.4044 0.3941 0.3913

DPE-NoP (Qu et al., 2017) 0.2396 - 0.2408 -
Planetoid (Yang et al., 2016a) 0.4563 0.4268 0.3765 0.3812

SURFCON 0.5525 0.5068 0.4686 0.4661

Table 2.3: Model evaluation at inference stage.

the comparison in Table 2.3 between SURFCON and several strong baselines revealed by

Table 2.2. In general, the performance of all methods decreases at the inference stage

compared with the random candidate selection setting, because the constructed list of can-

didates becomes harder to rank since surface form and context information are already used

for the construction. For example, a lot of non-synonyms with similar surface form are of-

ten included in the candidate list. Even though the task becomes harder, we still observe

our model outperforms the strong baselines by a large margin (e.g., around 8% at least)

under all settings.

Parameter Sensitivity

Here we investigate the effect of two important hyper-parameters: The coefficient γ

which balances the surface score and the context score, and the number of predicted con-

textsK used for context matching. As shown in Figure 2.5.3(a), the performance of SURF-

CON first is improved as γ increases, which is expected because as more semantic informa-

tion is incorporated, SURFCON could detect more synonyms that are semantically similar.

When we continue to increase γ, the performance begins to decrease and the reason is that
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Query Term ”unable to vocalize”
(InV)

”marijuana”
(OOV)

SURFCON
Top Ranked
Candidates

”does not vocalize” ”marijuana abuse”
”aphonia” ”cannabis”

”loss of voice” ”cannabis use”
”vocalization” ”marijuana smoking”

”unable to phonate” ”narcotic”
Labeled

Synonym
Set

”unable to phonate”
”cannabis”

”marijuana abuse”
”marihuana abuse”

Table 2.4: Case studies on the 1-day dataset. Bold terms are synonyms in our labeled set
while underlined terms are not but quite similar to the query term in semantics.

surface form is also an important source of information that needs to be considered. SURF-

CON achieves the best performance roughly at γ = 0.3 indicating surface form information

is relatively more helpful for the task than global context information. This also aligns well

with our observation that synonyms more often than not have similar surface forms. Next,

we show the impact of K in Figure 2.5.3(b). In general, when K is small (e.g., K = 10),

the performance is not as good since little global context information is considered. Once

K increases to be large enough (e.g., ≥ 50), the performance is not sensitive to the varia-

tion under most settings showing that we can choose smaller K for computation efficiency

but still with good performance.

2.5.4 Case Studies

We further conduct case studies to show the effectiveness of SURFCON. Two query

terms “unable to vocalize” and “marijuana” are chosen respectively from the InV and OOV

test set where the former is defined as the inability to produce voiced sound and the latter
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is a psychoactive drug used for medical or recreational purposes. As shown in Table 2.4,

for the InV query “unable to vocalize”, our model can successfully detect its synonyms

such as “unable to phonate”, which already exists in the labeled synonym set collected

based on term-to-UMLS CUI mapping as we discussed in Section 2.3. More impressively,

our framework also discovers some highly semantically similar terms such as “does not

vocalize” and “aphonia”, even if some of them are quite different in surface form from the

query term. For the OOV query “marijuana”, SURFCON ranks its synonym “marijuana

abuse” and “cannabis” at a higher place. Note that the other top-ranked terms are also very

relevant to “marijuana”.

2.6 Discussion and Conclusion

In this chapter, we study synonym discovery on privacy-aware clinical data, a new

yet practical setting that consumes less sensitive information to discover synonyms. We

propose a novel and effective framework named SURFCON that considers both the surface

form information and the global context information, can handle both InV and OOV query

terms, and substantially outperforms various baselines on real-world datasets. As future

work, we will extend SURFCON to infer more semantic relationships (besides synonymity)

between terms and test it on more real-life datasets.

SURFCON is a deep learning-based model built on top of feedforward neural networks

under a ranking framework. It is characterized by the context prediction module containing

many output dimensions with the softmax, the dynamic matching mechanism that injects

the attention-based aggregation into our model design, and the ListNet-based (Cao et al.,
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2007) ranking method that dynamically samples negative candidates for efficient train-

ing. Alternative architecture for context prediction may consider leveraging other approx-

imation methods to predict large-scale contexts, such as hierarchical softmax or negative

sampling (Mikolov et al., 2013b). Dynamic matching captures the relationships between

contexts based on 1-hop relations, and alternative design may consider high-order con-

texts to capture more meaningful interactions. Last but not least, while listwise ranking

methods, such as ListNet, enhance the training efficiency greatly, other ranking methods,

such as pointwise and pairwise ranking, can also be explored, potentially improving the

performance with more fine-grained ranking signals.
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Part III: Representation: Learning
Neural Structural Representation
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Chapter 3: Modeling Context Pair Interaction for Pairwise Tasks on

Graphs

Following knowledge acquisition, the next step in the life cycle of incorporating hu-

man knowledge into AI systems is knowledge representation to transform various forms

of human knowledge into neural representations. This step is crucial because better neural

representation could capture more advanced knowledge properties to be more effectively

and efficiently fused into AI systems. In this dissertation, we focus on learning better neural

representations for structured knowledge from the previous step of knowledge acquisition.

Specifically, in this chapter, we focus on learning better graph representations for pairwise

prediction tasks, such as link prediction, in homogeneous graphs and study how to repre-

sent node pairs for better predictions better.

Specifically, predicting pairwise relationships between nodes in graphs is a fundamen-

tal task in data mining with many real-world applications, such as link prediction on social

networks, relation prediction on knowledge graphs, etc. A dominating methodology is

to first use advanced graph representation methods to learn generic node representations

and then build a pairwise prediction classifier with the target nodes’ vectors concatenated

as input. However, such methods suffer from low interpretability, as it is difficult to ex-

plain why certain relationships are predicted only based on their prediction scores. In

this paper, we propose to model the pairwise interactions between neighboring nodes (i.e.,
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contexts) of target pairs. The new formulation enables us to build more appropriate repre-

sentations for node pairs and gain better model interpretability (by highlighting meaningful

interactions). To this end, we introduce a unified framework with two general perspec-

tives, node-centric and pair-centric, about how to model context pair interactions. We also

propose a novel pair-centric context interaction model and a new pre-trained embedding,

which represents the pair semantics and shows many attractive properties. We test our

models on two common pairwise prediction tasks: link prediction task and relation pre-

diction task, and compare them with graph feature-based, embedding-based, and Graph

Neural Network (GNN)-based baselines. Our experimental results show the superior per-

formance of the pre-trained pair embeddings and that the pair-centric interaction model

outperforms all baselines by a large margin. The code and data can be found on Github:

https://github.com/zhenwang9102/ConPI.

3.1 Introduction

Pairwise prediction, which aims to predict relationships between two nodes in a graph,

is a fundamental problem in data mining and machine learning, and has a wide range

of practical applications. For example, friend recommendation in social networks (Wang

et al., 2015b) recommends potential friends to a user by predicting his/her links with other

users. Other examples include multi-relational link prediction in knowledge graphs (Wang

et al., 2018c), weakly-supervised relation extraction in entity co-occurrence graphs (Qu

et al., 2018), etc.

Given a graph and a pair of target nodes (u, v), many powerful representation learning

methods (Perozzi et al., 2014; Tang et al., 2015; Wang et al., 2016b; Grover and Leskovec,

2016a; Ribeiro et al., 2017; Tsitsulin et al., 2018; Kipf and Welling, 2017; Hamilton et al.,
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Context Set Context Set

Context Interaction

Figure 3.1: Intuition Illustration. To predict the potential relationships between target nodes
u and v, we model the pairwise interactions between their context nodes (purple ones within
the circle) and aggregate important interaction information (dashed lines) for the final pre-
diction. The thickness of a line reflects how important the interaction is.

2017; Veličković et al., 2018) have been proposed to encode various graph information into

node vectors, ν⃗u, ν⃗v, and predict their relationships based on these vectors. By preserving

the graph structure and properties into a low-dimensional latent vector space, these repre-

sentation learning methods have obtained state-of-the-art results in many pairwise predic-

tion tasks, such as link prediction (Zhang and Chen, 2018), relation prediction (Qu et al.,

2018), etc. However, such methods suffer from low transparency and interpretability and

it is difficult for users to understand and trust the prediction decisions. This is because,

various graph information, e.g., graph structure, context information, is all encoded into a

latent vector space implicitly, and the pairwise prediction is usually made based on the sim-

ilarity metrics of node vectors. For example, when predicting whether two users are friends

in social networks, users may want to know how the decision is made and the model would

be less likely to be convincing to users if the provided explanation is that two user vectors

have high cosine similarity.
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In this chapter, we propose to explicitly model the interactions between neighborhoods15

of target nodes for the pairwise prediction. Taking a toy example for illustrating our intu-

ition, as shown in Figure 4.1, the interaction links between target nodes could be indicative

for predicting that node u is connected with v (e.g., some context nodes of node u are very

similar or hold special relations with context nodes of node v). Learning such meaningful

patterns explicitly among context interaction links in graphs is expected to shed some light

on interpreting the model’s decision (by highlighting important interaction links for the pre-

diction). In addition, most of previous methods learn generic embeddings from the graph,

which might be suboptimal for pairwise relationship predictions. In contrast, modeling

context pair interactions enables us build pair-specific representations to further improve

the model performance.

One straightforward way to manipulate the contexts of target nodes for the interaction

is to compute heuristic features between their contexts, such as common neighbors, Jac-

card similarity (Liben-Nowell and Kleinberg, 2007). Such features provide competitive

performance in some pairwise prediction tasks, such as link prediction, and intuitive ex-

planations for justifying the model prediction. However, they are also known for the lack

of generalizability (Kovács et al., 2019). For example, though common neighbors feature

works reasonably well in link prediction, (Kovács et al., 2019) find that linked proteins do

not necessarily share many neighbors in the Protein-Protein Interaction (PPI) network.

Thus, in this chapter, we propose to combine the representation learning with con-

text interaction and take the first step towards explicitly exploring Context Pair Interaction

for pairwise prediction with a general deep learning framework, CONPI (“con-π”). Our

framework essentially computes an interaction score for the pair of contexts (i.e., pairwise

15In this chapter, we use context and neighborhood interchangeably.
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interaction) jointly with the pairwise prediction task, as shown in Figure 4.1. We provide

two perspectives of aggregating the pair interaction information, node-centric and pair-

centric. From the node-centric perspective (referred to as CONPI-node model), the model

learns interaction-aware node representations for target nodes whose contexts dynamically

influence each other. The final prediction is made based on the simple combination of new

node representations as traditional embedding methods do (Grover and Leskovec, 2016a).

On the other hand, from a relatively new perspective of pair-centric (referred to as CONPI-

pair), we novelly propose to directly model pair representations for each interacting pair

and aggregate them together for the final prediction. Such a new perspective further moti-

vates us to propose a new type of pair embedding (which represents the semantics of each

context pair) and inject it back into the CONPI-pair model for more efficient learning.

Finally, our CONPI framework offers a certain amount of model interpretability that can

generate instance-level explanations, i.e., meaningful and important context links, which

could be easily understood by users and thus, obtain their trust better.

Our contributions are summarized as follows:

• We highlight the importance of context interactions for pairwise predictions. To the best

of our knowledge, we are the first to systematically study how to model context pair in-

teractions in pairwise tasks. Our study aims to inspire more graph-based models to study

the interaction mechanisms.

• We propose a general framework CONPI with two perspectives, node-centric and pair-

centric, and build a novel model for the pair-centric view that aggregates context pair

representations directly for the final prediction. Our framework considers the mutual

influence between nodes via context interactions and enhances the interpretability by
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highlighting important context pairs that lead to the model decision.

• We also propose a new type of pair embedding on homogeneous graph to capture seman-

tics of any node pairs and inject it back to CONPI-pair model to show its effectiveness.

• We conduct extensive experiments on two types of pairwise prediction tasks, link predic-

tion and relation prediction with totally 6 datasets. In comparison with strong baselines

from different categories, our framework can achieve very competitive performance and

more importantly, much better interpretability.

3.2 Related Work

Pairwise Tasks on Graphs. Given a graph, there are generally three types of features

that can be leveraged effectively for pairwise predictions, heuristic features (e.g., com-

mon neighbors), latent features (e.g., node embeddings) and explicit features (e.g., node

attributes). In this chapter, as we mainly utilize the graph information for the interaction,

we do not focus on modeling explicit features at this moment. For the heuristic features,

they can be directly extracted from the graph, which is computationally efficient and could

be competitive baselines for some tasks, such as link prediction. But they may lose the

generalizability across different datasets (Kovács et al., 2019). On the other hand, latent

features, i.e., low-dimensional embedding vectors learned from the graph, can be opti-

mized via various approaches, e.g., matrix factorization (Belkin and Niyogi, 2002; Qiu

et al., 2018), random walk (Perozzi et al., 2014; Grover and Leskovec, 2016a), neural net-

works (Tang et al., 2015; Wang et al., 2016b). However, modeling pairwise prediction

in the latent space may suffer several disadvantages as we mentioned previously, such as
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lacking a certain amount of interpretability or learning node representation independently

from the target pairwise prediction task. Our framework CONPI deals with such issues by

explicitly modeling context pair interactions between nodes.

Neighborhood Aggregation. Our framework takes as input neighborhoods from the graph

and aggregates them for the pairwise prediction, which is closely related to the line of re-

cent researches in neighborhood aggregation for graph learning. For example, (Hamilton

et al., 2017) propose to aggregate features of neighboring nodes by different functions, e.g.,

Mean, LSTM, and Pooling. (Veličković et al., 2018) leverage the multi-head self-attention

mechanism to aggregate neighborhood information for node representations. (Sun et al.,

2020b) introduce gated multi-hop neighborhood aggregation to align nodes from knowl-

edge graphs. All the aforementioned methods inspire us to thoroughly explore neighbor-

hoods for pairwise predictions. Instead of aggregating neighborhoods independently, we

propose that we need to consider the interactions between contexts for a better aggregation.

The CONPI-node method models the context pair interactions with a similar mechanism

as mutual attention module that has been applied in many other tasks (Santos et al., 2016;

Tu et al., 2017; Li et al., 2019; Wang et al., 2019b) and our contribution for CONPI-node

here is to unify it into a framework for systemically modeling the context pair interactions.

Graph Representation Learning. Representation learning on graphs has been extensively

studied and mostly focuses on nodes (Perozzi et al., 2014; Cao et al., 2016; Grover and

Leskovec, 2016a; Ribeiro et al., 2017; Wang et al., 2016b), i.e., projecting nodes to a low-

dimensional vector space while preserving the graph structure (Wang et al., 2016b; Ribeiro

et al., 2017) and properties (Zhang et al., 2018c). The learned embeddings can be reused

for a variety of downstream tasks, such as the pairwise prediction tasks as mentioned above.

More recently, while being far less mature compared with node embeddings, learning edge
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semantics and representing edges beyond nodes have received increasing attention (Abu-

El-Haija et al., 2017; Shi et al., 2018; Verma et al., 2019; Zhou et al., 2018; Bandyopadhyay

et al., 2019; Park et al., 2019). First of all, there are some recent works trying to learn rep-

resentations of connected edges in the graph (Zhou et al., 2018; Bandyopadhyay et al.,

2019), which cannot be generalized to unobserved pairs of nodes, e.g., the context pairs in

our interaction module. To learn embeddings for any pair of nodes, (Abu-El-Haija et al.,

2017) model the asymmetry property between two nodes and define an edge function over

node vectors to produce a score for the pair rather than a pair vector. In addition, edge

embeddings (Shi et al., 2018; Verma et al., 2019) are studied in heterogeneous networks

to learn task-relevant representations for specific pairs, e.g., author-paper pairs in citation

networks. In this chapter, we aim to pre-train a general-purpose pair embedding on homo-

geneous graphs and incorporate it into our context pair interaction model for more general

pairwise prediction tasks. More relevantly, (Joshi et al., 2019) propose to learn word pair

embeddings from a large text corpus to incorporate text patterns into the pair embeddings

while our CONPI-pair model (Section 3.4.3) focuses on learning node pair embeddings

from the graph structure.

3.3 Preliminaries

In this section, we first introduce our problem definition and, then describe how we can

obtain contexts for our framework.
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3.3.1 Task Definition

Notations. We denote an undirected graph as G = (V , E) where V is the set of vertices

and E is the the set of existing edges. For any node x ∈ V , we denote its neighbor16 set as

N (x).

Problem Definition. In this chapter, we consider the pairwise prediction tasks on graphs

with a generalized definition in which the label to predict between nodes can by any pair-

wise supervisions, e.g., link label, relation label. Specifically, given the graph G and target

pairs S consisting of a few positive training labels S = {(ui, vi)}Ni=1, v, u ∈ V . We aim to

leverage the training pairs to make prediction for unseen pairs, P (y|(u′j, v′j)) where y indi-

cates whether the pair holding the target label. We formally define the pairwise prediction

as follows:

Definition 3.3.1. (Pairwise Prediction). Given a graph G = (V , E) and a set of target pairs

S = {(ui, vi)}Ni=1, we aim to estimate the possibility of a new node pair holding the target

label, P (y|(u′j, v′j)) and make a binary prediction for the new pair17.

3.3.2 Context Acquisition.

As our framework explicitly utilizes contexts for the pairwise prediction, we always as-

sume the neighbor set of each node is given for the rest of the chapter. As the background,

we give a brief introduction about how we can acquire contexts in order to apply our frame-

work. For the simplest case, we can uniformly sample a fix-number of neighbors (Hamilton

et al., 2017; Veličković et al., 2018). For example, for the neighbor set N (u), we sample

from the set {v ∈ V , (u, v) ∈ E}.

16We consider 1-hop neighbor in this chapter.
17Note that our task can be easily extended to multi-class setting.

60



Moreover, in some graphs, the degree distribution has a long tail in which for some

nodes, we may not able to sample enough contexts or even zero contexts (i.e., out-of-

vocabulary issue). Under such circumstances, we can leverage some context prediction

methods to recover sufficient high-potential contexts for our following context interaction

framework (Hu* et al., 2020; Wang et al., 2019b). Instead of recovering the context graph

by GNNs (Hu* et al., 2020), we need discrete contexts for our framework. That is, we can

estimate a context conditional probability p(c|u) representing the likelihood that context

node c is connected with node u:

p(c|u) = exp(νT
c · Encoder(u))∑|V|

i=1 exp(ν
T
ci
· Encoder(u))

(3.1)

where νc is the context embedding for node c and Encoder(·) is used to encode the node

features into a vector, for instance, we can adopt Recurrent Neural Networks (RNNs) to

encode the article content from citation networks into a single vector. There are multiple

options to optimize such probability (Pennington et al., 2014; Tang et al., 2015). For exam-

ple, we can employ the cross-entropy loss to minimize the distance between the estimated

probability with the empirical probability from the original graph. We refer to (Tang et al.,

2015) for more theoretical details. After pre-training such a conditional probability on the

graph, given a node v, we can select the top-Lv entities from p(·|v) as v’s neighbors for the

subsequent modeling.

3.4 CONPI Framework

In this section, we introduce our CONPI framework for modeling context pair inter-

actions in pairwise tasks. We first give an overview and then introduce CONPI-node and

CONPI-pair models as well as how to pre-train and utilize pair embeddings.
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(a) Node-centric Context Interaction (b) Pair-centric Context Interaction

Pair. Pred.   

Contexts

Pairwise Interaction

Interaction-aware Node Representation Contexts

Pair. Pred.   Pairwise Interaction

Figure 3.2: Framework Overview: (a) CONPI-node; (b) CONPI-pair.

3.4.1 Framework Overview

Current state-of-the-art pairwise prediction models usually focus on learning high-

quality node representations with advanced node embedding methods (Grover and Leskovec,

2016a; Wang et al., 2016b; Ribeiro et al., 2017) or graph neural networks (Hamilton et al.,

2017; Veličković et al., 2018; Kipf and Welling, 2017), which perform reasonably well

across different tasks. However, there are two challenges that our framework tries to solve.

Firstly, though preserving rich graph information, the learned latent representation is hard

to be comprehended by humans, and thus, has a lack of interpretability. Secondly, when

learning node representations, most models project each node to a latent vector space in-

dependently by preserving as much graph information as possible, but ignore the mutual

influence between the pair when applying the learned vectors for the pairwise prediction

task.

To solve the challenges as mentioned above, our proposed framework CONPI, as shown

in Figure 4.2, presents two different perspectives for conducting context pair interactions
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for pairwise prediction. For the node-centric context interaction (Figure 4.2 (a)), interaction-

aware node representations are firstly learned by aggregating context information with the

consideration of the pairwise interaction. By doing so, node representations of target nodes

will mutually affect each other for a better pairwise prediction. Moreover, instead of learn-

ing node representations, we model the context pairs directly for the pairwise prediction

(Figure 4.2 (b)). Specifically, for each context pair, we formulate a pair representation

(either training a pair encoder function taking as input the node representations or apply-

ing pre-trained pair embeddings) and then aggregate them for the pairwise prediction. In

next parts, we will introduce model details and show how to obtain interpretable results for

pairwise prediction by our framework.

3.4.2 Node-centric Context Interaction

The goal of the node-centric context interaction model (CONPI-node) is to first form

an interaction-aware representation for each target node and make the pairwise prediction

based on the new representations. Inspired by previous graph neighborhood aggregation

methods that aggregate contexts with a self-attention layer (Veličković et al., 2018), we

propose to aggregate the context information for each node in such a way that each context

node is weighed based on its interaction links with contexts on the other side. Thereby

each node representations in the pairwise prediction task would influence each other via

the interaction links between their contexts.

Formally, as shown in Figure 4.2 (a), given two target nodes in a graph, (u, v) ∈ V ,

we obtain their neighbor set, N (u) = {c1u, ..., cLu
u } and N (v) = {c1v, ..., cLv

v } as mentioned

in Section 3.3.2. Without losing the generalizability, we assign a feature vector to each
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context node and we get two sets of vectors, Ψu = {νi
u}Lu

i=1,Ψv = {νj
v}Lv

j=1 for target

nodes u, v, as the input for CONPI-node model.

There are several neighborhood aggregation mechanisms that have been tried for map-

ping a set of context vectors to a node representation, e.g., Mean, LSTM, Pooling (Hamilton

et al., 2017) or Multi-head Self-attention (Veličković et al., 2018). However, none of them

consider the factor of context interactions with other nodes for the pairwise prediction

when aggregating the contexts. Thus, we leverage the attention-based approach (Santos

et al., 2016; Tu et al., 2017) to weigh each context with the consideration of its interactions

with contexts on the other side and aggregate the weighed contexts for target node u as

follows:

hu =
Lu∑
i=1

αi
u · νi

u (3.2)

αi
u =

exp(Spool(ν
i
u,Ψv))∑Lu

k=1 exp(Spool(νk
u ,Ψv))

(3.3)

Spool(ν
i
u,Ψv) = Pool

({
η(νi

u,ν
j
v),∀νj

v ∈ Ψv

})
(3.4)

η(νi
u,ν

j
v) = σ

(
νi
u

T ·Wpool · νj
v

)
(3.5)

where Wpool is the weight matrix for the pooling function. Spool is a pooling function (e.g.,

mean or max function) to measure the interaction score between one context vector with a

set of context vectors in which the (pairwise) interaction between each pair of contexts is

measured by a non-linearity function η (Eqn.3.5).
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To this end, the representation, hu, for target node u incorporates the interaction in-

formation from the other side, and with a similar operation in the opposite direction, we

can obtain the interaction-aware representation for node v as hv. Finally, the pairwise pre-

diction can be made by applying a classifier on a binary operator for hu,hv as what the

previous works do (Grover and Leskovec, 2016a; Epasto and Perozzi, 2019).

Interpretability. CONPI-node model generates explanations for model decisions in a two-

steps process as follows: after the prediction is made, we first trace back to the most im-

portant contexts for each target nodes by attention weights, αi
u, i ∈ [1, Lu]. Then, for each

context node ciu, we further trace back to its pair interaction scores, η(νi
u,ν

j
v), j ∈ [1, Lv]

to obtain the most influential interaction pairs, {(ciu, cjv), η(νi
u,ν

j
v) > ϵ} as the explanations

where ϵ is a pre-defined threshold.

3.4.3 Pair-centric Context Interaction

In contrast to the node-centric context interaction, as shown in Figure 3.4 (b), we also

propose a new approach of the pair-centric perspective for modeling the pairwise prediction

in graphs by the pair-centric context interaction. Instead of aggregating context features

for each target node individually, CONPI-pair model directly works on context pairs for

the final prediction. Our motivation is that to infer the pairwise relationships between two

nodes, we are encouraged to model the pairwise context interactions by the nature of the

task. In other words, the relationships between contexts could be more indicative for pre-

dicting the relationships for their target nodes, as shown in Figure 4.1 in the Introduction.

Next, we introduce the details of our CONPI-pair model.

Same as CONPI-node model, we have two neighbor sets, Ψu and Ψv. As shown in

Figure 4.2 (b), the essential idea of the CONPI-pair model is to formulate a representation
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for each pair of context nodes, and them aggregate all pair for the final prediction. For

simplicity, we encode the pair representation as a compositional function for its given two

node vectors, (νi,νj) as:

gp(νi,νj) = fp([νi;νj;νi ⊕ νj]) (3.6)

where ⊕ is the element-wise product for two vectors, [; ] represents vector concatenation.

fp(·) is a fully-connected network that produces a low-dimensional vector for representing

the pair. Such a pair representation will help capture the relationship for a pair of nodes

during the pairwise prediction task. Next, we aggregate all pairs with an attention-based

mechanism for the final prediction:

z =
Lu∑
i

Lv∑
j

βij · gp(νi
u,ν

j
v) (3.7)

βij =
exp(Sp(ν

i
u,ν

j
v))∑Lu

m=1

∑Lv

n=1 exp(Sp(νm
u ,ν

n
v ))

(3.8)

where Sp is a similarity function for each pair of context vectors (e.g., bilinear similarity).

z will be used for making the final prediction with a classification layer.

Interpretability. The attention distribution, βij , in Eqn.3.8 is the normalized pairwise

interaction scores and will be used to retrieve the most important pairs for explanations

after the prediction. And, the explanation question that the CONPI-pair model can an-

swer is which important context interactions lead to current prediction. Apparently, for

interpretability, CONPI-pair selects context pairs in a one-step process, which is more

straightforward and easier to be understood by users than CONPI-node model.
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Though the model architecture for our CONPI-pair is relatively simple, the perspective

of modeling pairs for pairwise prediction is new, and we also show the superior perfor-

mance of CONPI-pair model with comprehensive experiments later. As one of our main

contributions, shifting the perspective from node-centric to pair-centric model provides us

more promising directions to go for modeling pairwise prediction tasks. Next, we show a

new type of pair embeddings, which can be naturally injected into CONPI-pair.

3.4.4 Pretraining and Injecting Pair Embedding

To expand the idea of modeling pair interactions directly for pairwise prediction tasks,

we further propose to leverage the graph structure to pre-train embeddings of node pairs,

and inject them back to our CONPI-pair model with fewer parameters. Our intuition is that

the pre-trained pair embedding would incorporate more prior knowledge for node pairs

than combining their node vectors straightforwardly as in previous CONPI-pair model. In

this part, we introduce learning general-purpose embeddings for node pairs based on the

graph structure to facilitate context pair interactions.

Pair Representation Learning. Following the distributional hypothesis (Perozzi et al.,

2014), we encourage the pair embeddings of two nodes to be similar if they are likely to

co-occur with similar context nodes. Given a pair of node (u, v) and a context node c, we

first embed them to vectors, νu,νv,νc via two embedding matrix, Ep for u, v, Ec for c.

Note that the node pairs are not necessarily to be connected in the graph, and it would be

O(|V|2) complexity to build embeddings for all pairs, which is computationally expensive.

Thus, we define a deep compositional function taking the input as representations for nodes,

(u, v) to generate a fixed-length vector for the pair:
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P(νu,νv) = fMLP(νu,νv,νu ⊕ νv) (3.9)

where fMLP is a fully-connected multi-layer neural networks with the same input as Eqn.3.6.

With such a compositional function, we are able to generate embeddings for any pairs in

the graph efficiently.

After encoding the node pair (u, v) and its context nodes c, we can define the fol-

lowing conditional probability representing how likely the context is observed around the

pair (Tang et al., 2015) and optimize it with a negative log-likelihood objective function:

p(c|(u, v)) = exp(νT
c · P(νu,νv))∑

c′∈V exp(νc′
T · P(νu,νv))

(3.10)

Minimizing the negative log-likelihood for p(c|(u, v)) would be computationally costly,

which leads to the adoption of popular negative sampling technique (Mikolov et al., 2013b)

for efficient training. The goal of negative sampling is to encourage the similarity between

the pair and context if they appear together (co-occur) in the graph, and the dissimilarity

between the pair and randomly sampled contexts. That is, for a valid pair-context sample,

we fix the pair (u, v) and randomly sample contexts cN as the distractor.

However, pair embeddings are different from node embeddings in which a pair consists

of two nodes that are both changeable. In other words, we are able to fix the left pair-

node u and context c, sample the right pair-node vN , and vice versa. By doing so, we can

expose the pair embedding to noisier environments to make it more robust. Therefore, we

introduce the objective function of the negative sampling for training our pair embeddings

as follows:
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Lpair = log σ(νT
c · P(νu,νv)) +

Kc∑
i=1

log σ(−νN
ci

T · P(νu,νv))

+
Ku∑
j=1

log σ(−νT
c · P(νN

uj
,νv)) +

Kv∑
k=1

log σ(−νT
c · P(νu,ν

N
vk
))

(3.11)

where Kc, Ku, Kv are the number of random samples for contexts, left pair-nodes, right

pair-nodes, and σ here is the sigmoid function.

Our objective function is similar to the multivariate objective function in pair2vec (Joshi

et al., 2019), but differs in that we optimize node pair embeddings with graph structure and

represent contexts as nodes, while they try to encode a short span of words as the context

to learn word pair embeddings from a text corpus.

Pair Representation Injection. Once the node pair embeddings are learned, we are ready

to inject them back into our CONPI-pair model for the pairwise prediction task. We keep

the injection as simple and generalizable as possible to show the effectiveness of our pair

embeddings. We simply replace the pair encoder function gp(νi,νj) in Eqn.3.6 by pre-

trained pair embedding vectors P(νi,νj) in Eqn.3.9 and keep the rest parts as the same

in CONPI-pair model. With such a simple injection, we do not need the fully-connected

network in the pair encoder (Eqn.3.6), and thus, reduce the number of parameters compared

with CONPI-pair model. Note that although we can produce a pair embedding for the pair

of target nodes and use it for the final prediction, directly making a prediction based on

the pair embedding does not involve the context interaction, which is not the focus of this

chapter.
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3.4.5 Model Optimization

Pairwise Prediction Task. In this chapter, we consider a setting of binary pairwise predic-

tion to test our framework for simplicity and define a binary cross entropy loss as follows:

Lpred = −
∑M

i=1(yi · log(p(r|ui, vi))

+ (1− yi) · log(1− p(r|ui, vi)))
(3.12)

where M is the total number of samples, yi is the ground-truth label indicating whether

ui, vi holds a certain relation. p(r|ui, vi) is a binary classifier with the sigmoid function

with the input as interaction-aware node representations in CONPI-node or aggregated

pair representations in CONPI-pair.

Complexity Analysis. Our pairwise context interaction takesO(L2) computations (L is the

maximal size of contexts), which could be costly when L is very large. In our preliminary

experiments, we observe that the performance does not further improve when we set L at

a reasonably large number (e.g., 100). Thus, we uniformly sample a limited-size set of

contexts for each node to perform efficient interactions. For future work, we could select

the contexts more smartly, e.g., adopting some graph sparsification techniques (Zheng et al.,

2020), to further decrease the complexity without significantly sacrificing the performance.

Training Pair Embeddings. To optimize the objective function (Eqn.3.11) for pair em-

beddings with negative sampling, we need to obtain positive samples and randomly sample

negatives ones. Our training algorithm adopts the random walks to provide contexts for

pairs of nodes. Specifically, given a sequence of nodes generated by random walks (Per-

ozzi et al., 2014; Grover and Leskovec, 2016a), we define a pair window to sample node

pairs and then, for each pair, we define a context window to the left and right of the pair

as well as all nodes in the middle of it to sample positive contexts. We randomly sample

contexts, left pair-nodes, right pair-nodes for training the Eqn.3.11.
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3.5 Experiments

In this section, to show the generalizability of our framework, we test CONPI on two

types of pairwise prediction tasks , link prediction and (weakly-supervised) relation pre-

diction.

3.5.1 Link Prediction Task

The link prediction task is a well-studied task in graph domain, which is to predict

whether two nodes in a graph have a link. It has many meaningful applications in various

kinds of graphs, e.g., predicting friendship links in social networks (Liben-Nowell and

Kleinberg, 2007), predicting author identification in citation networks (Park et al., 2019),

etc.

Datasets

We collect a number of commonly-used publicly-available real-world graphs for link

prediction shown in Table 3.1.

• PPI: A Protein-Protein Interaction (PPI) graph for Home Sapiens that is used in (Grover

and Leskovec, 2016a). Edges represent the interaction relationships between proteins.

• Pubmed: A citation network for papers from PubMed used in (Kipf and Welling, 2016).

Edges represent the citation relationship between publications.

• BlogCatalog: A social network for bloggers from the BlogCatalog website that is used

on (Grover and Leskovec, 2016a). Edges represent friendship links between bloggers.

• DrugBank DDI: A Drug-Drug Interaction graph crawled from DrugBank that is used in

(Yue et al., 2019). Edges represent the interaction relationships between drugs.
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Experimental Setup

To evaluate all methods fairly, we follow the experiment strategy that is commonly used

by previous methods (Grover and Leskovec, 2016a; Zhang and Chen, 2018; Epasto and Per-

ozzi, 2019). We first randomly split all links of the original graph into training, validation,

and testing sets with the requirement of keeping the graph in training set connected. The

training graph is used for extracting features, training embeddings, and obtaining context

sets. For prediction tasks, we also randomly sample the equal number of non-existent links

as negative samples. We split all edges to train/validation/test sets with a ratio of 70/15/15.

Compared Methods

We compare our models with the following three types of baselines for the link predic-

tion tasks.

Graph feature-based methods. We test the traditional graph feature-based methods for

link prediction tasks (Adamic and Adar, 2003; Liben-Nowell and Kleinberg, 2007; Zhang

and Chen, 2018), which calculate some heuristics based on the neighborhood of nodes in

the graph. We consider: Common Neighbors that calculates the number of shared neigh-

borhoods, Jaccard Coefficient that measures the Jaccard similarity between two neighbor

sets, and Adamic Adar for the number of shared links between two nodes.

Embedding-based methods. We consider several state-of-the-art embedding-based meth-

ods, which take the training graph as input and produce an embedding for every node in the

graph: Laplacian eigenmaps (Belkin and Niyogi, 2002) is a matrix factorization method

that factorizes the graph Laplacian matrix to the lowest eigenvectors as embeddings; Deep-

Walk (Perozzi et al., 2014) is a random walk-based method that learns node embeddings

with the skip-gram algorithm on random walks generated from the graph. LINE (Tang et al.,
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Dataset # Nodes # Edges Avg. # Degrees

PPI 3,890 38,739 19.9172
Pubmed 19,717 44,327 4.4963

BlogCatalog 10,312 333,983 64.7756
DrugBank DDI 2,191 242,027 220.9283

Table 3.1: Statistics of datasets for link prediction task.

2015) utilizes the first and second order proximity to optimize node embeddings with edge

sampling. node2vec (Grover and Leskovec, 2016a) learns the embedding by performing

biased random walks on the training graph by minimizing the skip-gram objective.

Graph Neural Networks-based methods. We compare against a popular GNN-based

method, GAE (Kipf and Welling, 2016), which uses graph auto-encoders model with graph

convolutional network encoder to learn efficient node embeddings from the adjacent matrix.

In the testing phase, for all embedding and GNN based baselines, we follow the pro-

cedure in previous work (Grover and Leskovec, 2016a; Zhang and Chen, 2018) to learn a

classifier based on positive training samples and an equal number of negative training sam-

ples, and test the classifier on the testing set. We train a binary logistic regression model on

the Hadamard product of node embeddings, using the scikit-learn library (Pedregosa et al.,

2011).

Variants of our CONPI framework. CONPI-node model makes the prediction based

on the interaction-aware node representations of target nodes. CONPI-pair model makes

the prediction based on the aggregated pair representations with an attention-based module.

CONPI-pair-emb is one variant of CONPI-pair model that simply replaces the pair encoder

function with pre-trained pair embedding and has fewer parameters than CONPI-pair.
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Note that in this chapter, we focus on modeling context interaction based on graph

structure, and thus, we mainly consider baseline methods that leverage graph structure for

a fair comparison, e.g., we do not feed node attribute features in the GAE model.

Combination with more advanced GNN methods. We compare CONPI mainly with

various embedding-based methods to show its effectiveness by adopting node embeddings

(e.g., LINE) as feature vectors. In fact, our framework can be built on top of any graph

representation methods, including those more complex GNN methods, such as GCN(Kipf

and Welling, 2017), GAT(Veličković et al., 2018), HGCN(Chami et al., 2019). Specifically,

we can replace current feature vectors by these advanced GNN methods as more powerful

feature encoders for our CONPI framework. We do not include them as baselines in this

chapter as they suffer from the same low interpretability problem as other baselines and it is

suffice for us to demonstrate CONPI’s interpretability using simpler embedding methods.

We leave the exploration of combining our framework with more complex GNN methods

to future work.

Implementation Details.

For the pairwise prediction task, we implement our framework in Pytorch with Adam

optimizer. The dimension of node embeddings for all methods is set to 128. For model

details, we use mean pooling in CONPI-node model (Eqn. 3.4). We adapt bilinear similar-

ity for measuring the context pair interaction score in CONPI-pair model. The maximum

number of contexts is set to 100. We adapt the embedding features (e.g., LINE embeddings)

as the feature vector for each context node. Early stopping is conducted in validation set

when its performance does not increase for 10 epochs. For CONPI-node model, we adopt

the Hadarmard product of the interaction-aware node representations as the feature for a

logistic regression classifier.
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Method
PPI Pubmed BlogCatalog DrugBank DDI

AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1

Common Neighbors 0.8290 0.8250 - 0.6317 0.6313 - 0.9396 0.9357 - 0.9440 0.9451 -
Jaccard Coefficient 0.8099 0.7835 - 0.6316 0.6292 - 0.7748 0.7130 - 0.9299 0.9043 -
Adamic Adar 0.8325 0.8391 - 0.6318 0.6317 - 0.9444 0.9456 - 0.9459 0.9478 -

Laplacian (Belkin and Niyogi, 2002) 0.5355 0.5742 0.3269 0.6976 0.7657 0.5616 0.7157 0.7711 0.6938 0.6828 0.7862 0.6590
DeepWalk (Perozzi et al., 2014) 0.7919 0.8079 0.4630 0.9131 0.9323 0.6643 0.8051 0.8007 0.6909 0.9235 0.9117 0.8377
LINE (Tang et al., 2015) 0.8153 0.8364 0.7205 0.8107 0.8318 0.6996 0.9153 0.9143 0.8382 0.9222 0.9169 0.8449
node2vec (Grover and Leskovec, 2016a) 0.7513 0.7625 0.4116 0.9230 0.9343 0.6572 0.6400 0.5873 0.5527 0.8949 0.8884 0.8030
GAE (Kipf and Welling, 2016) 0.7056 0.6029 0.7203 0.7904 0.8250 0.7162 0.7547 0.6496 0.6968 0.7516 0.7170 0.7500

CONPI-node 0.7970 0.7748 0.7332 0.8550 0.8140 0.7439 0.9419 0.9307 0.8745 0.9395 0.9334 0.8641
CONPI-pair-emb 0.8450 0.8291 0.7009 0.8736 0.8987 0.7542 0.9388 0.9177 0.8449 0.9663 0.9644 0.9003
CONPI-pair 0.9004 0.8986 0.8208 0.9375 0.9362 0.8437 0.9684 0.9658 0.9117 0.9842 0.9823 0.9364

Table 3.2: Results on Link Prediction Task

For baseline methods, we adopt existing tookits for the embedding methods. We use

OpenNE18 for training Laplacian, DeepWalk, LINE, node2vec, GAE19 for training GAE

model. For graph features, we employ NETWORKX package to compute heuristic features.

For pre-training pair embeddings, we adopt the algorithm from DeepWalk (Perozzi

et al., 2014) to generate random walks. And we define the random walks with the number

of walks as 32, walk length as 64 for Pubmed, PPI, Drugbank DDI dataset, and the number

of walks as 16, walk length as 32 for BlogCatalog and medical term-term co-occurrence

graph as these two have a larger size of nodes and edges. For obtaining the positive pair-

context pairs, we consider a pair window as 5, and the both of left and right context window

to 3. We randomly generate 5 negative samples for the context, 5 negative samples for each

node in the pair, which lead to a total 15 negative samples per positive sample. We train

our pair embeddings on each dataset with 5 epochs. The dimension of the context nodes is

set to 128.

18https://github.com/thunlp/OpenNE
19https://github.com/tkipf/gae
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Experimental Results and Analysis

The main results for comparing all methods in link prediction task are shown in Ta-

ble 3.2. For graph feature-based baselines, we report Area Under ROC curve (AUC) and

Average Precision (AP) scores on their ranking of positive and negative samples in the test-

ing set. For the rest of all classification methods, we report AUC, AP, and F1 scores in the

testing set for their performance comparison.

We first compare with graph feature-based methods. Similar with our CONPI frame-

work, those heuristic features also explicitly utilize neighborhood information but based

on deterministic rules. As shown in Table 3.2, such heuristic features obtain very competi-

tive performance for the link prediction task (e.g., Common Neighbors feature gets 0.9396

AUC score in BlogCatalog, 0.9440 AUC score in DrugBank DDI graph.), which shows the

necessity of explicitly modeling neighborhood nodes for link prediction. However, heuris-

tic feature baselines do not perform consistently in those four datasets indicating their bad

generalizability. We observe that our CONPI-pair model outperforms them in a large mar-

gin. This is because CONPI incorporates the semantic representation of context pairs and

models their interactions with more parameters.

Then, we compare with the embedding and GNN based methods. The CONPI-node

model outperforms all baselines in BlogCatalog, and most of the baselines in other datasets,

which indicates that making the pairwise prediction based on two node embeddings learned

independently cannot fully capture the pairwise information. Furthermore, we can observe

that our CONPI-pair model consistently outperforms all these methods in a relatively large

margin, which is the core contribution in this chapter. These results confirm our hypothesis

that directly modeling pairwise interactions fits more the nature of pairwise prediction task.
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Finally, we also compare variants in the CONPI framework. All models that directly

model pair representations outperform the node model that learns (interaction-aware) node

representation by a large margin. Note that CONPI-pair-emb model with injecting pre-

trained pair embeddings has the same number of parameters with CONPI-node, and it

beats the CONPI-node model in most datasets. This shows the effectiveness of our pre-

trained pair embeddings, which encourages us to further explore the pair representations in

the future. All in all, these results indicate that for pairwise prediction tasks, it is necessary

to model the pairwise interaction and directly design pair representations for the prediction.

3.5.2 Relation Prediction Task

Relation prediction is another well-known pairwise prediction task that aims to predict

relation labels between entities, and can be leveraged to facilitate many downstream appli-

cations dealing with graphs, e.g., knowledge base completion (Wang et al., 2018c), hyper-

nymy detection (Shwartz et al., 2016), synonyms discovery (Qu et al., 2017). In contrast

to link prediction task, this task considers the setting where the labels are not connected

links from the graph, and the graph is mainly used to offer the distributionally semantic

information for the task. Same as the previous setting in the link prediction task, we do

not consider other task-specific information (e.g., text patterns), but only take as input the

graph structure for evaluating all methods fairly.

Datasets

We consider medical relation prediction tasks that infers relations between medical

terms based on a medical term-term co-occurrence graph. We employ a publicly available

dataset from (Finlayson et al., 2014) in which medical terms are extracted from 20 million
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clinical notes, and the edges are weighted by the co-occurrence counts based on the fre-

quency that two terms co-occur in a temporal bin. We select the 1-day per-bin graph that

has the most number of terms/nodes (see more details of the original graph in (Finlayson

et al., 2014)). For preprocessing, we convert the co-occurrence counts into PPMI value,

subsample the graph to remove meaningless terms (Mikolov et al., 2013b), and filter edges

with a PPMI value less than 2. Finally, we obtain a large medical term-term co-occurrence

graph with 48,651 nodes and 1,659,249 edges.

Experimental Setup

For relations, we select CLINICALLY ASSOCIATED WITH (CAW) and ISA relations

that are two of the most common relations in the dataset. The first one indicates a clin-

ically salient relationship between medical terms, while the second one represents a hi-

erarchical relationship meaning that the first term has a more specific meaning than the

second one. To obtain the labels on a large scale, we follow the procedure of weakly

supervision for relation extraction to automatically retrieve supervisions from knowledge

bases (KBs) (Qu et al., 2017, 2018). Specifically, we first collect positive samples be-

tween concepts in the KB where each concept has a number of string mentions (terms)

as CA = {ti}mi=1, CB = {tj}nj=1. Then we obtain the positive labels between terms as

{(ti, tj), ti ∈ CA, tj ∈ CB}. The term-to-concept mapping is provided by the dataset (Fin-

layson et al., 2014), and we use UMLS (Unified Medical Language System) as the KB.

Finally, we have 132,716 positive samples for CAW relation, 85,283 positive samples for

ISA relation, and we sample an equal number of negative samples by randomly pairing

one argument of the positive pair with a random term for the classification task. Then we
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Method
CAW ISA

AUC F1 AUC F1

Common Neighbors 0.5631 - 0.7084 -
Jaccard Coefficient 0.5632 - 0.7109 -
Adamic Adar 0.5634 - 0.7097 -

Laplacian (Belkin and Niyogi, 2002) 0.5547 0.5163 0.5452 0.4896
DeepWalk (Perozzi et al., 2014) 0.7309 0.6512 0.8303 0.7292
word2vec (Mikolov et al., 2013b) 0.6842 0.5855 0.8083 0.6845
LINE (Tang et al., 2015) 0.7426 0.6746 0.8209 0.7336
node2vec (Grover and Leskovec, 2016a) 0.7458 0.6653 0.8443 0.7477

CONPI-node 0.7852 0.7072 0.8434 0.7556
CONPI-pair-emb 0.8177 0.7401 0.8807 0.7917
CONPI-pair 0.8807 0.8085 0.8945 0.8173

Table 3.3: Results on Relation Prediction Task

split each dataset into train/validation/test sets with a ratio of 70/15/15. We use the full co-

occurrence graph as the input for all methods, which is utilized for training all embedding

methods and for extracting the graph features.

Compared Methods

We keep most of baseline methods the same as the link prediction task. We remove the

GAE method as it cannot process a huge graph like our co-occurrence graph with the out-

of-memory (OOM) issue. We also compare another representative embedding method in

NLP domain, word2vec (Mikolov et al., 2013b) by conducting SVD over the shifted PPMI

co-occurrence matrix (Levy and Goldberg, 2014b).

Results and Analysis

The results of relation prediction task are shown in Table 3.3. We observe similar

performance comparison as what we have observed in link prediction task. Additionally,
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Figure 3.3: Interpretability Visualization for our CONPI-pair model (best view with col-
ors). Contexts (left) of “burning epigastric pain” interact with contexts (right) of “pain
epigastric” to make the pairwise prediction. The line color indicates interaction score (the
redder, the larger).

compared with ISA relation, the CAW is relatively difficult to classify as it requires the

understanding of the complex semantic of clinical association. Even though our CONPI

framework beats all baseline methods, and CONPI-pair model obtains the best perfor-

mance among all methods. Also, in ISA relation, we observe that the CONPI-pair-emb

model gets very competitive performance with CONPI model with fewer parameters.

3.5.3 Interpretability Analysis

There are recently-proposed interpretability works on graphs, e.g., GraphLIME (Huang

et al., 2020) and GNNExplainer (Ying et al., 2019), which can provide different types of

explanations. Most of them try to analyze well-trained graph models post-hoc and in-

stead, our model makes the prediction directly based on the explanations. To demonstrate
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CONPI’s interpretability for pairwise predictions, we conduct case study by visualizing the

interactions scores, i.e., attention weights, calculated between context pairs.

We conduct the case study on the medical term-term co-occurrence graph and choose

an easily-understood relation, ISA to interpret. As described in Section 3.4, the model deci-

sion is made based on interaction scores for context pairs and we recover such information

to explore whether these scores can faithfully explain the model decision. Due to the lim-

itation of the space, we show a testing-set example of our best model, CONPI-pair, for a

correct prediction of “burning epigastric pain” is a type of “pain epigastric” in Figure 3.3.

The figure visualizes the interactions between two sets of contexts for target nodes. The

nodes on left (right) side are contexts for “burning epigastric pain” (“pain epigastric”).

The color of the line indicates the strength of interaction (the redder, the stronger).

There are two major findings from Figure 3.3. Firstly, by observing the nodes, we

can see that our CONPI-pair model nicely downweighs contexts that are irrelevant for the

pairwise prediction, such as “problem”, “medical history”, etc. Secondly, by observing

the pairs, the model successfully highlights three pairs, “gastritis”, “upper endoscopy”,

“epigastric pain” with “gastrointestinal”, which are strongly relevant with the pairwise pre-

diction and can be treated as explanations. We also see that some interaction scores are

not perfect yet, for example, pairs with a meaningless node, “attendig”, get relatively high

scores. To further enhance the interpretability of our model, we may adopt some post-hoc

explainable techniques to further prune some untrustworthy explanations and we leave this

to future work. Nevertheless, based on the case study, we can clearly see that our CONPI

model can provide informative and faithful explanations for the pairwise prediction, and

such interpretability would be helpful to convince users to better trust the model decision,

especially on those high-stake domains (e.g., medicine, finance, etc).
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3.6 Discussion and Conclusion

In this chapter, we study modeling context pair interactions for pairwise prediction tasks

on graphs to better capture the pairwise relationships between nodes and provide a certain

amount of interpretability by selecting influential interaction links. We propose a general

framework CONPI with node-centric and pair-centric perspectives and a new pair-centric

context interaction model, CONPI-pair, to formulate a pair representation and then atten-

tively aggregate all pairs for the final prediction. To capture the pairwise node relationships

in embedding space, we propose new pair embeddings in homogeneous graphs and show

how to inject them back into the CONPI-pair model. We demonstrate the effectiveness of

our framework in two pairwise prediction tasks across a variety of real-world datasets and

the model interpretability by the case study.

CONPI is a graph embedding-based method focusing on pairwise predictions on gen-

eral graphs. It consists of two major components, context interaction design, and pair

embedding learning. The context interaction works on 1-hop neighbors for simplicity and

inductively captures complex interactions in our node-centric and pair-centric structures.

Alternative designs may consider more sophisticated interaction mechanisms to model

high-order relationships among contexts. And combining such interaction mechanisms

with existing embedding learning methods would also be an inspiring direction. Last but

not least, the power of pair embedding can be further extended into a wide range of appli-

cations, and the interplay between it with node embedding would be interesting. Moreover,

the pair embedding method can be developed to graph neural networks to model complex

interactions for node pairs and encode their distance information (Li et al., 2020).
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Part IV: Transfer: Transferring
Knowledge across Neural Models
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Chapter 4: Knowledge Transfer between Structured and

Unstructured Knowledge Sources

After collecting and representing human knowledge in neural systems (knowledge ac-

quisition and representation), we now consider more advanced operations of human knowl-

edge, i.e., how to transfer existing knowledge among neural models, which can be seen as

an analogy of how humans can generalize the accumulated knowledge to new situations.

This step is also essential for AI systems to leverage previously learned knowledge and

to become more generalizable and efficient to adapt new samples and save annotation ef-

forts. In this chapter, we study the knowledge transfer between structured and unstructured

knowledge sources with the application of complex question answering (CQA). Specif-

ically, CQA or multi-hop question answering combines multiple pieces of evidence to

search for the correct answer. Reasoning over a text corpus (TextQA) and/or a knowl-

edge base (KBQA) has been extensively studied and led to distinct system architectures.

However, knowledge transfer between such two QA systems has been under-explored. Re-

search questions like what knowledge is transferred or whether the transferred knowledge

can help answer one source using another one, are yet to be answered. In this chapter,

therefore, we study the knowledge transfer of multi-hop reasoning between structured and

unstructured sources. We first propose a unified QA framework named SIMULTQA to en-

able knowledge transfer and bridge the distinct supervisions from KB and text sources.
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Then, we conduct extensive analyses to explore how knowledge is transferred by leverag-

ing the pre-training and fine-tuning paradigm. We focus on the low-resource fine-tuning

to show that pre-training SIMULTQA on one source can substantially improve its perfor-

mance on the other source. More fine-grained analyses on transfer behaviors reveal the

types of transferred knowledge and transfer patterns. We conclude with insights into how

to construct better QA datasets and systems to exploit knowledge transfer for future work.

Code and data are available at https://github.com/Stefan1220/SimultQA.

4.1 Introduction

Structured knowledge source, such as Knowledge Base (KB), and unstructured knowl-

edge sources, such as text corpus, are arguably the most popular sources for complex ques-

tion answering (CQA). Multi-hop KB-based question answering (KBQA) systems translate

questions to logical forms to be executed over a KB for finding answers (Talmor and Be-

rant, 2018; Maheshwari et al., 2019; Lan and Jiang, 2020; Gu et al., 2020; Das et al., 2021;

Ye et al., 2021b), while text-based QA (TextQA) systems leverage large text corpora to

retrieve paragraphs and extract answer spans for complex questions (Yang et al., 2018; Qi

et al., 2019; Asai et al., 2020; Dhingra et al., 2020; Zhu et al., 2021).

However, despite the impressive performance of separate KBQA and TextQA systems,

it is not quite clear to the community whether a system trained on one source can be trans-

ferred and beneficial to question answering over another source. Inspired by the general

transfer learning in NLP by pre-trained language models (PLMs) (Radford et al., 2018; De-

vlin et al., 2019; Raffel et al., 2020), it is important to study this research problem systemat-

ically and thoroughly for the following reasons. First, given the heterogeneity of structured

and unstructured sources, it is desirable to build a unified reasoning module to work on both
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Figure 4.1: To facilitate knowledge transfer between structured and unstructured sources,
we develop a unified framework SIMULTQA that can leverage supervision from both
sources to answer complex questions.

text and KB and combine different source-specific supervisions. Second, transfer learning

has been shown to boost performance on low-resource domains, and it would be practically

useful to leverage annotated datasets on one source for CQA on the other source, especially

when human annotations are expensive to create new multi-hop QA datasets. Third, it is

also critical to investigate what kind of knowledge can be transferred, which can inspire

future CQA dataset creation and system design.

One major obstacle in such an investigation for knowledge transfer between structured

and unstructured sources is the disparity between them and their specifically designed QA

systems as we mentioned earlier. For instance, KB is highly structured and curated where

complex query functions can be executed, while text data is unstructured and noisier, lead-

ing to quite distinct QA systems. One relevant line of research is HybridQA which tries

to leverage multiple sources for QA (Mihaylov and Frank, 2018; Sun et al., 2018, 2019a;
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Min et al., 2019; Oguz et al., 2020; Shi et al., 2021). To operate their single model on both

KB and text, these methods primarily convert distinct sources into similar data format, e.g.,

merge text and KB by entity linking, which sacrifices the unique characteristics of each

source to some extent and makes it harder to investigate knowledge transfer as sources are

entangled together. Thus, typical HybridQA methods are not suitable for studying knowl-

edge transfer problems.

In this chapter, our first contribution is proposing a unified CQA framework to enable

knowledge transfer between structured and unstructured sources, as shown in Figure 4.1.

The proposed framework, SIMULTQA, could perform multi-hop reasoning over text and

KB simultaneously by collecting reasoning paths from either text or KB, then reranking

paths to select the best one for generating the answer. There are several new and desirable

properties of SIMULTQA. First, SIMULTQA unifies the recent advanced KBQA (Luo et al.,

2018; Lan and Jiang, 2020) and TextQA (Chen et al., 2017; Asai et al., 2020) systems

seamlessly, which preserves their unique strengths maximally to handle various reasoning

types. Second, SIMULTQA can utilize distinct supervisions from both sources, which has

the potential to combine both KBQA and TextQA datasets for unified training. Last but

not least, since SIMULTQA can be applied to any source, we can pre-train it on KB and

fine-tune it on the text and vice versa, which makes it easier to quantify the transfer effect

brought by the pre-training on a different source. In summary, despite the framework design

looking straightforward, we are the first to unify two seemingly distinct CQA systems and

study knowledge transfer between two sources for CQA.

With SIMULTQA that enables knowledge transfer, our second contribution is to sys-

tematically analyze the transfer behavior to help us deeply understand the nature of the
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multi-hop reasoning process in KB and Text. We apply our methodology to CWQ (Tal-

mor and Berant, 2018) and HotpotQA (Yang et al., 2018), which are arguably the most

popular dataset in KB and text sources, and are representative enough to cover most of

the reasoning types on KB and text. We first show that pre-training on one source can

consistently improve the fine-tuning performance of the other one in the low-resource set-

ting, indicating future data-hungry QA systems can be boosted by pre-training on another

disparate source, especially when human annotation is expensive. More interestingly, fur-

ther fine-grained analyses attempt to reveal sources of performance gain and find out what

knowledge is transferred. We mainly investigate three aspects, reasoning types, reasoning

hops, and question similarity. We find that despite KB and text sources being quite dis-

parate, SIMULTQA still finds ways to transfer knowledge by learning a shared semantic

space for reasoning and a high-level understanding beyond distinct surface forms of rea-

soning paths. In addition, we study a more challenging transfer setting where we seek to

use text reasoning to answer KB-based questions20 and vice versa. Promising results are

obtained by using text knowledge to help KB questions highlight the expressiveness of

the text corpus. We conclude that knowledge transfer between structured and unstructured

sources is an intriguing direction to combine the strengths of KBQA and TextQA systems

and to use data from one source to boost QA on the other. To the best of our knowledge,

this chapter is the first to study knowledge transfer between KB- and text-based CQA in a

quantitative and systematic manner.
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Figure 4.2: Overview of SIMULTQA Framework. There are two stages including construct-
ing reasoning path from either text or KB, and path reranking for the answer generation. In
the inference time, the reasoning can be performed simultaneously over text and KB source
to find the final answer.

4.2 Related Work

Complex Question Answering. There has been a long history of QA models to answer

simple questions (Berant et al., 2013; Rajpurkar et al., 2016; Chen et al., 2017; Wang et al.,

2018b; Lee et al., 2018; Yang et al., 2019; Karpukhin et al., 2020). More recent attention

has focused on answering complex questions, which requires a multi-hop reasoning pro-

cess (Yang et al., 2018; Fang et al., 2020). For example, some of them target questions

that can be answered using multiple text paragraphs as evidences (Das et al., 2018; Qi

et al., 2019; Feldman and El-Yaniv, 2019; Asai et al., 2020), while some existing KBQA

works (Bao et al., 2016; Luo et al., 2018; Chen et al., 2019; Lan et al., 2019; Lan and Jiang,

2020) studied how to answer questions by iteratively chaining multiple knowledge base

20We refer to questions originally from KBQA/TextQA datasets as KB-based/text-based questions in this
chapter.
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relations into the evidence path. Our proposed framework unifies these two recent trends

of CQA frameworks in text and KB to study knowledge transfer between them.

Hybrid Question Answering. HybridQA is a line of QA research that also studies dif-

ferent knowledge sources (e.g., text articles, Web tables, knowledge bases) for answering

questions (Mihaylov and Frank, 2018; Sun et al., 2018, 2019a; Xiong et al., 2019; Min

et al., 2019; Oguz et al., 2020; Chen et al., 2020a,b). This line of work typically requires

extra human efforts to merge hybrid data for later complex modeling, for example, linking

text paragraphs to KB by entity linking or universal schema (Das et al., 2017c; Sun et al.,

2018, 2019a) or converting KB edges to plain text (Oguz et al., 2020), which is not needed

in SIMULTQA. Their major motivation is to unify data formats for text and KB and con-

struct a more comprehensive knowledge space, which is orthogonal to our motivation of

studying knowledge transfer between intact knowledge space of text and KB.

Transfer Learning in NLP. In the last few years, NLP has witnessed the emergence of

several transfer learning techniques, and their effectiveness of constantly improving state-

of-the-art on a wide range of NLP tasks. Traditional transfer learning techniques (Pan and

Yang, 2009) include multi-task learning, domain adaptation, etc (Liu et al., 2019; Clark

et al., 2019b; Ruder et al., 2019b). More recently, fine-tuning PLMs has become the de

facto standard for transferring knowledge among NLP tasks (Peters et al., 2018; Radford

et al., 2018; Devlin et al., 2019; Raffel et al., 2020). In this chapter, we study knowledge

transfer between structured and unstructured sources in CQA task and use BERT models

as the backbone of our approach.
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4.3 SIMULTQA Framework

SIMULTQA is a unified framework for multi-hop reasoning to incorporate both KB and

text sources. It consists of two stages, iteratively reasoning and final reranking, which can

be trained with supervisions from both sources.

4.3.1 Reasoning Path Construction

CQA requires a multi-hop reasoning process to derive the answer. For KBQA, the

reasoning is to traverse the knowledge graph for multi-steps based on generated queries

from the question, while for TextQA, it is to collect multiple documents from a text corpus.

We consolidate both by iteratively searching for evidence from each source and construct

the reasoning path at the end. The key formulation is we treat each step as a ranking

problem and train the model to select the most appropriate document/ KB query graph

from text corpus/ knowledge graph that can answer the complex question.

Formally, at time step t, (t ≥ 1), we are given the complex question q, a pool of can-

didate evidences, ei ∈ {e1, ..., eN}, and the hidden state ht−1 from previous step. We first

encode them by the BERT [CLS] token representation to get the contextual embedding wi

for each candidate ei. Then, we calculate the probability of ei to be selected in current

step by feeding wi to a fully-connected layer. We denote text evidence as eτi which is a

sequence of tokens from a document in the text corpus. For KB evidence, following previ-

ous work (Lan and Jiang, 2020), each candidate is “serialized” into a sequence of relation
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tokens and denoted as eκi . The scoring process at t-th step is defined as follows:

wτ
i = BERT[CLS]([q; e

τ
i ]), (4.1)

wκ
i = BERT[CLS]([q; e

κ
i ]), (4.2)

P τ
t (e

τ
i |q) = FC(wτ

i ,ht) ∈ [0, 1], (4.3)

P κ
t (e

κ
i |q) = FC(wκ

i ,ht) ∈ [0, 1], (4.4)

where [q; ei] represents the concatenation of the question and evidence separated by [SEP]

token. We simply choose a Recurrent Neural Network (RNN), and ht is calculated to model

the sequential multi-hop reasoning process as follows:

ht = RNN(ht−1,w
∗
t−1) ∈ Rd (4.5)

where w∗
t−1 encodes the ground-truth evidence in previous step for t > 1 during training

and h0 will be a free parameterized vector to be initialized randomly, when t = 1. During

inference, evidences will be dynamically inferred based on the results from previous step.

To encourage knowledge transfer, we share the parameters for the recurrent module and

BERT model (as well as the answer generation module that will be introduced later) for

KB and text source, which will be jointly optimized. We next introduce how to generate

high-quality candidate pools for each step.

Generate Text Candidates. Following previous methods (Chen et al., 2017), for a given

complex question and a large text corpus (e.g., Wikipedia), we leverage TF-IDF based

methods to retrieve top-K documents with the tri-gram hashing techniques. For the iter-

ative process, we reuse TF-IDF method to retrieve candidates in next step combining the

complex question and the previous retrieved document. Moreover, since TF-IDF methods

mainly consider the lexical matching, there are several advanced approaches that can be
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explored to extend the reasoning path, such as meta-info based (e.g., entity links, hyper-

links (Nie et al., 2019; Asai et al., 2020)), search engine (Qi et al., 2019, 2020), dense

retrieval (Xiong et al., 2021). We consider hyperlinks (Asai et al., 2020) in this work and

leave more sophisticated methods to future work.

Generate KB Candidates. We follow recent advanced staged query generation meth-

ods (Yih et al., 2015; Luo et al., 2018; Lan and Jiang, 2020) to generate candidates and

perform KB reasoning. As shown in Figure 4.2, the KB module starts from a grounded

entity in the complex question and identifies core relation paths21 as candidates with nec-

essary constraints. We iteratively generate and rank candidate query graphs in each step

based on the topic entity or the entity from the last step.

With the iterative ranking in each step, we can establish the reasoning chain as a se-

quence of documents, Eτ = [eτ1, ..., e
τ
k] for TextQA and a sequence of query graphs,

Eκ = [eκ1 , ..., e
κ
k] for KBQA. We score each path by the multiplication of probability of

each selected evidence as P (e1|q) · ... · P (ek|q) and use beam search to produce top-M

reasoning paths {E1, ..., EM} for the final answer generation.

4.3.2 Reranking and Answer Generation

Given a complex question q and several reasoning paths {E1, ....EM} from the previous

component, we rerank the paths based on how likely they can answer the question. We use

another BERT [CLS] token representation to encode the reasoning path Ei with a fully

connected model to output the probability of choosing Ei as follows:

vi = BERT[CLS]([q, {ei1, ..., eik}]), (4.6)

P (Ei|q) = FC(vi) ∈ [0, 1] (4.7)

21As in (Lan and Jiang, 2020), we allow the relation to be a single predicate or two predicates connected
through a CVT node designed for a multi-argument relation.
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After the reasoning path reranking, our system allows the KB reasoning path and text rea-

soning path to be handled differently. This reflects the advantage of our system to combine

the strength of both KBQA and textQA as discussed earlier. Since KB is structured, we can

directly execute the complete query graph in the knowledge graph to get the answers. For

question answering with textual evidence chains in particular, another reader component is

employed to select the text spans that are the final answer based on the top-ranked path.

4.3.3 Training and Inference

We leverage the annotated document labels from HotpotQA dataset to train the rea-

soning path construction and reranking modules. For CWQ dataset, we split the golden

complex logic form into sub-queries by defining the sub-query to be composed of head/tail

entities along with one relation or two relations with CVT type node. Constraint relations

are also added to the connected sub-queries. The sub-queries are treated as supervisions in

each reasoning step as well as the path reranking module. Note that it is now the standard

way to train robust CQA systems by leveraging full supervision in each hop. We leave

utilizing distantly weak supervisions for training to future work. In each step of reasoning

module, the loss functions for KB and text are defined as follows:
Lτ
t = −logP (eτt |q)

−
∑

ẽτ∈Cτ
t

log(1− P (ẽτ |q))
(4.8)

Lκ
t = −logP (eκt |q)

−
∑

ẽκ∈Cκ
t

log(1− P (ẽκ|q))
(4.9)

where Cτ
t and Cκ

t are negative samples. For text, we follow previous work (Asai et al.,

2020) to generate lexically and semantically similar negative samples based on TF-IDF as

well as hyperlinks. For KB, we treat all query graphs other than the golden one in the same

step as negative samples.
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In terms of reranking reasoning paths for KB and text, we reuse the previous supervi-

sions to train a ranker model (Eqn. 7) for selecting the correct path with the loss function

as follows:

Lτ
rank = −

∑
i y

τ
i · log(P (Eτ

i |q)) (4.10)

Lκ
rank = −

∑
i y

κ
i · log(P (Eκ

i |q)) (4.11)

where yτi and yκi are the assigned labels for the golden path of i-th sample from two sources.

We also design negative samples for reasoning paths by replacing the golden evidence in

one of k hops.

4.4 Knowledge Transfer Experiments

We focus on investigating knowledge transfer between structured and unstructured

sources in this chapter, though the proposed SIMULTQA can be applied to any open-

domain CQA datasets. We seek to answer three research questions (RQs):

• RQ1: Can the knowledge learned on one source help the QA performance on another

one? (§4.4.2)

• RQ2: What kind of knowledge has been transferred between KB and text? (§4.4.3)

• RQ3: Can knowledge transfer help answer questions by both sources? (§4.4.4)

4.4.1 Experimental Setup

Choice of Datasets. Investigating knowledge transfer between text and KB requires at

least one dataset from each source. Without losing the generality, we choose Wikipedia

and Freebase as the source for text and KB respectively, and select their arguably the most

representative CQA dataset to cover the majority of reasoning types. We leave applying

SIMULTQA to other domain-specific sources and datasets as future work.
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The selected large-scale KB dataset is Complex WebQuestions (CWQ) (Talmor and

Berant, 2018) that consists of around 27K/3.5K/3.5K samples for train/dev/test. The text

dataset is HotpotQA (Yang et al., 2018) that consists of around 90K/7.4K/7.4K samples

for train/dev/test. For both datasets, we focus on the most practical setting, which is the

open-domain QA, meaning that the model needs to reason over the entire knowledge space

for answering the question.

Implementation Details. We adopt pre-trained BERT models (Devlin et al., 2019) us-

ing the uncased base configuration (768-hidden) for our reasoning path construction and

reranking module. We follow Graph Retriever (Asai et al., 2020) and use their pre-trained

whole word masking uncased large configuration (1024-hidden) for the reader. During the

process of reasoning path construction, we set the number of negative examples along with

the gold example as 30, set the number of hops as 2, and use beam search when doing the

inference. Beam size is set as 5 for CWQ and 9 for HotpotQA.

4.4.2 RQ1: Quantitative measurement

Pre-training and Fine-tuning. A straightforward way to investigate the effect of knowl-

edge transfer between text and KB is to leverage the pre-training and fine-tuning paradigm,

where we first pre-train SIMULTQA on one source and fine-tune it on another one. The

transfer effect then can be measured by the performance difference with and without the

pre-training stage. Furthermore, to demonstrate the transfer effect carefully, we focus on

the low-resource setting where we increasingly add more samples for the fine-tuning. Note

that we only pre-train and fine-tune the first stage of SIMULTQA, which is the retriever,

because this is the most important module for multi-hop reasoning.
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Figure 4.3: Pre-training and fine-tuning experiments on CWQ and HotpotQA datasets. We
first pre-train SIMULTQA on one source with the full dataset, then fine-tune it on another
one with various sizes of samples.

Transfer Text Knowledge to KB. We show the fine-tuning performance in Figure 4.3,

where we can see that pre-training SIMULTQA on text dataset can consistently improve the

performance on KB dataset, especially when the fine-tuning data is limited. Specifically,

when there is no fine-tuning data for KB (zero-shot transfer), text pre-training achieves

about 8 F1 score on CWQ already, meaning that text knowledge can greatly help the QA

model on KB. We also notice that when a large number of KB samples are available, the

transfer effect becomes less prominent, possibly due to the model begins overfitting KB-

specific features.

To further demonstrate the transfer effect on low-resource setting, we conduct few-shot

experiments by randomly sampling only a handful of samples for fine-tuning. We sample

five times to reduce the randomness of few-shot samples and results are shown in Fig-

ure 4.4. We can see the transfer effect from text to KB more clearly, and this finding can be
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Figure 4.4: Few-shot experiments on CWQ dataset. Boxes extends from the first quartile
to the third quartile of the samples, and lines inside boxes mark the medians.
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Figure 4.5: Few-shot experiments on HotpotQA dataset. Boxes extends from the first
quartile to the third quartile of the samples, and lines inside boxes mark the medians.
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Figure 4.6: Analysis of reasoning types in CWQ. Numbers in parentheses are percentages
of types.

leveraged to boost the performance of KBQA in low-data region when human annotations

are expensive to collect over domain-specific KBs.

Transfer KB Knowledge to Text. Figure 4.3 shows the pre-training on KB also provides

performance boost for fine-tuning on text domain in the low-resource setting. In zero-shot

transfer, pre-training on KB brings about 12.5 F1 improvement, which verifies that KB

knowledge can also help answer text-based questions. Moreover, few-shot experiments in

Figure 4.5 demonstrate the transfer effect when < 100 text-based samples are available.

We notice that the variance of few-shot experiments is greatly reduced by the pre-training,

indicating another potential useful transfer effect may be to help reduce the instability in

the few-shot learning. Meanwhile, we conduct error analysis for both CWQ and HotpotQA

respectively in Table 4.2.
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4.4.3 RQ2: What has been transferred?

We further conduct fine-grained analyses under previous experiment settings trying to

answer what knowledge is transferred between structured and unstructured sources. We

hypothesize three major factors that may influence the transfer effect and test their correla-

tions with performance changes.

Reasoning types play a central role in answering complex questions. SIMULTQA is ex-

pected to learn similar reasoning processes from structured/unstructured sources if the

knowledge about certain reasoning types is transferred. We analyze the transfer effect

w.r.t. various reasoning types defined in both datasets (we refer to the original papers (Tal-

mor and Berant, 2018; Yang et al., 2018) for their detailed definitions). As shown in Fig-

ure 4.6 and 4.7, the most shared two types in both text and KB, composition (i.e., infer the

bridge entity) and conjunction (i.e., checking multiple properties) questions are benefited
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Figure 4.8: Hop Analysis on the CWQ dataset.

from knowledge transfer the most (especially in the zero-shot transfer), which suggests

that SIMULTQA is able to transfer similar reasoning processes between disparate sources

regardless of their distinct surface forms.

Another interesting observation is for the Comparison - A/B on HotpotQA (e.g., Who

is older, A or B?) that has a larger F1 score gain under the zero-shot setting. This type

asks a two-choice question which can be answered by locating an entity as the final answer

through iteratively retrieving two evidences, which is similar to the chain reasoning in

Composition and Conjunction. Although this specific reasoning type is not shared by both

sources, the similarity between the reasoning processes makes it benefited from knowledge

transfer.

Reasoning hops correspond to decomposed sub-questions from a complex question and

we are interested in whether the transfer effect varies according to different hops. In both

KBQA and TextQA, the first hop sub-question tends to closely connect with a topic entity
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Figure 4.9: Hop Analysis on the HotpotQA dataset.

or phrase mentioned in the question, while the subsequent (second) hops require more

semantic inference to answer the sub-question. As shown in Figure 4.8, the first hop in

CWQ dataset usually gets higher retrieval performance and can be transferred from the

other source, which indicates that the knowledge of finding the topic entity in the question

is transferred. We also show the hop analysis for HotpotQA in Figure 4.9. Similar to

the observation on CWQ, it shows that the first hop in HotpotQA gets higher retrieval

performance and can be transferred from the other source, which further validate that the

knowledge of finding the topic entity mentioned in the question is transferred.

Question similarity measures the semantic similarities between questions in testing and

training. We hypothesize that the transfer might be easier for testing questions if some

similar ones appear in the training. We investigate the zero-shot transfer to study the influ-

ence of pre-training questions more directly. Specifically, for a CWQ question in testing

set, we calculate its semantic similarities with all HotpotQA questions in pre-training and
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Figure 4.10: Relationship between question similarity and performance gain.

take the average of top 5 similarities. We then split CWQ testing questions into several

chunks based on this averaged similarity and aggregate their QA performance before and

after the pre-training. We do the same thing for the other direction of transfer. We present

the relationship between question similarity and performance in HotpotQA on Figure 4.10.

Interestingly, we observe that question similarity is not correlated with transfer effect, i.e.,

higher similar testing questions are not necessarily to obtain larger performance gain. This

finding implies that SIMULTQA transfers the reasoning process in a high-level seman-

tic space rather than through low-level lexical features. We show questions similarity for

CWQ in Figure 4.11, where we also find question similarity is not correlated with the

transfer effect.

Error analysis is conducted under the full dataset fine-tuning setting to further understand

the transfer behaviors by manually checking errors and categorizing them. As is shown
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Figure 4.11: Relationship between question similarity and performance gain on CWQ.

in Table 4.2, 75% of wrongly answered questions sampled from CWQ contain additional

constraints or arithmetic operations which are hard to be supported by text corpus. 45%

questions sampled from HotpotQA contain semantic knowledge or relations which cannot

be covered in Knowledge Base. 35% of them don’t follow the chain reasoning process and

are not suitable to be decomposed to answer step by step like KBQA. The other remaining

questions are related to errors in retrieval, re-ranking or span extraction process. These

unshared knowledge between CWQ and HotpotQA make it reasonable that those wrongly

answered questions in one data source cannot be contributed from the other data source.

4.4.4 RQ3: Answering complex questions by both sources

To directly measure the transfer effect, in previous sections, the reasoning is always

performed on the same knowledge source as where the question is from, e.g., a text-based

question is answered by the text reasoning path. Now, we ask whether questions can be
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Complex question: What is European Union country used the Hungarian forint as its main currency?

Gold KB reasoning path: European Union members−−−−−→ y1(CVT) member−−−−→ Hungary
currency used←−−−−−−−− Forint

Reasoning paths from text source:
1. (first passage) The currency of Hungary is the Hungarian forint since 1 August 1946 ...
(second passage) As a member of the European Union, Hungarian government ... replace the forint with the euro.
2. (first passage) The forint is the currency of Hungary. ... and the forint has been declared fully convertible.
(second passage) As a member of the European Union, the long-term of aim of the Hungarian government ...
3. (first passage) The Gulden or forint was the currency ... and the Austro-Hungarian Monarchy ...
(second passage) In Hungary, the forint was divided into ... for the unit and subunit.

Table 4.1: Case Study. The question comes from CWQ dataset and is originally answered
by a KB reasoning path.

Type %
Questions with constraints 50

CWQ Questions with aggregation functions 25
Others 25

Relations not covered in KB 45
HotpotQA Not satisfy chain reasoning 35

Others 20

Table 4.2: We manually analyze 20 questions with wrong predicted answers respectively
from CWQ and HotpotQA and categorize them.

better answered by considering both sources. Note that this is a more challenging setting

because questions in both datasets only have supervisions from one source, which thus

requires stronger transfer signal. Moreover, we can utilize this setting to test how com-

plementary two knowledge sources are, regarding how much they can help each other.

Specifically, in addition to the annotated reasoning paths, we collect candidate paths from
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(HotpotQA) In the television series Green Hornet, which actor played the role of Kato?

Gold reasoning path from text source:
(first passage) The Green Hornet is a television series on ABC ... starring Van Williams and Bruce Lee ...
(second passage) Kato is a fictional character ... was portrayed by Bruce Lee.

Reasoning paths from KB source:
1. Green Hornet series←−−− y1(CVT)

starring roles←−−−−−−−− Bruce Lee actor←−−− y2(CVT)
appear in tv program←−−−−−−−−−−−− Kato

2. Green Hornet
film←−− y1(CVT) character←−−−−− AI Hodge

notable types←−−−−−−− TV Actor

3. Green Hornet
film←−− y1(CVT) character←−−−−− Seth Rogen

appeared on←−−−−−−− y2(CVT)
appearance type←−−−−−−−−− Host

Table 4.3: Case study. The question comes from HotpotQA and is originally answered by
a textual reasoning path.

CWQ F1 Hit@1
SIMULTQA- KB 46.7 47.7
SIMULTQA- Hybrid 48.5 49.8
HotpotQA F1 EM
SIMULTQA- Text 71.7 58.8
SIMULTQA- Hybrid 71.2 58.4

Table 4.4: Comparing single and hybrid evaluations.

the other source, i.e., KB paths for text-based questions and text paths for KB-based ques-

tions. The final reranking will select the best path from both KB and text paths for all

questions. We refer to this setting as the hybrid evaluation.

Our preliminary experiments show that pre-training on one source and then fine-tuning

on the other tends to forget the knowledge of the first source, leading to less satisfactory

results. Therefore, we jointly train SIMULTQA by iteratively sampling batches from both

sources to expose the model to both sources equally in the training time. We then compare

the hybrid evaluation with the single-source evaluation in Table 4.4. For CWQ dataset,
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SIMULTQA- Hybrid achieves 1.8 F1 score gains after incorporating text paths for the in-

ference, while the performance of HotpotQA is not influenced in hybrid evaluation after

incorporating KB paths. This shows that text knowledge is easier to be transferred to help

KB-based questions.

We also conduct case studies by retrieving top-ranked reasoning paths in hybrid evalu-

ation. Table 4.1 presents a CWQ question and shows that top-ranked text paths are closely

related to the golden KB path, indicating that linguistics variants of text knowledge can

greatly help KB reasoning. On the other hand, KB knowledge seems to be less helpful to

answer text-based questions based on the overall QA performance in Table 4.4, partially

due to the incompatibility between TextQA and KBQA dataset, e.g., entities and relations

that cannot be mapped to KB, reasoning types that cannot be answered by KB (see Sec-

tion 4.4.3), etc. However, we still find cases in HotpotQA in Table 4.3 to show KB can

somehow contribute to textual reasoning as well.

4.5 Discussion and Conclusion

In this chapter, we study CQA over structured and unstructured knowledge sources (i.e.,

KB and text particularly), and focus on studying the knowledge transfer between different

knowledge sources. To facilitate the transfer, we first propose a unified CQA framework,

SIMULTQA to bridge KBQA and TextQA systems. Empirical results show that knowledge

transfer enables substantial improvements in low-resource domains. More importantly, we

conduct fine-grained analyses to shed more light on how knowledge is transferred to inspire

future research on knowledge transfer between sources, and we conclude the chapter with

insights for future CQA datasets and systems.
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Based on our findings of knowledge transfer for CQA in this chapter, we discuss the

following directions for future CQA datasets and systems.

Knowledge transfer for efficient CQA dataset annotations. When annotating new CQA

datasets whether, on text or KB, it would be beneficial to leverage pre-trained SIMULTQA

on other sources to discover high-quality reasoning paths for further annotating, which will

save much annotation cost.

Diversity of reasoning types. Both text and KB sources are dominant by relatively easy

reasoning types, e.g., composition and conjunction. Future CQA datasets should pursue

more diverse and harder reasoning types, e.g., types with constraints and arithmetic opera-

tions (Dua et al., 2019).

A universal reasoning module. Investigating knowledge transfer between text and KB in

this chapter suggests that despite the discrepancy of surface forms in different sources, their

underlying reasoning processes could be shared. This points out the possibility of learning

a universal reasoning process from multiple sources and it is strongly desired to modularize

such a reasoning process, which can be injected into future QA systems.

Moreover, SIMULTQA is built on top of the recent popular retrieve-reranking paradigm

in open-domain question answering. Our key intuition is to find the similarities between

KBQA and TextQA and reformulate the pathfinding in KBQA and paragraph searching in

TextQA as a retrieval problem, then rerank the resulting reasoning paths for further improv-

ing the performance. This framework is general and can incorporate different solutions for

the retrieval and reranking components. More importantly, the alternative architecture can

explore the recent generation-reranking paradigm inspired by the great generative power of

LLMs, which replaces the retrieval module with a text generation module from LLMs and

directly retrieves factual knowledge from the memory of LLMs (Yu et al., 2022). A more
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intriguing design of the model needs to learn the multi-hop reasoning paths unsupervised

from the data by transferring knowledge from exiting KBQA and TextQA datasets.
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Chapter 5: Multitask Prompt Tuning Enables Parameter-Efficient

Transfer Learning

The previous chapter presents how to transfer knowledge between two QA systems

built on top of structured and unstructured knowledge sources individually. We now study

a more generic transfer learning setting and consider most NLP tasks, such as text classifi-

cation, natural language inference, and question answering. We explore how to transfer the

knowledge pre-trained on generic NLP tasks to many diverse downstream tasks. Specif-

ically, in this chapter, we study transferring knowledge between tasks via prompt tuning,

where a base pretrained model is adapted to each task via conditioning on learned prompt

vectors.

Prompt tuning has emerged as a promising approach for the efficient adaptation of

large language models to multiple downstream tasks. However, existing methods typically

learn soft prompt vectors from scratch, and it has not been clear how to exploit the rich

cross-task knowledge in task-specific prompt vectors to improve performance on target

downstream tasks. In this chapter, we propose multitask prompt tuning (MPT), which first

learns a single transferable prompt by decomposing and distilling knowledge from multiple

task-specific source prompts. We then learn multiplicative low rank updates to this shared

prompt to efficiently adapt it to each downstream target task. Extensive experiments on

21 NLP datasets demonstrate that our proposed approach outperforms the state-of-the-art
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methods, including the full finetuning baseline in some cases, despite only tuning 0.035%

as many task-specific parameters.

5.1 Introduction

Finetuning Pretrained Language Models (PLMs) has led to significant improvements

across various downstream NLP tasks (Devlin et al., 2019; Howard and Ruder, 2018; Raffel

et al., 2020). However, the conventional paradigm of full task-specific finetuning is difficult

to scale to multiple tasks given that contemporary PLMs can have hundreds of millions

(or even billions) of parameters. There has thus been a growing interest in developing

parameter-efficient methods for model tuning (Houlsby et al., 2019; Lester et al., 2021;

Ding et al., 2022), where the goal is to learn only a small number of additional parameters

per task while achieving performance comparable to full model finetuning.

Prompt tuning (PT), which prepends continuous prompt vectors to the input, has emerged

as a promising approach for parameter-efficient transfer learning with PLMs (Liu et al.,

2021a; Li and Liang, 2021; Lester et al., 2021; Liu et al., 2022b, 2021b). PT freezes the

PLM parameters and only learns a small set of task-specific prompt vectors. Despite their

impressive performance, there is still a large gap between prompt tuning and full finetuning

for many models and tasks (Lester et al., 2021). Prompt vectors trained using task-specific

training data only are more sensitive to initialization and require significantly more training

time than finetuning (Su et al., 2022; Zhong et al., 2022).

Recent work has proposed to address these issues through transferring prompt vectors

from different tasks (Su et al., 2022; Zhong et al., 2022). These methods first train soft

prompts on multiple source tasks and then use these pretrained prompts to initialize the

prompt for further finetuning on a target task based on a (potentially learned) similarity
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Figure 5.1: A conceptual overview of our approach. Instead of retrieving or aggregating
source prompts, MPT learns a single transferable prompt exploiting rich cross-task shared
knowledge. The transferable prompt is learned via prompt decomposition and distillation
to enable parameter-efficient transfer learning with PLMs.

measure (Vu et al., 2022; Asai et al., 2022) (see Figure 5.1, top). In this chapter, we extend

this line of work and introduce multitask prompt tuning (MPT), which uses multitask data

to learn a single prompt that can be efficiently transferred to target tasks. While concep-

tually simple, learning a shared prompt space can be practically challenging as it requires

learning commonalities across source tasks while minimizing interference. We decompose

the soft prompt of each source task (which can be represented as a prompt matrix) as a

multiplication of a shared matrix and a low-rank task-specific matrix, and find that this

decomposition is more effective than simply sharing the prompt matrix across all tasks.
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Figure 5.2: Parameter efficiency on GLUE and SuperGLUE. All results are based on
T5-Base model (Raffel et al., 2020). Adapter (Houlsby et al., 2019), BitFit (Zaken et al.,
2022), PT (Lester et al., 2021), SPoT (Vu et al., 2022), ATTEMPT (Asai et al., 2022). ∗

indicates multitask training on target tasks. Our MPT approach—which transfers a sin-
gle shared prompt learned from multiple source tasks using prompt decomposition and
distillation—outperforms all the existing prompt tuning methods and full model finetuning
(FT), despite updating much fewer task-specific parameters. Best viewed in color.

This decomposition is learned through knowledge distillation from soft prompts obtained

from regular prompt tuning. To transfer to new tasks, we perform low-rank multiplicative

updates to the shared prompt matrix. Figure 5.1 (bottom) illustrates our approach.

Extensive experiments on 21 NLP datasets across diverse tasks demonstrate the effec-

tiveness of our proposed approach over state-of-the-art prompt transfer methods. On the

SuperGLUE benchmark (Wang et al., 2019a), MPT with T5-Base (Raffel et al., 2020)

yields a 16.3 improvement over the vanilla prompt tuning baseline (PT, Lester et al., 2021),

and also outperforms the most competitive multitask prompt transfer baseline (ATTEMPT,

Asai et al., 2022) despite tuning much fewer task-specific prompt parameters (77.6K vs

232K). On some benchmarks, MPT exceeds the performance of full finetuning while only

requiring 0.035% tunable parameters per task (see Figure 5.2). We also discover that MPT
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is very effective for few-shot learning with 4-32 labels. Finally, ablation studies further

show that MPT matches the performance of full finetuning at different model scales rang-

ing from 60M to 770M parameters. Our code and models will be made publicly available.

5.2 Related Work

Parameter-Efficient Transfer Learning. Parameter-efficient transfer learning for pre-

trained language models is an active research area (Ding et al., 2022). Adapters (Houlsby

et al., 2019; Mahabadi et al., 2021) and variants (Hu et al., 2021; Karimi Mahabadi et al.,

2021) insert trainable layers, while BitFit (Zaken et al., 2022) only updates the bias param-

eters without changing any other model parameters. Diff pruning (Guo et al., 2021) and

FISH (Sung et al., 2021) learn sparse updates to the original PLM. Another popular choice

is prompt tuning (Lester et al., 2021) which only updates soft prompts prepended to the in-

put. Prefix-tuning for optimizing continuous prompts for natural language generation tasks

is presented in (Li and Liang, 2021). UNIPELT learns to combine different tuning meth-

ods via gating mechanism (Mao et al., 2022). HyperPrompt (He et al., 2022) introduces

task-conditioned hyperprompts that conditions the model on task-specific information for

constructing prompts. Discrete (i.e., hard) prompts have also been shown to be effective in

many cases (Schick and Schütze, 2021a,b; Gao et al., 2021; Malkin et al., 2022). However,

our approach is most related to the transferability of prompts (Wang et al., 2021a; Vu et al.,

2022; Su et al., 2022), which focuses on boosting the performance of prompt tuning across

many tasks. SPoT (Vu et al., 2022) selects one prompt using a similarity measure and

ATTEMPT (Asai et al., 2022) adopts an attention mechanism over the source prompts to

initialize the prompt for a target task. Unlike existing works, our proposed approach learns
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a single shared prompt by decomposing and distilling knowledge from source prompts in a

structured way for efficient adaptation to a diverse set of target tasks.

Multitask Learning. Multitask learning, which focuses on simultaneously solving mul-

tiple related tasks, has been studied from multiple perspectives (Zhang and Yang, 2021;

Ruder, 2017). Transferring a model fine-tuned on multiple source tasks to another tar-

get task is a common approach to multitask learning (Vu et al., 2020; Raffel et al., 2020;

Aghajanyan et al., 2021a; Zhong et al., 2021; Clark et al., 2019b). Few recent works show

zero-shot and few-shot transfer capabilities of language models through massive multitask

learning over a large number of tasks (Sanh et al., 2022; Wang et al., 2022; Liu et al.,

2022a; Wei et al., 2021). Designing specific parameter-sharing strategies is also another

recent trend in multitask learning (Ruder et al., 2019a; Sun et al., 2020a; Misra et al.,

2016). While our proposed approach is inspired by these methods, in this chapter we focus

on multitask prompt transfer for parameter-efficient adaptation of language models, which

still remains as a challenging and largely under-addressed problem.

Knowledge Distillation. Knowledge distillation has been used to improve performance

and efficiency across many tasks (Gou et al., 2021), including model compression (Hinton

et al., 2015; Jiao et al., 2020; Sanh et al., 2019), transfer learning (Furlanello et al., 2018; Xu

et al., 2020), machine translation (Zhou et al., 2019), question answering (Hu et al., 2018),

and document retrieval (Shakeri et al., 2019). Concurrent to our work, PANDA (Zhong

et al., 2022) uses knowledge distillation with a new metric to better predict the prompt

transferability across different combinations of source-target tasks. This differs from MPT,

which uses a prompt decomposition strategy to leverage commonalities across the source

tasks while minimizing interference between them. In addition, PANDA focuses on trans-

ferring from one source task to another target task using a similarity measure (similar to
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SPoT (Vu et al., 2022)), while our MPT approach leverages multitask learning to better

exploit the rich cross-task knowledge in prompt transfer.

5.3 Methodology

Given a set of source tasks S = {S1,S2, ...,Sκ} and target tasks T = {T1, T2, ..., Tτ},

our goal is to learn a single soft prompt over S that can be efficiently updated to enable

better performance on T . Simply training a single soft prompt on S is sub-optimal as

it can fail to leverage commonalities across source tasks while minimizing interference.

To this end, our multitask prompt tuning (MPT), aims to efficiently compress task-shared

knowledge in S into a single prompt ϕs to improve performance on T while filtering out

task-specific information that is less useful for transfer learning.

Prompt Tuning. Given a pre-trained language model with parameters Θ and one target

task T with training data (X,Y ) = {xi,yi}Ni=1, directly finetuning all the parameters by

maximizing the conditional probability P (Y |X; Θ) is expensive and often tends to overfit

on small datasets. An alternative to finetuning that is more parameter-efficient is prompt

tuning (PT), which randomly initializes a small number of learnable prompt vectors (i.e.,

soft prompts) to be prepended to the input embeddings of the PLM while freezing model

parameters Θ (Lester et al., 2021; Liu et al., 2022b). Formally, for a sequence of input

tokens with token embeddings as x = {t1, t2, ..., tn} ∈ Rn×d, PT prepends the soft prompt

P ∈ Rl×d with the same dimension as the token embedding d and vector length as l. Then

PT optimizes the following loss function:

LPLM = −
∑
i

logP (yi | [P ;xi] ; Θ ), (5.1)
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with respect to P . While this approach has been successful on some tasks and models,

researchers have observed that vanilla PT can sometimes lead to lower performance (espe-

cially on smaller PLMs), be slow to converge, and have high sensitivity to the initializa-

tion (Lester et al., 2021; Su et al., 2022; Zhong et al., 2022). Recent works address these

issues by first training prompts on multiple source tasks, and then initializing the prompts

for a target task via some similarity measure or learned attention (Asai et al., 2022; Vu et al.,

2022). We extend this line of work and propose a novel framework for transferring multi-

task knowledge into a single soft prompt to enable more performant and parameter-efficient

transfer learning to downstream target tasks T .

5.3.1 Multitask Prompt Tuning

Our proposed framework mainly consists of two stages, source training and target

adaptation. The proposed MPT framework first focuses on the source training to generate

a single soft prompt to be reused in the second stage for target task adaptation. Specif-

ically, task prompts for source tasks are decomposed into a task-shared component and

a low-rank task-specific component (prompt decomposition), where the former is shared

across all tasks, and the latter is task-specific. We also use prompt distillation to better

transfer multitask knowledge to the shared component by distilling knowledge from multi-

ple tasks-specific source prompts. Once learned, the shared prompt matrix is adapted to a

downstream target task via low-rank multiplicative updates.

Prompt Decomposition. The goal of prompt decomposition is to enable efficient

knowledge sharing across S while still allowing each task to maintain its own parame-

ters to encode task-specific knowledge. Specifically, we decompose the soft prompt Pk for

k-th task into two parts, as shown in Figure 5.3. Let P ∗ ∈ Rl×d denote the shared prompt
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Figure 5.3: An illustration on prompt decomposition for two tasks.

across all tasks, and further let uk ∈ Rl,vk ∈ Rd be the task-specific vectors for each task

k. The task-specific vectors form a rank-one matrix Wk = uk · vT
k , which has the same

dimensions as the shared prompt P ∗. The final task prompt P̂ for k-th source task is then

parameterized as:

P̂k = P ∗ ◦Wk = P ∗ ◦ (uk · vT
k ) (5.2)

where ◦ denotes the Hadamard product between two matrices. Our parameterization of

prompt decomposition is inspired by prior low-rank methods (Li et al., 2018; Aghajanyan

et al., 2021b; Wen et al., 2020), such that general information of S can be captured by

“slow” weights P ∗ shared across tasks and “fast” weights Wk could encode task-specific

knowledge in a low-rank subspace.

Prompt Distillation. Simply using the mixed golden labels to guide the prompt de-

composition directly can bias the shared component to overfit to larger tasks. We found

knowledge distillation from separately-trained source prompts to be an effective strategy
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for learning good decomposable prompts. Specifically, we first obtain a teacher prompt

P t
k for the k-th source task by conventional prompt tuning. We then randomly initialize a

corresponding student prompt as P̂ s
k = P ∗ ◦ (uk ·vT

k ), where all student prompts share P ∗

and have their own task-specific vectors as described above. Following Sanh et al. (2019),

we design distillation losses to transfer cross-task knowledge into the shared prompt ma-

trix. The first loss is to match the output probability distributions of students and teachers

through minimizing their KL-Divergence,

LLogits =
∑
k

∑
i∈Sk

KL(P (yi|[P t
k ;xi]), P (yi|[P̂ s

k ;xi])). (5.3)

We further use a temperature T to control the smoothness of the output distribution for both

teacher and student models as pj = 1
Z
exp(zj/T ), where zi is the logit score for class j and

Z is the normalization factor. We also have an additional mean squared loss on teacher

model hidden states,

LHidden =
∑
k

∑
i∈Sk

(Hs
ki −H t

ki)
2, (5.4)

where H t
ki,H

s
ki denotes the hidden states of teacher and student networks, respectively,

consisting of a sequence of hidden vectors for i-th input. Such additional distillation loss

from intermediate states has been shown to improve results in distilling PLMs (Jiao et al.,

2020; Shleifer and Rush, 2020). Finally, our total loss function to train student source

prompts for obtaining a single shared prompt to be transferred to the target side is formu-

lated as follows:

LTotal = LPLM + λ(LLogits + LHidden), (5.5)

where LPLM =
∑

k Lk
PLM represents the aggregated task losses for all source tasks, and λ is

a weight to balance the impact of distillation loss terms.
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5.3.2 Source Training and Target Adaptation

Training the single source prompt to be transferred to target tasks requires two steps.

First, the teacher prompts for all source tasks are pretrained individually through vanilla

prompt tuning. Then, we conduct multitask training on S to jointly learn the single shared

prompt via the knowledge distillation loss function in Equation 5.5. We also adopt a sim-

ple stochastic task sampling strategy, which dynamically changes the number of tasks per

batch. In particular, for each batch of multitask samples, we randomly select a number k

from [2, κ] first, then randomly choose k tasks from S and their corresponding samples to

constitute mini-batches. Such dynamic task sampling strategies are common in the PLM

multitask learning literature (Raffel et al., 2020).

For target adaptation, initialize the target prompt to be the Hadamard product of the

shared prompt and the low-rank target prompt matrix and optimize with the regular task

loss in Equation 5.1. We remark that our proposed method can also be used for multitask

learning on target tasks to enable more parameter-efficient adaption of pretrained language

models.

Parameter-Efficiency. Our method is parameter-efficient during both source training and

target adaptation. Each task contains the shared prompt l× d that has the same dimensions

as a vanilla soft prompt and a smaller number of task-specific vectors (l + d). Thus, the

total number of tunable parameters for a single target task is (l× d) + (l+ d). For a group

of target tasks, the total number of tunable parameters is (l × d) + (l + d)τ , where τ is the

number of target tasks. We list and compare different methods in terms of the number of

trainable parameters in Table 5.1.
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5.4 Experiments

We conduct extensive experiments on 21 diverse NLP datasets to show that MPT out-

performs strong baselines in both full-dataset (Tables 5.1, 5.2) and few-shot adaptation set-

tings (Table 5.3), while achieving more parameter-efficiency compared to existing methods

(Figure 5.2). We also perform comprehensive ablation studies and analysis to better un-

derstand the effect of model sizes (Figure 5.4), prompt length (Figure 5.5) and different

components in our approach (Table 5.4).

5.4.1 Experimental Setup

Datasets and Tasks. As in Asai et al. (2022) we evaluate performance of MPT us-

ing 6 datasets with more than 100k annotations as source tasks (MNLI (Williams et al.,

2017), QNLI (Demszky et al., 2018), QQP (Wang et al., 2018a), SST-2 (Socher et al.,

2013b), SQuAD (Rajpurkar et al., 2016), and ReCoRD (Zhang et al., 2018b)) and 21

datasets from four benchmarks as target tasks, namely MultiRC (Khashabi et al., 2018),

BoolQ (Clark et al., 2019a), WiC (Pilehvar and Camacho-Collados, 2018), WSC (Levesque

et al., 2012), and CB (De Marneffe et al., 2019) from SuperGLUE (Wang et al., 2019a);

RTE (Giampiccolo et al., 2007), CoLA (Warstadt et al., 2019), STS-B (Cer et al., 2017),

MRPC (Dolan and Brockett, 2005), MNLI, QQP, QNLI and SST-2 from GLUE (Wang

et al., 2018a); Natural Questions (Kwiatkowski et al., 2019), HotpotQA (Yang et al., 2018),

NewsQA (Trischler et al., 2017) and SearchQA (Dunn et al., 2017) from MRQA (Fisch

et al., 2019); WinoGrande (Sakaguchi et al., 2021), Yelp-2 (Zhang et al., 2015), Sci-

Tail (Khot et al., 2018) and PAWS-Wiki (Zhang et al., 2019) from the Others benchmark

in (Asai et al., 2022).
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Models. Following the standard prompt tuning (Lester et al., 2021; Asai et al., 2022),

we mainly experiment using the publicly available pretrained T5-Base model with 220M

parameters (Raffel et al., 2020). In our ablation we also consider T5-Small, and T5-Large

with 60M, and 770M parameters respectively, to empirically analyze the effect of model

size on MPT performance in Figure5.4.

Baselines. We compare our approach with the following baselines. (1) Full finetun-

ing (FT), where all the model parameters are tuned during adaptation on each downstream

task, (2) vanilla prompt tuning (PT) (Lester et al., 2021), where target prompt vectors are

initialized by randomly sampled top vocabularies, (3) existing prompt transfer methods,

including SPoT (Vu et al., 2022) and ATTEMPT (Asai et al., 2022), that initialize target

prompts by retrieving or aggregating source prompts, (4) popular parameter-efficient meth-

ods including Adapter (Houlsby et al., 2019) and BitFit (Zaken et al., 2022). On GLUE,

we also compare with several state-of-the-art methods that adapt a pretrained model to all

the target tasks using multitask learning, such as HyperFomer (Mahabadi et al., 2021), Hy-

perDecoder (Ivison and Peters, 2022), multitask variants of FT, and Adapter. We directly

quote numbers reported in published papers when possible or use publicly available source

codes (Karimi Mahabadi et al., 2021; Mahabadi et al., 2021; Asai et al., 2022) under the

same backbone and experimental settings for a fair comparison.

Implementation Details. Following (Karimi Mahabadi et al., 2021), for all datasets,

we use the development set as the testing set if the original testing set is not publicly

available. We split the original development set into the development and testing set if the

training set is small; otherwise, we separate a development set from the training set and

use the original development set for testing. We limit the number of training data for Yelp

to 100k. For source training, we train MPT on the mixture of source tasks for 5 epochs
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with the examples-proportional mixing strategy (Raffel et al., 2020) and stochastic task

sampling described in Section 5.3.2. For prompt distillation, we calculate the hidden state

loss for hidden states from both the encoder and decoder of T5.

For target adaptation, we reuse the shared prompt from MPT and take averaged source

task-specific vectors to initialize the target task-specific vector. We train 20 epochs on

small datasets, 10 epochs on large (more than 10k examples) datasets, and 5 epochs on the

MRQA dataset. We run all the experiments three times with different random seeds and

report the mean numbers. During source training, we set the default learning rate as 0.3 for

both task-shared and task-specific components. However, during target adaptation, we use

a strategy of two-speed learning rates for those two components, as in Ponti et al. (2022).

We set the learning rate to 0.3 and 0.4 for task-shared and task-specific components during

adaptation for each target task. Following Lester et al. (2021), we set the default number

of tunable tokens per each prompt as 100 and initialize the teacher and student prompts by

randomly sampling tokens from T5’s vocabulary (Raffel et al., 2020). We set the default

batch size for T5-Base as 32 and for model scaling experiments, the batch sizes for T5-

Small and T5-Large are 100, and 12 respectively. The default input length for most tasks

are set to 256, except MultiRC and MRQA benchmark have the input length as 348 and 512.

We set the distillation loss coefficient λ in Equation 5.5 to 0.9 and keep it fixed for all our

experiments. In few-shot experiments, for each number of shots k, we randomly sample 10

times from the training set with different random seeds and report the mean performance.

Following (Asai et al., 2022), we report our performance on three target tasks, namely

BoolQ, CB, and SciTail with the same validation and testing sets in the full-dataset setting.

We use 1 NVIDIA Tesla V100 GPU (32GB) for training models on the small datasets and

6 GPUs for training models on the larger datasets.
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Method param/
task

GLUE SuperGLUE
MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. Multi BoolQ WiC WSC CB Avg.

Finetuning 220M 86.8 91.6 93.0 94.6 89.7 90.2 71.9 61.8 84.9 72.8 81.1 70.2 59.6 85.7 73.9
Adapter 1.9M 86.5 90.2 93.2 93.8 90.7 85.3 71.9 64.0 84.5 75.9 82.5 67.1 67.3 85.7 75.7
BitFit 280K 85.3 90.1 93.0 94.2 90.9 86.8 67.6 58.2 83.3 74.5 79.6 70.0 59.6 78.6 72.5
PT 76.8K 81.3 89.7 92.8 90.9 89.5 68.1 54.7 10.6 72.2 58.7 61.7 48.9 51.9 67.9 57.8
SPoT 76.8K 85.4 90.1 93.0 93.4 90.0 79.7 69.8 57.1 82.3 74.0 77.2 67.0 50.0 46.4 62.9
ATTEMPT 232K 84.3 90.3 93.0 93.2 89.7 85.7 73.4 57.4 83.4 74.4 78.8 66.8 53.8 78.6 70.5
MPT 77.6K 85.9 90.3 93.1 93.8 90.4 89.1 79.4 62.4 85.6 74.8 79.6 69.0 67.3 79.8 74.1
Finetuning* 28M 85.7 91.1 92.0 92.5 88.8 90.2 75.4 54.9 83.8 - - - - - -
Adapter* 1.8M 86.3 90.5 93.2 93.0 89.9 90.2 70.3 61.5 84.4 - - - - - -
HyperFomer* 638K 85.7 90.0 93.0 94.0 89.7 87.2 75.4 63.7 84.8 - - - - - -
HyperDecoder* 1.8M 86.0 90.5 93.4 94.0 90.5 87.7 71.7 55.9 83.7 - - - - - -
ATTEMPT* 96K 83.8 90.0 93.1 93.7 90.8 86.1 79.9 64.3 85.2 74.4 78.3 66.5 69.2 82.1 74.1
MPT* 10.5K 84.3 90.0 93.0 93.3 90.4 89.2 82.7 63.5 85.8 74.8 79.2 70.2 67.3 89.3 76.1

Table 5.1: Results on GLUE and SuperGLUE. We adopt Pearson Correlation for STS-B,
F1 for MultiRC (Multi), and accuracy for other tasks as evaluation metrics. “param/task”
represents number of trainable parameters for each task in GLUE. The top part of the table
denotes model adaptation to each target task (so param/task for MPT is just (l×d)+(l+d)).
The bottom part (marked by ∗) denotes model adaptation to a group of tasks, where the
param/task for MPT * is (l × d)/τ + (l + d). See Section 5.3.2 for more details.

5.4.2 Results and Analysis

Full-Dataset Adaptation. Tables 5.1- 5.2 show the per-task performance of differ-

ent methods on all four benchmarks. As seen from Table 5.1 (top part), MPT establishes

new state-of-the-art results for parameter-efficient finetuning on both GLUE and Super-

GLUE benchmarks. When compared to vanilla PT (Lester et al., 2021), MPT obtains

more than +10% points improvement on average performance (+13% on GLUE, +16%

on SuperGLUE) with the same number of task-specific parameters, which demonstrates

that multitask prompt tuning provides an effective means of improving the performance of

PT, especially on small datasets. MPT consistently outperforms SPoT (Vu et al., 2022)

to obtain an average of 85.6% on GLUE and 74.1% on SuperGLUE, which is +3.3% and

+11.2% point accuracy improvements respectively. Furthermore, our approach achieves

2.1% and 3.6% average accuracy improvements over the recent method, ATTEMPT (Asai
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et al., 2022), despite updating 3× fewer parameters on GLUE and SuperGLUE respec-

tively. Similarly, when comparing against BitFit (Zaken et al., 2022) which only tunes the

bias vectors, MPT outperforms it by +2.3% on GLUE and +3.6% on SuperGLUE, while

tuning 2× fewer parameters for each target task. Among the compared methods, MPT is

the most competitive in terms of average accuracy on both benchmarks. MPT also outper-

forms Adapters (Houlsby et al., 2019) on GLUE with 4× fewer task-specific parameters.

More surprisingly, our MPT approach outperforms the full model finetuning baseline on

both benchmarks, despite tuning 0.035% as many task-specific parameters (see Figures 5.2

for a comparison between different methods versus their number of updated parameters on

GLUE and SuperGLUE benchmarks).

When compared with state-of-the-art multitask baselines which train a single model

on different target tasks, including recent HyperFormer (Mahabadi et al., 2021) and Hy-

perDecoder (Ivison and Peters, 2022), Table 5.1 (bottom part) shows that our MPT∗ (w/

prompt decomposition on target tasks) performs well and also further improves upon the

single target task baseline. This reveals the potential of our method to further leverage mul-

titask knowledge on the target side to enable even more parameter-efficient adaptation of

pretrained language models.

Table 5.2 shows the performance of different methods on the MRQA and Others bench-

mark. Our approach significantly improves the average performance of PT by +2.8% on

MRQA and +13.5% on the Others benchmark, while adding only 0.01% more task-specific

parameters. Similarly, MPT obtains 85.5% average accuracy on WinoGrande, Yelp, Sc-

iTail, and PAWS, outperforming BitFit (84.7%), which updates 10× more task-specific

parameters. While the improvements achieved by our approach (being highly parameter-

efficient) are encouraging on both GLUE and SuperGLUE, the accuracy gap between MPT

125



Method param/task MRQA Others
NQ HP SQA News Avg. WG Yelp SciTail PAWS Avg.

Finetuning 220M 75.1 77.5 81.1 65.2 74.7 61.9 96.7 95.8 94.1 87.1
Adapter 1.9M 74.2 77.6 81.4 65.6 74.7 59.2 96.9 94.5 94.3 86.2
BitFit 280K 70.7 75.5 77.7 64.1 72.0 57.2 94.7 94.7 92.0 84.7
PT 76.8K 67.9 72.9 75.7 61.1 69.4 49.6 95.1 87.9 55.8 72.1
SPoT 76.8K 68.2 74.8 75.3 58.2 69.1 50.4 95.4 91.2 91.1 82.0
ATTEMPT 232K 70.4 75.2 77.3 62.8 71.4 57.6 96.7 93.1 92.1 84.9
MPT 77.6K 72.0 75.8 77.2 63.7 72.2 56.5 96.4 95.5 93.5 85.5

Table 5.2: Results on MRQA and Others. We use F1 for MRQA tasks and accuracy for
others as the evaluation metrics. MPT outperforms ATTEMPT on both benchmarks, while
tuning 67% less parameters.

k-shot FT (220M) AD (1.9M) PT (76.8K) ST (76.8K) HF (638K) ATP (232K) MPT (77.6K)

BoolQ
4 50.5 53.4 61.6 50.5 48.0 61.8 62.2
16 56.5 51.4 61.9 50.6 50.2 60.0 63.3
32 58.4 54.5 61.7 61.2 58.3 65.3 68.9

CB
4 57.7 51.1 53.5 71.4 60.7 82.1 73.6
16 77.0 74.8 63.5 64.3 76.3 78.5 78.6
32 80.0 74.8 67.8 64.3 81.4 85.7 82.1

SciTail
4 79.6 79.5 57.7 69.6 82.0 80.2 80.2
16 80.0 83.2 60.8 71.9 86.5 79.5 87.3
32 81.9 85.0 60.2 71.9 85.8 80.2 86.3

Table 5.3: Few-Shot Results with k = {4, 16, 32}. FT: Finetuning, AD: Adapter, PT:
Prompt tuning, ST: SPoT, HF: HyperFormer, ATP: ATTEMPT. Numbers in bracket denote
the number of parameters tuned for each task. Our proposed MPT consistently outperforms
PT by a very large margin and competitive or even better than existing methods on majority
of the cases, while tuning much fewer task-specific parameters.

and the full finetuning is still significant here (2.2% on MRQA and 1.6% on Others), which

indicate opportunities for future work in multitask prompt tuning.

Few-Shot Adaptation. Following prior works (Mahabadi et al., 2021; Asai et al., 2022),

in addition to the full dataset adaptation on four benchmarks, we conduct few-shot exper-

iments on BoolQ, CB, and SciTail tasks to measure how pretrained MPT prompts can be
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Figure 5.4: Model Scaling. With the increase of backbone PLM sizes (from T5-Small to
T5-Large), the performance of our proposed MPT is improved consistently across tasks.
Best viewed in color.

generalized to new tasks with only a few training examples available (k = 4, 16, 32). Ta-

ble 5.3 shows the results of our approach and other baselines, including full-model finetun-

ing, Adapter, and HyperFormer. As can be seen from Table 5.3, vanilla PT performs poorly

in few-shot adaptation (esp., CB and SciTail), suggesting randomly initialized prompts are

hard to generalize to new tasks with only a few shots. SPoT improves the performance of

PT on CB and SciTail tasks, and MPT outperforms both PT and SPoT. We also observe that

other methods in Table 5.3 (Finetuning, Adapter, HyperFormer, and ATTEMPT) have trou-

ble in the few-shot setting. These results indicate that MPT can effectively use cross-task

knowledge in source tasks to target tasks where there are only a few labeled examples.

Scaling. We conduct scaling experiments to analyze how MPT performs with increas-

ing pretrained model sizes on three SuperGLUE tasks as in (Asai et al., 2022). Figure 5.4
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Figure 5.5: Prompt Scaling. Increasing prompt length can effectively boost MPT perfor-
mance.

shows the performance of MPT as well as full model finetuning (FT), Adapter, prompt tun-

ing (PT), and ATTEMPT with three different T5 models (T5-Small, T5-Base, T5-Large).

Performance on WiC, MultiRC, and BoolQ shows that MPT can greatly benefit from scal-

ing up the backbone model and outperforms PT and ATTEMPT consistently across all

model sizes. These results show that our prompt decomposition strategy is not only able

to achieve the best parameter efficiency but also effective across different model scales

ranging from 60M to 770M parameters.

In addition to increasing model sizes, we also increase the length of the prompt l to add

more parameters and compare it with vanilla PT on the SuperGLUE benchmark. Figure 5.5

compares PT and MPT over various prompt lengths l = {100, 200, 300}. From Figure 5.5,

we observe that while increasing the prompt length for PT only produces marginal im-

provement, which is consistent with recent findings in (Lester et al., 2021; Li and Liang,

128



MultiRC
BoolQ WiC WSC CB

SPoT

MultiRC

BoolQ

WiC

WSC

CB

MultiRC
BoolQ WiC WSC CB

MPT

MultiRC

BoolQ

WiC

WSC

CB

Figure 5.6: Analyzing task correlation using prompt similarities on SuperGLUE.

2021). On the other hand, our MPT approach can get consistent improvements over var-

ious lengths of prompts which indicates the potential of increasing prompt length in our

multitask prompt tuning to encapsulate massive scale source datasets for learning better

transferable prompts. We leave the in-depth exploration of the relationship between prompt

capacity and knowledge transfer to future work.

Analyzing Learned Prompts. We conduct qualitative analysis on prompts learned

using MPT to investigate whether cross-task knowledge is indeed encoded in the task-

shared prompt which makes it easier for target tasks to effectively adapt and encode their

own knowledge effectively.

Following (Vu et al., 2022), we leverage task embedding to compute cosine similar-

ities between all target task pairs after adaptation, where each task is represented by the

composition of task-shared and task-specific prompts (averaged to obtain a single vector).

Figure 5.6 shows the visualization of cosine similarity matrices for SPoT and MPT on Su-

perGLUE tasks. We find that task embeddings can effectively cluster similar tasks together,
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such as MultiRC is similar to BoolQ, and WiC is also close to both of them. Moreover, we

also observe that MPT has clearer clusters than SPoT, which verifies our hypothesis that

MPT helps target tasks to encode task-specific knowledge more effectively.

5.4.3 Ablation Studies

We conduct extensive ablation studies to measure the importance of various compo-

nents of MPT and justify several important modeling strategies in our framework in the

following subsections.

Effectiveness of Prompt Decomposition. Table 5.4 presents our ablation studeis on Su-

perGLUE for testing the effect of prompt decomposition and prompt distillation. We fix

all the hyper-parameters across all settings and rerun MPT source training to get various

ablated versions of the transferred prompt. First, we ablate both prompt decomposition

and distillation and initialize a vanilla prompt to be shared across all source tasks (no task-

specific vectors). We train it with the simple mixing of all datasets, then transfer the result-

ing prompt to target tasks for adaptation. Table 5.4 shows that simply training a single soft

prompt only produces an average accuracy of 69.5% on SuperGLUE (top row), as it fails

to leverage commonalities across source tasks while minimizing interference. To measure

the effect of prompt decomposition, we replace the vanilla source prompt with our decom-

posable prompt with task-shared and task-specific components and train it without prompt

distillation (third row in Table 5.4), which gives us 3.5% average performance improvement

on SuperGLUE. This ablation clearly indicates the importance of our proposed prompt de-

composition strategy in MPT and demonstrates that the shared component can effectively

capture the rich cross-task knowledge to be beneficial to target downstream tasks.
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Decomposition Distillation Avg. Score
✗ ✗ 69.5
✗ ✓ 70.6
✓ ✗ 73.0
✓ ✓ 74.1

Table 5.4: Ablation studies on SuperGLUE.

Effectiveness of Prompt Distillation. To test the effect of prompt distillation, we ablate

prompt decomposition and train a vanilla prompt shared by all the source tasks with the

same training loss of MPT in Equation 5.5. The teacher models are kept the same for

this ablation and MPT. Compared with the simple baseline (first row in Table 5.4), adding

prompt distillation (second row) produces 1.1% average performance improvement, which

verifies the effectiveness of prompt distillation. With distillation, the vanilla shared prompt

can be trained by more fine-grained learning signals from each task, but without prompt

decomposition, knowledge of all the source tasks is entangled together, which may hurt

transfer performance on target tasks. Finally, we observe that prompt distillation com-

bined with prompt decomposition yields the best average performance of 74.1% on Super-

GLUE benchmark. This confirms that distilling knowledge from separately-trained source

prompts is an effective strategy for learning good decomposable prompts.

We further investigate the individual components of prompt distillation to see their in-

fluences on final performance. We remove the loss of hidden states from Equation 5.5

and find that it produces an average performance of 73.68% on SuperGLUE, verifying the

effectiveness of regularizing hidden states in conjunction with logits to reach its full per-

formance, which is consistent with findings in (Sanh et al., 2019). Lastly, we consider a

variant of distillation loss to match the teacher and student prompts directly by adding an
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MSE loss to minimize the distance between those two prompts. Replacing our proposed

distillation losses with this prompt distance loss and jointly training it with prompt decom-

position yields an average SuperGLUE performance of 73.6%, which performs worse than

the distillation losses based on logits and hidden states.

Ablation on Target Adaptation Strategies. When transferring the shared prompt from

source training to target tasks, we ablate MPT with the choices of how to tune the task-

shared and task-specific components for target tasks. We find that only updating the

task-shared component (i.e., removing target task-specific vectors) or only updating task-

specific vectors (i.e., freezing task-shared component) produce unsatisfied results (62.5%

and 71.3% SuperGLUE, respectively). This indicates the significance of keeping both com-

ponents for prompt decomposition on target adaptation.

Effectiveness of Stochastic Task Sampling. Inspired by stochastic depth for training deep

neural networks (Huang et al., 2016), we propose a multitask training strategy in Sec-

tion 5.3.2, which is to stochastically sample a various number of tasks within each mini-

batch to help the shared component of MPT be robust to task variances. Ablating this

training strategy produces an average performance on SuperGLUE as 73.66%, which veri-

fies the importance of this simple multitask training strategy.

5.4.4 MPT for NLG Tasks

We follow the standard evaluation protocol of prior works (Asai et al., 2022; Vu et al.,

2022) to conduct our experiments on GLUE, SuperGLUE, MRQA and Other benchmarks.

In this section, we conduct additional experiments on NLG tasks by applying T5-MPT

source prompt on target NLG tasks. In particular, we transfer the T5-Large prompt trained

using 6 diverse source tasks used in our current experiments for adaptation to two target
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E2E WebNLG
BLEU NIST METEOR Rouge-L CIDEr BLEU METEOR TER (↓)

PT 29.11 5.00 0.343 51.50 1.72 46.02 0.37 46.89
MPT 32.14 5.35 0.363 52.88 1.86 52.27 0.40 41.36

Table 5.5: Applying MPT-T5-Large prompts to NLG tasks. MPT consistently outperforms PT on
both tasks.

MRQA Others
NQ HP SQA News Avg. WG Yelp SciTail PAWS Avg.

MPT (w/ 6 Source Tasks) 72.0 75.8 77.2 63.7 72.2 56.5 96.4 95.5 93.5 85.5
MPT (w/ 12 Source Tasks) 72.1 76.4 77.9 64.0 72.6 56.6 96.8 95.9 92.9 85.6

Table 5.6: MPT performance on MRQA and Others with more number of source tasks.

tasks, namely E2E (Novikova et al., 2017) and WebNLG (Gardent et al., 2017). Table 5.5

shows that our proposed MPT significantly outperforms standard PT (Lester et al., 2021)

on both NLG tasks across all the metrics. Our BLEU improvements over PT are 3.03% and

6.25% on E2E and WebNLG tasks respectively, showing the effectiveness of our approach

on both NLU (e.g., classification, NLI, QA tasks) and NLG tasks. This is particularly

an impressive result since the source tasks were all NLU tasks, i.e., MPT can transfer

knowledge from NLU tasks to NLG tasks.

5.4.5 MPT with more number of source tasks

Following (Asai et al., 2022), we select 6 representative NLP tasks as source datsks,

including 2 NLI, 1 paraphrase, 1 sentiment analysis and 2 large-scale QA tasks, which are

general/diverse enough and can enable knowledge transfer to other tasks. In this section,

we investigate the effect of adding more remotely relevant source tasks to our proposed
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MRQA Others
param/task NQ HP SQA News Avg. WG Yelp SciTail PAWS Avg.

Fine-tuning 220M 75.1 77.5 81.1 65.2 74.7 61.9 96.7 95.8 94.1 87.1
Adapter 1.9M 74.2 77.6 81.4 65.6 74.7 59.2 96.9 94.5 94.3 86.2
MPT-100 77.6K 72.0 75.8 77.2 63.7 72.2 56.5 96.4 95.5 93.5 85.5
MPT-300 231.5K 72.6 76.4 78.4 64.3 73.0 57.0 97.0 96.8 93.8 86.1

Table 5.7: Performance on MRQA and Others benchmark by scaling prompt length. All results
are based on T5-Base. MPT-300 is very competitive to Adapter on Others benchmaek while being
highly parameter-efficient.

multitask prompt tuning. Specifically, we add 6 additional diverse source tasks, including

one topic classification (AGNews (Zhang et al., 2015)), three multi-choice QA (Comm-

monsenseQA (Talmor et al., 2018), OpenBookQA (Mihaylov et al., 2018), ARC (Clark

et al., 2018)), one adversarial NLI (ANLI (Nie et al., 2020)) and one commonsense (wino-

grande (Sakaguchi et al., 2021)) datasets. Table 5.6 shows the results on MRQA and Others

benchmarks. As can be seen, MPT with 12 tasks is still very effective for target adaptation

on both benchmarks, slightly outperforming MPT trained using 6 tasks.

Furthermore, it would be compelling to use benchmarks like CrossFit (Ye et al., 2021a)

consisting of 160 NLP tasks as source tasks for analyzing the performance of MPT on

parameter-efficient transfer learning. While we currently do not possess the compute re-

sources for this extreme large-scale study, we hope to cover this an interesting future work.

Last but not least, we will release pretrained source task prompts and easily extendable

code so that it can motivate further studies on task scaling and understanding transferabilty

across a more diverse set of source and target tasks.
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5.4.6 Prompt Scaling for MRQA and Others

Our proposed MPT outperforms both Finetuning and Adapter baslines on GLUE and

SuperGLUE benchmarks (Table 5.1). However, they’re still better than MPT on MRQA

and Others benchmarks (Table 5.2) with 2832 and 24 times more parameters than MPT, re-

spectively. While adding the same number of prompt parameters as the Adapter to close the

performance gap on MRQA and Others benchmarks is an interesting suggestion, we note

that it requires a prompt length of 2400 tokens on T5-Base, which can be computationally

inefficient due to transformer’s quadratic complexity with the input length. Table 5.7 shows

that increasing prompt length from 100 to 300 yields an average improvement of 0.8% on

MRQA and 0.6% on Others, further closing the gap between MPT and Adapters (e.g., only

0.1% difference in Others benchmark). We also test with a prompt length of 400 tokens but

did not notice any significant improvements. We believe this is because the optimal prompt

length in our current experiments is around 300 tokens as discussed in our prompt scaling

analysis. Applying MPT for every layer of the pretrained model, instead of only input layer

(like P-Tuning v2 (Liu et al., 2021b)) could be a promising direction to further improve the

performance: we leave this as an interesting future work.

5.4.7 Few-Shot Results on GLUE and SuperGLUE

Following (Asai et al., 2022), we conduct few-shot experiments on BoolQ, CB, and Sc-

iTail tasks for a fair and direct comparison with other parameter-efficient methods, namely

SpoT (Vu et al., 2022), ATTEMPT (Asai et al., 2022) and Hyperformer (Mahabadi et al.,

2021). In this section, we conduct more comprehensive few-shot experiments on all the

GLUE and SuperGLUE tasks by comparing vanilla PT (Lester et al., 2021) and MPT. As

shown in Table 5.8, we can observe that not only MPT outperforms the vanilla PT by a
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k-shot MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA Avg. Multi BoolQ WiC WSC CB Avg.

4
PT 40.1 63.2 40.4 53.0 88.8 68.1 56.3 27.4 54.7 61.8 61.6 51.2 60.4 53.5 57.7
MPT 59.4 82.0 86.2 56.5 89.1 68.1 62.6 34.8 67.3 62.2 62.2 52.9 67.3 73.6 63.6

16
PT 41.5 62.3 59.9 50.9 87.8 68.1 54.7 28.5 56.7 60.3 61.9 48.9 44.2 63.5 55.8
MPT 61.6 84.7 90.6 63.2 89.1 70.1 64.8 32.1 69.5 64.5 63.3 49.8 67.3 78.6 64.7

32
PT 37.0 62.3 56.7 50.9 87.5 68.1 54.7 23.2 55.1 59.2 61.7 52.6 67.3 67.8 61.7
MPT 63.6 88.5 91.0 75.9 89.7 74.5 59.7 30.8 71.7 63.3 68.9 53.9 67.3 82.1 67.1

Table 5.8: Few-Shot results on GLUE and SuperGLUE with k = {4, 16, 32}. MPT consistently
outperforms PT, demonstrating generalizability of MPT prompts to new tasks with only a few train-
ing examples.

large margin in most of the datasets, but also MPT can perform very well on many datasets

to reach their full-dataset performance with 16 or 32 shots, such as QQP, QNLI, STS-B, and

WSC. These results clearly indicate that MPT can effectively use cross-task knowledge in

source tasks to target tasks where there are only a few labeled examples.

5.5 Discussion and Conclusion

We introduced and studied multitask prompt tuning (MPT), which learns a single trans-

ferable prompt by decomposing and distilling knowledge from multiple source tasks as well

as their task-specific source prompts. MPT decomposes the task prompt by the Hadamard

product of a shared prompt matrix and a rank-one task-specific matrix. The shared com-

ponent is then transferred and adapted to target tasks to be further tuned. Empirically

we found this approach enables parameter-efficient transfer learning to target downstream

tasks across diverse NLP benchmarks, even outperforming the full finetuning baseline in

some cases despite tuning much fewer task-specific parameters.

Specifically, Our current MPT is built on top of prompt tuning (Lester et al., 2021),

which is mostly applied to T5 (Raffel et al., 2020). So, we follow prior works, such as
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SPoT (Vu et al., 2022) and ATTEMPT (Asai et al., 2022), to conduct experiments on T5-

variants. However, our proposed approach is quite generic and can be applied to both T5

and GPT models. This is primarily because MPT only prepends a prompt matrix (i.e., vir-

tual tokens) to the input embedding layer and hence can be adapted to any transformer mod-

els (encoder-only, encoder-decoder, or decoder-only), not limited to T5. Specifically, MPT

focuses on decomposing the prompt matrix into task-specific and task-shared components,

which introduces minimal intrusion to the backbone model. Similarly, the distillation part

of MPT is also model-agnostic and can be generalized to GPT models. Straightforward

alternative architectures can extend this to BERT-based prompt tuning, such as P-Tuning-

v2 (Liu et al., 2021b) and GPT-based prompt tuning, such as prefix-tuning (Li and Liang,

2021; Clive et al., 2021).

Moreover, our key intuition of learning rich cross-task shared knowledge across mul-

tiple generic NLP tasks can be extended to dictionary learning. We first group NLP tasks

based on their task description and similarity, and then apply MPT to each group to learn

a basis prompt. After learning basis prompts for all NLP tasks, including text classifica-

tion, natural language inference, question answering, text generation, etc., we can ensemble

them for more efficient fine-tuning on any NLP target tasks.
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Part V: Reasoning: Explicit Reasoning
for Interpretable Machine Learning
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Chapter 6: Rationalizing Medical Relation Prediction from

Corpus-level Statistics

Finally, we turn to the last stage of the life cycle of incorporating human knowledge into

AI systems, knowledge reasoning. Knowledge reasoning aims to enable more transparent

and generalizable prediction by performing human-like complex reasoning over structured

knowledge. This stage mimics how humans can reason by understanding the relationships

between different facts and drawing logical conclusions, which is necessary to solve com-

plex problems, such as mathematical ones. It is challenging but especially important to

increase the interpretability of existing AI systems that mostly turn out to be black-box

models nowadays. It provides a reliable and human-understandable way to explain the

internal decision-making process of AI systems, which is beneficial for developing trust

and confidence in AI-based applications, especially in high-risk domains. This chapter

proposes a self-explainable framework that can generate human-intuitive rationales for re-

lation prediction tasks. The generated rationales are used to justify the model decision and

increase user trust.

Specifically, the interpretability of machine learning models is becoming increasingly

important, especially in the medical domain. Aiming to shed some light on how to rational-

ize medical relation prediction, we present a new framework inspired by existing theories
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on how human memory works, e.g., theories of recall and recognition. Given the corpus-

level statistics, i.e., a global co-occurrence graph of a clinical text corpus, to predict the re-

lations between two entities, we first recall rich contexts associated with the target entities,

and then recognize relational interactions between these contexts to form model rationales,

which will contribute to the final prediction. We conduct experiments on a real-world pub-

lic clinical dataset and show that our framework can not only achieve competitive predictive

performance against a comprehensive list of neural baseline models but also present ratio-

nales to justify its predictions. We further collaborate with medical experts deeply to verify

the usefulness of our model rationales for clinical decision-making. Our implementation is

available on Github: https://github.com/zhenwang9102/X-MedRELA.

6.1 Introduction

Predicting relations between entities from a text corpus is a crucial task in order to ex-

tract structured knowledge, which can empower a broad range of downstream tasks, e.g.,

question answering (Xu et al., 2016), dialogue systems (Lowe et al., 2015), reasoning (Das

et al., 2017b), etc. There has been a large amount of existing work focusing on predicting

relations based on raw texts (e.g., sentences, paragraphs) mentioning two entities (Hen-

drickx et al., 2010; Zeng et al., 2014; Zhou et al., 2016; Mintz et al., 2009; Riedel et al.,

2010; Lin et al., 2016; Verga et al., 2018; Yao et al., 2019).

In this chapter, we study a relatively new setting in which we predict relations between

entities based on the global co-occurrence statistics aggregated from a text corpus, and

focus on medical relations and clinical texts in Electronic Medical Records (EMRs). The

corpus-level statistics present a holistic graph view of all entities in the corpus, which will

greatly facilitate the relation inference, and can better preserve patient privacy than raw or
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Figure 6.1: Our intuition for how to rationalize relation prediction based on the corpus-
level statistics. To infer the relation between the target entities (red nodes), we recall (blue
dashed line) their associated entities (blue nodes) and infer their relational interactions (red
dashed line), which will serve as assumptions or model rationales to support the target
relation prediction.

even de-identified textual content and are becoming a popular substitute for the latter in the

research community for studying EMR data (Finlayson et al., 2014; Wang et al., 2019b).

To predict relations between entities based on a global co-occurrence graph, intuitively,

one can first optimize the graph embedding or global word embedding (Pennington et al.,

2014; Perozzi et al., 2014; Tang et al., 2015), and then develop a relation classifier (Nickel

et al., 2011; Socher et al., 2013a; Yang et al., 2015; Wang et al., 2018c) based on the embed-

ding vectors of the two entities. However, such kind of neural frameworks often lack the

desired interpretability, which is especially important for the medical domain. In general,

despite their superior predictive performance in many NLP tasks, the opaque decision-

making process of neural models has concerned their adoption in high stakes domains like

medicine, finance, and judiciary (Rudin, 2019; Murdoch et al., 2019). Building models that

provide reasonable explanations and have increased transparency can remarkably enhance
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user trust (Ribeiro et al., 2016; Miller, 2019). In this chapter, we aim to develop such a

model for our medical relation prediction task.

To start with, we draw inspiration from the existing theories on cognitive processes

about how human memory works, e.g., two types of memory retrieval (recall and recogni-

tion) (Gillund and Shiffrin, 1984). Basically, in the recall process, humans tend to retrieve

contextual associations from long-term memory. For example, given the word “Paris”, one

may think of “Eiffel Tower” or “France”, which are strongly associated with “Paris” (Nobel

and Shiffrin, 2001; Kahana et al., 2008; Budiu, 2014). Besides, there is a strong correlation

between the association strength and the co-occurrence graph (Spence and Owens, 1990;

Lundberg and Lee, 2017). In the recognition process, humans typically recognize if they

have seen a certain piece of information before. Figure 6.1 shows an example in the context

of relation prediction. Assume a model is to predict whether Aspirin may treat Headache or

not (That “Aspirin may treat Headache” is a known fact, and we choose this relation triple

for illustration purposes). It is desirable if the model could perform the aforementioned two

types of memory processes and produce rationales to base its prediction upon: (1) Recall.

What entities are associated with Aspirin? What entities are associated with Headache? (2)

Recognition. Do those associated entities hold certain relations, which can be leveraged as

clues to predict the target relation? For instance, a model could first retrieve a relevant en-

tity Pain Relief for the tail entity Headache as they co-occur frequently, and then recognize

there is a chance that Aspirin can lead to Pain Relief (i.e., formulate model rationales or

assumptions), based on which it could finally make a correct prediction (Aspirin, may treat,

Headache).
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Figure 6.2: A high-level illustration of our framework.

Now we formalize such intuition to rationalize the relation prediction task. Our frame-

work consists of three stages, global association recall (CogStage-1), assumption for-

mation and representation (CogStage-2), and prediction decision making (CogStage-3),

shown in Figure 6.2. CogStage-1 models the process of recalling diverse contextual en-

tities associated with the target head and tail entities respectively, CogStage-2 models the

process of recognizing possible interactions between those recalled entities, which serve as

model rationales (or, assumptions22) and are represented as semantic vectors, and finally

CogStage-3 aggregates all assumptions to infer the target relation. We jointly optimize

all three stages using a training set of relation triples as well as the co-occurrence graph.

Model rationales can be captured through this process without any gold rationales avail-

able as direct supervision. Overall, our framework rationalizes its relation prediction and

is interpretable to users23 by providing justifications for (i) why a particular prediction is

made, (ii) how the assumptions of the prediction are developed, and (iii) how the particular

assumptions are relied on.

22We use the two terms interchangeably in this chapter.
23Following (Murdoch et al., 2019), desired interpretability is supposed to provide insights to particular

audiences, which in our case are medical experts.
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On a real-life clinical text corpus, we compare our framework with various compet-

itive methods to evaluate the predictive performance and interpretability. We show that

our method obtains very competitive performance compared with a comprehensive list of

various neural baseline models. Moreover, we follow recent work (Singh et al., 2019; Jin

et al., 2020) to quantitatively evaluate model interpretability and demonstrate that rationales

produced by our framework can greatly help earn expert trust. To summarize, we study

the important problem of rationalizing medical relation prediction based on corpus-level

statistics and propose a new framework inspired by cognitive theories, which outperforms

competitive baselines in terms of both interpretability and predictive performance.

6.2 Related Work

Relation Extraction (RE) typically focuses on predicting relations between two entities

based on their text mentions, and has been well studied in both open domain (Mintz et al.,

2009; Zeng et al., 2015; Riedel et al., 2013; Lin et al., 2016; Song et al., 2019; Deng and

Sun, 2019) and biomedical domain (Uzuner et al., 2011; Wang and Fan, 2014; Sahu et al.,

2016; Lv et al., 2016; He et al., 2019). Among them, most state-of-the-art work develops

various powerful neural models by leveraging human annotations, linguistic patterns, dis-

tance supervision, etc. More recently, an increasing amount of work has been proposed

to improve model’s transparency and interpretability. For example, (Lee et al., 2019) vi-

sualizes self-attention weights learned from BERT (Devlin et al., 2019) to explain relation

prediction. However, such text-based interpretable models tend to provide explanations

within a local context (e.g., words in a single sentence mentioning target entities), which

may not capture a holistic view of all entities and their relations stored in a text corpus. We

believe that such a holistic view is important for interpreting relations and can be provided
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to some degree by the global statistics from a text corpus. Moreover, global statistics have

been widely used in the clinical domain as they can better preserve patient privacy (Fin-

layson et al., 2014; Wang et al., 2019b).

On the other hand, in recent years, graph embedding techniques (Perozzi et al., 2014;

Tang et al., 2015; Grover and Leskovec, 2016b; Yue et al., 2019) have been widely applied

to learn node representations based on graph structure. Representation learning based on

global statistics from a text corpus (i.e., co-occurrence graph) has also been studied (Levy

and Goldberg, 2014b; Pennington et al., 2014). After employing such methods to learn

entity embeddings, a number of relation classifiers (Nickel et al., 2011; Bordes et al., 2013;

Socher et al., 2013a; Yang et al., 2015; Wang et al., 2018c) can be adopted for relation pre-

diction. We compare our method with such frameworks to show its competitive predictive

accuracy. However, such frameworks tend to be difficult to interpret as they provide little or

no explanations on how decisions are made. In this chapter, we focus more on model inter-

pretability than predictive accuracy, and draw inspirations from existing cognitive theories

of recall and recognition to develop a new framework, which is our core contribution.

Another line of research related to interpreting relation prediction is path-based knowl-

edge graph (KG) reasoning (Gardner et al., 2014; Neelakantan et al., 2015; Guu et al.,

2015; Xiong et al., 2017; Stadelmaier and Padó, 2019). In particular, existing paths mined

from millions of relational links in knowledge graphs can be used to provide justifications

for relation predictions. For example, to explain Microsoft and USA may hold the relation

CountryOfHeadquarters, by traversing a KG, one can extract the path Microsoft IsBasedIn−−−−→

Seattle
CountryLocatedIn−−−−−−−−→ USA as one explanation. However, such path-finding methods typi-

cally require large-scale relational links to infer path patterns, and cannot be applied to our

co-occurrence graph as the co-occurrence links are unlabeled.
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Figure 6.3: Framework Overview.

In addition, our work is closely related to the area of rationalizing machine decision by

generating justifications/rationales accounting for model’s prediction. In some scenarios,

human rationales are provided as extra supervision for more explainable models (Zaidan

et al., 2007; Bao et al., 2018). However, due to the high cost of manual annotation, model

rationales are desired to be learned in an unsupervised manner(Lei et al., 2016; Bouchacourt

and Denoyer, 2019; Zhao et al., 2019). For example, (Lei et al., 2016) select a subset of

words as rationales and (Bouchacourt and Denoyer, 2019) provide an explanation based

on the absence or presence of “concepts”, where the selected words and “concepts” are

learned unsupervisedly. Different from text-based tasks, in this chapter, we propose to

rationalize relation prediction based on global co-occurrence statistics and similarly, model

rationales in our work are captured without explicit manual annotation either, via a joint

training framework.

6.3 Preliminaries

Different from existing work using raw texts for relation extraction, we assume a global

co-occurrence graph (i.e., corpus-level statistics) is given, which was pre-constructed based
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on a text corpus D, and denote it as an undirected graph G = (V , E), where each vertex

v ∈ V represents an entity extracted from the corpus and each edge e ∈ E is associated

with the global co-occurrence count for the connected nodes. Counts reflect how frequent

two entities appear in the same context (e.g., co-occur in the same sentence, document, or a

certain time frame). In this chapter, we focus on clinical co-occurrence graph in which ver-

tices are medical terms extracted from clinical notes. Nevertheless, as we will see later, our

framework is very general and can be applied to other relations with corpus-level statistics.

Our motivation for working under this setting lies in three folds: (1) Such graph data is

stripped of raw textual contexts and thus, has a better preserving of patient privacy (Wang

et al., 2019b), which makes itself easier to be constructed and shared under the HIPPA pro-

tected environments (Act, 1996) for medical institutes (Finlayson et al., 2014); (2) Com-

pared with open-domain relation extraction, entities holding a medical relation oftentimes

do not co-occur in a local context (e.g., a sentence or paragraph). For instance, we ob-

serve that in a widely used clinical co-occurrence graph (Finlayson et al., 2014), which is

also employed for our experiments later, of all entity pairs holding the treatment relation

according to UMLS (Unified Medical Language System), only about 11.4% have a co-

occurrence link (i.e., co-occur in clinical notes within a time frame like 1 day or 7 days);

(3) As suggested by cognitive theories (Spence and Owens, 1990), lexical co-occurrence

is significantly correlated with association strength in the recall memory process, which

further inspires us to utilize such statistics to find associations and form model rationales

for relation prediction.

Finally, our relation prediction task is formulated as: Given the global statistics G and

an entity pair, we predict whether they hold a relation r (e.g., MAY TREAT), and moreover

provide a set of model rationales T composed of relation triples for the prediction. For
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the example in Figure 6.1, we aim to build a model that will not only accurately predict

the MAY TREAT relation, but also provide meaningful rationales on how the prediction is

made, which are crucial for gaining trust from clinicians.

6.4 Methodology

Following a high-level framework illustration in Figure 6.2, we show a more detailed

overview in Figure 6.3 and introduce each component as follows.

6.4.1 CogStage-1: Global Association Recall

Existing cognitive theories (Kahana et al., 2008) suggest that recall is an essential

function of human memory to retrieve associations for later decision making. On the

other hand, the association has been shown to significantly correlate with the lexical co-

occurrence from the text corpus (Spence and Owens, 1990; Lund and Burgess, 1996). In-

spired by such theories and correlation, we explicitly build up our model based on recalled

associations stemming from corpus-level statistics and provide global highly-associated

contexts as the source of interpretations.

Given an entity, we build an estimation module to globally infer associations based on

the corpus-level statistics. Our module leverages distributional learning to fully explore the

graph structure. One can also directly utilize the raw neighborhoods in the co-occurrence

graph, but due to the noise introduced in the preprocessing of building the graph, it is a less

optimal choice in real practice.

Specifically, for a selected node/entity ei ∈ E , our global association recall module

estimates a conditional probability p (ej|ei), representing how likely the entity ej ∈ E is
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associated with ei24. We formally define such conditional probability as:

p (ej|ei) =
exp (υ′T

ej
· υei)∑|V|

k=1 exp (υ
′T
ek
· υei)

(6.1)

where υei ∈ Rd is the embedding vector of node ei and υ′
ej
∈ Rd is the context embedding

for ej .

There are many ways to approximate p (ej|ei) from the global statistics, e.g., using

global log-bilinear regression (Pennington et al., 2014). To estimate such probabilities and

update entity embeddings efficiently, we optimize the conditional distribution p (ej|ei) to

be close to the empirical distribution p̂ (ej|ei) defined as:

p̂ (ej|ei) =
pij∑

(i,k)∈E pik
(6.2)

where E is the set of edges in the co-occurrence graph and pij is the PPMI value calculated

by the co-occurrence counts between node ei and ej . We adopt the cross entropy loss for

the optimization:

Ln = −
∑

(ei,ej)∈V

p̂(ej|ei) log (p(ej|ei)) (6.3)

This association recall module will be jointly trained with other objective functions to

be introduced in the following sections. After that, given an entity ei, we can select the top-

Nc entities from p(·|ei) as ei’s associative entities for subsequent assumption formation.

6.4.2 CogStage-2: Assumption Formation and Representation

As shown in Figure 6.3, with the associative entities from CogStage-1, we are ready

to formulate and represent assumptions. In this chapter, we define model assumptions as

relational interactions between associations, that is, as shown in Figure 6.1, the model

24We assume all existing entities can be possible associations for the given entity.

149



may identify (Caffeine, MAY TREAT, Migraine) as an assumption, which could help pre-

dict Aspirin may treat Headache (Caffeine and Migraine are associations for Aspirin and

Headache respectively). Such relational rationales are more concrete and much easier for

humans to understand than the widely-adopted explanation strategy (Yang et al., 2016b;

Mullenbach et al., 2018; Vashishth et al., 2019) in NLP that is based on pure attention

weights on local contexts.

One straightway way to obtain such rationales is to query existing medical knowledge

bases (KBs), e.g., (Caffeine, MAY TREAT, Migraine) may exist in SNOMED CT25 and

can serve as a model rationale. We refer to rationales acquired in this way as the Closed-

World Assumption (CWA) (Reiter, 1981) setting since only KB-stored facts are considered

and trusted in a closed world. In contrast to the CWA rationales, considering the sparsity

and incompleteness issues of KBs that are even more severe in the medical domain, we

also propose the Open-World Assumptions (OWA) (Ceylan et al., 2016) setting to discover

richer rationales by estimating all potential relations between associative entities based on

a seed set of relation triples (which can be regarded as prior knowledge).

In general, the CWA rationales are relatively more accurate as each fact triple has been

verified by the KB, but would have a low coverage of other possibly relevant rationales

for the target prediction. On the other hand, the OWA rationales are more comprehensive

but could be noisy and less accurate, due to the probabilistic estimation procedure and the

limited amount of prior knowledge. However, as we will see, by aggregating all OWA

rationales into the whole framework with an attention-based mechanism, we can select

high-quality and most relevant rationales for prediction. For the rest of the chapter, by

default we adopt the OWA setting in our framework and describe its details as follows.

25https://www.snomed.org/

150

https://www.snomed.org/


Specifically, given a pair of head and tail entity, eh, et ∈ V , let us denote their asso-

ciation sets as A(eh) = {aih}
Nh
i=1 and A(et) = {ajt}Nt

j=1, where Nh, Nt are the number of

associative entities ah, at to use. Each entity has been assigned an embedding vector by the

previous association recall module. We first measure the probability of relations holding

for the pair. Given aih ∈ A(eh), a
j
t ∈ A(et) and a relation rk ∈ R, we define a scoring

function as (Bordes et al., 2013) to estimate triple quality:

sijk = f(aih, rk, a
j
t) = −||υaih

+ ξk − υajt
||1 (6.4)

where υaih
and υajt

are embedding vectors, relations are parameterized by a relation matrix

R ∈ RNr×d and ξk is its k-th row vector. Such a scoring function encourages larger value

for correct triples. Additionally, in order to filter unreliable estimations, we define an NA

relation to represent other trivial relations or no relation as the score, sijNA = f(aih,NA, a
j
t),

which can be seen as a dynamic threshold to produce reasonable rationales.

Now we formulate OWA rationales by calculating the conditional probability of a rela-

tion given a pair of associations as follows (we save the superscript ij for space):

p(rk|aih, a
j
t) =


exp (sk)∑

sk≥sNA
exp (sk)

, sk > sNA

0, sk ≤ sNA

(6.5)

For each association pair, (aih, a
j
t), we only form an assumption with a relation r∗k if r∗k

is top ranked according to p(rk|aih, a
j
t).26

To represent assumptions, we integrate all relation information per pair into a single

vector representation. Concretely, we calculate the assumption representation by treating

p(rk|aih, a
j
t) as weights for all relations as follows:

aij = ρ(aih, a
j
t ;R) =

Nr∑
k′=1

p(rk′ |aih, a
j
t) · ξk′ (6.6)

26We remove the target relation to predict if it exists in the assumption set.
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Finally, we combine the entity vectors as well as the relation vector to get the final

representation of assumptions for association pair (aih, a
j
t), where ci ∈ A(eh) and cj ∈

A(et):

eij = tanh([υaih
;υajt

; aij]Wp + bp) (6.7)

where [· ; ·] represents vector concatenation, Wp ∈ R3d×dp , bp ∈ Rdp are the weight matrix

and bias in a fully-connected network.

6.4.3 CogStage-3: Prediction Decision Making

Analogical to human thinking, our decision making module aggregates all assumption

representations and measures their accountability for the final prediction. It learns a dis-

tribution over all assumptions and we select the ones with highest probabilities as model

rationales. More specifically, we define a scoring function g(eij) to estimate the account-

ability based on the assumption representation eij and normalize g(eij) as:

g(eij) = vT · tanh(Waeij + ba) (6.8)

pij =
exp(g(eij))∑Nh

m=1

∑Nt

n=1 exp(g(emn))
(6.9)

where Wa, ba are the weight matrix and bias for the scoring function. Then we get the

weighted rationale representation as:

r = ψ(eh, et) =

Nh∑
i=1

Nt∑
j=1

pijeij (6.10)

With the representation of weighted assumption information for the target pair (eh, et),

we calculate the binary prediction probability for relation r as:

p(r|eh, et) = σ(Wrr + br) (6.11)

where σ(x) = 1/(1 + exp(−x)) and Wr, br are model parameters.
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Rationalizing relation prediction. After fully training the entire model, to recover the

most contributing assumptions for predicting the relation between the given target enti-

ties (eh, et), we compute the importance scores for all assumptions and select those most

important ones as model rationales. In particular, we multiply pij (the weight for as-

sociation pair (aih, a
j
t) in Eqn. 6.9) with p(rk|aih, a

j
t) (the probability of a relation given

the pair (aih, a
j
t) in Eqn. 6.5) to score the triple (aih, rk, a

j
t). We rank all such triples for

aih ∈ A(eh), a
j
t ∈ A(et), rk ∈ R and select the top-K triples as model rationales for the

final relation prediction.

6.4.4 Training

We now describe how we train our model efficiently for multiple modules. For rela-

tional learning to estimate the conditional probability p(rk|aih, a
j
t), we utilize training data

as the seed set of triples for all relations as correct triples denoted as (h, r, t) ∈ P . The

scoring function in Eqn. 6.4 is expected to score higher for correct triples than the corrupted

ones in which we denote N (?, r, t) (N (t, r, ?)) as the set of corrupted triples by replacing

the head (tail) entity randomly. Instead of using margin-based loss function, we adopt a

more efficient training strategy from (Kadlec et al., 2017; Toutanova and Chen, 2015) with

a negative log likelihood loss function as:

Lr =−
∑

(h,r,t)∈P log p (h|t, r)

−
∑

(h,r,t)∈P log p (t|h, r)
(6.12)

where the conditional probability p(h|t, r) is defined as follows (p(t|h, r) is defined simi-

larly):

p (h|t, r) = exp(f (h, r, t))∑
h′∈N (?,r,t) exp(f (h

′, r, t))
(6.13)
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For our binary relation prediction task, we define a binary cross entropy loss function

with Eqn. 6.11 as follows:

Lp = −
∑M

i=1(yi · log(p(r|eih, eit))

+ (1− yi) · log(1− p(r|eih, eit)))
(6.14)

where M is the number of samples, yi is the label showing whether eh, et holds a certain

relation.

The above three loss functions, i.e., Ln for global association recall, Lr for relational

learning and Lp for relation prediction, are all jointly optimized. All three of them share the

entity embeddings and Lp will reuse the relation matrix from Lr to conduct the rationale

generation. Our training algorithm is displayed at Algorithm 1

Algorithm 1 CogStage Training Algorithm

INPUT: Corpus Statistics G, Gold Triples P , Binary Relation Data {(hk, tk), yk}Mk=1

OUTPUT: Model parameters
1: repeat
2: Sample {ei}b1i=1 with gold contexts from G
3: for i← 1 : b1 do
4: Calculate p(ej|ei) and p̂(ej|ei)
5: Optimize Ln by Eqn. 6.3
6: Sample {(hi, ri, ti)}b2i=1 from P
7: for i← 1 : b2 do
8: Generate Nn corrupted triples
9: Optimize Lr by Eqn. 6.12

10: Sample {(hi, ti), yi}b3i=1

11: for i← 1 : b3 do
12: Calculate p(ej|hi) and p(ej|ti)
13: Get contexts {amh }

Nc
m=1 and {ant }Nc

n=1

14: Optimize Lp by Eqn. 6.14
15: until Convergence
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6.5 Experiments

In this section, we first introduce our experimental setup, e.g, the corpus-level co-

occurrence statistics and datasets used for our experiments, and then compare our model

with a list of comprehensive competitive baselines in terms of predictive performance.

Moreover, we conduct expert evaluations as well as case studies to demonstrate the use-

fulness of our model rationales.

6.5.1 Dataset

We directly adopt a publicly available medical co-occurrence graph for our experi-

ments (Finlayson et al., 2014). The graph was constructed in the following way: (Fin-

layson et al., 2014) first used an efficient annotation tool (LePendu et al., 2012) to extract

medical terms from 20 million clinical notes collected by Stanford Hospitals and Clinics,

and then computed the co-occurrence counts of two terms based on their appearances in

one patient’s records within a certain time frame (e.g., 1 day, 7 days). We experiment with

their biggest dataset with the largest number of nodes (i.e., the per-bin 1-day graph here27)

so as to have sufficient training data. The co-occurrence graph contains 52,804 nodes and

16,197,319 edges.

To obtain training labels for relation prediction, we utilize the mapping between med-

ical terms and concepts provided by (Finlayson et al., 2014). To be specific, they mapped

extracted terms to UMLS concepts with a high mapping accuracy by suppressing the least

possible meanings of each term (see (Finlayson et al., 2014) for more details). We utilize

such mappings to automatically collect relation labels from UMLS. For term ea and eb that

27https://datadryad.org/stash/dataset/doi:10.5061/dryad.jp917
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are respectively mapped to medical concept cA and cB, we find the relation between cA and

cB in UMLS, which will be used as the label for ea and eb.

Relations UMLS Relations

May treat may treat

May prevent may prevent

Contraindicates has contraindicated drug

Causes cause of; induces; causative agent of

Symptom of
disease has finding; disease may have finding; has associated finding;
has manifestation; associated condition of; defining characteristic of

Table 6.1: Relations in our dataset and their mapped UMLS semantic relations. (UMLS
relation “Treats” does not exist in our dataset and hence is not mapped with the “May treat”
relation.)

Following (Wang and Fan, 2014) that studied distant supervision in medical text and

identified several crucial relations for clinical decision making, we select 5 important

medical relations with no less than 1,000 relation triples in our dataset. Each relation is

mapped to UMLS semantic relations, e.g., relation CAUSES corresponds to cause of, in-

duces, causative agent of in UMLS. A full list of mapping is in Table 6.1 We sample an

equal number of negative pairs by randomly pairing head and tail entities with the cor-

rect argument types (Wang et al., 2016a). We split all samples into train/dev/test sets with

a ratio of 70/15/15. Only relation triples in the training set are used to optimize relational

parameters. The statistics of the positive samples for relations are summarized in Table 6.2.

156



Med Relations Train Dev Test

Symptom of 14,326 3,001 3,087
May treat 12,924 2,664 2,735
Contraindicates 10,593 2,237 2,197
May prevent 2,113 440 460
Causes 1,389 305 354

Total 41.3k 8.6k 8.8k

Table 6.2: Dataset Statistics.

6.5.2 Implementation Details.

We implemented our model in Pytorch (Paszke et al., 2017) and optimized it by the

Adam optimizer (Kingma and Ba, 2015). The dimension of term/node embeddings is set

at 128. The number of negative triples for the relational learning is set at 100. The number

of association contexts to use for assumption formation, Nc is 32. Early stopping is used

when the performance in the dev set does not increase continuously for 10 epochs. We

augment the relation triples for optimizing Lr (Eqn. 6.12) by adding their reverse relations

for better training. We obtain DeepWalk and LINE (2nd) embeddings by OpenNE28 and

word2vec embeddings by doing SVD decomposition over the shifted PPMI co-occurrence

matrix (Levy and Goldberg, 2014b). Code, dataset and more implementation details are

available online29.

28https://github.com/thunlp/OpenNE

29https://github.com/zhenwang9102/X-MedRELA
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Methods MAY TREAT CONTRAIN. SYMPTOM OF MAY PREVENT CAUSES Avg.

Word2vec + DistMult 0.767 (±0.008) 0.777 (±0.013) 0.815 (±0.005) 0.649 (±0.018) 0.671 (±0.015) 0.736
Word2vec + RESCAL 0.743 (±0.010) 0.767 (±0.003) 0.808 (±0.009) 0.658 (±0.023) 0.659 (±0.039) 0.727
Word2vec + NTN 0.693 (±0.013) 0.758 (±0.005) 0.808 (±0.004) 0.605 (±0.022) 0.631 (±0.017) 0.699

DeepWalk + DistMult 0.740 (±0.003) 0.776 (±0.004) 0.805 (±0.003) 0.608 (±0.014) 0.650 (±0.018) 0.716
DeepWalk + RESCAL 0.671 (±0.010) 0.778 (±0.003) 0.800 (±0.003) 0.600 (±0.023) 0.708 (±0.011) 0.711
DeepWalk + NTN 0.696 (±0.006) 0.778 (±0.005) 0.787 (±0.005) 0.614 (±0.016) 0.674 (±0.024) 0.710
LINE + DistMult 0.767 (±0.003) 0.783 (±0.002) 0.795 (±0.003) 0.621 (±0.015) 0.641 (±0.024) 0.721
LINE + RESCAL 0.725 (±0.003) 0.771 (±0.002) 0.801 (±0.001) 0.613 (±0.013) 0.694 (±0.015) 0.721
LINE + NTN 0.733 (±0.002) 0.773 (±0.003) 0.800 (±0.001) 0.601 (±0.015) 0.706 (±0.013) 0.723

REPEL-D + DistMult 0.784 (±0.002) 0.797 (±0.002) 0.809 (±0.003) 0.681 (±0.010) 0.694 (±0.022) 0.751
REPEL-D + RESCAL 0.726 (±0.003) 0.780 (±0.002) 0.776 (±0.002) 0.685 (±0.010) 0.708 (±0.003) 0.737
REPEL-D + NTN 0.736 (±0.004) 0.780 (±0.002) 0.773 (±0.001) 0.667 (±0.015) 0.694 (±0.024) 0.731

Ours (w/ CWA) 0.709 (±0.005) 0.751 (±0.009) 0.744 (±0.007) 0.667 (±0.008) 0.661 (±0.032) 0.706
Ours 0.805 (±0.017) 0.811 (±0.006) 0.816 (±0.004) 0.676 (±0.020) 0.684 (±0.017) 0.758

Table 6.3: Comparison of model predictive performance. We run all methods for five times
and report the averaged F1 scores with standard deviations.

6.5.3 Predictive Performance Evaluation

Compared Methods. There are a number of advanced neural methods (Tang et al., 2015;

Qu et al., 2018; Wang et al., 2018c) that have been developed for the link prediction task,

i.e., predicting the relation between two nodes in a co-occurrence graph. At the high level,

their frameworks comprise of an entity encoder and a relation scoring function. We adapt

various existing methods for both the encoder and the scoring functions for comprehensive

comparison. Specifically, given the co-occurrence graph, we employ existing distributional

representation learning methods to learn entity embeddings. With the entity embeddings

as input features, we adapt various models from the knowledge base completion literature

as a binary relation classifier. More specifically, for the encoder, we select one word em-

bedding method, Word2vec (Mikolov et al., 2013b; Levy and Goldberg, 2014b), two graph

embedding methods, random-walk based DeepWalk (Perozzi et al., 2014), edge-sampling

based LINE (Tang et al., 2015), and one distributional approach REPEL-D (Qu et al., 2018)
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for weakly-supervised relation extraction that leverages both the co-occurrence graph and

training relation triples to learn entity representations. For the scoring functions, we choose

DistMult (Yang et al., 2015), RESCAL (Nickel et al., 2011) and NTN (Socher et al., 2013a).

Note that one can apply more complex encoders or scoring functions to obtain higher

predictive performance; however, in this work, we emphasize more on model interpretabil-

ity than predictive performance, and unfortunately, all such frameworks are hard to interpret

as they provide little or no explanations on how predictions are made.

We also show the predictive performance of our framework under the CWA setting in

which the CWA rationales are existing triples in a “closed” knowledge base (i.e., UMLS).

We first adopt the pre-trained association recall module to retrieve associative contexts for

head and tail entities, then formulate the assumptions using top-ranked triples (that exist

in our relation training data), where the rank is based on the product of their retrieval

probabilities (pij = p(ei|eh) × p(ej|et)). We keep the rest of our model the same as the

OWA setting.

Results. We compare the predictive performance of different models in terms of F1 score

under each relation prediction task. As shown in Table 6.3, our model obtains very compet-

itive performance compared with a comprehensive list of baseline methods. Specifically,

on the prediction tasks of MAY TREAT and CONTRAINDICATES, our model achieves a

substantial improvement (1∼2 F1 score) and a very competitive performance on the task

of SYMPTOM OF and MAY PREVENT. The small amount of training data might partly

explain why our model does not perform so well in the CAUSES tasks. Such comparison

shows the effectiveness of predicting relations based on associations and their relational in-

teractions. Moreover, compared with those baseline models which encode graph structure

into latent vector representation, our model utilizes co-occurrence graph more explicitly by
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leveraging the associative contexts symbolically to generate human-understandable ratio-

nales, which can assist medical experts as we will see shortly. In addition, we observe that

our model consistently outperforms the CWA setting: Despite the CWA rationales are true

statements on their own, they tend to have a low coverage of possible rationales, and thus,

may be not so relevant for the target relation prediction, which leads to a poor predictive

performance.

6.5.4 Model Rationale Evaluation

To measure the quality of our model rationales (i.e., OWA rationales), as well as to

conduct an ablation study of our model, we conduct an expert evaluation for the OWA ra-

tionales and also compare them with the CWA rationales. We first collaborate with a physi-

cian to explore how much a model’s rationales help them better trust the model’s prediction

following recent work for evaluating model interpretability (Singh et al., 2019; Mullenbach

et al., 2018; Atutxa et al., 2019; Jin et al., 2020). Then, we present some case studies to

show what kind of rationales our model has learnt. Note that compared with evaluation

by human annotators for open-domain tasks (without expertise requirement), evaluation by

medical experts is more challenging in general. The physician in our study (an M.D. with

9 years of clinical experience and currently a fellow trained in clinical informatics), who is

able to understand the context of terms and the basics of the compared algorithms and can

dedicate time, is qualified for our evaluation.

Expert Evaluation. We first explained to the physician about the recall and recognition

process in our framework and how model rationales are developed. They endorsed such

reasoning process as one possible way to gain their trust in the model. Next, for each

target pair for which our model correctly makes the prediction, they were shown the top-5
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OWA Rationales CWA Rationales

Ranking Score 17 5
Avg. Sum Score/Case 6.14 2.24
Avg. Max Score/Case 2.04 0.77

Table 6.4: Human evaluation on the quality of rationales.

rationales produced by our framework and were asked whether each rationale helps them

better trust the model prediction. For each rationale, they were asked to score it from 0

to 3 in which 0 is no helpful, 1 is a little helpful, 2 is helpful and 3 is very helpful. In

addition to the individual rationale evaluation, we further compare the overall quality of

CWA and OWA rationales, by letting experts rank them based the helpfulness of each set

of rationales (the rationale set ranked higher gets 1 ranking score and both get 0 if they

have the same rank). The details of the evaluation protocol can be found in Figure 6.4.

We randomly select 30 cases in the MAY TREAT relation and the overall evaluation results

are summarized in Table 6.4. Out of 30, OWA wins in 17 cases and gets higher scores on

individual rationales per case on average. There are 8 cases where the two sets of rationales

are ranked the same30 and 5 cases where CWA is better. To get a better idea of how the

OWA model obtains more trust, we calculate the average sum score per case, which shows

the OWA model gets a higher overall score per case. Considering in some cases only a few

rationales are able to get non-zero scores, we also calculate the average max score per case,

which shows that our OWA model generally provides one helpful rationale (score>2) per

case. Overall, as we can see, the OWA rationales are more helpful to gain expert trust.

Case Study. Table 6.5 shows two concrete examples demonstrating what kind of model

rationales our framework bases its predictions on. We highlight the rationales that receive

30Of which, 7 cases are indicated equally unhelpful.
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Case 1

cephalosporins may treat bacterial infection

cefuroxime may treat viral syndrome
cefuroxime may treat low grade fever
cefuroxime may treat infectious diseases
cefuroxime may prevent low grade fever
sulbactam may treat low grade fever

Case 2

azelastine may treat perennial allergic rhinitis

astepro may treat perennial allergic rhinitis
pseudoephedrine may treat perennial allergic rhinitis

ciclesonide may treat perennial allergic rhinitis
overbite may treat perennial allergic rhinitis

diclofenac may treat perennial allergic rhinitis

Table 6.5: Case studies for rationalizing medical relation prediction. For each case, the first
panel is target pair and the second is top-5 rationales (Bold ones are useful rationales with
high scores from the physician). The left (right) most column is the head (tail) term and
their relational associations.

high scores from the physician for being especially useful for trusting the prediction. As

we can see, our framework is able to make correct predictions based on reasonable ratio-

nales. For instance, to predict that “cephalosporine” may treat “bacterial infection”, our

model relies on the rationale that “cefuroxime” may treat “infectious diseases”. We also

note that not all rationales are clinically established facts or even make sense, due to the

unsupervised rationale learning and the probabilistic assumption formation process, which

leaves space for future work to further improve the quality of rationales. Nevertheless, such

model rationales can provide valuable information or new insights for clinicians. For an-

other example, as pointed out by the physician, different medications possibly having the
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same treatment response, as shown in Case 2, could be clinically useful. That is, if three

medications are predicted to possibly treat the same condition and a physician is only aware

of two doing so, one might get insights into trying the third one. To summarize, our model

is able to provide reasonable rationales and help users understand how model predictions

are made in general.

6.6 Discussion and Conclusion

In this chapter, we propose an interpretable framework to rationalize medical relation

prediction based on corpus-level statistics. Our framework is inspired by existing cognitive

theories on human memory recall and recognition, and can be easily understood by users

as well as provide reasonable explanations to justify its prediction. Essentially, it leverages

corpus-level statistics to recall associative contexts and recognizes their relational connec-

tions as model rationales. Compared with a comprehensive list of baseline models, our

model obtains competitive predictive performances. Moreover, we demonstrate its inter-

pretability via expert evaluation and case studies.

Our proposed model is a deep learning-based model built on top of symbolic knowledge

including two graphs, corpus-level statistics or term-term co-occurrence graph, and the

external knowledge graph. The key intuitions of our model design include how to formulate

the representation of basic knowledge units, i.e., knowledge tuples in our paper, and how to

apply interpretable modeling to aggregate them for greater transparency, i.e., the attention

module in our paper. Alternative approaches can explore both directions to generalize our

model to broader applications. Specifically, we choose knowledge tuples as the atomic units

of explainable knowledge for straightforward interpretations, but alternative approaches

can formulate more meaningful knowledge units and representations, such as a subgraph
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or a graph path, to represent higher-order and richer semantic information that may serve

as better explanations later. Secondly, attention explanations introduce a certain degree

of ambiguity since how to choose top-k knowledge as explanations is nontrivial. Thus,

the alternative model can enforce hard attention or binary selections over the candidate

knowledge units to make the explanations more decisive and useful.
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Evaluation Interface (Example) 

All models predict the may_treat relation between t1 term unfractionated heparin ['unfractionated 
heparin [epc]', 'heparin'] and t2 term myocardial infarction (mi) ['myocardial infarction'] with the 
following rationales. 
 
Please answer the following questions: 

1. Are you familiar with t1 and t2 terms? 
 

 Yes    No       Kind of 
 

2. Check each rationale and answer this question: Is which degree is rationale helpful for you to 
trust the prediction?  

(0: no helpful; 1: a little bit helpful; 2: helpful; 3: very helpful) 

Model A's Rationale Set: 

T1’s contexts Relational Interaction T2’s contexts Score 

metabolic alkalosis may_prevent myocardial infarction (mi)  

metabolic alkalosis may_prevent venous thrombosis  

rbbb may_treat myocardial infarction (mi)  

ards symptom_of myocardial infarction (mi)  

micronutrient may_prevent venous thrombosis  

Model B's Rationale Set: 

T1’s contexts Relational Interaction T2’s contexts Score 

cardiac dysrhythmias contraindicates theophylline  

malignant neoplasm without 
specification of site 

has_symptom family history of cancer  

Iddm contraindicates glyburide  

morphine sulfate contraindicated_by respiratory depression  

insulin dependent diabetes contraindicates glyburide  

3. Please rank all sets of rationales based on overall how much they help you trust the model 
prediction (e.g., A > B). Note that it is ok to reject them if both models are unhelpful (A = B = 0). 

 

 
Figure 6.4: Evaluation interface for expert evaluation.
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Chapter 7: Commonsense Knowledge Reasoning for Learning Word

Representations

The previous chapter presents a reasoning framework for relation prediction inspired

by human cognitive theory. This chapter presents a more generalized reasoning model,

also working on structured knowledge and performing multi-hop reasoning on a common-

sense knowledge graph. We apply this framework to learn better word representations by

practicing this reasoning ability with a self-supervised task.

Specifically, distributional word representations have brought significant progress in

numerous natural language understanding tasks. Traditional word embedding systems

(e.g., word2vec, GloVe) learn word representations by optimizing their distribution in the

vector space with two technical concerns. First, they are unable to utilize prior knowledge

in word structures to guide representation learning with higher overfitting risks. Second,

it is difficult for experts from various domains to understand and interpret the learned rep-

resentations due to the statistical and analytical knowledge barrier. In this paper, we pro-

pose CoRReL (COmmonsense knowledge Reasoning based word REpresentation Learn-

ing) that leverages commonsense knowledge and reasoning to enhance word representa-

tion learning. CoRReL includes pre-training and testing phases. In the pre-training phase,

we propose a self-supervision task that guides CoRReL to learn competitive reasoning

modules. In the testing phase, CoRReL is able to provide word pair representations and
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single word representations distilled from learned reasoning modules. Moreover, CoR-

ReL offers reasoning paths to justify word closeness and correlation with minimal knowl-

edge barrier. Empirical results on public benchmark datasets demonstrate the effectiveness

and interpretability of CoRReL . The code for the reasoning part can be found on Github:

https://github.com/zhenwang9102/CoRReL.

7.1 Introduction

Representing words in a vector space has become the standard to capture word seman-

tics, and has led to tremendous success in natural language understanding tasks. Inspired

by the idea that words appearing in the same contexts tends to be more related (Harris,

1954), existing learning systems (Mikolov et al., 2013a,b; Pennington et al., 2014; Devlin

et al., 2019; Brown et al., 2020) optimize word representations so that correlation between

words observed in same contexts can be preserved. For instance, in word2vec, one may

expect “queen” is closer to “woman” than “man”.

In this chapter, we investigate how to jointly leverage commonsense knowledge and

knowledge reasoning to benefit word representation learning. First, learning from com-

monsense knowledge could effectively mitigate overfitting risks with better generalization

performance. Commonsense knowledge bases (e.g., ConceptNet) directly provide prior

knowledge (LoBue and Yates, 2011; Mihaylov and Frank, 2018; Guan et al., 2019; Baner-

jee et al., 2019) in word structures (e.g, the hierarchy between words (Miller, 1995)) such

that one may not need to re-discover such structures (implicitly formed by learned word

representations) from scratch and select good ones from a large model space by using mil-

lions of observed samples. Second, when one uses knowledge reasoning as the main prob-

lem solver, machine decisions can be justified by the underlying reasoning processes with
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Figure 7.1: Two approaches for learning word representations. In contrast to traditional
word embeddings (a) with shallow networks, our propose method (b) leverages common-
sense knowledge reasoning with an explicit multi-hop reasoning process.

high transparency. Unlike existing methods (Ribeiro et al., 2016; Koh and Liang, 2017)

that use statistical evidence in data or models to interpret decisions, reasoning based inter-

pretations could be understood and accepted by domain experts (e.g., lawyer, salesperson,

physicians, and so on) with minimized knowledge requirement in statistics or analytics.

As shown in Figure 7.1, instead of explaining in a latent space the distance between “king”

and “man” is smaller than the distance between “king” and “woman”, reasoning paths from

“man” to “king” and from “woman” to “king” could be easily recognized by ordinary users

with little knowledge barrier.

Learning word representations from commonsense knowledge and knowledge reason-

ing is also challenging. First, although machines have access to facts stored in common-

sense knowledge bases, their reasoning skills are missing. It is intuitive that we need self-

supervision tasks that guide machines to master reasoning skills with the potential to benefit
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downstream tasks, but it is unknown which tasks would be practical and cost-effective. Sec-

ond, it is technically non-trivial to bridge the gap between knowledge reasoning and single

word representations. Even if machines have mastered competitive reasoning skills, such

skills generally deliver word kernels where knowledge reasoning captures interactions of

word pairs. To support existing downstream modules that rely on word representations, it

is desired to distill word representations from learned knowledge reasoning skills.

Existing techniques are generally unable to address the aforementioned challenges.

There have been attempts to inject external knowledge into neural word representations

by defining knowledge-award objective functions (Faruqui et al., 2014; Liu et al., 2016). A

few recent works propose to learn representations from knowledge graphs (Bordes et al.,

2013; Speer et al., 2017) without transparent justification provided by reasoning.

In this chapter, we propose a general framework CoRReL (COmmonsense knowledge

Reasoning based word REpresentation Learning) that jointly utilize commonsense knowl-

edge and knowledge reasoning to enhance generalization and interpretation of word rep-

resentations. As shown in Figure 7.1, CoRReL includes pre-training and testing phases.

In the pre-training phase, under a self-supervision task, a reasoning module in CoRReL is

trained to discover reasoning paths between words that are correlated with co-occurrence

statistics. In the testing phase, the learned reasoning module can directly serve downstream

modules that rely on word pair representations; meanwhile, for the downstream modules

that rely on single word representations, CoRReL provides word representations distilled

from the learned reasoning module.

In particular, CoRReL addresses the aforementioned technical challenges as follows.
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C1: How to guide machines to practice reasoning skills? We consider a reasoning

procedure between a pair of words as a sequence of parameterized decision-making pro-

cesses: Given the reasoning history, which word in the knowledge graph the reasoning

procedure should proceed to next. In addition, we develop a self-supervision task where

well-trained decision-making processes are expected to generate reasoning paths that are

correlated with observed co-occurrence statistics. In this work, the parameterized decision

making processes are implemented by deep neural networks.

C2: How to bridge the gap between reasoning and word representations? A well-

trained reasoning module in CoRReL basically defines how likely a reasoning procedure

would jump from one word to another. To this end, meaningful word representations from

CoRReL should be able to preserve such transition probability. In this work, we address

this problem from the perspective of knowledge distillation where word representations

distilled from CoRReL preserve the transition knowledge in the learned reasoning module.

Note that our research goal in this chapter is to study the value and impact from com-

monsense knowledge and knowledge reasoning in word representation learning, instead of

delivering state-of-the-art solutions to specific tasks. Therefore, in the self-supervision task

design, we consider basic global co-occurrence statistics (against word2vec and GloVe),

but do not include syntactic information used in the latest approaches (e.g., BERT). Due

to the non-trivial technical challenge, the discussion on how to make CoRReL preserve

syntactic information is out of this chapter’s scope.

We empirically evaluate the effectiveness of CoRReL on a public benchmark dataset

for CommonsenseQA (Talmor et al., 2018). Compared with competitive baseline meth-

ods, word pair representations delivered by CoRReL achieve up to 4% improvement in

accuracy. For single word representations, by combining the word representations distilled
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from CoRReL , a modified BERT is able to obtain around 1% significantly improvement

compared with the original one, even with a few labels. In addition, a case study is pro-

vided to demonstrate reasoning paths learned by CoRReL and their potential to justify

word co-occurrence.

7.2 Related Work

Pretrained Word Representations. Aside from traditional distributional word embed-

dings (Collobert et al., 2011; Mikolov et al., 2013a,b; Pennington et al., 2014), there are

also some variants that try to inject external knowledge into the vector space (Faruqui et al.,

2014; Bollegala et al., 2015; Liu et al., 2016; Lengerich et al., 2017; Speer et al., 2017),

where most of them consider lexicon knowledge and define knowledge-aware objective

functions constrained by the knowledge structure. However, little attempt from them was

made to incorporate the explicit multi-hop reasoning process into the representation learn-

ing. More recently, pre-trained language models (PLMs) have been revolutionized the

NLP field (Peters et al., 2018; Devlin et al., 2019; Radford et al., 2018), and one active line

of research is to combine world knowledge, mainly knowledge graphs with PLMs (Sun

et al., 2019b; Peters et al., 2019; Logan IV et al., 2019; Liu et al., 2020; Yu et al., 2020).

Nonetheless, PLMs model both word semantics and sentence syntax, whereas traditional

embeddings and our framework only consider semantics. Thus, we will not compete our

framework with PLMs directly, but show the effectiveness of combining our representa-

tions with PLMs in experiments later.

Commonsense Knowledge and Reasoning. Recently, there has been renewed interest in

teaching machines human-like commonsense knowledge and reasoning from NLP commu-

nity. There are several fundamental open research problems, including how to represent,
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probe, benchmark, incorporate commonsense knowledge. More relevant to our focus, lots

of efforts have been made to construct high-quality and large-scale commonsense knowl-

edge graphs, (Speer et al., 2017; Sap et al., 2019; Bosselut et al., 2019), which we are able

to leverage to regularize our representation learning. Moreover, there is a growing body

of literature that tries to integrate commonsense knowledge into NLP tasks by using struc-

tured knowledge bases (Lin et al., 2019) or PLMs (Banerjee et al., 2019). By contrast, in

this chapter, we incorporate commonsense reasoning into representations which can also

be applied to previous integration work.

Graph and Knowledge Reasoning. Extensive research has been conducted to do rea-

soning over knowledge graphs or general graphs. Based on the number of reasoning steps,

there are generally two types of models for knowledge graph reasoning, one-hop and multi-

hop reasoning. The former one mainly focuses on learning knowledge graph embeddings

by various scoring functions (Bordes et al., 2013; Wang et al., 2018c; Yang et al., 2015),

while the latter one aims to explicitly model paths for reasoning with path-sampling meth-

ods (Guu et al., 2015; Neelakantan et al., 2015; Toutanova et al., 2016) and Reinforcement

Learning models (Xiong et al., 2017; Das et al., 2017a; Chen et al., 2018; Shen et al., 2018;

Lin et al., 2018). Our framework also encourages multi-hop reasoning process, but these

methods suffer from either scalability issue for sampling, or sparse rewards.

Interpretability on NLP Models. Interpretable Machine Learning has drawn extensive

attention in recent years, especially in NLP field (Murdoch et al., 2019). There are two

general approaches to improve the interpretability of NLP models (Belinkov et al., 2020;

Wallace et al., 2020), the first is to conduct post-hoc analysis for a well-trained model, while

the second is to intrinsically build interpretable models that typically vary case by case. The

interpretability research usually has more focus in the first one for its generalizability, for
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Figure 7.2: CoRReL Framework Overview.

example, by probing internal representations and model behaviors (Conneau et al., 2018;

Tenney et al., 2019), checking input features by saliency maps or perturbations (Ribeiro

et al., 2016; Li et al., 2016), finding decision rules or influential training examples (Guidotti

et al., 2018; Han et al., 2020), etc. The goal of our framework is more towards to the second

category which can help build an intrinsic interpretable model.

7.3 Proposed Method

In this section, we introduce CoRReL framework for learning neural commonsense

representations. We first give an overview by formulating the problem and defining math-

ematical notations. Then, we introduce the self-supervision task used to pre-train the rea-

soning module, and finally, we illustrate how to distill word representations from CoRReL .

The framework is illustrated in Figure 7.2.

7.3.1 Problem Formulation and Overview

In this chapter, we aim to learn a general representation for each word in a common-

sense knowledge graph, which can be used to interpret the relationships between words
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based on the knowledge reasoning process. . To interpret the fine-grained relationship be-

tween two nodes, we need a human-understandable structure for each pair, which we define

as the paths in between. For example, we may find that “oven” and “survive” are related

because of the path (“oven”, AtLocation−1, “cake”), ( “cake” , UsedFor, “eat”), (“eat”,

Causes−1, “survive”), where −1 represents the reversed relation.

One straightforward way to obtain such paths from the commonsense graph could be

to find all simple paths between nodes. However, running shortest path algorithms such

as Dijkstra’s algorithm for all pairs in the graph could cause severe scalability issue. Also,

different path-funding algorithms induce various bias for paths to some degree. Thus, as the

first technical contribution of this chapter, we propose a parametrized graph neural network

model to select paths.

Formally, we denote the commonsense knowledge graph as G = (V ,R, E), in which V

is the set of nodes31 andR is the set of commonsense relations, e.g., Synonym and Antonym.

E ⊆ V×R×V is the set of edges representing the head-relation-tail triples. Our reasoning

network essentially learns how to navigate the reasoning process from a source word s to

a target word t within K hops and represent such multi-hop reasoning process as a vector.

We denote such reasoning vector as vs→t = f(s, t|G, θ).

7.3.2 Pre-training Commonsense Knowledge

To inject the commonsense knowledge into the reasoning process, we propose to pre-train

the parameters by global statistics (Pennington et al., 2014).

Let the global co-occurrence matrix be denoted by X in which Xij represents the num-

ber of times word j occurs in the context of word i and Xi =
∑

kXik is the total number

31A node is a word or phrase in the natural language, which usually is a common word in its unambiguous
form (Speer et al., 2017). We use “nodes” and “words” interchangeably in this chapter.
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of times any words appears in the context of word i. Also, we denote the probability that

word j appears in the context of word i as Pi,j = p(j|i) = Xi,j/Xi.

We train our reasoning network to fit the global statistics by applying a simple linear

transformation on the reasoning vectors by defining the conditional probability of reaching

j from i as

Qi,j = p̂(j|i) = exp(wTvi→j)∑
k∈V exp(wTvi→k)

(7.1)

To minimize the distance between the estimated probability p̂(j|i) and empirical prob-

ability p(j|i), there are several possible distance measures, such as cross entropy. Due to

the computational bottleneck of normalization operation for cross entropy loss, we could

simply choose a least square loss between two unnormalized distributions, P̃i,j = Xi,j and

Q̃i,j = exp(wTvi→j). For numerical stability, we take their logarithms and our objective

can be defined as:

L1 =
∑
i,j

g(Xi)
(
log P̃i,j − log Q̃i,j

)2

=
∑
i,j

g (Xi)
(
wTvi→j − logXij

)2 (7.2)

where g(·) is a weighting function to discount the influence of frequent words (Mikolov

et al., 2013b; Pennington et al., 2014).

7.3.3 Commonsense Reasoning Network

In this section, we describe details of our reasoning network that is pre-trained to learn

commonsense knowledge by reasoning over the graph. For a given pair of nodes in the

graph s, t, we leverage message passing mechanism (Gilmer et al., 2017) to propagate

messages from the source node and aggregate them at the target node.

175



k=1

k=2

k=3

Figure 7.3: Illustrating the Multi-hop Reasoning Process.

For any intermediate nodes u between s and t, we calculate the conditional probability

of transiting from u to its outgoing neighbors v ∈ N out
u at k hop as follows:

p(k)(v|u) = exp (ψ (u, v, ru,v))∑
a∈N out

u
exp (ψ (u, a, ru,a))

(7.3)

where ψ(u, v, r) is a MLP function that encodes the edge feature. Then, we update the

hidden state of u at k + 1 hop by neighborhood aggregation mechanism (Hamilton et al.,

2017) as follows:

h(k+1)
u =

∑
(r,b)∈N in

u

p(k)(u|b) ·m(k)
s,b · ϕ(u, b, r) + h(k)

u (7.4)

where ϕ(u, b, r) is another MLP function to encode the edge. m
(k)
s,b is a masking vector

to ensure the messages are all from the source node s. h
(k)
u is the hidden state of u from

the last hop. Lastly, for a maximum number of hops K, we take the last hidden state on

the target node t to represent the whole reasoning process as well as the pair of nodes as

vs,t = h
(K)
t .

An illustration of a reasoning process is shown in Figure 7.3 with a 3-hop reasoning

process in a toy graph. Starting from the source node s, the iteratively propagates source

176



messages to next available hop until we arrive at the target node. Essentially, the last hidden

state of t has incorporated several paths, i.e., s → v1 → v3 → t and s → v2 → v3 → t in

the given graph from Figure 7.3. Note that v4 is not connected with s within K hops, thus,

the target node does not receive its messages. This function is achieved by the masking

vector m(k)
s,· in Eqn. (4).

7.3.4 Distilling Word Representations.

Now that we have described how we can pre-train the reasoning network, we further intro-

duce how we can derive the representation for each word.

As we have described in previous part, at each hop, for an intermediate word u between

s and t, we have a transition probability, p(v|u), v ∈ N out
u . In other words, at each hop, the

reasoning network provides a transition matrix, Mk, in which Mk(u, v) = p(v|u). In order

to learn meaningful word representations, we propose to reconstruct the reasoning process,

that is, the transition matrix or a re-weighted graph.

From the perspective of matrix factorization, we can decompose the transition matrix

at k hop as Mk = Uk ·Σk · V T
k , in which Uk (Vk) represent vectors for words when they are

the source (target) word. However, it would be computationally prohibitive to explicitly

calculate the exact value of transition matrix32. Thus, we approximate the decomposition

by defining tractable functions for Uk and Vk. To be specific, for a given set of edges

sampled from the re-weighted graph, Ek = {e0, e1, ..., em}, ei = e(vsrci , vtgti) ∈ V , we

have non-negative edge weights, w(ei) obtained from the reasoning network. We then

define two neural networks for Uk and Vk to reconstruct the edge weights as

ŵ(ei) = fs(vsrci) ·WΣ · ft(vtgti)
T (7.5)

32The complexity of explicitly calculating the transition matrix is O(|V | · |E|).
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where fs and ft are projection function to produce an embedding for source and target

words at each hop. vsrci and vtgti are embedding parameters and WΣ is a trainable pa-

rameter. We train the above parameterized model by a straightforward mean-square error

(MSE) loss:

L2 =
1

N

N∑
i=1

(wi − ŵi)
2 (7.6)

where N is the number of edges to sample.

Note that there are two conditions we need to consider, for k = 1 and k > 1. The

difference is that when k = 1, edges’ attention weights only depend on a single source

word which is unambiguous to calculate, while when k > 1, these weights depend on

multiple source words. For the second case, we will represent the weights by taking their

mean and variance of all possibilities.

Finally, we could obtain the word representations by concatenating all source/target

embeddings from each hop together.

7.4 Experiments

In the experiment section, we first introduce our choices of commonsense knowledge

graph and benchmark dataset for evaluation. Then, we present the compared methods that

adopt and evaluate various representations. We finally analyze the results and show the

interpretability of our representations.

7.4.1 Dataset

To transfer commonsense knowledge from the symbolic world into neural representa-

tions, the choice of the source of commonsense knowledge is not trivial. Luckily, several
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high-quality CSKGs have been constructed in recent years. Some popular choices include

CONCEPTNET (Speer et al., 2017), Atomic (Sap et al., 2019), COMET (Bosselut et al.,

2019), OpenCyc (Lenat, 1995), Webchild (Tandon et al., 2017), etc. Among them, we

select CONCEPTNET33 as the backbone of our neural representation learning mainly for

two reasons: (1) CONCEPTNET is one of the largest and the most general CSKG that has

good coverage of general commonsense knowledge. (2) CONCEPTNET represents the se-

mantic knowledge in natural language form whose vocabulary size is very closed to the

commonly-used vocabulary in NLP, such as GloVe.

After selecting the source of commonsense knowledge, we need a benchmark to eval-

uate the quality of our learned representations. There are many language-related common-

sense benchmarks proposed recently ranging from Visual Commonsense Reasoning (Zellers

et al., 2019) to Machine Reading Comprehension (Zhang et al., 2018b). To show the ef-

fectiveness of our representations, we select the CommonsenseQA dataset (Talmor et al.,

2018), which contains 12,102 multi-choice questions collected by human annotators and

has a wide range of coverage over commonsense, such as social, physical, spatial, causal

and temporal, etc. We leave evaluating our representations on more general tasks, e.g.,

natural language inference, test classification, as future work.

7.4.2 Experiment Setup

We adopt CONCEPTNET 5.6.0 with 21 million edges and over 8 million nodes covering

85 languages. We extract the English triples covering over 2.4 million edges and 0.8 million

nodes. However, most of the nodes in CONCEPTNET are directly extracted from a crowd-

sourced text corpus, Open Mind Commonsense, which contains some noise and thus, are

less likely to be used in normal text. Therefore, we define a set of heuristic rules to filter

33http://conceptnet.io/
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10% 30% 50% 70% 100%

Dev Test Dev Test Dev Test Dev Test Dev Test

Random Guess 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200

Bert-Base
0.426 0.395 0.471 0.455 0.490 0.463 0.511 0.484 0.527 0.492
±0.016 ±0.006 ±0.015 ±0.006 ±0.011 ±0.005 ±0.006 ±0.009 ±0.014 ±0.008

Bert+CoRReL
0.434 0.411 0.479 0.444 0.501 0.468 0.510 0.492 0.538 0.503
±0.010 ±0.005 ±0.005 ±0.009 ±0.000 ±0.008 ±0.006 ±0.005 ±0.004 ±0.009

Table 7.1: Performance comparison by combining our word representations with Bert
model. We report the testing accuracy under different ratio of training data with the stan-
dard deviations with at least 3 times running.

undesired nodes, e.g., abandon nodes containing more than four words, ensure the nodes

are alphabetic, etc. We also follow a commonly-used graph pruning procedure (Speer

et al., 2017) by discarding nodes with fewer than 10 edges. To ensure the connectivity

of the graph for multi-hop reasoning, we select the largest connected component. Finally,

we have a clean graph with 813,394 edges and 59,302 nodes. For relations, we select and

merge 17 common relations by following previous work (Lin et al., 2019) and also add

their reversed relations.

For the benchmark dataset, CommonsenseQA, we adopt the in-house setting with the

splitting of IHtrain/IHdev/IHtest as 8,500/1,221/1,241 for efficiently testing re-implemented

baselines and our framework. We use the random-slit setting in CommonsenseQA which

is considered as the hard mode because questions with the same concept could appear in

both training and testing, which could confuse the model.

7.4.3 Compared Methods

CoRReL produces two kinds of embeddings, word pair representation and single word

representation, and evaluating them in the exact same setting is not straightforward. For

instance, pair representations suit tasks that have two inputs, such as question answering,
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Model
Commonsense QA

Dev Accuracy Test Accuracy

Random Guess 0.20000 0.20000

QABilinear + Glove 0.29044 0.27273
QABilinear + NB 0.29359 0.26133
QACompare + Glove 0.30206 0.27807
QACompare + NB 0.33452 0.30489

CoRReL + Glove 0.26363 0.23886
CoRReL + NB 0.29448 0.24622
CoRReL 0.36744 0.33956

Table 7.2: Performance comparison with our pair representations with other word repre-
sentations.

to form word pairs, which requires a specific model to accommodate such kinds of inputs.

On the other hand, single word representations are more generalizable that can be merged

into more advanced base models, such as Bert. Thus, we will evaluate our pair and word

representations in two different baseline settings.

Baselines for Pair Representations. We adopt two supervised learning models from the

original paper of CommonsenseQA (Talmor et al., 2018), QABilinear and QACompare,

which can equipped with different embeddings. For baselines of embeddings, we compare

with GloVe (Pennington et al., 2014), a general word embeddings also trained by global

statistics, and Numberbatch34 (Speer et al., 2017), an assembled word embeddings com-

bining general embeddings, such as word2vec, GloVe and retrofitting on CONCEPTNET..

34https://github.com/commonsense/conceptnet-numberbatch
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To apply our pair representations to the multi-choice QA problem of CommonsenseQA

dataset, we build a simple classification model that takes as the input the pair representa-

tions with a self-attention layer to weigh each pair representations. Specifically, each QA

pair is represented as h =
∑

ij αijvi→j, αij = f(vi→j), i ∈ q, j ∈ a, in which f(·) s a

MLP function, i and j are the concepts extracted from the question and answer, respec-

tively. Then the model predicts an answer score using a linear layer as h ·W1+ b1. We also

adjust the previous two embeddings by concatenating words from the question and answer

to form pairs as the input for QAPair model.

Baselines for Word Representations. Because of the generalizability of word representa-

tions that can be combined with more advanced base models, we are interested in the per-

formance by combining them straightforwardly with the powerful Bert model. Intuitively,

we can replace the word embeddings of the Bert model with our word representations,

but such adoption requires to re-train the pre-trained Bert model, which is computationally

and financially costly. Thus, we integrate word representations into Bert model by sim-

ply concatenating them with [CLS] vectors with one additional linear layer for the final

classification. The rest of the settings are the same as the Bert base model.

7.4.4 Implementation Details

We implement our framework with Pytorch with Adam optimizer. We implement a

sparse graph neural network to deal with the large-scale graph. The maximum number of

hops for the reasoning, K is set to 3. The dimension of hidden states is set to 100. We pre-

train the graph model by the global statistics by at least 5 epochs. Each epoch takes about

3 hours on one NVIDIA Quadro RTX 6000 GPU. For word representation distillation, the

dimension for each source and target embeddings is set to be 256 and we sample 10,000
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nodes to approximate the reasoning module for the word reconstruction. We adopt the

large-scale Wikipedia corpus35 to calculate the global statistics. A lemma-based concept

linker is adopted to map concepts from the text to CSKG (Lin et al., 2018).

7.4.5 Experiment Results

Evaluating Pair Representations. As the results are shown in Table 7.2, our CoRReL

model outperforms the baseline methods by a large margin. Firstly, we find that Number-

batch embeddings generally perform better than GloVe, because they are also pre-trained

in CONCEPTNET structure. Even though, compared with the best baseline combination,

QACompare+NB, our model improves almost 4% improvement in testing accuracy. More

importantly, with the same classification model, our model improves the testing accuracy

by 15% compared with Numberbatch embeddings. These results indicate that the multi-

reasoning process for word pairs encoded as vectors can provide useful information for

downstream tasks, which could further promote the research on studying the pairwise vec-

tors.

Evaluating Word Representations. The results of combining our word representations

with the Bert model are shown in Table 7.1. Bert model has been considered as a powerful

text encoder to model the semantic and syntax information and our results show that our

word representations can further improve it with a straightforward integration, e.g., by

simply adding the averaged word representations with the [CLS] vectors of Bert model.

Moreover, we find the improvement in the low-resource areas is relatively stable, which

partially justifies that our reasoning-based vectors could improve the generalizability of the

Bert model.

35Downloaded here: https://hotpotqa.github.io/wiki-readme.html
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Figure 7.4: Visualization of the decoded multi-hop reasoning process.

7.4.6 Interpretability Results

One major contribution that differentiates CoRReL from other knowledge-enhanced

representation learning is that it can provide reasoning paths as the justification for word

closeness and correlation with minimal knowledge barrier for general machine learning

users. To illustrate the pre-trained reasoning paths, we randomly sample the source nodes

and then adopt beam search algorithm to search for the most likely paths for the source

nodes. We keep the size of beam search as 5.

The results of the decoded paths are shown in Figure 7.4 and 7.5, which offer two views

of our reasoning process. Figure 7.4 provides a relatively more global view of how the rea-

soning works, in which we provide multiple neighbors with high transition probability. We
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Figure 7.5: Examples of top-ranked paths decoded by beam search algorithm.

limited the number of decoding to 2 to save space and red paths represent the top-ranked

ones in 2-hops. We also ignore the neighbors with too small probabilities to save space.

The tuple above edges indicates the relation name and transition probability. On the other

hand, Figure 7.5 simply presents the top-ranked paths to show more concrete examples.

By observing Figure 7.4 (a) and (b), we can find that the pre-trained reasoning module has

learned a preference when making a local decision, i.e., selecting which neighbor to go

for the next hop. Such characteristics of transition distributions indicate that CoRReL has

been trained successfully to perform reasoning based on commonsense knowledge. More

examples in Figre 7.5 demonstrate that with reasoning path information, we can better un-

derstand the relationships between each pair. For example, we may wonder how “harpoon”

and “capture” are connected and it turns out they can be connected by the word “hunt”
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with two relations. In conclusion, reasoning paths express the commonsense relationships

between pairs, and models that are equipped with our representations could leverage such

commonsense knowledge to make a better prediction.

7.5 Discussion and Conclusion

In this chapter, we propose a new framework, CoRReL for learning interpretable neu-

ral word representations by commonsense knowledge and reasoning. We define a self-

supervised task to jointly pre-train the commonsense reasoning module by structure knowl-

edge and the corpus global statistics. The commonsense knowledge is pre-trained to be con-

solidated into the reasoning module. We further develop representations for single words

by knowledge distillation. More importantly, with such a symbolic reasoning process,

CoRReL can further provide reasoning paths to explain relationships between word pairs.

We show the advancement of CoRReL in a popular NLP benchmark compared with two

strong traditional embedding systems and the effectiveness of combining CoRReL with the

BERT model. We also demonstrate interpretability by visualizing the reasoning paths.

CoRReL consists of two stages, pre-training on commonsense knowledge graph and

adaptation on commonsense NLP tasks. The former is essentially a path-based graph neu-

ral network where we encode the path distribution between any two nodes in the graph

with attention aggregation in between. This approach requires the calculation of the higher-

order matrix of the adjacent matrix of the graph and scaling up this approach to a longer

length, e.g., > 3, needs significant computation. Alternative approaches can explore ef-

ficient computation of adjacent matrix (Wang et al., 2021b). Also, the adaptation stage

merges pre-stored reasoning knowledge with downstream NLP tasks in a very straight-

forward way and alternative methods should explore a deeper fusion of them and inject
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more transparency into downstream modeling. Moreover, future works should explore an

end-to-end system to combine the pre-training and downstream adaptation together. This

requires backpropagating gradients from downstream tasks to the graph neural networks,

where reparameterization tricks or reinforcement learning approaches can be leveraged.
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Part VI: Conclusion and Future Work
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Chapter 8: Conclusion and Future Work

The previous chapters introduce our work on advancing the knowledge-centric NLP by

promoting a life cycle of incorporating human knowledge into existing AI systems, i.e.,

knowledge acquisition, representation, transfer, and reasoning. To the best of our knowl-

edge, this dissertation is the first to introduce a life cycle systematically for addressing

the knowledge gap between statistical learning models and human-like learning processes.

The first two steps, acquisition and representation, mimic the process of human knowledge

acquisition and organization by discovering structured knowledge from noisy data corpus

and learning their neural representation. The last two steps are more advanced operations,

knowledge transfer, and reasoning. The former takes an analogy of how humans generalize

existing knowledge to new tasks, and the latter simulates human-like complex reasoning

for a more transparent decision-making process of AI systems. This chapter will summa-

rize our key contributions and then outline their limitations to motivate promising future

directions.

8.1 Summary of Key Contributions

We first give an overview of our high-level contributions in this dissertation as follows.

• We demonstrate that structured and unstructured knowledge are highly complemen-

tary and beneficial to each other. Structured one can provide weak supervisions and
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rich global structural information (Chapter 2), as well as the backbone for inter-

pretable modeling (Chapter 6 and Chapter 7). When representing both knowledges,

more attention must be paid to modeling the complex interactions among structured

neighborhoods (Chapter 3).

• Reasoning and transferring are advanced knowledge operations for significantly boost-

ing AI systems’ interpretability and generalizability, which are also the keystones for

the success of injecting human-like learning into AI systems. Our works (Chap-

ter 4 and Chapter 5) highlight that the unified transfer framework (Chapter 4 ) and

advanced knowledge compression via multi-task learning (Chapter 5) are the keys

for knowledge transfer. We also propose novel data-driven approaches to derive the

intrinsic reasoning process automatically guided by task-specific (Chapter 6) and

self-supervised (Chapter 7) learning signals.

We now summarize the specific contributions of each chapter by discussing the state of

the literature and the fundamental changes our works introduced to the field.

Part II, Knowledge Acquisition, aims to accumulate high-quality human knowledge

automatically from the real but noisy world, such as unstructured text corpus. This falls

into the field of automatic knowledge base construction (AKBC) or text mining, where

structured knowledge, such as relations and entities, is extracted from the text corpus. We

summarize our major contributions as follows:

• Chapter 2 brings a novel setting to the research field, where the raw text sequences are

unavailable due to practical concerns, such as privacy or security. We thus propose

to study the privacy-aware data, i.e., terms co-occurrence counts, without raw texts

to discover one of the most important structured knowledge, synonyms. Existing
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works on knowledge extraction focus on text input but ignore global contexts from

the privacy-aware data. At the same time, our proposed method leverages two impor-

tant pieces of information, surface form and global context information. Our research

highlights the complementary relationship between both information and proposes a

novel module to inductively predict relevant contexts to deal with out-of-vocabulary

queries (i.e., queries not in the privacy-aware data).

Part III, Knowledge Representation, connects to the field of representation learning,

such as learning embeddings for words, sentences, or graphs. After extracting structured

knowledge from the previous stage, we focus on learning representation for structured

knowledge in this dissertation, such as graphs, and summarize our major contributions

as follows:

• Chapter 3 highlights the importance of explicit modeling the interactions of local

contexts around nodes and proposes a new formulation that enables us to build more

appropriate representations for node pairs. We propose two variants of modeling

context pair interactions, node-centric and pair-centric, where the former formulates

node representations for pairwise predictions, while the latter directly models pair

representations. Motivated by the pair representation, we propose a new graph em-

bedding to be pre-trained to capture the pair semantics of any node pairs and to be

plugged into the pair-centric interaction modeling for superior performance. Most

graph embedding works focus on learning node embedding, and our novelty comes

from learning node pair embeddings to learn node pair semantics.

Part IV, Knowledge Transfer, involves the broad area of transfer learning to take ad-

vantage of existing knowledge and generalize it to new tasks. We study how to transfer
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knowledge across neural systems under the paradigm of pre-training and finetuning, i.e.,

the pre-training stores task-specific knowledge into neural parameters, and the following

finetuning will adapt such knowledge to new tasks. We summarize our major contributions

as follows:

• Chapter 4 studies knowledge transfer between KBQA and TextQA systems to an-

swer research questions like what knowledge is transferred or whether the trans-

ferred knowledge can help answer over one source using another one, which is yet

to be answered. This is the first work to unify KBQA and TextQA systems on the

CQA task. Our key contribution is to reformulate KBQA and TextQA as a retrieval-

reranking framework and to propose a unified QA framework named SIMULTQA

to enable knowledge transfer and bridge the distinct supervisions between KB and

text sources. Our second contribution is to extensively explore how knowledge is

transferred by leveraging the pre-training and finetuning paradigm. We focus on the

low-resource finetuning to show that pre-training SIMULTQA on one source can sub-

stantially improve its performance on the other source. More fine-grained analyses

on transfer behaviors reveal the types of transferred knowledge and transfer patterns.

• Chapter 5 focuses on parameter-efficient transfer learning by transferring pre-trained

prompts to new downstream tasks. Our key innovation lies in the pre-training phase

where we study how to exploit the rich cross-task knowledge in multiple source tasks.

There is no existing work trying to learn task-shared knowledge in multiple tasks

through prompt tuning. We then propose multitask prompt tuning (MPT), which

first learns a single transferable prompt by decomposing and distilling knowledge

from multiple task-specific source prompts. We also learn multiplicative low-rank

updates to this shared prompt to efficiently adapt it to each downstream target task.
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MPT outperforms the state-of-the-art methods, including the full finetuning baseline

in some cases, despite only tuning 0.035% as many task-specific parameters.

Part V, Knowledge Reasoning, is related to neuro-symbolic reasoning or broader areas

of interpretable machine learning. Our target is to inject explicit knowledge reasoning into

advanced AI systems to increase their transparency and performance. We summarize our

major contributions as follows:

• Chapter 6 demonstrates the significance of explicit reasoning over structured knowl-

edge for better model transparency and interpretability. We take inspiration from

human cognitive theories, recall, and recognition, to formulate the basic knowledge

units to be reasoned on. We apply this framework to relation prediction on the corpus-

level statistics, i.e., a global co-occurrence graph of a text corpus, where we first

recall rich contexts associated with the target entities, and then recognize relational

interactions between these contexts to form model rationales to be conditioned on

for the final prediction. Our key contribution is to bridge graph reasoning with NLP

tasks with inspiration from human cognitive theory. Our second key contribution is

to deeply collaborate with medical experts to verify our model rationales’ usefulness

for clinical decision-making.

• Chapter 7 proposes a novel graph reasoning technique, a path-based graph neural

network, for interpretable machine learning with the help of explicit path-based rea-

soning. It leverages commonsense knowledge and reasoning to enhance word repre-

sentation learning, where the reasoning is used to pre-train the word representations

to be adapted into downstream tasks. The reasoning module mimics how humans

practice their knowledge and propose a self-supervision task to learn how to reason
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over the commonsense graph automatically. Moreover, our proposed model offers

reasoning paths to justify word closeness and correlation with minimal knowledge

barriers. Our key contributions include the novel technical contribution and the idea

of using self-supervised signals to practice the reasoning ability of AI models.

8.2 Limitations and Future Work

Our long-term research goal is to develop generic or even plug-and-play knowledge

modules empowering existing AI systems with the abilities of (1) dynamically searching

for the necessary pieces of human knowledge based on the input, (2) jointly modeling the

knowledge and data with a human-like reasoning process, and (3) generalizing universal

and transferable knowledge to out-of-distribution samples and tasks. Our prior works have

paved the foundations for these directions regarding acquisition, representation, transfer,

and reasoning. We now discuss their limitations to sandbox our contributions and motivate

promising future directions toward knowledge-centric NLP/AI systems.

Knowledge Acquisition. We observe two potential limitations to our current works. First,

the process of knowledge construction is static and takes enormous efforts to improve the

coverage of collected knowledge for downstream tasks. Second, the amount of structured

knowledge from the text corpus is bounded by the size of the corpus, which is hard to scale

up. Targeting these two limitations, we point out the following directions.

• Inductively collecting the knowledge for the end-to-end systems. Specifically,

pruned knowledge should be constructed and provided for the target tasks. Such an

end-to-end system requires dynamically searching for relevant knowledge and differ-

entiably pruning the knowledge space with gradients from the downstream objective
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functions. This will reuse techniques developed in Knowledge Acquisition with new

pruning algorithms.

• Interplay of LLMs and structured knowledge. Two broad threads run through

the works I have included above: knowledge as a purpose of language learning,

and knowledge as a regularization for augmenting and understanding existing AI

systems. These two can mutually enhance each other in an iterative way. First, ex-

tracting knowledge directly from LLMs can greatly help automate knowledge graph

construction (LLMs→ Knowledge), which can be scaled up easily given that LLMs

have been pre-trained on massive text corpora. On the other hand, we can further

leverage the extracted knowledge to probe, debug, edit, audit, and boost the model

itself (Knowledge ← LLMs). Such a closed-loop system can be iterative and open

a new gate to deploy LLMs to more human-centered applications and scientific dis-

covery problems.

Knowledge Representation. Our work on knowledge representation focuses on struc-

tured knowledge representation, e.g., graph structures, and we consider two possible limi-

tations. First, Chapter 3 considers the context interactions between 1-hop neighbors while

ignoring deeper interactions between higher-order neighborhood nodes. Second, we need

to consider more types of knowledge for their representation learning, especially multi-

modal knowledge considering the interaction of structured knowledge with the real physi-

cal world. We thus outline two promising future directions to solve the above limitations.

• Modeling deeper interactions of contexts on graphs when learning graph repre-

sentations. High-order neighbors on graphs can provide richer semantic information,

while Chapter 3 only consider shallow interactions between 1-hop neighbors. This
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requires considering higher-order context on graphs, such as multi-hop graph neu-

ral networks (Wang et al., 2021b), with multi-hop diffusion and interactions, which

leads to better knowledge representations.

• Learning multimodal knowledge representations with grounding in physical

world. We need to ground knowledge into multimodal worlds to learn more founda-

tional semantic meanings since knowledge is not constrained in text or graph formats

where a large portion of human knowledge can be grounded in the physical world.

Learning representations jointly across modalities, such as images, text, and graphs,

will greatly boost the coverage of universal knowledge to be transferred across mul-

tiple domains and tasks.

Knowledge Transfer. Our works in Part IV have studied two different transfer settings,

one is to transfer knowledge between KBQA and TextQA on complex question answering,

and the other is to transfer knowledge between generic NLP tasks. We believe there are

three weaknesses that need to be further improved. First, our SIMULTQA system bridges

KBQA and TextQA systems but runs parallelly on both knowledge sources, which only

produces single-modality reasoning paths. Second, the transfer behaviors among generic

NLP tasks are demonstrated empirically in Chapter 5 but have a lack of theoretical under-

standing. Third, as an analogy of human-like generalization in the few-shot setting, how

to leverage knowledge transfer to greatly boost the few-shot adaptation to reach the full-

dataset fine-tuning performance is underexplored. Therefore, we list the following future

directions to address the above limitations.

• Generating hybrid reasoning paths in SIMULTQA. When producing reasoning

paths for complex question answering, SIMULTQA cannot combine mixed sources
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for the same question, i.e., the first and second hop need to be on the same source.

This limits the further improvement of its performance. One future direction is to

bridge the knowledge sources in the first place, e.g., using techniques proposed in

Part II, which can enable deeper knowledge transfer. Then we can run SIMULTQA

on the hybrid knowledge source to generate hybrid reasoning paths.

• Theoretical understanding of transfer behaviors among tasks. Though we showed

great empirical results for transferring rich cross-task knowledge via multitask prompt

tuning in Chapter 5, there is a lack of fundamental and theoretical understanding of

how the transferring happens and how it is related to the task similarities between

source and target tasks, There are existing theoretical works on explaining how trans-

fer learning is related to task diversity (Tripuraneni et al., 2020), which can be bor-

rowed and adjusted to our problem.

• Improving few-shot adaptation by transferring knowledge from the general do-

main to specific domains. One of the most advantages of human learning is learning

efficiency where enormous background world knowledge can be shared and gener-

alized to new tasks with only a few samples. We provided initial few-shot learning

results in Chapter 5 (Section 5.4.7), but there is still a large gap between few-shot per-

formance and full-dataset fine-tuning and we need to study how to practice few-shot

adaptation on multiple source tasks, e.g., meta-datasets (Triantafillou et al., 2019)

so that the parameters can be quickly adapted to new target tasks with only a few

samples.

Knowledge Reasoning. Our works in this dissertation on knowledge reasoning mainly

consider data-driven approaches that perform explicit reasoning in the space of structured
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knowledge and induce greater transparency and interpretability to AI systems. Potential

limitations include that we need to consider more diverse types of AI systems and rea-

soning algorithms, such as injecting more explicit reasoning into LLMs, and we also need

to apply reasoning into the few-shot generalization similar to how humans can leverage

logical inference to produce new knowledge.

• Advanced neuro-symbolic reasoning to slow down the fast thinking of LLMs.

Given the great power of in-context learning of LLMs, they often fail in scenarios

that require reasoning over symbolic knowledge, or over rarely re-iterated common

knowledge. Thus, we can enforce a slow thinking process, i.e., human-like rea-

soning, into LLMs to make them more robust to in-context perturbation and more

interpretable (Ozturkler et al., 2022).

• Reasoning-based domain adaptation for better efficiency and robustness. In ad-

dition to providing transparency and interpretability, reasoning for humans is also a

very useful tool to navigate through new environments and generalize to new sam-

ples. For example, for humans, it is a common practice to start learning from estab-

lished knowledge and easily adapt the knowledge to new situations with few samples

by reasoning over existing knowledge. One key insight is that this reasoning-based

adaptation favors local adjustment in a multi-hop reasoning process for effective

transfer learning, i.e., only adjusting a few hops in the reasoning chain to adapt new

samples and not hurt the whole reasoning process. Thus, one promising direction

is to formulate the reasoning-based adaptation process as a meta-learning problem

and demonstrate we can generalize to new samples with the bridge of this explicit

reasoning, which is expected to work in the few-shot domain and improve the model

robustness.
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