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Abstract

Modern households are becoming increasingly electrified with all-electric ap-

pliances, renewable energy sources, and electric vehicles. While these homes ul-

timately mitigate the rate of climate change; without a resilient grid, large-scale

market penetration is infeasible. To support grid resilience, utility companies have

began incentivizing homeowners to defer appliance loads to times of lower elec-

tricity via day-time variable pricing schemes. Modern homeowners enrolled in

these programs can maximize their financial benefits by installing energy storage

systems and energy management strategies which can schedule appliance loads,

energy distribution, and energy consumption.

The work in thesis focuses on the design of a home energy management system

that schedules multiple smart appliances including plug-in hybrid and battery elec-

tric vehicle charging, operation of heating, ventilation, and air conditioning system,

energy usage from solar photo-voltaic cells, energy storage and usage from sta-

tionary energy storage system, and power consumed from the grid. Considering

a day-time variable pricing scheme, the energy management strategy minimizes

electrical grid cost to the user, while minimizing user’s discomfort in the form of

temperature deviation from set-point and time of appliance completion from re-

quest. To achieve this goal, the home energy management strategy is formulated
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as a model predictive controller and at every time step a multi-objective function

is minimized using a meta-heuristic algorithm genetic algorithm.

The performance of the the home energy management strategy is analyzed by

comparing results to a simplistic control strategy. A simulation campaign is con-

ducted to compare the relative performance of the the home energy management

strategy at a multitude of plant model settings such as house location, house size,

stationary energy storage size, and others. Additionally, to ensure the the home

energy management strategy does not significantly degrade the stationary energy

storage system, a semi-empirical battery aging model is developed to post-process

simulation campaign results.

This work resulted in a the home energy management strategy that, on aver-

age, reduced yearly electricity cost by $160 while still minimizing user discomfort.

Additionally, it was found that the the home energy management strategy did not

impose significant battery degradation.
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Chapter 1: Introduction

The summer of 2022 has set countless record high temperatures across the

globe. Heatwaves have strewn across Europe throughout much of July such as

the UK reaching an all-time high of 40.3C (104.54F) surpassing the prior record

of 38.7C set in 2019 [6]. The ever-increasing number and severity of heatwaves

are directly harmful to individuals around the world [7, 8]. In the United States

from 1999 to 2003, heat-related deaths were responsible for more deaths than any

other weather related event [9, 10]. In many cases, the heatwaves caused grid

system damages, economical losses, and disruptions via unprecedented demand

on utilities and subsequent power outages [11].

The increase in severity and frequency of extreme weather events has resulted

in decreasing electrical grid reliability [12]. Approaches to ensure the integrity

of the grid span from the macro-scale, such as creating utility resiliency during

high demand times with energy storage systems [13] to the micro-scale, such as

incentivising individual households to defer heating ventilation and air condition-

ing loads to off-peak times with customer demand response programs [14]. For

example, a homeowner could wait until later in the day when electricity cost is

low to turn on their laundry machine. Due to manual or automatic load deferral
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of home appliances to off-peak demand times, electricity cost savings of approx-

imately 12% has been reported [15–17]. This type of solution will increase the

resiliency of the grid during high demand times, and if done automatically via an

integrated controller, can maximize the electricity cost savings to the homeowner

without the need for human interaction.

Aside from climate change forcing abnormal peak power demands on the grid,

other factors are also perpetuating the need to reconsider the timing and amount of

electricity consumption used in our homes. From 2005 to 2015, the total number of

all-electric homes in the United States increased by approximately 5% [18]. This

increase may seem insignificant; however, the rapid rate of all-electric adoption

dates back to 1980 in which before that year, only 17% of homes built were all-

electric and after that year the number was 35% [18]. The expanding growth of

electricity use in the residential sector overtime is summarized in Figure 1.1 that

shows the source of energy utilization in the United States over 70 years [1].

Additionally, moderns homes have began integrating local generation from re-

newable energy sources, such as solar photovoltaic systems, with stationary energy

storage systems [19,20]. It is projected that this increase in local renewable gen-

eration in conjunction with the possibility of saving energy for later use will help

decrease the total amount of energy drawn from the grid by the residential sec-

tor [21].

In this context, to maximize energy cost savings to homeowners, a home en-

ergy management (HEM) strategy could be utilized to optimize home energy con-

sumption and renewable energy generation against variable grid electricity prices.

Additionally, with the increased use of stationary energy storage, the HEM strategy

2



Figure 1.1: U.S. Residential Sector Energy Consumption by Energy Source, 1950
to 2021 [1]

could be used to manage energy storage charge and discharge commands to save

energy for high electricity cost times or to ensure excess renewable energy is not

wasted during times of low demand.

1.1 Affecting User Behavior via Utility Pricing Schemes

Electric utilities in the United States and elsewhere have understood that de-

mand response programs, hence encouraging consumers to shift and reduce their

electricity usage, are an effective tool to maintain resiliency in their grid systems

[22]. In general, utility-side demand response management programs are be clas-

sified into three categories [2]:

1. Direct Load Control which utilities remote shut down of load regions (neigh-

borhoods) during high demand to avoid system failure [2].

3



2. Load Leveling which flattens the overall demand curve. For example, peak

clipping which is the shifting of consumer loads from high demand times to

low demand times [2].

3. Incentive-Based Strategies to encourage users to shift their loads to off-peak

hours. For example, discounted electricity cost during times of low demand

[2].

Specific management strategies for realizing the aforementioned programs are

summarized in Figure 1.2.

Demand-side management 

Energy 

management

Demand 

management

Direct load 

control
Load leveling

Tariff, incentives, 

and penalties

Figure 1.2: Demand-Side Management Strategies and Programs [2]

For the residential sector, incentive-based strategies or demand response plays

a critical role in peak-demand shaving, risk and reliability management, carbon

emission reduction, and energy cost reduction [23]. This is realized by using the

price of energy as a control signal to encourage specific user consumption behavior.
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For example, completing high demand loads during times of low grid demand

such as the middle of the night [23]. Most commonly, time of use pricing is used

which predetermines variable pricing throughout the day [24]. Less commonly,

real time pricing is implemented which varies daily pricing based on predicted

future demand in the grid [24].

In this thesis, a smart home enrolled in a demand side program with a time of

use electricity pricing scheme is considered.

1.2 Home Energy Management Systems

The objective of a HEM strategy is to integrate and coordinate all the elec-

tric loads in a house [25]. When a smart home is enrolled in a demand response

program, the home energy management strategy can be used to schedule smart

appliances such as heating, ventilation, and cooling (HVAC), laundry and dish-

washing, and vehicle charging to minimize the user’s electricity costs and meet any

additional program requirements such as maximizing instantaneous power [26] or

minimizing user discomfort to ensure acceptability.

1.2.1 Current Deployments of Home Energy Management Sys-
tems

The popularity of demand side management has grown in recent years as grid

utilities are motivating home owners with cost incentives and government enti-

ties are funding research projects to help curb grid reliability issues. In 2021 the

United States Department of Energy announced a $61 million investing initiative

for select communities to accelerate the research and adoption of grid-interactive

efficient buildings [27]. As part of this demonstration program, Oak Ridge National
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Laboratory has implemented a demand response program that aimed to curb the

HVAC power consumption in a community of 62 homes in Reynolds Landing in sub-

urban Birmingham, Alabama [28]. Results show 15% reduction in peak electricity

demand, while meeting customer acceptability requirements.

Similarly, in 2018, the National Renewable Energy Laboratory in collaboration

with Xcel Energy, a large Colorado utility company, investigated the integration

of vehicle charging and solar power generation as part of demand-response pro-

grams [29]. The deployment program included ten homes retrofitted with solar

panels, stationary energy storage and with owners that drove plug-in electric or

electric vehicles. The coordination strategy resulted in a 81.7 MWh surplus during

peak demand times, compared to an average of 69.2 MWh consumption by the

conventional homes.

Finally, the California Energy Commission, together with the Alternative En-

ergy Systems Consulting Inc., studied the effect of integrating smart thermostat

with plug-in electric and electric vehicle charging, solar generation, and stationary

energy storage [30]. Using a time of use pricing scheme, the implementation of

demand response resulted in 38% reduction of energy demand during peak hours.

1.2.2 Online Solution Methods for Household Load Scheduling

For online deployment of a HEM strategy for flexible load scheduling, HVAC

operation, and renewable energy generation, a computationally efficient approach

must be utilized. Although offline approaches can be used to determine optimal en-

ergy management, they require an input of the exact timing of appliance requests,

ambient temperature, and available energy for renewable generation.
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To solve the demand side management problem online, a number of computa-

tionally efficient approaches have been investigated in literature, mainly heuristic

and meta-heuristic approaches [31]. These approaches can be classified into three

categories: swarm intelligence techniques, evolutionary algorithms, and general

recursive algorithmic techniques.

Among the swarm intelligence techniques, particle swarm optimization (PSO)

has been used to solve many real world optimization applications including the de-

mand side management scheduling problem [32–34]. In [35], a receding horizon

approach was used, in which the nonlinear optimization problem was solved with

PSO with the goal of minimizing user cost by scheduling interruptible appliance

loads and HVAC operation. The problem was solved in response to various electric-

ity pricing schemes and achieved reductions in electricity cost to the user of 10%

by rescheduling appliance loads and vehicle charging around a time of use pricing

scheme [35].

Hybrid approaches have also been utilized in a large body of literature which

invoke both optimization-based and heuristic approaches to achieve more efficient

calculation for online implementation. In [31], a hybrid approach was used by

implementing PSO for its global search capabilities and sequential quadratic pro-

gramming for its local search capabilities. The HEM strategy optimized energy

storage operation, grid consumption, fuel cell energy generation, and scheduling

of deferrable appliance loads online. The house temperature was also ensured to

be set between a desirable range [31].

The genetic algorithm is an evolutionary algorithm that is found to outper-

form the PSO in optimization problems that involve discrete variables [36]. For
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this reason, the genetic algorithm has been widely applied in literature for the on-

line, household scheduling problem where appliance activation is modeled using

discrete variables. The optimization of discrete variables involved in the energy

scheduling of a smart home is addressed in [37] by using a genetic algorithm.

In [38], the genetic algorithm was successfully applied for the optimal scheduling

of air conditioners and inverters to reduce the electricity bills and peak load under a

real time electricity pricing scheme. To reduce the electricity expense and alleviate

the peak to average ratio, [39] implemented genetic algorithm to solve a nonlinear

optimization problem considering a combined pricing model to avoid high peak to

average ratio in the lowest electricity price region. In [40] a genetic algorithm-

based optimization approach was used to meet a controllable heating, ventilation,

and cooling load with higher efficiency of a hybrid system that combines renew-

able energy sources and energy storage systems. In [41], by redistributing the

deferrable loads equally to all the time slots, the demand side management prob-

lem was realized with an objective to minimize the power utilization during the

electricity rush hour and this was solved using genetic algorithm and succeeded

in reducing the overall power utilization by 22%. In addition to electricity cost,

genetic algorithm was also utilized to optimize the consumer comfort in [42,43].

1.3 Energy Storage Systems and Battery Degradation

The integration of distributed electricity generation from renewable energy sources,

such as photovoltaic solar panels, in smart homes yields the potential for drastic

consumer-end energy savings. For example, a 400 square foot array of solar panels

on a roof has the potential to cover the entirety of a house’s energy consumption
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which totals approximately 900 kWh per month [44]. However, like for many re-

newable sources, this electricity generation rate is highly variable due to differences

in weather and season. Even for the average-sized photovoltaic system, the mis-

match between solar power production and simultaneous household loads could

result in a significant power surplus, especially during peak daytime solar irradi-

ance [45]. Therefore, it is difficult to impose an efficient HEM strategy to control

power distribution from the renewable energy source [46].

This issue can be addressed by integrating appropriately sized lithium-ion bat-

teries, such that the excess power generated can be stored and used in periods of

insufficient solar power, instead of drawing power from the electricity grid. This

has also become increasingly viable economically because of a continued trend of

decreasing prices of lithium-ion batteries, which are predicted to be the technol-

ogy of choice for residential applications, with an 89% drop in the cost per kWh

between 2010 and 2020 [47, 48]. It has been found that in some states, energy

storage systems paired with residential solar panels can actually yield a greater re-

turn on investment than selling back surplus electricity with a photovoltaic system

only [49].

In a household equipped with photovoltaic and an energy storage system, a

HEM strategy could be capable of determining the charge-discharge strategy for

the utilization of the energy storage system in response to a time of use pricing

scheme and free power available from the photovoltaic panels.

An important factor considered by potential energy storage system adopters is

the useable lifetime of the battery, which is associated with the return on invest-

ment. Battery aging with capacity fade is also crucial to an HEM strategy because
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it reduces the ability of the battery to meet the energy demands of the home ap-

pliances. Therefore, the relationship between the HEM strategy and battery aging

should be investigated.

1.3.1 Current Practices for Modeling Battery Degradation

When integrating an energy storage system with a HEM strategy, the battery

will be periodically charged from either renewable or grid power sources, and then

discharged to supply energy to the appliances. This cycling behavior ages the bat-

tery in addition to the calendar aging mode [50, 51]. The battery aging causes

capacity decay and resistance increase which reduces the energy and power per-

formance of a battery respectively [52].

A large body of literature focuses on understanding and mitigating battery

aging using both experimental and modeling techniques [3, 53]. For modeling

the battery aging phenomenon, different approaches have been utilized ranging

from physics-based, partial differential equation models to data driven approaches

[3, 51, 54]. A comparison of different lumped parameter models has been pre-

sented in [55].

Physics-Based battery aging models are built starting from the basic electro-

chemical mechanisms in a battery that are related to aging process. Such mecha-

nisms include the increase of solid electrolyte interface (SEI) layer [51], the loss

of active materials (LAM) [4, 56], lithium plating [57], and cracks in the SEI

layer [58, 59]. For example, the aging due to SEI layer growth can be physically

described by modeling the side reaction between lithium and the electrolyte using

the Tafel and Nernst equations [51] and the crack in either the active material of
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the SEI layer can be predicted using equations describing the relations between,

stress strain, displacement, or volume change [58]. Although including additional

details in the model equations will improve the accuracy of modeling, the compu-

tational complexity is also increased. Moreover, the time scales of the electrochem-

ical events inside the battery are much faster compared to dynamics of the energy

management systems, making the numerical simulation more challenging.

Fully data-driven battery aging models are computationally efficient, but lose

the connection with the underlying physics. Simple data-driven models imple-

ment generic data fitting equations such as an empirical aging law [60], or the

Arrhenius law equation [61]. In contrast, more advanced data-driven approaches

have been developed where a deep learning algorithm is used to emulate the ag-

ing phenomenon [54], or where the remaining useful battery life is determined

via a Monte Carlo simulation algorithm [62]. While data-driven aging model ap-

proaches can reduce computation time significantly, they always lack confidence

in results outside of their calibration range.

Finally, semi-empirical aging models are a mix of physics-based and data-driven

approaches. These models simplify the physical process in the battery aging mech-

anisms with assumptions in either the limiting factors or the working conditions

such as the C-rate, temperature, or state of charge (SOC) values [3,59]. Most semi-

empirical models further decouple battery aging from the original electrochemical

reactions because of the distinct time scales for the two processes. With this, the

aging models are simplified into feedforward models without affecting the battery

model parameters over a short duration [3].
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1.4 Contributions

Although there is large set of literature committed to solving the demand side

energy management and scheduling problem, the cost benefits of implementing a

HEM strategy for a multitude of household types has yet to be investigated. Ad-

ditionally, a developed HEM controller should be easily implementable regardless

of household; therefore, the strategy should solve the problem with approximately

equal performance, irrespective of model settings. For these reasons, a sufficiently

fast HEM strategy should be developed to conduct an extensive simulation cam-

paign across a wide range of model settings.

The contributions of this thesis are:

• The development of a real-time capable home energy management strat-

egy: In this thesis, a HEM algorithm is developed for the optimal coordination

of the electric loads in a smart home. The strategy is designed to minimize

the total operating cost to the user, while satisfying user acceptability require-

ments. To allow for online implementations and applications to simulation

studies, the proposed strategy is required to compute in real time. These ob-

jective are achieved by formulating the optimization problem as a sequential

receding horizon problem.

• The evaluation of benefits obtained by the integration of an optimization-

based home energy management strategy: In this thesis the cost savings

performance of the proposed strategy is compared against a baseline sce-

nario. Hence, when no coordination nor scheduling is performed. This study

considers location, seasonality, and house characteristics as variable factors.
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• The development of a semi-empirical battery degradation model: In ad-

dition to total savings obtained by the proposed HEM strategy, a metric as-

sociated with battery utilization and associated degradation is also included.

To determine the effect of load scheduling on battery life, a simple semi-

empirical battery degradation model is presented in this thesis.

• The preliminary evaluation of fast charging technologies on battery life:

The proposed semi-empirical degradation model is used to develop a real-

time capable strategy for a direct-current fast charging profile that accounts

for both, the degradation due to the charging event together with the effect

of the upcoming driving event.

1.4.1 Publications

• Miller, C., Goutham, M., Chen, X., Hanumalagutti, P., Blaser, R., Stockar, S.

"A Semi-Empirical Approach to a Physically Based Aging Model for Home

Energy Management Systems” IEEE Conference on Control Technology and

Applications, 2022.

• Miller, C., Goutham, M., Chen, X., Stockar, S. "DC Fast Charging Optimization

for Capacity Fade Minimization” IFAC International Symposium on Advances

in Automotive Control, 2022.

• Chen, X., Goutham, M., Miller, C., Hanumalagutti, P., Blaser, R., Stockar, S.

"The Effect of Optimal Load Scheduling on the Performance of Smart Home

Management System”
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Chapter 2: Prior Work

In this chapter, a summary of previous work to develop the smart home plant

model and its subsystems together with a simple baseline controller is given. The

complete description of the model and baseline control development is given in

[63,64].

2.1 Smart Home Plant Model

The purpose of the smart home model is to capture the overall energy demand

and its distribution among all subsystems in the home due to predicted user activi-

ties. This model will be used as a plant model for the load controller development.

The smart home model consists of energy consuming subsystems such as the

HVAC operation, plug-in electric and electric vehicle charging, and user activities;

together with energy generating subsystems such as solar panels; and energy stor-

age components. Figure 2.1 illustrates the subsystems in the smart home where

subsystems inside the home are energy consuming and energy generating or stor-

ing subsystems are outside the home in the figure.

The relation that governs the operation of all the subsystems included in this

model is the power balance between the energy demand and supply:

𝑃𝐺𝑟𝑖𝑑 + 𝑃𝑆𝑜𝑙𝑎𝑟 + 𝑃𝐸𝑆 = 𝑃𝐻𝑉𝐴𝐶 + 𝑃𝑥𝐸𝑉 + 𝑃𝐴𝑝𝑝𝑙,𝐶 + 𝑃𝐴𝑐𝑡,𝑁𝐶 (2.1)
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Figure 2.1: Smart Home Plant Model

Where 𝑃𝐺𝑟𝑖𝑑 is the power consumed by the grid, 𝑃𝑠𝑜𝑙𝑎𝑟 is the power generated by

the solar panels, 𝑃𝐸𝑆 is the power to charge or discharge the battery, 𝑃𝐻𝑉𝐴𝐶 is the

power for the operation of HVAC, 𝑃𝑥𝐸𝑉 is the power to charge the plug-in electric

or electric vehicle, 𝑃𝐴𝑝𝑝𝑙,𝐶 is the power consumed due to controllable appliances,

and 𝑃𝐴𝑐𝑡,𝑁𝐶 is the power consumed due to non-controllable activities. It is worth

noting that in the power balance, positive energy storage power corresponds to

discharging.

2.1.1 Photovoltaic System

The power generated by a photovoltaic panel system is calculated using a simple

relationship as presented in [65].
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𝑃𝑆𝑜𝑙𝑎𝑟 (𝑡) = 𝜂𝑃𝑉 · 𝐺(𝑡) · 𝐴𝑃𝑉 (2.2)

Where 𝜂𝑃𝑉 is the efficiency of the solar panel, which is assumed to be a function

of the ambient and panel temperature, 𝐺(𝑡) is the useful solar irradiation power

density, and 𝐴𝑃𝑉 is the total area of the solar panels [64].

The useful solar irradiation power density, 𝐺(𝑡), includes the direct solar ra-

diation and the diffuse solar radiation and is mapped based on location, season,

and panel tilt using the System Advisor Model [66]. The power generated for the

household is simply calculated by multiplying the solar irradiation power density

by the are of the solar panels.

2.1.2 Residential Energy Storage

The power associated with the stationary energy storage is:

𝑃𝐸𝑆 (𝑡) =
{
𝑉𝐸𝑆 (𝑡) · 𝐼𝐸𝑆 (𝑡) · 𝜂𝐸𝑆 𝐼𝐸𝑆 (𝑡) > 0
𝑉𝐸𝑆 (𝑡) · 𝐼𝐸𝑆 (𝑡)/𝜂𝐸𝑆 𝐼𝐸𝑆 (𝑡) < 0

(2.3)

where 𝜂𝐸𝑆 is the battery charging and discharging efficiency, which is assumed to

be constant, 𝑉𝐸𝑆 is the battery voltage, and 𝐼𝐸𝑆 is the battery pack current.

The energy storage pack voltage is given by:

𝑉𝐸𝑆 (𝑡) = 𝑉𝐸𝑆,𝑐𝑒𝑙𝑙 (𝑡) · 𝑁𝐸𝑆,𝑠𝑒𝑟𝑖𝑒𝑠 (2.4)

where 𝑁𝐸𝑆,𝑠 is the number of cells in the pack in series, 𝑉𝐸𝑆,𝑐𝑒𝑙𝑙 is the cell voltage

determined using a 0th order equivalent circuit model [67]:

𝑉𝐸𝑆,𝑐𝑒𝑙𝑙 (𝑡) = 𝑉𝑂𝐶 (𝑆𝑂𝐶𝐸𝑆, 𝑇𝐸𝑆) − 𝑅0(𝑆𝑂𝐶𝐸𝑆, 𝑇𝐸𝑆) · 𝐼𝐸𝑆,𝑐𝑒𝑙𝑙 (𝑡) (2.5)

where 𝐼𝐸𝑆,𝑐𝑒𝑙𝑙 (𝑡) is the current applied to individual cells, 𝑅0 is the internal resis-

tance of each cell which is a function of state of charge and temperature of the
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pack, and 𝑉𝑂𝐶 is the open-circuit voltage which is also a function of state of charge

and temperature of the pack. The internal resistance and open circuit voltage are

mapped based on the values from [67].

Due to the relatively low currents applied to residential energy storage systems,

the heat generation of the batteries is assumed to be negligible and a thermal model

is not included for the energy storage system. Instead the battery temperature is

assumed to be either the same as ambient temperature if stored outside, or the

same as the house temperature if stored inside.

The cell current is calculated as:

𝐼𝐸𝑆,𝑐𝑒𝑙𝑙 (𝑡) = 𝐼𝐸𝑆 (𝑡)/𝑁𝐸𝑆,𝑝 (2.6)

Where 𝑁𝐸𝑆,𝑝 is the number of cells in the pack in parallel.

Finally, the state of charge, is determined by:

𝑑𝑆𝑂𝐶𝐸𝑆 (𝑡)
𝑑𝑡

= −
𝐼𝐸𝑆,𝑐𝑒𝑙𝑙 (𝑡)
𝑄𝑐𝑒𝑙𝑙

(2.7)

Under the assumption that there is no imbalance in the pack and where 𝑄𝐶𝑒𝑙𝑙 is the

nominal cell capacity.

The number of cells in series and parallel are selected to meet the desired total

pack capacity 𝑄𝐸𝑆,𝑑𝑒𝑠 and voltage 𝑉𝐸𝑆,𝑑𝑒𝑠:

𝐶𝑒𝑙𝑙𝑠𝐸𝑆,𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 𝑄𝐸𝑆,𝑑𝑒𝑠/𝑄𝑐𝑒𝑙𝑙 (2.8)

𝐶𝑒𝑙𝑙𝑠𝐸𝑆,𝑠𝑒𝑟𝑖𝑒𝑠 = 𝑉𝐸𝑆,𝑑𝑒𝑠/𝑉𝑐𝑒𝑙𝑙 (2.9)

Where 𝑄𝐸𝑆,𝑑𝑒𝑠 is the desired pack capacity and 𝑉𝐸𝑆,𝑑𝑒𝑠 is the desired pack voltage.

Both of these values are set to be equivalent to the specifications of the Tesla Pow-

erwall 2 as was done in [64] as a reference for sizing where the desired capacity
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is 13.5 kWh and the desired voltage is 50V. Depending on the size of the house,

multiple energy storage units of 13.5 kWh can be added.

2.1.3 HVAC

The electric power demand associated with the HVAC system operation is the

summation of the heating or cooling power and the fan regulation power:

𝑃𝐻𝑉𝐴𝐶 (𝑡) =
{
𝑃ℎ𝑒𝑎𝑡 + 𝑃 𝑓 𝑎𝑛 𝑇∞ ≤ 𝑇𝑟𝑒 𝑓

𝑃𝑐𝑜𝑜𝑙 + 𝑃 𝑓 𝑎𝑛 𝑇∞ > 𝑇𝑟𝑒 𝑓
(2.10)

where 𝑃ℎ𝑒𝑎𝑡 is the heating power, 𝑃𝑐𝑜𝑜𝑙 is the cooling power, 𝑃 𝑓 𝑎𝑛 is the fan power, 𝑇∞

is the environment temperature, and 𝑇𝑟𝑒 𝑓 is a threshold temperature to determine

when to switch between heating and cooling operation [63]. When the ambient

temperature is less than the reference temperature then it is assumed to be winter

and when the ambient temperature is greater than the reference temperature then

it is assumed to be summer.

The energy consumed during heating and cooling operation is:

𝑃ℎ𝑒𝑎𝑡 =
¤𝑚𝐻𝑉𝐴𝐶 · 𝜋(𝑡) · 𝑐𝑝 · Δ𝑇

𝐶𝑂𝑃(Δ𝑇) , Δ𝑇 = 𝑇𝐻𝑉𝐴𝐶 − 𝑇∞ (2.11)

𝑃𝑐𝑜𝑜𝑙 =
¤𝑚𝐻𝑉𝐴𝐶 · 𝜋(𝑡) · 𝑐𝑝 · Δ𝑇
𝑆𝐻𝑅 · 𝐶𝑂𝑃(Δ𝑇) , Δ𝑇 = 𝑇∞ − 𝑇𝐻𝑉𝐴𝐶 (2.12)

where ¤𝑚𝐻𝑉𝐴𝐶 is the HVAC mass flow rate, 𝜋 is the fan regulation command, 𝑐𝑝 is

the air specific heat capacity at constant pressure, Δ𝑇 is the temperature difference

between the HVAC supply air temperature and the ambient temperature, 𝑇𝐻𝑉𝐴𝐶 is

the supply air temperature of HVAC, SHR is the Sensible Heat Ratio, and COP is

the Coefficient of Performance as described in [63]. Note that the heating system

18



can only be on or off; therefore, 𝜋 can only be 1 or 0. However, the cooling system

is assumed to have a 3 state capability; on, off, or half load.

The energy consumed by the fan is:

𝑃 𝑓 𝑎𝑛 =
¤𝑚𝐻𝑉𝐴𝐶 · Δ𝑃
𝜂 𝑓 𝑎𝑛 · 𝜌𝑎𝑖𝑟

(2.13)

where Δ𝑃 is the static pressure drop, 𝜂 𝑓 𝑎𝑛 is the constant efficiency of the fan, and

𝜌𝑎𝑖𝑟 is the air density.

The governing equation for the household temperature dynamics is obtained by

applying conservation of energy to the control volume represented by the house:

𝑚𝑎𝑐𝑣
𝑑

𝑑𝑡
𝑇𝑎(𝑡) = 𝜋(𝑡) · ¤𝑚𝐻𝑉𝐴𝐶 · 𝑐𝑝[𝑇𝐻𝑉𝐴𝐶 − 𝑇𝑎(𝑡)] −

𝑇𝑎(𝑡) − 𝑇∞
𝑅𝑡𝑜𝑡

(2.14)

where𝑚𝑎 is the air mass inside the house, 𝑐𝑣 is the air specific heat capacity at con-

stant volume, 𝑇𝑎 is the air temperature inside the house, and 𝑅𝑡𝑜𝑡 is the equivalent

thermal resistance of the interface between house and environment. The detailed

model development is presented in [68].

2.1.4 Plug-in Electric and Electric Vehicle Charging

The modeling of the vehicle charging follows the same approach to the charging

of the energy storage system. The power required to charge the vehicle is:

𝑃𝑥𝐸𝑉 (𝑡) = 𝑉𝑥𝐸𝑉 (𝑡) · 𝐼𝑥𝐸𝑉 (𝑡)/𝜂𝑥𝐸𝑉 (2.15)

Where 𝜂𝑥𝐸𝑉 is the constant charge efficiency of the battery, 𝐼𝑥𝐸𝑉 (𝑡) is the current

applied to the battery pack, and 𝑉𝑥𝐸𝑉 (𝑡) is the battery pack voltage:

𝑉𝑥𝐸𝑉 (𝑡) = 𝑉𝑥𝐸𝑉,𝑐𝑒𝑙𝑙 (𝑡) · 𝑁𝑥𝐸𝑉,𝑠 (2.16)
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Where 𝑁𝑥𝐸𝑉,𝑠 is the number of cells in the pack in series, 𝑉𝑥𝐸𝑉,𝑐𝑒𝑙𝑙 is the cell voltage

determined using a 0th order equivalent circuit model [67]:

𝑉𝑥𝐸𝑉,𝑐𝑒𝑙𝑙 (𝑡) = 𝑉𝑂𝐶 (𝑆𝑂𝐶𝑥𝐸𝑉) − 𝑅0(𝑆𝑂𝐶𝑥𝐸𝑉) · 𝐼𝑥𝐸𝑉,𝑐𝑒𝑙𝑙 (𝑡) (2.17)

Where 𝐼𝑥𝐸𝑉,𝑐𝑒𝑙𝑙 (𝑡) is the current applied to individual cells, 𝑅0 is the internal resis-

tance of each cell which is a function of state of charge, and 𝑉𝑂𝐶 is the open-circuit

voltage which is also a function of state of charge. The internal resistance and open

circuit voltage are mapped based on the values from [67].

The cell current is calculated as:

𝐼𝑥𝐸𝑉,𝑐𝑒𝑙𝑙 (𝑡) = 𝐼𝑥𝐸𝑉 (𝑡)/𝑁𝑥𝐸𝑉,𝑝 (2.18)

Where 𝑁𝐸𝑆,𝑝 is the number of cells in the pack in parallel.

Finally, the state of charge is determined by:

𝑑𝑆𝑂𝐶𝑥𝐸𝑉 (𝑡)
𝑑𝑡

= −
𝐼𝑥𝐸𝑉,𝑐𝑒𝑙𝑙 (𝑡)
𝑄𝑐𝑒𝑙𝑙 (𝑡)

(2.19)

Under the assumption that there is no imbalance in the pack and where 𝑄𝑐𝑒𝑙𝑙 is the

nominal cell capacity.

The number of cells in series and parallel are selected to meet the desired total

pack cpacity 𝑄𝑥𝐸𝑉,𝑑𝑒𝑠 and voltage 𝑉𝑥𝐸𝑉,𝑑𝑒𝑠:

𝑁𝑥𝐸𝑉,𝑝 = 𝑄𝑥𝐸𝑉,𝑑𝑒𝑠/𝑄𝑐𝑒𝑙𝑙 (2.20)

𝑁𝑥𝐸𝑉,𝑠 = 𝑉𝑥𝐸𝑉,𝑑𝑒𝑠/𝑉𝑐𝑒𝑙𝑙 (2.21)

The desired vehicle model is an input to the system; based on this input, the battery

capacity, 𝑄𝑥𝐸𝑉,𝑑𝑒𝑠, and voltage, 𝑉𝑥𝐸𝑉,𝑑𝑒𝑠, can be determined [64].

20



The initial state of charge of the vehicle at plug-in is modeled as a function of

vehicle efficiency and miles traveled. Additionally, the expected time of plug-in at

home can be modeled based on the EV Project data [64,69].

The vehicle battery is charged with a standard level 2 charger with a constant

7.56 kW applied during charging. The vehicle is charged with a constant-current

constant-voltage charging protocol. The total energy demanded by the vehicle bat-

tery to reach full charge can be determined using the 0th order equivalent circuit

model described prior.

2.1.5 User Activities

Finally, a number of user activities that are associated with a power demand

are considered. The model is based on a statistical approach and is developed to

reproduce the data collected as part of the ATUS census [68,70].

For the model development, user activities are divided among deferrable and

non-deferrable loads. The non-controllable activities in the model include sleeping,

no-power activity, cleaning, cooking, and leisure. The power request associated

with each non-controllable activities is summarized in Table 2.1.

Table 2.1: Operating Power of Non-Controllable Activities

Activity Power 𝑃𝐴𝑐𝑡,𝑁𝐶 [W]
Sleeping 0

No-Power Activity 0
Cleaning 1250
Cooking 1225
Leisure 300

21



Similarly, activities related to the utilization of smart appliances, such as op-

erating the dishwasher and doing laundry, have been considered. For laundry, an

all-in-one machine is considered in which washer and dryer are combined in a sin-

gle unit. The power demands associated with deferrable loads are summarized in

Table 2.2.

Table 2.2: Operating Power and Time of Controllable Appliances

Appliance Power 𝑃𝐴𝑝𝑝𝑙,𝐶 [W] Operating Time [min]
Laundry - Washer 425 30
Laundry - Dryer 3400 30
Dishwasher 1800 60

An example of daily user activities is illustrated in Figure 2.2. The correspond-

ing power demand from the user activities are also summarized in Figure 2.2.

2.2 Baseline Controller

To simulate the household plant model, a simple baseline controller which re-

produces the scenario of no load coordinationwas developed. The baseline strategy

includes a dead-band control on the HVAC system to maintain the house indoor

temperature within desired bounds, an energy storage controller that charges the

battery when there is solar surplus and discharges when the power demand is not

met by the solar panel energy generation, and the requests of controllable devices

are fulfilled as soon as requested without any deferred operations. The integration

of the baseline controller with the smart home plant model is illustrated in Figure
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Figure 2.2: Example of Daily User Activity and Corresponding Power Consumption
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2.3 where the case definition variables represents the external inputs depending on

plant model settings, for example ambient temperature depending house location.

Smart Home Plant Model

Deferrable

Appliance

Controller

Baseline

Controller

Control

Command
ES 

Controller

HVAC 

Controller

Case 

Definition

Variables External

Inputs

External Inputs: 

Temperature, Solar, Non-Deferrables, SOCinit

House Temperature

Figure 2.3: Baseline Control Integration with the Smart Home Plant Model

2.2.1 HVAC Dead-Band Control

The baseline thermostat HVAC control aims to ensure that the household tem-

perature 𝑇𝑎 remains within the desired bound with a bang-bang controller that

will only impose on or off commands. For example, in summer when the ambient

temperature is above a certain temperature threshold, the HVAC is set to cooling

operation and will turn on when the household temperature surpasses a certain

set point and tolerance:

𝜋𝑐𝑜𝑜𝑙 =

{
0 if 𝑇𝑎 ≤ 𝑇𝑑𝑒𝑠 - Δ𝑇𝑏𝑎𝑛𝑑
1 if 𝑇𝑎 > 𝑇𝑑𝑒𝑠 + Δ𝑇𝑏𝑎𝑛𝑑

, (2.22)
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𝜋ℎ𝑒𝑎𝑡 =

{
1 if 𝑇𝑎 < 𝑇𝑑𝑒𝑠 - Δ𝑇𝑏𝑎𝑛𝑑
0 if 𝑇𝑎 ≥ 𝑇𝑑𝑒𝑠 + Δ𝑇𝑏𝑎𝑛𝑑

(2.23)

where 𝑇𝑑𝑒𝑠 is the desired temperature set by the thermostat and Δ𝑇𝑏𝑎𝑛𝑑 is the half

width of the temperature tolerance band.

2.2.2 Energy Storage Charge and Discharge Control

The stationary battery is controlled based on the power balance defined in Equa-

tion 2.1 and the availability of surplus solar energy.

The baseline controller utilizes the solar power tomeet the instantaneous house-

hold power demand. If the generation is greater than the demand and the state

of charge is less than 90%, the surplus power is used to charge the battery. When

the solar generation is less than the total demand and the state of charge of the

battery is higher than 20%, power is drawn from the energy storage system. Any

additional power deficit is then covered by drawing from the electrical grid.

𝜋𝐸𝑆 =


1 if 𝑆𝑂𝐶𝐸𝑆 < 0.9 & 𝑃𝑆𝑜𝑙𝑎𝑟 ≤ 𝑃𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑

−1 if 𝑆𝑂𝐶𝐸𝑆 > 0.2 & 𝑃𝑆𝑜𝑙𝑎𝑟 > 𝑃𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑

0 else
(2.24)

Where 𝑃𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 is the summation of the power consuming household operations

as shown on the right hand side of the power balance in Equation 2.1.

2.2.3 Deferrable User Activities and Vehicle Charging

In the baseline scenario, deferrable user activities and vehicle charging demands

are met as soon as requested. For example, if a user turns on the dishwasher, the

appliance runs immediately. Similarly, if a user plugs in a vehicle at 7pm and

requires 10 kWh to fully recharge, the vehicle will start charging at 7:00 pm and

be completely charged by approximately 8:20 pm.
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Chapter 3: Home Energy Management System Controller

In this chapter, a multi-objective optimization problem is formulated as a de-

centralized model predictive control problem with a receding time horizon, which

is then solved using a meta-heuristic optimization algorithm. The results from

a one-day simulation are analyzed as a sample. Finally, a simulation campaign is

conducted to analyze the operation of the developed smart home plant model with

two types of controllers and various model settings simulated over a one-year time

period each.

3.1 Formulation of the Optimization Problem

The objective of the smart home energy management algorithm is to coordi-

nate the scheduling of smart appliances, vehicle charging and operate the HVAC

to minimize the electricity cost in response to a time of use pricing scheme, and to

minimize the associated discomforts to the user. Resident discomforts are formu-

lated as a deferral cost associated with a delay in meeting a load demand after it

was requested, and as a temperature discomfort cost associated with the temper-

ature deviation from the desired set-point.
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For the smart home considered in this thesis, the global optimal control problem

is formulated in discrete form as follows:

min
𝑢

𝐽 (𝑥, 𝑢, 𝑤) =
𝑁−1∑︁
𝑘=0

𝑐𝑒(𝑘)𝑃𝐺𝑟𝑖𝑑 (𝑘) + 𝑐𝑑 (𝑘)
[
𝐸(𝑤𝑘) − 𝑢𝐷,𝐿,𝑥𝐸𝑉 (𝑘)

]
+ 𝑐𝑡 (𝑘) [𝑇𝑎(𝑘) − 𝑇𝑠𝑒𝑡]2

(3.1a)

Subject to:

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘) (3.1b)

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥 ∀𝑘 = 1 : 𝑁 (3.1c)

𝑢𝐷,𝐿(𝑘) ∈ {0, 1} ∀𝑘 = 0 : 𝑁 − 1 (3.1d)

𝑢𝐻𝑉𝐴𝐶 (𝑘) ∈ {0, 0.5, 1} ∀𝑘 = 0 : 𝑁 − 1 (3.1e)

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑥𝐸𝑉,𝐸𝑆 (𝑘) ≤ 𝑢𝑚𝑎𝑥 ∀𝑘 = 0 : 𝑁 − 1 (3.1f)

𝑃𝐷(𝑘) + 𝑃𝐿(𝑘) + 𝑃𝑥𝐸𝑉 (𝑘) + 𝑃𝐻𝑉𝐴𝐶 (𝑘) + 𝑃𝑁𝐷(𝑘)
= 𝑃𝐺𝑟𝑖𝑑 (𝑘) + 𝑃𝐸𝑆 (𝑘) + 𝑃𝑆𝑜𝑙𝑎𝑟 (𝑘) ∀𝑘 = 1 : 𝑁 (3.1g)

𝑃𝐺𝑟𝑖𝑑 (𝑘) = ℎ(𝑥𝑘, 𝑢𝑘, 𝑤𝑘) ≤ 𝑃𝑐𝑎𝑝(𝑘) ∀𝑘 = 1 : 𝑁 (3.1h)

𝑢𝐷,𝐿,𝑥𝐸𝑉 (𝑘) = 0 ∀𝑘 < 𝐸(𝑤𝑘) ∀𝑘 = 0 : 𝑁 − 1 (3.1i)

𝑢𝐷,𝐿,𝑥𝐸𝑉 (𝑘) = 0 ∀𝑘 > 𝐷(𝑤𝑘) ∀𝑘 = 0 : 𝑁 − 1 (3.1j)
𝑁−1∑︁
0
𝑢𝐷,𝐿,𝑥𝐸𝑉 (𝑘) = 𝐶 (3.1k)

𝑢𝐿,𝐷(𝑘) ≤ 1 − 𝑠𝐿,𝐷(𝑘) ∀𝑘 = 0 : 𝑁 − 1 (3.1l)

𝑢𝐿,𝐷(𝑘 − 1) − 𝑢𝐿,𝐷(𝑘) ≤ 1 − 𝑠𝐿,𝐷(𝑘) ∀𝑘 = 1 : 𝑁 − 1 (3.1m)

𝑠𝐿,𝐷(𝑘) ≤ 𝑠𝐿,𝐷(𝑘 − 1) ∀𝑘 = 1 : 𝑁 − 1 (3.1n)

In equation (3.1), the objective function 𝐽 (𝑥, 𝑢, 𝑤) depends on the state vector 𝑥,

the control vector 𝑢, and the external inputs vector 𝑤. The objective is evaluated
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over 𝑁 time steps of duration Δ𝑡 and the total simulation time is given by 𝑇𝑒𝑛𝑑 =

𝑁 · Δ𝑡 which in simulations conducted for this thesis was typically 1 month. Under

the time of use pricing scheme, the electricity price is defined at time step 𝑘 as 𝑐𝑒(𝑘),

and 𝑃𝐺𝑟𝑖𝑑 (𝑘) denotes the total power demanded from the grid by the smart home

at that time step. The smart home operates the HVAC to minimize the deviation of

the household temperature 𝑇𝑎 from a desired set-point temperature of 𝑇𝑠𝑒𝑡, and the

squared temperature deviation is penalized by a cost 𝑐𝑡 (𝑘), a discrete parameter.

The deferral cost 𝑐𝑑 (𝑘) penalizes the delay in activation of an appliance after it

was requested by the user. The user-defined activation of deferrable appliances is

denoted by 𝐸(𝑤𝑘) while 𝐷(𝑤𝑘) is the associated deadline for completion, and 𝐶

is the required time of activation associated with each deferrable appliance before

completion. The costs 𝑐𝑑 (𝑘) and 𝑐𝑡 (𝑘) are discrete, tunable parameters and can

be chosen by the resident based on their tolerance of the associated discomfort.

For example, a large value of 𝑐𝑑 results in a HEM strategy solution that prioritizes

earlier activation of requested appliances. In this thesis, both 𝑐𝑑 (𝑘) and 𝑐𝑡 (𝑘) are

constant and pre-defined.

The system is subject to the state dynamics and state constraints 3.1b and 3.1c,

respectively. The input constraints are given in 3.1d, 3.1e, and 3.1f. The power bal-

ance equation must always be satisfied such that the demand of power is equal to

the supply which is enforced by 3.1g. Moreover, a power capping constraint is con-

sidered such the total power demanded from the grid is always below a maximum

allowable value and is enforced by 3.1h. The appliances and vehicle charging can-

not be activated before the user enabling time 𝐸(𝑤𝑘) and each user request must

also be completed before a certain deadline, 𝐷(𝑤𝑘), as described in constraints
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3.1i and 3.1j respectively. Also, each appliance must be activated for a specified

number of time steps 𝐶 to allow for completion, as described in constraint 3.1k. Fi-

nally, the laundry and dishwasher operation cannot be interrupted once operation

begins. This constraint is implemented using a slack variable in 3.1l, 3.1m, and

3.1n as shown in [71].

The state, control, and external input vectors (whose components were intro-

duced in Sections 2.1.1-2.1.5) are defined in Equation 3.2 and the related con-

straints of the optimal control problem are summarized in Table 3.1.

𝑥𝑘 = [𝑇𝑎(𝑘), 𝑆𝑂𝐶𝑥𝐸𝑉 (𝑘), 𝑆𝑂𝐶𝐸𝑆 (𝑘)]𝑇 (3.2a)

𝑢𝑘 = [𝑢𝐻𝑉𝐴𝐶 (𝑘), 𝑢𝑥𝐸𝑉 (𝑘), 𝑢𝐷(𝑘), 𝑢𝐿(𝑘), 𝑢𝐸𝑆 (𝑘)]𝑇 (3.2b)

𝑤𝑘 =
[
𝑇∞(𝑘), 𝑃𝑁𝐷(𝑘), 𝑆𝑂𝐶𝑥𝐸𝑉,0(𝑘), 𝑃𝑆𝑜𝑙𝑎𝑟 (𝑘)

]𝑇 (3.2c)

Table 3.1: Optimal Control Problem Constraint Values

Parameter Minimum Maximum Value
𝑇𝑟𝑒 𝑓 - - 20◦𝐶
𝑇𝑠𝑒𝑡,𝑤𝑖𝑛𝑡𝑒𝑟 - - 22◦𝐶
𝑇𝑠𝑒𝑡,𝑠𝑢𝑚𝑚𝑒𝑟 - - 18◦𝐶
𝑇𝑎,𝑤𝑖𝑛𝑡𝑒𝑟 21◦𝐶 23◦𝐶 -
𝑇𝑎,𝑠𝑢𝑚𝑚𝑒𝑟 17◦𝐶 19◦𝐶 -
𝑆𝑂𝐶𝑥𝐸𝑉 20% 80% -
𝑆𝑂𝐶𝐸𝑆 20% 80% -
𝑢𝑥𝐸𝑉 0 Amps 2.5 · 𝑁𝑥𝐸𝑉,𝑠 Amps
𝑢𝐸𝑆 0 Amps 2.5 · 𝑁𝐸𝑆,𝑠 Amps -
𝑃𝑐𝑎𝑝 - - 14 kW
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3.2 Sequential Model Predictive Control for Load Coordination

The optimization problem defined in Section 3.1 is defined for the entire simu-

lation period, which becomes intractable for real-time implementation with large

𝑇𝑒𝑛𝑑. Additionally, it is desired to ensure fast computation speed in light of an ex-

tensive simulation campaign to be conducted. Moreover, the external input vector

𝑤 which is dependent on user activities and environmental conditions, is typically

updated in real-time, and is not known before-hand for the entire duration of simu-

lation. Therefore, for real-time implementation, a model predictive control (MPC)

scheme is used to solve the optimization problem over a shorter control horizon

𝑇𝐻 < 𝑇𝑒𝑛𝑑. At each time step, the first control action obtained after optimization

is applied to update the plant model states for the next time step. Simultaneously,

the external input 𝑤 is also updated based on new user activities and updated en-

vironmental temperature and photovoltaic power. With the new states and exter-

nal inputs, the optimization problem is solved again by shifting the time horizon

forward by one time step. As the simulation approaches 𝑇𝑒𝑛𝑑, specifically when

𝑇 (𝑘) + 𝑇𝐻 > 𝑇𝑒𝑛𝑑, the time horizon will shrink such that the simulation will not

exceed the final simulation time and all the activities are completed within the

simulation time. The receding horizon is defined in 3.3 where 𝑇𝐻,𝑅𝑒𝑐 is the up-

dated horizon length near the end of simulation. This process is continued until

the end of the simulation when 𝑇 (𝑘) = 𝑇𝑒𝑛𝑑. The integration in the smart home

plant model is shown in Figure 3.1 and the parameters for the MPC is shown in

Table 3.2 in which the prediction horizon is the same length as the horizon.

𝑇𝐻,𝑅𝑒𝑐 =
{
𝑇𝑒𝑛𝑑 − 𝑇 (𝑘), 𝑇 (𝑘) + 𝑇𝐻 > 𝑇𝑒𝑛𝑑 (3.3)
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Smart Home Plant Model

HEMS:

Model

Predictive
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Definition
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External Inputs: Temperature, Solar, Non-Deferrables, 

SOCinit, Electricity Price

System

Outputs

Objective Function

Figure 3.1: Block Diagram of Model Predictive Control Implemented on Home
Plant Model

Table 3.2: Model Predictive Control Parameters

Parameter Description Value
T𝐻 Horizon Length 8 Hours
Δ𝑡 Time Step 10 Minutes
c𝑑 Weight for Deferral Time Cost 1e-9
c𝑡,𝑠𝑢𝑚𝑚𝑒𝑟 Summer Weight for Temp. Discomfort Cost 1e-5
c𝑡,𝑤𝑖𝑛𝑡𝑒𝑟 Winter Weight for Temp. Discomfort Cost 1e-10

Because of the nonlinearities in the system dynamics, integer and continuous

control variables, and the large number of states and control inputs, solving the

optimal control problem in Section 3.1 even for a shorter horizon 𝑇𝐻 is computa-

tionally expensive for real-time implementation [31]. For this reason, a sequential

31



MPC scheme is proposed here that breaks the optimization problem of each control

horizon into smaller subproblems in order to achieve real-time performance.

The original optimization problem is partitioned into three sub-optimization

problems: (1) HVAC and energy storage; (2) vehicle charging and energy stor-

age; (3) laundry, dishwasher and energy storage. In this sequential MPC scheme,

the HVAC and energy storage subproblem is solved first, because HVAC control is

required at every time-step irrespective of other user requests. The next subprob-

lem solved is the optimization of the vehicle charging and energy storage which

is optimized before laundry and dishwasher machines because vehicle plug-in oc-

curs more frequently than user requests of laundry and dishwasher machines. The

scheduling of laundry and dishwashing can be solved together due to the similar

constraints and input variable types related only to the time of completion.

In this sequential MPC, the energy storage system can adjust the amount of

free energy available to the other controllable appliances, thereby affecting their

scheduling. For this reason, the control of the energy storage system is considered

in every subproblem, thus coupling the appliances indirectly. An additional cou-

pling of the subproblems is related to the capping constraint defined in equation

3.1h which limits the total power demanded from the smart home. Since this cap-

ping constraint is violated infrequently, it is checked and addressed at the end of

the sequence. This sequential scheme of solving the smaller problems is shown in

Figure 3.2.
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Figure 3.2: Hierarchical Optimization in HEMS at One Time Step

3.2.1 HVAC and Energy Storage Sub-Optimization Problem

The first sub-problem optimizes the operation of only the HVAC and energy

storage over the time horizon𝑇𝐻 < 𝑇𝑒𝑛𝑑, corresponding to 𝑁𝐻 time steps of duration

Δ𝑡. Accordingly, the original cost function of Section 3.1 is modified to consider

only the electricity cost and temperature difference from the set point, as defined in

Equation 3.4a. Additionally, since the other appliance loads including xEV, laundry,

and dishwasher are not considered, their respective control vectors are set to zero

and the constraints are simplified, as shown in Equation (3.4). Only 𝑃𝐻𝑉𝐴𝐶 and

𝑃𝑁𝐷 remain in the power demands in the power balance constraint (3.4f).

min
𝑢

𝐽 (𝑥, 𝑢, 𝑤) =
𝑁𝐻−1∑︁
𝑘=0

𝑐𝑒(𝑘)𝑃𝐺𝑟𝑖𝑑 (𝑘) + 𝑐𝑡 (𝑘) [𝑇𝑎(𝑘) − 𝑇𝑠𝑒𝑡]2 (3.4a)
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Subject to:

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘) (3.4b)

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥 ∀𝑘 = 1 : 𝑁𝐻 (3.4c)

𝑢𝐻𝑉𝐴𝐶 (𝑘) ∈ {0, 0.5, 1} ∀𝑘 = 0 : 𝑁𝐻 − 1 (3.4d)

𝑢𝑚𝑖𝑛 ≤ 𝑢𝐸𝑆 (𝑘) ≤ 𝑢𝑚𝑎𝑥 ∀𝑘 = 0 : 𝑁𝐻 − 1 (3.4e)

𝑃𝐻𝑉𝐴𝐶 (𝑘) + 𝑃𝑁𝐷(𝑘)
= 𝑃𝐺𝑟𝑖𝑑 (𝑘) + 𝑃𝐸𝑆 (𝑘) + 𝑃𝑆𝑜𝑙𝑎𝑟 (𝑘) ∀𝑘 = 1 : 𝑁𝐻

(3.4f)

Solving the above subproblem yields 𝑢(1)𝐻𝑉𝐴𝐶 ∈ ℝ𝑁𝐻 and 𝑢(1)𝐸𝑆 ∈ ℝ𝑁𝐻 which are

the control commands for HVAC and energy storage respectively, over the time

horizon 𝑇𝐻 . When optimizing the remaining subproblems, the command of HVAC

is held constant at the control command 𝑢(1)𝐻𝑉𝐴𝐶 associated with a power demand

of 𝑃 (1)𝐻𝑉𝐴𝐶 ∈ ℝ𝑁𝐻 .

3.2.2 Vehicle Charging and Energy Storage Sub-Optimization
Problem

After the optimization of the first subproblem, if the xEV is plugged in, the

sequential MPC optimizes the deferrable scheduling of the xEV charging, alongside

the energy storage operation. The HVAC command is fixed at 𝑢(1)𝐻𝑉𝐴𝐶 and thus has

no influence on the cost function. As a result, the objective function in the second

subproblem optimization is updated to replace the temperature discomfort cost by

the appliance delay discomfort cost. Similar to the previous subproblem, the input

commands for the remaining appliances of laundry and dishwasher are set to zeros

in this subproblem. The constraints of the second optimization subproblem are also

updated, as indicated in Equation (3.5). The power balance constraint (3.5h) now

features 𝑃𝑥𝐸𝑉 (𝑘) and the previously obtained, 𝑃 (1)𝐻𝑉𝐴𝐶 and 𝑃𝑁𝐷(𝑘).
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min
𝑢

𝐽 (𝑥, 𝑢, 𝑤) =
𝑁𝐻−1∑︁
𝑘=0

𝑐𝑒(𝑘)𝑃𝐺𝑟𝑖𝑑 (𝑘) + 𝑐𝑑 (𝑘) [𝐸(𝑤𝑘) − 𝑢𝑥𝐸𝑉 (𝑘)] (3.5a)

Subject to:

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘) (3.5b)

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥 ∀𝑘 = 1 : 𝑁𝐻 (3.5c)

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑥𝐸𝑉,𝐸𝑆 (𝑘) ≤ 𝑢𝑚𝑎𝑥 ∀𝑘 = 0 : 𝑁𝐻 − 1 (3.5d)

𝑃𝑥𝐸𝑉 (𝑘) + 𝑃 (1)𝐻𝑉𝐴𝐶 (𝑘) + 𝑃𝑁𝐷(𝑘)
= 𝑃𝐺𝑟𝑖𝑑 (𝑘) + 𝑃𝐸𝑆 (𝑘) + 𝑃𝑆𝑜𝑙𝑎𝑟 (𝑘) ∀𝑘 = 1 : 𝑁𝐻

(3.5e)

𝑢𝑥𝐸𝑉 (𝑘) = 0 ∀𝑘 < 𝐸(𝑤𝑘) ∀𝑘 = 0 : 𝑁 − 1 (3.5f)

𝑢𝑥𝐸𝑉 (𝑘) = 0 ∀𝑘 > 𝐷(𝑤𝑘) ∀𝑘 = 0 : 𝑁 − 1 (3.5g)
𝑁𝐻−1∑︁
0

𝑢𝑥𝐸𝑉 (𝑘) = 𝐶 (3.5h)

This subproblem optimization outputs the optimal control command for xEV,

denoted by 𝑢(2)𝑥𝐸𝑉 ∈ ℝ𝑁𝐻 and energy storage 𝑢(2)𝐸𝑆 ∈ ℝ𝑁𝐻 that minimizes the corre-

sponding objective function in (3.5) in time horizon 𝑇𝐻 .

3.2.3 Laundry, Dishwasher, and Energy Storage Sub-Optimization
Problem

If a laundry or dishwashing request was raised by the user, the sequential

MPC optimizes their deferrable scheduling alongside the energy storage opera-

tion. When optimizing this subproblem, the control commands of HVAC and xEV

are held constant at the commands 𝑢(1)𝐻𝑉𝐴𝐶 and 𝑢(2)𝑥𝐸𝑉 , obtained from subproblems

(3.4) and (3.5) respectively. Compared with the objective function in (3.5a), the

delay discomfort cost is quantified due to the deferrable operations of laundry and
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dishwasher 𝑢𝐷,𝐿(𝑘) rather than that caused by xEV 𝑢𝑥𝐸𝑉 (𝑘). Due to the fixed com-

mands for HVAC and xEV, the power balance constraint in (3.6f) is also updated

to include HVAC power 𝑃 (1)𝐻𝑉𝐴𝐶 and xEV charging power 𝑃 (2)𝑥𝐸𝑉 .

min
𝑢

𝐽 (𝑥, 𝑢, 𝑤) =
𝑁𝐻−1∑︁
𝑘=0

𝑐𝑒(𝑘)𝑃𝐺𝑟𝑖𝑑 (𝑘) + 𝑐𝑑 (𝑘)
[
𝐸(𝑤𝑘) − 𝑢𝐷,𝐿(𝑘)

]
(3.6a)

Subject to:

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑢𝑘, 𝑤𝑘) (3.6b)

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘 ≤ 𝑥𝑚𝑎𝑥 ∀𝑘 = 1 : 𝑁𝐻 (3.6c)

𝑢𝐷,𝐿(𝑘) ∈ {0, 1} ∀𝑘 = 0 : 𝑁𝐻 − 1 (3.6d)

𝑢𝑚𝑖𝑛 ≤ 𝑢𝐸𝑆 (𝑘) ≤ 𝑢𝑚𝑎𝑥 ∀𝑘 = 0 : 𝑁𝐻 − 1 (3.6e)

𝑃𝐷(𝑘) + 𝑃𝐿(𝑘) + 𝑃 (2)𝑥𝐸𝑉 (𝑘) + 𝑃
(1)
𝐻𝑉𝐴𝐶 (𝑘) + 𝑃𝑁𝐷(𝑘)

= 𝑃𝐺𝑟𝑖𝑑 (𝑘) + 𝑃𝐸𝑆 (𝑘) + 𝑃𝑆𝑜𝑙𝑎𝑟 (𝑘) ∀𝑘 = 1 : 𝑁𝐻
(3.6f)

𝑢𝐷,𝐿(𝑘) = 0 ∀𝑘 < 𝐸(𝑤𝑘) ∀𝑘 = 0 : 𝑁𝐻 − 1 (3.6g)

𝑢𝐷,𝐿(𝑘) = 0 ∀𝑘 > 𝐷(𝑤𝑘) ∀𝑘 = 0 : 𝑁𝐻 − 1 (3.6h)
𝑁𝐻−1∑︁
0

𝑢𝐷,𝐿(𝑘) = 𝐶 (3.6i)

𝑢𝐿,𝐷(𝑘) ≤ 1 − 𝑠𝐿,𝐷(𝑘) ∀𝑘 = 0 : 𝑁𝐻 − 1 (3.6j)

𝑢𝐿,𝐷(𝑘 − 1) − 𝑢𝐿,𝐷(𝑘) ≤ 1 − 𝑠𝐿,𝐷(𝑘) ∀𝑘 = 1 : 𝑁𝐻 − 1 (3.6k)

𝑠𝐿,𝐷(𝑘) ≤ 𝑠𝐿,𝐷(𝑘 − 1) ∀𝑘 = 1 : 𝑁𝐻 − 1 (3.6l)

The optimization in this subproblem yields optimal control commands for laun-

dry 𝑢(3)𝐿 ∈ ℝ𝑁𝐻 , dishwasher 𝑢(3)𝐷 ∈ ℝ𝑁𝐻 , and energy storage 𝑢(3)𝐸𝑆 ∈ ℝ𝑁𝐻 that mini-

mize the objective function (3.6a) within time horizon 𝑇𝐻 .
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3.2.4 Power Capping Check

After solving all the above subproblems, the total power consumption associated

with the optimized control commands for HVAC 𝑢(1)𝐻𝑉𝐴𝐶, vehicle charging 𝑢
(2)
𝑥𝐸𝑉 , laun-

dry 𝑢(3)𝐿 , dishwasher 𝑢(3)𝐷 and energy storage 𝑢(3)𝐸𝑆 are checked to see if the capping

constraint is violated, as shown in Equation (3.7). The power of laundry, dish-

washer, and energy storage under the optimal commands are denoted as constant

vectors 𝑃 (3)𝐿 ∈ ℝ𝑁𝐻 , 𝑃 (3)𝐷 ∈ ℝ𝑁𝐻 , and 𝑃 (3)𝐸𝑆 ∈ ℝ𝑁𝐻 .

𝑃
(3)
𝐷 (𝑘) + 𝑃 (3)𝐿 (𝑘) + 𝑃 (2)𝑥𝐸𝑉 (𝑘) + 𝑃

(1)
𝐻𝑉𝐴𝐶 (𝑘) + 𝑃𝑁𝐷(𝑘)

= 𝑃𝐺𝑟𝑖𝑑 (𝑘) + 𝑃 (3)𝐸𝑆 (𝑘) + 𝑃𝑆𝑜𝑙𝑎𝑟 (𝑘) ∀𝑘 = 1 : 𝑁𝐻
(3.7a)

𝑃𝐺𝑟𝑖𝑑 (𝑘) ≤ 𝑃𝑐𝑎𝑝(𝑘) ∀𝑘 = 1 : 𝑁𝐻 (3.7b)

If the constraint is not satisfied, the algorithm finds the appliance with largest

power consumption at the time steps when the capping constraint is violated. This

appliance is referred to as the Tabu Appliance in Figure 3.2 and is restricted from

being turned on at those time steps. The associated subproblem of that appliance is

solved again with this restriction to find a solution that does not violate the capping

constraint. When the constraint is satisfied, the control commands of the first time

horizon are finalized and denoted by {𝑢∗𝐻𝑉𝐴𝐶, 𝑢∗𝑥𝐸𝑉 , 𝑢∗𝐿, 𝑢∗𝐷, 𝑢∗𝐸𝑆} ∈ ℝ𝑁𝐻

The first control command of each appliance, at time step 𝑘 = 0 is implemented

in the plant model to update the system states 𝑥 for the next time step optimization.

Simultaneously, the external input vector 𝑤 is updated with new user requests and

environmental conditions. With the updated states and external inputs, the opti-

mization problem is solved again by shifting the time horizon forward by one time

step as shown in Figure 3.1, and this is repeated until the end of the simulation,

𝑇𝑒𝑛𝑑.
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3.3 Optimization via Genetic Algorithm

As described in Section 1.2.2, meta-heuristic methods have been successfully

applied in online demand side management for multiple objectives including re-

duction of residential electric power demand and power peak to average ratio, mini-

mizing overload times, improving grid system stability, renewable energy source in-

tegration, and consumer discomfort reduction. Among meta-heuristic approaches,

genetic algorithm was found to perform better than swarm-intelligence based ap-

proaches [72–74]. Further, by tuning the genetic algorithm parameters related

to convergence, mutation and crossover rates, both computational time associated

with the evolutionary procedures and likelihood of pre-mature convergence can be

reduced [75].

In this work, a genetic algorithm is applied in each decentralized subproblem of

the HEM strategy described in Section 3.2 to output the optimal control commands

of corresponding appliances. In each subproblem optimization, a population of

feasible control commands is initialized in the genetic algorithm. Each individual

in the initialized population represents one candidate solution to the optimization

subproblem. Each individual stores the proposed appliances commands in the time

horizon 𝑇𝐻 as a chromosome. All individuals in the initial population are evaluated

based on the objective function values. Based on the evaluation, some individuals

are selected as parents. Among them, the individuals with even lower objective

values are chosen as elite and these elite individuals are directly passed to the next

population. Based on the parents, children are produced either by making random

changes to a single parent that is called mutation, or combining the vector entries
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of a pair of parents that is called crossover. Then, the current population is replaced

with the children to form the next generation. The population evolution to the next

generation is iteratively repeated until the stopping criteria is met. The sequence

of the genetic algorithm implementation on the control command optimization at

each time horizon is summarized in Figure 3.3.

Begin

Initial Population

Calculate Fitness Value
 𝐽 𝑥, 𝑢, 𝑤

Evolution:
SelctionMutation / Crossover

Convergence?

End

Yes

No

Figure 3.3: Structure of the Genetic Algorithm

In the subproblem of optimizing the operations of HVAC and energy storage

in section 3.2.1, the control commands for HVAC and energy storage 𝑢𝐻𝑉𝐴𝐶 (𝑘)

and 𝑢𝐸𝑆 (𝑘) both have a length of 𝑁𝐻 . The individual genome in the population
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directly represents the commands for the two appliances and has a length of 2𝑁𝐻 .

Each gene in the individual genome stores the command for the appliances at a

single time step within the time horizon 𝑇𝐻 . Next generation is repeatedly formed

to achieve the minimum cost in (3.4a) until the stop criteria is met. During the

generation evolution, the constraints also help to eliminate the individuals that

violate the constraints. The individual genome in the last generation that has the

lowest objective function value is stored and the vector entries of this individual are

assigned as optimal control commands for HVAC 𝑢
(1)
𝐻𝑉𝐴𝐶 and energy storage 𝑢(1)𝐸𝑆 .

In the subproblem of optimizing the operations of xEV and energy storage in

section 3.2.2, the commands for xEV are optimized indirectly using the genetic

algorithm. In optimizing HVAC commands, the commands are directly assigned to

the individual genome and each gene in the vector entries represents a command

value at one time step. However, for xEV charging commands optimization, the

command activation moments are assigned to the individual genome. As shown in

equation (3.8).

𝑢𝑥𝐸𝑉 (𝑘) =
{
1, ∀𝑘 ∈ {𝑘1, 𝑘2, . . . , 𝑘𝐶}
0, ∀𝑘 ∉ {𝑘1, 𝑘2, . . . , 𝑘𝐶} ∪ 𝑘 = 0 : 𝑁𝐻 − 1

(3.8a)

→ 𝑥𝑥𝐸𝑉,𝐺𝐴 = [𝑘1, 𝑘2, . . . , 𝑘𝐶]𝑇 , {𝑘1, 𝑘2, . . . , 𝑘𝐶} = 0 : 𝑁𝐻 − 1 (3.8b)

The original feasible commands for xEV 𝑢𝑥𝐸𝑉 (𝑘) are on at 𝐶 separate time steps

to fully charge the vehicle, satisfying the constraints (3.5c) and (3.5h) in the orig-

inal subproblem. After the interpretation, the genome 𝑥𝑥𝐸𝑉,𝐺𝐴 in the genetic algo-

rithm only stores the activation moments for vehicle charging. This interpretation

holds the constraints (3.5c) and (3.5h) automatically. In addition to simplifying
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the constraints, this interpretation also helps to reduce the individual genome sizes

in the genetic algorithm. The total length of the genome when optimizing the op-

erations of xEV and energy storage is 𝑁𝐻 + 𝐶, where 𝐶 represents the number of

time steps to fully charge the vehicle. After finding the optimal individual genome

𝑥∗𝑥𝐸𝑉,𝐺𝐴, the optimal command for xEV 𝑢(2)𝑥𝐸𝑉 will be obtained by the converse inter-

pretation shown in equation (3.8) from (3.8b) to (3.8a).

In the last subproblem optimization to output the optimal commands for laun-

dry, dishwasher, and energy storage, the same command interpretation is applied.

Due to the characteristics of laundry and dishwasher operations, the command in-

terpretation for genetic algorithm implementation is simpler, as shown in equation

(3.9).

𝑢𝐿(𝑘) =
{
1, 𝑘 = 𝑘𝐿 : 𝑘𝐿 + 𝐶𝐿 − 1
0, 𝑘 ∉ {𝑘𝐿 : 𝑘𝐿 + 𝐶𝐿 − 1} ∪ 𝑘 = 0 : 𝑁𝐻 − 1

(3.9a)

→ 𝑥𝐿,𝐺𝐴 = 𝑘𝐿, 𝑘𝐿 = 0 : 𝑁𝐻 − 𝐶𝐿 (3.9b)

𝑢𝐷(𝑘) =
{
1, 𝑘 = 𝑘𝐷 + 𝐶𝐷 − 1
0, 𝑘 ∉ {𝑘𝐿 : 𝑘𝐷 + 𝐶𝐷 − 1} ∪ 𝑘 = 0 : 𝑁𝐻 − 1

(3.9c)

→ 𝑥𝐷,𝐺𝐴 = 𝑘𝐷, 𝑘𝐷 = 0 : 𝑁𝐻 − 𝐶𝐷 (3.9d)

The subproblem optimization after the interpretation also simplifies the con-

straints (3.6d, 3.6f-3.6j). Now the individual genome in the genetic algorithm

has a length of 𝑁𝐻 + 2, which is also reduced compared to the original length of

the three appliances commands 3𝑁𝐻 . After the optimization over the time hori-

zon 𝑇𝐻 is complete, a converse interpretation of the optimal individual 𝑥∗𝐿,𝐷,𝐺𝐴 is
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Table 3.3: Genetic Algorithm Settings for Sub-Optimization Problems

GA Options HVAC xEV L/D
Summer Winter

Maximum number of generations 500
Maximum number of stalled generations 50
Elite count 10 10 15 20
Objective function tolerance 0.01 0.001 0.0001 0.001
Time limit [s] 30
Population size 100 50 250 250
Crossover fraction 0.4 0.2 0.4 0.2
Selection function selectionremainder
Crossover function crossoverlaplace
Creation function gacreationuniformint
Mutation function mutationpower

transformed to the individual optimal control commands for laundry 𝑢(3)𝐿 and dish-

washer 𝑢(3)𝐷 , separately.

For the above three different subproblems, the optimizations are all achieved

using the genetic algorithm, but with different specific settings. These settings are

tuned based on the specific properties of the three subproblems. The hyperparam-

eters of the genetic algorithm are selected by tuning them systematically based on

the algorithm convergence speed for each setting. The detailed hyperparameter

settings for the three sub-system optimization problems are summarized in Table

3.3. Some hyperparameter settings are the same for all sub-problems while some

options vary seasonally and based on the characteristics of each sub-problem.
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3.4 1 Day Simulation Results

To verify the sequential optimization strategy a simulation was performed over

a single day, July 1st, 2018 for a single family home in Columbus, Ohio. The

model parameters and settings are summarized in Table 3.4. For this simulation,

it is assumed that the energy storage system is installed inside the house, hence its

temperature is the same as the temperature of the house.

Table 3.4: 1 Day Simulation: Smart Home Plant Model Parameters

Case Location House Size
[ft2]

xEV Battery
[kWh]

ES Battery
[kWh]

ES Temp.
Controlled

1 Columbus 1606 60 14 Yes

A three-tier, time of use pricing scheme was considered where the price is high-

est from 12:00pm to 6:00pm and lowest throughout the night from 9:30pm to

8:30am, as shown in Figure 3.4.

The performance of the HEM strategy is compared against the baseline con-

troller using basic performance metrics, namely the grid electricity cost; the appli-

ance delay, which is the time difference between the expected time of completion

and actual completion due to load deferral; and the temperature discomfort, which

is the root mean squared error between the actual house temperature and the user-

set temperature point.

For the 1 day simulation study, the associated metrics are summarized in Table

3.5. The deployment of the HEM strategy results in a 7% cost reduction compared

to the baseline controller. This is accomplished by scheduling appliance operation
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Figure 3.4: 3-Tier Time of Use Utility Pricing Scheme

during low electricity cost periods, which results in a total appliance delay 1.67

hours. The scheduling of the smart appliances is shown in Figures 3.5c and 3.5d.

In addition to a reduced cost, the HEM strategy achieved a 47% improvement

in lower temperature discomfort compared to the baseline controller due to the

benefits obtained from the model predictive approach. The control command for

the HVAC system is shown in 3.5b, while the resulting home temperature is shown

in 3.5a.

Table 3.5: 1 Day Simulation: Summary of Performance Metrics

Case Controller
Type

Grid Cost
[$ USD]

Appliance
Delay [Hours]

Temperature
Discomfort [◦C]

1 Baseline 6.60 NA 0.68
HEMS 6.12 1.67 0.36
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(a) House Temperature

(b) HVAC Load

(c) Appliance Command (d) xEV Command

Figure 3.5: 1 Day Sample Results - Appliance Control: ’O’ Request Time, ’X’ Com-
pletion Deadline
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An additional comparison of the operation between the HEM strategy and the

baseline controller is conducted based on the cumulative power from the grid. As

sown in Figure 3.6a, for much of the high electricity price region, the HEM con-

troller is able to defer loads to lower price regions. Figure 3.6b shows the state

of charge of the battery for each control strategy. The HEM controller charges the

battery during lower price regions, such that power requests during peak electricity

price times don’t require purchasing from the grid. Conversely, the baseline con-

troller only charges the battery if surplus solar generation is available, and utilizes

stored energy immediately after. Therefore, the HEM strategy resulted in a higher

utilization of the energy storage system, as shown in Figure 3.6b. It should be

noted that the energy storage begins and ends at the same state of charge for both

the baseline and HEM controller; therefore, there is never excess stored energy at

the end of simulation. In the case of the HEM controller, this is due to the fact that

energy storage power is practically cost-free and results in an optimal control of

energy storage discharge at the end of each time horizon. If this were not true, a

terminal cost should be considered for the final energy storage state of charge to

make a fair comparison between the baseline and HEM controller.

Finally, the power balance for both, supply and demand side is analyzed and

shown in Figures 3.7 for the baseline controller and 3.8 for the HEM strategy. Neg-

ative power represents supplied and generated power, such as power from the grid

and solar; while positive power corresponds to a demand. It is worth noting that

at any point in time, the power supply matches the demand. The cost benefits

from the HEM strategy are obtained by shifting deferrable loads from high elec-

tricity cost times to lower price times. This is particularly evident when comparing
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(a) Power Balance

(b) ES State of Charge

Figure 3.6: 1 Day Sample Results: Power balance and state of charge comparison

the timing of the large evening power drawn for both the HEM strategy and the

baseline controller.
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Figure 3.7: 1 Day Sample Results: Baseline Power Supply and Demand
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Figure 3.8: 1 Day Sample Results: HEMS Power Supply and Demand
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3.5 Simulation Campaign

An extensive simulation campaign was conducted to quantify the effect of lo-

cation, house size, electric vehicle battery size, and energy storage battery size

on the HEM strategy performance. Overall, 12 case studies are simulated over 1

year each, such that the effect of seasonality is also captured. A summary of the

parameters for the batch simulation is shown in Table 3.6.

Table 3.6: Case Studies Summary - Plant Model Settings

Case Location House Size
(ft2)

xEV Battery
Size (kWh)

ES Battery
Size (kWh)

ES Temp.
Control

1 Columbus 1500-2500 60 14 Yes
2 500-1500 14
3 2500-3500 14
4

Columbus
3500-4500

60
28

Yes

5 Los Angeles
6 San Antonio
7 Boston

1500-2500 60 14 Yes

8 25
9 Columbus 1500-2500 100 14 Yes

10 2500-3500 28
11 Columbus 3500-4500 60 14 Yes

12 Columbus 1500-2500 60 14 No

The simulation campaign results are analyzed based on the metrics shown in

Figure 3.10, which are an extension to the ones used for the one day simulation.

First, cumulative metrics have been defined to evaluate the benefits of a HEM

strategy for the end user. Specifically, the total electricity cost is considered, while

for customer acceptability, a temperature discomfort metric and an appliance de-

lay metric are calculated. This comparison will provide an insight on the trade off
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between energy cost savings and discomfort that is achieved with the load opti-

mization strategy.

Because the cost savings obtained by the smart home system is dependent on

the type of pricing scheme, the total deferrable power, and the relative price of the

different tiers, a metric related to the total deferred power is introduced to eval-

uate the ability of the HEM strategy to defer loads from their expected activation

window. Additionally, to understand the performance of the management strat-

egy to shift specific appliance loads, the same metric will be quantified for each

appliance. An example of dishwasher deferral is shown in Figure 3.9 to illustrate

how this metric is obtained, where 𝑃𝐷𝑒 𝑓 is the total power needed to complete the

operation and 𝑃𝐷𝑒 𝑓 ,𝑎𝑐𝑡𝑢𝑎𝑙 is the total power deferred past the expected completion

time.
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Figure 3.9: Example Dishwasher Deferred Power

Finally, it is postulated that a largemajority of the benefits in the final cost to the

user are achieved by leveraging the availability of the stationary energy storage.

This is accomplished by charging the battery during low pricing times, as well as
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storing electricity generated by the solar instead of using it directly for meeting

the instantaneous demand. To verify this hypothesis, metrics related to the power

split from solar as well as the utilization of the battery are obtained. For the latter,

indicators for average state of charge and current are defined.

Cumulative 

Performance Metrics

Appliance Load 

Deferral

Solar Power 

Utilization

Energy Storage

Total Elec. Cost ($)

Temp. Discomfort (°C)

Total Delay Time (hrs)

Laundry Power Deferred (%)

Direct Energy to Appliances 

(kWh)

Avg. SOC and Distribution

Avg. Charge Rate and 

Distribution

Avg. Discharge Rate and 

Distribution

Energy to Battery (kWh)

Total Power Deferred (%)

Dishwash Power Deferred (%)

xEV Power Deferred (%)

Figure 3.10: Desired Output Metrics for Simulation Campaign
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3.5.1 Effect of House Size

To visualize the metrics defined in Figure 3.10, a general analysis is presented

in Figure 3.12 for the cases pertaining to the effect of house size (cases 1 to 4).

For the effect of house size, the average total grid cost savings of using the HEM

strategy is 5.7% in place of the baseline controller. It is also observed that the

total energy saving are insensitive to the house size. On the other hand, Figure

3.11a shows that the HEM strategy obtained better temperature control in smaller

houses. This is due to the thermal mass of the home and its smaller time constant.

When the home is smaller, the effect of external temperature is significant and an

improved control strategy has a non-negligible effect on temperature tracking.

Figures 3.11b shows the total deferred power for the appliances and vehicle

charging. Among every case study, the total power required for appliances and

vehicle charging is almost the same; however, the total deferred power percentage

decreased with house size. This can be attributed to the fact that larger house sizes

require greater power to operate the HVAC.

As expected, the baseline controller uses the majority of the solar generation

to meet the power demand instantaneously, while the HEM strategy includes a

prediction of future demands and costs, and therefore utilizes the battery more to

offset costs. This is shown in Figures 3.11c. Moreover, the higher average state of

charge in the HEM strategy result shown in Figure 3.11d could be attributed to the

additional power drawn from the grid when electricity cost is low. Figures for the

metrics of the other effects is presented in the appendix.
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Figure 3.11: Effect of House Size Metrics

3.5.2 HEMS Deferral Performance

The performance of a HEM strategy can be analyzed by its effectiveness in de-

ferring electricity loads to lower price regions. In general, the performance of the

HEM strategy can be compared to the baseline controller in Figures 3.12b and

3.12a respectively for 1 month simulation period. From time 18:00 to 23:59, it is
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clear that the HEM strategy tended to defer much of the load from the $0.25 price

region to the lowest price region.

(a) Baseline (b) HEM Strategy

Figure 3.12: 1 Month Load Deferral

To quantify this effectiveness, a metric is defined as the deferral efficiency which

is the percentage of the total deferrable loads that were actually deferred to lower

price regions:

𝜂𝐷𝑒 𝑓 =
𝑃𝐷𝑒 𝑓 ,𝑎𝑐𝑡𝑢𝑎𝑙

𝑃𝐷𝑒 𝑓
· 100 (3.10)

Where 𝑃𝐷𝑒 𝑓 is the total power of all of the appliance loads in the house that can be

deferred and 𝑃𝐷𝑒 𝑓 ,𝑎𝑐𝑡𝑢𝑎𝑙 is the total amount of power actually deferred by the HEM

strategy which is obtained by determining the total amount of power consumed

outside of the expected activation time window (𝐶 + 𝐸). The appliance loads that

can be deferred are the laundry washing and drying machine, dishwasher, and

vehicle charging.
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Additionally, it is valuable to understand the flexibility of the home to defer

power. For example, a home with a connected, smart dishwasher will be more

flexible than the a home without a connected, smart dishwasher.

𝜂 𝑓 𝑙𝑒𝑥 =
𝑃𝐷𝑒 𝑓

𝑃𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑
· 100 (3.11)

The home deferral flexibility and deferral efficiency were quantified to see the

effects of house size and location in Figures 3.13a and 3.13b respectively. The smart

home in question is quite flexible, in which over 60% of the household loads can be

shifted for every case in shown. Additionally, the deferral efficiency surpassed 50%

for every case shown, validating that the HEM strategy was effective. The power

distribution within the four house sizes is summarized in Table 3.7.
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Figure 3.13: HEM Strategy Performance

The flexibility tended to decrease with larger house sizes. This is because as

house size increases, only the power required for HVAC operation increases which

is not defined as a deferrable load. However, this correlation does not hold for

location because the power needed for non-deferrable loads is variable between

locations in addition to HVAC operation.
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Table 3.7: Power [MWh] Summary for House Size Cases

House Size 500-1500 𝑓 𝑡2 1500-2500 𝑓 𝑡2 2500-3500 𝑓 𝑡2 3500-4500 𝑓 𝑡2

𝑃𝑥𝐸𝑉 24.09 24.09 24.09 22.89
𝑃𝐿𝑎𝑢𝑛𝑑𝑟𝑦 0.49 0.49 0.49 0.49
𝑃𝐷𝑖𝑠ℎ𝑤𝑎𝑠ℎ 0.20 0.20 0.20 0.20
𝑃𝐻𝑉𝐴𝐶 2.86 4.57 4.86 8.04
𝑃𝐴𝑐𝑡,𝑁𝐷 7.92 7.92 7.92 7.92
𝑃𝐷𝑒 𝑓 24.77 24.77 24.77 23.58

𝑃𝐷𝑒 𝑓 ,𝐴𝑐𝑡𝑢𝑎𝑙 14.30 13.35 13.13 11.84
𝑃𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 32.69 37.26 37.56 39.58

Additionally, the deferral efficiency tended to decrease with larger house sizes.

This is a unique result given that the deferral efficiency does not consider HVAC

power in the calculation and it is known that only HVAC power varies between

house size. It can be postulated that at larger house sizes the algorithm cared

more about user temperature discomfort rather than grid cost savings.

3.5.3 Solar Power Utilization and Grid Cost

It was found, that in certain cases the HEM strategy was able to more efficiently

utilize the solar power by leveraging the energy storage system to drive down grid

cost. For example, as shown in Figure 3.14a, in San Antonio the utilization of the

energy storage relative to the baseline was much greater than any other location.

This utilization ensured greater cost savings relative to the baseline for the case

in San Antonio as shown in Figure 3.14b. Although San Antonio did generate the

most solar power, the trend to use the energy storage more is not correlated to

total solar power generated.
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Figure 3.14: Solar Power Utilization and Grid Cost

3.5.4 Solar Power Utilization and Energy Storage Behavior

Conversely to the results discussed in Section 3.5.3, it was found that energy

storage utilization did correlate to house size. This is demonstrated in Figure 3.15

in which the solar power dedicated to energy storage increased with house size

increase.
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Figure 3.15: Energy Storage Utilization via Solar Power

It would be expected that with an increased utilization of the energy storage

that the average state of charge of the battery would increase; however, this was

not found to be true in every case. As demonstrated in Figure 3.16, for the largest

house size, when the energy storage wasmost utilized in the four cases, the average

state of charge of the battery was actually less for the HEM strategy compared to

the baseline strategy.

This trend of the energy storage behavior is not intuitive at first, but by analyz-

ing the operation of the energy storage in different cases the reason for the trend

becomes clear. Figures 3.17a and 3.17b illustrates the operation of the energy stor-

age system, via state of charge, for the a mid-sized home at 1606 square feet and

the largest house size at 4252 square feet respectively for a single day.

Of course for the larger house, the average state of charge appears to be greater;

however, it is also clear that for both house sizes, the frequency of charge and

discharge events is greater for the HEM strategy compared to the baseline. This
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Figure 3.17: Energy Storage State of Charge

means that the overall utilization could still be greater as quantified by the total

amp-hour throughput in Table 3.8.

It is understood that as the house size increase, the relative power dedicated to

the HVAC operation drastically increases, as shown in Table 3.9. This will result in

greater discharge events of the energy storage for larger house sizes. Additionally,
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Table 3.8: Total (1-Year) Ah-Throughput

1606 𝑓 𝑡2 4252 𝑓 𝑡2

Baseline 385 Ah 343 Ah
HEMS 405 Ah 480 Ah

Δ % 5.2% 40%

Table 3.9: Relative HVAC Power

HEMS Baseline
House Size HVAC Power % of Total Power HVAC Power % of Total Power

1606 𝑓 𝑡2 2.86 MWh 18% 3.07 MWh 19%
4252 𝑓 𝑡2 8.04 MWh 38% 8.73 MWh 40%

the frequency of HVAC operation is much greater for the HEM strategy compared

to the baseline operation which utilizes bang-bang control as demonstrated pre-

viously in Figure 3.5a. Therefore, in this context, the trend that as house size

increases, the energy storage utilization increases is understood. Additionally, it

understood that does not necessarily correlate to a higher average state of charge

relative to the baseline controller.

3.6 Summary

This chapter focuses on the design of the scheduling for appliances including

HVAC, vehicle charging, laundry washer and dryer, dishwasher, solar generation,

and energy storage. Considering a time of use pricing scheme, the HEM strategy

is used to minimize grid cost to the user while also considering user discomfort via

appliance deferral times and temperature differences. The general operation of the
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HEM strategy was analyzed with a 1 day simulation study, and the performance

was analyzed with an extensive simulation campaign.

The HEM strategy is found to be able to save approximately $160 on of the

electricity cost per year relative to using the baseline controller on average for every

case. Additionally, the HEM strategy tends to do a much better job of keeping the

house temperature closer to the set point relative to using the bang-bang control

from the Baseline controller.

Another difference found between the HEM strategy and the baseline strategy is

the overall operation of the energy system. In all cases it was found that the energy

storage was utilized more by the HEM strategy compared to the baseline strategy.

While it is clear that the energy storage system is not used in a highly strenuous

operating state in any of the cases, it is still of interest to understand the relative

rates of battery degradation for operating with the HEM strategy or the baseline

strategy. For example, given battery cell capacity fade is heavily dependent on

battery temperature, the effect of energy storage temperature control will be of

interest. This will be further investigated in the following chapter.
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Chapter 4: Semi-Empirical Battery Degradation Model

Due to the complexities in both computation and calibrationwith limited amount

of data as discussed in Chapter 1.3, in this chapter a semi-empirical battery aging

model is developed to quantify the imposed capacity fade due to the HEM strategy

and the baseline controller for each of the simulation campaign case studies.

4.1 Mixed-Degradation Model

4.1.1 Development of a Mixed-Degradation Model

Amixed approach was chosen to model battery aging that combines the respec-

tive benefits from the data-driven calibration approach [60] and a semi-empirical

physics-based model [76,77]. Consistently with other semi-empirical models, the

proposed Mixed-Degradation Model employs physics-based equations that model

two primary battery aging mechanisms, SEI layer growth and LAM [76, 77]. The

equations that model these mechanisms are:

𝑄𝑆𝐸𝐼 =

∫ 𝑡

0

𝑘𝑆𝐸𝐼 · 𝑒
−
𝐸𝑆𝐸𝐼

𝑅𝑇𝑏𝑎𝑡𝑡

2(1 + 𝜆𝜃)
√
𝑡
𝑑𝑡 (4.1)

𝑄𝐿𝐴𝑀 =

∫ 𝑡

0
𝑘𝐿𝐴𝑀 · 𝑒

−
𝐸𝐿𝐴𝑀

𝑅𝑇𝑏𝑎𝑡𝑡 · 𝑆𝑂𝐶 · |𝐼 |𝑑𝑡 (4.2)

𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑆𝐸𝐼 + 𝑄𝐿𝐴𝑀 (4.3)
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Where 𝑘𝑆𝐸𝐼, 𝐸𝑆𝐸𝐼, and 𝜆 are calibration parameters of the SEI layer growth equa-

tion, 𝑘𝐿𝐴𝑀 and 𝐸𝐿𝐴𝑀 are calibration parameters of the LAM equation, R is the uni-

versal gas constant, 𝑇𝑏𝑎𝑡𝑡 is the battery temperature, and 𝜃 is a parameter that

captures the effects of the reaction overpotential. Finally, 𝑡 is the virtual time

which is the equivalent amount of time for any prior capacity fade due to SEI layer

growth [55].

Except 𝜃, which captures the effects of the reaction overpotential, all other pa-

rameters of the equations are available as constant battery characteristics, calibra-

tion parameters, or inputs from an equivalent circuit model. The parameter 𝜃 is

obtained from complex electrochemical models in which partial differential equa-

tions must be solved, such as an extended single particle model [76,77].

The proposed model differs from Equation 4.1 because, rather than solving

for 𝜃, it is instead defined as an additional calibration parameter. Given that 𝜆

in Equation 4.1, is also a calibration parameter, 𝜆 and 𝜃 are lumped as a single

parameter, 𝜒 := 𝜆 · 𝜃. Then the equation for capacity loss due to SEI layer growth

becomes:

𝑄𝑆𝐸𝐼 =

∫ 𝑡

0

𝑘𝑆𝐸𝐼 · 𝑒
−
𝐸𝑆𝐸𝐼

𝑅𝑇𝑏𝑎𝑡𝑡

2(1 + 𝜒)
√
𝑡
𝑑𝑡 (4.4)

The procedure to calibrate the five model parameters, 𝑘𝑆𝐸𝐼, 𝐸𝑆𝐸𝐼, 𝜒, 𝑘𝐴𝑀 , and

𝐸𝐴𝑀 to a specific battery type follows a procedure similar to the one used in [60] for

the calendar aging calibration. First, the parameters 𝑘𝑆𝐸𝐼, 𝐸𝑆𝐸𝐼, and 𝜒 in Equation

4.4 are calibrated to match experimental calendar aging data for the specific bat-

tery chemistry type by minimizing the deviation between model and experimental

data. This calendar aging calibration approach relies on the assumption that 𝜒 is
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only a function of state of charge (SOC) and temperature and is not dependent

on C-rate. Although the C-rate does have a minimal contribution in 𝜃 which is

a function of reaction overpotential; this error accumulation is negligible so this

assumption is reasonable [77].

Next, 𝜒 is calibrated against additional calendar aging data sets in which the

battery SOC and temperature are varied while 𝑘𝑆𝐸𝐼 and 𝐸𝑆𝐸𝐼 are held constant from

the intial calibration step. This initial calendar aging procedure determines a map

of 𝜒 as a function of battery temperatures and SOC.

The final step consists of the calibration of the parameters 𝑘𝐿𝐴𝑀 and 𝐸𝐿𝐴𝑀 in

Equation 4.2 to match cycling aging data. Because cycling aging is also affected

by calendar, and both mechanisms, SEI and LAM, are present, this calibration pro-

cedure is performed on the overall capacity fade 𝑄𝑡𝑜𝑡𝑎𝑙 defined in Equation 4.3.

In the following sections, the calibration procedure is applied to a 2.3 Ah LFP

Battery (26650) from A123 [3,4,77].

4.1.2 Calibration of Capacity Loss Due to SEI Layer Growth

The 2.3 Ah battery model was calibrated to fit calendar aging data due to SEI

layer growth given in [3,4], and the resulting parameters are shown in Table 4.1.

The SEI layer growth coefficients are then held constant and used during the cal-

ibration of 𝜒 at four additional operating conditions against calendar aging data

from [3,4,77]. The results of the 𝜒 calibration at each operating condition is sum-

marized in Table 4.2 and shown in Figure 4.1. The values of 𝜒 not given in the
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Table 4.1: 𝑄𝑆𝐸𝐼 Model Coefficients for the A123 LFP Battery

Parameters Value Unit
𝑘𝑆𝐸𝐼 7,350 1/𝑠𝑒𝑐1/2
𝐸𝑆𝐸𝐼 39,330 𝐽/𝑚𝑜𝑙

Table 4.2: Values of 𝜒 at Various Operating Points for the A123 LFP Battery

𝑆𝑂𝐶(%)/𝑇◦𝐶 25◦𝐶 30◦𝐶 45◦𝐶 60◦𝐶
30% - 1.6227 1.0331 -
50% 0.6970 - 0.2841 -
100% 0.0482 - 0.0331 0.0101

table, but denoted with an ’X’ in Figure 4.1 were obtained using a natural neigh-

bor, linear extrapolation. Next, a cubic surface fit was plotted over the original

data points in the plot.

To demonstrate the fitness of Equation 4.4 after the calibration, Figure 4.2 be-

low displays the experimental and model’s capacity loss due to SEI layer growth

for five of the calibration sets.

The agreement of the calibrated model with the calibration data set is shown

in Figure 4.2. The model shows very good fit in relation to the experimental data;

however, towards the beginning of the data set the model tends to over-predict

the calendar aging and towards the end of the data set the model tends to under-

predict calendar aging.
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Figure 4.1: Mapping of 𝜒 as a Function of Temperature and State of Charge

4.1.3 Calibration of Capacity Loss Due to LAM

Finally, 𝑘𝐿𝐴𝑀 and 𝐸𝐿𝐴𝑀 are calibrated using experimental cycling aging data

from [4].

This experimental data set was collected by imposing a synthesized current

profile to the battery that mimics a Hybrid Electric Vehicle duty cycle shown in

Figure 4.3. While the variation in state of charge is minimal, as in the case of a

charge sustaining vehicle, the data contains a large variation in C-rate. The values

of the model coefficients after the calibration are summarized in Table 4.3.
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Figure 4.2: Comparison of the Capacity Loss Due to SEI Layer Growth Obtained
with the Calibrated Model Against Experimental Data from [3,4]

A verification of the complete and calibrated model is shown in Figure 4.4 for

the calibration set. The results show a great fit between model and experimental

data; however, there seems to be a slight under-prediction of capacity fade at the

start of the experimental data.
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Table 4.3: 𝑄𝐿𝐴𝑀 Model Coefficients for the A123 LFP Battery

Parameters Value Unit
𝑘𝐿𝐴𝑀 1.1798 1/𝐴ℎ
𝐸𝐿𝐴𝑀 39,111 𝐽/𝑚𝑜𝑙
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Figure 4.3: Synthesized Current Profile and Corresponding SOC [4]

4.1.4 Validation of Calibrated Model

Because of the relatively low C-rates that are observed in stationary energy

storage applications, themodel is validated on a data set that included the lowest C-

rate conditions available in investigated literature [78]. The imposed C-rate profile
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tion model against the experimental data used for calibration

for the model verification cycles the battery between 20% and 95% and it is shown

in Figure 4.5.

The results of the mixed-degradation model validation are shown in Figure 4.6.

Overall, the model tends to underestimate capacity loss and this deviation is at-

tributed to the different current profiles and C-rate used for calibration as compared

the validation set. Improvements in model accuracy can be obtained by extending

the calibration set, and ideally include low C-rate data.

4.2 Simulation Campaign Post-processing

For the work in this thesis, it is vital to understand if the developed HEM strat-

egy in Chapter 3 results in greater battery capacity fade relative to a simpler control

strategy such as the Baseline controller proposed in Chapter 2.2. As discussed, it
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Figure 4.5: Synthesized current profile representing low C-Rate cycling [4]

is well understood the operation of the energy storage varies depending on the

control strategy. For this reason, the mixed-degradation model presented in this

chapter will be used to evaluate the capacity fade associated with the different

current profiles that resulted from the HEM strategy operation.

4.2.1 Model Integration

To evaluate the capacity fade, 𝑄𝑡𝑜𝑡 in Equation 4.3, the current profile, initial

SOC, and ambient temperature obtained from the residential home simulator are

imposed as inputs to the mixed-degradationmodel. As the battery ages, the battery

capacity is fed back to the energy storage model within the plant model. The
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Figure 4.6: Validation of the total capacity loss predicted by the mixed-degradation
model against experimental data.

integration of the semi-empirical battery aging model with the HEM system and

smart home plant model is shown in Figure 4.7.

It is important to note that the battery model does not include a thermal model

that accounts for the heat generated by the battery. This simplification is due to

the reasonable assumption that only low C-rates are imposed on the battery which

result in negligible heat generation. Hence, the battery temperature is assumed to

be the same as the home temperature if stored inside, or ambient temperature if

stored outside.

4.2.2 Simulation Campaign Battery Aging Results

An example of the 1-year battery total capacity fade, capacity fade due to SEI,

and capacity fade due to LAM for each strategy is represented in Figures 4.8a, 4.8b

and 4.8c respectively for case study 1. Additionally, the total capacity fade for a
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Figure 4.7: Home Energy Management System Integrated with Battery Aging
Model Summary

battery without any imposed current, sitting at 20% SOC and 18◦𝐶 (calendar aging

only) is shown in Figure 4.8a. This demonstrates how the capacity fade due to the

two control strategies matches up to a minimal capacity fade case.

For both control strategies, the total capacity fade is quite minimal and slightly

over 1%. This minimal fade can be attributed to the fact that the battery was

subject to extremely low C-Rates in which LAM capacity fade is heavily dependent

on. This resulted in a LAM capacity fade less than 0.1%. Therefore, the main

contributor to capacity fade in this application is SEI layer growth which is heavily

dependent on battery SOC and temperature instead.

The rate of capacity fade was similar regardless of month or season as demon-

strated in Figure 4.8a. However there is some slight variation shown in the rate of
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Figure 4.8: 1-Year Capacity Fade for Case Study 1

capacity fade due to loss of active material depending on month as seen in Figure

4.8c. This could be attributed to the differences in energy demand depending on

season as the HVAC required variable amounts of power. There is a much greater

variation in the rate of capacity fade as a function of season when the energy stor-

age is installed outside and the battery temperature is equivalent to the ambient
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temperature This is because battery degradation is heavily dependent on battery

temperature.

Figure 4.9 shows the total capacity fade, average SOC, Charge and Discharge

rates, and amp-hour throughput for each of the 12 one-year case studies from

Table 3.6, which include dependencies on house size, location, vehicle battery size,

energy storage battery size, and whether the battery is temperature controlled or

not.

Figure 4.9a shows that the total capacity fade is similar for the two control

strategies. Moreover, the strategy that caused greater capacity fade is different for

each case study, suggesting that energy storage operation is dependent on case

study and plant model settings rather than load scheduling method. The total Ah-

throughput is shown in Figure 4.9b and is similar between cases, with minimal

tendency for additional Ah-throughput imposed by the HEM strategy. This is con-

sistent with the fact that the HEM strategy utilizes the energy storage more. How-

ever, this does not necessarily result in greater capacity fade because the model

is somewhat insensitive to the different ranges of Ah-throughput between con-

trol strategies. Additionally, other factors than Ah-throughput may have a much

greater impact of aging. The average state of charge, shown in Figure 4.9c, is

slightly higher in the case of the HEM strategy, which again is consistent with the

higher level of energy storage utilization observed in the HEM strategy. Similarly,

to the Ah-throughput metric, the difference in state of charge is not sufficient to

result in a change in capacity fade. Finally, the average charge and discharge rates

are shown in Figure 4.9d and 4.9e, respectively. No significant difference can be

observed in the average values. One thing to notice, however is that the average
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Figure 4.9: Energy Storage Aggregate Capacity Fade and Operation Behaviour

C-rate is well below the calibration range of the aging model, resulting in extrap-

olation. Although the extrapolation may result in the capacity fade due to loss of

active material being inaccurate, it is safe to assume the error is almost entirely

negligible given that 𝑄𝐿𝐴𝑀 was nearly only a fraction of 𝑄𝑡𝑜𝑡.
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4.3 Summary

In this thesis, a Mixed-Battery Degradation model was developed which com-

bines the respective benefits of an entirely physics-based model and an empirical

model. The model presented in this thesis allows for easy calibration for different

battery chemistry types.

Although the model is computationally efficient, it is lacking validation in bat-

tery operating regions outside the calibration zone. Specifically, the battery was

calibrated to a relatively large, unique C-rate profile; therefore, any model evalua-

tion at different C-rate profiles will result in extrapolation of capacity fade in loss

of active material that cannot ensure accuracy. However, when at low C-Rates, this

error due to extrapolation could be considered nearly negligible because capacity

fade due to loss of active material is minimal compared to the total capacity fade.

Future work should calibrate the model at a wider range of C-rate profiles to extend

the model validity. With additional validity, the model can be more confidentially

implemented in real-time control applications.

In this thesis, the degradation model is used in post-processing to evaluate and

compare the effect of different home energy management strategy on capacity

fade. Although the operation of the energy storage system due to the HEM strategy

was slightly different than that of the operation due to baseline control operation,

the aggregate capacity fade in both cases was minimal and similar.
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Chapter 5: Optimization of Battery Temperature and Durability

for DC Fast Charging Applications

In 2019, the transportation sector was responsible for more than 29% of all

greenhouse gas emissions in the United States, having surpassed the electric power

generation sector in 2017 [79]. Newly developed plug-in electric and electric ve-

hicles have been assessed to lower life-cycle emissions by 57% to 68% for compa-

rable internal combustion engines [80]. However, the median driving range of an

internal combustion engine vehicle in 2021 was 403 miles while that of an electric

vehicle was only 234 miles [81]. In addition to the range anxiety experienced by

electric vehicle adopters, the wait time to recharge the battery is also much longer

than that required to refuel a conventional vehicle, resulting in reduced travel flex-

ibility for the user.

For increased penetration in the transportation sector, electric vehicles must

provide both economical and practical benefits to customers when compared with

internal combustion engine vehicles. With respect to charging time, the state-of-

the-art Direct Current Fast Charging (DCFC) units can provide more than 200miles

of range in 30 minutes but input significantly high power to the battery, between

25 to 350kW [82]. The associated charge current is large and results in higher

battery temperatures, which has a great impact on battery life [83,84]. In a study
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conducted by the US National Renewable Energy Laboratory, a 15◦C reduction in

average battery temperature over the life-time of the battery was found to result in

roughly a double useful battery life [85]. Additionally, insufficient battery thermal

management could result in thermal runaway if the temperature reaches a critical

point, posing a hazard to the user [86]. Due to the unavoidably high C-rates re-

quired for DCFC and the associated high temperatures, an effective battery thermal

management system is thus essential for the safe fast charging at various operating

conditions.

5.1 Current Practice for DCFC Optimization

While active cooling strategies have already been proposed to mitigate degra-

dation due to heat [87], a preemptive approach is to implement charging strategies

that maintain the temperature within desired bounds during fast-charging. In this

case, the battery temperature control is more active compared to the application

of cooling strategies. In terms of modeling, an equivalent circuit model describing

the battery’s electrochemical behavior is usually combined with a thermal model

that captures the heat generation and dissipation. An optimal control framework

is then built to minimize a cost function related to the battery degradation [88].

By integrating a battery aging model, it is possible to obtain a degradation aware

charging profile that minimizes the degradation due to DC fast charging [89].

However, the challenge is that, the resulting optimal control problem formula-

tion with an objective of achieving fast-charging while minimizing capacity fade

is highly nonlinear due to the electro-thermal-aging coupling [90]. Many algo-

rithms have been proposed to find solutions, with varying successes regarding to
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real-time implementability. For example, DP resulted in a 4.6% reduction in ca-

pacity fade due to solid electrolyte interface growth over 3300 charge discharge

cycles (only considering capacity fade due to charging), when compared with the

constant-current (CC) charging protocol [91]. However, considering the number

of states involved and the curse of dimensionality associated with DP, the computa-

tional expense is high. Moreover, their approach minimized temperature rise and

capacity fade separately, yielding the possibility of two different charge profiles

that minimize respective cost functions. The optimal control problem can also be

solved using Pontryagin’s Minimum Principle [92], where a simplified aging model

is used to define a severity factor that compares the expected aging with that from a

nominal current profile. This is thus dependent on the selection criteria of the nom-

inal current profile, which varies significantly from user-to-user. Machine Learning

methods have been recently investigated to minimize the capacity loss during fast

charging [93]. While results are promising, the approach requires extensive lab-

oratory testings to failure of batteries to ensure reliable predictions of on-board

cycle-life estimation.

More computationally efficient methods have been investigated such as PSO

[94]. Results from this multi-objective optimization showed fast convergence of the

algorithm to a near globally-optimal solution to minimize capacity fade and charge

time to achieve a desired Ahr throughput. However, this study and all other pre-

viously mentioned literature neglect the effect of driving the vehicle immediately

after charging. This is a strong assumption since DCFC units are more likely to

be utilized on long-distance drives, indicating a greater likelihood of immediate

driving after the charge event [95]. Additionally, since the battery degradation is a
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heavily dependent on pack temperature, and DCFC causes higher battery temper-

atures, the expected driving behavior post-charging under a higher temperature

cannot be neglected.

In this thesis, the DCFC current profile is optimized considering expected future

driving within the optimal control problem, to account for the higher temperatures

at the end of charging. The solution is firstly obtained through DP to benchmark the

results obtained from a real-time capable meta-heuristic optimization algorithm.

Thus, the results provide an insight into the effect of battery temperature on the

overall degradation during a charging event by considering both the charge and

subsequent discharge processes. When the expected driving is not considered in

the optimal control problem formulation, the results show a higher temperature at

the end of charging with greater capacity fade at the end of the discharge cycle,

indicating the importance of this consideration.

5.2 Thermally Coupled, Mixed-Degradation Model

The battery model consists of three main components, namely a 0th order ECM,

a lumped thermal mass model for the temperature dynamics and a simplified

degradation model for battery aging, which are integrated as shown in Figure 5.1.

5.2.1 Equivalent Circuit Model

The state of charge (SOC) of the battery is defined as:

𝑑𝑆𝑂𝐶

𝑑𝑡
=
𝐼(𝑡)
𝑄

(5.1)

Where Q is the battery capacity and I(t) is the battery current.
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Figure 5.1: Coupled Battery System Block Diagram

A 0th order equivalent circuit model is then used:

𝑉𝑜𝑐 (𝑆𝑂𝐶) = 𝑉𝑡 + 𝑅𝑜(𝑐/𝑑) (𝑆𝑂𝐶) · 𝐼 (5.2)

Where 𝑉𝑂𝐶 is the open-circuit potential, 𝑉𝑡 is the terminal voltage, 𝑅0 is the inter-

nal resistance, and 𝑐/𝑑 denotes charge and discharge respectively. The values for

internal resistance and open circuit voltage in Equation 5.2 are obtained from [96].

5.2.2 Lumped Thermal Model

A simple lumped thermal mass model is developed to describe the battery tem-

perature dynamics considering the effect of the battery current:

𝑑𝑇𝑏𝑎𝑡𝑡

𝑑𝑡
=

1
𝑚𝑐

(𝐼2𝑅𝑜(𝑐/𝑑) − ℎ𝐴(𝑇𝑏𝑎𝑡𝑡 − 𝑇𝑎𝑚𝑏)) (5.3)
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Where 𝑚 is the mass of the battery pack, 𝑐 is the thermal capacity, ℎ is the heat

convection coefficient, 𝐴 is the surface area, and 𝑇amb is the ambient temperature.

The values of the parameters are summarized in Table 5.1 and obtained from the

specification sheet for the A123 System’s 26650 LFP Cylindrical Battery Cell.

Table 5.1: Parameters for Thermal Model

Parameter Value Unit
𝑚 0.07 kg
𝑐 1100 𝐽/𝑘𝑔 · 𝐾
ℎ 5 𝑊/𝑚2 · 𝐾
𝐴 6.36𝐸(−3) 𝑚2

5.2.3 Mixed-Degradation Model Verification

The same mixed degradation model developed in Chapter 4 is used here which

captures capacity fade due to SEI layer growth and loss of active material only. By

using this model, an assumption is being made that capacity fade due to Lithium

plating is non-existent during this DC fast-charging protocol. However, it is well

known in literature that Lithium plating is also present in the cases of high C-Rates,

high states of charge, and low temperatures [97]. While this mechanism heavily

affects rate of capacity fade, it also leads to safety concerns because Lithium plating

can result in dendrite formation across the electrolyte in the cell and potentially,

a subsequent short circuit [97]. Therefore, state of the art fast charging requires

the use of constant-current, constant-voltage (CC-CV) charging protocols which

limit the allowable C-Rate towards the end of the charge cycle (near a high state

of charge) to ensure Lithium plating does not occur [98].
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The added current constraint for Lithium plating leads to infeasible solutions

within the selected charge time for this work; specifically the battery cannot reach

full charge in 15-minutes. Therefore, the presence of Lithium plating and it’s max-

imum current constraints have been neglected in the initial results presented in

Section 5.4 to test the algorithm and allow for a proof of concept. However, it is

still desired to analyze potential capacity fade reduction in fast charging cycles

while also considering the constraints of Lithium plating. Section 5.5 presents ad-

ditional results with as a result of including the Lithium plating constraint.

To validate the degradation model for this specific application of DC fast charg-

ing, battery capacity fade data for an EV with a ‘complex duty cycle’ was obtained

from [5] for a 2.3 Ah LFP battery from A123 Systems (26650). The battery was

charged up to 100%, held for a rest period, and discharged using this duty cycle.

The cycle was repeated to yield a one-year capacity fade profile. The imposed cur-

rent profile, together with a comparison between model results and original data

are shown in Figure 5.2, which shows a good validation of the degradation model.

With modeling for one year, the capacity fade is 6.58% and the data shows a 7.57%

fade.

5.3 Optimization of Charging Profile

5.3.1 Problem Formulation

The objective of the DC Fast Charging controllers is to optimize a charging

profile 𝑢(𝑡) such that the total capacity fade, due SEI layer growth and loss of

active material, of the battery is minimized over both a charge and subsequent
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Figure 5.2: One year mixed-degradation model validation on experimental data
from [5]

discharge cycle, subject to state and input constraints:

min𝐽
𝑢

(𝑥, 𝑢, 𝑤) =
∫ 𝑡 𝑓

0
𝑄𝑡𝑜𝑡𝑎𝑙 (𝑥, 𝑢, 𝑤)𝑑𝑡

s.t. ¤𝑥 = 𝑓 (𝑥, 𝑢)

𝑥𝑚𝑖𝑛 ≤ 𝑥 (𝑡) ≤ 𝑥𝑚𝑎𝑥

0 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥

𝑤(𝑡) = 0 ∀ 0 < 𝑡 ≤ 𝑡𝑐ℎ

𝑢(𝑡) = 0 ∀ 𝑡𝑐ℎ < 𝑡 ≤ 𝑡 𝑓

(5.4)
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where 𝑥 is the state vector 𝑥 =
[
𝑆𝑂𝐶 𝑇𝑏𝑎𝑡𝑡 𝑄𝑡𝑜𝑡𝑎𝑙

]𝑇 ; 𝑓 (𝑥, 𝑢) defines the state dy-

namics; and 𝑤(𝑡) is the external input vector which defines the current while driv-

ing. The total time, 𝑡 𝑓 , is a fixed time that includes both charging, 𝑡𝑐ℎ, and driving

time, 𝑡 𝑓 − 𝑡𝑐ℎ. The charging time is also fixed in this problem. With this definition

of control input and external input, the SOC equation in Eq. (5.1) becomes:

𝑑𝑆𝑂𝐶

𝑑𝑡
=

(𝑢(𝑡) + 𝑤(𝑡))
3600

(5.5)

The constraints on state variables are based on A123 Systems, High Power

Lithium Ion ANR26650:

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

𝑇𝑏𝑎𝑡𝑡,𝑚𝑖𝑛 ≤ 𝑇𝑏𝑎𝑡𝑡 (𝑡) ≤ 𝑇𝑏𝑎𝑡𝑡,𝑚𝑎𝑥

(5.6)

Moreover, at the end of the charging event at time 𝑡𝑐ℎ, the battery must be at

the required SOC (fully charged):

𝑆𝑂𝐶(𝑡𝑐ℎ) = 𝑆𝑂𝐶𝑚𝑎𝑥 (5.7)

Finally, an algebraic constraint is introduced on the terminal voltage 𝑉𝑡 (𝑡) based

on the battery specifications and Equation 5.2:

𝑉𝑡,𝑚𝑖𝑛 ≤ 𝑉𝑡 (𝑡) ≤ 𝑉𝑡,𝑚𝑎𝑥 (5.8)

Due to the nonlinearities in the optimization problem, a possible solution ap-

proach is based on DP [99]. However, due to the size of the state vector, DP is com-

putationally prohibitive for online implementation [91]. Moreover, splitting the

battery current into a controllable profile 𝑢(𝑡) and an external input 𝑤(𝑡) makes
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the DP challenging to implement without further increasing the number of states.

For this reason, a meta-heuristic optimization technique, PSO, is implemented to

find a near optimal solution with reduced computation time [100].

5.3.2 PSO Implementation

PSO is a population-based metaheuristic algorithm where the position of each

particle in the swarm is a potential solution to the optimization problem [101]. The

population or swarm of particles is initialized with positions randomly assigned

throughout the feasible search space and the cost associated with the position of

each particle is computed. Assuming a minimization objective, the cost associated

with the position of each particle is saved as the ’personal best’ solution for that par-

ticle while for the entire swarm, the solution with the minimum cost is saved as the

’global best’ solution. The position and associated cost of each particle is updated

at every iteration, based on a velocity equation that is a function of the personal

and global best solution. The exploration through the search space continues for a

defined maximum number of iterations, or until convergence.

For 2𝑚 time-steps required for DCFC, the C-rate 𝑢(𝑡) is optimized over a 2𝑚

dimensional search space. To ensure that the battery is charged up to the defined

𝑆𝑂𝐶 𝑓 , 𝑢𝑐𝑐 which is the constant C-rate required to charge fully, is first calculated.

Then sequentially, the constant C-rate is repeatedly discretized temporally into

two, while maintaining the average current to be 𝑢𝑐𝑐 over the available time.

At the first discretization step, two C-rates 𝑢𝑝(1) and 𝑢𝑝(2) must be obtained

that have a mean current of 𝑢𝑐𝑐. This is as defined by Eq. (5.9) where 𝑆𝑂𝐶0 is the
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initial SOC, in decimals and 𝑡𝐶ℎ is the available charging time in hours.

𝑢𝑐𝑐 =
𝑆𝑂𝐶 𝑓 − 𝑆𝑂𝐶0

𝑡𝐶ℎ
=
𝑢𝑝(1) + 𝑢𝑝(2)

2
(5.9)

This constraint is implemented within a 1D PSO exploration of the first dis-

cretization, by defining the particle position 𝑥𝑝 as the deviation from 𝑢𝑐𝑐, yielding

C-rates 𝑢𝑝(1) and 𝑢𝑝(2) as obtained in Eq. (5.10, 5.11). These C-rates contribute

to the 𝑄𝑡𝑜𝑡𝑎𝑙 which is the integrand of the cost function used in the PSO.

𝑢𝑝(1) = 𝑢𝑐𝑐 + 𝑥𝑝 and 𝑢𝑝(2) = 𝑢𝑐𝑐 − 𝑥𝑝 (5.10)

−𝑢𝑐𝑐 ≤ 𝑥𝑝 ≤ 𝑢𝑚𝑎𝑥 − 𝑢𝑐𝑐 (5.11)

The update equations of the PSO are defined by Eq. (5.12-5.13) where tunable

parameters of the algorithm are the inertial weight 𝑏 and acceleration coefficients

𝑐1 and 𝑐2. Random numbers 𝑟1, 𝑟2 ∈ [0, 1] perform the stochastic aspect of the ex-

ploration, 𝑘 is the iteration number, 𝑝 is the particle identity and 𝛼 is the relaxation

factor.

𝑣𝑘+1𝑝 = 𝑏𝑣𝑘𝑝 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑝 − 𝑥𝑘𝑝) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑝 − 𝑥𝑘𝑝) (5.12)

𝑥𝑘+1𝑝 = 𝑥𝑘𝑝 + 𝛼𝑥𝑘+1𝑝 (5.13)

After the exploration of the search space at the first discretization step, the

optimal deviation 𝑥∗ is found by the 1D PSO and the resulting charge profile is

composed of 𝑢1𝐷∗ (1) and 𝑢1𝐷∗ (2) as illustrated in Figure 5.3.

To discretize further and obtain a 4 time-step C-rate profile that maintains 𝑢𝑐𝑐

as the overall average current, the first two time-steps and last two time-steps

must average 𝑢1𝐷∗ (1) and 𝑢1𝐷∗ (2) respectively. This is achieved by a 2D PSO where

the particle position is associated with 𝑥𝑝(1) and 𝑥𝑝(2) which are the respective
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Figure 5.3: 1-D PSO Optimal Solution

deviations from 𝑢1𝐷∗ (1) and 𝑢1𝐷∗ (2) as described by Equation (5.14-5.17). Once the

PSO finds the optimal position denoted by 𝑥∗, the 4 step current profile is given by

𝑢∗4𝐷 as illustrated in Figure 5.4

𝑢𝑝(1) = 𝑢1𝐷∗ (1) + 𝑥𝑝(1) and 𝑢𝑝(2) = 𝑢1𝐷∗ (1) − 𝑥𝑝(1) (5.14)

𝑢𝑝(3) = 𝑢1𝐷∗ (2) + 𝑥𝑝(2) and 𝑢𝑝(4) = 𝑢1𝐷∗ (2) − 𝑥𝑝(2) (5.15)

−𝑢1𝐷∗ (1) ≤ 𝑥𝑝(1) ≤ 𝑢𝑚𝑎𝑥 − 𝑢1𝐷∗ (1) (5.16)

−𝑢1𝐷∗ (2) ≤ 𝑥𝑝(2) ≤ 𝑢𝑚𝑎𝑥 − 𝑢1𝐷∗ (2) (5.17)

This approach of increasing discretization by repeatedly doubling the time-steps

can be continued until the desired number of discretized time-steps is reached.

Thus, 1D, 2D, 4D, ... , 2𝑚−1D PSOs are performed sequentially to arrive at the

C-rates for the 2𝑚 time-steps. At each new PSO formulation, the overall average
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Figure 5.4: 2-D PSO Optimal Solution

current is maintained to be 𝑢𝑐𝑐 with the discretization rule for the ND PSO sum-

marized in Equation (5.18).

𝑢2𝑁𝐷∗ (2𝑛 − 1) + 𝑢2𝑁𝐷∗ (2𝑛)
2

= 𝑢𝑁𝐷∗ (𝑛); 𝑓 𝑜𝑟 𝑛 = [1 : 𝑁] (5.18)

In this example, discretization up to 8 time-steps was desired, and so 1D, 2D

and 4D PSOs were run and the final solution is illustrated in Figure 5.5.

For a simplified case without considering the discharge cycle, the C-rate profile

obtained from the PSO algorithm is compared against that from the DP algorithm

described in [102]. The solutions are shown in Figure 5.6, where the overall shape

of the charge profiles are similar between the two algorithms, with a root mean

square deviation of 0.57 and total 𝑄𝑙𝑜𝑠𝑠 listed in Table 5.2. The difference in re-

sulting solutions may be attributed to the metaheuristic nature of the PSO and the
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Figure 5.5: 4-D PSO Optimal Solution

discretization of the DP algorithm used. Additionally, this DP algorithm interpo-

lates for state variable positions and uses a backward recursion approach while the

PSO simulates forward.

Table 5.2: DP vs PSO Computation

Computation Time 𝑄𝑙𝑜𝑠𝑠

DP 3̃ Hours 0.019%
PSO 3̃ Minutes 0.020%

5.4 DC Fast Charging Optimization Results

Following the optimization steps prescribed earlier, an 8-step charging profile

was obtained for a 15-minute DC fast charge (20% to 80% SOC) initialized at
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Figure 5.6: PSO Validation vs Optimal DP Solution

25◦C followed by a complex EV duty cycle discharge (to 20% SOC). The obtained

charging profile is compared with a baseline policy that uses constant-current in

Fig. 5.7, which also shows the battery temperature during charging and discharg-

ing. The total capacity fade after the optimized charge-discharge cycle was found

to be 0.1015% while that for the baseline was found to be 0.1022% over a single

cycle.

To evaluate the importance of considering the driving load immediately after

DCFC, another study was conducted in which only the charging profile was opti-

mized (the discharge was not included in optimization). The resulting optimized

charge policy left the battery 12◦C hotter than in the previously studied charge pol-

icy that accounted for future discharge. This is shown in Fig. 5.8 and the resulting

capacity fade of the battery from this policy was 0.1362% compared to that of the

baseline constant-current policy of only 0.1022% over just one cycle.
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Figure 5.7: Optimal Charging Policy and Temperature with Discharge Considered
in Optimization

One of the primary mechanisms of degradation is capacity loss due to SEI layer

growth, which is greater when the battery is held at a high SOC. Therefore, keep-

ing the battery at a lower SOC for a longer period would be advantageous to limit

capacity fade, as seen in the profiles obtained from the PSO. Additionally, temper-

ature also plays a significant role in capacity loss, both in the loss of active material

and in the SEI layer growth by affecting the reaction rate multiplied with 𝑘𝑆𝐸𝐼 and

𝑘𝐿𝐴𝑀 . This explains why the optimized profiles do not impose larger C-Rates on

the battery which would yield larger temperatures.
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Figure 5.8: Optimal Charging Policy and Temperature without Discharge Consid-
ered in Optimization

It is also of interest to evaluate how the optimized charge policy evolves over

extended simulations because the capacity loss due to SEI layer growth contributes

lesser to the total capacity loss as the battery ages [5,76,77]. As shown in Figure 5.9

a battery starting at 0% capacity fade, the charge-discharge cycle of the initial study

was repeated 100 times, where the PSO optimization of charging was repeated

every 10 cycles.

It is clear that at charging sessions in later battery life the optimal policy limits

the amount of battery temperature rise due to high C-Rate rather than limiting time
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Figure 5.9: Evolution of Optimal Charging Profile as the Influence of𝑄𝑆𝐸𝐼 Decreases

at high SOC given that 𝑄𝐿𝐴𝑀 becomes the dominant loss mechanism in 𝑄𝑡𝑜𝑡𝑎𝑙. The

characteristic result in a charge profile increasingly similar to a constant-current

charge profile and it can be assumed that this trend will continue as time goes on.

5.5 Results Considering Lithium Plating

As mentioned in Section 5.2.3, it is desired to analyze results which consider

current constraints to ensure Lithium plating does not occur. To do achieve this

result, a CC-CV profile is used to determine maximum allowable current as a func-

tion of state of charge such that Lithium plating does not occur. Available data

for this maximum current was obtained from test cycles on an NMC battery type

as a function of battery voltage. By utilizing the open-circuit voltage versus state

of charge curve, the voltage can be defined as state of charge and assumed to be

similar to other battery types such as LFP as in this application. The cost function
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will not change with this new constraint; rather, when the constraint is broken the

respective cost will be set substantially high such that the algorithm stays within

desired current bounds as a function of state of charge. The maximum current con-

straint as a function of state of charge for the LFP battery type is shown in Figure

5.10.
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Figure 5.10: LFP Maximum Current Constraint to Limit Li-Plating

Again, due to the infeasibility of a solution within a 15 minute charge cycle, the

charging time was extended to 25 minutes. The optimal charging policy over the

25-minute charge cycle is shown in Figure 5.11. It is clear that the constraint was

held such that Lithium plating does not occur. The resultant total capacity fade

after the charge and discharge cycle due to loss of active material and SEI layer

growth amounted to 0.071%. In comparison, the baseline constant-current profile

also resulted in a total capacity fade of 0.071% at the end of the charge and dis-

charge cycle. This extreme similarity in total capacity fade is because the optimal
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charge protocol was nearly constant current. The implication of this result is that

when considering Lithium-plating, the state of the art CC-CV charging protocol is

the best approach to charge electric vehicles in minimal time frames.

Also shown in Figure 5.11 is the optimal charge protocol for the case without the

constraint for Lithium plating for a 25 minute charge period. For the case without

the Lithium plating constraint, the current tends to ramp up throughout the entire

charge cycle as was discovered previously. Although this will yield slightly less

capacity fade due to loss of active material and SEI layer growth, it cannot be

ensured that Lithium plating will not occur.
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Figure 5.11: Optimal Charging Policy with Constraint for Li-Plating

A summary of the capacity fade due to both mechanisms for both cases at the

end of the charge cycle and at the end of the discharge cycle is summarized in Table

96



Table 5.3: Capacity Fade by Mechanism for Considering and Not Considering
Lithium Plating

Considering
Plating

Without
Considering

Plating
𝑄𝑡𝑜𝑡 (At End of Charge) 0.026 0.023
𝑄𝑆𝐸𝐼 (At End of Charge) 0.025 0.022
𝑄𝐿𝐴𝑀 (At End of Charge) 0.001 0.001
𝑄𝑡𝑜𝑡 (At End of Discharge) 0.071 0.070
𝑄𝑆𝐸𝐼 (At End of Discharge) 0.070 0.069
𝑄𝐿𝐴𝑀 (At End of Discharge) 0.001 0.001

5.3. Additionally, it should be noted that in both cases the total charging time and

the total Ah-throughput is equivalent.

5.6 DC Fast Charging Optimization Discussion / Conclusions

In this thesis, a PSO algorithm was used to optimize a discrete-step DCFC cur-

rent profile, such that the battery capacity fade was minimized. The capacity fade

due to an expected drive cycle immediately after charging was imposed as an addi-

tional cost in the objective function to mimic realistic charging and driving condi-

tions. The results of the PSO algorithm showed a decrease in overall capacity fade

compared to the baseline CC profile and was computationally efficient enough to

be solved in real time. Future work will include the use of data driven methods

to generate synthetic current profiles for the driving portion of the optimization

problem.
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However, in light of state of the art fast charging approaches with CC-CV to

ensure Lithium-plating does not occur, this type of optimization is practically in-

feasible because the added current constraints. These constraints limit almost all

flexibility of the charging profile to reduce capacity fade for SEI layer growth or

loss of active material.
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Chapter 6: Conclusion and Future Work

This thesis presented a HEM strategy to control the optimal scheduling of a

smart home’s appliance load time, HVAC operation, xEV charging, and coupled

ES-RES energy distribution. The goal of HEM controller was to minimize a multi-

objective function which considered the grid electricity cost, the deferral time of

the appliances that are activated with a delay, and the temperature discomfort con-

sidering the difference between the desired and actual temperatures. The loads in

the smart home was coordinated using a sequential MPC approach. The resulting

nonlinear mixed-integer optimization problem within the receding horizon was

solved using Genetic Algorithm.

An extensive simulation study was conducted by varying the house size, loca-

tion, vehicle battery size, energy storage battery size, and energy storage temper-

ature control with the objective of evaluating the benefit of a smart home energy

management system. The simulation study showed that on average, the developed

HEM strategy reduced grid cost by approximately $160 per year relative to the the

simpler, baseline controller. The total savings tended to be greater for larger house

sizes, houses located in San Antonio, houses with a 60 kWh battery sized vehicle,

and in the summer months. Additionally, it was found that varying the energy stor-

age size did not result in much change between relative savings because regardless
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of size, the entire capacity of the battery was never utilized. The temperature con-

trol also did not make an impact on the relative cost savings.

The economical benefits shown by the HEM system were obtained through an

improved load coordination strategy that heavily relied on the stationary battery.

To evaluate the additional battery degradation, and hence, the consequences on the

cost-benefits analysis, a mixed-degradation model was developed. By calculating

the capacity fade associated with both, the HEM and baseline strategy, a negligible

difference in degradation was observed.

6.1 Future Work

Consistently with the literature on energy storage systems for smart homes, the

capacity loss has been evaluated a posteriori and was not included in the optimiza-

tion strategy. The simulation study has shown that the developed HEM strategy

resulted in an extremely similar battery capacity loss compared to a baseline con-

troller. While the simulation campaign showed limited effect of using an advanced

smart home algorithm on long-term capacity fade, the developed semi-empirical

aging model used in this study was calibrated using supplier data collected for

automotive applications, which are at relatively high C-rate. The energy storage

would age differently at the lower C-rates in the order of C/20 that are common

in stationary applications (both, stationary energy storage and vehicle to home).

For example, a study on low C-rate cycling published by [103] showed that these

specific operating conditions could result in the traditional aging models to signif-

icantly under-predict the long-term aging effects.
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Appendix A: Simulation Campaign Results

The effect of xEV battery size variation will be analyzed as shown in Figure A.1.

On average the total grid cost savings of using the HEMS controller instead of the

Baseline controller was 3.7%. This can be assumed to have less grid savings with

a smaller xEV battery size because there is less relative power required to charge

which can be deferred to lower price regions. This effect can be seen well in the

major difference in overall xEV load deferral between sizes. Additionally, from the

other plots in the figure, it is clear that the other metrics were relatively unaffected.

As shown in Figure A.2, the effect of ES battery size will be analyzed next. What

should be considered mainly in this case is the comparison between two different

sized ES systems for two different house sizes; the 2500 to 3500 square foot house

with a 14 kWh or 28 kWh battery & the 3500 to 4500 square foot house with a

28 kWh or 14 kWh battery. Of course, in both cases when the battery capacity

was decreased the average state of charge of the battery increased and the relative

rates of charge and discharge increased. However, in considering all other metrics,

there was not much deviation.

Next, as shown in Figure A.3, the effect of ES temperature control will be ana-

lyzed. Again, the ES system subject to temperature control had an assumed battery
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Figure A.1: Effect of xEV Battery Size on HEMS & Baseline Controller Operation
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Figure A.2: Effect of ES Battery Size on HEMS & Baseline Controller Operation
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temperature equivalent to the house temperature and the ES system without tem-

perature control assumed a battery temperature equivalent to the ambient tem-

perature. As clearly seen in the plots, this had no effect on the operation metrics

of the systems.
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Figure A.3: Effect of ES Temperature Control on HEMS & Baseline Controller Op-
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