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Abstract

The wealth of data available at a single click often adds to the information overload problem.

Summarization is an intuitive way to address this problem by constructing a condensed equivalent

of the available data. However, the content of interest and the desired format or length are user-

dependent. Most of the existing summarization systems yield generic summaries disconnected from

users’ preferences and agnostic about the salience of information in the target domain. Moreover,

the neural summarization models require a large training corpus which is not available in many

domains. Motivated by these limitations, we focus on controllable summarization that allows users

to control different aspects of the generated summaries.

(i) To enable users to control the length of summaries, we propose a multi-level summarizer (MLS),

a supervised approach to construct abstractive summaries at controllable lengths. Following an

extract-then-compress paradigm, we develop the Pointer-Magnifier network– a length-aware, encoder-

decoder network that constructs length-constrained summaries by shortening or expanding a proto-

type summary inferred from the document. The key enabler of this network is an array of semantic

kernels with clearly defined human-interpretable syntactic/semantic roles in constructing the sum-

mary given a desired length. We discuss this architecture in Chapter 2.

(ii) We acknowledge that many recent advancements in summarization research, including

sequence-to-sequence models, cannot be adopted in many domains due to the scarcity of training

data for summarization. Legal contracts are considered a low-resource domain for the automatic
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text summarization task as the available training data is limited in this domain. On the other hand,

unsupervised methods rely on structural features of documents, such as lexical repetition to iden-

tify and extract important content. These heuristics showed poor empirical performance on a few

low-resource domains.

In chapter 3, we propose a hybrid framework for extractive summarization of privacy policies.

We show empirical results of adopting a classifier for identifying the risky data practices in the

privacy policies. Given the probability distribution over the risk categories, we apply two content

selection mechanisms to account for the summarization budget and minimize the information re-

dundancy. We empirically show that our proposed pipeline outperforms domain-agnostic baselines

on the summarization of privacy policies. In addition, we show negative results on pre-training and

fine-tuning sequence-to-sequence networks on this domain.

(iii) Summarization can be constrained by the user’s query. This requires answers to be found

in the extracted summary. However, in many domains, users might not be good at articulating their

questions e.g. their questions might have a very different style and language compared to the input

document. As a result, summarization models fail to find the answer to user’s question effectively.

Moreover, existing annotated data for query-guided summarization tasks are limited. Motivated

by these issues, in Chapter 4, we discuss using paraphrasing to bring the style and language of

the user questions closer to the language of privacy policies. We use familiar techniques such as

back-translation and lexical substitution and examine to what extent these previously unexplored

techniques in the legal domain are beneficial for the privacy policy question answering task. Fol-

lowing query expansion, we use a content scoring module that uses the existing in-domain data to

find relevant information in the policy. Our pipeline can find an answer for 87.7% of the user queries

in the privacyQA dataset.
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(iv) Expressing natural language summary of structured facts or relations – data-to-text sum-

marization (D2T) – increases the accessibility of structured knowledge repositories. Previous work

shows that pre-trained language models (PLMs) perform remarkably well on this task after fine-

tuning on a significant amount of task-specific training data. On the other hand, while auto-

regressive PLMs can generalize from a few task examples, their efficacy at D2T is largely un-

explored. Furthermore, we have an incomplete understanding of the limits of PLMs on D2T. In

Chapter 5, we conduct an empirical study of both fine-tuned and auto-regressive PLMs on a multi-

domain D2T dataset. We consider their performance as a function of the amount of task-specific

data and how the data is incorporated into the models: zero and few-shot learning, and fine-tuning

of model weights. In addition, we probe the limits of PLMs by measuring performance on subsets

of the evaluation data: novel predicates and abstractive test examples.

We show that the performance of fine-tuned T5 drops significantly on unseen predicates. On

the other hand, the performance of few-shot GPT2-XL on unseen predicates can be enhanced even

with shots containing unrelated predicates. We also notice that T5 and GPT2-XL both do well at

D2T by copying the input. However, they do noticeably worse on examples where significant re-

writing is needed. Adding domain knowledge (predicate descriptions) to the prompts can improve

the performance of few-shot GPT2-XL on this subset by a significant amount. We also conduct

a human evaluation of the generations and find that prompt tuned GPT2-XL generations can be

improved by re-ranking generations by overlap with the input entity spans.

We quantitatively evaluate the performance of our proposed controllable summarization models

on several domains, including news articles and Wikipedia, and low-resource domains for summa-

rization such as social media discussion forums, privacy policies, and book chapters.
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(v) Machine learning models are increasingly used to assist or replace humans in decision-

making. In consequential domains such as recidivism prediction, facility inspection, and benefit

assignment, individuals need to know the decision-relevant information for the model’s prediction.

In addition, predictions should be fair both in terms of the outcome and the justification of the

outcome. In other words, decision-relevant features should provide sufficient information for the

predicted outcome and should be independent of the membership of individuals in protected groups

such as race and gender.

In Chapter 6, we show a novel application of text summarization for enhancing fairness in the

justification of the text-based neural models. We tie the explanatory power of the model to fairness

in the outcome and propose a fairness-aware summarization mechanism (FairSum) to detect and

counteract the bias in such models. Given a potentially biased natural language explanation for

a decision, we use a multi-task neural model and an attribution mechanism based on integrated

gradients to extract high-utility and low-bias justifications in form of a summary. The extracted

summary is then used for training a model to make decisions for individuals.

Results on the Chicago food inspection dataset and teaching evaluations written by students

on ratemyprofessor.com 1 suggest that our method drastically limits the demographic leakage in

the input (fairness in justification) while moderately enhancing the fairness in the outcome. Our

model is also effective in detecting and counteracting several types of data poisoning attacks that

synthesize race-coded reasoning or irrelevant justifications.

In Chapter Future Work, we discuss our ongoing work on automatically creating more accessible

presentation forms for the privacy polices and enhancing the fairness and explainability of text-based

neural models.

1https://www.ratemyprofessors.com
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Chapter 1: Introduction

The wealth of information available online often adds to the information overload problem [234,
221]. Assimilating new information can be cumbersome for users due to the cognitive fatigue
caused by the excessive amount of information available. We can address this problem by presenting
information in such a way that minimizes cognitive fatigue [57]. Automatic summarization [171]
is an intuitive way to address information overload for textual data. Automatic text summarization
refers to transforming a potentially long document into a condensed equivalent while preserving
the key information. Broadly, there are two main lines of summarization systems: extractive and
abstractive.

The extractive paradigm [43, 169] creates a summary by identifying and subsequently concate-
nating the most important sentences in the document. Neural approaches to extractive text summa-
rization often formulate this task as a sentence classification or ranking task. In this setting, a neural
encoder constructs text representations, and a classifier or a ranking model identifies the sentences
to be included in the summary. For example, Nallapati et al. [167] adopt an encoder-based recurrent
neural network for extractive text summarization while Narayan et al. [169] use a reinforcement
learning-based system and globally optimize the ROUGE metric for sentence ranking. Zhou et al.
[251] propose an end-to-end neural architecture for jointly learning to score and select sentences.
More recently, Liu [142] and Zhang et al. [248] employ hierarchical document encoders based on
the transformer architecture for sentence selection.

On the other hand, the abstractive paradigm [209, 204, 181] aims to create an abstract repre-
sentation of the input text using various text rewriting operations such as paraphrasing, deletion,
and reordering. Neural approaches to abstractive text summarization often formulate this task as a
sequence-to-sequence problem, where an encoder maps a sequence of tokens in the input document
to a sequence of continuous representations. Next, a decoder reads the encoded input sequence and
generates the target summary token-by-token in an auto-regressive manner. Rush et al. [204] and
Nallapati et al. [165] adopt the encoder-decoder architecture for text summarization task. See et al.
[209] enhance this architecture by utilizing a pointer-generator network. In this architecture, the
pointing mechanism enhances the accurate reproduction of information by copying words from the
input document. In addition, the coverage mechanism discourages repetition by keeping track of
what has been summarized. Celikyilmaz et al. [32] use several deep communicating agents where
each agent is responsible for encoding a subsection of the input text. These encoders are connected
to a single decoder. The model is trained end-to-end using reinforcement learning.

Paulus et al. [181] use a deep reinforced model for abstractive summarization to handle the
coverage problem. They propose an intra-attention mechanism where the decoder attends over
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previously generated words. Gehrmann et al. [81] follow a bottom-up approach to improve content
selection in abstractive summarization. They use a content selector as a bottom-up attention step
to constrain the model to determine which phrases in the source document should be part of the
summary. A copy mechanism is then applied only to pre-selected phrases during decoding. More
recently, Vaswani et al. [226] and Dong et al. [59] adopt the transformer architecture for abstractive
text summarization. Liu and Lapata [143] adopts an encoder-decoder architecture, combining the
same pretrained BERT [56] encoder with a randomly-initialized Transformer decoder. Zhang et al.
[246] propose a new self-supervised pre-training objective for abstractive summarization.

While significant progress has been made in both extractive and abstractive summarization,
most existing summarization systems yield a single generic summary for an input document. Most
of these models are disconnected from users’ preferences and are agnostic about the salience of
information in the target domain. Moreover, training neural summarization models is a resource-
intensive task, while low-resource settings are common in real-world applications. This is because
curating domain-specific summarization datasets for long documents and on a large scale is not
feasible or cost-efficient in many domains [10].

Motivated by these limitations, we focus on controllable summarization for long documents to
allow users to control different aspects of the generated summaries. We focus on constraining the
summarization model by a length budget, domain information, user queries, format, or fairness ob-
jectives. We utilize advances in domain adaptation, language model pre-training, few-shot learning,
data augmentation, and data synthesis to build supervised and semi-supervised models for control-
lable summarization subject to these control aspects. We present a formal dissertation statement in
Section 1.1.

1.1 Dissertation Statement

In this dissertation, We present a comprehensive study of controllable summarization for low-
resource domains. We propose supervised and semi-supervised models for controllable summa-
rization subject to user preferences. We focus on controlling length of the summaries (§1.2), in-
cluding domain knowledge in summaries (§1.3), and generating summaries in response to users’
query (§1.4).

In (§1.5), we look at data-to-text summarization task. In this task, the goal is to generate a
natural language description for structured records or facts. We systematically analyze the perfor-
mance of two pretrained language models on this task based on the choice of adaptation mechanism:
fine-tuning, prompt tuning, and few-shot learning.

In (§1.6), we look at a novel application of text summarization in enhancing fairness. In this
application, the summarization is constrained by fairness objectives and is used as a preprocessing
step to remove potential biases from the justifications. This preprocessing step will assist in learning
predictive models that are not biased toward specific population subgroups. We show the overview
of our work on controllable summarization in Figure 1.1. In this dissertation, we seek to answer the
following questions:

• Can we generate abstractive summaries at controllable lengths for domains where limited
annotated data is available and the desired length is not known beforehand? (§1.2)
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Figure 1.1: An overview of our work on controllable text summarization. We aim to re-define and
constrain the automated text summarization task based on user queries and preference in length,
format, and level of neutrality (e.g. use of gender or race coded language)

• Given domain-specific knowledge about the salience of information, how can we learn to
summarize with limited annotated data?(§1.3)

• How can we guide the summarization process with user’s query in settings where limited
training data is available and user queries are articulated in a very different style and wording
than the target domain?(§1.4)

• How can we effectively adapt pre-trained language models for D2T task in domains where
not enough data is available for fine-tuning? How do the adaptation mechanism and level of
supervision at train time affect their performance? (§1.5)

• Can we incorporate fairness objectives in the summarization process to remove potential
biases from the training data of text-based neural models without significantly compromising
the model’s utility? (§1.6)

In the following few paragraphs, we discuss our main contribution and how we hope to address
these questions.

1.2 Contribution I: Controlling the length of summaries

Being able to constrain the length of a summary while preserving its desirable properties has
many real-world applications. One such application is content optimization for variable screen sizes.
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Online content creators such as news portals, blogs, and advertisement agencies with audiences on
multiple platforms customize their content based on the display area for the best experience.

However, there has not been much work on summarization at controllable lengths until recently.
High variance in screen sizes often requires extensive human supervision to perform these modifica-
tions. As most sequence-to-sequence networks do not enforce the length of a summary [204, 165],
for scenarios mentioned above, one may need to employ an ensemble of networks to cover all pos-
sible sizes. There are two major challenges in following this approach for real-world applications.
First, training sequence-to-sequence networks is a resource-intensive task [218]. To train a network
for generating summaries budgeted at length b, we need a parallel corpus of text documents and
their gold-standard summaries at length b. Constructing a large enough corpus with summaries
budgeted at b,∀b may not be possible or cost-efficient for many domains. Second, the range of
possible length-budgets R(b) may not always be known beforehand. In many scenarios, it can be
known as late as during run-time.

To address these challenges, in Chapter 2, we propose Multi-level Summarizer (MLS) [207], a
supervised method to construct abstractive summaries of a text document at controllable lengths.
The key enabler of our method is an interpretable multi-headed attention mechanism that computes
attention distribution over an input document using an array of timestep independent semantic ker-
nels. Each kernel optimizes a human-interpretable syntactic or semantic property. Exhaustive ex-
periments on two low-resource datasets in the English language show that MLS outperforms strong
baselines by up to 14.70% in the METEOR score. Human evaluation of the summaries also suggests
that they capture the key concepts of the document at various length budgets.

1.3 Contribution II: Domain-guided summarization of privacy policies

In recent years, significant progress has been made in the abstractive summarization of text
documents. Among existing works, sequence-to-sequence networks with attention [80, 138] have
been one of the clear front-runners. It is worth observing that most neural summarization models
have been trained and tested on the news domain where large-scale news datasets [165, 94, 125] exist
while leaving out several important but low-resource domains [149, 179, 207] where the number of
available training documents is limited. One important and low-resource domain for summarization
is privacy policies [153].

Privacy policy and terms of service are unilateral contracts by which companies must inform
users about their data collection, processing, and sharing practices. Users are required to agree to
abide by the terms before they can use any service. However, many users do not read or understand
this contracts [51]. Thus, they often end up consenting to terms that may not be aligned with
legislation, such as the General Data Protection Regulation (GDPR)3 [173]. This behavior is often
because these contracts are too long and challenging to comprehend [156].

Summarization is an intuitive way to assist users with conscious agreement by generating a
condensed equivalent of the content. However, existing summarization techniques perform poorly
on contracts. Unsupervised methods [160, 85] rely on structural features of documents, such as
lexical repetition, to identify and extract important content. These heuristics work poorly on the

3https://eugdpr.org/

4



legal language used in contracts [154]. Supervised methods [209, 81, 180] can learn to cope with
the features of a particular domain. However, as stated earlier, training these complex neural sum-
marization models with thousand of parameters requires a large corpus of documents and their
summaries which is not currently available in this domain.

In Chapter 3, we propose a hybrid approach for extractive summarization of privacy con-
tracts [113]. Using existing annotated resources and synthetic data, we train a classifier to predict
which pieces of content are most relevant to users [51]. In particular, we identify parts of the contract
that place users at risk by imposing unsafe data practices, such as selling email addresses to third
parties or allowing the company to appropriate user-generated content. Next, we use this risk classi-
fier for content selection within an extractive summarization pipeline. The classifier is substantially
less expensive to train than learning to summarize directly but enables our approach to outperform
a selection of domain-agnostic unsupervised summarization methods. Our model achieves the best
ROUGE and METEOR results compared to domain-agnostic baselines with 49.8% improvement in
ROUGE-1 and 65.6% improvement in METEOR compared to the best performing domain-agnostic
baseline.

1.4 Contribution III: Query-Guided Summarization of Privacy Policies

As part of the overall goal of assisting users with understanding the content of privacy policies
and conscious agreement using a better presentation, our previous work explored incorporating the
risky data practices in the privacy policies in a summary [113]. However, users often care about
a subset of these issues or have a personal view of what is considered risky. Thus, instead of
presenting an overview or summary of privacy policies, an alternative approach is to allow them to
ask questions about the issues they care about and show an answer extracted from the content of the
policies [194]. This facilitates a more personal approach to privacy and enables users to review only
the sections of the policy that they are most concerned about.

In this work, we take a step toward building an automotive privacy policy question-answering
assistant. We propose constraining the output summary by the information need of users given in
form of a question. This task is related to guided and controllable text summarization [125, 52, 115,
70, 207] as well as reading comprehension [90]. However, a few application-imposed constraints
make this task more challenging than the traditional evaluation setup of reading comprehension
systems.

First, users tend to pose questions to the privacy policy question-answering system that are
not-relevant, out-of-scope (‘how many data breaches did you have in the past?’), subjective ( e.g.
‘how do I know this app is legit?’), or too specific to answer using the privacy policy ( e.g. ‘does
it have access to financial apps I use?’) [194]. Moreover, even answerable user questions can be
ill-phrased or have a very different style and language in comparison to the legal language used in
privacy policies [195], making it difficult for the automated assistant to identify the user’s intent and
find the relevant information in the document. This issue of domain shift is exacerbated due to the
difficulty of annotating data for this domain. Because the existing datasets for this task are fairly
small [4], the problems cannot be solved by simply training a supervised model.
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In Chapter 4, we take a step toward building an automated privacy policy question-answering
assistant. We focus on addressing the domain-mismatch problem and aim to bring the style, lan-
guage, and specificity of the user’s question closer to the language of privacy policies. To do so,
we use familiar techniques such as lexical substitution and back-translation that are not previously
explored in the legal domain. Next, we compute a relevance and informativeness score for each
policy segment using a transformer-based language representation model fine-tuned on in-domain
data. Finally, we return the top relevant segments to the user. Using existing in-domain data and
techniques such as back-translation and lexical substitution, we can find an answer for 87.7% of the
user queries in the PrivacyQA dataset [195].

1.5 Contribution IV: Data-to-Text Summarization (D2T)

Structured data repositories, or knowledge bases, contain a wealth of information organized
to facilitate automated access and analysis. Automated data-to-text (D2T) generation systems can
transform and organize this knowledge into natural language text snippets that enable broader ac-
cess [79]. These systems take as input a set of relations, where each relation is a (subject, pred-
icate, object) triple. Applications of this technology include story or dialogue generation [164],
open-domain question-answering [146, 71], and text summarization [232]. Domains span journal-
ism [128], weather [193, 158], finance, sports [186, 39, 225], and summarizing patient medical
histories [188].

Historically, data-to-text systems included pipeline approaches with customized models [78].
In recent years, pretrained Transformer-based language models (PLM) [56, 144, 189] have come
to dominate this task, just as they have other NLP tasks. This approach requires a PLM to be
fine-tuned on a task-specific in-domain dataset [97, 210, 112]. The promising results achieved by
fine-tuning PLMs belie the reality most domains and relations that one could express fail to appear in
current existing datasets for this task. Furthermore, the extensive development effort behind dataset
creation, underscores the challenge of creating an in-domain dataset for each task of interest.

Several methods have emerged within PLM research to address domain or task adaptation. For
example, auto-regressive models, like GPT, have demonstrated improved performance on a wide
range of tasks via few-shot learning from a handful of examples [42]. Other strategies, such as
prompt tuning [129], can adapt PLMs to specific downstream tasks by updating only a small subset
of model parameters.

While great progress has been made in utilizing PLMs for D2T summarization, the path forward
is unclear, as we have an incomplete understanding of which examples they fall short on and the
quantity of training resources they need to achieve acceptable performance. More specifically, it is
not clear which classes of D2T examples are challenging for these models. In addition, we do not
fully understand what classes of errors PLMs are prone to and how the adaptation mechanism (e.g.,
k-shot learning, fine-tuning) affects the prevalence of these errors.

In Chapter 5, we systematically analyze the performance of two PLMs – T5 and GPT2-XL –
for D2T generation by examining performance based on the choice of adaptation mechanism: fine-
tuning, prompt tuning, and few-shot learning. We focus on their performance on two classes of
challenging examples: examples with novel (unseen) relations (predicates) and instances where the
source and target sequences are lexically very different. We show that while fine-tuning on more
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data leads to better performance when no training data is available, GPT2-XL (0-shot) outperforms
T5. With a small number of training examples, few-shot GPT2-XL is a more appropriate solution
for D2T. We also show that the performance of few-shot GPT2-XL on unseen predicates can be
enhanced even with shots containing unrelated predicates. We also observe that adding domain
knowledge (predicate descriptions) to the prompts can improve the performance of few-shot GPT2-
XL on the abstractive D2T examples in Dart by a significant amount.

1.6 Contribution V: Summarization for fairly-justified decision making

Widespread use of AI systems in sensitive environments and for making important and life-
changing decisions has important implications for citizens in scenarios such as loan applications,
automated hiring, recidivism score, credit rating, etc [157]. The data used for training the models
can reflect biases that exist in our society. The models can perpetuate or even reinforce these biases
without careful design and engineering.

While training models on historical decisions with unfair outcomes is detrimental, using histor-
ical training data with unfair justifications is equally harmful. For example, training a text-based
neural model on unfair justifications can cause the model to associate a gender or race-coded phrase
in the input to a certain outcome. This phenomena is an example of disparate impact [13, 241]. On
the other hand, individuals from two or more protected groups may be treated differently (received
different outcomes). But the differences can be justified and explained using multiple fair arguments
and, therefore, not considered illegal [157].

Methods that do not consider the explainability aspect of discrimination will result in reverse
discrimination [106]. This highlights the need to distinguish between the fairness of the outcome
and fairness in the justification of the outcome. A fairly-justified decision should both have a fair
outcome and be fairly justified. In other words, the justification should include enough information
to explain the outcome [31] and should not be based on information about membership in protected
groups.

In Chapter 6, we propose a novel application for text summarization to enhance the fairness
in the justification of text-based decision-making models. We propose a text pre-processing ap-
proach called FairSum based on summarization that extracts the decision-relevant justifications
while removing the potentially unfair ones. To measure bias, we use metrics such as demographic
parity [27], equalized odds [86], and calibration [121], and by measuring the adversary’s ability
to identify membership in protected groups given the textual explanations. To counteract the bias,
FairSum obfuscates the arguments that are not useful for decision making or are only useful when
they correlate with the protected attribute. Finally, the extracted fairly-justified summaries are used
to train a final model.

FairSum ensures learning a model that is both transparent and agnostic about gender-coded or
race-coded arguments. In addition, our proposed approach is independent of modeling and can be
integrated into the machine learning pipeline with other in-processing and post-processing fairness
enhancement mechanisms.

We apply FairSum on input justifications of two real-world datasets–Chicago food inspections
and teaching evaluations written by students in an online forum. We show that this pre-processing
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step does not hurt the model’s utility for decision-making but significantly limits the leakage of
information about protected attributes of individuals.

1.7 Conclusion and Future Work

The long-term goal of this dissertation is to advance automated text-summarization research and
make it more accessible in low-resource settings. Throughout this thesis, we attempted to address
challenges introduced by the lack of training resources by developing methods and pipelines that
effectively utilize limited or no human annotation during training and development.

We also attempt to incorporate the existing domain knowledge in developing resource-efficient
methods. Domain knowledge is independent of the task-specific labeled training data. It refers to an
auxiliary source of information that can be used to conduct the summarization task in the domain of
interest. For example, in Chapter 3 we use information about the potential risk policy segments pose
on users to create summaries for privacy policies. In Chapter 5, we include the dictionary definition
of relations in creating prompts to enhance the data-to-text generation model’s ability to generate
descriptions for unseen and abstractive relations.

Another important objective of this dissertation is to redefine and constrain the automated text
summarization task based on users’ preferences in length, format, and focus of the extracted sum-
mary. The challenge posed by lack of task-specific labeled data and the need for control aspects
in summarization are crucial in many real-world applications in fields such as law, finance, and
medicine.

Constraining the automatic summarization task by a control aspect such as user query or fair-
ness objectives requires going beyond traditional evaluation metrics to measure the quality of the
output summaries. Throughout this dissertation, in addition to standard evaluation metrics such as
ROUGE [133] and METEOR [124] we evaluated summaries in terms of other qualities depending
on the control aspect of interest.

We evaluated summaries in terms of faithfulness to the input document. We used measures such
as sentiment, topic, keyword-use and coherence divergence(in Chapter 2). In Chapter 3, in addition
to evaluating summaries based on overlap with human-written summaries, we evaluated them based
on accuracy in identifying risky policy sections in the output summaries. In Chapter 4 we used
IR-based evaluation metrics [152] to measure usefulness of output summaries in answering users’
questions. To measure bias in the output summaries, in Chapter 6, we measured demographic leak-
age and fairness metrics such as equality of odds [86] to understand how information summarization
impacts the fairness of automated decision-making.

In addition, one of our objectives is to highlight the importance of the qualitative evaluation of
generated summaries. In Chapter 2, we measured information coverage in length-constraint sum-
maries by measuring users’ performance in a question-answering task given the summaries. In
Chapter 5, we evaluate the generation quality by conducting a human study, asking users to evaluate
summaries in terms of hallucination, missing information, and fluency of the generated summaries.
In Chapter 6, we evaluate the neutrality of extracted summaries in revealing the protected attribute
by asking human subjects to guess the gender of instructors given their summarized teaching re-
views.
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1.8 Organization

The rest of the dissertation is organized as follows. We discuss a supervised method to con-
struct abstractive summaries of a text document at controllable lengths for low-resource domains in
Chapter 2. Chapter 3 describes our proposed domain-guided extractive summarization pipeline for
privacy policies. In Chapter 4, we discuss our proposed pipeline for query expansion and question
answering of privacy policies. We then look at our work on controlling the format of the output sum-
mary in low-resource domains; we systematically analyze the performance of pre-trained language
models on the data-to-text generation task in Chapter 5. In Chapter 6, we introduce FairSum; an
extractive summarization model with fairness objectives and present our empirical analysis of using
this method to remove biases from justifications. We conclude this dissertation and present some
interesting and important directions of future research in Chapter 7.
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Chapter 2: Abstractive Summarization at Controllable Lengths

Recent advances in abstractive summarization based on the encoder-decoder architecture only
generate a single summary for a given input document. However, the ability to control the length of
the summaries is important in many practical applications. In many of such applications, the desired
length of the summary is not known beforehand. Moreover, in many domains, only limited train-
ing data is available. This makes the length-controllable abstractive summarization specifically a
challenging task in low-resource domains. Meanwhile, when it comes to trusting machine-generated
summaries, explaining how a summary was constructed in human-understandable terms may be crit-
ical. We propose Multi-level Summarizer (MLS), a supervised method for constructing abstractive
summaries at controllable lengths. The key enabler of our method is an interpretable multi-headed
attention mechanism that computes attention distribution over an input document using an array of
timestep independent semantic kernels. Each kernel optimizes a human-interpretable syntactic or
semantic property. Exhaustive experiments on two low-resource datasets in English language show
that MLS outperforms strong baselines by up to 14.70% in the METEOR score. Human evalua-
tion of the summaries also suggests that they capture the key concepts of the document at various
length-budgets4.

2.1 Introduction and Related Work

Sequence-to-sequence networks with attention have been extensively applied to abstractive sum-
marization [204, 44, 165, 209, 180, 80, 138]. Most of these methods generate only a single generic
summary for an input document. However, controlling the aspects of the generated summary such
as length is important in many real-world applications. For example, Online content creators should
be able to control the length of the generated summary so that it fits the device that displays it. For
scenarios as mentioned above, one may need to employ an ensemble of networks to cover all possi-
ble lengths. There are two major challenges in following this approach for real-world applications.
First, training sequence-to-sequence networks is a resource-intensive task [218]. To train a network
for generating summaries budgeted at length b, we need a parallel corpus of text documents and their
gold-standard summaries at length b. Constructing a large enough corpus with summaries budgeted
at b,∀b may not be possible and/or cost-efficient for a number of domains. Most existing works on
abstractive summarization train and test their model on large-scale news corpus datasets [165, 94],
leaving out several important but low-resource domains [149, 179, 113, 154] where the number of
available training documents is limited. Second, the range of possible length-budgets R(b) may

4This is a collaborative work with PhD student Ritesh Sarkhel. Both authors contributed equally to this work.
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Input text
police are hunting a man aged between 50 and 60 suspected of robbing a bank in broad daylight
and running off with £3,000 in cash. the robbery took place at 12.30pm at a lloyds bank branch in
fairwater, cardiff, police said. detectives have issued cctv images of the suspect, who is 50 to 60, 5ft
9in to 6ft and was wearing black clothing. the white male suspect, who has greying black hair and
wore glasses, was captured on camera inside the bank. detectives said no one was injured during the
robbery and they were ‘confident’ the public would be able to identify the suspect. detective sergeant
andy miles, from fairwater cid, said: ‘inquiries are continuing to identify the culprit. the cctv is clear and
i am confident that members of the public will know his identity...’. (truncated)

Summary at compression budget = 1
2

police are hunting a man aged between 50 and 60 suspected of robbing a bank in broad daylight and
running off with £3,000 in cash. the robbery took place at 12.30pm at a lloyds bank branch in fairwater,
cardiff, police said. the white male suspect, who has greying black hair and wore glasses, was captured
on camera inside the bank. detectives have issued cctv images of the suspect, who is 50 to 60, 5ft 9in to
6ft and was wearing black clothing. detective sergeant andy miles, from fairwater cid, said: ‘inquiries
are continuing to identify the culprit.

Prototype Summary
robbery took place at 12.30pm at a lloyds bank branch in fairwater , cardiff. detectives have issued cctv
images of the suspect , who is 50 to 60. detective sergeant andy miles , from fairwater cid , said : ’
inquiries are continuing to identify the culprit.

Figure 2.1: MLS expands the highlighted sentences in the prototype summary to the boldfaced
tokens in the input text to construct a summary budgeted at half-length of the input text

not always be known beforehand. In many scenarios, it can be known as late as during run-time.
Therefore, we formalize the summarization task addressed in this paper as follows.

Problem Definition: Given a document S of length N (tokens) and a maximum token budget
of b, we aim to construct an abstractive summary sb that satisfies the following conditions, C1:
information redundancy is minimized in sb; C2: coverage of the major topics of S is maximized
in sb; C3: length of sb is maximal within the specified budget b without adversely affecting the
conditions C1 and C2 i.e., |sb| ≤ b & ∄sc such that |sb| < |sc| ≤ b. C1 and C2 ensure that the
properties of a high-quality summary is preserved in sb, whereas C3 ensures that sb is the largest
possible summary that can be constructed within budget b without compromising its quality. Note
that C1 and C2 are seemingly contradictory to each other as the length of the summary increases.
Our goal is to find the optimal tradeoff.

Early works on incremental summarization [25, 236] leveraged structural tags supported by
document markup languages to generate summaries at various lengths. This constraint makes these
methods only applicable for a few type of document formats (e.g. XML, HTML). Incremental sam-
pling of sentences based on a salience score [175, 29] can partially solve this problem by construct-
ing extractive summaries of the input document. We show in Section 2.3 that these sampling-based
methods often fail to preserve the desirable properties of a high-quality summary. Among recent
works, [118] were the first to propose a supervised method for length-controllable abstractive sum-
marization. Their work was later extended by [70] who introduced the length of a summary as an
input to the network. However, instead of exact input, they approximate the length to a predefined
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value-range, often failing to adhere to the allocated budget in a number of cases. [145] address
this issue by proposing a convolutional encoder-decoder network, introducing the desired summary
length as an input to the initial state of the decoder. We compare and report its performance on two
datasets in our experimental setup in Section 2.3.

In this work, we replace the self-attention mechanism with a lightweight, interpretable alter-
native to be able to train our network in settings where limited training data is available. Briefly,
the main goal of attention mechanism [226] in an encoder-decoder network is to assign a softmax
score to every encoder hidden state (based on its relevance to the token being decoded) and amplify
those that are assigned high scores through a weighted average. Source-target attention [165] relies
on another sequence for computing these scores, whereas self-attention [226, 181] operates over
the elements in the current input sequence. A multi-headed attention mechanism allows a neural
model to speed up training by enabling parallelization across timesteps. The number of operations
in the computation of self-attention, however, scales quadratically with input length, making it a
computationally expensive operation for long input sequences. Training such a network for a sum-
marization task would require a large parallel corpus of input documents and their corresponding
gold-standard summaries budgeted at b. The role of some of the attention-heads during abstrac-
tive summarization is also not transparent [8]. To address these, we replace self-attention with a
lightweight, interpretable alternative. Instead of projecting each input sequence multiple times5 at
every timestep, we encode an input sequence only once, using a timestep-independent kernel (Q⃗)
learned in an unsupervised or distantly supervised way from the input document. Each kernel has a
human-interpretable syntactic/semantic role. Every attention-head in this multi-headed mechanism
computes an attention distribution over the input sequence using a unique kernel Q⃗i, recycling it
at every timestep. Compared to self-attention, our proposed attention mechanism scales linearly
with the input sequence length and leverages a significantly less number of trainable parameters.
As we will show in Section 2.3, this allows us to train our network on limited training samples in
low-resource datasets.

We propose MLS – a supervised method to generate abstractive summaries at arbitrary lengths
in this paper. It computes a length-constrained summary sb budgeted at length b by soft-switching
between a copy and expand operation over a prototype summary sp constructed from the document.
The key enabler in this process is an interpretable, multi-headed attention mechanism. We develop
a length-aware encoder-decoder network, called the Pointer-Magnifier network that leverages this
attention mechanism to construct summaries within a specified length. We train our network on
limited training samples from two cross-domain datasets: the MSR-Narrative [176] and Thinking
Machines dataset [24]. Exhaustive evaluation on a range of success metrics shows that MLS per-
forms competitively or better against strong baseline methods. Subsequent human evaluation of
summaries generated by MLS suggests that they accurately capture the main concepts of the input
document. To summarize, some of the major contributions of this work are as follows:

• We propose MLS, a supervised approach to generate abstractive summaries of a text document
at controllable lengths.

• We develop a length-aware encoder-decoder network that leverages an interpretable, multi-
headed attention mechanism to construct length-constrained summaries.

5one time each to compute the query, key and value matrix [226] from the input sequence
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Figure 2.2: An overview of MLS architecture. The PG-Network (left) constructs a prototype sum-
mary sp from the input document. The Pointer-Magnifier network (right) constructs the length-
constrained summary from sp using interpretable sentence-level attention

• Experimental results on two cross-domain datasets show that trained on limited training sam-
ples, MLS was able to generate summaries that are coherent and captured the key concepts of
a document.

2.2 Proposed Methodology

MLS constructs a length-constrained summary of a document in two steps. First, it derives a pro-
totype summary sp from the document, covering its major concepts. Then, it expands or shortens it,
depending on the length-budget to create the final summary. We employ a pair of encoder-decoder
networks at both steps. For the first step, we extend the PG-network [209]. We develop a length-
aware encoder-decoder network for the second step. We describe both steps in greater detail in the
following sections.

2.2.1 Generating the Prototype Summary

We extend PG-Network by [209] to construct the prototype summary sp of a document. We
tokenize the document and feed it to the encoder network sequentially. As the encoder hidden states
are updated, the decoder network constructs the prototype summary one token at a time by soft-
selecting between tokens in the input document and an external vocabulary. The decoding process is
guided by an attention distribution6 computed over the input document and the external vocabulary.
An overview of this network is shown in Fig 2.2. We point the readers to the work by See et al.

6we closely followed the official implementation at: https://github.com/abisee/pointer-generator
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for more background on this network. An example prototype summary is shown in Figure 2.1.
Contrary to existing prototype-text guided summarization methods [137, 205], we do not specify
the length of the prototype summary as an input of the network, rather infer it by outputting tokens
until the EOS token is produced. We discuss the training and parameter settings of the network used
in our experiments in Section 2.2.3. It is worth mentioning here that one of the main reasons to
select the PG-Network as our architecture of choice for this step is due to its capability to construct
a summary by looking up a learned language model. Other networks with similar capabilities can
also be used, as this step has a transitive effect on the next phase of our approach.

2.2.2 Constructing the Length-Constrained Summary

To construct a summary within length-budget b, we develop the Pointer-Magnifier network:
a length-aware, interpretable, encoder-decoder network. An overview of the network is shown
in Fig. 2.2. It consists of a multiplex layer, an encoder (yellow rectangles) layer and a decoder (green
rectangles) layer. The encoder layer takes the prototype summary constructed in the previous step
as input. The decoder layer outputs the final summary. We describe each layer in detail below.

A. The Multiplex Layer and Interpretable Kernels: In an effort to build a transparent net-
work, we embody three qualitative properties that are associated with a high-quality summary in
our network. A high-quality summary, (1) maximizes the coverage of the major topics (Φ1) and
(2) keywords (Φ2) appearing in the input document, while (3) minimizing the amount of redun-
dant information (Φ3). We encode each property using a semantic kernel (Q⃗i), learned using an
unsupervised or distantly supervised way from the input document itself. Every kernel plays a
unique, human-interpretable syntactic/semantic role in constructing the final summary. One of the
key components in this process is the multiplex layer M. Physically, it is a nested matrix of dimen-
sions 3 × 3 shared between the encoder and decoder layer. Each row in M contains the following
information: (a) a distance-metric (disti), (b) a scalar value (wi), and (c) a semantic kernel (Q⃗i),
where −1 ≤ wi ≤ 1, ∀i & Σ3

i wi = 1. During inference, each of these kernels measures the con-
tribution of every sentence in the prototype summary towards optimizing one of the properties Φi,
1 ≤ i ≤ 3, mentioned above. wi represents the relative weight assigned to the property Φi in
constructing the final summary. We compute the kernels as a preprocessing step.

Defining the Kernels: To encode the property ϕ1, we define Q⃗1 as a matrix of dimensions
3× 300, where each row of Q⃗1 represents one of the three most dominant topic vectors of the input
document as a 300-dimensional vector. We use an unsupervised LDA-based model [21] to derive
these topic vectors. Symmetric KL-divergence is used as the distance metric (dist1). Similarly, we
encode the property ϕ2 as a single dimensional vector Q⃗2 of length 50, where each vector component
represents the relative frequency of one of the 50 most frequent keywords in the input document.
We use RAKE [200], a publicly available library to identify the keywords of a document. Symmet-
ric KL-divergence is used as the distance metric (dist2). Finally, we encode ϕ3 as a matrix Q⃗3 of
dimensions p × 300, where the ith row of Q⃗3 represents an embedding of the ith sentence in the
input document. We compute the embedding vector of each sentence using a pretrained model [126]
on English Wikipedia corpus. Cosine similarity is used as the distance metric (dist3). Our choice
of unsupervised/distantly supervised kernels reflects our motivation (see Section 2.1) to leverage a
limited number of training samples from the experimental dataset to construct the final summary.
We discuss the role played by each semantic kernel (Q⃗i), distance metric (disti), and weight (wi)
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Figure 2.3: The Encoder layer consists of 3 parallelly stacked encoder-blocks

in constructing the final summary from sp in the following section. B. The Encoder Layer: The
encoder layer consists of 3 parallelly stacked encoder-blocks. Each encoder-block (see Fig. 2.3)
contains an embedding layer and a local-attention layer. At every timestep t, a sentence from sp
is fed into the embedding layer of each of the three encoder-blocks. It computes a fixed-length
embedding (V⃗i) of the sentence and propagates it to the local-attention layer. Each encoder-block
in our network is mapped to a unique triplet (Q⃗i, disti, wi) in the multiplex layer. To compute
local-attention (ci) attributed to a sentence in sp by the ith encoder-block, we embed it in the same
semantic space as Q⃗i and compute its distance from Q⃗i in that encoding space (Eq. 1).

C⃗t,i =
1

r
Σr
j=1 disti(V⃗i, Q⃗i

T
[j]) (2.1)

ci =
1

ni
Σni
j=1(C⃗t,i[j]) (2.2)

In Eq. 1, Q⃗i represents a kernel of dimensions r × ni and V⃗i represents an embedding vector of
length ni. The embedding layer represents each sentence in sp in the same encoding space as the
kernel Q⃗i associated with that block. We compute the local-attention ci by taking a column-wise
average of the distance-matrix C⃗t,i (Eq. 2). The kernel Q⃗i is reused for all the sentences fed to
the ith encoder-block. The distribution [c1, c2...] obtained this way is then normalized to derive the
local-attention distribution C⃗i over sp. The final attention distribution (A⃗) over sp at timestep t is
computed by normalizing the weighted average (Eq. 3) of local-attention distributions computed by
each attention-head.
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A⃗∗ = norm(
1

m
Σm
i (C⃗i · wi)) (2.3)

It is worth noting here that attributing each encoder-block with a distinct attention-head ensures
that there is a dedicated pathway to compute local attentions for every encoder-block. This allows us
to parallelize the network and speed-up the decoding process when constructing the final summary.

C. The Decoder Layer: Similar to the encoder, the decoder layer also consists of 3 parallelly
stacked decoder-blocks. Each decoder-block contains an embedding layer and a local-attention
layer. Parameters of the i-th encoder-block and i-th decoder-block are shared. We construct a
length-constrained summary sb of the input document by processing each sentence in sp sequen-
tially. Depending on the remaining length-budget at each timestep, the final summary is constructed
by soft-switching between a copy and expand operation. This process is guided by a sentence-level
attention distribution (Eq. 3) computed over sp. If the copy operation is selected, a sentence from sp
is copied into the final summary, whereas the expand operation replaces a sentence with similar
content from the input document in sb. The original ordering of sentences is preserved.

The Copy Operation: The probability of copying a sentence s from the prototype summary that
has not been included in the final summary (sb) till timestep t into sb is defined as follows: Pc(s) =
A⃗ t[s], where A⃗ t represents a sentence-level attention distribution over sp at timestep t. Initialized
as A⃗∗ (Eq. 3), we update the attention distribution at each timestep after a copy or expand operation.
If s∗ = argmax(Pc(s)) represents the sentence copied into sb at timestep t, we update the attention
distribution by zeroing out the probability of s∗ in A⃗t and renormalizing the resulting distribution.

The Expand Operation: If the length of our prototype summary (sp) is less than the length-
budget b, MLS can choose to expand a set of sentences from sp. For each sentence s ∈ sp, we define
its expansion-set E(s) as the sentence n-gram that is most similar to s in the input document. We
determine the expansion-set E(s) of a sentence s by using beam-search over all n-grams in the input
document that are yet to be included in the final summary. Our search objective being maximizing
score(E) = sim(s, E) × overlap(s, E). The first term in score(E) denotes the average pairwise
cosine similarity between s and the sentences in E(s), whereas the second term denotes the fraction
of tokens in s that appear in E(s). To minimize across-sentence repetitions in the summary, top 4
candidates identified from the search process are re-ranked [41] based on the number of repeated
word bigrams and trigrams if the expansion-set is included in the final summary. We obtained best
performance by initializing n with 3 and changing it to 2 at later iterations of the decoding process.
If v⃗ k

i denotes the embedding-vector of the k-th sentence in E(s) computed by the embedding-layer
of the i-th decoder-block, we define the probability of expanding a sentence s from the prototype
summary to E(s) in the final summary as follows.

C⃗ e
i,k =

1

r
Σr
j=1 disti(v⃗i

k, Q⃗i
T
[j]) (2.4)

c ei,k =
1

ni
Σni
j=1(C⃗

e
i,k[j]) (2.5)

A⃗ e =
1

m
Σm
i=1 (c⃗

e
i · wi) (2.6)
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In Eq. 4, Q⃗i denotes the semantic kernel shared between the i-th encoder-block and decoder-
block. We compute the probability of including the kth sentence of E(s) into the final summary
by computing its contribution (cei,k) towards optimizing the qualitative property Φi encoded by Q⃗i

first (Eq. 5). Repeating this process for all the sentences in E(s), followed by normalization pro-
vides us with the distribution c⃗ ei = (cei,1, c

e
i,2, ...). Here, c⃗ ei represents the probability distribution

over E(s). To obtain the expansion probability of a sentence in E(s), we repeat this process for all
3 attention-heads and average them (Eq. 6). The probability Pe(s) of expanding a sentence s from
the prototype summary is obtained by averaging the expansion probability of all sentences in E(s).
Once a sentence s has been expanded into the final summary, we update the attention distribution
by zeroing out the probability at s and renormalizing the resulting distribution.

Soft-Selection between Copy and Expansion: We define the probability po(s) of selecting
between the copy and expand operation for a sentence s in the prototype summary as follows.

po(s) = α× Pe(s) + (1− α)× Pc(s) (2.7)

α =

{
0 if b ≤ len(sb

∗)
max(Pe(s), Pc(s)) if b > len(sb

∗)
(2.8)

In Eq. 8, sb∗ denotes the partially constructed summary till timestep t. If the length-budget b
is smaller than the length of the prototype summary sp, the probability of including a sentence
from sp into the final summary depends on the attention distribution A⃗ t over sentences in sp that
are not included in the final summary till timestep t. In all other scenarios, α acts as a soft-switch
between copying or expanding a sentence in sp. A sentence can be expanded only if doing so does
not exceed the length-budget. Once the probability of each sentence (and/or its expansion set) has
been computed, the decoder attends to the position with the highest probability and copies/expands
it into the final summary. Generation stops once len(sb

∗) reaches b. We observed that the probabil-
ity of expanding a sentence from the prototype summary (instead of copying it) increases with the
allocated length-budget.

2.2.3 Training the Networks

We trained PG-Network and the Pointer-Magnifier network separately on a NVIDIA Titan-XP
GPU with a batch size of 16. We pretrained the PG-Network on the CNN-DailyMail dataset [165]
and then fine-tuned it on training samples of our experimental datasets. Using the evaluation script
provided by [165], we obtained a training set of 287,226 pairs and validation set of 13,368 pairs
for this dataset. All encoder-decoder weights were allowed to be updated during fine-tuning stage,
following a L1-transfer [177] of weights from the pretrained network. The external vocabulary
used in both pretraining and fine-tuning stage consisted of 80K most frequent tokens in the training
samples of the CNN-DailyMail dataset, our experimental dataset or both. Learning-rate and initial
accumulator values were set to 0.15 and 0.1 respectively. We used Adagrad [62] to train the net-
work. The encoder was fed a maximum 400 tokens and the decoder generated 100 tokens during
pretraining. These values were increased to 500 and 200 respectively during fine-tuning. To prevent
overfitting, we stopped training after 3000 iterations during the fine-tuning stage. With respect to
the Pointer-Magnifier network, we learn the optimal values of wi, 1 ≤ i ≤ 3 associated with each
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attention-head by grid-searching over the interval [-1,1] with the learning objective of maximizing
ROUGE-1 score on the validation set. The optimal weights assigned to the attention-head corre-
sponding to topic-coverage (ϕ1) and keyword-coverage (ϕ2) were positive, whereas information
redundancy (ϕ3) was assigned a negative weight for both of our datasets.

Index Dataset Size Max Median Mean

D1 MSR Narrative 476 130 15 18.65
D2 Thinking Machines 186 82 33 33.23

Table 2.1: The min, max, median, and average number of sentences in datasets D1 and D2

2.3 Experiments

We seek to answer three key questions in our experiments. Given a length-constrained sum-
mary sb, (a) how similar is sb to a gold-standard summary?, (b) is it coherent and representative
of the input document? and (c) how abstractive is sb? We answer the first two questions by eval-
uating the summaries generated by MLS over a range of success metrics on datasets belonging to
two low-resource domains. We also conduct a user study to measure how representative are the
summaries with respect to the input documents. A representative summary covers the main topics
of the document. We answer the third question by computing the percentage of n-grams in sb that
do not appear in the input document and/or generated from the external vocabulary.

A. Datasets: We evaluate MLS on two publicly available datasets from two low-resource do-
mains: the MSR-Narrative [176] (D1) dataset and the Thinking-Machines [24] (D2) dataset. The
MSR-Narrative dataset contain personal stories shared by users on a social networking website.
The Thinking-Machines dataset, on other hand, contains position papers on a popular scientific
topic published in an educational website. Each document in both datasets is paired with a gold-
standard summary. We randomly selected 25% document-pairs to construct the training set and 10%
document-pairs to construct a validation set for both datasets. The rest comprised the test corpus.
We present an overview of some of the important properties of both datasets in Table 2.1.

B. Metrics: We compare the summaries constructed by MLS against gold-standard summaries
using METEOR [11] and ROUGE [133] scores7. The average F1 score of ROUGE-1, ROUGE-2
and ROUGE-L metrics obtained for both datasets are shown in Table 2.2. To measure the repre-
sentativeness of a summary, we compute the average KL-divergence score between the top-3 topic
vectors of a summary and its input document. Following [215], we measure the coherence of a
summary by computing the average cosine similarity between consecutive sentences. We report the
absolute difference between the coherence score computed for a summary and its input document
in Table 2.3. We also report the KL-divergence score between sentiment vectors of a summary and
the input document to check for potential biases in its polarity distribution. We used a publicly

7We used py-rouge 8 and the NLTK library to compute the ROUGE and METEOR score respectively.
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Dataset Metric Budget = 1/32 Budget = 1/16 Budget = 1/8 Budget = 1/4 Budget = 1/2
MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3

D1

ROUGE-1 45.99 23.44 37.46 41.65 45.99 30.50 37.68 43.07 45.99 31.27 38.05 43.50 46.11 41.86 43.95 44.10 45.67 40.67 41.13 45.50
ROUGE-2 35.97 14.79 22.59 30.65 35.97 20.77 25.50 30.65 35.98 22.95 29.14 33.50 35.60 27.57 32.36 34.50 36.70 29.38 31.02 35.02
ROUGE-L 40.89 21.35 32.38 37.65 42.50 27.9 33.07 38.92 43.01 36.25 37.62 43.50 42.83 38.83 40.95 41.07 40.18 39.60 40.74 41.50
METEOR 47.12 18.91 24.22 45.51 47.12 13.07 25.02 45.60 46.50 20.89 30.86 43.88 46.61 27.26 33.05 44.65 45.71 27.84 32.95 45.39

D2

ROUGE-1 40.25 16.20 21.06 35.60 40.0 17.08 22.0 36.0 40.25 22.59 28.10 39.72 41.01 23.55 27.83 38.50 44.36 29.53 32.75 44.06
ROUGE-2 33.25 11.25 17.22 26.50 34.50 12.0 16.75 30.05 35.67 14.60 19.01 31.80 36.0 17.90 20.06 31.0 38.70 20.67 23.46 36.44
ROUGE-L 37.17 14.50 19.06 33.67 37.0 15.60 20.55 35.70 37.05 21.65 20.26 34.33 37.96 21.87 22.60 32.77 41.50 26.04 27.17 39.75
METEOR 40.22 12.68 24.33 35.05 44.82 15.17 23.22 42.90 44.82 11.96 30.79 42.0 42.88 24.20 21.83 38.05 44.79 28.08 25.82 45.70

Table 2.2: ROUGE and METEOR scores of the budgeted summaries constructed by MLS (high-
lighted column) and the baseline methods for the MSR-Narrative (D1) and Thinking Machines (D2)
dataset

Figure 2.4: Abstractiveness of MLS generated summaries

available library [98] to derive the sentiment vectors.. Note that, lower values of ∆Coherence and
KL-divergence score are desirable for a high-quality summary.

C. Baselines: We compare MLS against three baseline methods. Two of them follow a sam-
pling based approach, while our final baseline method employs a convolutional network to construct
length budgeted summaries. Our first baseline (A1) follows a systematic sampling based approach
to construct length-controlled summaries. Initialized with a randomly selected sentence from the
first k-1 sentences of the input document, it constructs the final summary by including the k-th
sentence from the last sampled position. We set k = 3 in all of our experiments for both datasets.
Sampling terminates when the budget limit is exceeded or the end of document is reached. Our
second baseline method (A2) follows a weighted graph-based sampling strategy to construct bud-
geted summaries. It represents each sentence in the input document as a node in an undirected,
complete, weighted graph. The weight assigned to an edge in this graph is equal to the pairwise
cosine similarity between the connecting nodes. To construct the budgeted summary, we sample the
top-K nodes of this graph using a weighted PageRank algorithm [160]. Sampling stops when the
budget is reached. Our third and final baseline method (A3) is a convolutional approach proposed
in [145]. It is a sequence-to-sequence network with Gated Linear Units [53] that takes the desired
length of a summary as an additional input to the initial state of the decoder network. Similar to our
training protocol, we pretrain this network on the CNN-DailyMail dataset first and fine-tune it on
the training samples from both of our experimental datasets. We allowed all weights to be updated
during the fine-tuning phase.
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Dataset Metric Budget = 1/32 Budget = 1/16 Budget = 1/8 Budget = 1/4 Budget = 1/2
MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3 MLS A1 A2 A3

D1
Topic 0.12 0.28 0.29 0.21 0.12 0.27 0.27 0.20 0.12 0.26 0.23 0.15 0.13 0.21 0.19 0.18 0.13 0.21 0.21 0.18
Sentiment 0.09 0.22 0.19 0.11 0.09 0.23 0.15 0.13 0.09 0.19 0.15 0.12 0.1 0.14 0.12 0.1 0.16 0.07 0.17 0.13
∆Coherence 0.08 0.3 0.20 0.11 0.08 0.26 0.18 0.09 0.08 0.21 0.11 0.07 0.09 0.13 0.10 0.12 0.1 0.06 0.09 0.1

D2
Topic 0.05 0.27 0.24 0.15 0.05 0.27 0.25 0.16 0.05 0.17 0.2 0.12 0.05 0.08 0.08 0.11 0.03 0.03 0.02 0.10
Sentiment 0.03 0.24 0.16 0.10 0.03 0.21 0.13 0.07 0.03 0.12 0.15 0.04 0.03 0.06 0.08 0.05 0.04 0.02 0.03 0.03
∆Coherence 0.03 0.27 0.20 0.05 0.03 0.18 0.12 0.10 0.03 0.09 0.09 0.05 0.03 0.05 0.05 0.06 0.04 0.03 0.03 0.04

Table 2.3: Coherence and completeness of the budgeted summaries constructed by MLS (highlighted
column) and the baseline methods for MSR-Narrative (D1) and Thinking Machines (D2) dataset

2.3.1 Results and Discussion

We report the performance of all competing methods at five length-budgets. We specify the
length-budget to construct a summary as a product of the number of tokens in the input document
and a compression-budget c ∈ { 1

32 ,
1
16 ,

1
8 ,

1
4 ,

1
2}. Results from our experiments are presented in

Tables 2.2 and 2.3. The best performance achieved for each metric is boldfaced. We highlight some
of our key findings below.

Qualitative Evaluation at five Compression Budgets: In general, the abstractive methods
(MLS and A3) outperform sampling-based approaches (see Table 2.2) on both datasets. MLS per-
forms consistently well on all budgets, although performance is relatively better on smaller budgets.
We obtain an absolute improvement of 4.34% and 4.65% in ROUGE-1 score & 1.61% and 5.17%
in METEOR score over the convolutional baseline (A3) for datasets D1 and D2 at compression
budget = 1

32 . At higher budgets, our performance was comparable with A3. In terms of coherence,
MLS performs comparably or better than A3 (see Table 2.3). Smaller ∆Coherence score than A1
and A2 suggests that MLS generated more coherent summaries than these two baseline methods.
Small KL-divergence between the topic distribution of a budgeted summary and input document
shows that MLS generated summaries are representative of the document for both datasets. In fact,
topic-coverage in summaries generated by MLS is at least 75% better than the convolutional base-
line (A3) [145], although performance becomes comparable at larger budgets as more sentences
from the prototype summary are expanded to make the final summary. MLS outperfoms A1 and
A2 in terms of staying true to the sentiment distribution of the input document. This can be seen
from the small KL-divergence scores obtained for the sentiment distribution achieved by MLS in
Table 2.3.

MLS generated summaries were more abstractive at higher budgets (Fig. 2.4). At compression
budget = 1

2 , 27.35% tokens in the summaries constructed for dataset D1 and 8.75% tokens for
dataset D2 were contributed by the external vocabulary.

Ablative Analysis: To investigate the effects of pretraining on end-to-end results, we compare
the ROUGE-1 score of summaries constructed by MLS against an ablative baseline MLS*. It is
identical to MLS except that the PG-Network was not pretrained. In our second experiment, we
compare MLS against MLS+, an ablative baseline that constructs the prototype summary following
a greedy heuristics [175] instead of the PG-network. MLS outperforms both baselines (Fig. 2.5) on
both datasets, thereby establishing that using PG-Network in our framework and pretraining it on
the CNN-DailyMail dataset improved the quality of our final summaries. Finally, to investigate the
effects of the semantic kernels introduced in the Pointer-Magnifier network, we iteratively replaced
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Figure 2.5: ROUGE-1 score of MLS and the ablative baselines MLS+ and MLS* on datasets D1
and D2

each of the three semantic kernels (Section 2.2.2) with a randomized kernel by shuffling its rows
and columns.

We observed an absolute decrease of up to 4.30% in ROUGE-1 score and 3.75% in METEOR
score for Q⃗3, with bigger impacts in performance at higher length-budgets. Replacing Q⃗2 with
a randomized kernel, on other hand, decreased the average ∆Coherence score by approximately
45% for dataset D1 and 30% for D2 for summaries constructed at compression budget = 1

2 , i.e.
half-length of the input document.

Human Evaluation of Length-Controlled Summaries: We conducted a study to evaluate the
completeness of the summaries constructed by MLS. More specifically, we considered a scenario
where the user needs to complete a fact checking task. We chose three documents from both datasets
randomly and asked each participant to verify the presence of some key facts of the document in the
summaries constructed by MLS and/or a baseline method.

Index Dataset MLS A2 A3 NC FC

D1 Accuracy 0.88 0.55 0.55 0.0 0.88
Duration (s) 36.7 43.69 69.08 12.0 75.6

D2 Accuracy 0.55 0.44 0.66 0.0 0.88
Duration (s) 70.24 68.9 96.47 20.95 132.86

Table 2.4: Mean accuracy and completion time using MLS, A2, A3, No-content (NC) and Full-
content (FC) settings

Each participant was instructed to complete the task solely based on the content of the summary
and not depending on any previous knowledge. For example, the question “Does the story tell
us why the narrator was fired?” was paired with the following summary– “I tried to return a lost
wallet to a customer who accused me of stealing it and then grabbed my hair. We got in a physical
fight and I was fired from my job”. The participants had to chose between ‘Yes’, ‘No”, and “More
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information required”. If a participant selected the third option, a longer summary was shown
with the same question. The task was terminated otherwise. In addition to MLS, A2 (the stronger
extractive baseline in our experimental setup) and A3, we add two extreme settings: (a) the full-
content setting in which the original document was shown, and (b) the no-content setting where no
textual content (other than the question itself) was shown to a participant. The full-content setting
ensured that the question could indeed be answered from the article, whereas the no-content setting
ensured whether the questions contained any hint about the answer.

The task started by showing each participant a summary generated at compression budget =
1/32. If they opted for more information to be shown, we provided a summary generated by the
same method by doubling the compression budget each time until the user responded with a ‘Yes’
or ‘No’ or we reached the budget of 1/2. The key intuition here is that if users are given a complete
and representative summary, they should be able to answer the questions accurately, as a good sum-
marization model would pick up the key concepts of the document even at shorter length-budgets,
without requiring for it to be expanded further. With this in mind, we recorded task completion
time and user response for each treatment. All budgeted summaries were constructed beforehand.
We invited 22 graduate students to participate in the study. Each participant was shown summaries
generated by at most two different methods in random order. No information on the method used
was revealed to a participant at any stage. To prevent information retention, each participant was
shown a summary generated from the same document only once. Using a balanced, incomplete
block design [6], each of the 10 settings (5 methods × 2 datasets) was assigned to 3 subjects. The
average accuracy and task completion time recorded for each treatment is shown in Table 2.4. The
accuracy of the no-content setting is 0 for both datasets, indicating that the questions did not con-
tain any hint to the correct answer, whereas the full-content setting shows that overall the questions
could have been answered from the original documents. When using summaries generated by MLS,
the participants responded as accurately as the Full-content setting on dataset D1, while being more
than two times faster, outperforming A2 and A3. For dataset D2, participants were more accurate
using summaries constructed by MLS than A2. MLS performed better than A3 on one document,
comparable on one and worse on one document, with an average accuracy of 0.55.

2.4 Conclusion

We have proposed MLS, a supervised approach to construct abstractive summaries at control-
lable lengths. Following an extract-then-compress paradigm, we develop the Pointer-Magnifier net-
work – a length-aware, encoder-decoder network that constructs length-constrained summaries by
shortening or expanding a prototype summary inferred from the document. The key enabler of this
network is an array of semantic kernels with clearly defined human-interpretable syntactic/semantic
roles in constructing the summary given a budget-length. We train our network on limited train-
ing samples from two cross-domain datasets. Experiments show that the summaries constructed by
MLS are coherent and reflectively capture the main concepts of the document. Our human evaluation
study also suggest the same.
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Chapter 3: Domain-guided summarization of privacy policies

Companies’ privacy policies are often skipped by the users as they are too long, verbose, and
difficult to comprehend. Identifying the key privacy and security risk factors mentioned in these
unilateral contracts and effectively incorporating them in a summary can assist users in making
a more informed decision when asked to agree to the terms and conditions. However, existing
summarization methods fail to integrate domain knowledge into their framework or rely on a large
corpus of annotated training data.

In this chapter, we first conduct a user study to examine users’ comprehension of the policies.
We investigate whether the presentation format of the policies impacts their accuracy in a policy
comprehension task. We also examine the impact of presentation format on the user’s agreement
level. Our results show that users are more accurate with a highlighted presentation form where
riskier content are color-coded. They also trust this presentation form more than the grade format
and short plain English summary.

Inspired by this finding, and to further address the information overload problem in this domain,
we propose a hybrid approach to identify sections of privacy policies with a high privacy risk factor.
We incorporate these sections into summaries by selecting the riskiest content from different privacy
topics. Our approach enables users to select the content to be summarized within a controllable
length. Users can view a summary that captures different privacy factors or a summary that covers
the riskiest content. Our approach outperforms the domain-agnostic baselines by up to 27% in
ROUGE-1 score and 50% in METEOR score using plain English reference summaries while relying
on significantly less training data in comparison to abstractive approaches.

3.1 Introduction and Related Work

Privacy policy and terms of service are unilateral contracts by which companies are required to
inform users about their data collection, processing, and sharing practices. Users are required to
agree to abide by the terms before they can use any service. However, many users do not read or
understand these contracts [51]. Thus, they often end up consenting to terms that may not be aligned
with legislation such as the General Data Protection Regulation (GDPR)9 [173]. This behavior is
often because these contracts are too long and difficult to comprehend [156]. Summarization is an
intuitive way to assist users with conscious agreement by generating a condensed equivalent of the
content. Broadly, there are two main lines of summarization systems: abstractive and extractive.

9https://eugdpr.org/
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The abstractive paradigm [204, 165, 40, 209, 222, 180, 207] aims to create an abstract representation
of the input text and involves various text rewriting operations such as paraphrasing, deletion, and
reordering. The extractive paradigm [167, 239] on the other hand, creates a summary by identify-
ing and subsequently concatenating the most important sentences in the document. The abstractive
systems are more flexible while the extractive models enjoy better factuality [30]. However, ex-
isting summarization techniques perform poorly on contracts. Unsupervised methods [160, 85]
rely on structural features of documents, such as lexical repetition, to identify and extract impor-
tant content. These heuristics work poorly on the legal language used in contracts [154]. Supervised
methods [209, 81, 180] can learn to cope with the features of a particular domain. However, training
these complex neural summarization models with thousand of parameters requires a large corpus of
documents and their summaries. Currently existing corpora in the legal domain are not large enough
to train such models. We propose a hybrid approach for extractive summarization of privacy con-
tracts: using existing annotated resources, we train a classifier to predict which pieces of content
are most relevant to users [51]. In particular, we identify parts of the contract which place users at
risk by imposing unsafe data practices on them, such as selling email addresses to third parties or
allowing the company to appropriate user-generated content. Next, we use this risk classifier for
content selection within an extractive summarization pipeline. The classifier is substantially less
expensive than learning to summarize directly but enables our approach to outperform a selection
of domain-agnostic unsupervised summarization methods.

Prior computational work on privacy policies has used information extraction and natural lan-
guage processing methods to classify segments of these documents into different data practice cat-
egories [139, 231, 252]. Another trajectory of work has focused on presenting a graphical “at-
a-glance” description of the privacy policies to the user. For example, PrivacyGuide [223] and
PrivacyCheck [240] define a few privacy factors and map each factor to a risk level using a data
mining model. Relying on these “at-a-glance” description methods raises several concerns. First,
there is no way for the user to check the factuality of the predicted risk classes or interpret the
reasoning behind them. Moreover, users tend to have an easier time comprehending the content
when provided in natural language. Researchers also have focused on assigning a risk factor–green,
yellow, or red–to each segment of the privacy policies [170, 87]. However, summarizing the text
may benefit users more than directly presenting the classifier output.

In this Chapter, we first, conduct a comprehensive user study to compare some of these presenta-
tion formats. We examine how the presentation format impacts users’ comprehension of the policy
and their agreement level. Essentially, we expose them to 4 different presentation forms (i) grade
overview, (ii) plain English summary (abstractive), (iii) highlighted policy and the (iv) full text. We
next, ask a few privacy-related questions from users and measure their accuracy in responding to
these questions.

Inspired by our findings, we propose a hybrid approach for identifying and summarizing sec-
tions of the privacy policies with a high privacy risk factor. The first module of our framework
extends prior work [170, 87] to highlight segments of privacy policies that have a higher risk. We
employ a pre-trained encoder and convolutional neural network to classify sentences of the con-
tracts into different risk levels. To address the limitations of previous work, we incorporate the do-
main information predicted by the classifier in the form of a summary by comparing a risk-focused
and a coverage-focused content selection mechanism. The coverage-focused selection mechanism
aims to reduce information redundancy by covering the riskiest sentence from each privacy topic.
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Service Grade

DuckDuckGo A
Telegram B
Wikipedia B
New York Times C
Foursquare C
Quora D
Paypal E
Amazon E
Instagram E
Uber E

Table 3.1: The list of companies in our user study and their corresponding grade level (A-E).

We evaluate the effectiveness of employing a classifier in identifying the domain knowledge for
summarization. We also evaluate the quality of summaries extracted by our two content selection
criteria. Using our approach users can view a summary that captures different privacy factors or a
summary that covers the riskiest content. We release our dataset of 151 privacy policies annotated
with risk labels to assist future research.

We present our user study in Section 3.2 and our hybrid pipeline for extractive summarization
of the policies in Section 3.3.

3.2 Human-Centered Analysis of Privacy Policy Comprehension

To understand the impact of presentation format on user’s comprehension of privacy policies
and their preference for presentation forms we conducted a user study.

Service Selection: We selected 10 popular services to include in our user study from TOSDR 10.
TOSDR is a website dedicated to rating and explaining the privacy policy of companies in plain En-
glish. A list of the selected services and their risk level (A-E) on TOSDR is shared in Table 3.1.
Grade ”A” companies are the safest class of services in TOSDR classification while grade ”E”
companies raise serious privacy concerns 11.

Presentation Format: For each service, we collect the annotation for their grade, and points
written by staff on TOSDR. Each TOSDR point is a statement about data sharing and practices of
the company in plain English. For example, case ID 10493 for Facebook states that ”They store
data on you even if you did not interact with the service”. Each case is linked to a certain segment
of the terms of service or privacy policy document of service. An overview of information crawled
from TOSDR and how it is used to create different presentation forms is shared in Figure 3.1. Next,
we explain how we create each presentation format.

10TOSDR https://tosdr.org

11See more details about TOSDR risk classification in https://tosdr.org/classification
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1

Grade 

Plain-english summary of 
risky points 

Pointers to risky snippets 
of policy (Highlighted)

Full-text Policy 

Figure 3.1: Annotation for Grade and Points for Facebook on TOSDR

• To create the Grade presentation format, we simply present the service name and grade and a
description of different risk grades to the user. The motivation behind this presentation form is
to test users’ assumptions about a particular service. In addition, it gives users a comparative
measure of where companies stand in terms of their privacy measures.

• To create the Summary presentation format, we simply present the points written for each
company to the user. We use no color coding for this presentation format.

• To create the Full-text presentation form we simply concatenate the privacy policy, data pol-
icy, terms of service, and cookie policy of the services. We use the same font, size, and
spacing format used in the website of the corresponding service.

• To create the Highlighted presentation format, we highlight the segments of the Full-text
presentation format that are linked to a point with yellow. We inform the users that highlighted
segments are marked as ”risky” or ”important” by other users.

In this study, we recruited 365 workers to participate in our study. Workers are recruited through
MTurk. MTurk is a platform that connects “requesters” (people who need tasks completed) with
“workers” (people willing to complete the tasks for monetary compensation). The study was posted
to MTurk via CloudResearch [136] 12. CloudResearch is an online platform linked to MTurk that
provides additional data collection and filtering features to ensure high data quality.

Workers are based in the U.S. and have a high-school degree or above. In addition, English is
their first language. They were paid 2.5$ for their participation.

12cloudreasearch.com
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Presentation Format F-score Need More Info Preference Agreement Time (Min)

Grade 42.22 22.53 2.88 2.87 6.23
Summary 49.13 14.71 2.59 2.60 10.72
Highlighted 59.13 4.39 2.60 3.47 17.28
Full-Text 59.06 6.51 2.73 3.27 16.79

Table 3.2: Results of user’s comprehension, preference, agreement level and task completion time
for different presentation forms.

Task Description: Users were first shown information about the terms of service of one of the
10 prominent companies in our study. They were informed that they may not return to this page
later on and they will be asked a few questions about the content they see. The information was
presented in one of the 4 formats discussed above (full-text, highlighted, plain English summary, or
grade). Then users were instructed to answer 5 privacy questions about the terms 13. All questions
had multiple correct answers and users were instructed to choose all that apply. Users were also
instructed not to use any external resources for answering the questions. Users had a maximum of
30 minutes to complete the task. The questions are shared below:

• Q1: What type of information does the site collect?

• Q2: What is the purpose of collecting your data?

• Q3: Who can access your information?

• Q4: What are your rights?

• Q5: How long does the company keep/use your personal info?

To create the answer keys for these questions, two of the authors and a legal expert read the
full-text policy and answered the questions independently. Next, the answers were discussed and
annotators resolved any potential disagreements.

Users also were asked a few questions about their preferences and trust. They were asked to
indicate how much they prefer the format they saw and how likely they are to agree to the terms
after going through the presented information. They had to answer on a scale of 1-5.

Privacy Comprehension: To measure users’ comprehension, we measured the precision and
recall of users in the reading comprehension task. We report the F-score which is the harmonic
mean of the precision and recall in Table 3.2(averaged across 5 privacy questions). In addition, for
each presentation format, we report the average percentage of users that indicated they need more
information to be able to answer the questions. We report the average value for 5 questions. This
value is presented in the Need more info column in Table 3.2.

As it can be seen in the Table, the comprehension of the policies is in general low. The high-
est comprehension level is achieved when users looked at the highlighted and full-text format and

13These questions are inspired by GDPR rights
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are only 59.13 and 59.06 respectively. Users’ accuracy when looking at the grade and summary
formats is lower. This is expected for the grade format as in this case, users are not provided any
information about the service and only answer the questions based on their assumptions. For the
summary format, the F-score is slightly higher (49.13). We conjecture, that this is mostly because
the presented summary is generic and is compiled by combining points written by staff at TOSDR
but are not directly related to questions we asked in the end. We suspect that a summary guided by
questions about GDPR rights would increase users’ comprehension of the policies. We present our
pipeline for query-guided summarization of the policies in Chapter 4.

Users had a better comprehension of the highlighted and the full-text format. These results
are statistically significant (one-way Anova, P-value < 0.001). This observation contradicts what
previous study by Obar and Oeldorf-Hirsch [173] reports. In their study, they noticed that 97%
of users do not read or understand privacy policies. This can be because, in our study, users were
mildly motivated to read the policies as they were notified about the quiz at the end. This makes
our setting different than the real-world interaction with policies. The values for needing more
information follow the same trend.

Users’ Preference in Format: The results for whether they prefer the presentation form they
interacted with are shown in column preference. Values range from 1-5. While user comprehension
of the grade format was low, they preferred this format more than other ones on average. However,
the results were not statistically significant. In addition, we also observed that users have different
preferences for format depending on the underlying service, in other words, they did not consistently
prefer one format over the other.

Users’ Trust and Agreement: The average value for whether users agree to abide by the
policy after this interaction, is shared under Agreement in Table 3.2. Users feel less comfortable
agreeing to the terms when they are given too little amount of information (grade and summary).
They were more likely to agree to the terms when presented in the highlighted or full-text format.
These results are statistically significant (one-way Anova, P-value < 0.001). However, note that in
a real-world interaction with a service users are more motivated to agree to the terms as they want
to use the service immediately afterward. However, this is not the case with this study and users
are less motivated to agree. Thus, we expect the values to be higher if users were to use the service
after their interaction with the policy.

Task Completion Time: Not surprisingly it takes users longer to read the longer formats. How-
ever, as mentioned before, users were mildly motivated to read the longer formats due to the quiz at
the end. Interestingly highlighting riskier content in the policy increased users interaction time with
the policy. However, this observation is not statistically significant.

As discussed earlier, the highlighted presentation format leads to a better understanding of the
policy. Motivated by this finding, and to further address the information overload problem in this
domain, in the next section we present a hybrid approach for extractive summarization of privacy
policies.
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3.3 Extractive Summarization of Privacy Policies

Given a privacy policy document D consisting of a sequence of n sentences {s1, s2, ...sn} and a
sentence budget m such that m < n our summarization model extracts a risk-aware summary with
m sentences. For each sentence si ∈ D we predict a binary label yi (where a value of 1 means si is
included in the summary). We achieve this by computing an inclusion probability p(yi|si, D, θ) for
each sentence si. θ are the model’s parameters. We aim to maximize the inclusion probability for
risky sections of the privacy policies and minimize it for non-risky sections. We also would like to
cover different privacy factors within the sentence budget m by reducing the redundancy. The main
intuition behind our proposed approach is that users when going through the privacy policies are
most interested in knowing how their information can potentially be abused [51]. Thus, a condensed
equivalent of the terms should include such risky sections. Next, we explain the architecture of our
risk prediction model and our content selection mechanisms.

3.3.1 Risk Prediction

Given the content of privacy policies, the first step in our framework is to identify the associated
risk class with each sentence of the contract. We rely on a crowd-sourcing project called TOS;DR
to automatically annotate 151 privacy contracts. TOSDR has annotated several snippets of privacy
contracts based on the average Internet user’s perception of risk. We explain our dataset extraction
in Section 3.4. We use this dataset to train our risk classifier.

Prior research has exploited word embeddings and Convolutional Neural Networks (CNN) for
sentence classification [48, 119, 104, 249]. These simple architectures achieve strong empirical
performance over a range of text classification tasks. Our model is a slight variant of the CNN
architecture proposed in [48].

Model architecture: Let sj = {t1, t2, ...tn} be the j-th sentence in the contract D and vi ∈ Rd

be the d-dimentional vector representation of token ti in this sequence. Word representations are
output of a pretrained encoder [185] and will be discussed in the next Section. We build the sentence
matrix A ∈ Rn×d by concatenating the word vectors v1 to vn:

A1:n = v1 ⊕ v2 ⊕ ...vn

Following [48] we apply convolution filters to this matrix to produce new features. The length of
the filters is equal to the dimensionality of the word vectors d. The height or region size of the filter
is denoted by h and is the number of rows (word vectors) that are considered jointly when applying
the convolution filter. The feature map c ∈ Rn−h+1 of the convolution operation is then obtained
by repeatedly applying the convolution filter w to a window of tokens ti:i+h−1. Each element ci in
feature map c = [c1, c2, ...cn−h+1] is then obtained from:

ci = f(w . A[i : i+ h− 1] + b)

where A[i : j] is the sub-matrix of A from row i to j corresponding to a window of tokens ti
to tj and ”.” represents the dot product between the filter w and the sub-matrices. b ∈ R represents
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the bias term and f is an activation function such as a rectified linear unit. We use multiple kinds of
filters by using various region sizes. This extracts various types of features from bigrams, trigrams,
and so on. The dimensionality of the feature map c generated by each convolution filter is different
for sentences with various lengths and filters with different heights. We apply a max-over-time [48]
pooling operation to downsample each feature map c by taking the maximum value over the window
defined by a pool size p. The max-pooling operation naturally deals with variable sentence lengths.
The outputs generated from each filter map are concatenated to build a fixed-length feature vector
for the penultimate layer. This feature vector is then fed to a fully connected softmax layer that
predicts a probability distribution over the risk level categories. We apply dropout [95] as a means
of regularization in the softmax layer. Our objective is to minimize the binary cross-entropy. The
trainable model parameters include the weight vectors w of the filters, the bias term b in the activa-
tion function, and the weight vector of the softmax function. We minimize the loss using Stochastic
gradient descent and back-propagation [203].

Pretrained Word Vectors: Prior research indicates that better word representations can im-
prove performance in a variety of natural language understanding (NLU) tasks [184]. We use
ELMo [185]-a deep contextualized word representation model-to map each token ti in sentence
si in contract D to its corresponding contextual embedding vi with length 1024 14. ELMo uses
a bi-directional LSTM [208] for language modeling and considers the context of the words when
embedding them15.

3.3.2 Content Selection and Redundancy Reduction

Given the probability distributions over the risk categories, we apply two content selection
mechanisms to account for the summarization budget m and minimize the information redundancy.
The first mechanism focuses on including the most ”risky” sections while the second mechanism
focuses on covering diverse privacy factors. Next, we explain these two variations of our model.

Risk-Focused Content Selection: Given a privacy policy contract D with sentences {s1, ...sn},
a summarization budget m, and risk score p(yi = 1|si, D, θ) predicted for si by the risk classifier,
the risk-focused selection mechanism assembles a summary by extracting the top m sentences that
have the highest risk score.

Coverage-Focused Content Selection: Given a privacy policy contract D with sentences
{s1, ...sn}, a summarization budget m, and risk scores p(yi = 1|si, D, θ), the coverage-focused
selection method finds m privacy factors by clustering sentences for which the risk score is larger
than a predefined value of α. Next, the riskiest sentence from each privacy factor cluster is selected
to be included in the summary. Note that if less than m sentences have a risk score greater than
α the summary will have less than m sentences. To find privacy topics of a contract, we apply
k-means [110] to sentence representations. Sentence representations are obtained through concate-
nating the word vectors. Number of clusters is set to min(m, |r|) where r = {si | p(yi = 1) > α}.

14Model was trained on the One billion word benchmark [38] and was obtained from
https://github.com/allenai/allennlp

15BERT [56] as the current state-of-the-art for language model pretraining has achieved amazing results in many NLU
tasks with minimal fine-tuning. However, our preliminary results of fine-tuning bert did not outperform our results from
Elmo word vectors and task-specific architecture explained in Section 3.3.1.
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3.4 Dataset Extraction

In this section, we explain the dataset that we compiled from the TOS;DR website and privacy
contracts of 151 companies. TOS;DR is a website dedicated to rating and explaining privacy policy
of companies in plain English. Members of the website’s community classify specific sections of
privacy policies into ”bad”, ”good”, ”blocker”, and ”neutral” categories and provide summaries for
them. We collected the user agreement contracts of 151 services that were annotated on TOS;DR
from the companies’ websites. Some companies have several such contracts e.g. privacy policy,
terms of service, and cookie policy. In this case, all the contracts were merged into a single docu-
ment. Next, we compared each sentence of the contract with specific snippets that were annotated
on TOS;DR. If the corresponding sentence or a very similar sentence was annotated by the TOS;DR
contributors, the same label was used. Otherwise, it was annotated as ”neutral”. The assumption be-
hind our annotation schema is that, if a section was not annotated by the contributors, it most likely
does not include a privacy risk and thus, is considered neutral. NLTK was used to segment the con-
tracts into sentences. Jaccard similarity of the vocabulary was used to measure the similarity of the
sentences. Two sentences from the same contract were considered similar if the Jaccard similarity
of their tokens was more than 50%. We combined the ”bad” and ”blocker” sections to build the
”risky” class. The ”good” and ”neutral” classes were also combined to build the ”non-risky” class.
This dataset is highly imbalanced with 61674 non-risky sentences and only 719 risky sentences. To
build the ground truth risk-aware summary of each privacy policy we concatenate the plain English
summaries of the snippets that have a ”risky” label. The dataset statistics of the 151 privacy policies
and their corresponding summaries are presented in Table 3.3. Our dataset is available online 16.

Dataset Min Max Median Mean

Privacy Policies 61 1707 350 411.6

Plain English Summaries 1 53 1 3.5

Table 3.3: The min, max, median, and average number of sentences in 151 privacy contracts and
their summaries.

3.5 Experiments

In this section, we discuss our data augmentation mechanism to reduce the data imbalance
problem, our hyper parameter choice for designing the risk classifier, and the training details. We
discuss our evaluation criteria in Section 3.5.2.

16www.github.com/senjed/Summarization-of-Privacy-Policies
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Compression Ratio = 1/64 Compression Ratio = 1/16

P R Macro-F1 Micro-F1 P R Macro-F1 Micro-F1

CNN + RF 22.40 28.13 61.94 98.01 9.86 59.74 56.65 93.10
CNN + CF 19.64 24.06 60.26 97.95 12.19 52.65 58.51 94.94

Table 3.4: Precision(P), Recall(R), Macro-F1, and Micro-F1 of the CNN classifier with two dif-
ferent content selection mechanisms risk-focused(RF) and coverage-focused(CF) at two different
compression ratios 1

16 and 1
64 .

3.5.1 Hyperparameters and Training Details

For the CNN model, we use two filter region sizes 3 and 4 each of which has 50 output filters.
We use rectified linear unit as the activation function of the convolution layer. The pool size in the
max pooling operation is set to 50. We apply dropout with a rate of 20%. We optimize the binary
cross-entropy loss using stochastic gradient descent with a learning rate of 0.01. To account for the
class imbalance problem, we randomly under-sampled the majority class (non-risky) with a rate of
10%. We also apply SMOTE over sampling [37] on the minority class (risky) with rate of 50%.
We train our model on this resampled dataset for 20 epochs and weight the loss function inversely
proportional to class frequencies in the input data. To set the value of risk threshold α in the content
selection module, we used the ROC curve of the validation set of each fold. We set α for each fold
to the threshold value that achieves 80% true positive rate.

3.5.2 Evaluation Metrics

In our experiments, we seek to answer the following questions:

• How well does our model identify the risky sentences in the contracts?

• What content selection method leads to more ”human-like” summaries?

To answer the first question we report the Macro-F1 and Micro-F1 score of our classifier. To an-
swer the second question, we evaluate the quality of the extracted summaries by our model by
computing the average F1-score for ROUGE-1, ROUGE-2, and ROUGE-L [134] metrics (which
respectively measure the unigram-overlap, bigram-overlap, and longest common sequence between
the reference summary and the summary to be evaluated). ROUGE metrics fail to capture semantic
similarity beyond n-grams [238]. Thus, we also report the METEOR score [55] which goes beyond
the surface matches and accounts for stems and synonyms while finding the matches.17 We evaluate
our model using 5-fold cross-validation. In each fold, contracts of 96 companies are used for train-
ing, 24 contracts are used for validation, and the rest is used for testing. We explain our baselines in
Section 3.5.3 and our experimental results in Section 3.6.

17We use pyrouge and NLTK python packages for computing ROUGE and METEOR values respectively.
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3.5.3 Summarization Baselines

We compare the performance of our domain-aware extractive summarization model with the fol-
lowing unsupervised baselines. Unlike the evaluation setup in [154], we run the models on the entire
contract. For methods that require a word limit as the budget, a compression ratio r is multiplied by
the average number of tokens in all contracts (10488.7) to compute the word limit. Similarly, the
compression ratio of r is multiplied by the average number of sentences in all contracts (413.1) to
build a sentence limit.

• TextRank: An algorithm introduced in [160] that uses page rank to compute an importance
score for each sentence. Sentences with the highest importance score are then extracted to
build a summary until a word limit is satisfied.

• KLSum: Introduced in [85], KLSum aims to minimize the Kullback-Lieber (KL) divergence
between the input document and proposed summary by greedily selecting sentences.

• Lead-K: A common baseline in news summarization that extracts the first k sentences of the
document until a word limit is reached.

• Random: This baseline picks random sentences of the document until a word limit is satis-
fied. For this baseline, we report the average results over 10 runs.

• Upper Bound Baseline: This baseline picks all the sentences in a contract with ground truth
label ”risky”. This baseline indicates the performance upper bound of an extractive method
on our dataset.

3.6 Results

In this section, we discuss our experiments conducted using 5-fold cross-validation. We shared
our training details in Section 3.5.1. As an example, summaries extracted by our model and the
baselines from privacy policy of Brainly 18 is displayed in Figures 3.2 and 3.3. It can be seen that
both of the summaries generated by our method indicate that third party advertising companies
will be able to collect information about use of Brainly. KLSum misses this information and the
traditional lead-k heuristic which is very effective for news performs poorly on the contracts. This
indicates the advantage of injecting domain-specific knowledge into content selection.

3.6.1 Classification Results

In this section, we evaluate the performance of our model discussed in Section 3.3.1 and study
the effect of different content selection mechanism on the risk prediction task. We evaluate our
summaries at two compression ratios of 1

64 and 1
16 . The summarization budget m at each com-

pression ratio r is achieved by multiplying r in the average number of sentences(or words) in the
contracts. Thus, at the compression ratio of 1

64 , summaries are restricted to the maximum length of 6

18https://Brainly.com
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Compression Ratio = 1/64 Compression Ratio = 1/16

ROUGE-1 ROUGE-2 ROUGE-L METEOR ROUGE-1 ROUGE-2 ROUGE-L METEOR

CNN + RF 43.09 31.21 36.80 41.98 34.0 24.96 24.83 40.03
CNN + CF 40.45 28.69 34.01 41.55 37.93 28.82 29.23 43.91
Textrank 28 13.89 22.06 22.4 33.78 22.12 26.85 35.49
KLSum 28.75 13.14 23.53 25.34 24.74 11.36 18.86 26.95
Lead-k 25.57 9.09 20.25 19.54 25.67 11.33 19.77 26.85
Random 24.26 6.45 18.78 18.11 24.43 9.85 18.08 27.01

Table 3.5: ROUGE-1, ROUGE-2, ROUGE-l, and METEOR score of our model (highlighted in light
gray) in comparison to the baselines in compression ratios 1

64 and 1
16 . RF refers to the risk-focused

content selection while CF refers to the coverage-focused content selection. The quote text of the
risky sections was used to build the reference summaries.

sentences or 164 words. Similarly, at the compression ratio of 1
16 , summaries are limited to the max-

imum length of 29 sentences or 656 words. We report the precision, recall, Micro-F1, and Macro-F1
of our risk classifier with two different content selection mechanisms namely risk-focused (RF) and
coverage-focused (CF) in Table 3.4. As can be seen in the table, the Micro-F1 scores of both content
selection methods are quite high. However, the best Macro-F1 value is achieved by the risk-focused
approach and is 61.94. The large gap between the two values is due to the high level of class im-
balance in our dataset (1 positive sample for every 100 negative samples). At 1

64 compression ratio,
risk-focused performs more than two times better in terms of recall. When the compression ratio
is 1

16 , the risk-focused method captures many more risky sections and achieves a recall of 59.74.
However, with this increase in recall, the false positive rate also increases. On the other hand, the
coverage-focused method is better at preserving the precision at higher budgets (only 7.45 drop in
precision with a 28.59 points increase in recall). This observation is caused by extracting sentences
with a risk score greater than α in coverage-focused content selection. This naturally puts an up-
per bound on the false positive rate. We conclude that both mechanisms are moderately successful
at identifying the risky sections of contracts. We also conclude that at higher compression ratios,
the risk-focused mechanism can be used where recall is more essential while the coverage-focused
mechanism can be used when precision is more of interest. In the next section, we examine whether
the domain information given by the risk classifier can improve the quality of summaries in com-
parison to domain-agnostic extractive summarization baselines.

3.6.2 Summarization Results

In this section, we evaluate the quality of the summaries extracted by our model and the base-
lines. We introduced our evaluation metrics in Section 3.5.2 and our baselines in Section 3.5.3.
We compare the summaries against two type of reference summaries. The first type of summary
is built by assembling all the sentences that have ground truth ”risky” label. These sentences are
derived directly from text of the contract. We will refer to this reference summary as ”quote text”
reference. The second type of summary is derived by assembling the plain English summary of the
”risky” sections written by the TOS;DR contributors. The summarization results using the quote text
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Compression Ratio = 1/64 Compression Ratio = 1/16

ROUGE-1 ROUGE-2 ROUGE-L METEOR ROUGE-1 ROUGE-2 ROUGE-L METEOR

Upper Bound 22.45 13.7 18.27 22.32 22.56 13.95 18.49 23.03
CNN + RF 13.97 6.08 9.83 16.58 9.07 3.94 5.53 12.07
CNN + CF 12.39 4.81 8.51 14.93 10.18 4.54 6.58 13.16
Textrank 10.94 2.78 7.51 11.2 10.08 3.37 6.37 12.47
KLSum 10.96 2.43 7.34 12.54 8.37 1.92 5.26 11.06
Lead-k 11.21 1.9 7.9 11.04 9.33 2.44 5.96 11.87
Random 11.44 1.87 8.03 12.02 9.13 2.32 5.73 12.45

Table 3.6: Performance of our model (highlighted in light gray) in comparison to the baselines in
compression ratios 1

64 and 1
16 . RF refers to the risk-focused content selection while CF refers to

the coverage-focused content selection. The plain English summaries of risky sections was used to
build the reference summaries.

summaries is presented in Table 3.5. The summarization results using the plain English reference
summaries is presented in Table 3.6.

Extracting the risky content: As it can be seen in Table 3.5, at both compression ratios,
both variation of our model outperform the baselines. At compression ratio of 1

64 , the CNN + RF,
achieves the best ROUGE and METEOR results with 49.8% improvement in ROUGE-1, 124.6%
improvement in ROUGE-2, 56.3% improvement in ROUGE-L, and 65.6% improvement in ME-
TEOR in comparison to the best performing domain-agnostic baseline for each metric. At compres-
sion ratio of 1

16 the CNN + CF achieves the best ROUGE results by improving ROUGE-1 by 12.2%,
ROUGE-2 by 30.2%, ROUGE-L by 8.8%, and METEOR by 23.7% in comparison the the best per-
forming baseline for each metric. The improvement in METEOR score is found to be statistically
significant using Wilcoxon signed ranked test [230] with p-value < 0.01 (Bonferroni corrected [63]
to account for multiple testing). Similar to our observation in classification task, we find that the
risk-focused content selection achieves more recall and thus, achieves a better METEOR score in
comparison to the coverage-focused mechanism. On the other hand, by increasing the summa-
rization budget, the ROUGE values for this method slightly drop. This is because, in most of the
contracts, the number of risky sentences is smaller than the budget at ratio of 1

16 (29 sentences).

Building Human-like summaries: We present our summarization results using the plain En-
glish summaries as reference summaries in Table 3.6. At compression ratio of 1

64 , both variations of
our model outperform the baselines. Our CNN + RF model, increases the METEOR score by 32.2%
over KLSum and 48% over textrank. This improvement is found to be statistically significant (with
p-value < 0.01). The CNN + CF outperforms the baselines over all evaluation metrics. However,
the improvement is not statistically significant. At compression ratio of 1

16 , CNN + RF outperforms
all domain-agnostic baselines. This improvement however, is not statistically significant. At this
compression ratio, CNN + RF achieves comparable result with textrank. We conclude from our
experiments that our domain-aware extractive model does moderately better than the baselines at
lower compression ratios, however, due to high level of abstraction in plain English summaries of
TOS;DR [153], a fully-extractive approach cannot mimic the human-like qualities in the plain En-
glish summaries. This can also be seen by looking at the performance of the upper bound baseline.
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3.7 Conclusion

In this chapter, we first presented the results of a user study on users comprehension of the
policies and their preferences. Our findings suggested that users are the most accurate with the
color-coded policy. To further extend the previous work on color-coding policies based on risk
factor and also addressing the information overload problem in this domain, in this chapter we
proposed a domain-aware extractive model for summarizing the privacy contracts.

Our model, employs a convolutional neural network to identify risky sections of the contracts.
We build summaries by using a risk-focused and a coverage-focused content selection mechanism.
Our approach enables users to select the content to be summarized within a controllable length while
relying on substantially less training data in comparison to the existing supervised summarization
methods. Our two different content selection mechanisms enable users to build budgeted summaries
of contracts based on their preference of coverage vs risk. In spite of the moderate success in classi-
fication of our realistically imbalanced dataset, we observed a noticeable improvement in ROUGE
and METEOR metrics in comparison to domain agnostic baselines. We also release a dataset of 151
privacy policies for which each segment is annotated with a risk class to facilitate future research in
this domain.

36



Plain English Summary: The Privacy Policy states, ”We and our third party partners may also use cookies
and tracking technologies for advertising purposes.”. In the Privacy Policy, it states that, ”Although we
do our best to honor the privacy preferences of our users, we are unable to respond to Do Not Track
signals set by your browser at this time.” The Privacy Poilicy says Brainly can track usage information
and personal information ”through a variety of tracking technologies, including cookies, web beacons,
Locally Stored Objects (LSOs such as Flash or HTML5), log files, and similar technology (collectively,
“tracking technologies”).” If Brainly aims to ”preserve all content posted on the site,” then we can conclude
that such personal data is still necessary for the purpose of the site. There are places on the site where
answers without usernames or profile pictures are visible. The Cookie Policy states, ”Service oparator
[sic] informs that restricting the use of cookies may affect some of the functionalities available on the
Website.” For users not in europe, brainly reserves the right, in its sole discretion, to immediately modify,
suspend or terminate your account, the brainly services, your brainly subscription, and/or any products,
services, functionality, information, content or other material. <truncated>

CNN + RF: We participate in interest-based advertising and use third party advertising companies to
serve you targeted advertisements based on your online browsing history and your interests. We permit
third party online advertising networks, social media companies and other third party services, to collect,
information about your use of our service over time so that they may play or display ads on our service,
on other websites, apps or services you may use, and on other devices you may use. We may share
a common account identifier (such as an email address or user id) or hashed data with our third party
advertising partners to help identify you across devices. Brainly reserves the right to moderate the Brainly
services and to remove, screen, or edit your content from the Brainly services at our sole discretion, at
any time, and for any reason or for no reason, with no notice to you. Brainly reserves the right, in its sole
discretion, to immediately modify, suspend or terminate your account, the Brainly services, your Brainly
subscription, and/or any products, services, functionality, information, content or other materials available
on, through or in connection with the Brainly services and/or your Brainly subscription, including, but
not limited to, the mobile software, and/or your access to some or all of them without cause and without
notice. In the event that Brainly suspends or terminates your account, the Brainly services or your Brainly
subscription, you acknowledge and agree that you shall receive no refund or exchange for any unused
time on a Brainly subscription or any subscription fees or anything else.

CNN + CF: We participate in interest-based advertising and use third party advertising companies to
serve you targeted advertisements based on your online browsing history and your interests. We permit
third party online advertising networks, social media companies and other third party services, to collect,
information about your use of our service over time so that they may play or display ads on our service,
on other websites, apps or services you may use, and on other devices you may use. We may share
a common account identifier (such as an email address or user id) or hashed data with our third party
advertising partners to help identify you across devices. To the fullest extent permitted by applicable
law, no arbitration or claim under these terms shall be joined to any other arbitration or claim, including
any arbitration or claim involving any other current or former user of the Brainly services or a Brainly
subscription, and no class arbitration proceedings shall be permitted. We may modify or update this
privacy policy from time to time to reflect the changes in our business and practices, and so you should
review this page periodically. If you object to any changes, you may close your account. Continuing to use
our service after we publish changes to this privacy policy means that you are consenting to the changes.

Figure 3.2: The summaries extracted by our model (CNN + RF and CNN + CF) from the privacy
policy and cookie policy of Brainly at compression ratio of 1

64 .
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Lead-K: Welcome to Brainly!. Brainly operates a group of social learning networks for students and
educators. Brainly inspires students to share and explore knowledge in a collaborative community and
engage in peer-to-peer educational assistance, which is made available on www.Brainly.com and any
www.Brainly.com sub-domains(the “website”) as well as the Brainly.com mobile application (the “app”)
(the “website” and the “app” are collectively the “Brainly services”. We have two sets of terms and condi-
tions: part(a) sets out the terms that apply to our users unless you are based in Europe and part (b) sets out
the terms that apply to our users in Europe. It is important that you read and understand the terms that apply
to you when you use the Brainly services before using the Brainly services. Part (a): terms and conditions
applicable to users unless you are based in Europe. This part and the documents referred to within it set
out the terms and conditions that apply to your use of Brainly services if you access Brainly services from
within the united states or other countries except Europe. The Cookie Policy states, ”Service oparator [sic]
informs that restricting the use of cookies may affect some of the functionalities available on the Website.”

KLSum: Brainly reserves the right, in its sole discretion, to immediately modify, suspend or terminate
your account, the Brainly services, your Brainly subscription, and/or any products, services, functionality,
information, content or other materials available on, through or in connection with the Brainly services
and/or your Brainly subscription, including, but not limited to, the mobile software, and/or your access to
some or all of them without cause and without notice. Brainly makes no warranty that the Brainly services
and/or any products, services, functionality, information, content or other materials available on, through
or in connection with the Brainly services or your Brainly subscription, including, but not limited to, the
mobile software, will meet your requirements, or that the Brainly services or Brainly subscriptions will
operate uninterrupted or in a timely, secure, or error-free manner, or as to the accuracy or completeness of
any information or content accessible from or provided in connection with the Brainly services or Brainly
subscriptions, regardless of whether any information or content is marked as “verified”. You must not:
use Brainly services other than for its intended purpose as set out in the terms of use; <truncated for
presentation purpose. Rest of the summary includes examples of misuse of the Brainly services.>

TextRank: You must not: use Brainly services other than for its intended purpose as set out in the terms of
use; copy any portion of Brainly services; give or sell or otherwise make available any portion of Brainly
services to anybody else; change Brainly services in any way; interfere with any security related features
of Brainly services or features that prevent or restrict use or copying of the content accessible via Brainly
services; give any information or permit another person to use Brainly services under your name or on
your behalf; fake your identity or give the impression they are linked to us or to Brainly, if this is not the
case; use Brainly services other than for its intended purpose as set out in the terms of use; use Brainly
services if we have suspended your access to it, or have otherwise banned you from using it; modify,
interfere, intercept, disrupt or hack Brainly services or collect any data from Brainly services other than
in accordance with the terms of use; misuse Brainly services by knowingly introducing viruses, trojans,
worms, logic bombs or other material which would harm the Brainly services or the equipment of any user
of Brainly services.

Figure 3.3: The summaries extracted by the baselines from the privacy policy and cookie policy of
Brainly at compression ratio of 1

64 .
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Chapter 4: Automated Privacy Policy Question Answering Assistant

Existing work on making privacy policies accessible has explored new presentation forms such
as color-coding based on the risk factors or summarization to assist users with conscious agreement.
To facilitate a more personalized interaction with the policies, in this chapter, we propose an auto-
mated question answering assistant that extracts relevant segments from the policy in response to an
input user query. This is a challenging task because users articulate their privacy-related questions
in a very different language than the legal language of the policy, making it difficult for the system
to understand their inquiry. Moreover, existing annotated data in this domain are limited. We ad-
dress these problems by paraphrasing to bring the style and language of the user questions closer
to the language of privacy policies. We use familiar techniques such as back-translation and lexical
substitution and examine to what extent these previously unexplored techniques in the legal domain
are beneficial for the privacy policy question answering task. Following query expansion, we use
a content scoring module that uses the existing in-domain data to find relevant information in the
policy. Our pipeline can find an answer for 87.7% of the user queries in the privacyQA dataset. Our
analysis shows that the unanswered questions are mostly ambiguous, subjective, or too specific.

4.1 Introduction and Related Work

As mentioned in the previous chapter, online users often do not read or understand privacy
policies due to the length and complexity of these unilateral contracts [51]. This problem can be
addressed by utilizing a presentation form that does not result in cognitive fatigue [57, 234] and sat-
isfies the information need of users. To assist users with understanding the content of privacy poli-
cies and conscious agreement, previous computational work on privacy policies has explored using
information extraction and natural language processing to create better presentation forms [68]. For
example, PrivacyGuide [223] and PrivacyCheck [240] present an at-a-glance description of a pri-
vacy policy by defining a set of privacy topics and assigning a risk level to each topic. Harkous et al.
[87] and Nejad et al. [170] used information extraction and text classification to create a structured
and color-coded view of the risk factors in the privacy policy. In our previous work we explored
incorporating the risky data practices in the privacy policies in form of a natural language sum-
mary [113]. While great progress has been made to create more user-friendly presentation forms
for the policies, users often only care about a subset of these issues or have a personal view of what
is considered risky. Instead of presenting an overview or summary of privacy policies, an alterna-
tive approach is to allow them to ask questions about the issues that they care about and present an
answer extracted from the content of the policies [194]. This facilitates a more personal approach
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to privacy and enables users to review only the sections of the policy that they are most concerned
about.

This task is related to guided and controllable text summarization [125, 52, 115, 70, 207] as well
as reading comprehension [90]. However, a few application-imposed constraints make this task
more challenging than the traditional evaluation setup of reading comprehension systems. First,
users tend to pose questions to the privacy policy question-answering system that are not-relevant,
out-of-scope (‘how many data breaches did you have in the past?’), subjective ( e.g. ‘how do I know
this app is legit?’), or too specific to answer using the privacy policy ( e.g. ‘does it have access to
financial apps I use?’) [194]. Moreover, even answerable user questions can be ill-phrased or have a
very different style and language in comparison to the legal language used in privacy policies [195],
making it difficult for the automated assistant to identify the user’s intent and find the relevant
information in the document. This issue of domain shift is exacerbated due to the difficulty of
annotating data for this domain. Because the existing datasets for this task are fairly small [4], the
problems cannot be solved by simply training a supervised model.

In this chapter, we take another step toward making privacy policies more accessible by creating
an automated question-answering assistant. We focus on addressing the domain-mismatch problem
and aim to bring the style, language, and specificity of the user’s question closer to the language
of privacy policies. To do so, we use familiar techniques such as lexical substitution and back-
translation that are not previously explored in the legal domain. Next, we compute a relevance and
informativeness score for each segment of the policy using a transformer-based language represen-
tation model fine-tuned on in-domain data. Finally, we return the top relevant segments to the user.
To summarize we make the following contributions:

• We propose a pipeline for automated question answering of privacy policies

• We explore the adaptation of existing techniques for query expansion to bring the language
of user queries closer to the legal language of the privacy policies.

• We show that using the existing in-domain data and techniques such as back-translation and
lexical substitution we can find an answer for 87.7% of the user queries in the PrivacyQA
dataset.

• We discuss future directions for further improving the automated privacy policy questions
answering models and making privacy policies more accessible to lay users.

We discuss our proposed hybrid question-answering pipeline in §4.2. We introduce the datasets
we use for training and testing different modules of our model in §4.3. Finally, we present our
experiments and results in §4.5.

4.2 Proposed Pipeline

Our query-guided extractive summarization pipeline includes three main components. Given a
privacy policy document and a user query, the first component - the query expansion module, pro-
cesses the user query and generates a set of paraphrases that have a more similar language, style,
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Content Scoring Query Expansion Answer Selection  

qk: Who can see my contacts?

p1: who can access my contacts?
p2: Who can access my personal 
data?
p3: Who can access user’s 
personal information?

A1: We may share aggregate and 
de-identified Information with third 
parties.
A2:  We collect information that 
you provide us or voluntarily share 
with other users, and also  general 
information to enable you to have a 
better user experience.
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Figure 4.1: Overview of the proposed pipeline

and specificity to the privacy policy. Next, given the query and the paraphrase set, the content scor-
ing module computes two scores—relevance and informativeness—for each segment of the policy.
Lastly, the two scores are combined for the expanded query set to obtain the final answerability
score for each segment. Segments are then ranked based on the answerability score and top-ranked
items are shown to the user. The overview of the pipeline as well as an input-output example is
shown in Figure 4.1. Next, we discuss each component of our pipeline in more detail.

4.2.1 Query Expansion

Question-answering systems are very sensitive to many different ways the same information
need can be articulated [58]. As a result, small variations in semantically similar queries can yield
different answers. This is especially a challenge in building a question-answering assistant for
privacy policies. Often, users are not very good at articulating their privacy-related inquiries and use
a style and language that is very different from the legal language used in the privacy policies [194].

Query expansion by paraphrasing has been used in the past to improve the performance of
the QA-based information retrieval [253, 199, 7]. We employ several methods from the literature,
testing their applicability to this domain and in particular to the issues caused by mismatch be-
tween external training resources, user queries and the privacy policies themselves. To increase the
diversity and coverage of the generated paraphrases, we employ methods based on lexical substitu-
tion [155, 103] and neural machine translation (NMT) [150, 220, 16, 15]. Note that the paraphrase
generation module is independent of the neural-based content scoring module and thus, any method
can be used to generate paraphrases. Below, we discuss the three methods used for generating query
paraphrases.
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4.2.1.1 Lexical Substitution

Lexical substitution can be done by simply replacing a word with an appropriate synonym or
paraphrase in a way that the meaning is not changed. For example, the sentence ’what information
is collected about me?’ can be written as ’what information is collected about the user?’. For gen-
erating paraphrases we employ two lexical substitution methods: (i) replacement with similar words
based on Word2Vec representations [126] and (ii) a collection of hand-crafted lexical replacements
rules aimed to bring the style and language of user queries closer to the legal language in the privacy
policies.19

Word2Vec: We fine-tune pre-trained Word2Vec representations on a corpus of 150 privacy
policies. This dataset was introduced in Section 3.4. Training details can be found in Section 4.4.
To create paraphrases, we substitute nouns and verbs in user queries with the top 5 most similar
words in the embedding space that have the same part of speech.

Lexical Substitution Rules

my → user’s ads → advertisement search → browse
i → user others → third parties view → access
keep → retain 3rd → third looking up → search
sell → share upload → share businesses → third parties
information → data images → presonal data keep a record → collect
sold → shared messages → personal data report → share
anyone → third parties mine → user’s private → personal
stored → retained selling → sharing kept → retained
store → collect records → collects sent → shared
save → collect monitoring → accessing send → share
me → the user monitored → accessed see → access
record → collect tell → notify phone → device
recorded → collected log → collect photos → personal data
keep record of → collect invade → access monitor → access
held → retained warning → notification track → collect
safe-guarded → protected safegaurd → protect saved → collected
read → access info → information know → has access
3rd → third tracked → collected secured → protected
upload → share mine → user’s records → collects
images → presonal data selling → sharing monitoring → accessing
messages → personal data monitored → accessed tell → notify

Table 4.1: Lexical substitution rules used to bring the language of user queries closer to the legal language
of privacy policy.

19We also tried using WordNet [162] for lexical substitution. However, our preliminary experiments suggest that
majority of paraphrases generated using this method are not meaningful and thus a more rigorous filtering mechanism
should be used to identify useful paraphrases. Thus, we have decided not to use WordNet.
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Lexical replacement rules: to bring the language and style of user queries closer to the lan-
guage of privacy policies, we manually create a collection of 50+ lexical substitution rules. For
example, we replace the word ”my” with ”user’s” and ”phone” with ”device”. We test two varia-
tions of this approach: (i) single-replacement, in which we only apply a single replacement rule to
generate a paraphrase and (ii) all-replacement, in which we apply all possible lexical substitution
rules to generate a paraphrase. These replacement rules are shared in Table 4.1

4.2.1.2 NMT-based Paraphrase Generation

One of the well-known approaches for paraphrase generation is bilingual pivoting [12, 102,
103, 58]. In this approach, a bilingual parallel corpus is used for learning paraphrases based on
techniques from paraphrase-based statistical machine translation [122]. Intuitively, two sentences
in a source language that translates to the same sentence in a target language can be assumed to have
the same meaning. Mallinson et al. [150] show how the bilingual pivoting method can be ported
into NMT and present a paraphrasing method purely based on neural networks. In our work, we
use German as our pivot language following Mallinson et al. [150], who suggest that it outperforms
other languages in several paraphrasing experiments. We employ a simple back translation method
to automatically create paraphrases for user queries using Google Translate20 which is a mature and
publicly available online service to translate user queries from English to German and back from
German to English.

4.2.2 Content Scoring

Given the segment set S = {s1, s2, ...sn} of the privacy policy, a user query qk and paraphrase
set Pk = {p1, p2, ..., pm} obtained for qk, we aim to extract the most relevant segments sj ∈ S of
the privacy policy that fully or partially answer qk. To do so, for each pair of paraphrase-segment
pair (pi, sj), we compute two scores that we call the relevancy score Rij and informativeness score
Iij . Both scores are computed using BERT [56], but we employ different problem formulations, dis-
cussed below. We combine these two scores to get the final answerability score Aij for paraphrase-
segment pair (pi, sj). Finally we compute the average answerability score of the paraphrase set Pk

to get answerability score of query qk. We represent the answerability score of segment j for query
k with A(qk,j). Next, we discuss how these scores are computed.

Relevance Score: To compute the relevance score Rij for a paraphrase-segment pair (pi, sj),
we formulate this as a sentence-pair classification task. In this task, given a question pi and segment
sj ∈ S, the goal is to predict whether sj is relevant to pi. To compute the relevance score, we
rely on a transformer-based language representation model [56] pretrained on legal contracts called
legal-bert [36].21. We fine-tune this model for sentence pair classification task on the train set of
the PrivacyQA dataset proposed in [194] for 3 epochs. PrivacyQA is a corpus of privacy policy
segments annotated as ”relevant” or ”irrelevant” for a set of user queries. We introduce this dataset
in §4.3. During fine-tuning, we pass the question-segment pairs separated with the special token
[SEP ] with question and segment using different segment embeddings. We also add a special

20https://translate.google.com

21Pretrained model is obtained from https://huggingface.co/nlpaueb/legal-bert-base-uncased
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token [CLS] in the beginning and a token [SEP ] at the end of the sequence. We use weighted
binary cross-entropy as our loss function and update the encoder weights during the fine-tuning.
The final hidden vector for the first input token [CLS] is fed to the output layer for the relevance
prediction task. We use the fine-tuned model to get the posterior probability of relevancy for each
paraphrase-segment sequence. More details on our fine-tuning process can be found in Section 4.4.

Informativeness Score: Even if a segment of the policy is relevant to a question, it might
not fully answer it. To account for this, we also train a span-detection QA system similar to those
used for SQUAD question answering [192]. In preliminary experiments, we do not find that this
system always extracts spans which are legible enough on their own for presentation to the user;
this is partly due to the complex, contextually-sensitive language used in the contracts. However,
we do find that the system’s ability to find a promising span provides another indication that the
text segment contains a potential answer. Thus, for each question-segment pair (pi, sj) we compute
an informativeness score which measures how informative is sj in answering pi. To compute this
score, we fine-tune the legal-bert [36] for question-answering task on the train set of the PolicyQA
dataset [4]. This dataset contains reading comprehension style question and answer pairs from a
corpus of privacy policies and will be introduced in §4.3. More details on our fine-tuning process
can be found in Section 4.4. We refer to the legal-bert fine-tuned for question-answering as the
”answer-detector” module. During fine-tuning, we feed a query and segment of the policy as a
packed sequence separated by the special token [SEP ] with the question and the segment using
different segment embeddings. In addition, a start vector S and an end vector E are introduced
during the fine-tuning process. For each token in the sequence two probabilities are computed; the
probability of word k being the start of the answer span and the probability of word k being the end
of the answer span. To compute the start-of-answer-span probability we compute the dot-product of
the token vector Tk and the start vector S followed by a softmax over all tokens in the segment. A
similar formula is used to compute the end-of-answer-span probability for each token. The training
objective during fine-tuning is to maximize the sum of the log-likelihoods of the correct start and
end positions. The informativenss score of the span from position a to position b is defined as
S · Ta +E · Tb where a ≤ b. We represent the informativeness score of the segment sj with respect
to the paraphrase pi with Iij and compute it by taking the maximum score of the spans within the
segment:

Iij = max(S · Ta + E · Tb)

Where 0 ≤ a ≤ b ≤ len(si).

4.2.3 Answer Ranking and Selection

Finally, to compute the answerability score Aij for each paraphrase-segment pair (pi, sj), we
simply sum up the relevance score Rij and informativeness score Iij :22

Aij = Rij + Iij

22We also tried training a regression model using Rij and Iij as inputs and the relevance labels from PrivacyQA as
the target variable. However, reusing PrivacyQA labels seems to result-in over-fitting. Thus, we decided to combine the
scores by simply summing them up.
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Aij is computed for all paraphrase-segment pairs (pi, sj). Finally the answerability score of the
segment sj for query qk is computed by averaging the answerability score of the paraphrase set:

A(qk,j) =
Σm
i=1Aij

m

Where m represents the number of the paraphrases generated for query qk. Finally, we rank seg-
ments sj ∈ S based on their answerability score A(qk,j) with respect to the input user query qk. The
top ranked segments are then shown to the user. In our experiments in §4.5 we show the results of
retrieving the top 5 and top 10 ranked segments. Our question-answering pipeline is shown in Fig-
ure 4.1. In the next section, we introduce the datasets used for fine-tuning and testing our proposed
pipeline.

4.3 Datasets

We rely on three publicly available data sets for training and testing different modules in our
pipeline. As mentioned earlier, we train the word2vec model used for lexical substitution on
the set of 150 privacy policies collected in our previous work [113]. More details about this
dataset is shared in Section 3.4. In addition, we employ two datasets called PrivacyQA [194] and
PolicyQA [4] for fine-tuning the legal bert model for sentence pair classification and question-
answering tasks respectively. PrivacyQA is a sentence-selection style question-answering dataset
where each question is answered with a list of sentences. On the other hand, PolicyQA is a reading-
comprehension style question-answering dataset in which a question is answered with a sequence
of words. Next, we introduce these datasets in more details.

PrivacyQA: Ravichander et al. [194] asked each crowd worker in their study to formulate 5
privacy questions about privacy policies of a set of 35 mobile applications. The crowd workers were
only exposed to the public information about each company. In addition, they were not required to
read the privacy policies to formulate their questions. Thus, this dataset presents a more realistic
view of what type of questions are likely to be posed to an automotive privacy policy question-
answering assistant. Given the questions formulated by Mechanical Turkers, four experts with legal
training annotated paragraphs of the privacy policy as relevant or irrelevant considering each query.
We consider a segment of the privacy policy as relevant if at least one of the annotators marked it as
relevant. We use the train set for fine-tuning the legal bert model for the sentence pair classification
task and computing the relevance score. We use the test of the PrivacyQA dataset which contains
400 user queries to evaluate our proposed pipeline. We share our experimental results in §4.5.
Relevant statistics of this datset is shared in Table 4.2.

PolicyQA: This dataset is curated by Ahmad et al. [4] and contains 25,017 reading-comprehension
style question and answer-span pairs extracted from a corpus of 115 privacy policies. The train por-
tion of this dataset contains 693 human-written questions with an average answer length of 13.3
words. To curate this dataset, two domain experts used the triple annotations {Practice, Attribute,
Value} from the OPP-115 dataset [231] to come up with the questions. For instance, given the triple
annotation {First Party Collection/Use, Personal Information Type, Contact} and the corresponding
answer span “name, address, telephone number, email address” the annotators formulated ques-
tions such as, ”What type of contact information does the company collect?” and ”Will you use my
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#Questions #Policies #out-of-scope
questions

Avg. passages
per question

Avg. relevant
passage per question

Train 1350 27 425 137.1 5.2
Test 400 8 34 155.3 15.5

Table 4.2: Statistics of PrivacyQA Dataset; where # denotes number of questions, policies, and out-of-
scope questions. Out-of-score questions refer to questions for which no segment in the policy is annotated
as relevant. We also report the average number of annotated passages/segments and the average number of
relevant segments for each question.

contact information?”. Note that during the annotation process, the domain experts were asked to
formulate questions given the content of the privacy policy. Therefore, PolicyQA questions are less
diverse than PrivacyQA and do not fully reflect a real-world user-interaction with a privacy policy
question-answering assistant. Thus, we only use this dataset for fine-tuning the legal bert model for
question-answering task and computing the informativeness score. We do not use this dataset for
evaluation. Relevant statistics of this datset is shared in Table 4.3. Next, we will share details of
tuning word embeddings for lexical substitution and details of fine-tuning Bert for relevance score
and informativess score computation.

Questions #Policies #Q&A pairs Avg. question
length

Avg. passage
length

Avg. answer
length

Train 693 75 17,056 11.2 106.0 13.3
Valid 568 20 3,809 11.2 96.6 12.8
Test 600 20 4,152 11.2 119.1 14.1

Table 4.3: Statistics of PolicyQA Dataset; where # denotes number of questions, policies, and Q&A pairs.
We also report the average number of words in passages/segments, questions, and answer spans.

4.4 Hyperparameters and Training Details

In this section, we report our choice of hyper-parameters and training details of different mod-
ules in our pipeline.

Training Word2Vec for Query Expansion: We use the Gensim Python library [196]23 for
training word vectors. We initialize the word vectors using the pre-trained representations 24. These
word vectors are 300 dimensional and are pre-trained on a corpus of Google News dataset (about 100
billion words). We continue training the word vectors on a corpus of 150 privacy polices discussed

23https://github.com/RaRe-Technologies/gensim

24Pre-trained word vectors are obtained from https://code.google.com/archive/p/word2vec/
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in §3.4 for 5 epochs. We tokenize the privacy policy text using NLTK tokenizer [20]25 and remove
punctuation and convert all strings to lower case before feeding the data to the Word2Vec model.
During training we ignore all the words that occur less than 5 times in the corpus. We use context
window size of 5, and use continuous bag of words training algorithm with non-zero, negative
sampling for training.

Fine-tuning Legal-Bert for Relevancy Prediction: We obtained the pre-trained model named
bert-base-uncased-contracts along with the respective tokenizer from Hugging Face 26. This model
is pre-trained on more than 76k US contracts. We fine-tune this model for sentence pair classifi-
cation task on PrivacyQA dataset for 5 epochs with learning rate of 1e−5. We use weighted binary
cross entropy as our loss function. During tuning, We use batch size of 32 and maximum input
length of 70 tokens (95 percentile of the question + segment length in PrivacyQA dataset). We
update both weights of the encoder as well as the classification layer.

Fine-tuning Legal-Bert for Informativeness Prediction: We start with the same pre-trained
model for informativeness prediction. We fine-tune this model for answer span-detection task on
PolicyQA dataset for 5 epochs. We set the learning rate to 1e−5. and the batch size to 32. The
training objective is the sum of the log-probabilities of the correct start and end positions.

4.5 Experiments and Results

In this section, we present our experimental results. As stated earlier, given a query and a
privacy policy, the first module of our framework- the query expansion module- brings the style and
language of the user-queries closer to the language of the privacy policy by paraphrasing. Next,
given the paraphrases for the input query, the content scoring and answer selection modules retrieve
the most relevant snippets of the privacy policy.

In our experiments, we aim to answer the following questions:

• Does the query expansion module generate paraphrases that have a closer language than the
input query to the privacy policy?

• If so, what proportion of the generated paraphrases are more answerable than the input user
query?

• Does the proposed pipeline succeed in retrieving the relevant sections of the privacy policy in
answer to user queries?

• Which modules in our pipeline are essential for finding relevant answers to user queries?

Our experiments presented in §4.5.1 answer question one and two. Experiments in §4.5.2 an-
swer question three and four. For all our fine-tuning experiments we use a single NVIDIA V100
GPU with 32GB of memory. Please find more details on our training setup and hyperparameter
choice in Section 4.4. For our evaluation, we rely on the test set of the PrivacyQA dataset as it

25https://github.com/nltk/nltk

26https://huggingface.co/nlpaueb/legal-bert-base-uncased
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Method Rule-based (one) Rule-based (all) Back-translation Word2Vec All
Average #paraphrases 1.4 0.4 0.9 2.9 5.7
%Retrieved relevant segments 34.5 19.8 25.4 54.0 67.5
%Answerable paraphrases 24.2 31.3 25.4 28.9 27.3

Table 4.4: The average number of paraphrases generated by each method. The percentage of generated
answerable paraphrases for non-answerable queries and the percentage of relevant segments that were an-
swerable using at least one of the paraphrases by each method.

presents a more realistic user interaction with a privacy policy assistant. This dataset is introduced
in §4.3.

4.5.1 Query Expansion Results:

To answer our first and second questions regarding the quality and answerability of the gen-
erated paraphrases, we use lexical substitution methods and back-translation for expanding user
queries in the test set of the PrivacyQA dataset. These approaches are introduced in §4.2.1. The
average number of paraphrases generated by each approach is presented in Table 4.4. On average,
using these methods, we can generate 5.7 paraphrases for each query. The two variations of the
rule-based approach, the single-replacement and all-replacement generate 1.4 and 0.4 paraphrases
on average. Note that for some queries only one substitution rule is applicable and thus, the all-
replacement variation does not generate any new paraphrases. The back-translation method creates
0.9 paraphrases on average; using this method may not always generate novel text.27 Word2Vec
generates more paraphrases than other methods, generating 2.9 paraphrases on average.

To measure the language similarity between paraphrase pi and segment sj , we conduct the fol-
lowing experiment. We hypothesize that the answer-detector model introduced in §4.2.3, can suc-
cessfully detect the answer span within the relevant segment of the policy if the query has a similar
language and style to the privacy policy text. Note that in this problem Recall is more important than
Precision. Meaning that being able to find a relevant answer from the policy is more crucial than
falsely retrieving a few irrelevant sentences. Our experimental design reflects this domain-imposed
requirement. We pass the paraphrase, segment pair < pi, sj > that are annotated as ”relevant”, to
answer-detector model and save the extracted answer span 28. In cases that the paraphrase pi and
segment sj do not have a similar language the model typically returns no answer.29 In our exper-
iments, we observe that for 342 of initial user queries and relevant segment of the policy (around
5.5% of all pairs), the answer-detector model can’t find the answer span. We interpret this as user
queries having a different style and language from the policy text. To answer our first question,
we measure the percentage of cases for which the expansion method generated an answerable para-
phrase. This is shown in Table 4.4 as the percentage retrieved relevant segments. The rule-based
approach (one-replacement) and Word2Vec are able to generate at least one answerable paraphrase
for 34.5% and 54% of the previously non-answerable cases. Note that these two methods on average

27In this work we only use the NMT architecture used by Google translate and German language. Using more
architectures or more target languages can expand the pool of generated paraphrases.

28We exclude 34 queries for which there was no relevant information in the policy (out-of-scope questions).

29This includes an empty sequence or special token [CLS]
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generate more paraphrases for each query while back-translation cannot change the language and
style of the user query in some cases. We also observe that 67.5% of all the non-answerable cases
could be answered by at least one of the query expansion approaches. Thus, for better recall, we
include all the expansion methods in our pipeline.

To measure the quality of generated paraphrases, we report the percentage of all generated para-
phrases by each method that were answerable in Table 4.4. Note that different expansion methods
generate different number of paraphrases. As presented in the Table, 27.3% of all the paraphrases
were answerable. The all-replacement variation of the rule-based method and Word2Vec generate
better quality paraphrases in comparison to back-translation (31.3 and 28.9 in comparison to 25.4).
We conjecture that this is due to domain mismatch. The NMT architecture generates high-quality
paraphrases, but it is trained on out-of-domain data and therefore has no bias to restate the query in
a way that makes it match the privacy policies better. On the other hand, the domain-guided rule-
based model and word vectors may be less fluent in paraphrasing, but use in-domain data, which
allows them to generate better matches.

4.5.2 Question-Answering Results:

To answer our third and forth question, we evaluate the performance of our pipeline in privacy
policy question answering task. Essentially, following the query-expansion, we use the content
scoring module to generate the relevance and informativeness scores for each paraphrase-segment
pair. This process is discussed in §4.2.2. Finally, the answer ranking module combines these scores
for the entire paraphrase set and ranks the segments based on their final answerability score.

We evaluate the ability of our proposed pipeline in retrieving the relevant segments of the policy
within the top k ranked items. We compare the performance of our model with a simple lexical
matching method called the Word Count baseline[237]. The Word Count baseline retrieves the top
k sentences that have the highest word overlap with the input query. For evaluation, we rely on
metrics used for the evaluation of IR systems [151]. We report the average precision at k (P@K),
average R-precision (RP), and the mean reciprocal rank (MRR) of the retrieved relevant segments
over 3 runs in Table 4.5. P@k indicates the fraction of the relevant segments in the top k ranked
items. To measure RP, the number of ground truth relevant segments is used as the cut-off point
k for each query. RP measures the fraction of relevant items within the retrieved items. For each
query RP is equal to recall at the kth position. We report the average value across queries in the
test set. Mean reciprocal rank indicates the multiplicative inverse of the position of the first relevant
segment in the resulted ranking. A perfect ranking system achieves a MRR of 1 by always ranking
a relevant segment in the first position. We also report the percentage of queries in our test set for
which at least one relevant snippet was listed at the top k retrieved items. This is shown as F@k in
the table.

We observe that using our proposed model we are able to retrieve a relevant answer for 80% of
the queries within the top 5 results and 87.7% of the queries within the top 10 results.30 We also
observe that on average, 39.1% of the top 5 ranked passages are actually relevant. Increasing the
output budget to include top 10 retrieved passages decreases the precision to 32. The MRR of the
full pipeline is 0.69 indicating that on average the first relevant item appears in the second or first

30For these experiments we only use the queries that had at least one relevant answer segment in the policy.
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Model F@5 F@10 P@5 P@10 RP MRR

R + I + Q (full pipeline) 80.0 87.7 39.1 32.0 32.5 0.60
R + I 78.9 87.1 39.0 32.2 32.9 0.60
R 78.0 86.8 40.6 33.6 34.5 0.62
Word Count 54.7 63.0 20.9 16.7 15.5 0.37

Table 4.5: The performance of different variations of our model and the baselines in the policy ques-
tion answering task. R represents the legal-Bert model fine-tuned on PrivacyQA for relevance score
prediction. I shows the legal-Bert model fine-tuned on PolicyQA for informativeness prediction. Q
represents the query expansion module. F@K represent percentage of queries for which at least one
relevant segment was found within the top k ranked items. P@K represent precision at K, and RP
presents R-precision. MRR is the mean reciprocal rank. Bold font indicates the best result for each
performance metric.

position in the ranking. Overall our model easily beats the Word Count baseline by a large margin
(+25.3 in F@5, +18.2 in P@5, +17 in RP).

To evaluate the contribution of each module in our pipeline we conduct an ablation study. To test
the effect of the query-expansion Q, we use the pipeline without this module for finding answers
to user queries. We observe that the percentage of queries answered within the top 5 and top 10
ranked items slightly decreases (-1.1% , -0.6% respectively). We conclude that the query expansion
module slightly boosts the performance of the model. However, for most queries in the test set the
model is already able to find at least one relevant passage without paraphrasing the queries.

In our next experiment, in addition to the query-expansion module Q, we also remove the
answer-detector module I from our pipeline. In this version of our model, passages are only ranked
based on the relevance score R. This variation is the closest to the model discussed in [195].31

Note that we use legal Bert which is pretrianed on contracts whereas Ravichander et al use Bert
pretrainaed on books and Wikipedia. We suspect that our choice of using in-domain pretrianing
data for Bert creates a stronger baseline than their model. We notice that this baseline achieves
a lower F@5 and F@10 that both variations of our pipeline. However, the P@K, RP, and MRR
are slightly higher. We conclude that both the query expansion and answer-detector components
are effective in the ability of our pipeline in finding ”at least one” relevant answer to user queries.
However, the improvement is modest. Using familiar techniques for query expansion enables our
pipeline to find a relevant answer for several questions rendered as unanswerable by Ravichander
et al. [195]’s model. For example, ”Can other people see your real name?”, ”Does it need to use
the micro-phone at all?”, and ”Do you use my data to do medical research?” . Find more examples
of such queries in Table 4.6.

Several user queries still cannot be answered by our pipeline nor by the Ravichander et al.
[195]’s model. The majority of these questions are either vague, subjective, too specific, too broad,
or ill-formed. Examples of these questions are shared in Table 4.6. We conjecture that while using

31Our experimental setup is different from Ravichander et al. [195] as they did not constrain the output to include
maximum of k sentences which is a necessity for solving information overload problem in privacy policy comprehension.
Therefore, we use IR-based metrics for evaluation and not sentence-level F1 [192] as they did
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Both Models Only full pipeline None

• Who can see my information? • Who can see the jobs that I
post?

• If its free does Viber profit off
its users in some way?

• How do i restrict its access? • Can other people see your real
name?

• Who is allowed to use it?

• Do you sell my data? • Why do you need so many un-
related permissions?

• Is there any way for a free-
lancer to contact a customer out-
side of Fiverr?

• Is my personal information
anonymous?

• Can it access my other social
media accounts?

• Can my call log be subpoe-
naed?

• Can people see my workout
log?

• Does it need to use the micro-
phone at all?

• Where is the privacy state-
ment?

• Will my information be saved
after i use groupon once?

• Is any information recorded? • What does each permission for
the app mean?

• Will my location be tracked? • Can you guarantee my privacy
while playing your game?

• Will the application make
money off of the info i enter in
the app?

• What permissions does the app
require in order to work?

• What information do collabo-
rators have access to?

• How do they keep track of
how many people are playing the
game?

• Does the wordscapes app
collect any personally identifi-
able information like my name or
email?

• Do you use my data to do med-
ical research?

• Does this app owner theft
any personal details in my mobile
(like photos videos) possibilities
are there?

• Who all has access to my data? • How can i be sure that my
saliva samples are being deliv-
ered correctly?

• Are there any in game pur-
chases in the wordscapes app that
i should be concerned about?

Table 4.6: Examples of user queries answered both our pipeline (R+A+Q) and the closest model to
Ravichander et al. [195] (R), only our model or none of the models.

existing in-domain data and familiar techniques such as back-translation trained on out-of-domain
data can increase the coverage of user queries, more in-domain data is needed to build paraphrase
techniques to adapt the specificity and style of the user queries to privacy policies.

4.6 Conclusion

In this chapter, we took a step toward building an automated privacy policy question-answering
assistant. This presentation form provides a more personalized interaction with privacy policies in
comparison to the previous approaches. We address two main challenges in this domain: (i) the
difference between the language and style of user queries and the legal language of the privacy
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policies and (ii) low training resources. To so do, we use familiar methods such as lexical substitu-
tion and back-translation to bring the language and style of the user queries closer to the language
of the policies. Next, we use a language representation model fine-tuned on existing in-domain
data to compute a relevancy and informativeness score for each segment in the policy regarding
the user query. Finally, the top-ranked passages are presented to the user. Our proposed pipeline
can successfully find the relevant information in the privacy policy for 87.7% of the queries in the
privacyQA dataset. We observed that using a domain-inspired rule-based approach and training
word-vectors on in-domain data is more effective than an out-of-domain NMT-based paraphrase
generation approach for bringing the language and style of user queries closer to the language of
the privacy policy. However, more in-domain data is needed to build paraphrase techniques to adapt
the specificity and style of the user queries to privacy policies. In addition, we observed that relying
on existing in-domain resources for building a question-answering assistant provides a sufficiently
high-recall retrieval system. However, more resources are required for increasing the precision of
the ranking system.
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Chapter 5: Low-Resource Data-to-Text Generation with Pretrained Language
Models

Expressing natural language descriptions of structured facts or relations – data-to-text gen-
eration (D2T) – increases the accessibility of structured knowledge repositories. Previous work
[168] shows that pre-trained language models (PLMs) perform remarkably well on this task af-
ter fine-tuning on a significant amount of task-specific training data. On the other hand, while
auto-regressive PLMs can generalize from a few task examples, their efficacy at D2T is largely
unexplored. Furthermore, we have an incomplete understanding of the limits of PLMs on D2T.

In this chapter, we conduct an empirical study of both fine-tuned and auto-regressive PLMs on
the DART multi-domain D2T dataset. We consider their performance as a function of the amount of
task-specific data and how the data is incorporated into the models: zero and few-shot learning, and
fine-tuning of model weights. In addition, we probe the limits of PLMs by measuring performance
on subsets of the evaluation data: novel predicates and abstractive test examples. To improve the
performance on these subsets, we investigate two techniques: providing predicate descriptions in
the context and re-ranking generated candidates by information reflected in the source. Finally, we
conduct a human evaluation of model errors and show that D2T generation tasks would benefit from
datasets with more careful manual curation.32

5.1 Introduction

Structured data repositories, or knowledge bases, contain a wealth of information organized
to facilitate automated access and analysis. Automated data-to-text (D2T) generation systems can
transform and summarize this knowledge into natural language text snippets that enable broader
access [79]. These systems take as input a set of relations, where each relation is a (subject, pred-
icate, object) triple. Applications of this technology include story or dialogue generation [164],
open-domain question-answering [146, 71], and text summarization [232]. Domains span journal-
ism [128], weather [193, 158], finance, sports [186, 39, 225], and summarizing patient medical
histories [188].

Historically, D2T systems included pipeline approaches with customized models [78], but have
now shifted to pretrained Transformer-based language models (PLMs) [56, 144, 189]. Recent exam-
ples include Mager et al. [148] and Kale and Rastogi [105], who use models like GPT-2 [189] and
T5 [190] to generate natural language descriptions for relations. To support these types of systems,

32This research work has been conducted during an internship at Bloomberg L.P.
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Nan et al. [168] introduced DART, a large open-domain data-to-text generation corpus. Models
trained on DART, both larger and more diverse than previous corpora, improve the performance of
BART [130] and T5 on the standard WebNLG challenge [78]. This approach requires a PLM to be
fine-tuned on a task-specific in-domain dataset [97, 210, 112]. The promising results achieved by
fine-tuning on DART belie the reality – in spite of DART’s aspirations, most domains and relations
that one could express fail to appear in DART.

A variety of methods have emerged within PLM research to address domain or task adaptation.
For example, auto-regressive models, like GPT, have demonstrated improved performance on a
wide range of tasks via few-shot learning from a handful of examples [42]. Other strategies, such as
prompt tuning [129], can adapt PLMs to specific down-stream tasks by updating only a small subset
of model parameters.

While great progress has been made in utilizing PLMs for D2T generation, the path forward is
unclear, as we have an incomplete understanding as to which examples they fall short on and the
quantity of training resources they need to achieve acceptable performance. More specifically, it is
not clear which classes of D2T examples are challenging for these models. In addition, we do not
fully understand what classes of errors PLMs are prone to and how the adaptation mechanism (e.g.,
k-shot learning, fine-tuning) affects the prevalence of these errors.

In this chapter, we conduct an evaluation of PLMs for D2T generation, focusing on two classes
of challenging examples: examples with novel (unseen) relations (predicates) and examples where
the source and target sequences are lexically very different (not amenable to purely extractive D2T
systems). We consider how GPT-2, adapted with few-shot learning, prompt tuning, and the addi-
tion of predicate descriptions, performs on these example classes as compared to a state-of-the-art
fine-tuned T5. We show that while GPT-2 performs poorly on DART in the 0-shot setting, its perfor-
mance can be drasticahally improved by employing the above techniques. We make the following
contributions:

• We evaluate GPT2-XL and fine-tuned T5 for D2T generation. While the 0-shot GPT model
performs poorly, we evaluate several strategies to improve performance, including few-shot
learning and prompt tuning. Both provide significant improvements on the DART dataset.

• We compare model performance on two classes of difficult examples: examples with unseen
predicates, and abstractive examples (examples where source and target sequences are lexi-
cally dissimilar). We investigate whether including predicate descriptions in the prompt can
improve the ability of PLMs on these classes.

• We conduct a human evaluation of PLMs to quantify the prevalence of hallucination and miss-
ing information in generations as a function of the model adaptation technique. We find that
a re-ranking strategy for few-shot GPT2-XL, despite having little effect on automatic met-
rics like BLEU, reduces the incidence of missing information, without requiring additional
training data.

Finally, we provide recommendations for future model and dataset research in D2T generation.
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5.2 Background and Related Work

In the task of data-to-text generation, we are provided a set of triples that include a predicate,
subject, and object. The system then produces a text snippet expressing the predicate in natural
language. Figure 5.2 shows examples of predicates about sports. The system can be given a set
of triples with related predicates (e.g., CLUB, LEAGUE, FORMER TEAM) and must generate
text that expresses the facts encoded by these relations. The resulting text is typically evaluated by
comparison to a set of reference texts, which represent various ways of expressing this triple set.

Variations in the formulation of this task depend on the structure of the relations (e.g., tables,
triples), the domain of the task (single or open domain), and the source of the data (manually created,
automatically derived).

Harkous et al. [88] follow a generate-and-re-rank paradigm to improve the semantic fidelity
of the generated text by fine-tuned GPT-2 model. More recently, Ribeiro et al. [198] propose a
new task-adaptive pretraining strategy to adapt BART [130] and T5 [190] models for data-to-text
generation. They show that adding an intermediate task-adaptive pretraining step between the task-
independent pretraining and fine-tuning further improves the performance of these models on data-
to-text generation.

Despite the progress of these models, it is not clear which types of D2T examples are most
challenging for PLMs or what errors are prevalent in generations. Futhermore, how does PLM
adaptation (tuning/prompting) interact with the occurrence of these errors. On the other hand, D2T
datasets are not readily available in many domains. Weakly supervised annotation methods (e.g.,
based on identifying sentences in a corpus that are likely to express a data record) require significant
manual effort and often result in annotations with low fidelity between data records and the corre-
sponding textual expression [163]. Training NLG models on such data can result in generations
with missing information or hallucination [64, 66, 67]. These issues render the path forward for
D2T generation research unclear.

5.3 Model Adaptation

As a supervised task, D2T generation systems rely on previously observed examples to learn
the correct generation or level of required ”re-writing” for a predicate. On the other hand, large
auto-regressive PLMs (such as GPT2-XL) are able to perform D2T generation without any explicit
fine-tuning at all. However, their efficacy on D2T and potential shortcomings are largely unexplored.
How well do PLMs perform on relations with a novel predicate? Do PLMs overly rely on copying
verbatim from the input or are they capable of abstraction when required? What classes of errors
are prevalent in the generations and how do they interact with the choice of adaptation mechanism?
Our focus is on the analysis of PLMs for D2T generation.

We study this problem using two types of PLMs: auto-regressive models like GPT-2 and “su-
pervised” models like T5 [190]. While prior work has demonstrated that T5 achieves state of the art
results on D2T, these “supervised” models33 expect task-specific training data, whereas generative

33We note that new findings [206] has demonstrated T5 can handle 0-shot task adaptation with the right prompts; this
is an evolving research area.
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Zero-shot Prompt

Translate Graph to English:

Graph: <H> Alan Martin (footballer) <R> CLUB <T> Hamilton Academical F.C.
English:

Zero-shot Prompt + Relation Description

Translate Graph to English:

Definition: club is an organization of players and managers associated with a particular football team.
Graph: <H> Alan Martin (footballer) <R> CLUB <T> Hamilton Academical F.C.
English:

Figure 5.1: A customized 0-shot prompt for GPT

PLMs excel at adapting to new tasks. Since auto-regressive models have not been fully bench-
marked for D2T, we will evaluate them in multiple settings and compare to T5. For both, we will
explore the effect of varying training size and their pathological behaviors.

While PLMs can be fine-tuned, their increasing size and training requirements disfavors this
approach. Instead, current work assumes a single PLM capable of performing multiple downstream
tasks [129]. We adopt GPT2-XL, a decoder-only Transformer [226] with 1.5B parameters pre-
trained for language modeling [189].34 We utilize GPT2-XL as a D2T generation model by varying
the amount of supervised information available. Instead of fine-tuning GPT2-XL, we investigate
both few-shot learning [189], which is better suited to settings where little training data is available,
and prompt tuning, which enables us to tractably update a subset of model weights in spite of
GPT2-XL’s large parameter count.

5.3.1 0-shot Setting

We start by evaluating GPT2-XL in the 0-shot setting, an especially challenging setting due
to a lack of coverage in the training data of pairings between structured records and unstructured
text [84]. Ribeiro et al. [198] handled this by including an additional pretraining step. Our focus is
on an off-the-shelf GPT2-XL model. We format the input data using the D2T generation infix and
prefix formatting of Ribeiro et al. [198] (example in Figure 5.1). We provide no additional context
or task-specific training.

34WebText (the training dataset) includes content of more than 8 million documents with outbound links from Reddit,
a social media platform. Wikipedia (the main data source for DART) is excluded.
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Few-shot Prompt

Translate Graph to English:

Graph: <H> Paulo Sousa <R> CLUB <T> ACF Fiorentina
English: Paulo Sousa plays for ACF Fiorentina.
###

Graph: <H> Dave Challinor <R> CLUB <T> Colwyn Bay F.C.
English: Dave Challinor plays for Colwyn Bay F.C.
###

Graph: <H> Alan Martin (footballer) <R> CLUB <T> Hamilton Academical F.C.
English:

Figure 5.2: A customized 3-shot prompt for GPT

5.3.2 Few-shot Setting

We next consider a few-shot setting by augmenting the format of the 0-shot input with refer-
ence generations from the training corpus. We evaluate GPT2-XL under the 3-shot learning setting
(example in Figure 5.2). For predicates “seen” in the training set, we select three shots with the
same predicate uniformly at random from the training set. For “unseen” predicates – predicates not
covered in the training set – we randomly select any three examples. Previous work has found that
careful shot selection based on input text similarity can be beneficial [140]. However, it’s less clear
how this would apply to unseen predicates. We leave this for future work.

5.3.3 Prompt Tuning

The expected task for a PLM is indicated by the choice of prompt; ours (Figure 5.1) follows
prior work [198, 168]. The prompt includes a prefix (“Graph”) and infix token (“English”) that
indicate the start of the input and the start of the expected output. Auto-regressive language models
are sensitive to the choice of prompt, and significant effort is needed to craft effective prompts [141].

Lester et al. [129] proposed an alternate method: prompt tuning. Instead of using discrete
prompt tokens, they use “soft-prompts” which are pseudo-token embeddings that are learned during
fine-tuning, with all other model parameters held fixed. We follow previous work [129, 46] and
use a generic sequence of tokens to denote the prompt prefix p1:s = (p1, p2, ....ps) and infix q1:t =
(q1, q2, ....qt). The PLM is provided the input sequence p1:s <H> x1 <R> x2 <T> x3 q1:t, where
x1, x2 and x3 are head, predicate (relation), and tail strings from the example.

The objective during prompt tuning is to maximize the probability of output sequence y1:m
given input data record, prefix p1:s, and infix q1:t. During training however, only the embedding of
the prompt tokens can be updated. Unlike fine-tuning which updates all model parameters on the
target task, prompt tuning tunes a small number of parameters (less than 0.01% of all parameters)
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while keeping most of the language model fixed. While this requires use of the full training set, as
opposed to few-shot learning, it illuminates the abilities of GPT2-XL given access to such data.

5.3.4 Domain Knowledge

We explore another way of improving model performance for novel predicates and for examples
where significant re-writing is needed: providing definitions for predicates. In many domains, we
may find a knowledge base containing many predicates, and definitions for those relations, but no
examples of sentences expressing those relations. In these cases, we want to enhance the context
of the PLM with predicate definitions. For examples, for the tuple <H> Genuine Parts <R> DIS-
TRIBUTOR <T> automotive and industrial replacement parts we may know that DISTRIBUTOR
means ”someone who markets merchandise”. This definition can be helpful to a model that was
never exposed to this predicate at training time.

We source predicate definitions for our data from WordNet, a lexical database in English [161],
and WikiData.35 We use WikiData since Wikipedia was the source of many relations in the DART
data.36 An example of the input prompt enhanced with the predicate definition appears in Figure 5.1.
We also consider using predicate descriptions in combination with prompt tuning.

5.3.5 Fine-tuned PLM

Our second model type is T5large [190], a Transformer encoder-decoder architecture with 770M
parameters for text generation. The model is pretrained with a denoising objective on a variety of
NLP tasks and web-extracted C4 corpus. Unlike GPT2-XL, the denoising objective means an off-
the-shelf model performs poorly on unseen tasks, such as D2T generation [190, 129]. We follow
Nan et al. [168] and fine-tune T5large on the DART training set. While this model requires a large
amount of supervised examples, it attains state of the art performance on this task.

5.4 Dataset

For our experiments we use DART [168], the largest publicly available open-domain data-to-
text generation corpus. DART relies on data from Wikipedia as well as two other commonly used
data sets for this task: WebNLG [78] and E2E [172]. Each instance includes a triple set (a set of one
or more predicates and their labels) and a natural language reference that expresses the facts in the
triple set. We choose DART due to its size and wide coverage of predicate types. Relevant DART
statistics appear in Table 5.1. We use the original train, development, and test splits.37 38

35wikidata.org

36DART includes predicates such as MARGIN OF VICTORY and INTERMEDIATE (SOUTH) WINNERS. Since de-
scriptions for such relations cannot be found verbatim in WordNet or WikiData, no description is added to those cases.

37Nan et al. [168] use version v1.0.0 of DART, whereas we use the publicly available version, v1.1.1.

38In the DART dataset, some data records are paired with more than 30 references. Nan et al. [168] do not report the
number of references used for their experiments. However in their adaptation of Ribeiro et al. [198]’s fine-tuning script
they only use three references. We follow their methodology and only use up to three references per example.
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Train Dev Test
Size 30,526 2,768 5,097
#Unique relation types 4,221 419 494
#Ref per example min/avg/max 1/2.0/48 1/2.5/33 1/2.4/35
#Triples per record min/avg/max 1/3.3/10 1/3.7/8 1/3.6/7

Table 5.1: Descriptive statistics of the DART version 1.1.1

Data Splits: The DART test set includes 5,097 examples, of which 4,826 (94.4%) include at
least one relation type that appears in the training set. We refer to this subset as the SEEN partition.
The remaining 271 instances (5.3%) are considered UNSEEN.39

To support additional system analysis, we create another partition of the test data: EASY and
HARD. HARD examples are identified by similarity of the input triple to the reference text. In many
cases, the reference has high lexical overlap with and similar meaning to the input, while in other
cases the generation is non-trivial (see Figure 5.3 for examples). To create the EASY and HARD

partitions, we use BERTScore [247] to compute similarity of the input triple with respect to the
reference. Examples are ranked based on BERTScore (F1) and the top 10% (510 examples) com-
prise the EASY partition, while the bottom 10% comprise the HARD partition. By using BertScore
to separate EASY and HARD examples, we are not relying purely on lexical overlap to score the
difficulty of an example.

5.5 Experimental Setup

Model Training We use the pretrained models GPT2-XL and T5large released by Hugging
Face [233], along with their respective tokenizers, for all experiments.

We use beam search with beam size of three for decoding in all models, lightly post-processing
the generated text by truncating generations at the newline character. We set maximum generated
tokens to 100 and repetition penalty to 1.01 for all experiments.

We used a single V100 GPU with 32GB of memory for all prompt tuning experiments, tuning
for a single epoch on the DART train set with prefix and infix length both set to 8 tokens. We use
the Adam optimizer [120] with maximum learning rate of 0.1 and 100 warm up steps for the linear
learning rate schedule. Training batch size was fixed to 2, with 32 gradient accumulation steps
(effective batch size of 64 examples).

We use the scripts from Ribeiro et al. [198] to fine-tune T5 on DART, using identical hyperpa-
rameter settings.40 We use the Adam optimizer with an initial learning rate of 3e-5 and a linearly
decreasing learning rate schedule. We fine-tune the model on four GPUs for a maximum of 100
epochs and stop training early if the performance does not improve on the dev set for 15 epochs.
Each training epoch takes approximately two hours for each model.

39Note that Nan et al. [168] report performance on the “unseen” portion of WebNLG. “Unseen”, in this case, means
that the relations do not appear in the WebNLG training data; there is no guarantee that they do not appear in the DART
training data. Our splits ensure that the UNSEEN partition only contains predicates not seen during DART training.

40https://github.com/UKPLab/plms-graph2text (Apache 2.0 license)
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Finally, we include a baseline system to benchmark performance of our machine learning mod-
els. In a “copy baseline” we simply copy the input text and remove the prefix tokens (<H>, <R>,
<T>) as well as special characters (e.g., underscores) common in DART predicates. This baseline
performs well for examples with high lexical overlap between input triple set and reference.

Evaluation Metrics Following previous work, we use automated metrics such as BLEU [178],
METEOR [55], translation edit rate (TER) [214], and chrF++ [187] for evaluating our generation
results. In addition, we also report BERTScore [247] and BLEURT [211]. These metrics go beyond
surface form similarities and use contextual embeddings to measure semantic similarity between
the generated and reference text.41

5.6 Experiments and Results

We evaluate PLMs with various input types and training regimes to answer the following em-
pirical questions:

• How do the adaptation mechanism and level of supervision at train time affect PLM perfor-
mance on the D2T task?

• What classes of D2T examples are particularly challenging for each PLM? How well do
PLMs perform on out-of-sample predicates and examples that are more abstractive (dissimilar
source and target sequences)?

• Can we improve performance on examples with unseen predicates by including predicate
descriptions in the prompt, as mentioned in §5.3.4?

• Qualitatively, what kinds of errors do PLMs make on the D2T task? Are some adaptation
techniques more susceptible to classes of errors than others?

• Can we mitigate some of these errors by re-ranking the decoding results?

Table 5.2 and 5.3 present model performance on the entire DART dataset (ALL), as well as the
SEEN and UNSEEN partitions.

Level of Supervision: We first turn to GPT2-XL, which is evaluated on this task without any
training data. Following previous work we find that GPT2-XL makes an effective 0-shot model,
outperforming the copy baseline according to BLEU and METEOR (row 2). Examining the output
more closely, we find that GPT2-XL mostly copies the input; while it outperforms the copy baseline,
its strategy is largely the same. We include example generations in Section 5.7. 3-shot GPT2-XL
(row 3) does much better than the 0-shot case. Note that in this setting, no model parameters are
updated. In addition, the amount of annotated data used for creating 3-shot prompts is much less
than what is used for prompt tuning and fine-tuning. While few-shot prompting leads to a boost in
BLEU and METEOR, TER increases by 0.14 point. We conjecture that this is due to an increase

41We use the evaluation scripts provided in the official WebNLG challenge: https://github.com/WebNLG/
GenerationEval (MIT license)
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ID Model BLEU ↑ METEOR ↑ TER ↓
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL

1 copy baseline 4.48 5.07 4.50 0.28 0.31 0.28 0.92 0.86 0.92
2 GPT2-XL (0-shot) 13.13 13.88 13.26 0.23 0.27 0.23 0.69 0.78 0.70
3 GPT2-XL(3-shot) 26.74 23.72 26.65 0.29 0.28 0.29 0.85 0.78 0.84
4 GPT2-XL-PT 33.55 29.86 33.41 0.24 0.28 0.24 0.65 0.61 0.65
5 GPT2-XL-PT + Reranking 31.03 31.67 31.09 0.28 0.30 0.28 0.63 0.58 0.63
6 T5large 48.41 43.48 48.25 0.39 0.40 0.39 0.46 0.44 0.46
+Descriptions
7 GPT2-XL(0-shot) 11.45 8.05 11.4 0.20 0.19 0.20 0.70 1.00 0.72
8 GPT2-XL(3-shot) 26.32 21.30 26.14 0.28 0.27 0.28 0.83 0.89 0.83
9 GPT2-XL-PT 33.96 31.37 33.85 0.24 0.28 0.24 0.66 0.59 0.66
10 T5large 48.56 43.82 48.4 0.39 0.39 0.39 0.46 0.45 0.46

Table 5.2: Model results on test set of the DART dataset. ↑: Higher is better. ↓: Lower is better.

ID Model chrF++ ↑ BERTScore(F1) ↑ BLEURT ↑
SEEN UNSEEN ALL SEEN UNSEEN ALL SEEN UNSEEN ALL

1 copy baseline 0.33 0.34 0.33 0.83 0.85 0.83 -0.59 -0.29 -0.58
2 GPT2-XL (0-shot) 0.34 0.34 0.34 0.88 0.87 0.88 -0.46 -0.30 -0.46
3 GPT2-XL (3-shot) 0.48 0.44 0.48 0.91 0.91 0.91 -0.19 -0.17 -0.19
4 GPT2-XL-PT 0.40 0.44 0.40 0.92 0.92 0.92 -0.11 0.06 -0.10
5 GPT2-XL-PT + Reranking 0.46 0.47 0.46 0.92 0.92 0.92 -0.01 0.12 0.00
6 T5large 0.64 0.64 0.64 0.95 0.95 0.95 0.38 0.44 0.39

+ Description
7 GPT2-XL (0-shot) 0.31 0.23 0.30 0.88 0.86 0.88 -0.46 -0.54 -0.46
8 GPT2-XL (3-shot) 0.47 0.42 0.46 0.91 0.90 0.91 -0.19 -0.16 -0.19
9 GPT2-XL-PT 0.39 0.45 0.39 0.91 0.92 0.91 -0.14 0.09 -0.13
10 T5large 0.64 0.63 0.64 0.95 0.95 0.95 0.38 0.43 0.38

Table 5.3: Performance on the DART test set, partitioned by whether predicates are SEEN, UNSEEN,
and overall. ↑: Higher is better.

in hallucinated content in this setting. We take a closer look at these pathological behaviors in our
human evaluation.

Both GPT2-XL models prompt tuned on the entire DART dataset (row 4 and 5) outperform the
3-shot model by a wide margin. As reported previously [168], we also notice that fine-tuned T5
(row 6) performs well on this task surpassing either prompt tuned GPT2-XL model.

Consistent with previous findings, we also notice that the more training data that is used to
adapt the model (either by few-shot learning or training model weights), the better PLMs perform.
However, in a resource-constrained setting, few-shot GPT2-XL achieves reasonable performance.
Few-shot adaptation might be a good choice for D2T when the number of unique predicates in the
test set is small, and only very few examples can be manually annotated. On the other hand, if more
data is available, fine-tuning T5 leads to better results for D2T. In fact, our experiments show that
T5 can surpass the 3-shot GPT2-XL after fine-tuning on only 200 examples. See our experiments
under ”Training Curves” for more details.
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Training Curves: In this experiment, we seek to answer that how much data does T5 require to
do well on this task? Specifically, how many examples are required for T5 to exceed the performance
of the few-shot GPT2-XL? We fine-tune T5 on increasingly larger amounts of training data. We
start off with an off-the-shelf T5 model with no additional training. We then vary the number of
training examples in {10, 20, 50, 100, 200, 500}.42 We repeat each setting five times by resampling
a training set and fine-tuning T5, and report results for each training set size averaged cross all
test partitions. Figure 5.4 shows the BLEU performance (y-axis) of T5 as a function of number
of training examples (x-axis). Performance of the copy baseline, 0-shot, 3-shot, and prompt tuned
GPT2-XL are indicated by horizontal lines. Without any task-specific fine-tuning, T5 does slightly
worse than the copy baseline, easily outperformed by 0-shot GPT2-XL. In settings without training
data, GPT2-XL is the clear choice. T5 continues to lag behind GPT2-XL 3-shot until trained on at
least 200 examples, and meets the performance of GPT2-XL prompt tuned after training on 500.

Predicate Novelty: As expected, the copy baseline (row 1) performs poorly across all con-
ditions, but consistent for both the SEEN and UNSEEN partitions. 0-shot GPT2-XL also performs
similarly on both partitions, since it was not trained on any task data. GPT2-XL with a 3-shot
prompt (row 3) outperforms 0-shot on both partitions, despite the unseen prompts including unre-
lated predicates; the model still benefits from multiple shots even if they do not contain the same
predicates (+9.84 BLEU points).

Prompt tuning and re-ranking generated samples by overlap with the triple set entities both im-
prove the performance of GPT2-XL on novel predicates. Overall, GPT2-XL performs consistently
across SEEN and UNSEEN partitions, while T5 performance is more sensitive to whether the pred-
icate was observed during training (e.g., difference of 4.93 points BLEU in row 6). We do not see
a consistent performance drop going from SEEN to the UNSEEN partition when looking at chrF++,
BertScore, and BLEURT. This is somewhat surprising, but also hard to interpret given that chrF++
relies on character n-gram and BertScore and BLEU rely in contextualized embeddings.

We next turn to evaluating the impact of augmenting prompts with predicate descriptions for
unseen predicates. This process is described in §5.3.4. We evaluate this augmentation in the 0-
shot (row 7), 3-shot (row 8) and prompt tuning (row 9) settings, as well as in T5 fine-tuning (row
10). We observe very small improvements on the UNSEEN partition and only in cases where model
parameters are updated (rows 9 and 10). We suspect that as descriptions are sourced from WordNet
and WikiData, either many predicates could not be resolved to a description in these tables, or the
predicates that could be resolved were largely self-explanatory. We conjecture that in the 0-shot
setting, conditioning the generation on descriptions might distract the model from the head and tail
entity. On the other hand, many of the unseen predicates in DART are not words that can be easily
resolved. However, we suspect that if they were to be reliably resolved, specialized domains such
as finance or medicine would benefit from adding predicate descriptions.

Generation Difficulty: Table 5.4 shows the performance of all models on the EASY and HARD

partitions. All models have noticeably worse performance on HARD examples, where more abstrac-
tion is needed. The best performing model, T5 (row 16), has a gap of 0.16 METEOR between the
EASY and HARD partition, while the prompt tuned GPT2-XL (row 14) has the smallest difference in
performance between the partitions. It is clear that these models perform well overall when copying

42We use the same hyper-parameters as before except for the number of training epochs and batch size. To avoid
over-fitting on small data, we only fine-tune for 1 epoch. We use batch size of 2.
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ID Model BLEU ↑ METEOR ↑ chrF++ ↑ TER ↓ BERTScore(F1) ↑ BLEURT ↑
EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD EASY HARD

11 copy baseline 18.00 2.01 0.41 0.23 0.45 0.32 0.79 0.99 0.88 0,80 0.12 -1.00
12 GPT2-XL (0-shot) 22.20 6.92 0.34 0.18 0.47 0.31 0.83 0.64 0.90 0.88 -0.09 -0.54
13 GPT2-XL (3-shot) 34.97 1.88 0.34 0.06 0.54 0.07 0.82 0.38 0.92 0.93 -0.09 -0.11
14 GPT2-XL-PT 42.81 31.78 0.35 0.23 0.57 0.39 0.48 0.69 0.94 0.92 0.31 -0.17
15 GPT2-XL-PT + Reranking 43.35 25.79 0.37 0.29 0.60 0.48 0.47 0.66 0.94 0.93 0.34 -0.04
16 T5large 70.54 38.34 0.51 0.35 0.80 0.57 0.23 0.59 0.97 0.94 0.70 0.20
+Descriptions
17 GPT2-XL (0-shot) 19.00 6.43 0.30 0.17 0.42 0.31 0.93 0.65 0.89 0.88 -0.20 -0.54
18 GPT2-XL (3-shot) 34.19 20.54 0.38 0.26 0.61 0.44 0.92 0.81 0.93 0.91 0.07 -0.26
19 GPT2-XL-PT 42.52 33.1 0.34 0.23 0.56 0.39 0.5 0.69 0.93 0.91 0.28 -0.21
20 T5large 70.06 38.49 0.51 0.34 0.80 0.57 0.23 0.60 0.97 0.94 0.69 0.20

Table 5.4: Model results on EASY and HARD partitions of the DART test set. ↑: Higher is better.
↓: Lower is better.

from the input suffices, but do poorly when significant rewriting is required. In many domains, we
may prefer models with more diverse, creative generations, a task at which these models do not do
well. On the other hand, DART is a mostly automatically derived dataset, with significant errors in
some examples, where the reference text may contain information that is unsupported by the input
triple. These examples may pervade the HARD partition.

Next, we investigate the impact of adding predicate descriptions on D2T of the HARD parti-
tion. In the few-shot setting, adding predicate descriptions improves the BLEU score to 20.54 on
the HARD partition (row 18). Conditioning the model on predicate descriptions significantly en-
hances it’s re-writing ability. For the prompt tuned GPT2-XL, BLEU score improves to 33.1 (row
19). However, we do not see any gains for 0-shot GPT or T5 (row 17 and 20). Overall, GPT2-
XL benefits from predicate descriptions on examples where significant re-writing is needed, even
when additionally prompt tuned. GPT2-XL with prompt tuning achieves competitive results with
benchmark T5 on the HARD partition (33.1 vs 38.49 BLEU).

Human Evaluation: To further examine the pathological behaviors of the models, we ran-
domly sampled 50 examples from the DART test set for human evaluation. For each example,
the output of T5 and GPT2-XL in the 3-shot, prompt tuned, and re-ranked settings were presented
to two annotators.43 We also showed the reference text as another candidate, with the generating
model identity hidden. Annotators evaluated output quality based on three criteria: (1) whether it
contains hallucinated content (hallucination) (2) whether the text is missing information from the
input records (missing info), and (3) fluency. Annotators indicated agreement with each of these
Likert items on an ordinal scale from 1 (strongly disagree) to 5 (strongly agree).

Table 5.5 presents average annotator score according to each of these Likert items. GPT2-XL
in the 3-shot setting often misses information. Notably, both prompt-tuned variations generate very
fluent text. Re-ranking improves the quality of the generations by decreasing the amount of missing
information and improving fluency. While the best GPT2-XL model does very similar to T5large in
terms of fluency, on average it hallucinates or misses information more often.

Re-ranking: GPT2-XL prompt tuned is both parameter efficient and generalizes very well to
novel predicates. It also does very well on examples that require more re-writing. It approaches
the performance of fine-tuned T5large according to avoiding hallucinations and fluency. During the

43Two of the paper authors.
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Source Hallucination ↓ Missing Info ↓ Fluency ↑
Reference 1.53 1.19 4.51
GPT2-XL(3-shot) 3.26 3.61 3.17
GPT2-XL-PT 1.73 3.35 4.64
GPT2-XL-PT + Ranking 1.73 2.79 4.75
T5 large 1.16 1.23 4.79
Agreement 0.64 0.77 0.50

Table 5.5: Results of the qualitative evaluation. ↓: Lower is better. ↑: Higher is better. Inter-
annotator agreement is measured by Kendall’s τ rank correlation coefficient.

human evaluation, we observe that this model would often miss subject or object of the predicate
in its generations (see our human evaluation for details). We can mitigate this problem without ad-
ditional model training through a re-ranking strategy to ensure that the selected generation contains
all relevant information.

We first create multiple candidate generations by increasing beam size during decoding. Next,
we compute the percentage of head and tail entities covered in the text. Finally, we pick the can-
didate that contains the highest percentage of entity spans from the input triple.44 Rows 5 and 15
show the results of re-ranking a GPT2-XL prompt tuned model. Re-ranking modestly improves
performance on all partitions, and across all metrics except BLEU.

5.7 Sample Model Output

In this section, we share a few samples from the DART test set as well as outputs generated by
different models. We qualitatively compare different models and highlight a few of their common
errors.

Task Prompting: As seen in Examples 1 and 2, GPT2-XL in the 0-shot setting often copies
the input. GPT2-XL with a 3-shot prompt generates a much more fluent text than the 0-shot case.
This can be seen in Examples 2, 4, and 5. Although GPT2-XL with few-shot prompting generates
more fluent text, it often generates hallucinated content (see Example 3).

We see that prompt tuning further boosts our performance and generates a more coherent text in
comparison to few-shot GPT2-XL (see Example 1 and 3). Moreover, it hallucinates much less than
the few-shot setting (e.g. see Example 3). We also saw this previously in Table 5.2, as the prompt
tuned GPT2-XL achieved lower TER score. In contrast to T5 training, in which all model parame-
ters are updated, prompt tuning adapts only a small fraction of the model parameters. However, in
many cases the generated text is as good as the benchmark T5 (see Example 2). Despite generat-
ing very fluent text, prompt tuned GPT2-XL often misses information from one or more relations
(Examples 1, 3, and 4).

44We use a beam size of 20 during decoding. Prior to measuring the entity coverage in the candidates, we normalize
the text by lower casing and removing special characters.
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Re-ranking: Re-ranking based on entity coverage solves the missing information issue in
several cases. For example, in Example 3, the entity Alvis Speed 25 which is missed by the prompt
tuned GPT2-XL, is covered after re-ranking. The benefit of re-ranking also can be seen in Example
4. On the other hand, in Example 2, ranking does not solve the missing information issue. This is
because argument ”yes” of ”family-friendly” probably would not naturally appear in generated text
(e.g., ”Yes, this is a family-friendly restaurant”). For such cases, the re-ranking heuristic will not
provide useful feedback.

Predicate Descriptions: As mentioned before, in several cases, the description extracted from
WordNet and WikiData are trivial. In Example 2, the definition of relations food, area, and near
add no information beyond the word itself, and therefore not helpful for the model. On the other
hand, it seems like defining relation MANUFACTURER in Example 3 has improved generations
of GPT2-XL in both the few-shot and prompt-tuned settings. In some cases, while the predicate
description can be potentially useful, the model ignores the augmented description. For example,
in 4, the definition of relation GENRE is not covered in the generated text of any of models.

5.8 Conclusion

In this chapter, we systematically analyze the performance of two PLMs – T5 and GPT2-
XL – for D2T generation by examining performance based on the choice of adaptation mechanism:
fine-tuning, prompt tuning, and few-shot learning. We observe that while fine-tuning on more data
leads to better performance, when no training data is available, GPT2-XL (0-shot) outperforms T5.
With a small number of training examples, few-shot GPT2-XL is a more appropriate solution for
D2T.

We also conduct a thorough investigation of D2T challenges for PLMs by evaluating them on
two divisions of the DART test set: novel predicates and abstractive examples. We show that the
performance of fine-tuned T5 drops significantly on unseen predicates. On the other hand, the per-
formance of few-shot GPT2-XL on unseen predicates can be enhanced even with shots containing
unrelated predicates. We also notice that T5 and GPT2-XL both do well at D2T by copying the in-
put. However, they do noticeably worse on examples where significant re-writing is needed. Adding
domain knowledge (predicate descriptions) to the prompts can improve the performance of few-shot
GPT2-XL on this subset by a large amount. We also conduct a human evaluation of the generations
and find that prompt tuned GPT2-XL generations can be improved by re-ranking generations by
overlap with the input entity spans.
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EASY Examples

Input: <H> Adolfo Suárez Madrid–Barajas Airport <R> LOCATION <T> Madrid, Paracuellos de
Jarama, San Sebastián de los Reyes and Alcobendas
Reference: Adolfo Suárez Madrid–Barajas Airport can be found in Madrid, Paracuellos de Jarama, San
Sebastián de los Reyes and Alcobendas.’
###
Input: <H> Alderney Airport <R> RUNWAY NAME <T> ”14/32”
Reference: Alderney Airport runway name is 14/32
###
Input: <H> Asunción <R> IS PART OF <T> Gran Asunción
Reference: Asunción is a part of Gran Asunción.
###
Input: <H> Airey Neave <R> AWARD <T> Military Cross
Reference: Airey Neave was awarded the Military Cross.

HARD Examples

Input: <H> 2004 <R> MOVEMENTS <T> Promotion Playoffs - Promoted <H> 2004 <R> POSI-
TION <T> 1st
Reference: Sports stats for Ljungskile SK
###
Input: <H> thierry morin <R> POSITION <T> defender <H> [TABLECONTEXT] <R> NAME
<T> thierry morin <H> [TABLECONTEXT] <R> [TITLE] <T> Players
Reference: Thierry Morin was a defender for Paris Saint-Germain.
###
Input: <H> ALV X-1 <R> COUNTRY ORIGIN <T> United States <H> United States <R> ETH-
NIC GROUP <T> African Americans <H> United States <R> DEMONYM <T> Americans
Reference: Originating in the United States and by Americans, some of African decent is the ALVX-1.’,
’ALVX-1 comes from the US where Americans live and African Americans are an ethnic group
###
Input: <H> past tense <R> SEASON # <T> 4 <H> past tense <R> ORIGINAL AIR DATE
<T> october29,2008 <H> past tense <R> NO. IN SERIES <T> 13 <H> past tense <R>
U.S. VIEWERS (MILLIONS) <T> 7.93 <H> past tense <R> DIRECTED BY <T> michael press-
man <H> past tense <R> WRITTEN BY <T> craig turk
Reference: Past Tense was the 13th episode in the series.

Figure 5.3: Examples from the EASY and HARD partition
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Example #1

Input: <H> Aleksey Chirikov (icebreaker) <R> SHIP BEAM <T> 21.2 <H> Aleksey Chirikov
(icebreaker) <R> STATUS <T> ””In service”” <H> Aleksey Chirikov (icebreaker) <R> BUILDER
<T> Helsinki <H> Aleksey Chirikov (icebreaker) <R> BUILDER <T> Arctech Helsinki Shipyard
Reference: The icebreaker Aleksey Chirikov was built at the Arctech Helsinki Shipyard in Helsinki. The
Aleksey Chirikov (icebreaker) is in service and its ship beam is 21.2
Description: BUILDER means a person who constructs something
GPT2-XL (0-shot): <H> Aleksey Chirikov (icebreaker) <R> SHIP BEAM <T> 21.2 <H> Alek-
sey Chirikov (icebreaker) <R> STATUS <T> ”In service” <H> Aleksey Chirikov (icebreaker) <R>
BUILDER <T> Helsinki <H> Aleksey Chirikov (icebreaker) <R> BUILDER <T>
GPT2-XL (3-shot): Aleksey Chirikov (icebreaker) is of type 21.2.
GPT2-XL (3-shot) + Description: Aleksey Chirikov (icebreaker) was a Russian icebreaker.
GPT2-XL-PT: Aleksey Chirikov (icebreaker) was built by Arctech Helsinki Shipyard.
GPT2-XL-PT + Description: Aleksey Chirikov (icebreaker) was built by Arctech Helsinki Shipyard.
GPT2-XL-PT + Reranking: Aleksey Chirikov (icebreaker) is in service at Arctech Helsinki Shipyard.
T5large: The ship Aleksey Chirikov was built by Arctech, Helsinki Shipyard and has a ship beam of 21.2
metres. It is currently in service.

Example #2

Input: <H> The Mill <R> eatType <T> pub <H> The Mill <R> food <T> Fast food <H> The
Mill <R> area <T> city centre <H> The Mill <R> familyFriendly <T> no <H> The Mill <R> near
<T> Café Sicilia
Reference: The Mill pub is near Café Sicilia in the city centre that isn’t family friendly, is average and
has Fast food.
Description: eatType means type of food served by a restaurant or restaurant chain. food means any
substance that can be metabolized by an animal to give energy and build tissue. area means area occupied
by an object. near means move towards.
GPT2-XL (0-shot): Graph: <H> The Mill <R> eatType <T> pub <H> The Mill <R> food <T>
Fast food <H> The Mill <R> area <T> city centre <H> The Mill <R> familyFriendly <T> no <H>
The Mill <R> near <T> Café Sicilia
English:
GPT2-XL (3-shot): The Mill is located in the city centre near Café Sicilia. It serves fast food in the price
range of £20-25 with a moderate customer rating
GPT2-XL (3-shot) + Description: The fast food restaurant, The Mill, has an average rating of 3 out of 5
perhaps as it is not friendly to kids. The Mill is located in the city centre area near Café Sicilia.
GPT2-XL-PT: The Mill is a fast food pub in the city centre near Café Sicilia.
GPT2-XL-PT + Description: The Mill is a family friendly pub near Cafe Sicilia.
GPT2-XL-PT + Reranking: The Mill is a fast food pub in the city centre near Café Sicilia.
T5large: The Mill is a fast food pub in the city centre near Café Sicilia.

Figure 5.5: Examples of model outputs
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Example #3

Input: <H> Alvis Speed 25 <R> MANUFACTURER <T> Alvis Car and Engineering Company
<H> Alvis Car and Engineering Company <R> LOCATION CITY <T> Coventry
Reference: Alvis Speed 25 was made by the Alvis Car and Engineering Company of Coventry.
Description: MANUFACTURER means manufacturer or producer of this product.
GPT2-XL (0-shot): <H> Alvis Speed 25 <R> MANUFACTURER <T> Alvis Car and Engineering
Company <H> Alvis Car and Engineering Company <R> LOCATION CITY <T> Coventry
GPT2-XL (3-shot): Alvis Speed 25 won the race in Coventry on April 25, 1996.
GPT2-XL (3-shot) + Description: Alvis Speed 25 is a car manufactured by Alvis Car and Engineering
Company in Coventry, England
GPT2-XL-PT: Alvis Car and Engineering Company is located in Coventry.
GPT2-XL-PT + Description: Alvis Speed 25 is manufactured in Coventry.
GPT2-XL-PT + Reranking: Alvis Speed 25 is manufactured by Alvis Car and Engineering Company
in Coventry.
T5large: Alvis Car and Engineering Company is located in Coventry and manufactures the Alvis Speed 25.

Example #4

Input: <H> Anders Osborne <R> ASSOCIATED BAND ASSOCIATED MUSICAL ARTIST <T>
Galactic <H> Anders Osborne <R> ASSOCIATED BAND ASSOCIATED MUSICAL ARTIST <T>
Tab Benoit <H> Anders Osborne <R> GENRE <T> Blues <H> Anders Osborne <R> ASSOCI-
ATED BAND ASSOCIATED MUSICAL ARTIST <T> Billy Iuso <H> Anders Osborne <R> AC-
TIVE YEARS START YEAR <T> 1989
Reference: Anders Osborne musical career began in 1989. His career began in the blue’s genre. He has
been associated with the band, Galactic as well as Tab Benoit. Osborne also has ties to fellow musician
Billy Iuso.
Description: GENRE means creative work’s genre or an artist’s field of work
GPT2-XL (0-shot): <H> Anders Osborne <R> ASSOCI-
ATED BAND ASSOCIATED MUSICAL ARTIST <T> Galactic <H> Anders Osborne <R>
ASSOCIATED BAND ASSOCIATED MUSICAL ARTIST <T> Tab Benoit <H> Anders Osborne
<R> GENRE <T> Blues <H> Anders Osborne <R> ASSOCIATED BAND ASSOCIATED M
GPT2-XL (3-shot): Anders Osborne is an English singer, songwriter and guitarist.
GPT2-XL (3-shot) + Description: Anders Osborne is an active musician and composer.
GPT2-XL-PT: Tab Benoit and Anders Osborne are associated with Galactic.
GPT2-XL-PT + Description: Tab Benoit and Anders Osborne are associated with Galactic.
GPT2-XL-PT + Reranking: Tab Benoit is associated with Galactic and Anders Osborne is associated
with Billy Iuso.
T5large: Anders Osborne is associated with the band Galactic, Billy Iuso, Tab Benoit and the genre of
Blues. His active years start in 1989.

Figure 5.6: Examples of model outputs
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Example #5

Input: <H> Nurburgring <R> FASTEST LAP <T> PSV Eindhoven <H> Nurburgring <R> WIN-
NING CLUB <T> A.C. Milan
Reference: PSV Eindhoven had the fastest lab on the Nurburgring, and A.C. Milan was the winning club
at that race.
Description: FASTEST LAP means person who does the fastest lap during a motorsport race.
GPT2-XL (0-shot): <H> Nurburgring <R> FASTEST LAP <T> PSV Eindhoven <H> Nurburgring
<R> WINNING CLUB <T> A.C. Milan
GPT2-XL (3-shot): A.C. Milan had the fastest lap in the race won by PSV Eindhoven.
GPT2-XL (3-shot) + Description: A.C. Milan set the fastest lap at the Nurburgring when the winning
team was PSV Eindhoven.
GPT2-XL-PT: Nurburgring is the fastest lap at A.C. Milan.
GPT2-XL-PT + Description: PSV Eindhoven is the winning club at the Nurburgring.
GPT2-XL-PT + Reranking: Nurburgring is the fastest lap at A.C. Milan
T5large: A.C. Milan won the race where PSV Eindhoven had the fastest lap.

Figure 5.7: Examples of model outputs
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Chapter 6: Fairness aware summarization for justified decision making

In consequential domains such as recidivism prediction, facility inspection, and benefit assign-
ment, it’s important for individuals to know the decision-relevant information for the model’s pre-
diction. In addition, predictions should be fair both in terms of the outcome and the justification of
the outcome. In other words, decision-relevant features should provide sufficient information for the
predicted outcome and should be independent of the membership of individuals in protected groups
such as race and gender. In this chapter, we focus on the problem of (un)fairness in the justification
of the text-based neural models. We tie the explanatory power of the model to fairness in the out-
come and propose a fairness-aware summarization mechanism (FairSum) to detect and counteract
the bias in such models. Given a potentially biased natural language explanation for a decision, we
use a multi-task neural model and an attribution mechanism based on integrated gradients to extract
high-utility and low-bias justifications in form of a summary. The extracted summary is then used
for training a model to make decisions for individuals. Results on several real-world datasets sug-
gest that our method drastically limits the demographic leakage in the input (fairness in justification)
while moderately enhancing the fairness in the outcome. Our model is also effective in detecting
and counteracting several types of data poisoning attacks that synthesize race-coded reasoning or
irrelevant justifications. In addition, results from a pilot user study indicates that our model is an ef-
fective pre-processing approach for neutralizing the textual data (in terms of the protected attribute)
while preserving decision-relevant information.

6.1 Introduction

AI systems are increasingly adopted to assist or replace humans in several highly consequen-
tial domains including recidivism assessment [14], policing [202, 114], credit card offering [216],
lending [123], and prioritizing resources for inspection 45. To maximize the utility, such models are
trained to minimize the error on historical data (decisions made by humans in the past). However,
historical decisions can have unfair outcomes or be based on unfair arguments. Training models on
historical decisions with unfair outcomes or justifications can reinforce the biases that already exist
in our society. In fact, training models without fairness considerations has already resulted in several
cases of discrimination [121, 174, 5, 23]. Discrimination in this context is defined as the unjustified
distinction between individuals based on their membership in a protected group (e.g. gender identity
or ethnicity). The concerns and observations regarding the unfairness of AI algorithms have led to a
growing interest in defining, measuring, and mitigating algorithmic unfairness [183, 19, 45, 77, 96].

45https://chicago.github.io/food-inspections-evaluation/
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A large body of research on the fairness of AI has focused on mitigating the bias in decision-making
by minimizing the difference between treatment and outcome among different protected groups (see
§ 6.2).
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Figure 6.1: A fairly-justified decision should have a
fair outcome and be based on fair justifications.

While training models on historical
decisions with unfair outcomes is detri-
mental, using historical training data with
unfair justifications is equally harmful.
For example, training a text-based neural
model on unfair justifications can cause
the model to associate a gender or race-
coded phrase in the input to a certain out-
come. This phenomena is an example of
disparate impact [13, 241]. On the other
hand, it is possible that individuals from
two or more protected groups are treated
differently (received different outcomes).
But the differences can be justified and ex-
plained using multiple fair arguments and
therefore is not considered illegal [157].
For example, Kamiran et al [106] state
that the difference in income level in fe-

males and males in the UCI adult income dataset 46 — a well-studied dataset in algorithmic fairness
research — can be attributed to the difference in working hours. Methods that do not take into
account the explainability aspect of discrimination will result in reverse discrimination [106]. This
highlights the need to distinguish between the fairness of the outcome and fairness in the justifica-
tion of the outcome (see Figure 6.1). A fairly-justified decision should both have a fair outcome and
be fairly justified. In other words, the justification should include enough information to explain the
outcome [31] and should not be based on information about membership in protected groups.

While there are several sources for unfairness in the reasoning of AI models, in this chapter,
we focus on detecting and counteracting biases in the justification of text-based decision-making
models. We propose a fairness-aware summarization mechanism as a pre-processing step to reduce
potential biases from textual justifications. We propose methods to first identify and measure bias in
textual explanations and then mitigate this bias using a filtering-based approach. We measure bias
by using metrics such as demographic parity [27], equalized odds [86], and calibration [121], and
by measuring the adversary’s ability to identify membership in protected groups given the textual
explanations. To counteract the bias, our proposed summarization model obfuscates the arguments
that are not useful for decision making or are only useful when they correlate with the protected
attribute. Finally, the extracted fairly-justified summaries are used to train a final model. This
preprocessing approach ensures learning a model that is both transparent and agnostic about gender-
coded or race-coded arguments 47. Our framework can potentially assist users in understanding the

46https://archive.ics.uci.edu/ml/datasets/adult

47Note that we do not claim or assume that “fair explanations should avoid mentioning the protected attribute”. Rather
methodologically, we are removing the signals about the protected attribute to test whether the rest of the arguments still
sufficiently justify the outcome.
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decisions that are made for them by presenting the most predictive justifications. To summarize, in
this study, we make the following contributions:

• We propose the use of a multi-task model and an attribution mechanism to attribute the deci-
sion of the model as well as potential biases in the justification to certain parts of the inputs.

• We propose a fairness-aware summarization model (FairSum) to condense the input expla-
nations. Our model extracts the decision-relevant justifications while removing the potentially
unfair ones. Our proposed preprocessing approach is independent of modeling and can be in-
tegrated into the data science pipeline with other in-processing and post-processing fairness
enhancement mechanisms.

• We show that applying FairSum on the input data does not hurt the utility of the model but
significantly limits the leakage of information about protected attributes of individuals.

• We show that using FairSum to obfuscate the race-coded or gender-coded input justifica-
tions moderately enhances the fairness in the outcome.

• We test the performance of our proposed approach under several types of unfairness attacks.

• We conduct a preliminary pilot user study to examine the impact of FairSum on users per-
formance in teaching evaluation task. In addition, we evaluate the impact of our method on
neutralizing the teaching reviews in terms of gender.

6.2 Related Work

Machine Learning Fairness: Techniques proposed to enhance fairness in machine learning
algorithms can be broadly categorized into pre-processing methods, in-processing methods, and
post-processing methods [183]. Pre-processing mechanisms use re-weighting, relabeling, or other
transformations of the input data to remove dependencies between the class label and the sensitive
attributes before feeding it to the machine learning algorithm [82, 28, 244, 73, 54, 69, 235]. This
class of approaches is closely related to the field of privacy [68]. Since both fairness and privacy
can be enhanced by obfuscating sensitive information from the input data with the adversary goal
of minimal data perturbation [111, 101]. In-processing methods modify the optimization proce-
dure of the classifier to integrate fairness criteria in the objective function [108, 3, 26]. This is
often done by using a regularization term [60, 241, 242, 243, 83, 17, 18, 191, 107], meta-learning
algorithms [34], reduction-based methods [2, 50], or adversarial training [147, 245, 33, 227]. Post-
processing methods adjust the output of the AI algorithm to enhance fairness in decisions [75]. For
example, by flipping some of the decisions of the classifier [86] or learning a different classifier [65]
or a separate threshold for each group [159]. Our proposed approach of using fairness-aware text
summarization to remove bias from the input explanations belongs to the first category. The ma-
jority of the introduced methods mitigate bias in decision-making by minimizing the difference
between treatment and outcome among different protected groups. Our proposed approach is dis-
tinct from previous work in a few ways. In contrast to the approaches that are intended to enhance
the fairness of the model’s outcome, our proposed approach is intended to enhance the fairness in
the justification of the outcome. Moreover, many of the existing preprocessing approaches produce
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an intermediate data representation that is not interpretable to many stakeholders [82, 244]. The
output of our model is an extractive summary of the input justifications. This is preferable for many
applications where interpretability is essential.

Text Summarization: Our work is also related to the field of automatic text summarization.
The general goal of this task is to shorten a text while preserving the key information. Auto-
matic summarization methods can be broadly categorized as abstractive [204, 209, 135] and ex-
tractive [166, 207]. Our work belongs to the latter category. In extractive summarization, a subset
of phrases or sentences in the input document are selected based on an importance score to be in-
cluded in the final summary. Defining importance is highly domain-specific. However, for extract-
ing generic summaries earlier work has explored using heuristics such as frequency of significant
words, coverage of salient concepts [61, 74], or the centrality in the document graph [160] to rank
and select sentences in a document. More recently, data-driven approaches rely on deep neural
models to extract summaries by creating sentence representation and training a supervised model
to learn whether to include a sentence in the summary or not [125, 142]. While extractive sum-
marization has proved a great solution for applications such as privacy [153, 113, 116], and legal
decision making [72, 109, 250], to the best of our knowledge we are the first to use text summa-
rization for detecting and obfuscating biases in the input data while preserving the decision-relevant
information. Next, we will formally define our problem and explain our proposed solution.

6.3 Problem Formulation

Given a dataset consisting of n samples {(Xi, Yi, Pi)}ni=1 where X denotes a textual explanation
written by the decision-maker to provide evidence or justify an outcome Y and P indicates one or
more protected variables48, we aim to extract a fairly-justified summary {Xi

′}ni=0 such that X ′

provides sufficient information to predict and justify Y and X ′ is independent of protected variable
P . We explain how we measure and attribute these qualities to sentences in the justification X
in § 6.4. For instance, Yi could represent a court decision for individual i, which is a member
of the demographic group Pi and has received a textual argument Xi regarding this decision49.
Potentially, Xi can be biased toward certain demographic groups. Our goal is to transform a given
dataset {(Xi, Yi, Pi)}ni=1 into a new dataset {(Xi

′, Yi, Pi)}ni=1 that is decontaminated from unfair
arguments. To achieve this goal, we use a fairness-aware extractive summarization model as a data
pre-processing step.

6.4 Proposed Methodology

In this section, we explain our proposed methodology to extract a fairly-justified summary
{Xi

′}ni=0 such that summary X ′ provides sufficient information to predict and justify Ŷ and the

48We only assume the existence of a set of discrete predefined protected attributes that are relevant to the problem in
hand. An example of this is protected groups in the US legal system such as race, gender, and nationality. However, the
proposed approach is intended to work with any set of predefined groups.

49While we assume the availability of information about individuals protected attribute at train time, we do not assume
that Pi is known at inference time.
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extracted summary X ′ is independent of protected variable P . A graphical model of the pro-
posed approach is shown in Figure 6.2. Given an input explanation Xi consisting of sentences
{s1, s2, ..., sm}, the goal of our model is to select a subset of these sentences subject to a utility and
a fairness constraint. Next, we explain how we measure and attribute the utility and discrimination
of the input sentences.

Figure 6.2: A graphical model of the proposed approach. P represents the protected attribute. X
indicates the input explanations while X ′ indicates the farily-justified summary of X which is used
to train the final model to predict outcome Ŷ .

Utility Control: To ensure that the extracted summary X ′ includes sufficient decision-relevant
information in X , we measure the salience of each sentence in X in predicting outcome Y . We train
a neural classification model on X using ground truth decision Y as supervision. Next, we use this
model to derive the contribution of each sentence in X for predicting outcome Ŷ . This process is
explained in §6.4.2. To ensure learning generalizable patterns, we hypothesize that the dataset is
sufficiently large and the model can learn which factors are associated with which outcomes. This
assumption especially holds for scenarios in which a decision-maker (e.g. an inspector or judge) is
required to go through a standard set of criteria (e.g. a standard form or set of guidelines) and thus,
the same arguments may repeatedly be articulated in different ways to justify a certain outcome.

Discrimination Control: To ensure that sentences in input explanation X that are biased to-
ward certain protected groups are excluded from summary X ′, we attribute a discrimination score to
each sentence in X . To do so, we measure the utility of an argument in identifying the membership
of an individual i in the protected group Pi. Note that, we do not assume that “if you mention the
protected attribute in the justification you are being unfair”. Rather, methodologically, we remove
the signals about the protected attribute to test whether the rest of the arguments in X ′ still suffi-
ciently justify the outcome. Moreover, this is a way of demonstrating to the stakeholders that the
model decision is not conditioned on the protected attribute. If removing the gender or race-coded
language from the justifications does not change the predicted outcome, then we can conclude that
the initial gender or race-coded language (that was removed) was not an unfair justification. To
measure the discrimination score, we use justification X to predict protected attribute P . Next, we
use the trained model to derive the contribution of each sentence in the membership identification
task. Sentences with a high discrimination score are removed. We train a multi-task model for
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decision classification and membership identification tasks. This process is explained in the next
section.

6.4.1 Model Architecture

Prior research has adopted word embeddings and Convolutional Neural Networks (CNN) for
variety of sentence classification tasks [48, 104, 93, 100, 249, 92]. Kim [119] achieved strong
empirical performance using static vectors and little hyper-parameter tuning over a range of bench-
marks. Variations of this architecture have achieved good performance for extractive summarization
of privacy policies [113] and court cases [250]. CNNs are fast to train and can easily be combined
with methods such as Integrated Gradients [219] for attributing predictions to specific parts of the
input. These considerations led to our decision to use a slight variant of the sentence-ngram CNN
model in [250] for decision outcome prediction and membership identification tasks. Given expla-
nation Xi consisting of m sentences/arguments {s1, ....sm} to justify decision Yi for individual i,
we use Universal Sentence Encoder [35] to encode each sentence sj to a 512-dimensional embed-
ding vector vj . We build the justification matrix A ∈ Rm×512 by concatenating the sentence vectors
v1 to vm:

A1:m = v1 ⊕ v2 ⊕ ...vm

The Sentence Encoder is pre-trained using a variety of data sources and tasks [35] using the
Transformer [226] architecture and is obtained from Tensorflow Hub. Following [48] we apply
convolution filters to windows of sentences in explanation Xi to capture compounded and higher-
order features. We use multiple filter sizes to capture various features from sentence n-grams. We
use filter sizes of h× d where h is the height or region size of the filter and indicates the number of
sentences that are considered jointly when applying the convolution filter. d is the dimensionality of
the sentence vectors and is equal to 512. The feature map c ∈ Rm−h+1 of the convolution operation
is then obtained by repeatedly applying the convolution filter w to a window of sentences sj:j+h−1.
Each element cj in feature map c = [c1, c2, ...cm−h+1] is then obtained from:

ci = f(w . A[j : j + h− 1] + b)

where A[j : k] is the sub-matrix of A from row j to k corresponding to a window of sentence
sj to sk and ”.” represents the dot product between the filter w and the sub-matrices. b ∈ R
represents the bias term and f is an activation function such as a rectified linear unit. We use
window sizes 2, 3, and 4 and train 100 filters for each window size. The dimensionality of the
feature map c generated by each convolution filter is different for explanations with various lengths
and filters with different heights. We apply an average-max pooling operation over the feature maps
of each window size to downsample them. Next, we concatenate the output vectors. Eventually, the
concatenated vector runs through a dense layer with 64 units followed by an activation function50.
This is a multi-task model with a decision learner and membership identifier modules. The decision
learner is trained using decision outcome Y as supervision and the membership identifier is trained

50For classification tasks we used softmax (multi-class) or Sigmoid (binary classes) functions. For scalar outputs, we
used Rectified Linear Unit.
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using the protected attribute P . The loss at each epoch is computed based on a weighted sum
of the decision prediction and membership identification losses. Training details are explained
in Section 6.5.2. Next, we explain the method we use for attributing the predictions Ŷ and P̂ of the
model to arguments in X .

6.4.2 Attribution

Sundararajan et al [219] proposed a method called Integrated Gradients to attribute predictions
of a deep neural network to its input features. This method is independent of the specific neural
architecture and can provide a measure of relevance for each feature by quantifying its impact
on the predicted outcome. Zhong et al [250] adopted this method for identifying most decision-
relevant aspects of legal cases. We also utilize this method to measure the impact of each input
sentence in decision prediction and membership identification tasks. Essentially we take a straight
line path from input x to its baseline b 51 and notice how model prediction changes along this path
by integrating the gradients along the path. To approximate the integral of the integrated gradients,
we simply sum up the gradients at points occurring at small intervals along the straight-line path
from the baseline to the input. The resulting single scalar represents the gradients and attributes the
prediction to input features. The integrated gradient along the i-th dimension for an input x and
baseline b is defined as follows:

IGi(x) ::= (xi − bi)×
m∑
k=1

∂F (b+ k
m × (x− b))

∂xi
× 1

m

Here, F : X → Y represents the neural model, ∂F (x)
∂xi

is the gradient of F(X) along the i-th
dimension, x represents the input at hand, b represents the baseline input (an all-zero vector), and
m is the number of steps in the approximation of the integral52. To obtain utility attribution U =
{u1, u2, ...um} for sentences {s1, s2, ..., sm} in input justification Xi we calculate the attributions
for the model using the predicted decision outcome Ŷ . Note that each input feature is one dimension
of sentence embedding. To obtain salience scores for each sentence, we sum up the attribution scores
for each dimension. Next, we run U through a softmax function to get a utility distribution over
the sentences. Similarly, we obtain discrimination attribution D = {d1, d2, ...dm} for sentences
{s1, s2, ..., sm} by calculating the integrated gradients attributions for the model using the predicted
protected attribute P̂ . We run D through a softmax function to get a discrimination distribution
over the sentences. We include high-utility and low-bias sentences in the fairly-justified summary
of the explanations. The final inclusion score ai for each sentence is computed using the following
equation53:

51Conceptually, baselines represent data points that do not contain any useful information for the model. They are used
as a benchmark by the integrated gradients method. Sundararajan et al [219] suggest using an all-zero input embedding
vector for text-based networks.

52Sundararajan et al [219] applied Integrated Gradients to a variety of deep architectures including CNN. The only
assumption that they make is that function F should be differentiable almost everywhere. Deep networks built out of
Sigmoids, ReLUs, and pooling operators satisfy this condition.

53Both U and D satisfy properties of a probability distribution as Σm
i=1ui = 1 and 0 ≤ ui ≤ 1. Thus, each ui and di

have comparable scales
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Figure 6.3: An overview of the architecture: Decision learner and membership identifier are trained
using decision Y and protected attribute P as supervision respectively. The attributions of each
module is normalized and subtracted to obtain the inclusion scores.

ai = σ(u)i − α× σ(d)i

In the equation above, α is a hyper-parameter that controls the utility-discrimination trade-off.
Higher values of α correspond to removing more information about the protected attribute from
the input justification. Figure 6.3 shows the attribution process. Methodologically, we want to
identify and remove arguments that are not useful for decision prediction or are only useful for the
prediction of the outcome when they are also helping in the prediction of the protected attribute.
The subtraction operation ensures that such arguments get a small inclusion score ai.

Extracting Fairly-Justified Summarizes: Given sentences {s1, s2, ..., sm} and the corre-
sponding inclusion scores {a1, ....am}, we select sentences with a positive score for inclusion in
the output summary. These sentences have high utility for decision prediction but do not reveal
the protected attribute of the individuals. We refer to our preprocessing method as FairSum. In
our experiments, we test whether training a decision classifier on justifications pre-processed by
FairSum will enhance fairness in the justification on real-world and synthetic datasets.
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6.5 Experiments and Results

In this section, we introduce the datasets we use for training and testing our model followed by
training details, and metrics in consideration. In §6.5.4 we present our experimental results on two
real-world datasets. In §6.5.5 we share our experiments involving several types of synthetic data
poisoning attacks. Finally, in §6.5.6 we present a pilot user study that aims to examine the impact
of applying FairSum on human subjects’ decision-making.

6.5.1 Datasets

In this section, we introduce datasets used for training and evaluation of our model.

Inspection Reports of food establishments in Chicago (D1): The City of Chicago has pub-
lished reports of food inspections conducted since 2010. We extracted the information on food
inspections conducted from January 2010 till December 2014 from the City of Chicago’s GitHub
repository54. This dataset contains the outcome of inspection which can be pass, fail, or conditional
pass as well as notes that the sanitarian left in the inspection form about the observed violations to
justify the outcome and explain what needs to be fixed before the next visit55. In food inspections,
decisions are being made for both the restaurant owner and the public health. In this work, we focus
on fairness concerning customers of the food establishment. Thus, we consider the ethnicity of the
majority of the population in the census block group where the food establishment is located as the
protected attribute. This is a reasonable proxy given that Chicago is one of the most segregated cities
in the US [49]56. This dataset includes 17,212 inspection reports. The inspector’s comments are on
average 18.2 sentences long with a standard deviation of 7.2. The breakdown of the inspection out-
come for each demographic group is shown in Table 6.1. Note that for the food establishments that
have more violation, the inspection reports tend to be longer. In our summarization experiments,
we focused on longer inspection reports which often includes establishments with higher number of
violations. We train the model explained in §6.4.1 on inspector notes using inspection outcome and
the ethnicity of the majority of the customers as supervision for decision classifier and membership
identifier respectively. We use 90% of inspections from January 2010 till October 2013 (75% all
records in our data-set) as our training set and the remaining 10% as our validation set. The inspec-
tions conducted from November 2013 utill December 2014 are used as our test set. We represent
this dataset with D1.

Rate My Professor (D2-D4): Students can leave an anonymous review and rating on a scale
of 1-5 in several categories for their instructors on the Rate My Professor (RMP) website. Previous
work has identified several types of biases in students’ evaluations [127, 197, 47, 22, 201, 224].
In our study, we aim to detect and remove potential biases in justifications provided by students to
explain their ratings. We rely on the dataset collected by He et al [89]. We combine all the reviews
written for each instructor and use the average rating as the supervision for the decision classifier.
We use the gender of the instructor as the supervision for the membership identifier model. The

54https://github.com/Chicago/food-inspections-evaluation

55There could be other outcomes e.g. when the sanitarian could not access the establishment. These cases are excluded
from our study.

56The demographic information of neighborhoods was extracted from https://www.census.gov/
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Race Pass Conditional pass Fail Total inspection count

White 27.5 25.6 46.8 8339
Black 28.9 15.6 55.4 4444
Hispanic 33.8 19.2 46.8 4010
Asian 29.3 17.4 53.2 419

Table 6.1: The percentage of inspections for each ethnic group that received a pass, conditional
pass, or a fail outcome.

rate my professor dataset only includes professor names and reviews. To infer the gender of the
professors, we search for pronouns and titles commonly used for each gender57. If no pronouns or
titles are found in the reviews, the professor’s name is used to detect their gender 58.

In our experiments, we exclude the instructors that have less than 5 reviews. We also remove the
pronouns and instructors’ names from the reviews.59 The resulting dataset includes reviews written
for 1344 instructors which are on average 45.6 sentences long. We indicate this dataset with D2.
The breakdown of reviews written for each gender category in D2 is shown in Table 6.2.

[1,2] (2,3] (3,4] (4,5] Total count

Female 5.6 21.0 35.3 37.9 551
Male 3.7 21.0 35.6 39.5 783

Table 6.2: The percentage of instructors of each gender group in each rating class for dataset D2.

Prior work, has shown that using gender-coded language in teaching evaluations is more com-
mon in disciplines with a large gender-gap [217]. Inspired by this observation and to study the im-
pact of the reviewer’s gender (students) on teaching evaluations, we create two additional datasets
D3 and D4. To do so, we split the RMP dataset based on the gender gap of the students in each
discipline. D3 includes student evaluations for professors in fields that are female-dominant such
as nursing, psychology, and education while D4 includes student evaluations for male-dominant
majors such as engineering, computer science, and philosophy. Fields with less than 20% gender
gap are excluded.60 . For D2-D4, we randomly split our dataset into a 70-15-15 split to build our
train, validation, and test sets. The breakdown of reviews written for each gender category for D3

57For sake of simplicity we assume binary and static gender classes

58We use https://pypi.org/project/gender-detector/ for mapping professors’ names to their gender

59This pre-processing step ensures that the membership identifier does not rely on blatant signals from the text and
instead extracts more latent patterns in the justifications.

60The statistics about the bachelor’s degrees earned by field and gender is obtained from [182]
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and D4 is shown in Tables 6.3 and 6.4. Next we will share our training details and hyperparameter
setup.

[1,2] (2,3] (3,4] (4,5] Total count

Female 4.3 22.2 31.5 41.9 279
Male 1.7 18.0 32.6 47.5 288

Table 6.3: The percentage of instructors of each gender group in each rating class for dataset D3.

[1,2] (2,3] (3,4] (4,5] Total count

Female 5.5 24.4 39.3 30.7 127
Male 6.3 24.6 37.9 31.03 345

Table 6.4: The percentage of instructors of each gender group in each rating class for dataset D4.

6.5.2 Hyper-parameters and Training Details

Training Details: To train the model introduced in §6.4.1 on D1, We employ window sizes
of 2, 3 and 4, and train 100 filters for each window size. For smaller datasets D2-D4. we use
window sizes 2 and 3 and train 50 filters for each window size. We initialize each convolution
layer using the initialization method proposed by He et al. [91]. We use rectified linear unit as the
activation function of the convolution layer. After performing the convolution operation, we apply
batch normalization [99] followed by a global average-pooling operation over the feature map of
each window size.

Next, we concatenate the output vectors. Eventually, we run the concatenated vector through
a dense layer with 64 units followed by an activation function. For decision classification and
membership identification on D1, we used the softmax operation to obtain class probabilities. For
D2-D4 we used rectified linear unit to obtain the output rating, and sigmoid to obtain gender class
probabilities. We implement the decision classifier and member identifier networks using the Keras
library 61. We use weighted cross-entropy loss function for classification tasks and mean squared
loss for regression tasks and learn the model parameters using Adam optimizer [120] with a learning
rate of 0.001.

For D1, we set the maximum length of the arguments to the 70-th percentile of explanation
lengths in our train set (18 sentences). Textual explanations that are longer than this are truncated
while shorter ones are padded. For D2-D4, we set the maximum length of the arguments to the 70-
th percentile of the review length in our train set (64 sentences). Reviews that are longer than this
are truncated while shorter ones are padded. We set the loss weight for the decision prediction task
and the membership identification task to 1. We train our multi-task network for a maximum of 25
epochs and stop the training if the decision classification loss on the validation set does not improve
for 3 consecutive epochs. In the end, we revert the network’s weights to those that achieved the

61https://keras.io
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lowest validation loss. We repeat each experiment 5 times and report the average result. We used a
single Nvidia Tesla K80 GPU for our experiments.

Parameters of the attribution Model: For computing the integrated gradients for attribution,
we set the number of steps in the path integral approximation from the baseline to the input instance
to 50 and use Gauss–Legendre quadrature method [1] for integral approximation. We compute the
attributions of the decision classifier and the membership identification networks for the input layer.

6.5.3 Measuring Fairness of Justification and Outcome

In this section, we introduce the metrics we use for evaluating our pipeline. The current au-
tomatic evaluation protocol for automatic text summarization is based on the similarity of the
model-generated summary to a human-written summary and using metrics such as ROUGE [133].
Shandilya et al [212] was the first to evaluate text summarization systems from the fairness per-
spective. They verify the fairness of summaries using the notion of adverse impact by measuring
the fraction of selected tweets to be incorporated in the output summary from each protected group.
The goal of our work (enhancing fairness in justification while preserving decision-relevant infor-
mation) however, is different from traditional text summarization as well as the notion of fairness
used by Shandilya et al. [212]. Thus, we use a new perspective for the evaluation of extracted
summaries which is based on demographic leakage and fairness of outcome. Essentially, in our
experiments we seek to answer the following questions:

• How does applying FairSum on the inputs impact the utility of the model?

• Will this pre-processing step effectively remove the proxy information about the protected
attribute from the justifications?

• How does FairSum impact the fairness of the outcome?

• Is FairSum able to mitigate different types of unfairness attacks?

To answer the first question, we report the utility of the decision learner. For categorical outcomes
(e.g. in D1) we report the Micro-F1 and Macro-F1 and for scalar outcomes (D2-D4) we report the
Mean Absolute Error(MAE). To answer the second question, we report the demographic leakage.
Leakage is defined as the ability of the membership identifier network to correctly predict the pro-
tected attribute of the individuals given the justification. We report the Micro-F1 and Macro-F1 of
our membership identification model. Lower demographic leakage is desirable.

While FairSum is not directly designed to address the fairness of the outcome, we seek to study
how enhancing fairness in justification impacts the fairness of outcome. To do so, for categorical
outcomes we report the demographic parity, equality of odds, and calibration. For each of these
metrics, we report the gap between the most favored and the least favored group. For a discussion
on fairness measures and their trade-offs see the work by Kleinberg et al. [121] and Hardt et al.
[86]. We additionally report False Pass Rate Gap (FPRG) and False Fail Rate Gap (FFRG) across
demographic groups. FPRG and FFRG represent the equality in the distribution of the model errors
across demographic groups. Similar metrics were used in [227]. We next formally define these
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metrics in the context of food inspection fairness. These metrics will be used to measure the fairness
of outcome for dataset D1. Then, we share our experimental results.

Parity: a decision classifier satisfies demographic parity if the proportion of food establishments
predicted to fail the inspection is the same for each demographic group. We report the gap between
the most and least favored groups. For sake of consistency with previous work, we present the
protected attribute with S.

max(P (Ŷ = fail|S = si)− P (Ŷ = fail|S = sj)) = ϵ, si, sj ∈ S

Equality of odds: for those establishments who actually failed the inspection, the proportion of
failed predictions should be the same. We report the gap between the most and least favored groups.
Ideally, the gap should be very close to zero.

max(P (Ŷ = fail|Y = fail, S = si)− P (Ŷ = fail|Y = fail, S = sj)) = ϵ, si, sj ∈ S

Calibration: for those establishments who received a fail prediction, the probability of actually
failing the inspection should be the same. We report the gap between the most and least favored
groups. Ideally, the gap should be very close to zero.

max(P (Y = fail|Ŷ = fail, S = si)− P (Y = fail|Ŷ = fail, S = sj)) = ϵ, si, sj ∈ S

False Pass Rate Gap(FPRG): food establishments that did not pass the inspection should have
the same probability of falsely receiving a pass prediction. We report the gap between the most and
least favored groups which ideally should be close to 0.

max(P (Ŷ = pass|Y ̸= pass, S = si)− P (Ŷ = pass|Y ̸= pass, S = sj)) = ϵ, si, sj ∈ S

False Fail Rate Gap(FFRG): establishments of different demographic groups that did not fail
the inspection should have the same probability of falsely receiving a fail prediction. We report the
gap between the most and least favored groups which ideally should be close to 0.

max(P (Ŷ = fail|Y ̸= fail, S = si)− P (Ŷ = fail|Y ̸= fail, S = sj)) = ϵ, si, sj ∈ S

To measure fairness for scalar outcomes (D2-D4), we report the Mean Absolute Error GAP
between the demographic groups (male and female). Our experimental results on dataset D1-D4
are shared in Section 6.5.4
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Dataset Utility ↑
(Micro-F1)

Utility ↑
(Macro-F1)

Demographic Leakage ↓
(Micro-F1)

Demographic Leakage ↓
(Macro-F1)

Empty Full FairSum Empty Full FairSum Empty Full FairSum Empty Full FairSum
D1 0.48 0.83 0.83 0.22 0.83 0.82 0.56 0.58 0.52 0.18 0.38 0.33

Table 6.5: Results on datasets D1. ”↑”: higher is better. ”↓”: lower is better.

Finally, to answer our last question, we perturb dataset D1 to create several types of injection
attacks. We measure the attack success before and after applying FairSum on the perturbed data.
Our findings are shared in §6.5.5.

6.5.4 Results and Discussion

In our experiments, we compare the utility, demographic leakage, and fairness of models that
are identical in terms of architecture but are trained on different versions of the training data. The
model architecture is discussed in §6.4.1. Our results on dataset D1 is shared in Table 6.5 and Ta-
ble 6.6. Our Results on datasets D2-D4 is shared in Table 6.7. In the ”empty” setting, justifications
are empty. In the ”full” setting, the model is trained and tested on the original data while in the
FairSum setting it is trained and tested on justifications summarized by FairSum. We use to
empty setting to indicate the lower bound of the demographic leakage. We use the full setting, to
measure the bias in the justifications in the original dataset. This setting also acts as our baseline.
We apply FairSum on both the train and test sets. The parameter α which controls the trade-off
between the utility and the demographic leakage is set to 1.

As it can be seen in Table 6.5, FairSum reduces the demographic leakage on dataset D1 (by
0.06 in Micro-F1 and 0.05 in Macro-F1) while achieving the same level of accuracy on the decision
classification task in comparison to the full setting. FairSum also decreases parity by 0.01 while
achieving similar results in terms of FFRG and FPRG.

We see in Table 6.7 that on dataset D2, FairSum decreases the demographic leakage from 0.71
to 0.61 Micro-F1 and 0.69 to 0.58 Macro-F1 while increasing the MAE by 0.02 in a 5-point scale.
FairSum outcomes also are more fair on D2. In the full setting, predictions have a 0.06 higher
average MAE for females than males. While FairSum achieves similar error rates for both gender
groups (0 MAE gap). On D3 and D4, fairSum reduces the demographic leakage (from 0.66 to 0.59
and 0.71 to 0.49 Macro-F1 respectively). FairSum is noticeably effective in removing the gender-
coded language in D4 which is sourced from male-dominated majors with 0.82 gender prediction
accuracy in the full setting. This comes with almost no change in the model’s utility as the average
MSE on D2-D4 is 0.51 for both the full setting and FairSum. We conclude that our proposed
approach is very effective in reducing the demographic leakage in the input justifications while
also not reducing the utility of the model. Removing gender-coded language from D3 justifications
comes with the cost of having 0.06 higher MAE for females than males (this was 0.03 for the full
setting). On D2 and D4 however, FairSum completely closes the MAE gap between the gender
groups.

84



Dataset Parity ↓ Equality
of Odds ↓ Calibration ↓ FPRG ↓ FFRG ↓

Full FairSum Full FairSum Full FairSum Full FairSum Full FairSum
D1 0.15 0.14 0.08 0.1 0.05 0.06 0.05 0.05 0.11 0.11

Table 6.6: Fairness metrics for datasets D1. ”↓”: lower is better.

Dataset MAE ↓ Demographic Leakage ↓
(Micro-F1)

Demographic Leakage ↓
(Macro-F1)

MAE Gap ↓

Empty Full FairSum Empty Full FairSum Empty Full FairSum Empty Full FairSum
D2 0.72 0.47 0.49 0.59 0.71 0.61 0.37 0.69 0.58 0.07 0.06 0
D3 0.76 0.52 0.53 0.5 0.66 0.61 0.33 0.66 0.59 0.19 0.03 0.06
D4 0.66 0.54 0.53 0.45 0.82 0.74 0.3 0.71 0.49 0.04 0.02 0

Table 6.7: Results on RMP Datasets (D2-D4). ”↓”: lower is better.

An example of applying FairSum on a teaching evaluation for a two professors is shown in
Figure 6.4 and Figure 6.5. In Figure 6.4, we see that arguments about the looks of the instruc-
tor (more frequent for female instructors) are excluded from the text (indicated with orange). The
preserved sentences are indicated with purple and have a high inclusion score. In Figure 6.5, argu-
ments about being ”intelligent and funny” (more frequent for male instructors) are removed from x
by FairSum. While mentioning ”intelligence” is not an unfair argument on its own, more frequent
usage for a certain demographic group makes it a gender-coded justification.

Utility-Fairness Trade-Off: Figure 6.6 shows the utility, demographic leakage, and fairness
metrics as a function of α on D1 and D2. Too low values of α prioritize utility, selecting even
relatively biased sentences and have scores close to the full setting (see Figure 6.6 a and 6.6 c).
On D1, increasing α generally decreases the demographic parity while increasing the FPRG (see
Figure 6.6 b). It does not have a consistent or noticeable impact on other fairness metrics. On D2
and with α near 1, the gap shrinks to 0 (See Figure 6.6 c). Too high values of α remove too many
sentences, leading to a high error rate. This is because many summaries are empty with a high value
for α and thus, the resulting decisions are unjustified (justifications are not informative about the
outcomes) and unfair (the lack of justification is not uniformly distributed over genders) so the gap
emerges once again.

Impact of α on summary length: Figure 6.7 shows the average summary length (sentence
count) for datasets D1-D4 as a function of α. The food inspection reports in D1 are on average
much shorter than the teaching evaluations in dataset D2 (18.2 vs 45.6 sentences). Too low values
of α prioritize utility by preserving even relatively biased sentences. For all datasets, the summaries
start shrinking around α equal to 0.85. However, for D2-D4 the compression rate is higher. Around
α equal to 1.25, 39.9% input justifications for dataset D1 are empty. This number is 77.8%, 95.7%,
100% for D2, D3, and D4 respectively. We conjecture that the existence of more implicit bias for
D2-D4 causes the summaries to shrink faster by increasing α. At this point (1.25 and higher) the
resulting decisions are unjustified (justifications are not informative about the outcomes). Therefore
in Figure 6.7 we only show impact of changing α from 0.8 to 1.2.
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Example 1: Not my favorite instructor. We spent a lot of time on things that seemed not important.
Course syllabus included a lot of topics that have no practical use. Some days the presentations were
unclear but I would recommend this course to non-majors. Very open and well organized. The guys
in the class love . is a pretty good , but not a great teacher. is a great professor also has the
physical features that makes you not want to miss a class. Last semester came to class is a short skirt
omg! has a lot of experience with undergrad students. Sometimes vague on grading criteria . This is a
pretty easy class. – is very nice. is hot and funny. If you get past physical attributes you really learn
something. Wow! ... what an interesting topic! I respect for intelligence and ability to teach , not for

appearance. Very good looking omg! Great course and additional materials are a great support.

Figure 6.4: Applying FairSum on teaching evaluations for a female professor (anonymized and
paraphrased for privacy considerations). The pronouns and names have been removed before model
training and attribution. Sentences with a positive attribution score (purple) are preserved in the
summary x′ while the sentences with a negative attribution score (orange) are excluded.

Example 2: Lectures are short. Tests do not really cover what is covered in class. Textbook is not used. Dr.
is very knowledgeable and passionate about this subject. You will enjoy the class if you are interested

in the topic. Highly recommend if you want a nice grade. is funny , intelligent, and easy to listen to.
got an epic beard. post the material online which makes the class very accessible. If you do all the

assignments it is impossible to not get an A! is one of very few whom I really think understands the
”real world” and its workings. I think it is because of days in navy. is very funny as well. curves
quizzes slightly. So, in the end your grade could be better than what you may think. can be very helpful
, but you must go to the office hours. Probably the easiest five credit class you can take.

Figure 6.5: Applying FairSum on teaching evaluations for a male professor (anonymized and
paraphrased for privacy considerations). Sentences with a positive attribution score (purple) are
preserved in the summary x′ while the sentences with a negative attribution score (orange) are
excluded.

6.5.5 Unfairness Attacks

Natural language processing models are vulnerable to test-time adversarial attacks [228]. These
attacks often are created to cause the model to make errors by perturbing the input at inference
time [228]. In this section, we present our experimental results to test the ability of our model in
detecting and counteracting data poisoning attacks. Essentially, we seek to answer the following
questions:

• Can FairSum detect the injected unfair arguments in the justifications?

• Given that FairSum relies on attributing the decision outcome to input arguments, how does
it perform in a scenario where decision outcomes are not fair in the first place?
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Figure 6.6: Impact of α on utility and fairness on datasets D1 (a and b) and D2 (c).
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Figure 6.7: Impact of α on summary length on datasets D1-D4.

To answer these questions, we synthesize several unfair decision-making situations. In each of these
situations, we create poisoning attacks to synthesize an unfair justification, an unfair outcome, or
both. These scenarios are indicated with red in Figure 6.1 in the begining of this chapter. To evaluate
the robustness of FairSum, we measure the attack success before and after applying FairSum on
the poisoned train and test data. For our experiments, we rely on the food inspection dataset (D1).
We assume that the ground truth outcomes Y in this dataset are often fair 62. To synthesize an
unfair outcome for establishment i we simply flip outcome yi (e.g. by changing pass to fail). Unfair
justifications can be created in more than one way such as synthesizing decision-making with double
standards or implicit bias. Inspired by the work of Wallace et al [229] we create unfair justification
attacks by causing a phrase to be a trigger for a desired outcome by poisoning the training data. For
example, we could make the phrase ”kitchen manager does not speak English” to trigger the model
to predict the food establishment should fail by adding this phrase to enough inspection reports of
establishments that failed the inspection. We create an irrelevant justification set including phrases

62We cannot make this assumption about the RMP dataset as evaluations are very subjective. Therefore, we do not
experiment with this dataset.
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about the decoration of the restaurants e.g. “walls are red”, “table cloths are blue”. None of
these phrases are part of the inspection guideline of the city of Chicago. For creating irrelevant
justifications, we randomly select an argument from this set and add it to a random position in the
inspection report. In all our experiments, we use the entire training data of D1 and a certain subset
of the test set depending on the type of attack. Next, we introduce 5 common unfairness scenarios
that inspired our experiments as well as the experimental setup in each attack type.

Attack type 1a: Deciding based on items not in the guideline: In this attack, we create a
scenario where decision outcomes are fair but the justifications are unfair. To do so, we inject irrele-
vant arguments into the reports. We use these arguments more frequently for a certain demographic
group than others. However, we do not alter the ground truth outcomes Y . A real-world example of
this attack is a food inspector who mentions ”the kitchen manager does not speak English” for sev-
eral Hispanic restaurants. They write this in reports often when they are frustrated with explaining
the hygiene guidelines that were not followed by the establishment to the kitchen manager, result-
ing in the food establishment failing the inspection. While this is indeed a fair outcome, training a
model on such reports can have two undesired side effects. First, the model can wrongly associate
the irrelevant argument “not speaking English” with the fail outcome. Thus, results in the model
predicting “fail” when ”not speaking English” is mentioned in the reports even when all hygiene
guidelines are followed. In addition, this model has information about individuals’ ethnicity due to
the race-coded language of the reports.

To create a poisoned train dataset, we randomly select an item from the irrelevant argument
set and add it to a random sample of a% of individuals in the demographic group pi that received
outcome yj , trying to trigger the model that e.g. “table cloths are blue” will result in outcome yj .
Especially when the individual belongs to pi. At test time, we pick K restaurants in pi, half of which
with ground truth outcome yj and half with other outcomes. We inject an irrelevant argument into
the inspection reports of this set. To measure attack success, we measure the false yj prediction rate
as well as the demographic leakage before and after applying FairSum to the poisoned test data.

Attack type 1b: Race-coded language: In this attack, decision outcomes are fair but the
justifications are unfair. However, in contrast to the attack type 1a, the irrelevant race or gender-
coded language does not impact the outcome. An example is an inspector who reports the address of
the restaurant in the inspection reports in Hispanic restaurants irrespective of the outcome. Training
a model on such data can be problematic in two ways. First, the model may still associate location
with outcome yj if the majority of the restaurants in that neighborhood have received outcome yj .
Moreover, even if the model does not learn such an association, it might be able to predict the
ethnicity of the customers based on the location due to the demographic leakage in the data. In
this type of attack, we create the latter problem. To create poisoned training data, we inject an
irrelevant argument to a% of food establishments in demographic group pi. To de-correlate the
injected argument with any outcomes, we make sure that the number of attacked restaurants with
each outcome is the same (e.g. 50% pass, 50% fail). At test time, we pick K restaurants from
protected group pi and inject an irrelevant argument to the reports of this set. The measure of attack
success, we measure the demographic leakage before and after applying FairSum to the data.

Attack type 2a: Implicit bias: In this attack, decision outcomes are unfair but the justifi-
cations are fair. In this scenario, a fair justification that is part of the guideline is only used for a
specific protected group and impacts the outcome of their inspection. For example, a food inspector
only mentions “food prep hygiene violations” when the restaurant is located in a majority-Asian
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neighborhood. This violation leads to establishments failing the inspection in this neighborhood.
While “food prep hygiene violations” can be a fair reason for deciding that a restaurant should fail
the inspection, using this argument only for restaurants in Asian neighborhoods is a case of race-
coded language. Therefore, training a model on this data may result in the following two issues:
(i) the model is race-aware and (ii) this phrase could become a trigger for ”fail” prediction, even
when the rest of the report justifies another outcome. To create poisoned training data, we select
a% of food establishments in demographic group pi that did not receive outcome yj . For example,
if yj = fail, we select restaurants from pi that either passed or conditionally passed the inspection.
To create unfair outcomes, we flip the ground truth outcome of these restaurants. We randomly
sample a fair argument for receiving outcome yj from the guideline and inject it into these reports.
Since the arguments are part of the guideline, they are fair. At test time, we pick K restaurants from
the protected group pi who did not receive outcome yj . We inject a fair argument for receiving yj
to their reports. We measure the attack success by measuring the false yj prediction rate as well as
the demographic leakage.

Attack type 2b: Double standard: In this attack, decision outcomes are unfair but the justifi-
cations are fair. In this scenario, a fair justification that is part of the guideline is mentioned in the
inspection reports of restaurants in several neighborhoods. However, it only impacts the outcome
when the restaurant is in pi. For example, a food inspector mentions “food prep hygiene violations”
for multiple restaurants but only decides that this is a serious threat to public health in Latino neigh-
borhoods. Training a model on this data may result in several issues. First, the model is race-aware.
In addition, the model uses the same arguments differently for different protected groups; putting
a lot of attention to an argument for some individuals and ignoring for others based on their loca-
tion. To create poisoned training data, we follow the same process as in attack type 2a. The only
difference is that we choose half of the attacked restaurants from pi and half, not in pi. We only flip
the outcome to yj for those who are in pi. At test time, we pick K restaurants half of them from
protected group pi and half, not in pi who did not receive outcome yj . We inject a fair argument for
receiving yj to their reports. We measure the attack success by measuring the false yj prediction
rate for both groups as well as the demographic leakage for establishments in pi.

Attack Type 3: Blatant bias: In this attack, both the outcome and the justification of the
outcome are unfair. In this scenario, an argument that is not part of the guideline (and therefore
unfair) is used to justify an unfair outcome. Using this data for training may result in the model
being race-aware. Moreover, the model may wrongly associate an irrational argument with a certain
outcome. To create a poisoned train dataset, we randomly sample an argument from the irrelevant
argument set and add it to a random sample of a% of restaurants in pi that did not receive outcome
yj . Then we flip their outcome to yj . At test time, we do the same for K restaurants in pi without
changing the outcome. We measure the attack success by measuring false yj prediction rate as well
as demographic leakage in the test set. The summary of the 5 attack types is shown in Table 6.8.

Note that FairSum is not intended to address fairness in the outcome (attack types 2a and
2b). Our motivation for exploring these scenarios is to investigate FairSum’s behavior in these
situations and highlight some of its’ limitations. In our experiments, we choose the restaurants in
the majority-black neighborhoods that fail the inspection as our target group (pi = black, yj = fail).
We randomly sample individuals to attack from this pool. We choose this group because it is large
enough for us to test various attack scenarios. We change the percentage of the attacked population
in this group from 20 to 80 percent with increments of 30%. In all our experiments, we use a
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Attack ID Description Outcome Justification

1a Deciding based on items not in guideline Fair Unfair
1b Race-coded language Fair Unfair
2a Implicit bias Unfair Fair
2b Double standard Unfair Fair
3 Blatant bias Unfair Unfair

Table 6.8: Summary of the 5 data poisoning attacks

Attack ID FFR ↓ Demographic ↓
Leakage FFR ↓ Demographic ↓

Leakage FFR ↓ Demographic ↓
Leakage

Full FairSum Full FairSum Full FairSum Full FairSum Full FairSum Full FairSum
1a 0.60 0.47 0.79 0.45 0.86 0.79 0.97 0.88 0.82 0.73 0.97 0.72
1b 0.91 0.51 0.90 0.25 0.90 0.25 0.90 0.36
2a 0.62 0.64 0.69 0.81 0.95 0.92 0.91 0.91 0.96 0.73 0.83 0.64
2b 0.36 0.39 0.44 0.59 0.45 0.41 0.65 0.42 0.59 0.52 0.5 0.53
3 0.96 0.83 0.82 0.82 0.96 0.91 0.93 0.75 0.96 0.85 0.93 0.7

attack rate = 0.2 attack rate = 0.5 attack rate = 0.8

Table 6.9: Experimental results with 5 types of poisoning attacks. Attack success is measured
by measuring false fail rate as well as demographic leakage before (indicated with Full) and after
applying FairSum. ↓: lower is better.

poisoned test size (k) of 200. The attacked test set is sampled from different population groups
in the original test set depending on the attack type. We repeat each attack experiment 5 times
and report the average attack success before and after applying FairSum in Table 6.9. Depending
on the type of attack, the attack success is measured by the demographic leakage or false fail rate
(FFR) over the attacked test set. As it can be seen in the table, FairSum is very effective in
decreasing the attack success for attack types 1a and 1b (fair outcome and unfair justification).
When 20% of the individuals in the target population group are attacked, FairSum decreases the
FFR by 0.13 points, while decreasing the demographic leakage by 0.34 points. For attack type
1b, using FairSum decreases the demographic leakage by 0.4 when 20% of the target subgroup
are attacked. This number is 0.65 when half of this subgroup are targeted at train time (0.9 vs
0.25 demographic leakage after using FairSum). As expected, when outcomes are unfair the
effectiveness of FairSum becomes limited at lower attack rates. This is mostly because the model
learns wrong associations as the outcomes are flipped. This observation suggests that FairSum is
an effective mechanism for enhancing fairness in justification, however, it is not very effective when
outcomes are unfair. FairSum is moderately effective when both outcomes and justifications are
unfair (attack type 3). For attack type 3, using FairSum decreases the demographic leakage by
0.18 on average when half of the target subgroup are poisoned. It also decreases the FFR by 0.13,
0.05, and 0.11 for attack rates 0.2, 0.5, and 0.8 respectively.
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6.5.6 Pilot user study

In this section, we present a pilot user study to assess the impact of FairSum on users’ per-
formance in a real decision-making scenario. More specifically, we consider a scenario where each
user has to guess the gender (female/male) and average rating (low/high) of the instructors given the
summary of their teaching reviews extracted by FairSum. In addition to FairSum summaries,
we consider two extreme settings: (a) the full setting where the raw teaching evaluation is shown
to the user, and (b) the excluded setting, where participants only see the parts of reviews that are
identified as potentially biased by FairSum and therefore are excluded from summaries. We add
this baseline to verify whether sentences removed by FairSum had a high demographic leakage or
low utility for rating estimation.

Study Design: We randomly selected 20 instructors from the RMP dataset; 10 men and 10
women. Half of the male professors have a high rating (above 3) while the rest have a low rating
(3 and below). The same situation holds for female instructors. We removed all pronouns and
professor names from all the teaching reviews so that users rely on gender-coded language for
guessing the gender rather than more blatant signals. We applied FairSum to the teaching reviews
to decide whether to keep or remove the sentences. We invited 14 graduate students to take part in
our study. Each participant evaluated 60 review snippets (20 instructors × 3 presentation forms).
To prevent information retention, reviews for different instructors were shuffled. We recorded user
responses for gender and rating prediction. In this pilot study, we seek to answer the following
questions: (i) Does summarizing the reviews by FairSum impact the performance of users in the
rating prediction task? (ii) How likely are users to attribute a positive/negative teaching review
preprocessed by FairSum to a male/female professor? (iii) Does FairSum correctly identify and
exclude the gender-coded language in teaching reviews?

Results: The performance of users in rating prediction task as well as inter-annotator agree-
ment [76] is shared in Table 6.10. As it is presented in the Table, using summaries extracted by
FairSum users can guess the ratings as accurately as the full setting. Users also achieve 68.8%
accuracy only by looking at the excluded text. Since removing these snippets from the raw teaching
evaluation did not result in a drop in accuracy, we conjecture that most of the insights from the
removed text could be inferred only from the fair summaries and therefore the excluded sentences
were either redundant or not useful for completing the task 63.

Accuracy Annotator Agreement
Excluded 68.8 54.0
Full 75.0 51.3
FairSum 75.5 52.9

Table 6.10: Accuracy of users in rating prediction task and inter-annotator agreement (Fleiss Kappa)
given different subsets of the teaching reviews.

63In this pilot study we only tested applying FairSum with parameter α equal to 1, it is interesting to study the
impact of summary length (information load) on the performance of users in other decision-making tasks.
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(a) (b)

Figure 6.8: Distribution of the predicted gender in (a) positive reviews and (b) negative reviews.

Next, we look at the performance of users in gender prediction task. Figure 6.8 shows the dis-
tribution of the predicted gender given teaching evaluation of high-rated and low-rated instructors.
As mentioned before, 5 of the 10 high-rated instructors in our sample dataset are female and 5 are
male (ground truth). As it can be seen in the Figure 6.8 (a), given the excluded text from high-rated
reviews, users guess that the instructor is male in 64% of the cases. The predicted gender distribu-
tion in the full setting is closer to the ground truth (0.55% male and 45% female). This indicates
that the excluded text indeed contains gender-coded language. In addition, it can be seen that the
fairly-justified summaries further close the gender prediction gap in comparison to the full setting
(0.04 vs 0.10).

Figure 6.8 (b) shows that given the excluded text from the low-rated reviews, users are much
more likely to guess that the instructor is male ( percentage gap is 0.31). The gender gap for the
full setting is 0.17. Again we can see that FairSum reduces the percentage gap to 0.11. Our
preliminary pilot study shows that FairSum is an effective pre-processing approach for extracting
justification summaries that are high-utility and gender-neutral.

6.6 Conclusion

In this chapter, we propose FairSum which is a train-attribute-mask pipeline for detecting and
mitigating the bias in the justification of the text-based neural models. Our objective for extracting
fairly-justified summaries is to maximize the utility of the output summary for the decision pre-
diction task while minimizing the inclusion of proxy information in the summary that can reveal
sensitive attributes of individuals. FairSum is not intended to enhance the fairness in the outcome
but rather to enhance the fairness in the model justification. We achieve this by training a multi-task
model for decision classification and membership identification. We attribute predictions of these
models back to textual input attributes using an attribution mechanism called integrated gradients.
Next, we incorporate the high-utility and low-bias sentences in form of a summary. Eventually,
we retrain the decision classifier on the fairly-justified summaries. Our experiments on real and
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synthetic data sets indicate that our pipeline effectively limits the demographic leakage from the
input data. In addition, we present experimental results on effectiveness of FairSum under several
types of unfairness attacks. We observe that FairSum is most effective in detecting and filtering
unfairness in justification where outcomes are mostly fair.
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Chapter 7: Conclusions, Limitations and Future Work

In this proposal, we explored challenges and opportunities that arise when the summarization
process is guided by a control aspect. We specifically, looked at control aspects such as length of
the summary (§2), domain-specific information (§3), user query(§4), format(§5), and fairness ob-
jectives (§6). We showed generic summarization models are insufficient for generating or extracting
controllable summaries in low-resource domains. In this chapter, we first provide a summary of our
key contributions and then discuss limitations of our work and future research directions.

7.1 Our Key Contributions

Abstractive Summarization at Controllable Lengths [207]

In Chapter 2, we looked at constraining the summarization process by user preference in length
(expressed in terms of number of tokens or compression rate). We proposed MLS, a supervised
approach to construct abstractive summaries at controllable lengths. Following an extract-then-
compress paradigm, we developed the Pointer-Magnifier network – a length-aware, encoder-decoder
network that constructs length-constrained summaries by shortening or expanding a prototype sum-
mary inferred from the document. The key enabler of this network is an array of semantic ker-
nels with clearly defined human-interpretable syntactic/semantic roles in constructing the summary
given a budget-length. We trained our network on limited training samples from two cross-domain
datasets. We presented exhaustive experiments on two low-resource datasets in English language
and showed that MLS outperforms strong baselines by up to 14.70% in the METEOR score. Human
evaluation of the summaries also suggest that summaries generated by MLS capture the key concepts
of the document at various length-budgets.

Domain-guided summarization of privacy policies [113]

In Chapter 3 we first we presented a user study on the impact of presentation format on policy
comprehension. We noticed that a format in which the riskier segments are highlighted leads to
better comprehension of the policies. Motivated by findings of this study and to further address
the information overload problem is this domain, in Chapter 3, we proposed a pipeline for extrac-
tive summarization of privacy policies. Our pipeline includes a risk prediction and a redundancy
reduction module. We employ a pre-trained encoder and convolutional neural network to classify
sentences of the contracts into different risk levels. To address the limitations of previous work, we
incorporate the domain information predicted by the classifier in the form of a summary by using
two content selection mechanisms– risk-focused and a coverage-focused. The coverage-focused
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selection mechanism aims to reduce information redundancy by covering the riskiest sentence from
each privacy topic. Our approach enables users to select the content to be summarized within a
controllable length while relying on substantially less training data than the existing supervised
summarization methods. Despite the moderate success in classifying our realistically imbalanced
dataset, we observed a noticeable improvement in ROUGE and METEOR metrics compared to
domain agnostic baselines.

To address issues posed by lack of training data in this domain, we augmented the TOS;DR
dataset and automatically annotated 151 privacy policies using only a few hundreds of user anno-
tations. To design our pipeline, we used an the auxiliary task of risk classification in addition to
unsupervised clustering methods for redundancy reduction instead of directly learning to summa-
rize. The classifier is substantially less expensive to train but enables our approach to outperform a
selection of domain-agnostic unsupervised summarization methods.

Automated Privacy Policy Question Answering Assistant [116]

To facilitate a more personalized interaction with the policies and make them more accessible to
lay users, in Chapter 4, we proposed an automated question answering pipeline that extracts relevant
segments from the policy in response to an input user query. We address two main challenges in
this domain: (i) the difference between the language of user queries and the legal language of the
privacy policies and (ii) low training resources.

To address the first challenge, we explored using familiar methods such as unsupervised lexical
substitution and back-translation. We tried to close the domain gap between training corpus of our
word vectors and legal language of policies by fine-tuning our word vectors on in-domain privacy
policy data. We observed that while using these method can increase the coverage of user queries
that we can answer, more in-domain data is needed to build paraphrase techniques to adapt the
specificity and style of the user queries to privacy policies.

In our pipeline, following the query expansion, we used a content scoring module that relies on
transfer learning and existing in-domain data to find relevant information in the policy. Essentially,
we used Legal Bert which is a language model trained on in-domain data. Next, we fine-tuned this
model for our task using both task-specific and auxiliary task training data. Our pipeline can find an
answer for 87.7% of the user queries in the privacyQA dataset.

Low-resource Data-to-Text Generation Using Pretrained Language Models [117]

In Chapter 5, we looked at data-to-text generation. We investigated the performance of two
pretrained language models on this task by evaluating them on two divisions of the DART test
set: novel predicates(not seen during training) and abstractive examples. We examined their per-
formance based on choice of the adaptation mechanism: fine-tuning, prompt tuning, and few-shot
learning. We showed that the performance of fine-tuned T5 drops significantly on unseen predicates.
On the other hand, the performance of few-shot GPT2-XL on unseen predicates can be enhanced
even with shots containing unrelated predicates. We also notice that T5 and GPT2-XL both do well
at D2T by copying the input. However, they do noticeably worse on examples where significant
re-writing is needed. Adding domain knowledge (predicate descriptions) to the prompts can im-
prove the performance of few-shot GPT2-XL on this subset by a large amount. We also conducted
a human evaluation of the generations and find that prompt tuned GPT2-XL generations can be
improved by re-ranking generations by overlap with the input entity spans.
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Fairness aware Summarization for Justified Decision Making [115]

In Chapter 6 we formally defined the notion of fairness in the justification. We proposed
FairSum which is a train-attribute-mask pipeline for detecting and mitigating the bias in the tex-
tual justification. FairSum is a novel application for text summarization and intends to enhance
the fairness in the justification. Moreover, unlike many other preprocessing approaches in the fair-
ness literature that produce an intermediate data representation that is not interpretable [82, 244],
FairSum’s output is an extractive natural language summary of the input justifications. This is
preferable for many applications where interpretability is essential.

Our objective for extracting fairly-justified summaries is to maximize the utility of the output
summary for the decision prediction task while minimizing the inclusion of proxy information in
the summary that can reveal sensitive attributes of individuals. We achieve this by training a multi-
task model for decision classification and membership identification. We attribute predictions of the
model back to textual inputs using integrated gradients. Next, we incorporate the high-utility and
low-bias sentences in the form of a summary. Eventually, we retrain the decision classifier on the
fairly-justified summaries.

Our experiments on food inspection reports by the city of Chicago and teaching evaluations
on RateMyProfessor indicate that our pipeline effectively limits the demographic leakage from the
input data. In addition, we present experimental results on the effectiveness of FairSum under
several types of unfairness attacks. Since FairSum relies on attributing outcomes to input justi-
fications, it is most effective in detecting and filtering unfairness in justification where outcomes
are mostly fair. Moreover, results from our pilot user study indicates that our model is an effective
pre-processing approach for neutralizing the textual data (in terms of the protected attribute) while
preserving decision-relevant information.

7.2 Limitations and Future Work

An important objective of this dissertation is to redefine and constrain the automated text sum-
marization task based on users’ preferences in length, format, and focus of the extracted summary.
Another long-term research goal of this dissertation is to work towards making automated text sum-
marization more accessible in low-resource domains. Throughout this thesis, we attempted to ad-
dress challenges introduced by the lack of training resources by developing methods and pipelines
that effectively utilize limited or no human annotation during training and development. Both of
these challenges–lack of task-specific labeled data and the need for control aspects–are crucial in
many real-world applications of text summarization and in fields such as law, finance, and medicine.

We extensively studied creating information retrieval and summarization tool for legal contracts.
We investigated the challenges posed to these automated systems due to users communication style
and comprehension barriers. We also looked at emerging field of ethics and fairness of natural lan-
guage processing systems. We investigated a novel application of text summarization for detecting
and removing biases in the input data. In this last section, we discuss some limitations of our prior
contributions and point out some promising directions for future research.
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7.2.1 Controllable and Low-Resource Summarization

In this dissertation, we proposed end-to-end architectures and domain-inspired pipelines to con-
strain the summarization process based on user query or their length preference. An interesting
future direction is to construct entity-focused or task-driven summaries. Personalizing a summary
based on the user’s past interaction is another exciting direction for future work.

Controlling the generated summary’s style (e.g., plain English, narrative, descriptive, formal,
etc.) is another exciting direction for controllable summarization and has many applications. For ex-
ample, summarization of medical documents for users with different education levels/ backgrounds
or news generation for non-native speakers.

Future work in low-resource text summarization should include more challenging and disparate
domains, such as finance or medicine. It would be interesting to investigate how models trained on
a high-resource domain (e.g., news) can be efficiently adapted to perform summarization on another
unrelated and low-resource domain (e.g., medicine). This would require creating domain-specific
datasets for summarization.

Text summarization research should also include low-resource languages that are less studied
and less computerized due to data-scarcity.

7.2.2 Legal Text Summarization and Information Retrieval

Our user study presented in Chapter 3 showed that shorter presentation forms might be prefer-
able for users but they do not always cover all the necessary information for a conscious agreement.
However, our user study was different from the real-world interaction with policies in a few ways.
First, users were informed about a quiz at the end and therefore were mildly motivated to read the
long policies. Moreover, previous research by Obar and Oeldorf-Hirsch [173] also indicates that
user’s do not often read or understand the policies. Shorter presentation formats can be used to mo-
tivate more users to read the policy and assist them in finding the section they would like to focus
on. An interesting direction for future research is combining the shorter and longer presentation
forms for satisfying the information need of users.

Our prior work discussed in Chapter 3 and Chapter 4, has explored extractive and query-guided
summarization of privacy contracts. While using automated methods to distill the information in
the policies, makes contracts more accessible to lay users, summaries and answers extracted from
the policy are still incomprehensible for many users as they are in legal language.

Summaries would be more accessible if written in plain English rather than legalese [173]. An
abstractive system could be used to rewrite the contract text in this way. However, the abstractive
summaries/answers should not change the legal interpretation of the content and should reliably
reflect the relevant information in the source policy.

This issue is related to the challenge of trust in automated text summarization and is even a
bigger challenge in legal domain. If users are to trust that the summary is indeed a reliable con-
densed version of the policy, each summary segment should be link-able to the original content to
be considered binding. However, substituting the model generated summary with a full contract
is not sensible in many domains. In sensitive applications, summaries can be used to assist users
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in reading the policies by (i) helping them decide what parts of the policy are more important or
relevant to them for further reading or (ii) re-phrasing and simplifying segments that are hard to
understand.

Another useful future direction is to use the risk classifier introduced in Chapter 3, independently
to enhance the productivity of annotators by identifying the sections that need to be summarized.
This can potentially facilitate annotating larger resources for training abstractive models.

Last but not the least, the evaluation of automated approaches such as ours using summariza-
tion or information retrieval metrics is insufficient to determine user comprehension of policies in
practice. It is also necessary to conduct more extensive evaluation experiments, involving human
readers as well as automated metrics. This will help determine the most effective ways to present
information from click-through contracts so that users can understand the terms and make a more
informed decision.

7.2.3 Data-to-text Generation

Future work in D2T generation should consider more challenging examples, and should con-
sider ways in which to generate more diverse variations for expressing a given predicate. This
should include more challenging and disparate domains, such as finance or medicine. In these
cases, one may see benefits from including predicate descriptions, which performed well on the
most abstractive examples.

An important challenge for D2T is how to train models that can generalize to new domains.
While this work looked at a related class of examples (instances with unseen predicates), it would
be interesting to investigate how PLMs trained on one domain can be efficiently adapted to perform
D2T on another unrelated domain (e.g., sports to finance). This would require creating domain-
specific datasets for D2T.

Moreover, we observed that adding domain knowledge (predicate descriptions) to prompts can
improve the performance of few-shot GPT2-XL on abstractive examples. We suspect that this idea
may work better on specialized domains, with better relation descriptions, or with a larger language
model; we could not test this without a specialized D2T dataset with better task relation descriptions.

Finally, many applications prefer generating novel or interesting descriptions for a data record
over “safe” and “generic” ones, which are predominant in DART [131, 132, 9, 213]. Evaluating
PLMs for diversity of generated text is an orthogonal and promising future direction.

7.2.4 Fairness of Natural Language Processing Models

In Chapter 6, we discussed the notion of (un)fairness in justification and proposed a pre-processing
tool based on text summarization called FairSum. FairSum is a train-attribute-mask pipeline for
detecting and mitigating the bias in the textual justification that works at the sentence level. While
this method can be used to remove unfair justifications for fair outcomes from training data of
text-based neural models, it can also be abused to hide actual discrimination from stakeholders
by removing an unfair justification for unfair decisions. While we see the potential for abusing
this technology, we want to emphasize that we made certain assumptions about the training data
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for FairSum. Essentially, we assumed that the majority of the decisions in the training data of
FairSum should have a fair outcome. In addition, our experiments show that FairSum does not
reliably remove the race-coded or gender-code language when the outcome of the decision is not
fair in the first place.

We see several interesting avenues for future research in the intersection of natural language
processing and fairness. An immediate extension of our work is an enhancement approach that
works at word-level for example, by using text generation and paraphrasing instead of sentence
extraction.

Another interesting research direction is using this train-attribute-mask pipeline for removing
bias from data of other natural language processing tasks such as sentiment analysis and using
other architectures that can work with integrated gradients. It is also interesting to see how this
solution can be extended to obfuscate biases for other data types (e.g. images or tabular data).
Lastly, conducting a larger user study to evaluate the impact of this tool in explaining predictions
for stakeholders in a real-world application is left for future work.

99



Bibliography

[1] P Abbott. Tricks of the trade: Legendre-gauss quadrature. Mathematica Journal, 9(4):689–

691, 2005.

[2] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudı́k, John Langford, and Hanna Wallach. A

reductions approach to fair classification. In International Conference on Machine Learning,

pages 60–69. PMLR, 2018.

[3] Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos. Learning optimal and fair deci-

sion trees for non-discriminative decision-making. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 33, pages 1418–1426, 2019.

[4] Wasi Uddin Ahmad, Jianfeng Chi, Yuan Tian, and Kai-Wei Chang. Policyqa: A reading

comprehension dataset for privacy policies. arXiv preprint arXiv:2010.02557, 2020.

[5] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. ProPublica,

May, 23(2016):139–159, 2016.

[6] Michael Aschbacher. On collineation groups of symmetric block designs. Journal of Com-

binatorial Theory, Series A, 1971.

[7] Hiteshwar Kumar Azad and Akshay Deepak. Query expansion techniques for information

retrieval: a survey. Information Processing & Management, 56(5):1698–1735, 2019.

100



[8] Joris Baan, Maartje ter Hoeve, Marlies van der Wees, Anne Schuth, and Maarten de Rijke.

Do transformer attention heads provide transparency in abstractive summarization? arXiv

preprint arXiv:1907.00570, 2019.

[9] Ashutosh Baheti, Alan Ritter, Jiwei Li, and Bill Dolan. Generating more interesting re-

sponses in neural conversation models with distributional constraints. In Proceedings of

the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3970–

3980, Brussels, Belgium, October-November 2018. Association for Computational Linguis-

tics. doi: 10.18653/v1/D18-1431. URL https://aclanthology.org/D18-1431.

[10] Ahsaas Bajaj, Pavitra Dangati, Kalpesh Krishna, Pradhiksha Ashok Kumar, Rheeya Uppaal,

Bradford Windsor, Eliot Brenner, Dominic Dotterrer, Rajarshi Das, and Andrew McCallum.

Long document summarization in a low resource setting using pretrained language models.

arXiv preprint arXiv:2103.00751, 2021.

[11] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with

improved correlation with human judgments. In Proceedings of the acl workshop on intrinsic

and extrinsic evaluation measures for machine translation and/or summarization, 2005.

[12] Colin Bannard and Chris Callison-Burch. Paraphrasing with bilingual parallel corpora. In

Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics

(ACL’05), pages 597–604, 2005.

[13] Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671,

2016.

[14] Anna Maria Barry-jester, Ben Casselman, and Dana Goldstein. The new science of sentenc-

ing, Aug 2015. URL https://www.themarshallproject.org/2015/08/04/

101

https://aclanthology.org/D18-1431
https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing
https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing


the-new-science-of-sentencing.

[15] Mohaddeseh Bastan and Shahram Khadivi. A preordered rnn layer boosts neural machine

translation in low resource settings. arXiv preprint arXiv:2112.13960, 2021.

[16] Mohaddeseh Bastan, Shahram Khadivi, and Mohammad Mehdi Homayounpour. Neural ma-

chine translation on scarce-resource condition: a case-study on persian-english. In 2017

Iranian Conference on Electrical Engineering (ICEE), pages 1485–1490. IEEE, 2017.

[17] Yahav Bechavod and Katrina Ligett. Penalizing unfairness in binary classification. arXiv

preprint arXiv:1707.00044, 2017.

[18] Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Mor-

genstern, Seth Neel, and Aaron Roth. A convex framework for fair regression. arXiv preprint

arXiv:1706.02409, 2017.

[19] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in

criminal justice risk assessments: The state of the art. Sociological Methods & Research,

page 0049124118782533, 2018.

[20] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python:

analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[21] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. JMLR, 2003.

[22] April Bleske-Rechek and Kelsey Michels. Ratemyprofessors com: Testing assumptions

about student use and misuse. Practical Assessment, Research, and Evaluation, 15(1):5,

2010.

102

https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing
https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing
https://www.themarshallproject.org/2015/08/04/the-new-science-of-sentencing


[23] Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. Man

is to computer programmer as woman is to homemaker? debiasing word embeddings. arXiv

preprint arXiv:1607.06520, 2016.

[24] John Brockman. What to think about machines that think: todays leading thinkers on the age

of machine intelligence. HarperCollins, 2015.

[25] Orkut Buyukkokten, Hector Garcia-Molina, and Andreas Paepcke. Seeing the whole in parts:

text summarization for web browsing on handheld devices. In The Web Conference, 2001.

[26] Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free clas-

sification. Data Mining and Knowledge Discovery, 21(2):277–292, 2010.

[27] Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building classifiers with indepen-

dency constraints. In 2009 IEEE International Conference on Data Mining Workshops, pages

13–18. IEEE, 2009.

[28] Flavio P Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy,

and Kush R Varshney. Optimized pre-processing for discrimination prevention. In Proceed-

ings of the 31st International Conference on Neural Information Processing Systems, pages

3995–4004, 2017.

[29] Marco Campana and Anastasios Tombros. Incremental personalised summarisation with

novelty detection. In FQAS, 2009.

[30] Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li. Faithful to the original: Fact aware neural

abstractive summarization. In AAAI, 2018.

[31] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learning interpretabil-

ity: A survey on methods and metrics. Electronics, 8(8):832, 2019.

103



[32] Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and Yejin Choi. Deep communicating

agents for abstractive summarization. arXiv preprint arXiv:1803.10357, 2018.

[33] L Elisa Celis and Vijay Keswani. Improved adversarial learning for fair classification. arXiv

preprint arXiv:1901.10443, 2019.

[34] L Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K Vishnoi. Classification with

fairness constraints: A meta-algorithm with provable guarantees. In Proceedings of the con-

ference on fairness, accountability, and transparency, pages 319–328, 2019.

[35] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah
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