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Abstract 

The three manuscripts presented here examine concepts related to speech 

perception in noise and ways to overcome poor speech intelligibility without depriving 

listeners of environmental sound recognition.  

Because of hearing-impaired (HI) listeners’ auditory deficits, there is a substantial 

need for speech-enhancement (noise reduction) technology. Recent advancements in deep 

learning have resulted in algorithms that significantly improve the intelligibility of speech 

in noise, but in order to be suitable for real-world applications such as hearing aids and 

cochlear implants, these algorithms must be causal, talker independent, corpus 

independent, and noise independent. Manuscript 1 involves human-subjects testing of a 

novel, time-domain-based algorithm that fulfills these fundamental requirements. 

Algorithm processing resulted in significant intelligibility improvements for both HI and 

normal-hearing (NH) listener groups in each signal-to-noise ratio (SNR) and noise type 

tested. 

In Manuscript 2, the range of speech-to-background ratios (SBRs) over which NH 

and HI listeners can accurately perform both speech and environmental recognition was 

determined. Separate groups of NH listeners were tested in conditions of selective and 

divided attention. A single group of HI listeners was tested in the divided attention 

experiment. Psychometric functions were generated for each listener group and task type. 
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It was found that both NH and HI listeners are capable of high speech intelligibility and 

high environmental sound recognition over a range of speech-to-background ratios. The 

range and location of optimal speech-to-background ratios differed across NH and HI 

listeners. The optimal speech-to-background ratio also depended on the type of 

environmental sound present. 

Conventional deep-learning algorithms for speech enhancement target maximum 

intelligibly by removing as much noise as possible while maintaining the essential 

characteristics of the target speech signal. Manuscript 3 tests a new form of time-

frequency masking that is designed to leave a small amount of background noise intact. 

The purpose of the unremoved background noise is to allow for environmental sound 

awareness while still providing significantly increased intelligibility. It was found that 

this type of processing resulted in significantly improved intelligibility and high 

environmental sound recognition performance for both types of listeners. It was also 

found that the same level of maximum attenuation provided the optimal balance of 

intelligibility and environmental sound recognition for both listener types.
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Chapter 1. Introduction 

An estimated 37.5 million Americans have hearing loss, and difficulty 

understanding speech in background noise is their most significant hearing handicap 

(Blackwell et al., 2014). This is known as the “speech-in-noise” problem, and there is a 

substantial need to solve it. The primary treatment for hearing loss is hearing aids, and 

even though these devices can increase the audibility of low-level sounds, they fail to 

adequately improve speech understanding in noise. This is especially true when speech 

and noise are directionally co-located relative to the listener because directional 

microphone arrays can only provide benefit when there is spatial separation between 

sound sources. Restoring the ability to understand speech in noise, especially in 

environments where directional microphones are ineffective, will greatly enhance 

hearing-impaired (HI) listeners’ quality of life by allowing them to better communicate in 

the many daily environments where background noise is present. 

Fortunately, a groundbreaking technology called deep learning can effectively 

eliminate background noise from a sound mixture and substantially improve speech 

understanding for HI listeners. Wang and Wang (2013) introduced deep learning as a 

solution to the speech-in-noise problem, and Healy et al. (2013) provided the first 

demonstration of single-microphone noise reduction that can substantially improve 

intelligibility for HI listeners. For many listeners, this improvement was dramatic, and 
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several improved intelligibility from scores near zero to values above 70% correct. Deep-

learning-based speech enhancement promises to revolutionize hearing aids and cochlear 

implants (CIs) by enabling them to overcome HI listeners’ most significant auditory 

deficit.  

Although groundbreaking at the time, the algorithm used in Healy et al., 2013, 

had three major limitations: (1) It was only trained to operate on a specific recording of a 

single talker; (2) it was designed to only work on two specific 10-s noise segments; and 

(3) it could not operate in real time. It is obviously impossible to train a deep neural 

network on every possible condition it may encounter during operation, making 

generalization to new conditions critical. Further, long processing delays are not tolerated 

by listeners (Stone and Moore, 1999; 2005; Goehring et al., 2018). Therefore, in order to 

have a direct translational impact, a speech-enhancement algorithm must generalize to 

talkers not used during training, including talkers from other speech corpora with 

different recording characteristics. This is known as talker/corpus independence. Second, 

it must also generalize to new noises. This is known as noise independence. Third, it must 

be real-time capable, only operating on current and past time frames. This is known as 

causality.  

Manuscript 1 demonstrates the advances that have been made since the seminal 

study. It shows that a causal, talker-, corpus-, and noise-independent deep learning 

algorithm provides substantial intelligibility benefit to HI listeners. This algorithm used a 

time-domain-based scheme and complex representations to achieve high performance 

despite the great demands placed on it (Pandey and Wang, 2021). The performance of 
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this algorithm was also compared to that obtained in 2013. By using experimental 

conditions that were also used in the 2013 study, direct comparisons were made, and 

advancements were made clear. 

However, deep-learning-based speech enhancement is so effective that it has had 

an unintended negative consequence – in some ways, we are victims of our own success. 

Unlike previous noise reduction approaches, that simply don’t work very well and so 

substantial amounts of the background noise remains, deep learning can almost 

completely remove background sounds. So although it improves speech understanding 

dramatically, it also limits access to environmental sounds, which are an important aspect 

of the human auditory experience. Environmental sound awareness allows for greater 

personal independence and an improved sense of “connection” with one’s surroundings 

(Harris et al., 2017). The ability to perceive and respond to environmental sounds is also 

essential for personal safety and danger avoidance, and hearing loss is associated with an 

increased risk of injuries (Mick et al., 2018). Many potential hazards are often forecast by 

environmental sounds, either naturally occurring or artificial. Examples of safety-relevant 

sounds include approaching vehicles, emergency sirens, vehicle horns, impact noises, and 

even the warning whistle of a lifeguard or crossing guard. The inability to detect and 

resulting failure to react to these environmental sounds could put HI individuals at risk 

for serious personal harm. Critically, therefore, noise reduction technology intended for 

hearing protheses should not unduly eliminate access to environmental sounds in the 

pursuit of maximizing intelligibility at all costs.  
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Manuscript 2 involves testing not only listeners’ speech-in-noise recognition but 

also their “noise-in-speech” recognition. The purpose of this study was to determine the 

SNRs at which NH and HI listeners can recognize both speech and environmental sounds 

in conditions of selective attention and divided attention. Sentences were mixed with 

individual environmental sounds at several SNRs over a wide range, and speech 

intelligibility and environmental sound recognition (ESR) were measured. It was found 

that a range of SNRs exists over which both speech and background can be accurately 

received. The results of this study informed the design of Manuscript 3. 

For many years, the primary goal of speech enhancement has been to maximize 

intelligibility in the presence of background noise by producing a signal that resembles 

clean speech as closely as possible. According to this philosophy, any background noise 

that remains after processing is a deviation from the desired outcome of perfectly 

uncorrupted speech. To my knowledge, Manuscript 3 represents the first study to test a 

time-frequency (T-F) mask that deliberately retains various levels of the background for 

the purpose of optimizing the trade-off between speech intelligibility and ESR. This 

modified version of the ideal ratio mask (IRM), known as the ideal compressed mask 

(ICM), increases intelligibility while preserving high levels of ESR. Like the standard 

IRM, the ICM attenuates T-F units on a sliding scale based on their relative levels of 

speech and noise, with noisier units being attenuated more and “cleaner” units, which are 

dominated by speech, being attenuated less. But whereas the IRM completely attenuates 

(i.e., zeroes out) any units with no speech energy, the ICM is limited in the amount of 

attenuation it can apply in order to limit the attenuation of the background. Hearing-
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impaired and normal-hearing listeners were tested using ICMs with a range of different 

maximum-attenuation values, and the optimal value for jointly maximizing intelligibility 

and ESR was obtained. Even though this study did not involve mask estimation, previous 

work has shown that deep neural networks (DNNs) are capable of estimating the IRM 

with accuracy (Wang et al., 2014) sufficient to produce high speech intelligibility (e.g., 

Healy et al., 2015, 2017, 2019; Chen et al., 2016; Zhao et al., 2018). Future studies will 

test the effect of the algorithm-estimated implementation of this training target based on 

the optimal value calculated in this study on speech recognition and ESR. 
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Abstract 

 

Recent years have brought considerable advances to our ability to increase intelligibility 

through deep learning based noise reduction, especially for hearing impaired (HI) 

listeners.  In the current study, steps taken toward creating an implementable algorithm 

are reviewed, and intelligibility improvements resulting from such an algorithm are 

assessed.  Further, intelligibility benefits resulting from the current algorithm are 

compared to those resulting from the initial demonstration of deep learning based noise 

reduction for HI listeners (E.W. Healy et al., JASA, 134, 2013).  The stimuli and 

procedures were essentially identical across studies.  However, whereas the initial study 

involved highly matched training and test conditions, and non-causal operation, the 

current attentive recurrent network employed different talkers, speech corpora, and noise 

types for training versus test, and it was fully causal as required for real-time operation.  

Significant intelligibility benefit was observed in every condition, which averaged 51 

percentage points across conditions for HI listeners.  Further, benefit was comparable to 

that obtained in the initial demonstration, despite the considerable additional demands 

placed on the current algorithm.  The retention of large benefit despite the systematic 

removal of various constraints as required for real-world operation reflects the substantial 

advances made to deep learning based noise reduction.  
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I.  INTRODUCTION 

 Difficulty understanding speech in background noise remains the primary 

auditory complaint of hearing-impaired (HI) listeners.  This problem persists despite the 

considerable technological advances made to hearing aids and other devices over several 

decades.  A noise-reduction approach that has shown considerable promise involves deep 

learning.  In this approach, a deep neural network (DNN) is trained to isolate target 

speech from various interferences including background noise, interfering speech, and/or 

room reverberation, allowing substantial increases in target-speech intelligibility.  The 

current study was conducted to establish advances made toward implementing single-

microphone deep learning noise reduction 1 into hearing devices to solve the speech-in-

noise problem.   

 The implementation of deep learning based approaches into hearing technology 

can be divided into two broad considerations:  efficacy and viability.  The former refers 

to the ability of an algorithm to improve intelligibility for a wide variety of listeners 

(particularly HI), across a wide variety of acoustic environments.  The latter involves the 

ability of an algorithm to operate in real time on an actual device.  So whereas the former 

consideration involves the question, “does it work?,” the latter involves the question, 

“can it work?” 

 Different approaches can be taken toward answering these questions and 

addressing the various challenges associated with each.  The broad overall philosophy 

guiding our work in this area has been to focus first on efficacy.  Accordingly, the early 

work involved algorithms focused more on large intelligibility improvements and less on 
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constraints associated with implementation.  The initial work also involved limited sets of 

conditions, which were systematically expanded over various studies.  By monitoring 

intelligibility benefit as the conditions were expanded and each step is taken toward 

viable implementation, performance “costs” associated with each step can be known and 

alternative approaches sought if that cost is high. 

 This approach contrasts with one adopted by others, which is essentially the 

opposite.  In this opposite approach, work begins with a more real-world viable 

algorithm, and intelligibility improvements are sought.  This approach results in smaller 

intelligibility improvements, but more problematically, this approach disguises the causes 

of the diminished performance. 

 In the sections below, an overview of progress made toward implementing deep 

learning based noise reduction is provided, followed by a description of a study that 

establishes intelligibility performance once all these advances are incorporated.   

 

A.  Efficacy considerations 

 The question, “does it work?” necessarily means, “does the algorithm increase 

target-speech intelligibility across a large variety of environmental conditions for a wide 

variety of HI listeners?”  The key to efficacy is the ability of an algorithm to generalize to 

conditions not encountered during network training – to tolerate a training-test mismatch.  

This is critical because it is obviously impossible to train a network on all conditions that 

will be encountered by a listener in the real world.   
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 In accord with our overall philosophy, the earliest work in the area employed 

highly matched training and test conditions, and large intelligibility increases were sought 

for HI listeners (Healy et al., 2013; Wang and Wang, 2013).  This goal was met, with HI 

listeners displaying intelligibility increases averaging over 50 percentage points in the 

lower SNR conditions.  Favorably, everyday sentences were employed, both stationary 

and nonstationary background noises were used, and various SNRs were tested.  

Obviously, different sentences were used for training versus test.  But notably, the same 

talker and speech recordings were used for training and test (the network was talker 

dependent), and the same 10-s segment of nose was used for training and test (the 

network was noise dependent).  Additionally, the network was trained on speech mixed 

with noise at the same SNR as that used for the test mixtures.   

 The path that followed this initial study involved systematically increasing the 

training-test mismatch – increasing the requirement that the algorithm generalize – while 

maintaining large intelligibility increases for HI listeners.  The first step taken involved 

training using one segment of noise and testing using a different segment of the same 

noise – untrained noise segments (Healy et al., 2015).  In order to accomplish this 

generalization, the training noise duration was expanded considerably and a perturbation 

technique (Chen et al., 2015) was used to expand the training set.  The noise type was 

also expanded to include a real environmental recording containing multiple sound 

sources (cafeteria noise, which contains speech babble, impact sounds from dishes, etc.).  

Despite the increased challenge posed by this generalization and more complex noise, HI 
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listener intelligibility increases were comparable to those observed in the initial study in 

the comparable noise type/SNR.   

 The next step involved generalization to entirely different noises (Chen et al., 

2016).  This was accomplished by training on 10,000 different noises, in order to teach 

the network what “noise” was in a general sense, then testing on two completely different 

noise recordings not in the training set.  This large-scale multi-condition training resulted 

in 640,000 training mixtures, each containing one of 560 training sentences mixed with a 

random segment of a random training noise.  There was also a mismatch between training 

and test SNR for the HI listeners.  The HI intelligibility benefits resulting from algorithm 

processing in Chen et al. (2016) were reduced somewhat relative to the more matched 

training-test conditions of Healy et al. (2015), but they were again observed despite the 

considerable generalization challenge.   

 Because efficacy also requires effective operation across a large variety of 

environmental conditions, additional corruptions were also examined.  Individuals with 

hearing impairment have particular difficulty understanding speech in the presence of an 

interfering talker.  In Healy et al. (2017), these conditions were examined because they 

represent a considerably different problem for human and machine listeners.  A DNN was 

trained to separate a target talker from an interfering talker, and the target sentence was 

passed along to the listener (speaker separation).  Intelligibility benefit for HI listeners 

was found to be considerable, averaging 50 percentage points across conditions.   

 Another corruption common to everyday acoustic environments involves room 

reverberation.  Room reverberation is often highly detrimental to speech perception, 
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especially for HI listeners, and especially when combined with background noise or 

interfering speech.  However, reverberation and additive noise corrupt the acoustic 

speech signal in very different ways, and so the presence of the concurrent corruptions 

represents a substantial challenge for an algorithm designed to increase intelligibility.   

 Zhao et al. (2018) examined the ability of a deep learning algorithm to improve 

intelligibility for HI listeners in the presence of background noise and concurrent room 

reverberation.  Target sentences were subjected to room reverberation with a T60 value of 

0.6 s and mixed with one of two noise types at various target-to-interferer ratios (TIRs).  

By targeting the noise-free reverberation-free speech, the network performed 

simultaneous noise reduction and de-reverberation.  Significant intelligibility benefit was 

observed for HI listeners in all conditions.   

 Healy et al. (2019) examined interfering speech and concurrent room 

reverberation and addressed whether greater intelligibility benefit was obtained for HI 

listeners when the network was trained to remove interfering speech and reverberation or 

only remove interfering speech and allow reverberation to remain.  Whereas no 

difference in benefit was observed across these conditions for normal-hearing (NH) 

listeners, greater intelligibility benefit was observed for the HI listeners (56 percentage 

points in the lowest TIR condition) when simultaneous noise reduction and de-

reverberation was performed.   

 Another aspect of generalization that is critical for real-world efficacy involves 

talker independence – that an algorithm be able to increase intelligibility of any voice the 

listener encounters. 2  This generalization was introduced to conditions involving 
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interfering speech and concurrent room reverberation, and intelligibility benefit was 

assessed for HI listeners by Healy et al. (2020).  Network training was conducted using 

101 different talkers and testing was performed using a pair of talkers from a different 

speech corpus.  The algorithm operated in the complex domain (Williamson et al., 2016), 

in which both the amplitude and phase of the target speech was estimated from the 

speech-plus-interference signal, rather than estimating amplitude alone, which is typically 

done.  Considerable benefit was observed for HI listeners in all conditions.   

 The use of highly similar conditions across Healy et al. (2019) and Healy et al. 

(2020) allows direct comparison.  Both studies employed reverberant single-talker 

interference, the same speech materials, and a condition involving TIR = 0 dB, T60 = 0.6 

s.  The use of a different algorithm and complex representations in the latter study 

allowed greater benefit to be observed (73 percentage points) compared to the 

corresponding condition of the former study (56 percentage points), despite the additional 

challenge associated with talker independence in the latter study.   

 An additional generalization involves the use of different speech corpora for 

network training versus testing, particularly when these corpora are recorded using 

different equipment in different environments.  Whereas human listeners adapt quickly 

and easily to these differences, machines can be more sensitive to the constant transfer-

function characteristics associated with a fixed recording environment.  In practice, the 

use of a large multi-talker corpus for training and a more standardized corpus for testing 

produces not only talker independence but also corpus/recording channel independence 

(e.g., Healy et al., 2020).  Pandey and Wang (2020a) attributed the challenge of cross-
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corpus generalization largely to differences in recording channels and proposed 

techniques to address cross-corpus generalization. 

 Most recently, the concept of generalization to conditions not employed during 

network training was pushed to perhaps a limit (Healy et al., 2021a).  A DNN was used 

to isolate a target talker from an interfering talker and simultaneously remove large 

amounts of room reverberation.  Training was performed using English speech materials, 

but testing was performed using Mandarin speech materials.  These two languages were 

selected based on their high prevalences of speakers and their lack of known common 

ancestry and correspondingly large linguistic differences.  Additional generalizations 

included speech corpus/recording channel, target-to-interferer energy ratios, 

reverberation room impulse responses, and test talkers.   

 Despite that only normal-hearing (NH) listeners were tested, large intelligibility 

increases were observed, which averaged 44 percentage points across conditions.  

Further, the benefit observed in cross-language conditions were comparable to those 

observed in within-language conditions, suggesting that vast generalizations are possible 

and that network performance was not hindered by the challenge associated with 

generalizing to an entirely different language.  This work further suggests that the 

learning that takes place by the DNN transcends language and is instead perhaps more 

centered on aspects of the particular speech sounds that humans can produce.   

 

A.  Viability considerations 
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 The question, “can it work?” necessarily means, “can the trained network be 

implemented into mobile technology, operate in real-time, and retain the ability to 

produce large intelligibility benefits?”  There is only one fundamental requirement for 

viability – causality – that a network operate on only past and present time frames and not 

delay output in order to take advantage of future time frames.   

 In accord with our broad philosophy involving a focus on network performance 

(the ability to provide large intelligibility benefit in a variety of scenarios), the papers 

described thus far involved networks that employed large analysis windows including 

both past and future time frames.  The advantage to this approach is obvious, as changes 

in spectro-temporal speech energy can be predicted by both past and future events, which 

result from gradual changes in speech-articulator position.  But the need to eliminate the 

use of future time frames is also obvious, as this introduces a time delay to the processed 

(noise-reduced) signal.   

 The causality requirement was met by Healy et al. (2021b) through the concept of 

“effectively causal.”  Future time frames that produce delays below the human detection 

or disruption threshold may be used without hinderance to the listener but with potential 

benefit to the deep learning algorithm.  A network that operated in the complex domain 

was used to remove complex noises from speech.  Significant intelligibility increases 

were observed for HI listeners in all of the effectively causal conditions.   

 The “cost” associated with transforming a DNN to causal operation was examined 

by Healy et al. (2021c).  The network employed by Healy et al. (2020) was modified to 

be fully causal and the isolation of a target talker from complex interference involving 
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competing speech and concurrent room reverberation was assessed.  Intelligibility benefit 

for HI listeners remained high (averaging 47 percentage points across conditions), despite 

the removal of future time frames.  A decrement in intelligibility benefit resulting from 

conversion to causal operation was present in most but not all conditions, and these 

decrements were statistically significant in half of the conditions tested.  It was concluded 

that a cost associated with causal processing was present in most conditions, but may be 

considered modest relative to the overall level of benefit.   

 The other main requirement for viability involves the size/efficiency of the 

network and its ability to operate on small mobile platforms.  Unlike causality, this aspect 

is not fundamental because it is relative to the processing capability of the platform, 

which is increasing dramatically each year.  But it is clear that smaller/more efficient 

networks are more readily implementable.  Those who have adopted the opposite 

approach described above have shown that even small networks having reduced 

computational complexity can increase intelligibility.  Monaghan et al. (2017) 

demonstrated significant intelligibility benefits for HI listeners using small and causal 

noise-reduction neural networks using a matched training-test speech corpus and 

untrained segments of noises.  Keshavarzi et al. (2019) showed that HI listeners 

displayed a slight subjective intelligibility preference for speech extracted from multi-

talker babble using a small, causal, and talker-independent neural network.  Goehring et 

al. (2017) and Goehring et al. (2019) employed small, causal, talker-independent neural 

networks and observed improved intelligibility in noise for cochlear-implant (CI) users in 

some noise types but not others.   
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 Real-time deep learning based noise reduction has recently been implemented into 

commercial products, which demonstrates the real-world feasibility of such applications.  

For example, the software plugin Krisp (https://krisp.ai/) uses artificial neural networks to 

remove noise in voice and videoconferencing applications such as Zoom.  However, its 

capacity to increase intelligibility, especially for HI listeners, has yet to be determined to 

our knowledge.  More relevant for listeners with hearing loss, a hearing aid containing 

on-board deep learning based noise reduction was made available in 2021 – the Oticon 

More™ line.  Using speech in diffuse noise, intelligibility increases of approximately 5 

percentage points and 1.2 to 1.5 dB speech reception threshold were observed relative to 

the prior generation Oticon hearing aid (Santurette et al. 2020).  

 In the current study, HI and NH intelligibility benefit resulting from a current 

deep learning noise-reduction algorithm was assessed.  These results were then compared 

to that associated with the initial study (Healy et al., 2013).  To allow direct comparison, 

the speech recordings, noise types, some SNRs, test procedures, and listener populations 

were the same across studies.  However, whereas the initial study involved highly similar 

training and test conditions (required little generalization), the network employed 

currently was tasked with extensive generalization.  The initial study employed the same 

talker and sentence corpus for training and test (it was talker and corpus dependent) and 

the same noises for training and test (it was noise dependent).  In contrast, the current 

network was trained using over 2,000 different talkers and tested using a talker not 

included in this set and from an entirely different corpus (talker and corpus independent).  

Further, it was trained using 10,000 noises and tested on entirely different noises (noise 
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independent).  Finally, whereas the initial algorithm employed an analysis time window 

involving both past and future time frames (non-causal), the current network was fully 

causal as required for real-time operation.  The overall goal of the current study was to 

establish intelligibility benefit lost/gained across the span of steps taken toward the 

creation of an implementable deep learning based noise-reduction algorithm for mobile 

hearing technology. 

 

II. METHOD 

 A. Subjects 

 Two groups of listeners participated.  The HI group consisted of 12 listeners, 

representing typical hearing aid users with bilateral sensorineural hearing loss.  All were 

binaural hearing aid users, and seven were female.  These HI listeners were recruited 

from The Ohio State University Speech-Language-Hearing Clinic and ranged in age from 

20 to 85 years (mean = 57).  Pure-tone audiometry (ANSI, 2004, 2010) was used to 

verify hearing losses on day of test.  In accord with our desire to recruit representative 

audiology patients, the degree of hearing loss varied across frequencies and listeners, who 

generally had sloping hearing losses that ranged in degree from mild to profound.  Pure-

tone average audiometric thresholds (PTAs; means across thresholds at 500, 1000, and 

2000 Hz across ears) ranged from 27 to 76 dB hearing level (HL) with a mean of 56 dB 

HL.  Three of the listeners had audiometric thresholds within normal limits (20 dB HL or 

lower) for at least one frequency in at least one ear (see dashed horizontal line in Fig. 1), 

but otherwise all thresholds were elevated in both ears for all audiometric frequencies.  
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Figure 2.1 displays audiograms for each of these listeners, who are numbered from HI1 to 

HI12 in order of ascending PTA. 

 

 
Figure 2.1. Pure-tone air-conduction audiograms for the HI listeners.  Circles represent right ears and ×’s represent left ears.  The 
horizontal dotted line in each panel represents the NH limit of 20 dB HL.  Listener ages and sexes are also listed. 

 

 The NH group consisted of 12 listeners (all female) with pure-tone audiometric 

thresholds of 20 dB HL or lower at octave frequencies from 250 to 8000 Hz on day of 

test (ANSI, 2004; 2010).  The exception was NH10, whose threshold at 8,000 Hz in the 

right ear was 25 dB HL.  Recruited from undergraduate courses at The Ohio State 

University, they ranged in age from 19 to 26 years (mean = 21) and represented young 
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listeners with “ideal” hearing abilities.  All participants (HI and NH) were native speakers 

of American English having no previous exposure to the test sentences used in the current 

study, and all received either extra course credit or a monetary incentive for participating.  

 

 B. Stimuli 

 Target sentences were drawn from the standard recordings of the Hearing in 

Noise Test (HINT; Nilsson et al., 1994) and were all produced by the same male talker in 

general American English.  Speech-shaped noise (SSN) and multi-talker babble were 

used as background noises.  The babble was a standard recording from auditec 

(http://www.auditec.com).  HI listeners were tested at -2 and -5 dB signal-to-noise ratio 

(SNR) in SSN and at 0 and -2 dB SNR in babble.  The NH listeners were tested at -2 and 

-5 dB SNR in both SSN and babble.  Stimuli were presented as unprocessed noisy 

sentences and as algorithm-processed (enhanced) versions of noisy sentences.  

 The algorithm was trained using speech materials from the Librispeech corpus 

(Panayotov et al., 1992).  Librispeech is a corpus of approximately 1,000 hours of speech 

from more than 2,000 speakers.  It is primarily used for research on large-vocabulary 

continuous speech recognition systems.  The data in Librispeech are derived from the 

LibriVox project (Kearns, 2014), which contains audiobook recordings created using 

volunteers from across the globe.  Pandey and Wang (2020a, 2020b) found Librispeech 

to be a highly effective corpus for training corpus-independent speech enhancement 

algorithms.  Since Librispeech is recorded by thousands of volunteers in diverse 

environments, recording conditions vary considerably within the dataset, which is a key 

http://www.auditec.com/
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to avoiding overfitting on corpus specific characteristics, such as recording microphones 

and room acoustics.   

 The training noises consisted of 10,000 nonspeech sounds from a sound-effect 

library (Richmond Hill, ON, Canada3).  Pairs of clean and noisy speech were created 

during training by randomly selecting an utterance, a noise segment, and an SNR from {-

5, -4, -3, -2, -1, 0} dB.  A set of 150 validation mixtures was generated using utterances 

from 6 speakers in the Wall Street Journal Corpus (WSJ0; Paul and Baker, 1992) and a 

factory noise from the NOISEX dataset (Varga and Steeneken, 1993).  

 

 C.  Algorithm description 

 Given a speech signal 𝒔𝒔 and a noise signal 𝒏𝒏 with 𝑁𝑁 samples, a noisy speech signal 

𝒚𝒚 is modeled as 

 𝒚𝒚 = 𝒔𝒔 + 𝒏𝒏 (1) 

 
, where {𝑦𝑦, 𝑠𝑠,𝑛𝑛} ∈ ℝ1×𝑁𝑁.  A speech enhancement algorithm is concerned with improving 

the intelligibility and quality of noisy speech 𝒚𝒚 by obtaining a good estimate of 𝒔𝒔 (i.e., 𝒔𝒔�) 

from 𝒚𝒚.  The current model was a time-domain algorithm.  For such an algorithm, the 

input feature is the time-domain signal 𝒚𝒚 instead of a time-frequency representation, such 

as STFT, and the estimated output is the time-domain signal 𝒔𝒔�.  This approach alleviates 

the need to perform fast Fourier transformations then the inverse transforms to return to 

the time domain. 

In the current algorithm, an attentive recurrent network (ARN) was employed for 

mapping a noisy waveform to an enhanced waveform (Pandey and Wang, 2022).  The 
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ARN accepts speech-plus-noise input and so is a monaural (single-microphone) system.  

The algorithm is made causal by restricting the use of time-frame information to the 

current and past frames.  A block diagram of the ARN for time-domain speech 

enhancement is shown in Fig. 2.2.  
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Figure 2.2. The employed ARN for time-domain speech enhancement. 
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The current algorithm represents a major advance relative to the initial study on 

intelligibility improvements of noisy sentences for HI listeners (Healy et al., 2013).  First, 

and as mentioned in Sec. I, the model of Healy et al. (2013) was speaker and noise 

dependent, in which the training utterances were a subset of the test HINT sentences, and 

training and test noises were selected from the same 10-s segment of noise.  In contrast, 

the current model is corpus, speaker and noise independent.  The Librispeech training 

utterances are very different from the HINT test sentences and the 10,000 noises used for 

training also differ from those used for testing.  It is noted that developing a corpus-

independent DNN in low SNR conditions has been found to be particularly challenging 

due to the recently revealed cross-corpus generalization issue in DNNs (Pandey and 

Wang, 2020a).  

Second, the current algorithm represents a large improvement in terms of speech 

enhancement problem formulation.  In the initial study, speech enhancement was 

formulated as magnitude-only enhancement and trained subband DNNs were used to 

estimate the ideal binary mask (IBM).  The goal of the algorithm was to obtain an 

accurate estimate of the IBM and not the clean speech.  This formulation requires the use 

of noisy phase for reconstruction but also leads to limited magnitude enhancement.  The 

current study formulates speech enhancement in the time domain, where the goal is to 

directly estimate the enhanced waveform from the noisy waveform, and as a result, the 

magnitude and the phase are jointly enhanced.  In the case of ideal estimation, a time-
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domain algorithm will output the clean speech, whereas the IBM will output intelligible 

speech but with variable quality.  Moreover, a time-domain algorithm does not require 

feature extraction at the input or waveform reconstruction at the output.  Healy et al. 

(2013) used a set of complementary features (from Wang et al., 2013) at the input and 

performed waveform reconstruction at the output using gammatone filterbanks.  

Finally, the current algorithm represents an advance in terms of model 

architecture.  It employs modern DNN building blocks suitable for efficient sequential 

processing with contextual information, such as long short-term memory (LSTM; 

Hochreiter and Schmidhuber, 1997) and self-attention (Vaswani et al., 2017).  In 

contrast, the initial study employed multilayer perceptrons with pretraining based on 

restricted Boltzmann machines (see Wang and Wang, 2013).   

In the ARN currently employed for speech enhancement, a noisy input 𝒚𝒚 is first 

segmented into overlapping frames using a frame size of 𝐿𝐿 samples and a frame shift of 

𝐻𝐻 samples to get 𝒀𝒀 ∈ ℝ𝑇𝑇×𝐿𝐿 , where 𝑇𝑇 is the number of frames.  Next, all the frames are 

projected to a higher dimension of size 𝐷𝐷 using a linear encoder.  The output from the 

encoder is processed using a stack of four ARNs.  The output from the final ARN is 

projected back to the original frame size of 𝐿𝐿 using a linear decoder at the output.  

Finally, overlap-and-add is applied to the sequence of enhanced frames to obtain the 

enhanced waveform.  

The building blocks of the ARN are shown in Fig. 2.3.  The ARN is composed of 

a recurrent neural network (RNN) block, an attention block, and a feedforward block.  

The input to the RNN block is first normalized using a layer normalization (Ba et al., 
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2016) and then processed using an LSTM RNN.  Layer normalization is used for faster 

training convergence and improved generalization.  LSTM is used to model the temporal 

dependency between the sequence of frames in a causal fashion.  The input and the 

output of the RNN block are of size 𝑇𝑇 × 𝐷𝐷.  

 

 
Figure 2.3. The building blocks of the ARN.  It comprises an RNN block, an attention block, and a feedforward block.  Layer Norm 
denotes layer normalization and ⨁ is the elementwise addition operator. 

 

The RNN block is followed by the attention block.  The input to the attention 

block is normalized using two separate layer normalizations having different scale and 

bias parameters.  The first output is used as query (𝑸𝑸), and the second output is used as 

key (𝑲𝑲) and value (𝑽𝑽) for a following self-attention mechanism, where {𝑸𝑸,𝑲𝑲,𝑽𝑽} ∈

ℝ𝑇𝑇×𝐷𝐷.  

A schematic of the self-attention mechanism is shown in Fig. 2.4.  It involves 

three trainable vectors {𝒒𝒒,𝒌𝒌,𝒗𝒗} ∈  ℝ1×𝐷𝐷.  The rows in 𝑸𝑸,𝑲𝑲, and 𝑽𝑽 are refined using the 

following gating mechanism. 

 
 𝑲𝑲′ = 𝑲𝑲⊙𝜎𝜎(𝒌𝒌) (2) 

 𝑸𝑸′ = Lin(𝑸𝑸) ⊙𝜎𝜎(𝒒𝒒) (3) 

 𝑽𝑽′ = 𝑽𝑽⊙ �𝜎𝜎(Lin(𝒗𝒗)�⊙ Tanh(Lin(𝒗𝒗))] (4) 
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, where 𝜎𝜎 is the sigmoidal nonlinearity, Lin is a linear layer and ⊙ is elementwise 

multiplication.  Before the elementwise multiplication, vectors 𝒒𝒒, 𝒌𝒌, and 𝒗𝒗 are 

broadcasted to match with the shape of matrices 𝑸𝑸, 𝑲𝑲, and 𝑽𝑽 respectively.  Given that 𝒗𝒗 

is a fixed vector, 𝜎𝜎(Lin(𝒗𝒗)) ⊚ Tanh(Lin(𝒗𝒗)) is also a fixed vector.  This operation is 

only required at training time for optimization of 𝒗𝒗 (Merity, 2019).  A precomputed 

constant vector from the best model after training is used during evaluation.   

 

 
Figure 2.4. The self-attention mechanism inside the attention block.  The inputs to self-attention are Q,K and V, and the final output is 
A.  Vectors q,k, v and parameters of linear projections are trainable. 
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The final output of the attention block, 𝑨𝑨 ∈ ℝ𝑇𝑇×𝐷𝐷, is computed using the 

following set of equations.  

 𝑊𝑊 =
𝑸𝑸′𝑲𝑲′𝕋𝕋

√𝐷𝐷
 (5) 

 𝑾𝑾′ = Mask(𝑾𝑾) (6) 

 𝑊𝑊′(𝑖𝑖, 𝑗𝑗) =  � 𝑊𝑊(𝑖𝑖, 𝑗𝑗),     if 𝑖𝑖 ≤ 𝑗𝑗
−∞ ,       otherwise (7) 

 𝑷𝑷 = Softmax(𝑾𝑾′) (8) 

 Softmax(𝑊𝑊)(𝑖𝑖, 𝑗𝑗) =  
𝑒𝑒𝑊𝑊(𝑖𝑖,𝑗𝑗)

∑ 𝑒𝑒𝑊𝑊(𝑖𝑖,𝑗𝑗)𝑇𝑇
𝑗𝑗=1

 (9) 

 𝑨𝑨 = 𝑷𝑷𝑽𝑽′ (10) 

 

, where 𝕋𝕋 is the transpose operator.  

First, correlation scores between pairs of rows in 𝑸𝑸′and 𝑲𝑲′, {𝑸𝑸𝒊𝒊
′,𝑲𝑲𝒋𝒋

′}, where 𝑖𝑖, 𝑗𝑗 ∈

{1,⋯𝑇𝑇}, are computed using Eq. (5).  Next, correlation scores of future frames are 

masked or ignored by using a mask operator defined in Eq. (7), which sets the correlation 

scores of future frames to −∞.  Then, the softmax operator in Eq. (9) is applied to 

convert correlation scores to probability values 𝑷𝑷 ∈ ℝ𝑇𝑇×𝐷𝐷.  The softmax operator uses 

exponential followed by summation in the denominator.  The exponential converts a −∞ 

(from mask) to 0, and hence, the contribution of future frames in the total sum of 

denominator becomes zero, which makes the algorithm fully causal.  Finally, the 

attention output, 𝑨𝑨 ∈ ℝ𝑇𝑇×𝐷𝐷, is computed using Eq. (10).  The final output from the 
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attention block is obtained by adding 𝑨𝑨 to 𝑸𝑸, which provides a residual connection for 

improved gradient flow during training (He et al., 2016).  

The output from the attention block is processed using a feedforward block.  The 

feedforward block provides additional representation power to the preceding attention 

block (Vashwani et al., 2017).  The input to the feedforward block is normalized using 

two separate layer normalizations.  The first normalized input is processed using a fully 

connected block shown in Fig. 2.5.  In the fully connected block, a linear layer is first 

used to project its input of size 𝐷𝐷 to a higher dimension of size 4𝐷𝐷, which is followed by 

Gaussian error linear unit (GELU) nonlinearity (Hendrycks and Gympel, 2016) and 

dropout.  The output of size 4𝐷𝐷 is then collapsed to size 𝐷𝐷 by splitting it into 4 different 

vectors and adding them together.  Finally, the collapsed output is added to the second 

normalized input to get the final output of the feedforward block. 
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Figure 2.5. The fully connected block inside the feedforward ARN block. 

 

All stimuli were resampled to 16 kHz for processing.  Prior to mixing, the target 

(clean) speech was scaled to achieve the desired SNR.  Next, the input to the network was 

RMS normalized.  A frame size of 20 ms (L = 320) and a frame shift of 2 ms (H = 32) 

was used.  The use of a smaller frame shift was inspired by earlier studies on corpus-

independent speech enhancement (Pandey and Wang, 2020a; Pandey and Wang, 2020b), 

where a smaller frame shift led to improved generalization on untrained corpora.  The 

RNN block used LSTM with hidden size of 1024.  The parameter 𝐷𝐷 was set to 1024.  A 

dropout of 5% was used in the fully connected block.  
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The ARN was trained for 100 epochs with a batch size of 32 utterances.  The 

pairs of clean and noisy utterances were dynamically generated during training by adding 

random segments of speech to random segments of noise.  All the utterances within a 

batch were either truncated or padded with zeros to have length of 4 seconds.  

The Adam optimizer was used for training (Kingma and Ba, 2014).  The learning 

rate was set to 0.0002 for the first 33 epochs after which it is exponentially decayed every 

epoch using a scale that resulted in a learning rate of 0.00002 in the final epoch.  All the 

models were developed in PyTorch.  Mixed precision training was used to increase 

efficiency (Micikevicius et al., 2017).  The ARN was trained using two Nvidia V100 

32GB GPUs, with each batch distributed over two GPUs using PyTorch’s DataParallel 

module.  

Figure 2.6 displays waveforms and spectrograms for clean, noisy, and algorithm-

processed versions of a HINT sentence used in the present study. 

 
Figure 2.6. Enhancement of a HINT utterance corrupted by speech-shaped noise at -5 dB SNR using the employed ARN. 
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D. Procedure 

There were eight conditions for each listener (two processing conditions × two 

noise types × two SNRs).  Each listener heard 160 sentences, blocked by condition, with 

20 sentences in each block.  Within each combination of noise type and SNR, 

unprocessed and processed conditions were presented juxtaposed.  The presentation order 

of the four noise type-SNR combinations was randomized for each listener, as was the 

order of the two processing conditions within each noise type-SNR block.  The sentence 

materials were presented to each listener in a fixed order to ensure a random 

correspondence between sentences and conditions. No sentence was used more than once 

for any listener.  

The stimuli were played back from a Windows PC using an RME Fireface UCX 

digital-to-analog converter (Haimhausen, Germany), through a Mackie 1202-VLZ mixer 

(Woodinville, WA), and presented diotically using Sennheiser HD 280 Pro headphones 

(Wedemark, Germany).  The overall RMS level of each stimulus was set to 65 dBA in 

each ear using a sound-level meter and flat-plate coupler (Larson Davis models 824 and 

AEC 101, Depew, NY).  For the HI listeners, additional frequency-specific gains were 

applied to compensate for the hearing loss of each individual listener using the NAL-RP 

hearing-aid fitting formula (Byrne et al., 1990).  This formula does not prescribe gains at 

125 or 8000 Hz, and so the gains applied to 250 and 6000 Hz (respectively) were also 

applied to these two most extreme standard audiometric frequencies.  These gains were 

implemented using a RANE DEQ 60 L digital equalizer (Mukilteo, WA), as described in 

Healy et al. (2015).  Accordingly, these listeners were tested without their hearing aids. 
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Twenty-five practice stimuli were presented to each listener prior to formal 

testing, consisting of five stimuli in each of the following five conditions: (1) sentences in 

quiet, (2) processed sentences in babble at the higher of the two SNRs for each listener 

group, (3) processed sentences in SSN at the lower SNR for each listener group, (4) 

unprocessed sentences in babble at the higher SNR, and (5) unprocessed sentences in 

SSN at the lower SNR.  During this familiarization, listeners were instructed to repeat 

back each sentence as best they could, and guess if unsure of the content of the sentence.  

Hearing-impaired listeners were also asked to report about the loudness of the signals.  

All but two of the HI listeners reported that the stimuli sounded audible and comfortable.  

HI10 reported that they sounded comfortable after reducing the presentation level by 5 

dB.  HI12 reported that the stimuli sounded comfortable and audible after a 10-dB 

reduction in presentation level.  The final presentation level for the HI listeners ranged 

from 81.0 to 98.6 dBA (mean = 91.2 dBA). 

Listeners then heard the 160 test stimuli while seated in a double-walled sound 

booth.  They were again instructed to repeat back each sentence to their best ability, 

guessing if unsure.  The experimenter controlled the presentation of each stimulus and 

scored words correctly reported.  For a word to be scored as correct, it had to be repeated 

exactly apart from verb tense (is/was, are/were, and has/had) and article (a/the) 

variations.  Each of the 20 target sentences presented in each condition each contained 

between three and seven words, for a total of 103 to 110 words in each condition.  

Sentence recognition was expressed as the percentage of words correctly reported, and 
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these percent-correct scores were transformed to rationalized arcsine units (RAUs; 

Studebaker, 1985) prior to statistical analysis. 

 

III. RESULTS AND DISCUSSION 

A. HI listeners 

Figures 2.7 and 2.8 display intelligibility scores for each individual HI listener in 

each condition.  Results for the SSN conditions are displayed in Fig. 2.7, and those for 

the babble conditions are displayed in Fig. 2.8.  Each panel corresponds to a different 

SNR, which is indicated.  The black and shaded/hatched columns represent scores before 

and after algorithm processing, respectively.  The absence of a black column for HI12 in 

SSN at -5 dB SNR reflects that she was unable to correctly report any words in that 

unprocessed condition.  The algorithm benefit for each listener in each condition 

corresponds to the difference in height between a shaded/hatched column and the black 

column immediately to the left of it.  
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Figure 2.7. Sentence intelligibility scores for individual HI listeners.  Black columns represent unprocessed speech-in-noise conditions 
and shaded/hatched columns represent these same conditions following algorithm processing.  Algorithm benefit is then represented 
as the difference between a shaded/hatched column and the solid column directly to its left.  The background noise type and SNR are 
indicated.   
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Figure 2.8. As Fig. 2.7, but for individual HI listeners and speech in multitalker babble. 

 

Apparent from Fig. 2.7 is that the algorithm benefitted all HI listeners at both 

SNRs in SSN.  At least half of the HI listeners received benefit exceeding 45 and 50 

percentage points for the SNRs of -5 and -2 dB, respectively.  Algorithm benefit in SSN 

exceeded 30 percentage points in 21 out of the 24 cases (12 HI listeners × 2 SNRs).  

Apparent from Fig. 2.8 is that all HI listeners also received benefit at both SNRs in 
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babble, with at least half of them receiving benefit exceeding 50 percentage points at both 

SNRs.  The benefit in babble exceeded 30 percentage points in 23 of the 24 cases.  

Planned comparisons consisting of four two-tailed paired t-tests on RAUs 

revealed significant algorithm benefit for HI listeners at each of the SNRs tested in both 

noise types [each t(11) ≥7.9, each two-tailed p value < 0.0001].  These significant results 

survive Bonferroni correction. 

 

B. NH listeners 

Figures 2.9 and 2.10 display intelligibility for the individual NH listeners.  Results 

for the SSN conditions are displayed in Fig. 2.9, and those for the babble conditions are 

displayed in Fig. 2.10.  Note that the NH listeners were tested at the same SNRs as the HI 

listeners in SSN, but overlapped at only one SNR in babble.  As anticipated, the 

performance of the NH listeners exceeded that of the HI listeners in unprocessed 

conditions.  The mean NH scores for unprocessed stimuli were 64% and 86% correct for 

the two SSN SNRs (-5 and -2 dB) and 57% and 82% correct for the two babble SNRs 

(also -5 and -2 dB).  Accordingly, algorithm benefit was considerably smaller for the NH 

than for the HI listeners.  But some benefit was observed in 20 of the 24 cases for SSN 

and in all 24 of the cases for babble.  Planned comparisons consisting of two-tailed paired 

t-tests on RAUs between unprocessed and processed scores for the NH listeners in each 

of the four conditions of Figs. 2.9 and 2.10 revealed significant benefit [each t(11) ≥ 3.9, 

each two-tailed p value < 0.01].  This set of significant results also survives Bonferroni 

correction. 
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Figure 2.9. As Fig. 2.7, but for individual NH listeners and speech in SSN. 
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Figure 2.10. As Fig. 2.7, but for individual NH listeners and speech in multitalker babble. 

 
 

C. Comparison between HI and NH listeners 

Figure 2.11 displays group-mean sentence intelligibility scores and standard 

errors of the mean (SEMs) for both HI and NH listeners, plotted separately, in each 

condition.  Again, SNRs are plotted in separate panels, black columns represent 

unprocessed scores, and shaded/hatched represent processed scores.  The group-mean 
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algorithm benefit for the HI listeners was 46 and 48 percentage points for SSN at -5 and -

2 dB SNR, respectively, and 58 and 53 percentage points for babble at -2 and 0 dB SNR, 

respectively.  When benefit was expressed in RAUs to control for ceiling and floor 

effects, these values increased slightly to become 50 units for both SSN SNRs, and 60 

and 57 units in babble.  The figure also shows that the manipulation of SNR yielded the 

desired baseline (unprocessed) scores for the HI listeners.  The mean baseline 

intelligibilities were 13% and 36% correct for SSN and 24% to 37% correct for babble.  

For the NH listeners, group-mean benefit values were 16 and 8 percentage points at -5 

and -2 dB SNR, respectively, in SSN, and 18 and 13 percentage points at these SNRs in 

babble.  
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Figure 2.11. Group mean (and standard error) sentence intelligibility for the HI and NH listener groups.  The background noise type 
and SNR are indicated, and the HI and NH groups are plotted separately.  As in Figs. 2.7 – 2.10, benefit is reflected as the difference 
between a shaded/hatched column and the black column immediately to its left. 

 

To address the question of whether the algorithm can restore NH speech-in-noise 

recognition abilities to these HI listeners, the performance of the HI listeners following 

algorithm processing was compared to the performance of young NH listeners without 

processing, in the conditions common to both groups.  As Fig. 2.11 shows, the HI 

listeners approached within 1 percentage point of the NH listeners’ performance in one 

condition (babble at -2 dB SNR) and within 5 percentage points in the remaining two 

conditions (SSN at -5 and -2 dB SNR).  Three planned comparisons (two-tailed Welch’s 

independent-samples t-tests on RAUs) between the algorithm-processed scores for the HI 

listeners and the unprocessed scores for the NH listeners in the three common conditions 
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indicated that differences were not significant [each t ≤ 1.1, each p > 0.3, dfs adjusted 

using the Welch-Satterthwaite method ranged 17 - 22].   

 

D. Comparison to Healy et al., 2013 

To examine the human-subjects performance differences associated with 

upgrading to the current modern network architecture while substantially increasing the 

demands placed on the algorithm, the present results were compared with those of Healy 

et al. (2013).  The present study was identical to Healy et al. (2013) in terms of the 

speech recordings used, the noise types and (most) SNRs employed, as well as the 

populations from which subjects were drawn, the numbers of subjects, the testing 

procedures, and the inclusion criteria for each listener group.  The particular noises 

differed but were of the same type (SSN and babble).  The primary difference across 

studies was the algorithm used for processing and the demands that had to be met.   

In 2013, the algorithm was both trained and tested using the same talker and 10-s 

noise segments and it operated on future time frames, meaning it was neither talker, 

noise, nor corpus independent, nor was it causal.  The present algorithm was required to 

generalize to an untrained talker from an untrained corpus and to untrained noise types as 

well as be fully causal.  Figures 2.12 and 2.13 display group-mean sentence intelligibility 

scores and SEMs for HI and NH listeners in the conditions common to both studies, with 

SSN in the upper panels and babble in the lower panels of each figure.  Pairs of columns 

labeled “2022” represent the current results and are replotted from Fig. 2.11, whereas 

pairs of columns labeled “2013” are from Healy et al. (2013).  As with the previous 
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figures, benefit is represented as the difference between each unprocessed (solid column) 

and the corresponding processed score (hatched column).  It is noted that baseline 

(unprocessed) scores differed across studies, likely attributable to the different samples of 

listeners employed and the use of different noises of the same type (different SSNs and 

different babbles).   
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Figure 2.12. Comparison between the current study (2022) and the initial study (Healy et al., 2013).  Shown are sentence intelligibility 
scores (and standard errors) for HI listeners, in two noise types, at different SNRs, both before and after algorithm processing. The 
comparison is between benefit obtained currently versus that obtained in 2013.  Benefit is reflected as the height difference between 
each shaded/hatched column and the adjacent black column.  The speech recordings, noise types, SNRs, testing procedures, and 
subject populations were identical across studies.  The primary difference was the demand placed on the algorithm and the network 
architecture.   
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Figure 2.13. As Fig. 2.12, but for the NH listeners. 

 

Figure 2.12 displays scores for the HI listeners.  In SSN at -5 dB SNR (top left 

panel of Fig. 2.12), the group-mean algorithm benefit was similar across studies at 

approximately 46 percentage points, with only slightly higher benefit in the current study.  

However, group-mean algorithm benefit was considerably higher currently relative to 
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2013 (48 vs. 24 percentage points) at -2 dB SSN (top right panel of Fig. 2.12).  For HI 

listeners in babble, mean benefit was slightly higher in the current study compared to 

2013 at both -2 dB SNR (58 vs. 55 percentage points, bottom left panel of Fig. 2.12) and 

0 dB SNR (53 vs. 50 percentage points, bottom right panel of Fig. 2.12).  

Figure 2.13 displays scores for the NH listeners.  In SSN, the SNR common 

across studies was -5 dB.  In this condition, group-mean benefit was slightly lower in the 

current study compared to 2013 (16 vs. 17 percentage points, top panel of Fig. 2.13).  

Normal-hearing benefit was more noticeably lower for the current study than for 2013 in 

babble at -5 dB SNR (18 vs. 35 percentage points, bottom left panel of Fig. 2.13) and at -

2 dB SNR (13 vs. 21 percentage points, bottom right panel of Fig. 2.13). 

Planned comparisons consisting of two-tailed Welch’s t-tests on RAUs were used 

to assess differences in group-mean algorithm benefit between the two studies.  For HI 

subjects, mean benefit was numerically higher for the present (2022) algorithm in all 4 

conditions, despite the far greater demands placed on it, but this difference was only 

significant in SSN at -2 dB [t(18.6) = 3.1, p < 0.01].   

For NH subjects, there was no significant difference in benefit between the 2022 

vs. 2013 algorithms in two out of the three conditions common to both studies (SSN at -5 

dB SNR and babble at -2 dB SNR).  In babble at -5 dB SNR, benefit was significantly 

higher for the 2013 algorithm [t(20.1) = 3.68, p = 0.0015].   

 

 E.  Objective measures of intelligibility and sound quality 
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 Table I displays objective measures obtained from acoustic analyses of the current 

stimuli.  Scores for both noisy mixtures and processed mixtures are provided.  Short-time 

objective intelligibility (STOI, Taal et al., 2011), represents a correlation between the 

amplitude envelope of the clean speech and that of the same speech once extracted from 

the mixture.  Extended short-time objective intelligibility (ESTOI; Jensen and Taal, 

2016), is similar and designed to better handle fluctuating noisy signals.  Perceptual 

evaluation of speech quality (PESQ; Rix et al., 2001) is an objective measure of sound 

quality and ranges from -0.5 to 4.5.  Finally, the scale invariant signal-to-noise ratio (SI-

SNR, Le Roux et al., 2018) is an SNR estimate of the noisy and processed signals.  STOI 

increased from noisy to ARN processed by 20 points, when averaged across conditions.  

ESTOI increased by an average of 32 points.  PESQ increased by an average of 0.8, and 

SI-SNR increased by an average of 10 dB.   

 

 
Table 2.1. Improvement in objective scores for sentences in two noises in different SNR conditions. 

  STOI (%) ESTOI (%) PESQ SI-SNR (dB) 
  Noisy ARN Noisy ARN Noisy ARN Noisy ARN 

Babble 
-2 dB 62.6 84.9 38.4 72.6 1.47 2.37 -2.0 8.1 

0 dB 68.4 88.4 45.5 78.1 1.59 2.56 0.0 9.6 

SSN 
-5 dB 59.0 77.9 32.7 62.9 1.37 2.01 -5.0 6.2 

-2 dB 67.2 85.3 43.0 73.4 1.54 2.33 -2.0 8.7 

 

 

IV. GENERAL DISCUSSION 
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 The current results demonstrate that state-of-the-art deep learning noise reduction 

can produce large intelligibility improvements for HI and NH listeners, despite the 

considerable demands associated with extensive generalization and fully causal 

operation.  Intelligibility benefit resulting from processing averaged 46 to 58 percentage 

points across conditions for the HI listeners.  Benefit was lower for NH listeners (8 to 18 

points), who typically experience less benefit.  These benefits were statistically 

significant in all conditions.   

 The other goal of the current study was to compare the ability of the current 

algorithm to improve intelligibility relative to performance of the initial demonstration 

(Healy et al., 2013).  This comparison provides a cumulative assessment of algorithm 

performance, or possible performance loss, resulting from the removal over time of 

various real-world constraints including talker, corpus, and noise dependence, as well as 

from causal operation.  For HI listeners, it was found that the benefit observed currently 

matched or exceeded that observed in the initial study, but only significantly exceeded in 

one condition.  For NH listeners, benefit was lower currently than in the initial study, but 

only significantly so in one condition.   

 It is concluded that modern deep learning based noise reduction can produce large 

intelligibility benefit for HI listeners (and also some benefit for NH listeners), despite the 

removal of multiple constraints and the resultant demanding test conditions.  No 

decrement in benefit was observed for the HI listeners (but some decrement was observed 

for the NH listeners) resulting from the current algorithm relative to the initial 
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demonstration, thus illustrating the advancements made to neural network design and 

deep learning based noise reduction since 2013.   

 It was noted that baseline intelligibility in unprocessed conditions differed 

somewhat across the current study and the initial demonstration (see Figs. 2.12 and 2.13).  

However, all scores are free of strong floor and ceiling effects, and so they largely fall in 

the linear portion of the psychometric function relating intelligibility to information 

content.  This allows benefit (differences across two points on this largely linear function) 

to be compared with reasonable confidence.  Nevertheless, the comparison of exact 

benefit values across studies should not be emphasized. 

 Finally, it is noted that the current network remains large in size.  Although 

computational complexity and the demand that a neural network places on the device on 

which it runs is not a fundamental aspect of viability, it is nonetheless an important 

consideration.  Fortunately, the emerging field of model compression provides techniques 

that can be used to reduce the size of the model while retaining high performance.   
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Notes 

 

1.  “Noise reduction” is used as an umbrella term to describe the isolation of target 

speech from various types of interference including background non-speech noise, speech 

babble, interfering speech from a single talker, room reverberation, and concurrent 

interferences involving more than one such interference.  More specific terms for these 

processes include speech enhancement, speaker separation, and de-reverberation.  “Single 

microphone” refers to conditions in which target speech and noise are received by the 

same single microphone and represents one of the most challenging but broadly 

applicable noise-reduction techniques.   

 

2.  Although there might be some value in having an algorithm operate optimally on the 

voice of a frequent communication partner (e.g., Tye-Murray et al., 2016).   

 

3.  See www.sound-ideas.com (Last viewed 5/21/2021).  
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Abstract 

 

Speech often occurs in the presence of other sounds. The speech is usually regarded as 

the “signal,” but this is not always the case. At times, environmental sounds may be the 

signal of interest and speech may the “masker,” or both may simultaneously be of 

interest. Two experiments were carried out to determine the optimal speech-to-

background ratio for jointly maximizing both speech intelligibility and environmental 

sound recognition. Normal-hearing (NH) and hearing-impaired (HI) listeners were tested 

in conditions of divided and/or selective attention. It was found that both NH and HI 

listeners are capable of high speech intelligibility and high environmental sound 

recognition over a range of speech-to-background ratios. The range and location of 

optimal speech-to-background ratios differed across NH and HI listeners. The optimal 

speech-to-background ratio also depended on the type of environmental sound present. 

These results have the potential to guide future noise-reduction designs that allow the 

listener access to highly intelligible speech without depriving them of a rich acoustic 

environment and access to potentially important environmental sounds.   

 

  



61 
 

I.  INTRODUCTION 

 Listening often occurs in the presence of multiple sound sources. Under these 

conditions, the acoustic wave that arrives at each ear is a mixture of sounds. When 

sounds originate from different directions relative to the listener’s head, binaural cues can 

aid in perceptually segregating a signal of interest from the other sound(s) in the auditory 

scene (Bregman, 1990). However, in what may be described as a “worst-case scenario” 

where sounds arrive from the same direction, the listener must rely primarily on monaural 

cues to segregate sounds from one another. For humans, the speech of a target talker is 

often a signal of interest. Because other sounds can reduce speech intelligibility via 

masking, they are traditionally considered to be the “noise,” “interference,” “masker,” or 

“background.”  

 An extensive body of research has examined speech intelligibility in the presence 

of a wide variety of masker types, including sine waves, square waves, and repetitive 

pulses (Stevens et al., 1946); warbling tones, music, bandpass filtered noise, amplitude-

modulated noise, frequency-modulated noise, peak-clipped noise, gated noise, and one or 

more competing talkers (Miller, 1947); white noise (Hawkins and Stevens, 1950; 

Fletcher, 1953); complex tones (Licklider and Guttman, 1957); speech-shaped noise 

(Busch and Eldredge, 1967); speech-modulated speech-shaped noise (Brungart, 2001); 

spectro-temporally modulated noise (Howard‐Jones and Rosen, 1993; Fogerty et al, 

2018); environmental sounds such as naval ship noises (Klumpp and Webster, 1963) and 

aircraft noise (Kryter and Williams, 1966); and complex soundscapes such as cafeteria 

noise (Cooper and Cutts, 1971) and traffic noise (Aniansson, 1978). Generally, speech 
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intelligibility for listeners with normal hearing (NH) is unaffected by broadband noise as 

long as the signal-to-noise ratio (SNR) is at least 6 dB, and performance can remain 

above chance even when the SNR is as low as -18 dB (Licklider and Miller, 1951). The 

effect of noise on speech intelligibility for hearing-impaired (HI) listeners tends to be 

greater, and the magnitude of this effect largely depends on their degree, type, and 

configuration of hearing loss (Ross et al., 1965). 

 However, the speech of a single target talker may not always be the only signal of 

interest in an acoustic mixture. In many situations, there are other sounds that are also 

relevant to the listener, such as environmental sounds that provide information about 

objects and events around them. Environmental sounds not only contribute to listeners’ 

sense of awareness and well-being (Jenkins, 1985; Ramsdell, 1978; Reed and Delhorne, 

2005) but also warn them of potential dangers in the environment (e.g., approaching 

vehicles, sirens, falling objects). 

 When a relevant environmental sound overlaps with target speech, each is both 

signal and masker because each is of interest to the listener, and each has the potential to 

interfere with the perception of the other. Because of this, the term “speech-to-

background ratio” (SBR) will be used in place of “signal-to-noise ratio” in the present 

study to express the amplitude relationship between speech and a concurrent 

environmental sound.  

 Whereas many studies, including several of those cited above, have examined 

speech intelligibility in the presence of competing noise, few if any have considered 

environmental sound recognition (ESR) in the presence of competing speech. The present 
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study is concerned with both of these aspects of auditory perception and the conditions 

under which both are possible. It is known that speech intelligibility improves toward 

ceiling performance as SBR increases, and it presumed that, inversely, ESR decreases 

toward the performance floor with increasing SBR. There thus exists a trade-off between 

speech intelligibility and ESR as SBR varies. In the context of this trade-off, the present 

study aims to answer the following primary questions: (i) Is it possible to jointly obtain 

high speech intelligibility and high ESR? (ii) What is the optimal average SBR for jointly 

maximizing both speech intelligibility and ESR for NH listeners? (iii) Does this value 

differ for a group of bilateral hearing aid users with HI? (iv) Is there a range of SBRs 

over which speech intelligibility and ESR are both high? (v) Is this range different for 

NH and HI listeners? And (vi) does the optimal SBR value depend on the type of 

background sound? The answers to these questions will further our understanding of 

auditory perception in normal and impaired systems. Moreover, since environmental 

sound recognition is an important priority for adults with hearing loss (Bell, 2005), the 

knowledge gained in this study could inform the design of future hearing devices, with 

the aim of presenting signals at the optimal SBR for providing both high speech 

intelligibility and allowing for high ESR.  

 A secondary research question involves the costs associated with performing two 

tasks simultaneously (divided attention). There are often limitations on listeners’ abilities 

to process all available auditory information in parallel, and divided attention concerns 

the optimal allocation of cognitive resources between different signals by splitting or 

rapidly shifting attentional focus (Parasuraman, 1998). Numerous studies have examined 
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the human performance costs associated with divided attention when both tasks are 

speech recognition (e.g., Humes et al., 2006; Gallun et al., 2007; Fumero et. al, 2022). 

The present study aims to establish whether divided attention results in similar 

performance costs when one of the tasks is ESR, which involves a different set of 

auditory processing mechanisms (Lewis et al., 2004). 

 In Experiment 1, subjects performed speech recognition and ESR concurrently 

(divided attention). In Experiment 2, they performed each task separately (selective 

attention). Both experiments were concerned with listeners’ auditory perception in the 

absence of binaural cues, thus creating a worst-case scenario in terms of cues available to 

separate speech and environmental sound. Psychometric functions for each task in each 

condition were generated to address the research questions listed above.  

 

II. Experiment 1 

 In Experiment 1, speech intelligibility and ESR were assessed in conditions of 

divided attention: Listeners were instructed to attend to both the speech and the 

environmental sound on each trial. This represents a dual-task paradigm that is more 

challenging than the many everyday listening situations where listeners selectively attend 

to only one sound source at a time. It therefore also represents a lower bound for human 

performance for these particular tasks.  

 

A. METHOD 

1. Subjects 
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 Two groups of listeners participated in Experiment 1. The first group was 

composed of 11 adults with NH, defined as pure-tone thresholds at 20 dB HL or lower at 

octave frequencies from 250 to 8000 Hz (ANSI, 2004, 2010). The two exceptions were a 

listener with a threshold of 25 dB HL at 1000 Hz in one ear and another listener with a 

threshold of 30 dB HL at 8000Hz in one ear. The NH subjects were recruited from 

undergraduate courses at The Ohio State University and received course credit for 

participating. Ages ranged from 18 to 20 years (mean = 20), and all were female. Young 

listeners with NH were selected for the current task to represent an upper bound for 

human performance. 

 The second group consisted of 10 HI listeners who were recruited from The Ohio 

State University Speech-Language-Hearing Clinic and selected to represent a diverse 

sample of adults with hearing aids. Accordingly, they were all binaural hearing aid users 

with varying degrees of bilateral sensorineural hearing loss. Hearing status was 

confirmed on day of test using pure-tone audiometry (ANSI, 2004, 2010). Pure-tone-

average thresholds (PTAs), based on audiometric thresholds at 500, 1000, and 2000 Hz 

and averaged across ears, ranged from 13 to 59 dB hearing level (HL) with a mean of 30. 

Eight of the HI listeners had at least one audiometric threshold within normal limits (20 

dB HL or lower) in at least one ear, but all of them had moderate to profound hearing loss 

(thresholds greater than 40 dB HL) at two or more frequencies in both ears, or thresholds 

in the impaired range (greater than 20 dB HL) at half or more of the audiometric 

frequencies in both ears. Hearing-impaired subjects were numbered in order of increasing 

PTA (i.e., higher subject numbers correspond to greater mid-frequency hearing loss). 
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Each audiogram displayed in Fig. 3.1 is labeled with an HI listener’s subject number, age, 

and sex. Ages ranged from 27 to 67 years (mean = 51), with six females and four males. 

HI subjects received a monetary incentive for participating. 

 
Figure 3.1. Pure-tone air-conduction audiometric thresholds for the listeners with hearing impairment. Listeners are numbered in order 
of increasing degree of hearing loss. Right ears are represented by circles and left ears are represented by X’s. The limit of normal 
hearing (20 dB HL) is represented by a dotted horizonal line in each panel. Subject numbers, ages in years, and sexes are also 
provided. 

 
 All participants spoke American English as their native language, and none had 

any previous experience with the sentences used in this study. All participants gave their 

informed written consent to participate in this research, which was approved by the 

Institutional Review Board (IRB) at The Ohio State University.  

 

2. Stimuli 

 Each stimulus consisted of a sentence mixed with an environmental sound. 

Sentences were drawn from the standard recording of the Hearing in Noise Test (Nilsson 

et al., 1994) and were all produced by an adult male native speaker of General American 

English.  
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 Environmental sounds were sourced from the Database of Environmental Sounds 

for Research Activities (Gygi and Shafiro, 2010), the Sound Effects Recognition Test 

(Finitzo-Hieber et al., 1980), a commercial stock media website (Pond5.com), and field 

recordings. The 25 sounds selected for this study were judged to be familiar to the 

general population and sufficiently distinct from each other to minimize confusion 

between sounds. Importantly, the duration of each included sound was at least as long as 

the longest sentence stimulus used in the study. This ensured that sounds were capable of 

masking entire sentences via simultaneous masking. Thus, transients and other short-

duration sounds were not used as environmental sounds. See Figure 3.2 for the 25 

environmental sounds used.  
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Figure 3.2. The graphical user interface that listeners used to record their responses for environmental sounds. The 25 environmental 
sounds are arranged in a 5 x 5 grid in alphabetical order. Pictures are provided to assist in locating the appropriate response button. 

 
 The environmental sound to be mixed with the sentence was chosen randomly for 

each stimulus. Stimuli were mixed at the following 10 SBRs: -36, -30, -8, -4, 4, 20, 32, 

40, 64, and 70 dB. These SBRs were selected based on pilot testing to produce the entire 

range of ceiling to floor scores for both speech intelligibility and ESR, with at least two 

points on the steep portion and two points on the lower asymptote of each psychometric 

function.  

Prior to mixing, silence was trimmed from the beginning and end of each sentence 

and environmental sound so that their onsets would align, thus eliminating any precursor 
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or preceding fringe containing only speech or only background. Next, the length of the 

environmental sound was trimmed to match the length of the sentence, thus aligning their 

offsets and eliminating glimpses containing only the background sound at the end each 

stimulus. The environmental sound was then rescaled to achieve the desired SBR and 

mixed with the sentence. Finally, each mixture was scaled to the same root mean square 

(RMS) amplitude. The sampling rate and bit depth of all stimuli were 44.1 kHz and 16 

bits, respectively. 

 

3. Procedure 

 Each subject heard a total of 250 stimuli in a single session, blocked by the 10 

SBR conditions, with 25 stimuli per condition. The SBRs were presented in a random 

order for each subject, whereas the sentences were presented in the same fixed order for 

each subject. Again, the background sound was chosen randomly, with replacement, on 

each experimental trial. Thus, there were always 25 possible background sounds for each 

trial, and a given sound could be used repeatedly or not at all in a condition. But on 

average across listeners, each environmental sound was presented once per listener per 

SBR. 

 Individual listeners were tested in a double-walled audiometric booth, seated in 

front of a computer monitor and mouse. The experimenter was also seated in the booth, 

approximately six feet from the listener. Listeners were instructed to perform two tasks 

on each trial containing a sentence mixed with an environmental sound: First, repeat the 

sentence out loud; then, click on the labeled picture corresponding to the background 
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sound in the stimulus (Fig. 3.2), guessing on either task if unsure. Listeners were 

instructed to perform the tasks in this order to ensure they fully completed their spoken 

response before the onset of the subsequent stimulus presentation, which occurred 300 

ms after the environmental-sound response. The experiment was thus self-paced. The 

experimenter recorded the number of words correctly reported in each sentence while the 

custom MATLAB application recorded listeners’ responses to the ESR task. Both listener 

and experimenter were blind to the conditions under test. No feedback was provided to 

listeners during formal testing.  

 Stimuli were played back on a Windows PC, converted to analog form using an 

RME Fireface UCX audio interface (Haimhausen, Germany), amplified using a Mackie 

1202-VLZ mixer (Woodinville, WA), and presented diotically over Sennheiser HD 280 

Pro headphones (Wedemark, Germany). Hearing-impaired listeners were tested without 

their hearing aids. The level of each stimulus was set to 65 dBA in each ear for the NH 

subjects and verified using a sound-level meter and flat-plate coupler (Larson Davis 

models 824 and AEC 101, Depew, NH). For the HI listeners, additional individualized 

frequency-specific gains, as prescribed by the NAL-RP formula (Byrne et al., 1990), 

were applied to this 65 dBA presentation level, to compensate for their hearing loss. 

These gains were implemented using a RANE DEQ 60L digital equalizer (Mukilteo, 

WA), as described in Healy et al. (2015). The sound pressure level following NAL-RP 

amplification did not exceed 96 dBA for any participant.   

 Prior to the start of formal testing, each participant completed a three-stage 

familiarization. The first stage involved learning to recognize the 25 background sounds 
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in the absence of any competing speech. Participants heard each of the 25 background 

sounds, presented in a random order, and were instructed to click on the labeled picture 

representing the sound. Feedback was provided for any incorrect responses during the 

first stage of familiarization. This process was repeated until the listener could identify 

each sound without prompting from the experimenter. One potential subject who could 

not perform this task was dismissed from the experiment. This stage was repeated up to 3 

times, with an average across listeners of 2 repetitions required. In the second stage of 

familiarization, listeners heard seven HINT sentences in quiet and repeated each one out 

loud. In the third familiarization stage, listeners heard seven sentences mixed with a 

random background sound at each of the following three SBRs, in this order: 12, -8, and 

40 dB. Listeners were instructed to repeat back as much of each sentence as possible and 

then click on the picture representing the background sound, taking their best guess if 

unsure. The 28 HINT sentences used for familiarization were distinct from the 250 used 

for testing. Following the three familiarization stages, formal testing began, as described 

above. In total, each experimental session lasted approximately one hour. 

 

B. RESULTS 

 Psychometric functions based on the cumulative normal function were fit for each 

task type and listener group using the quickpsy package (Linares and López-Moliner, 

2016) in R 4.1.3 (R Core Team, 2022). In each function, the explanatory variable was 

SBR, and the response variable was either words or environmental sounds correctly 

reported. The lapse rate (i.e., the probability of an incorrect response, independent of 
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stimulus intensity) was calculated as a free parameter. The guess rate was set to 0 for the 

speech intelligibility functions and to 0.04 for the ESR functions, representing chance 

performance for a closed-set task with 25 response alternatives. The range of each 

function was then normalized such that lower and upper asymptotes were mapped to 0 

and 100% correct, in order to account for guessing and lapses and thus facilitate 

comparisons between open-set and closed-set tasks.  

 Figure 3.3 displays normalized psychometric functions for speech intelligibility 

and ESR based on the pooled performance of the 11 NH listeners. Filled circles represent 

normalized percent words correct for the speech-intelligibility task whereas open circles 

represent normalized percent-correct ESR. The solid black line is the fitted psychometric 

function for intelligibility, and the dashed line is the fitted function for ESR. 

 
Figure 3.3. Normalized psychometric functions for speech intelligibility and environmental sound recognition based on the pooled 
performance of 11 normal-hearing listeners. Filled circles denote percent words correct speech intelligibility and open circles 
correspond to percent correct environmental sound recognition. The solid black line is the fitted psychometric function for 
intelligibility, and the dashed line is the fitted function for environmental sound recognition. 
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 The estimated lapse rate for NH speech intelligibility was 0.0005, 95% CI 

[0.00095, 0.0011], indicating that NH listeners accurately performed the speech-

recognition task when conditions were favorable. Their threshold for 50% normalized 

intelligibility was -10.7 dB SBR, 95% CI [-11.0, -10.2], and their threshold for 95% 

normalized intelligibility was 2.8 dB SBR, 95% CI [2.26, 3.32]. 

 The estimated lapse rate for NH ESR was 0.0274, 95% CI [0.0198, 0.0345], 

indicating that maximum unnormalized performance plateaued at approximately 97.6% 

correct. The NH listeners’ normalized threshold for 50% correct ESR was 36.7 dB SBR, 

95% CI [37.7, 35.8]. Their normalized threshold for 95% correct ESR was 22.4 dB SBR, 

95% CI [24.7, 19.4].  

 Thus, the range between NH listeners’ normalized 50% correct thresholds for 

speech intelligibility and ESR was 47.4 dB (-10.7 to 36.7 dB SBR), whereas the range 

between their 95% correct thresholds spanned 19.6 dB (2.8 to 22.4 dB SBR). Since 

performance for both tasks was high (95% correct or greater) for all SBRs within these 

limits, any SBR bounded by 2.81 and 22.4 dB could be regarded as sufficiently optimal 

to essentially maximize both speech intelligibility and ESR. However, a single optimal 

value, based on the data collected in the present study, may be calculated as the point of 

intersection between the two psychometric functions. This value is 12.2 dB SBR, where 

predicted normalized performance for both speech intelligibility and ESR equal 99.7% 

correct.  

 Figure 3.4 displays normalized psychometric functions for the 10 HI listeners who 

participated in this study. As Fig. 3.3, mean SBR for both speech intelligibility and ESR 
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are shown. Filled black circles represent normalized percent words correct, and open 

circles represent normalized percent environmental sounds correct. Again, the solid black 

line is the psychometric function for speech intelligibility, and the dashed line is the fitted 

curve for ESR.  

 
Figure 3.4. As Fig. 3.3, but for the hearing-impaired listeners 

 
 For the HI listeners, the estimated lapse rate for speech recognition was 0.005, 

95% CI [0.0038, 0.0071], indicating that the HI listeners also achieved high performance 

on this task with few lapses under favorable conditions. The HI listeners’ normalized 

50% threshold for speech intelligibility was -6.7 dB SBR, 95% CI [-7.0, -6.3], and their 

normalized 95% threshold was 4.7 dB SBR, 95% CI [3.9, 5.4]. 

 For ESR, the estimated HI lapse rate was 0.018, 95% CI [0.009, 0.028], which 

indicates, perhaps surprisingly, that the HI listeners were less prone to lapses on the ESR 
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task than the NH listeners were. Their normalized 50% and 95% thresholds for ESR were 

24.2 (95% CI [25.5, 23.2]) and 5.8 dB SBR (95% CI [3.5, 8.6]), respectively.  

 The estimated range between normalized 50% thresholds for speech intelligibility 

(-6.7 dB SBR) and ESR (24.2 dB SBR) for these HI listeners was 30.9 dB. There was 

also a narrow 1.1-dB range between which the HI listeners’ normalized thresholds for 

speech intelligibility and ESR were both above 95% correct. This range extended 

between 4.7 and 5.8 dB SBR. For these HI listeners, the optimal SBR for balancing the 

trade-off between speech intelligibility and ESR, when both are considered equally 

important, was calculated to be 5.1 dB, which is the point where the two psychometric 

functions intersect, at 95.6% normalized percent correct. It is further noted that other 

SBRs may be optimal when speech intelligibility is prioritized. For example, at 10 dB 

SBR, normalized speech intelligibility is above 99% correct while normalized ESR 

remains relatively high at 90% correct. 

 Compared to the NH listeners, the HI listeners’ group threshold for 50% speech 

intelligibility was 4 dB higher, and their group threshold for 50% ESR was 12.5 dB lower 

(both poorer). Thus, it appears that the smaller range over which the HI listeners were 

able to recognize both speech and environmental sounds was more driven by an inward 

shift of the ESR function than by an inward shift of the psychometric function for speech 

intelligibility. As a group, HI and NH listeners also differed in terms of their optimal 

SBR for maximizing both intelligibility and ESR. This value was 5.1 dB SBR for the HI 

listeners and 12.2 dB SBR for the NH listeners. Although these particular values differ 
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for NH vs. HI listeners, the optimal values for both listener groups still allows normalized 

speech intelligibility and ESR to both be above 96% correct. 

  

III. EXPERIMENT 2 

 In this experiment, listeners performed the speech recognition and ESR tasks 

separately rather than simultaneously. The primary purpose of this experiment was to 

compare the human performance of these tasks across a wide variety of environmental 

sound types. The secondary purpose was to compare human performance in conditions of 

selective vs. divided attention. 

 

A. METHOD 

1. Subjects 

 A group of 20 young adult listeners with NH participated in Experiment 2. They 

all had pure-tone thresholds of 20 dB HL or better at octave frequencies from 250 to 8000 

Hz (ANSI, 2010), with the exception of one listener with a threshold of 25 dB HL at 250 

Hz in one ear. These NH subjects were also recruited from and received credit in 

undergraduate courses at The Ohio State University. Their ages ranged from 18 to 26 

years (mean = 19), and all were female. Young listeners with NH were selected for 

Experiment 2 because the goal was to establish the basic performance differences 

between divided and selective attention in the current task, without additional possible 

factors associated with aging and/or hearing loss. These listeners were distinct from those 

who participated in Experiment 1, and none of them had any prior exposure to the 
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sentence materials employed in this experiment. Again, and all participants gave 

informed consent to participate, and all procedures were approved by the IRB. 

 

2. Stimuli 

 As in Experiment 1, stimuli for Experiment 2 consisted of sentences drawn from 

the standard recording of the HINT, each of which was mixed with an environmental 

sound that was randomly selected from the same set of 25 sounds used in Experiment 1. 

A set of 110 HINT sentences was used for the speech recognition task, and a separate set 

of 110 HINT sentences was used for the ESR task. For each task, stimuli were mixed at 

11 SBRs. The SBRs used in the speech recognition task were -35, -30, -25, -20, -15, -10, 

-5, 0, 5, 10, and 15 dB. The SBRs used in the ESR task were 0, 7, 14, 21, 28, 35, 42, 49, 

56, 63, and 70 dB. Other than the SBRs employed, the process for mixing and scaling the 

stimuli was the same as in Experiment 1. 

 

3. Procedure 

The same general procedures that were used in Experiment 1 were followed in 

Experiment 2, unless otherwise noted. Listeners were testing in a single session 

consisting of an ESR task followed by a speech-recognition task.  

 

  a. Environmental sound recognition task 

 Listeners heard 330 stimuli in the ESR task, blocked by SBR, with 10 trials per 

block. For each of the 11 SBRs, there were three blocks of 10 stimuli. These 30 SBR 
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blocks were presented in a random order for each listener. The same set of 110 HINT 

sentences was repeated three times in the experiment, with sentences presented in the 

same order each time. The repetition of sentences was allowed because the task only 

involved ESR and not sentence recognition. Listeners were instructed to attend to the 

background sound, click on the corresponding labeled picture, and guess if unsure. As in 

Experiment 1, the playback sequence of each stimulus was triggered by the listener’s 

response to the previous one. 

 Prior to formal testing, listeners were familiarized with the 25 environmental 

sounds, as described in Experiment 1. They also practiced identifying sounds in the 

presence of competing speech using the MATLAB application and 11 stimuli mixed at 6, 

10, 14, 18, 22, 26, 40, 44, 48, 52, and 56 dB, with difficulty of the task increasing with 

each successive practice trial. The sentences used during familiarization were distinct 

from those used for formal testing. After completing all experimental trials for the ESR 

task, listeners next performed the speech-recognition portion of the experiment.  

 

  b. Speech-recognition task 

 For the speech-recognition task, listeners heard 110 stimuli and were instructed to 

attend to the talker’s voice and repeat back each sentence as best as they could, guessing 

if unsure. The sentences were blocked by SBR, with 10 sentences per block. The 

experimenter controlled stimulus presentation and recorded the number of words 

correctly reported by the listener in each trial.  
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 Prior to formal testing, listeners practiced recognizing speech in background noise 

using 11 sentences mixed at 16, 12, 8, 4, 0, -4, -8, -12, -16, -20, and -24 dB SBR, with 

speech recognition becoming more difficult with each successive practice trial. Again, 

the sentences used in familiarization were not used during formal testing. Experiment 2 

lasted approximately one hour for each participant, including both tasks and 

familiarization. 

 

B. Results 

 Figure 3.5 displays the normalized group-mean percent-correct word 

identification scores for the speech recognition task (filled black circles) and the group-

mean percent-correct sound identification scores for the separate ESR task (open circles) 

at each SBR tested. Psychometric functions for each task type were again fitted using the 

same linking function, software, and other parameters outlined in Experiment 1. The 

solid black and dashed lines are the normalized psychometric functions for speech 

intelligibility and ESR, respectively.  
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Figure 3.5. Normalized psychometric functions for speech intelligibility (drawn in a solid black line) and environmental sound 
recognition (drawn in a dashed line) for 20 normal-hearing subjects. The filled circles denote mean normalized speech intelligibility at 
11 signal-to-background ratios, and the open circles denote mean normalized environmental sound recognition scores at a different set 
of 11 signal-to-babble ratios. 

 

 
 For speech intelligibility, performance was near perfect when the SBR was 

sufficiently high, with an estimated lapse rate of less than 0.0001. Combined with a guess 

rate of 0, normalization had a negligible effect on the psychometric function for 

intelligibility. The normalized threshold for 50% HINT words correct was -10.4 dB SBR, 

95% CI [-10.6, -10.1], and the normalized 95% threshold was 2.0 dB SBR, 95% CI [1.5, 

2.5]. 

 The lapse rate for ESR was estimated to be 0.027, 95% CI [0.02, 0.035], 

indicating that unnormalized performance plateaued at approximately 97.3% correct. The 

normalized 50% and 95% correct thresholds were 38.1 (95% CI, [38.5, 37.7]) and 22.2 

(95% CI, [23.3, 21.3]) dB SBR, respectively.  
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 The estimated distances between the normalized 50% and 95% correct thresholds 

for speech intelligibility and ESR were 48.5 and 24.2 dB, respectively. The optimal SBR 

for maximizing both intelligibility and ESR, defined as the intersection between the two 

normalized psychometric functions, was 10.8 dB, at which point normalized performance 

was 99.8% correct for both tasks.  

 Figure 3.6 displays psychometric functions for speech intelligibility and ESR 

based on subsets of the entire dataset for the 25 environmental sound stimuli used in this 

study, with one panel per environmental sound. The repetition of sentences in Experiment 

2 produced a number of trials sufficient to allow this analysis of individual environmental 

sounds. Panels are arranged in order of decreasing range between normalized 50% 

correct thresholds for speech intelligibility and ESR. Filled black circles represent 

percent-correct speech intelligibility scores, and solid black curves represent the 

corresponding fitted psychometric functions. Percent-correct scores and fitted curves for 

ESR are indicated by open circles and dashed lines, respectively. For each environmental 

sound and task type, the lapse rate was modeled as a free parameter unless accuracy was 

100% at the three highest SBRs for intelligibility or the three lowest SBRs for ESR, in 

which case the lapse rate was set to 0. The lapse rate was also set to 0 if a negative value 

was calculated. The guess rate was set to 0 for speech intelligibility and to 0.04 for ESR. 

All other relevant fitting procedures and parameters are described in Experiment 1. For 

each environmental sound, if the two normalized psychometric functions crossed at a 

single point, the optimal SBR for maximizing both speech intelligibility and ESR was 

calculated as the point of intersection. If both psychometric functions plateaued at 100% 
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correct (normalized) and overlapped over a range of SBRs, then the optimal SBR value 

was calculated as the midpoint between normalized 50% correct thresholds.  
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Figure 3.6. Psychometric functions for speech intelligibility and environmental 
sound recognition for 25 environmental background sounds. Each panel represents 
data from a different environmental sound, indicated by the label in the top right 
corner of the panel. As in other figures, solid black circles and lines denote speech 
intelligibility, and open circles and dashed lines represent environmental sounds. 
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 Apparent in Fig. 3.6 is that all environmental sounds could be reliably identified, 

with the exception of “waves.” It appears that listeners tended to guess “waves” by 

default when they were unable to hear the target environmental sound. Whereas many 

other sounds were unlikely to be guessed at high SBRs, as indicated by ESR scores below 

the chance rate of 4% correct (or below 0% correct after normalization), ESR scores for 

“waves” were well above chance, even at the highest SBR of 70 dB. Furthermore, ESR 

for “waves” never reached ceiling performance, even at the lowest SBR tested for 

selective attention ESR, which was 0 dB.  

 Table 1 contains a confusion matrix for selective-attention ESR. Stimulus sounds 

are listed vertically in the first column whereas subject responses are listed horizontally 

in the first row of the table, both in alphabetical order. Each cell indicates the number of 

responses given to each stimulus type across SBRs and listeners. The total number of 

presentations of each stimulus and listener responses of each stimulus are given in the last 

column and row, respectively. There were between 217 and 297 total presentations of 

each stimulus type (M = 264, SD = 17.2). Even though the number of presentations for 

“waves” (277) was near the mean, the number of “waves” responses (805) was 4.4 

standard deviations above the mean number of responses (264), indicating a listener bias 

for this response.  
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 Table 2 lists optimal SBR values, normalized 50% correct thresholds for speech 

intelligibility and ESR, and widths of ranges between 50% thresholds for each of the 25 

environmental sounds. Sounds are listed in descending order of distance between 

normalized 50% correct thresholds. Thresholds for normalized 50% correct speech 

intelligibility ranged from -23.8 dB SBR for “rooster” to -2.2 dB SBR for “guitar” dB 

SBR, with a mean of -10.4 (SD = 5.0). Thresholds for normalized 50% correct ESR 

ranged from 21.0 dB SBR for “waves” to 52.2 dB SBR for “alarm” with a mean of 37.2 

(SD = 8.2). Thresholds for intelligibility and ESR appeared to be weakly inversely 

related, but the Pearson’s correlation coefficient was not significant [r(23) = -0.33, p = 
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airplane 121 2 13 1 5 5 4 2 1 6 9 2 5 8 4 8 4 3 6 4 3 32 5 253
alarm 1 181 3 1 1 1 2 4 4 1 6 4 2 4 1 1 1 7 1 4 4 1 21 256
applause 2 1 157 2 1 7 3 2 1 6 5 3 2 1 3 2 2 5 2 10 4 4 36 4 265
babie scrying 6 2 5 162 2 5 1 5 2 1 3 4 4 8 3 1 4 2 7 1 5 3 2 21 2 261
bowling 2 3 6 118 1 4 6 3 5 12 2 8 3 3 3 2 14 3 11 6 4 34 7 260
chainsaw 2 8 1 3 120 4 4 4 6 3 3 11 3 2 6 5 18 1 9 8 1 28 8 258
churchbells 6 1 1 180 8 2 2 6 7 1 1 4 3 5 1 12 2 3 18 4 267
cows 3 2 5 1 2 2 156 1 1 4 3 1 6 3 3 7 5 12 1 3 2 24 7 254
cymbals 3 1 4 1 2 3 4 4 167 1 7 5 2 3 3 7 7 1 3 4 3 33 6 274
dogs 3 4 10 2 6 6 3 139 5 4 7 2 7 2 6 7 13 2 3 5 24 8 268
drum 1 2 6 1 4 1 3 3 5 4 136 10 1 9 3 5 7 11 8 5 7 30 4 266
fireworks 4 2 7 3 2 1 2 5 2 6 160 3 5 2 2 6 4 8 1 5 3 2 29 2 266
gargling 2 1 5 3 6 2 2 6 4 2 7 155 4 5 2 6 4 9 6 24 3 258
guitar 5 1 8 2 3 8 3 3 3 4 4 4 167 3 3 4 2 12 2 7 7 5 34 3 297
helicopter 2 3 14 2 4 3 3 6 1 4 3 7 7 2 107 2 4 4 11 3 9 10 3 50 5 269
honking 1 7 3 2 4 7 2 5 6 5 4 4 182 1 4 6 5 4 25 8 285
horses 2 1 1 2 3 1 7 6 2 7 2 5 3 2 5 184 9 2 1 11 4 3 20 3 286
rooster 3 2 2 5 2 1 1 2 1 4 5 5 1 2 5 185 2 6 4 4 13 3 258
sawing wood 2 1 8 1 5 4 4 6 5 6 2 3 4 3 4 6 17 4 137 3 8 6 33 4 276
snoring 3 1 9 1 3 5 4 2 7 2 9 8 5 4 3 4 5 4 19 97 11 4 1 37 6 254
thunder 5 2 10 8 4 2 5 1 3 4 19 5 5 8 6 8 3 90 13 3 53 11 268
toilet 1 2 3 1 5 4 3 6 2 7 4 5 2 4 2 7 9 138 3 16 1 225
train horn 3 1 5 3 3 4 2 1 2 1 3 5 2 3 2 27 8 6 3 5 2 156 31 4 282
waves 7 7 1 5 3 5 2 2 4 6 5 4 6 12 4 4 5 9 5 44 9 2 114 12 277
windshield wipers 2 2 8 2 4 5 6 2 1 6 5 7 4 4 1 4 4 20 1 7 7 1 25 89 217
Total 183 214 311 186 194 195 256 242 248 191 247 307 252 266 201 266 294 279 353 128 296 260 217 805 209 6600

Table 3.1. Confusion matrix for environmental sound recognition in the presence of competing speech and under conditions of selective attention. Stimuli presented are 
listed in the first column, and listener response types are shown in the first row. The number in each cell represents the number of listener responses given to each 
environmental sound stimulus type. 
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0.11]. The width of the range between normalized 50% correct thresholds was as small as 

29.4 dB for “waves” and as high as 71.8 dB for “alarm.” Optimal SBRs for balancing 

intelligibility with ESR for different environmental sounds also varied, ranging from -1.2 

to 18 dB SBR for “waves” and “horses,” respectively (M = 12.0, SD = 5.5), indicating 

that the optimal SBR value depends on the type of environmental sound present.  
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Table 3.2. Optimal SBR values, normalized 50% correct thresholds for speech intelligibility and ESR, and widths of ranges between 
50% thresholds for each of the 25 environmental sounds. 

Stimulus Name Optimal SBR (dB) 

Normalized 
50% correct 
threshold  
for speech 
intelligibility 
(dB SBR) 

Normalized 50% 
correct threshold 
for 
environmental 
sound 
recognition (dB 
SBR) 

Width of 
range 
between  
50% 
thresholds 
(dB) 

alarm 16.3 -19.6 52.2 71.8 
rooster 12.0 -23.8 47.7 71.5 
church bells 14.5 -16.0 45.1 61.2 
horses 18.3 -10.8 47.4 58.1 
gargling 10.1 -17.6 37.8 55.4 
honking 18.2 -9.4 45.7 55.1 
cows 15.5 -11.9 42.9 54.8 
cymbals 17.3 -8.3 43.0 51.3 
applause 17.4 -7.4 42.2 49.6 
dogs 9.7 -15.0 34.5 49.5 
fireworks 17.8 -6.4 41.9 48.3 
toilet 15.8 -8.2 39.8 48.0 
train horn 13.3 -6.1 41.7 47.7 
babies crying 17.3 -6.5 41.1 47.6 
drum 11.1 -11.2 33.4 44.7 
bowling 8.8 -11.8 29.4 41.2 
sawing wood 11.6 -8.8 32.0 40.8 
windshield wipers 6.5 -14.1 26.6 40.7 
guitar 18.1 -2.2 38.5 40.7 
airplane 1.5 -7.7 31.1 38.9 
snoring 9.4 -9.6 28.4 37.9 
helicopter 9.0 -9.7 27.8 37.5 
chainsaw 6.7 -3.4 33.7 37.1 
thunder 4.8 -5.9 24.6 30.4 
waves -1.2 -8.4 21.0 29.4 

 

 The secondary research question for Experiment 2 involves the effect of selective 

vs. divided attention for NH listeners performing the mixed tasks of speech intelligibility 

and ESR. The overall normalized 50% correct threshold for selective-attention speech 
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intelligibility was -10.4 dB SBR, compared to -10.7 dB SBR for divided attention, a 

difference of 0.3 dB. For ESR, the overall normalized thresholds for 50% correct were 

38.1 and 36.7 dB for selective and divided attention, respectively, amounting to a 

difference of 1.4 dB.  

 To test the effect of selective vs. divided attention on speech intelligibility and 

ESR, two mixed-effects logistic models were constructed in R 4.1.3 (R Core Team, 2022) 

using the lme4 (Bates et al., 2014) and lmerTest (Kuznetsova et al., 2017) packages. In 

the first model, the outcome variable was binary data for words correct (n = 26,109 

observations), and the fixed effects were SBR, attention type (selective vs. divided), and 

their interaction. SBR was expressed in dB units that were otherwise untransformed, and 

attention type was deviation coded, with selective attention coded as 0.5 and divided 

attention coded as -0.5. The model included random slopes for listener. Models for 

speech intelligibility that included random slopes for sentence and/or and environmental 

sound failed to converge. 

 In the second model, the outcome variable was binary data for environmental 

sounds correct (n = 9,350 observations). This model also had fixed effects for SBR (in 

dB), attention type, and their interaction. As in the first model, attention type was 

deviation coded. The model for ESR included random slopes for sentence, listener, and 

environmental sound. Models that included random slopes failed to converge.  

 Unsurprisingly, the effect of SBR was large and significant in both models. 

Increases in SBR reliably predicted higher speech intelligibility (β = 0.22, SE = 0.003, z = 

64.6, p < 0.0001) and lower ESR performance (β = -0.14, SE = 0.003, z = -44.5, p < 
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0.0001). The effect of attention type was significant for both intelligibility (β = -0.58, SE 

= 0.16, z = 3.73, p = 0.0002) and ESR (β = 2.0, SE = 0.23, z = 8.64, p < 0.0001) with 

selective attention resulting in higher performance on both tasks, compared to divided 

attention. The interaction between SBR and attention type was also significant in both 

models. For speech intelligibility, the effect of selective attention was greater at higher 

SBRs (β = 0.061, SE = 0.007, z = 8.91, p < 0.0001) whereas the effect of selective 

attention was greater at lower SBRs for ESR (β = -0.052, SE = 0.005, z = -10.2, p < 

0.0001).  

 

IV. DISCUSSION 

 The results of these experiments illustrate the trade-off between speech 

intelligibility and ESR when SBR is varied. They also demonstrate that it is possible to 

find a balance between these two competing aims by selecting an SBR where 

performance is high for both speech recognition and ESR. Both NH and HI listeners are 

capable of high speech intelligibility and high ESR over a range of SBRs, and this range 

is larger for NH listeners. It is also possible to identify a single SBR that, on average 

across a variety of environmental sounds, yields the highest combined performance of 

speech intelligibility and ESR. This optimal SBR value is not the same for NH and HI 

listeners, but the optimal SBR for HI listeners still yields very high performance for NH 

listeners. Furthermore, the optimal NH SBR also yields very high speech intelligibility 

(above 99% correct) for HI listeners while still providing for good ESR (approximately 

86% correct). 
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 Different sounds interact differently with speech. For some sounds, such as the 

alarm used in this study, the range over which intelligibility and ESR are both high is 

large. This may be a particularly useful quality of an alarm sound: it is easily audible and 

identifiable in the presence of a competing speech signal, and yet it does not unduly 

disrupt the transmission of speech information.  

 The present study also demonstrated the effect of attention on speech 

intelligibility and ESR. The two types of attention tested in this study, fully divided and 

fully selective, represent two theoretical endpoints. Thus, these results show the largest 

drop in performance that is likely to arise from the division of attention when the two 

tasks are speech recognition and ESR. The costs of divided attention resulted in poorer 

performance on both the speech recognition and ESR tasks. Although reliable and highly 

significant in the statistical models, the drops in performance associated with divided 

attention were small in terms of raw dB values (0.3 dB threshold shift for intelligibility 

and 1.4 dB threshold shift for ESR). Accordingly, the results obtained with regard to 

balancing speech intelligibility and ESR are not largely affected by the exact task that the 

listener is asked to perform. 

 The results of this study can also be used to inform the design of noise-reduction 

algorithms. Historically, noise reduction has simply not been very effective, and so much 

of the background remains following processing. Accordingly, the goal of noise-

reduction systems has been to remove as much background as possible. However, 

advances coming largely from deep learning have allowed strict isolation of the target 

speech and suppression of the background. This new ability to isolate suggests that the 
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goal needs to be reconsidered. As the current work shows, it is possible to retain high 

speech intelligibility and environmental sound awareness using an appropriate target SBR 

value. It is suggested that the goal of future more highly effective noise reduction 

algorithms shift toward this goal. 
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Abstract 

 

Hearing-impairment is often characterized by poor speech-in-noise recognition. Modern 

noise-reduction algorithms are capable of providing listeners with increased speech 

intelligibility, but when the goal of a system is to eliminate all portions of the signal that 

are not the target speech, this increased intelligibility comes at the expense of 

environmental sound recognition. Environmental sound recognition is an important part 

of the human auditory experience that not only provides a sense of connection to the 

environment but also forecasts potential safety hazards in the vicinity. This paper 

proposes a modified version of the ideal ratio mask, known as the ideal compressed 

mask, that aims to provide listeners with improved speech intelligibility without 

sacrificing environmental sound awareness. This is accomplished by limiting the 

maximum attenuation that the mask can perform on a time-frequency unit. In a dual-task 

paradigm, speech intelligibility and environmental sound recognition for hearing-

impaired and normal-hearing listeners were measured using stimuli that had been 

processed by ideal compressed masks with various levels of maximum attenuation. It was 

found that this type of processing resulted in significantly improved intelligibility and 

high environmental sound recognition performance for both types of listeners. It was also 

found that the same level of maximum attenuation provided the optimal balance of 

intelligibility and environmental sound recognition for both listener types. It is argued 

that future deep learning based noise reduction algorithms may provide overall better 
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outcomes for listeners by targeting an ideal compressed mask rather than a time-

frequency mask that seeks to eliminate all but the target speech from the signal.   
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I. INTRODUCTION 

Speech perception in background noise can represent a very significant challenge 

for a variety of listeners. Although normal-hearing (NH) listeners can typically tolerate 

considerable amounts of noise if conditions are otherwise ideal, even these best listeners 

struggle to understand speech when the signal-to-noise ratio is sufficiently low (Licklider 

and Miller, 1951). For hearing-impaired (HI) listeners, this struggle can be much greater, 

and it represents one of their primary auditory complaints (see Moore, 2007; Dillon, 

2012). In fact, poor speech recognition in noise negatively affects quality of life by 

contributing to social isolation, depression, dependence, frustration, loneliness, and 

communication difficulties (Ciorba et al., 2012). Thus, there is a substantial need to solve 

this “speech-in-noise” problem, especially for HI listeners. 

Fortunately, techniques now exist to address this problem by improving speech 

intelligibility in noise. One strategy that can be used to increase intelligibility is called 

time-frequency (T-F) masking, a process in which an acoustic mixture is divided in both 

time and frequency into small units that are selectively attenuated based on the signal-to-

noise ratio (SNR) of each unit: units where target speech dominates are preserved, and 

units where noise dominates are attenuated. This technique can be used to isolate speech 

from noise, and it serves as one of the main building blocks for a number of effective 

deep learning based noise-reduction algorithms (Wang et al., 2013; 2014; Healy et al., 

2013, 2015, 2019; Chen et al., 2016; Zhao et al., 2018).  

Time-frequency masking may take several forms, each of which can have its own 

advantages and disadvantages in terms of sound quality, benefit to intelligibility, and 
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suitability for machine learning based classification algorithms. The classical form of T-F 

masking is the ideal binary mask (IBM), which was originally proposed as a benchmark 

for measuring the segregation performance of computational auditory scene analysis 

systems (Hu and Wang, 2001; Wang, 2005). The IBM assigns each T-F unit a value of 1 

if it is dominated by the target speech or 0 if it is dominated by noise. The IBM is then 

multiplied with the T-F representation of the speech-plus-noise mixture, causing units 

dominated by the target speech to remain intact and units dominated by the noise to be 

discarded.  

The ideal ratio mask (IRM; Srinivasan et al., 2006; Narayanan and Wang, 2013; 

Hummerstone et al., 2014; Wang et al., 2014) is similar to the classic Wiener filter (see 

Loizou, 2007). Like the IBM, each T-F unit is assigned an attenuation value based on its 

SNR. But instead of limiting attenuation values to the binary options of 0 and 1, the IRM 

can assign any value along a continuum from 0 to 1, theoretically allowing for an infinite 

number of possible attenuation values. As with the IBM, the IRM is multiplied by the T-

F array of the speech-plus-noise mixture to scale each T-F unit according to its speech 

versus noise dominance. Units with the lowest SNRs are attenuated the most while units 

having the highest SNRs are attenuated the least. Another type of T-F mask is known as 

the ideal quantized mask (IQM; Healy and Vasko, 2018), which may be considered a 

hybrid of the IBM and the IRM. Like the IBM, it scales T-F units in discrete steps, but 

like the IRM, it can assign more than only two possible attenuation values.  

Each of these ideal T-F masks can substantially improve the intelligibility of 

noisy speech. Brungart et al. (2006), Li and Loizou (2008a,b), Kim et al. (2009), Kjems 
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et al. (2009), and Sinex (2013) all found that the IBM could yield near-perfect sentence 

intelligibility for NH listeners in various noise backgrounds. Anzalone et al. (2006) and 

Wang et al. (2009) found that the IBM could significantly improve NH and HI listeners’ 

speech-reception thresholds for sentences in different noises. Regarding the IRM, Madhu 

et al. (2013) and Koning et al. (2015) found that it can also deliver near 100% correct 

sentence intelligibility for NH listeners in different noise backgrounds, including multi-

talker and single-talker interference. The IQM has been shown to provide the 

intelligibility and sound-quality advantages of the IRM while retaining the classification-

based nature of the IBM, which may have algorithmic advantages (Healy and Vasko, 

2018).  

Today’s modern noise-reduction algorithms, many of which are based on some 

form of T-F masking, are designed to maximize speech intelligibility by removing as 

much interference from the signal as possible. And although these algorithms 

considerably improve speech understanding (see Manuscript I), they also limit access to 

environmental sounds, potentially “deafening” users to all nonspeech sounds. This 

creates a new hearing deficit even as it solves another. Similar to improved speech 

understanding, access to nonspeech environmental sounds is an important priority for 

adults with hearing loss (Bell, 2005). Environmental sound awareness allows for greater 

personal independence and an improved sense of “connection” with one’s surroundings 

(Harris et al., 2017). The ability to perceive and respond to environmental sounds is also 

essential for personal safety and danger avoidance, and hearing loss is associated with an 

increased risk of workplace and nonworkplace injuries requiring medical care (Mick et 
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al., 2018). Many potential hazards are often forecast by environmental sounds, either 

naturally occurring (e.g., the sound of an approaching car) or artificial (e.g., alarms, 

alerts, and warning signals; U.S. Fire Administration, 1999). Other examples of safety-

relevant sounds include gunshots, emergency sirens, vehicle horns, impact noises, and 

even the warning whistle of a lifeguard or crossing guard. The inability to detect and 

resulting failure to react to these environmental sounds could result in potentially fatal 

consequences. Critically, therefore, any noise reduction technology intended for hearing 

protheses must achieve an appropriate balance between the seemingly competing goals of 

improving speech intelligibility (strong noise reduction) and maintaining environmental 

sound awareness (weaker noise reduction).  

Historically, this has not represented a challenge simply because existing noise 

reduction has not been very effective. The goal has always been complete isolation of the 

target speech and suppression of the background, but this is not achieved in practice. 

Instead, only modest attenuation of the background has been possible in commercially 

available noise reduction. However, deep learning based noise reduction has been shown 

to produce far greater isolation of target speech and suppression of the background (again 

see Manuscript I). This new ability to perform very highly effective noise reduction 

carries with it this new issue addressed currently. 

This paper proposes a new T-F mask, based on the IRM, which we call the ideal 

compressed mask (ICM). The purpose of the ICM is to produce large speech 

intelligibility improvements while retaining listeners’ access to environmental sound 

recognition (ESR). It operates by scaling down T-F units along a continuum, like the 
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IRM. However, whereas the standard IRM assigns attenuation values between 0 and 1, 

the ICM compresses the range of possible attenuation values by limiting the lower bound 

to a number greater than 0. Thus, no T-F units are discarded, even if they are utterly 

dominated by noise. But even though the ICM does not eliminate the nosiest T-F units, it 

still attenuates them the most. Although the current implementation was similar to the 

IRM, with its continuous attenuations, the ICM could also be implemented more 

similarly to the IQM, with discrete attenuations. 

Other studies have also deliberately retained noise or added noise to speech that 

has been processed using T-F masking. This was done to improve target-speech 

intelligibility (Cao et al., 2011), to balance the trade-off between intelligibility and sound 

quality (Brons et al., 2012), or to help maintain the overall sound quality of the stimulus 

by limiting the introduction of “musical” noise in the signal (Anzalone et al., 2006). In 

contrast to these approaches designed to only impact the target speech, the purpose of 

retaining some level of background sound through T-F masking in the present study was 

to provide access to ESR while improving speech intelligibility.  

Previous work has shown that deep neural networks (DNNs) are capable of 

estimating the IRM with accuracy (Wang et al., 2014) sufficient to produce high speech 

intelligibility (e.g., Healy et al., 2015, 2017, 2019; Chen et al., 2016; Zhao et al., 2018). 

This study therefore seeks to identify the most appropriate DNN training target (the best 

ICM version) for striking the optimal balance between speech recognition and 

environmental sound identification. Because the current study involves a dual task 
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paradigm in which the speech and the environmental sound are both signal and masker, 

the term “speech-to-background ratio” (SBR) will be used in place of SNR.  

 

II. METHOD 

 A. Subjects 

Two groups of subjects were recruited. The first group consisted of 10 paid HI 

listeners who were representative of typical hearing aid patients from The Ohio State 

University Speech-Language-Hearing Clinic. They ranged in age from 21 to 71 years 

(mean = 54), and five were female. All HI listeners were bilateral hearing aid users with 

sensorineural hearing loss. Pure-tone audiometry (ANSI, 2004, 2010) was used to 

confirm hearing status on day of test. Hearing-impaired listeners’ pure-tone-average 

thresholds (PTAs), equal to mean audiometric thresholds at 500, 1000, and 2000 Hz 

averaged across ears, ranged from 33 to 79 dB hearing level (HL) with a mean of 44. 

Hearing losses ranged from mild to profound. HI subjects were numbered in order of 

ascending PTA, with higher subject numbers corresponding to more mid-frequency 

hearing loss. Figure 4.1 displays audiograms for the 10 HI listeners, arranged from left to 

right and top to bottom by subject number. Each audiogram also shows the corresponding 

listener’s age and sex.  



105 
 

 
Figure 4.1. Audiometric pure-tone air-conduction thresholds for the 10 listeners with hearing impairment. Listeners are numbered in 
order of increasing degree of mid-frequency hearing loss. Right-ear thresholds are represented by circles, and left-ear thresholds are 
represented by X’s. An arrow attached to a symbol indicates no response was given at the limits of the audiometer. The normal-
hearing limit of 20 dB HL is marked by a horizontal dotted line in each panel. Subject numbers, ages in years, and sexes are also 
given. 

 
The second group of listeners was composed of 12 NH subjects, defined as having 

pure-tone thresholds of 20 dB HL or better at octave frequencies from 250 to 8000 Hz on 

day of test (ANSI, 2004, 2010). Normal-hearing listeners’ ages ranged from 19 to 20 

years old (mean = 19.3). Ten were female, and two were male. Because the selection 

criteria for this group targeted ideal auditory processing abilities, older adults were not 

recruited for the NH listener group. Normal-hearing subjects received either a monetary 

incentive or course credit at The Ohio State University for participating. All listeners 

were native speakers of English, and none had any previous experience with the sentence 

materials employed in this experiment. Informed written consent was given to participate 

in this study, which was approved by The Ohio State University Institutional Review 

Board. 

  



106 
 

B. Stimuli 

 The stimuli were sentences from the Hearing in Noise Test (Nilsson et al., 1994) 

mixed with environmental sounds. The standard recording of the HINT was used, and so 

all sentences were produced by the same adult male talker, who was a native speaker of 

General American English. The same environmental sounds used in Manuscript 2 were 

used in the present study. These sounds were drawn from the Database of Environmental 

Sounds for Research Activities (Gygi and Shafiro, 2010), the Sound Effects Recognition 

Test (Finitzo-Hieber et al., 1980), a commercial stock media website (Pond5.com), and 

field recordings made by the first author. On average, both HI and NH listeners achieve 

approximately 98% correct ESR with this set of 25 sounds when the SBR is sufficiently 

low (Manuscript 2). The sounds are continuous in nature and sufficiently long to overlap 

with an entire sentence. See Fig. 4.2 for the 25 environmental sounds used.  
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Figure 4.2. The graphical user interface for responding to environmental sounds. The 25 environmental sounds are arranged in a 5 x 5 
grid in alphabetical order with pictures to facilitate listeners’ visual search for the intended response. 

 
 Each sentence was mixed with a single randomly selected environmental sound at 

-17 dB SBR. Based on the findings of Manuscript 2, predicted speech intelligibility at 

this SBR was low (approximately 7% and 22% correct for HI and NH listeners, 

respectively), whereas predicted ESR was at ceiling (approximately 98% correct for both 

groups). At this SBR, therefore, speech intelligibility is severely degraded and in need of 

improvement while environmental sounds are readily accessible.  

The onset and offset of the sentence and environmental sound in each mixture 

were aligned to limit asynchrony or fringe cues (Bacon and Grantham, 1992; Darwin, 
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1981, 1984; Oxenham and Dau, 2001; Rasch, 1978). After the RMS amplitude of the 

environmental sound was rescaled to be 17 dB higher than that of the sentence, the two 

signals were mixed together.  

 

C. Time-frequency mask description 

 Let X and N represent the speech and environmental sound signals, respectively. 

The standard IRM is defined as: 

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝑆𝑆(𝑋𝑋)

𝑆𝑆(𝑋𝑋) + 𝑆𝑆(𝑁𝑁)
 

where S(.) represents the magnitude short-time Fourier transform (STFT) of a signal. This 

function has an output range of 0 to 1, inclusive: When no speech energy is present in a 

T-F unit, the IRM = 0 (i.e., -∞ dB gain, or full attenuation), and when no environmental 

sound energy is present, the IRM = 1 (i.e., 0 dB gain, or no attenuation). The IRM can 

take any value along the continuum from 0 to 1, with T-F units having a higher SBR 

being attenuated less and those having a lower SBR being attenuated more.  

 The ideal compressed mask (ICM) is defined as: 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑐𝑐 × �
𝑆𝑆(𝑋𝑋)

𝑆𝑆(𝑋𝑋) + 𝑆𝑆(𝑁𝑁)
� + 1 − 𝑐𝑐 

where c represents a compression factor between 0 and 1, inclusive. This compression 

factor limits the output range of the ICM to between (1 – c) and 1, inclusive. For 

example, if c = 1, then there is no function compression, and the ICM is simply the full 

IRM with an output range of 0 to 1 (i.e., -∞ to 0 dB gain). If c = 0.9, then the output range 

of the function is compressed to between 0.1 and 1, with units that are completely 
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dominated by the environmental sound being multiplied by 0.1 (-20 dB gain) and units 

that are completely speech dominated being multiplied by 1 (0 dB gain). And if c = 0, 

then the ICM function becomes fully compressed, and all units are multiplied by 1 (0 dB 

gain), regardless of their SBR, resulting in no change to the unprocessed mixture. Thus, 

the higher the value of c, the more attenuation occurs for those T-F units having low 

SBRs (i.e., dominated by the environmental sound).  

 Six compression levels (values of c) were selected for each listener group. These 

compression levels will be referred to by the maximum amounts of attenuation that can 

occur in their respective ICMs, in dB. For example, if c = 0.99, the output range of the 

ICM is between 0.01 and 1, meaning it can attenuate T-F units up to 40 dB. The 

compression levels selected for the HI listeners had maximum-attenuation values of 0, 

20, 25, 30, 35, and ∞ dB. Again, note that a maximum-attenuation value of 0 dB simply 

results in the original, unprocessed mixture whereas a maximum-attenuation value of ∞ 

dB corresponds to the standard IRM, which fully attenuates any T-F units with no speech 

energy. The smaller the maximum-attenuation value, the more environmental sound 

energy is retained. Thus, the intermediate compression levels (maximum-attenuation 

values greater than 0 and less than ∞ dB) result in ICMs that retain different overall 

amounts of environmental sound energy in the processed signal. The selected levels were 

determined based on pilot testing that indicated that values in this range provided the best 

balance of speech intelligibility and ESR.  

 Figure 4.3 displays six curves plotting gain (negative gain is attenuation) as a 

function of local SBR (that in the particular T-F unit) for the six compression levels used 
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for the HI listeners in this study. The different line types (solid, dotted, dashed, etc.) 

represent different amounts of maximum attenuation, resulting from different 

compression factors for the ICM. The solid horizontal line along the top of the plot at 0 

dB gain represents a fully compressed ICM, which does not alter the T-F units of a signal 

and whose output is equivalent to the unprocessed mixture. The steeply sloping dash-dot 

line represents gain as a function of SBR for the IRM, whose maximum attenuation (or 

negative gain) on a dB scale is unlimited. The four functions whose lower asymptotes lie 

between -∞ and 0 dB gain represent four ICMs that limit attenuation to either 20, 25, 30, 

or 35 dB. As shown in Fig. 4.3, they behave similarly to the uncompressed IRM for T-F 

units with higher SBRs in that they cause very little attenuation under these conditions. 

For T-F units with lower SBRs, however, these ICMs will only attenuate down to a 

specified maximum amount, as indicated by their lower asymptotes. 
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Figure 4.3. Gain as a function of local SBR for six ideal compressed masks with the six levels of compression, which were tested on 
HI listeners. The different line styles represent ideal compressed masks with different maximum-attenuation values. 

 
 The selected compression levels for the NH listeners had maximum-attenuation 

values of 0, 10, 25, 40, 55, and ∞ dB. The results of Manuscript 2 and pilot testing for 

this study indicated that NH listeners can perceive both speech and environmental sounds 

over a larger range of ICM maximum-attenuation values than HI listeners can. 

Accordingly, a larger range of intermediate compression levels were selected for the NH 

listeners in order to widen the search area for an optimal value. Note that the same 

unprocessed (0 dB maximum attenuation) and IRM (∞ dB maximum attenuation) control 

conditions are present for both the HI and NH listeners. Figure 4.4 displays six functions 

of gain vs. local SBR representing the six ICMs tested on the NH listeners in this study.  
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Figure 4.4. As Fig. 4.3, but plotting the ICM compression levels for the NH listeners. 

 
 To implement the various ICMs, an 882-point fast Fourier transform on Hann-

windowed frames of length 20 ms with 10-ms overlap was applied to the mixture stimuli, 

which generated their T-F representations. Because all stimuli had an audio sampling rate 

of 44.1 kHz, the 882 frequency channels in the resulting T-F representations had a 

resolution of 25 Hz per channel. The ICM for the mixture was then point-wise multiplied 

by the magnitude STFT of the mixture to generate the processed magnitude STFT for 

each stimulus. The time-domain signal was then resynthesized through inverse STFT 

using the ICM-processed magnitude and the mixture-signal phase. Finally, each mixture 

was scaled to the same root mean square (RMS) amplitude. 
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D. Procedure 

 Each subject heard 180 stimuli blocked by six ICM compression level conditions, 

with 30 stimuli per condition. The conditions were presented in a random order for each 

subject, whereas the sentences were presented in the same fixed order for each subject. 

Again, the environmental sound for each experimental trial was chosen randomly with 

replacement. Thus, a listener may have been presented with the same sound more than 

once or not at all in a condition.  

 The experiment took place inside a double-walled audiometric booth, with the 

listener seated in front of a computer monitor and mouse. Listeners were instructed to 

attend to both the speech and the environmental sound and perform two tasks on each 

trial: First, repeat the sentence out loud, guessing if unsure; then, use the mouse to click 

on the labeled picture representing the background sound in the stimulus (Fig. 4.2), also 

guessing if unsure. Listeners were instructed to give their full response to the speech 

recognition task before clicking on their response to the ESR task to ensure that the 

playback of the subsequent stimulus did not begin while they were still speaking. This 

potential pitfall, which all listeners avoided, was a result of the self-paced nature of the 

experiment: each stimulus was presented automatically 300 ms after the response to the 

ESR task was received by the software. The experimenter, who was seated in the booth 

with the listener, recorded the number of words correctly reported in each sentence. For a 

word to be scored as correct, it had to be repeated exactly, apart from article variations 

(a/the) and verb tense (is/was, are/were, and has/had).  The custom MATLAB application 
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generated a new stimulus for each trial and recorded listeners’ responses to the ESR task. 

The test conditions were not made known to the listener or experimenter during testing. 

 Signals were played from a Windows PC using an RME Fireface UCX audio 

interface (Haimhausen, Germany), amplified using a Mackie 1202-VLZ mixer 

(Woodinville, WA), and presented diotically through Sennheiser HD 280 Pro headphones 

(Wedemark, Germany). For the NH listeners, the presentation level was set to 65 dBA in 

each ear. For the HI listeners, who were tested without their hearing aids, NAL-RP gains 

(Byrne et al., 1990) were added to this 65 dBA presentation level, to facilitate audibility 

of the stimuli. A RANE DEQ 60L digital equalizer (Mukilteo, WA) provided these gains, 

as described in Healy et al. (2015). The sound pressure level following NAL-RP 

amplification did not exceed 100 dBA for any participant, and all levels were verified 

using a sound-level meter and flat-plate coupler (Larson Davis models 824 and AEC 101, 

Depew, NH). 

 Each participant completed a three-stage familiarization before beginning formal 

testing. Stage 1 involved becoming familiar with the 25 isolated environmental sounds. 

Participants heard each of the 25 sounds one at a time, in a random order, and were 

instructed to click on the labeled picture corresponding to the sound after each stimulus 

presentation. Playback of the next sound occurred 300 ms after the click response to the 

current sound was received. Feedback was provided for any incorrect responses given 

during this stage. The set of 25 individual sounds was repeated until the listener could 

identify all of them without assistance from the experimenter. On average, 1.5 repetitions 

of this familiarization process were necessary, but up to three were permitted. One 
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potential HI subject failed to learn the sound labels after three repetitions, so she was 

dismissed from the experiment.   

 In stage 2 of familiarization, listeners practiced the speech recognition task and 

acquainted themselves with the target talker’s voice. Listeners heard seven HINT 

sentences in quiet and were instructed to repeat back what they heard after each one. 

Listeners clicked a button on the screen when they were ready for the next sentence. 

 In familiarization stage 3, listeners practiced the dual task paradigm for the formal 

experiment by listening to 30 stimuli, each consisting of a HINT sentence mixed with an 

environmental sound at -17 dB SBR and processed using an ICM. There were five 

practice stimuli in each condition. For the HI subjects, the six maximum-attenuation 

conditions were, in order: 25, 30, 20, 35, 0 and ∞ dB. For the NH listeners, the 

maximum-attenuation conditions were 40, 25, 55, 10, ∞, and 0 dB, in that order. Practice 

conditions in this stage were arranged in an order that generally increased in terms of 

dual-task performance difficulty. Listeners were instructed to repeat back as much of 

each sentence as possible and then click on the picture representing the background 

sound, taking their best guess if unsure. The 37 HINT sentences used for familiarization 

were distinct from the 180 used for testing. Following the three familiarization stages, 

formal testing began, as described above. In total, each experimental session lasted 

approximately 45 minutes. 

 

III. RESULTS AND DISCUSSION 
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Figure 4.5 displays the HI group-mean percent-correct speech intelligibility and 

ESR performance in each of the ICM conditions. Solid black circles represent speech-

intelligibility scores, and open circles indicate ESR scores. Error bars are 95% confidence 

intervals. In the unprocessed condition (0 dB maximum attenuation), where speech and 

environmental sounds were presented at -17 dB SBR without additional processing, ESR 

reached 96.7% correct. This ESR score replicates the value extrapolated from the data 

obtained in Manuscript 2 (97.6% correct) using a different group of HI listeners and the 

same divided attention task. Unprocessed speech intelligibility for the HI listeners was 

2.4% correct, which is also similar to the score predicted by the fitted curve for the HI 

group in Manuscript 2 (6.6%). These similarities between extrapolated and actual data 

were obtained despite the greater degree of hearing loss observed in the current HI 

participants (mean PTA = 44 dB HL), relative to those in Manuscript 2 (mean PTA = 30 

dB HL). Speech intelligibility improved monotonically as the amount of ICM 

compression decreased (i.e., as maximum attenuation increased), rising to 79, 91, 95, 98 

and finally 99% correct for the uncompressed ICM, which constitutes the standard IRM 

designed to maximize intelligibility. Even HI10, the listener with the most severe hearing 

loss in this study, achieved 100% correct speech intelligibility in the IRM condition 

despite only correctly recognizing one out of a possible 160 words (0.6% correct) in the 

unprocessed condition, amounting to a processing benefit of 99.4 percentage points. The 

HI group-mean intelligibility benefit of uncompressed (iIRM) processing was 97 

percentage points.  
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However, this benefit to speech intelligibility came at the expense of ESR, which 

fell from 96.7% correct in the unprocessed condition to 8.3% correct in the IRM-

processed condition, corresponding to a processing-induced ESR loss of 88.4 percentage 

points. Fig. 4.5 shows that ESR decreased monotonically as maximum attenuation 

increased (i.e., as the level of compression in the ICM decreased), falling from 96.7 to 90, 

89, 77, 73, and finally 8.3% correct. This negative association between maximum-

attenuation value and ESR is not surprising because the ICM is intended to most 

attenuate those T-F units with the highest relative environmental sound energy.  

 
Figure 4.5. Group-mean percent-correct speech intelligibility (filled circles) and environmental sound recognition (open circles) for 
the 10 hearing-impaired listeners in the present study at six different maximum-attenuation levels for the ideal compressed mask. 
Error bars indicate 95% confidence intervals. The maximum-attenuation level of 0 dB corresponds to the unprocessed sentence-sound 
mixture. The maximum-attenuation level of ∞ dB corresponds to the standard (uncompressed) ideal ratio mask. The speech-to-
background ratio, prior to ICM processing, was -17 dB for all stimuli. 
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Evident in Fig. 4.5 is that each of the four intermediate ICMs (maximum 

attenuation levels of 20, 25, 30, and 35 dB) provides better speech intelligibility than the 

unprocessed mixture (ICM maximum attenuation = 0 dB) and better ESR than the 

uncompressed IRM (maximum attenuation = ∞ dB). In other words, each intermediate 

ICM increases intelligibility from the unprocessed baseline without reducing ESR to the 

extent that the standard IRM does. As such, the ICM successfully improves intelligibility 

without completely sacrificing ESR at all four compression levels tested on HI listeners. 

The next question is, which of these four compression levels provides the most optimal 

balance of intelligibility and ESR for HI listeners? As shown in Fig. 4.5, combined 

intelligibility and ESR performance is highest when maximum attenuation is set to 25 dB. 

At this compression level, both intelligibility and ESR fall short of ceiling performance, 

but the sum of their combined percent-correct scores is higher in this condition than it is 

in any of the other five conditions tested (91% correct intelligibility + 89% correct ESR = 

180 percentage points). Thus, when speech and ESR are regarded as equally important, 

the maximum-attenuation level of 25 dB yields the most optimal balance of speech 

intelligibility and ESR for these HI listeners.  

However, if speech intelligibility is prioritized over ESR, as is often the case in 

many everyday listening situations, then setting the maximum-attenuation level to a 

different value may be appropriate. For example, when maximum attenuation is set to 35 

dB, speech intelligibility is even higher than the observed score for the “optimal” 

maximum-attenuation value of 25 dB (98.1 vs 91.2% correct) while ESR remains 
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substantially higher than what the IRM provides (73 vs 8.3% correct). Many individuals 

may be willing to sacrifice 16.3 percentage points of ESR to gain 6.9 percentage points of 

speech intelligibility by shifting the maximum-attenuation value from 25 to 35 dB, even 

though this decreases the combined intelligibility + ESR score by 9.4 percentage points.  

Interestingly, even though the ESR performance score of 8.3% correct in the 

uncompressed IRM condition is comparatively low, an exact binomial test revealed that 

this score is significantly higher than the 4% correct predicted by chance (p = 0.0005). 

This finding suggests that the IRM may retain enough small traces of environmental 

sounds to allow HI listeners to recognize them with greater-than-chance accuracy. This 

lack of complete removal of environmental sounds by the IRM may be explained by its 

finite temporal and frequency resolution as well at its use of the mixture phase (which is 

dominated by the environmental sound) to reconstruct the processed signal. 

Figure 4.6 displays group-mean speech intelligibility and ESR scores in the six 

processing conditions for the NH listeners. As in Fig. 4.5, intelligibility is represented by 

solid circles, and ESR is represented by open circles. Note that three of the maximum-

attenuation values for the NH listeners are different from the values used for the HI 

listeners. As with the HI listeners, all stimuli were mixed at -17 dB SBR prior to ICM 

processing.  
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Figure 4.6. As Fig. 4.5, but for the normal-hearing listeners. Note the different set of maximum-attenuation values used for the 
normal-hearing listeners. 

 
In the unprocessed condition (0 dB maximum attenuation), speech intelligibility 

for the NH listeners was 20.0% correct, which was within 2 percentage points of the 

score predicted by the results of Manuscript 2. Furthermore, ESR was 97.8% correct in 

this condition, which closely matched the predicted score.  

In the IRM condition, the NH listeners correctly recognized 18.6% of the 

environmental sounds, which is significantly higher than the 4% correct predicted by 

chance (p < 0.000001). Again, this indicates that although the IRM substantially reduces 

ESR, it does not completely eliminate all traces of environmental sounds from the 
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mixture, and it appears that the NH listeners were even more sensitive to those aspects of 

environmental sounds that remained after IRM processing than the HI listeners were.  

As observed with the HI listeners, higher maximum-attenuation values resulted in 

improved speech intelligibility and reduced ESR for the NH listeners, again illustrating 

the trade-off that exists between these two tasks. Speech intelligibility reached the 

performance ceiling (over 99% correct) at 25 dB maximum attenuation. ESR was also 

very high at this maximum-attenuation level with a score of 96.9% correct, which was 

within 1 percentage point of the ESR score observed in the unprocessed condition (97.8% 

correct). Since 25 dB maximum attenuation was the only condition tested where both 

speech intelligibility and ESR were at or very near their performance ceilings, this 

condition is considered the most optimal for balancing the trade-off between these two 

tasks for NH listeners.  

Among the different maximum-attenuation values tested, the optimal value for 

achieving the highest combined intelligibility + ESR score was the same for both HI and 

NH listeners: 25 dB. To obtain a more exact measure of each group’s optimal maximum 

attenuation value, a cumulative normal function was fit to each data series in Figs. 4.5 

and 4.6 using the quickpsy package (Linares and López-Moliner, 2016) in R 4.1.3 (R 

Core Team, 2022). In order to continue using a dB scale and avoid infinite values, the 

IRM condition was excluded from the data used to fit the curves. In each function, the 

explanatory variable was maximum attenuation, and the response variable was binary 

data for either words or environmental sounds correctly reported. The software calculated 

the lapse rate (i.e., the probability of an incorrect response, independent of stimulus level) 
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as a free parameter. The guess rate was set to 0.04 for the ESR functions, reflecting 

chance performance for a closed-set task with 25 possible responses. The optimal 

maximum-attenuation value for achieving the highest combined intelligibility + ESR 

performance for each listener group was calculated as the intersection between the fitted 

curves for the two tasks. The crossover points for these curves were 23.4 and 23.3 dB 

maximum attenuation for the HI and NH groups, respectively. The optimal maximum-

attenuation values for the ICM were therefore highly similar across listener types, and 

highly similar to that observed without curve fitting, despite the exclusion of the infinite 

attenuation condition.  

In order to recognize speech and environmental sound simultaneously, the 

auditory system of the listener must be able to independently resolve the two signals in 

the mixture. In other words, unless the spectro-temporal resolution of the auditory system 

is sufficiently acute to glimpse the two signals in the mixture, the dominant signal will 

mask the weaker one. Because listeners with sensorineural HI often have broad auditory 

tuning and perhaps poor temporal resolution stemming from limited audible bandwidth 

and listening at low sensation levels (see Moore, 2007), they are less able to resolve the 

speech-sound mixture into T-F units that are small enough to contain glimpses of only a 

single sound source, and instead more of their available units contain a mixture of speech 

and environmental sound. Because of this, when concurrent speech and environmental 

sounds are mixed in normal fashion without further processing (as in Manuscript 2), the 

sounds are more likely to interfere with each other in an impaired auditory system than in 

a normal one, resulting in a narrower range of SBRs that allow high performance for both 



123 
 

speech intelligibility and ESR (as seen in Manuscript 2). However, the results of this 

study suggest that when resolution is dictated not by the auditory system and instead by 

processing in to T-F units, the same relationship between local SBR and attenuation 

provides the best conditions for glimpsing two signals for both HI and NH listeners. This 

is true despite the fact that the processed signal is then delivered to the impaired system. 

This result holds promise for future noise-reduction processing schemes intended for HI 

listeners.  

In a deep learning based noise reduction system that has been trained to estimate 

the SBR of each T-F unit, adjusting the maximum-attenuation value for the ICM would 

be a simple matter. This parameter could be manipulated by the user, either through a 

smartphone app or a switch directly on the device, to control the amount of noise 

reduction performed by the algorithm. When more environmental sound awareness is 

desired, such as when no speech is present, the maximum-attenuation value can be 

decreased; when environmental sound awareness is not needed and speech is the sole 

signal of interest, the maximum-attenuation value may be increased until it reaches the 

IRM. Alternatively, the maximum-attenuation value could be adjusted automatically 

based on an algorithm that analyzes the listening environment and predicts the listener’s 

desired maximum-attenuation value for the ICM. Such AI-based scene identification and 

settings adjustment is already implemented in commercial hearing aids (e.g., Starkey AI; 

Hicks, 2020). It many cases, it may be possible to adjust the maximum attenuation value 

in such a way that both high speech intelligibility and high ESR are provided, which 

represents a transformational shift in overall approach to noise reduction for HI listeners.  
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IV. CONCLUSIONS 

1. As demonstrated in previous studies, the standard IRM delivered vastly improved 

speech intelligibility. However, this increased intelligibility was accompanied by 

a significant cost to ESR. 

2. When the output range of the IRM was compressed such that its maximum 

attenuation was limited, it still delivered very large improvements to speech 

intelligibility, even rivaling the performance of the uncompressed IRM. 

3. Under conditions of various levels of IRM compression, both HI and NH listeners 

demonstrated higher speech intelligibility than was observed in the unprocessed 

condition while also demonstrating higher ESR performance than was observed 

for the standard uncompressed IRM.  

4. The optimal level of IRM compression for achieving the highest combined level 

of speech intelligibility and ESR was virtually the same for HI and NH listeners. 

5. Future deep learning based noise reduction algorithms that have been designed to 

adjust the level of maximum attenuation by the estimated T-F mask may provide 

a better balance of speech intelligibility and ESR for listeners than an algorithm 

that targets clean speech and complete suppression of the background.  
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Chapter 5. General Summary and Discussion 

The three manuscripts contained here examined and discussed important 

considerations regarding the efficacy and viability of deep learning based noise reduction, 

which represents perhaps our most promising solution to the speech-in-noise problem. 

The first manuscript is an extension of an ongoing line of work aimed toward advancing 

deep-learning-based noise reduction. It involved human-subjects testing of a novel, time-

domain-based algorithm that fulfills four of the most fundamental requirements for real-

world implementation: talker independence, corpus independence, noise independence, 

and causality. The second manuscript considered a new dimension of efficacy for deep 

learning based noise reduction: the preservation of environmental sound recognition 

(ESR). Finally, the third manuscript examined a novel algorithmic scheme for achieving 

an optimal balance between improving intelligibility and maintaining ESR.  

Our ability to increase intelligibility through deep learning based noise reduction, 

especially for hearing impaired (HI) listeners, has increased substantially since 2013, 

when the first demonstration of improved intelligibility for HI listeners was provided. 

Manuscript 1 tested the effect of a novel algorithm on human listeners’ speech 

intelligibility and compared its efficacy to the seminal algorithm first described nine 

years ago. The stimuli, procedures, and human subject populations were essentially 

identical across studies, thus isolating the variables of interest, which were the algorithm 

used and the demands placed on it. The algorithm in the initial study was trained and 
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tested in highly similar conditions. Further, it featured a non-causal architecture, which 

prevented it from running in real time. In contrast, the new algorithm, which featured a 

modern attentive recurrent network design, is much more viable: It had mismatched 

training versus test conditions in terms of talkers, speech corpora, and noise types, and it 

was fully causal, thus satisfying the fundamental requirement for real-time operation. 

Significant algorithm benefit was observed in every condition and averaged 51 

percentage points across conditions for HI listeners. Strikingly, the amount of benefit 

provided by the new algorithm was similar to the benefit obtained in the initial 

demonstration in 2013, despite the considerably more demanding conditions in which the 

new algorithm was tested. Thus, the new algorithm was just as efficacious as the original, 

but since it was causal as well as talker-, corpus-, and noise-independent, it was 

immeasurably more viable. Continual technological advances in deep learning based 

noise reduction over the past nine years have enabled this newest algorithm to provide 

substantial intelligibility benefit despite the systematic removal of various constraints to 

address viability considerations.  

The second manuscript tests the limits of the human auditory system and 

discusses implications for future noise-reduction technology. Speech recognition and 

environmental sound awareness are both important aspects of the human auditory 

experience. However, when speech and environmental sounds occur concurrently, one 

can mask the other, leading to poor speech intelligibility and/or environmental sound 

identification. In this vein, the second manuscript demonstrates that there exists a range 

of speech-to-background ratios (SBRs) over which the human auditory system can 



134 
 

segregate and recognize speech and environmental sounds independently or 

simultaneously, even without the aid of binaural cues. This was accomplished by 

determining NH and HI listeners’ ESR in the presence of concurrent speech as well as 

their speech reception in the presence of concurrent environmental sounds. By comparing 

these two performances to each other, the range of SBRs over which both speech 

recognition and ESR scores are high was calculated. It was found that both NH and HI 

listeners were capable of reliably recognizing both speech and concurrent environmental 

sounds when the SBR was optimal. The optimal SBR for the NH group (12.2 dB) was 7.1 

dB higher than optimal value for the HI listeners (5.1 dB). This difference in optimal 

SBR values was primarily caused by the HI listeners’ poorer performance on the ESR 

task.  

Speech recognition and ESR are fundamentally different tasks that leverage 

different aspects of auditory perception, and it appears that speech caused a greater 

amount of interference on ESR for the HI listeners than for the NH listeners. This may 

also be due to differences in the ways NH and HI listeners use divided attention. One of 

the goals of Experiment 2 in the second manuscript was to establish the basic 

performance differences between divided and selective attention in the current task, 

without additional possible factors associated with aging and/or hearing loss, which is 

why only NH listeners participated. Future studies, however, could examine the 

differential effects of attention type on NH vs. HI listeners for these tasks. Only modest 

differences were observed across these tasks. 
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Deep-learning-based noise reduction can significantly improve the intelligibility 

of speech at low SNRs, where environmental sounds (i.e., background noise) would 

normally render speech unintelligible via masking. The goal of traditional noise-

reduction algorithms is to output clean, noise-free speech, but this has the adverse 

secondary effect of reducing environmental sound awareness. The data from Manuscript 

2 demonstrate that there exist SBRs where both NH and HI listeners can recognize 

speech and identify environmental sounds. In any situation where HI listeners desire both 

speech intelligibility and environmental sound awareness, the optimal SBR of 5.1 dB 

should be the target of noise-reduction algorithms, not the SBR corresponding to 

perfectly clean speech, which is ∞ dB. Of course, choosing any target SBR assumes that 

the deep learning algorithm will accurately deliver the signal at this target SBR. In many 

cases, noise remains in the algorithm-processed signal even when clean speech is the 

target. However, as deep learning algorithms become more advanced, they will continue 

to reduce estimation errors and produce outputs that better reflect their intended target.  

Another aspect of balancing speech intelligibility with ESR that is worth 

considering is the contribution of the direct sound path into the listener’s ear. This does 

not apply to (non-hybrid) cochlear implants since all auditory stimulation to the 

implanted ear comes from the device. However, with regard to hearing aids, the more 

open the fitting is, the greater the amount of acoustic leakage into the ear canal will 

occur. Thus, even if the hearing aid delivers perfectly noise-free speech, the target signal 

may be masked by noise that bypasses the hearing aid’s noise reduction and enters the ear 

canal directly from the sound source. Thus, the true optimal SBR refers to the desired 



136 
 

SBR at the listener’s ear drum resulting from the combination of hearing aid output and 

natural sound that enters directly into the ear canal from the outside environment. One 

hearing aid manufacturer has conceived a clever way to address this problem: a 

mechanically gated venting system. When maximum noise reduction is desired, the vent 

in the hearing aid coupling closes to limit the amount outside sound that enters the ear 

canal directly; and when minimal occlusion is desired, the vent opens to allow more 

sound to bypass the hearing aid and enter the ear canal. 

The goal of the third manuscript was to demonstrate a viable and efficacious 

processing scheme capable of improving the intelligibility of noisy speech without 

unduly compromising environmental sound awareness. This method implemented ideal 

time-frequency masking for purposes of demonstration (ideal as opposed to algorithm 

estimated). Realistically, a hearing aid cannot have perfect knowledge of the speech vs. 

noise composition of an input signal that is required to generate an ideal time-frequency 

mask, but deep neural networks are capable of estimating time-frequency masks with a 

high degree of accuracy , allowing them to be acoustically similar to ideal masks (e.g., 

Wang et al., 2014) and similar in terms of their ability to produce high human 

intelligibility (e.g., Healy et al., 2019). Thus, the ideal processing used in this manuscript 

will serve as a proxy for advanced deep-learning-based algorithms that are trained to 

target the ideal processing schemes presented here. 

It was found that this ICM processing was indeed capable of producing high 

speech intelligibility and simultaneous high recognition accuracy of concurrent 

environmental background sounds. Interestingly, the optimal values for such processing 



137 
 

were found to be highly similar across HI and NH listeners when ICM processing was 

employed. This result differs somewhat from that observed in Manuscript 2, where 

unprocessed speech and environmental sounds were employed and ideal SNRs (SBRs) 

were obtained. This difference may be related to the spectral and temporal resolution of 

the impaired vs. normal auditory systems – although other differences exist, the auditory 

system was tasked with dividing the sound mixture into T-F units in Manuscript 2, 

whereas this processing was performed for the listener through signal processing in 

Manuscript 3.   

Taken together, these three manuscripts indicate a need to consider many separate 

factors when examining the efficacy and viability of deep learning based noise reduction. 

Efficacy and viability largely depend on the neural network that is trained to perform the 

speech separation task. However, the nature of that task also influences the efficacy and 

viability of the system since some targets may result in better outcomes for 

environmental sound awareness than others.  

In conclusion, the data presented here have both theoretical and practical 

implications. From a theoretical perspective, these data provide additional insight into the 

ability of the normal and impaired auditory system to perceive speech and environmental 

sounds simultaneously. Practical implications include suggestions for modifying deep 

learning algorithms to target lower SBRs to preserve ESR while still delivering large 

benefit to speech intelligibility. Furthermore, the third manuscript presents a novel T-F 

masking scheme for achieving this aim. 
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