
Evaluating USDA Agricultural Forecasts

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in the Graduate School of The Ohio State

University

By

Siddhartha S. Bora, M.S.

Graduate Program in Department of Agricultural, Environmental,
and Development Economics

The Ohio State University

2022

Dissertation Committee:

Ani L. Katchova, Ph.D., Advisor

Wuyang Hu, Ph.D.

Brian E. Roe, Ph.D.

Todd H. Kuethe, Ph.D.



© Copyright by

Siddhartha S. Bora

2022



Abstract

The timely availability of accurate forecasts plays a vital role in informing decisions

by farm sector stakeholders. In this dissertation, I evaluate the rationality, accuracy,

and informativeness of a range of agricultural forecasts and projections published

by the United States Department of Agriculture (USDA) and other agencies and

examine ways to improve them. The findings have implications for future revisions

of the forecasting processes and for policymakers, agricultural businesses, and other

stakeholders who use these forecasts.

In Chapter 1, I show that some of the reported biases and inefficiencies in USDA

forecasts may be due to an asymmetric loss of the forecaster. Many previous studies

suggest that many USDA forecasts are biased and/or inefficient. These findings,

however, may be the result of the assumed loss function of USDA forecasters. I test

the rationality of the USDA net cash income forecasts and the World Agricultural

Supply and Demand Estimates (WASDE) production and price forecasts between

1988-2018 using a flexible multivariate loss function that allows for asymmetric loss

and non-separable forecast errors. My results provide robust evidence that USDA

forecasters are rational expected loss minimizers yet demonstrate a tendency to place

a greater weight on under- or over-prediction. As a result, this study provides an

alternate interpretation of previous findings of forecast irrationality.
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Agricultural baselines play an important role in shaping agricultural policy by

providing information about the farm sector for a ten-year horizon, yet these pro-

jections have not been rigorously evaluated. In Chapter 2, I evaluate the accuracy

and informativeness of two widely used baselines for the US farm sector published by

the USDA and the Food and Agricultural Policy Research Institute (FAPRI) in three

steps. First, I examine the average percent errors of the projections and perform tests

of bias. Second, I use a novel testing framework based on the encompassing princi-

ple to test the predictive content of the projections for each horizon, determining

the longest informative projection horizon. Third, I compare the USDA and FAPRI

baseline projections using a multi-horizon framework that considers all projection

horizons jointly. I find that prediction error and bias increase with the horizon’s

length. The predictive content of the baselines projections for most variables dimin-

ishes after 4-5 years. The multi-horizon comparison suggests that neither USDA nor

FAPRI projections have uniform or average superior predictive ability over the other

for most variables.

Multi-step forecasts about commodity market indicators play an important role in

informing policy and investment decisions by governments and market participants.

In Chapter 3, I examine whether the accuracy of long-term forecasts can be improved

using deep learning models. I first formulate a supervised learning problem and

set benchmarks for forecast accuracy. I train a set of deep neural networks on a

training sample and measure their performance against the benchmark model on a

test sample using a walk-forward validation strategy. I find that while the USDA

baseline projections perform better for the shorter horizon, the performance of the

deep neural networks improves for the longer forecast horizons.
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Chapter 1: The Rationality of USDA Forecasts under

Multivariate Asymmetric Loss

“The U.S. Agriculture Department said on Wednesday it had pulled all
staff from an annual crop tour after an employee was threatened, and
three sources said the threat of violence was made during a phone call
from an angry farmer.”

Huffstutter and Polansek (2019)

1.1 Introduction

The Federal government’s statistical agencies and programs generate a large vol-

ume of data that “the public, businesses, and governments need to make informed

decisions” (Office of Management and Budget, 2020, pp. 3). The U.S. Department of

Agriculture (USDA) plays an important role within the Federal government’s statisti-

cal agencies and programs. The USDA is responsible for producing a variety of prin-

cipal federal economic indicators. Further, the USDA is home to two of the Federal

government’s thirteen principal statistical agencies, the National Agricultural Statis-

tics Service (NASS) and the Economic Research Service (ERS), which accounted for

approximately 8% of the $3.2 billion appropriated to primary statistical agencies in

fiscal year 2017 (Office of Management and Budget, 2020). In order to provide timely

information for decision-makers across the agricultural sector, the USDA’s statisti-

cal agencies and programs provide forecasts of agricultural production, prices, trade,
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uses, inventories, and farm income. The existing literature, however, suggests that

many USDA forecasts are not rational (Bailey & Brorsen, 1998; Isengildina, Irwin, &

Good, 2006; Isengildina-Massa, MacDonald, & Xie, 2012; Kuethe, Hubbs, & Sanders,

2018; Sanders & Manfredo, 2003; Xiao, Hart, & Lence, 2017). The overwhelming

evidence of irrationality may lead many forecast users to question the usefulness of

USDA forecasts.

In this study, we examine the degree to which prior findings of irrationality in

USDA forecasts can be attributed to assumptions researchers make about the costs

of forecast errors, by examining the forecaster’s loss function. The conventional prac-

tice is (i) to assume a priori that USDA forecasts are generated to minimize a mean

squared error (MSE) loss function and (ii) to test the weak form conditions of ratio-

nality under MSE loss.1 Many of the weak form conditions of forecast rationality,

however, do not hold under other loss functions (Patton & Timmermann, 2007). As

a result, rejections of forecast rationality may be due to misspecified loss functions,

rather than lack of rationality (Elliott, Timmermann, & Komunjer, 2005). Our em-

pirical approach, by contrast, only assumes that the forecaster’s loss function belongs

to a flexible class of loss functions, of which MSE is a special case. We then back out

the parameters of the loss function that are consistent with the observed forecasts.

As Auffhammer (2007) argues, a forecast is only optimal for a particular fore-

cast user when his or her loss function matches that of the forecast producer. As

1Notable exceptions include evaluations of USDA’s interval forecasts of commodity prices, in-
cluding Sanders and Manfredo (2003), Isengildina, Irwin, and Good (2004), and Isengildina-Massa
and Sharp (2012). These studies examine the proportion of actual market prices that fall in the
forecasted range, or “hit rate,” of various USDA interval forecasts. In a spirit similar to the current
study, Isengildina et al. (2004) examine the degree to which inaccuracy of USDA’s interval forecasts
of corn and soybean price forecasts can be attributed to inefficient use of information or the utility
function of the forecasters. The authors find evidence of the latter.
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a result, we empirically estimate the loss functions associated with two of USDA’s

most prominent forecasts from 1988 through 2018. First, we examine USDA’s fore-

casts of annual net farm income and its components. The USDA’s farm income

forecasts are among the department’s most cited statistics (McGath et al., 2009a).

They are closely monitored by various farm sector stakeholders, including farm in-

put and machinery suppliers, lenders, other farm related industries, and state and

local governments (Dubman, McElroy, & Dodson, 1993). In addition, USDA’s farm

income forecasts are frequently cited in farm policy debates in Congress and are

inputs in numerous other statistical models, such as the estimation of gross domes-

tic production (McGath et al., 2009a). Second, we examine a set of production and

price forecasts from the World Agricultural Supply and Demand Estimates (WASDE)

for three major commodities: corn, soybeans, and wheat. WASDE is an important

source of information for commodity production, consumption, trade, and prices. The

existing literature provides robust evidence that WASDE releases move commodity

markets (Adjemian, 2012; Adjemian & Irwin, 2018; Dorfman & Karali, 2015; Forten-

bery & Sumner, 1993; Isengildina-Massa, Cao, et al., 2020; Isengildina-Massa, Irwin,

Good, & Gomez, 2008; Karali, Isengildina-Massa, Irwin, Adjemian, & Johansson,

2019; McKenzie, 2008; Sumner & Mueller, 1989). Further, the USDA production

forecasts were subject to intense scrutiny during the recent 2019 growing season.

USDA’s corn acreage and yield forecasts were even believed to motivate threats of

violence against USDA employees by disgruntled farmers (Huffstutter & Polansek,

2019).

This study makes a number of important contributions to the literature. First, our

empirical approach relaxes the assumptions of MSE loss. We build on the generalized

3



method of moments (GMM) framework of Elliott et al. (2005) that jointly estimates

the forecaster’s loss function and tests for rationality of the forecasts. Elliott et al.’s

method is flexible as it allows for several parameterizations, as well as asymmetry in

the loss function due to differential costs of over- and under-prediction. As detailed

in the next section, there are a number of reasons to believe that the bias and ineffi-

ciencies documented in USDA forecasts may be the direct result of asymmetric costs

of over- and under-prediction.

Second, we evaluate forecasts in a multivariate framework. The overwhelming

majority of prior evaluations of USDA forecasts test rationality on each variable in-

dependently, even though the forecasts are released as joint forecasts of several vari-

ables.2 This practice implicitly assumes that the marginal costs for forecast errors

in one variable are independent of the costs for other variables or that there are no

interactions between variables. Thus, previous researchers implicitly assume sepa-

rable loss functions. We instead apply the estimation procedure of Komunjer and

Owyang (2012) that generalizes the approach of Elliott et al. (2005) to a multivariate

setting with non-separable loss. Both net farm income and WASDE are based on ac-

counting equations, so the forecast errors of each variable likely depend on the errors

of other variables. For example, within the farm income forecast, the costs associ-

ated with over-predicting cash receipts are compounded when jointly under-predicting

cash expenses, or within WASDE, the costs associated with over-predicting yields are

compounded when jointly over-predicting acreage.

Third, while our results are generally consistent with previous findings, our analy-

sis yields an alternative interpretation of the results of prior research. Batchelor (2007)

2Isengildina-Massa, Karali, Kuethe, and Katchova (2020) is one recent exception.
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draws a distinction between a rational forecaster and a “technically” rational forecast.

A rational forecaster uses all available information when constructing a forecast, as in

Muth (1960), and a forecast is “technically” rational when it is unbiased and efficient,

as in Diebold and Lopez (1996). Batchelor (2007) identifies three possible explana-

tions why rational forecasters may publish “technically” irrational forecasts. One, the

forecaster may lack the skill to use information efficiently and learn from forecast-

ing errors. Two, the forecaster may have the skill to use information efficiently, but

the forecaster’s information set is insufficient. Three, the forecaster may have skill

and sufficient data but responds to incentives to make an optimistic or pessimistic

forecast, namely, the forecaster responds to asymmetries in the consequences of over-

versus under-prediction. We find robust evidence that USDA forecasts are generated

to minimize an asymmetric loss function. While many USDA forecasts are technically

irrational under traditional tests (biased and/or inefficient), this study suggests that

USDA forecasters are rational expected loss minimizers under asymmetric loss. As

Keane and Runkle (1990, pp. 719) state, “if forecasters have differential costs of over-

and under-prediction, it could be rational for them to produce biased forecasts. If we

were to find that forecasts are biased, it could still be claimed that forecasters were

rational if it could be shown that they had such differential costs.”

1.2 Background

As Elliott and Timmermann (2008, pp. 8) suggest, “no forecast is going to always

be correct, so a specification of how costly different mistakes are is needed to guide

the procedure.” The loss function is a mathematical representation of the costs

associated with forecast errors, and forecasters generate projections that minimize

5



the expected loss function. Elliott and Timmermann (2008) argue that the loss

function interpretation of forecast evaluation is valid when (i) forecasters care about

the accuracy of their forecasts, and (ii) forecasters can adjust their forecasts in a way

that incorporates any costs associated with forecast errors. The two most common

loss functions employed in the existing literature are mean squared error (MSE) and

mean absolute error (MAE).

Forecast evaluation under MSE is particularly popular because rationality implies

a number of properties that can be easily tested empirically. A rational forecast

under MSE loss is unbiased, forecast errors are serially uncorrelated, and the un-

conditional variance of the forecast error is a non-decreasing function of the forecast

horizon (Diebold & Lopez, 1996). However, many forecasts fail to meet these condi-

tions. Traditional tests of forecast rationality under MSE loss suffer from the “joint

hypothesis problem,” as rejection of rationality stems from either irrationality of the

forecasts or a misspecified test (Fritsche, Pierdzioch, Rülke, & Stadtmann, 2015).

Thus, traditional rationality tests may be misspecified with respect to the assumed

loss function of the forecaster.

The loss function is sometimes referred to as the utility function of the forecast

producer. Kahneman and Tversky (1973) argue that forecasters may intentionally

produce technically irrational forecasts because of behavioral biases in information

processing. For example, when forecasters have a large utility of a positive outcome,

they may assign greater probability weights to some values out of anticipation, hope,

or greed (Weber, 1994). Similarly, when forecasters have a large disutility of a negative

outcome, they may assign greater probability weights to some values out of fear of

the negative consequences associated with underestimating probability (Weber, 1994).
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The asymmetries in probability weights mirrors the asymmetric reaction to gains and

losses (Kahneman & Tversky, 1979). Asymmetries in the consequences of over- or

under-prediction of uncertain quantities are frequently referred to as asymmetric loss

functions. Weber (1994) demonstrates that asymmetric loss functions can be derived

from either an expected utility or a rank-dependent utility framework.

West, Edison, and Cho (1993) argue that an asymmetric loss function is a natural

candidate to evaluate forecasts when one seeks to emulate a utility-function-based

approach to forecast evaluation. Under asymmetric loss functions, the optimal fore-

cast is the conditional mean (MSE) or median (MAE) plus an optimal bias term

(Christoffersen & Diebold, 1997; Granger, 1969, 1999; Zellner, 1986b). The size of

the optimal bias will depend on the parameters of the loss function (Granger, 1969).

In addition, the forecast errors will not be orthogonal to variables in the forecaster’s

information set (Batchelor & Peel, 1998). Patton and Timmermann (2007) assert

that optimal forecasts are only unbiased when they meet the “double symmetry”

condition, in which both the variable forecasted and the forecaster’s loss function are

distributed symmetrically.

In addition to internal asymmetric costs, such as anticipation or fear, forecasters

may face external asymmetric consequences for forecast errors (Weber, 1994). For ex-

ample, Laster, Bennett, and Geoum (1999) show that when forecasters are rewarded

based on both accuracy and their ability to generate publicity, their efforts to attract

publicity may compromise forecast accuracy. In an experimental setting, Maddox and

Bohil (1998) show that people react in the appropriate direction to asymmetric payoff

functions, but they are often too conservative in their reactions. In addition to pub-

licity, forecasters may derive some benefit from cultivating a reputation as optimists
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or pessimists (Batchelor & Dua, 1990). For example, when forecasters rely on others

for information, optimism may help to build relationships with information providers

(Francis, Hanna, & Philbrick, 1997; Francis & Philbrick, 1993; Lim, 2001). Similarly,

forecasters may alter their predictions to make their forecasts more attractive to par-

ticular client groups or forecast users (Batchelor, 2007). While USDA forecasters

may be subject to limited internal asymmetric costs, such as anticipation or fear,

they may be subject to external asymmetric consequences for forecast errors, given

their reliance on information from farmers and other agricultural sector professionals,

who are also USDA forecast users.

Asymmetric loss functions carry important consequences for fixed event forecasts,

such as USDA’s farm income or WASDE forecasts. Kahneman and Tversky (1973)

argue that forecasters may overweight their own past forecasts and under-react to

new information. Thus, any bias in initial forecasts will propagate forward. Batch-

elor (2007) demonstrates that bias in initial forecasts will also propagate forward if

forecasters face penalties for forecast revision or are rewarded for consistency. Given

that the optimal forecast under asymmetric loss includes an optimal bias, any asym-

metric loss early in the forecast process may carry forward throughout later forecast

revisions.

An asymmetric loss function in any one forecast may also carry important con-

sequences for later forecasts of other economic variables. When forecasts are made

sequentially by different agents, each published forecast becomes part of the infor-

mation set of the next forecaster. Graham (1999) demonstrates that this process
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of “information cascades” may lead to herding when later forecasts are biased to-

wards early forecasts.3 As previously stated, USDA produces a variety of forecasts,

and any asymmetries in one USDA forecast may carry over to later USDA forecasts

through information cascades. For example, if WASDE forecasts project a significant

decline in the production of a particular commodity, this information will likely be

incorporated in the USDA farm income forecasts.

Finally, the existing literature offers several explanations as to why forecasts pro-

duced by government agencies, such as USDA, may be generated under asymmetric

loss. A number of previous studies suggest that government agency forecasts tend

to be conservative or cautious (Capistrán, 2008; Caunedo, Dicecio, Komunjer, &

Owyang, 2018; Ellison & Sargent, 2012). Government forecasters may be cautious be-

cause stability is a crucial economic policy goal (Capistrán, 2008), policy-making may

require “worst case scenario” forecasts (Ellison & Sargent, 2012), or over-predicting

prosperity may be worse for policymakers than under-predicting (Caunedo et al.,

2018). In addition, government forecasts may also be used to stimulate some private

sector response (Estrin & Holmes, 1990). For example, Beaudry and Willems (2018)

demonstrate that overly optimistic GDP growth forecasts triggers public and private

debt accumulation. Finally, it has been argued that government agency forecasts

may be used as an instrument to justify a particular policy response (Frankel, 2011;

Jonung & Larch, 2006) or to put the incumbent party in a favorable light (Ulan,

Dewald, & Bullard, 1995).

As previously stated, traditional forecast evaluation methods test the weak form

properties of rationality under an assumed loss function, such as MSE or MAE, yet

3Fritsche et al. (2015), conversely, identify an “anti-herding” behavior in professional forecasters
where later forecasters strategically differentiate their forecasts from those previously published.
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whether one can conclude that bias or inefficiency represents irrationality requires

knowledge of the shape of the forecaster’s loss function (Keane & Runkle, 1998).

A number of studies develop alternative loss functions that account for asymmetry

(Batchelor & Peel, 1998; Christoffersen & Diebold, 1996; Granger & Pesaran, 2000;

Ulu, 2013; Varian, 1975; Zellner, 1986a).

Elliott et al. (2005), in contrast, develop an alternative forecast evaluation frame-

work that maintains the assumption of loss minimizing behavior and estimates the

shape of the loss function, or class of loss functions, that are consistent with the

observed forecasts. The method is flexible as it allows for several alternative parame-

terizations of the loss function, with symmetry as a special case. Elliott et al.’s (2005)

method jointly estimates the asymmetry parameters of the forecaster’s loss function

and tests for rationality of the forecasts. Krüger and LeCrone (2019) show that this

method has a high power and is robust to fat tails, serial correlation, and outliers.

The method has been used to evaluate forecasts of a number of economic variables

by professional forecasters (Aretz, Bartram, & Pope, 2011; Christodoulakis, 2020;

Fritsche et al., 2015; Mamatzakis & Koutsomanoli-Filippaki, 2014; Pierdzioch, Reid,

& Gupta, 2016; Pierdzioch, Rülke, & Stadtmann, 2013; Tsuchiya, 2016a, 2016b),

government agencies (Auffhammer, 2007; Giovannelli & Pericoli, 2020; Krol, 2013;

Tsuchiya, 2016a), international organizations (Christodoulakis & Mamatzakis, 2008;

Giovannelli & Pericoli, 2020; Tsuchiya, 2016a), and central banks (Ahn & Tsuchiya,

2019; Baghestani, 2013; Capistrán, 2008; Caunedo, Dicecio, Komunjer, & Owyang,

2020; Pierdzioch, Rülke, & Stadtmann, 2015). These studies overwhelmingly sug-

gest that forecasts that are biased or inefficient under MSE loss are rational under

asymmetric loss.
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1.3 Description of USDA Forecasts

1.3.1 Farm Income Forecasts

Since 1910, the USDA has produced annual estimates of net farm income, a mea-

sure of the return to farm operators for their labor, capital, and management after

all production expenses are deducted (Lucier, Chesley, & Ahearn, 1986). USDA’s

official farm income estimates are produced with a significant time lag. They are

typically released in August following the reference year. In order to provide more

timely information, the USDA produces a series of forecasts each year. The forecasts

relate to a calendar year and are typically released in February, August, November,

and the following February.4 The August forecast coincides with the release of the

official estimates of the prior year, and the last forecast in February coincides with

the release of the first forecast of the new calendar year.

USDA’s farm income accounts include a variety of income and wealth measures.

Our analysis examines the vector of forecasts related to net cash income. Net cash in-

come (NCI) is a measure of farm-sector earnings, including cash receipts from farming,

farm-related income, and government payments less cash expenses. It is calculated

using the accounting equation:

Net Cash Income (NCI) = Crop Receipts (CR) + Livestock Receipts (LR)

+ Direct Government Payments (GP)

+ Cash Farm-Related Income (FRI)

− Cash Expenses (EXP).

(1.1)

4USDA may further revise the estimates in subsequent releases, mainly to correct errors or to
incorporate information that was not available earlier. However, to maintain consistency, we consider
the first official estimates as the realized values throughout the study, following Kuethe et al. (2018)
and Isengildina-Massa, Karali, et al. (2020).
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Crop receipts include cash receipts from eight major crops, and livestock receipts

include four categories (meat animals, dairy products/milk, poultry and eggs, and

miscellaneous livestock). Direct government payments represent funds that the Fed-

eral Government pays to farmers and ranchers who produce program commodities,

participate in resource conservation, and receive compensation for natural disasters.

Cash farm-related income includes income from items such as recreational activities,

custom work, machine hire, forest products, and other farm sources. The first four

items are added up to calculate gross cash income, after which cash production ex-

penses are subtracted to arrive at net cash income. Since cash farm-related income

forecasts are not available for most of the years and since cash farm-related income

contributes less than 10% to gross cash income, we exclude this variable from our

analysis.

McGath et al. (2009a) document the economic model and estimation procedure

for each component. The forecast procedure relies on data obtained from a variety

of sources, including WASDE, Agricultural Resource Management Survey (ARMS),

and NASS. While the data sources remain constant throughout the farm income

forecast process, the timing of the release of the forecast revisions is selected to reflect

changes in information. For example, the August revision reflects updates in crop

production estimates and cash receipts from the USDA’s survey-based production

and yield estimates, and the November revision reflects updated crop production and

harvest information. As time progresses, many of the forecasted values are substituted

with the official estimates. For example, by February of next year, the WASDE

acreage and yield values are final estimates, however, prices for the marketing year

remain forecasts (McGath et al., 2009a).
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Kuethe et al. (2018) previously found that USDA’s bottom-line net farm income

forecasts are biased and inefficient. Specifically, initial forecasts systematically under-

predict realized values, and later forecast revisions over-react to new information.5

Isengildina-Massa, Karali, et al. (2020) extend the work of Kuethe et al. (2018) by

examining the vector of net cash income and its components, including crop receipts,

livestock receipts, government payments, gross cash income, and cash expenditures.

Isengildina-Massa, Karali, et al. (2020) find a similar downward bias in initial net

cash income forecasts, which mainly stems from forecasts of crop receipts.

1.3.2 WASDE Forecasts

We also examine USDA production forecasts for area harvested (Acreage), yield

per harvested acre (Y ield), and average farm price (Price) for three major commodi-

ties: corn, soybeans, and wheat. The forecasts were obtained from USDA’s WASDE.

WASDE is coordinated by the World Agricultural Outlook Board (WAOB) and relies

on data and expertise from a variety of USDA agencies including NASS, ERS, Farm

Service Agency (FSA), Agricultural Marketing Service (AMS), and Foreign Agricul-

tural Service (FAS). A detailed description of WASDE’s balance sheet approach to

crop forecast generation is provided by Vogel and Bange (1999).

WASDE forecasts and estimates are produced for marketing year averages. For

corn and soybeans, the marketing year is defined as September through August of

the following calendar year, and, for wheat, the marketing year is defined as June

through May of the following calendar year. WASDE forecasts are released by USDA

between the 9th and 12th of each month. The first marketing year forecasts for

5Kuethe et al. (2018) examine bottom-line net farm income which includes non-cash income and
expenses. The differences between the two measures is documented in McGath et al. (2009a).
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corn, soybeans, and wheat are released in May. For corn and soybeans, the acreage

and yield estimates are finalized in December, and for wheat, the acreage and yield

estimates are finalized in September. Season average prices are finalized in November

of the following calendar year for corn and soybeans and in September of the following

calendar year for wheat.

Isengildina-Massa, Karali, and Irwin (2013) document the bias and inefficiency of

WASDE price and production forecasts for corn, soybeans, and wheat. The authors

find strong evidence that forecast errors are affected by behavioral and macroeconomic

factors. Xiao et al. (2017) similarly show that WASDE forecasts of ending stocks

for the same three commodities are inefficient and conservative. Isengildina et al.

(2006) also identify informational inefficiencies in NASS corn and soybean production

forecasts. Despite the prior findings of bias and inefficiency, Hoffman, Etienne, Irwin,

Colino, and Toasa (2015a) find that WASDE projections of season-average corn price

provide useful information to the market. The evidence of irrationality for other

commodities, however is mixed. Isengildina-Massa et al. (2012) find evidence of bias

and inefficiency in WASDE cotton forecasts, yet Lewis and Manfredo (2012) fail to

reject the rationality of WASDE sugar production and consumption forecasts.

1.3.3 Preliminary Analysis

Following Isengildina-Massa et al. (2013), forecasts are expressed as percent changes

from the previous year to avoid the impact of changing forecast levels over the study

period. The percent change is calculated as: ft,h = 100 ∗ ln(Ft,h/Ft−1,h), where Ft,h

is the forecast level for a reference year t and at horizon h months before the fi-

nal estimate and Ft−1,h is the forecast from the previous year t − 1 for the same
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time horizon h. The forecasts for the previous year are replaced with the final es-

timates after they are released (in August for farm income, November for corn and

soybeans, and September for wheat). The percentage forecast errors at each hori-

zon h are defined as the difference between the estimate and the h-horizon forecast,

et,h = ft,0 − ft,h. For the farm income forecast, ft,h represents the vector of net

cash income and its components, where the horizon h is February, August, Novem-

ber, and next February. The j-th component of the vector of h-horizon forecasts

is f j
t,h, where j ∈ {NCI,CR,LR,GP,EXP}. The WASDE forecasts are simi-

larly expressed with h representing each month of May through December for corn

and soybeans and May through September for wheat. For all three commodities,

j ∈ {Acreage, Y ield, Price}. The forecast errors are stationary for all forecast series

and horizons, as verified using standard tests of stationarity (Dickey & Fuller, 1979;

Said & Dickey, 1984).

Figures 1.1 and 1.2 depict the average annual forecast errors for net cash income

and its components and for the WASDE acreage, price, and yield, respectively. Net

cash income forecast errors exhibit large variation over time, even though errors in

cash expenses tend to offset errors in receipts and government payments. Notably,

the 2007-2008 period of sharply increasing crop prices resulted in some of the largest

forecast errors for crop prices, but not for farm income, acreage, or yield.

Tables 1.1 - 1.4 summarize the forecast errors for each variable and horizon h over

the period 1988-2018. The summaries include three common measures of forecast

accuracy: the mean absolute percent error MAPE(|e|) = 1
T

∑T
t=1 |et|, the root mean

square percent error RMSPE(
√
e2) = ( 1

T

∑T
t=1 e

2
t )

1
2 , and the mean percent error

MPE(e) = 1
T

∑T
t=1 et. An important implication of forecast rationality is that the
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forecast should become more accurate as the forecast horizon shortens (Patton &

Timmermann, 2007). As shown in tables 1.1 - 1.4, the MAPE, RMSPE, and MPE

for each variable generally decrease over the forecasting horizon, with few exceptions.

In addition, the last two columns of each table report the t-statistic and p-value for

the bias test developed by Holden and Peel (1990a). The test statistic is calculated by

regressing the forecast errors on a constant. As expected, table 1.1 suggests that net

cash income and crop receipts are biased. We also find some evidence of bias in the

forecasts of corn acreage (table 1.2), soybean prices (table 1.3), and wheat acreage

and yield (table 1.4). In terms of the magnitude of the bias, the MPEs for 12 out of

20 farm income forecasts and its components, 7 out of 24 for corn, 10 out of 24 for

soybeans, and 8 out of 15 for wheat forecasts are above 1% in absolute values, which

may be considered economically significant. Net cash income has the largest bias

when compared to its components which is expected since the bias in its components

is additive. For the WASDE forecasts, the bias for the price forecasts is much larger

when compared to the bias for the yield and acreage forecasts. In addition, forecasts

of farm income and its components have larger bias than that of WASDE production

and price forecasts. Lastly, in cases where bias exceeds 1% in absolute value, it is

generally positive, which indicates that the forecasts generally under-predict realized

values. These results are consistent with our later findings that forecasters have a

greater cost of over-prediction than under-prediction.
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Figure 1.1: Average annual errors of net cash income forecasts and its components,
1988-2018
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Figure 1.2: Average annual errors of WASDE forecasts for acreage, yield, and price,
1988-2018
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Table 1.1: MAPE, RMSPE and MPE of USDA net cash income forecasts, 1988-2018

Variable Forecast MAPE (|e|) RMSPE (
√
e2) MPE (e) Bias (t-statistic) p-value

February 13.177 16.001 8.153 3.225 0.003

August 7.620 11.196 3.742 1.999 0.055

November 5.817 8.208 2.373 1.742 0.092Net cash income

Next February 5.861 8.305 2.584 1.972 0.058

February 4.314 5.339 3.048 3.459 0.002

August 2.943 3.724 1.761 2.999 0.006

November 2.389 3.026 1.018 2.076 0.047Crop receipts

Next February 1.863 2.332 0.813 2.051 0.049

February 6.278 7.832 3.147 2.358 0.025

August 2.261 2.778 0.415 0.739 0.466

November 1.482 1.888 0.280 0.791 0.435Livestock receipts

Next February 1.076 1.529 -0.101 -0.363 0.719

February 19.311 27.815 7.564 1.209 0.236

August 11.374 18.518 -0.066 -0.017 0.986

November 7.425 11.427 -4.967 -2.643 0.013Govt. payments

Next February 4.934 7.100 -1.162 -0.876 0.388

February 3.551 4.307 1.805 2.659 0.012

August 2.683 3.282 0.470 0.734 0.469

November 1.960 2.436 -0.375 -0.852 0.401Cash expenses

Next February 1.926 2.665 -0.251 -0.575 0.570
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Table 1.2: RMSPE, MAPE and MPE of WASDE corn forecasts, 1988/89-2018/19

Variable Forecast MAPE (|e|) RMSPE (
√
e2) MPE (e) Bias (t-statistic) p-value

May 2.043 2.807 -0.729 -1.383 0.179

June 1.802 2.542 -0.341 -0.732 0.471

July 1.145 1.651 -0.755 -2.891 0.008

August 0.745 0.961 -0.339 -2.367 0.025

September 0.763 0.961 -0.195 -1.310 0.200

October 0.604 0.827 -0.041 -0.267 0.791

November 0.534 0.737 0.047 0.350 0.729

Acreage

December 0.534 0.737 0.047 0.350 0.729

May 13.255 17.153 5.467 1.900 0.067

June 13.194 16.932 3.612 1.265 0.216

July 10.962 14.161 2.202 0.934 0.358

August 10.335 13.374 -0.245 -0.101 0.921

September 9.456 12.079 0.720 0.326 0.746

October 7.641 9.363 1.171 0.662 0.513

November 4.853 6.599 1.083 0.929 0.360

Price

December 3.722 5.126 1.100 1.239 0.225

May 6.543 12.256 -3.427 -1.122 0.273

June 5.204 8.382 -0.685 -0.411 0.685

July 4.554 6.329 -0.156 -0.127 0.900

August 3.687 4.943 0.736 1.052 0.302

September 3.459 4.380 0.942 1.542 0.134

October 2.028 2.758 0.333 0.907 0.372

November 0.771 0.952 -0.058 -0.351 0.728

Yield

December 0.805 1.028 -0.023 -0.128 0.899

Notes: (a) For acreage and yield, the May, June and July forecasts were available for the years
1993/94-2018/19 while the August forecasts were missing for the year 1988/89. (b) Other fore-
casts were available for 1988/89-2018/19.
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Table 1.3: RMSPE, MAPE and MPE of WASDE soybean forecasts, 1988-2018

Variable Forecast MAPE (|e|) RMSPE (
√
e2) MPE (e) Bias (t-statistic) p-value

May 1.600 1.913 0.104 0.252 0.803

June 1.411 1.752 -0.085 -0.244 0.809

July 0.996 1.165 -0.485 -2.150 0.041

August 0.838 1.057 -0.254 -1.332 0.193

September 0.852 1.073 -0.239 -1.257 0.218

October 0.621 0.850 -0.047 -0.288 0.775

November 0.620 0.846 0.028 0.167 0.869

Acreage

December 0.620 0.846 0.028 0.167 0.869

May 9.934 13.762 6.025 2.841 0.008

June 9.865 13.647 4.788 2.192 0.036

July 9.508 13.506 4.317 2.003 0.054

August 8.961 12.243 1.992 1.071 0.293

September 7.533 10.578 1.108 0.618 0.541

October 6.086 7.997 2.260 1.443 0.159

November 4.416 6.412 2.286 2.217 0.034

Price

December 3.643 5.348 1.733 1.957 0.060

May 5.136 6.666 -0.173 -0.121 0.905

June 5.115 6.659 -0.088 -0.061 0.952

July 4.816 6.275 0.705 0.548 0.589

August 4.330 5.510 1.533 1.568 0.127

September 3.908 4.757 1.538 1.791 0.083

October 1.977 2.528 0.951 2.207 0.035

November 0.930 1.110 0.128 0.598 0.554

Yield

December 0.930 1.110 0.128 0.598 0.554

Notes: (a) For acreage and yield, the May, June and July forecasts were available for the years
1993/94-2018/19. (b) Other forecasts were available for 1988/89-2018/19.
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Table 1.4: MAPE, RMSPE and MPE of WASDE wheat forecasts, 1988-2018

Variable Forecast MAPE (|e|) RMSPE (
√
e2) MPE (e) Bias (t-statistic) p-value

May 2.158 2.700 -0.407 -0.763 0.452

June 2.142 2.663 -0.301 -0.535 0.598

July 1.272 1.625 -1.145 -5.660 0.000

August 1.056 1.351 -0.903 -4.839 0.000
Acreage

September 1.056 1.351 -0.903 -4.839 0.000

May 11.840 14.839 2.583 0.935 0.357

June 11.083 13.653 2.220 0.886 0.383

July 8.570 10.794 2.709 1.401 0.172

August 6.435 7.866 1.169 0.797 0.432
Price

September 4.812 5.774 1.056 1.004 0.324

May 4.759 5.923 2.149 1.943 0.063

June 3.957 4.749 1.985 2.302 0.030

July 2.470 3.358 0.797 1.591 0.123

August 1.674 2.173 0.259 0.736 0.468
Yield

September 1.230 1.607 0.186 0.638 0.528

Notes: (a) For acreage and yield, the May and June forecasts were available for the years
1993/94-2018/19 while the July forecasts were missing for the year 1988/89. (b) Other forecasts
were available for 1988/89-2018/19.

22



1.4 Methodology

Traditional forecast evaluation assumes that the forecaster’s objective is to mini-

mize the univariate mean square error (MSE) loss function:

L(f j
t,0, f

j
t,h) = (f j

t,0 − f j
t,h)

2 (1.2)

where L(·) is the loss function, f j
t,0 is the realized value of variable j for period t, and

f j
t,h is the forecast of f j

t,0 conducted at a horizon of h months ahead of the realized

value.

As previously stated, Elliott et al. (2005) develop a method for testing forecast

rationality under a flexible class of asymmetric loss functions which nest MSE loss

as a special case. Their generalized method of moments (GMM) approach jointly

estimates the asymmetry parameters of the loss function and tests for rationality.

In this study, we follow Komunjer and Owyang (2012), who develop a generalized

version of the Elliott et al. (2005) approach that examines multivariate forecasts and

allows for non-separable loss. We define the multivariate loss function Lp(τ , e) as,

Lp(τ , e) = (||e||p + τ ′e) ||e||p−1
p , (1.3)

where 1 ≤ p < ∞, 1/p + 1/q = 1, e ∈ Rn and τ ∈ Bn
q = {u ∈ Rn : ||u||q < 1}. The

vector e comprises the forecast errors of n variables. The asymmetry parameter τ

determines the relative losses due to positive and negative errors for each component

of the error vector. The scalar p determines the shape of the loss function.

The loss function (1.3) is flexible as it can accommodate a wide variety of loss

functions by varying the shape parameter p. The loss function allows for asymmetry

and non-separability for a value of p ≥ 1, and nests many well-known loss functions,
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such MSE and MAE loss (Komunjer & Owyang, 2012). Figure 1.3 shows several

examples of special cases of univariate loss functions with shape parameters p = 1

and p = 2. Panel (a) depicts several linear loss functions, such as the symmetric

absolute deviation loss (MAE) and the asymmetric lin-lin loss functions where p = 1.

Panel (b) depicts several quadratic loss functions, such as the symmetric squared loss

(MSE) and asymmetric quad-quad loss functions where p = 2.

The magnitude of the asymmetry parameter τ indicates the direction and degree

of asymmetry in the loss function. In equation (1.3), the sign of the forecast error of a

variable enters the loss function only if the asymmetry parameter for that variable is

non-zero, τ j ̸= 0. The univariate version of the multivariate loss function in equation

(1.3) for p = 2 is given by,

L2(τ
j, ej) = (ej)2 + τ jsgn(ej)(ej)2, (1.4)

where j is the variable, ej is the forecast error for variable j, and sgn(ej) is the sign

of ej.

We define the relative loss of over-prediction as the ratio of the loss due to over-

prediction and the loss due to under-prediction of the same magnitude (negative and

positive forecast errors of the same magnitude). From equation (1.4), the relative loss

of over-prediction for variable j can be expressed as:

L2(τ
j,−|ej|)

L2(τ j, |ej|)
=

1− τ j

1 + τ j
. (1.5)

If τ j = 0, the costs of over-prediction and under-prediction are the same, and the loss

function is symmetric in variable j. A negative value of the asymmetry parameter

suggests that the relative loss of over-prediction is greater than one, suggesting over-

predictions are costlier than under-predictions. Figure 1.3 shows how the sign and
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(a) Absolute deviation loss and lin-lin loss with
shape parameter p=1
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(b) Squared loss and quad-quad loss with shape
parameter p=2

Figure 1.3: Special cases of univariate loss functions

25



magnitude of the asymmetry parameter influence the univariate lin-lin and quad-quad

loss functions.

Under the multivariate loss function (1.3), losses due to errors in the components of

the vector are additively non-separable. If τ ̸= 0, the sum of univariate losses does not

equal the multivariate loss, i.e.
∑

j L2(τ
j, ej) ̸= L2(τ , e). The non-separability stems

from the second term in equation (1.3) which represents the interaction between the

forecast errors of the components that contribute toward the multivariate loss. When

the forecaster’s loss is symmetric in all components (τ = 0), this term disappears

and the multivariate loss function becomes additively separable, i.e.,
∑

j L2(0, e
j) =

L2(0, e). Figure 1.4 shows the isoloss contours of a separable loss (i.e. the sum

of univariate losses) and a non-separable multivariate loss against the symmetric loss

using a bivariate loss function as an example. For symmetric loss, the isoloss contours

are circular. In the case of separable loss and non-separable loss, the isoloss contours

are distorted, and they have different shapes.

1.4.1 Estimation Procedure

We observe the multivariate forecasts ft,h, realized values ft,0, and a set of d instru-

ments xt−1,h, which are a subset of the forecasters’ information set and include the

lagged forecasts of the same horizon, for P periods.6 We assume that the forecaster

minimizes an expected loss when constructing the forecasts and that the loss function

belongs to the general class of loss functions (1.3). Using this information, we seek

to estimate the asymmetry parameter τh for each forecast horizon that is consistent

with the characteristics of ft,h.

6The instrumental variables must be stationary with a full rank covariance matrix and satisfy
the standard exclusion restrictions, as outlined in Komunjer and Owyang (2012), Appendix pp.
1078-1080.
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Figure 1.4: Isoloss contours in a bivariate case
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We follow Komunjer and Owyang (2012) and use a GMM-based strategy to es-

timate the asymmetry parameters. The procedure requires two assumptions. First,

we assume that the shape parameter p is given. Second, we assume that the fore-

caster uses a rolling window of information to construct the forecasts. For example,

to construct the forecast for the first period under our study, the forecaster uses infor-

mation from the previous R periods. The information window is then rolled forward

to construct all forecasts until the P th period. Under these assumptions, the GMM

estimator of the asymmetry parameter is given by,

τ̂h = argmin
τ∈Bn

q

[
P−1

P∑
t=1

gp(τ ; et,h,xt−1,h)

]′

× Ŝ−1×

[
P−1

P∑
t=1

gp(τ ; et,h,xt−1,h)

]
(1.6)

where,

gp(τ ; et,h,xt−1,h) = pν(et,h) + τ ||et,h||p−1
p + (p− 1)τ ′et,h||et,h||−1

p ν(et,h)⊗ xt,h

ν(et,h) = (sgn(ej1t,h)|e
j1
t,h|

p−1, . . . , sgn(ejnt,h)|e
jn
t,h|

p−1)

The optimal weight matrix Ŝ−1 is iteratively determined during the GMM estimation

using the equation,

Ŝ(τ̃ ) = P−1

P∑
t=1

gp(τ̃ ; et,h,xt−1,h)gp(τ̃ ; et,h,xt−1,h)
′ (1.7)

For a given shape parameter p, Komunjer and Owyang (2012) outline the condi-

tions on the observed errors so that the GMM estimate of the asymmetry parameter

is asymptotically normal (see Theorem 3 pp. 1072). Komunjer and Owyang (2012)

also construct a J-statistic with d > 1 instruments to test the rationality of the

multivariate forecasts.

Ĵh =

[
P−1

P∑
t=1

gp(τ̂h; et,h,xt−1,h)

]′

× Ŝ−1 ×

[
P−1

P∑
t=1

gp(τ̂h; et,h,xt−1,h)

]
∼ χ2

n(d−1)

(1.8)
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A failure to reject the null hypothesis of rationality would suggest that, for a given

set of instruments, there exists some value of the asymmetry parameter for which the

forecasts are rational. Komunjer and Owyang (2012) further provide Monte Carlo ev-

idence that the GMM estimation under non-separable loss yields consistent estimates

of the asymmetry parameter even when the components of the vector ft,h are highly

correlated. If the loss function is misspecified as separable, it would likely produce

biased estimates. Moreover, many equations employed in USDA’s forecast models

use time-lagged information from several sources as inputs (Dubman et al., 1993; Mc-

Gath et al., 2009a; Vogel & Bange, 1999). Therefore, it is reasonable to assume that

the forecaster uses a rolling window of information to generate the forecasts. These

advantages make the GMM approach well-suited for evaluating the USDA forecasts.

1.4.2 Robustness Checks

Our estimation procedure requires two important assumptions: the instrumental

variable set xt−1,h and the shape parameter p. To ensure that our results are not

overly influenced by these choices, we offer two important robustness checks. First,

following Elliott et al. (2005), our preferred specification uses an instrument set con-

sisting of a constant and one year lagged forecasts of a single variable of the same

horizon (net cash income for net cash income forecasts and average farm prices for

WASDE production forecasts). To ensure that our results are robust to the choice of

instruments, we compute the asymmetry parameters using several sets of alternative

instruments that are plausibly part of the forecaster’s information set. Second, in our

preferred specification, the shape parameter of the loss function was fixed at p = 2,

which corresponds to the well-known quadratic loss in the univariate case. Komunjer
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and Owyang (2012) have shown that different values of the shape parameter p result

in consistent estimates of the asymmetry parameter. Yet, to ensure that our results

are robust to the choice of p, we estimate the model under different choices for the

shape parameter: p = 1.5, 2, 2.5. Finally, our preferred specification estimates a sin-

gle asymmetry parameter over the observation period 1988 – 2018. There may be

some concern as to whether the asymmetry parameters are stable over time. The

forecast performance may change due to changes in forecasting procedures over time

or unexpected shocks, such as price disturbances, that may affect the loss function

parameters. Isengildina-Massa et al. (2013), for example, showed that structural

changes in the commodity markets during the mid 2000s accounted for the largest

increase in errors in several WASDE forecasts for corn, soybeans, and wheat. Pre-

vious research suggests that, if the underlying data generating process of a variable

is not stable, it is rational for error-minimizing forecasters to make serially corre-

lated forecast revisions and systematic forecast errors as they learn about changes

in the process driving the target variable (Batchelor, 2007; Muth, 1960). Further,

Isengildina-Massa et al. (2013) demonstrate that WASDE forecast errors grew during

periods of economic growth. Higgins and Mishra (2014) show that when forecasters

are concerned with missing turning points, the forecasts are biased downward during

expansions and biased upward during recessions.

To test for the stability of the estimated loss function parameters, we use an out-

of-sample technique of detecting forecast breakdowns proposed by Giacomini and

Rossi (2009) which has been used in similar econometric settings (Christodoulakis,

2020; Mamatzakis & Koutsomanoli-Filippaki, 2014; Mamatzakis & Tsionas, 2015).
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Following Isengildina-Massa et al. (2013), we specifically examine the potential for

forecast breakdowns during the 2007-2008 commodity price boom.

Giacomini and Rossi (2009) defines forecast breakdown as a situation where the

out-of-sample performance of a forecast model is significantly inferior to its in-sample

performance. The method involves dividing the sample period P into in-sample and

out-of-sample windows of length m and n, where P = m+n. Then a “surprise loss” is

calculated as the difference between the out-of-sample loss and the average in-sample

loss:

SLt+1(τ̂t) = Lt+1(τ̂t)− Lt(τ̂t), for t = m, . . . , (P − 1) (1.9)

The average in-sample loss Lt(τ̂t) is computed by first estimating the asymmetry

parameters τ̂t for the in-sample window. Then the out-of-sample loss Lt+1(τ̂t) is

calculated using the in-sample asymmetry parameter estimates. The test is based on

the hypothesis that in the absence of forecast breakdowns, the out-of-sample mean

of the surprise losses should be zero.

H0 : E
(
n−1ΣP−1

t=mSLt+1(τt)
)
= 0 (1.10)

The test statistic is calculated using a Newey-West standard error as,

tm,n,1 = n1/2SLm,n

σ̂m,n

(1.11)

If the null hypothesis is rejected, a forecast breakdown is detected. We use three

different forecasting schemes which follow different assumptions about the data gen-

erating process, (a) a fixed scheme with in-sample window t = 1, . . . ,m for all t; (b)

a rolling forecasting scheme with in-sample window t = t − m + 1, . . . , t at time t;

and (c) a recursive forecasting scheme with in-sample window t = 1, . . . , t at time t.
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The forecast breakdown test is performed for each of the three forecasting schemes

by using the period before 2007 as the in-sample window.

1.5 Results

The estimated asymmetry parameters for our preferred specification are presented

in table 1.5 and figure 1.5 for the USDA net cash income forecasts and in table 1.6

and figure 1.6 for the WASDE production and price forecasts for corn, soybean, and

wheat. Following Komunjer and Owyang (2012) and Caunedo et al. (2018), we use

two instruments to avoid size distortions in the J-test. The instrument sets used for

farm income forecasts consist of a constant and one year lagged forecasts of net cash

income. For the WASDE forecasts, the instruments include a constant and one year

lagged forecasts of the average farm price. In each case, the shape parameter was

fixed at p = 2.

The results for the J-test for rationality under τ̂ are presented in the bottom two

rows of tables 1.5 and 1.6. The results show that the null hypothesis of rationality

could not be rejected for any of the forecasts at the 5% significance level, for both

separable and non-separable losses. This suggests that the USDA net cash income

and WASDE forecasts are rationalizable under asymmetric loss.

Table 1.5 shows the GMM estimates of the asymmetry parameters for each com-

ponent of the net cash income forecast under separable and non-separable loss, along

with their standard errors. Figure 1.5 graphically presents the asymmetry param-

eters for net cash income and its components with 95% confidence intervals under

non-separable loss. While the magnitude of τ j is generally larger in absolute terms

for separable loss than for non-separable loss, the sign and significance are mostly
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consistent under separable and non-separable loss. For example, the asymmetry esti-

mate for the February (18-month-ahead) forecast of net cash income is –0.624 assum-

ing separable loss, but only –0.458 under non-separable loss. The estimates of the

asymmetry parameters for crop and livestock receipts and cash expenses are much

closer to symmetric under non-separable loss, yet the asymmetry parameters are still

significantly different from zero. In contrast, the estimates are markedly asymmet-

ric under separable loss. These results are consistent with Komunjer and Owyang

(2012), who demonstrate that rationality could be achieved with smaller degree of

asymmetry under non-separable loss relative to separable loss. The pattern also fol-

lows the empirical findings of Caunedo et al. (2018), who show that Federal Reserve’s

forecasts of growth, inflation, and unemployment are asymmetric, yet the degree of

asymmetry is less under non-separable loss. For example, the asymmetry parameter

for growth and unemployment were −0.30 and 0.32 under separable loss and −0.29

and 0.03 under non-separable loss.

Given that USDA’s net cash income forecasts are constructed using the accounting

identity (1.1), we focus our discussion on the results under non-separable loss which

is a more realistic assumption. The relative losses associated with the asymmetry pa-

rameters are calculated using equation (1.5) and presented in figure 1.7. The estimates

of the asymmetry parameter of net cash income are negative and significant, which

suggests that USDA has 2.7 times higher costs associated with over-predicting 1% in

the February net cash income forecast than under-predicting it by 1%. This finding

provides an alternative explanation of the bias findings in table 1.1 and of previous

studies’ findings that the February (18-month-ahead) forecasts tend to under-predict

net cash income and net farm income (Isengildina-Massa, Karali, et al., 2020; Kuethe
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Figure 1.5: Asymmetry parameter estimates under non-separable loss for net cash
income forecasts with 95% confidence intervals

Note: (a) The instrument set consists of a constant and one year lagged forecasts of net cash income.
(b) Estimates are plotted for non-separable loss with shape parameter p = 2
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Figure 1.6: Asymmetry parameter estimates under non-separable loss for WASDE
forecasts with 95% confidence intervals

Note: (a) The instrument set consists of a constant and one year lagged forecasts of price. (b)
Estimates are plotted for non-separable loss with shape parameter p = 2
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Figure 1.7: Relative losses for net cash income and its components, p = 2
Note: The instrument set consists of a constant and one year lagged forecasts of net cash income.
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et al., 2018). Following Granger (1969), USDA’s initial forecasts appear biased be-

cause because over-predictions are costlier, and therefore, the forecasts are rationally

conservative. Among the components of net cash income, the asymmetry parameter

estimate is significant and negative, particularly for the February forecast of govern-

ment payments. On the other hand, the asymmetry parameter estimates for crop and

livestock receipts and production expenses are closer to zero (symmetry) even though

they are significant in most cases. These asymmetry parameters suggest that USDA

has 1.2 to 1.5 times higher costs associated with over-predicting crop and livestock

receipts and cash expenses.

The estimates of asymmetry parameters generally move closer to symmetry as the

terminal event of releasing the USDA official estimates approaches, with the exception

of government payments (figure 1.5). One implication of forecast rationality is that

the forecast error should be a weakly non-decreasing function of the forecast horizon

(Patton & Timmermann, 2007), or alternatively, that the forecasts become more ac-

curate as the forecast horizon reduces from say 18 months ahead to 6 months ahead

of the final estimate. As a result, a smaller degree of asymmetry is required to ra-

tionalize the forecasts as the horizon reduces. Direct government payments, however,

show an interesting pattern across the forecast horizon. The asymmetry parameter is

negative for the February (18-month-ahead) forecast of government payments, sug-

gesting over-predictions by 1% percent are 2.8 times costlier than under-predictions

by 1%. However, for the November (9-month-ahead) forecasts of government pay-

ments, and to some extent, for the next February (6-month-ahead) forecasts, the

asymmetry estimate is positive, suggesting under-predictions are costlier. That is,

before production, at the beginning of the calendar year USDA does not want to
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over-predict government outlays. However, in November, after the growing season,

the USDA does not want to under-predict government program payments to farm-

ers. This behavior, while curious, is consistent with the bias in USDA forecasts of

government payments previously reported by Isengildina-Massa, Karali, et al. (2020)

and shown in table 1.1.

Several of the findings described above for the USDA farm income forecasts also

hold for the WASDE production and price forecasts for corn, soybeans, and wheat.

The estimates of the asymmetry parameters for the WASDE acreage, yield, and price

forecasts are presented in table 1.6 and graphically presented in figure 1.6 under non-

separable loss, while the separable loss results are presented in table 1.7. Most of the

asymmetry parameters for acreage are positive or not significant, with some negative

asymmetry parameters particularly for the November and December forecasts for

soybean acreage. The asymmetry parameters for acreage are relatively small in mag-

nitude, suggesting that although USDA tends to over- or under-predict some acreage

forecasts, the relative costs of over-predicting are not very high. The asymmetry pa-

rameters for price, on the other hand, are mostly negative and large in magnitude.

Further, the asymmetry does not appear to decrease over the forecast horizon. In

the case of corn and soybeans, the asymmetry parameters are highest during planting

and harvest. For example, the asymmetry parameter of –0.524 for the soybean price

forecast in May shows that the relative cost of over-predicting soybean price by 1% is

3.2 times higher than the cost of under-predicting it by 1%. Similarly, the asymmetry

parameter estimates for yield are mostly negative and significant, but they generally

move toward more symmetry over the time horizon, particularly during the last cou-

ple of months before harvest. These findings closely correspond to the bias results
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shown in tables 1.2 – 1.4. Overall, these findings show that the relative costs of over-

predicting prices and yields are higher, while the relative costs of under-predicting

acreage are generally higher, particularly for wheat.

Beyond our preferred specification, we also show that our findings are robust to

both the choice of shape parameter and the instrument sets used in the estimation

procedure. Through Monte Carlo simulation, Komunjer and Owyang (2012) show

that different values of the shape parameter p result in consistent estimates of the

asymmetry parameter. As a robustness check, we obtain similar results using different

shape parameters. In figure 1.8, we plot non-separable asymmetry estimates with

shape parameter values p = 1.5 and p = 2.5 along with our preferred specification

of p = 2. In both cases, the asymmetry parameter estimates have the same sign as

reported in the main results, and the magnitudes are similar, except for government

payments in the August forecasts. These estimates show that our main results are

not driven by the shape of the loss function, and the presence of asymmetry cannot

be ruled out under alternative specifications. As an additional robustness check, we

hold the shape parameter at p = 2 but vary the instruments sets. These estimates are

plotted in figure 1.9. The results show that the estimates of the asymmetry parameters

are similar to those reported in table 1.5, both in terms of sign and magnitude, except

for the August forecast of government payments.

The results of the structural breakdown test of Giacomini and Rossi (2009) are

presented in table 1.8 for the net cash income forecasts and in table 1.9 for the

WASDE acreage, yield, and price forecasts. Using the fixed, rolling, and recursive

forecasting schemes to test for structural breaks before and after the 2007 commodity

price spikes, the test statistics are not significant at the 5% level, with the exception
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Table 1.5: Estimates of asymmetry parameters and rationality tests for net cash income forecasts, 1988-2018

Asymmetry Parameters
Separable Loss Non-separable Loss

Feb Aug Nov Next
Feb

Feb Aug Nov Next
Feb

Net cash income, τNCI -0.624∗∗ -0.530∗∗ -0.403∗∗ -0.421∗∗ -0.458∗∗ -0.408∗∗ -0.278∗∗ -0.317∗∗

(0.024) (0.029) (0.038) (0.038) (0.015) (0.016) (0.020) (0.026)

Crop receipts, τCR -0.714∗∗ -0.613∗∗ -0.501∗∗ -0.432∗∗ -0.185∗∗ -0.219∗∗ -0.113∗∗ -0.057∗∗

(0.030) (0.025) (0.030) (0.033) (0.009) (0.009) (0.010) (0.010)

Livestock receipts, τLR
-0.532∗∗ -0.309∗∗ -0.151∗∗ 0.477∗∗ -0.162∗∗ -0.081∗∗ -0.029∗∗ 0.043∗∗

(0.031) (0.044) (0.041) (0.035) (0.010) (0.011) (0.008) (0.007)

Govt. payments, τGP -0.468∗∗ -0.066 0.822∗∗ 0.397∗∗ -0.460∗∗ 0.017 0.615∗∗ 0.254∗∗

(0.041) (0.055) (0.017) (0.045) (0.029) (0.042) (0.019) (0.029)

Cash expenses, τEXP -0.627∗∗ -0.182∗∗ 0.193∗∗ 0.148∗∗ -0.091∗∗ -0.057∗∗ 0.077∗∗ 0.061∗∗

(0.026) (0.040) (0.039) (0.040) (0.006) (0.011) (0.008) (0.012)

J-statistic 4.074 1.715 4.146 7.276 3.263 4.164 3.034 6.098
p-value 0.539 0.887 0.529 0.201 0.660 0.526 0.695 0.297

Notes: (a) The numbers are estimates of asymmetry parameters, (τNCI , τCR, τLR, τGP , τEXP )′, and standard errors (SE) are
reported in parentheses. (b) Instruments used are a constant and one year lagged forecasts of net cash income. (c) Number of
periods, P=31. (d) (**) denotes significant at 5%. (e) p-values of the J-test correspond to a χ2 distribution with 5 degrees of
freedom (f) Shape parameter, p = 2.

of the November and December soybean forecasts. Our interpretation is that even

though crop prices sharply increased in 2007 resulting in high price forecast errors, the

forecast errors for farm income and crop production were not the highest in 2007 as

compared to the rest of the years in our sample (figures 1.1 and 1.2). Even though we

do not find evidence of structural breakdown before and after 2007 when considering

the vector of forecasts for net cash income andWASDE production and prices, our test

does not preclude the possibility that individual asymmetry parameters for specific

components at specific time horizons may differ across sub-periods.

1.6 Conclusions

Previous studies suggest that many of the forecasts generated by the USDA are

technically irrational (biased and/or inefficient). A rejection of rationality, however,
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Figure 1.8: Robustness of net cash income asymmetry parameters to choice of shape
parameter
Note: (a) Non-separable loss function with shape parameter, p = 2. (b) The instrument set consists
of a constant and one year lagged forecasts of net cash income (same as Table 1.5).
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Figure 1.9: Robustness of net cash income asymmetry parameters to choice of instru-
ments
Note: (a) Non-separable loss function with shape parameter, p = 2. (b) The instrument consists of
a constant and one year lagged forecasts of 1) net cash income(same as Table 1.5), 2) crop receipts,
3) livestock receipts, 4) government payments, and 5) net cash income and crop receipts.
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may be the result of either the forecaster’s inefficient use of information or a misspec-

ification of the forecaster’s loss function (Elliott et al., 2005). In this study, we jointly

estimate the parameters of USDA forecasters’ loss function and test for rationality

for two important sets of USDA forecasts: net cash income and WASDE production

and price forecasts for corn, soybeans, and wheat. Following Komunjer and Owyang

(2012), the loss function is estimated under a flexible multivariate loss function that

allows for asymmetry and non-separability in the forecast errors.

Our analysis yields two important findings. First, we find evidence of asymmetric

loss in both net cash income and WASDE forecasts. These results are consistent with

previous findings of bias and inefficiency (Isengildina-Massa et al., 2013; Isengildina-

Massa, Karali, et al., 2020; Kuethe et al., 2018), yet our empirical approach provides

an alternate interpretation of these results. For example, Isengildina-Massa, Karali,

et al. (2020) find that initial USDA net cash income forecasts are downward biased.

Our results suggest that a 1% over-prediction of the initial net cash income is 2.7

times as costly as an under-prediction of the same percent. Thus, USDA is averse

to over-predicting net cash income at the early stages of the forecasting process. We

similarly find that USDA has a higher cost over-predicting both price and yield for

corn, soybeans, and wheat. Second, we find that under asymmetric loss, the USDA

forecasters are rational expected loss minimizers. Economic theory provides a variety

of internal and external costs that may lead otherwise rational forecasters to release

“technically irrational” forecasts (Batchelor, 2007; Weber, 1994).

Our findings are important for a variety of USDA forecast users, including farmers,

lenders, agricultural business leaders, and agricultural policymakers. As Auffhammer

(2007) argues, a forecast is only optimal for a particular forecast user when his or her
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loss function matches that of the forecast producer. Accurately describing the loss

function of USDA forecasters is therefore an important first step in forecast evaluation.

Given the important role that USDA’s farm income forecasts play in farm policy

debates and WASDE’s influence in commodity markets, the USDA should consider

the internal and external forces that influence the cost of forecast errors. Merola

and Pérez (2013) argue that government forecasting processes can be improved by

increasing (i) transparency on data reporting, (ii) accountability of forecasters, and

(iii) ex ante incentives to release unbiased forecasts. Previous research suggests that

biased public forecasts can influence private decision making. For example, Beaudry

and Willems (2018) demonstrate that over-optimistic GDP growth forecasts leads to

higher public and private debt accumulation and later recessions. Thus, our findings

may also help inform future revisions of USDA forecast models and procedures.
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Table 1.6: Estimates of asymmetry parameters and rationality tests for WASDE forecasts under non-separable
loss, 1988/89-2018/19

Asymmetry
Parameters

May June July August SeptemberOctober November December

Corn

τacreage
0.005 -0.041∗∗ 0.093∗∗ 0.053∗∗ 0.043∗∗ 0.025∗∗ -0.010 0.006
(0.009) (0.008) (0.007) (0.005) (0.005) (0.006) (0.009) (0.011)

τ price
-0.274∗∗ -0.068 -0.211∗∗ 0.095∗∗ 0.013 -0.152∗∗ -0.145∗∗ -0.321∗∗

(0.039) (0.042) (0.044) (0.041) (0.037) (0.037) (0.040) (0.038)

τ yield
0.257∗∗ -0.232∗∗ -0.066∗∗ -0.165∗∗ -0.248∗∗ -0.120∗∗ -0.057∗∗ -0.102∗∗

(0.038) (0.020) (0.023) (0.014) (0.017) (0.014) (0.009) (0.014)

J-statistic 4.591 4.542 0.258 1.570 4.380 4.215 4.342 5.356
p-value 0.204 0.209 0.968 0.666 0.223 0.239 0.227 0.148

Soybean

τacreage
-0.009 0.012 0.030∗∗ 0.009 0.012 0.004 -0.086∗∗ -0.103∗∗

(0.010) (0.009) (0.004) (0.005) (0.006) (0.008) (0.010) (0.011)

τ price
-0.524∗∗ -0.445∗∗ -0.657∗∗ -0.239∗∗ -0.240∗∗ -0.532∗∗ -0.866∗∗ -0.917∗∗

(0.031) (0.034) (0.023) (0.031) (0.036) (0.028) (0.015) (0.010)

τ yield
-0.078∗∗ -0.095∗∗ -0.109∗∗ -0.216∗∗ -0.232∗∗ -0.239∗∗ -0.052∗∗ -0.036∗∗

(0.032) (0.033) (0.033) (0.025) (0.024) (0.021) (0.014) (0.014)

J-statistic 1.345 1.487 4.213 3.249 3.144 1.617 3.340 3.736
p-value 0.718 0.685 0.239 0.355 0.370 0.655 0.342 0.291

Wheat

τacreage
0.004 0.033∗∗ 0.208∗∗ 0.242∗∗ 0.310∗∗ - - -
(0.012) (0.013) (0.006) (0.008) (0.010) - - -

τ price
-0.310∗∗ -0.347∗∗ -0.382∗∗ -0.142∗∗ -0.453∗∗ - - -
(0.040) (0.038) (0.033) (0.037) (0.029) - - -

τ yield
-0.267∗∗ -0.263∗∗ -0.160∗∗ -0.007 -0.026 - - -
(0.020) (0.019) (0.015) (0.012) (0.014) - - -

J-statistic 1.862 2.943 1.374 3.789 3.916 - - -
p-value 0.602 0.400 0.712 0.285 0.271 - - -

Notes: (a) The numbers are estimates of asymmetry parameters, (τacreage, τyield, τprice)′, and standard errors (SE) are
reported in parentheses. (b) Instruments used are a constant and one year lagged forecasts of average farm price. (c)
(**) denotes significant at 5%. (d) p-values of the J-test correspond to a χ2 distribution with 5 degrees of freedom. (e)
Non-separable loss function with shape parameter, p = 2. (f) Corn estimates are conducted for the period 1994/95-
2018/19 for the May, June and July forecasts, and 1990/91-2018/19 for the August forecasts. (g) Soybean estimates are
conducted for the period 1994/95-2018/19 for the May, June and July forecasts. (h) Wheat estimates are conducted
for the period 1994/95-2018/19 for the May and June forecasts, and 1990/91-2018/19 for the July forecasts.
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Table 1.7: Estimates of asymmetry parameters for WASDE forecasts under separable loss, 1988/89-2018/19

Asymmetry
Parameters

May June July August SeptemberOctober November December

Corn

τacreageh

0.416∗∗ -0.007 0.630∗∗ 0.430∗∗ 0.265∗∗ 0.013 -0.085 -0.081
(0.042) (0.046) (0.034) (0.034) (0.035) (0.043) (0.045) (0.045)

τ priceh

-0.303∗∗ -0.123∗∗ -0.200∗∗ 0.088 -0.105∗∗ -0.182∗∗ -0.229∗∗ -0.307∗∗

(0.046) (0.047) (0.049) (0.043) (0.039) (0.038) (0.041) (0.040)

τ yieldh

0.477∗∗ -0.337∗∗ -0.136∗∗ -0.386∗∗ -0.627∗∗ -0.416∗∗ 0.095∗∗ 0.091∗∗

(0.053) (0.053) (0.056) (0.032) (0.025) (0.033) (0.037) (0.039)

J-statistic 4.071 4.455 0.798 2.440 5.208 5.193 4.421 4.120
p-value 0.254 0.216 0.850 0.486 0.157 0.158 0.219 0.249
Soybean

τacreage
-0.038 0.092 0.828∗∗ 0.326∗∗ 0.274∗∗ 0.052 -0.143∗∗ -0.115∗∗

(0.050) (0.049) (0.027) (0.039) (0.039) (0.047) (0.048) (0.048)

τ price
-0.571∗∗ -0.463∗∗ -0.506∗∗ -0.194∗∗ -0.159∗∗ -0.495∗∗ -0.818∗∗ -0.918∗∗

(0.032) (0.036) (0.033) (0.035) (0.042) (0.033) (0.020) (0.010)

τ yield
-0.048 -0.065 -0.118 -0.365∗∗ -0.396∗∗ -0.478∗∗ -0.134∗∗ -0.141∗∗

(0.058) (0.059) (0.059) (0.039) (0.033) (0.034) (0.040) (0.040)

J-statistic 2.256 2.129 4.014 4.018 2.904 1.653 6.722 8.331
p-value 0.521 0.546 0.260 0.260 0.407 0.647 0.081 0.040

Wheat

τacreage
0.163∗∗ 0.185∗∗ 0.913∗∗ 0.869∗∗ 0.855∗∗ - - -
(0.048) (0.047) (0.009) (0.011) (0.012) - - -

τ price
-0.232∗∗ -0.230∗∗ -0.343∗∗ -0.227∗∗ -0.449∗∗ - - -
(0.048) (0.045) (0.036) (0.037) (0.031) - - -

τ yield
-0.553∗∗ -0.609∗∗ -0.348∗∗ -0.062 -0.012 - - -
(0.038) (0.033) (0.036) (0.036) (0.038) - - -

J-statistic 1.222 1.341 0.564 5.560 5.074 - - -
p-value 0.748 0.719 0.905 0.135 0.166 - - -

Notes: (a) Shape parameter, p = 2. (b) The numbers are estimates of asymmetry parameters, (τacreage, τprice, τyield)′,
and standard errors (SE) are reported in parentheses. (c) Instrument set consists of a constant and one year lagged
forecasts of average farm price. (d) (**) denotes significant at 5%. (e) p-values of the J-test correspond to a χ2

distribution with 5 degrees of freedom. (f) Corn estimates are conducted for the period 1994/95-2018/19 for the May,
June and July forecasts, and 1990/91-2018/19 for the August forecasts. (g) Soybean estimates are conducted for the
period 1994/95-2018/19 for the May, June and July forecasts. (h) Wheat estimates are conducted for the period
1994/95-2018/19 for the May and June forecasts, and 1990/91-2018/19 for the July forecasts.
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Table 1.8: Tests of forecast breakdown for net cash income forecasts, 1988-2018

Forecasting scheme

Forecast Horizon
Fixed Rolling Recursive

t-
statistic

p-value t-
statistic

p-value t-
statistic

p-value

February -1.499 0.134 -0.468 0.640 -0.764 0.445
August -0.885 0.376 -1.071 0.284 -0.887 0.375

November 0.030 0.976 0.022 0.983 0.135 0.893
Next February 0.299 0.765 0.428 0.668 0.389 0.698

Note: (a) T-test statistics and corresponding p-values of structural break test using surprise loss are
reported. Rejection of the null hypothesis would suggest presence of structural break. (b) Non-separable
loss with shape parameter, p = 2.
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Table 1.9: Tests of forecast breakdown for WASDE forecasts, 1988/89-2018/89

Forecasting scheme

Forecast Horizon
Fixed Rolling Recursive

test
statistic

p-value test
statistic

p-value test
statistic

p-value

Corn

May 0.150 0.880 0.344 0.731 0.118 0.906
June 1.029 0.303 0.453 0.651 0.787 0.431
July 0.910 0.363 -0.315 0.752 0.494 0.621

August 0.424 0.672 0.141 0.888 0.229 0.819
September 0.438 0.662 0.257 0.797 0.336 0.737
October 0.332 0.740 0.273 0.785 0.310 0.757
November 0.505 0.613 -0.002 0.998 0.131 0.896
December 0.073 0.942 -0.043 0.966 -0.002 0.998

Soybean

May 0.571 0.568 0.979 0.328 0.299 0.765
June 0.943 0.346 0.608 0.543 0.452 0.651
July 0.388 0.698 0.355 0.723 0.207 0.836

August 0.141 0.888 -0.102 0.919 -0.004 0.996
Sepember 0.353 0.724 0.206 0.837 0.208 0.836
October -0.431 0.667 -0.691 0.489 -0.939 0.348
November -1.964 0.049 -2.184 0.029 -1.882 0.060
December -2.825 0.005 -4.027 0.000 -3.118 0.002

Wheat

May -0.334 0.738 0.085 0.932 -0.439 0.661
June -0.171 0.864 -0.182 0.855 -0.446 0.656
July -0.079 0.937 -0.094 0.925 -0.283 0.778

August -0.235 0.814 -0.181 0.857 -0.385 0.700
September 0.279 0.780 0.354 0.723 0.115 0.909

Note: (a) T-test statistics and corresponding p-values of structural break test using surprise
loss are reported. Rejection of the null hypothesis would suggest presence of structural break.
(b) Non-separable loss with shape parameter, p = 2.
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Chapter 2: The Accuracy and Informativeness of

Agricultural Baselines

2.1 Introduction

Long-term market projections play a vital role in both policy and investment deci-

sions. Federal government statistical agencies, such as the United States Department

of Agriculture’s (USDA) Economic Research Service (ERS), are tasked with “collect-

ing, producing, and disseminating data that the public, businesses, and governments

use to make informed decisions”(Office of Management and Budget, 2020). To sat-

isfy this mandate, ERS leads a team from 10 USDA agencies to produce annual

projections of key measures of agricultural market conditions for the next decade.

These projections facilitate comparisons of policy alternatives by providing a con-

ditional “baseline” scenario based on specific macroeconomic, weather, policy, and

trade assumptions. In addition, the Food and Agricultural Policy Research Institute

(FAPRI) produces similar ten-year projections of key agricultural variables. USDA

baseline projections are typically released in February, with the FAPRI baseline pro-

jections following in March. Over the years, the baseline projections have been used

for a variety of purposes, including estimating farm program costs and preparing the

President’s budget. Despite their growing role in shaping agricultural policy, the
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baselines have not been rigorously evaluated. In this study, we evaluate the accu-

racy and informativeness of the USDA and FAPRI baselines using novel econometric

techniques.

Our study focuses on two important series of projections from USDA and FAPRI:

1) projected bottom-line net cash income and its components, and 2) projected har-

vested acres, farm price, and yield of three major commodities (corn, soybeans, and

wheat). The projections are examined in three steps. First, we examine the accuracy

of both USDA and FAPRI projections using standard measures of accuracy, such

as mean absolute percent error (MAPE) and root mean square percent error (RM-

SPE). As part of our preliminary analysis, we also investigate the degree to which

each projection exhibits systematic bias, following Holden and Peel (1990b). Previ-

ous studies have identified a systematic downward bias in USDA’s initial forecasts

of bottom-line net cash income, crop receipts, livestock receipts, and cash expenses

(Bora, Katchova, & Kuethe, 2021; Isengildina-Massa, Karali, Kuethe, & Katchova,

2021). Since many USDA forecasts are used as an input for the beginning conditions

of the USDA baseline models, baseline projections may show a similar tendency to

under-predict.

Second, we examine the extent to which the value of information for each series of

projections diminishes across the projection horizon. Both USDA and FAPRI base-

lines provide projections for ten years into the future, and we test the null hypothesis

that the projections become uninformative beyond a given horizon using the encom-

passing approach developed by Breitung and Knüppel (2021). Our tests of predictive

content use the unconditional mean as the uninformative (näıve) benchmark, and

compare the mean square error of the projections to the unconditional variance of
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the target variable in a regression framework. The informativeness tests may be par-

ticularly useful for policymakers with an interest in long-run policy concerns, such

as climate change, which exceed the current ten-year horizon. If the current projec-

tions are uninformative beyond a few years, it will be difficult to provide accurate

projections for longer horizons.

Finally, we formally test whether USDA or FAPRI provide more accurate base-

line projections. Traditional forecast evaluation tests examine predictions at a single

horizon (e.g., Diebold & Mariano, 1995; Harvey, Leybourne, & Newbold, 1997). Since

the full ten-year path of baseline projections are used in policy analysis, these tests

may provide inaccurate evaluation of relative accuracy, as one set of projections may

perform better than the other at some horizons and worse at the remaining horizons.

As a result, we evaluate the relative predictive accuracy of USDA and FAPRI using

a novel testing procedure developed by Quaedvlieg (2021) that includes information

across all horizons jointly. We test for superior predictive ability using two forms of

the Quaedvlieg (2021) test. The first specification tests whether one set of projections

perform better than the other across all projection horizons (uniform predictive abil-

ity). The second specification relaxes the assumption of uniform predictive ability by

testing for differences in accuracy using a weighted average of loss differentials across

horizons (average predictive ability). Thus, the second specification allows one base-

line to have superior predictive ability over the other, even if it performs worse in some

horizons. We further perform regression-based tests to examine whether the FAPRI

projections encompass the USDA projections and vice versa (Harvey, Leybourne, &

Newbold, 1998).
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Our analysis yields a number of significant findings. First, the accuracy measures

suggest that projection errors increase across the horizon for most variables, with the

notable exception of crop yield projection. Second, our analysis identifies a number

of systematic biases. For example, soybean harvested acres are consistently under-

predicted while wheat harvested acres are consistently over-predicted at all horizons.

In addition, net cash income, crop receipts, livestock receipts, and cash expenses

are biased downward, consistent with previously reported bias in ERS’s farm income

forecasts for the one-year horizon (Bora et al., 2021; Isengildina-Massa et al., 2021),

but the magnitude of bias increases with the projection horizon. Third, the tests

of predictive content show that, for most variables, the projections stay informative

up to 4-5 years and diminish thereafter. Finally, the multi-horizon comparison tests

suggest that neither USDA nor FAPRI projections outperform one another across the

entire projection horizon (uniform predictive ability), except for farm-related income,

where FAPRI performs better than USDA, and corn price and soybean yield, where

USDA perform better than FAPRI. However, the FAPRI projections perform better

at shorter horizons, which may be a result of the later release and the potential to

include updated information. These findings may have important implications for the

models and processes used to produce the baseline projections by both USDA and

FAPRI, as well as for projection users.

The remainder of the study is organized as follows. The next section provides

a detailed description of the agricultural baseline projections produced by USDA

and FAPRI, followed by a summary of our data. Subsequent sections describe our

empirical approach and findings. The final section provides concluding remarks.
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2.2 Agricultural Baseline Projections

A number of government agencies, international organizations, and private firms

produce long-run projections of key economic variables to help formulate policy and

to support long-term planning. For example, within the agricultural sector, the Or-

ganisation for Economic Co-operation and Development (OECD) produces a ten-year

global outlook report in collaboration with the Food and Agricultural Organization

(FAO) which contains projections of agricultural indicators, such as market condi-

tions and consumption (OECD & Food and Agriculture Organization of the United

Nations, 2020). In addition, the Congressional Budget Office (CBO) produces long-

run cost projections for several mandatory Federal farm programs, such as price loss

coverage (PLC), agricultural risk coverage (ARC), crop insurance, disaster assistance,

and conservation programs. Each of these reports provide projections on some indica-

tors of U.S. agricultural market conditions, such as prices, acreage, and yields of key

commodities. In this study, however, we focus on the baseline projections produced

by USDA and FAPRI, which offer the most comprehensive coverage of US agricul-

tural indicators over a ten-year horizon. The USDA and FAPRI baselines provide

projections for key indicators of agricultural market conditions, including commodity

prices and production, global agricultural trade, and farm income.

USDA baseline projections are produced by the Interagency Agricultural Projec-

tions Committee, comprised of experts from 10 USDA agencies and offices. USDA

emphasizes that the baseline projections are “not intended to be a forecast of what

the future will be” (USDA Office of the Chief Economist, 2020, pp. 1). Instead, the

USDA baseline offers a “conditional, long-run scenario about what would be expected

53



to happen under a continuation of current farm legislation and other specific assump-

tions” (USDA Office of the Chief Economist, 2020, pp. iii). The specific assumptions

include normal weather and the absence of domestic or external shocks affecting

global agricultural supply and demand. In addition, the macroeconomic conditions,

productivity growth rates, and trade policies are assumed to persist throughout the

projection period. USDA’s baseline projections reflect a composite of model results

and judgment-based analysis (USDA ERS, 2020). The projections are designed to

provide “a neutral reference scenario that can serve as a point of departure for a

discussion of alternative farm sector outcomes that could result under different do-

mestic or international conditions” (USDA Office of the Chief Economist, 2020, pp.

1). Hjort, Boussios, Seeley, and Hansen (2018) provides a detailed description of the

USDA baseline model and various processes followed during the preparation of the

baseline report. ERS begins the baseline projection process in August and September

of the preceding year by developing domestic and international macroeconomic as-

sumptions. Over the next few months, the committee prepares detailed core domestic

analysis for program commodities, projections for livestock and other non-program

commodities, and commodity projections for foreign countries. ERS economists then

prepare the sector-wide projections for farm income and agricultural trade in January

before publication of the baseline report in February.

FAPRI also produces 10-year baseline projections for the U.S. agricultural sector

every year. Over the years, the FAPRI baseline procedures have evolved to include five

main steps, as outlined in Meyers, Westhoff, Fabiosa, and Hayes (2010). First, FAPRI

personnel update baseline models, data, and assumptions to include the November
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World Agricultural Supply and Demand Estimates (WASDE) and the latest macro-

economic projections. Second, FAPRI analysts deliberate and produce preliminary

baseline projections in late November. Third, the initial projections are subject to

peer review from analysts from government and international agencies, agribusinesses,

and other universities. Fourth, in mid-January, FAPRI analysts revise the prelim-

inary baseline projections based on comments received during the peer review and

update the WASDE and macroeconomic projections. Fifth, the baseline projections

are finalized, and a briefing is provided to the U.S. Congress, after which the FAPRI

baseline is released to the public. Meyers and Westhoff (2010) stress that the “FAPRI

approach” of producing the baseline projections focuses on developing good models,

while underlining their use by skilled analysts.

Agricultural baselines produced by USDA and FAPRI are widely used in farm

policy debates, particularly as they relate to farm bills and other legislation affecting

the agricultural sector. Both agencies play an advisory role in providing long-term

budgetary estimates to policymakers and program administrators. It is important

to note that one set of baseline projections examined are produced by the USDA, a

department of the executive branch of the U.S. Federal government, while the other

set is produced by a research institute housed at a Land Grant university. FAPRI

was established by the U.S. Congress, part of the legislative branch. Thus, our work

is complimentary to previous studies that evaluate forecasts produced by agencies

from different branches of the Federal government (for a recent review, see Ericsson

& Martinez, 2019).

As previously stated, U.S. agricultural baseline projections have not been rigor-

ously evaluated, despite their role in shaping agricultural policy. There are a few
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recent exceptions. Irwin and Good (2015) question the use of USDA baseline projec-

tions in Farm Bill program choice decisions by demonstrating that corn, soybeans, and

wheat price projections tend toward a steady state, leading to high projection errors.

Westhoff (2015) extends the analysis in Irwin and Good (2015) to the FAPRI base-

lines and finds that the projection errors are similar to the USDA baselines across

commodities. Irwin and Good (2015) and Westhoff (2015) also compare the com-

modity price baselines with season-average prices derived from futures markets. In

addition, Boussios, Skorbiansky, and MacLachlan (2021) show that USDA baseline

projections consistently under-estimate corn harvested area and over-estimate wheat

harvested area. Finally, Kuethe, Bora, and Katchova (2022) compare the current year

projections of US net cash income and its components to ERS’s forecasts released in

the same month. The study suggests that USDA baseline projections outperform

ERS forecasts for government payments and farm-related income. While Kuethe et

al. (2022) underline the potential of USDA baseline projections for short-run predic-

tions, the study examines only current year projections, ignoring all other horizons.

2.3 Data and Descriptive Analysis

2.3.1 Data

We examine a set of agricultural baseline projections from both the USDA and

FAPRI from 1997 to 2020. Both organizations publish their projections in a similar

format. The baseline projections include the most recent USDA estimate at the time

of publication, provisional USDA estimates for the previous year, and projections for

the year of the current release and the next nine years. For example, the February

2020 USDA baseline report contains realized estimates for 2018, provisional estimates
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for 2019, and projections for 2020–2029. For some aggregate indicators, such as farm

income, the baselines report calendar year values, while for commodities, they report

marketing year values.

In this study, we examine two main series of projections in the baseline reports.

First, we examine the projections of bottom-line net cash income and its components,

which include crop receipts, livestock receipts, direct government payments, farm-

related cash income, and cash expenses. Net cash income is a sector-wide measure of

cash earnings generated by farms that can be used to meet a wide range of obligations,

including debt payments (McGath et al., 2009b). It is defined as gross cash income

less cash expenses. Gross cash income includes crop and livestock cash receipts,

direct government payments, and farm-related income. Direct government payments

are limited to federal government funds paid directly to farmers to support farm

incomes, conserve natural resources, or compensate for natural disasters (McGath

et al., 2009b). Farm-related income includes machine hire and custom work, forest

products, and other income from farm output and sales. Net cash income is calculated

from its components using a bottom-up approach as per the accounting equation:

Net cash income =(Crop receipts + Livestock receipts + Cash farm-related income

+ Direct government payments)− Cash expenses.

(2.1)

Second, we analyze the projections of harvested acres, farm price, and yield for

three commodities: corn, soybeans, and wheat. Together, these three field crops

constituted about 70% of the principal crops area planted in the US in 2020 (USDA

NASS, 2021).7 The projections are averages for the marketing years, which differ

7Crops included in area planted are corn, sorghum, oats, barley, rye, winter wheat, Durum wheat,
other spring wheat, rice, soybeans, peanuts, sunflower, cotton, dry edible beans, chickpeas, potatoes,
sugarbeets, canola, and proso millet.
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by crop. The marketing year for corn begins on September 1 and comprises four

quarters. For example, the marketing year 2020/21 for corn and soybeans starts on

September 1, 2020, and ends on August 31, 2021. The 2020/21 marketing year for

wheat begins on June 1, 2020, and ends on May 31, 2021. It is important to note that,

as a result, the estimates for the current year are still provisional, as the marketing

years for the various crops have yet to conclude. Similarly, the farm income estimates

for the current year will be finalized in August.

We compile our dataset from multiple online sources. The Albert R. Mann Library

at Cornell University maintains an electronic archive of USDA baseline projections

since 1997 (USDA ERS, 2021b). The majority of FAPRI baseline reports were ob-

tained from the FAPRI website (FAPRI, 2021). For some early years, the baseline

reports are available from the Iowa State University Digital Repository (Iowa State

University, 2021).8 The realized estimates for farm income indicators are taken from

ERS’s website (USDA ERS, 2021a). As mentioned in the previous discussion, the

baseline reports also publish the realized values for two years before the release year.

However, the realized estimates reported in the baseline report are subject to periodic

adjustment as new information becomes available from multiple USDA agencies, such

as the Census of Agriculture conducted once every five years. Therefore, instead of

choosing the USDA or FAPRI release of realized estimates in their baseline reports,

we use the most up-to-date information available at the ERS’s website. Similarly,

realized values for harvested acres, farm price, and yield of corn, soybeans, and wheat

are obtained from the NASS Quickstats application programming interface (API)

(USDA National Agricultural Statistics Service, 2021).

8FAPRI baseline projections are available for a few additional years before 1997, but for compar-
ison with USDA, we limit our analysis to all years in which both sets of projections are available.
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For each reference year (calendar or marketing year), we define Yt as the realized

value for year t for farm income and harvested acres, farm price, and yield for corn,

soybeans, and wheat. We use the log transformations of the realized values: yt =

ln (Yt) to eliminate the impact of changing forecast levels, following Isengildina-Massa

et al. (2021). A projection made in year t for future year t + h (at horizon h)

by organization i = {USDA,FAPRI} is denoted Ŷ i
t+h|t. Again, we express the

projection in natural logarithms of the variables for our analysis: ŷit+h|t = ln (Ŷ i
t+h|t).

The projection horizon h can take values between h = 0 for the projection made

during the reference year t and h = 9 for projections made for year t+ 9. Again, for

example, the 2020 baseline includes projections for 2020 (h = 0) to 2029 (h = 9).9

It is important to note that our dataset spans the baseline projections between

1997 and 2020, yet the evaluation period T differs for each projection horizon. The

evaluation period for 0 years ahead horizon projections (h = 0) starts in 1997, and

runs through 2020, resulting in a sample size of T = 24 observations. We lose one

year from our sample size T for each year increase in the projection horizon h. For

example, for h = 1, the length of the evaluation period is T = 23, as 1-year-ahead

projections were not produced for the year t = 1997. Similarly, the sample size reduces

to T = 15 observations for 9-years-ahead projections (h = 9), as h = 9 projections

are available for the years 2006 to 2020. Figure 2.1 plots the baseline projections of

net cash income and average farm prices of corn for the USDA and FAPRI reports

between 1997 and 2021. As can be seen in the figure, the baseline projections are

usually smoothed, particularly over longer horizons, and often fail to capture market

shocks.

9In the forecast evaluation literature, projections made for h = 0 are sometimes referred to as
nowcasts.
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(a) Net cash income realized values and baseline projections, 1997-2021

(b) Corn price realized values and baseline projections, 1997-2021

Figure 2.1: Net cash income and corn price realized values and baseline projections
between 1997 and 2021
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2.3.2 Accuracy and Bias

Accuracy measures the difference between realized and predicted values. For each

variable, the percent prediction error at horizon h is defined as: eit+h|t = 100 ×

(Yt+h − Ŷ i
t+h|t)/Yt+h, where t is the reference year and i = {USDA,FAPRI}. We

use two common measures of the relative accuracy of USDA and FAPRI projections:

mean absolute percent error (MAPE) and root mean squared percent error (RMSPE)

defined as,

MAPEi
h =

1

T

∑
t

|eit+h|t| (2.2)

and

RMSPEi
h =

√
1

T

∑
t

(eit+h|t)
2. (2.2’)

As MAPE is less susceptible to outliers, it is unaffected by the occasional large predic-

tion errors. RMSPE, on the other hand, measures the square root average of squared

errors and gives more weight to large prediction errors. Smaller MAPE or RMSPE

values suggest more accurate projections.

In addition, we examine the degree to which the projections consistently differ from

their realized values (bias) using the regression-based test of Holden and Peel (1990b).

For each series of projections, we test for bias at each horizon h = {0, 1, . . . 9}:

eit+h|t = αi
h + εit+h. (2.3)

where αi
h is an unknown constant to be estimated and εit+h is white noise regression

residual. The projections are unbiased if they do not consistently differ from real-

ized values, or alternatively, their percent prediction error has an expected value of

zero. We evaluate the null hypothesis that the projections are unbiased by testing

the regression constraint H0 : α
i
h = 0. A positive and significant coefficient α̂i

h would
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suggest that the USDA or FAPRI projections consistently under-predict realized val-

ues. Similarly, a negative and significant coefficient α̂i
h implies that the projections

systematically overestimate the realized values. For both USDA and FAPRI pro-

jections, we estimate equation (2.3) separately for each projection horizon h using

ordinary least squares (OLS) with heteroskedasticity and autocorrelation consistent

(HAC) standard errors (Newey & West, 1987).

Figures 2.2 and 2.3 plot the mean absolute percent error (MAPE, solid line) and

root mean square percent error (RMSPE, dotted line) of the projections for field crop

production and prices (figure 2.2) and net cash income and its components (figure 2.3)

from 1997 through 2020. The vertical axis represents the MAPE and RMSPE, and

the horizontal axis represents the projection horizon h, from 0 to 9.

As shown in figure 2.2, both MAPE and RMSPE increase with the projection hori-

zon for harvested acres and farm price of corn, soybeans, and wheat for both USDA

and FAPRI projections. This pattern, however, does not hold for crop yield projec-

tions. Corn yield projections exhibit smaller and more stable MAPE and RMSPE,

and MAPE and RMSPE for wheat yields decreases across the projection horizon h.

The stable or decreasing percent errors may be the result of small deviations in crop

yields from long-term upward trends. Further, figure 2.2 suggests limited differences

between USDA and FAPRI commodity price and production projections.

Figure 2.3 shows that projection errors for net cash income and its components

increase with the horizon h. In addition, projection errors for net cash income, crop

receipts, and livestock receipts are lower for the FAPRI baseline at shorter horizons,

while USDA baseline projection errors are lower at longer horizons. For farm-related

income, the FAPRI projection has lower errors for all horizons.
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Figure 2.2: Mean absolute percent error (MAPE) and root mean square percent error
(RMSPE) for baseline projections of corn, soybeans and wheat by projection horizon
h, 1997–2020
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Figure 2.3: Mean absolute percent error (MAPE) and root mean square percent
error (RMSPE) for baseline projections of net cash income and its components by
projection horizon h, 1997–2020
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The tests of bias for both commodity and net cash income projections show a

similar pattern as reported in previous studies of USDA forecasts. In tables 2.1 and

2.2, we report the estimates of bias α̂i
h for projections i = {USDA,FAPRI} at hori-

zon h from equation (2.3) along with HAC standard errors. As reported in Boussios

et al. (2021), the USDA baselines consistently under-predict soybean harvested acres

and over-predict wheat harvested acres. The magnitude of bias increases with the

projection horizon h. Corn harvested acres do not show such bias. Farm prices of the

three commodities do not show significant bias for shorter horizons, but they tend

to be under-predicted for horizons larger than four years. Crop yield predictions do

not show significant bias for any of the three commodities. Both FAPRI and USDA

projections of net cash income, crop receipts, livestock receipts, and cash expenses

are biased downward at a 5% significance level, and the magnitude of bias increases

with the horizon. This finding is consistent with previous findings of downward bias in

USDA net cash income forecasts, which can be compared with projections at horizons

h = {0, 1} (Isengildina-Massa et al., 2021; Kuethe et al., 2022). As the short-term,

one year USDA forecasts are an input for short-term baseline projections, it is not

surprising that baselines are also biased downward, and that the bias carries forward

to longer horizons. USDA projections of government payments show downward bias

at longer horizons, while FAPRI projections of government payments do not show

bias. Farm-related income projections are biased downward at longer horizons for

both FAPRI and USDA projections.
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Table 2.1: Estimates of bias in USDA baseline projections, 1997–2020

Projection horizon

h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Corn

Harvested acres −0.009 −0.001 0.008 0.011 0.015 0.021 0.028 0.035 0.043 0.054
(0.007) (0.009) (0.012) (0.014) (0.018) (0.021) (0.025) (0.027) (0.030) (0.031)

Farm price 0.049 0.080 0.095 0.113 0.136∗ 0.160∗∗ 0.181 0.207∗ 0.262∗∗ 0.322∗∗

(0.039) (0.069) (0.095) (0.084) (0.072) (0.069) (0.105) (0.098) (0.095) (0.129)
Yield −0.010 −0.008 −0.007 −0.006 −0.006 −0.005 0.000 0.002 −0.003 −0.002

(0.018) (0.020) (0.021) (0.022) (0.023) (0.023) (0.024) (0.024) (0.022) (0.023)
Soybeans

Harvested acres 0.008 0.028∗ 0.040∗∗ 0.055∗∗∗ 0.064∗∗∗ 0.072∗∗∗ 0.078∗∗∗ 0.085∗∗ 0.090∗∗ 0.098∗∗

(0.009) (0.016) (0.019) (0.018) (0.019) (0.020) (0.025) (0.030) (0.032) (0.034)
Farm price 0.104∗∗∗ 0.133∗ 0.147 0.164 0.184∗∗∗ 0.212∗∗∗ 0.236∗∗ 0.251∗∗∗ 0.302∗∗∗ 0.360∗∗∗

(0.036) (0.067) (0.092) (0.098) (0.060) (0.061) (0.097) (0.071) (0.081) (0.082)
Yield −0.002 −0.002 −0.002 0.002 0.005 0.005 0.009 0.019 0.018 0.016

(0.014) (0.016) (0.020) (0.021) (0.022) (0.024) (0.024) (0.022) (0.026) (0.032)
Wheat

Harvested acres −0.040∗∗∗−0.046∗∗−0.056∗−0.071∗−0.090∗∗−0.102∗∗−0.112∗∗∗−0.134∗∗∗−0.155∗∗∗−0.179∗∗∗

(0.008) (0.016) (0.028) (0.034) (0.038) (0.036) (0.031) (0.032) (0.030) (0.027)
Farm price 0.059 0.102 0.126 0.146∗ 0.166∗ 0.182∗∗ 0.189∗∗ 0.205∗ 0.240∗∗ 0.278∗

(0.047) (0.088) (0.101) (0.080) (0.094) (0.069) (0.084) (0.116) (0.112) (0.137)
Yield 0.019 0.018 0.016 0.015 0.015 0.016 0.027 0.025 0.026∗ 0.028∗

(0.015) (0.017) (0.015) (0.014) (0.013) (0.015) (0.017) (0.015) (0.014) (0.015)
Farm income

Net cash income 0.132∗∗∗ 0.194∗∗∗ 0.238∗∗∗0.267∗∗∗ 0.284∗∗∗ 0.288∗∗∗ 0.312∗∗∗ 0.330∗∗∗ 0.347∗∗∗ 0.376∗∗∗

(0.027) (0.041) (0.045) (0.038) (0.055) (0.065) (0.072) (0.088) (0.099) (0.096)
Crop receipts 0.036∗ 0.060 0.081 0.097∗∗∗ 0.113∗∗∗ 0.134∗∗∗ 0.152∗∗∗ 0.172∗∗∗ 0.198∗∗∗ 0.249∗∗∗

(0.020) (0.043) (0.055) (0.033) (0.015) (0.012) (0.026) (0.042) (0.036) (0.066)
Livestock receipts 0.022 0.042∗ 0.059∗∗ 0.072∗∗ 0.084∗ 0.096∗ 0.121∗∗ 0.147∗∗ 0.163∗∗ 0.189∗∗∗

(0.018) (0.023) (0.028) (0.033) (0.044) (0.049) (0.052) (0.053) (0.057) (0.058)
Govt. payments 0.164 0.297∗ 0.361∗ 0.445∗∗ 0.474∗∗ 0.451∗∗ 0.469∗∗ 0.472∗ 0.491∗∗ 0.436∗

(0.096) (0.168) (0.188) (0.196) (0.210) (0.209) (0.222) (0.228) (0.214) (0.209)
Farm-related income 0.048 0.092 0.124 0.151∗ 0.193∗∗ 0.235∗∗ 0.274∗∗∗ 0.314∗∗∗ 0.351∗∗∗ 0.397∗∗∗

(0.061) (0.074) (0.090) (0.087) (0.089) (0.084) (0.076) (0.063) (0.060) (0.064)
Cash expenses 0.121∗∗∗ 0.140∗∗∗ 0.156∗∗∗0.168∗∗∗ 0.183∗∗∗ 0.201∗∗∗ 0.222∗∗∗ 0.246∗∗∗ 0.270∗∗∗ 0.305∗∗∗

(0.011) (0.021) (0.030) (0.035) (0.040) (0.020) (0.034) (0.032) (0.038) (0.042)

Notes: The bias term α̂USDA
h is estimated from the equation (2.3). ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively. Standard

errors (in parentheses) are heteroskedasticity and autocorrelation consistent (HAC)(Newey & West, 1987). The sample sizes of regressions for h=0,1,2,...,9 are
T=24, 23,..., 15 respectively. For farm income variables, sample size for h=9 is 14 as the 1997 USDA baseline didn’t publish projections for the year 2006.
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Table 2.2: Estimates of bias in FAPRI baseline projections, 1997–2020

Projection horizon

h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Corn

Harvested acres −0.005 −0.006 −0.003 0.004 0.007 0.014 0.022 0.031 0.039 0.047
(0.005) (0.010) (0.013) (0.015) (0.020) (0.021) (0.025) (0.028) (0.032) (0.033)

Farm price 0.026 0.047 0.071 0.094 0.124 0.156 0.189 0.223∗ 0.284∗∗ 0.350∗∗

(0.045) (0.076) (0.101) (0.078) (0.087) (0.109) (0.120) (0.105) (0.112) (0.140)
Yield −0.003 −0.001 −0.002 −0.002 −0.002 −0.003 0.001 0.001 −0.004 −0.003

(0.018) (0.020) (0.022) (0.022) (0.023) (0.024) (0.025) (0.026) (0.024) (0.025)
Soybeans

Harvested acres 0.003 0.020 0.034∗∗ 0.042∗∗ 0.054∗∗ 0.062∗∗∗ 0.072∗∗∗ 0.079∗∗∗ 0.084∗∗∗ 0.089∗∗∗

(0.009) (0.013) (0.016) (0.018) (0.019) (0.020) (0.020) (0.023) (0.025) (0.028)
Farm price 0.077∗ 0.091 0.105 0.137 0.168∗∗ 0.211∗∗ 0.249∗ 0.273∗∗ 0.329∗∗∗ 0.391∗∗∗

(0.039) (0.078) (0.097) (0.105) (0.076) (0.094) (0.127) (0.117) (0.109) (0.128)
Yield 0.009 0.009 0.009 0.012 0.013 0.013 0.014 0.024 0.023 0.022

(0.016) (0.019) (0.022) (0.023) (0.023) (0.023) (0.024) (0.022) (0.027) (0.034)
Wheat

Harvested acres −0.026∗∗∗−0.048∗∗−0.067∗∗−0.084∗∗−0.103∗∗−0.111∗∗−0.116∗∗∗−0.130∗∗∗−0.141∗∗∗−0.154∗∗∗

(0.008) (0.017) (0.029) (0.036) (0.036) (0.042) (0.038) (0.032) (0.036) (0.034)
Farm price 0.038 0.064 0.086 0.102 0.128 0.155 0.178 0.205 0.248 0.291∗

(0.059) (0.086) (0.092) (0.083) (0.108) (0.106) (0.110) (0.145) (0.150) (0.143)
Yield 0.026∗ 0.023 0.021 0.019 0.018 0.020 0.031∗∗ 0.030∗∗ 0.031∗∗ 0.035∗∗

(0.013) (0.015) (0.014) (0.013) (0.014) (0.016) (0.014) (0.012) (0.011) (0.014)
Farm income

Net cash income 0.116∗∗∗ 0.147∗∗∗ 0.164∗∗∗ 0.190∗∗∗ 0.228∗∗∗ 0.261∗∗∗ 0.299∗∗∗ 0.326∗∗ 0.354∗∗∗ 0.372∗∗∗

(0.023) (0.032) (0.041) (0.055) (0.068) (0.087) (0.094) (0.122) (0.100) (0.086)
Crop receipts 0.030∗ 0.048 0.062 0.078∗∗ 0.096∗∗∗ 0.121∗∗∗ 0.147∗∗∗ 0.170∗∗ 0.203∗∗∗ 0.239∗∗∗

(0.017) (0.040) (0.053) (0.035) (0.026) (0.036) (0.049) (0.066) (0.061) (0.072)
Livestock receipts 0.030∗∗ 0.044∗∗ 0.059∗ 0.080∗∗ 0.107∗∗ 0.136∗∗ 0.175∗∗ 0.206∗∗ 0.230∗∗∗ 0.252∗∗∗

(0.014) (0.020) (0.028) (0.037) (0.047) (0.058) (0.063) (0.071) (0.072) (0.071)
Govt. payments 0.156 0.226 0.272 0.292 0.303 0.287 0.290 0.287 0.303 0.267

(0.094) (0.157) (0.202) (0.178) (0.239) (0.242) (0.249) (0.246) (0.218) (0.241)
Farm-related income 0.032 0.056 0.087 0.113 0.156∗ 0.201∗∗ 0.240∗∗∗ 0.282∗∗∗ 0.321∗∗∗ 0.357∗∗∗

(0.061) (0.061) (0.085) (0.089) (0.088) (0.082) (0.077) (0.068) (0.062) (0.058)
Cash expenses 0.123∗∗∗ 0.140∗∗∗ 0.156∗∗∗ 0.172∗∗∗ 0.189∗∗∗ 0.212∗∗∗ 0.240∗∗∗ 0.266∗∗∗ 0.296∗∗∗ 0.325∗∗∗

(0.011) (0.018) (0.026) (0.034) (0.038) (0.038) (0.037) (0.042) (0.049) (0.050)

Notes: The bias term α̂FAPRI
h is estimated from the equation (2.3). ***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively. Standard

errors (in parentheses) are heteroskedasticity and autocorrelation consistent (HAC)(Newey & West, 1987). The sample sizes of regressions for h=0,1,2,...,9 are
T=24, 23,..., 15 respectively.
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2.4 Methods

The analysis of accuracy and bias in the previous section suggests that the pro-

jections are less accurate at longer horizons. We conduct tests for the predictive

accuracy of the projections at different horizons and determine the maximum infor-

mative projection horizon for each variable (Breitung & Knüppel, 2021). We then

compare the USDA and FAPRI baseline models using multi-horizon tests developed

by Quaedvlieg (2021).

2.4.1 Informativeness

The accuracy and bias measures consider the projections at each horizon inde-

pendently. The baseline projections, however, are multi-horizon forecasts or path

forecasts, as in Jordà and Marcellino (2010). An important evaluation criterion for

path forecasts is the horizon up to which the projections provide meaningful infor-

mation. Galbraith (2003) calls the maximum informative horizon of a path forecast

the content horizon. A number of previous studies develop empirical tests to estimate

the content horizon of path forecasts relative to an uninformative or näıve forecast

(Galbraith & Tkacz, 2007; Isiklar & Lahiri, 2007).

A popular measure used for quantifying information content is the Theil’s U statis-

tic (Theil, 1958). Theil’s U is a scaled version of the root mean square error (RMSE)

that has the advantage of not being affected by the variance of the actual process. It

is defined:

U i
h(ŷnäive) =

√√√√∑T
t=1(yt+h − ŷit+h|t)

2∑T
t=1(yt+h − ŷnäive)

2
(2.4)
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A common choice for the näıve projection, ŷnäive, is a no-change projection using the

previous year’s estimate. Following Isiklar and Lahiri (2007), we use the previous

5-year’s average as the näıve projection, and calculate U i
h(ŷnäive) for our selected

variables for each horizon h = {0, 1, . . . 9}, and agency i = {USDA,FAPRI}. If

Theil’s U is less than one, then the baseline is a better predictor than the näıve

projection. Conversely, when the näıve benchmark is a better predictor than the

agency baseline, Theil’s U is larger than one.

The choice of the näıve projection ŷnäive greatly influences the Theil’s U statistic.

As a result, we also estimate the informativeness or content horizon for the agricultural

baselines using a method recently proposed by Breitung and Knüppel (2021), which

does not require a näıve forecast for comparison. Instead, the Breitung and Knüppel

test directly compares the mean-squared forecast error to the unconditional variance

of the forecasted variable. The Breitung and Knüppel testing framework is based on a

limited set of assumptions. The test assumes that the realized values yt are generated

by a stationary and ergodic stochastic process. We further assume that the realized

values yt are generated by a linear process with constant variance, although this

assumption may be relaxed in some conditions.

The Breitung and Knüppel test for the maximum informative prediction horizon

compares the mean-squared prediction error of the projections to the variance of

the realized values over the evaluation sample. Under quadratic loss, the optimal

projection equals the conditional mean of the projection µi
h,t = E(ŷit+h|It), given the

information set It available at reference year t. In particular, we test the following
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hypothesis:

H0 : E(yt+h − ŷt+h|t)
2 ≥ E(yt+h − µ)2, for h > h∗ (2.5)

H1 : E(yt+h − ŷt+h|t)
2 < E(yt+h − µ)2 (2.6)

where, µ = E(yt) is the unconditional mean of the realized values. The null hypothesis

states that there exists a maximum projection horizon h∗ beyond which the realized

values yt would be unpredictable with respect to the information set It. We term

the null hypothesis as no information hypothesis, against the alternative hypothesis,

which states that the projection remains informative as the mean-squared prediction

error is lower than the variance of the realized values around their unconditional

mean.

Another test of predictive content can be formulated based on the conditional

mean of the projection being constant within the evaluation sample, or the constant

mean hypothesis:

H0 : E(ŷit+h|It) = µh,t = µ, for h > h∗ (2.7)

H1 : E(ŷit+h|It) ̸=µh,t = µ. (2.8)

This is a more relaxed criterion compared to the no information hypothesis as it

requires the projection to be uncorrelated with the realized value for it to be un-

informative. If the projection ŷit+h|t is identical to the conditional mean µh,t of the

target variable, then the no information hypothesis is equivalent to the constant mean

hypothesis (Breitung & Knüppel, 2021).

Breitung and Knüppel (2021) suggest considering three scenarios based on how

the projections are generated. The first scenario refers to projections generated from

the expectations of individuals, and the expectation is identical to some conditional
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mean. The second scenario involves projections generated from survey expectations

which are also contaminated by noise (e.g., macro-economic forecasts of Consensus

Economics). The third scenario refers to projections generated from models. The

baseline projections we consider here are unique in the sense that they are generated

based on models, as well as expert opinions or expectations of individuals. Therefore,

we consider the second and third scenarios. In both scenarios, the no information

hypothesis and the constant mean hypothesis can be formulated in terms of testing

coefficients in a Mincer-Zarnowitz regression (Mincer & Zarnowitz, 1969).

Breitung and Knüppel (2021) show that if the baseline projection is generated

by a conditional mean of the projection and noise (ηt), ŷ
i
t+h|t = µh,t + ηit, the no

information hypothesis is equivalent to testing the null hypothesis βi
h ≤ 0.5 in the

regression:

yit+h = βi
0,h + βi

hŷ
i
t+h|t + νi

t+h. (2.9)

Breitung and Knüppel (2021) further show that the constant mean hypothesis is

equivalent to testing the null hypothesis βi
h ≤ 0 in the same regression, implying

that the baseline projection is uncorrelated to the realized values. The tests of the

parameters βi
h can be performed using a HAC t-statistic constructed as:

τa =
1

ω̂a

√
T

∑
t

at (2.10)

at =
[
yt+h − yt+h − 0.5(ŷt+h|t − ŷt+h)

]
(ŷt+h|t − ŷt+h) for H0 : βh = 0.5 (2.11)

at = (yt+h − yt+h)(ŷt+h|t − ŷt+h) for H0 : βh = 0 (2.12)

where ω̂a
2 is a consistent estimator of the long-run variance of at. The Lagrange

Multiplier statistic has an asymptotic standard normal distribution.

71



While constructing the HAC t-statistic, we use the in-sample mean of the baseline

projections. While alternative versions of the test use a recursive mean in place of

the in-sample mean, they require more information prior to the evaluation period,

which is not available in our case. To determine the maximum informative projection

horizon h∗, we begin by testing the null hypothesis for the h = 0 horizon projection.

If the null hypothesis is rejected, we test the h = 1 horizon projection, and so on.

We stop when the null hypothesis is no longer rejected. The maximum informative

projection horizon h∗ is the penultimate horizon before the null hypothesis is not

rejected.

An advantage of the tests proposed by Breitung and Knüppel (2021) is that they

do not require a näıve benchmark, as they directly compare the mean-squared pre-

diction error to the unconditional variance of the realized values. Another advantage

is that when we apply the tests with in-sample mean, additional information prior

to the evaluation period is not required, therefore these tests are suitable for our

limited observation period. The baseline projections share properties of both survey

forecasts and model-based forecasts, as they are a combination of model prediction

and expert opinions. On the other hand, a limitation of these tests is that they can

be sensitive to the transformations of the variables. In addition, the maximum in-

formation projection horizon is a conservative estimate and is subject to the process

used to produce the projections. The maximum informative projection horizon could

be longer if the projection process did not fully incorporate available information.

Another limitation is that the tests at longer projection horizons may have less power

due to smaller sample size.
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2.4.2 Comparing USDA and FAPRI Baseline Projections

Multi-horizon Comparison

The final step in our evaluation compares the relative accuracy of the baseline

projections produced by USDA and FAPRI. First, we follow the forecast comparison

test procedure developed by Harvey et al. (1997) for each projection at each horizon.

The Harvey et al. (1997) test is a modified version of the test procedure introduced

by Diebold and Mariano (1995) which incorporates a modified student t distribution

and bias correction to improve small sample properties of the tests. The comparison

of the USDA and FAPRI projections is based on the mean loss differential between

them, µ = limT→∞
1
T

∑
t E(dt).

The modified Diebold-Mariano tests for single horizons compare the USDA and

FAPRI projections by calculating a standard t-test:

thDM =

√
T d̄h
ω̂h

(2.13)

where d̄h = 1
T

∑
dt,h, and ω̂2

h is a HAC estimate of the variance of dt,h. We first test

the null hypothesis that the mean loss differential at horizon h is less than or equal

to zero (H0 : µh ≤ 0). A failure to reject the null hypothesis of µh ≤ 0 suggests that

the FAPRI projections do not perform better than USDA, and a rejection of the null

would indicate that the FAPRI projections perform better than USDA. We then test

the null hypothesis that the mean loss differential at horizon h is greater than or equal

to zero (H0 : µh ≥ 0). For this test, a failure to reject the null hypothesis of µh ≥ 0

would indicate that the USDA projections do not perform better than FAPRI, and a

rejection of the null would indicate that the USDA projections perform better than

FAPRI.
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The modified Diebold-Mariano test compares the USDA and FAPRI projections

at each horizon. As a result, the test may yield contradictory results for multi-horizon

projections, as one set of projections may provide more accurate projections at some

horizons but not at others. This shortcoming may limit the use by policymakers

who are interested in the relative accuracy of the entire path forecast from horizons

0 through 9. As a result, we also examine the relative accuracy along the entire

projection path.

A number of recent studies propose methods to compare the relative accuracy of

path forecasts (Capistrán, 2006; Martinez, 2020; Patton & Timmermann, 2012). In

our analysis, we use the tests of multi-horizon superior predictive ability proposed

by Quaedvlieg (2021) which jointly consider all horizons along the entire projection

path. Following Giacomini and White (2006), the procedure developed by Quaedvlieg

(2021) tests for finite-sample multi-horizon predictive ability using estimated values of

parameters. To conduct multi-horizon comparison tests, we start by using a vectorized

version of the previous notations, denoting the USDA and FAPRI projections i ∈

{USDA,FAPRI} as, ŷi
t = [ŷit|t−0, ŷ

i
t|t−1, . . . , ŷ

i
t|t−9], where ŷ

i
t|t−h is the projection of yt

based on the information set at time t−h. We are interested in comparing the USDA

and FAPRI projections in terms of their loss differentials, following the approach in

Diebold and Mariano (1995). We assume a general loss function Li
t = L(yt, ŷ

i
t) which

maps the prediction errors into a 10-dimensional vector since there are 10 projection

horizons. For our analysis, we use mean squared error (MSE) and mean absolute

error (MAE) loss function, however, these can be generalized to allow multivariate

loss function. We calculate the loss differential for year t between the USDA and
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FAPRI projections as a 10-dimensional vector:

dt = LUSDA
t −LFAPRI

t . (2.14)

Quaedvlieg (2021) provides two alternative definitions of multi-horizon predictive

ability. First, a path forecast is said to have uniform superior predictive ability

(uSPA) if it has smaller loss at each horizon when compared to the alternative path

forecast. Uniform SPA, however, is a very strict criterion which may not be realistic

in practice. As a result, Quaedvlieg (2021) develops the concept of average superior

predictive ability (aSPA) for a path forecast with larger loss at some horizons that

is compensated by superior performance at other horizons when compared to the

alternative path forecast. Thus, average SPA relaxes the stringent requirements of

uniform SPA. Quaedvlieg construct bootstrap test statistics for both uniform and

average SPA, which reduce to the standard DM tests at a single horizon.

The uniform SPA test is based on the minimum loss differential:

µuSPA = min
h

µh. (2.15)

The uniform SPA test is given by the null hypothesis H0 : µuSPA ≤ 0 against the

alternative hypothesis Ha : µuSPA > 0. Rejecting the null hypothesis will suggest

that the FAPRI projection has uniform superior predictive ability over the USDA

projection. In other words, the minimum loss differential between the USDA and

FAPRI projection across horizons h should be significantly greater than zero if the

FAPRI projection is to be uniformly superior to the USDA projection. To test for

uSPA of the USDA projection over FAPRI, we use the same equation (2.15) for

minimum loss differential but reverse the two projections in the loss differentials

equation (i.e. dt = LFAPRI
t −LUSDA

t ). In this case, rejecting the null hypothesis will
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suggest that the USDA projection has uniform superior predictive ability over the

FAPRI projection.

The average SPA test, by contrast, is based on a weighted average of losses across

all horizons or whether, for example, the FAPRI baseline projection is on average

superior to the USDA baseline projection across all horizons. The average SPA test

is based on the minimum loss differential:

µaSPA = w′µ =
∑
h

whµh. (2.16)

The average SPA allows losses at different horizons to compensate for one another.

For example, the FAPRI projection may perform worse at some horizons but still be

superior compared to the USDA projection, on average. We test the null hypothesis

H0 : µaSPA ≤ 0 (FAPRI projection does not have aSPA) against the alternative

Ha : µaSPA > 0 (FAPRI projection has aSPA). We also test the null hypothesis

H0 : µaSPA ≥ 0 (USDA projection does not have aSPA) against the alternative

Ha : µ
aSPA > 0 (USDA projection has aSPA).

The choice of weights (wh) is flexible but is chosen a priori. To make sure our find-

ings are robust to this choice, we examine alternative weighting procedures. We first

use equal weights for each horizon h but also consider weighing the loss differentials

by the variance of the loss differential at the horizon that is being compared divided

by the sum of variances across all horizons. The test statistic for the multi-horizon

comparison tests are given by:

tuSPA = min
h

√
T d̄h
ω̂h

(2.17)

and,

taSPA =

√
T d̄h

ζ̂h
, (2.17’)
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respectively. For the uSPA tests, we calculate two t-statistics: one testing whether the

FAPRI projection has uSPA over the USDA and the other testing whether the USDA

projection has uSPA over FAPRI, as the minimum loss differentials are different for

these two hypotheses. However, for the aSPA tests, we need to calculate only one

t-statistic and conduct one-tailed tests in both directions to test aSPA of the FAPRI

projection over USDA and vice versa.

We obtain estimates of variances ω̂2
h for uSPA from the diagonal elements of the co-

variance matrix of loss differential d calculated using an HAC-type estimator (Newey

& West, 1987). Similarly, we get the estimates of variance ζ̂2h for aSPA as the diagonal

elements of the weighted covariance matrix of d. The test-statistic for the uniform

SPA is the minimum of Diebold-Mariano test statistic for all horizons. The average

SPA test is simply a Diebold-Mariano test on average loss differential (Quaedvlieg,

2021). The critical values and p-values for the uSPA and aSPA tests are obtained

using a moving block bootstrap (MBB) technique. By computing either of the test

statistics on many MBB re-samples, we approximate the distribution of the original

statistics under the null hypothesis. The critical values at α significance level are

obtained by calculating the α percentile of the bootstrap distribution.

Encompassing Tests

As previously stated, USDA baseline projections are typically released in Febru-

ary and FAPRI baseline projections in March. As a result, FAPRI analysts have the

advantage of using more recent information to prepare their projections. The updated

information set of the FAPRI analysts includes information from reviewer comments,

the January WASDE and associated reports, and the February USDA farm income

estimates. In comparison, the USDA baseline projections are based on the October
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WASDE (USDA Office of the Chief Economist, 2020). Therefore, one might expect

the FAPRI baseline projections to contain new information beyond the USDA base-

line projections. On the other hand, there is a bi-directional flow of information

between USDA and FAPRI analysts through official meetings, review sessions, and

informal conversations, which may lead to herding in the projections produced by

both agencies. FAPRI usually finalizes its projections by the time USDA releases its

report, and the USDA report does not act as a significant input to FAPRI’s forecast-

ing process. We test whether the information content of USDA or FAPRI baseline

projections dominates the other using the encompassing test developed by Harvey et

al. (1998).

When two competing sets of projections are available for the same variable, a

relevant question to ask is whether one set of projections encompasses another, that

is, the informational content of the preferred projection dominates the other. Harvey

et al. (1998) frame this question as a problem of forming a combined projection

from the weighted average of the individual ones and estimating the optimal weights

assigned to each projection. In this framework, a projection would be preferred if its

optimal weight is unity in the weighted average, and the combined projection consists

entirely of the preferred projection. Harvey et al. (1998) develop a regression-based

test to estimate the optimal weights for the combined projection. For our study, the

regression is expressed as:

eUSDA
t+h|t = αh + λh(e

USDA
t+h|t − eFAPRI

t+h|t ) + εt+h|t. (2.18)

where eUSDA
t+h|t is the prediction error at horizon h of USDA baselines, and eFAPRI

t+h|t is the

prediction error at horizon h of FAPRI baselines projections. The coefficients αh and
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λh at horizon h are estimated by OLS regression, and εt+h|t is a white noise regression

error.

The coefficient λh in the regression equation (2.18) determines the optimal weights

assigned to the USDA and FAPRI projections to form a combined projection that

would have a smaller expected squared error than either of the two projections. The

combined projection is formed by assigning weights (1 − λh) and λh to the USDA

projections and FAPRI projections, respectively. We test the null hypothesis that

USDA baselines encompass the FAPRI projections using a two-tailed t-test of the

restriction λh = 0. If we fail to reject λ = 0, it implies that USDA is preferred

to FAPRI (i.e., the combined projection consists entirely of the USDA baseline).

Alternatively, we test the hypothesis that the combined projection consists entirely

of the FAPRI baseline by using a two-tailed t-test of the restriction λh = 1. A failure

to reject λh = 1 would suggest that the FAPRI baseline is preferred. If we reject both

λh = 0 and λh = 1, a combined projection is formed by weighting FAPRI baseline

by λ̂h and USDA baseline by (1 − λ̂h). In this case, both baselines contain unique

information to contribute to the combined projection. Finally, if we fail to reject both

λh = 0 and λh = 1, the optimal composite projection can be either the USDA or the

FAPRI baseline, as the projections are very similar. We perform encompassing tests

for our selected variables for each horizon separately.

2.5 Results

The following section presents the primary findings of our analysis. First, we

measure the accuracy of USDA and FAPRI baseline projections for major field crops,

as well as U.S. net cash farm income and its components, and test for bias. Second,
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we estimate the content horizon of each set of projections. Finally, we empirically

test the degree to which USDA or FAPRI has superior predictive ability.

2.5.1 Informativeness

The Theil’s U statistic for the commodities and net cash income components are

plotted in figures 2.4 and 2.5 for USDA and FAPRI baselines. As previously discussed,

Theil’s U compares the predictive accuracy of FAPRI or USDA baseline projections

relative to a näıve prior based on a 5-year moving average, following Isiklar and

Lahiri (2007). The USDA or FAPRI baseline projection is a better predictor than

the näıve prior if Theil’s U is less than 1, which is represented by the horizontal

dashed line in figures 2.4 and 2.5. Both USDA and FAPRI projections are better

predictors of corn harvested acres across all horizons, relative to the näıve prior.

However, for harvested acres of soybeans and wheat, the näıve prior is preferred

at longer horizons. The predictive accuracy of both FAPRI and USDA baseline

projections relative to the näıve prior diminish at longer horizons for all farm price

projections. Interestingly, yield projections perform better for both agencies at larger

horizons relative to the näıve projection. For net cash income, FAPRI baselines are

preferred to the näıve prior for at shorter horizons, yet the näıve prior is preferred to

USDA baseline projections beyond the reference year projections. For both crop and

livestock receipts, USDA and FAPRI baseline projections are preferred to the näıve

prior at all horizons. The projections of government payment, on the other hand,

fail to beat the näıve beyond the current year for both agencies. Overall, Theil’s

U statistics suggest that the baselines beat the näıve projection for most variables
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across horizons, underlining that baselines contain information. We investigate the

informativeness of the baselines further with our empirical tests of predictive content.

Our estimates of the content horizon of each projection series, following Breitung

and Knüppel (2021), are presented in tables A.1 and A.2. As previously discussed,

the empirical test of Breitung and Knüppel (2021) is based on the traditional Mincer-

Zarnowitz regression (equation (2.9)). The two hypotheses tested are H0 : βi
h ≤ 0.5

for no information and H0 : β
i
h ≤ 0 for constant mean.

As shown in tables A.1 and A.2, the estimates of β̂i
h are closer to unity for shorter

horizons, but decrease for longer horizons. For example, for the USDA projections

of corn harvested acres, the estimates of β̂USDA
h decrease from 0.98 for the next year

projection (horizon h = 1) to 0.07 for the ten years ahead projection (h = 9), which

suggests a reduction in the predictive content of the USDA projections at longer

horizons (table A.1). Similarly, for the FAPRI projections of corn harvested acres,

the estimates of β̂FAPRI
h decrease from 0.996 for horizon h = 1 to −0.044 for h = 9

(table A.2). The statistical significance of the coefficients tested with a one-tail test

show that the projections for corn harvested acres become uninformative after h = 5

and then constant mean after h = 7 .

We further plot the p-values for the no information and constant mean tests for

predictive content against the projection horizon h for the commodities and net cash

income components in figures 2.6 and 2.7. The horizontal dashed line stands for

significance at a 5% level. These figures mirror and confirm the results in tables A.1

and A.2. In general, the results show that yield is better predicted than harvested

acres, which is better predicted than farm price in terms of becoming uninformative

and constant mean at longer horizons.
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Figure 2.4: Theil’s U for USDA and FAPRI baseline projections of corn, soybeans
and wheat by projection horizon h, 1997–2020
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Figure 2.5: Theil’s U for USDA and FAPRI baseline projections of net cash income
and its components by projection horizon h, 1997–2020
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Finally, we calculate the maximum informative projection horizons h∗ for both

tests at a 5% significance level in table 2.3. The maximum informative projection

horizon is calculated as the penultimate horizon, after which the null hypothesis is

not rejected for the first time. For example, using the no information hypothesis

test, h∗ = 5 for corn harvested acres projections by both USDA and FAPRI as no

information test is significant at 5% level until h = 5. Similarly, using the constant

mean hypothesis test, h∗ = 7 for corn harvested acres projections by both USDA

and FAPRI as no information test is significant at 5% level until h = 7. Because β̂i
h

are generally decreasing with the horizon h and the no information hypothesis tests

whether the coefficient estimate is less than 0.5 versus the constant mean hypothesis

that tests whether the coefficient estimate is less than 0, the results imply that the

no information hypothesis is not rejected at shorter horizons than the constant mean

hypothesis. In other words, projections for the shortest horizons are both informative

and do not have constant mean, and for medium horizons, the projections become

uninformative. For the longest horizons, the projections are also constant mean.

For most variables, the informative content of the projections starts diminishing

after 4-5 years from the current year, using the more conservative no information

test results. These results vary greatly across variables. Both USDA and FAPRI are

able to predict yield per acre for the longest horizons of 9 years ahead, with reduced

predictive ability for harvested acres of about 5-7 years ahead and the lowest predictive

for farm price of only 2-4 years ahead. These results are not surprising because

predicting yield around a long-term trend has proven to be easier than predicting

farm prices, which are more volatile. The bottom-line net cash income also remain

informative 4-6 years into the future, while some individual components such as crop
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receipts and cash expenses generally remain informative for shorter horizons of about

2 years. Government payments are notably difficult to predict even in the current year

and are not informative after the current year, consistent with previous studies (Bora

et al., 2021; Isengildina-Massa et al., 2021). The findings, however, do not suggest

that the projections cannot be improved beyond the reported maximum horizon, as

our test results are subject to the projection process. Our results only suggest that

the projections may stay informative for a longer period using improved models.

There may be several explanations why a variable might not stay informative

beyond a few years. It may be that the variable under examination is difficult to

predict. For example, it is not surprising that the government payments do not stay

informative beyond the current year, as policy decisions are often unpredictable. The

opposite is true for crop yield projections, where even a linear trend model may predict

future yield with low percent errors. Our findings of a short content horizon would

suggest that the projection may be improved by using better projection models, more

rigorous review processes, and robust information sets. However, errors in the baseline

projections may come from two distinct sources. First, the assumptions about macro-

economic conditions, weather, trade policies while producing the baselines may not be

realized in the future. Second, even if correct assumptions were made, the models used

in the projections may be inadequate or inaccurate. Our tests of predictive content do

not pinpoint whether a short content horizon may result from incorrect assumptions

or incorrect models and analysis, and would merely suggest that future revisions of

the baselines should try to improve both the assumptions and the modeling process.

The same limitation applies to other tests used in this study.
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Figure 2.6: P-values for the tests of predictive content of the USDA and FAPRI
commodity projections by horizon, 1997–2020
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Figure 2.7: P-values for the tests of predictive content of the USDA and FAPRI farm
income components projections by horizon, 1997–2020
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Table 2.3:
Maximum informative projection horizons, h∗

H0:No information H0: Constant mean

FAPRI USDA FAPRI USDA

Corn
Harvested acres 5 5 7 7
Farm price 2 3 5 5
Yield 6 9 9 9

Soybean
Harvested acres 3 1 9 8
Farm price 2 3 5 5
Yield 9 9 9 9

Wheat
Harvested acres 3 3 9 9
Farm price 2 1 4 3
Yield 9 8 8 8

Farm income
Net cash income 2 1 6 6
Crop receipts 3 3 5 5
Livestock receipts 4 3 7 7
Govt. payments 0 0 1 0
Farm-related income 7 8 7 8
Cash expenses 4 4 7 7
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2.5.2 Comparing USDA and FAPRI Baseline Projections

We first compare the FAPRI and USDA baselines using the modified Diebold-

Mariano (MDM) test of Harvey et al. (1997) using a root mean square error loss

function (table A.3). For this MDM test, we compare USDA and FAPRI projections

at each horizon separately using the test statistic from equation (2.13). We then

perform multi-horizon uniform SPA test using the test statistic from equation (2.17)

to test whether the FAPRI projections perform better than the USDA projections

or whether the USDA projections perform better than FAPRI (table A.4). Then, we

conduct two versions of the average SPA test using the test statistic from the equa-

tion (2.17’). The first average SPA test assigns equal weights to each horizon while

calculating loss differentials (table A.5). Table A.6 presents the results of the average

SPA test using weights based on variances of loss differentials of the horizons. The

multi-horizon tests of uniform SPA and average SPA are performed for all horizons

up to h. Thus, at the last horizon h = 9, we run the full version of the multi-horizon

comparison test by including all horizons. Figures 2.8 and 2.9 plot the p-values of the

MDM test and the multi-horizon comparison tests.

The p-values of all four multi-horizon comparison tests for the commodities pro-

jections in figure 2.8 suggest that the FAPRI projections do not outperform the USDA

projections for most variables, as we cannot reject the null hypothesis. Notable ex-

ceptions are that the FAPRI projections perform better than USDA for soybean

harvested acres and wheat price. The multi-horizon comparison test results shown

in figure 2.9 suggest that the FAPRI projections perform better in shorter horizons

(h ≤ 4) for net cash income and crop receipts, while FAPRI consistently predicts bet-

ter than USDA farm-related income for all horizons h ≤ 9. One reason the FAPRI
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projections may perform better at shorter horizons is that they use the most re-

cent forecasts available in November as inputs to their projections, while the USDA

uses forecasts available in October. Also, USDA releases their projections a couple

of weeks earlier than FAPRI, so FAPRI may contain additional information, espe-

cially expert opinions. Since expert opinions mostly influence shorter horizons of the

projections, the FAPRI projections are better for some variables. Additionally, the

three multi-horizon comparison tests (uSPA, aSPA equal weights, and aSPA variance

weights) yield similar results, and the findings are consistent with the results of the

single-horizon MDM test.

The results of multi-horizon comparison tests in tables A.4, A.5, and A.6 provide

additional insights to the single-horizon MDM tests presented in table A.3. The MDM

test results show that the FAPRI projections perform better in shorter horizons for

net cash income, crop receipts, and wheat price. For farm-related income, the FAPRI

projection performs better than USDA across the entire projection horizon. The

USDA projection performs better at longer horizons for corn price and yield, soybean

price, crop receipts, livestock receipts, and cash expenses. The multi-horizon tests, on

the other hand, aggregate the loss differential across multiple horizons. We start our

multi-horizon tests with the projection for the current year (h = 0) and progressively

include additional horizons until we cover the entire projection horizon (h ≤ 9). This

allows us to observe how the addition of more horizons affects the results. For shorter

horizons, the multi-horizon tests yield similar results to the MDM test. However, as

we keep adding horizons, in a multi-horizon framework, the results differ from the

single-horizon tests. For example, the tests of uSPA in table A.4 show that, over

the projection path (h ≤ 9), the FAPRI projection performs better for farm-related
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Table 2.4: Encompassing Tests

Projection Horizon

item h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Corn
Harvested acres 0.599 0++ 0.061+++ 0.319 0.631 -0.013 -0.149 0.271 0.188 -1.091

(0.393) (0.365) (0.280) (0.405) (0.538) (0.840) (0.723) (1.267) (0.750) (1.333)
Farm Price 0.132++ 0.009+ 0.353 0.189 -0.247 -0.985 -1.18 -0.729 -1.043 -0.939+

(0.372) (0.550) (0.838) (1.000) (1.165) (1.600) (1.826) (1.565) (1.194) (1.022)
Yield -0.185 -2.067 1.201 2.058∗ 1.244 -1.546 -1.996 -2.831 -0.53 -1.628++

(1.462) (2.932) (1.839) (1.113) (1.462) (1.978) (1.803) (2.391) (1.565) (0.934)

Soybean
Harvested acres 0.298 1.761∗∗∗ 1.539∗∗∗ 0.369++ -0.597++ 1.018 0.792 1.574∗∗∗ 2.396+++∗∗∗ 2.204+∗∗∗

(0.650) (0.618) (0.496) (0.293) (0.568) (0.715) (0.701) (0.394) (0.371) (0.678)
Farm Price -0.888+++ -0.884++ -0.002 -0.287 -0.479 -1.094+ -1.578+ -1.529+++∗∗ -1.615+++∗∗∗ -2+++∗∗∗

(0.519) (0.717) (0.840) (1.415) (1.150) (1.029) (1.220) (0.681) (0.418) (0.458)
Yield -2.578+++∗∗ -2.215++∗ -0.768++ -0.286 0.417 -0.041 0.026 0.073 -0.323 -1.199++

(1.021) (1.140) (0.714) (1.337) (0.855) (1.387) (0.933) (1.575) (1.356) (0.927)

Wheat
Harvested acres 0.745∗∗∗ -0.081+ 0.489 0.747 0.484 0.071++ -0.326+++ 0.216+ 0.371 0.085+++

(0.222) (0.612) (0.549) (0.744) (0.533) (0.359) (0.435) (0.443) (0.407) (0.231)
Farm Price 0.301 0.896 1.509 1.748∗∗ 1.847∗∗ 1.486∗∗ 1.444 1.006 0.657 0.47

(0.486) (0.798) (0.883) (0.695) (0.787) (0.693) (0.858) (1.038) (1.202) (0.776)
Yield 1.93∗∗ 1.493∗ 2.089∗ 0.733 -0.124+ 0.48 1.463∗ 2.012∗∗∗ 1.207∗∗ 0.907

(0.725) (0.780) (1.086) (0.691) (0.562) (0.681) (0.805) (0.623) (0.409) (0.618)

Farm Income
Expenses 0.374 0.691 1.252 1.261 1.141 0.733 0.482 -0.139++ -0.41+++∗∗ -0.956+++∗

(0.597) (0.629) (0.881) (0.791) (0.777) (0.698) (0.690) (0.400) (0.160) (0.526)
Crop Receipts 1.134 1.421 0.88 0.56 0.186 -0.296 -0.631 -0.761 -0.87 -1.491+++∗∗

(0.700) (1.099) (1.233) (1.250) (1.140) (1.076) (1.151) (1.176) (1.132) (0.673)
Farm-related Income 1.511 1.813 0.781 0.486 1.125 0.619 0.392 0.944 0.678 1.673∗∗∗

(0.967) (1.301) (1.218) (0.914) (1.057) (0.917) (0.884) (0.639) (0.737) (0.449)
Government Payments 0.156+++ 0.697∗∗ 0.153++ 0.363 -0.283++ -0.739++ -0.626++ -0.392++ -0.445++ -0.238+++

(0.198) (0.309) (0.397) (0.487) (0.603) (0.610) (0.633) (0.590) (0.553) (0.380)
Livestock Receipts 1.469∗∗∗ 1.34∗∗ 0.671 0.672 0.942 0.197 -0.152++ -0.531+++ -0.571+++ -0.958+++∗∗∗

(0.437) (0.595) (0.657) (0.667) (0.674) (0.636) (0.487) (0.431) (0.391) (0.284)
Net Cash Income 0.858∗∗∗ 1.196∗∗∗ 1.061∗∗∗ 0.484++∗∗ -0.026 -0.747+++∗ -0.67+++∗ -0.503+++ -0.161++ -0.351++

(0.286) (0.275) (0.268) (0.202) (0.595) (0.406) (0.382) (0.370) (0.485) (0.475)

Notes: *, **, and *** denote statistical significance at 10%, 5%, and 1% respectively for testing the null hypothesis H0 : λ = 0. Likewise, +, ++, and +++ denote statistical significance

at 10%, 5%, and 1% respectively for testing the null hypothesis H0 : λ = 1.

income, whereas the USDA projection performs better for corn price and soybean

yield at 5% significance level. The tests of aSPA in table A.5 and A.6 yield similar

conclusions. Interestingly, the full-horizon (h ≤ 9) multi-horizon comparison tests

do not suggest that either projection performs better than the other for net cash

income, crop receipts, and livestock receipts. The single-horizon tests in table A.3

show that the FAPRI projections perform better in shorter horizons and the USDA

projections perform better in longer horizons. As the multi-horizon tests consider

performance over the entire projection horizon, they conclude that neither the USDA

nor the FAPRI projection is superior to the other projection.
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Figure 2.8: Multi-horizon comparison tests of USDA and FAPRI commodity projec-
tions by horizon, 1997–2020

92



Figure 2.9: Multi-horizon comparison tests of USDA and FAPRI net cash income
projections by horizon, 1997–2020
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The estimates of optimal weight λ̂ of our encompassing tests in equation (2.18)

is presented in table 2.4. For corn, either the USDA and FAPRI baseline projections

can generally be substituted for one another. For soybean prices, USDA projections

are preferred in the short term, while a composite projection can be created by taking

the weighted average of both projections at larger horizons (h = 7 to 9). The net cash

income projections of the FAPRI baseline are preferred in the shorter horizons (h =

1 to 3), while USDA net cash income projections are preferred in the larger horizons

(h = 7 to 9). This finding is consistent with our multi-horizon comparison tests. The

government payments of the USDA baseline encompass the FAPRI projections over

the length of the horizons. The composite projections created using the encompassing

weights are more accurate than either of the two projections (Kuethe et al., 2022).

2.6 Conclusion

Both USDA and FAPRI baseline projections play an important role in shaping

agricultural policy in the U.S. The baseline projections provide a conditional scenario

against which alternative policies can be evaluated. In recent years, policymakers,

agricultural businesses, and program administrators have used these projections ex-

tensively in their policy and investment decisions. Given the importance of the base-

line projections in determining the long-term outlook of the farm economy, this study

examines the accuracy and informativeness of both sets of baseline projections using

a number of forecast evaluation techniques.

Our measures of prediction error show that the projections become less accurate

as the projection horizon increases, with crop yields being a notable exception. Our
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tests of bias suggest that the baselines show similar bias as USDA’s short-term fore-

casts documented in the existing literature (Bora et al., 2021; Isengildina-Massa et

al., 2021), and the magnitude of the bias increases as the projection horizon increases.

This finding is not surprising given the fact that inputs for many baseline models come

from USDA forecasts, such as WASDE and farm income forecasts. Our tests of pre-

dictive content show that the information content of most of the projected variables

starts to diminish after 4-5 years from the current year, with farm price projections

becoming uninformative only after 2-3 years and yield remaining informative for the

entire projection horizon. The findings suggest that the projections may be improved

using better models and processes. The single-horizon tests comparing the two pro-

jections suggest that the FAPRI projections perform better at shorter horizons for net

cash income and crop receipts, potentially due to the updated information available

to the FAPRI projection process, which follows the USDA report by a few weeks.

On the other hand, the USDA projection performs better at longer horizons for corn

price and yield, soybean price, crop receipts, livestock receipts, and cash expenses.

However, our multi-horizon comparison tests suggest that neither USDA nor FAPRI

baselines outperform one another for most projected variables if we consider the full

projection path. A notable exception is the FAPRI projection for farm-related income,

which has uniform superior predictive ability over the USDA projection. Similarly,

the USDA projection for corn price and soybean yield has uniform superior predictive

ability over the FAPRI projection. For the rest of the variables, neither projection

performs better than the other.

The findings of this study also underline the importance of stochastic analysis

while producing the baselines. While the figures published in the baseline reports are
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point estimates, both the USDA and FAPRI perform additional stochastic analysis

to project distributions for different future scenarios. One can expect the point es-

timates in the baseline reports to differ from actual values, as many of the analysts’

assumptions may not realize. However, the stochastic analysis should account for

such changed scenarios, and actual values should ideally lie within the projected dis-

tribution. The agencies have not always published the stochastic projections, or the

stochastic projections have not received the same attention from users. The agencies

may consider releasing stochastic projections in addition to their point projections to

allow users to adapt the projections to different scenarios.

One limitation of our study is that some of our findings may be influenced by the

projections made in the previous decade(s) as opposed to more recent projections.

The baseline models and processes for both agencies have evolved and, hopefully,

improved over time. The baseline projection process at both agencies has also been

subject to changes in personnel and information technology infrastructure. The newer

reports may have already addressed some issues related to bias or informativeness

found in this study. Given our small sample size, we cannot undertake sub-sample

analysis to see if our estimates of bias and informativeness remain steady over time.

Our findings provide valuable insights which may help improve the models and

processes used to produce the projections by each organization. Our tests of infor-

mativeness might be especially useful for the desire to provide agricultural sector

projections at longer horizons to examine issues related to technology adoption or

climate change. The balance between empirical models and the judgment of a panel

of experts employed by the baseline may also prove beneficial to other short-term

USDA forecasts, including those of commodity production and trade. Furthermore,
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our findings provide important information to various market participants who use

these projections.

To our knowledge, this is the first study to look into the accuracy and usefulness

of agricultural baselines. There are various directions in which agricultural baselines

research could go in the future. Using a more comprehensive information set is one

way to enhance the projections. For example, distant futures contract prices may be

useful in projecting commodity prices, as suggested by Irwin and Good (2015) and

extending the approach of Hoffman, Etienne, Irwin, Colino, and Toasa (2015b) beyond

one year. Future revisions of the baseline projections may also benefit from examining

the factors that may have contributed to systematic deviations from observed values

in the past, such as failures to anticipate the ethanol boom, the growth in Chinese

soybean demand, and Russia’s emergence as a major wheat exporter. Another option

is to improve the methodology, potentially using recent advances in machine learning.
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Chapter 3: Multi-step Commodity Forecasts using Deep

Learning

3.1 Introduction

The availability of long-term information about commodity markets plays a vi-

tal role in policy and investment decisions by market participants. The forecasts of

season-average farm prices of major field crops such as corn, soybeans, and wheat

are widely used to inform decisions by farmers, agricultural businesses, and the gov-

ernment. Similarly, the forecasts of harvested area and yield provide information

about the production of the commodities for the marketing year and help anticipate

the ending stocks. The USDA’s World Agricultural Supply and Demand Estimates

(WASDE) provide forecasts about commodities for the current marketing year. How-

ever, market participants may require information about market trends beyond the

current marketing year to inform their decisions. For example, forecasts for the next

few years can facilitate comparisons of policy alternatives by government agencies.

Similarly, long-term forecasts can help estimate the outlays of various farm program

costs under the federal budget. The Farm Bill programs are typically implemented

in five-year cycles, and having information for the next five years will help immensely

in planning the budget. Similarly, long-term prices and crop yield forecasts may help
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farmers inform their long-term decisions about planting, crop choice, and land use.

For example, the decision to enroll farmland in federal programs like conservation

reserve programs (CRP) may be informed by crop prices and yield forecasts for mul-

tiple years into the future. The importance of reliable long-term forecasts became

evident when the pandemic hit the economy, and policymakers required information

deep into the future to plan the recovery process.

The USDA’s baseline projections, published every year in February, are one of

the principal sources of long-term information about the US farm sector. The base-

lines are produced by a team from ten USDA agencies, including the Economic Re-

search Service (ERS), and contain annual projections of key measures of agricultural

market conditions for the next decade. These projections facilitate comparisons of

policy alternatives by providing a conditional “baseline” scenario based on specific

macroeconomic, weather, policy, and trade assumptions. Over the years, the base-

line projections have been used for a variety of purposes, including estimating farm

program costs and preparing the President’s budget. In addition to USDA, the Food

and Agricultural Policy Research Institute (FAPRI), University of Missouri, produces

similar ten-year projections of key agricultural variables. The baseline projections are

produced through a mixture of the output of quantitative models and expert opin-

ions. Previous studies show that many variables in the USDA baseline projections are

biased and that the predictive content of the baselines diminishes after a few years

(Bora, Katchova, & Kuethe, 2022). As the evaluation of the baselines has shown

its limited predictive content, an investigation of alternative methods to improve the

long-term projections becomes essential.
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This study aims to forecast the harvested area, yield, and farm price of three

major field crops in the US for the next five years using deep learning models. Our

investigation is performed in three steps. First, we formulate a supervised learning

problem for the forecasting process and develop a test harness to compare the per-

formance of various methods based on a train-test split of the sample. The last ten

years were used as a test sample using a walk-forward validation approach. Second,

we benchmark the performance of traditional methods such as a näıve no-change

forecast, exponential smoothing, and USDA baseline reports. Finally, we implement

a suite of deep learning models to predict the commodity market indicators, with

particular emphasis on long short-term memory (LSTM) recurrent neural networks

(RNN), convolutional neural networks (CNN), and their hybrids. We train the deep

learning models using a large number of input features reflecting macroeconomic in-

dicators, demographic trends, weather variability, global trade, demand, and supply

of key commodities.

Our study contributes to the literature in several ways. We use state-of-the-art

deep learning methods to improve the long-term forecasts of commodity market in-

dicators. While deep learning methods have shown great promise in forecasting in

other fields (Borovykh, Bohte, & Oosterlee, 2018; Huang et al., 2020; Kim & Won,

2018; Lara-Beńıtez, Carranza-Garćıa, Luna-Romera, & Riquelme, 2020; Wan, Mei,

Wang, Liu, & Yang, 2019; Wang, Shen, Mao, Chen, & Zou, 2019), their use in pre-

dicting long-term agricultural statistics such as the USDA baselines has been limited.

This study aims to bridge this gap. Our results suggest that deep learning networks

may perform better than the official USDA baselines at longer forecast horizons. In

particular, when the USDA baselines perform well, deep learning models match the
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accuracy, but if the USDA baselines do not perform well, deep learning models per-

form better. These findings may have important implications for future revisions of

the USDA baseline models and processes. Deep learning models with improved ac-

curacy may complement the existing models for the baselines. The current baseline

process is time-consuming, and the adoption of deep learning techniques as an alter-

native method may help in reducing this timeline. The existing process of producing

the baseline reports involves many agencies, which work on specific components of

the report and create inputs for the composite model. Deep learning methods have

the potential to make the baseline projection process more straightforward, faster,

and more accurate.

The remainder of this article is organized as follows. The next section describes

the various datasets used in this study. The third section describes the methodology,

followed by results and discussion. The final section contains concluding remarks.

3.2 Data

Our dataset of the target variables consists of historical values of harvested area,

yield, and farm price of corn, soybeans, and wheat in the US since 1961. Together,

these three field crops constitute a significant share of the area under cultivation in the

US. The values are averages for the marketing years, which differ by crop. The mar-

keting year for corn and soybeans begins on September 1 and comprises four quarters.

For example, the marketing year 2021/22 for corn and soybeans starts on September

1, 2021, and ends on August 31, 2022. The 2021/22 marketing year for wheat begins

on June 1, 2021, and ends on May 31, 2022. All this information was obtained us-

ing the NASS Quickstats API (USDA National Agricultural Statistics Service, 2021).
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Figure 3.1 shows the plots of harvested area, yield, and farm price of the three crops

for the period 1961–2021. The figures suggest that many of these indicators are highly

correlated, and they may be related to each other or other macroeconomic, weather,

or trade indicators. For example, the loss of wheat harvested area over the years is

accompanied by a contemporaneous increase in soybeans harvested area.

[FIGURE 3.1 ABOUT HERE]

An archive of the USDA agricultural baseline projections since 1997 is available

at The Albert R. Mann Library at Cornell University (USDA ERS, 2021b). The

baseline reports typically include estimates of the previous year(s) and projections

for the next ten years. For example, the February 2022 USDA report contains real-

ized estimates for 2020, provisional estimates for 2021, and projections for 2022–2031

(USDA Office of Chief Economist, 2022). The exact information set available to the

committee producing the projections in the early years is difficult to retrieve due to

lack of information on the variables that were in the information set of the commit-

tee, and the revisions made to the realized values over time. As the organizations

involved with the projections process go through personnel and information technol-

ogy infrastructure changes over the years, the exact information used to produce the

baselines is challenging to ascertain. The projections and estimates are often revised

long after they are first published. For example, there is no way of accessing the ex-

act data used as the information set of the committee when the baseline projections

were prepared for 1997. We can assume that the committee made the best use of the

information they had. To mimic the forecasting process of the committee, we try to

provide many macroeconomic, population, trade, and weather information as input

features to train our deep learning models. The committee may have had a different
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Figure 3.1: Historical harvested area, yield, and farm price of corn, soybeans, and
wheat, 1961-2021
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set of variables and/or different values for these variables that were later revised to

what is available today. Our goal is to use deep learning methods to produce the

forecasts using a similar information set, and examine whether these forecasts have a

superior performance over the USDA baselines.

We use data from several sources as input features to train the deep learning

models. First, we use lagged values of commodity indicators to forecast their fu-

ture values. Apart from the lagged commodity market indicators, we include several

macroeconomic, population, trade, and weather variables for the World and the US as

input features to our models. These include growth rates for gross domestic product

(GDP) and population. For the US economy, we also include inflation, unemploy-

ment, labor market participation, and interest rates. We also include features that

represent changes in weather in the World and the US over time. To account for tem-

perature changes all over the World, we include global annual average temperature

anomalies, measured as deviation from 20th century average. The macroeconomic

data are taken from the World Bank Open Data Catalog. Similarly, we include US

annual average temperature, maximum temperature, minimum temperature, precip-

itation, and heating and cooling degree days. All weather information was obtained

from National Oceanic and Atmospheric Administration (NOAA) (NOAA National

Centers for Environmental information, 2022). Finally, we add commodity balance

sheet variables representing domestic use, imports, exports, and ending stocks of corn,

soybeans, and wheat as input features. The commodity balance sheet information is

extracted from the Production, Supply, and Distribution (PSD) Database published

by USDA Foreign Agricultural Service (USDA Foreign Agricultural Service, 2021).
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3.3 Methodology

In this section, we define our prediction problem and proceed to develop a test

harness for comparing the performance of the methods used in this study. We then

describe different traditional and deep learning methods used in this study.

3.3.1 The Prediction Problem

We denote the realized or actual values of commodity indicators of harvested

acres, yield, and farm price for corn, soybeans, and wheat in year t by yt. At year t,

the forecaster makes a forecast ŷt+h|t for horizon h ∈ {0, 1, . . . , H − 1} for H future

years, including year t using lagged values of the commodity indicators and a set of

other covariates such as macroeconomic, population, and weather variables. Although

the baselines are for H = 10 years, we limit our attention to forecasts of up to five

years due to the small length of the time period, i.e. h = {0, . . . , 4}. Similarly, we

assume that up to five years of lagged values of input features are used to produce

the forecasts.

We first transform the prediction problem into a supervised learning problem

where a set of input features X are mapped to an output variable y. For year t, our

input Xt consists of vectors of all input features up to lag five, and yt consists of

vectors of the next five years of values of the target variables (harvested acres, yield,

and farm price of corn, soybeans, and wheat). From our dataset for the time period

1961-2021, we construct {Xt,yt} pairs for 52 years between 1966-2017. This yields

a three-dimensional array of input features X with dimensions (52, 5, n features),

where n features is the total number of input features. This is important since the

deep learning models used in this study accept three-dimensional input. We use a
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total of 44 input features in this study, however, this number can be augmented by

including additional features.

3.3.2 Developing a Test Harness

A test harness ensures that all deep learning methods used in this study are

evaluated using a consistent approach for comparability. The important components

of our test harness are the train-test split validation strategy and the evaluation

criteria.

Train-test split

Our dataset contains commodity market variables of harvested area, yield, and

farm price for corn, soybeans, and wheat between 1961 and 2021. Since we use

up to five-year lagged features in our deep learning algorithms to produce five-year

ahead forecasts, this results in a complete dataset of features (X) and output (y)

between 1966 and 2017, a total of 52 years. We use the last ten years of the data as

our test sample between 2008–2017, representing close to 20% of the entire sample.

As preferred in time-series applications, we use a walk-forward validation strategy,

allowing updated information to train the model as we progress through the years in

the test sample. We use an expanding training window approach, which means the

training sample increases as we walk through the test sample. For example, we train

a model using 42 samples between 1966-2007 to produce forecasts for 2008. We then

add the sample for 2008 back to the training sample to produce forecasts for 2009 and

so on. This validation strategy closely follows how the USDA produces the baseline

reports as forecasters make use of new information as it becomes available. Another

choice is to use a sliding window, where the oldest training sample is dropped as we
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add a new sample, keeping the length of the training sample constant. However, we

prefer an expanding window as we would like to make use of all information available,

and our sample size is small.

Evaluation Criteria

We will use two widely adopted error metrics to measure the performance of

the proposed methods: root mean squared error (RMSE) and mean absolute percent

error (MAPE). The RMSE is calculated at the level of the variables, while the MAPE

is calculated relative to the actual level of the variables according to the following

formulas:

RMSEh =

√√√√ 1

T

T∑
t=1

(yt+h − ŷt+h|t)2 (3.1)

MAPEh =
100

T

T∑
t=1

∣∣∣∣yt+h − ŷt+h|t

yt+h

∣∣∣∣ (3.2)

where yt+h are the realized values, ŷt+h|t are forecasts of the target variable at horizon

h, and T is the sample size of the test or the training sample. For calculating in-

sample forecast errors, we use the sample size T = 42 for the training sample, while

for out-of-sample errors, we use the test sample T = 10.

3.3.3 Benchmarking with Traditional Methods

Näıve Benchmark

We first develop a benchmark model to improve upon using deep learning methods.

A natural choice is to use a näıve no-change forecast, where we consider the most

recent year’s value as the forecast for the next five years. This is a fairly näıve

benchmark that would result in high forecast errors. Any econometric or deep learning
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method is expected to perform better than this näıve benchmark, as the methods are

supposed to add some skill to forecasting.

Simple Exponential Smoothing (ETS)

We also use the simple exponential smoothing (ETS) method, which is useful

for forecasting when the time series have no clear trend or seasonal pattern. The

ETS forecast is a weighted average of past observations, where the weights decay

exponentially for older observations. The ETS method can be expressed in terms of

the following equations (Hyndman & Athanasopoulos, 2021),

ŷt+h|t = ℓt (3.3)

ℓt = αyt + (1− α)ℓt−1 (3.4)

where ℓt is the level of the variable at time t. The smoothing parameter α represents

the rate at which the weight placed on past observations decreases.

Exponential Smoothing (ETS) with Trend

We then use an extension of the simple exponential smoothing method, which

allows a trend (Holt, 2004). Some of our data series, such as crop yield, shows a clear

time trend, and farm price may also be trending upward over the years. The ETS

method with a trend can be expressed as (Hyndman & Athanasopoulos, 2021),

ŷt+h|t = ℓt + hbt (3.5)

ℓt = αyt + (1− α)(ℓt−1 + bt−1) (3.6)

bt = β(ℓt − ℓt−1) + (1− β)bt−1 (3.7)

108



where β is an additional smoothing parameter for the trend. We use the implementa-

tions of ETS and ETS with trend methods in Python statsmodels library to produce

the forecasts (Seabold & Perktold, 2010).

USDA Baseline Report

Our final choice for comparison is the projections produced by the USDA in their

baseline report. These projections are produced using a mixture of economic/econometric

models, survey information, and expert opinions. We calculate the error metrics for

baseline projections up to five years for the test period 2008-2017 for comparison with

the other methods used in our study. As mentioned earlier, the exact information set

used to produce these projections is challenging to ascertain. Therefore, the compar-

ison with deep learning methods using the current training set may not be entirely

justifiable.

3.3.4 Deep Learning Methods

The methods discussed in the previous section are traditional time-series forecast

models. However, in recent years, deep neural networks have become popular in

forecasting time series (Schmidhuber, 2015). Neural networks are a collection of

algorithms used in pattern recognition. Deep learning refers to a subset of neural

networks which consists of more than three layers.

The most basic deep learning networks are feed-forward neural networks (FNN)

that do not allow recursive feedback, such as the Multi-layer Perceptron (MLP).

The computational architecture of FNNs consists of three layers: an input layer, the

hidden layer(s), and an output layer. Since two consecutive layers have only direct

forward connections, FFNs ignore the temporal nature of the data and treat each
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input independently. Therefore, they are of limited use in dealing with our data

which are inherently temporal, sequential data. We consider two main families of

deep learning methods that account for temporal dependence in sequences, namely

recurrent neural networks (RNN) and convolutional neural networks (CNN). We also

explore hybrid deep learning models, which have seen increased popularity in recent

years.

Recurrent Neural Networks

Recurrent neural networks (RNN) are popular in time series prediction applica-

tions. An RNN allows recursive feedback, and each RNN unit can take the current

and previous input simultaneously. They are widely used for prediction in different

fields, including stock price forecasting (Kim & Won, 2018), wind speed forecasting

(Huang et al., 2020), and solar radiation forecasting (Wang et al., 2019). Moreover,

RNNs have done remarkably well at forecasting competitions, such as the recent M4

forecasting competition (Makridakis, Spiliotis, & Assimakopoulos, 2018). In a recent

study, (Medvedev & Wang, 2022) used RNNs to predict the volatility of the S&P

500 Index (SPX) for pricing options, with good success. However, we are not aware

of any studies applying RNNs to forecast long-term information about agricultural

markets.

Elman (1990) proposed an early RNN which generalizes feedforward neural net-

works by using recurrent links in order to provide networks with dynamic memory.

This type of network is more suitable for handling ordered data sequences like financial

time series. While the Elman’s RNN model is simple, training these models is difficult

due to inefficient gradient propagation. In particular, the problem of vanishing and

exploding gradients makes it challenging to learn long-term dependencies. Due to
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vanishing gradients, it may take a long time to train the model, while the exploding

gradients may cause the model’s weights to oscillate (Lara-Beńıtez, Carranza-Garćıa,

& Riquelme, 2021).

Long Short-Term Memory (LSTM) networks were proposed to address the vanish-

ing and exploding gradients problems faced by standard RNNs (Hochreiter & Schmid-

huber, 1997). LSTMs can model long-term temporal dependencies without compro-

mising short-term patterns. LSTM networks have a similar structure to the Elman’s

RNN, but differ in the composition of the hidden layer, known as the LSTM memory

cell. Each LSTM cell has three gates: a multiplicative input that controls memory

units, a multiplicative output that protects other cells from noise, and a forget gate.

Gated Recurrence Units (GRU) are simplified versions of LSTMs that replace the

forget and input gates with a single update gate to reduce trainable parameters. An

RNN can also have stacked recurrent layers to form a deep RNN.

Convolutional Neural Networks

Convolutional neural networks (CNN) are mainly used in classification applica-

tions such as speech recognition, object recognition, and natural language processing

(NLP). However, with some adjustments, they can be used for time-series predictions

as well. A CNN uses the convolutional operation to extract meaningful features from

raw data and create feature maps (Lara-Beńıtez et al., 2021). A CNN consists of con-

volution layers, pooling layers, and fully connected layers. The pooling layers lower

the spatial dimension of the feature maps, while the fully connected layers combine

the local features to form global features. As CNNs have a smaller number of train-

able parameters, the learning process is more time-efficient than RNNs (Borovykh et
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al., 2018). In addition, different convolutional layers can be stacked together to allow

the transformation of raw data (Chen, Kang, Chen, & Wang, 2020).

Hybrid models are a recent trend in time series forecasting using deep learning.

For example, depending upon the application, LSTMs can be used with RNNs or

CNNs. Also, deep learning models can be used with traditional econometric methods

to achieve superior results. The winning entry of the M4 forecasting competition in

2018 used a hybrid ETS-LSTM model (Smyl, 2020). While the exponential smoothing

component captured seasonality, the LSTM focused on non-linear trends and cross-

learning from related series.

In this study, we use three deep learning architectures to forecast the commodity

market indicators.

(a) Vanilla LSTM: The first architecture that we use is a simple LSTM model

with one LSTM layer.

(b) Encoder-decoder LSTM (ED-LSTM): The second architecture that we use

is an encoder-decoder LSTM with two layers. The first layer reads the input

sequence and encodes it into a fixed-length vector, and the second layer decodes

the fixed-length vector and outputs the predicted sequence.

(c) CNN-LSTM: The last architecture that we use consists of an LSTM preceded

by a convolution layer at the input.

We train the deep learning networks using keras (Chollet et al., 2015) and Ten-

sorFlow (Abadi et al., 2015) libraries in Python. We chose the hyperparameters of

the models using trial and error. We train each model for 1000 training epochs with

a batch size of 16. Due to the stochastic nature of the deep learning models, we
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consider the average of 100 models. As a standard practice, we normalize the input

features using a min-max scaler so that all feature values are in the range [0, 1]. We

introduce a 20% dropout regularization layer after each LSTM layer in our models.

We compile the models using the Adam optimizer (Kingma & Ba, 2014) and a Huber

loss function, which is less susceptible to outliers (Huber, 1964).

3.4 Results and Discussions

We present the forecast accuracy metrics for the harvested area, yield, and farm

price of the three commodities for the models described above in tables 3.1, 3.2, and

3.3. The näıve benchmark is a low bar, and any model that yields smaller errors

than this näıve benchmark will be considered skillful. USDA baselines have smaller

RMSE and MAPE than those of the näıve benchmark for harvested area, yield, and

farm price for all three crops across all horizons. Any candidate algorithm to improve

the baselines would need to have a couple of desirable properties. At a minimum,

it must perform better than the näıve benchmark. Second, it should improve the

performance of the USDA baselines, at least for some horizons. In particular, smaller

forecast errors at longer horizons would be a good contribution, as USDA baselines

tend to be less informative at longer horizons (Bora et al., 2022). Figures 3.2, 3.3,

and 3.4 show the comparison of the forecast errors of all methods for harvested area,

yield, and farm price, respectively, of the three commodities.
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Table 3.1: Forecast accuracy for corn, soybeans, and wheat harvested area

Corn Soybeans Wheat

Horizon Method RMSE MAPE(%) RMSE MAPE(%) RMSE MAPE(%)

h=0
Naive 4.03 4.06 4.65 4.13 3.86 7.31
USDA 1.84 1.70 3.40 3.79 2.02 3.69
ETS 3.33 3.61 4.60 4.17 3.86 7.31
ETS Trend 3.16 3.40 3.93 3.58 3.85 7.31
LSTM 3.91 3.71 3.20 3.15 4.14 7.78
ED-LSTM 4.04 3.97 4.92 4.89 3.60 6.49
CNN-LSTM 3.31 3.43 5.36 5.50 3.92 7.14

h=1
Naive 4.84 5.51 5.68 5.49 4.85 8.74
USDA 2.77 2.61 5.60 5.86 2.55 4.34
ETS 4.18 4.22 5.65 5.63 4.85 8.74
ETS Trend 3.99 4.17 4.31 4.39 4.83 8.61
LSTM 1.82 1.73 2.37 2.32 2.27 4.12
ED-LSTM 3.06 2.99 3.80 3.87 3.46 6.37
CNN-LSTM 3.62 3.61 5.47 5.76 4.09 7.73

h=2
Naive 4.76 4.61 6.71 6.84 5.58 10.52
USDA 3.03 2.87 7.20 7.93 4.01 8.39
ETS 4.63 4.58 6.66 6.76 5.58 10.52
ETS Trend 4.50 4.76 5.45 5.97 5.49 10.20
LSTM 1.37 1.29 2.00 2.07 1.89 3.37
ED-LSTM 3.12 2.91 4.62 4.76 3.05 5.56
CNN-LSTM 3.48 3.41 5.49 5.78 4.01 7.90

h=3
Naive 4.55 4.31 6.97 6.99 6.19 13.58
USDA 3.21 2.95 7.10 7.62 4.08 8.44
ETS 4.99 4.84 7.00 7.18 6.19 13.58
ETS Trend 4.95 5.31 5.42 5.53 6.00 13.11
LSTM 1.07 1.03 2.47 2.29 1.51 2.93
ED-LSTM 2.92 2.72 4.86 4.96 2.53 4.73
CNN-LSTM 3.64 3.35 5.51 5.73 3.86 7.88

h=4
Naive 4.11 3.86 8.20 8.58 7.28 15.57
USDA 2.90 2.73 7.55 7.81 4.72 10.05
ETS 5.14 4.72 8.14 8.63 7.28 15.57
ETS Trend 5.10 5.44 5.80 5.67 7.07 14.94
LSTM 9.77 7.29 7.14 6.45 10.20 15.53
ED-LSTM 3.80 3.54 6.12 6.29 3.00 5.85
CNN-LSTM 3.94 3.54 6.40 6.74 3.92 8.03
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Table 3.2: Forecast accuracy for corn, soybeans, and wheat yield

Corn Soybeans Wheat

Horizon Method RMSE MAPE(%) RMSE MAPE(%) RMSE MAPE(%)

h=0
Naive 13.87 6.43 2.60 4.85 3.94 6.68
USDA 14.69 6.88 2.55 4.72 2.82 4.70
ETS 15.52 8.80 3.20 5.90 3.55 6.08
ETS Trend 13.73 6.96 3.16 5.69 2.60 4.41
LSTM 11.44 6.33 2.65 4.84 2.63 4.26
ED-LSTM 14.88 7.15 3.03 5.75 3.67 6.18
CNN-LSTM 16.40 8.58 3.51 6.26 3.56 5.77

h=1
Naive 18.27 8.20 3.50 6.77 4.15 7.27
USDA 14.79 6.99 2.65 4.77 2.67 4.20
ETS 18.54 10.24 4.02 7.13 3.41 5.72
ETS Trend 14.31 7.44 3.48 6.24 2.49 3.99
LSTM 6.59 3.39 2.01 3.28 1.78 2.67
ED-LSTM 13.71 6.64 3.00 5.16 3.14 4.25
CNN-LSTM 17.32 8.93 3.91 6.91 3.57 5.31

h=2
Naive 20.62 9.83 4.32 7.80 3.46 6.16
USDA 14.66 6.77 2.82 5.07 2.83 4.65
ETS 19.22 9.85 4.67 8.05 3.37 5.85
ETS Trend 13.75 6.80 3.66 6.21 2.77 4.67
LSTM 4.12 2.07 1.08 1.82 1.38 2.24
ED-LSTM 13.64 6.53 2.58 4.30 3.37 4.97
CNN-LSTM 14.50 7.29 3.23 5.49 3.84 5.69

h=3
Naive 20.60 9.38 4.41 5.72 4.29 7.29
USDA 14.20 6.50 3.00 5.29 2.88 4.47
ETS 19.53 9.88 5.12 8.34 3.98 6.41
ETS Trend 13.38 6.48 3.75 6.48 2.72 4.31
LSTM 4.47 2.25 1.26 2.06 1.39 2.05
ED-LSTM 11.15 5.59 2.37 4.10 2.81 4.39
CNN-LSTM 14.55 7.38 3.31 5.72 3.77 5.45

h=4
Naive 20.62 8.76 4.93 7.66 5.36 9.23
USDA 13.42 5.39 3.18 5.66 3.28 5.48
ETS 20.39 11.14 5.76 10.55 4.78 8.12
ETS Trend 12.81 5.73 4.01 7.32 3.16 5.52
LSTM 23.70 11.18 4.86 8.87 8.04 11.20
ED-LSTM 14.86 7.28 3.32 5.84 5.04 8.37
CNN-LSTM 14.81 7.69 3.54 6.23 4.28 6.74
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Table 3.3: Forecast accuracy for corn, soybeans, and wheat farm price

Corn Soybeans Wheat

Horizon Method RMSE MAPE(%) RMSE MAPE(%) RMSE MAPE(%)

h=0
Naive 1.06 18.54 1.69 12.57 1.20 19.49
USDA 0.92 13.25 1.55 10.34 0.93 13.58
ETS 1.05 16.07 1.55 11.72 1.08 17.99
ETS Trend 1.07 16.86 1.62 12.32 1.10 18.25
LSTM 0.95 18.66 2.04 15.52 1.34 20.35
ED-LSTM 1.05 16.21 1.48 10.89 1.00 16.32
CNN-LSTM 1.35 24.41 2.00 15.94 1.24 19.81

h=1
Naive 1.63 29.91 2.72 21.29 1.89 29.46
USDA 1.22 15.20 2.07 13.43 1.11 13.89
ETS 1.61 28.14 2.44 18.52 1.64 26.92
ETS Trend 1.66 29.64 2.53 18.93 1.71 28.92
LSTM 0.44 8.33 0.93 7.35 0.63 9.46
ED-LSTM 0.91 13.34 1.29 9.65 1.00 15.86
CNN-LSTM 1.24 21.17 1.99 15.23 1.23 20.18

h=2
Naive 1.83 32.57 3.05 24.98 1.90 28.34
USDA 1.40 17.47 2.44 16.02 1.29 14.43
ETS 1.89 32.57 2.96 23.76 1.77 27.80
ETS Trend 1.97 35.04 3.10 26.10 1.89 29.23
LSTM 0.35 6.17 0.65 5.05 0.42 6.16
ED-LSTM 0.96 13.28 1.26 8.91 0.84 12.20
CNN-LSTM 1.11 16.76 1.72 12.92 1.04 15.35

h=3
Naive 1.91 38.23 3.32 28.26 1.76 29.28
USDA 1.46 20.56 2.60 16.03 1.52 19.82
ETS 1.92 37.38 3.15 26.19 1.82 29.64
ETS Trend 2.04 40.98 3.38 29.47 1.98 31.44
LSTM 0.29 4.99 0.55 4.17 0.29 4.43
ED-LSTM 0.72 10.86 1.20 8.45 0.74 9.96
CNN-LSTM 1.00 15.01 1.60 11.10 0.99 13.57

h=4
Naive 2.17 40.37 3.83 32.06 2.14 33.24
USDA 1.40 20.35 2.71 18.55 1.66 23.17
ETS 1.91 37.19 3.42 29.14 2.02 31.77
ETS Trend 2.08 40.93 3.73 32.59 2.23 36.00
LSTM 1.43 28.92 2.43 18.72 1.72 26.37
ED-LSTM 0.96 15.65 1.70 11.73 1.06 15.43
CNN-LSTM 0.98 15.76 1.86 12.91 1.09 14.45
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Figure 3.2: Root mean square errors (RMSE) and Mean Absolute Percent Errors
(MAPE) for harvested area of corn, soybeans, and wheat
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Figure 3.3: Root mean square errors (RMSE) and Mean Absolute Percent Errors
(MAPE) for yields of corn, soybeans, and wheat
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Figure 3.4: Root mean square errors (RMSE) and Mean Absolute Percent Errors
(MAPE) for farm prices of corn, soybeans, and wheat
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As expected, the RMSEs and MAPEs of the näıve benchmark are very high for

most indicators across all horizons. The ETS methods, with or without trend, do not

result in a considerable improvement in accuracy and have errors that are comparable

to the näıve benchmark for forecasts of harvested area and farm price. For crop yield

forecasts, the ETS with trend model performs well. The USDA baseline and the deep

neural networks generally show superior skill compared to the näıve benchmarks. We

focus the rest of our discussion on the performance of the USDA baseline and the

three deep learning models.

The USDA predicts more accurately the harvested area of crops for the current

year compared to the other methods (table 3.1 and figure 3.2). At h = 0, the

MAPEs of the USDA baselines for corn, soybean, and wheat harvested area are 1.70%,

3.79%, and 3.69%, respectively. The MAPE of USDA baselines of corn harvested area

remains low at longer horizons, with ED-LSTM and CNN-LSTM forecasts matching

its performance closely for h = {1, 2, 3, 4}. The vanilla LSTM shows better accuracy

than all other models for h = {1, 2, 3}, but its MAPEs are quite high for h = {0, 4}.

The USDA baselines do not perform well in predicting harvested area of corn and

soybeans for longer horizons, with a large increase in MAPE between h = 0 and h = 4

for both crops. For h = {2, 3, 4}, both ED-LSTM and CNN-LSTM forecasts have

higher accuracy for soybean and wheat harvested area, with the ED-LSTM model

performing slightly better.

The USDA projections of crop yields are fairly accurate across horizons, with

MAPE around 5% (table 3.2 and figure 3.3). As observed in figure 3.1, crop yield

has a strong time trend for all crops, making it easier to predict if the trend is

correctly identified. The ETS trend model closely matches in performance with the

120



USDA model for all three crops, suggesting USDA might be using a similar model

that includes trend to predict crop yield. The LSTM model has a lower MAPE than

that of the USDA baselines for horizons h = {1, 2, 3}, but its accuracy drops sharply

at h = 4. The MAPE for the yield forecasts from the CNN-LSTM and ED-LSTM

models are of similar magnitude as the USDA baselines, at around 4–7%.

The deep learning models show noticeable improvement in accuracy while pre-

dicting farm price, which is an indicator that the USDA baselines struggle to predict

accurately at longer horizons (table 3.3 and figure 3.4). At h = 0, the MAPE fore-

cast errors of the USDA baselines are the lowest among all models. However, the

MAPEs of the USDA baselines increase for longer horizons. Between h = 0 and

h = 4, the MAPE of USDA corn price baselines increases from 13.25% to 20.35%.

For the same horizons, the MAPE of the soybean and wheat price baselines increases

from 10.34% to 18.55% and from 13.58% to 23.17%, respectively. The price forecasts

from the vanilla LSTM model show very low MAPEs at horizons h = {1, 2, 3}, but

its performance decreases drastically at h = 4, making it somewhat unreliable. Both

CNN-LSTM and ED-LSTM models, however, perform much better at longer horizons

compared to the USDA baseline in predicting farm prices of all three commodities for

all forecast horizons except h = 0. For example, at h = 4, MAPEs of corn, soybean

and wheat price forecasts of ED-LSTM model are 15.65%, 11.7%, and 15.43%, re-

spectively. The MAPEs of the same forecasts of the CNN-LSTM model are 15.76%,

12.91% and 14.45%, respectively. Given that farmers frequently choose between var-

ious crops when planting, being able to reliably predict long-term commodity prices

has implications for estimating outlays for federal programs.
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The USDA baselines generally perform better than all other methods for the

current-year forecasts (h = 0). For example, the current-year USDA baselines for har-

vested areas of corn, soybeans, and wheat have MAPEs of 1.7%, 3.79%, and 3.69%,

respectively, which are among the lowest of all models. The current-year USDA crop

yield baselines have low MAPEs as well, though the deep learning methods have

comparable performance at h = 0. Similarly, the MAPEs of the USDA baselines are

the lowest for the current year forecasts of farm prices of the three crops (13.25% for

corn price, 10.34% for soybean price, and 13.58% for wheat price). These findings

show that for indicators like yield, for which the USDA baselines are relatively accu-

rate, the deep learning methods do not show much advantage in their performance.

However, for indicators like farm prices and, to some extent, harvested areas that

are more difficult to predict and have high errors, the deep learning methods can be

used as an alternative method to improve the performance of the USDA baselines.

This is not surprising since the USDA enjoys rich market and survey information and

expert judgments for making predictions for the current year. On the other hand, all

other methods rely solely on past patterns for predicting the values for the current

year. The value of survey information and expert judgments diminishes as we move

into the longer horizons. At longer horizons, the CNN-LSTM and ED-LSTM models,

and sometimes the LSTM model, perform better than the USDA baselines or at least

match them.

Among the three deep learning methods, the ED-LSTM and CNN-LSTM models

show the most accurate performance across indicators over the horizons. The vanilla

LSTM model performs well up to h = 3, but its accuracy deteriorates at h = 4, even

worse than the näıve benchmark in some cases. However, the vanilla LSTM model
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is straightforward, with only one LSTM layer. The slightly more complex CNN-

LSTM and ED-LSTM with additional layers consistently perform better than the

other methods, especially at longer horizons. The extra layers make the deep neural

networks more suited to learning complex non-linear relationships between several

indicators. Between the two, the accuracy of the ED-LSTM model is marginally

better than the CNN-LSTM model, although the difference is minimal.

Our study provides a working example to demonstrate that deep learning methods

may produce more accurate multi-step commodity forecasts. One way to improve the

predictions may be to add more input features to the problem, such as variables for

additional crops. As in many high-dimensional small sample size applications of deep

learning (Shen, Er, & Yin, 2022; Vabalas, Gowen, Poliakoff, & Casson, 2019), incor-

porating additional features may help overcome challenges posed by limited training

samples and facilitate better forecast performance. Such high-dimensional networks

might need a more complex architecture than the ones used in this study. The three

deep learning models used in this study are still relatively simple compared to what

a production-ready model with more input features and additional target variables

to cover the entire baseline report would entail.

3.5 Conclusions

In this study, we developed three deep learning models for predicting harvested

area, yield, and farm price of three major field crops for five years into the future

and compared their performance against a näıve benchmark, exponential smoothing

with and without trend, and USDA baselines. Except for ETS with a trend model for

crop yields, the exponential smoothing methods do not significantly improve forecast
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accuracy over the näıve benchmark. The USDA baselines perform well in forecasting

crop yield but struggle in forecasting harvested area and farm price, especially at

longer horizons. The deep learning models show better accuracy than the USDA

baselines in forecasting at longer horizons, most notably in predicting farm prices,

where the USDA baselines show poor accuracy. The results suggest that deep learning

methods can, at the very least, match the accuracy of USDA baselines for most

indicators while offering significant improvement in accuracy for indicators that the

USDA baselines do not predict well.

Deep learning methods have shown great promise in forecasting in other fields,

but their use in predicting long-term agricultural statistics such as the USDA base-

lines have been limited. This study aims to bridge this gap. Efficient deep learning

methods can have important implications for USDA baseline models and processes.

The current baseline process is time-consuming, as it takes more than eight months

to produce the baseline report. The use of deep learning methods as an alternative

method may help in producing baseline forecasts that may have comparable accu-

racy but on a shorter timeline. In addition, several different sub-committees work

on specific parts of the baseline report and produce inputs for the composite model.

Deep learning methods, on the other hand, have the potential to make the process

more straightforward and hence improve transparency. Therefore, the deep learning

methods can act as a complement to the existing baseline projections models.

One of the limitations of this study is that the training sample is relatively small

in the number of years. Deep neural networks often perform better when the training

sample is large, and at smaller samples they may lead to overfitting. While our time

period is limited, the number of features can be made much larger than in the current
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study. The USDA baseline report publishes hundreds of indicators, representing a

high-dimensional prediction problem where the sample size is much smaller than

the number of features. Future research may incorporate more input features and

produce forecasts for additional target variables. However, it may require careful

feature selection and dimensionality reduction strategies to overcome the challenge of

high-dimensionality. Another limitation about the small sample is that we were able

to produce forecasts for only five years. Yet another limitation of the deep learning

methods is their “black-box” nature, making them difficult to explain when compared

to economic modeling. However, advances in explainable deep learning methods may

be able to address this issue in the future.
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Appendix A: Additional Figures and Tables

Figure A.1: Theil’s U for USDA and FAPRI baseline projections of corn, soybeans
and wheat by projection horizon h, 1997–2020
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Figure A.2: Theil’s U for USDA and FAPRI baseline projections of net cash income
and its components by projection horizon h, 1997–2020
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Table A.1: Estimates of the parameter β̂USDA
h in the Mincer-Zarnowitz (MZ) regression for USDA projections

h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Corn

Harvested acres 0.978
+++
∗∗ 0.96

+++
∗∗ 0.994

+++
∗∗ 0.975

+++
∗∗ 0.906

+++
∗∗ 0.727

+++
∗∗ 0.509∗∗ 0.193∗∗ 0.043 0.065

(0.079) (0.139) (0.174) (0.215) (0.308) (0.293) (0.227) (0.150) (0.181) (0.221)

Farm price 1.058
+++
∗∗ 1.12

+++
∗∗ 1.003

+++
∗∗ 0.827

++
∗∗ 0.532∗∗ 0.198∗∗ -0.15 -0.369 -0.525 -0.567

(0.127) (0.213) (0.254) (0.238) (0.258) (0.252) (0.199) (0.271) (0.398) (0.370)

Yield 0.816
+++
∗∗ 0.769

+++
∗∗ 0.762

+++
∗∗ 0.749

+++
∗∗ 0.739

+++
∗∗ 0.727

+++
∗∗ 0.659

+++
∗∗ 0.621

+++
∗∗ 0.748

+++
∗∗ 0.798

+++
∗∗

(0.131) (0.148) (0.158) (0.158) (0.159) (0.158) (0.132) (0.160) (0.140) (0.193)

Soybean

Harvested acres 0.809
+++
∗∗ 0.55

+++
∗∗ 0.507∗∗ 0.65

+++
∗∗ 0.681

+++
∗∗ 0.568

+
∗∗ 0.547∗∗ 0.496∗∗ 0.231∗∗ 0.004

(0.119) (0.195) (0.142) (0.177) (0.181) (0.213) (0.282) (0.236) (0.284) (0.418)

Farm price 0.983
+++
∗∗ 0.911

+++
∗∗ 0.804

+++
∗∗ 0.665

+++
∗∗ 0.485∗∗ 0.225∗∗ -0.069 -0.249 -0.393 -0.435

(0.100) (0.153) (0.126) (0.150) (0.168) (0.203) (0.194) (0.092) (0.239) (0.267)

Yield 1.16
+++
∗∗ 1.261

+++
∗∗ 1.405

+++
∗∗ 1.433

+++
∗∗ 1.543

+++
∗∗ 1.797

+++
∗∗ 2.073

+++
∗∗ 1.871

+++
∗∗ 1.911

+++
∗∗ 2.027

+++
∗∗

(0.157) (0.185) (0.232) (0.250) (0.280) (0.333) (0.394) (0.317) (0.346) (0.232)

Wheat

Harvested acres 0.991
+++
∗∗ 0.917

+++
∗∗ 0.693

+++
∗∗ 0.597

+++
∗∗ 0.538∗∗ 0.586

++
∗∗ 0.72

+++
∗∗ 0.67

+++
∗∗ 0.651

+++
∗∗ 0.698

+++
∗∗

(0.051) (0.131) (0.216) (0.249) (0.250) (0.225) (0.207) (0.214) (0.194) (0.174)

Farm price 0.968
+++
∗∗ 0.863

+++
∗∗ 0.606∗∗ 0.338∗∗ 0.037 -0.166 -0.421 -0.639 -0.76 -0.712

(0.098) (0.170) (0.036) (0.048) (0.040) (0.039) (0.115) (0.192) (0.217) (0.180)

Yield 0.836
+++
∗∗ 0.827

+++
∗∗ 0.9

+++
∗∗ 1.142

+++
∗∗ 1.273

+++
∗∗ 1.189

+++
∗∗ 0.808

+++
∗∗ 0.988

+++
∗∗ 1.244

+++
∗∗ 1.216

(0.199) (0.289) (0.234) (0.298) (0.161) (0.300) (0.307) (0.289) (0.280) (0.263)

Farm income

Net cash income 0.899
+++
∗∗ 0.647

+++
∗∗ 0.587

+
∗∗ 0.615

+
∗∗ 0.521∗∗ 0.51∗∗ 0.254∗∗ -0.204 -0.503 -0.403

(0.150) (0.188) (0.211) (0.283) (0.284) (0.203) (0.253) (0.293) (0.243) (0.189)

Crop receipts 1.03
+++
∗∗ 1.055

+++
∗∗ 0.97

+++
∗∗ 0.803

+++
∗∗ 0.572∗∗ 0.295∗∗ -0.046 -0.372 -0.59 -0.67

(0.093) (0.160) (0.126) (0.086) (0.018) (0.006) (0.008) (0.016) (0.103) (0.196)

Livestock receipts 0.863
+++
∗∗ 0.78

+++
∗∗ 0.773

+++
∗∗ 0.659

+++
∗∗ 0.495∗∗ 0.502∗∗ 0.42∗∗ 0.199∗∗ 0.037 -0.196

(0.126) (0.197) (0.186) (0.208) (0.201) (0.282) (0.313) (0.249) (0.274) (0.444)

Govt. payments 0.84
+++
∗∗ -0.135 -0.037 -0.398 -0.668 -0.607 -0.67 -0.69 -0.751 -0.484

(0.189) (0.316) (0.229) (0.230) (0.203) (0.251) (0.272) (0.286) (0.315) (0.319)

Farm-related income 0.853
+++
∗∗ 0.892

+++
∗∗ 0.876

+++
∗∗ 0.988

+++
∗∗ 0.987

+++
∗∗ 1.13

+++
∗∗ 1.129

+++
∗∗ 1.078

+++
∗∗ 1.163

+++
∗∗ 0.558+

(0.112) (0.169) (0.208) (0.278) (0.257) (0.273) (0.272) (0.275) (0.257) (0.186)

Cash expenses 0.986
+++
∗∗ 0.98

+++
∗∗ 0.9

+++
∗∗ 0.815

+++
∗∗ 0.713

++
∗∗ 0.658

+
∗∗ 0.53∗∗ 0.398∗∗ 0.198 -0.188

(0.078) (0.114) (0.140) (0.172) (0.210) (0.153) (0.169) (0.129) (0.098) (0.144)

Notes: *, **, and *** denote statistical significance at 10%, 5%, and 1% respectively for testing the null hypotheses H0 : βUSDA
h ≤ 0. Likewise, +, ++, and +++

denote statistical significance at 10%, 5%, and 1% respectively for testing the null hypothesis H0 : βUSDA
h ≤ 0.5.
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Table A.2: Estimates of the parameter β̂FAPRI
h in the Mincer-Zarnowitz (MZ) regression for FAPRI projections

h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9

Corn

Harvested acres 0.995
+++
∗∗ 0.94

+++
∗∗ 0.925

+++
∗∗ 0.876

+++
∗∗ 0.833

+++
∗∗ 0.655

+++
∗∗ 0.469∗∗ 0.207∗∗ 0.059 -0.047

(0.075) (0.147) (0.193) (0.210) (0.264) (0.263) (0.207) (0.162) (0.198) (0.186)

Farm price 1.071
+++
∗∗ 0.962

+++
∗∗ 0.824

+++
∗∗ 0.678

+
∗∗ 0.456∗∗ 0.187∗ -0.047 -0.173 -0.332 -0.358

(0.128) (0.192) (0.190) (0.237) (0.261) (0.277) (0.251) (0.216) (0.227) (0.263)

Yield 0.826
+++
∗∗ 0.76

+++
∗∗ 0.775

+++
∗∗ 0.767

+++
∗∗ 0.744

+++
∗∗ 0.696

+++
∗∗ 0.618

+++
∗∗ 0.566

+
∗∗ 0.698

+++
∗∗ 0.704

+++
∗∗

(0.138) (0.167) (0.163) (0.150) (0.154) (0.171) (0.141) (0.152) (0.140) (0.182)

Soybean

Harvested acres 0.767
+++
∗∗ 0.683

+++
∗∗ 0.613

+++
∗∗ 0.63

+++
∗∗ 0.523∗∗ 0.67

+++
∗∗ 0.616

++
∗∗ 0.721

+++
∗∗ 0.626

++
∗∗ 0.423∗∗

(0.120) (0.205) (0.180) (0.148) (0.148) (0.147) (0.245) (0.294) (0.211) (0.288)

Farm price 0.92
+++
∗∗ 0.838

+++
∗∗ 0.746

+++
∗∗ 0.599

+
∗∗ 0.438∗∗ 0.228∗∗ 0.004 -0.117 -0.209 -0.257

(0.098) (0.151) (0.128) (0.162) (0.156) (0.176) (0.185) (0.085) (0.097) (0.158)

Yield 1.183
+++
∗∗ 1.283

+++
∗∗ 1.5

+++
∗∗ 1.56

+++
∗∗ 1.693

+++
∗∗ 1.83

+++
∗∗ 1.926

+++
∗∗ 1.656

+++
∗∗ 1.516

+++
∗∗ 1.442

+++
∗∗

(0.174) (0.211) (0.244) (0.206) (0.279) (0.345) (0.350) (0.216) (0.228) (0.273)

Wheat

Harvested acres 0.982
+++
∗∗ 0.903

+++
∗∗ 0.706

+++
∗∗ 0.653

+++
∗∗ 0.55∗∗ 0.55∗∗ 0.672

+++
∗ 0.696

+++
∗∗ 0.696

+++
∗∗ 0.714

+++
∗∗

(0.048) (0.129) (0.219) (0.256) (0.299) (0.275) (0.245) (0.245) (0.244) (0.249)

Farm price 1.056
+++
∗∗ 0.926

+++
∗∗ 0.769

++
∗∗ 0.551∗∗ 0.323∗∗ 0.1 -0.141 -0.363 -0.528 -0.533

(0.132) (0.233) (0.209) (0.216) (0.227) (0.186) (0.185) (0.209) (0.229) (0.187)

Yield 0.967
+++
∗∗ 0.908

+++
∗∗ 1.028

+++
∗∗ 1.17

+++
∗∗ 1.192

+++
∗∗ 1.155

+++
∗∗ 0.888

+++
∗∗ 1.128

+++
∗∗ 1.258

+++
∗∗ 1.234+++

(0.213) (0.252) (0.249) (0.258) (0.224) (0.307) (0.226) (0.234) (0.148) (0.243)

Farm income

Net cash income 0.919
+++
∗∗ 0.832

+++
∗∗ 0.781

+++
∗∗ 0.582

+
∗∗ 0.388∗∗ 0.235∗∗ 0.096∗ -0.089 -0.141 -0.235

(0.110) (0.146) (0.214) (0.240) (0.174) (0.140) (0.205) (0.207) (0.238) (0.112)

Crop receipts 1.038
+++
∗∗ 0.978

+++
∗∗ 0.849

+++
∗∗ 0.695

++
∗∗ 0.513∗∗ 0.305∗∗ 0.085 -0.091 -0.222 -0.327

(0.084) (0.124) (0.119) (0.114) (0.059) (0.051) (0.052) (0.013) (0.026) (0.056)

Livestock receipts 0.897
+++
∗∗ 0.832

+++
∗∗ 0.789

+++
∗∗ 0.671

+++
∗∗ 0.554

++
∗∗ 0.461∗∗ 0.349∗∗ 0.169∗∗ 0.061 -0.068

(0.105) (0.162) (0.214) (0.224) (0.205) (0.173) (0.174) (0.175) (0.192) (0.233)

Govt. payments 0.675
+++
∗∗ 0.123∗∗ -0.16 -0.104 -0.461 -0.612 -0.56 -0.448 -0.462 -0.296

(0.099) (0.269) (0.275) (0.291) (0.207) (0.229) (0.203) (0.189) (0.233) (0.177)

Farm-related income 0.944
+++
∗∗ 0.884

+++
∗∗ 0.824

+++
∗∗ 0.893

+++
∗∗ 0.925

+++
∗∗ 1.054

+++
∗∗ 1.034

+++
∗∗ 1.056

+++
∗∗ 1.109 0.87++

(0.167) (0.170) (0.189) (0.247) (0.253) (0.237) (0.241) (0.230) (0.276) (0.210)

Cash expenses 1.006
+++
∗∗ 0.949

+++
∗∗ 0.872

+++
∗∗ 0.784

+++
∗∗ 0.694

++
∗∗ 0.627

+
∗∗ 0.517∗∗ 0.364∗∗ 0.208 0.063

(0.079) (0.131) (0.136) (0.133) (0.161) (0.174) (0.180) (0.164) (0.163) (0.135)

Notes: *, **, and *** denote statistical significance at 10%, 5%, and 1% respectively for testing the null hypotheses H0 : βFAPRI
h ≤ 0. Likewise, +, ++, and +++

denote statistical significance at 10%, 5%, and 1% respectively for testing the null hypothesis H0 : βFAPRI
h ≤ 0.5.
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Table A.3: Modified Diebold-Mariano (MDM) test comparing FAPRI and USDA projections

h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9

Corn
Harvested acres 0.429 -1.135 -0.926 -0.043 0.976 0.275 -0.029 0.296 0.455 -0.796
Farm price -0.318 -0.35 0.234 -0.092 -0.787 -1.948++ -2.338++ -2.028++ -2.736+++ -4.005+++

Yield 0.034 -1.247 0.748 1.257 0.521 -1.342+ -1.746++ -1.541+ -0.834 -2.639+++

Soybean
Harvested acres -0.148 2.526∗∗∗ 2.043∗∗ 1.245 0.005 1.75∗∗ 0.949 1.799∗∗ 1.852∗∗ 2.233∗∗

Farm price -1.085 0.418 0.947 0.315 -0.537 -2.157++ -3.715+++ -3.956+++ -4.684+++ -5.946+++

Yield -2.254++ -1.942++ -1.254 -0.939 -0.486 -0.609 -0.905 -0.808 -1.269 -1.989++

Wheat
Harvested acres 1.377∗ -1.126 -0.789 -0.583 -1.07 -1.411+ -1.457+ -0.03 0.915 1.805∗∗

Farm price 0.008 1.566∗ 2.511∗∗∗ 2.413∗∗ 2.349∗∗ 2.389∗∗ 1.7∗ 0.683 0.017 -0.509
Yield 0.985 0.704 0.906 -0.05 -1.245 -0.359 0.841 1.959∗∗ 0.784 -0.203

Farm income
Net cash income 1.514∗ 3.442∗∗∗ 3.516∗∗∗ 2.652∗∗∗ 1.998∗∗ -0.739 -1.54+ -1.722++ -1.606+ -2.432++

Crop receipts 1.505∗ 2.064∗∗ 1.733∗∗ 1.333∗ 0.52 -0.88 -2.09++ -3.064+++ -3.796+++ -6.265+++

Livestock receipts 1.605∗ 1.338∗ 0.281 -0.17 -0.6 -2.393++ -3.157+++ -4.209+++ -4.19+++ -4.563+++

Govt. payments -0.961 2.149∗∗ 0.124 1.465∗ 1.141 -0.089 1.108 1.543∗ 1.488∗ 1.224
Farm-related income 0.812 1.393∗ 1.267 1.753∗∗ 2.707∗∗∗ 2.447∗∗ 2.243∗∗ 2.512∗∗∗ 2.534∗∗∗ 2.704∗∗∗

Cash expenses -0.865 0.156 0.342 -0.035 -0.17 -0.92 -1.764++ -2.707+++ -3.466+++ -3.886+++

Notes: The estimates are DM-statistic of Modified DM test comparing FAPRI and USDA projections. (***), (**) and (*) suggests that FAPRI projection

performed better than USDA at 1%, 5% and 10% significance levels respectively. Similarly, (+++), (++) and (+) suggests that the USDA projection performed

better than FAPRI at 1%, 5% and 10% significance levels respectively. Tests were conducted for each horizon separately. Root mean square error was used to

calculate loss differentials.
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Table A.4: Tests of uniform superior predictive ability (uSPA) comparing FAPRI and USDA projections

h = 0 h ≤ 1 h ≤ 2 h ≤ 3 h ≤ 4 h ≤ 5 h ≤ 6 h ≤ 7 h ≤ 8 h ≤ 9

Corn
Harvested acres 0.533 -1.676 -1.987 -2.008 -1.944 -1.626 -1.495 -1.417 -1.207 -1.18

-0.533 -0.522 -0.286 -0.21 -1.149 -1.931 -1.775 -1.52 -1.44 -1.423
Farm price -0.538 -0.448 -0.898 -0.895 -0.886 -1.499 -1.716 -1.972 -3.378 -4.21

0.538 0.319 -0.183 -0.079 0.199+ 0.45+++ 0.436+++ 0.245++ -0.127+ -0.212++

Yield 0.034 -1.534 -1.457 -1.238 -1.046 -1.266 -1.323 -1.359 -1.289 -1.726
-0.034 -0.035 -0.667 -1.07 -1.183 -1.464 -1.242 -1.34 -1.777 -1.659

Soybean
Harvested acres -0.165 -0.165 -0.276 -0.29 -0.326∗ -0.285∗∗ -0.393∗∗ -0.5∗ -0.521∗∗ -0.576∗∗

0.165 -3.114 -2.924 -2.541 -2.694 -2.807 -2.98 -3.073 -3.063 -3.292
Farm price -1.165 -1.117 -0.608 -0.407 -0.433 -1.79 -2.666 -2.609 -3.09 -3.582

1.165+ -0.416 -1.324 -1.274 -1.202 -1.397 -0.975 -1.547 -1.494 -1.447
Yield -1.672 -1.649 -1.724 -2.284 -2.544 -2.57 -2.558 -2.191 -2.223 -2.146

1.672+ 1.534++ 0.912+ 0.824++ 0.391++ 0.44++ 0.646+++ 0.728+++ 0.728+++ 0.696+++

Wheat
Harvested acres 1.381 -1.058 -1.116 -1.477 -1.417 -1.228 -1.316 -1.204 -1.406 -1.707

-1.381 -1.392 -1.466 -1.438 -1.451 -1.393 -0.892 -0.875 -0.782 -1.361
Farm price 0.011 0.011 -0.069 -0.095 -0.065 -0.061∗ -0.414 -0.31∗ -0.755 -0.965

-0.011 -1.341 -1.789 -1.965 -1.868 -1.982 -1.873 -1.71 -1.609 -1.645
Yield 1.281∗ 0.713∗∗ 0.031 -0.195 -1.107 -1.283 -1.738 -1.205 -1.313 -1.376

-1.281 -1.251 -0.898 -0.988 -1.112 -1.071 -0.819 -1.469 -1.189 -1.124

Farm income
Net cash income 1.568∗ 1.358∗∗ 1.439∗∗∗ 1.471∗∗∗ 1.457∗∗∗ -0.735 -1.801 -1.914 -1.851 -1.459

-1.568 -2.959 -2.804 -2.869 -2.854 -2.576 -2.539 -2.397 -2.13 -2.681
Crop receipts 1.31 1.165∗∗∗ 1.046∗∗∗ 0.91∗∗∗ 0.353∗∗∗ -0.605 -1.45 -1.904 -2.291 -3.3

-1.31 -1.531 -1.53 -1.297 -1.269 -1.425 -1.438 -1.699 -1.733 -1.715
Livestock receipts 1.44 1.092∗ 0.23 -0.127 -0.435 -1.52 -2.089 -2.552 -2.493 -2.529

-1.44 -1.445 -1.47 -1.515 -1.511 -1.463 -1.095 -1.019 -1.918 -2.597
Govt. payments -1.018 -1.021 -1.112 -1.018 -0.808 -0.767 -0.237 -0.193∗ -0.191∗ -0.861

1.018 -1.873 -1.887 -1.911 -2.041 -1.97 -1.798 -1.522 -1.707 -1.662
Farm-related income 0.873∗ 0.904∗∗ 0.912∗∗ 0.86∗∗ 0.921∗∗ 0.98∗∗ 0.989∗∗∗ 0.951∗∗∗ 0.956∗∗∗ 1.019∗∗∗

-0.873 -1.042 -1.152 -1.44 -2.605 -2.831 -3.103 -4.094 -5.036 -4.474
Cash expenses -0.79 -0.502 -0.5 -0.322 -0.392 -0.597 -1.182 -1.671 -2.121 -2.232

0.79 -0.136 -0.617 -0.76 -0.964 -0.827 -0.803 -0.821 -0.898 -0.717

Notes: The estimates are t-statistics for test of uSPA. The first estimate in each cell refers to t-statistic for the null hypothesis H0,uSPA : µuSPA ≤ 0.

(***), (**) and (*) indicate the rejection of the null hypothesis, suggesting that the FAPRI projection has uSPA over the USDA projection at 1%, 5% and

10% significance levels respectively. The second estimate is the t-statistic when we switched the projections in the null hypothesis. Similarly, (+++), (++)

and (+) indicate that the USDA projection has uSPA over the FAPRI projection at 1%, 5% and 10% significance levels respectively. Horizon ≤ h means

the tests are performed using projections up to horizon h. A square loss function was used to calculate loss differentials.
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Table A.5: Tests of average superior predictive ability (aSPA) between FAPRI and USDA projections, equal weights

h = 0 h ≤ 1 h ≤ 2 h ≤ 3 h ≤ 4 h ≤ 5 h ≤ 6 h ≤ 7 h ≤ 8 h ≤ 9

Corn
Harvested acres 0.533 -0.636 -1.353 -1.162 -0.516 -0.195 0.064 0.127 0.316 0.132
Farm price -0.538 -0.428 -0.202 -0.267 -0.629 -1.411 -1.96+ -2.148 -3.047+ -4.318++

Yield 0.034 -0.716 -0.019 0.469 0.787 0.597 -0.142 -0.565 -0.214 -0.722

Soybean
Harvested acres -0.165 3.99∗∗∗ 3.173∗∗ 3.036∗∗ 3.036∗∗ 3.611∗∗ 2.459∗∗ 2.248∗∗ 2.374∗ 2.669∗

Farm price -1.165+ -0.241 0.817 0.69 0.252 -0.453 -1.486 -2.166+ -3.002++ -4.067++

Yield -1.672+ -1.632+ -1.513+ -1.862++ -2.17++ -2.363++ -2.506++ -2.33+ -2.336+ -2.35+

Wheat
Harvested acres 1.381∗ 0.486 -0.416 -0.603 -0.869 -0.901 -1.015 -0.859 -0.648 -0.482
Farm price 0.011 1.185 1.638∗ 1.79∗ 1.767∗ 1.775∗ 1.832∗ 1.807∗ 1.564 1.293
Yield 1.281∗ 1.331∗ 0.793 0.624 0.368 0.206 -0.422 0.162 0.308 0.234

Farm income
Net cash income 1.568∗ 2.706∗∗ 2.934∗∗ 2.88∗∗ 2.997∗∗ 2.53∗∗ 2.028∗ 1.264 0.744 0.393
Crop receipts 1.31∗ 2.01∗∗ 1.639∗∗ 1.312∗ 0.937 0.45 -0.151 -0.73 -1.322 -2.093
Livestock receipts 1.44 1.401 0.898 0.551 0.25 -0.418 -1.133 -1.764 -2.082+ -2.175
Govt. payments -1.018 1.113∗ 0.848 1.298 1.423 1.408∗ 1.495∗ 1.426 1.363 0.823
Farm-related income 0.873∗ 1.008∗ 1.094∗ 1.271∗ 1.532∗ 1.791∗∗ 2.166∗∗ 2.607∗∗ 2.817∗∗ 3.056∗∗

Cash expenses -0.79 -0.158 0.278 0.273 0.212 -0.001 -0.352 -0.772 -1.21 -1.398

Notes: The estimates are t-statistics for the null hypothesis H0 : µaSPA ≤ 0. (***), (**) and (*) indicate the rejection of the null hypothesis, suggesting

that the FAPRI projection has aSPA over the USDA projection at 1%, 5% and 10% significance levels respectively. Similarly, (+++), (++) and (+)

indicate that the USDA projection has aSPA over the FAPRI projection at 1%, 5% and 10% significance levels respectively. Horizon ≤ h means the tests

are performed using projections up to horizon h. Each horizon was given equal weights. A square loss function was used to calculate loss differentials.

Table A.6: Tests of average superior predictive ability (aSPA) between FAPRI and USDA projections, variance weights

h = 0 h ≤ 1 h ≤ 2 h ≤ 3 h ≤ 4 h ≤ 5 h ≤ 6 h ≤ 7 h ≤ 8 h ≤ 9

Corn
Harvested acres 0.533 -0.571 -1.177 -1.043 -0.611 -0.467 -0.131 0.115 0.28 0.082
Farm price -0.538 -0.387 -0.024 -0.11 -0.565 -1.486 -2.012 -2.266 -3.119+ -4.046++

Yield 0.034 -0.326 0.1 0.455 0.697 0.449 -0.121 -0.92 -0.614 -0.767

Soybean
Harvested acres -0.165 3.355∗∗ 2.896∗∗ 2.856∗∗ 2.959∗∗ 2.928∗∗ 1.712∗∗ 1.708∗ 1.919∗ 2.046∗

Farm price -1.165+ -0.02 1.186 0.76 0.046 -0.797 -1.931+ -2.585++ -3.25++ -4.113++

Yield -1.672+ -1.616+ -1.544+ -1.854+ -2.16++ -2.351++ -2.619++ -2.21++ -2.211++ -2.213+

Wheat
Harvested acres 1.381 0.825 -0.657 -0.58 -0.824 -0.871 -0.985 -0.725 -0.263 0.007
Farm price 0.011 1.3∗ 1.721∗ 1.864∗ 1.836∗∗ 1.75∗ 1.805∗ 1.805∗ 1.429 1.134
Yield 1.281∗ 1.312∗ 0.823 0.739 0.661 0.639 -0.053 0.597 0.599 0.553

Farm income
Net cash income 1.568∗ 2.887∗∗ 2.822∗∗ 2.601∗∗ 2.687∗∗ 2.412∗∗ 1.871∗ 0.825 0.146 -0.503
Crop receipts 1.31∗ 1.663∗ 1.351∗ 1.088∗ 0.682 0.123 -0.67 -1.314 -1.914+ -2.518+

Livestock receipts 1.44 1.361 0.599 0.235 -0.089 -0.961 -1.783+ -2.272+ -2.414+ -2.421+

Govt. payments -1.018 1.617∗∗ 0.951 1.317 1.341∗ 1.388∗ 1.483∗ 1.471∗ 1.406 0.855
Farm-related income 0.873 0.985∗ 1.066∗ 1.154∗ 1.323∗∗ 1.516∗∗ 1.83∗∗ 2.224∗∗ 2.377∗∗ 2.629∗∗

Cash expenses -0.79 0.008 0.288 0.168 0.041 -0.238 -0.701 -1.116 -1.574 -1.704

Notes: The estimates are t-statistics for the null hypothesis H0 : µaSPA ≤ 0. (***), (**) and (*) indicate the rejection of the null hypothesis, suggesting

that the FAPRI projection has aSPA over the USDA projection at 1%, 5% and 10% significance levels respectively. Similarly, (+++), (++) and (+)

indicate that the USDA projection has aSPA over the FAPRI projection at 1%, 5% and 10% significance levels respectively. Horizon ≤ h means the tests

are performed using projections up to horizon h. Each horizon was given weights equal to the ratio of the variance of loss differential for the horizon to

the sum of variances of loss differentials across all horizons. A square loss function was used to calculate loss differentials.
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Figure A.3: RMSPE of a simple average of USDA and FAPRI baseline projections of
corn, soybeans and wheat by projection horizon h, 1997–2020
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Figure A.4: RMSPE of a simple average of USDA and FAPRI baseline projections of
net cash income components by projection horizon h, 1997–2020
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