
Understanding and Exploiting Design Flaws of AMD Secure
Encrypted Virtualization

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree Doctor
of Philosophy in the Graduate School of The Ohio State University

By

Mengyuan Li,

Graduate Program in Computer Science and Engineering

The Ohio State University

2022

Dissertation Committee:

Yinqian Zhang, Advisor

Radu Teodorescu, Co-advisor

Feng Qin

Zhiqiang Lin

© Copyright by

Mengyuan Li

2022

Abstract

Trusted Execution Environment (TEE) is a blooming direction in the cloud industry.

Aiming at protecting cloud user’s data in runtime, TEE can enable a lot of new and fore-

seeable cloud use cases. While enclave-based TEEs such as Intel SGX suffer from a large

effort of rewriting existing code, VM-based TEEs such as Intel Trust Domain Extension

(TDX) and AMD Secure Encrypted Virtualization (SEV) attract more and more people’s

attention. Among those VM-based TEEs, AMD SEV is a security extension for the AMD

Virtualization (AMD-V) architecture, which is AMD’s ambitious movement towards confi-

dential cloud computing. SEV allows one physical server to efficiently run multiple guest

virtual machines (VM) concurrently on encrypted memory with the goal of protecting the

security of guest VMs even in the presence of a malicious hypervisor. SEV is also believed

to be the first and the only commercial VM-based TEE that has already been adopted in

Google Cloud and Microsoft Azure at the time of writing. However, the strong assumption

of SEV causes uncertainty in its security guarantee. The lack of a systematic security study

in this new assumption makes some unexploited vulnerabilities possible. Thus, it is very

urgent to fully study SEV’s design and help the community better understand SEV.

In this dissertation, we systematically study the structure of AMD SEV’s design, includ-

ing angles from both hardware and software. By comprehensively exploring SEV’s different

components, we reveal how SEV’s hardware and software work together to provide a trusted

execution environment, and we also explore several unexploited vulnerabilities in SEV.

ii

Here, we briefly outline five categories of vulnerable designs in SEV and the corresponding

security attacks.

In Chapter 3, we exploit the unprotected I/O operations of SEV-enabled VMs and show

that the malicious hypervisor can breach the confidentiality and the integrity of guest VMs

with the help of these I/O operations.

In Chapter 4, we explore the improper Address Space Identifier (ASID)-based memory

isolation and access control. We show that the untrusted hypervisor has control over the

VM’s ASID without necessary hardware limits. We exploit this design and propose a series

of attacks called CROSSLINE attacks. We show that this vulnerable design can be used to

decrypt VM’s encrypted memory or to momentarily execute arbitrary instructions of the

victim VM.

In Chapter 5, we provide the first exploration of TLB management in SEV. We first

demystify how SEV extends the TLB implementation and show that the TLB management

is no longer secure under SEV’s threat model, which allows the hypervisor to poison TLB

entries between two processes of a SEV VM. We then present TLB Poisoning Attacks, a

class of attacks that break the integrity and confidentiality of the SEV VM by poisoning its

TLB entries.

In Chapter 6, we explore the context switch between the guest VM and the host. We

show that during context switch, encrypting the virtual CPU’s register stored in the VM Save

Area is not enough, which allows the privileged adversary to infer the guest VM’s execution

states or recover certain plaintext. To demonstrate the severity of the vulnerability, we

present the CIPHERLEAKS attack, which exploits the ciphertext side channel to steal private

keys from the constant-time implementation of RSA and ECDSA in the latest OpenSSL

library.

iii

In Chapter 7, we perform a comprehensive study of the ciphertext side channels that

widely exist in almost all VM-based TEEs. Our work suggests that the deterministic

encryption adopted by almost all commercial VM-based TEEs may potentially leak key-

related secrets in most up-to-date mainstream cryptography libraries. The proposed generic

ciphertext side-channel attack may exploit the ciphertext leakage from any memory page,

including those pages used for kernel data structures, stacks, and heaps.

This dissertation shows that the strong assumption of SEV indeed causes some unex-

ploited vulnerabilities. We have reported our findings to the AMD SEV team and have

received very positive feedback (several CVEs, two microcode patches, two cryptography

library patches, three official security bulletins and an official white paper for software

mitigation1). We believe that our work can not only help improve the security of AMD SEV

but also help the entire TEE community to build and develop more secure products for all

cloud customers.

1https://www.amd.com/system/files/documents/221404394-a_security_wp_final.pdf

iv

https://www.amd.com/system/files/documents/221404394-a_security_wp_final.pdf

Acknowledgments

It has been a while since I left my hometown, kept pursuing more knowledge, and tried

to realize my self-value. Thus, I would like to express my most sincere gratitude here to

those who helped and encouraged me during my Ph.D. Period.

I would like to first express my most respectful thanks to my advisor Prof.Yinqian Zhang.

He is the best guide I could ever imagine on the road to research. Without him, I would

not have been able to begin my Ph.D. program and learn how to become an independent

researcher. His patience and professional academic knowledge helped me grow from

a freshman to a researcher with certain independent research capabilities. His rigorous

scientific attitude, insight into new fields, and curiosity about new things will play a decisive

guiding role in my future academic career.

I am also very fortunate to have close cooperation with Prof. Radu Teodorescu, Prof.

Srinivasan Parthasarathy, and Prof. Zhiqiang Lin. Prof. Radu Teodorescu’s abundant

knowledge in architecture and system always gives me different inspiration and guidance.

For Prof. Srinivasan Parthasarathy, I am very honored to have three course works with him.

His teaching style impressed me a lot and I also appreciate his valuable suggestions related

to career decisions. Prof. Zhiqiang Lin has always been a good teacher and a kind friend.

His positive academic attitude has always inspired me. I wish I could become a researcher

like Prof. Lin in the future.

v

My parents, Liuyi Tang and Zhiwu Li, and my girlfriend, Yizhi Wang are the most

important part of my entire life and I could not finish my Ph.D. degree without their

support and understanding. The company of my girlfriend makes my life more colorful

and vibrant, which relaxes me whenever I feel tired. While I learn academic knowledge

from professors and peers, my optimistic attitude and careful habits are closely related to

my parents’ childhood education, which works as the cornerstone of a building and plays an

irreplaceable role in past, now and future. I really miss those time spent with my family.

I am also grateful for those close colleagues in my life. Xiaokuan Zhang, Guoxin Chen,

Yuan Xiao, Luca Wilke, Shixuan Zhao, Xin Jin, Huibo Wang, Chaoshun Zuo, Wubing Wang,

Qingchuan Zhao, Sanchuan Chen, Mengya Zhang, and Haohuang Wen, who study in the

same lab room with me, have uncountable inspiring and exciting discussions together and

also help me a lot in my daily life. All my roommates in the last five years, Xiang Gu, Yifan

Gan, Yujie Hui, Jiaxu Qu, Juncheng Zhou, Shuaichen Zhou, Yi Man, and Bo Qiao are all

my best friends. I have many precious memories with you guys and I hope we could all live

and grow in our desired styles. My best friend since primary school, Lingke Cheng, always

supports and inspires me. Even though we have not seen each other for a while, I still can

sense the close connection between us.

To present my sincerely thanks to everyone again.

vi

Vita

2016 . B.S. Information Engineering,
Shanghai Jiao Tong University, Shanghai,
China.

2016 - present . Ph.D. Candidate,
The Ohio State University, Ohio, USA.

Publications

Selected Research Publications

Mengyuan Li*, Luca Wilke*, Jan Wichelmann, Thomas Eisenbarth, Radu Teodorescu,
Yinqian Zhang. A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP. In
2022 IEEE Symposium on Security and Privacy (S&P), 2022.

Shixuan Zhao, Mengyuan Li, Yinqian Zhang, Zhiqiang Lin. vSGX: Virtualizing SGX
Enclaves on AMD SEV. In 2022 IEEE Symposium on Security and Privacy (S&P), 2022.

Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, Yueqiang Cheng. CIPHERLEAKS:
Breaking Constant-time Cryptography on AMD SEV via the Ciphertext Side Channel. In
30th USENIX Security Symposium (USENIX Security), 2021.

Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, Yueqiang Cheng. TLB Poisoning At-
tacks on AMD Secure Encrypted Virtualization. In Annual Computer Security Applications
Conference (ACSAC), 2021.

Mengyuan Li, Yinqian Zhang, Zhiqiang Lin. CROSSLINE: Breaking “Security-by-Crash"
based Memory Isolation in AMD SEV. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2021.

vii

Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, Yan Solihin. Exploiting Unprotected I/O
Operations in AMD’s Secure Encrypted Virtualization. In 28th USENIX Security Symposium
(USENIX Security), 2019.

Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, Michael Swift. Peeking
behind the curtains of serverless platforms. In 2018 USENIX Annual Technical Conference
(USENIX ATC), 2018.

Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yinqian Zhang, “Defeating Speculative-
Execution Attacks on SGX with HyperRace”. In 2019 IEEE Conference on Dependable
and Secure Computing (DSC), 2019.

Yuan Xiao, Mengyuan Li, Sanchuan Chen, Yinqian Zhang. Stacco: Differentially analyzing
side-channel traces for detecting SSL/TLS vulnerabilities in secure enclaves. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS),
2017.

Mengyuan Li, Yan Meng, Junyi Liu, Haojin Zhu, Xiaohui Liang, Yao Liu, Na Ruan.
When CSI meets public WiFi: inferring your mobile phone password via WiFi signals.
In Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security (CCS), 2016.

Haojin Zhu, Chenliaohui Fang, Yao Liu, Cailian Chen, Mengyuan Li, Xuemin Sherman
Shen. You can jam but you cannot hide: Defending against jamming attacks for geo-location
database driven spectrum sharing. In IEEE Journal on Selected Areas in Communications
34, no. 10 (2016): 2723-2737.

Fields of Study

Major Field: Computer Science and Engineering

viii

Table of Contents

Page

Abstract . ii

Acknowledgments . v

Vita . vii

List of Tables . xiii

List of Figures . xv

List of Listings . xvii

1. Introduction . 1

1.1 Overview . 1
1.2 I/O Security in SEV . 3
1.3 ASID Security in SEV . 4
1.4 TLB Security in SEV . 7
1.5 VMSA Security in SEV . 9
1.6 General Memory Encryption Security in SEV 11

2. Background . 13

2.1 AMD SEV . 13
2.1.1 Overview . 13
2.1.2 Memory Encryption . 17

2.2 Existing Security Studies on SEV . 19
2.3 Comparison between Intel TEEs and SEV 23

ix

3. Exploiting Unprotected I/O Operations in AMD SEV 26

3.1 Root Cause of vulnerable I/O operations 27
3.2 Threat Model . 28
3.3 Security issues of Unprotected I/O Operations in AMD SEV 29

3.3.1 Unprotected I/O Security’s consequences 29
3.3.2 Decryption Oracles . 33
3.3.3 Encryption Oracle . 41

3.4 Evaluation . 43
3.4.1 Pattern Matching . 44
3.4.2 Persistent Bp . 45
3.4.3 I/O Performance Degradation 46
3.4.4 An End-to-End Attack . 48

3.5 A Path Towards I/O Security in SEV 49
3.5.1 Authenticated Encryption . 51
3.5.2 A Temporary Software Solution 54
3.5.3 Comparison with existing attacks 56

3.6 Summary . 56

4. Breaking “Security-by-Crash” based Memory Isolation in AMD SEV 58

4.1 Demystifying ASID-based Isolation . 59
4.1.1 ASID-based Isolation . 59
4.1.2 ASID Management . 62
4.1.3 ASID Isolation Summary . 66

4.2 CROSSLINE Attacks . 67
4.2.1 Variant 1: Extracting Encrypted Memory through Page Table Walks 68
4.2.2 Variant 2: Executing Victim VM’s Encrypted Instructions 74
4.2.3 Discussion on Stealthiness and Robustness 78

4.3 Applicability to SEV-ES . 79
4.3.1 Overview of SEV-ES . 79
4.3.2 CROSSLINE V1 on SEV-ES . 81
4.3.3 CROSSLINE V2 on SEV-ES . 86
4.3.4 Discussion on Stealthiness . 87

4.4 Discussion . 88
4.4.1 A New Variant: Reusing Victim’s TLB Entries 88
4.4.2 Applicability to SEV-SNP . 89
4.4.3 Intel MKTME . 90
4.4.4 Relation to Speculative Execution Attacks 91

4.5 Summary . 92

x

5. TLB Poisoning Attacks on AMD Secure Encrypted Virtualization 93

5.1 Background . 94
5.2 Understanding and Demystifying SEV’s TLB Isolation Mechanisms . . . 96

5.2.1 TLB Management for Non-SEV VMs 96
5.2.2 Demystifying SEV’s TLB management 98
5.2.3 TLB Flush Rules for SEV VMs 100

5.3 Attack Primitives . 101
5.3.1 Threat Model . 101
5.3.2 TLB Misuse across vCPUs . 102
5.3.3 TLB Misuse within the Same vCPU 104
5.3.4 CPUID-based Covert Channel 106

5.4 TLB Poisoning with Assisting Processes 109
5.4.1 Case Study: OpenSSH . 109
5.4.2 Evaluation . 112

5.5 TLB Poisoning without Assisting Processes 112
5.5.1 Poison TLB Entries between Connections 113
5.5.2 An End-to-end Attack . 115
5.5.3 Evaluation. 118

5.6 Discussion and Countermeasure . 120
5.6.1 TLB Poisoning on SEV-SNP 120
5.6.2 Comparison with Known Attacks 121
5.6.3 Countermeasures . 122

5.7 Summary . 122

6. CIPHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the
Ciphertext Side Channel . 123

6.1 Background . 124
6.1.1 Secure Encrypted Virtualization 124
6.1.2 Cryptographic Side-Channel Attacks 127
6.1.3 Advanced Programmable Interrupt Controller 129

6.2 The CIPHERLEAKS Attack . 130
6.2.1 The Ciphertext Side Channel 130
6.2.2 Execution State Inference . 133
6.2.3 Plaintext Recovery . 135

6.3 Case Studies . 142
6.3.1 Breaking Constant-Time RSA 142
6.3.2 Breaking Constant-time ECDSA 144
6.3.3 Evaluation . 146

6.4 Countermeasures . 148

xi

6.4.1 Software Mitigation . 148
6.4.2 Function’s Internal States Intercept 149
6.4.3 Hardware Countermeasures . 152

6.5 Applicability to SEV-SNP . 153
6.5.1 Overview of SEV-SNP . 154
6.5.2 The CIPHERLEAKS attack on SEV-SNP 155

6.6 Summary . 156

7. A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP 157

7.1 Background . 158
7.1.1 Secure Encrypted Virtualization 158
7.1.2 Ciphertext Attacks against SEV-SNP 160
7.1.3 Off-chip Attacks . 161
7.1.4 Operating System Context Switch 161

7.2 A generic ciphertext side channel . 162
7.2.1 Attacker Model . 162
7.2.2 Attack Primitives . 163

7.3 Leakage due to context switch . 166
7.3.1 Leaking Register Values via Context Switches 166
7.3.2 Attacking Constant-time ECDSA 169
7.3.3 End-to-end attack against Nginx 171
7.3.4 Evaluation . 172

7.4 Exploiting memory accesses in user space 174
7.4.1 Breaking Constant-time ECDSA via Dictionary Attack 175
7.4.2 Breaking Constant-time EdDSA via collision attack 178

7.5 Countermeasures . 183
7.5.1 Architectural Countermeasures 183
7.5.2 Software-based Countermeasures 184
7.5.3 Software-based Countermeasures: Kernel Context Switch 186
7.5.4 Case Study: Randomizing pt_regs Location 188

7.6 Discussion . 189
7.7 Summary . 192

8. Conclusion . 193

Bibliography . 194

xii

List of Tables

Table Page

2.1 Effects of C-bits in guest page tables (gPT) and nested page tables (nPT). M
is the plaintext; Ek() is the encryption function under a memory encryption
key k; kg and kh represent the guest VM and the hypervisor’s memory
encryption keys, respectively. 17

3.1 End-to-end attack performance. 49

4.1 Demonstrated attacks against SEV. I/O Interaction: the attack requires
interaction with applications inside the victim VM through I/O operations
(e.g., Network, disk). Stealthiness: the attack cannot be detected by the
victim VM. 87

5.1 TLB flush rules. The World column indicates whether the event happens in
host world or the guest world; TLB tag represents the TLB entry’s ASID
to be flushed—the host’s ASID is 0 and the SEV VM’s ASID is N; Forced
indicates whether the TLB flush is forced by the hardware or controllable by
the hypervisor. * highlights a special case, in which when the world switch
happens between two vCPUs, the TLB tagged with 0 is forced to be flushed
while the TLB tagged with N is flushed under the control of the hypervisor. 100

6.1 Ciphertext of registers collected in the VMSA. If the content at a specific
offset is 8 bytes, it means the remaining 8 bytes are reserved. 132

6.2 Information revealed from NPF error code. 134

6.3 Number of NAE events observed during boot period and registers state range
maybe exposed. Num: the number of NAE event being observed. *: state to
hypervisor. **: state from hypervisor, N/A: not observed. -: this register
is not supposed to be used during this NAE event. Range R1: numbers of
different exposed register states lying in [0,1], Range R2: [0,15], Range R3:
[0,127], Range R4: [0,264-1]. 139

xiii

7.1 Possible pbit and kbit pairs when intercepting BN_is_bit_set(). The
letters A to D represent the 16-byte ciphertexts the attacker may observe,
which depend on the values of kbit and pbit. The value of kbit and pbit
in the i+1-th iteration is updated depending on ki. 177

7.2 Comparison of hardware memory encryption-based TEEs. Drop-In replace-
ment means that applications do not need to be adjusted to work with the
TEE. * denotes the release time of the whitepapers while the commercial
machine is not available yet. † denotes the new SGX version (SGX on Ice
Lake SP). 192

xiv

List of Figures

Figure Page

2.1 AMD-V nested page table walks [3]. 15

3.1 An example of a disk I/O operation by an SEV-enabled VM. 28

3.2 Read/write performance overhead due to I/O monitoring. 31

3.3 A decryption oracle. Step ➀, the hypervisor conducts pattern matching
using page-fault side channels to determine the address of Bp. Step ➁, the
hypervisor replaces a ciphertext block in Bp with the target memory block,
which will be decrypted when copied to Bs. Step ➂, QEMU recovers the
network packet headers. 35

3.4 Format of an SSH packet. 39

3.5 An encryption oracle. Step ➀, QEMU forwards an incoming packet to the
guest. Step ➁, QEMU passes the address of Bs to the hypervisor. Step ➂,
a page fault immediately after the fault at Bs is captured by the page fault
handler. Step ➃, message m′ is placed in Bp. Step ➄, page fault handler
returns the control to the guest. 43

3.6 The precision and recall of determining Ppriv in 20 rounds or experiments. . 45

3.7 Reduction of incorrect guesses using the N-Streak strategy. 46

3.8 The number of different Bps used with various rates of packets (pps). . . . 47

3.9 Statistics of repeated Bps. 48

3.10 I/O performance degradation evaluated using SSH response time (network
latency excluded). 49

xv

3.11 Merkle Tree (a) and Bonsai Merkle Tree used in conjunction with split
counter mode encryption (b). 52

3.12 Counter mode encryption with split counters using Galois Counter Mode
authentication. 53

3.13 An illustration of the temporary software solution. 55

4.1 ASID-based memory isolation in SEV. 60

4.2 Workflow of CROSSLINE V1. 68

4.3 Valid PTE format. 73

4.4 Covered offsets after N rounds. 85

5.1 TLB misuses across vCPUs. 102

5.2 VMCB switching. 108

5.3 Attack steps to bypass password authentication. 116

5.4 Variation of the virtual address of testcrypto. 119

6.1 Example about the ciphertext changes in NPFs. 136

6.2 Workflow of how VC handler handles IOIO_PROT events. 138

6.3 Performance of stepping VM execution using APIC. 152

6.4 The RMP Check in AMD-SNP. 155

xvi

7.1 Encryption block configurations with different exploitability by the dictio-
nary attack. In the first scenario (a), most of the block’s plaintext is constant,
with the secret being the only variable. Thus, the attacker can build a one-
to-one mapping of ciphertexts to secrets. In (b), the block also contains a
loop counter i, so there are many different ciphertexts mapping to the same
secret. If the attacker can always observe the secret for a specific fixed value
of i, they may still be able to build a dictionary, as this is equivalent to sce-
nario (a). In the last scenario (c), the secret is followed by a random nonce
which is regenerated before spilling secret to the memory. This prevents the
attacker from creating a dictionary, as he never observes the same ciphertext
twice. 164

7.2 Workflow of how #VC exceptions are handled. Red arrows represent a
context switch between processes. 168

7.3 Relationship between udelay interval and internal context switch. 174

xvii

List of Listings

Listing Page

5.1 Code snippet of pre_sev_run(). 98

5.2 Code snippet of svr_auth_password(). 114

6.1 Code snippet of BN_mod_exp_mont_consttime. 143

6.2 Code segment of bn_get_bits5(). 144

6.3 Code snippet of ec_scalar_mul_ladder(). 145

6.4 Assembly code snippet of BN_is_bit_set(). 146

7.1 Part of the elliptic curve scalar multiplication ec_scalar_mul_ladder()

from OpenSSL. The function uses the Montgomery ladder algorithm and

constant-time primitives to protect the secret scalar k against side channels. 170

7.2 Function performing the multiplication of the secret scalar with the curve

base point. In the original code, the variable k is named s. 180

7.3 Swap and lookup table access functions. 181

xviii

Chapter 1: Introduction

1.1 Overview

Secure Encrypted Virtualization (SEV) is an emerging processor feature available in

recent AMD processors that encrypts the entire memory of virtual machines (VM) transpar-

ently. Memory encryption is performed by a hardware memory encryption engine (MEE)

embedded in the memory controller that encrypts memory traffic on the fly, with a key

unique to each of the VMs. As the encryption keys are generated from random sources

at the time of VM launches and are securely protected inside the secure processor in their

lifetime, privileged software, including the hypervisor, is not able to extract the keys and

use them to decrypt the VMs’ memory content. Therefore, SEV enables a stronger threat

model, where the hypervisor is removed from the trusted computing base (TCB).

“SEV technology is built around a threat model where an attacker is assumed to
have access to not only execute user level privileged code on the target machine,
but can potentially execute malware at the higher privileged hypervisor level as
well.” [51].

Hence, SEV provides a trusted execution environment (TEE) for (mostly) unmodified

VMs to perform confidential computation that is shielded from strong adversaries that

control the entire privileged software stack.

The lack of trust in the hypervisor, unfortunately, increases considerably the attack

surface that a VM has to guard against. SEV’s audacious threat assumption has been

1

examined under the microscope with numerous attacks (e.g., [23,29,39,61,68,69,91]) since

its debut in 2017. With the assumption of a malicious hypervisor, these attacks successfully

compromise the confidentiality and/or integrity provided by SEV’s memory encryption by

exploiting a number of design flaws, including unencrypted virtual machine control blocks

(VMCB) [39, 91], unauthenticated memory encryption [23, 29, 39], insecure ECB mode of

memory encryption [29] and unprotected nested page tables [68, 69]

In light of these security issues, AMD has enhanced SEV with a sequence of microcode

and hardware updates, most notably SEV with Encrypted State (SEV-ES) and SEV with

Secure Nested Paging (SEV-SNP). SEV-ES encrypts the VMCB of a VM to protect register

values at VMEXITs; SEV-ES processors are already commercially available. To address

the most commonly exploited flaw—the lack of memory integrity for SEV VMs (including

unauthenticated memory encryption and unprotected nested page tables), AMD plans to

release SEV-SNP, which introduces a Reverse Map Table (RMP) to dictate ownership of the

memory pages, so that the majority of the previously known attacks will be mitigated.

SEV and its updated version are AMD’s ambitious movement towards confidential

cloud computing, which is gaining traction in the cloud industry. For instance, Google

Cloud recently provides SEV-enabled VMs, called Confidential VMs, as its first product of

Confidential Computing [33]. The threats SEV is facing are essential for SEV customers to

understand their data safety in the cloud.

In this proposal, we pay our attention to several, yet-to-be-reported several vulnerabilities.

In this proposal, we aim to exploit several vulnerabilities in AMD SEV, including I/O security

(Chapter 3), asid-based encryption security (Chapter 4), TLB security (Chapter 5), context

switch security (Chapter 6), and general memory encryption security (Chapter 7).

2

1.2 I/O Security in SEV

In Chapter 3, we study a previously unexplored problem under SEV’s trust model—the

unprotected I/O operations of SEV-enabled VMs. While the entire memory of the VMs

can be encrypted using keys that are not known to the hypervisor, direct memory access

(DMA) from the virtualized I/O devices must operate on unencrypted memory or memory

shared with the hypervisor. As a result, neither the confidentiality nor the integrity of the

I/O operations can be guaranteed under SEV’s trust models.

More importantly, in Chapter 3, we go beyond the investigation of I/O insecurity itself.

In particular, we further demonstrate that these unprotected I/O operations can be leveraged

by the adversary to construct (1) an encryption oracle to encrypt arbitrary memory blocks

using the guest VM’s memory encryption key, and (2) a decryption oracle to decrypt any

memory pages of the guest. We demonstrate in the chapter that these two powerful attack

primitives can be constructed in a very stealthy manner—the oracles can be queried by the

adversary repeatedly and frequently without crashing the attacked VMs.

In addition, as a by-product of the study, Chapter 3 also reveals a severe side-channel

vulnerability of SEV: As the adversary is able to manipulate the nested page tables, it could

alter the present bit or reserve bit of the nested page table entries to force guest VM’s

memory accesses to the corresponding pages to trigger page faults. While this page-fault

side channel has been previously studied in the context of Intel SGX [95] and even used in

previous attacks against SEV [39], it is also reported that page faults from SEV-enabled guest

VMs leak the entire faulting addresses (and error code) to the hypervisor (unlike in SGX

where the page offset is masked). This fine-grained page-fault attack enables fine-grained

tracing of the encrypted VM’s memory access patterns, and particularly is used to facilitate

the construction of the memory decryption oracle.

3

Contribution. Our work in Chapter 3 contributes to the study of trusted execution environ-

ment (TEE) security in the following aspects:

• Our work study a previously unexplored security issue of AMD SEV—the unprotected I/O

operations of SEV-enabled guest VMs. The root cause of the problem is the incompatibility

between AMD-V’s I/O virtualization with SEV’s memory encryption scheme.

• Our work demonstrate that the unprotected I/O operations could also be exploited to

construct powerful attack primitives, enabling the adversary to perform arbitrary memory

encryption and decryption.

• Our work report the lack of page-offset masking of the faulting addresses during SEV’s

page faults handling, which leads to fine-grained side-channel leakage. This chapter also

demonstrates the use of both fine-grained and coarse-grained side channels in its I/O

attacks.

• Our work empirically evaluate the fidelity of the attacks and discusses both hardware and

software approaches to mitigating the I/O security issues.

1.3 ASID Security in SEV

In Chapter 3, we show that the unprotected I/O operation may break SEV’s integrity and

confidentiality. In Chapter 4, we move our attention to another, yet-to-be-reported design

flaw of SEV—the improper ASID-based memory isolation and access control. Specifically,

SEV adopts an ASID-based access control for guest VMs’ accesses to SEV processor’s

internal caches and the encrypted physical memory. At launch time, each SEV VM is

assigned a unique ASID, which is used as the tag of cache lines and translation lookaside

buffer (TLB) entries. A secure processor (dubbed AMD-SP) that is in charge of generating

and maintaining the ephemeral memory encryption keys also uses the current VM’s ASID

4

to index the keys for encrypting/decrypting memory pages upon memory access requests.

As such, the ASID of an SEV VM plays a critical role in controlling its accesses to the

private data in the cache-memory hierarchy. Nevertheless, the assignment of ASID to a

VM is under complete control of the hypervisor. An implicit “security-by-crash” security

principle is adopted in the SEV design:

“Although the hypervisor has control over the ASID used to run a VM and select the
encryption key, this is not considered a security concern since a loaded encryption
key is meaningless unless the guest was already encrypted with that key. If the
incorrect key is ever loaded or the wrong ASID is used for a guest, the first
instruction fetch of that guest will fail as memory will be decrypted with the wrong
key, causing junk data to be executed (and very likely causing a fault).” [51]

The aim of this chapter is to investigate the validity of this “security-by-crash” design

principle. To do so, we first study how ASIDs are used in SEV processors to isolate en-

crypted memory pages as well as CPU caches and TLBs. We also explore how ASIDs are

managed by the hypervisor, how an ASID of a VM can be altered by the hypervisor at run-

time, and why the VM with altered ASID crashes afterwards. This exploration leads to the

discovery of several potential opportunities for a VM with an altered ASID to momentarily

breach the ASID-based memory isolation before it crashes.

Next, based on our exploration, we then present CROSSLINE attacks2, which exploit such

a momentary execution to breach the confidentiality and integrity of SEV VMs. Specifically,

an adversary controlling the hypervisor can launch an attacker VM and, during its VMEXIT,

assign it with the same ASID as the victim VM, and then resume it, leading to the violation

of the ASID-based access control to the victim’s encrypted memory.

We mainly present two variants of CROSSLINE. In CROSSLINE V1, even though no

instructions are executed by the attacker VM after VMRUN, we show that it is possible to

2CROSSLINE refers to interference between telecommunication signals in adjacent circuits that causes
signals to cross over each other.

5

load memory pages encrypted with the victim VM’s memory encryption key (VEK) during

page table walks, thus revealing the encrypted content of the “page table entries” (PTE)

through nested page faults. This attack variant enables the adversary to extract the entire

encrypted page table of the SEV guest VM, as well as any memory blocks conforming to the

PTE format. We have also successfully demonstrated CROSSLINE V1 on SEV-ES machines,

in which we devise techniques to bypass the integrity checks of launching the attacker

VM with the victim VM’s encrypted VMCB, while keeping the victim VM completely

unaffected. In CROSSLINE V2, by carefully crafting its nested page tables, the attacker VM

could manage to momentarily execute arbitrary instructions of the victim VM. By wisely

selecting the target instructions, the adversary is able to construct encryption oracles and

decryption oracles, which enable herself to breach both integrity and confidentiality of the

victim VM. CROSSLINE V2 is confined by SEV-ES, but its capability is stronger than V1.

As extensions of the two attack variants, in Chapter 4, we also discuss (1) another variant

of CROSSLINE, which allows the attacker VM to reuse the TLB entries of the victim VM

for address translation and execute some instructions, even without any successful page

table walks; and (2) the potential applicability of CROSSLINE on SEV-SNP.

Differences from known attacks. CROSSLINE differs from all previously demonstrated

SEV attacks in several aspects. First, CROSSLINE does not rely on SEV’s memory integrity

flaws, which is a common pre-requisite for all known attacks on SEV. Although CROSSLINE

may not work on SEV-SNP, the protection does not come from memory integrity, but a

side-effect of the RMP implementation. Second, CROSSLINE attacks do not directly interact

with the victim VMs and thus enable stealthy attacks. As long as the ephemeral encryption

key of the victim VM is kept in the AMD-SP and the victim’s encrypted memory pages

are not deallocated, CROSSLINE attacks can be performed even when the victim VM is

6

shutdown. Therefore, CROSSLINE is undetectable by the victim VM. In contrast, prior

attacks relying on I/O operations of the victim VM [29, 61, 68, 69] are detectable by the

victim VM.

CROSSLINE questions a fundamental security assumption of “security-by-crash” under-

pinning the design of SEV’s memory and cache isolation. The demonstration of these attack

variants suggests that SEV should not rely on adversary-controlled ASIDs to mediate access

to the encrypted memory. To eliminate the threats, a principled solution is to maintain the

identity of VMs in the hardware, which unfortunately requires some fundamental changes

in the architecture. As far as we know, SEV-SNP will not integrate such changes.

Contributions. This chapter makes the following contributions to the security of AMD

SEV and other trusted execution environments.

• Our work investigate SEV’s ASID-based memory, cache, and TLB isolation, and demys-

tifies its “security-by-crash” design principle (Section 4.1). It raises security concerns of

the “security-by-crash” based memory and TLB isolation for the first time.

• Our work present two variants of CROSSLINE attacks—the only attacks that breach the

confidentiality and integrity of an SEV VM without exploiting SEV’s memory integrity

flaws (Section 4.2).

• Our work presents successful attacks against SEV and SEV-ES processors (Section 4.3).

We also discusses the applicability of CROSSLINE on the upcoming SEV-SNP processors

(Section 5.6).

1.4 TLB Security in SEV

Chapter 5 outlines a new category of security attacks against SEV, namely TLB Poisoning

Attacks, which enable the adversary who controls the hypervisor to poison the TLB entries

7

shared between two processes of the same SEV VM. The root cause of TLB Poisoning

Attacks is that the hypervisor is in control of the TLB flushes by the design of AMD

SEV. Specifically, because TLB is tagged with ASIDs to distinguish the TLB entries used

by different entities, unnecessary TLB flushes can be avoided during the world switches

(VMEXIT and VMRUN between the guest VM and the hypervisor) or the context switches

(context switches between the process hosting the guest VM’s current virtual CPU (vCPU)

and other processes). As it is difficult for the CPU hardware to determine whether to flush

the entire TLB or only TLB entries with certain ASIDs, the TLB flush is solely controlled by

the hypervisor. The hypervisor can inform the CPU hardware to fully or partially flush the

TLB by setting the TLB control field in the VMCB, which will take effect after VMRUN.

As such, the adversary can intentional skip TLB flushes, such that a victim process of the

victim SEV VM may unwillingly use the TLB entries injected by another process of the

same VM.

Two attack scenarios of TLB Poisoning attacks are considered in this chapter: (1) With

the help of an unprivileged attacker process running in the targeted SEV VM, the adversary

is able to poison the TLB entries used by a privileged process and alter its execution. (2)

Without the help of a process directly controlled by the adversary, the adversary could

still exploit the misuse of TLB entries on a network-facing process (not in his control)

that share the same (or similar) virtual address space with the targeted process and bypass

authentication checks. We have demonstrated two end-to-end attacks against two SSH

servers to show the feasibility of the two attack scenarios, respectively, on an AMD EPYC

Zen processor that supports SEV-ES.

Contributions. The chapter makes the following contributions to field of study.

8

• It demystifies AMD SEV’s TLB management mechanisms, which have never been studied

and reported in-depth, and identifies a severe flaw of its design of TLB isolation that leads

to misuse of TLBs under the assumption of a malicious or compromised hypervisor.

• It presents a novel category of attacks against SEV, namely TLB Poisoning Attacks, which

manipulate the TLB entries shared by two processes within the same SEV VM and breach

the integrity and confidentiality of one of the processes. To the best of our knowledge, it is

the first TLB poisoning attack demonstrated in any context.

• It demonstrates two end-to-end TLB Poisoning Attacks against SEV-ES-protected VMs.

In one attack, it shows the feasibility of poisoning TLB entries to change the code execution

of the victim process; in the other, it provides an example of stealing secret data from the

victim process by a process (not controlled by the adversary) through shared TLB entries.

1.5 VMSA Security in SEV

Unlike all prior work on SEV attacks, Chapter 6 presents a new side channel on SEV

(including SEV-ES and SEV-SNP) processors. We call it the ciphertext side channel. It

allows the privileged hypervisor to monitor the changes of the ciphertext blocks on the guest

VM’s memory pages and exfiltrate secrets from the guest. The root cause of the ciphertext

side channel are two-fold: First, SEV’s memory encryption engine uses an XOR-Encrypt-

XOR (XEX) mode of operation, which encrypts each 16-byte memory block independently

and preserves the one-to-one mapping between the plaintext and ciphertext pairs for each

physical address. Second, the design of SEV does not prevent the hypervisor from reading

the ciphertext of the encrypted guest memory, thus allowing its monitoring of the ciphertext

changes during the execution of the guest VM.

9

To demonstrate the severity of leakage due to the ciphertext side channel, we construct

the CROSSLINE attack, which exploits the ciphertext side channel on the encrypted VMSA

page of the guest VM. Specifically, the CROSSLINE attack monitors the ciphertext of the

VMSA area during VMEXITs, then (1) by comparing the ciphertext blocks with the ones

observed during previous VMEXITs, the adversary is able to learn that the corresponding

register values have changed and thereby infer the execution state of the guest VM; and

(2) by looking up a dictionary of plaintext-ciphertext pairs collected during the VM bootup

period, the adversary is able to recover some selected values of the registers. With these

two attack primitives, we show that the malicious hypervisor may leverage the ciphertext

side channel to steal the private keys from the constant-time implementation of the RSA and

ECDSA algorithms in the latest OpenSSL library, which are believed to be immune to side

channels.

We discuss countermeasures of the ciphertext side channel and the specific CROSSLINE

attack. While there are some seemingly feasible software countermeasures, we show they

become fragile when the CROSSLINE attack is performed using Advanced Programmable

Interrupt Controller (APIC). Therefore, we conjecture that the ciphertext side-channel

vulnerability is difficult to eradicate from the software. Therefore, alternative hardware

solutions must be adopted in the future SEV hardware.

Contributions. This chapter contributes to the security of AMD SEV and confidential

computing technology in general in the following aspects:

• It presents a novel ciphertext side channel on SEV processors. This discovery identifies a

fundamental flaw in the SEV’s use of XEX mode memory encryption.

10

• It presents a new CipherLeaks attack that exploits the ciphertext side channel to infer

register values from encrypted VMSA. Two primitives were constructed for inferring the

execution states of the guest VM and recovering specific values of the registers.

• It presents successful attacks against the constant-time RSA and ECDSA implementation

of the latest OpenSSL library, which has been considered secure against side channels.

• It discusses the applicability of the CipherLeaks attack on SEV-SNP. To the best of

our knowledge, the CipherLeaks attack is the only working attack against SEV-SNP that

breaches the memory encryption of the guest VM.

• It discusses potential software and hardware countermeasures for the ciphertext side

channel and the demonstrated CipherLeaks attack.

1.6 General Memory Encryption Security in SEV

The first and only software-based attack that still applied to SEV-SNP is CIPHER-

LEAKS [62] (as introduced in Chapter 6), a novel side-channel attack where a malicious

hypervisor can steal the secret keys of RSA and ECDSA algorithms in the OpenSSL im-

plementation by monitoring the guest VM Save Area (VMSA). Due to its severity, AMD

recently released a microcode patch (MilanPI-SP3_1.0.0.5) [11] to mitigate the CIPHER-

LEAKS attacks. The microcode patch enables the 3rd generation AMD EPYC processors

(Milan series) to include a nonce into the encryption of the VMSA area, such that the link

between the plaintext and the ciphertext is broken. As such, CIPHERLEAKS attacks against

register values in the VMSA are no longer feasible. Note that the patch only changes the

encryption of the VMSA, while the remaining memory space of the VM is still protected

with the same deterministic XEX encryption as before.

11

In Chapter 7, we perform a comprehensive study on the exploitability of leakage caused

by ciphertext in encrypted VM memory and try to answer the question:

Are current cryptography implementations still safe when an attacker has access to
the ciphertext of the encrypted memory?

We broadly group ciphertext side channel attacks into two categories: the dictionary

attack and the collision attack. We show that these two classes of attacks can be applied to

general memory regions during cryptographic activities, including kernel data structures,

stacks, and heaps, which all lead to key leakage. Most main cryptography libraries (including

OpenSSL, WolfSSL, GnuTLS, OpenSSH, and libgcrypt) are shown to be vulnerable against

the ciphertext side channel.

Contribution. The contributions of this chapter can be summarized as follows:

• Systematically studies the ciphertext side channel in the entire memory of SEV-protected

VMs. It shows that the ciphertext side channel can be exploited in all memory regions,

including kernel structures, stacks, and heaps.

• Presents end-to-end ciphertext side-channel attacks against the ECDSA implementation

of the OpenSSL library. Other main cryptography libraries (including OpenSSL, WolfSSL,

GnuTLS, OpenSSH, and libgcrypt) are also shown to be vulnerable to the ciphertext side

channel.

• Discusses both hardware and software countermeasures. Presents a kernel patch to miti-

gate ciphertext side channels caused by kernel structures. The ciphertext side channel can

be mitigated when adopting the kernel patch together with software fixes for cryptographic

libraries.

12

Chapter 2: Background

2.1 AMD SEV

2.1.1 Overview

AMD Secure Encrypted Virtualization (SEV) is a security extension for AMD Virtual-

ization (AMD-V) architecture [6]. AMD-V is designed as a virtualization substrate for cloud

computing services, which allows one physical server to run multiple isolated guest virtual

machines (VM) concurrently. AMD’s SEV is designed atop its Secure Memory Encryption

(SME) technology.

Secure Memory Encryption (SME). SME is AMD’s x86 extension for real-time main

memory encryption, which is supported in AMD CPU with Zen micro architecture from

2017 [83]. Aiming to defeat cold boot attack and DRAM interface snooping, an embedded

Advanced Encryption Standard (AES) engine encrypts data when the processor writes to

the DRAM and decrypts it when processor reads it. The entire DRAM is encrypted with

a single ephemeral key which is randomly generated each time the machine is booted. A

32-bit ARM Cortex-A5 Secure Processor (AMD-SP) [74] is integrated in the system-on-chip

(SOC) alongside the main processor, providing a dedicated security subsystem, storing, and

managing the ephemeral key. Although all memory pages are encrypted by default, the

operating system can mark some pages as unencrypted by clearing the C-bit (the 48th bit) of

13

the corresponding page table entries (PTE). However, regardless of the C-bit, all code pages

and page table pages are encrypted by default. With Transparent SME (TSME), a special

mode of operation of SME, the entire memory is encrypted, ignoring the C-bits of the PTEs.

AMD Virtualization (AMD-V). AMD-V is a set of extensions of AMD processors to

support virtualization. Nested Page Tables (nPT) is introduced by AMD-V to facilitate

address translation, which is officially marketed as Rapid Virtualization Indexing [3]. AMD-

V’s nPT provides two levels of address translation. When nPT is enabled, the guest VM

and the hypervisor have their own CR3s: a guest CR3 (gCR3) and a nested CR3 (nCR3).

The gCR3 contains the guest physical address of the gPT; the nCR3 contains the system

physical address of the nPT. To translate a virtual address (gVA) used by the guest VM into

the system physical address (sPA), the processor first references the guest page table (gPT)

to obtain the guest physical address (gPA) of each page-table page. To translate the gPA

of each page, an nPT walk is performed. During the nPT walk, the gPA is treated as host

virtual address (hVA) and translated into the sPA using the nPT. These address translation

steps are illustrated in Figure 2.1.

Translation lookaside buffers (TLB) and Page Walk Cache (PWC) are internal buffers

in AMD processors for speeding up the address translation. AMD-V also relies on these

internal buffers for performance improvements. AMD-V further introduces an nTLB for

nPT. A successful nPT walk caches the translation from gPA to sPA in the nTLB for fast

accesses [6], while the normal TLBs are used to store translations from virtual addresses

of either the host or the guest to sPA.

To exchange data between the hypervisor and the guest VMs, a data structure dubbed

the virtual machine control block (VMCB) is located on a shared memory page. VMCB

14

gPA

nCR3

gVA

[47:39]

[38:30]

[29:21]

[20:12]

[11:0]

⊗

gCR3

gL1

gL2

gL3

gL4 nL4 nL3 nL2 nL1 gL4
sPA sPA sPA sPA

gPA

⊗

⊗

⊗

⊗

nL4 nL3 nL2 nL1 gL3

nL4 nL3 nL2 nL1 gL2

nL4 nL3 nL2 nL1 gL1

nL4 nL3 nL2 nL1

gPA

sPA
TLB
Entry

G
uestPage

Table
w
alk

Nested Page Table Walk

Figure 2.1: AMD-V nested page table walks [3].

stores the guest VM’s register values and some control bits during VMEXIT. The VMCB is

under the control of the hypervisor to configure the behaviors of the guest VM.

Secure Encrypted Virtualization (SEV). SEV combines AMD-V architecture with SME

to allow individual VMs to have their own VM Encryption Key (VEK) [7]. Each VEK is

generated by the processor and assigned to an SEV VM when launched by the hypervisor.

All VEKs are stored in the AMD-SP and are never exposed to DRAM during their entire

life cycle. SEV distinguishes different VEKs using ASIDs. Specifically, when a VM is

launched, the hypervisor chooses an available ASID and assigns the ASID to the VM. The

ASID is then used as the key index to identify the specify the VEKs inside the co-processor.

There is a special register storing current ASID of the VM and the ASID of the hypervisor

is restricted by the processor to be 0 [6].

15

When a memory request is made, the AMD-SP determines which key to be used with

the current ASID. In combination with encryption modes specified in the guest page tables

(gPT) and the nested page tables (nPT) [3], SEV achieves page-granular memory encryption

with different keys. The confidentiality of SEV-enabled VM is guaranteed because memory

encryption keys are managed by the AMD-SP, privileged software layers like hypervisor are

not allowed to access or manipulate these keys.

Beside confidentiality, authenticity of the platform and integrity of the guest VMs are

also provided by SEV. An identification key embedded in the firmware is signed by both

AMD and the owner of the machine to demonstrate that the platform is an authentic AMD

platform with SEV capabilities, which is administered by the machine owner. The initial

contents of memory, along with a set of metadata of the VM, can be signed by the firmware

so that the users of the guest VMs may verify the identity and the initial states of the

launched VMs through remote attestation.

SEV Encrypted State (SEV-ES) and SEV Secure Nested Paging (SEV-SNP). SEV

VMs may additionally use the SEV with Encrypted State (SEV-ES) feature or SEV with

Secure Nested Paging (SEV-SNP) feature if the processor has corresponding microcode and

hardware support [8]. SEV-ES encrypts the VMCB of a VM to protect register values at

VMEXITs; SEV-ES processors are already commercially available. SEV-SNP is AMD’s

plan to address the most commonly exploited flaw—the lack of memory integrity for

SEV VMs. SEV-SNP is used to protect encrypted VM from SEV and SEV-ES’s existing

vulnerabilities like unauthenticated memory encryption and unprotected nested page tables.

AMD plans to release SEV-SNP, which introduces a Reverse Map Table (RMP) to dictate

ownership of the memory pages, so that the majority of the previously known attacks will

16

Table 2.1: Effects of C-bits in guest page tables (gPT) and nested page tables (nPT). M is
the plaintext; Ek() is the encryption function under a memory encryption key k; kg and kh
represent the guest VM and the hypervisor’s memory encryption keys, respectively.

gPT nPT
C-bit=0 C-bit=1

C-bit=0 M Ekh(M)

C-bit=1 Ekg(M) Ekg(M)

be mitigated. SEV-SNP processors as well as its software updates are not commercially

available yet.

2.1.2 Memory Encryption

ASID and memory encryption. In SEV, the encryption keys used for memory encryption

are generated from random sources when the VMs are launched. They are securely stored

inside the secure processor for their entire life-cycle. Each VM has its own unique memory

encryption key Kvek, which is indexed by the ASID of the VM. When the VM accesses a

memory page that is mapped to its address space with its C-bit set, the memory will be first

decrypted using the VM’s Kvek before loaded into the CPU caches. Data in the caches are

stored in plaintext; each cache line, in addition to the regular cache tags, is also tagged by

the ASID of the VM. As such, the same physical memory may have multiple copies cached

in the hardware caches. AMD does not maintain the consistency of the cache copies with

different ASID tags [51].

Encryption with nested paging. AMD-V utilizes nested paging structures [3] to facilitate

memory isolation between guest VMs. When the virtual address used by the guest VM

(gVA) is to be translated into physical address, it is first translated into a guest physical

17

addressing (gPA) using the guest page table (gPT), and the gPA is then translated into the

host physical address (hPA) using the nested page table (nPT). While gPT is located in guest

VM’s address space, nPT is controlled directly by the host.

With AMD’s SME technology, bit 47 of a PTE is called the C-bit, which is used to

indicate whether or not the corresponding page is encrypted. When the C-bit of a page is set

(i.e., 1), the page is encrypted. As both the gPT and the nPT has C-bits, the encryption state

of a page is controlled by the combination of the two C-bits in its PTEs in the gPT and nPT.

The effect of C-bits in the gPT and nPT is shown in Table 2.1. To summarize, whenever the

C-bit of gPT is set to 1, the memory page is encrypted with the guest VM’s encryption key

kg; when the C-bit of gPT is cleared, the C-bit of nPT determines the encryption state of the

page: the page is encrypted under the hypervisor’s key kg when C-bit is 1; otherwise the

page is not encrypted.

To share memory pages between a guest VM and the hypervisor while preventing

physical attacks, it is required to have the memory page’s C-bit set to 0 in its gPT and the

C-bit set to 1 in its nPT, so that the page is encrypted under the hypervisor’s encryption key.

The control of C-bit in gPT is managed by guest OS.

SEV Encryption mode. SEV uses AES as its encryption algorithm. The memory encryption

engine encrypts data with a 128-bit key using the Electronic Codebook (ECB) mode of

operation [29]. Therefore, each 16-byte aligned memory block is encrypted independently.

A physical address-based tweak function T () is utilized to make the ciphertext dependent

of not only the plaintext but also its physical address [51]. Specifically, the tweak function

is defined as T (x) = ⊕xi=1ti, where xi is the ith bit of host physical address x, ⊕ is the

bitwise exclusive-or (i.e., XOR) and ti (1≤ i≤ 128) is a 128-bit constant vector. The tweak

function takes a physical address as an input and outputs a 128-bit value T (x). Therefore,

18

the ciphertext c of a plaintext m at address m is c = EK(m⊕T (m)). The tweak function

prevents attacker from inferring plaintext by comparing the ciphertext of two 16-byte

memory blocks. However, as the constant vectors tis remain the same for all VMs (and the

hypervisor) on the machine, they can be easily reverse engineered by an adversary. One

root problem exploited in prior studies on SEV’s insecurity is the lack of integrity of its

encrypted memory [23, 29, 39, 69].

2.2 Existing Security Studies on SEV

The security issues of AMD’s SEV have been placed under the spotlight since its debut.

Demonstrated security attacks mainly targets SEV’s unencrypted VMCB [39] and SME’s

unauthenticated memory encryption [23, 29, 39, 69]. The former issue has been fixed using

SEV-ES [49] and the latter could be addressed with integrity protection of the encrypted

memory. An implementation bug in the firmware of AMD secure processors have also been

reported [28]. But since the issue was not related to a design failure, we leave it as out of

scope of the proposal. We detail these related work as follows:

Unencrypted VMCB. Hetzelt and Buhren analyzed the security of SEV from the perspective

of unencrypted virtual machine control block (VMCB) [39]. VMCB is a data structure in

memory shared by the hypervisor and the guest VM, which stores the values of guest’s

general purpose registers and control bits for handling virtual interrupts. At the time of

VMEXIT, a malicious hypervisor may learn the machine state of the guest VM by reading

register values stored in the VMCB and subsequently alter their values before VMRUN

to control the registers of the guest VM. Hetzelt and Buhren [39] exploit unencrypted

VMCB using code gadgets in the guest memory (similar to return-oriented programming

(ROP) [79]) to arbitrarily read and write encrypted memory in the guest VM. The security

19

issue caused by unencrypted VMCB, however, has been mitigated by SEV-ES [49], which

adds another indirection layer during VMEXIT that allows the guest VM to be notified before

Non-Automatic Exits (NAE)—exits requiring hypervisor emulation—and prepares a new

data structure called Guest Hypervisor Communication Block—a subset of VMCB—to

communicate with the hypervisor. The machine states stored in the VMCB are instead

encrypted with authentication, such that they are inaccessible from the hypervisor.

Unauthenticated memory encryption. Because SME does not use authenticated encryption

schemes, the integrity of the encrypted memory is not protected. As such, malicious

hypervisors may alter the ciphertext of the encrypted memory without triggering errors

in the decryption process of the guest VMs. Prior studies have demonstrated a variety of

approaches to exploit such unauthenticated memory encryption:

• Chosen plaintext attacks. Du et al. discovered that SME uses Electronic Codebook

(ECB) mode of operation in its memory encryption [29], which implies that the same

plaintext always leads to the same ciphertext after encryption. As the only security measure

is a physical address based tweak function XORed with the plaintext before encryption,

knowledge of the tweak function will enable the adversary to deduce the relationship

between the plaintext of two memory blocks (i.e., of 16 bytes) if their ciphertext are the

same. Du et al. exploit this weakness by constructing a chosen plaintext attack (via an

HTTP server installed on the guest VM) and then replace the ciphertext of an sshd program

with the ciphertext of instructions specified by the adversary (after applying the tweak

functions).

Wilke et al. [93] studied the Xor-Encrypt-Xor (XEX) mode of memory encryption of

AMD’s Epyc 3xx1 series processors, where the tweak function XOR with the plaintext

twice, both before and after the encryption. However, in the Epyc 3xx1 processor that was

20

studied by the authors, the entropy of the tweak functions is only 32 bits, making brute-

force attacks practical. It is demonstrated that the adversary who breaks the tweak function

can insert some arbitrary 2-byte instruction into encrypted memory with the help of 8MB

plaintext-ciphertext pairs. The vulnerability is also caused by the lack of authentication in

the memory encryption. Fortunately, the XEX tweak function vulnerability exploited in

the paper was fixed in Zen 2 architecture that was released in May, 2019. Therefore, later

AMD processors are not affected by this attack.

• Fault injection attacks. Buhren et al. studied fault injection attacks on a simulated SME

implementation [23]. Their work considers a different threat model, which assumes that

the adversary is able to conduct physical DMA attacks [18] and also run an unprivileged

process on the target OS. The unprivileged process performs Prime+Probe side-channel

attacks to trace the execution of the SME protected application and, at the proper moment

of a cryptographic operation, utilizes DMA attacks to inject memory faults to infer secret

keys (or key components). We believe Buhren et al.’s attack against SME can be migrated

to SEV as well, which is even easier to conduct as the hypervisor can be assumed to be

malicious.

• Page table manipulation. Remapping guest pages in the nested paging structures to

replay previously captured memory pages was first studied by Hetzelt and Buhren [39].

A similar idea was later demonstrated by Morbitzer et al. in SEVered, an attack that by

manipulating the nested page table alters the virtual memory of the guest VMs to breach

the confidentiality of the memory encryption [69]. More specifically, SEVered is carried

out in the following steps: First, the malicious hypervisor sends network requests to the

guest’s network-facing application, e.g., an HTTP server, which allows the attacker to

download files larger than one memory page. Second, using a coarse-grained page-level

21

side channel, the attacker determines which of the encrypted guest VM’s memory pages are

used to store the response data. Third, after locating these pages, the malicious hypervisor

changes the page mappings in the nested page table so that these virtual pages used by

the guest are mapped to different physical pages. As a result, memory content of these

pages can be leaked through the responses of the network applications. The same authors

further extend SEVered to perform more realistic attacks [68], by extracting secret keys in

real-world protocols and applications such as TLS, SSH, full disk encryption (FDE). Their

attack makes use of the same side channels to identify the set of memory pages that are

likely to contain those secrets and scans those pages (roughly 100 pages) until the secrets

are found. Both these works only present decryption oracles but not encryption oracles.

Other studies. Mofrad et al. [67] compare Intel SGX and AMD SEV, in terms of their

functionality, use scenarios, security, and performance implications. The study suggests

SEV is more vulnerable than SGX as it lacks memory integrity and has a bloated trust

computing base (TCB). Moreover, the performance comparison suggests AMD SEV tech-

nology performs better than Intel SGX. Wu et al. proposes Fidelius [94], a system that

leverages a sibing-based protection mechanism to partition an untrusted hypervisor into

two components, one for resource management and the other for security protection. The

security of guest VMs is enhanced by the “trusted” security protection component, which,

while interesting and effective, unfortunately contradicts with SEV’s original intention of

eliminating the hypervisor from the TCB. Fidelius mentioned a method to protect disk I/O

that is similar to our temporary fix (see Section 3.5.2) but implies that the disk image is

shipped to the SEV platform. Thus it requires using the same Ktek every time the disk image

is used. Our proxy-style solutions in Section 3.5.2 is a generalization of their approach.

22

2.3 Comparison between Intel TEEs and SEV

Intel TME and MKTME. Intel’s counterparts of AMD’s SME and SEV are Total Memory

Encryption (TME) and Multi-Key Total Memory Encryption (MKTME) [42]. The concept

of TME is almost the same as AMD SME: an AES-XTS encryption engine sits between a

direct data path and external memory buses to encrypt data when leaving the processor and

decrypt it when entering the processor. TME supports a single ephemeral encryption key for

the entire processor. In contrast, MKTME supports multiple keys; it labels each page table

entry with a KeyID to select one of the ephemeral AES keys generated in the encryption

engine. Different from AMD SEV, guest VMs in MKTME may have more than one AES

key. KeyID0 is used for guest VM to share pages with hyperviosr. KeyIDN is assigned to

guest the Nth VM by hypervisor for guest’s private page. However, the guest VM is able

to obtain other KeyIDs to share memory with another guest VMs. As we were not able to

purchase a machine with TME and MKTME on the market at the time of writing, we leave

the analysis of these Intel’s technologies to future work.

Intel SGX. Intel Software Guard eXtension (SGX) is an instruction set architecture extension

that supports isolation of memory regions of userspace processes. Through a microcode-

extended memory management unit, memory accesses to the protected memory regions,

dubbed enclaves, are mediated so that only instructions belonging to the same enclave are

permitted. Software attacks from all privileged software layers, including operating systems,

hypervisors, system management software, are prevented by SGX. A hardware Memory

Encryption Engine sits between the processor and the memory to encryption memory traffic

on the fly, so that confidentiality of the enclave memory is guaranteed even with physical

attackers. Remote attestation is supported in SGX to guard the integrity of the enclave code.

23

Similar to AMD’s SEV, SGX constructs TEE on Intel processors. However, it differs

from SEV as it only isolates portions of the user processes’ memory space, whereas SEV

encrypts the memory of the entire virtual machine. Developers of SEV do not need to

rewrite the software when using AMD’s TEE; but SGX developers have to manually

partition applications into trusted and untrusted components, and recompile the source code

with the SDKs provided by Intel. SGX machines have been available on market since late

2015. So far, two major types of attacks have been demonstrated to SGX applications.

• Side-channel attacks. Prior studies have demonstrated that enclave secrets in SGX can

be exfiltrated through side channels on the CPU caches [21, 34, 38, 77], branch target

buffers [59], DRAM’s row buffer contention [90], page-table entries [88, 90], and page-

fault exception handlers [80,95]. More recently, side-channel attacks exploiting speculative

and out-of-order execution have been shown on SGX as well [26,87]. Similar to SGX, SEV

is not designed to thwart side-channel attacks. Therefore, we expect similar attacks can be

carried out on AMD’s SEV as well. Because some attacks demonstrated in this proposal

already completely break the confidentiality of SEV-protected VMs, there is no need to

rely on side channels to extract secrets. However, in some of the attacks we demonstrate,

side channels do facilitate the attacks. We leave the discussion on side-channel surface of

SEV to future work.

• Memory hijacking attacks. SGX does not guard memory safety inside the enclaves.

Studies [20,58] have shown that attackers could exploit vulnerabilities in enclave programs

and perform return-oriented programming (ROP) attacks [79]. Randomization-based

security defenses have been proposed to mitigate ROP attacks [78]. However, as pointed

out by Biondo et al. [20], SGX runtimes inherently contains memory regions that are hard

to randomize, and thus completely eliminating the threats of memory hijacking attacks

24

requires eradicating vulnerabilities from the enclave code. As neither SGX nor SEV is

designed to provide memory safety, memory hijacking attacks are feasible on SEV as well.

We will not further discuss these attacks on SEV in this proposal.

25

Chapter 3: Exploiting Unprotected I/O Operations in AMD SEV

In this chapter, we study the insecurity of SEV from the perspective of the unprotected I/O

operations in the SEV-enabled VMs. The results are alerting: not only have we discovered

attacks that breach the confidentiality and integrity of these I/O operations—which we find

very difficult to mitigate by existing approaches—but more significantly we demonstrate the

construction of two attack primitives against SEV’s memory encryption schemes, namely a

memory decryption oracle and a memory encryption oracle, which enables an adversary to

decrypt and encrypt arbitrary messages using the memory encryption keys of the VMs. We

evaluate the proposed attacks and discuss potential solutions to the underlying problems.

Responsible disclosure. We have reported our findings in this chapter to AMD and disclosed

the technical details with AMD researchers. While we were confirmed that the presented

attacks work on current release of SEV processors, AMD researchers suggested future

generations of SEV chipsets are likely to be immune from these attacks. Some of the

technical feedback we obtained from AMD has also been integrated into the chapter.

The chapter is organized as follow: Section 3.1 explains the root causes of the exploited

I/O operations. Section 3.2 talks about our threat model. Section 3.3 describes several

attacks exploiting the unprotected I/Os. Section 3.4 presents an evaluation of the fidelity of

the attacks. Section 3.5 discusses potential solutions to securing SEV’s I/O operations and

Section 3.6 summarizes the chapter.

26

3.1 Root Cause of vulnerable I/O operations

The lack of trust in the privileged software introduces an assortment of new attack

vectors to SEV-enabled VMs that were mostly unexplored in the literature. In this chapter,

we study the unprotected I/O operations in SEV VM. The simulated I/O operations used in

SEV and the transmission needed for I/O between shared page and private page are two root

causes of vulnerable I/O operations in SEV.

Simulated I/O operations Similar to other virtualization technologies, SEV-enabled VMs

interact with I/O devices through virtual hardware using Quick Emulator (QEMU). Common

methods for VMs to perform I/O operations are programmed I/O, memory-mapped I/O, and

direct memory access (DMA). Among these methods, DMA is most frequently used method

for SEV-enabled VMs to do I/O accesses.

Bounce Buffer used in SEV. With the assistance of DMA chips, programmable peripheral

devices can transfer data to and from the main memory without involving the processor. With

virtualization, a common way to support DMA is through IOMMU, which is a hardware

memory management unit that maps the DMA-capable I/O buses to the main memory.

However, unique to SEV is that the memory is encrypted. While the MMU supports

memory encryption with multiple ASIDs, IOMMU only supports one ASID (i.e., ASID=0).

Therefore, in SEV-enabled VMs, DMA operations are performed on memory pages that are

shared between the guest and the hypervisor (encrypted with the hypervisor’s Kh). A bounce

buffer, called Software I/O Translation Buffer (SWIOTLB), is allocated on these memory

pages.

To illustrate the DMA operation from the guest, a disk I/O read is shown in Figure 3.1.

When a guest application needs to read data from file, it first checks whether the file is

27

already stored in its page cache. A miss in the guest page cache will trigger read from virtual

disks, which is emulated by QEMU-KVM. The data is actually read from the physical disk

by QEMU-KVM’s DMA operation into SWIOTLB and then copied to the disk device driver’s

I/O buffer by the guest VM itself. The disk write operation is the inverse of this process, in

which the data is first copied from the guest into SWIOTLB and then processed by QEMU.

Figure 3.1: An example of a disk I/O operation by an SEV-enabled VM.

3.2 Threat Model

We consider a scenario in which the VMs’ memory are encrypted and protected by

AMD SEV technology. The hypervisor run on a machine controlled by a third-party service

provider. Under the threat model we consider, the third-party service is not trusted to respect

28

the integrity or confidentiality of the computation inside the VMs. This could happen when

the service provider is dishonest or when the hypervisor has been compromised.

The goal of the attacks in this chapter is either to compromise the I/O operations

themselves or the memory encryption of SEV. Out of scope in this proposal are denial-of-

service (DoS) attacks, in which the service provider simply refuses to run the VM. SEV is

not designed to prevent DoS attacks.

3.3 Security issues of Unprotected I/O Operations in AMD SEV

In this section, we explore the security issues of the lack of protection for SEV’s I/O

operations. We start of our exploration with the most straightforward consequence of

vulnerability—the insecurity of I/O operations itself—and present an attack example that

breaches the integrity of I/O operations. To comprehensively study the attack surface, we

also enumerate the I/O operations from a guest VM that are vulnerable to such attacks and

discuss the challenges of implementing effective countermeasures. Next, we show that

I/O insecurity leads to a complete compromise of the memory encryption scheme of SEV,

by constructing powerful attack primitives that leverage the unprotected I/O operations to

enable the adversary to encrypt or decrypt arbitrary messages with the guest VM’s memory

encryption key, kvek.

3.3.1 Unprotected I/O Security’s consequences

In this section, we explore the direct consequences of unprotected I/O operations from

SEV-enabled guests.

29

3.3.1.1 Case Study: Integrity Breaches of Disk I/O

We first present a case study to show how SEV’s guest VMs’ unprotected I/O operations

can be exploited to breach I/O security in practice. In this case study, we show that a

malicious hypervisor is able to gain control of the guest VMs through an OpenSSH server

without passwords by exploiting unprotected disk I/O. Therefore, we assume the disk is not

encrypted with disk encryption key in this example. However, we note it is recommended

by AMD to only use encrypted storage. As such, this case study only serves the purpose of

proof-of-concept, rather than a practical attack. We will discuss its security implications in

Section 3.3.1.2.

Specifically, the adversary controls the entire host and launches the SEV-enabled VM

using the standard procedure [7]. During the system bootup, the binary code of sshd that

performs user authentication is loaded into the memory. To monitor the disk I/O streams,

whenever the QEMU performs a DMA operation for the guest, the adversary checks the

memory buffer used for this DMA operation (i.e., SWIOTLB) and search for the binary

code of sshd. In our implementation, we used a 32-byte memory content (i.e., 0xff85

0xc041 0x89c4 0x8905 0x4e05 0x2900 0x0f85 0x1b01 0x0000 0x488b 0x3d49 0x0529

0x0089 0xeee8 0xc2bf 0xfdff) as the signature of the sshd binary and no false detection

was observed. Once the DMA operation for sshd is identified, the adversary modifies the

binary code inside SWIOTLB, before the QEMU commits the DMA operation. In particular,

this is done by replacing the crucial code used in authentication that corresponds to callq

pam_authenticate, which is a five-byte binary string 0xe8 0xc2 0xbf 0xfd 0xff, to mov

$0 %eax (a binary string of 0xb8 0x00 0x00 0x00 0x00). pam_authenticate() is used

to perform user authentication; only when it returns 0 will the authentication succeed.

Therefore, by moving 0 to the register %eax (the register used to store return value of a

30

Original Moinitored
102.5

105.0

107.5

110.0

112.5

115.0

M
B/
s

(a) I/O write

Original Moinitored

700

750

800

850

M
B/
s

(b) I/O read

Figure 3.2: Read/write performance overhead due to I/O monitoring.

function call) directly, the adversary can successfully bypass the user authentication without

knowing the password. To validate the attack, we empirically conducted the attack three

times and all were successful.

Performance degradation due to I/O monitoring. We also conducted experiments to

measure the performance degradation due to the hypervisor’s monitoring of disk I/O streams.

We used the dd command to write 1GB of data to the local disk to measure the I/O write

speed. The dsync flag of set to make sure the data is written to the disk directly, bypassing

the page caches. To measure the read speed, we cleaned the page caches in the memory

by setting vm.drop_caches=3 before reading 1GB of data from local disk. In both the

read and write experiments, we measured the performance with and without I/O stream

monitoring and repeated the measurements 200 times. The results show the performance

degradation of I/O read and write is 11.8% and 7.9% respectively (see Figure 6.2).

31

3.3.1.2 Estimating The Attack Surface

As shown in the above example, I/O operations that are not encrypted by the software can

be intercepted by the malicious hypervisor and manipulated to compromise the SEV-enabled

guests. This vulnerability exists in all emulated I/O devices that are commonly used in cloud

VMs, such as disk I/O, network I/O, and display I/O, etc.. While a straightforward solution

is to encrypt I/O streams by software, however, this simple method has many practical

limitations in practice:

Network I/O. Network traffic can only be partially encrypted, as headers of IP or TCP

cannot be encrypted. The adversary is still able to modify the network traffic to forge the IP

addresses, port numbers, and encrypted metadata of the network packets. This is true for

both TLS traffic and VPN traffic. As we will show in Section 3.3.2, encrypted traffic like

SSH can still be exploited to construct memory decryption oracles.

Display I/O. Encrypting I/O traffic cannot be applied when the I/O devices cannot decrypt

the I/O stream by themselves. Display I/O is one such example. For instance, Virtual

Network Computing (VNC) is a graphical desktop sharing protocol that allows VMs to be

remotely controlled. In KVM, the QEMU redirects the VGA display from the guest to the

VNC protocol, which is not encrypted. Therefore, if the user of the guest VM uses VNC

to control the VM, keystroke and mouse clicking will be learned and manipulated by the

adversary. To protect display I/O operations, the guest VM must be modified to encrypt all

display I/O traffic and the remote user interface must be modified accordingly to decrypt the

traffic.

Disk I/O. For disk I/O operations, the method recommended by SEV [5] is for each SEV-

enabled VMs to use encrypted disk filesystems. To use encrypted disks, however, the

32

owner needs to first provision the disk encryption key into the protected VMs by using

the Launch_Secret [7] command. This command first decrypts a packet sent by the VM

owner (that contains the disk encryption key) encrypted using Ktek (Transport Encryption

Key), atomically re-encrypts it using the memory encryption Kvek, and then injects it into

the guest physical address specified by GUEST_PADDR (a parameter of the Launch_Secret

command). As the address of the disk encryption key is known, if memory confidentiality is

compromised (using methods to be described in Section 3.3.2), the disk encryption key can

be learned and used to decrypt the entire image. Therefore, disk I/O is not secure, either.

3.3.2 Decryption Oracles

In this section, we show that the DMA operations under SEV’s memory encryption

technology can be exploited to construct a decryption oracle, which allows the adversary

to decrypt any memory block encrypted with the guest VMs’ memory encryption key Kvek.

The oracle can be frequently and repeatedly queried and thus can be exploited as an attack

primitive for more advanced attacks against SEV-enabled guests.

As mentioned in Section 3.1, the DMA operation from the SEV-enabled VM is con-

ducted with the help of memory pages shared with the hypervisor. When DMA operates

in the DMA_TO_DEVICE mode, data is transferred by the IOMMU hardware to the shared

memory, and then copied by CPU in the SEV-enabled VM to its private memory; when

DMA operates in the DMA_BIDIRECTIONAL mode, the SEV-enabled VM first copies the

data from encrypted memory to the shared memory, and then the DMA reads or writes are

performed on the shared memory.

Both these modes of operations provide the adversary an opportunity to observe the

transfer of data blocks from memory pages encrypted by Kvek to memory pages that is

33

not encrypted (from the hypervisor’s perspective). Therefore, if the adversary alters the

ciphertext of the data blocks in the encrypted memory page before they are copied by the

guest VM, after the memory copy, the corresponding plaintext can be learned from the

shared memory directly.

The construction of such a decryption oracle is shown in Figure 3.3. The decryption

oracle can be constructed in three steps: pattern matching, ciphertext replacement, and

packets recovery. We use network I/O as an example. The adversary exploits the network

traffic in Secure Shell (SSH) to construct the decryption oracle. But we stress that any I/O

traffic can be exploited in similar manners. In the following experiments, we configured the

guest VM to use OpenSSH_7.6p1 with OpenSSL 1.0.2n, which is default on Ubuntu 18.04.

3.3.2.1 SSH and Network Stacks

To control the SEV-enabled guest remotely, the owner of the VM typically uses SSH

protocol to remotely login into the VM and controls its activities. To copy data to and from

the VM, protocols like SCP, which is built on top of SSH, is commonly used. Particularly,

we consider the SSH traffic after the remote owner has already authenticated with sshd and

a secure communication channel has been established. Because the SSH handshake protocol

is performed in plaintext, the adversary who controls the hypervisor and QEMU can act

as a man-in-the-middle attacker and recognize the established the secure channel by its IP

addresses and TCP port number. Once the secure channel is established, SSH command

and output data will be transferred using encrypted SSH packets that are transmitted in

interactive mode [84].

In the interactive mode, each individual keystroke guest owner types will generate a

packet that is sent to the SEV-enabled VM, which will be transferred by DMA to a memory

buffer shared between the guest and the hypervisor. The packet is then copied by the guest to

34

Figure 3.3: A decryption oracle. Step ➀, the hypervisor conducts pattern matching using
page-fault side channels to determine the address of Bp. Step ➁, the hypervisor replaces a
ciphertext block in Bp with the target memory block, which will be decrypted when copied
to Bs. Step ➂, QEMU recovers the network packet headers.

a private memory page encrypted using Kvek. Then the data is handled by the network stack

in the guest OS kernel. The headers of the packet are then removed and the payload data is

forwarded to the user-space application. Then the SSH server processes the keystroke and

responds with an acknowledgement packet. The acknowledgement packet is copied back to

the kernel space, wrapped by the corresponding header information, and then copied to the

shared memory buffer. The last memory copying also decrypts the memory using the guest

VM’s Kvek. Therefore, our attack primitives target this process. As a result, every network

35

packet generated by the guest VM can be exploited as a decryption oracle that helps the

adversary decrypt one or multiple memory blocks.

3.3.2.2 Pattern Matching Using Fine-grained Page-fault Side Channels

Let us denote the private memory buffer as Bp, whose gPA is Ppriv, and the shared

memory buffer as Bs, whose gPA is Pshare. The primary challenge in this attack is to identify

the Ppriv. As this address is never directly leaked, the adversary needs to perform a page-fault

side-channel analysis.

Fine-grained page-fault side channels in SEV. The page fault side channel was first

studied by Xu et al. in the context of Intel SGX [95]. As an SGX attacker controls the entire

operating system, he or she can manipulate the page table entries (PTE) and set the present

bit of the PTEs of pages that are mapped to the targeted enclave. By doing so, once the

enclave program accesses the corresponding memory pages, the control flow will be trapped

into the OS kernel through a page fault exception. On x86 processors, the faulting address

will be stored in a control register, CR2 so that the page-fault handler could learn the entire

faulting address. To provide secrecy, SGX masks the page offset of the faulting address and

leaves only the virtual page number in CR2.

Similarly, on the AMD platform, the adversary that compromises the hypervisor could

also exploit the page-fault side channels to track the execution of the SEV-enabled VMs.

Although the mapping between the guest VM’s guest virtual address (gVA) to gPA is

maintained by the guest VM’s page table and is encrypted by Kvek, the hypervisor could

manipulate the nested page tables (NPT) to trap the translation from gPAs to host physical

addresss (hPA). Unlike SGX, SEV does not mask the page offset, providing more fine-

grained observation to the adversary.

36

Moreover, the page-fault error code returned in the EXITINTINFO field of VMCB can

also be exploited in the SEV page-fault side-channel analysis. Specifically, the page-fault

error code is a 5-bit value, revealing the information of the page fault. For example, when

bit 0 is cleared, the page fault is caused by non-present pages; when bit 1 is set, the page

fault is caused by a memory write; when bit 2 is cleared, the page fault takes place in the

kernel mode; when bit 3 is set, the fault is generated form a reserved bit; when bit 4 is set,

the fault is generated by an instruction fetch. The error code provides detailed information

regarding the reasons of the page fault, which can be leveraged in side-channel analysis.

Pattern matching. With such a fine-grained side channel, the adversary could monitor

the memory access pattern of the guest when it receives an SSH packet. Particularly, after

delivering an SSH packet to the SEV-enabled VM, the adversary immediately initiates the

monitoring process and marks all of the guest VM’s memory pages inaccessible by clearing

the present bit of the PTEs. Every time a memory page is accessed by the guest, a page

fault takes place and the adversary is able to learn the entire faulting address Pi. Note here

the faulting address in the guest VM refers to the guest physical address as the guest virtual

address is not observable by the hypervisor. After the page fault, the adversary resets the

present bit in the PTE to allow future accesses to the page. Therefore, with the fine-grained

page fault side channel, one only needs to collect information regarding the first access to a

memory page. The monitoring procedure stops when the acknowledgement packet is copied

into Bs. At this point, the adversary has collected a sequence of faulting addresses <P1, P2,

· · · , Pm >.

Internally in the guest VM, when sshd is sending a packet, the encrypted data is first

copied to the buffer of the transport layer, then the buffer of the network layer, and then the

buffer of the data link layer. In each layer, new packet headers are added. Eventually, the

37

entire network packet is stored in a data structure called sk_buff. Finally, the kernel will

call dev->hard_start_xmit to transfer the data in sk_buff to the device driver, where

Bp is located.

Both Ppriv and the address of sk_buff, Psk, should be found in the faulting addresses

sequence <P1, P2, · · · , Pm >. It is because the memory pages that store the private memory

buffer Bp and sk_buff are not otherwise used during the process of sending network packets.

The adversary could combine page offsets, page frame numbers, the page-fault error code,

and the number of page faults between the two page faults of Bp and sk_buff to create a

signature, which can be used to find Ppriv. For example, the page-fault error code of Bp is

0b110 and the page-fault error code of sk_buff is 0b100; the page offset of Ppriv is usually

0x0fa or 0x8fa and the offset of sk_buff usually ends with 0xe8 or 0x00; and the number of

page faults between Bp and sk_buff is roughly 20. With these signatures, the adversary can

identify Ppriv from the sequence of faulting addresses. Of course, the signature may change

from one OS version to another, or change with different OS kernel. However, because

the adversary controls the hypervisor, such information can be re-trained offline, before

performing the attacks.

It was indicated by AMD researchers (during an offline discussion) that SEV-ES should

mask the page offset information when there is a VMEXIT. However, we were not able to

find related public documentation. Moreover, as the KVM patch for SEV-ES support is not

yet available at the time of writing, we were not able to validate the claim or estimate the

remaining leakage (e.g., error code, page offset) after the patch. However, regardless of the

hardware changes, a coarse-grained page-fault side channel in which the page frame number

of the faulting address is leaked must remain. To show that the demonstrated attack still

works, we conducted experiments to perform pattern matching without page fault offsets

38

Figure 3.4: Format of an SSH packet.

and error code information. Specifically, we performed pattern matching using only the

faulting page numbers, with the guest VM running different Ubuntu versions (e.g., 18.04,

18.04.1 and 19.04) and different kernel versions (4.15.0-20-generic, 4.15.0-48-generic and

5.0.0-13-generic). The results show that after training in one virtual machine, the pattern

matching rules can work well even in different virtual machines with the same Ubuntu

version and kernel version—the attacker is still able to successfully identify the page frame

number of Ppriv. To determine the complete address of Ppriv, the attacker could determine

the offset by scanning the entire memory page and looking for content changes (e.g., in a

90-byte buffer).

3.3.2.3 Replacing Ciphertext

After determining Ppriv, the adversary replaces aligned SSH header in Bp with the

ciphertext he or she chooses to decrypt. As shown in Figure 3.4, the packet headers include

a 6-byte destination address, a 6-byte source address, a 2-byte IP type (e.g., IPv4 or IPv6),

1-byte IP version and IP header length, 1-byte of differentiated services field, 2-byte packet

length, 2-byte identification, 2-byte of IP flags, 1-byte time-to-live, 1-byte protocol type,

39

2-byte checksum, and 4-byte source IP address and 4-byte destination address, and 20-bytes

TCP headers (start with 2-byte source port and 2-byte destination port).

As shown in Figure 3.4, Ppriv has the offset address ending with 0xfa. Because SEV

encrypts data in 16-byte aligned blocks, only part of the TCP/IP header (i.e., header in gray

blocks in Figure 3.4) can be used to decrypt ciphertext. Additional constraints apply if the

packet needs to be recovered later. Before replacing the packet header with the chosen

ciphertext, the adversary performs a WBINVD instruction to flush the guest VM’s cached copy

of Bp back to memory. It is because cache coherence is not maintained by the hardware

between cache lines with different ASIDs. To make sure the guest VM’s copy does not

overwrite our changes to the memory, WBINVD instruction needs to be called first.

The ciphertext replacement takes place before memcpy, after Bp is accessed and before

Bs is accessed. Bs is located inside the SWIOTLB pool, which is the next available address

within SWIOTLB that can be used by the guest. After replacing a few blocks in Bp, another

WBINVD instruction is performed to ensure the guest VM reads and decrypts up-to-date

ciphertext in memory. All replacement operation is achieved by IOremap instead of Kmap,

since Kmap decrypts data with the hypervisor’s key first and IOremap directly operates data

in the memory without decryption.

We use the following example to illustrate the attack. Let the ciphertext c be a 16-byte

aligned memory block with the gPA of Pc. The function which can translate gPA to hPA is

called hPA(). The goal of the attack is to decrypt c. The adversary replaces a 16-byte data in

the SSH header that begins with address (Ppriv +16)/16∗16 with c. After the data in Bp is

copied to Bs, the adversary could read the decrypted SSH packet and extract the plaintext of

decrypted memory block, d, from the corresponding location of the packet. However, d is not

the plaintext of c yet, as SEV’s memory encryption involves a tweak function T (). That is,

40

c = EKvek(m⊕T (hPA(Pc))) but d =DKvek(c)⊕T (hPA((Ppriv+16))/16∗16). Therefore, the

plaintext message m of ciphertext c can be calculated by m = d⊕T (hPA((Ppriv +16))/16∗

16)⊕T (hPA(Pc)).

3.3.2.4 Packets Recovery

To make the attack stealthy, the adversary needs to recover the network packet with

decrypted data before those packets are passed to the physical NIC device. As shown in

Figure 3.4, the SSH header also contains metadata of the packet. When the malicious hyper-

visor injects chosen ciphertext into the memory block with offset = 0x100, the adversary

only needs to be concerned about a portion of the source IP address, IP protocol type, IP

tags, TCP header length, and the identification of the packet. Majority of the fields are

determined. The identification of the IP packet increases by 1 every time SSH server replies

a packet. So when hypervisor tries to recovery the (plaintext) packet from the QEMU side,

it only need to correct the packet length, increase identification by 1 and copy the remaining

portion from previous packet such as source address, header length, time to live and protocol

number.

3.3.3 Encryption Oracle

We next show the construction of a memory encryption oracle using unprotected I/O

operations. The encryption oracle stealthily encrypts a chosen plaintext message using a

guest VM’s memory encryption key Kvek. Similar to the construction of the decryption

oracle, during the DMA operation of the guest that transfers data from the device to the

encrypted memory, the adversary changes the message m in the shared memory buffer Bs,

waits until it is copied to the private buffer Bp in the encrypted page, and then extracts the

corresponding ciphertext Ekg(m) from Bp.

41

To determine the gPA address of Bp and retrieve the ciphertext of the plaintext message

at address Pt , the steps shown in Figure 3.5 are taken. Again, we leverage the fine-grained

page-fault side channel we used in the previous section. Specifically, we modified all

memory pages’ PTEs right after the QEMU finishes writing the packet into SWIOTLB and

before the QEMU notifying guest VM about the DMA write. Then, when the guest VM

performs a memcpy operation to copy the data, the adversary will observe a sequence of

page faults: <...Pshare, Ppriv...>, where Pshare is the address of Bs and Ppriv is the address

of Bp. The page fault at Ppriv will take place right after the page fault at Pshare. When the

hypervisor handles the page fault at Ppriv, it replaces the 16-byte aligned data block with

the message m′, where m′ = m⊕T (hPA(Ppriv))⊕T (hPA(Pt)), where Pt is the gPA of the

target address to which the adversary wishes to copy m. The corresponding ciphertext will

be c = Ekg(m⊕T (hPA(Pt))), which can be used to replace the ciphertext at address Pt .

The encryption oracle can be typically exploited to inject code or data into the SEV-

enabled VM’s encrypted memory, or it can be used to make guesses of the memory content

by providing a probable plaintext. We note that to use the encryption oracle, the adversary

may simply generate meaningless packets and send them to the guest VM, which will be

discarded. But the oracle can still be constructed and used. The only downside of this

approach is that the guest VM will observe large volume of meaningless network traffic and

may become suspicious of attacks.

42

Figure 3.5: An encryption oracle. Step ➀, QEMU forwards an incoming packet to the guest.
Step ➁, QEMU passes the address of Bs to the hypervisor. Step ➂, a page fault immediately
after the fault at Bs is captured by the page fault handler. Step ➃, message m′ is placed in
Bp. Step ➄, page fault handler returns the control to the guest.

3.4 Evaluation

We implemented our attacks on a blade server with an 8-Core AMD EPYC 7251

Processor, which has SEV enabled on the chipset. The host OS runs Ubuntu 64-bit 18.04

with Linux kernel v4.17 (KVM hardware-assisted virtualization supported since v4.16) and

the guest OS also runs Ubuntu 64-bit 18.04 with Linux kernel v4.15 (SEV supported since

v4.15). The QEMU version used was QEMU 2.12. The SEV-enabled guest VMs were

configured with 1 virtual CPU, 30GB disk storage, and 2GB DRAM. The OpenSSH server

was installed from the default package archives.

43

3.4.1 Pattern Matching

We first evaluate the pattern matching algorithm’s accuracy of determining Ppriv. To

obtain the ground truth, we modified the guest kernel to log the gPA address of sk_buff,

the source gPA and destination gPA of memcpy, as well as the size of each DMA read or

write. All the data was recorded in the kernel debug information, which can be retrieved

using a Linux command dmesg.

The experiments were conducted as follows: We ran a software program AnJian [31] (an

automated keystroke generation tool) on a remote machine, which opened a terminal that

was remotely connected to the SEV-enable VM through an SSH communication channel.

AnJian automatically typed on the SSH terminal two Linux commands cat security.txt

|grep sev and dmesg at the rate of 10 keystrokes per second. This was used to simulate the

remote owner controlling the SEV-enabled VM through SSH. The adversary would make

use of the generated SSH packets to perform memory decryption. The dmesg command

also retrieved the kernel debug message that recorded the ground truth.

At the same time, the pattern matching was performed by the adversary on the hypervisor

side. The page-fault side-channel analysis was conducted upon receiving every incoming

SSH packet to guess the address Ppriv. There were three outcomes of the guesses: a

correct guess, an incorrect guess, and unable to make a guess. Because there were 33

keystrokes generated by AnJian, the adversary was allowed to guess Ppriv for 33 times in

each experiment. The experiments were conducted 20 times.

Figure 3.6 shows the precision and recall of these 20 rounds of experiments. Precision

is defined as the ratio of the number of correct guesses and the number of times that a guess

can be made. Recall is defined as the ratio of the number of correct guesses and the number

44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Round

0.0

0.2

0.4

0.6

0.8

1.0

Recall
Precision

Figure 3.6: The precision and recall of determining Ppriv in 20 rounds or experiments.

of total SSH packets. The average precision is 0.956, the average recall is 0.847 and the

average F1 Score is 0.897.

3.4.2 Persistent Bp

According to our experiments, the Bp will remain unchanged and reused for multiple

network packets. This greatly helps the adversary, either by performing pattern matching

once and reusing the same Bp directly in subsequent packets, or by improving the accuracy

of the guesses.

Improving attack fidelity using persistent Bp. The persistent Bp can be used to reduce the

number of incorrect guesses. During a real-world attack, when Ppriv is incorrectly guessed,

the ciphertext replacement may crash the guest VM (although we have not experienced

any crashes in our experiments). As such, a safer strategy of when to perform ciphertext

replacement is only after correctly guessing Ppriv N times in a streak, which we call the

N-streak strategy. We then applied this strategy to Round 20, 6 and 11, which have the

highest FPR (i.e., 0.167, 0.133, 0.103, respectively). As shown in Figure 3.7, when by

45

1 packet 2 packets 3 packets
0

1

2

3

4

N
u
m

b
e
r

o
f

W
ro

n
g
 G

u
e
ss

e
s

Round 20

Round 6

Round 11

Figure 3.7: Reduction of incorrect guesses using the N-Streak strategy.

increasing N (i.e., 1, 2, 3), the number of incorrectly performed ciphertext replacement is

reduced.

Packet rate vs. Bp persistence. We further evaluated the effect of Bp persistence when

the rate of SSH packets varies. Again, on the remote machine, we used AnJian to generate

keystrokes at a fixed rate, ranging from 0.5 keystrokes per second, to 20 keystrokes per

second. The rate of SSH acknowledgement packets is close to the keystroke rate. For each

keystroke rate, 500 keystrokes were generated and the number of different Bps were reported

in Figure 3.8. We can see that as the packet rate increases, fewer number of Bps will be used

to send SSH packets. We repeated this experiment and collected over 200 different Bps after

generating 5000 keystrokes with rates ranging from 0.5 to 20 per second. The statistics of

the repeated use of Bps are shown in Figure 3.9.

3.4.3 I/O Performance Degradation

Conducting page-fault based side-channel analysis to guess Ppriv and performing cipher-

text replacement will slow down the I/O operations of the guest VM. To evaluate the degree

46

0 200 400 600 800 1000 1200
Time (s)

Ppriv[0]

Ppriv[1]

Ppriv[2]

Ppriv[3]

Ppriv[4]

Ppriv[5]

Ppriv[6]

Ppriv[7]

(a) 0.5pps

0 100 200 300 400 500 600
Time (s)

Ppriv[0]

Ppriv[1]

Ppriv[2]

Ppriv[3]

(b) 1pps

0 50 100 150 200 250 300
Time (s)

Ppriv[0]

Ppriv[1]

Ppriv[2]

Ppriv[3]

(c) 2pps

0 20 40 60 80 100 120 140
Time (s)

Ppriv[0]

Ppriv[1]

Ppriv[2]

(d) 5pps

0 10 20 30 40 50 60 70 80
Time (s)

Ppriv[0]

Ppriv[1]

(e) 10pps

0 10 20 30 40 50 60
Time (s)

Ppriv[0]

Ppriv[1]

(f) 20pps

Figure 3.8: The number of different Bps used with various rates of packets (pps).

of performance degradation, we evaluate the SSH response time on the server side during

the attacks. The SSH response time measures the time interval between the QEMU receives

an incoming SSH packet to the time that an SSH response packet is sent to QEMU. Note

the measurements do not include network latency.

Figure 3.10 shows the SSH response time under three conditions: Original (not under

attack), Bp Persistent (assuming Bp does not change) , and Guess Every Time (assuming

Bp changes and making guesses every time). The keystroke rate used in the experiments

were 10 keystrokes per second, and in total 1,000 keystrokes were generated during the

tests. We can see from the figure, the average SSH response latency without attack is 2.5ms

and the median is 0.99ms. The average latency for SSH connection under a Bp-persistent

strategy is 6.81ms and the median is 2.4ms. The average latency for SSH connection under

47

M <105.3%

10<= M <20
3.1%

20<= M <50
13.0%

50<= M <100
22.1%

M >=100

56.5%

Figure 3.9: Statistics of repeated Bps.

a guess-every-time strategy is 8.0ms and the median is 8.7ms. Because the typical network

latency of cloud servers are 40-60ms within US and more than 100ms worldwide [15], it is

very difficult for the VM owners to detect the latency caused by the attacks.

3.4.4 An End-to-End Attack

We conducted an end-to-end attack in which the adversary decrypts a 4KB memory

page that is encrypted with the guest VM’s Kvek. The attack assumes a network traffic with

the rate of 10 pps, which is simulated using the same method used in the previous sections.

Table 3.1 shows the number of packets and time used to complete the attack, when one or

two 16-byte aligned blocks were exploited for the data decryption. We can see that in the

four trials we conducted, roughly 300 packets are needed to decrypt the 4KB page, which

takes about 40 seconds. The speed of the attack doubles if the first two blocks of the packets

were used to decrypt data.

48

Table 3.1: End-to-end attack performance.

Round 1 Block 2 Blocks
Packets used Time(s) Packets used Time(s)

1 292 43.56 148 21.29
2 329 40.78 177 20.04
3 326 39.21 154 18.99
4 299 33.58 154 16.95

Original Bp
 Persistent

Guess
Every time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
illi
se
co
nd

SSH Response Time

Figure 3.10: I/O performance degradation evaluated using SSH response time (network
latency excluded).

3.5 A Path Towards I/O Security in SEV

In this section, we will discuss some potential solution to I/O security in SEV from

both hardware and software level. The root cause of the problem is the incompatibility

between AMD-V’s I/O virtualization with SEV’s memory encryption scheme. Specifically,

the primary reason of the attacks described in Section 3.3 is that existing IOMMU hardware

only supports memory encryption with ASID = 0 and the operated memory is encrypted

49

with the hypervisor’s memory encryption key. Therefore, every I/O operation from the guest

VM must go through a shared memory page with the hypervisor. To address this limitation,

IOMMU must allow DMA operations to be performed under the ASIDs of other contexts.

Meanwhile, it must prevent the privileged software from abusing such IOMMU operations.

This design, however, will be very challenging to implement in practice. According to our

discussion with AMD researchers, future releases of SEV CPUs are unlikely to address this

issue. Therefore, alternative solutions must be identified.

In addition to this fundamental issue, the decryption oracle is also enabled by two other

vulnerabilities of SEV: (1) no integrity protection of the encrypted memory, and (2) knowl-

edge of the tweak function T (). AMD researchers suggested that future SEV CPUs will

disable the encryption oracle by providing memory integrity and altering the implementation

of the tweak function T (). While authenticated memory encryption disables all known

attacks against SEV, details of its implementation are yet to be disclosed. We discuss some

of the potential considerations in Section 3.5.1. Future versions of the tweak function will be

implemented as T (k,a), where a is the physical address and k is a random input that changes

after every system reboot. We leave the investigation of these vulnerabilities to future work

when the technical details are published. In Section 3.5.2, we present a temporary software

fix that works on existing AMD processors (Section 3.5.2).

It is worth noting that AMD researchers suggested that SEV-ES masks the page offset

during page fault. However, we could not find relevant documentation or validate the claim

on our testbed. Nevertheless, our analysis (see Section 3.3.2.2) suggests that the attack is

still effective when the page offset information is unavailable. Specifically, we empirically

evaluated the attack method that does not rely on page offsets by repeating the experiments

50

in Section 3.4.1: the mean precision is 0.900, the mean recall is 0.730 and the mean F1 score

is 0.800, which is only slightly lower.

3.5.1 Authenticated Encryption

Authenticated encryption must be adopted to prevent replay attacks and replacement

attacks of the encrypted ciphertext. Merkle Tree (MT) [32] has been proposed for detecting

replay and replacement attacks for protecting memory integrity. MT can be built and

maintained over any region of memory, and hence it can be used to protect the entire

memory or only memory allocated to a VM, or any portion of it. There are two types of MT

that can be used, depending on the encryption mode. For direct encryption mode, the MT

covers data. For counter-mode encryption, it was shown that replay was only possible if the

attacker replays data, its hash, and its counter simultaneously. Hence, protecting counter

freshness is sufficient to protect against replay [75]. MT over counters is referred to as

Bonsai Merkle Tree (BMT), a variant of which was chosen for implementation in Intel SGX

MEE [42].

A fundamental trade off exits between the choice of encryption mode and the overheads

of MT. When 128-bit hash is used for MT, MT (and hashes) over data incur memory capacity

overhead of 33% (i.e. data-to-MT nodes ratio of 2:1), as illustrated in Figure 3.11. On

the other hand, BMT incurs an overhead of 20% for hashes, plus 0.4% for BMT nodes.

Hashes are needed for both encryption modes to protect against non-replay tampering of

memory data. In addition, counter-mode encryption requires additional storage for counters,

which depends on the type of counters. 64-bit monolithic counters take up 9% overheads,

but split-counters [97] take up only 1%. Taken together, protection against replay incurs

51

Data MT

Root on chip

MT allocated
in Mem

67% 33%

Data Hash

78.6% 20%

Ctr BMT

1% 0.4%

Root on chip

(a) (b)

Figure 3.11: Merkle Tree (a) and Bonsai Merkle Tree used in conjunction with split counter
mode encryption (b).

13% memory capacity with direct encryption but only 1.4% with counter mode encryption

(Figure 3.11). For a 1 TB memory, the difference amounts to a substantial 116 GB.

Counter mode encryption is illustrated in Figure 3.12. Counters are cached on chip,

either in regular caches, or in a special “counter cach”. With split counters, each page

(4KB) of data has its own major counter, and each block (64B) in a page has its own

minor counter. When there is a last level cache (LLC) miss, the counter values (major

and minor) are concatenated with the page ID and block address of the page (i.e. page

offset of the block) to produce a spatially and temporally unique initial vector (IV) [97].

The IV is then encrypted to produce a pad, which will be XOR-ed with ciphertext of data

fetched from memory to yield data plaintext. With Galois Counter Mode, the hash of data is

obtained a few clock cycles later. Counter mode encryption is more secure than direct mode

encryption due to spatial and temporal uniqueness of ciphertexts even for a single plaintext

value. Furthermore, as illustrated in the figure, decryption latency is largely overlapped

with LLC miss latency; the only exposed latency is 1-cycle XOR of pad and data ciphertext.

52

AES-
CTR

Page
ID

Page
Offset

Major
Counter

Minor
Counter PaddingIV

Key

Fetched Block
(from off-chip Mem)

Ciphertext
(to off-chip Mem)

Pad

Counter
Cache

Last Level Cache (LLC)

GF
Mult

Hash

XOR XOR

Figure 3.12: Counter mode encryption with split counters using Galois Counter Mode
authentication.

In contrast, direct memory mode fully exposes decryption latency in the critical path of

memory fetch. Therefore, in terms of security protection against replay, memory capacity

costs, and performance, AMD SEV can benefit from counter mode encryption and BMT.

A MT/BMT protects the memory from replay or tampering at all time. It is also possible

to selectively protect memory region integrity only at times in which they are “expected”

to be vulnerable. For example, the time window in which IOMMU buffer is vulnerable

is between the time it is written by the DMA until it is read/consumed by the VM. One

could take a hash of the memory region at DMA write and verify it when the VM reads the

region. Any tampering or replay attempts will be detected. Selective integrity protection

may obviate the need for full MT/BMT for attacks that occur within the vulnerable window,

but leaves the memory integrity unprotected at other time.

53

3.5.2 A Temporary Software Solution

In this section, we present a software solution that can temporarily solve the I/O insecurity

issues discussed in this chapter. The key idea is to make sure the hypervisor never observe

any unencrypted I/O data to/from the SEV-enabled VM. This can be achieved using SEV’s

platform management APIs [7] and the transport encryption key of the VM Ktek.

Ktek is a shared Diffie-Hellman (DH) key between the VM owner and the SEV firmware.

Particularly, to launch an SEV-enabled VM on an SEV platform, the owner of the VM

first requests the Diffie-Hellman (DH) certificate from the platform, which contains the

platform’s DH public key. The corresponding private key is kept inside the SEV firmware,

which cannot be extracted by the system administrator or the hypervisor. The VM owner

then sends her DH public key to SEV platform, so that she establishes a shared transport

encryption key Ktek with the SEV firmware. Ktek is only known by the VM owner and

the SEV firmware, but not known to the VM itself or hypervisor. SEND_UPDATE_DATA and

RECEIVE_UPDATE_DATA are two commands (among many others) implemented by SEV to

assist the hypervisor to launch and manage SEV-enabled VMs [7]. After the VM is launched,

the hypervisor may use SEV’s SEND_UPDATE_DATA command to atomically decrypt a piece

of memory with Kvek and re-encrypt with Ktek or use RECEIVE_UPDATE_DATA command to

decrypt the memory with Ktek and re-encrypt with Kvek.

Our proposed solution retrofits these APIs and Ktek to protect I/O operations. Particularly,

the guest VM kernel and the QEMU can be modified so that the guest VM never copies

data between the encrypted memory and the unencrypted memory. Instead, to perform any

I/O operation to the SEV-enabled VM, the hypervisor issues the SEND_UPDATE_DATA and

RECEIVE_UPDATE_DATA commands to atomically decrypt and re-encrypt data using the two

keys Kvek and Ktek. As both keys are protected inside the SEV firmware, the hypervisor

54

Figure 3.13: An illustration of the temporary software solution.

is not able to learn the plaintext during the I/O operations. The SEV firmware serves as a

trusted relay of the I/O paths.

However, this solution is only a temporary fix of the issue. This is because the I/O traffic

is encrypted with Ktek, which is only known to the owner of the VM. Therefore, all I/O

operations, including network I/O, disk I/O, and display I/O must be forwarded to a trusted

server that is controlled by the VM owner (as shown in Figure 3.13). Acting as an I/O proxy,

the trusted server may limit the application scenarios of SEV and greatly reduce the I/O

performance.

55

3.5.3 Comparison with existing attacks

While the security issues of SEV’s I/O operations are orthogonal to the problems of

unauthenticated memory encryption, the decryption oracle presented in this chapter does

rely on the lack of integrity protection for the ciphertext blocks. However, compared to

previous memory decryption attacks against SEV [68, 69], our work differs primarily in

three aspects. First, Morbitzer et al. [68, 69] manipulate unprotected nested page tables to

decouple the mapping between the gVAs and the memory contents, while our decryption

oracle directly replaces memory blocks used in the I/O buffer. The hardware mechanisms to

defend against these two attacks may differ. Our attack highlights the necessity of mitigating

both threats. Second, instead of exploiting a network-facing application executed in the guest

VM to accept attacker-controlled data, our attack could make use of any I/O traffic, which is

more general. Our work suggests that application-specific defenses, such pruning secrets

after use [68], may not work. Third, the attack in Morbitzer et al. requires the attacker

to actively generate network traffic to the guest VM, which makes it easily detectable. In

contrast, our decryption oracle can make use of existing I/O traffic, which can be very

stealthy. Moreover, while the memory integrity issues are expected to be addressed in the

next release of SEV CPUs, the fundamental I/O security problem studied in this chapter will

remain. The encryption oracle will not be mitigated unless the tweak function is completely

secured.

3.6 Summary

In this chapter, we have reported our study of the insecurity of SEV from the perspective

of the unprotected I/O operations in SEV-enabled VMs. The results of our study are two

fold: First, I/O operations from SEV guests are not secure; second, I/O operations can be

56

used by the adversary to construct memory encryption and decryption oracles. The concrete

attacks have been demonstrated in the chapter, along with discussion of potential solutions

to the underlying problems.

57

Chapter 4: Breaking “Security-by-Crash” based Memory Isolation in

AMD SEV

In previous chapter, we presented unprotected I/O operations’s vulnerabilities in SEV.

In this chapter, we fully study SEV’s improper use of address space identifier (ASID) for

controlling accesses of a VM to encrypted memory pages, cache lines, and TLB entries.

We then present the CROSSLINE attacks, a novel class of attacks against SEV that allow

the adversary to launch an attacker VM and change its ASID to that of the victim VM to

impersonate the victim. We present two variants of CROSSLINE attacks: CROSSLINE V1

decrypts victim’s page tables or memory blocks following the format of a page table entry;

CROSSLINE V2 constructs encryption and decryption oracles by executing instructions of

the victim VM. We have successfully performed CROSSLINE attacks on SEV and SEV-ES

processors.

Responsible disclosure. We have disclosed CROSSLINE attacks to AMD via emails in

December 2019 and discussed the findings in this chapter with AMD engineers by phone

in January 2020. The demonstrated attacks and their novelty have been acknowledged.

As discussed in the chapter, neither of the two attack variants directly affect SEV-SNP.

Therefore, AMD would not replace ASID-based isolation in the short term, but may invest

more principled isolation mechanisms in the future.

58

The rest of the chapter is organized as follows: Section 4.1 explains SEV’s ASID-based

isolation for memory, cache and TLB, and explains how ASIDs are managed by the hypervi-

sor. Section 4.2 introduces the two variants of CROSSLINE attacks. Section 4.3 describes the

applicability of CROSSLINE on SEV-ES. Section 5.6 presents an extension of CROSSLINE

that exploits issues of TLB isolation in SEV VMs, a discussion on CROSSLINE’s applicabil-

ity to SEV-SNP and to Intel processors. Section 4.5 summarize this chapter.

4.1 Demystifying ASID-based Isolation

ASID was initially designed by AMD to tag TLB entries so that unnecessary TLB

flushes can be avoided when switching between guest VMs and the host. SEV reuses ASID

as the indices of VEKs stored in AMD-SP. Cache tags are also extended accordingly to

isolate cache lines with different ASIDs. As a result, ASID becomes the de-facto identifier

used by SEV processors to control the software’s accesses to virtual memory, caches, and

TLBs (as shown in Figure 4.1).

However, following AMD-V, SEV allows the hypervisor to have (almost) complete

authority over the management of ASIDs, which gives rise to security concerns as a malicious

hypervisor may abuse this capability to breach ASID-based isolation. Interestingly, AMD

adopts a “security-by-crash” and assumes if “the wrong ASID is used for a guest”, the

execution of the instruction will “likely cause a fault” [51]. In this section, we set off to

understand and demystify how ASIDs are used to isolate memory, cache, and TLBs in SEV,

and how ASIDs are managed by the hypervisor.

4.1.1 ASID-based Isolation

First, we explore in depth how ASID is used for access control in the virtual memory,

CPU caches, and TLBs.

59

Host

ASID

Cache

AMD
SP

TLBAMD SOC

Key assignment

TLB tag

Cache tag

Encrypted DRAM

VEKs [ASID]

DEC

ENCASID
management

Assign

Figure 4.1: ASID-based memory isolation in SEV.

4.1.1.1 ASID-based Memory Isolation

ASIDs are used by the AMD-SP to index VEKs of SEV VMs. The SEV hardware

ensures the data and code of an SEV VM is encrypted in the DRAM and only decrypted

when loaded into the SOC. Specifically, each memory read from an SEV VM consists of

memory fetches by the memory controller of a 128-bit aligned memory block, followed by

an AES decryption by AMD-SP using the VEK corresponding to the current ASID. The

current ASID is an integer stored in a hidden register of the current CPU core, which cannot

be accessed by software in the guest VM.

SEV allows the guest OS to decide, by setting or clearing the C-bit of the PTE, whether

each virtual memory page is (treated as) private (encrypted with the guest’s VEK) or shared

(either encrypted with the host’s VEK or unencrypted). For instance, when the C-bit of a

page is set, memory reads from this virtual-physical mapping is considered encrypted with

the guest VM’s VEK, regardless of its true encryption status, and thus a memory read in

that page will be decrypted using the VEK of the current ASID.

60

However, the hypervisor is able to manipulate the nested C-bit (nC-bit) in nPT. When

the gC-bit (the C-bit of the gPT) conflicts with the nC-bit, AMD-SP encrypts the memory

pages according to rules specified in Table 2.1: When gC-bit=0 and nC-bit=1, the page is

encrypted with the hypervisor’s VEK; when gC-bit=1, regardless of the nC-bit, the page is

encrypted with the guest VM’s VEK; when gC-bit=0 and nC-bit=0, the page is not encrypted.

Following SME, the code pages are always considered private to the guest VM and thus is

always encrypted regardless of the guest C-bits. Similarly, the gPT is also always encrypted

with the guest’s VEK, while the nPT is fully controlled by the hypervisor.

4.1.1.2 ASID-based TLB Isolation

ASID was originally introduced to avoid TLB flushes when the execution context

switches between the guest VM and the hypervisor, which is achieved by extending each

TLB tag with ASID. With the ASID capability, when observing activities like MOV-to-CR3,

context switches, updates of CR0.PG/CR4.PGE/CR4.PAE/CR4.PSE, the hardware does not

need to flush the entire TLB, but only the TLB entries tagged with the current ASID [6].

However, for the purpose of TLB isolation, the management of ASIDs for non-SEV VMs

and SEV VMs is slightly different.

Non-SEV VMs. Each VCPU of a non-SEV VM may have different ASIDs, which can

be assigned dynamically before each VMRUN. More specifically, before the hypervisor is

about to resume a VCPU with VMRUN, it checks if the VCPU was the one running on this

CPU core before the control was trapped into the hypervisor. If so, the hypervisor keeps

the ASID of the VCPU unchanged and resumes the VCPU directly; if not, the hypervisor

selects another ASID (from the ASID pool) and assign it to the VCPU. In the former case,

TLB entries can be reused by the VCPU as its ASID is unchanged. However, in the latter

61

case, the residual TLB entries (tagged with ASID of the hypervisor or the previous VCPU)

should not be reused.

SEV VMs. SEV processors rely on a similar strategy to isolate entries in the TLBs with

ASID. However, instead of dynamically assigning an ASID to a VCPU before VMRUN, all

VCPUs of the same SEV VM are assigned the same ASID at launch time, which should in

theory remain the same during the entire life cycle of the SEV VM.

4.1.1.3 ASID-based Cache Isolation

On platforms that support SEV, cache lines are tagged with the VM’s ASID indicating to

which VM this data belongs, thus preventing the data from being misused by entities other

than its owner [51]. When data is loaded into cache lines, according to the current ASID,

AMD-SP automatically decrypts the data with the corresponding VEK and stores the ASID

value into the cache tag. When a cache line is flushed or evicted, AMD-SP uses the ASID in

the cache tag to determine which VEK to use when encrypting this cache line before writing

it back to DRAM. The cache tag is also extended to include the C-bit [51]. Because the

cache is now tagged with ASID and C-bit, cache coherence of the same physical address

is not maintained if the two virtual memory pages do not have the same ASID and C-bit.

4.1.2 ASID Management
4.1.2.1 ASID Life Cycle

The hypervisor reserves a pool (i.e., a range of integers) of available ASIDs for all

VMs (we call all-ASID pool for simplicity), and a separate pool of ASIDs for SEV VMs

(SEV-ASID pool). The maximum ID number of the all-ASID pool is determined by CPUID

0x8000000a[EBX] (e.g., 32768, thus the available ASIDs are whole numbers between 1

and 32768). The maximum ID number of the SEV-ASID pool is determined by CPUID

62

0x8000001f[ECX] (e.g., 15, which suggests the legal ASIDs for SEV VMs are 1 to 15).

Note that ASID 0 is reserved for the host OS (i.e., hypervisor), and is also not allowed to be

assigned to a VCPU for processors with or without SEV extensions [6].

On SEV platforms, the hypervisor uses ACTIVATE command to inform AMD-SP that a

given guest is bound with an ASID and uses DEACTIVATE command to de-allocate an ASID

from the guest. The hypervisor may re-allocate an existing ASID to another VM, if there is

no available ASID in the SEV-ASID pool [7].

At runtime, when the processor runs under the guest mode, the guest VM’s ASID is

stored in the ASID register that is hidden from software; when the processor runs under the

host mode, the register is set to 0, which is the hypervisor’s ASID. The guest VM’s ASID

is stored at the VMCB during VMEXIT. After VMRUN the processor restores the ASID

in the VMCB. The VMCB State Cache allows the processor to cache some guest register

values between VMEXIT and VMRUN for performance enhancement. The physical address

of the VMCB is used to perform access control of the VMCB State Cache. However, the

VMCB clean field controlled by the hypervisor can be used to force the processor to discard

selected cached values. For example, bit-2 of the VMCB clean field indicates that an ASID

reload is needed; bit-4 of the clean field indicates fields related to nest paging are dirty and

needed to be reloaded from the VMCB. Some VMCB fields are strictly not cached and the

corresponding register values will be reloaded from the VMCB every time. For example,

offset 058h of the VMCB is a TLB control field to indicate whether the hardware needs to

flush TLB after VMRUN; this field is always uncached.

4.1.2.2 ASID Restrictions

Launch-time restrictions. On processors supporting SEV, the hypervisor cannot bind

a current active ASID in the SEV-ASID pool to an SEV VM during launch time [7].

63

However, an adversary is able to deactivate the victim SEV VM and then activate an at-

tacker SEV VM with the same ASID. The hardware requires the hypervisor to execute

a WBINVD instruction and a DF_FLUSH instruction after deactivating an ASID and before

re-activating it. The WBINVD flushes all modified cache lines and invalidates all cache lines.

The DF_FLUSH instruction flushes data fabric write buffers of all CPU cores. If these instruc-

tions are not executed before associating the ASID with a new VM, a WBINVD_REQUIRED

or DFFLUSH_REQUIRED error will be returned by the AMD-SP and the VM launch process

will be terminated.

This restriction is critical to the isolation of cache lines. Otherwise, victim VM’s residual

cache data can be read by subsequent attacker VM. In particular, the attacker VM can use

the WBINVD instruction to flush the cache data to memory. Cache lines belonging to victim

VM will thus be encrypted with the attacker VM’s VEK and then flushed into the memory.

Subsequent reads to those memory data will return plaintext and thus allow the adversary to

extract the data.

Run-time restrictions. After a VM is launched, the hypervisor can change its ASID during

VMEXITs, by changing the ASID field of its VMCB, which will take effect when the VM

is resumed. There is no additional hardware restriction at runtime. As such, it is possible to

have two SEV VMs concurrently with the same ASID on the same machine, though the one

with a wrong ASID will crash very soon.

Moreover, the VMCB also contains a field (090h) to indicate if the VM is an SEV VM

or a non-SEV VM. Therefore, it is possible to first launch an SEV VM and a non-SEV VM

with the same ASID, and then, during VMEXITs of the non-SEV VM, change the non-SEV

VM into an SEV VM by setting the corresponding bit in the VMCB. We have experimentally

confirmed this possibility on our testbed (as shown in Section 4.4.1). It suggests that the

64

hardware trusts the values of VMCB to determine (1) if the VM to be resumed is an SEV

VM and (2) what ASID is associated with it. The hardware does not store this information to

a secure memory region and use it for validation. The only additional validation performed

by the AMD-SP is that the ASIDs of SEV VMs must fall into the valid ranges3. Therefore,

while a VM was launched as a non-SEV VM, we can effectively (though momentarily)

make it an SEV VM with the same ASID as another SEV VM.

4.1.2.3 “Security-by-Crash”

As the hypervisor has the liberty of changing the ASIDs of both SEV VMs and non-SEV

VMs, security concerns arise when the hypervisor is not considered a trusted party. However,

it is believed that when an SEV VM is resumed with an ASID different from its own, its

subsequent execution will lead to unpredictable results and eventually crash the VM.

Specifically, to change the ASID of a VM (either an SEV and non-SEV VM), the

hypervisor can directly edit the ASID field of the VMCB, set the VMCB clean-field to

inform the hardware to bypass the VMCB State Cache, and then resume the VM with

VMRUN. After the VM is resumed, if the RFLAGS.IF bit in the VMCB is set, the virtual

address specified by the interrupt descriptor-table register (IDTR) will be accessed, because

the guest OS will try to handle interrupts immediately; if the RFLAGS.IF bit is cleared, the

instruction pointed to by NRIP—the next sequential instruction pointer—is going to be

fetched and executed. However, in either case, the virtual address translation will cause

problems.

First, any TLB entries remaining due to its previous execution becomes invalid because

its ASID has been changed; the ASID tag in the TLB entries would not match. Second,

3Specifically, the valid ASID range of SEV VMs are divided so that the lower values are for SEV-ES
VMs. CPUID Fn8000_001F[ECX] specifies valid SEV ASIDs and CPUID Fn8000_001F[EDX] specifies the
minimum ASID values used for SEV (but SEV-ES-disabled) VMs.

65

a page table walk is unlikely to succeed, as its own page tables are encrypted using the

VEK indexed by its own ASID. As a result, the top-level page table will be decrypted into

meaningless bit strings. References to a “page table entry” of this page will trigger an

exception to be handled by the guest OS. Finally, a handler of the guest OS is to be invoked

to handle the exception. However, any reference of this handler will be decrypted using a

wrong VEK, leading to a triple fault that eventually crashes the VM.

4.1.3 ASID Isolation Summary

We highlight a few key points of SEV’s “security-by-crash” based memory isolation

mechanisms.

• ASID is used for access control. ASID is the only identifier used for controlling accesses

to virtual memory, caches, and TLBs. Once a VM is successfully resumed from VMEXIT,

the CPU and AMD-SP only rely on the ASID (loaded from its VMCB) to validate memory

requests.

• ASID is managed by the hypervisor. The hypervisor may assign any ASID (including

the ASID of another active SEV VM) to an SEV or non-SEV VM during VMEXIT. The

only restriction enforced by the hardware is that the ASID must fall into the range in

accordance to the VM’s SEV type.

• Security is achieved by VM crash. The security of the mechanism relies solely on the

faults triggered during the execution of the VM if its ASID has been changed. The faults

can be caused by memory decryption with an improper VEK during instruction fetches or

page table walks.

• Cache/TLB entries are flushed by the hypervisor. The hypervisor controls whether

and when to flush TLB and cache entries associated with a specific ASID. Only limited

66

constraints are enforced by the hardware during ASID activation. Misuse of these resources

is possible.

4.2 CROSSLINE Attacks

The goal of our CROSSLINE attacks is to extract the memory content of the victim VM

that is encrypted with the victim VM’s VEK. We make no assumption of the adversary’s

knowledge of the victim VM, including its kernel version, the applications running in it,

etc. The common steps of the CROSSLINE attacks are the following: (1) the adversary who

controls the hypervisor launches a carefully crafted attacker VM; (2) the hypervisor alters

the ASID of the attacker VM to be the same as that of the victim VM during VMEXITs; (3)

the hypervisor prepares a desired execution environment for the attacker VM by altering its

VMCB and/or its nPT; (4) the attacker VM resumes after VMRUN, allowing a momentary

execution before it crashes. During the momentary execution, memory accesses from the

attacker VM will trigger memory decryption using the victim VM’s VEK.

Although the attacker VM crashes shortly—due to the ASID-based isolation in TLB,

caches, and memory—we show that this momentary execution, though very brief, already

enables the attacker VM to impersonate the victim VM and breach its confidentiality and

integrity. Note that the only requirement of the victim VM at the time of the attack is that

it has been launched and the targeted memory pages have been encrypted in the physical

memory. Whether or not the victim VM is concurrently running during the attack is not

important. Therefore, CROSSLINE is stealthy in that it does not interact with the victim VM

at all. Detection of such attacks from the victim VM itself is unlikely.

67

ATK VM’s VMCB

Linear Address

First Page Table Walk After VMRUN

CPU

Dec with
Vic’s VEK

NPF

KVM
VMRUN

gCR3

ASID

N_RIP
With VIC’s ASID

VMEXIT

With ATK’s ASID

System MemoryNCR3

gCR3

SPA

NCR3

VIC RAM
① Clear P Bit in NPT

② Remap gCR3

③Modify ASID ⑤ Extract Secret
④Specify offset

Figure 4.2: Workflow of CROSSLINE V1.

4.2.1 Variant 1: Extracting Encrypted Memory through Page Table
Walks

The CROSSLINE V1 explores the use of nested page table walks during the momentary

execution to decrypt the victim VM’s memory protected by SEV. To ease the description, let

the victim VM’s ASID be 1 and the attacker VM’s ASID be 2. We use SPFN0 to denote the

system page frame number of the targeted memory page encrypted with the victim VM’s

VEK. We use sPA0 to denote the system physical address of one 8-byte aligned memory

block on SPFN0, which is the target memory the adversary aims to read. The workflow of

CROSSLINE V1 is shown in Figure 4.2. When the hypervisor handles a VMEXIT of the

attacker VM, the following steps are executed:

➀ Clear the Present bits. The hypervisor alters the attacker VM’s nPT to clear the Present

bits of the PTEs of all memory pages. Thereafter, any memory access from the attacker VM

68

after VMRUN will trigger a nested page fault, because the mapping from gPA to sPA in the

NPT is missing.

➁ Remap the current gCR3 of the attacker VM. The hypervisor remaps the gCR3 of the

current process in the attacker VM by altering the nPT. Now the gCR3 maps to SPFN0. The

hypervisor then sets the Present bit of this new mapping in the nPT.

➂ Modify the attacker VM’s VMCB. The hypervisor changes the attacker VM’s ASID

field in the VMCB to the victim VM’s ASID (from 2 to 1 in this example).

➃ Specify the targeted page offset. Before resuming the attacker VM with VMRUN, the

hypervisor also modifies the value of NRIP in VMCB to specify which offset (i.e., sPA0) of

the target page (i.e., SPFN0) to decrypt. Specifically, in a 64-bit Linux OS, bits 47 to 12 of

a virtual address are used to index the page tables: bits 47-39 for the top-level page table;

bits 38-30 for the second-level; bits 29-21 for the third; and bits 20-12 for the last-level

page table. Each 4KB page in the page table has 512 entries (8 bytes each) and each entry

contains the page frame number of the memory page of next-level page table or, in the case

of the last-level page table, the page frame number of the target address. CROSSLINE V1

exploits the top-level page table walk to decrypt one 8-byte block each time. To control the

offset of the 8-byte block within the page, the adversary modifies the value of NRIP stored in

the VMCB so that its bit 47-39 can be used to index the top-level page table. The algorithm

to choose NRIP properly is specified in Algorithm 1. Specifically, if the offset is less than

0x800, the NRIP is set to be in the range of 0x0000000000000000 - 0x00007fffffffffff

(canonical virtual addresses of user space); if the offset is greater than or equal to 0x800, the

NRIP is set to be in the range of 0xffff800000000000 - 0xffffffffffffffff (canonical virtual

addresses of kernel space).

69

Algorithm 1 Determine NRIP when dumping one layer of page table (4096 bytes)

initialization while dumping the page do
try to dump 8-byte memory block sPA0 if sPA0% 0x1000 < 0x800 then

NRIP = 0x8000000000* (sPA0% 0x1000 / 0x8)
else

NRIP = 0xffff000000000000 + 0x8000000000* (sPA0% 0x1000 / 0x8)
end

end

➄ Extract secrets from nested page faults. After VMRUN, the resumed attacker VM

immediately fetches the next instruction to be executed from the memory. This memory

access is performed with ASID=1 (i.e., the victim VM’s ASID). The address translation is

also performed with the same ASID. As the TLB does not hold valid entries for address

translation, and thus an address translation starts with a page table walk from the gCR3,

which maps to SPFN0 in the nPT. Therefore, an 8-byte memory block on SPFN0, whose

offset is determined by bit 47-39 of the virtual address of the instruction, is loaded by the

processor as if it is an entry of the page table directory. As long as the corresponding

memory block follows the format of a PTE (to be described shortly), the data can be

extracted and notified to the adversary as the faulting address (encoded in the EXITINFO2

field of VMCB).

4.2.1.1 Dumping Victim Page Tables

A direct security consequence of CROSSLINE V1 is to dump the victim VM’s entire

guest page table, which is deemed confidential as page-table pages are always encrypted

in SEV VMs regardless of the C-bit in the PTEs.

To dump the page table, the adversary first locates the root of the victim VM’s guest

page table specified by its gCR3. She can do so by monitoring the victim VM’s page access

sequence using page-fault side channels. Specifically, during the victim VM’s VMEXIT,

70

the adversary clears the Present bit of all page entries of the nPT of the victim VM, evicts

all the TLB entries, invalidates the nPT entries cached by nTLB and PWC. After VMRUN,

the victim VM immediately performs a page table walk. The gPA of the first page to be

accessed is stored in its gCR3. The adversary thus learns the gPA of the root of the guest

page table. Once each of the entries of the root page table is extracted by CROSSLINE V1,

the rest of the page table can be decrypted one level after another.

Evaluation. We evaluated this page table dump attack using CROSSLINE on a blade server

with an 8-Core AMD EPYC 7251 Processor. The host OS runs Ubuntu 64-bit 18.04 with

Linux kernel v4.20 and the guest VMs run Ubuntu 64-bit 18.04 with Linux kernel v4.15

(SEV supported since v4.15). The QEMU version used was QEMU 2.12. The victim VMs

were SEV-enabled VMs with 4 virtual CPUs, 4 GB DRAM and 30 GB disk storage. The

attacker VMs were SEV-enabled VMs with only one virtual CPU, 2 GB DRAM and 30

GB disk storage. All the victim VMs were created by the ubuntu-18.04-desktop-amd64.iso

image with no additional modification. The guest OS version does not matter in our attack.

To decrypt one 8-byte memory block, the adversary needs to launch the attacker VM, let

it run until a VMEXIT, change its ASID, clear the Present bit of all PTEs. Roughly, it takes

2 seconds to decrypt one 8-byte memory block (which includes time to deactivate the ASID,

reboot the VM, and clear the Present bit of all PTEs).

To speed up the memory decryption, the adversary could perform the following VMCB

rewinding attack. Particularly, after extracting one 8-byte block through a VMEXIT caused

by the nested page fault, the adversary could continue to decrypt the next 8-byte block

without rebooting the attacker VM. To do so, the adversary directly repeats the attack steps

by rewinding the VMCB of the attacker VM to the previous state and changing the NRIP to

perform the next round of attack. With this approach, we found the average time to decrypt a

71

4KB memory page (with 1 attacker VM in 500 trials) was only 39.580ms (with one standard

deviation of 4.26ms).

4.2.1.2 Reading Arbitrary Memory Content

Beyond page tables, the adversary could also extract regular memory pages of the victim

VM. For example, if the data of an 8-bytes memory block is 0x00 0x00 0xf1 0x23 0x45

0x67 0x8e 0x7f, the extracted data through page fault is 0x712345678; if the data is 0x00

0x00 0x0a 0xbc 0xde 0xf1 0x20 0x01, the extracted data is 0xabcdef12. However,

as CROSSLINE V1 only reveals the encrypted data as a page frame number embedded in

the PTE, such memory decryption only works on 8-byte aligned memory blocks (i.e., the

begin address of the block is a multiple of 8 and the size of the block is also 8 bytes) that

conforms to the format of a PTE.

Concretely, as shown in Figure 4.3, the 8-byte memory block to be extracted from

CROSSLINE, must satisfy the following requirements: The Present bit (bit 0) must be 1; Bits

48-62 must be all 0s, and Bits 7-8 are both 0s (optional). This is because the Present bit

must be 1 to trigger nested page fault. Otherwise, non-present faults in the guest VM will

be handled without involving the hypervisor. Bits 48-62 are reserved and must be 0. The

Page Size (PS) bit (bit-7) is used to determine the page size (e.g., 4KB vs. 2MB); the Global

Page (G) bit (bit-8) is used to indicate whether the corresponding page is a global page.

These 2 bits can only be set 1 in the last level of the page table. Therefore, if CROSSLINE

V1 generates page faults at the top-level page table, they must be set 0. However, we find

it possible to configure the nPT so that the first three levels of the guest page table walk

all pass successfully, and only trigger the nested page fault at the last-level page table. In

this way, the target memory block can be regarded as a PTE of the last-level page table and

hence these two bits are not restricted to be 0s.

72

Figure 4.3: Valid PTE format.

Performance evaluation. The speed of memory decryption for arbitrary memory content is

the same as dumping page tables, as long as the they are of PTE format. If the target block

does not conform to the PTE format, a triple fault takes place instead of nested page fault,

in which case the adversary could perform the VMCB rewinding attack and target another

memory block in the next round of attacks.

Percentage of readable memory blocks. We studied the binary file of ten common applica-

tions, python 2.7, OpenSSH 7.6p1, perl 5.26.1, VIM 8.0.1453, tcpdump 4.9.3, patch 2.7.6,

grub-install 2.02.2, sensors 3.4.0 , Nginx 1.14.0, and diff 3.6, which are installed

from the default package archives in Ubuntu 18.04 (64-bit). The percentages of 8-byte

aligned memory blocks that can be directly read using this method is 1.00%, 1.53%, 1.79%,

1.81%, 2.10%, 3.50%, 4.00%, 5.88%, 6.10%, and 6.50%. While they only account for

a small portion of the whole memory space, they leak enough information for process

fingerprinting purposes.

73

4.2.2 Variant 2: Executing Victim VM’s Encrypted Instructions

In CROSSLINE V2, we show that, when certain conditions are met, it is possible for

the attacker VM to momentarily execute a few instructions that are encrypted in the victim

VM’s memory. Apparently, CROSSLINE V2 is more powerful than the previous variant.

Fortunately, the only prerequisite of CROSSLINE V2 is the consequence of CROSSLINE

V1.

Similar to the settings in the previous attack variant, two SEV VMs were configured so

that the ASID of the victim VM is 1 and the ASID of the attacker VM is 2. We assume that

the attacker VM aims to execute one instruction—“movl $2020, %r15d"—in the victim

VM’s encrypted memory. Let the virtual address of this target instruction be gVA0 and the

corresponding gCR3 of the target process be gCR30. The adversary’s strategy is to follow

the common steps of CROSSLINE attacks and manipulate the nPT of the attacker VM so

that it finishes a few nested page table walks to successfully execute this instruction. More

specifically, CROSSLINE V2 can be performed in the following steps:

➀ Prepare nPT. The hypervisor clears the Present bit of all PTEs of the attacker VM’s nPT.

It also prepares valid mappings for the gVA0 to the physical memory encrypted with the

victim’s VEK. To do so, the hypervisor needs to prepare five gPA to sPA mappings (for the

gPFNs of the four levels of the gPT and the instruction page), respectively.

➁ Set NRIP. The hypervisor sets NRIP as gVA0. It also clears the Interrupt Flag of the

RFLAGs register (RFLAGS.IF) in the VMCB, so that the attacker VM directly executes

the next instruction specified by NRIP, instead of referring to Interrupt-Descriptor-Table

Register.

74

➂ Change ASID. The hypervisor changes the attacker VM’s ASID to the victim’s ASID,

marks the VMCB as dirty, and resumes the attacker VM with VMRUN. During the next

VMEXIT, the value of %r15 has been changed to $2020, which means the attacker VM has

successfully executed an instruction that is encrypted with the victim’s VEK.

These experiments suggest that CROSSLINE allows the attacker VM to execute some

instruction of the victim VM. We exploit this capability to construct decryption oracles and

encryption oracles.

4.2.2.1 Constructing Decryption Oracles

A decryption oracle allows the adversary to decrypt an arbitrary memory block encrypted

with the victim’s VEK. With CROSSLINE V2, the attacker VM executes one instruction of

the victim VM to decrypt the target memory.

The first step of constructing a decryption oracle is to locate an instruction in the victim

VM with the format of “mov (%reg1),%reg2”, which loads an 8-byte memory block whose

virtual address is specified in reg1 to register reg2. As most memory load instructions follow

this format, the availability of such an instruction is not an issue. The adversary can leverage

CROSSLINE V1 to scan the physical memory of the victim VM, in the hope that the readable

memory blocks contain such a 3-byte instruction. Alternatively, if the kernel version of the

victim VM is known, the adversary can scan the binary file of the kernel image to locate this

instruction and then obtain its runtime location by reading the gPT, which can be completely

extracted by CROSSLINE V1.

Let the virtual address of this instruction be gVA0, its corresponding system physical

address be sPA0, and the gCR3 value of the process in the victim VM be gCR30. The

virtual address and the system physical address of the target memory address to be decrypted

are gVA1 and sPA1. Note since the adversary is able to extract the gPT of the victim, the

75

corresponding translation for gVA0 and gVA1 can be obtained. Then following the three

steps outlined above, during a VMEXIT of the attacker VM, the adversary prepares the nPT

of the attacker VM (including one mapping for gCR30, four mappings for gVA0, and four

mappings for gVA1), configures the VMCB (including NRIP, ASID, the value of %reg1),

and then resumes the attacker VM.

In the next VMEXIT, the adversary is able to extract the secret stored in sPA1 by

checking the value of %reg2. The adversary can immediately perform the next round of

memory decryption. The system physical page frame number can be manipulated in the

last-level nPT and the page offset can be controlled in %reg1.

Performance evaluation. We measured the performance of the decryption oracle described

above for decrypting a 4KB memory page. With only one attacker VM, the average decryp-

tion time (of 5 trials) for a 4KB page was 113.6ms with one standard deviation of 4.3ms.

Note the decryption speed is slower than the optimized version of CROSSLINE V1, but the

decryption oracle constructed with CROSSLINE V2 is more powerful as it is not limited

by the format of the target memory block.

4.2.2.2 Constructing Encryption Oracles

An encryption oracle allows the adversary to alter the content of an arbitrary mem-

ory block encrypted with the victim’s VEK to the value specified by the adversary. With

CROSSLINE V2, an encryption oracle can be created in ways similar to the decryption oracle.

The primary difference is that the target instruction is of the format “mov %reg1,(%reg2)”,

which moves an 8-byte value stored in reg1 to the memory location specified by reg2.

With an encryption oracle, the adversary could breach the integrity of the victim VM

and force the victim VM to (1) execute arbitrary instruction, or (2) alter sensitive data, or

76

(3) change control flows. Note that our encryption oracle differs from those in the prior

works [23, 29, 61] as it does not rely on SEV’s memory integrity flaws.

Performance evaluation. We measured the performance of the encryption oracle by the

time it takes to updates the content of a 4KB memory page. The average time of 5 trials was

104.8ms with one standard deviation of 6.1ms. Note in a real-world attack, the attacker may

only need to change a few bytes to compromise the victim VM, which means the attack can

be done within 1ms.

4.2.2.3 Locating Decryption/Encryption Instructions

In the previous experiments, we have already shown that once the instructions to perform

decryption and encryption can be located, the construction of decryption and encryption

oracles is effective and efficient. Next, we show how to locate such decryption/encryption

instructions to bridge the gap towards an end-to-end attack.

Specifically, on the victim VM, an OpenSSH server (SSH-2.0-OpenSSH-7.6p1 Ubuntu-

4ubuntu0.1) is pre-installed. First, the adversary learns the version of the OpenSSH binary

by monitoring the SSH handshake protocol. More specifically, the adversary who controls

the hypervisor and host OS monitors the incoming network packets to the victim VM to

identify the SSH client_hello message. The victim VM would immediately respond with

an SSH server_hello message, which contains the version information of the OpenSSH

server. As these messages are not encrypted, the adversary could leverage this information

to search encryption/decryption instructions offline from a local copy of the binary.

Second, the adversary extracts the gCR3 of the sshd process. To do so, upon observing

the server_hello message, the adversary immediately clears the Present bits of all PTEs

of the victim VM. The next memory access from the sshd process will trigger an NPF

77

VMEXIT, which reveals the value of gCR3. We empirically validated that this approach

allows the adversary to correctly capture sshd’s gCR3, by repeating the above steps 50 times

and observing correct gCR3 extraction every time.

Third, the adversary uses CROSSLINE V1 to dump a portion of the page tables of sshd

process. More specifically, the adversary first dumps the 4KB top-level page-table page

pointed to by gCR3; she identifies the smallest offset of this page that represents a valid

PTE, and then follow this PTE to dump the second-level page-table page. The adversary

repeats this step to dump all four levels of page tables for the lowest range of the virtual

address. In this way, the adversary could obtain the physical address corresponding to the

base virtual address of the OpenSSH binary.

Fourth, with the knowledge of the memory layout of the code section of the OpenSSH

binary, the adversary can calculate the physical address of the decryption/encryption instruc-

tions within the OpenSSH binary. In our demonstrated attack, the adversary targets two

instructions inside the error function of OpenSSH, “mov (%rbx),%rax” for decryption

and “mov %rax,(%r12)” for encryption. The offsets of the two instructions are 0xca9a

and 0xca18, respectively.

Performance evaluation. We measured the time needed to locate these two instructions.

Once the adversary has intercepted the SSH handshake messages, it takes on average

504.74ms (over 5 trials) to locate these two instructions.

4.2.3 Discussion on Stealthiness and Robustness

CROSSLINE attacks are stealthy. The attacker VM and the victim VM are two separate

VMs. They have different NPTs and VMCBs. Therefore, any state changes made in

the attacker VM are not observable by the victim. As such, it is impossible for victim

78

VM to sense the presence of the attacker VM. In contrast to all known attacks to SEV,

CROSSLINE cannot be detected by running a detector in the victim VM. More interestingly,

the adversary can rewind the attacker VM’s VMCB to eliminate the side effects caused by

the attacker VM’s attack behaviors (e.g., triggering a NPF with non-PTE format or executing

an illegal instruction). This method also increases the robustness of the attack: Even if the

encryption/decryption instructions are not correctly located, CROSSLINE V2 will not affect

the execution of the victim VM. Therefore, the adversary can perform the attack multiple

times until succeeds.

4.3 Applicability to SEV-ES

4.3.1 Overview of SEV-ES

To protect VMCB during VMEXIT, SEV-ES was later introduced by AMD [49]. With

SEV-ES, a portion of the VMCB is encrypted with authentication. Therefore, the hypervisor

can no longer read or modify arbitrary register values during VMEXITs. To exchange

data between the guest VM and the hypervisor, a new structure called Guest Hypervisor

Control Block (GHCB) is shared between the two. The guest VM is allowed to indicate

what information to be shared through GHCB.

VMEXITs under SEV-ES modes are categorized into Automatic Exits (AE) and Non-

Automatic Exits (NAE). AE VMEXITs (e.g., those triggered by most nested page faults, by

the PAUSE instruction, or by physical and virtual interrupts) are VMEXITs, which do not

need to expose register values to the hypervisor. Therefore, AE VMEXITs directly trigger

a VMEXIT to trap into the hypervisor. To enhance security, NAEs (e.g., those triggered

by CPUID, RDTSC, MSR_PROT instructions) are first emulated by the guest VM instead of

the hypervisor. Specifically, NAEs first trigger #VC exceptions, which are handled by the

79

guest OS to determine which register values need to be copied into the GHCB. This NAE

VMEXIT will then be handled by hypervisor that extracts the register values from the GHCB.

After the hypervisor resuming the guest in VMRUN, the #VC handler inside the guest OS

reads the results from the GHCB and copies the relevant register states to corresponding

registers.

SEV-ES VMs can run concurrently with SEV VMs and non-SEV VMs. After VMEXIT,

the hardware recognizes an SEV-ES VM by the SEV control bits (bit-2 and bit-1 of 090h)

in the VMCB [6]. Therefore, the hypervisor may change the SEV type (from an SEV VM

to an SEV-ES VM) during VMEXIT. The legal ASID ranges of SEV-ES and SEV VMs,

however, are disjoint, and thus it is not possible to run an SEV-ES VM with an ASID in the

range of SEV VMs.

4.3.1.1 VMCB’s Integrity Protection

With SEV-ES, the VMCB is divided into two separate sections, namely the control

area and the state save area (VMSA) [6]. The control area is unencrypted and controlled

by the hypervisor, which contains the bits to be intercepted by the hypervisor, the guest

ASID (058h), control bits of SEV and SEV-ES (090h), TLB control (058h), VMCB clean

bits (0C0h), NRIP (0C8h), the gPA of GHCB (0A0h), the nCR3 (0B0h), VMCB save state

pointer (108h), etc. The state save area is encrypted and integrity protected, which contains

the saved register values of the guest VM. The VMCB save state pointer stores the system

physical address of VMSA, the encrypted memory page storing the state save area.

The integrity-check value of the state save area is stored in the protected DRAM, which

cannot be accessed by any software, including the hypervisor [6]. At VMRUN, the processor

performs an integrity check of the VMSA. If the integrity check fails, VMRUN terminates

with errors [6]. Because the integrity-check value (or the physical address storing the value)

80

is not specified by the hypervisor at VMRUN, we conjecture the value is index by the system

physical address of the VMSA. Therefore, a parked virtual CPU is uniquely identified by

the VMSA physical address.

4.3.2 CROSSLINE V1 on SEV-ES

The primary challenge to apply CROSSLINE on SEV-ES machines is to bypass the

VMSA check. Directly resuming the attacker VM using the victim’s ASID would cause

VMRUN to fail immediately, because the VMSA integrity check takes place before fetching

any instructions in the attacker VM. Since the attacker VM’s VMSA is encrypted using

the VEK of the attacker VM, when resuming the attacker VM with the victim’s ASID, the

decryption of VMSA leads to garbage data, crashing the attacker VM immediately.

Therefore, to perform CROSSLINE V1, the adversary must change the save state pointer

(0108h) of the attacker VM’s VMCB so that the attacker VM will reuse the victim VM’s

VMSA. As such, the attacker VM cannot change the register values that are stored in the

VMSA, which includes RIP, gCR3, and all general-purpose registers (if not exposed in

the GHCB). Therefore, with SEV-ES, the adversary is no longer able to arbitrarily control

the execution of the attacker VM by simply manipulating its NRIP in its VMCB’s control

area [6].

However, by pausing victim’s VCPU during VMEXIT and changing attacker’s VMSA

pointer (0108h) to victim’s VMSA, the adversary is still able to perform CROSSLINE V1 on

SEV-ES VMs to achieve the same goal—extracting the entire gPT or decrypting any 8-byte

memory block conforming to a PTE format. To show this, we have performed the following

experiments:

81

Two SEV-ES VMs were launched. The ASID of the victim VM is set to be 1 and that

of the attacker VM is 2. The hypervisor pauses the victim VM at one of its VMEXIT, so

that its VMSA is not used by itself. The attack is performed in the following steps:

➀ Prepare nPT. During the VMEXIT of the attacker VM, the hypervisor clears the Present

bits of the all PTEs in the attacker VM’s nPT.

➁ Manipulate the attacker VM’s VMCB. The hypervisor first changes the attacker VM’s

ASID from 2 to 1. It also informs the hardware to flush all TLB entries of the current CPU,

by setting the TLB clearing field (058h) in the VMCB control area. Finally, it changes the

VMCB save area pointer to point to the victim’s VMSA.

➂ Resume the attacker VM. Because the attacker VM runs with the victim’s ASID, the

victim’s VMSA is decrypted correctly. The integrity check also passes, as no change is

made in the VMSA, including its system physical address. Once resumed, the attacker VM

will try to fetch the first instruction determined by RIP (in VMSA) or the IDTR using the

victim’s VEK. Since there is no valid TLB entry, the processor has to perform a guest page

table walk to translate the virtual address to the system physical address. A nested page

fault can be observed with the faulting address being the victim VM’s gCR3 value.

➃ Remap gCR3 in nPT. When handling this NPF VMEXIT, the hypervisor remaps the

gCR3 in the nPT to the victim VM’s memory page to be decrypted. The Present bits of the

corresponding nested PTEs are set to avoid another NPF of this translation. Moreover, the

EXITINTINFO field in the unencrypted VMCB control area needs to be cleared to make sure

the attacker VM complete the page table walk. After resuming the attacker VM, an NPF for

the translation of another gPA (embedded in the target memory block) will occur, which

reveals the content of the 8-byte aligned memory block if it follows the format of a PTE.

82

➄ Reuse the VMSA. The hypervisor repeats step ➃ so that its gCR3 is remapped to the next

page to be decrypted in the victim VM. Then, the next NPF VMEXIT reveals the correspond-

ing memory block. This could work because the attacker VM has not successfully fetched

a single instruction yet; it is trapped in the first page table walk (more specifically, the first

nested page table walk of the first gPA). Therefore, the VMSA is not updated and no valid

TLB entry is created. During the remapping of gCR3, the hypervisor is able to invalidate

the previously generated entry in the nTLB. Thus, from the perspective of the attacker VM,

step ➃ does not change its state. Therefore, the attacks can be carried out repeatedly.

➅ Handling triple faults. In step ➃ or ➄, if the targeted 8-byte memory block does not

conform to the PTE format, a triple fault VMEXIT (error code 0x7f) will be triggered instead

of the NPF VMEXIT. The adversary can continue to decrypt the next page if this happens.

However, after a triple fault, the RIP in the VMSA has been updated to the fault handler to

deal with the fault. As such, resuming from a triple fault will lead to the decryption of a

different offset of the target page. However, the attack can still continue.

Resuming the victim VM. After performing CROSSLINE V1, the VMSA of the victim VM

is still usable by the victim. We empirically validated this by resuming the victim VM after

the attacker VM has used this VMSA to decrypt several memory blocks and has encountered

both nested page faults and triple faults. The victim VM was resumed successfully, without

observing any faults or abnormal kernel logs.

To better understand the victim VM’s state changes when its VMSA is used by the

attacker VM, we instrumented the hypervisor to check which regions of the encrypted VMSA

have been changed after the attacker VM has performed several rounds of CROSSLINE V1,

which triggers both nested page faults and triple faults. The result shows that the entire

VMSA remains the same, except the value of CR2, which stores the most recent faulting

83

address. The change of the CR2 value does not affect the execution of the victim VM as this

value is not used by the guest OS after NPFs.

Controlling page offsets. Because the integrity protection of VMSA prevents the adversary

from controlling the RIP after VMRUN, the page offset of the memory blocks to be

decrypted cannot be controlled in CROSSLINE V1. However, the adversary may resume the

victim VM and allow it to run till a different RIP is encountered. In total, 512 different RIPs

are needed to decrypt any memory blocks conforming to the PTE formats. To diversify the

exploited RIPs, one strategy is to pause the victim when the VMEXIT is a NPF-triggered

AE. When VMEXITs are NAEs or interrupt-triggered AEs, the next instruction to be

executed after VMRUN is an instruction of the #VC handler, whose virtual address is fixed

in the kernel address space. To differentiate NPF-triggered AEs and interrupt-triggered

AEs, although the adversary cannot read the RFLAG.IF directly, which indicates pending

interrupts, she can inspect Bit 8 (V_IRQ) of the Virtual Interrupt Control field (offset 60h)

in the unencrypted VMCB control area. Moreover, as two consecutive NPF-triggered AEs

may be caused by the same RIP, it is preferred to pause the victim VM after a few AEs. To

trigger more NPF VMEXITs, one could periodically unset the Present bit of all PTEs of the

victim VM.

With these strategies in place, we empirically evaluated the time needed for the adversary

to find all 512 offsets. In our test, we let the victim VM run a build-in program of Ubuntu

Linux, called “cryptsetup benchmark". The attack can be performed on any level of the

page tables; bits 47-39, 38-30, 29-21, and 20-12 of the same RIP can all be used as the

page offset by the attacker. Therefore, with any RIP, there are 1∼4 different offsets that the

attacker may use to extract data on any encrypted page. The experiments were performed in

the following manner: Each round of the experiments, the cryptsetup benchmark were run

84

1 2 3 4 5 6
Rounds

150

200

250

300

350

400

450

500

#
C

u
m

u
la

ti
v
e
 O

ff
se

ts

214

333

411

465
493

511512

Figure 4.4: Covered offsets after N rounds.

several times and each time with a different address space layout due to ASLR; every 30

seconds, the adversary unset all Present bits of the victim VM to trigger NPFs; the adversary

pauses the victim VM every 13 AE VMEXITs to extract one RIP. The adversary concludes

the round of monitoring after 60 seconds. In total, 15 rounds of experiments were conducted.

Figure 4.4 shows the number of offsets that can be covered after N rounds of experiments,

where N = 1 to 6. Each data point is calculated over all combinations of selecting N rounds

from the 15 rounds, i.e., C(15,N), of data collected in the experiments above. Specifically,

on average, after 5 rounds of experiments, the adversary could obtain 493 offsets; after 6

rounds, she could obtain 511 offsets (out of the 512 offsets). These experiments show that

when the victims run an application that has diverse RIPs (i.e., not running in idle loops),

the adversary has a good chance of performing CROSSLINE V1 on almost all page offsets

after some efforts (in these experiments, after 6 minutes of the victim’s execution).

85

Performance evaluation. We have evaluated the attack mentioned above on a workstation

with an 8-Core AMD EPYC 7251 Processor. The motherboard of our testbed machine was

GIGABYTE MZ31-AR0, with which we successfully configured Fn8000_001F[EDX] to

return 5, which means ASID 1 to 4 were reserved for SEV-ES VMs. Since the source code

supporting SEV-ES for both host OS and guest OS has not been added into the mainstream

Linux kernel yet, we used the source code provided in the SEV-ES branch of AMD’s official

repositories for SEV, which is available on Github [9]. The kernel version for the host

and guest were branch sev-es-5.1-v9. The QEMU version used was QEMU sev-es-v4 and

the OVMF version was sev-es-v11. Both victim VMs and attacker VMs were configured

as SEV-ES-enabled VMs with 1 virtual CPU, 2 GB DRAM and 30 GB disk storage. All

VMs were created by the kernel image generated from sev-es-5.1-v9 branch without any

additional modification.

On average over 200 trials, it takes 2.0ms to decrypt one 8-byte memory block, which

is slower than the attack against SEV VMs (0.077ms per block). This is because the

AMD-SP must calculate the hash of the VMSA and store it to the secure memory region

during VMEXITs, and validate its integrity after each VMRUN. This happens in between of

decrypting two memory blocks.

4.3.3 CROSSLINE V2 on SEV-ES

Applying CROSSLINE V2 on SEV-ES would be challenging, because with the encrypted

VMCB, RIP is no longer controlled by the adversary. As such, the attacker VM will resume

from the RIP stored in the VMSA, which prevents the attacker VM from executing arbitrary

instructions. Moreover, constructing useful encryption or decryption oracles requires the

manipulation of specific register values, which is only possible without SEV-ES.

86

Table 4.1: Demonstrated attacks against SEV. I/O Interaction: the attack requires interac-
tion with applications inside the victim VM through I/O operations (e.g., Network, disk).
Stealthiness: the attack cannot be detected by the victim VM.

Research Papers I/O
Interaction

Breach
Confidentiality

Breach
Integrity Stealthiness Mitigated by

Du et al. [29] ✓ ✗ ✓ ✗ SEV-SNP
Buhren et al. [23] ✓ ✓ ✗ ✗ SEV-SNP
Wilke et al. [93] ✓ ✓ ✓ ✗ SEV-SNP

Werner et al. [91] ✓ ✓ ✗ ✗ SEV-ES
Hetzelt & Buhren [39] ✓ ✓ ✓ ✗ SEV-SNP
Morbitzer et al. [69] ✓ ✓ ✗ ✗ SEV-SNP
Morbitzer et al. [68] ✓ ✓ ✗ ✗ SEV-SNP

Li et al. [61] ✓ ✓ ✓ ✗ SEV-SNP
CROSSLINE V1 ✗ ✓ ✗ ✓ SEV-SNP
CROSSLINE V2 ✗ ✓ ✓ ✓ SEV-ES

4.3.4 Discussion on Stealthiness

Unlike CROSSLINE on SEV, to attack SEV-ES machines, the attacker VM must reuse

the victim VM’s VMSA. However, CROSSLINE V1 is still stealthy and undetectable by the

victim VM for two reasons. First, the attack only alters the CR2 field of the victim’s VMSA.

As this field is not examined by the guest OS after resumption from a NPF, the victim VM

cannot detect the anomaly. Second, even if the guest OS is modified, the change of the CR2

cannot be detected, because the AE NPFs are directly trapped into the hypervisor, such that

the guest OS does not have a chance to record the original value of CR2 to be compared

with.

We summarize the attacks against SEV, their exploited vulnerabilities, the attack conse-

quences, and the stealthiness of the attacks in Table 7.2.

87

4.4 Discussion

4.4.1 A New Variant: Reusing Victim’s TLB Entries

First, we discuss a proof-of-concept attack that extends the other two variants. In

particular, in this attack, we show that the ASID-based TLB isolation can be breached.

There were two VMs involved: the victim VM is an SEV VM whose ASID is 1; the attacker

VM is a non-SEV VM whose ASID is 16. Both VMs only have one VCPU, which are

configured by the hypervisor to run on the same logical CPU core. We assume the victim

VM executes the following code snippet:

d83 : 4 1 bb e4 07 00 00 mov $0x7e4 ,% r11d
d89 : 4 1 bc e4 07 00 00 mov $0x7e4 ,% r12d
d8f : 0 f a2 c p u i d
d91 : eb f0 jmp d83

Specifically, the code updates the values of %r11d and %r12d, and then executes a CPUID

to trigger a VMEXIT. Following the common steps of CROSSLINE, the adversary launches

an attacker VM, changes its ASID during VMEXIT, sets the NRIP of the attacker VM to

the virtual address of the code snippet above, changes offset 090h of VMCB to make it an

SEV VM, and resumes the attacker VM. Unlike CROSSLINE V1 and CROSSLINE V2, the

nPT of the attacker VM is not changed in this step. Therefore, if the attacker VM performs

a page table walk, a NPF will be triggered.

Interestingly, the execution of the attacker VM triggers CPUID VMEXITs before a triple

fault VMEXIT crashes it. Since no NPF is observed, the attacker VM apparently does not

perform any page table walk. However, during the attacker VM’s CPUID VMEXITs, we

observe that the values of %r11d and %r12d have been successfully changed to $0x7e4.

It is clear that the two MOV instructions and the subsequent CPUID instruction have been

executed by the attacker VM. This is because the attacker VM was able to use the victim

88

VM’s TLB entries left in the TLB to translate the virtual address of the instructions. The

triple fault might be caused by code executed outside the page, whose translation is not

cached in the TLB.

While the consequences of this attack are close to V2, it highlights the following flaws

in AMD’s TLB isolation between guest VMs: (1) ASIDs serve as the only identifier for

access controls to TLBs, which can be forged by the hypervisor, and (2) TLBs cleansing

during VM context switch is performed at the discretion of the hypervisor, which may be

omitted intentionally. We leave the exploration of this TLB problem to our proposed work.

4.4.2 Applicability to SEV-SNP

To address the attacks against SEV that exploit memory integrity flaws, AMD recently

announced SEV-SNP [50] and released a whitepaper describing its high-level functionality

in January, 2020 [8]. The key idea of SEV-SNP is to provide memory integrity protection us-

ing a Reverse Map Table (RMP). An RMP is a table indexed by system page frame numbers.

One RMP is maintained for the entire system. Each system page frame has one entry in the

RMP, which stores information of the page state (e.g., hypervisor, guest-invalid, guest-valid)

and ownership (i.e., the VM’s ASID and the corresponding gPA) of the physical page. The

ownership of a physical page is established through a new instruction, PVALIDATE, which

can only be executed by the guest VM. Therefore, the guest VM can guarantee that each

guest physical page is only mapped to one system physical page; by construction, RMP

allows each system physical page to have only one validated owner.

After each nested page table walks that leads to a system physical page belonging to an

SEV-SNP VM (and also some other cases), an RMP check is to be performed. The RMP

check compares the owner of the page (i.e., the ASID) with the current ASID and compares

89

the recorded gPA in the RMP entry with the gPA of the current nPT walk. If a mismatch is

detected, a nested page fault will be triggered.

• CROSSLINE V1 on SEV-SNP. When applying CROSSLINE V1 on SEV-SNP by fol-

lowing the same attack steps for SEV-ES, it seems step ➀ to ➃ would work the same. As

the VMSA is also protected by the RMP, loading VMSA would lead to an RMP check.

However, as the attacker VM uses the victim’s ASID, the check would pass. However, the

NPF in step ➄ that reveals the page content would not occur. Instead, an NPF due to RMP

check would take place, because the gPA used in nPT walk is different from the one stored

in the RMP entry. Therefore, from the description of the RMP, it seems CROSSLINE V1

can be prevented.

• CROSSLINE V2 on SEV-SNP. As CROSSLINE V2 does not work on SEV-ES, it cannot

be applied on SEV-SNP.

Nevertheless, SEV-SNP is still in its planning phase. Some implementation details are

still unclear4. For instance, in our discussion with AMD engineers, AMD is developing

technologies to better isolate TLBs [6], which will thwart the attack variant we discuss in

Section 4.4.1. But it is not yet clear when the technology can be officially announced and

implemented on SEV-SNP processors.

4.4.3 Intel MKTME

Similar to AMD’s SEV, Intel’s Total Memory Encryption (TME) and Multi-Key Total

Memory Encryption (MKTME) [42] also provide memory encryption to software. The

concept of TME is similar to AMD SME: a memory encryption engine is placed between the

4“This white paper is a technical explanation of what the discussed technology has been designed to
accomplish. The actual technology or feature(s) in the resultant products may differ or may not meet these
aspirations. Each description of the technology must be interpreted as a goal that AMD strived to achieve and
not interpreted to mean that any such performance is guaranteed to be fully achieved.” [8].

90

direct data path and external memory buses, which encrypts data entering or leaving the SOC

using 128-bit AES encryption in the XTS mode of operation. MKTME is built atop TME

and supports multiple encryption keys. When used in virtualization scenarios, MKTME is

close to AMD’s SEV. However, different from SEV, where each VM only possesses one

encryption key, multiple keys can be used in each VM on an MKTME platform, allowing

cross-VM memory sharing when the same keys are used. The selection of encryption keys is

controlled by software, by specifying the key id in the upper bits of a page table entry (PTE).

In a virtualization scenario, the hypervisor has to be trusted because it has the capability

of mapping guest VM’s memory and controlling the memory encryption keys in the PTE.

CROSSLINE is not needed in the MKTME setting as a malicious hypervisor may directly

read encrypted guest memory. Therefore, the hypervisor is included in the TCB of MKTME,

which could greatly limit its real-world adoption.

4.4.4 Relation to Speculative Execution Attacks

CROSSLINE is not a speculative execution attack. Meltdown [64], Spectre [52], L1TF [87],

and MDS [25, 76, 89] are prominent speculative execution attacks that exploit transiently

executed instructions to extract secret memory data through side channels. In these attacks,

instructions are speculatively executed while the processor awaits resolution of branch

targets, detection of exceptions, disambiguation of load/store addresses, etc.. However, in

the settings of CROSSLINE V1, no instructions are executed, as the exceptions take place as

soon as the frontend starts to fetch instructions from the memory. The other two variants of

CROSSLINE execute instructions with architecture-visible effects.

CROSSLINE does not rely on micro-architectural side channels, either. Speculative

execution attacks leverage micro-architectural side channels (e.g., cache side channels) to

91

leak secret information to the program controlled by the attacker. In contrast, CROSSLINE

reveals data from the victim VM as page frame numbers, which can be learned by the

hypervisor directly during page fault handling.

4.5 Summary

This chapter demystifies AMD SEV’s ASID-based isolation for encrypted memory

pages, cache lines, and TLB entries. For the first time, it challenges the “security-by-crash”

design philosophy taken by AMD. It also proposes the CROSSLINE attacks, a novel class of

attacks against SEV that allow the adversary to launch an attacker VM and change its ASID

to that of the victim VM to impersonate the victim. Two variants of CROSSLINE attacks

have been presented and successfully demonstrated on SEV machines. They are the first

SEV attacks that do not rely on SEV’s memory integrity flaws.

92

Chapter 5: TLB Poisoning Attacks on AMD Secure Encrypted

Virtualization

In this chapter, we provide the first exploration of the security issues of TLB management

on SEV processors and demonstrate a novel class of TLB Poisoning attacks against SEV

VMs. We first demystify how SEV extends the TLB implementation atop AMD Virtual-

ization (AMD-V) and show that the TLB management is no longer secure under SEV’s

threat model, which allows the hypervisor to poison TLB entries between two processes of a

SEV VM. We then present TLB Poisoning Attacks, a class of attacks that break the integrity

and confidentiality of the SEV VM by poisoning its TLB entries. Two variants of TLB

Poisoning Attacks are described in the chapter; and two end-to-end attacks are performed

successfully on both AMD SEV and SEV-ES.

Responsible disclosure. We have disclosed the vulnerability that enables TLB Poisoning

Attacks to AMD via emails in December 2019. After an in-depth teleconference discussion

with the SEV team, we have been confirmed that the vulnerability exists on SEV and

SEV processors, but the upcoming SEV-SNP has a new feature that prevents the attack.

Therefore, AMD will not release a patch for the discovered vulnerability but will rely on the

new SEV-SNP processor as a line of defense.

93

5.1 Background

In this section, we present some additional background information about SEV’s memory

and TLB isolation.

Secure Encrypted Virtualization (SEV). As AMD’s new memory encryption feature for

AMD-V [12], SEV aims to produce a confidential VM environment in the public cloud

and protect VMs from the privileged but untrustworthy cloud host (e.g., the hypervisor).

SEV is built atop an on-chip encryption system composed of an ARM Cortex-A5 co-

processor [51] and AES encryption engines. The co-processor, also known as AMD-SP,

stores and maintains a set of VM encryption keys (Kvek) which is uniquely assigned to

each SEV-enabled VM. The Kvek in the co-processor could not be accessed by either the

privileged hypervisor or the guest VM itself. The AES encryption engine automatically

encrypts all data in the memory, and decrypts them in the CPU by using the correct Kvek.

Nested Page Tables. AMD adopts two-level of page tables to help the hypervisor manage

the SEV VM’s memory mapping. The upper-level page table, also called the guest page

table (gPT), is part of the guest VM’s encrypted memory and is maintained by the guest

VM, and is usually a 4-level page table that translates the guest virtual address (gVA) to the

guest physical address (gPA). Moreover, Guest Page Fault (gPF) caused by the gPT walk is

trapped and handled by the guest VM. The lower-level page table is also called NPT or host

page table (hPT), which translates gPA to system physical address (sPA), and is maintained

by the hypervisor. The NPT structure gives the SEV VM the ability to configure the memory

pages’ encryption states. By changing the C-bit (Bit 47 in the page table entry) to be 1 or 0,

the states of the guest VM’s memory page can either be private (encrypted with his Kvek) or

94

shared (encrypted with the hypervisor’s Kvek). The gPT and all instruction pages are forced

to be private states no matter of the value of C-bit.

Moreover, Nested Page Faults (NPF) may be triggered by the hardware during the NPT

walk. According to the NPF event, the hypervisor can grab useful information that could

reflect the behavior of a program, and therefore leak sensitive information, including the

gPA of the NPT and the NPF error code [6]. This forms a well-known controlled-channel

attack [39, 61, 91], which compromises SEV’s confidentiality and integrity.

Address Space Layout Randomization (ASLR). ASLR is a widely used spectrum pro-

tection technique that randomizes the virtual memory areas of a process to defend against

memory corruption attacks. This defense mechanism prevents attackers from directly

learning the pointer’s virtual address and forces them to rely on software vulnerabilities

or side-channel attacks [16, 40, 46, 54] to locate the randomized virtual address. Different

operating systems have different ASLR implementations. For example, a 64-bit Linux

system usually exhibits 28-bit of ASLR entropy for executable [35] while Windows 10

exhibits only 17-19 bits of ASLR entropy for executables [92].

Translation Lookaside Buffer (TLB) and Address Space Identifier (ASID). TLB is a

caching hardware inside the chip’s memory-management unit (MMU). After a successful

page table walk, the mapping from the virtual address to the system address is cached in

TLB. For a nested page table on SEV, the mapping of the gVA and the sPA is cached in

the TLB. During a page table walk, given a guest CR3 (gCR3) and a host CR3 (hCR3), the

hardware automatically translate a gVA to a sPA using the two-level page tables despite the

gPT and the NPT are encrypted by different Kveks. AMD-SP uses ASID to uniquely identify

the SEV-enabled VM and its Kvek. ASID is also part of the tag for both cache lines and TLB

entries [51].

95

5.2 Understanding and Demystifying SEV’s TLB Isolation Mecha-
nisms

In this section, we briefly sketch our understanding of TLB isolation mechanisms used

in AMD Virtualization for both non-SEV VMs and SEV-enabled VMs. For some of the

mechanisms that are not documented, we experimentally validated our conjectures.

5.2.1 TLB Management for Non-SEV VMs

To avoid frequent TLB flushes during VM world switches, AMD introduced ASID in

TLB entries [3]. ASID 0 is reserved for the hypervisor and the rest of the ASID are used

by the VM. The range of the ASID pool can be determined by CPUID 0x8000000a[EBX].

TLB is tagged with the ASIDs of each VM and the hypervisor, which avoids flushing the

entire TLB at the world switch and also prevents misuses of the TLB entries belonging to

other entities.

We explore the TLB management algorithm for non-SEV VMs by diving into the source

code of AMD SVM [9]. Specifically, the hypervisor is responsible for maintaining the

uniqueness and the freshness of the ASID in each logical core of the machine. For each

logical core, the hypervisor stores the most recently used ASID in the svm_cpu_data data

structure. Before each VMRUN of a vCPU of a non-SEV VM, the hypervisor checks whether

the CPU affinity of the vCPU has changed by comparing the ASID stored in its VMCB

with the most recently used ASID of this logical core. If a mismatch is observed, which

means either the vCPU was not running on this logical core before the current VMEXIT or

more than one vCPUs sharing the same logical core concurrently, the hypervisor assigns an

incremental and unused ASID to this vCPU. In either of these cases, the increment of the

96

ASID ensures the residual TLB entries cannot be reused. Otherwise, no TLB flushing is

needed and the vCPU can keep its ASID and reuse its TLB entries after VMRUN.

The hypervisor is in charge of enforcing TLB flushes under certain conditions. For

example, when the recently used ASID exceeds the max ASID range on the logical core,

a complete TLB flush for all ASIDs is required. To flush TLBs, the hypervisor sets the

TLB_CONTROL bits in TLB_CONTROL filed (058h) of the VMCB during VMEXITs. With

different values of bits 39:32 of TLB_CONTROL, the hardware will perform the different

operation on the TLB:

• TLB_CONTROL_DO_NOTHING (00h). The hardware does nothing.

• TLB_CONTROL_FLUSH_ALL_ASID (01h). The hardware flushes the entire TLB.

• TLB_CONTROL_FLUSH_ASID (03h). The hardware flushes all TLB entries whose ASID

is equal to the ASID in the VMCB.

• TLB_CONTROL_FLUSH_ASID_LOCAL (07h). The hardware flushes this guest VM’s non-

global TLB entries.

• Other values. All other values are reserved, so other values may cause problems when

resuming guest VMs.

After each VMRUN, hardware checks these bits and performs the corresponding actions.

The hypervisor is in charge of informing the hardware to flushes TLBs and maintain TLB

isolation. Hardware may also automatically perform a partial TLB flush without triggering

a special VMEXIT when observing context switches or MOV-to-CR3 instructions. In such

cases, only the TLB entries tagged with the current ASID (either in guest ASID or the

hypervisor ASID) are flushed [6].

97

5.2.2 Demystifying SEV’s TLB management

The TLB management for SEV VMs and non-SEV VMs is slightly different. The

ASIDs of SEV VMs remain the same in their lifetime. Therefore, instead of dynamically

assigning an ASID to a vCPU, all vCPUs of the same SEV VM have the same ASID.

At runtime, TLB flush is still controlled by the hypervisor. Especially, KVM records

the last resident CPU core of each vCPU. For each CPU logical core, it also records the

VMCB of the last running vCPU (sev_vmcbs[asid]) for each ASID. Before the hypervisor

resumes a vCPU via VMRUN, it sets the TLB control field in the VMCB to the value of

TLB_CONTROL_FLUSH_ASID when (1) this vCPU was not run on this core before or

(2) the last VMCB running on this core with the same ASID is not the current VMCB.

This enforces the isolation between two vCPUs of the same SEV VM. The code is listed in

Listing 5.1. However, if the hypervisor chooses not to set the TLB control field, no TLB

entries will be flushed.
1 struct svm_cpu_data *sd = per_cpu(svm_data , cpu);
2 int asid = sev_get_asid(svm ->vcpu.kvm);
3 pre_sev_es_run(svm);
4 svm ->vmcb ->control.asid = asid;
5 // No CPU affinity change and No VMCB change
6 if (sd->sev_vmcbs[asid] == svm ->vmcb &&
7 svm ->vcpu.arch.last_vmentry_cpu == cpu)
8 return;
9 //Otherwise , flush the TLB tagged with the ASID

10 sd ->sev_vmcbs[asid] = svm ->vmcb;
11 svm ->vmcb ->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
12 vmcb_mark_dirty(svm ->vmcb , VMCB_ASID);
13 }

Listing 5.1: Code snippet of pre_sev_run().

Experiments to demystify TLB tags. According to AMD manual [6], ASID is part of

TLB tag. But is unclear what are the remaining parts of the tag. We conducted some

experiments to explore the structure of TLB tags. Specifically, we checked whether vCPUs’

TLB entries on the co-resident logical cores will influence each other and whether TLB

98

entries from the different VM modes (non-SEV, SEV, or SEV-ES) will influence each other.

The experiment settings are similar. To explore TLB isolation between co-resident logical

cores, we manually set the ASID of two vCPUs to the two co-resident logical cores of the

same physical core. To explore TLB isolation between VMs with different VM modes (e.g.,

SEV and non-SEV), we configured a non-SEV VM and a SEV/SEV-ES VM on the same

logical core and set the non-SEV VM’s ASID to be identical to the SEV/SEV-ES VM’s

ASID. In both cases, we skipped the TLB flush to check whether the TLB poison is observed

(using steps in Section 5.3.2.1). In neither of two cases, TLB poison is observed. Therefore,

we conclude:

• ASID. ASID is part of the TLB tag, which provides TLB isolation for TLB entries with

different ASID.

• Logical Core ID. The Logical Core ID is also part of the TLB tag, which provides TLB

isolation for TLB entries on the same physical core but different logical cores.

• VM mode. VM mode is part of the TLB tag. Even a non-SEV VM may have the same

ASID as a SEV or SEV-ES VM, however, the TLB tag field contains information about the

VM’s mode, which isolates TLB entries from VMs under different modes.

Besides these components, we have also conjectured that C-bits—the C-bit in the guest

page table (gC-bit) and the C-bit in the nested page table (nC-bit)—are also part of the TLB

tag. The reason is that when address translation bypasses the page table walk, the values of

the gC-bit and nC-bit are still required for the processor to determine which ASID to present

to AMD-SP if memory encryption is needed. However, there is no direct evidence for us to

conclude the exact C-bit tag format in TLB entries. We have no way to empirically affirm

that, for instance, whether both of the C-bits are in the TLB tag or only one C-bit is in the

TLB tag.

99

Table 5.1: TLB flush rules. The World column indicates whether the event happens in host
world or the guest world; TLB tag represents the TLB entry’s ASID to be flushed—the
host’s ASID is 0 and the SEV VM’s ASID is N; Forced indicates whether the TLB flush
is forced by the hardware or controllable by the hypervisor. * highlights a special case, in
which when the world switch happens between two vCPUs, the TLB tagged with 0 is forced
to be flushed while the TLB tagged with N is flushed under the control of the hypervisor.

World Events TLB Tag Forced

Host/Guest MOV-to-CR3, Context-switch 0/N ✓
Host/Guest Update Cr0.PG 0/N ✓
Host/Guest Update CR4 (PGE, PAEm and PSE) 0/N ✓
Host Address transliation Registers All ✓
Host Activate an ASID for SEV VM N ✓
Host Deactivate an ASID for SEV VM N ✗
Host ASID exceeds ASID pool range All ✗
Host Two vCPUs switch 0+N* ✓+ ✗*
Host Change vCPU’s CPU affinity N ✗

5.2.3 TLB Flush Rules for SEV VMs

We summarize the TLB flush rules for SEV/SEV-ES VMs in both hardware-enforced

TLB flush and the hypervisor-coordinated TLB flush in Table 5.1. The hardware-enforced

TLB flush rules cannot be skipped, while the hypervisor-coordinated TLB flush can be

skipped by a malicious hypervisor, which is the root cause of the TLB Poisoning Attack.

Hardware-enforced TLB flushes. All TLB entries are flushed when there is System

Management Interrupt (SMI), Returning from System Management (RSM), Memory-Type

Range Register (MTRR), and I/O Range Registers (IORR) modifications or MSRs access

related to address translation, no matter their ASIDs. At the same time, hardware will

automatically flush TLB tagged with the current ASID when observing activities like

MOV-to-CR3, context switches, updates of CR0.PG, CR4.PGE, CR4.PAEm and CR4.PSE.

Hardware will also force a TLB flush when the hypervisor wants to activate an ASID for a

SEV VM.

100

Hypervisor-coordinated TLB flushes. There are mainly two cases where the hypervisor is

coordinated in TLB management. (1) When different VMCB with the same ASID (different

vCPUs of the same SEV VM) is to be run on the same logical core. (2) The VMCB to be

run was executed on a different logical core prior to this VMRUN.

5.3 Attack Primitives

In this section, we discuss the threat models consider in this paper, and then introduce

three attack primitives: TLB misuse across vCPUs (Section 5.3.2), TLB misuse within the

same vCPU (Section 5.3.3), and a covert data transmission channel between the hypervisor

and a process in the victim VM that is under the adversary’s control (Section 5.3.4).

5.3.1 Threat Model

We consider a scenario where the platform is hosted by a hypervisor controlled by the

adversary. The victim VM is a SEV-ES enabled VM and thus protected by all SEV-ES

features. We assume the ASLR is enabled inside the victim VM.

There is an unprivileged attacker process controlled by the adversary running in the

victim VM. The attacker process does not have access to the kernel or learn sensitive

information from procfs. The attacker process does not need to have capabilities to perform

network communication. We note that the assumption of having an attacker process running

inside the victim VM can be weakened (see Section 5.5). The victim process can be any

process in the victim VM other than the attacker processes. We assume the adversary

can learn the virtual address range of the victim VM via other attacks, such as CrossLine

attacks [60].

101

CPU Core

Attacker
vCPU

Victim
vCPU

Context
Switch

Skip TLB
flush

Fill

TLB Lookup VA0

TLB

ASID VA5 sPA5

ASID VA0 sPA0

ASID VA1 sPA1

ASID VA2 sPA2

ASID VA3 sPA3

ASID VA4 sPA4

TLB Hit =>Trust
TLB Lookup VA6

Miss => PT walk

Figure 5.1: TLB misuses across vCPUs.

5.3.2 TLB Misuse across vCPUs

When the victim VM has more than one vCPU, the attacker process and the victim

process can run on different vCPUs. We call the vCPU running the attacker process the

attacker vCPU and the vCPU running the victim process the victim vCPU. The adversary

can misuse TLB entries by skipping the TLB flush during the context switch of these two

vCPUs. We use two examples to show how this may be exploited to breach the integrity and

the confidentiality of the victim process.

5.3.2.1 TLB Poisoning

We first show that by poisoning TLB entries, the attacker process can alter the execution

of the victim process. The attack is illustrated in Figure 5.1.

• Step-I: The victim process is suspended before executing an instruction at address VA0.

This can be achieved by manipulating PTEs to trigger NPFs. Note that the content of this

instruction is not relevant to this attack.

102

• Step-II: The hypervisor schedules the attacker vCPU to the same logical core as the

victim vCPU, and the TLB control field is set to TLB_CONTROL_FLUSH_ASID (03h)

to flush the TLB entries with the SEV VM’s ASID.

• Step-III: It then instructs the attacker process to run an instruction sequence “mov

$0x2021, %rax; CPUID” also at address VA0. The CPUID instruction will trigger a

VMEXIT. During the VMEXIT, the attacker vCPU is paused, and the victim vCPU is

scheduled to run without flushing the TLB entries.

• Step-IV: When the victim process executes the instruction at VA0, a VMEXIT due to

CPUID can be observed with the %rax value set to 0x2021 in the GHCB. This means the

victim process has been successfully tricked to execute the same instruction as the attacker

process at VA0, because it reuses the TLB entry poisoned by the attacker process.

5.3.2.2 Secret Leaking

The second example shows that the attacker process can read the victim process’s

memory space directly.

• Step-I: The attacker process uses mmap() syscall to pre-map a data page such that the

virtual address VA0 points to a data region on this page.

• Step-II: The victim process is scheduled to run and accesses the memory at address VA0,

which can be either a instruction fetch or a data load. This step loads a TLB entry into the

TLB.

• Step-III: The victim vCPU is de-scheduled by the hypervisor, and the attacker vCPU is

scheduled to run on the same logical core. The hypervisor sets the TLB control field of the

attacker’s VMCB to TLB_CONTROL_DO_NOTHING (00h), such that no TLB entry is

flushed.

103

• Step-IV: After being scheduled to run and loading data from VA0, we observe that the

attacker process successfully loads the data from the victim’s address space, compromising

the victim’s confidentiality. This is because the TLB entries created by the victim process

is reused by the attacker process.

5.3.3 TLB Misuse within the Same vCPU

When the victim VM has only one vCPU, the attacker process shares the vCPU with

the victim process. In this case, TLB misuse is less straightforward. The TLB flush rules

we illustrated in Section 5.2.3 suggest that the hardware will automatically flush the entire

TLB tagged by the victim VM vCPU’s ASID when there is an internal context switch in the

guest VM, which leaves no chance for the hypervisor to skip the TLB flush. As such, the

hypervisor cannot directly misuse the TLB entries between two processes within the same

vCPU. To address this challenge, we propose a novel VMCB-switching approach to bypass

the hardware-enforced TLB flush during the internal context switch.

5.3.3.1 Bypassing Hardware-enforced TLB Flushes

The key to bypassing the hardware-enforced TLB flush is to reserve the attacker process’s

TLB entries on one CPU core and then migrate the vCPU to another CPU core. The internal

context switch between the victim process and the attacker process is then performed on

the second CPU core, which automatically flushes all TLB entries on the second logical

core. Because the hypervisor isolates the first CPU core to prevent other processes from

evicting its TLB entries, the TLB entries of the attacker processes are hence preserved. The

hypervisor then migrates the vCPU back, with the victim process executing on it. The victim

process will then misuse the TLB entries poisoned by the attacker process.

104

The challenges for bypassing the hardware-enforced TLB flush are two-fold: First,

changing the vCPU affinity inside the victim VM leads to TLB flush for both the victim and

attacker processes, which, nevertheless, can only be done by a privileged process. Secondly,

changing the CPU affinity outside the victim VM—from the hypervisor side—may easily

evict the reserved TLB entries. Thus, traditional CPU schedule methods like taskset or

sched_setaffinity cannot work in our case.

5.3.3.2 VMCB Switching

The following VMCB-switching approach can be used to bypass the hardware-enforced

TLB flushes (shown in Figure 5.2).

• Step-I: The hypervisor first isolates the target vCPU hosted in a hypervisor process

HP1 on logical core LC1 and prevents other processes from accessing LC1, as well as its

co-resident logical core on the same physical core. The hypervisor also reserves another

logical core LC2 with an idle hypervisor process HP2. This is to ensure irrelevant processes

will not evict the reserved TLB entries.

• Step-II: After the attacker process poisons the targeted TLB entries, the hypervisor traps

the vCPU into a yield() loop during one VMEXIT. Meanwhile, the hypervisor lets the idle

process HP2 on LC2 to resume the attacker vCPU using its VMCB, VMSA pointer, and

NPT structures. This is possible because all states of the attacker vCPU (e.g., registers,

ASID, Nested CR3) are stored in the DRAM, encrypted using either hypervisor’s memory

encryption key (e.g., VMCB, NPT) or the guest VM’s VM encryption key (e.g., VMSA).

After resuming the attacker vCPU on LC2, there are no valid TLB entries on LC2, but the

attacker process inside the attacker vCPU can continue execution after page table walks.

105

• Step-III: The hypervisor traps and traces gCR3 changes to monitor the internal context

switches on the attacker vCPU. Specifically, it intercepts TRAP_CR3_WRITE VMEXIT

and extract the gCR3 value in the EXITINFO1 field of VMCB. Since the inner context

switch happens on LC2, no hardware-enforced TLB flush is triggered on LC1, and thus the

attacker process’s TLB entries are preserved on LC1.

• Step-IV: After observing a context switch from the attacker process to the victim process

is scheduled, the hypervisor switches the attacker vCPU back to LC1 following a similar

method described in Step-II. The hypervisor stops HP2 on LC2 and releases HP1 on LC1

from the empty loop.

• Step-V: After resuming execution on LC1, the victim process first tries to execute its next

instruction pointed by RIP in VMSA via a TLB lookup. The preserved TLB entries on

LC1 are unconditionally trusted by the hardware. After the victim process has used the

attacker’s TLB entries to execute instructions, some remaining TLB entries belonging to

the attacker process may potentially disturb the execution of the victim process afterwards.

Thus, the hypervisor can choose to perform a total TLB flush.

Note that the attacker process and the hypervisor can also breach the confidentiality of

the victim process in a reversed way, where the hypervisor reserves the victim process’s

TLB entries and let the attacker process to reuse it to exfiltrate secrets from the victim’s

address space.

5.3.4 CPUID-based Covert Channel

The third primitive we build is for transmitting data between the hypervisor and the

attacker process in the victim VM that is under the adversary’s control. To do so, we

build a CPUID-based covert channel so that network communication is not required. The

106

adversary-controlled process may execute CPUID instructions to receive data or pass the

data to the hypervisor. Specifically, to send data to the hypervisor, the attacker process may

trigger a CPUID with a reserved RAX value (e.g., 1234) to initiate data transfer. The attacker

process then repeatedly triggers CPUID with RAX filled with the data to be transferred.

Similarly, to receive data from the hypervisor, the attacker process can trigger a CPUID

with another reserved RAX value (e.g., 1235). The hypervisor retrieves the value of RAX

and passes the data into GHCB’s RAX field before VMRUN. The attacker process can then

read the value of RAX after the CPUID instruction. Data received from the covert channel

can use used as commands; the attacker process performs pre-defined actions (e.g., mmap

memory page and read certain virtual address) in accordance with the command received.

On our testbed, the maximum transmission speed is 1.854MB/s when using the 8-byte RAX

register for data transmission. Other covert channels that make use of cache timing [65, 66]

or AMD’s way predictor [63] can also be adopted as covert channels, but are less robust.

107

CPU Core 1

Atk Process

Vic Process

Context
Switch

VMCB
Switch

CPU Core 2

Target vCPU

Vic Process

ASID VA0 sPA0

ASID VA1 sPA1

Target vCPU

Atk Process
Step-Ⅰ

Step-Ⅱ

Step-Ⅲ

Step-Ⅳ

Step-Ⅴ

(a) VMCB switching steps.
CPU Core 1

yield()

Host Process 1

VMCB VMSA NPT

DRAM

Target vCPU

CPU Core 2

Sleep

Host Process 2

Target vCPU

VMEXIT

Save States

VMRUN

Fetch States

Atk Process

Atk Process

(b) Step-II: Change vCPU’s CPU affinity without TLB flush.

Figure 5.2: VMCB switching.

108

5.4 TLB Poisoning with Assisting Processes

In this section, we introduce the first variant of TLB Poisoning attacks, which is assisted

by an unprivileged attacker process running in the victim VM. Following the threat model

described in Section 5.3, we assume the attacker process is unprivileged with limited access

to system resources, such as procfs, networking, or any privileged system capabilities. This

is practical either when the adversary has an unprivileged user account on the victim VM

or an application with security vulnerabilities remotely exploitable by the adversary. To

simplify the attack, we assume the ASLR is disabled on the victim VM or the attacker

process can learn the virtual memory area (VMA) of the victim process. In a real attack,

the attacker process can break the ASLR either by CROSSLINE attack or other existing

methods [16, 40, 60].

5.4.1 Case Study: OpenSSH

In this case study, we show that with the help of an unprivileged attacker process within

a guest VM, the adversary can poison the TLB entries of a privileged victim process and

then control its execution. The attack is applied to OpenSSH and used to bypass password

authentication.

5.4.1.1 OpenSSH’s Process Management

The sshd daemon process (denoted Pd) is launched during system boot. The daemon

process runs in the background and listens to connections on SSH ports (i.e., 22). Its address

space is defined in the kernel by the VMA data structures. Upon receiving a connection, Pd

forks a sshd child process Pc, which performs a privilege separation (or privsep) by spawning

another unprivileged process Pn to deal with the network transmission and keeps the root

109

privilege itself to act as a monitoring process. Once the user has successfully authenticated,

Pn is terminated, and a new process Pu is created under the new user’s username. In our TLB

Poisoning Attack, the victim process is the privileged child sshd process Pc and the attacker

process aims to poison the TLB entries of Pc.

5.4.1.2 Password Authentication Bypass

The adversary first initializes a SSH connection to the target VM and monitors gCR3

changes by setting the CR3_WRITE_TRAP intercept bit in its VMCB. When the SSH

packet from the adversary is received by the SEV-ES VM, the adversary will immediately

observe a context switch (i.e., gCR3 change). The new process to run is the sshd child

process Pc. In this way, the adversary can identify the gCR3 of Pc.

➀ Locate the shared library. The attacker process first helps the adversary to locate

the gPA of the shared library. In our attack, we target at pam_authenticate(), which

is a function of the shared library libpam.so.0 and used by sshd for password authen-

tication. pam_authenticate() returns 0 if the authentication succeeds. The adversary

can use the attacker process to help locate the gPA of pam_authenticate() (denoted

gPApam). He first synchronizes with the two colluding entities using the covert channel

described in Section 5.3.4 and then calls pam_authenticate() from the attacker process.

The hypervisor can learn gPApam by triggering NPFs.

➁ Track the victim’s execution. The adversary clears the Present bit of all pages and

monitors NPFs after intercepting his SSH packet with the incorrect password. If a NPF of

gPApam is observed, the adversary knows the victim process is going to authenticate the

password by calling pam_authenticate(). The adversary then pauses the victim process

by trapping the victim in the gPApam NPF handler. This is used to provide a time window

110

for the attacker process to poison the TLB entries. Note that this step is rather important in

real attacks. The attacker process needs to poison the TLB entries right before the victim

process accessing those poisoned TLB entries. Otherwise, the poisoned TLB entries may be

evicted by other activities.

➂ Poison TLB entries. The adversary can then poison the TLB entries of the victim. Let the

virtual address of the instruction page containing pam_authenticate() in Pc be gVApam.

We assume the adversary can learn gVApam in advance. gVApam is predictable if ASLR is

disabled. The adversary can also learn gVApam using existing attack methods [16, 40, 60].

The adversary targets at poisoning the TLB entries indexed by gVApam. Specifically, the

attacker process first mmap a page with the virtual address to be gVApam. Note that gVApam

is only used in Pc and the attacker process can assign this virtual address to a new instruction

page. The attacker process then copies the same instruction page as the victim into the new

page, but replaces a few instructions of pam_authenticate (offset 0x5b0 - 0x65f of the

binary, starting with test %rdi %rdi) with mov $0 %eax and ret (0xb8 0x00 0x00 0x00

0x00 0xc3). The adversary also schedules the attacker process to the same logical core as

the victim process by changing the CPU affinity of the vCPU. The attacker process then

repeatedly accesses this instruction page in a loop to preserved the TLB entries.

➃ Bypass authentication. After the attacker process poisons the TLB entries of pam_authenticate(),

the adversary directly resumes Pc without a TLB flush. Recall in step ➁, Pc was paused

before a page table walk to resolve gPApam. The adversary resumes Pc without handling this

page table walk in order to force Pc to reuse the poisoned TLB entries. In this way, when Pc

calls pam_authenticate(), it will execute the instruction in the attacker’s address space.

Therefore, the function will directly return with an 0 in EAX and thus allow arbitrary user to

login.

111

5.4.2 Evaluation

The experiment settings are list below. The CPU we used is AMD EPYC 7251 with 8

physical cores. All the software needed to launch a SEV-ES VM is download from AMD

SEV repository [9]. The host kernel version is sev-es-v3 . The QEMU version used was

sev-es-v12 and the OVMF version was sev-es-v27 . The victim VM was a SEV-ES-enabled

VMs with 4 vCPUs, 4 GB DRAM and 30 GB disk storage. The OpenSSH version is

OpenSSH_7.6p1 and the OpenSSL version is 1.0.2n. We repeated the attack 20 times and

evaluated the attacks in terms of successful rate: All the 20 attacks could successfully bypass

the password authentication and logged in with incorrect passwords.

5.5 TLB Poisoning without Assisting Processes

In this section, we show that TLB Poisoning attacks can work even without the help of

an attacker process in the victim VM. The intuition is that when processes share similar

virtual address spaces, TLB misuse may happen between these processes without direct

control of either of them.

Specifically, we target at fork(), which is a system call used to create new processes.

fork() is widely used in server-side applications, e.g., OpenSSH, sftp, Nginx, and Apache

web server, to serve requests from different clients. The forked child processes has a high

probability to share a very similar virtual memory area with majority of their virtual address

space layout overlapped. Even the VM’s administrator chooses to enable ASLR, the same

VMA randomization will be applied to the parent process and all child processes, which

gives the adversary the chance to conduct TLB poisoning without concerning about the

unpredictable VMA. This similarity of address spaces of forked processes has been exploited

in memory hijacking attacks [56].

112

Attack scenarios. Similar to the previous case study, we choose to showcase our TLB

Poisoning attack against an SSH server. But this time, we target Dropbear SSH [48], which

is a lightweight open-source SSH server written in C and released frequently since 2003.

We did not choose the more popular OpenSSH because it alters its memory address space in

all its children processes that serve incoming connections (by calling exec()). However,

this mechanism is only observed in OpenSSH and OpenBSD. Other network applications

like Dropbear SSH and Nginx will not change their virtual memory layout for different

connections.

We assume the targeted Dropbear SSH server application is free of memory safety

vulnerabilities and timing channel vulnerabilities. We assume the binary of the Dropbear

Server application is known by the adversary. We assume the username of a legitimate user is

also known by the adversary; this is a practical assumption as usernames are not considered

secrets. To simplify the attack, we also assume the two processes are scheduled on two

different vCPUs, which makes the attack easier to perform; otherwise the VMCB-switching

approach is required.

5.5.1 Poison TLB Entries between Connections

We consider two SSH connections: One is the connection from the adversary, which

is served by the process Patk that is forked from the DropSSH server daemon; the other is

a connection from a legitimate user, which is served by the process Pvic. The attack goal

is to allow the attacker process to temporarily use the victim process’s TLB entries and

circumvent the password authentication.

Regular login procedures. After the login password packet is received by the victim

VM, Pvic calls svr_auth_password() to validate the password. As shown in Listing 5.2,

113

the password encryption function in the POSIX C library crypt() is called to generate

a hash of the user-provided password. The result is stored in a buffer called testcrypt.

The buffer storing the plaintext of the password is freed immediately. After that, the

hash of the user-provided password is compared with the stored value in the system file

using constant_time_strcmp(), which returns 0 if these two strings are identical. If the

user-provided password is correct, Pvic will take the correct-password branch, which calls

send_msg_userauth_success(). Otherwise, the incorrect-password branch is taken.
1 void svr_auth_password(int valid_user) {
2 char * passwdcrypt = NULL;
3 // store the crypt from /etc/passwd
4 char * testcrypt = NULL;
5 // store the crypt generated from the password sent
6 ...
7 // ** Execution Point 1 (NPF)
8 if (constant_time_strcmp(testcrypt , passwdcrypt) == 0) {
9 // successful authentication

10 // ** Execution Point 2 (NPF)
11 send_msg_userauth_success ();
12 } ...
13 }

Listing 5.2: Code snippet of svr_auth_password().

Attack overview. We show that by breaking the TLB isolation, the attacker process Patk

can bypass the password authentication even with an incorrect password. Specifically,

the virtual addresses of the testcrypt buffer are usually the same for both Patk and Pvic

(this fact will be empirically evaluated later). We use <gVApwd , sPAvic> to denote the

TLB entry owned by Patk, which caches the mapping from the virtual address of the

testcrypt buffer to the system physical address that stores the hashed password used in

Pvic. The goal here is to make sure the TLB entry <gVApwd , sPAvic> is not flushed when

Patk executes constant_time_strcmp(). In this way, Patk can re-use the testcrypt of

Pvic to circumvent password authentication.

114

Key challenges. The key challenge in this attack is to ensure only necessary TLB entries are

preserved. Otherwise, later TLB entries may flush those necessary TLB entries. To address

the challenge, it is important to perform TLB poisoning at the proper execution point. As

shown in Figure 5.3, the adversary needs to locate the execution points right before and after

the password authentication (e.g., constant_time_strcmp()), which can be done using

the NPF controlled channels.

The attack overview is shown in Figure 5.3. Let the guest physical address of the

instruction page where the svr_auth_password() and the constant_time_strcmp()

are located be gPA1 and gPA2, respectively. The adversary first traps the attacker process

in an empty loop when handling the NPF of gPA2 (execution point 1), which means Patk is

about to call constant_time_strcmp(). Then the adversary will not interrupt Pvic until it

also reaches the NPF of gPA2 (execution point 1). When handling this NPF, the adversary

triggers a complete TLB flush. Pvic then continues execution until it finishes the password

authentication and tries to return to svr_auth_password(). A NPF of gPA1 (execution

point 2) will be observed and the adversary traps Pvic. Meanwhile, the adversary releases

the attacker process and skips the TLB flush. All TLB entries used by Pvic during the

execution of constant_time_strcmp() are thus preserved in the TLB, including TLB

(gVApwd , sPAvic). After the attacker process completes constant_time_strcmp(), passes

the password check, and reaches execution point 2, the adversary triggers a complete TLB

flush (to avoid unnecessary TLB misuses) and releases Pvic. Both Patk and Pvic continue

execution as normal afterwards and no traces will be left in the kernel message.

5.5.2 An End-to-end Attack

The adversary follows these steps for an end-to-end attack:

115

ATK Login

Pkt with PWD’

VIC Login

Pkt with PWD

TLB
Misuse

svr_auth_password

constant_time_strcmp

PWD auth

Wait
❶NPF

❶NPF

Continue

Omit TLB
FLUSH

TLB Fill

TLB
Misuse

❷NPF

❷NPF

Flush TLB
svr_auth_password

constant_time_strcmp

PWD auth

❶NPF

Flush TLB

Wait
❷NPF

Omit TLB
FLUSH

Flush TLB

Continue

Figure 5.3: Attack steps to bypass password authentication.

➀ Monitor network traffic. Even the adversary cannot directly learn the content of

encrypted network packets, the adversary can inspect incoming and outgoing network

packets through the unencrypted metadata (e.g., destination address, source address or

the port number). The adversary continuously monitors network traffic to identify the

SSH handshake procedure. Once the adversary identifies a client_hello packet sent from a

legitimate user, the adversary traps that packet and sends a client_hello packet from a remote

machine controlled by himself. Once this client_hello packet reaches the victim VM, the

adversary resumes the processing of the client_hello packet from the legitimate user. Thus,

the victim VM shall receive two connection requests, one from the adversary and another

from a legitimate user.

116

➁ Monitor fork() and gCR3 changes. Next, the adversary locates the gCR3 of the

forked child processes. During the victim VM’s booting period, the adversary continuously

monitors gCR3 changes by setting the CR3_WRITE_TRAP intercept bit in the VMCB.

Afterwards, gCR3 changes will cause an automatic VMEXIT with the new gCR3 value

stored in VMEXIT EXITINFO. After receiving the two SSH connection packets, the

Dropbear Daemon will fork twice to generate the child process for the adversary’s connection

and the legitimate user’s connection. We call the forked child process for the adversary’s

connection Patk, whose gCR3 is gCR3atk. We call the forked child process for the legitimate

user’s connection Pvic, whose gCR3 is gCR3vic. The adversary can identify the gCR3atk and

gCR3vic by correlating them with the received client_hello packets.

➂ Monitor NPFs to locate the target gPAs. The adversary may try to log in by sending

an arbitrary password. The legitimate user logs in by sending a correct password. The

adversary triggers NPFs by clearing the Present bits in the NPT, when the encrypted SSH

packets that contain the passwords are observed. A sequence of NPF for Patk and a sequence

of NPFs for Pvic will be observed. The adversary also collects additional information (e.g.,

NPF EXITINFO2) along with the NPF VMEXITs, which reveals valuable information. For

instance, the adversary can learn that the NPF is caused by write/read access, user/kernel

access, code read, or page table walks. The adversary also periodically (e.g., every 50

NPFs) clears all Present bits to fine tune the NPF sequence. Since the Dropbear’s binary

is known by the adversary, the adversary can learn the NPF patterns offline to locate the

gPA of svr_auth_password() (denoted gPA1) and the gPA of the first instruction in

constant_time_strcmp() (denoted gPA2). The features used in pattern recognition are

the sequence of NPFs and their error code. During the attack, the adversary can use the

recognized pattern to locate gPA1 and gPA2.

117

➃ Skip TLB flush. The adversary continuously monitors Patk and Pvic. When the adversary

observes the NPF of gPA2 in Patk, he traps Patk in an empty loop and clears the Present bit

of all pages. When the adversary observes the NPF of gPA2 in Pvic, he clears the Present bit

for all memory pages and performs a complete TLB flush. The adversary traps Pvic when

he observes the NPF of gPA1. Patk is then resumed and the adversary skips the TLB flush.

Patk will use the preserved TLB entries from Pvic to to read the password hash from the

testcrypto in the address space of Pvic, which leads to a successful login with an incorrect

password. To void further TLB pollution, the adversary then forces a complete TLB flush

and resumes the victim process. Both Patk and Pvic will continue their execution normally

afterwards.

5.5.3 Evaluation.

All experiments were performed on a workstation whose CPU is AMD EPYC 7251

Processor (8 physical core with SMT enabled). The VMs (including victim VM and the

training VMs) used in this section were SEV-ES-enabled VMs with four vCPUs, 4 GB

DRAM, and 30 GB disk storage. The software of the OS, QEMU, and the UEFI image

are the same in Section 5.4.2. ASLR is enabled in the SEV-ES-enabled VMs by setting

the parameter in /proc/sys/kernel/randomize_va_space to 2. The source code of Dropbear

is downloaded from Github [48]5. The Dropbear SSH Server is configured as the default

setting. The Dropbear SSH Server is bond to Port 22. One minor non-default setting to assist

the attack is that we forced Patk and Pvic to execute on different vCPUs of the victim VM.

Note, this setting improves the success rate of the attack but is not necessary in practical

attacks.

5commit:846d38fe4319c517683ac3df1796b3bc0180be14

118

0 20 40 60
Connection #

0

1

2

3

4

D
is

tin
ct

 V
A

s

(a) 10 connections/s.

0 20 40 60
Connection #

0

1

2

3

4

D
is

tin
ct

 V
A

s

(b) 1 connection/s.

Figure 5.4: Variation of the virtual address of testcrypto.

Buffer address variation. We first evaluated the variation of the virtual address of

testcrypto under different connection ratios. In the training VM, the Dropbear server is

modified to print the virtual address of testcrypto to the console after each connection.

Then we used a simple script to initiate new SSH connections, send the correct password to

login, obtain the virtual address of testcrypto, and end the current SSH connection. In

total, 120 connections were collected. For the first 60 connections, the time interval between

two contiguous connections was set to 0.1 second. For the second 60 connections, the time

interval was set to 1 second. As shown in Figure 5.4a, when the time interval is set to 0.1

second, although 3 different virtual addresses of the testcrypto are observed, the virtual

address of testcrypto remains the same in 57 out of the total 60 connections. When the

time interval is set to 1 second, the virtual address of testcrypto remains the same in 55

out of the total 60 connections. The experiment results show that the virtual addresses for

testcrypto are relatively stable for different connections, which gives the adversary the

chance to poison the TLB entries of the testcrypto buffer between two connections.

119

Pattern matching. We evaluated the performance of pattern matching. Specifically, we

repeated the above attack steps 100 times and performed pattern matching on-the-fly each

time. In 98 out of the 100 trials, the adversary is able to correctly recognize the pattern

and locate the gPA. The average time used to locate the pattern is 0.10137 second with a

standard deviation of 0.02460 second.

End-to-end attacks. We then evaluated the success rate of end-to-end attacks. The

adversary conducted end-to-end attacks in the victim VM. An incorrect password is used by

the adversary for his SSH connections. The adversary repeated the attacks 20 times. In 17

out of the 20 connections, the adversary is able to log in with the incorrect password. There

are two reasons that might count for the 3 failed cases. The first reason is that the reserved

TLB entries might be evicted before use. The second reason is that there are false positives

in pattern matching. However, the adversary can always repeat the attacks the next time a

legitimate user logs in.

5.6 Discussion and Countermeasure

In this section, we discuss applications of TLB Poisoning Attacks on SEV-SNP, their

differences compared to known attacks, and their countermeasures.

5.6.1 TLB Poisoning on SEV-SNP

Although we have not tested TLB Poisoning Attacks on SEV-SNP processors, according

to the feedback from the AMD team, SEV-SNP has fixed the TLB misuse problem. The

latest AMD architecture programmer’s manual [6] also shows some newly added fields in

the VMSA: TLB_ID (offset 3d0h) and PCPU_ID (offset 3d8h). However, from the public

documents, it is unclear how exactly these two fields enforce additional TLB flushes. We

120

conjecture that the hardware use TLB_ID and PCPU_ID as parts of TLB tags to identify

vCPU and TLB entry’s ownership. We inspected the source code of software supports of

SNP (branch: sev-snp-devel)6 [9], and failed to locate any software function that controls

these two VMCB fields. Therefore, we conjecture these two fields are managed solely by

the hardware. The hypervisor can still use TLB_CONTROL field to enforce TLB flushes

but has lost the capability to deliberately skipping TLB flushes.

5.6.2 Comparison with Known Attacks

Previous works break the confidentiality and/or the integrity of SEV by replacing

unprotected I/O traffic [61], manipulating NPT mapping [68, 69] and unauthenticated

encryption [23, 29, 93]. All of these previous works can be mitigated by SEV-SNP via

the Reversed Map table (RMP), which establishes a unique mapping between each system

physical address with either a guest physical address or a hypervisor physical address. The

RMP also records the ownership of each system physical address (e.g., a hypervisor page,

a hardware page, or a SEV-SNP VM’s page) as well as the ASID. For SEV-SNP VM, the

RMP checks the correctness and the ownership after a nested page table walk. Only if the

ownership is correct, will the mapping between the guest virtual address and the system

physical address be cached in the TLB. This ownership check prevents the hypervisor

from remapping the guest physical address to another system physical address and thus

prevents attacks that require manipulation of the NPT. Meanwhile, the RMP restricts the

hypervisor’s ability to write to the guest VM’s memory page, which mitigates attacks relying

on unauthenticated encryption and unprotected I/O operations.

In contrast, this work is the first to demystify how TLB isolation is performed in SEV

and the first to demonstrate the security risks caused by the hypervisor-controlled TLB

6Commit: 0965d085cd2453a3512c98924dac70e5cdf17402.

121

flushes. TLB Poisoning Attacks by themselves do not rely on the known vulnerabilities of

SEV and SEV-ES, such as the lack of authenticated memory encryption, the lack of NPT

protection, and the lack of I/O protection, and RMP alone does not prevent TLB Poisoning

Attacks.

5.6.3 Countermeasures

TLB Poisoning Attacks affect all SEV and SEV-ES servers, including all first and

second generation EPYC server CPUs (i.e., Zen 1 and Zen 2 architecture). Older processors

may use a microcode patch to enforce a TLB flush during VMRUN for all SEV/SEV-ES

vCPUs. From the software side, to mitigate TLB Poisoning Attacks, we recommend all

network-related applications (e.g., HTTPS, FTP, and SSH server) to use exec() to ensure a

completely new address space for a new connection.

5.7 Summary

In this chapter, we present the first work to demystify AMD SEV’s insecure TLB

management mechanisms and demonstrate end-to-end TLB Poisoning Attacks that exploit

the underlying design flaws. Our study not only presents another vulnerability in the design

of SEV, but reveals the difficulty of securely isolating TLBs with untrusted privileged

software.

122

Chapter 6: CIPHERLEAKS: Breaking Constant-time Cryptography on

AMD SEV via the Ciphertext Side Channel

In this chapter, we study a previously unexplored vulnerability of SEV, including both

SEV-ES and SEV-SNP. The vulnerability is dubbed ciphertext side channels, which allows

the privileged adversary to infer the guest VM’s execution states or recover certain plaintext.

To demonstrate the severity of the vulnerability, we present the CIPHERLEAKS attack,

which exploits the ciphertext side channel to steal private keys from the constant-time

implementation of the RSA and the ECDSA in the latest OpenSSL library.

Responsible disclosure. We disclosed the vulnerability of the ciphertext side channel and

the CIPHERLEAKS attack to AMD via emails in December 2020. We also distributed

the first draft of this paper with AMD engineers in January 2021. AMD engineers have

acknowledged the vulnerability on SEV, SEV-ES, and SEV-SNP, and filed an embargo that is

effective until August 10, 2021. As of the time of writing, CVE number, CVE-2020-12966,

has been reserved for the vulnerability. AMD will announce a security bulletin together with

a hardware patch for SEV-SNP in August 2021.

We have also reported the vulnerable OpenSSL algorithms (see Section 6.3) to OpenSSL

in January 2021. The OpenSSL community has acknowledged our notification, but OpenSSL

will not be patched, because to properly mitigate such an attack within OpenSSL, it would

123

require significant changes to the whole software stack. We will describe software counter-

measures in Section 6.5.

6.1 Background

6.1.1 Secure Encrypted Virtualization

Secure Encrypted Virtualization (SEV) is a new feature in AMD processors [51]. AMD

introduces SEV for protecting virtual machines (VMs) from the untrusted hypervisor.

Using the memory encryption technology, each VM will be encrypted with a unique AES

encryption key, which is not accessible from the hypervisor or the VMs. The encryption is

transparent to both hypervisor and VMs and happens inside dedicated hardware in the on-die

memory controller. The in-use data in each VM will be encrypted by their corresponding

key automatically, and thus no additional software modifications are needed to run programs

containing sensitive secrets in the SEV platform. Open Virtual Machine Firmware (OVMF),

the UEFI for x86 VM, and Quick Emulator (QEMU), the device simulator, are the other

two critical components for the SEV-enabled VM.

Encrypted Memory. SEV hardware encrypts the VM’s memory using 128-bit AES sym-

metric encryption. The AES engine integrated into the AMD System-on-Chip (SOC)

automatically encrypts the data when it is written to the memory and automatically decrypts

the data when it is read from memory. For SEV, the AES encryption uses the XOR-and-

Encrypt encryption mode [30], which is later changed to an XEX mode encryption. Thus,

each aligned 16-byte memory block is encrypted independently. SEV utilizes a physical

address-based tweak function T () to prevent the attacker from directly inferring plaintext

by comparing 16-byte ciphertext [51]. It adopts a basic Xor-and-Encrypt (XE) mode on

the first generation of EPYC processors (e.g., EPYC 7251). The ciphertext c is calculated

124

by XORing the plaintext m with the tweak function for system physical address Pm using

c = ENC(m⊕T (Pm)), where the encryption key is called VM encryption key (Kvek). This

basic XE encryption mode can be easily reverse-engineered by the adversary as the tweak

function vectors tis are fixed. AMD then replaces the XE mode encryption with the XOR-

Encrypt-XOR (XEX) mode in EPYC 7401P processors where the ciphertext is calculated

by c = ENC(m⊕T (Pm))⊕T (Pm). The tweak function vectors tis are proved to have only

32-bit entropy by Wilke et al. [93] at first, which allows an adversary to reverse engineer

the tweak function vectors. AMD adopted a 128-bit entropy tweak function vectors in

their Zen 2 architecture EPYC processors from July 2019 [85] and thus fixed all existing

vulnerabilities in SEV AES encryption. However, the same plaintext always has the same

ciphertext in system physical address Pm during the lifetime of a guest VM.

SEV, SEV-ES, and SEV-SNP. The first version of SEV [51] was released in April, 2016.

AMD later released the second generation SEV-ES [49] in February, 2017 and the whitepaper

of the third generation SEV-SNP [50] in January, 2020. SEV-ES is designed to protect the

register states during the world switch and introduces the VMSA to store the register states

encrypted by Kvek. SEV-SNP is designed to protect the integrity of the VM’s memory and

introduces the RMP to store the ownership of each memory pages. Although SEV, SEV-

ES, and SEV-SNP use the same AES encryption engine, some additional memory access

restrictions are included in SEV-SNP for integrity protection. In SEV and SEV-ES, the

hypervisor has read/write access to the VM’s memory regions, which means the hypervisor

can directly read or replace the ciphertext of the guest VM. In SEV-SNP, the RMP checks

prevent the hypervisor from altering the ciphertext in the guest VM’s memory by adding the

ownership check before memory accesses. However, the hypervisor still has read accesses

to the ciphertext of the guest VM’s memory [8].

125

Non-Automatic VM Exits. VMEXITs in SEV-ES and SEV-SNP are classified as either

Automatic VM Exits (AE) or Non-Automatic VM Exits (NAE). AE VMEXITs are events

that do not need to expose any register state to the hypervisor. These events include machine

check exception, physical interrupt, physical Non-Maskable-Interrupt, physical Init, virtual

interrupt, pause instruction, hlt instruction, shutdown, write trap of CR[0-15], Nested page

fault, invalid guest state, busy bit, and VMGEXIT [6]. All other VMEXITs are classified as

NAE VMEXITs, which require exposing some register values to the hypervisor.

Instead of being trapped directly by the hypervisor, NAE events first result in a VC

exception, which is handled by a VC handler inside the guest VM. The VC handler then

inspects the NAE event’s error code and decides which registers need to be exposed to the

hypervisor. The VC handler copies those registers’ states to a special structure called Guest-

Hypervisor Communication Block (GHCB), which is a shared memory region between the

guest and the hypervisor. After copying those necessary registers’ states to GHCB, the VC

handler executes a VMGEXIT instruction to trigger an AE VMEXIT. The hypervisor then

traps the VMGEXIT VMEXIT, reads those states from the GHCB, handles the VMEXIT,

writes the return registers’ states into GHCB if needed, and executes a VMRUN. After the

VMRUN, the guest VM’s execution will resume after the VMGEXIT instruction inside the

VC handler, which copies the return values from GHCB to the corresponding registers, and

then exits the VC handler. For example, to handle CPUID instructions, the VC handler stores

the states of RAX and RCX and the VM EXITCODE (0x72 for CPUID) into GHCB and

executes a VMGEXIT. The hypervisor then emulates the CPUID instruction and updates the

values of RAX, RBX, RCX, and RDX in GHCB. After VMRUN, the VC handler checks if

those return registers’ states are valid and copies those states to its internal registers.

126

IOIO_PROT. During the Pre-Extensible Firmware Interface (PEI) initialization phase of

SEV VM, IOIO port is used instead of DMA. The reason is that DMA inside SEV VM

requires a shared bounce buffer between VM and the hypervisor [61]. The guest VM needs

to copy DMA data from the bounce buffer to its private memory for input data and copy

data from its private memory to bounce buffer for output data. Implementing bounce buffer

requires allocating dynamic memory and additional memory copy operations, which is a

challenge in the PEI initialization phase.

IOIO_PROT event is one of the NAE events that need to expose register states to the

hypervisor. In an IOIO_PROT event, several pieces of information are returned to the

hypervisor in GHCB. SW_EXITCODE contains the error code (i.e., 0x7b) of IOIO_PROT

events. SW_EXITINFO1 contains the intercepted I/O port (bit 31:16), address length (bit

9:7), operand size (bit 6:4), repeated port access (bit 3), and access type (i.e., IN, OUT, INS,

OUTS) (bit 2,0). The SW_EXITINFO2 is used to save the next RIP in non-SEV VM and

SEV VM, masked to 0 in SEV-ES and SEV-SNP. For IN instructions, the hypervisor puts

the RAX value into the RAX field of GHCB before VMRUN; for OUT instructions, the VC

handler places the RAX register value into the RAX field of GHCB before the VMGEXIT.

6.1.2 Cryptographic Side-Channel Attacks

Timing attack. Timing attacks against cryptographic implementations are a subset of

side-channel attacks, where the attacker exploits the time difference in the execution of

a specific cryptographic function to steal the secret information. Any functions that have

secret-dependent execution time variation is vulnerable to timing attacks. However, whether

secrets can be stolen in practice depends on many other factors, such as the implementation

of the cryptographic function, the hardware supporting the program, the accuracy of the

127

timing measurements, etc.. In 1996, Paul Kocher published the first timing attack on RSA

implementation [53]. Boneh and Brumley demonstrated a practical timing attack against

SSL-enabled network servers in 2003, where they recovered a server’s private key based

on the RSA execution time difference [22]. In fact, timing attacks are not only practical

against RSA, but to other crypto algorithms, including ElGamal and the Digital Signature

Algorithm [71].

Architecture side channel attack. Micro-architecture side channels are side channels that

use shared CPU architecture resources to infer a victim program’s behaviors. Most micro-

architecture side channels exploit timing differences to infer the victim program’s behaviors.

Some commonly used shared resources in micro-architecture side channels include Branch

Target Buffer (BTB), Cache (L1, L2, L3 cache), Translation Look-aside Buffer (TLB) and the

CPU internal load/store buffers, etc.. Some representative micro-architecture side-channel

techniques include Flush+Reload attacks [98], Prime+Probe attack [70], utag attacks [63]

and Flush+Flush attacks [36]. Those existing works show that architecture side channels

can be exploited and used to break confidentiality in a local or cloud setting.

Constant-time Cryptography. Constant-time cryptography implementations [17] are

widely used in mainstream cryptography library to mitigate timing attacks, the design of

constant-time functions is used to reduce or eliminate data-dependent timing information.

Specifically, Constant-time implementations are making the execution time independent

of the secret variables, therefore, do not leak any secret information to timing analysis.

To achieve constant execution time, there are three rules to follow. First, the control-flow

paths cannot depend on the secret information. Second, the accessed memory addresses

can not depend on the secret information. Third, the inputs to variable-time instructions

such as division and modulus cannot depend on the secret information. There are a few

128

tools developed assessing the constant-time implementations, including ImperialViolet [55],

dudect [73], ct-verif [2].

6.1.3 Advanced Programmable Interrupt Controller

AMD processors provide an Advanced Programmable Interrupt Controller (APIC) for

software to trigger interrupts [6]. Each CPU core is associated with one APIC, and several

interrupt resources are supported, including APIC timer, performance monitor counter, and

I/O interrupts. In the APIC timer mode, a programmable 32-bit APIC-timer counter can be

used by software to generate APIC interrupts. Two modes (periodic and one-shot mode)

are supported. In the one-shot mode, the counter can be set to a software-defined initial

value and decrease with a clock rate. Once the counter reaches zero, an APIC interrupt is

generated on this CPU core. In the period mode, the counter is automatically initialized to

the initial value after reaching zero; an interrupt is generated every time the counter reaches

zero.

The APIC is used in SGX-Step [24] to single-step the enclave program on Intel SGX [27].

SGX-Step builds a user-space APIC interrupt handler to intercept every APIC timer interrupt.

Meanwhile, SGX-Step sets a one-shot APIC timer with a fixed value right before ERESUME.

The fixed timer value is configured so that an APIC timer interrupt is generated after a single

instruction is executed inside the enclave. These steps are repeated to a single step every

instruction inside the enclave. SGX-Step can achieve a single-step ratio of around 98%

under a machine-specific fixed counter value. However, as far as we know, no research has

studied the APIC timer on the SEV platform to single-step SEV VMs.

129

6.2 The CIPHERLEAKS Attack

This section explores the side-channel leakage caused by SEV’s XEX mode encryption

and demonstrates its consequences when applied on the encrypted VMSA page. We

particularly construct two attack primitives: execution state inference and plaintext recovery.

6.2.1 The Ciphertext Side Channel

We consider a scenario where the victim VM is a SEV-SNP protected VM hosted by

a malicious hypervisor. We assume SEV properly protects the integrity of the encrypted

VM memory as well as the VMSA pages. As such, all prior known attacks against SEV and

SEV-ES (such as [39, 60, 61, 68, 69, 91]) are not applicable in our setting. The goal of the

CIPHERLEAKS attack is to steal secrets from the victim VM. Denial-of-service attacks and

speculative execution attacks are out-of-scope.

6.2.1.1 Root Cause Analysis

Because SEV’s memory encryption engine uses 128-bit XEX-mode AES encryption,

each 16-byte aligned memory blocks in the VMSA is independently encrypted with the

same AES key. Since each 16-byte plaintext is first XORed with a physical-address-specific

16-byte value (a.k.a., the output of the tweak function) before encryption, the same plaintext

may yield different ciphertext when placed in a different physical address. However, the

same 16-byte plaintext is always encrypted into the same ciphertext when placed in the

same physical address. Most importantly, SEV (including SEV-ES and SEV-SNP) does not

prevent the hypervisor from read accessing the ciphertext of the encrypted memory (which

is different from SGX).

130

This observation forms the foundation of our ciphertext side channel: By monitoring

the changes in the ciphertext of the victim VM, the adversary is able to infer the changes

of the corresponding plaintext. This ciphertext side channel may seem innocuous at first

glance, but when applied to certain encrypted memory regions, it may be exploited to infer

the execution of the victim VM.

6.2.1.2 CIPHERLEAKS: VMSA Inferences

The CIPHERLEAKS attack is a category of attacks that exploit the ciphertext side channel

by making inferences on the ciphertext of the VMSA. We first explain in more details the

VMSA structure and then outline an overview of attack.

VMSA structure. Before SEV-ES, the register states were directly saved into VMCB during

the VMEXITs without hiding their states from the hypervisor, which gives the hypervisor

a chance to inspect the internal states of the VM’s execution or change the control flow

of software inside the VM []. AMD fixes this unencrypted-register-state vulnerability by

encrypting the registers during VMEXITs. In SEV-ES and SEV-SNP, the register states

are encrypted and then saved into VMSA during VMEXITs. SEV-ES and SEV-SNP add

additional confidentiality and integrity protection of the saved register values in VMSA.

• Confidentiality. The VMSA is a 4KB page-aligned memory region specified by the

VMSA pointer in VMCB’s offset 108h [6]. All register states saved in the VMSA are also

encrypted with the VM encryption key Kvek.

• Integrity. To prevent the hypervisor from tampering VMSA, SEV-ES calculates the hash

of the VMSA region before VMEXITs and stores the measurement into a protected memory

region. Upon VMRUN, the hardware checks the integrity of the VMSA to prevent any

modification of the VMSA data. Instead of performing such integrity checks, SEV-SNP

131

Table 6.1: Ciphertext of registers collected in the VMSA. If the content at a specific offset is
8 bytes, it means the remaining 8 bytes are reserved.

Offset Size Content

150h 16 bytes CR3 & CR0
170h 16 bytes RFLAGS & RIP
1D8h 8 bytes RSP
1F8h 8 bytes RAX
240h 8 bytes CR2
308h 8 bytes RCX
310h 16 bytes RDX & RBX
320h 8 bytes RBP
330h 16 bytes RSI & RDI
340h 16 bytes R8 & R9
350h 16 bytes R10 & R11
360h 16 bytes R12 & R13
370h 16 bytes R14 & R15

prevents the hypervisor from writing to the guest VM’s memory (including VMSA pages)

via RMP permission checks.

Overview of CIPHERLEAKS. Our CIPHERLEAKS attack exploits the ciphertext side

channel on the encrypted VMSA during VMEXITs. During an AE VMEXIT, all guest

register values are stored in the VMSA, which is an encrypted memory page [6]. The

encryption of the VMSA page also follows the same rule as other encrypted memory pages.

Moreover, as the physical address of the VMSA page is chosen by the hypervisor and

remains the same during the guest VM’s life cycle, the hypervisor can monitor specific

offsets of the VMSA to infer changes of any 16-byte plaintext. Some saved registers and

their offset in the VMSA are listed in Table 6.1.

Some 16-byte memory blocks store two 8-byte register values. For instance, CR3

and CR0 are stored at offset 0x150. If either of the two registers changes its value, the

corresponding ciphertext will change. Because CR0 does not change very frequently, in

most cases, the ciphertext of this block differs because the CR3 value changes, which can

132

infer a context switch has taken place inside the victim VM. Thus, the ciphertext pair of

(CR0, CR3) can be used as identifiers of processes inside the victim VM. For other cases,

like the (RBX, RDX) and (R10, R11) pairs, as both registers are subject to frequent changes,

it is only possible to learn that the value of one (or both) of the two registers has changed.

The adversary may learn which register has changed if she knows the executed binary code

between the two VMEXITs.

Some 16-byte memory blocks only store values for a single 8-byte register (e.g., RAX

and RCX), and the remaining 8 bytes are reserved. Reserved fields are all 0s, so they never

change. Therefore, from Table 6.1, we can see that it is possible to construct one-to-one

mappings from the ciphertext to the plaintext for the values of RAX, RCX, RSP, RBP, and

CR2.

6.2.2 Execution State Inference

We next describe two attack primitives of CIPHERLEAKS, one in Section 6.2.2 and the

other in Section 6.2.3.1. First, we show the use of the ciphertext side channel to infer the

execution states of processes inside the guest VM, which helps locate the physical address

of targeted functions and infer the executing function of a process.

6.2.2.1 Attack Primitives

To infer the execution states of the encrypted VM, one could follow the steps below:

• ➀ At time t0, the hypervisor clears the present bits (P bits) of all memory pages in the

victim VM’s NPT. The next memory access from the victim VM will trigger a VMEXIT

caused by a nested page fault (NPF).

• ➁ During VMEXITs, the hypervisor reads and records the ciphertext blocks in the victim

VM’s VMSA, as well as the timestamp and VMEXIT’s EXITCODE. Before VMRUN,

133

Table 6.2: Information revealed from NPF error code.

Bit Description

Bit 0 (P) Cleared to 0 if the nested page was non-present.
Bit 1 (RW) Set to 1 if it was a write access.
Bit 2 (US) Set to 1 if it was a user access.
Bit 3 (RSV) Set to 1 if reserved bits were set.
Bit 4 (ID) Set to 1 if it was a code fetch.
Bit 6 (SS) Set to 1 if it was a shadow stack access.
Bit 32 Set to 1 if it was a final physical address.
Bit 33 Set to 1 if it was a page table.
Bit 37 Set to 1 if it was a supervisor shadow stack page.

The hypervisor needs to reset the P bit of the faulting page so that the victim VM may

continue execution. However, she may choose to clear the P bit again later to trigger more

VMEXITs. This step is similar to controlled channel attacks [81, 96].

• ➂ The hypervisor collects a sequence of ciphertext blocks and timestamps. By comparing

the ciphertext of the CR3 and CR0 fields, the hypervisor may associate each observation

to a particular process in the victim VM. Therefore, changes in the ciphertext blocks

belonging to the same process can be collected to infer its execution states.

The NPF’s error code passed to the hypervisor via VMCB’s EXITINFO2 field reveals

valuable information for the side-channel analysis. For example, as shown in Figure 6.1b,

error code 0x100000014 always means the NPF is caused by an instruction fetch. The NPF

error code is specified in Table 6.2.

The ciphertext itself is meaningless, but the fact that it changes matters. We use a vector

whose size is the same as the number of registers we monitor to represent value changes in

the ciphertext. A value +1 in the vector indicates that the corresponding register has changed

since the last NPF. Therefore, a sequence of such vectors can be collected.

With the information described above, the hypervisor is able to profile the applications

through a training process.

134

6.2.2.2 Examples

One example of such attack primitives is locating the physical address of targeted

functions in the victim. Next, we illustrate such attacks using the example shown in

Figure 6.1. We target at two callq instructions (❷ and ❸) in the caller function. We assume

the hypervisor has some pre-knowledge of the application code running in the guest VM and

the hypervisor begins to monitor the application, by clearing the P bits, before the two call

instructions (e.g., before ❶). In handling each NPFs, the hypervisor collects the ciphertext

of those saved registers listed in Table 6.1 as well as the NPF’s error code.

The hypervisor then collects a sequence of ciphertext blocks as shown in Figure 6.1b.

The callq instruction at ❷ touches a new instruction page that contains the code of sum().

Therefore it triggers an NPF. Compared to the previous snapshot, the changes of the

ciphertext of RIP, RSP, RBP, and RDI are observed; the ciphertext of CR3 and RAX remains

unchanged. When sum() returns, the return value is stored in RAX. The ciphertext changes

of the RAX register will be observed in the next NPF (at ❸), where RIP will also change.

In this way, the hypervisor can locate the physical address of the functions and trace the

control flow of the target application. In particular, NPF1 reveals the physical address of

function sum(), NPF2 reveals the physical address of expand().

6.2.3 Plaintext Recovery

The ciphertext side channel can also be exploited to recover the plaintext from some

of the ciphertext blocks. To recover plaintext from the ciphertext, the adversary first needs

to build a dictionary of plaintext-ciphertext pairs for the targeted registers, and then make

use of the dictionary to recover the plaintext value of the registers of interest during the

execution of a sensitive application.

135

int main() {
…

int a = sum(10);
int b = expand(10);

…
}

int expand(int i){
return i+10;

}

int sum(int n){
int result = 0;
for (int i = 0; i < n; i++){

result = result + i;
}
return result;

}

mov $0xa,%edi
callq 13dd <sum>
mov %eax,-
0x8(%rbp)
mov $0xa,%edi
callq 5fa <expand>

push %rbp
mov %rsp,%rbp
…
mov -0x8(%rbp),%eax
pop %rbp
retq

push %rbp
mov %rsp,%rbp
mov %edi,-0x4(%rbp)
…
retq

Caller function

Callee functions

❷

❸

❶

(a) C source code with assembly code.

Exitcode: 100000004
NPF0

[CR3, RIP, RSP, RAX, RBP, RDI, …]

[0, 0, 0, 0, 0, 0, …]

Exitcode: 100000014
[CR3, RIP, RSP, RAX, RBP, RDI, …]

[0, 1, 1, 0, 1, 1, …]

Exitcode: 100000014
[CR3, RIP, RSP, RAX, RBP, RDI, …]

[0, 2, 1, 2, 1, 1, …]

NPF1

NPF2

(b) Ciphertext blocks.

Figure 6.1: Example about the ciphertext changes in NPFs.

6.2.3.1 Attack Primitive

During some NAE events, the guest kernel may exchange register states with the

hypervisor through GHCB. Thus, the plaintext value of specific registers can be learned

when these register states are stored in the GHCB. The hypervisor can thus collect plaintext-

ciphertext pairs for those registers. Because different registers have different offset in

the VMSA and different physical addresses, we need to build the dictionary of plaintext-

ciphertext pairs for each register separately.

There are two ways to collect such pairs, depending on who stores the register values

to GHCB. First, for those NAE events where the hypervisor returns emulated registers

to the guest VM, the hypervisor may clear the P bit of the instruction page that triggers

136

the NAE events before VMRUN. Thus, after the VC handler use IRET to return to the

original instruction page, an NPF will occur, and the hypervisor can obtain the ciphertext

of corresponding registers while handling this NPF. Figure 6.2a shows an example about

collecting plaintext-ciphertext pairs of RAX from IOIO_PROT events (ioread). The

hypervisor records the plaintext of RAX when emulating the VMEXIT and obtains the

ciphertext of RAX when handling the NPF caused by IRET.

Second, for those NAE events where the VM exposes registers to the hypervisor, the

hypervisor may periodically clear the P bit of the VC handler code and record the ciphertext

of all registers in VMSA whenever there is an NPF triggered by the VC handler code.

At the next NAE, the plaintext of some registers will be written to the GHCB, and their

corresponding ciphertext can be found from the last VC handler triggered NPF. Figure 6.2b

shows an example about collecting plaintext-ciphertext pairs of RAX from IOIO_PROT

events (iowrite). The hypervisor obtains the ciphertext of RAX either when handling the

VC-exception-triggered NPF after the NAE event or when handling the NPF caused by

IRET and learns the plaintext of RAX when handling the VMEXIT.

6.2.3.2 Examples

The adversary could use the NAE VMEXITs to collect a dictionary of plaintext-

ciphertext pairs for certain registers stored in VMSA. Here we present a method that

leverages the IOIO_PROT (error code = 0x7b) NAE VMEXIT events to collect the cipher-

text of the RAX register when its plaintext values are 0 to 127.

Building the dictionary of plaintext-ciphertext pairs. During the PEI phase, the guest

VM needs to access the memory region that stores the information about the Nonvolatile

BIOS settings (CMOS) and the Real-Time Clock (RTC) through IO ports 0x70 and 0x71.

137

VM CPU KVM
ioread

AE

#VCVC handler

NAE

VMEXIT
handler

Save VM
states

Load VM
states

Next
Ins …

Read RAX
from GHCB

Write port
info

VMGEXIT

Write RAX
to GHCB

Read port
info

Emulate

VMRUN

Restore Regs
IRET

VC handler

NPF

(a) ioread event.

VM CPU KVM
iowrite

AE

#VCVC handler

NAE

VMEXIT
handler

Save VM
states

Load VM
states

…

Write RAX
to GHCB
Write port
info

VMGEXIT
Read RAX
from GHCB
Read port
info

Emulate
VMRUN

Restore Regs
IRET

VC handler

Next
Ins NPF

NPF

(b) iowrite event

Figure 6.2: Workflow of how VC handler handles IOIO_PROT events.

The OVMF code ensures the correctness of the CMOS/RTC by calling a function named

DebugDumpCmos when loading the PlatformPei PEI Module (PEIM) during the initial-

ization of the guest VM. DebugDumpCmos checks the CMOS/RTC by writing the offset of

CMOS/RTC to port 0x70 and then reading one byte of data from port 0x71. DebugDumpCmos

enumerates offset 0x00-0x7f (i.e., 0-127) during the PEI phase to access the CMOS/RTC

information.

In both SEV-ES and SEV-SNP, every iowrite and ioread in IOIO_PROT are first

trapped and handled by the VC handler. The VC handler and the hypervisor then cooperate

to emulate iowrite and ioread as shown in Figure 6.2. For iowrite, the VC handler

copies the RAX value to GHCB before calling VMGEXIT. For ioread, the VC handler copies

138

Table 6.3: Number of NAE events observed during boot period and registers state range
maybe exposed. Num: the number of NAE event being observed. *: state to hypervisor.
**: state from hypervisor, N/A: not observed. -: this register is not supposed to be used
during this NAE event. Range R1: numbers of different exposed register states lying in
[0,1], Range R2: [0,15], Range R3: [0,127], Range R4: [0,264-1].

NAE Event Num RAX RCX RDX
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

DR7 Read* 0 N/A N/A N/A N/A - - - - - - - -
DR7 Write* 1 0 0 0 1 - - - - - - - -
RDTSC* 0 N/A N/A N/A N/A - - - - N/A N/A N/A N/A
RDPMC* 0 - - - - N/A N/A N/A N/A - - - -
RDPMC** 0 N/A N/A N/A N/A - - - - N/A N/A N/A N/A
CPUID* 35328 2 6 6 276 2 11 18 1467 - - - -
CPUID** 35328 1 5 6 18 1 2 3 17 2 3 4 10
IOIO_PROT* 260648 2 16 128 8717 - - - - - - - -
IOIO_PROT** 246527 2 15 82 9033 - - - - - - - -
RDMSR* 1261 - - - - 0 0 1 104 - - - -
RDMSR** 1261 2 4 4 51 - - - - 1 1 2 6
WRMSR* 12532 1 4 6 10363 0 0 1 71 1 1 2 8
RDTSCP** 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

the RAX state from GHCB to RAX register after VMGEXIT. In the iowrite cases, the RAX

state after the VC handler finishing handling an iowrite exception and before returning to

the sequential instruction, should be the same as the RAX state passed to the hypervisor in

the VMGEXIT.

In our case of DebugDumpCmos in PlatformPei PEIM, the hypervisor can observe 128

IOIO_PROT events with SW_EXITINFO1 being 0x700210 (indicating that the guest VM is

accessing CMOS/RTC information) and increasing RAX values from 0x00 to 0x7f. The

hypervisor can also trap the sequential instruction by clearing the P bit of the physical

address of the PlatformPei PEIM’s EntryPoint, which will be accessed after the guest

VM exiting the VC handler. The guest physical address of EntryPoint is always 0x83a000

in our setting. Note that the hypervisor can also easily locate the physical address of the

139

PlatformPei PEIM because the plaintext of the OVMF file is known by both the guest VM

owner and the hypervisor [7] for in-place encryption during the remote attestation.

Each IOIO_PROT event in DebugDumpCmos helps the hypervisor record the ciphertext

of a known RAX plaintext value in VMSA when handling the NPF caused by returns to the

PlatformPei PEIM. After the DebugDumpCmos, the hypervisor can build a dictionary with

128 plaintext-ciphertext pairs in total, where the plaintext are from 0x00 to 0x7F. Some other

IOIO_PROT events with the same SW_EXITINFO1 can also occur during the execution of

DebugDumpCmos. The hypervisor can distinguish those events by looking at the ciphertext

of RFLAG/RIP field in VMSA since all target iowrites inside DebugDumpCmos have the

same RFLAG/RIP value.

6.2.3.3 Other Plaintext-ciphertext Pairs

In this section, we show other plaintext-ciphertext pairs the adversary may collect during

the boot period of a SEV-enabled VM. We also analyze plaintext recovery under different

OVMF versions and different build configurations.

All data shown in this section were collected on a workstation with 8-Core AMD EPYC

7251 Processor. The OVMF version used to boot the SEV-ES-enabled VMs may vary

according to different settings that we will illustrate later. The victim VMs were configured

as SEV-ES-enabled VMs with one virtual CPU, 4 GB DRAM, and 30 GB disk storage. The

host and guest OS kernel were forked from branch sev-es-v3, and the QEMU version was

QEMU sev-es-v12. All code is directly downloaded from AMD’s Github repository [9]

(commit:96f2b75aaa9801646b410568d12b928cc9f06e0c, Nov, 25th, 2020). We only

performed the attacks on SEV-ES machines, as SEV-SNP machines were not available to us

at the time of writing. But SEV-SNP is equally vulnerable (see Section 5.6).

140

Plaintext Range. To show the potential plaintext range the hypervisor can collect, we

monitored all NAE events which have register state interactions with the hypervisor during

the boot period of a SEV-ES-enabled VM. The OVMF version used was downloaded from

branch sev-es-v27 with the default setting. As shown in Table 6.3, the collected register

states are divided into 4 intervals. Range 1 (R1) is field [0,1] with only two numbers and

is the most important interval since a return of true or false is very common in function

implementation. Most observed NAE events can help the hypervisor to collect both two

values in R1 while frequent IOIO_PROT (260648 for IO out and 246527 for IO in) events

during the boot period can help the hypervisor to fill Range 2 (R2) which is [0,15] and

Range 3 (R3) which is [0,127]. Range 4 (R4) contains all 264 for an 8-byte register. Some

NAE events are not observed during the boot period like RDPMC and RDTSC. However, these

NAE events are still considered exploitable as long as some programs use these instructions

during VM’s lifetime. In the table, we separate RBX and RDX to present different register

values the hypervisor can observe during the boot period. However, the adversary is only

able to observe the ciphertext of the (RBX, RDX) pair, as these two registers are in an the

same aligned 16-byte encryption block.

Different Versions. We have tested three latest (as of Nov., 25th, 2020) OVMF git branches

provided by AMD [9] for SEV-ES (“sev-es-v27”7) and SEV-SNP (“sev-es-v21+snp”8) as

well as the official OVMF repository used by SEV (“https://github.com/tianocore/edk2.git”9).

All these three versions adopt the same CMOS/RTC design flow we mentioned in this section

under the default configuration provided by AMD [9], and the hypervisor is able to collect

all the 7-bits (plaintext from 0 to 0x7F) plaintext-ciphertext pairs in all these three versions.

7commit:834f296d3e1864b676fac9db53bc7dbb83c6eee7
8commit:e7bf4dfeaba60089f427af518936f29db79dd159
9commit:21f984cedec1c613218480bc3eb5e92349a7a812

141

Different Settings. We have also tested OVMF debug configuration options. The default

debug configuration is to write debug messages to IO port 0x402. OVMF also supports

original debug behavior where the debug messages are written to the emulated serial port

if the DEBUG_ON_SERIAL_PORT option is set. AMD adopts the DEBUG_ON_SERIAL_PORT

option according to their Github repository [9]. In both these two settings, the hypervisor is

able to collect all the 7-bits plaintext-ciphertext pairs by monitoring CMOS/RTC activities

in I/O PORT 0x70. The DebugDumpCmos can be disabled if the developer chooses to ignore

all debug information by setting the -b RELEASE option. However, the hypervisor can

still collect 19 out of the 7-bits plaintext-ciphertext pairs (with 2 numbers lying in R1, 13

numbers in R2, and 19 numbers in R3) by monitoring CMOS/RTC activities in I/O PORT

0x70. When targets at all IOIO_PROT OUT events, the hypervisor shows the potential

ability to collect 115 out of the 7bits plaintext-ciphertext pairs (with 2 numbers lying in R1,

16 numbers in R2, and 115 numbers in R3), even disabling all debug activities.

6.3 Case Studies

In this section, we present two case studies to illustrate the CIPHERLEAKS attack. In

the first attack, we show that the constant-time RSA implementation in OpenSSL can be

broken with known ciphertext for the plaintext values of 0 to 31. In the second attack, we

show that the constant-time ECDSA signature can be compromised with known ciphertext

of the plaintext values of 0 and 1.

6.3.1 Breaking Constant-Time RSA

RSA is asymmetric cryptography, which is widely used in various crypto systems. In the

RSA algorithm, the plaintext message m can be recovered from the ciphertext c via m = cd

142

mod n, where d is the private key and n is the modulus of the RSA public key system. As

such, we show how the CIPHERLEAKS attack steals the private key d.

Targeted RSA implementation. Our demonstrated attack targets at the modular exponen-

tiation used in RSA operations from the latest OpenSSL implementation (as of Nov, 4th,

2020)10 . OpenSSL implements the modular exponentiation using a fixed-length sliding

window method in function BN_mod_exp_mont_consttime(). We target at a while loop

inside this function, which iteratively calculates the exponentiation in a 5-bit windows. The

while loop is shown in Listing 6.1. For a 2048-bit private key, the while loop has about

2048/5 = 410 iterations. In each iteration, bn_get_bits5 is called to retrieve the 5-bit of

the private key d.
1 /*
2 * Scan the exponent one window at a time starting from the most

significant bits.
3 */
4 while (bits > 0) {
5 bn_power5(tmp.d, tmp.d, powerbuf , np, n0 , top ,
6 bn_get_bits5(p->d, bits -= 5));
7 }

Listing 6.1: Code snippet of BN_mod_exp_mont_consttime.

The attacker can steal the 2048-bit private key d in the following steps:

➀ Infer the physical address of the target function. The attacker first uses the method

introduced in Section 6.2.2 to obtain the physical address of the target function. We use

gPAt0 and gPAt1 to denote the guest physical addresses of the target functions bn_power5

and bn_get_bits5, respectively.

➁ Monitor NPFs. The attacker clears the P bit of the two targeted physical pages. Once a

NPF of gPAt0 is intercepted, she clears the P bit of gPAt1; when a NPF of gPAt1 is intercepted,

10Github commit: 8016faf156287d9ef69cb7b6a0012ae0af631ce6

143

she clears the P bit of gPAt0. For a 2048-bit RSA encryption, 410 iterations can be observed,

the attacker will observe 820 NPFs of gPAt0 and gPAt1 in total.

➂ Extract the private key d. As shown in Listing 6.2, bn_get_bits5 obtains 5 bits of d

in each iteration, stores the value in RAX, and returns. Since the hypervisor clears the P bit

of gPAt0, returns to bn_power5 will trigger a NPF of gPAt0. When the hypervisor handles

this NPF, it reads and records the ciphertext of RAX in the VMSA. The RAX now stores 5

bits of the private key d, and its value range is 0 to 31. The hypervisor can infer the plaintext

by searching the plaintext-ciphertext pairs collected during the boot period as described in

Section 6.2.3.2. The hypervisor can recover the whole 2048-bit private key d after a total of

410 iterations.
1 .globl bn_get_bits5
2
3 cmova %r11 ,%r10
4 cmova %eax ,%ecx
5 movzw (%r10 ,$num ,2) ,%eax
6 shrl %cl ,%eax
7 and \$31 ,%eax
8 ret
9

Listing 6.2: Code segment of bn_get_bits5().

6.3.2 Breaking Constant-time ECDSA

Elliptic Curve Digital Signature Algorithm ECDSA) is a cryptographical digital signature

based on the elliptic-curve cryptography (ECC). ECDSA follows the steps below to generate

a signature:

1. Randomly generate a 256-bit nonce k.

2. Calculate r = (k×G)x mod n

3. Calculate s = k−1(h(m)+ rda) mod n

144

where G is a base point of prime order on the curve, n is the multiplicative order of the point

G, da is the private key, h(m) is the hash of the message m, and (r, s) form the signature.

With a known nonce k, the private key da can be calculated directly:

da = r−1× ((ks)−h(m)) mod n

As such, a side-channel attack against ECDSA aims to steal the nonce k. The secret private

key can be inferred thereafter.

Targeted ECDSA implementation. Our demonstrated attack targets the secp256k1 curve,

which is also used in Bitcoin wallets. In the latest OpenSSL’s implementation (as of Nov,

4th, 2020) , when ECDSA_do_sign is called to generate a signature, ecdsa_sign_setup is

first called to generate a random 256-bit nonce k per NIST SP 800-90A standard. To do so,

EC_POINT_mul, ec_wNAF_mul, and then ec_scalar_mul_ladder are called to compute r,

which is the x-coordinate of nonce k. ec_scalar_mul_ladder is used regardless of the

value of the BN_FLG_CONSTTIME flag.

As shown in Listing 7.1, the core component of ec_scalar_mul_ladder uses condi-

tional swaps (a.k.a., EC_POINT_CSWAP) to compute point multiplication without branches.

Specifically, in each iteration, BN_is_bit_set(k, i) is called to get the ith bit of the nonce

k. The conditional swaps are determined by kbit, which is the XOR result of the ith bit of

the nonce k and pbit.
1 for (i = cardinality_bits - 1; i >= 0; i--) {
2 kbit = BN_is_bit_set(k, i) ^ pbit;
3 EC_POINT_CSWAP(kbit ,r,s,group_top ,Z_is_one);
4 // Perform a single step of the Montgomery ladder
5 if (! ec_point_ladder_step(group , r, s, p, ctx)){
6 ERR_raise(ERR_LIB_EC ,
7 EC_R_LADDER_STEP_FAILURE);
8 goto err;
9 }

10 // pbit logic merges this cswap with that of the next iteration
11 pbit ^= kbit;

145

12 }

Listing 6.3: Code snippet of ec_scalar_mul_ladder().

The attacker can steal the nonce k in the following steps:

➀ Infer the functions’ physical addresses. The attacker first obtains the guest physical ad-

dresses of the target functions ec_scalar_mul_ladder gPAt0 and BN_is_bit_set gPAt1

using the execution inference method we introduced.

➁ Monitor NPFs. The attacker clears the P bit of the two targeted physical pages. Once

a NPF of gPAt0 is intercepted, she clears the P bit of gPAt1; when a NPF of gPAt1 is

intercepted, she clears the P bit of gPAt0. In this way, the control flow internal to the

ec_scalar_mul_ladder function can be learned by the attacker.

➂ Learn the value of k. In the 256-iteration while loop, the attacker will observes 256*5 =

1280 NPFs of gPAt0 and 1280 NPFs of gPAt1. In each iteration of the while loop, the first

NPFs of gPAt0 is triggered when BN_is_bit_set returns. As shown in Listing 6.4, the ith

bit of the nonce k is returned in RAX. Thus, the ith bit of the nonce k is stored in the RAX

field of the VMSA for the first NPFs of gPAt0 in each iteration. The attacker then compares

the ciphertext of the RAX field to recover the nonce k.
1 000 f8e20 <BN_is_bit_set >:
2
3 f8e38: 48 8b 04 d0 mov (%rax ,%rdx ,8) ,%rax
4 f8e3c: 48 d3 e8 shr %cl ,%rax
5 f8e3f: 83 e0 01 and $0x1 ,%eax
6 f8e42: f3 c3 repz retq
7

Listing 6.4: Assembly code snippet of BN_is_bit_set().

6.3.3 Evaluation

All end-to-end attacks shown in this section were evaluated on a workstation with 8-Core

AMD EPYC 7251 Processor. The victim VM was configured as SEV-ES-enabled VMs with

146

one virtual CPU, 4 GB DRAM, and 30 GB disk storage. The versions of the guest and host

OS, QEMU, and OVMF are the same as described in Section 6.2.3.3. The latest OpenSSL

from Github was used in the evaluation (commit:8016faf156287d9ef69cb7b6a0012ae0af631ce6,

Nov, 4th, 2020). These attacks can also be applied to VMs with multiple vCPUs as well, but

the adversary needs to collect ciphertext-plaintext dictionaries for each vCPU independently,

since each vCPU has its own VMSA.

To locate the physical address of the target function, the attacker must train the pattern

of ciphertext changes in a training VM (a different VM from the victim VM). In the training

VM, the attacker first repeats the RSA encryption and the ECDSA signing several times by

calling APIs from the OpenSSL library (with the same version as the targeted OpenSSL

library in the victim VM). The attacker also collects the NPF sequence, the corresponding

VMSA ciphertext changes (see Section 6.2.2), as well as the ground truth (guest physical

address) for the target functions. In our experiments, the pattern of ciphertext changes is

very stable, especially for a function call without many branches (e.g., ECDSA_do_sign()

for ECDSA). As such, simple string comparison is sufficient for pattern matching and no

sophisticated machine learning techniques are required.

In the attack phase, the victim VM performs an RSA encryption or an ECDSA signature

using the OpenSSL library, which can be triggered by the attacker remotely but it is not a

necessary condition for a successful attack. As the attacker does not know the start time

of the targeted program, she must consider every newly observed CR3 ciphertext as the

beginning of the targeted crypto code. It clears all P bits and starts monitoring the pattern

of ciphertext changes. If the expected ciphertext change pattern is observed, the attacker

can continue to steal the secret from the victim VM.

147

In both of the two cases we presented, we repeated the experiment 10 times and each

time the attacker was able to identify the trained ciphertext pattern and recover the private

key d and the secret nonce k with 100% accuracy. We measured the time needed to steal the

2048-bit private key d and the secret nonce k 10 times after the ciphertext change pattern

is identified. The average time needed to obtain the private key d is 0.40490 seconds with

a standard deviation of 0.08920 seconds. The average time needed to steal the secret nonce

k is 0.10226 seconds with a standard deviation of 0.00330 seconds.

6.4 Countermeasures

In this section, we first discuss several potential software-level countermeasures for the

CIPHERLEAKS attack. We then show the CIPHERLEAKS attack can still work by exploiting

the Advanced Programmable Interrupt Controller (APIC) to collect the function’s internal

state. Thus, none of that software may work properly. We also discuss hardware-level

countermeasures in Section 6.4.3.

6.4.1 Software Mitigation

Solutions to the ciphertext side channel can be categorized into two kinds: preventing the

collection of the plaintext-ciphertext dictionary and preventing exploitation by modifying

targeted functions.

Preventing dictionary collection. One potential solution is to remove unnecessary IOIO_PROT

events. However, other NAE event may still serve the same purposes as IOIO_PROT. More

importantly, as we have shown in Section 6.3.2, the hypervisor can steal the nonce k with

only two plaintext-ciphertext pairs. Complete removal of all such leak sources is required to

make the solution effective, almost impossible in SEV’s current design.

148

Preventing exploitation. To fix the target functions, changes to the whole software stack

may be necessary. We list three potential solutions below, but unfortunately, these approaches

can be bypassed using the method we outline in Section 6.4.2.

• Masking the return value in RAX. If the return value only needs a few bits to represent,

compilers can introduce randomness into the higher bits of the return value. For example,

if the return is 1, then a random number can be added to mask the RAX, e.g., by returning

RAX = 0x183af6b800000001, where the higher 4-byte are generated randomly. The caller

of the function can ignore the higher bits. In this way, the ciphertext of RAX will be new

and thus unknown to the adversary.

• Passing return values through memory or other registers. The return value can be

passed to the caller via stack. As the physical address of the stack frame is hard to predict

and collect beforehand, attacks can be prevented. Similarly, the software can also write the

return value to other registers (e.g., R10), which can avoid using the RAX register.

• Using inline functions or keep the callee code on the same page. If the code of the

caller and the callee are on the same page, for instance, by using inline functions, no NPFs

will be triggered during function return.

These three potential solutions require significant rewriting of sensitive functions, which

may require compiler-assisted tools to perform. However, the success of all these solutions

relies on the assumption that the hypervisor cannot infer the internal states of a function call,

which, as we will show in Section 6.4.2 shortly, is not true.

6.4.2 Function’s Internal States Intercept

We present an APIC-based method to allow the hypervisor to single-step the functions

in order to intercept the function’s internal states. Therefore, the adversary can learn the

149

internal states of a targeted function. Our method, though conceptually similar to SGX-

Step [24], requires integrating the APIC handling code into the VMEXIT handler of KVM.

Moreover, unlike SGX-Step that uses a static APIC interval to interrupt the controller, we

need to select APIC intervals as the execution time of VMRUN is not constant. More

specifically, the following steps are taken to interrupt VMRUN:

➀ Infer the functions’ physical addresses. The attacker first obtains the guest’s physical

addresses of the target function, namely gPAt , using the execution state inference method

we introduced.

➁ Dynamically determine APIC timer intervals. The attacker follows a “0 steps is

better than several steps" principles to single step or intercept a small advancement of the

execution of the target function. Because the time used for VMRUN instruction is not fixed,

the hypervisor always starts with a small APIC interval to single step into the guest VM as

much as possible. The hypervisor then checks the VMSA field to see if the ciphertext in

VMSA has changed; if so, it means that one or several registers’ value have changed and the

guest VM executes one or several instructions before interrupted by APIC. The algorithm to

choose the proper APIC time interval is specified in Algorithm 2.

Algorithm 2 Dynamic Timer Interval Prediction
int apic_time_interval; //APIC interrupts the VM after the interval
int roll_back ; //roll back to a small interval after any movement
apic_time_interval = 20
roll_back = 10; // initialize the setting, may vary in different CPU
while true do

apic_timer_oneshot(apic_time_interval) __svm_sev_es_vcpu_run(svm->vmcb_pa)
svm_handle_exit(vcpu, physical interrupt VMEXIT) if not observe VMSA changes then

apic_time_interval ++
else

apic_time_interval = apic_time_interval - roll_back
end

end

150

➂ Collect the target function’s internal states. The hypervisor can collect the internal

states of the target function after a WBINVD instruction which is used to flush VMSA’s

cache back to the memory. With a known binary, the hypervisor may also determine the

number of the instructions that have been executed by comparing the ciphertext blocks

changes with the assembly code.

Evaluation. To evaluate the effectiveness of single-stepping the guest VM’s execution, we

perform experiments on a workstation with 8-Core AMD EPYC 7251 Processor. The victim

VM was configured as SEV-ES-enabled VMs with two virtual CPUs, 4 GB DRAM, and 30

GB disk storage. The versions of the guest and host OS, QEMU, and OVMF are the same as

described in Section 6.2.3.3. Unlike the previous settings, we enable SEV-ES’s debug option

in the guest policy, which allows the hypervisor to use SEV_CMD_DBG_DECRYPT command

to decrypt the guest VM’s VMSA. This configuration is only to collect ground truth of the

experiments, which will not influence the guest VM’s execution and is not a required step in

practical attacks.

To make the experiments representative, we randomly select the starting point during the

VM’s execution to initiate our tests. In each test, we follow Algorithm 2 to collect 100 trials.

Each trial is collected only when the hypervisor observes changes in the register’s ciphertext

in the VMSA. Meanwhile, we collected ground truth by using the SEV_CMD_DBG_DECRYPT

command from the hypervisor to decrypt the RIP filed in VMSA. We use ∆ to represent

the number of bytes that the RIP has advanced between two consecutive VMEXITs. Note

that the SEV_CMD_DBG_DECRYPT command will not affect the execution of the guest VM.

We repeat the test 60 times. In total, 6000 trials are collected. Among the 6000 trials, 454

lead to ∆ greater than 20 because of a jmp instruction (thus can be filtered out). For the

remaining 5546 trials, the APIC-timer intervals used to trigger APIC interrupts range from

151

50 60 70 80 90
In t e r v a l

0

100

200

300

400

500

600

700

800

N
u
m

(a) Interval when VMSA changes.

1 2 3 4 5 6 7 8 9 101112131415161718
De l t aRip

0

200

400

600

800

1000

1200

1400

1600

N
u
m

(b) ∆ when VMSA changes.

Figure 6.3: Performance of stepping VM execution using APIC.

40 to 90 (with a divide value of 2, this translates from 80 to 180 CPU cycles). The distribute

is shown in Figure 6.3a. These results suggest that the runtime of the VMRUN instruction

is not constant (on SEV-ES VM), which may be caused by the presence of VMCB cache

states and the non-constant time VMSA integrity checks. Even though VMRUN is not

constant-time, as shown in Figure 6.3b, 78.7% trials lead to ∆ smaller than 3 bytes. 90.1%

trials lead to ∆ smaller than 5 bytes. Note that a typical x86 instruction has 2 to 4 bytes [41].

These results show that the APIC-based method can successfully interrupt the execution of

the guest VM with very small steps.

6.4.3 Hardware Countermeasures

The root cause of the ciphertext side channel is the mode of encryption adopted in the

memory encryption. AMD uses the XEX encryption mode in all SEV versions (e.g., SEV,

SEV-ES, and SEV-SNP) and all CPU generation (e.g., Zen, Zen 2, and Zen 3). This results

from a well-known dilemma in the design of memory encryption: On one hand, if the

ciphertext of each 16 blocks is chained together (like in the CBC mode encryption), the

152

static mapping between ciphertext and plaintext can be broken. However, changing one

bit in the plaintext will lead to changes in a large number of ciphertext blocks. On the

other hand, if freshness is introduced to each block (like the CTR mode encryption used in

Intel SGX), a large amount of memory needs to be reserved for storing the counter values.

However, this idea may be applied to only selected memory regions, such as VMSA. In

this way, the CIPHERLEAKS attack against VMSA can be prevented. To our knowledge,

the hardware patch that will be integrated in SEV-SNP takes a similar idea for protecting

VMSA. However, the ciphertext side channel still exists in other memory regions.

Alternatively, a plausible hardware solution is to prevent the hypervisor’s read accesses

to the guest VM’s memory. This idea could be implemented with the RMP table (see

Section 5.6), by restricting the read access from the hypervisor on guest pages. However,

this feature is not yet available in SEV-SNP.

6.5 Applicability to SEV-SNP

To mitigate memory integrity attacks against SEV and SEV-ES [61, 69, 91, 93], AMD

introduced another extension of SEV, named SEV Secure Nested Paging (SEV-SNP) [50].

AMD released the whitepaper describing in January, 2020 [8] and a hardware API document

in August, 2020 [10]. Nevertheless, commercial processors supporting SEV-SNP have not

been released yet. According to the technical details revealed in SEV-SNP’s whitepaper, all

prior attacks (at the time of August, 2020) can be mitigated by SEV-SNP.

In this section, we discuss some of the new features introduced by SEV-SNP and discuss

CIPHERLEAKS’s applicability on SEV-SNP.

153

6.5.1 Overview of SEV-SNP

SEV-SNP protects guest VM’s memory integrity by introducing a new structure called

Reverse Map Table (RMP). Each RMP entry is indexed by the system page frame numbers;

it contains the page states (e.g., page’s ownership, guest-valid, guest-invalid, and guest

physical address) of this system page frame. The SEV-SNP VM must interact with the

hypervisor to validate each RMP entry. Specifically, the guest VM needs to issue a new

instruction PVALIDATE, a new instruction for guest VMs, to validate a guest physical address

before the first access to that guest physical address. Any memory access to an invalid guest

physical address will result in an NPF. More importantly, once a guest page is validated,

the hypervisor cannot modify the RMP entry. Therefore, the guest VM itself can guarantee

that its memory page is only validated once, and a one-to-one mapping between the guest

physical address and system physical address mapping can be maintained.

As shown in Figure 6.4, RMP limits the hypervisor’s capabilities of managing NPT.

The RMP check is performed before the NPT walk is finished. Without RMP check, the

hypervisor can easily remap guest physical address (gPA) to an arbitrary memory page by

manipulating the page table entry in the NPT. With RMP check, if the hypervisor remaps the

guest physical address to a memory page not belonging to the current guest VM or a memory

page mapped to the current guest VM’s other guest physical address, an invalid NPF or a

mismatch NPF will be triggered, which can prevent attacks that require modification of the

NPT [39, 68, 69].

Another protection enabled by RMP is that the ownership included in the RMP entry

restricts the hypervisor’s write permission towards the guest VM’s private memory, which

can prevent attacks that require directly modifying the ciphertext [29, 61, 93]. More details

about existing attacks and how RMP can mitigate these attacks are introduced in Section 2.2.

154

gCR3

Guest Virtual address

Check gPA
& Owner

nCR3

Guest Physical address

RMP

System Physical address

Guest Page Table

Nested Page Table

gPA

Figure 6.4: The RMP Check in AMD-SNP.

6.5.2 The CIPHERLEAKS attack on SEV-SNP

There are two key requirements of the CIPHERLEAKS attack:

• Mapping of plaintext-ciphertext pairs of the same address does not change. When

applying the CIPHERLEAKS attack on SEV-SNP, the memory encryption mode in SEV-

SNP needs to preserve the mapping between the plaintext and the ciphertext throughout the

lifetime of the VM. According to [6], SEV-SNP still adopts the XEX mode of encryption,

which satisfies this requirement.

• The hypervisor must have read access to the ciphertext. When applying the CIPHER-

LEAKS attack on SEV-SNP, the adversary needs to have read access to the ciphertext of

guest VM’s memory. According to [8], even though RMP limits the hypervisor’s write

access towards VM’s private memory, the hypervisor still has read access to the guest

VM’s memory, including the VMSA area.

155

AMD has confirmed that SEV-SNP is also vulnerable to the CIPHERLEAKS attack. A

CVE number will be assigned the discovered vulnerability for SEV-SNP and a hardware

patch will be available to protect the VMSA during VMEXITs.

6.6 Summary

In this chapter, we describes the ciphertext side channel on SEV (including SEV-ES

and SEV-SNP) processors. The root causes of the side channel are two-fold: First, SEV

uses XEX mode of encryption with a tweak function of the physical addresses, so that the

one-to-one mapping between the ciphertext and plaintext of the same address is preserved.

Second, the VM memory is readable by the hypervisor, allowing it to monitor the changes

of the ciphertext blocks. The chapter demonstrates the CIPHERLEAKS attack that exploits

the ciphertext side-channel vulnerability to completely break the constant-time cryptography

of OpenSSL when executed in SEV-ES VMs.

156

Chapter 7: A Systematic Look at Ciphertext Side Channels on AMD

SEV-SNP

In this chapter, we perform a comprehensive study on the ciphertext side channels. Our

work suggests that while the CipherLeaks attack targets only the VMSA page, a generic

ciphertext side-channel attack may exploit the ciphertext leakage from any memory pages,

including those for kernel data structures, stacks and heaps. As such, AMD’s existing

countermeasures to the CipherLeaks attack, a firmware patch that introduces randomness

into the ciphertext of the VMSA page, is clearly insufficient. The root cause of the leakage in

AMD SEV’s memory encryption—the use of a stateless yet unauthenticated encryption mode

and the unrestricted read accesses to the ciphertext of the encrypted memory—remains

unfixed. Given the challenges faced by AMD to eradicate the vulnerability from the

hardware design, we propose a set of software countermeasures to the ciphertext side

channels, including patches to the OS kernel and cryptographic libraries. We are working

closely with AMD to merge these changes into affected open-source projects.

Responsible disclosure. We disclosed the generic ciphertext side-channel attacks on kernel

data structures, heaps, and stacks to the AMD SEV team in August 2021. Henceforth, we

provided more supplementary materials via email communications. AMD has acknowledged

the vulnerability and had several discussions with us about potential countermeasures and

stated interest in a kernel level fix. While hardware countermeasures might not be feasible

157

in the near future for both performance and design concerns, AMD assisted us with the

development of the software countermeasures, including both kernel patches (Section 7.5)

and helping us get connected to other projects like OpenSSL.

We also disclosed the vulnerability on the code level to the communities of cryptog-

raphy libraries (including OpenSSL, WolfSSl, GnuTLS, OpenSSH and libgcrypt). At the

time of writing, we had received feedback from both OpenSSL and WolfSSL. They both

acknowledged the concerns and recognized the necessity of addressing this vulnerability

from software. WolfSSL has already provided a draft version of software fixes.

7.1 Background

7.1.1 Secure Encrypted Virtualization

AMD Secure Encrypted Virtualization (SEV) is a trusted execution environment (TEE)

supported by AMD server-level EPYC processors with “Zen" Architecture. SEV aims

at providing confidential virtual machines for cloud customers. In SEV’s threat model,

other virtual machines, as well as the cloud host itself, are considered untrusted. The

attacker may execute arbitrary code at the privileged hypervisor level and may also have

physical access to the machine (e.g., DRAM chips) [51]. To achieve this ambitious goal, a

dedicated security subsystem consisting of the AMD Secure Processor (AMD-SP) and an

AES memory encryption engine is introduced by SEV to protect data in use.

Hardware Memory Encryption. When SEV is enabled, the cryptographic isolation pro-

vided by Hardware Memory Encryption protects the confidentiality of the VM. Specifically,

the VM’s memory pages are always stored in encrypted form, and the VM encryption keys

are guarded by the AMD-SP. SEV adopts a 128-bit AES encryption with the XOR-Encrypt-

XOR (XEX) encryption mode, which incorporates a physical address-specific tweak such

158

that the same plaintext yields different ciphertexts for each memory location. However, for

a fixed address, an identical plaintext always yields the same ciphertext.

Nested Page Tables (NPT) and the page fault controlled channel. When SEV is enabled,

the address translation between the VM’s guest physical addresses and the host physical

addresses is managed by the hypervisor with the help of a NPT, which is a two-layer page

table consisting of a Guest Page Table (GPT) and a Nested Page Table (NPT). The GPT is

managed inside the guest VM and thus protected by the VM encryption key. The NPT is

solely managed by the hypervisor.

As shown in prior work [60, 69, 93], the hypervisor can leverage the control over the

NPT to intercept the execution of the guest with page granularity. To achieve this, the

hypervisor can unset the Present bit (P bit) in the NPT. The next time the VM tries to

access the corresponding guest physical page, a nested page fault (NPF) will be generated,

revealing the addresses of the access and the causes.

SEV extensions. Two extensions of SEV have been introduced by AMD to add additional

security protections since SEV’s first release in 2016.

The second generation of SEV is called SEV-ES (Encrypted State) [49], which was first

introduced in 2017. SEV-ES adds additional protection for CPU registers. Prior to SEV-ES,

CPU registers were stored unencrypted in the Virtual Machine Control Block (VMCB)

during world switches from the VM to the hypervisor (VMEXIT). In SEV-ES, the hardware

automatically encrypts the registers in a designated Virtual Machine Save Area (VMSA)

along with additional integrity protection. In addition, a guest-host communication protocol

was introduced for instructions that need to expose registers to the hypervisor (e.g., CPUID,

RDMSR, etc.). A VMM Communication handler (#VC handler) inside the guest VM assists

the instruction emulation. Specifically, the #VC handler intercepts those instructions with

159

the help of hardware, passes necessary register values to a shared area called Guest-Host

Communication Block (GHCB), triggers a special VMEXIT by the VMGEXIT instruction,

and reads the resulting register values from the GHCB afterwards.

The third generation of SEV is called SEV-SNP (Secure Nested Paging) [8], which

was released in 2020. As a response to attacks which used remapping or modification of

guest memory in order to inject code into the VM [93], a structure called Reverse Map

Table (RMP) was introduced. It maintains a second translation of host physical addresses to

guest physical addresses as well as keeps track of the ownership of memory pages, and thus,

prevents the hypervisor from modifying or remapping the guest VM’s private memory. Most

of the existing attacks against SEV and SEV-ES can be mitigated by SEV-SNP (Section ??).

7.1.2 Ciphertext Attacks against SEV-SNP

Ciphertext attacks against SEV-SNP were first introduced by Li et al. in CIPHER-

LEAKS [62]. The work exploited leakage caused by the ciphertext of the registers inside the

VMSA. Specifically, by inspecting the ciphertext stored in the VMSA during VMEXITs,

an attacker could (1) infer the execution state of a known binary inside the guest VM, and

(2) build a ciphertext-plaintext mapping for certain registers. For example, the ciphertext

of the RAX register could reveal the return value of function calls. Since the ciphertext

was deterministic, functions that returned the same value produced an identical ciphertext

for the RAX register inside the VMSA, which is sufficient for the attacker to distinguish

secret-related data content and steal secrets from an application using the OpenSSL library.

In response to that attack, AMD added additional randomization when encrypting and

saving register values into the VMSA during VMEXITs [11]. Thus, the ciphertext of the

160

register state is now completely different even if the register values inside CPU did not

change between two VMEXITs, which fully mitigates the CIPHERLEAKS attacks.

7.1.3 Off-chip Attacks

Off-chip attacks are usually classified into stolen DIMM attacks and bus snooping attacks.

Stolen DIMM attacks directly grab data from the Non-Volatile Memory (NVM) or perform

cold boot attacks on volatile memory [82]. Bus snooping attacks target the data transmission

between two components of the computer (e.g., CPU and DRAM). These attacks involve

both data eavesdropping and even data altering [24].

Off-chip attacks are also considered as one of the potential attacks in a TEE’s threat

model [8]. While the plaintext is protected inside the chip and can hardly be inspected, all

data outside the CPU might be inspected, either on the external memory buses or on the

NVM. TEEs like Intel SGX and AMD SEV protect data outside the CPU by an in-chip

memory encryption engine. While it is widely accepted that attacks by monitoring the data

bus flow can be thwarted by memory encryption [86], researchers move their attention to

the unencrypted address bus [24]. Recent results [57, 72] showed that an attacker could

recover some data by monitoring memory address patterns. For those attacks, an interposer

is needed to be installed on the DIMM socket. The interposer can duplicate signals on the

memory bus and pass the data to a signal analyzer on the fly with CPU cycle granularity.

7.1.4 Operating System Context Switch

Under x86_64, there are four different privilege levels that can be used to implement

a hierarchy in the software [6, Sec. 4.9.1]. Under Linux, ring 0 is used to run the kernel,

while ring 3 is used to run user space applications. When a privilege level change occurs,

e.g. due to an interrupt or exception, the CPU automatically switches to a separate stack

161

and fills it with some information about the previous software. The stacks are configured in

the Task State Segment (TSS). The register values, however, remain unchanged and are not

stored by a hardware mechanism [6, Sec. 12.2.5]. Under Linux, one TSS per CPU is used,

meaning that each CPU has its own set of stacks. Most Interruptd/Exception handlers use

TSS managed as an entry point to intialy store the register values, before eventually copying

them to the so-called thread stack. The thread stack is part of the Process Control Block

(PCB, also called task_struct in Linux), a data structure that bundles all information

related to a process/thread. The saved registers are referred to as the pt_regs structure,

which simply consists of the register values stored next to each other.

Note that in other scenarios a context switch is also used to describe a switch between

different processes and threads. In this work, we always refer to the aforementioned privilege

level change if not stated otherwise.

7.2 A generic ciphertext side channel

In this section, we are going to show that the ciphertext-based attack demonstrated

in the CIPHERLEAKS paper is not limited to the VMSA register storage mechanism of

SEV-SNP, but applies to any deterministically encrypted memory. We define a generic

attacker model and show two primitives that allow the attacker to infer memory contents and

runtime behavior of any application which relies on deterministically encrypted memory for

protecting the confidentiality.

7.2.1 Attacker Model

We consider the standard threat model of confidential VM: The attacker has both software

and physical access to the system, i.e., they have unrestricted administrator capabilities and

can physically access the machine. The confidential VM shields the VM’s secrets from the

162

attacker by encrypting the memory consumed by the user’s application, using a deterministic

memory encryption scheme with an address-based tweak, such that the ciphertext depends

on the encryption key, the plaintext and the current physical address. Specifically, we target

SEV-SNP, which also prevents the attacker from remapping memory containing ciphertext

to other physical addresses, denies them write access to any encrypted memory, but leaves

the attacker the ability to read ciphertext by software.

7.2.2 Attack Primitives

We suggest two general methods for exploiting deterministic memory encryption: A

dictionary attack and a collision attack.

Dictionary attack. A dictionary attack is applicable when a secret-dependent variable fea-

tures a small, predictable value range with a fixed memory address. In this case, the attacker

can build a dictionary of ciphertext-plaintext mappings for this variable and selectively

recover the plaintext. This is a generalization of the approach taken in the CIPHERLEAKS

attack, where the authors learned ciphertext mappings for the registers stored in the VMSA.

Contrary to CIPHERLEAKS, the dictionary attack targets arbitrary memory locations

and variable types. Two examples about recovering ECDSA key using stack variables

(Section 7.4.1), or registers stored during a context switch (Section 7.3) are presented.

While this attack is quite powerful, it is restricted by the number of possible plaintexts

for a given encryption block, since the attacker cannot tell which part of the plaintext has

changed when observing a new ciphertext. If the targeted variable shares an encryption

block with other variables which get new values frequently (e.g., a loop counter), the number

of possible plaintexts becomes too large to efficiently build a mapping, as is illustrated in

163

128-bit Encryption Blocks

- Secret noncei

i Secret -
- Secret -(a)

(b)

(c)

Unchanged

Changeable

Figure 7.1: Encryption block configurations with different exploitability by the dictionary
attack. In the first scenario (a), most of the block’s plaintext is constant, with the secret
being the only variable. Thus, the attacker can build a one-to-one mapping of ciphertexts
to secrets. In (b), the block also contains a loop counter i, so there are many different
ciphertexts mapping to the same secret. If the attacker can always observe the secret for a
specific fixed value of i, they may still be able to build a dictionary, as this is equivalent
to scenario (a). In the last scenario (c), the secret is followed by a random nonce which is
regenerated before spilling secret to the memory. This prevents the attacker from creating a
dictionary, as he never observes the same ciphertext twice.

Figure 7.1. We use this fact in Section 7.5.2 to propose a countermeasure which appends

random nonces to small variables.

Collision attack. A collision attack transfers the concept of secret dependent code execution

to memory writes. In secret-dependent branching, the attacker exploits that the targeted

algorithm executes a certain code region depending on specific values of a secret value (e.g.,

an if statement checking key bits). By observing the access pattern to the respective code

chunks, the attacker can learn the secret. A common countermeasure is so-called constant-

time code, i.e. code that always exhibits the same control flow and memory accesses,

independent of the secret. This is usually achieved by converting secret-dependent branch

decisions into fixed expressions, which compute all possible results of a given operation

and then use a mask to pick the desired one. One such primitive is the constant time swap

164

Algorithm 3 Constant time swap
Require: Byte arrays a,b of same length and decision bit c

1: procedure CSWAP(a,b,c)
2: mask← 0− c ▷ 0−1 underflows to 0xff for i = 0 to i = length(a) do
3:

end
x← a[i]⊕b[i]

4: x← x & mask
5: a[i]← a[i]⊕ x
6: b[i]← b[i]⊕ x
7:
8: end procedure

CSWAP (Algorithm 3), which is used for example by the Montgomery ladder: CSWAP

takes two variables a and b and a (secret) decision bit c. If the bit is set, the values of a and

b are swapped; if the bit is cleared, a and b remain unchanged. The depicted code gadget

always executes the same amount of instructions in the same order, and always accesses the

same memory addresses, making it resistant against microarchitectural side-channel attacks.

But, if the attacker is able to observe whether the values of a or b change, they can

immediately learn the decision bit ci. The collision attack again exploits the fact that

ciphertext blocks are deterministic. However, contrary to the dictionary attack, the attacker

does not aim to learn the direct mapping of ciphertexts to actual plaintext values, but they

only check whether certain ciphertexts repeat or change. Going even further, if the attacker

knows that a memory write was executed (e.g., through a control flow side-channel), but

they do not see any ciphertext change, they learn that the instruction wrote the same value

as was present in memory before. Given knowledge of the executed program, they may use

this to infer more information other than the traditional control flow.

165

7.3 Leakage due to context switch

We now take the dictionary attack primitive from Section 7.2 and show how it can be

used for extracting register values from a VM running with SEV-SNP. After CIPHERLEAKS,

AMD published a firmware patch which added protection to the VMSA area [11]. However,

the VM-hypervisor world switch is not the only occasion where the entire register state is

written to memory. When moving from user space to kernel space (e.g., after an interrupt or

an exception), the Linux kernel pushes all register values of the user program onto the stack,

and then copies those into the PCB of the current thread, such that the exception handler

can access the register values through the pt_regs structure. The PCB address is fixed

per-thread, allowing an attacker to build a dictionary of register values by causing repeated

interrupts within the VM and observing the resulting ciphertexts. We show how an attacker

can use nested page faults to indirectly trigger internal user-kernel context switches and use

the learned register values to attack the constant-time ECDSA implementation of OpenSSL.

Given their source code, similar attacks should also be applicable in WolfSSL, GnuTLS,

OpenSSH, and libgcrypt.

7.3.1 Leaking Register Values via Context Switches

Forcing context switches in the VM. SEV-SNP restricts the hypervisor’s ability to inject

interrupts and exceptions into the VM, so we will show how a malicious hypervisor can

work around this limitation by forcing the VM to pause at a certain execution point until

a “natural” internal context switch is triggered, which should also be detectable by the

hypervisor.

First, the hypervisor interrupts the targeted application at certain execution points by

using the well-known page fault controlled channel, that allows the attacker to force a NPF

166

when the VM tries to access or execute a given page. However, the NPF itself does not lead

to a context switch inside the VM, as it is immediately intercepted by the hypervisor. To do

so, the hypervisor now simply waits for a short amount of time and then resumes the VM

without handling the NPF. As a result, the attacker can trap the execution of the targeted

program and the victim application cannot resume its execution. After a short amount of

waiting time, a time-driven internal context switch will be performed by the guest OS, which

updates the victim application’s register values in main memory (pt_regs).

Even though the internal context switch is out of the hypervisor’s control, we show that

the VM-host interaction mechanism adopted by SEV can work as an indicator of a finished

context switch. Specifically, we observed that the guest VM has frequent interaction with

the hypervisor through reading and writing hypervisor-managed registers of the Advanced

Programmable Interrupt Controller (APIC), like IA32_X2APIC_TMR1, which are used for

scheduling and timekeeping. These RDMSR and WRMSR accesses result in a special exception

called #VC exception inside the VM, as they require the VM to share registers with the

hypervisor. The #VC exception handler inside the VM then calls VMGEXIT after putting the

necessary register values into the GHCB (shown in Figure 7.2a). As the #VC exception is

handled in VM’s kernel space, a VMGEXIT also indicates a user-kernel context switch. Thus,

the hypervisor simply waits for a VMGEXIT with the appropriate exit code, as an indicator of

updated registers’ ciphertext in pt_regs. We analyze the necessary pause time for triggering

a VMGEXIT in Section 7.3.4.

Other than the traditional #VC handler mechanism, SEV-SNP has another option to

adopt a more secure VM-host communication mechanism that moves the APIC emulation

into the trust domain of the guest VM. As shown in Figure 7.2b, the VM is divided into mul-

tiple Virtual Machine Privilege Levels (VMPLs) that provide additional hardware isolated

167

VM Hypervisor

RDMSR
VMGEXIT with
parameters
in GHCB

Update
GHCB

Resume
VC handler

Continue
execution

VC handler

Read GHCB
Update pt_regs

Emulate
instruction

(a) #VC handler

VMPL3 VMPL0 Hypervisor

RDMSR
Assign to
VMPL0

Hypercall with
parameters

Response
request

Emulate
instruction

Update VMPL3
save state

Resume
VMPL3

Continue
execution

(b) VMPL0 emulation

Figure 7.2: Workflow of how #VC exceptions are handled. Red arrows represent a context
switch between processes.

abstraction layers. However, the hypervisor can still sense a finished context switch due to

the interaction triggered by the hypercall from VMPL0.

Locating pt_regs after VMEXIT. Besides using the VMGEXIT to detect a context switch,

the attacker can also use it to locate the pt_regs struct. For that, after reaching a VMGEXIT,

the attacker clears the P bit for all guest pages and resumes the VM. This will hand back

control to the #VC handler in the VM, which will subsequently try to copy the results of the

emulated instruction from the GHCB to pt_regs. Since all guest pages were marked as not

present, this causes a nested page fault. In our experiments, the second NPF caused by data

page read access after resuming the VM is the memory page containing pt_regs. We did

not encounter any false positives during our experiments.

168

7.3.2 Attacking Constant-time ECDSA

In this section, we demonstrate how to use the context switch primitive from the previous

section to attack the constant-time ECDSA implementation in OpenSSL. More precisely,

we show that the adversary can infer the nonce k in the constant-time ECDSA algorithm by

inspecting the ciphertext changes in the pt_regs structure of the targeted process. This can

then be used to recover the secret key.

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a widely used signature

algorithm that works as follows:

1. Prepare the curve parameters (CURVE, G, n), where G is the elliptic curve base point

of prime order n.

2. Prepare a key pair by choosing uniform dA ∈ Z∗n. dA is the private key. The public key

is QA = dAG.

3. Generate a cryptographically secure random integer k ∈ Z∗n (also known as the nonce

k).

4. Calculate a non-zero r by r = (kG)x mod n (only the x-coordinate of the resulting

point is used).

5. Calculate s = k−1(h(m)+ rdA) mod n, where m is the message and h(m) is a hash of

m. (r,s) then forms the ECDSA signature pair.

A predictable or leaked nonce k allows to immediately recover the private key dA by:

dA = r−1((ks)−h(m)) mod n.

169

1 int i, cardinality_bits , group_top , kbit , pbit , Z_is_one;
2 ...
3 for (i = cardinality_bits - 1; i >= 0; i--) {
4 kbit = BN_is_bit_set(k, i) ^ pbit;
5 // kbit is used to determine the conditional swap
6 EC_POINT_CSWAP(kbit ,r,s,group_top ,Z_is_one);
7 // single step of the Montgomery ladder
8 if (! ec_point_ladder_step(group , r, s, p, ctx)){
9 ERR_raise(ERR_LIB_EC ,

10 EC_R_LADDER_STEP_FAILURE);
11 goto err;
12 }
13 // pbit helps to merge CSWAP with that of the next iteration
14 pbit ^= kbit;
15 }

Listing 7.1: Part of the elliptic curve scalar multiplication ec_scalar_mul_ladder() from
OpenSSL. The function uses the Montgomery ladder algorithm and constant-time primitives
to protect the secret scalar k against side channels.

Targeted ECDSA implementation. Our attack targets the ECDSA implementation of

the OpenSSL library11 for the curve secp384r1 that is commonly used for TLS/SSL

connections. The goal of our attack is to steal the nonce k and thus infer the private key dA.

In OpenSSL, ECDSA signing is handled by the ECDSA_do_sign function, which in turn

calls ec_scalar_mul_ladder to calculate r. Note that the implementation of the function

is specifically designed to protect k against side channel attacks (Listing 7.1).

Identify instruction pages. Besides monitoring context switches and locating pt_regs

via the methods shown in the previous part, we also need to identify the appropriate code

locations in order to intercept the guest VM at proper execution points, which gives the

attacker the opportunity to extract valuable ciphertext. In our work, we combine the widely-

used page fault controlled side channel [61, 69, 91, 93] with performance counters to build a

fine-grained tool to identify instruction pages’ physical addresses. Specifically, we make

use of the Retired Instructions counter [4, Event PMCx0C0], which can be configured to

11Commit: c4b2c53fadb158bee34aef90d5a7d500aead1f70.

170

only count the amount of retired instructions inside the VM and thus reveal the number of

instructions executed between two pages faults. The attacker can simply build a template of

the retired instruction counts for code paths in a known binary. In our experiments, we were

able to locate the target pages on the fly, without relying on repeated access patterns.

7.3.3 End-to-end attack against Nginx

We now show the steps needed to steal the nonce k generated by an Nginx webserver.

The nonce, together with the corresponding signature, allows the attacker to recover the

secret key of the server.

➀ Send HTTPS request. The attacker sends a HTTPS request to the Nginx server in order

to trigger the targeted code paths.

➁ Locate target function in physical memory. Right after sending the HTTPS request,

the attacker clears the P bit of all VM pages. The attacker then locates the guest physical

addresses of the functions ec_scalar_mul_ladder() (gPA0) and BN_is_bit_set (gPA1)

using the page fault channel combined with the retired instruction counter.

➂ Locate pt_regs. The attacker pauses the VM for a while (e.g., by trapping the VM in

the NPF handler for a few milliseconds) when they intercept a NPF of gPA0. They then

use the method from Section 7.3.1 to find the physical address gPA3 of the current thread’s

pt_regs structure.

➃ Single-step loop iterations. The attacker iteratively clears the P bit of gPA1 to pause

the VM when it enters BN_is_bit_set. After intercepting the corresponding NPF for

gPA1, the attacker clears the P bit for gPA0, causing an NPF when the ret instruction inside

BN_is_bit_set is executed, i.e. the function tries to return to ec_scalar_mul_ladder().

The attacker then pauses the VM in the gPA0 NPF for a while (several milliseconds) and

171

resumes the VM without handling the NPF. The attacker might observe several consecutive

NPFs for gPA0, but keeps the P bit cleared until a VMGEXIT is encountered.

➄ Record the ciphertext and recover the nonce k. The attacker records the cipher-

text of the RAX field in pt_regs after the VMGEXIT, which contains the return value of

BN_is_bit_set at this execution point. The conjunct register stored near RAX in pt_regs

is R8, which remains unchanged during the for loop. The attacker then sets the P bit of

gPA0, clear the P bit of gPA1 in order to intercept BN_is_bit_set for the next iteration

and repeat step ➃. After 384 iterations, the attacker has collected a sequence of ciphertexts.

Since RAX can only take two distinct values, they can recover the nonce k with only 1 bit

of entropy.

7.3.4 Evaluation

All experiments throughout this paper were conducted on an AMD EPYC 7763 64-Core

Processor. The host kernel (branch sev-snp-part2-rfc4), QEMU (branch sev-snp-devel),

and OVMF (branch sev-snp-rfc-5) were directly forked from AMD SEV’s GitHub repos-

itory [9]. The victim VMs were protected by SEV-SNP and used the unmodified guest kernel

provided by AMD (branch sev-snp-part2-rfc4). The victim VMs were configured with

2GB DRAM, 30GB disk, and one virtual CPU (vCPU). However, the capacity of the victim

VMs (including vCPU, DRAM, and disk) is not relevant for the attack procedure.

For the attack on Nginx, an unmodified Nginx server and an OpenSSL library were

installed inside the victim VMs. The Nginx version is 1.21.3, which was released on 07

Sep. 2021. The Nginx server supports HTTPS requests with a self-signed ECC certificate

with 384-bit key. The curve used is secp384r1. The OpenSSL was forked from OpenSSL’s

Github repository (Commit: c4b2c53fadb158bee34aef90d5a7d500aead1f70) and was

172

modified to log the ground truth after the signing procedure, so we could verify the extracted

secret.

Identifying target functions. To estimate the attacker’s ability to locate target functions on

the fly, we sent 500 consecutive HTTPS requests. For each request, we monitored the page

access pattern along with the number of retired instructions and tried to locate the target

functions in real-time. The reference page access pattern and the corresponding performance

counter values were collected in a different VM with the same Nginx and OpenSSL version,

but without SEV-SNP’s protection and with a different kernel version, to show the pattern’s

independence of the exact kernel version.

In 496 out of those 500 requests, the target function’s physical addresses were success-

fully located, while a miss was reported for the remaining four requests. The average time

needed to locate the target functions was 59.28 milliseconds with a standard deviation of

2.12 milliseconds. No false positive was reported.

Context-switch latency. To collect the ciphertext of the updated pt_regs, the attacker

needs to wait until an internal context switch, which is the most time-consuming part

of the end-to-end attack. In our implementation, the attacker pauses the VM by calling

udelay(<interval>), which takes a delay in microseconds. We evaluated both the proper

interval for a direct context switch and the average waiting time. Since the attacker doesn’t

set the P bit at the execution point unless observing the VMGEXIT, the attacker might get

several repeated NPFs in a row. Figure 7.3a shows the number of NPFs we observed under

different intervals. We usually directly detected a context switch when interval was larger

than 2000 (two milliseconds). Figure 7.3b shows the average waiting time. It usually took

four milliseconds until an internal context switch occurred, thus we paused the victim VM

by using udelay(4000) in our attack.

173

0 2000 4000
Interval(udelay)

0

20

40

60

N
PF

s

(a) #NPFs for udelay intervals.

500 1000 2000 4000
Interval(udelay)

4

6

8

Ti
m

e(
m

s)

(b) Avg. time for context switch.

Figure 7.3: Relationship between udelay interval and internal context switch.

Performance. We repeated the attack 50 times and measured the overall time for an end-to-

end attack. The average time was 8.53 seconds with a standard deviation of 0.33 seconds.

The main latency is caused by waiting for an interval context switch. For a 384-bit nonce k,

the attacker can intercept 384 * 5 = 1920 NPFs for gPA0 in total. In our setting, we chose to

wait for a context switch every time when intercepting an NPF of gPA0. However, for each

iteration, only one out of five NPFs is caused by the ret instruction inside BN_is_bit_set.

Thus, the attacker could also choose to only wait and grab ciphertext at that NPF. By doing

that, approximately 6 seconds (384 * 4 * 4ms) waiting time can be avoided. However, one

side effect is that some internal events (e.g., an unexpected context switch) might cause

a repeated NPF of gPA0, which will confuse the attacker and reduce the accuracy. In our

implementation, the average accuracy for the recovered nonce k is 89.1%.

7.4 Exploiting memory accesses in user space

In the previous section, we have seen how an attacker can exploit the context switch

mechanism of the Linux OS inside the VM to leak register values of running processes.

174

We now turn our attention to leakages directly caused by the victim application’s memory

access behavior. We demonstrate that the OpenSSL ECDSA code from the previous section

is also vulnerable to the dictionary attack targeting stack variables, and show an example of

the collision attack against the EdDSA implementation in OpenSSH.

7.4.1 Breaking Constant-time ECDSA via Dictionary Attack

As shown in Listing 7.1, ec_scalar_mul_ladder uses several local integer variables:

kbit controls the conditional swaps by EC_POINT_CSWAP in the for loop. Assuming that

ki refers to the i-th bit of k, at the beginning of a loop iteration, pbit stores ki−1. After

calling BN_is_bit_set(k, i) to retrieve ki, kbit stores ki−1⊕ ki−2 (XOR). pbit is later

updated to ki at the end of the iteration.

Stack layout. We target the 16-byte memory block where pbit is stored. By our observation,

the memory block containing pbit also contains additional variables, which is not surprising

given the small size of pbit. In our case, pbit, kbit and cardinality_bits all share the

same 16-byte memory block. The cardinality_bits variable does not change during the

runtime of the for loop from Listing 7.1. Thus, the value range of the ciphertext is only

dependent on the secret, i.e. pbit and kbit.

Recovering k from ciphertext pairs. Recall that, at the end of each loop iteration, pbit

stores the i-th bit of the nonce k. The attacker thus can recover k if they can infer the value

of pbit in each iteration. We use gPA0 to denote the guest physical address of the stack

page where pbit is stored, and gPA1 for the address of BN_is_bit_set(). Similar to the

attack in Section 7.3.1, the attacker uses the page fault controlled channel in combination

with the retired instructions performance counter for locating the pages.

175

The attacker records the ciphertext of gPA0 when he intercepts the NPF of BN_is_bit_set()

(gPA1), which corresponds to the state after the previous loop iteration (i.e., pbit still has

its old value). As shown in Table 7.1, in the ith iteration, the attacker can observe one of

four possible pbit and kbit pairs. We use the letters A to D to denote the four possible

ciphertexts. At the end of the i-th iteration, pbit and kbit are updated according to ki (0 or

1). Thus, when the attacker intercepts the NPF of gPA1 in the i+1-th iteration, there are 8

possible observation cases.

They then analyze the ciphertext of gPA0 to (1) locate the offset of the 16-byte block

where pbit is in and to (2) infer the value of pbit for this iteration. For (1), the attacker

can easily identify the offset because they should observe the four different ciphertext

randomly but repeatedly at a certain offset, which reveals the ciphertext changes of the

pair (pbit, kbit). For (2), the attacker can infer the value of pbit by analyzing two

subsequent ciphertext of (pbit, kbit) as shown in Table 7.1. The attacker applies the

following algorithm to recover the pbit sequence: In the first iteration, both kbit and pbit

are initialized to 1, thus producing ciphertext D. The attacker then finds an n-th iteration

that has the same ciphertext as the following n+ 1-th iteration. Then (pbit, kbit) for

the n-th and n+ 1-th iterations must either be A or C. If the next n+ x-th iteration with a

different ciphertext produces a ciphertext other than D, then the ciphertext for nth and n+1th

iterations must be C. Otherwise, the ciphertext represents A. After identifying A, C, and D,

the remaining ciphertext represents B.

7.4.1.1 Attack Steps

176

Table 7.1: Possible pbit and kbit pairs when intercepting BN_is_bit_set(). The letters
A to D represent the 16-byte ciphertexts the attacker may observe, which depend on the
values of kbit and pbit. The value of kbit and pbit in the i+1-th iteration is updated
depending on ki.

i-th iteration i+1-th iteration
pbit kbit Pair ki pbit kbit Pair

0 0 A 0 0 0 A
0 0 A 1 1 1 D
0 1 B 0 0 0 A
0 1 B 1 1 1 D
1 0 C 0 0 1 B
1 0 C 1 1 0 C
1 1 D 0 0 1 B
1 1 D 1 1 0 C

➀ Locate the two target physical addresses. The attacker first needs to locate the guest

physical addresses of the target stack page gPA0 and the target function page gPA1 . We use

the same methods as in Section 7.3.1 to locate the pages.

➁ Intercept the for loop. The attacker iteratively clears the P bit in the NPT to interrupt

the execution of the for loop. Specifically, the attacker clears the P bit of gPA0 when a NPF

of gPA1 is intercepted and clears the P bit of gPA1 when a NPF of gPA0 is intercepted later.

The attacker thus tracks the internal execution states of the for loop.

➂ Record the ciphertext of gPA0. Given the structure of the loop, there are 5 NPFs for

both gPA0 and gPA1 for one iteration. Thus, for a 256-bit nonce k, the attacker needs to

intercept 256 * 5 = 1280 NPFs for both gPA0 and gPA1. In each iteration, the first NPF for

gPA0 is triggered when BN_is_bit_set finishes execution and the program tries to touch

the stack page where (pbit and kbit) is in. At this execution point, both kbit and the

177

pbit are not yet updated. The attacker records the ciphertext of the whole stack page since

the offset of pbit and kbit change slightly between different runs of the algorithms.

➃ Infer the value of k. After all 256 iterations of the for loop, the attacker determines the

offset and recovers the nonce k using the strategy we introduced in Section 7.4.1.

7.4.1.2 Evaluation

The test platform was the same as described in Section 7.3.4. Instead of targeting the

secp384r1 curve, we picked a different curve secp256k1, which is widely used in Bitcoin,

to show that the attack works for different curves. The victim VM computes an ECDSA

signature by calling ECDSA_do_sign in the OpenSSL library. We repeated the attack 50

times. In 92% of the attempts, we could recover the nonce k with 100% accuracy. After

identifying the target functions, which we only needed to do once, the average time used to

conduct the attack is 1.23 seconds with a standard deviation of 1.01 seconds.

7.4.2 Breaking Constant-time EdDSA via collision attack

In the previous attack case studies we have used the dictionary attack primitive by

guessing and recording plaintext-ciphertext mappings. We now show how the attacker can

break constant-time EdDSA by monitoring the collision of the secret dependent value’s

ciphertext. While the attack would also be applicable to the constant time swaps used by the

ECDSA variant described above, we show how the collision attack can work on the constant

time EdDSA implementation of OpenSSH with the ed25519 curve. As this implementation

processes the secret in a batched manner, it is less susceptible to the dictionary attack

previously applied to the ECDSA implementations.

178

The EdDSA signature algorithm [19] works similar to ECDSA, with the most noticeable

difference being the deterministic nonce generation to prevent attacks based on flawed

random number generators. The algorithm works as follows:

1. Provide a valid EdDSA parameter set (CURVE, G, n, c, l, H) with 2c · l = |CURVE|,

where G is the elliptic curve base point of prime order l and thus l ·G = 0. H is a

cryptographic hash function with 2b output bits.

2. Prepare a key pair. Choose a secure random b-bit string dA as the secret key. Calculate

the public key QA = dsG, where ds is derived from the hash of dA.

3. Deterministically compute a nonce for the signature as k = H(Hb,...,2b−1(dA) ∥m),

where m is the message.

4. Calculate R = kG.

5. Calculate s = k+H(R∥QA ∥m) ·ds mod l. The final EdDSA signature is defined as

the tuple (R,s).

Targeted EdDSA implementation. We target the EdDSA implementation of OpenSSH

8.2p1, which is the version shipped with the latest Ubuntu LTS 20.04. The targeted imple-

mentation uses the ed25519 curve. More precisely, we attack the multiplication R = kG to

learn k which then allows us to recover ds from s, by computing

ds = (s− k) ·H(R∥QA ∥m)−1 mod l.

While ds is not the actual private key dA, it is sufficient to create valid signatures.

Listing 7.2 shows the function performing the calculation k ·G. The arithmetic is

implemented using a windowing technique with pre-computed partial sums in a lookup

table. First, in line 6, the secret scalar is broken down into 3-bit chunks. In addition, a

transformation is applied converting the chunks to signed values. However, this is reversible.

179

1 void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *k) {
2 signed char b[85];
3 int i;
4 ge25519_aff t;
5 sc25519_window3(b,k);
6 choose_t ((ge25519_aff *)r, 0, b[0]);
7 fe25519_setone (&r->z);
8 fe25519_mul (&r->t, &r->x, &r->y);
9 for(i=1;i<85;i++) {

10 choose_t (&t, (unsigned long long) i, b[i]);
11 ge25519_mixadd2(r, &t);
12 }

Listing 7.2: Function performing the multiplication of the secret scalar with the curve base
point. In the original code, the variable k is named s.

Lines 12 and 13 in the for loop contain the main multiplication work. In choose_t the

partial sum is loaded from the precomputation table in a cache attack resistant manner by

accessing multiple values and choosing the correct one using a constant time swap operation.

Line 13 performs the actual multiplication.

For our attack, we focus on the constant time swap operation cmov_aff that is used in

choose_t. Both functions are shown in Listing 7.3. The idea of the attack is to use the

collision attack to leak the value of b, which corresponds to ds in our EdDSA description,

in the calls to cmov_aff. We compare the values of t before and after the function call.

While the constant-time swap will write to the memory locations regardless of the value of

b, to be secure against cache and timing side channels, the actual value that is written still

depends on b. Although the written data has a large value range, making a dictionary attack

infeasible, it suffices to compare the ciphertext of t before and after the call to cmov_aff

without knowing the plaintext for the ciphertext. The information whether the ciphertext

value has changed or not allows us to directly infer b.

After leaking the value of b, the attacker can invert the operations applied in sc25519_window3

(Listing 7.2) to recover the secret scalar k. Knowing k and the corresponding signature (R,s)

180

1 static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned
char b) {

2 fe25519_cmov (&r->x, &p->x, b);
3 fe25519_cmov (&r->y, &p->y, b);
4 }
5

6 static void choose_t(ge25519_aff *t, unsigned long long pos , signed
char b) {

7 fe25519 v;
8 int i = 0;
9 *t = ge25519_base_multiples_affine [5*pos +0];

10 cmov_aff(t, &ge25519_base_multiples_affine [5*pos+1], equal(b,1) |
equal(b,-1));

11 cmov_aff(t, &ge25519_base_multiples_affine [5*pos+2], equal(b,2) |
equal(b,-2));

12 cmov_aff(t, &ge25519_base_multiples_affine [5*pos+3], equal(b,3) |
equal(b,-3));

13 cmov_aff(t, &ge25519_base_multiples_affine [5*pos+4], equal(b,-4));
14 fe25519_neg (&v, &t->x);
15 fe25519_cmov (&t->x, &v, negative(b));
16 }

Listing 7.3: Swap and lookup table access functions.

allows to recover ds, which is sufficient to create arbitrary valid signatures. Knowing ds is

not equal to knowing the secret key dA, as the latter is still required to compute the nonce k

according to step 3. However, only a party knowing the private key dA can detect this subtle

difference.

7.4.2.1 Attack Steps

➀ Trigger the OpenSSH server. The attacker opens an SSH connection with the server,

and explicitly requests the usage of the EdDSA key. EdDSA is enabled in the default

configuration under Ubuntu.

➁ Locate the target physical addresses. The attacker uses the page fault controlled channel

and the performance counter technique from Section Section 7.3.1) to infer the physical

addresses of the choose_t and fe25519_cmov functions.

181

➂ Intercept execution before and after the constant time swap operation. The attacker

then uses the page fault controlled channel to intercept the execution of the VM by unsetting

the P bit of the targeted pages in the NPT.

➃ Take snapshots of the buffer t. The attacker obtains the physical address of the buffer t

by tracking the write access pattern during the execution of the constant time swap operation

using the NPF side channel. The attacker then steps the loop using the page fault controlled

channel and takes snapshots of the buffer t in each iteration.

➄ Recover the secret scalar t. Using the snapshots of the buffer t before and after each

call to fe25519_cmov in choose_t (note that cmov_aff wraps this function), the attacker

can immediately deduce the value of b. After knowing the value of b, the attacker inverts

the windowing and sign transformation operations applied in sc25519_window3(b,s) to

obtain the secret scalar k. The attacker uses the first parameter R of the signature that the

server sends in step ➀ to validate the value of k, and extracts the signing secret ds from the

second parameter S of the signature using k.

7.4.2.2 Evaluation

We ran the end-to-end attack 500 times. In 86% of the attacks, we could fully recover

the signing secret with 100% accuracy. Of the failed attack runs, only 7 where due to errors

in detecting the correct code pages. The remaining errors are most likely misdetections of

the memory location of the buffer t. The average runtime of the attack was 7.9 seconds with

2.2 seconds standard deviation.

182

7.5 Countermeasures

There are two categories of countermeasures against the attacks presented in this paper:

First, the underlying issue may be addressed at the architectural level, which would likely

be the most reliable approach. Otherwise, the identified problems can be also tackled at the

software level, with a certain performance overhead. We discuss both hardware/architecture-

based and software-based countermeasures, and point out methods for hardening existing

software against the attacks presented in this paper.

7.5.1 Architectural Countermeasures

There are two possible hardware approaches for closing the ciphertext side channels.

However, both approaches introduce high overhead.

First, one may change the encryption mode of SEV to use probabilistic encryption: a

random nonce or incremental counter is included in the encryption and is updated on each

memory write, effectively randomizing the resulting ciphertexts on each write. However,

probabilistic memory encryption requires additional memory for storing the nonces. For

example, Intel SGX combines AES-based probabilistic encryption with MACs to achieve

confidentiality, integrity and replay protection. In SGX, data is encrypted in a tweaked

counter mode, where the nonce depends on both the physical address of the encrypted

memory block and a 56 bit counter value, to ensure replay protection [37]. The counter

values are kept in the integrity tree, together with the MAC tags that ensure integrity

protection. Only the head nodes of the tree are stored on-chip, while the remaining integrity

tree remains in memory and needs to be checked on each memory access, resulting in a

significant memory and latency overhead.

183

A second approach is preventing the attacker from reading the VM’s physical memory:

On a software/firmware layer, this could be achieved by using a similar RMP mechanics as

in SEV-SNP (Section 7.1.1), which already prevents write accesses through an additional

RMP check. However, this would introduce a certain overhead when applied to all read

operations due to the more frequent read access and the extra RMP lookup. For example,

for a single read access inside the VM, a series of RMP checks are needed, including four

checks for the 4-level GPT and one check for the data page. For each GPT level, four

additional RMP checks are needed for the 4-level NPT. In addition, on-chip access control

may still be susceptible to the off-chip attacks described in Section 7.1.3.

7.5.2 Software-based Countermeasures

While hardware-based countermeasures would be preferable due to stronger security

guarantees, their feasibility and practicality demand further validation. Thus, in the following

sections, we describe general methods for mitigating the vulnerabilities on a software level.

There is no single software-based method that is perfectly suited for all scenarios, as kernel

structures, stack, and heap are all vulnerable. Thus, we present how applications can mitigate

ciphertext side channels in three different ways, building on the assumption, that register

values are immune to the ciphertext side channel. However, as shown in Section 7.3, this is

not the case, as the kernel stores the registers’ content in memory upon context switches.

Thus, we also present how the ciphertext side channel caused by register states stored inside

kernel structures can be mitigated with a kernel patch, to achieve the invariant of secure

registers (Section 7.5.3), and measure the kernel patch performance (Section 7.5.4).

Secret-aware register allocation. If secret-related variables would fit into a register, but are

kept in memory due to register pressure, changing the register allocation strategy may be

184

worth pursuing. The secret-related variables can be protected by staying inside the register

during their lifecycle and never being spilled to memory.

In order to do that, compiler-level modifications are needed. Even though developers

can suggest the compiler to keep some variables into registers by applying a register hint

(e.g., register int var;), the variables are not guaranteed to be placed inside registers.

Thus, a compiler can be modified to prioritize variables marked as ‘secret’ when allocating

registers. An example of a similar scheme is GINSENG [99], which employs a custom

register allocation strategy and a secure storage in a TEE to shield sensitive variables from a

malicious operating system. In case a register containing a secret must be spilled to the stack

anyway (e.g., it is frequently used in function calls or large variables), it can be protected

using a random mask as described in the later software-based probabilistic encryption part.

Limiting reuse of memory locations. Both the dictionary attack and the collision attack

rely on repeated writes to a fixed physical memory address. Thus, limiting reuse of a fixed

memory address leads to fresh ciphertext and can prevent the attacker from inferring secrets

via the ciphertext.

To achieve this, the application developer has to identify and rewrite vulnerable code

sections. For example, in our collision attack (Section 7.4.2), the conditional swap operation

should not be written to be performed in-place, but should store the result in a newly

allocated memory area. In this way, an attacker always observes a fresh ciphertext in a new

location, independent from the value of the decision byte ci.

Software-based probabilistic encryption. If the aforementioned methods are not appli-

cable, one can mimic probabilistic encryption in software and add a random nonce to the

secret data each time when the data is written to the memory.

185

This can be approached in two ways: First, one can modify the memory layout of the

affected data structures to include random nonces in between, such that each memory block

gets a sufficient amount of random bits. Second, the memory layout is left as-is, but a

second buffer of the same size is allocated for storing masks, which are then XOR-ed onto

the plaintext.

The first approach can be implemented by reserving the high 8 bytes of each 16-byte

encryption block for a random nonce, while the low 8 bytes are used for payload. When

storing a value in this block, the nonce is incremented to ensure that the ciphertext changes.

In addition, the old plaintext must be overwritten with a random value before storing the

new plaintext, to keep the attacker from detecting consecutive writes of the same value. In

the second approach, the nonces and the data are stored in separate locations, and the nonces

are XOR-ed onto the data as a mask. On each memory write, the corresponding location in

the mask buffer is resolved, the mask value is updated and then XOR-ed to the new plaintext.

Finally, the masked plaintext is written to the desired memory address. As the nonces are

high entropy values and updated independently of the written data, they are not susceptible

to the dictionary attack or collision attack. Due to its high locality, the first approach is

better suited for small variables (e.g., variables on the stack), while the second approach

has better support for pointer arithmetic and should thus be used for buffers and complex

data structures. Both countermeasures could be implemented as a compiler extension, that

automatically applies them to variables marked as secret.

7.5.3 Software-based Countermeasures: Kernel Context Switch

While the generic software-based countermeasures are sufficient to protect applications

in user mode, they make the critical assumption that registers are immune to ciphertext

186

side channels. However, our attack in Section 7.3 shows that the attacker can inspect

the ciphertext in the kernel’s pt_regs structure to infer register values. To mitigate the

ciphertext leakage on register-level, we developed a kernel patch that protects registers

during context switches. We focus on the Linux kernel, but similar methods can also be

applied to other operating systems.

Specifically, the kernel patch protects the pt_regs structure, which stores x86-64 user

space registers as described in Section 7.1.4. We present two methods for securing this

structure. One is to insert a random nonce alongside each register. The other is to randomize

the stack location on each context switch.

Storing a nonce alongside registers. A random 64 bits nonce can be stored next to each

register (64-bit) to add enough randomization. In this way, on a context switch, the kernel

doesn’t simply push all registers to the stack, but interleaves them with pushes of a random

value, which is incremented on every context switch. This method gives us 64 bits of security,

which makes it impossible for the attacker to infer the plaintext even for long running VMs.

However, this strategy comes with a major caveat: It requires significant changes to existing

highly-optimized code paths, as a lot of exception/signal handling functions rely on the

exact offset of the registers in pt_regs and would thus may not be adapted by the upstream

kernel committee.

Context switch stack randomization. As an alternative strategy, we adapt the memory ad-

dress randomization idea to the kernel entry point stack. Instead of inserting nonces between

the saved registers, we randomize the address of the stack where the exception/interrupt

handlers store the register values of the interrupted user space application.

This method is much less intrusive than the nonce approach and easy to hide behind

a feature flag, as we only need to keep track of stack pages and replace the stack pointer

187

on each exit from kernel space to user space. However, it also comes with a high memory

overhead, as we have to reserve a lot physical memory only for the kernel entry point stacks.

Also, at some point we will run out of physical memory, giving us a hard limit on the

reachable entropy.

For example, if we assume that we have 8 GB of physical memory which can be freely

used for our stack countermeasure, with a stack size of 4 KB (one page) we get 221 possible

stack locations (21 bits of entropy). This is significantly less than the 64 bits obtained with

the nonce approach, but still considerably reduces the attack bandwidth, as the attacker

would have to wait until a stack page repeats. To assess the practicality and the resulting

overhead, we implemented the stack randomization countermeasure in the Linux kernel.

7.5.4 Case Study: Randomizing pt_regs Location

For our case study, we focused on the common exception and interrupt path described by

idtentry_body which is defined in arch/x86/entry/entry_64.S. The idtentry_body

path is e.g. used for the high frequency page fault exception as well as for the local APIC

timer interrupt. The latter is especially interesting, as it is the main driver in determining if a

task has used up its time slice, leading to a reschedule to a different task. While interrupts

and exceptions can also occur when the CPU is already in kernel mode, we restrict our

countermeasure to events that interrupt a user space application, as they contain the register

values that we want to protect.

Since the thread stack is empty upon entering the kernel from user space, we can simply

replace it with a newly allocated stack. For the entry stack, randomizing the stack upon entry

to the kernel is more difficult, as all general purpose registers hold user data and thus cannot

188

be used to perform the change. To circumvent this, we randomize the stack on the exit path

before returning back to user space. Thus upon the next entry, we have a fresh entry stack.

Using the regular memory allocation mechanisms of the Linux kernel for the stack

allocation proves difficult, as they were not build with guarantees regarding not returning a

recently freed page upon a new allocation. In addition, they share a common memory pool

with the rest of the system, which increases the collision probability under high memory

load, if taking random pages from the pool. Instead we allocate a large chunk of memory at

boot time and manage the stacks in a first-in-first-out queue, maximizing the time between

reuses.

To evaluate the performance of our prototype implementation, we call the cpuid instruc-

tion 10 million times in a tight loop from a user space application. Under SEV, this is an

emulated instruction that will directly trigger the modified code paths in idtentry_body

without doing further expensive computations, allowing us to efficiently measure the perfor-

mance impact of the modifications to the context switch. Using this strategy, we measured a

total average overhead of 1063 nanoseconds per context switch with standard derivation 4.93.

We also ran a modified benchmark, where the application also loops over a large memory

buffer each iteration, to measure the additional cache pressure created by randomizing the

kernel stack. We ran the experiment 1000000 times resulting in a total average overhead of

2232 nanoseconds with standard derivation 297.

7.6 Discussion

Secure encryption of large memory. Memory encryption is a basic building block used

in TEEs to establish the confidentiality of data that leaves the CPU. Ideally, a probabilistic

189

authenticated encryption scheme needs to be used, as was implemented for the first genera-

tion of Intel SGX [37]. However, managing and updating authentication tags and counter

values consumes additional storage, costs latency and decreases the memory bandwidth for

payload data. Thus, we do not believe that integrity trees can scale to protect large amounts

of memory, as it is required for the confidential VM usage model.

To cope with these conflicting properties, many confidential VM designs use a mixture

of cryptography and additional, architectural permission checks to achieve their security

guarantees. Since random memory access latency is a critical performance property for the

entire system, ECB would be the best candidate from a performance point of view. However,

the independent encryption of all memory blocks with the same key leaks repetition patterns,

as there is only one ciphertext for each plaintext. Thus, current confidential VM designs

(AMD SEV [51]), but also designs to be commercially available in the near feature (Intel

TDX [44] and ARM CCA [13, 14]) all adopt a tweaked block cipher, like AES XTS/XEX.

Table 7.2 shows a more comprehensive overview. These modes offer a middle ground

between performance and security, as the tweak mechanism offers a cheap way to ensure that

the same plaintext encrypts to different ciphertexts when stored in two different addresses.

However, for a given memory block, there is still only one ciphertext for each plaintext. As

we have seen throughout this paper, this is the root cause of the ciphertext side channels.

To prevent attacks on the missing integrity protection, systems like SEV-SNP or Intel

TDX and Intel SGX prevent untrusted parties from writing to protected memory [8,27]. Intel

TDX and SGX also prevent read accesses to the ciphertext [27, 44]. However, as discussed

in Section 7.1.3, these checks do not prevent physical attacks like bus snooping.

Finally, the implementation of access right checks also comes with technical hurdles.

On the one hand, they need to be fast, as they influence the memory access latency. On the

190

other hand, static approaches that simply block access to a fixed range, like in Intel SGX,

hinder efficient memory use and scaling. These hurdles remain open research questions to

be answered in the future works.

Side-channel resistant cryptosystems. With decades of studies on micro-architectural

side channels, including cache or TLB side channels, building side-channel resistant cryp-

tographic implementations has become a common practice. Most practically used crypto-

graphic libraries adopt some levels of side-channel defenses, to prevent exploitation from a

remote attacker [1] or another user on shared machines [100, 101]. The known best practice

for defeating side channels is data-oblivious constant-time implementation, which dictates

the execution time of the cryptographic operations (or an arbitrary portion of it) is constant

regardless of the secret values used in the computation and that branch decisions or memory

accesses may not depend on secret values. Data oblivious Constant-time implementation

has been shown to defeat all known micro-architectural side-channel attacks, except the

ciphertext side-channel attacks discussed in this work.

The ciphertext side channel opens up a new way of exploiting cryptographic code, which

the data oblivious constant-time implementation is no longer sufficient to guard against.

Given the difficulties of securing accesses to the ciphertext through memory access or

bus snooping (Section 7.1.3), we envision cryptographic code to be used in TEEs with

large memory needs to adopt a new paradigm that achieves indistinguishability not only on

execution time and access patterns, but on the ciphertext values. We hope our work will

inspire a new research direction on secure implementation of cryptography, such as tools to

automate the discovery of such vulnerabilities, compilers to transform a vulnerable code to

a secure one, or formal provers to assert the absence of such vulnerabilities.

191

Table 7.2: Comparison of hardware memory encryption-based TEEs. Drop-In replacement
means that applications do not need to be adjusted to work with the TEE. * denotes the
release time of the whitepapers while the commercial machine is not available yet. † denotes
the new SGX version (SGX on Ice Lake SP).

Project Vendor Release TCB type TCB size Encryption mode Block size
SEV [51] AMD 2016 VM No Limit XE or XEX 128-bit
SEV-ES [49] AMD 2017 VM No Limit XE or XEX 128-bit
SEV-SNP [8] AMD 2020 VM No Limit XEX 128-bit
SGX [27] Intel 2015 Enclave 256 MB [43] AES-CTR 128-bit
SGX† [45, 47] Intel 2021 Enclave up to 1 TB XTS 128-bit
TDX [44] Intel *2020 VM No limit XTS 128-bit
CCA [13] ARM *2021 VM No limit AES XTS 128-bit

7.7 Summary

In this chapter, we have performed a comprehensive study on the ciphertext side channels.

Our work extends ciphertext side-channel attack to exploit the ciphertext leakage from all

memory pages, including those for kernel data structures, stacks and heaps. We have

also proposed a set of software countermeasures, including patches to the OS kernel and

cryptographic libraries, as a workaround to the identified ciphertext leakage.

As a general design lesson, deterministic encryption modes such as XEX must be

combined with both read and write protection to prevent software-based attacks. To also

prevent physical memory attacks, freshness and integrity protection are required.

192

Chapter 8: Conclusion

This dissertation systematically goes through the design flow of AMD SEV, a VM-based

hardware-protected TEE. To protect SEV-protected VMs against an untrusted cloud service

provider, SEV adopts some additional designs atop traditional Virtualization. Some of

those adjustments are challenged, including AES memory encryption, the Nested Page Table

and Context-switch. Thus, some designs inherited from AMD’s traditional hardware-based

virtualization are shown to be insecure under the assumption of the untrusted host in this

dissertation, including I/O security, ASID-based key management, ASID-tagged TLB entries,

state store or load during context-switch, and deterministic memory encryption.

193

Bibliography

[1] Nadhem J Al Fardan and Kenneth G Paterson. Lucky thirteen: Breaking the TLS and
DTLS record protocols. In 2013 IEEE Symposium on Security and Privacy, pages
526–540. IEEE, 2013.

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and
Michael Emmi. Verifying constant-time implementations. In 25th USENIX Security
Symposium, pages 53–70, 2016.

[3] AMD. AMD-V nested paging. http://developer.amd.com/wordpress/media/
2012/10/NPT-WP-1%201-final-TM.pdf, 2008.

[4] AMD. Open-Source Register Reference For AMD Family 17h Processors Models
00h-2Fh. Manual, July 2018. Rev 3.03.

[5] AMD. Solving the cloud trust problem with WinMagic and AMD EPYC hardware
memory encryption. White paper, 2018.

[6] AMD. AMD64 architecture programmer’s manual volume 2: System programming.
Manual, 2019.

[7] AMD. SEV API version 0.22, 2019.

[8] AMD. AMD SEV-SNP: Strengthening VM isolation with integrity protection and
more. White paper, 2020.

[9] AMD. AMDSEV/SEV-ES branch. https://github.com/AMDESE/AMDSEV/tree/
sev-es, 2020.

[10] AMD. SEV secure nested paging firmware API specification. API Document, 2020.

[11] AMD. AMD Secure Encryption Virtualization (SEV) Information Disclo-
sure (Bulletin ID: AMD-SB-1013). https://www.amd.com/en/corporate/
product-security/bulletin/amd-sb-1013, 2021.

[12] AMD. AMD Virtualization (AMD-V). https://www.amd.com/en/
technologies/virtualization-solutions, 2021.

194

http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
https://github.com/AMDESE/AMDSEV/tree/sev-es
https://github.com/AMDESE/AMDSEV/tree/sev-es
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1013
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1013
https://www.amd.com/en/technologies/virtualization-solutions
https://www.amd.com/en/technologies/virtualization-solutions

[13] ARM. Arm CCA Security Model, August 2021. Rev 1.0, Document Number
DEN0096.

[14] ARM. Arm Confidential Compute Architecture software stack. https://
developer.arm.com/documentation/den0127/latest, 2021.

[15] Amazon AWS. Optimizing latency and bandwidth for AWS traffic, 2016.

[16] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R Gross. cain: Silently
breaking aslr in the cloud. In 9th USENIX Workshop on Offensive Technologies,
2015.

[17] BearSSL. Why constant-time crypto? https://www.bearssl.org/
constanttime.html, 2021.

[18] Michael Becher, Maximillian Dornseif, and Christian N. Klein. FireWire: all your
memory are belong to us. In CanSecWest, 2005.

[19] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. In Bart Preneel and Tsuyoshi Takagi, editors,
Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th International
Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings, volume 6917
of Lecture Notes in Computer Science, pages 124–142. Springer, 2011.

[20] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. The guard’s dilemma: Efficient code-reuse attacks against intel SGX. In
27th USENIX Security Symposium, pages 1213–1227. USENIX Association, 2018.

[21] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks
are practical. In 11th USENIX Workshop on Offensive Technologies, 2017.

[22] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

[23] Robert Buhren, Shay Gueron, Jan Nordholz, Jean-Pierre Seifert, and Julian Vetter.
Fault attacks on encrypted general purpose compute platforms. In Gail-Joon Ahn,
Alexander Pretschner, and Gabriel Ghinita, editors, Proceedings of the Seventh
ACM Conference on Data and Application Security and Privacy, CODASPY 2017,
Scottsdale, AZ, USA, March 22-24, 2017, pages 197–204. ACM, 2017.

[24] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-step: A practical attack
framework for precise enclave execution control. In Proceedings of the 2nd Workshop
on System Software for Trusted Execution, SysTEX@SOSP 2017, Shanghai, China,
October 28, 2017, pages 4:1–4:6. ACM, 2017.

195

https://developer.arm.com/documentation/den0127/latest
https://developer.arm.com/documentation/den0127/latest
https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html

[25] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, et al. Fallout:
Leaking data on meltdown-resistant cpus. In ACM SIGSAC Conference on Computer
and Communications Security, pages 769–784, 2019.

[26] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H.
Lai. Sgxpectre attacks: Stealing intel secrets from sgx enclaves via speculative
execution. In 4th IEEE European Symposium on Security and Privacy. IEEE, 2019.

[27] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptol. ePrint
Arch., page 86, 2016.

[28] CTS. Severe security advisory on AMD processors. https://safefirmware.com/
amdflaws_whitepaper.pdf, 2017.

[29] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang, Jesse Liu,
and Jesse Fang. Secure encrypted virtualization is unsecure. arXiv preprint
arXiv:1712.05090, 2017.

[30] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang, Jesse Liu, and
Jesse Fang. Secure encrypted virtualization is unsecure. CoRR, abs/1712.05090,
2017.

[31] Fujian Chuang YI Jia He Digital Inc. Anjian v1.1.0. www.anjian.com, 2019.

[32] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk, and Srinivas
Devadas. Caches and hash trees for efficient memory integrity verification. In 9th
International Symposium on High-Performance Computer Architecture, 2003.

[33] Google. Introducing google cloud confidential computing with confidential
VMs. https://cloud.google.com/blog/products/identity-security/
introducing-google-cloud-confidential-computing-with-confidential-vms,
2020.

[34] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache
attacks on intel sgx. In EUROSEC, 2017.

[35] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. Aslr
on the line: Practical cache attacks on the mmu. In NDSS, volume 17, page 26, 2017.

[36] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+
Flush: a fast and stealthy cache attack. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 279–299. Springer,
2016.

196

https://safefirmware.com/amdflaws_whitepaper.pdf
https://safefirmware.com/amdflaws_whitepaper.pdf
www.anjian.com
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms

[37] Shay Gueron. A memory encryption engine suitable for general purpose processors.
IACR Cryptol. ePrint Arch., page 204, 2016.

[38] Marcus Hähnel, Weidong Cui, and Marcus Peinado. High-resolution side channels
for untrusted operating systems. In USENIX Annual Technical Conference, 2017.

[39] Felicitas Hetzelt and Robert Buhren. Security analysis of encrypted virtual machines.
In Proceedings of the 13th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE 2017, Xi’an, China, April 8-9, 2017, pages
129–142. ACM, 2017.

[40] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side channel attacks
against kernel space aslr. In 2013 IEEE Symposium on Security and Privacy, pages
191–205. IEEE, 2013.

[41] Amr Hussam Ibrahim, Mohamed Bakr Abdelhalim, Hanadi Hussein, and Ahmed
Fahmy. An analysis of x86-64 instruction set for optimization of system softwares.
Planning perspectives, page 152, 2011.

[42] Intel. Intel architecture memory encryption technologies specification, April 2019.
Ref:336907-002US, Rev: 1.2.

[43] Intel. 10th Generation Intel Core Processor Families. https://www.
intel.com/content/dam/www/public/us/en/documents/datasheets/
10th-gen-core-families-datasheet-vol-1-datasheet.pdf, July 2020.

[44] Intel. Intel Trust Domain Extensions. Whitepaper, 2020.

[45] Intel. Product brief, 3rd gen intel xeon scaleable processor for iot.
https://www.intel.com/content/www/us/en/products/docs/processors/
embedded/3rd-gen-xeon-scalable-iot-product-brief.html, 2021.

[46] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address space layout
randomization with intel tsx. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 380–392, 2016.

[47] Simon Johnson, Raghunandan Makaram, Amy Santoni, and Vinnie Scarlata. Sup-
porting intel sgx on multi-socket platforms. Intel Corporation.[Online]. Available:
https://www. intel. com/content/www/us/en/architecture-and-technology/software-
guard-extensions/supporting-sgx-on-multi-socket-platforms. html, 2021.

[48] Matt Johnston. Dropbear ssh. https://github.com/mkj/dropbear, 2021.

[49] David Kaplan. Protecting VM register state with SEV-ES. White paper, 2017.

197

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/10th-gen-core-families-datasheet-vol-1-datasheet.pdf
https://www.intel.com/content/www/us/en/products/docs/processors/embedded/3rd-gen-xeon-scalable-iot-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/embedded/3rd-gen-xeon-scalable-iot-product-brief.html
https://github.com/mkj/dropbear

[50] David Kaplan. Upcoming x86 technologies for malicious hypervisor protec-
tion. https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%
20Slides%20Nov%201%202019.pdf, 2020.

[51] David Kaplan, Jeremy Powell, and Tom Woller. AMD memory encryption. White
paper, 2016.

[52] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. In 2019 IEEE Symposium on Security and
Privacy, pages 1–19. IEEE, 2019.

[53] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Annual International Cryptology Conference, pages 104–113.
Springer, 1996.

[54] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Tagbleed:
Breaking kaslr on the isolated kernel address space using tagged tlbs. In 2020 IEEE
European Symposium on Security and Privacy, pages 309–321. IEEE, 2020.

[55] Adam Langley. Checking that functions are constant time with valgrind. https:
//www.imperialviolet.org/2010/04/01/ctgrind.html, 2010.

[56] Byoungyoung Lee, Long Lu, Tielei Wang, Taesoo Kim, and Wenke Lee. From
zygote to morula: Fortifying weakened aslr on android. In 2014 IEEE Symposium on
Security and Privacy, pages 424–439. IEEE, 2014.

[57] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia-che Tsai, and Raluca Ada Popa. An
off-chip attack on hardware enclaves via the memory bus. In Srdjan Capkun and
Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, pages 487–504. USENIX Association, 2020.

[58] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. Hacking in
darkness: Return-oriented programming against secure enclaves. In 26th USENIX
Security Symposium, 2017.

[59] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Mar-
cus Peinado. Inferring fine-grained control flow inside SGX enclaves with branch
shadowing. In 26th USENIX Security Symposium, 2017.

[60] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. CROSSLINE: Breaking “Security-
by-Crash” based Memory Isolation in AMD SEV. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages 2937–2950,
2021.

198

https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf
https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf
https://www.imperialviolet.org/2010/04/01/ctgrind.html
https://www.imperialviolet.org/2010/04/01/ctgrind.html

[61] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. Exploiting unprotected
I/O operations in amd’s secure encrypted virtualization. In Nadia Heninger and
Patrick Traynor, editors, 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, pages 1257–1272. USENIX Association,
2019.

[62] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. CIPHER-
LEAKS: breaking constant-time cryptography on AMD SEV via the ciphertext side
channel. In Michael Bailey and Rachel Greenstadt, editors, 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021, pages 717–732. USENIX
Association, 2021.

[63] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémentine Maurice,
and Daniel Gruss. Take a way: Exploring the security implications of AMD’s cache
way predictors. In 15th ACM ASIA Conference on Computer and Communications
Security (ACM ASIACCS 2020), 2020.

[64] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. Meltdown:
Reading kernel memory from user space. In 27th USENIX Security Symposium, pages
973–990, 2018.

[65] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Francillon.
C5: cross-cores cache covert channel. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 46–64. Springer, 2015.

[66] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel Gruss,
Carlo Alberto Boano, Stefan Mangard, and Kay Römer. Hello from the other side:
Ssh over robust cache covert channels in the cloud. In Proceedings of the Network
and Distributed System Security Symposium, volume 17, pages 8–11, 2017.

[67] Saeid Mofrad, Fengwei Zhang, Shiyong Lu, and Weidong Shi. A comparison study of
intel SGX and AMD memory encryption technology. In 7th International Workshop
on Hardware and Architectural Support for Security and Privacy. ACM, 2018.

[68] Mathias Morbitzer, Manuel Huber, and Julian Horsch. Extracting secrets from
encrypted virtual machines. In Gail-Joon Ahn, Bhavani M. Thuraisingham, Murat
Kantarcioglu, and Ram Krishnan, editors, Proceedings of the Ninth ACM Conference
on Data and Application Security and Privacy, CODASPY 2019, Richardson, TX,
USA, March 25-27, 2019, pages 221–230. ACM, 2019.

[69] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. Severed:
Subverting amd’s virtual machine encryption. In Angelos Stavrou and Konrad
Rieck, editors, Proceedings of the 11th European Workshop on Systems Security,
EuroSec@EuroSys 2018, Porto, Portugal, April 23, 2018, pages 1:1–1:6. ACM, 2018.

199

[70] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:
the case of AES. In Cryptographers’ track at the RSA conference, pages 1–20.
Springer, 2006.

[71] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. Make sure DSA signing
exponentiations really are constant-time. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 1639–1650, 2016.

[72] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Man-
gard. DRAMA: exploiting DRAM addressing for cross-cpu attacks. In Thorsten Holz
and Stefan Savage, editors, 25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016, pages 565–581. USENIX Association, 2016.

[73] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. Dude, is my code constant
time? In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, pages 1697–1702. IEEE, 2017.

[74] AMD Roger Lai. Amd security and server innovation. UEFI PlugFest-March, pages
18–22, 2013.

[75] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. Using address
independent seed encryption and bonsai Merkle trees to make secure processors os-
and performance-friendly. In 40th Annual IEEE/ACM International Symposium on
Microarchitecture, 2007.

[76] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, and Daniel Gruss. Zombieload: Cross-privilege-boundary data
sampling. arXiv preprint arXiv:1905.05726, 2019.

[77] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. Malware Guard Extension: Using SGX to Conceal Cache Attacks. Springer
International Publishing, 2017.

[78] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin, Dongsu
Han, and Taesoo Kim. Sgx-shield: Enabling address space layout randomization for
SGX programs. In 24th Annual Network and Distributed System Security Symposium,
2017.

[79] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In 14th ACM Conference on Computer and
Communications Security. ACM, 2007.

[80] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Pre-
venting page faults from telling your secrets. In 11th ACM on Asia Conference on
Computer and Communications Security, 2016.

200

[81] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Pre-
venting page faults from telling your secrets. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications Security, pages 317–328, 2016.

[82] Patrick Simmons. Security through amnesia: a software-based solution to the cold
boot attack on disk encryption. In Robert H’obbes’ Zakon, John P. McDermott, and
Michael E. Locasto, editors, Twenty-Seventh Annual Computer Security Applications
Conference, ACSAC 2011, Orlando, FL, USA, 5-9 December 2011, pages 73–82.
ACM, 2011.

[83] Teja Singh, Alex Schaefer, Sundar Rangarajan, Deepesh John, Carson Henrion,
Russell Schreiber, Miguel Rodriguez, Stephen Kosonocky, Samuel Naffziger, and
Amy Novak. Zen: An energy-efficient high-performance x86 core. IEEE Journal of
Solid-State Circuits, 53(1):102–114, 2017.

[84] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis of
keystrokes and timing attacks on ssh. In 10th USENIX Security Symposium, 2001.

[85] David Suggs, Mahesh Subramony, and Dan Bouvier. The AMD “Zen 2” processor.
IEEE Micro, 40(2):45–52, 2020.

[86] Shivam Swami and Kartik Mohanram. COVERT: counter overflow reduction for
efficient encryption of non-volatlle memories. In David Atienza and Giorgio Di
Natale, editors, Design, Automation & Test in Europe Conference & Exhibition,
DATE 2017, Lausanne, Switzerland, March 27-31, 2017, pages 906–909. IEEE, 2017.

[87] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order
execution. In 27th USENIX Security Symposium, pages 991–1008, 2018.

[88] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx.
Telling your secrets without page faults: Stealthy page table-based attacks on enclaved
execution. In 26th USENIX Security Symposium. USENIX Association, 2017.

[89] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. 2019 IEEE Symposium on Security and Privacy, 2019.

[90] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent
Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky cauldron on the dark land:
Understanding memory side-channel hazards in sgx. In ACM SIGSAC Conference on
Computer and Communications Security, 2017.

201

[91] Jan Werner, Joshua Mason, Manos Antonakakis, Michalis Polychronakis, and Fabian
Monrose. The severest of them all: Inference attacks against secure virtual enclaves.
In Steven D. Galbraith, Giovanni Russello, Willy Susilo, Dieter Gollmann, Engin
Kirda, and Zhenkai Liang, editors, Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security, AsiaCCS 2019, Auckland, New Zealand,
July 09-12, 2019, pages 73–85. ACM, 2019.

[92] David Weston and Matt Miller. Windows 10 mitigation improvements. Black Hat
USA, 2016.

[93] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth. Sevurity:
No security without integrity : Breaking integrity-free memory encryption with
minimal assumptions. In 2020 IEEE Symposium on Security and Privacy, SP 2020,
San Francisco, CA, USA, May 18-21, 2020, pages 1483–1496. IEEE, 2020.

[94] Yuming Wu, Yutao Liu, Ruifeng Liu, Haibo Chen, Binyu Zang, and Haibing Guan.
Comprehensive VM protection against untrusted hypervisor through retrofitted AMD
memory encryption. In International Symposium on High Performance Computer
Architecture, 2018.

[95] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In IEEE Symposium on
Security and Privacy. IEEE, 2015.

[96] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: De-
terministic side channels for untrusted operating systems. In 2015 IEEE Symposium
on Security and Privacy, pages 640–656. IEEE, 2015.

[97] Chenyu Yan, B. Rogers, D. Englender, D. Solihin, and M. Prvulovic. Improving
cost, performance, and security of memory encryption and authentication. In 33rd
International Symposium on Computer Architecture, 2006.

[98] Yuval Yarom and Katrina Falkner. FLUSH+ RELOAD: a high resolution, low noise,
l3 cache side-channel attack. In 23rd USENIX Security Symposium, pages 719–732,
2014.

[99] Min Hong Yun and Lin Zhong. Ginseng: Keeping secrets in registers when you
distrust the operating system. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society, 2019.

[100] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-VM
side channels and their use to extract private keys. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 305–316, 2012.

202

[101] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-tenant
side-channel attacks in paas clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 990–1003, 2014.

203

	Abstract
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	List of Listings
	1. Introduction
	1.1 Overview
	1.2 I/O Security in SEV
	1.3 ASID Security in SEV
	1.4 TLB Security in SEV
	1.5 VMSA Security in SEV
	1.6 General Memory Encryption Security in SEV

	2. Background
	2.1 AMD SEV
	2.1.1 Overview
	2.1.2 Memory Encryption

	2.2 Existing Security Studies on SEV
	2.3 Comparison between Intel TEEs and SEV

	3. Exploiting Unprotected I/O Operations in AMD SEV
	3.1 Root Cause of vulnerable I/O operations
	3.2 Threat Model
	3.3 Security issues of Unprotected I/O Operations in AMD SEV
	3.3.1 Unprotected I/O Security's consequences
	3.3.2 Decryption Oracles
	3.3.3 Encryption Oracle

	3.4 Evaluation
	3.4.1 Pattern Matching
	3.4.2 Persistent Bp
	3.4.3 I/O Performance Degradation
	3.4.4 An End-to-End Attack

	3.5 A Path Towards I/O Security in SEV
	3.5.1 Authenticated Encryption
	3.5.2 A Temporary Software Solution
	3.5.3 Comparison with existing attacks

	3.6 Summary

	4. Breaking ``Security-by-Crash'' based Memory Isolation in AMD SEV
	4.1 Demystifying ASID-based Isolation
	4.1.1 ASID-based Isolation
	4.1.2 ASID Management
	4.1.3 ASID Isolation Summary

	4.2 CrossLine Attacks
	4.2.1 Variant 1: Extracting Encrypted Memory through Page Table Walks
	4.2.2 Variant 2: Executing Victim VM's Encrypted Instructions
	4.2.3 Discussion on Stealthiness and Robustness

	4.3 Applicability to SEV-ES
	4.3.1 Overview of SEV-ES
	4.3.2 CrossLine V1 on SEV-ES
	4.3.3 CrossLine V2 on SEV-ES
	4.3.4 Discussion on Stealthiness

	4.4 Discussion
	4.4.1 A New Variant: Reusing Victim's TLB Entries
	4.4.2 Applicability to SEV-SNP
	4.4.3 Intel MKTME
	4.4.4 Relation to Speculative Execution Attacks

	4.5 Summary

	5. TLB Poisoning Attacks on AMD Secure Encrypted Virtualization
	5.1 Background
	5.2 Understanding and Demystifying SEV's TLB Isolation Mechanisms
	5.2.1 TLB Management for Non-SEV VMs
	5.2.2 Demystifying SEV's TLB management
	5.2.3 TLB Flush Rules for SEV VMs

	5.3 Attack Primitives
	5.3.1 Threat Model
	5.3.2 TLB Misuse across vCPUs
	5.3.3 TLB Misuse within the Same vCPU
	5.3.4 CPUID-based Covert Channel

	5.4 TLB Poisoning with Assisting Processes
	5.4.1 Case Study: OpenSSH
	5.4.2 Evaluation

	5.5 TLB Poisoning without Assisting Processes
	5.5.1 Poison TLB Entries between Connections
	5.5.2 An End-to-end Attack
	5.5.3 Evaluation.

	5.6 Discussion and Countermeasure
	5.6.1 TLB Poisoning on SEV-SNP
	5.6.2 Comparison with Known Attacks
	5.6.3 Countermeasures

	5.7 Summary

	6. CipherLeaks: Breaking Constant-time Cryptography on AMD SEV via the Ciphertext Side Channel
	6.1 Background
	6.1.1 Secure Encrypted Virtualization
	6.1.2 Cryptographic Side-Channel Attacks
	6.1.3 Advanced Programmable Interrupt Controller

	6.2 The CipherLeaks Attack
	6.2.1 The Ciphertext Side Channel
	6.2.2 Execution State Inference
	6.2.3 Plaintext Recovery

	6.3 Case Studies
	6.3.1 Breaking Constant-Time RSA
	6.3.2 Breaking Constant-time ECDSA
	6.3.3 Evaluation

	6.4 Countermeasures
	6.4.1 Software Mitigation
	6.4.2 Function's Internal States Intercept
	6.4.3 Hardware Countermeasures

	6.5 Applicability to SEV-SNP
	6.5.1 Overview of SEV-SNP
	6.5.2 The CipherLeaks attack on SEV-SNP

	6.6 Summary

	7. A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP
	7.1 Background
	7.1.1 Secure Encrypted Virtualization
	7.1.2 Ciphertext Attacks against SEV-SNP
	7.1.3 Off-chip Attacks
	7.1.4 Operating System Context Switch

	7.2 A generic ciphertext side channel
	7.2.1 Attacker Model
	7.2.2 Attack Primitives

	7.3 Leakage due to context switch
	7.3.1 Leaking Register Values via Context Switches
	7.3.2 Attacking Constant-time ECDSA
	7.3.3 End-to-end attack against Nginx
	7.3.4 Evaluation

	7.4 Exploiting memory accesses in user space
	7.4.1 Breaking Constant-time ECDSA via Dictionary Attack
	7.4.2 Breaking Constant-time EdDSA via collision attack

	7.5 Countermeasures
	7.5.1 Architectural Countermeasures
	7.5.2 Software-based Countermeasures
	7.5.3 Software-based Countermeasures: Kernel Context Switch
	7.5.4 Case Study: Randomizing pt_regs Location

	7.6 Discussion
	7.7 Summary

	8. Conclusion
	Bibliography

