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ABSTRACT

The real-time applications and the IoT promote the need for a newer idle spec-

trum to support the required high traffic. This pushes toward the emergence of

the millimeter-wave (mmWave) and the sub-Terahertz (sub-THz) bands in wireless

communication. Albeit these higher frequency bands offer wide spectrum help im-

proving the spectral efficiency, it comes with the challenge of alleviating the severe

attenuation.

MmWave transceivers use large antenna arrays to form high-directional beams

and overcome severe attenuation. A large array size leads to a costly beam alignment

process if no prior information about beam directions is available. Beam alignment

has two phases: beam discovery, and beam tracking. Beam discovery is finding the

beam direction by consuming several pilot symbols to find the optimum direction.

Moreover, beam tracking is a common approach to keep the discovered beams tightly

coupled without frequent beam discovery to eliminate the overhead associated with

realignment. Both phases become more difficult as the beams get narrower since

slight mismatches lead to significant degradation in SNR as the beam coherence

times are short. As a result, beams may lose alignment before they can be readjusted

periodically with the aid of pilot signals. In this thesis, we introduce two complemen-

tary proposals. The first proposal is for the issue of beam tracking, and the second

proposal is for the issue of beam discovery.

In the first part of the thesis, we propose a model where the receiver adjusts

beam direction continuously over each physical-layer sample according to a carefully
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calculated estimate of the continuous variation of the beams. Our approach contrasts

the classical methods, which fix the beams in the same direction between pilots. In

our approach, the change of direction is configured using the estimate of variation

rate via two different methods; a Continuous-Discrete Kalman filter and an MMSE

of a first-order approximation of the variation. Our method incurs no additional

overhead in pilots, yet, the performance of beam tracking and the resulting effective

SNR are improved significantly. In addition, we propose a low-complexity discrete

beam tracking algorithm that only requires a single pilot symbol with an angle of

arrival (AoA) that lies in the main lobe of the beamforming. In typical situations, we

achieve up to 4 dB enhancement in SNR and can reach 7 dB for large array sizes. This

gain is associated with our algorithm’s average Mean Squared Error (MSE) reduction

by up to 99.5%. Furthermore, we introduce an analytical method of choosing the Pilot

Period to sustain reliable tracking for a desirable Link Reestablishment Time based

on two definitions: (1) beam coherence and (2) outage probability. The numerical

results reveal that the Continuous-Discrete algorithms reduce the pilot overhead by

60% and up to 87% while supporting 95% of the maximum achievable rate.

In the second part of the thesis, we present a novel beam direction discovery ap-

proach that utilizes beam pattern amplitudes and combines it with the phase infor-

mation available for a quick estimate of the beam direction. The proposed approach

surpasses the traditional approaches, which exhaustively search all possible directions

or follow hierarchical beam-sweeping architecture by dividing the angular space into

sectors. Our approach minimizes the signaling overhead by estimating the beam

direction in a single measurement in most instances instead of a number of measure-

ments proportional to the array size as in traditional beam discovery approaches.

Numerical results reveal a significant reduction of the pilot overhead by 42% and up

to 62% compared to the state-of-the-art.
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CHAPTER 1

INTRODUCTION

Wireless network generations constantly embrace more new bands on the higher

side of the spectrum, such as millimeter-wave (mmWave) bands for 5G-NR, and

even tap into the Sub-Terahertz (Sub-THz) bands for 6G [1–3]. The endorsement

of a higher spectrum band alleviates the spectrum crunch, but it accompanies the

challenge of dealing with the related drastic path loss [4, 5]. Employing large-scale

Multiple Input Multiple Output (MIMO) communication systems with enormous

antenna directional gain ameliorates the significant attenuation in the high-frequency

bands.

In MIMO systems, transceiver architectures are divided into three categories:

(1) Fully digital, (2) Hybrid, and (3) Analog architecture. The fully-digital archi-

tectures can be visualized as N parallel analog transceivers. Each consists of a

single antenna element connected in serial to an RF chain, ADC/DAC, mixer, fil-

ter, and other components. Nevertheless, The electronic components operating in

high-frequency are expensive and have significant power consumption [6]. Thus, a

fully-digital transceiver that deploys a large-scale antenna array is costly and induces

power consumption problems. Thus, mmWave systems look for cheaper and more

power-efficient transceiver architectures. In addition, fully-digital transceivers are

only one of the options to achieve the channel capacity because of the sparsity of the

mmWave channel (i.e., it has a few channel paths) [7–9]. The hybrid architecture is
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less complex and cheaper than the fully-digital ones, where multiple RF chains (i.e.,

more than one and less than the array size) are connected to all antenna elements

in different configurations. Finally, the analog transceiver has a single RF chain,

ADC/DAC, and is connected to all antenna elements through phase shifters [10–12].

Although the analog architectures are much cheaper with the lowest power consump-

tion, the resolvability of the incoming path is minimal due to the summation of

channel response from all different directions.

Nevertheless, narrow beams resulting from the transmitter (TX) must be aligned

with their counterparts at the receiver (RX) to get the potential gain. The challenge

is that aligning such narrow beams mandates significant overhead, especially under

analog transceiver architectures. Still, the alignment of such narrow beams can be

momentary since narrow beams have a short coherence time which means the aligned

beams become misaligned in a short time, then, the previously chosen TX and RX

beams are no longer valid, and realignment is required. Among other factors, mis-

alignment can be induced by TX/RX mobility, and these variations rapidly degrade

the Received Signal Strength (RSS) [13]. The alignment process can be separated into

two stages: (i) Beam Discovery / Initial Beam Alignment and (ii) Beam Tracking.

Next, we will elaborate on both stages in detail.

Initial beam alignment: Represent discovering the Angle of Arrival (AoA) /

Angle of Departure (AoD) at the establishment of a communication session and on

the occasion of beam failure (i.e., when losing beam alignment, e.g., due to block-

age). Beam discovery is challenging, mainly when analog transceiver architectures

are utilized, because channel measurements have to be acquired one by one, which

extends this process. Large-scale antenna arrays are notably susceptible to this prob-

lem since the corresponding narrow beams enlarge the number of beam pairs to

2



choose from. Exhaustive search or beam sweeping, whose computational complex-

ity is O(Nt × Nr), where Nt and Nr stand for TX and RX array sizes, respectively,

is an example of the initial beam alignment stage. Derivatives of the traditional

beam sweeping with hierarchical designs and less complexity are embraced in WiFi

standards and 5G-NR [14, 15]. Other proposals benefit from the channel sparsity

property in the mmWave band and have been shown to have complexity in order of

O(k2 log(Nt/k) log(Nr/k)) (for channels with k paths) [16].

Beam Tracking: In rapid-variation environments, repeatedly probing for beam

directions is not optimum due to the significant overhead that would be required.

Instead, a more efficient method is to prolong the link reestablishment time (TLR,

the time between each beam discovery) by tracking the previously found beam(s) for

as long as achievable. This can be accomplished by frequently transmitting reference

(pilot) signals to watch minor beam variations. Nevertheless, those reference symbols

still comprise an overhead which should be diminished to avert degrading the func-

tional spectral efficiency [17]. A trade-off declares itself where more frequent pilot

symbols reveal better beam tracking performance but at a higher overhead cost. On

the other hand, less frequent pilots would lead to beam misalignment, which degrades

the average received SNR and risks beam alignment failure (i.e., losing alignment ).

In that case, a recurrence of the costly initial beam alignment procedure would be

required.

Contribution of this thesis: In Chapter 5, we introduce a beam tracking

approach that continuously corrects the antenna beam direction, even though the

available channel measurements are sparse, through the transmission of pilot symbols.

In contrast to traditional beam tracking approaches, which update the estimate of

beam directions based on pilot symbols and fix them till the arrival of the following

pilot symbols, our approach models and utilizes gradual beam variations in between
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pilot symbols by estimating the beam direction variations at the transmitter and the

receiver. Our proposal, which we denote as Continuous-Discrete tracking, exploits

the physical nature of beam direction variation in the spatial domain as a time-

varying function to build a state transition model. This model fuses information with

channel measurements under three different frameworks: (i) an Extended Kalman

Filter (EKF), (ii) a Fast Beam Tracking algorithm (iii) a Main-Lobe approximation.

We discuss the three frameworks in detail in Chapter 5. The proposed Continuous-

Discrete method enables our solution to rely on less frequent pilot symbols to maintain

precise beam tracking. Reducing the number of channel measurements decreases the

overhead of pilot symbols needed to perform such measurements. Our proposal (i)

enhances the quality of beam alignment over the state-of-the-art approaches under

the same pilot overhead, (ii) elongates the link reestablishment time before a new

beam realignment would be required, and (iii) reduces the associated pilot overhead

mandated to achieve tracking performance similar to the state-of-the-art solutions.

A novel beam discovery approach is proposed in Chapter 6, which leverages both

the amplitude and the phase information of the received signal to precisely estimate

the beam direction. Contrary to classical beam discovery approaches, which pri-

marily measure all or a sector of the angular domain by narrow beams to detect

the beam direction based on the highest RSS, our model utilizes both the ampli-

tude and the phase to minimize the accompanying overheads. Our proposal, which

we refer to as Main-Lobe Fast Beam Discovery (ML-FBD), exploits the innovative

formula from [18]. This formula is an analytically tractable mapping function from

the beam direction to the beam amplitude. The proposed approach is discussed in

detail in Chapter 6. Our proposed solution ML-FBD relies on a lower number of

channel measurements to preserve accurate beam discovery. Decreasing the number
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of channel measurements reduces the overhead of pilot symbols required to gather

such measurements.

In this work, we first introduce the solution to the beam tracking problem then

we present the beam discovery solution since the first is complementary to any beam

discovery solution. The two main contributions of this work include:

• A continuous-discrete beam tracking that continuously predicts the beam di-

rection, even though the channel measurements are sparse, via the transmission

of pilot symbols. Low-complexity implementation of the idea can be realized

via low-complexity control-theory tools.

• A beam discovery approach to quickly narrow down the search in 1-2 shots to

the correct beam direction among hundreds of possibilities.

Following this introduction, Chapter 2 gives an overview of the mmWave system,

and we discuss the related work in Chapter 3. Furthermore, the system model is

introduced in Chapter 4. Chapter 5 demonstrates the Continuous-Discrete beam

tracking approaches, and Chapter 6 illustrates the Main-Lobe Fast Beam Discovery

approach. Finally, Chapter 7 concludes our work and introduces future work.
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CHAPTER 2

MILLIMETER WAVE OVERVIEW

2.1 Introduction

In this chapter, we briefly discuss millimeter wave history, how it became an en-

abling technology to the most advanced cellular networks and why we need mmWave

in wireless communication networks. Moreover, the mmWave propagation character-

istics differ from the traditional wireless network systems and add more challenges to

the developers and manufacturers, and we are going to summarize these characteris-

tics. Furthermore, we introduce the hidden advantage of the mmWave, designing and

manufacturing large-scale antenna arrays in tiny spaces. Finally, utilizing large-scale

arrays add more challenges to wireless networks, such as the problem we discuss in

this study.

2.2 Road to mmWave

Adopting the millimeter wave (mmWave) in wireless communication systems de-

notes a recent step in the row of evolution that started more than a century. Starting

with Guglielmo Marconi, who was the first to develop and commercialize a wire-

less telegraphy system, the wireless communication systems industry has extended

from Point-to-Point (P2P) topology to Radio Frequency (RF) broadcast systems and,

Eventually, to cellular networks. Since more technological systems have developed,
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wireless communication has become ubiquitous the life. The modern community is

gripped in wireless networking, as the majority use cellular networks, WiFi, and other

topologies of wireless networking, all of which have evolved considerably over the past

two decades. The phenomenal popularity of such technological systems drives design-

ers of new devices, developers of its infrastructure, and manufacturers to search for

a broader radio spectrum for better-advanced offerings constantly [19].

Wireless networks in the mmWave band represent the most contemporary de-

velopment for wireless networking. The significance of mmWave will be caused by

consumers seeking higher data transmission rates for real-time activities, which de-

mand lower delays and stable links on wireless networks. The available spectrum

at the mmWave band is superior to wireless systems (cellular and WLAN), which

operate at frequencies below 10 GHz. Particularly the idle band of frequencies at 60

GHz affords 10x to 100x more available spectrum than the unlicensed spectrum in

the Industrial, Scientific, and Medical (ISM) bands (e.g., WiFi users, 2.4 / 5 GHz)

and cellular systems up to the 4th generation (i.e., 4G), which operate at frequen-

cies below 6 GHz. The plenty of spectrum facilitates the achievement of higher

data transmission rates for identical modulation approaches while supporting more

sharable resources for multiple users.

2.3 Radio Wave Propagation for mmWave

The characteristics of radio wave propagation are vital to the design of the receiver,

transmitting power, antenna design, interference level, and the expected coverage for

wireless networks. At mmWave frequencies, the corresponding wavelengths are tiny,

which means that most of the entities in the physical channel are very large relative

to the mmWave wavelengths. Therefore, objects with large wavelengths compared

to mmWave cause critical propagation phenomena, like signal blockage, when an

7



obstacle blocks the path between the TX and the RX. Nevertheless, wireless links

are still potentially established between the TX and RX by reflected and scattered

waves, even if the line-of-sight (LOS) paths are blocked.

The mmWave band’s wavelengths are so short that the molecular compositions of

atmospheric molecules (i.e., water vapor) have a vital role in the achievable free space

distances over the sub-terahertz (Sub-THz) spectrum. Fig. 2 depicts the overload

attenuation (additional to the Friis distant-dependent path loss) in the air over the RF

spectrum band up to 400 GHz and exhibits how electromagnetic waves are drastically

attenuated by the absorption of the atmospheric molecules, which is happened due to

the oxygen and the water molecules at 60 GHz, and 180 - 320 GHz respectively [20].

In addition, temperature and humidity strongly affect the actual extra attenuation

induced by absorption [21]. Also, Fig. 2.1 shows that specific spectrum bands, e.g., 60

GHz, 180 GHz, and 380 GHz bands, have a significant extra attenuation over distance.

These spectrum bands are suitable for unlicensed networks for homes and buildings

(within a coverage distance of tens of meters) where the radiated signals propagated

through space will rapidly attenuate and avoid interference with nearby networks.

Fortunately, spectrum bands ranging from 0 to 50 GHz, or 200 to 280 GHz, are potent

candidates for cellular networks and mobile systems since they have little excess

atmospheric attenuation. This happens since the smaller the attenuation, the better

the coverage distances, which is more suitable for cellular systems. Atmospheric

attenuation, among other factors, impact coverage distances or interference due to

co-channel transceivers. Also, weather conditions (e.g., rain, hail, sleet, or snow)

significantly impact frequency-dependent attenuation over distance.

Large-Scale Propagation Channel Effects: Electromagnetic wave propaga-

tion in free space is a reasonable starting point for assessing the aspects of the wireless
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Figure 2.1: The associated attenuation (dB/Km) with absorption in the air that is
over free space path loss [20].

channel on a large scale, where the signal power loss is characterized by different or-

ders of magnitude variations in separation between the transmission parties (i.e.,

transmitter/receiver), up to thousands of meters. The free space propagation with

a clear channel (no obstacles, scatterers, or reflectors) is modeled mathematically in

the equation of free space path loss attributed to H.T. Friis [22]. In [23], the Friis

equation describes how to relate the Effective Isotropic Radiated Power (EIRP) at

the RX as a function of the TX power Pt, and the antenna gains Gt, Gr at the TX

and the RX, respectively. The free space path loss equation (Friis equation) is given

by:

Pr =
PtGtGr

L

(
λ

4πd

)2

(2.1)
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where Pt and Pr are presented in units (Watts or milliwatts), while Gt and Gr are

linear (not dB) gains, respectively, compared to an isotropic radiator, and λ = c/fc

is the operating wavelength (in meters). Moreover, c is the speed of light, fc is the

carrier frequency, d is the separation between the transmitter and the receiver, and L

is the path loss. It is clear from the equation that path loss increases as the wavelength

are shortened, or the distance is increased. The relation between the wavelength and

the frequency of the propagated signal makes it clear that the free space path loss is

proportional to the square of the carrier frequency.

Simple calculations can reveal that adopting the mmWave bands will be a critical

issue if omnidirectional antennas are deployed. We should compensate for 20-40 dB

power loss compared to communication systems below 10 GHz. This severe path

loss in the mmWave and Sub-THz has been approved with a bunch of measurement

campaigns [24–26].

Free space path loss can work well for the mmWave channel when a LOS path ex-

ists and the directional antennas are perfectly aligned [26]. Thus, large-scale propaga-

tion effects should also consider, Atmospheric, weather effects, diffraction, reflection,

penetration, and scattering.

Small-Scale Channel Effects: The arrival of multipath in the wireless channel

produces small-scale fading effects. The most important effects are:

• Rapid variations in signal strength over a short distance or time interval.

• Random modulation in the carrier frequency due to varying Doppler shifts on

each incoming path.

• Time echoes produced by multipath propagation delays.

The complex coefficients of an incoming path from the multipath components inte-

grate the large-scale path loss effects. Conceptually, the small-scale effects model the
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arrival of replicas of a transmitted signal due to scattering, reflection, or diffraction.

Also, each multipath component may belong to a different angular direction (arrive

from various spatial directions). Signals in the mmWave band also experience a con-

siderable percentage of multipath contributions due to significant surface scattering

(i.e., scattering from large objects). Objects comparable in dimension to the λ induce

the scattering effect, acting as point sources if it blocks the path between the trans-

mitter and the receiver. The mmWave channel is depicted by severe shadowing [24]

since it experiences reduced diffraction. The reflection effect is derived by objects

with dimensions much larger than the wavelength of the propagated signal. Thus,

traditional scatterers (objects) now act as reflectors at the mmWave and Sub-THz

bands and may derive considerable multipath impacts in mmWave systems.

2.4 Antenna Arrays

Up to this point, we discuss the issues with the propagation characteristics of the

mmWave channel. However, due to its low wavelength, the mmWave band will allow

small-dimension directional antennas with significant gain that can offset and even

reduce the associated path loss. This is easily noticed in equation 2.1, where adaptive

arrays may be utilized to produce narrow beams (with high directional gain) that are

compact enough (physically small) at mmWave frequencies. This high directional

gain is steerable that allow the mmWave system to guide beams within the channel

and to bounce the propagated energy from the surrounding objects (scatterers and

reflectors) while focusing the propagated energy in the strong directions that make a

potential link for communication path. Moreover, by employing a mixture of MIMO

and beamforming techniques, the severe path loss in the mmWave channel can be

alleviated dramatically by forming concurrent beams in various directions. Also,
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Figure 2.2: Uniform Linear Array with N
elements [27]

Figure 2.3: Uniform Planar Array with
NxM elements [27]

different spatial paths can be utilized to leverage MIMO and spatial multiplexing,

where parallel data streams are transferred to increase capacity.

Antenna arrays come with several advantages compared to solo antenna systems,

where it may be essential to satisfy link budget requirements when the operating

frequency is beyond 10 GHz. Besides improving the antenna gain, such an array

can enhance the receiver sensitivity by 10 log (N), where N is the array size [28].

This means a system with N antenna elements improves the Signal-to-Noise Ratio

(SNR) with N times compared to a single-element system (when N = 1). Moreover,

an array approach enhances resiliency to robust unwanted signals that may interfere

with or obstruct the desired signal, provided these signals impinges from directions

other than the desired beam direction.

Array Configuration: The array can take different configurations describing

how the elements are equipped and placed to form the array. The geometrical shape of

the elements denotes the array configurations as follows: linear, rectangular (planar),

12



Figure 2.4: A 3D view of the ULA direc-
tional gain.

Figure 2.5: A 3D view of the UPA direc-
tional gain.

circular, and spherical. Here, we briefly describe linear and planar arrays, while

the remaining configurations are out of our scope. We depict the linear and planar

configurations in Fig. 2.2 and Fig. 2.3, respectively. We depict the linear and planar

configurations in Fig. 2.2 and Fig. 2.3, respectively. As shown in Fig. 2.2, the elements

are distributed over a line and spaced by ∆ in wavelength (e.g., 0.5λ). When the

antenna elements are organized over a rectangle, we denote it by a planar array.

Furthermore, an array is classified as (i) uniform and (ii) non-uniform array based on

the spacing between elements. Therefore, we can have Uniform Linear Array (ULA)

and Uniform Planar Array (UPA) when the array elements are equally spaced in any

direction.

The elements of the array can be phased by applying a phase shift to each element

to form and steer the beam (directional gain). The beamforming (directional) gain

for the ULA (N = 16 elements) and UPA (square, with N = M = 4, i.e., 16 elements

as well) are shown in Figs. 2.4 and 2.5, respectively. Both configurations have the
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Figure 2.6: X-Z (azimuths) plane for ULA
pattern

Figure 2.7: Y-Z (elevation) plane for ULA
pattern

same gain since they have equal array sizes. Nevertheless, they have different spatial

properties. ULA has a narrower beam in the azimuthal plane and a much broader

beam in the elevational plane, as shown in Figs. 2.6 and 2.7. On the other hand,

Figs. 2.8 and 2.9, a square UPA has a symmetric beam width in both the azimuthal

and elevational planes. We can notice that the ULA has a narrower beamwidth than

the UPA, especially in the azimuthal plane, which makes it a better candidate for

interference cancellation issues. On the other hand, the symmetric and broader beams

of the UPA compared to the ULA give the advantage to the UPA when talking about

beam alignment.

2.5 Summary

This chapter introduces the mmWave network’s history and discusses how the

propagation at high-frequency bands (mmWave and Sub-THz) is highly attenuated.

Also, we discuss the hidden advantage of the mmWave system, which enables us
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Figure 2.8: X-Z (azimuths) plane for UPA
pattern

Figure 2.9: Y-Z (elevation) plane for UPA
pattern

to reach large-scale antenna arrays in the size of portable devices. Moreover, the

large-scale arrays provide high directional gains, compensating for the severe path

loss for wireless networks beyond 10 GHz. Finally, utilizing large-scale arrays with

narrow directional gains comes with additional beam alignment costs. In Chapter 3,

we discuss in detail the problem of beam alignment and how it was handled in the

related work.
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CHAPTER 3

RELATED WORK

3.1 Introduction

Beam management is open research, especially since mmWave networks had a

significant role in the latest wireless networks as 5G/6G. For example, 5G mmWave

bands, typically known as Frequency Range 2 (i.e., 24.25 to 52.6 GHz), count on a

beam-based air interface instead of a sector-based air interface as in the low-frequency

bands [15]. This chapter introduces some related work to the beam management

problem. We consider the two main classifications of the beam alignment issue: (i)

Initial Beam Alignment (Beam Discovery) and (ii) Beam Tracking.

3.2 Initial Beam Alignment

Beam discovery is the initial stage of beam management, contributing signifi-

cantly to the link establishment of mmWave networks. Typically, beam discovery

is conducted via a sequence of pilot symbols for beam training before data trans-

mission, and this represents an overhead that exacerbates the spectral efficiency in

large-scale MIMO systems [29]. This issue has been tackled through several meth-

ods, including (1) Compressed Sensing (CS), which has long been used for efficiently

reconstructing signals [30, 31]. Due to the mmWave channel sparsity, we can exploit

CS tools to acquire the beam directions (AoA/AoD). The adaptation of CS tools
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to the beam discovery problem depends on random beamforming vectors, mainly

constructed by assigning each antenna element a random phase shift. The random

phase shifts integrated into the beamforming and precoding vectors develop irregu-

lar envelopes of beam patterns, which are susceptible to signal power variations and

thermal noise [32]. Also, beam discovery methods include (2) Beam Sweeping or Ex-

haustive Search [14,29], where the TX and RX examine all potential beam pairs from

a predefined set of beamforming/precoding vectors. The beam direction can then

be estimated from the accrued information of path gains and their corresponding

AoAs/AoDs. The Exhaustive Search is time-consuming where the beam discovery

complexity is O(Nt×Nr). So, the time needed to find the optimum pair of beams at

the TX and RX scales in quadratic form when Nt = Nr = N .

Many approaches have been proposed to scale down the complexity of beam sweep-

ing. A big step is decoupling the beam discovery from the TX and the RX as follows:

First, TX exploits a quasi-omnidirectional beam, while the RX utilizes a narrow beam

to discover the optimum AoA direction. Second, the first step is reversed so that the

TX also discovers the AoD direction [14]. The second big step is the utilization

of a hierarchical beam sweeping approaches [10, 33–39], which studies the design of

adaptive beamwidth codebooks to decrease the beam discovery complexity and its

associated overhead.

The basic idea of these approaches is to utilize coarse and fine beam sweeping

stages. In [33], a K stages hierarchical beam sweeping approach is proposed to mini-

mize the number of channel measurements. This approach uses a set of beamforming

vectors corresponding to wide beam patterns to scan the angular space at the first

stage. In the second stage, the same beamforming vectors are utilized but now cor-

respond to narrower beam patterns. The chosen vectors at stage two cover a sector

of the angular space that conforms to the same direction of the beamforming vector
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with the highest RSS. Similar stages with narrower beam patterns are utilized to

precisely estimate the beam direction that maximizes the SNR.

As a practical implementation of the hierarchical beam sweeping, the IEEE 802.11

ad/ay WiFi specifications [35,36] utilize two-stage of coarse and fine beam sweeping.

In addition to decoupling the discovery problem between the TX and the RX, [35,36]

construct wide beams to cover the angular space as sectors, then scan the sector with

high potential using very narrow beams. In [34], a design of MAC scheme is proposed

in light of maximizing the spectral efficiency. The basic idea is to reduce the reference

(pilot) symbols overhead required for beam training/discovery and tracking. They

exploit a hierarchical beam sweeping similar to the IEEE 802.11 ad/ay [35,36]. Fur-

thermore, the 5G-NR standards [15] deploy two-stage coarse-fine beam sweeping. In

contrast to beam sweeping, the problem of finding the beam direction is formalized

as a Multi-Armed Bandit [13]. In comparison to the WIFI standards [35,36], the ap-

proach used in [13] utilizes the contextual information from previous beam alignments

is used to minimize pilot overhead.

The works mentioned above consider the beam discovery over an analog beam-

forming architecture. Nevertheless, many beam discovery methods exist that deploy

different architectures, i.e., Hybrid/Digital. [40–50] proposed a two-level phased array

architecture (Hybrid) with M subarrays and M RF chains. This work can be de-

scribed as follows: (1) the first level is the analog domain part, where each subarray

constructs a wide beam pattern, and all the subarrays direct their beam toward the

same direction. (2) the second level is virtual, where the digital beamformer creates

virtual narrow beams directed in all directions. The combined beam is the product

of the two-level beams and has the resolution of the narrow beams (virtual level).

In similar works, where subarray based approaches are utilized to minimize the pilot
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symbols overhead, phased subarrays are deployed in two configurations: (1) over-

lapped [41] and (2) non-overlapped [42]. A cross-correlation beam discovery approach

that deploys subarrays is proposed in [42–44], and subspace projection beam search

algorithms are presented in [45, 46] when the same phase shift is utilized for each

subarray. In [42, 46], additional pilot symbols are employed to resolve the ambiguity

in detecting beam direction. Also, a frequency domain post-processing is required

for [43], while a noise subspace projection is needed for [45], and iterative updates are

necessary for [47, 48]. Moreover, exploiting different phase-shift for each subarray is

helpful in reducing the beam discovery latency, which was proposed by [49–51]. This

work shows a significant reduction in the number of channel measurements. Still,

it has the complexity of the hybrid beamforming architecture, which scales up with

the number of RF chains. In this work, we are only interested in beam discovery on

systems utilizing analog beamforming architectures.

3.3 Beam Tracking

Beam tracking is a complementary solution to the initial beam alignment solution,

which aims to keep the beam alignment tightly coupled while reducing the significant

overhead required by initial beam alignment. This can be done by enlarging the time

in-between two consecutive beam discoveries. Many algorithms have been proposed

for beam tracking, with the motivation of using a small number of overhead pilots to

track the already discovered beams.

Extended Kalman Filter: The EKF is a non-linear version of the Kalman Fil-

ter, where the tracked/predicted object is non-linearly added to the noise. Therefore,

the EKF is a suitable solution for tracking the AoA/AoD where the thermal noise

is added to the AoA/AoD in a non-linear fashion at the antenna elements. Discrete

Extended Kalman Filter (EKFD) was proposed in [52] as a low-complexity tracking
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algorithm, utilizing a periodic single pilot symbol each time slot to find a new es-

timate. In [52], the EKF complements an initial estimate of the AoA/AoD, which

means they only consider the beam tracking problem without considering the initial

beam alignment problem.

Fast Beam Tracking: In [53], a Fast Beam Tracking (FBTD) approach was

developed to make the MSE converge faster to the Cramér-Rao lower bound (CRLB).

In this approach, both the initial beam discovery and the beam tracking problems

are considered. A coarse beam sweeping is proposed to discover the initial beam

direction, and a recursive beam tracking algorithm is proposed to minimize the MSE

of the true AoA.

Auxiliary Particle Filter: Another tracking algorithm that handles the non-

linear noisy function of the AoA is proposed in [54]. In this approach, a group of

particles are generated at each channel measurement. An estimate of the AoA is

found by averaging the estimate of all generated particles.

These approaches update the beams at discrete instances upon fresh measure-

ments and keep the alignment fixed until the subsequent measurement. In contrast,

our approach updates the beam directions incrementally in between measurements.

Moreover, [55] proposed a CS framework that probes the channel and steers the beam

direction per each OFDM symbol to gather more random probing directions to in-

crease the randomness in the sensing matrix compared to traditional beam switching

per block of symbols [56]. Symbol-based beam direction switching approach is sup-

ported by several previous works that enable the beam switching time in terms of 4

to 50 ns for mmWave [57,58] and could be reduced as low as 100 ps [59].

Up to this point, we have introduced some beam tracking algorithms that utilize

pilot symbols to perform tracking. On the other hand, other techniques exploit

different resources to track the beam direction. Previous works leverage Machine
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Learning (ML), computer vision, and radar sensory information to enhance beam

tracking and blockage prediction in mmWave and Sub-THz bands [60–65].

Vision-aided frameworks were proposed to predict the blockage and position of

a mobile user/terminal to complete handoff [62–64]. Furthermore, in [60], an ML

framework was proposed to reduce the dependence of beam tracking on pilot sym-

bols. In this approach, an RGB camera is attached to the Base Station (BS) to

capture a group of consecutive images. An object detector is utilized to process the

captured images and identify the receiver position. An algorithm then predicts the

future position of the receiver and its corresponding beam direction. In this study, we

do not assume the presence of aiding devices like cameras, and we are only concerned

with beam tracking techniques that utilize a single pilot symbol arriving at each time

slot. In [61], a deep learning framework exploits the sub- 6 GHz channel holds suffi-

cient information to predict the beam direction and blockage status in the mmWave

channel. In addition to radar sensory information, the geographical location of the

user/terminal used to conduct the beam tracking procedure is proposed in [65].
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CHAPTER 4

SYSTEM MODEL

In this chapter, we present the system model used to solve both the problems

of beam discovery and tracking. The proposed model is general for both problems,

but certain assumptions are assumed for the number of antenna elements utilized

and the channel variations. Following this brief introduction, we introduce the no-

tations in Section 4.1, and the channel model is described in Section 4.2. Finally,

Section 4.3 introduces the communication protocol, which describes the beam dis-

covery and tracking issues and shows the crucial role of these issues in accomplishing

data transmission.

Antenna Configuration

Selector

RF Chain

ADC

Baseband

Figure 4.1: Receiver architecture with M subarrays
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4.1 Notation

The lowercase x and x denote scalar and vector quantities respectively, while the

uppercase X denotes a matrix. The continuous variation in x is denoted by x(t), and

xk is the sampled version of x(t) each T seconds, where xk ≜ x(t) | t=k T . Moreover,

(.)†, ℜ(.) and ℑ(.) denote the conjugate transpose, the real and the imaginary parts

respectively. Also, The standard Q function is denoted by Q, while its inverse is

denoted by Q−1. Finally, |S| is the cardinality of a set S.

4.2 Channel Model

We consider a Single Input Multiple Output (SIMO) channel model with a single

antenna at the transmitter and N antennas at the receiver as shown in Fig. 4.1. The

receiver antennas are equally spaced and arranged linearly to form a Uniform Linear

Array (ULA). We assume an analog beamforming transceiver architecture, where a

single RF chain is utilized, and a phase shifter is applied for each antenna element in

the array. We assume a 2D multi-path channel model from [6,18, 66] with a channel

impulse response:

c(t) =
L∑

ℓ=1

αℓ(t)aR (ϕℓ(t)) , (4.1)

where ℓ is the path index, L is the total number of paths, αℓ(t) is the complex

path gain, aR is the array steering vector, and ϕℓ(t) is the time-varying AoA, which

changes over time due to mobility of the transmitter, receiver and the environment.

The steering vector is given by:

aR(ϕ) =

[
1 e−j2π∆cos(ϕ) · · · e−j2π∆(N−1) cos(ϕ)

]T
, (4.2)
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Time Slot

One Pilot / Time Slot for Beam Tracking

Pilots for Fast 

Beam Discovery

Complex Path Gain

Estimation

Figure 4.2: Frame Structure of Beam Alignment Procedure.

where ϕ ∈ [0 , 2π), ∆ is the antenna spacing normalized by the wavelength, and N is

the number of array elements.

Fig. 4.1 depicts the analog beamforming architecture with N antenna elements.

This antenna array is virtually divided into M subarrays, where each subarray has

No =
N

M
antenna elements. The receiver can utilize any combination of adjacent

subarrays to increase the received array gain. Simply, exploiting a single subarray

results in a wide beam with low array gain. Increasing the number of combined

subarrays makes the beam narrower with higher array gain.

4.3 Communication Protocol

This section discusses the frame structure representing the presumed communi-

cation protocol. The frame structure given in Fig. 4.2 is used in [18, 66] to describe

the beam alignment procedure. We have two main stages for beam alignment: the

first stage consists of NP pilots required for beam discovery (initial beam alignment),

and the second stage applies one pilot each time slot for beam tracking. Chapter 6

focuses on the first stage, which treats the initial beam discovery. The second stage

is considered in Chapter 5. The following Sections 4.3.1 and 4.3.2 provide the specific

assumptions for each stage.
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4.3.1 Beam Discovery

In this stage, we assume that the receiver can exploit any combination of the

subarrays to produce different beams with different widths. This stage is divided into

two substages: (1) Complex path gain estimation and (2) Beam direction estimation.

For the complex path gain estimation, we consumeK pilot symbols to find an estimate

of the path gain. Then, ÑP pilot symbols are utilized to find an estimate for the beam

direction given the path estimate in the first stage. Through both substages, we

assume the beam direction to be almost constant during the beam discovery period,

then the channel model in Eq. (4.1) is reduced to the following:

c =
L∑

ℓ=1

αℓaR (ϕℓ) , (4.3)

Given the sparse nature of the mmWave channel, the received power from all

directions is limited to a few sharply defined AoAs [3, 67]. In addition, since our

receiver has an analog architecture, it can only form one directional beam towards the

strongest path in the channel (i.e., the path with the highest received power). Hence,

we can assume that all other paths are highly attenuated since they are weaker and

lie outside the main lobe of the receive antenna. Therefore, we omit the subscript ℓ

for paths and treat attenuated weaker paths as noise.

We utilize a sequence of pilot symbols to measure the channel and thus estimate

the AoA. The kth received pilot sample is given by:

zk = α pw†(ϕ̄k)aR (ϕ) + nk

=
α p√
N

N−1∑
m=0

e−j2π∆m[cos(ϕ)−cos(ϕ̄k)] + nk,
(4.4)

where p is the amplitude for a known pilot symbol, ϕ̄k is the beam pointing direction
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utilized at each pilot symbol, nk ∼ CN (0, σ2
n) is a circularly symmetric complex

Gaussian noise sample, and w(ϕ̄) ∈ CN×1 is the beamforming vector which is given

by:

w(ϕ̄) =
1√
N

[
1 e−j2π∆cos(ϕ̄) · · · e−j2π∆(N−1) cos(ϕ̄)

]T
(4.5)

Succinctly, we can rewrite Eq. (4.4) normalized as follows:

yk =
α

N

N−1∑
m=0

e−j2π∆m[cos(ϕ)−cos(ϕ̄)] + ńk, (4.6)

where ńk ∼ CN (0, 1/ρ), ρ = N ρa is the SNR including the array gain, and ρa =

|p|2/σ2
v is SNR for each antenna element.

4.3.2 Beam Tracking

In this stage, we assume that the receiver utilizes the total array size, which means

the receiver produces the beam with beamwidth corresponding to the full array size.

Moreover, the continuous variation in the AoA is given by:

ϕℓ(t) = ϕ0,ℓ +

∫ t

0

ϕ̇ℓ(τ) dτ

ϕ̇ℓ(t) = ϕ̇i,ℓ + Bℓ(t),
(4.7)

where ϕ0,ℓ, and ϕ̇i,ℓ are the initial AoA and the initial rate of change for the AoA,

respectively. The variation term ϕ̇ℓ(t) denotes the rate of change in AoA. We model

the changes in ϕ(t) through modeling its rate of change ϕ̇(t). In a general environment,

users can accelerate, decelerate, rotate and may move on curved paths. In Fig. 4.3,

we depict two different sample paths of the progression over time of the AoA based on

the proposed variation from Eq. (4.7). Both paths show that the proposed variation

in the AoA is slow when the curve keeps increasing or decreasing. Moreover, sudden
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Figure 4.3: Sample paths of the AoA progression over time

reflection in the curve corresponds to a severe change in the AoA, which may come

from reversing the motion direction or any other sudden variation in the channel.

The objective of Chapter 5 is not to provide detailed models of motion and in-

tegrate them into a cumbersome calculus. Instead, we aim to convey the value of

incorporating the variations into beamforming. As a result, we use an approach in

which the vagaries of the mobility are summarized in a general stochastic model.

In particular, as a representation of ϕ̇(t), we use Bℓ(t), a zero mean Brownian mo-

tion process with variance Qt, where dBℓ(t) = ωℓ(t) dt, and ωℓ(t) is a zero-mean

White Gaussian process with a Power Spectral Density (PSD) Q for all frequencies

−∞ < f <∞. A small value of Q means that ϕ̇(t) is almost fixed (and that changes

in ϕ(t) is steady), and vice versa for large values of Q.

Following the same assumption of the sparse channel, and given the knowledge of

the path gain found in the previous stage, the measurement Eq. (4.6) can be rewritten
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as follows:

yk =
1

N

N−1∑
m=0

e−j2π∆m[cos(ϕk)−cos(ϕ̄k)] + ńk, (4.8)

where ńk ∼ CN (0,
1

ρ
), ρ = N |α p|2/σ2

v is the SNR including the array gain, and

|α p|2/σ2
v is SNR for each antenna element. Also, we assume that α is perfectly

estimated in the previous stage. Then, there is no amplitude or phase error affecting

the signal part. To simplify the notation of Eq. (4.8) , let us define the signal part,

excluding the path gain, as:

h
(
ϕ, ϕ̄

)
≜

1

N

N−1∑
m=0

e−j2π∆m[cos(ϕ)−cos(ϕ̄)]. (4.9)
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CHAPTER 5

CONTINUOUS BEAM ALIGNMENT FOR MOBILE

MIMO

5.1 Introduction

In this chapter, we provide a tracking algorithm that continually updates the

beam-pointing direction, though the possible channel measurements are sparse, via

the transmission of reference/pilot symbols. Away from the classical beam track-

ing algorithms, which correct the estimate of beam angle based on reference/pilot

symbols and fixate them pending the arrival of the next pilot symbol, our method

models and uses incremental beam variations in-between pilot symbols by predict-

ing the beam angle variations at the transmitter and the receiver. The proposed

approach, which we denote as Continuous-Discrete tracking, utilizes the physical na-

ture of beam angle variation in the angular domain as a function of time to set up

a state transition model. This model fuses information with channel measurements

under three different frameworks: (i) an Extended Kalman Filter (EKF), (ii) a Fast

Beam Tracking algorithm (iii) a Main-Lobe approximation.

Following this introduction, Section 5.2 provides a motivating example to elab-

orate the key idea of the Continuous-Discrete tracking approach. The particular

assumptions of a different array configuration are provided in Section 5.3, and the
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Figure 5.1: Example of a moving receiver with a Continuous-Discrete tracking

problem statement is given in Section 5.4. Section 5.5 demonstrates the Continuous-

Discrete beam tracking approaches, and Section 5.6 provides an analytical discussion

of a complementary problem to the beam tracking problem, represented by how to

choose the pilot period. Section 5.7 shows results comparing the Continuous-Discrete

proposal to its counterparts and evaluating methods of selecting the Pilot Period.

Finally, section 5.8 summarizes this chapter.

5.2 Illustrative Example

In this section, we provide a simplified example to demonstrate our proposed

Continuous-Discrete beam tracking solution and compare it against the traditional

discrete beam tracking approaches. The fusion of discrete measurements and contin-

uous AoA updates (which enables continuous beam updates) is called ”Continuous-

Discrete” Beam Tracking.

In the example shown in Fig. 5.1, a Transmitter (TX) with a single antenna serves

a moving Receiver (RX) with a directional antenna gain. The RX moves along the

30



shown circular path with a constant velocity ν. Let us assume that at position 1,

the RX has accurately discovered the AoA, ϕ, of the strongest channel path and has

aligned its receive antenna beam towards that path. After that, the RX keeps tracking

ϕ using periodic pilot symbols that arrive every T seconds. Upon the arrival of a pilot

symbol, the RX updates the estimate of the AoA, ϕ, and its slope variation,
dϕ

dt
. Using

the slope variation, the RX predicts the change in the AoA and continuously updates

the beamforming vectors to stay tightly coupled with the incoming path.

Recall that RX moves with constant angular velocity. Hence, intuitively, as the

prediction errors of the AoA and the slope variations go to zero, the period T →∞,

which means that pilot symbols are not needed to keep tracking the AoA. That is

because
dϕ

dt
perfectly tells us precisely what the value of ϕ will be at any future

time. On the contrary, ”Discrete” Beam Tracking solutions only update the AoA

once every pilot symbol arrival. That is, discrete tracking does not update the AoA

estimate in the time duration in between pilot arrivals. Also discrete tracking does not

rely on AoA rate of change information. Hence, the misalignment between the beam

direction and the incoming paths increases as the pilot period increase. This means

that, in a Discrete tracking approach, the RX needs to minimize the period T (increase

the pilot overhead) as the beamwidth decreases (array size increase). Our proposed

Continuous-Discrete measurement framework incorporates extra system information

embodied in the rate of change of the AoA. This extra information allows us to

predict how the AoA changes even when no measurements are available. This, in

turn, allows us to extend the pilot period without significantly degrading the link

quality or risking losing beam alignment.

Now, let us introduce how the AoA changes based on the special scenario assumed

in Fig. 5.1. The RX at position 1 is moving with constant velocity ν, and the AoA
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Figure 5.2: SNR for Continuous-Discrete and Discrete tracking

changes continuously based on the following equation:

ϕ(t) = ϕ0 +
ν

r
t, (5.1)

where r is the distance from the TX to the RX. So, after a pilot period T , the

RX will move to position 2, and the new AoA is ϕ2 = ϕ1 +
ν

r
T . The Continuous-

Discrete tracking allows us to update the beam direction continuously based on a

prediction of the angular velocity
ν

r
, while Discrete tracking only updates the beam

direction upon pilot arrival, (i.e., position 1,2). Fig. 5.2, shows the Signal to Noise

Ratio (SNR) for the example shown in Fig. 5.1, under both Discrete and Continuous-

Discrete measurement frameworks. For that experiment, the total tracking time is

100 ms, ν = 100 Km/hr, r = 20 m, and ϕ0 = π/4, and the two values for the pilot
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period T = {10, 50}ms. The results from Fig. 5.2 reveals the weakness of the Discrete

tracking approaches, where the instantaneous SNR drops drastically in between pilot

symbols. To overcome the drop in the SNR, the pilot period should be decreased, i.e.,

T < 10 ms. On the other hand, the prediction of the rate of change of the AoA makes

the Continuous-Discrete framework to stay tightly coupled even when only two pilot

symbols are used over the entire tracking duration (i.e., T = 50 ms). Furthermore,

the Continuous-Discrete approach can stay aligned without any pilot symbols as long

as the prediction of the slope variation is available.

In this example, we have considered an oversimplified scenario. In a real sys-

tem, however, the channel environment becomes more complex, requiring more so-

phisticated mathematical modeling and tracking techniques. Modeling real system

complexities will be tackled in the following sections. We will see that errors in the

prediction of the slope variation force the Continuous-Discrete solution to limit the

pilot period to alleviate these errors. However, Continuous-Discrete approaches still

can do better than the Discrete approach, as measured in two metrics: (1) Low Pilot

Overhead, where the pilot period is longer than the period of the Discrete case. (2)

SNR, where the Continuous-Discrete can have higher SNR than the Discrete case for

the same pilot period.

5.3 Uniform Planar Arrays

The following sections follow the system model introduced in Chapter 4, especially

the specific assumptions in Section 4.3.2. Up to this point, development in Eqs. (4.1),

(4.4), (4.5) and (4.8) is based on ULAs. Here, we turn our attention to Uniform

Planar Arrays (UPA) since they provide higher gain coupled with resilience to channel

variations. We assume a square UPA where N elements are equally spaced and
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arranged over the area of a square. The steering and the beamforming vectors are

given by:

aP (ϕ, θ) = aR(θ)⊗ aR(ϕ), (5.2)

where ⊗ is the Kronecker product, while ϕ and θ are the azimuth and elevation

angles, respectively. We assume AoA variation only in the azimuth direction, and we

fix θ = 90◦. The beamforming vector is given by wP (ϕ̄k) = aP (ϕ̄k)/
√
N . Now, the

model for the UPA is based on Eq. (5.2), and wP (ϕ̄k).

5.4 Problem Statement

Our objective is to minimize the instantaneous MSE between the true AoA ϕ(t)

and its estimate ϕ̂(t), which can be stated by:

min
ϕ̂(t)

E[(ϕ(t)− ϕ̂(t))2] (5.3)

While traditional solutions update ϕ̂(t) at discrete measurement instances only,

which create larger MSE as ϕ(t) drifts in-between pilots, we update ϕ̂(t) continuously

using an estimate of the AoA rate of change ϕ̇(t) (recall Eq. (4.7)). We define the

system state as x(t) ≜

[
ϕ(t) ϕ̇(t)

]T
, and let x̂(t) be its estimate, whose error

covariance matrix is P (t), where

P (t)
∆
= E

[
(x(t)− x̂(t))(x(t)− x̂(t))T

]
(5.4)

The estimate of x(t), which incorporates both the AoA and its rate of change, is

tackled in the following section.
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5.5 Continuous-Discrete Beam Tracking Approaches

In traditional beam tracking, the estimate of AoA is updated using a pilot symbol

that arrives each time slot, and the RX fixes the beam direction to that estimate until

the arrival of the next pilot symbol. In contrast, Continuous-Discrete beam tracking

exploits the prediction of the rate of change of the channel variation to update the

beam direction and continuously minimize the instantaneous MSE. Furthermore, the

approach presented here hinges on updating the estimate of the AoA not only based

on pilot symbols but also continuous predictions of the rate of variations of the AoA

in between pilots. In other words, we perform continuous beam tracking instead of

abrupt adjustments at each pilot.

In this section, we apply the Continuous-Discrete approach to three different tech-

niques to prove that the proposed approach improves the MSE over discrete baseline

solutions. The three frameworks are listed as follows:

• An Extended Kalman Filter: An extended version of the well-known Kalman

Filter, which is more suitable to a non-linear system.

• A Fast Beam Tracking: The proposed framework in [53], targets converging the

MSE faster to the CRLB.

• Main-Lobe Approximation: A novel approach used to track the beam direction

based on an approximation of the amplitude of main-lobe proposed in Section

5.5.3.

Following this, we provide a detailed discussion of the three proposed approaches.

5.5.1 Approach 1: Extended Kalman Filter

The Kalman Filter is a popular tool used in tracking problems, which motivates
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its use in beam tracking. However, recall from Eq. (4.8) that the measurement yk

is a non-linear function of the AoA (ϕk). This makes the traditional Kalman Filter

unsuitable for this system. Instead, the EKF is the non-linear version of the KF,

which is more suitable for the considered non-linear system in this chapter. The EKF

can be described by two equations: (1) State, which incorporates the continuous

dynamics in the AoA (ϕ(t)), and its rate of change (ϕ̇(t)). Hence, we can write

the state dynamics of the Continuous-Discrete Extended Kalman Filter (EKFCD) as

follows:

ẋ(t) =

[
ϕ̇(t)

dB(t)
dt

]T
= Ax(t) + g ω(t)

=

0 1

0 0

 x(t) +

0
1

 ω(t),

(5.5)

where, ẋ(t) is a vector of entry-wise derivative of x(t) with respect to the time,

and (2) Measurement/Observation, which represents the channel measurements

using known pilot symbols, and it is given by Eq. (4.8). The derivation of the state

dynamics of the EKFCD can be found in [68], but we only provide a sketch as follows:

The main idea of the EKF derivation is the linearization of the signal part (h(xk))

of Eq. (4.8). The following procedures are the same as that of the standard Kalman

filter which can be found in [68].

The standard recursion equations (see [68]) are divided into two stages: (1) Pre-

diction, and (2) Update. The prediction stage is given by:

ˆ̇x(t) = Ax̂(t) (5.6)

ˆ̇P (t) = AP (t) + P (t)AT + gQ gT , (5.7)
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where ˆ̇x(t) is the prediction of the time derivative of the state vector x(t), ˆ̇P (t) is the

prediction of the time derivative of P (t), and Qδ(τ) = E[w(t)w(t+ τ)] is the process

covariance that drives the state vector, and is assumed to be bounded by Q. The

estimate x̂(t) during the prediction stage is the solution of the differential equation

in (5.6). The update stage, which amends the kth iteration of the standard Kalman

gain (Kk), is given by:

Kk = P k−1
k H†

k

(
Hk P

k−1
k H†

k +
1

ρ

)−1

(5.8)

P k
k = (I−Kk Hk)P

k−1
k (5.9)

x̂k
k = x̂k−1

k +Kk

(
yk − h(x̂k−1

k )
)
, (5.10)

where x̂k−1
k , and P k−1

k is the estimate and the error covariance matrix at kth iteration

given k − 1 measurements. Finally, Hk=∇xk
h|xk=x̂k−1

k
is the gradient of the signal

part (h(xk)) and estimated at x̂k−1
k .

An overview of the EKFCD procedure can be described in Fig. 5.3. First, we

assume our knowledge of the estimate of the initial AoA ϕ0. Then, the state is

updated based on Eq. (5.10) if a measurement is available. Otherwise, we repeat the

prediction stage ns times, i.e., we make a prediction every T /ns seconds. When the

tracking period is over, we start searching for a fresh estimate of the AoA, similar

to estimating ϕ0. In this chapter, our main focus is beam tracking, and our solution

complements any beam discovery (initial AoA estimation). Hence the latter is not

included in this work. Further, optimizing the tracking period length is left as future

work.
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Figure 5.3: An overview of Continuous-Discrete EKF procedure.

In the implementation of EKFCD, we replacedHk, yk, and h by the corresponding

matrix/vector H̃k = [ℜ[Hk],ℑ[Hk]]
T , ỹk = [ℜ[yk],ℑ[yk]]

T , and h̃ = [ℜ[h],ℑ[h]]T ,

respectively, to cast the problem as a real-valued problem, similar to [52]. However,

unlike [52], we utilize the pointing direction of the beamforming vector to be the

previous estimate, i.e., ϕ̄0 = ϕ0, and ϕ̄k = ϕ̂k−1
k .

5.5.2 Approach 2: Fast Beam Tracking

The FBTD was proposed in [53] as a low complexity algorithm that makes the MSE

of the true AoA converge faster to the CRLB. In [53], they considered both the beam

discovery and the beam tracking problems. In this section, we are only concerned

with extending the discrete FBTD (beam tracking only) to a Continuous-Discrete

Fast Beam Tracking (FBTCD) solution. The key idea of the Continuous-Discrete
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is to predict the slope variation of the AoA, so we need a prediction of the slope

variation besides the estimate of the AoA itself using FBTD. We take advantage of

the prediction stage in the EKFCD to continuously predict the AoA and its slope

between two pilot symbols. Two stages describe the recursion of the FBTCD: (1) the

prediction stage using equation (5.6), which continuously predicts the estimate of

the AoA and its rate of change found in the update stage. (2) the update stage is

explained by the following two steps:

Discrete Fast Beam Tracking

The first step is to update the AoA using the FBTD [53], which can be described

as follows:

β̂k =
[
β̂k−1 − anℑ[yk]

]1
−1

, (5.11)

where β̂k = sin(ϕ̂k), β̂k−1 is the current and the previous estimates of sin(ϕk) and

sin(ϕk−1) respectively, and an is the step size. The estimate ϕ̂k is found by taking the

inverse of the sine function. To accommodate for differences from the model of [53],

we recalculate the step size as follows:

an =
∂ logP (yk|β̂k−1 ,w(ϕ̂k−1))

∂β̂k−1

/
I
(
β̂k−1,w(ϕ̂k−1)

)
(5.12)

It is easy to find the nominator and the denominator (Fisher Information) of an by

the following:

I
(
β̂k−1,w(ϕ̂k−1)

)
= E

[
−
∂2 logP (yk|β̂k−1 ,w(ϕ̂k−1))

∂2β̂k−1

]

= 2(N − 1)2π2∆2ρ,

(5.13)
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Also,

∂ logP (yk|β̂k−1 ,w(ϕ̂k−1))

∂β̂k−1

= 2π∆(N − 1)ρ (5.14)

Hence, we have the step size as:

an = [(N − 1) π∆]−1 (5.15)

Slope Variation Update

The FBTD does not consider updating the slope variation of the AoA (ϕ̇), we

utilize the EKFCD in the background of FBTCD to update ϕ̇, which is needed for the

prediction stage.

Algorithm 1 Discrete Beam Tracking Algorithm

Input: k ≥ 1, ϕ̂0 = ϕ0, T , and TLR ▷ T :Pilot period, and TLR link reestablishment
time.

Output: ϕ̂k

1: while kT ≤ TLR do
2: φ = ∠ĥ(ϕk, ϕ̂k−1), and Ω̂k−1 = cos(ϕ̂k−1)

3: ϕ̂k±=arccos

([
Ω̂k−1 ±

√
− 2

N2
log
∣∣∣ĥ(ϕk, ϕ̂k−1)

∣∣∣]1
−1

)
4: φ± = ∠h(ϕ̂k±, ϕ̂k−1)
5: if φ = φ+ then

6: ϕ̂k = ϕ̂k+

7: else
8: ϕ̂k = ϕ̂k−
9: end if
10: k ← k + 1
11: end while
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5.5.3 Approach 3: Main-Lobe Tracking Algorithm

In EKFCD and FBTCD, the slope variation estimate was found using an EKF

framework. Here, we introduce a Continuous-Discrete Main-Lobe Tracking Algorithm

(MLCD) based on the proposed Algorithm 1 to update the estimate of the AoA.

The estimate of the rate of change ( ˆ̇ϕ) is updated using an MMSE of the difference

between two consecutive slope variation instants (ϕ̇k−
ˆ̇ϕk−1). The proposed approach

not only proves the validity of the Continuous-Discrete overall discrete baseline but

also provides a tractable analysis needed for the upcoming Section 5.6. The MLCD is

described by two stages as in the EKFCD, and FBTCD; the prediction stage using

Eq. (5.6), and update stage can be divided into two separate steps: (i) updating the

AoA based on a Discrete Main-Lobe Tracking (MLD), and (ii) updating the slope

variation.

Discrete Main-Lobe Tracking Algorithm

In this section, we propose a Discrete Main-Lobe Tracking Algorithm, which

is consistent with the definition of beam coherence time from [17]. This model is

built over the assumption that a pilot symbol arrives each T within the main-lobe

(i.e., within the beam coherence time). This approach is based on the following

approximation of the received signal part for ULAs:

∣∣∣h(ϕk, ϕ̂k−1)
∣∣∣ ≈ e−

N2

2
[cos(ϕk)−cos(ϕ̂k−1)]

2

(5.16)

A comparison between the true value of the amplitude of the received signal and

the approximation given in Eq. (5.16) can be shown in Fig. 5.4. We can notice from

the figure that the main beam-lobe of the true value ULAT is almost the same as

41



0

30

60

90

120

150

180

0 0.2 0.4 0.6 0.8 1

Figure 5.4: Beam Pattern Approximation for 8-element ULA

the approximation ULAA, and the side-lobes can be neglected, especially for a large

array size.

The basic idea of the proposed algorithm is that; the value of the signal part

h(ϕk, ϕ̂k−1): R2 → C is a function of the true value ϕk, and the previous estimate

ϕ̂k−1. If we have an estimate of the signal part from a given measurement, and using

the approximation formula in Eq. (5.16) we can solve it to find the current estimate.

We assume the signal and noise parts are zero-mean Gaussian with variances, σ2
h,

and R respectively. Also, we assume the signal and noise parts are orthogonal i.e.

E[hnk] = 0. Hence, the Linear Minimum Mean Estimate (LMMSE) of h(ϕk, ϕ̂k−1) is

found as follows:

ĥ(ϕk, ϕ̂k−1) = yk
σ2
h

σ2
h +R

= yk
ρ

ρ+ 1

(5.17)

The current estimate is found by solving the approximation given in Eq. (5.16),

and the estimate given in Eq. (5.17). An overview of the proposed algorithm is

presented in Algorithm 1, which can be described as follows: first, we equalize the

estimate from Eq. (5.17) with the approximation formula in Eq. (5.16), then take log
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for both sides. Also, we are going to change the symbol ϕk in Eqs. (5.16) and (5.17)

with ϕ̂k since we looking for an estimate.

log |ĥ(ϕ̂k, ϕ̂k−1)| = −
N2

2
[cos(ϕ̂k)− cos(ϕ̂k−1)]

2 (5.18)

Hence, the estimate found on Line 2 is found directly from Eq. (5.18). As we can

notice from Fig. 5.4, we can have the same amplitude for two different values of AoA,

that is why we need to compare the phases of the two possible solutions as found in

Algorithm 1.

Slope Variation Update

The current estimate of the slope variation ( ˆ̇ϕk) is found as an update of ˆ̇ϕk−1 as

follows:

ˆ̇ϕk =
ˆ̇ϕk−1 +

QT ξℑ[yk]
QT ξ2 + 0.5R

, (5.19)

where ξ = π T sin(ϕ̂k−1)
N − 1

2
, and we assume initial estimate ˆ̇ϕ0 = 0. As shown

from Eq. (5.19), the current estimate depends on the previous estimate and an update

term. The update term is found as follows; first, we use a first order approximation

of the signal part in the measurement equation by:

h(ϕ̇k, ϕ̂k−1) = h( ˆ̇ϕk−1, ϕ̂k−1) + εk h
′
( ˆ̇ϕk−1, ϕ̂k−1), (5.20)

where εk = (ϕ̇k−
ˆ̇ϕk−1), and by assuming good estimate (i.e., ˆ̇ϕk−1,ϕ̂k−1) we can have

h
′
( ˆ̇ϕk−1, ϕ̂k−1) ≈ jεk ξ, and h( ˆ̇ϕk−1, ϕ̂k−1) ≈ 1. In that case, the imaginary part of the

measurement equation is given by:

ℑ[yk] = εk ξ + ℑ[nk]/ρ, (5.21)
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where εk ∼ N (0, Q T ), and for a given ξ, the MMSE of εk (i.e., ε̂k) is given by:

ε̂k = E [εk|yk]

=
QT ξℑ[yk]

QT ξ2 + 0.5R

(5.22)

5.6 Performance Evaluation

The main goal of beam tracking, is to elongate the link reestablishment time TLR;

the time at which we lost the tracking of the AoA, and we need to search for the

new best incoming path. Recall the frame structure in Fig. 4.2, where we need to

send a frame of k time slots with a fixed rate. In Section 5.7.1, we show that large

array size is not able to cope with channel variation for a given pilot period (Time

slot) T . Hence, we need to choose the pilot period T based on array size beside other

factors we will discuss later. In the following, we propose two different ways to choose

the pilot period ; (i) comparable to the beam coherence and (ii) to maintain specific

outage probability and fixed rate.

5.6.1 Beam Coherence Time

Intuitively, the pilot period T has to be comparable to the beam coherence time

Tb to cope with the channel variation. From [17], the beam coherence time is defined

as the time at which the power received at perfect alignment time drop by ζ at time

t+ Tb.

P (t+ Tb)

P (t)
= ζ (5.23)

Since we assume perfect alignment at time t, then the received power P (t) = 1. For

44



Group of Scatterers

r

d
v

Figure 5.5: Model of variation over Pilot Period

ULA, the received power at time t+ Tb while ignoring the noise power is given by:

P (t+ Tb) =
∣∣w†(ϕ(t))aR(ϕ(t+ T )b))

∣∣2
=

1

N2

∣∣∣∣∣
N−1∑
m=0

e−j2πm∆(cos(ϕ(t+Tb))−cos(ϕ(t)))

∣∣∣∣∣
2 (5.24)

Now, we try to visualize the picture of a simple example to grasp the whole idea.

As shown in Fig. 5.5, we assume the receiver is perfectly aligned with the incoming

path at the first position. The receiver is moving with speed v and a fixed beam

direction equals to the AoA at the first position, i.e. ϕk. Hence, after motion for a

distance d there will be a ∆ϕk
misalignment, and the received power will be dropped

to ζ. Our model relates the channel variation to the angular variation ϕ̇k, and Fig. 5.5
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shows how we relate the linear speed v to that angular variation as:

ϕk+1 = ϕk + T ϕ̇k

= ϕk + T
v sin(ϕk)

r
,

(5.25)

where r is the distance from source of the path to the receiver and now we can say

that the angular variation is bounded by speed over the distance as : ϕ̇k ≤
v

r
. This is

the typical situation for the Discrete tracking approach, and we are seeking the pilot

period T to be within the beam coherence time Tb.

For a Continuous-Discrete tracking algorithm, the beam direction changes dynam-

ically based on estimate of the slope variation ϕ̇k, then to find the pilot duration we

need to take care of slope variation estimate in addition to the AoA variations. In this

case, the notion of beam coherence time does not hold for the Continuous-Discrete

algorithms, and we introduce the notion of the Beam Locking Time TL. This time

represents the duration at which the power will drop by ζ while the receiver contin-

uously update the estimate of the AoA and the beamforming.

In order to find a consistent formula of the pilot period, we had to assume it

is the time to have an average drop µζ instead of ζ since both sides of Eq. (5.23)

are random. Now, we introduce how to choose the pilot period for a Discrete and

Continuous-Discrete beam tracking using Theorems 1.

Theorem 1. For the channel model with angular variation given by Eq. (4.7), the

link reestablishment interval TLR is achievable if the pilot period T ≤ TL is given by:

TL =

√√√√√ 1

µ2
ζ

− 1

2κQTLR sin2(ϕk)N
2
, (5.26)

where µζ is the average drop in the received power, and 0 < κ < 1, the lower value
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of κ the better estimate of the slope variations and the TL gets larger. If κ = 1, then

the beam locking time TL is limited to the beam coherence time Tb which is used in

the Discrete beam tracking to choose the pilot period T . Proof of Theorem 1 can be

found in Appendix A.1, and A.2.

Clearly, the power will drop in the discrete beam tracking algorithm faster than the

continuous-discrete tracking algorithms. This is because continuous-discrete tracking

continuously varies the beamforming based on the prediction of the AoA variation

and gain from discrete pilot updates. While the discrete approaches only update the

AoA upon the arrival of pilot symbols.

5.6.2 Outage Probability

An outage event can be defined as a situation when the channel is so poor that

no scheme can communicate reliably at a specific data rate. The highest data rate

of reliable communication at a specific outage probability is denoted as the outage

capacity [69]. Specifically, we can define the outage probability of a channel as the

probability that the data rate is less than the threshold/targeted data rate. For the

situation where the transmitter is aware of the channel distribution, this motivates

the transmitter to choose the pilot period that sustain a specific outage probability

Pout for a fixed rate Rf . In that case, the pilot period is chosen based on Theorem 2.

Theorem 2. For the channel model with angular variation given be Eq. (4.7), the

link reestablishment interval TLR is achievable with outage probability Pout, and a fixed

rate Rf if the pilot period T ≤ To is given by:

To =

√√√√√√ log

(
ρ(

2Rf − 1
))

N2 sin2(ϕk)κQTLR(Q−1(Pout/2))
2
, (5.27)
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similarly, 0 < κ < 1, and for κ = 1, then To is valid as the pilot period for the

Discrete beam tracking algorithm, otherwise, To is valid for the Continuous-Discrete

beam tracking algorithm.

Proof. From Appendix A.3, we get the outage probability for a Continuous-Discrete

tracking approach is given by Eq. (A.20):

Pout = P (γ ≤ γk)

= 2Q

(√
log(ρ/γk)

N2To
2 sin2(ϕk)κQTLR

) (5.28)

for a given γk, the corresponding spectral efficiency isRf = log2(1+γk). Alternatively,

we can replace γk in Eq. (5.28) by 2Rf −1. After that, we divide both sides by 2, then

take the inverse of the Q function. Finally, Eq. (5.27) is found directly by taking To

to the left side. Similarly, The Discrete case where κ = 1 is derived in similar

procedures as Eq. (5.27) by starting from the CDF for the Discrete case which is

given by Eq. (A.17).

5.6.3 Pilot Overhead Reduction

The key point of utilizing the spatial variations in-between two pilot symbols is to

reduce pilot overhead by extending the pilot symbols duration. Now, we show how a

Continuous-Discrete tracking algorithms reduce pilot overheads as follows:

Beam Coherence and Locking Time

Tb

TL

=

√
1/µ2

ζ − 1

2QTLR sin2(ϕk)N
2

2κQTLR sin2(ϕk)N
2

1/µ2
ζ − 1

=
√
κ

(5.29)
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Outage Probability Time

To(D)

To(CD)
=

√√√√√ log( ρ

(2
R

f−1)
)N2 sin2(ϕk)κQTLR(Q−1(

Pout

2
))2

N2 sin2(ϕk)QTLR(Q−1(
Pout

2
))2 log( ρ

(2
R

f−1)
)

=
√
κ

(5.30)

Hence, utilizing the Continuous-Discrete algorithms results in overhead reductions

by (1−
√
κ)%.

5.6.4 Effective Achievable Rate

Now, we are looking to represent the overhead reduction by the effective achievable

rate by excluding the time of pilots training. The effective rate is given by:

Re = ηRa

=
T − Ts

T
× TLR

TLR + Tsw

Ra,
(5.31)

where Ra is the achievable rate, T will be replaced by Tb, TL, To(D), and To(CD)

for each case of choosing the pilot period. Also, Ts is the training time for a single

pilot symbol, and Tsw is the beam sweeping time, which is needed to find the angle of

arrival after losing the tracking. Considering the sweeping time, we utilize the same

formula proposed by [17] based on the hierarchical beam code book in [14] and follows

the IEEE 802.15.3c guidance. The formula was given as function of the beamwidth,

which can be shown as function of the array size as:

Tsw = L (π N)(2/L) Ts, (5.32)

where L is the number of levels in the hierarchical beam codebook given in [14].
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5.7 Numerical Results

5.7.1 Performance of Beam Tracking Algorithms

In this section, we evaluate and compare the performance of EKF and FBT

algorithms under both the Continuous-Discrete and the Discrete frameworks, while

the MLCD and MLD are left to the evaluation in Section 5.7.2. For each experiment,

we assume perfect knowledge of the initial AoA at t = 0, i.e., ϕ0. We simulate ϕ̇(t) as

a Brownian motion and ϕ(t) as in Eq. (4.7), and we let the algorithms run for a total

tracking time of 100 ms and average the output over 5000 runs. Our performance

metrics are: (1) the MSE of the estimated AoA, and (2) the average received SNR.

Except when stated otherwise, we let Q = 104, N = 64 ULA and we fix ρ = 20 dB.

We evaluate the performance under two array orientations, i.e., ULA and UPA.

Different ULA Array Size: Fig. 5.6 depicts a sample path of the progression

of the simulated true value of the AoA as well as its tracking performance using both

EKFCD and EKFD algorithms when ULAs of sizes 16 and 64 are employed. The

Figure 5.6: Angle of Arrival Tracking with 16 and 64 ULAs for T = 2.5ms.
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pilot period is fixed at T = 2.5ms. For the ULA of size 16, both EKFCD and EKFD

frameworks provide accurate tracking performance for the entire tracking duration.

Only a closer inspection reveals the superiority of EKFCD as shown in the zoomed-in

part. However, as the array size gets larger, the beamwidth gets narrower, making

it harder to track the beam. Consequently, for ULAs with 64 antenna elements, we

see a clear difference in favor of EKFCD where it is able to track the beam for a

significantly longer time duration (∼200% longer), compared to EKF with discrete

updates. In general, as the number of antenna elements increases, the performance

gap between EKFCD and EKFD increases in favor of our EKDCD solution as long as

the variation in the AoA over T is less than the variation over the beam coherence

time.

Figure 5.7: MSE for different tracking approaches using 16, and 64 ULAs
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In Fig. 5.7, the MSE for the continuous-discrete and the discrete approaches for

T = 1.0ms is shown. Here, we also provide results for the FBTCD and FBTD al-

gorithms. These results show that the continuous-discrete framework significantly

improves performance over the baseline discrete solutions. We also see that EKFCD

has the lowest MSE, i.e., best tracking performance, among all other solutions. In-

terestingly, EKFCD performs even better for the larger array size, despite the overall

difficulty in tracking sharper beams. On the other hand, the performance of EKFD

degrades by increasing the array size (especially when AoA variations become faster

over the tracking time). This happens since the larger array size has shorter beam

coherence time, and EKFD becomes unable to cope with the fast channel variation.

The Effect of the array size over FBTCD and FBTD is similar to that of EKFCD and

EKFD. Yet, EKFD and EKFCD outperform the Fast-tracking approach (especially

Figure 5.8: MSE for Different Tracking Approaches for 20, and 10 dB
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when the channel variations become faster). EKFCD achieves 80% and 99.5% lower

MSE than EKFD, for 16 and 64 array sizes, respectively.

Different SNR values: Fig. 5.8 shows the MSE under different SNR values; 10

and 20 dB. Here, we fix the array size to 64 and the pilot period to T = 1.0ms. As

expected, decreasing the SNR degrades the performance for all approaches. EKFCD,

however, still outperforms all other algorithms due to its ability to predict the rate of

change of the AoA between pilot symbols. The superiority of EKFCD is very dominant

that even at 10 dB, it still has comparable performance to FBTCD and EKFD with

20 dB. The MSE for all approaches is tiny at the beginning of the tracking period

since the variation of AoA is negligible. As the tracking time advances, the variation

in AoA increases, and the MSE for all approaches increases.

Different Pilot Frequencies: Measurement frequency is an important design

parameter. More frequent pilots ensure better beam tracking, but it also wastes

more transmission opportunities. Here, we shed more light on the effect of tracking

performance as the measurement frequency changes, where we plot the MSE for a

medium AoA variation at Q = 103 for a 64-element ULA, as shown in Fig. 5.9.

First, we observe that for T = 1ms, the performance of both EKFCD and EKFD

are almost identical at the measurement update instances. However, the MSE of

EKFD fluctuates more aggressively in-between measurements. This is due to the

AoA estimate of the EKFD being kept constant between measurements despite the

continuous AoA changes over time. Second, accounting for the nature of variation

between measurements gives an advantage to EKFCD and allows it to use less frequent

measurements while keeping the MSE comparable to EKFD. This can be seen when

comparing the MSE of EKFCD with T = 2.5ms to the MSE of EKFD with T =

1.0ms. Finally, at the same T , FBTCD achieves up to 99.8% lower MSE compared
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Figure 5.9: MSE for Different Tracking Approaches for T = 1.0, 2.5ms

to FBTD. Also, FBTCD performs almost identically at both T = 1.0 and 2.5ms,

showing the effectiveness of continuous AoA updates.

In Fig. 5.10, we present the average received SNR for different T . Averaging is over

the whole tracking time and 5000 runs. Here, we also normalize ρ, with respect to the

array size. This normalization helps isolate the tracking performance as a function of

the beamwidth only. Next in Fig. 5.11, we will remove this normalization and study

the overall performance with sharp beams, by accounting for the beam gain, as well.

We notice that average SNR is degraded by increasing the array size since increasing

the array size decreases the beam coherence time. In order to have good performance

over large array sizes, we need to utilize smaller T . The EKFCD outperforms the

EKFD by 1 dB and up to 4 dB for small and large array sizes, respectively, while the

FBTCD has an advantage by 4 dB and can reach 7 dB. Increasing the pilot period
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Figure 5.10: Average SNR for ULA for Different Array Sizes

degrades the average SNR for all approaches, yet EKFCD still outperforms EKFD by 2

dB for T = 2.5ms. Also, FBTCD has superiority over FBTD by 5 dB for T = 2.5ms.

Fig. 5.11 shows the average SNR for 16 dB per each antenna element. We observe

that increasing the array size increases the average received SNR to a certain point,

before it drops slowly for larger sizes. This can be explained by arguing that the

array gain compensates for small mismatches in beam alignment, despite the difficulty

imposed by the larger array size. However, as arrays get larger, beams get sharper,

and alignment fails more often, leading to a drop in the average SNR.

Uniform Planar Arrays: A UPA has better spatial properties than ULA in

terms of beam coherence time. Hence, a UPA can utilize longer T and still obtain

better performance than ULA. We notice from Fig. 5.12 that UPA scenarios, which
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Figure 5.11: Average SNR for ULA for Different Array Sizes

are denoted by EKF-PCD and FBT-PCD have better average SNR for T = 1.0, 2.5ms,

especially for large array sizes and fast channel variations.

Fig. 5.13 shows the effect of the array gain, similar to Fig. 5.11. The UPA shows

a better use of the array gain, even for the large array size. Intuitively, the average

SNR for UPA will eventually start dropping when the beam coherence time of larger

arrays becomes much smaller than T = 1.0, 2.5ms.
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Figure 5.12: Average SNR for UPA, ULA for Different Array Sizes

Figure 5.13: Average SNR for UPA, ULA for Different Array Sizes

57



Table 5.1: Pilot Overhead Reduction under two different methods of choosing T for
Different Antenna Array Size with TLR = 100ms

Overhead Reduction
Array Size 4 9 16 36 64 144 256 512 1024

Beam Coherence 19% 29% 36% 46% 53% 62% 67% 72% 76%
0.5Rmax 19% 29% 35% 44% 52% 60% 65% 71% 75%How to choose T

Outage Probability
0.95Rmax 60% 60% 61% 73% 76% 80% 83% 85% 87%

5.7.2 Choosing the pilot period

Here, we verify our discussion of choosing the Pilot Period T using the proposed

tracking algorithms MLCD, and MLD since these algorithms are modeled on the

concept of beam coherence. The assumptions that we assumed in Section 5.7.1 still

hold. In addition, we assume ϕ0 = π/2, Q = 103, the frame length TLR = 100 ms, and

SNR/antenna element 8 dB. Finally, the average drop in the SNR µζ = 0.5 at time

TLR, the outage probability Pout = 0.05, and a fixed rate Rf = δRmax as a factor of

the maximum rate Rmax = log2(1 + ρ). Our performance metrics are: (1) the CDF

of the received SNR and the achievable rate , and (2) the effective achievable rate.

First, we numerically investigate the pilot overhead reduction, as shown in Table

5.1. We compare the overhead reduction for different array sizes by choosing the pilot

period T either by the beam coherence or outage probability definitions. The overhead

reduction increases with the array size, and this comes from the fact that for a small

array size, the beam is wide, and the MLD can cope with channel variation with a

pilot period comparable to MLCD. Yet, for a large array size, the beam coherence

time becomes much smaller, and the pilot period becomes smaller for a MLD, which

gives the advantage to the MLCD. Increasing the rate to 0.95Rmax, imposes the

tracking algorithms to sustain higher received SNR, which can be maintained by

decreasing the pilot period. The MLCD algorithm can sustain a higher rate with a

very comparable pilot period used at the lower rate. On the contrary, the MLD needs

58



0 200 400 600 800 1000 1200 1400 1600 1800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.14: CDF of the Received SNR

to reduce the pilot period too much. This can be noticed from Table 5.1, where the

overhead reduction is increased even for the small array sizes. Finally, the overhead

reduction for beam coherence and the outage probability with the rate R = 0.5Rmax

are almost the same, but both have different pilot periods.

Now, we consider the CDF to compare between the two proposed methods of

choosing the pilot period T . In Fig. 5.14, we present the CDF of the received SNR

for array size N = 256 for three different cases: (1) outage with Rf = 0.5Rmax (2)

outage with Rf = 0.95Rmax (3) beam coherence with µζ = 0.5. For case 1, with

pilot period To = 1.426, and 0.498 ms for MLCD, and MLD respectively. It is clear

MLCD outperforms the MLD, where it can maintain SNR up to 600 for the same

outage probability. Case 2, with pilot period To = 1.177, and 0.206 ms still shows

superiority in terms of SNR but not significant as in case 1. However, the pilot
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Figure 5.15: CDF of the Achievable Rate

overhead reduction is significantly increased in case 2 to 83% instead of 65% as in

case 1. Case 3 shows that both MLCD and MLD nearly have the same average SNR

as designed but the MLD has lower probability for the smaller SNR values. Albeit,

choosing the pilot period by the beam coherence method aimed to have the same

average drop in the SNR, but the MLCD is more likely to have lower SNR values in

that case due to additional errors caused by estimating the slope variations rather

than the AoA estimation errors.

Fig. 5.15, involve the three cases in Fig. 5.14 but in terms of the achievable rate.

We can see that for case 1, Pout = 0.05 is satisfied for both MLCD, and MLD at

the 50% of the maximum rate. Moreover, the MLCD surpass the MLD roughly by

4 bps/Hz for the same outage without reducing the pilot period. For case 2, both

MLCD, and MLD are nearly the same with minor advantage to the MLCD at the
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higher rate. Similar to our discussion for Fig. 5.14, MLD obligated to reduce its pilot

period by almost 59% to support 0.95Rmax instead of 0.5Rmax while MLCD only

reduce its period by 17%. Case 3, shows both algorithms can have Pout = 0.05 but

only for a very small rate. Still we can notice an advantage to MLD in terms of

outage probability since we force both algorithms to drop to the same level which

worsen the situation of the MLCD due to additional slope variations errors. From

our discussions about Fig. 5.14, and 5.15, we can say that its better to choose the

pilot period based on the outage probability definition due to:(1) the beam coherence

method is not directly related to the operational rate and the outage probability (2)

the beam coherence method is not a fair choosing method especially if an additional

estimation errors exists in the MLCD.
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Figure 5.16: Achievable Rate for Pout = 0.05 and Rf = 0.5Rmax
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Up to this point, we have argued the overhead reduction. Now, we measure the

performance of the MLCD in terms of the effective rate given by Eq. (5.31) when the

achievable rate Ra is either the outage rate (1 − Pout)Rf or the average rate E[R].

First, for the effective outage rate as shown in Fig. 5.16, the MLCD outperforms the

MLD for all pilot training intervals values. Moreover, we can notice that MLCD is

more resilient to discontinuities such that it reduced only by 0.5 bps/Hz for 1024

array element. On contrary, the MLD is more sensitive to pilots disruptions causing

a rate drop by 2 bps/Hz for Ts = 40µs.
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Figure 5.17: Achievable Rate for Pout = 0.05 and Rf = 0.95Rmax

Increasing the operational rate to 0.95Rmax increases the pilot overhead reduction

which gives the advantage to the MLCD algorithm as shown in Fig. 5.17. This makes
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MLCD to surpass the MLD by 0.25 bps/Hz for the smallest pilot training interval

Ts = 1µs. Moreover, MLCD has a rate drop by nearly 1 bps/Hz for Ts = 40µs while

MLD suffers a rate drop up to 8 bps/Hz. Finally, the higher pilot disruptions makes

the efficiency slope decreases too fast, and in that case the array gain is not able to

compensate. This noticed for the MLD with Ts = 40µs, where the rate begins to

drastically drop instead of increasing with the array size.
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Figure 5.18: Average Achievable Rate for Pout = 0.05 and Rf = 0.5Rmax

Now, we consider the effective average achievable rate as shown in Fig. 5.18, and

Fig. 5.19. as a verification way of the Continuous-Discrete advantage. Not only the

MLCD gain from the overhead reduction or higher efficiency, but also it is more likely

to have the higher received SNR than MLD. The average rate is more significant in
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Figure 5.19: Average Achievable Rate for Pout = 0.05 and Rf = 0.95Rmax

case of 0.5Rmax than 0.95Rmax since in the later case both algorithm are expected

to operate near the edge of the maximum rate. This makes the average of both

algorithms to be almost the same.

Partially, we have assumed fixed TLR for both approaches. Two more scenarios

can be considered when both approaches are assigned the same pilot period and that

period is designed for; (1) the Discrete tracking algorithms and (2) the Continuous-

Discrete tracking algorithms. In these two scenarios, the Continuous-Discrete track-

ing algorithm will have longer TLR than the Discrete algorithm.

64



5.8 Summary

Beam tracking is crucial for maintaining the quality of established links and

avoiding the high-cost initial link establishment process. Traditional solutions for

the beam tracking problem rely on discrete measurement updates which occur at the

instances of pilot signal arrival. By nature, such an approach ignores the information

on the first order variation of the beams in between channel measurements. On

the contrary, by considering the continuous nature of channel variation over time,

a smarter beam tracking solution should exploit the gradual beam variation, and

thus attempt to continuously and actively adjust the beam directions even when no

measurements are available. This can be achieved by deriving a continuous state

transition model for the channel.

In this chapter, we propose a ”Continuous-Discrete” beam tracking solution, which

exploits system information like the first derivative of the beam angles, to allow

continuous beam updates while still relying on discrete measurements. Our solution

requires less frequent pilot symbols (less overhead) while maintaining similar tracking

performance to discrete tracking, and it can achieve much better performance if the

pilot frequency is kept the same. The performance is studied under different SNR

levels, array sizes, pilot periods, and different array configurations, i.e., ULA and

UPA. We show that our Continuous-Discrete solution outperforms Discrete tracking

algorithms in terms of overhead reduction. We also show that increasing the array

size for fixed SNR and pilot period increases the tracking accuracy as long as the

pilot period is comparable to the beam coherence time.

Another interesting result we show is that larger MIMO arrays do not necessarily

lead to improved beam tracking performance. This is due to (1) shorter beam coher-

ence time, and (2) higher link disruption (more frequent pilot symbols), especially
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for pilot training time in tens of microseconds. Furthermore, we demonstrate that in

certain situations, uniform planar arrays may provide improved beam tracking per-

formance over ULAs of similar size, in terms of average SNR, due to longer beam

coherence time.
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CHAPTER 6

HIGH-RESOLUTION ANALOG FAST BEAM

DISCOVERY

6.1 Introduction

In this chapter, we propose a novel beam discovery approach that utilizes both

the amplitude and the phase of the received signal to estimate the beam direction.

In contrast to traditional beam discovery approaches, which mainly measure all or a

sector of the angular space using narrow beams to estimate the beam direction based

on the highest RSS, our approach uses both the phase and the RSS to reduce the

overhead. Our solution, which we call Main-Lobe Fast Beam Discovery (ML-FBD),

leverages a tractable mapping function from the beam direction to the beam ampli-

tude to reduce the number of measurements needed to discover the beams at a given

accuracy [18]. The proposed framework is discussed in detail in Section 6.4. Our pro-

posed ML-FBD rely on a low number of channel measurements to preserve accurate

beam discovery. Reducing the number of channel measurements minimizes the over-

head of pilot symbols to perform such measurements. We consider the same model

introduced in Chapter 4, where the notations and the channel model are described

in Sections 4.1 and 4.2, and the specific assumptions in Section 4.3.1.

Following this introduction, we provide a motivating example to elaborate on the
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Main-Lobe beam discovery approach in Section 6.2. Section 6.3 introduces the prob-

lem statement, and Section 6.4 demonstrates the Main-Lobe Fast Beam Discovery

approach. Section 6.5 provides a criterion to evaluate and find the number of pilot

symbols required for beam discovery. Section 6.6 reveals the numerical results, and

Section 6.7 summarizes this chapter.
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Figure 6.1: Beam sweeping for ULA of sizes 24 (solid) and 2 (dashed)

6.2 Illustrative Example

For a clear view of the proposed idea, we introduce the following example: con-

sider a communication system with a single antenna element at the TX (Nt = 1) and

Nr = 24 antenna elements at the RX. Therefore, we have a Single Input Multiple

Output (SIMO) with a channel vector ∈ C24×1. In that case, the RX has 24 resolv-

able angular bins, which can be represented by the equally spaced beam patterns,

as shown in Fig. 6.1. Traditionally, TX/RX exhaustively searches the angular space
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Figure 6.2: Beam Pattern Approximation for 8-element ULA

with narrow beams to find an estimate of the beam direction with minor misalign-

ment. This costs the communications system a significant number of pilot symbols,

degrading the effective spectral efficiency. Still, the hierarchical solutions [33–36]

have done an excellent job by narrowing down the search space. However, these solu-

tions only consider the relative RSS of obtained measurements and neglect the phase

information.

In our approach, we still use hierarchical beams to perform measurements, but in

addition, we exploit the beamforming gain function defined as:

∣∣h̄(ϕ, ϕ̄)∣∣ ≜ e−
N2

2
[cos(ϕ)−cos(ϕ̄)]2 (6.1)

where ϕ̄ is the beam direction, while ϕ is the AoA. During the measurement process,

the receiver knows ϕ̄ and can estimate h̄(ϕ, ϕ̄), from which the receiver can work out

the value of ϕ. This is performed only on the beam with the strongest RSS, and it

gives a more accurate estimate of ϕ, unlike the traditional solutions, which consider

ϕ̄ of the beam with the strongest RSS to be the best estimate of ϕ. Nonetheless,
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the beamforming gain function has a challenging formula (will be detailed later in

Eq. (4.9)), which makes it difficult to solve for ϕ. Hence, an approximation of the

main lobe is used, which is given by Eq. (6.1) and shown in Fig. 6.2.

The key idea of the proposed approach can be demonstrated as follows: (1) We

use a subarray of size No = 2 to form wide beams to scan the angular space as shown

in Fig. 6.1. This requires only two measurements (with ϕ̄1 = 0, and ϕ̄2 = π/2) instead

of 24 measurements. (2) We choose the direction with the highest RSS. Then, we

use Eq. (6.1) to find an estimate of the true beam direction. (3) However, Eq. (6.1)

does not provide a unique solution, but two solutions, which we define as ϕ̂+ and ϕ̂−.

(4) Leveraging the phase information of the channel measurement (∠h̄(ϕ, ϕ̄2), if ϕ̄2 is

chosen in step (2)). We pick the estimate as:

ϕ̂⋆ = argmin
ϕ̂∈[ϕ̂−,ϕ̂+]

∣∣∣∠h̄(ϕ, ϕ̄2)− ∠h̄(ϕ̂, ϕ̄2)
∣∣∣ (6.2)

Now, we provide a numerical example under different array sizes to show how

significantly we can reduce the number of channel measurements. To that end, we

do not consider the noise, the complex-path gain, or the main-lobe approximation

errors. In this example, we are neglecting the noise and path gain effect, and then

the normalized channel measurement can be represented by Eq. (6.1). Therefore, we

only face the approximation error, which can be ignored by increasing the array size.

In Fig. 6.3, we assume two receivers with different subarray sizes, No = 2, No = 16.

The figure shows the average SNR under different array sizes. The solid line is the

SNR limit when a perfect alignment is assumed, while the coarse stage (C No = 2,

No = 16), where each receiver consumes 2 and 16 pilot symbols, respectively. Firstly,

the receiver with No = 2 performs poorly in the coarse stage due to approximation

error. Adding one more pilot symbol as a refinement improves the performance to
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Figure 6.3: SNR of the proposed approach with two different subarray sizes, i.e., 2,
16

cover a receiver with a full array size of nearly up to 200. The second refinement pilot

significantly improves the performance to include array sizes up to 1024. In each

refinement stage, the number of antenna elements (concatenated subarrays), i.e., NR,

is chosen based on the squared error of the previous stage, which will be discussed

later. Increasing the subarray size reduces the approximation error and improves the

performance correspondingly. It is clear when No = 16, where the coarse stage covers

up to 256, and a single refinement pilot covers up to 1024 and more.

Here, we show that we need to consume only four pilot symbols to find beam

direction with a high resolution (small estimation error), which is essential for a

TX/RX with large-scale array size. Albeit this outstanding performance and the

great pilot overhead reduction, we need to consider the noise and the complex path
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gain effects. Modeling those factual wireless channel assumptions exacerbates the

situation and forces the need for either additional refinement of pilot symbols or the

transmitted SNR.

6.3 Problem Statement

The following sections follow the system model introduced in Chapter 4, especially

the specific assumptions in Section 4.3.1. In the beam discovery stage, the problem is

choosing the beamforming vector that maximizes the SNR. The same beamforming

vector maximizes the beamforming gain. Then we can write the problem as follows:

w⋆ = argmax
w∈F

∣∣w† aR(ϕ)
∣∣2 , (6.3)

where F ∈ CN×J is the set of the beamforming vectors, and F = {w1,w2, · · ·,wJ}.

As the array size increases, the resolution of estimating the beam direction should

increase. This increases |F|, which means a large number of channel measurements,

and this pilot overhead degrades the spectral efficiency.

6.4 Main-Lobe Fast Beam Discovery

A brief overview of the proposed approach is shown in Fig. 6.4, where we start

by estimating the complex path gain using K of pilot symbols. After that, a coarse

beam sweeping utilizes ÑP to find an initial estimate of the beam direction. Based

on the accuracy of the initial estimate, we determine whether a refinement of that

estimate is needed or not. The refinement stage can be repeated until a threshold

accuracy is achieved. In the following, we will discuss the basic idea and clarify each

step in that flow chart.
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Perform ML-FBD 

Algorithm,

set m = 0

Start
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Pick a refinement array
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Estimate the Complex

Path Gain using 

Pilot Symbols

Perform Coarse Beam

Sweeping using 

Pilot Symbols
Yes

No

Figure 6.4: Flow chart for the proposed ML-FBD approach.

Now, recall Eq. (4.8), which describes the received symbols, and using Eq. (4.9),

we get:

yk = αh
(
ϕ, ϕ̄k

)
+ ńk. (6.4)

We try to solve Eq. (6.4) for the AoA ϕ directly. To do that, let us assume that we

have a perfect estimate of α and that we can filter out the noise term, which becomes

much easier in a high SNR regime. In this case, we have an estimate of h
(
ϕ, ϕ̄k

)
, and

the unknown becomes the AoA ϕ.

However, ϕ is an implicit variable, and attempting to solve Eq. (6.4) proves to

be very challenging since h
(
ϕ, ϕ̄

)
is a summation of exponentials, which makes it

challenging to isolate ϕ. In addition, α is unknown beforehand, creating another

challenge.

In the remainder of this section, we describe how we achieve our goal of solving

Eq. (6.4) using a two-stage solution: First, we estimate the path gain, α. Second, we

present an algorithm called Main-Lobe Fast Beam Discovery to find ϕ.
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6.4.1 Complex Path Gain Estimator

To find an estimate of the path gain, we use a single antenna element (N = 1),

which reduces the beamforming gain to 1. Hence, Eq. (6.4) is reduced to

ỹk = α + ńk, (6.5)

where α ∼ CN (0, 1), with a unit variance to ensure unit power channel coefficients,

i.e, E[|α|2] = 1. The Minimum Mean Squared Error (MMSE) estimate of α is found

by [69] as:

α̂ =
1

K + 1/ρ

K∑
k=1

α + ńk

=
ρ

K ρ+ 1

K∑
k=1

α + ńk

=
ρ

K ρ+ 1
[K α+ V ] ,

(6.6)

where K is the total number of measurements used to average the estimate. Note

that ρ = ρa for a single antenna element. Also, V ∼ CN (0, K/ρ), α̂ ∼ CN (0, σ2
α̂) and

the MSE associated with α̂ is
1

1 +K ρ
, which converges to zero as K increases.

We are interested in the number of channel measurements needed to estimate the

complex path gain, i.e., K. As we see, increasing K improves the MMSE estimator

performance (i.e., decreasing the MSE). In order to have a finite number of channel

measurements, let the target MSE be β. Then, the number of channel measurements

required to evaluate the MMSE estimator is given by:

K =

⌈
1− β

ρ β

⌉
. (6.7)

Now that we have knowledge of the path gain throughK measurements, the remaining

NP −K measurements will be used to find the beam direction. To further simplify
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the notation, let us normalize Eq. (6.4), with respect to α̂, as follows:

ȳk = δ h
(
ϕ, ϕ̄

)
+ n̄k, (6.8)

where δ=
α

α̂
is the path gain equalization error, while the noise term becomes n̄k =

ńk

α̂
,

where n̄k|α̂ ∼ CN (0, 1/(ρ |α̂|2)).

6.4.2 Main-Lobe Fast Beam Discovery

Overview: Recall Eq. (6.4), and let us assume we have perfectly estimated

h
(
ϕ, ϕ̄k

)
. Then, we are ready to solve Eq. (4.9) for ϕ. Nonetheless, h

(
ϕ, ϕ̄

)
is a

complex formula, which makes it difficult to find a closed-form solution for ϕ. In

addition, even if such a solution existed, that solution is not unique. In fact, if we

only consider the magnitude of the measurement, then by visual inspection of Fig. 6.1,

we see that beam patterns may have up to 2N nulls. Hence, up to 2N solutions for

ϕ may exist. However, if we limit the solution range to the main lobe of the beam

above the intersection points with the neighboring beams, then only two solutions

may exist. Furthermore, by exploiting the phase of the measurement, we can find

one unique solution. We will use the latter observation in the algorithm we present

here.

Our solution relies on two steps. In the first step, we try to find the beam whose

main lobe contains the channel path. Then, owing to the complexity of h
(
ϕ, ϕ̄

)
, we

instead exploit the main-lobe approximation formula given by Eq. (6.1). This makes

solving for ϕ significantly easier, in addition to forcing the solution to be confined

to the main-lobe we are focusing on. Eq. (6.1) is easy to solve analytically, and we

can retrieve the beam direction using the amplitude and the phase of the channel

measurement.
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Algorithm 2 Main-Lobe Finding AoA/AoD

Input: ϕ̄, and ȳ

Output: ϕ̂

1: ĥ(ϕ, ϕ̄) =
ρ

ρ+ 1
ȳ, φ = ∠ĥ(ϕ, ϕ̄), and Ω̄ = cos(ϕ̄)

2: ϕ̂±=arccos

([
Ω̄±

√
− 2

N2
ln
∣∣∣ĥ(ϕ, ϕ̄)∣∣∣]1

−1

)
3: φ± = ∠h(ϕ̂±, ϕ̄)

4: if φ = φ+ then

5: ϕ̂ = ϕ̂+

6: else

7: ϕ̂ = ϕ̂−

8: end if

Formal description: Our solution procedure depends on a coarse beam search

followed by refinements . It relies on a single iteration of the Discrete Beam Tracking

Algorithm from [18]. We describe it as follows:

Coarse Beam Discovery

(i) We perform a coarse beam sweeping using a single subarray with No =
N

M
antenna

elements. Then, we obtain a set of measurements Y = {ȳ1, ȳ2, · · ·, ȳNo
}, and its

corresponding set of beam pointing directions T = {ϕ̄1, ϕ̄2, · · ·, ϕ̄No
}.

(ii) We initialize Algorithm 2 with the beam pointing direction ϕ̄C ∈ T that corre-

sponds to the measurement ȳC ∈ Y with the highest amplitude.

(iii) The estimate of the coarse stage ϕ̂C from Algorithm 2 when initialized with ϕ̄C ,

and ȳC is too sensitive to noise and path gain equalization error due to the wide

beams used at this stage. This lead us to perform a fine stage to reduce the MSE of

the true value of the beam direction.
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Fine Beam Discovery

Here, We do not consider traditional fine beam sweeping in which a sequence

of narrow beams searches all or a sector of the space to precisely detect the beam

direction. Instead, we utilize a single narrow beam pointed at the initial estimate

ϕ̂C to measure the channel with two or more subarrays to reap from the array gain.

Algorithm 2 is then utilized to estimate the fine beam direction, i.e., ϕ̂F . This step

can be performed several times or not done at all based on some criteria.

Figure 6.5: Detection region of the beam direction

6.5 Performance Evaluation

Up to this point, we have only introduced our approach. Now, we propose a criteria

to evaluate the performance of the proposed approach. We choose the squared-error,

i.e., ε2 =
∣∣∣Ω− Ω̂

∣∣∣2, where Ω = cos(ϕ) is the true angular cosine, and Ω̂ = cos(ϕ̂) is

the estimate angular cosine. From Eq. (6.1), we get the gain of received power as

follows:

ζ ≜
∣∣∣h̄(Ω, Ω̂)∣∣∣2 = e−N2ε2

(6.9)
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From Fig. 6.5, we can visualize the criteria we aim to utilize, as shown from the

figure if an incoming path lies in the narrow window that satisfies the array gain. We

are interested in the squared-error value that causes a power drop ratio by ζ (e.g., 0

dB in the SNR means ζ = 1). In that case, we can represent the squared error as a

function of the power drop ratio using Eq. (6.9) as follows:

ε2 =
log 1/ζ

N2
(6.10)

Now, we have the criteria that help us to find the number of fine iterations as

mentioned in Section 6.4.2. For example, if we limit the threshold to a 3 dB power

drop ratio (i.e., ζ = 0.5) and the array size is N = 1024. So, if the squared error of

the coarse stage in Section 6.4.2 is upper bounded by
log 2

10242
= 6.6×10−7, then we do

not need any fine iterations, and the number of measurements is limited to NP = No.

Otherwise, we will need to perform one or more fine iterations based on the following

theorem.

Theorem 3. The number of channel measurements ÑP required to find the beam

direction is bounded by:

No ≤ ÑP ≤ No +
∞∑

m=0

1

(
ε2

Um
>

log 1/ζ

N2

)
, (6.11)

where, ε2
Um

is the upper bound squared error for the mth iteration, and m = 0

denotes the coarse stage. Proof of Theorem 3, and the definition of the upper bound

squared error for the mth iteration can be found in Appendix B.1. The squared error

bound mainly depends on the array gain. Hence, we need to choose the array size

for each iteration carefully. The array size of the coarse stage is the size of a single
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subarray, No =
N

M
, while for the mth iteration is given by:

Nm = argmin
N ∈LNo

|Nreq − LNo|

∀L = m+ 1, m+ 2, m+ 3, . . .

(6.12)

where, Nreq =

√
log 1/ζ

ε2
Um−1

is the array size that has an upper bound squared error

ε2
Um−1

, for a ζ power drop.

6.6 Numerical Analysis

In this section, we compare the performance of the ML-FBD to three baselines

approaches: (1) Two stages hierarchical (CFH 2 Stages), (2) Hierarchical with adap-

tive array sizes (CFH Adaptive), where the array size of each fine stage is chosen

based on Eq. (6.12). (3) Hierarchical with fixed array sizes (CFH Fixed), where each

array size is doubled in each fine stage. We assume the AoA, ϕ ∼ U(0, π), and we

average the output over 104 simulation runs. Except when stated otherwise, the SNR

per each antenna element, ρa = 10 dB, ζ = 1, β = 0.95, N = 1024 and the number

of channel measurements in the coarse stage No = 2. Our performance metrics are:

(1) the average received SNR, and (2) The total number of measurements required to

estimate the beam direction, NP . The performance is evaluated under two decision

rules of the refinement stages: (1) Offline Decision and (2) Dynamic Decision.

Offline Decision means we determine the number of refinements needed and the

corresponding array sizes before we start the discovery approach. However, in that

case, we need to have the knowledge of the complex path gain distribution, which

is assumed as α ∼ CN (0, 1). In contrast, the Dynamic Decision means that the

number of refinements needed and the number of equipped antenna elements at each
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Figure 6.6: SNR against error of path gain amplitude for three different array sizes
in the coarse stage, i.e., No = 2, 4, 8, and the full array size N = 1024.

refinement stage are random variables. Finally, in the Dynamic Decision, we assume

|h| = 0.6, which is the intersection point between the overlapped beams utilized at

the coarse stage. Also, |ĥ| is given from the previous stage.

Offline Decision: First, we decouple the problem of estimating the complex path

gain and the problem of beam discovery. We consider two types of error in the path

gain equalization error: (1) Error in the amplitude only, i.e., ∠δ = 0, (2) Error in

the phase only, i.e., |δ| = 1. Fig. 6.6, shows the first type of error for three different

values of No. We fix the threshold of SNR drop to be 3 dB, i.e., the path direction

stays in the Half Power Beam Width (HPBW). We note that the proposed beam

discovery can sustain amplitude drop due to path gain error by 25% for No = 2 and

reach 40% when No = 8. For a significant drop in the equalization amplitude, i.e.,
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Figure 6.7: SNR against error of path gain phase for three different array sizes in the
coarse stage, i.e., No = 2, 4, 8, and the full array size N = 1024.

|δ| ≈ 0, increasing the array size in the coarse stage exacerbates the beam discovery

performance since narrower beams are more sensitive to errors.

We introduce the second type of error in the Fig. 6.7. The results reveal that the

ML-FBD can incur phase error up to π/4 for No = 2 and reach 3π/8 for No = 8.

Also, we can notice that the proposed approach is less susceptible to phase errors

than amplitude errors.

Now, we compare the proposed ML-FBD to the three proposed baselines of the

hierarchical beam sweeping approaches in terms of the SNR under different array

sizes, as shown in Fig. 6.8. First, we notice that all approaches sustain an expected

SNR beyond the HPBW threshold. Moreover, the zoom-in part shows that sacrificing
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more pilot symbols in the coarse stage results in better performance. This improve-

ment can be shown by gain results from utilizing 8 pilots instead of 2 pilots for the

proposed ML-FBD.

Figure 6.8: SNR for different array sizes under ML-FBD for No = 2, 4 8, and the
Hierarchical approaches for No = 2.

We present the main advantage of the proposed approach, which is pilot overhead

reduction. Fig. 6.9, shows the number of channel measurements exploited to estimate

the beam direction. We compare ML-FBD without the overhead incurred by the

complex path gain estimation stage to the hierarchical approaches. Also, we present

the number of pilot symbols utilized by ML-FBDK when additional K measurements

utilized at the complex gain estimation are added. The proposed ML-FBD roughly

utilizes a fixed number of pilot symbols, no matter the array size. We can achieve
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pilot overhead reduction from the best hierarchical case by 70% for N = 2048 array

size by excluding theK pilot symbols utilized for estimating the path gain. By adding

the overhead incurred to estimate the path gain, we achieve pilot overhead reduction

by 62% for 10 dB and reduced to 42% for 5 dB SNR per antenna element.

0 500 1000 1500 2000 2500

10
1

10
2

10
3

Figure 6.9: Number of pilot symbols for estimating the beam direction under different
array size.

Finally, Fig. 6.10 presents the variations in the number of fine stages under dif-

ferent array sizes and the corresponding array sizes (annotated over bars) utilized at

each stage. We only need two additional pilot symbols to have similar beam discovery

when the array size increases by a factor of 27. Furthermore, we can see that the last

two stages for each array size have nearly the same performance, which is beyond

the HPBW threshold, and the proposed approach needed the last stage with the full
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array size since we set ζ = 1. This means we forced the algorithm to have a 0 dB

drop which is not necessarily happening, and in turn, we reach the full array size in

the last stage.

Figure 6.10: SNR for each fine stage of the ML-FBD approach under different array
size

Dynamic Decision: Instead of repeating the previous results with the Dynamic

Decision rule, we are only interested in comparing the two rules in terms of the

average number of refinements and the probability of detection. In the following,

we assume three different values of K (the number of pilot symbols needed to esti-

mate the complex path gain). Fig. 6.11 depicts the average number of pilot symbols

required to find the beam direction. The Dynamic Decision rule is more conserva-

tive than the Offline Decision rule, which consumes more pilot symbols on average.
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Moreover, consuming more pilot symbols for estimating the complex path gain (i.e.,

K = 2, 3, and 4) does not affect the average number of pilot symbols required for

beam discovery. However, the K parameter will play a critical role in the probability

of detection, which will be discussed in the following.
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Figure 6.11: Number of pilot symbols under Offline and Dynamic decision rules

Now, we evaluate both decision rules under the probability of detection metric.

Fig. 6.12 shows the Cumulative Distribution Function (CDF) of the SNR (including

the array gain) of the last refinement stage. The SNR per antenna element is assumed

to be 10 dB. The 3 dB drop line is the detection threshold, and above this threshold,

we have a detection event, while below the threshold is a misdetection event. The

Dynamic Decision rule has a higher detection probability since it is more conservative
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Figure 6.12: CDF of the SNR of the final refinement stage with array size, N = 2048

than the Offline Decision rule. Furthermore, the K parameter affects the detection

probability for both rules, where increasing K improves the path gain estimation,

improving the beam discovery performance.

Moreover, increasing the SNR per antenna element improves the detection prob-

ability for both rules. In Fig. 6.13, we assume 15 dB per antenna element and

K = 2. We notice that by increasing the SNR by 5 dB, the probability of detection is

increased by 20% for both rules. Although both rules have different detection prob-

abilities, both cases achieve average SNR above the 3 dB drop threshold, where the

average SNR is 46.99 dB and 47.51 dB for Offline and Dynamic rules, respectively.
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Figure 6.13: CDF of the SNR of the final refinement stage with array size, N = 2048

Finally, sacrificing more pilot symbols by increasing the K parameter can be satis-

factory since it achieves nearly similar performance to the dynamic rule with fewer

pilot symbols.

6.7 Summary

Beam discovery is critical for preserving a communication link with high spec-

tral efficiency and avoiding prolonged disruptions, especially in fast-varying channels.

Conventional solutions for the beam discovery issue depend on measuring the chan-

nel in all possible angular directions or even space sectors. By nature, traditional

approaches ignore the phase information of the channel measurements and focus only

on the RSS. On the contrary, by considering the phase information accompanying
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the channel measurements used to find the beam direction, a more innovative beam

discovery approach could use that neglected information to quickly find the beam

direction with a significant signaling overhead reduction.

In this chapter, we introduce a Main-Lobe Fast beam discovery solution, which

employs a novel formula of the beam main-lobe approximation along with the phase

information of the channel measurement to discover the beam direction. Our ap-

proach requires less signaling overhead while maintaining a similar performance to

the traditional coarse-fine beam discovery.

We study the performance under different array sizes and two distinct cases of

path gain errors (amplitude and phase). We show that the proposed approach sustains

similar performance in the SNR compared to traditional approaches. Moreover, the

Main-Lobe beam discovery achieves an overhead reduction by 42% and up to 64% in

terms of pilot symbols required to discover the beam direction. Finally, we show that

a large-scale antenna array no necessarily incurs significant overhead to discover the

beam direction.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Beam alignment is vital to maintain the desired directional gain, alleviating the severe

attenuation in mmWave networks. In this study, we consider two classes of beam

alignment: (1) Beam Discovery / Initial beam alignment and (2) Beam Tracking.

Beam discovery is essential to establish the communication link in the mmWave

system to maximize the directional gain. In typical beam discovery approaches,

a sequence of pilot symbols is exploited to measure the whole angular space, which

elongates the discovery process. Those approaches neglect a vital part of the available

resources, the phase information, while considering the RSS only. The associated

phase of each channel measurement significantly reduces the signaling overhead.

Beam tracking is crucial in reducing the significant overhead of the beam discov-

ery / initial beam discovery process. Conventionally, periodic symbols are exploited

to measure the channel to estimate and update the beam direction. The information

on the first-order variation of the beam direction between the arrival of two symbols

is ignored in traditional approaches. Thus, a more innovative beam-tracking solution

should leverage the gradual angle variation and continuously update the beam direc-

tions in-between pilot arrivals. A channel’s continuous state transition model should

be derived to perform such an approach.

In Chapter 5, a ”Continuous-Discrete” beam tracking proposal is introduced that
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leverages system information such as the first derivative of the beam variations to im-

plement continuous beam updates while keeping periodical pilots symbols to correct

minor deviations. Our proposal requires fewer periodic reference signals while sustain-

ing comparable tracking performance to the state-of-the-art. Actually, it can attain

considerable performance when the pilot frequency is the same. The performance

is studied under different SNR levels, array sizes, pilot periods, and different array

configurations, i.e., ULA and UPA. In Chapter 6, a novel beam discovery approach is

proposed, which utilizes an intelligent formula of the beam main-lobe approximation

that maps the RSS of the channel measurement and determines a unique estimate of

the beam direction using the phase information. Our method requires less signaling

overhead while maintaining a similar performance to the traditional coarse-fine beam

discovery.

7.1 Key outcomes

• Beam Tracking

– The proposed Continuous-Discrete approach outperforms Discrete track-

ing algorithms in terms of overhead reduction.

– Increasing the array size for fixed SNR and pilot period increases the track-

ing accuracy as long as the pilot period is comparable to the beam coher-

ence time.

– Larger MIMO arrays do not necessarily lead to improved beam tracking

performance. This is due to the following:

∗ shorter beam coherence time.

∗ higher link disruption (more frequent pilot symbols), especially for

pilot training time in tens of microseconds.
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– Uniform planar arrays may improve the beam tracking performance over

ULAs of similar size, in terms of average SNR, due to longer beam coher-

ence time.

• Beam Discovery

– We show that there are situations where the proposed Main-Lobe beam

discovery approach can reduce the signaling overhead by 42% and up to

64%.

– We elaborate that Large-scale antenna arrays do not necessarily incur sig-

nificant overhead to discover the beam direction.

7.2 Future Work

Multiple Path Tracking: In this dissertation, we have only considered tracking a

single significant path and ignoring all other paths. Although the lowest complexity,

we miss the benefits of multiple paths. If we can track multiple paths, we can ex-

ploit the spatial diversity to increase the transmit diversity or the multiplexing gain.

Simple Example Let the number of discovered paths at the initial link establish-

ment k = 3, and we need to track the three paths instead of one. Two proposals for

applying multiple path tracking:

• Run three parallel versions of the single beam tracking. We need

three pilot symbols for each period T for this proposal to update each path

independently. In that case, increasing the number of pilot symbols exacerbates

spectral efficiency.

• Joint AoA tracking. Here, we assume that we can model the correlation

between the different paths and exploit that correlation to decrease the number
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of pilots used to update the AoA. Accordingly, we can reduce the pilot overhead,

and the spectral efficiency should surpass the parallel proposal.

Multiple path Discovery: In this study, we have considered the beam discovery

issue under the assumption of a single dominant path received at the receiver side.

In a more complex scenario, multiple paths should be considered. The proposed

approach can still have considerable performance only if we can estimate the complex

gain of each path arriving at the receiver side. The proposed path gain estimator does

not consider multiple paths. If we exploit it for the discovery of multiple paths, it will

lead to ambiguities in the dominant path gain estimate and, in turn, will exacerbate

the discovery performance.
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[6] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An
Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems,”
IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 436–453,
2016.

[7] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and
E. Erkip, “Millimeter Wave Channel Modeling and Cellular Capacity Evalua-
tion,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp.
1164–1179, 2014.

[8] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-Wave Cellular Wireless
Networks: Potentials and Challenges,” Proceedings of the IEEE, vol. 102, no. 3,
pp. 366–385, 2014.

93



[9] K. Haneda, J. Zhang, L. Tan, G. Liu, Y. Zheng, H. Asplund, J. Li, Y. Wang,
D. Steer, C. Li, T. Balercia, S. Lee, Y. Kim, A. Ghosh, T. Thomas, T. Nakamura,
Y. Kakishima, T. Imai, H. Papadopoulos, T. S. Rappaport, G. R. MacCartney,
M. K. Samimi, S. Sun, O. Koymen, S. Hur, J. Park, C. Zhang, E. Mellios,
A. F. Molisch, S. S. Ghassamzadeh, and A. Ghosh, “5G 3GPP-Like Channel
Models for Outdoor Urban Microcellular and Macrocellular Environments,” in
2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1–7.

[10] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel Estimation
and Hybrid Precoding for Millimeter Wave Cellular Systems,” IEEE Journal of
Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831–846, 2014.

[11] R. Méndez-Rial, C. Rusu, A. Alkhateeb, N. González-Prelcic, and R. W. Heath,
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APPENDIX A: PROOFS FOR CHAPTER 5

A.1 Proof of Theorem 1 Part 1

Proof. From Eqs. (5.23) and (5.24), and given the assumption of P (t) = 1 and re-

placing ϕ(t+ Tb), and ϕ(t) by ϕk+1 and ϕk respectively, then:

ζ =
1

N2

∣∣∣∣∣
N−1∑
m=0

e−j2πm∆(cos(ϕk+1)−cos(ϕk))

∣∣∣∣∣
2

(A.1)

Using the approximation given in Eq. (5.16), then ζ is given by:

ζ ≈ e−N2[cos(ϕk+1)−cos(ϕk)]
2

(A.2)

The discrete representation of the AoA model in Eq. (4.7) using pilot period T = Tb

is given by:

ϕk+1 = ϕk + Tb ϕ̇k (A.3)

Now, we simplify the cosine difference in Eq. (A.2) using the discrete representation

in Eq. (A.3) and Tb ϕ̇k ≪ 1 as follows:

cos(ϕk+1) = cos(ϕk + Tb ϕ̇k)

= cos(ϕk) cos(Tb ϕ̇k)− sin(ϕk) sin(Tb ϕ̇k)

≈ cos(ϕk)− Tb ϕ̇k sin(ϕk)

(A.4)
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Hence, the cosine difference in Eq. (A.2) is given by:

cos(ϕk+1)− cos(ϕk) ≈ −Tb ϕ̇k sin(ϕk) (A.5)

Now, let TLR = K Tb, and define µζ ≜ E [ζ|Tb , ϕk], since ϕ̇k ∼ N (0, Q TLR)

=⇒ ζ = e−(NTb sin(ϕk))
2ϕ̇2

k . (A.6)

Hence,

µζ =

∫ ∞

−∞

1√
2π QTLR

e−(TbN sin(ϕk))
2
x2

e
− x2

2QT
LR dx

=

√
σ2
d

QTLR

∫ ∞

−∞

1√
2π σ2

d

e
− x2

2σ2
d dx

=

√
σ2
d

QTLR

,

(A.7)

where σ2
d = QTLR/

(
1 + 2QTLR (TbN sin(ϕk))

2), then:
µζ =

√
1(

1 + 2QTLR (TbN sin(ϕk))
2)

=⇒ Tb =

√
1/µ2

ζ − 1

2QTLR sin2(ϕk)N
2

(A.8)

101



A.2 Proof of Theorem 1 Part 2

Proof. Here, we follow similar steps like in Appendix A.1 but we are going to replace

ϕ(t) by ϕk + TL
ˆ̇ϕk−1 since in a continuous-discrete tracking we continuously update

the beamforming in-between pilot symbols. In that case, the cosine difference in

Eq. (A.2) is given by:

cos(t+ TL)− cos(t) = cos(ϕk + TLϕ̇k)− cos(ϕk + TL
ˆ̇ϕk−1)

≈ −TL sin(ϕk)εk,

(A.9)

where εk = ϕ̇k −
ˆ̇ϕk−1, and by assuming perfect estimate of the slope variation, i.e.,

ˆ̇ϕk−1 = ϕ̇k−1, then εk ∼ N (0, αQTLR) for 0 < α < 1

=⇒ ζ = e−(NTL sin(ϕk))
2ε2k . (A.10)

Hence,

µζ =

∫ ∞

−∞

e
− x2

2αQT
LR√

2π αQTLR

e−(TLN sin(ϕk))
2
x2

dx

=

√
σ2
cd

QTLR

∫ ∞

−∞

1√
2π σ2

cd

e
− x2

2σ2
cd dx

=

√
σ2
cd

αQTLR

,

(A.11)

where σ2
cd = αQTLR/

(
1 + 2αQTLR (TLN sin(ϕk))

2), then:
µζ =

√
1(

1 + 2αQTLR (TLN sin(ϕk))
2)

=⇒ TL =

√
1/µ2

ζ − 1

2αQTLR sin2(ϕk)N
2

(A.12)
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A.3 Proof of γ Distribution

Proof. Discrete Tracking Approach:

From Eq. (4.8), the instantaneous received SNR is given by:

γk = ρ

∣∣∣∣∣ 1N
N−1∑
m=0

e−j2π∆m[cos(ϕk)−cos(ϕ̄k)]

∣∣∣∣∣
2

≈ ρ ζk

(A.13)

and assuming small slope variations during pilot duration, i.e., T ϕ̇k ≪ 1, for a given

value of ϕk, and using Eq. (A.6) then:

γk = ρ e−N2T 2 sin2(ϕk) ϕ̇
2
k (A.14)

using the Cumulative Distribution Function (CDF) way:

F (γk|ϕk) = P (γ ≤ γk|ϕk)

= P (ρ e−N2T 2 sin2(ϕk) ϕ̇
2
k ≤ γk|ϕk)

= P (e−N2T 2 sin2(ϕk) ϕ̇
2
k ≤ γk

ρ
|ϕk)

= P (−N2T 2 sin2(ϕk) ϕ̇
2
k ≤ log (γk/ρ) |ϕk)

= P

(
ϕ̇2
k ≥

log (ρ/γk)

N2T 2 sin2(ϕk)
|ϕk

)
= 1− P

(
ϕ̇2
k ≤

log (ρ/γk)

N2T 2 sin2(ϕk)
|ϕk

)

(A.15)
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since ϕ̇k ∼ N (0, QTLR), then the squared of ϕ̇k has a Chi-Squared distribution with

one degree of freedom. Hence,

P
(
ϕ̇2
k ≤ φ̇

)
= 1− 2Q

(√
φ̇

QTLR

)
(A.16)

This implies;

F (γk|ϕk) = 2Q

(√
log (ρ/γk)

N2T 2 sin2(ϕk)QTLR

)
(A.17)

The Probability Density Function (PDF) is found by taking the derivative of the
CDF:

f(γk|ϕk) =
∂F (γk|ϕk)

∂γk

= 2
∂

∂γk

∫ ∞

√
log( ρ

γ
k
)

e
− t2

2N2T2 sin2(ϕ
k
)QT

LR√
2πN2T 2 sin2(ϕk)QTLR

dt


=

e
− log(ρ/γk)

2N2T2 sin2(ϕ
k
)QT

LR

γk
√
log(ρ/γk)

(A.18)

Continuous-Discrete Tracking Approach:

Following similar procedure as in the discrete case, and using Eq. (A.10) then,

γk = ρ e−N
2T 2 sin2(ϕk) ε

2
k (A.19)

Here, we can see the difference between Eqs. (A.14) and (A.19) is replacing ϕ̇k by

εk ∼ N (0, αQTLR), then the CDF is given by:

F (γk|ϕk) = 1− P

(
ε2k ≤

log(ρ/γk)

N2T 2 sin2(ϕk)
|ϕk

)
= 1− 1 + 2Q

(√
log(ρ/γk)

N2T 2 sin2(ϕk)αQTLR

)

= 2Q

(√
log(ρ/γk)

N2T 2 sin2(ϕk)αQTLR

) (A.20)
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Similarly, the PDF is given by:

f(γk|ϕk) = =
e
− log(ρ/γk)

2N2T2 sin2(ϕ
k
)αQT

LR

γk
√
log(ρ/γk)

(A.21)
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APPENDIX B: PROOFS FOR CHAPTER 6

B.1 Proof of Theorem 3

Proof. First, the lower bound of the number of channel measurements (pilot symbols)

is the number of pilots utilized to perform beam sweeping with equally spaced beams

that cover the space. Then we have,

No ≤ ÑP (B.1)

After that, we utilize the criteria proposed in Section 6.5 and check whether each fine

stage satisfies that criteria. Then the upper bound of the number of pilot symbols

is a function of that criteria. Then we start to find the upper bound of the squared

error. Let us start by the approximation formula given by Eq. (6.9), and define the

following: (1) |h| ≜
∣∣h(Ω, Ω̄)∣∣, (2) ∣∣∣ĥ∣∣∣ ≜ ∣∣∣h(Ω̄, Ω̂)∣∣∣, (3) ε ≜ Ω − Ω̂, (4) ε̄ ≜ Ω − Ω̄,

(5) ε̂ ≜ Ω̄ − Ω̂, and (6) f(ε) ≜ exp

(
−N2

2
ε2
)
. Recall from Fig. 6.2 that f is the

approximation which is a concave function, as well as |h| if and only if the angles are

limited to the main lobe (first null). Then we can have the following:

f
(
λ ε̄+ (1− λ) ε̂

)
≥ λ f (ε̄) + (1− λ) f

(
ε̂
)
, (B.2)
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for any ε̄, and ε̂ ∈ [Ω̄− 2

N
, Ω̄ +

2

N
], and ∀λ ∈ [0, 1]. For λ = 1/2, we can say that:

f

(
(ε̄+ ε̂)

2

)
= f

(
ε
2

)

≥ 1

2

(
f (ε̄) + f

(
ε̂
)) (B.3)

Now, we replace f (ε̄), f
(
ε̂
)
by |h|, and |ĥ|. Then we have,

f

(
ε
2

)
= exp

(
−N2 ε2

8

)

≥ 1

2

[
|h|+ |ĥ|

] (B.4)

This implies,

ε2 ≤ − 8

N2
log

(
1

2

[
|h|+ |ĥ|

])
(B.5)

Up to this point, we can utilize the upper bound in Eq. (B.5) as the criteria to

determine whether we need refinement. However, this is valid for a Dynamic Deci-

sion where the number of refinements needed and the number of equipped antenna

elements at each refinement stage are random variables. Finally, in the Dynamic De-

cision, we assume |h| = 0.6, which is the intersection point between the overlapped

beams utilized at the coarse stage. Also, |ĥ| is given from the previous stage.

On the other hand, an Offline Decision means we determine the number of re-

finements needed and the corresponding array sizes before we start the discovery

approach. However, in that case, we need to have the knowledge of the complex path

gain distribution, which is assumed as α ∼ CN (0, 1). Also, we assume the knowledge

of the average SNR ρ, and the estimate of the path gain |α̂| is given. Now, we need to

find the upper bound in Eq. (B.5) with a specified probability. Based on the previous

107



assumptions, and since |ĥ| = ρ

ρ+ 1
|δ h+ n̄k|, then |ĥ| ∼ Rayleigh(σ̃/

√
2). Now, using

the CDF method to find the distribution of the squared-error as follows:

P
(
ε2 ≤ ε2

Um

)
= P

(
− 8

N2
log

(
1

2

[
|h|+ |ĥ|

])
≤ ε2

Um

)
= P

(
log

(
1

2

[
|h|+ |ĥ|

])
≥ −

N2ε2
Um

8

)
= P

(
|ĥ| ≥ 2 exp

(
−
N2ε2

Um

8

)
− |h|

)

= exp

−
(
2 exp

(
−N2ε2

Um

8

)
− |h|

)2

σ̃2
m



(B.6)

where, σ̃2
m =

(
ρm

ρm + 1

)2 [
ρm |h|2 + 1

ρm |α̂|2

]
, ρm = Nm ρa. Now, for a given probability we

can have a closed form for the squared-error as follows:

ε2
Um

= − 8

N2
log

(
1

2

[
|h|+

√
σ̃2
m log (1/P )

])
(B.7)

Now, at each stage, we can have an upper bound of the squared error, which

means we can decide whether to have a fine stage based on comparing the upper

bound with the allowed squared error for the full array size from Eq. (6.10). An

indicator function is a good metric to present the need for a fine stage or not, then

we have the number of the fine stages as follows:

∞∑
m=0

1

(
ε2

Um
>

log 1/ζ

N2

)
(B.8)

Then, the total number of channel measurements is No in addition to the results
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of Eq. (B.8), then we have an upper bound of the channel measurement as follows:

ÑP ≤ No +
∞∑

m=0

1

(
ε2

Um
>

log 1/ζ

N2

)
(B.9)
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