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Abstract

Fully autonomous aerial systems (FAAS) combine edge and cloud hardware with

UAVs and considerable software support to create self-governing systems. FAAS

complete complicated missions with no human piloting by sensing and responding

to their environment in real-time. FAAS require highly complex designs to function

properly, including layers of on-board, edge, and cloud hardware and software. FAAS

also necessitate complex software used for controlling low-level UAV actions, data

collection and management, image processing, machine learning, mission planning,

and high-level decision-making which must integrate across the compute hierarchy

effectively to meet autonomy goals in real-time.

The complexity of even a relatively simple FAAS makes efficiency difficult to guar-

antee. Efficiency, however, is paramount to the effectiveness of a FAAS. FAAS per-

form missions in resource-scarce environments like natural disaster areas, crop fields,

and remote infrastructure installations. These areas have limited access to computa-

tional resources, network connectivity, and power. Furthermore, UAV battery lives

are short, with flight times rarely exceeding 30 minutes. If FAAS are inefficiently

designed, UAV may waste precious battery life awaiting further instructions from

remote compute resources, delaying or precluding mission completion. For this rea-

son, it is imperative that FAAS designers carefully choose or design edge hardware

configurations, machine learning models, autonomy policies, and deployment models.
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FAAS have the capability to revolutionize a number of industries, but much re-

search must be done to facilitate their usability and effectiveness. In this dissertation,

I outline my efforts toward designing and implementing FAAS that are efficient and

effective. This dissertation will focus on the following five topics encompassing design,

implementation, and applications of FAAS:

§1. Creation of new general and domain-specific machine learning algorithms and

careful utilization of others

§2. Selection of hardware at all levels in the FAAS hierarchy

§3. Power and environmental awareness informing selection and switching of auton-

omy policies, hardware devices, machine learning techniques and deployment

characteristics.

§4. Online learning capabilities resilient to limited cloud access, network interruption,

and power scarcity.

§5. Thorough applications which demonstrate the technological value of FAAS, drive

adoption, and determine future research challenges.
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Chapter 1: Introduction

Unmanned aerial vehicles (UAV) are an emerging technology that has seen con-

siderable adoption in private industry, research, and hobbyist communities in the

past decade [129]. UAV are used extensively in aerial photography, crop scout-

ing, search and rescue, infrastructure inspection, surveillance, and military appli-

cations [65, 105, 134, 136, 197] so much so that worldwide consumer UAV sales have

eclipsed $4 Billion annually and, as shown in Figure 1.1 are projected to rise consid-

erably in the coming years [49, 50].

UAV used in industrial and commercial settings are generally piloted by licensed

professionals, posing a number of problems for UAV deployments. Licensed pilots can

command considerable compensation [72], which can add up staggeringly depending

on the number of unmanned aerial vehicles (UAV) required to complete a given task

in the preferred amount of time. Furthermore, human-piloted missions can be com-

plicated by inclement or inhospitable conditions, pilot visibility issues, or waypoint

repetition. UAV are flown in disaster areas, remote infrastructure deployments, and

crop fields which further necessitate large swarms to meet time and coverage goals,

making pilots prohibitively expensive.

Data collected by UAV may also require complicated analysis to make decisions.

Crop scouting, surveillance, and infrastructure inspection tasks may require analysis

1
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Fig. 1.1: Data from the business research company shows that consumer UAV market
is consistently increasing year over year.

by professionals or computers that can not be provided by pilots in flight [95]. The

inability to react to sensed data in real-time using complex expert analysis may

elongate missions or leave information on the table.

Fully Autonomous Aerial Systems (FAAS) are an emerging technology that re-

place human pilots with machine learning algorithms, edge hardware, and remote

compute resources along the edge and in the cloud. The goal of FAAS design is

to create a system that accomplishes high-level goals with little to no human inter-

action [30]. FAAS provide considerable support beyond conventional UAV ground-

station software. Groundstations [137, 190] can set waypoints, fly UAV in an au-

tomated manner, and sense data. FAAS, on the other hand, generate waypoint or

virtual remote-control missions that respond to sensed data in real-time to solve a

predefined problem [30]. On top of conventional groundstation software, FAAS use
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Fig. 1.2: FAAS are incredibly complex. They operate in remote environments, use
novel autonomy policies and machine learning algorithms, and must withstand power
limitations and leverage creative networking solutions to accomplish their goals.

machine learning techniques like object detection, feature extraction, and reinforce-

ment learning to identify mission goal-states and features of their environment that

may lead to goal-states. There are many UAV groundstation platforms, SDKs, and

software packages [58, 61, 137, 161, 190], many of which underlie FAAS, but few uti-

lize machine learning, computer vision, autonomy policies, and systems management

strategies which FAAS require [30,167,197].

There are many challenges to creating FAAS, some of which complement each

other. First and foremost, FAAS require considerable machine learning and image

processing capabilities to recognize and locate the visual phenomena they are often
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seeking to accomplish their missions. FAAS may search for crop diseases in a field, lo-

cate humans in rubble, or inspect remote infrastructure for cracks [60,105,136]. FAAS

attempt to replicate domain-expert analysis of aerial images in real-time and features

of such analysis must be elucidated and implemented as algorithms that can function

in real or near-real time on hardware that can be accessed by FAAS. Furthermore,

autonomy policies must use image processing and detection algorithms to accomplish

a goal. Goals may be as simple as locating a target, or as complex as generating

an area map using as few sample points as possible. FAAS must use information at

their disposal to accomplish the goal, regardless of whether that information contains

features that may be immediately relevant (i.e signatures of a crop disease). FAAS

must strive to locate targets as quickly as possible, which requires autonomy policies

that can leverage seemingly insignificant data-points to local potential goal states.

Even with correct autonomy policies and machine learning algorithms, FAAS face

other natural limitations. FAAS execute in remote environments, potentially with no

access to reliable power and network connectivity. Many FAAS must rely on edge

systems for the entirety of their machine learning needs, as well as UAV flight control

and data storage. If network connectivity is available, bandwidths may be limited

meaning online learning, data storage, or model inference in the cloud may be im-

possible. Creative networking solutions like TVWS [197] have been used in FAAS,

but require considerable power to implement. Furthermore, UAV have small batter-

ies [41,73], often providing less than 30 minutes of flight time on a single charge. UAV

Must be recharged regularly, which can take multiple hours, so UAV power-efficiency

is paramount. FAAS dictate UAV flight paths online, meaning UAV may wait for

flight instructions if model inference times are slow, or may explore unnecessary or
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unhelpful waypoints if inferences are inaccurate. Hovering UAV waste their precious

battery, so it is important to return results to UAV quickly to maximize UAV flight

efficiency. This creates a many-way tradeoff between on-site power, network connec-

tivity, edge and cloud hardware, machine learning model accuracy and inference time.

The goal of FAAS design and implementation is, in sort, to create software that is

low-power, adaptable to heterogeneous architectures, easily expandable to accommo-

date policies and models from new domains, and general enough to provide useful

software artifacts to most domains out of the box.

1.1 Thesis Statement

Fully autonomous aerial systems require considerable software support, precise

hardware selection, and novel learning and autonomy policies to complete complex

missions with minimal human interaction. Specifically, careful design, planning, and

research must inform every facet of FAAS development, including:

§1. Creation of new general and domain-specific machine learning algorithms and

careful utilization of others

§2. Selection of hardware at all levels in the FAAS hierarchy

§3. Power and environmental awareness informing selection and switching of auton-

omy policies, hardware devices, machine learning techniques and deployment

characteristics.

§4. Online learning capabilities resilient to limited cloud access, network interruption,

and power scarcity.
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§5. Thorough applications which demonstrate the technological value of FAAS, drive

adoption, and determine future research challenges.

Each chapter of this dissertation, as discussed in section 1.2 contributes to one or

more of these four topics.

1.2 Contributions and Outline

Every experimental result presented in this work required some level of FAAS

software support to produce. At the outset there was no publicly available FAAS

software package, to my knowledge. I created SoftwarePilot [26], an open source

FAAS middleware, to facilitate my research and provide easy access to FAAS for

other research. SoftwarePilot underlies all of my work, and should be regarded as a

major contribution of this dissertation.

This thesis makes a number of other contributions to the state of the art. First,

chapter 2 discusses in detail the design decisions at the edge required to implement

FAAS efficiently. As covered earlier in this chapter, FAAS are very difficult to de-

sign and present many-way trade-offs. The effects of some design decisions (e.g naive

hardware or algorithm selection) may not be realized until after implementation and

testing. Chapter 2 explores how complicated FAAS can be modeled in software to

maximize performance without full implementation(§2). I created autonomy cubes,

an n-dimensional hyper-cube data structure for holding entire autonomous system

execution environments. Using autonomy cubes and profiled traces of FAAS hard-

ware and algorithm combinations, I demonstrate that it is possible to model FAAS

execution accurately. I evaluated my models using 3 common FAAS benchmarks:

autonomous photography, search and rescue, and crop scouting, necessitating real
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FAAS implementations using softwarepilot (§1, §5). In this work, I also compare

system-level optimizations like adaptive model-switching, onboard/embedded com-

puting, cloud offloading, and hardware duty-cycling(§3). I use simulations validated

by over 100 real FAAS missions with different hardware and software configurations

to perform this analysis.

Chapter 3 outlines the need for and design of Fully Autonomous Precision Agri-

culture, a key FAAS application(§1, §5). In Fully Autonomous Precision Agriculture

(FAPA), UAV autonomously scout crop fields, returning crop field health maps to

farmers which can be used to inform fertilizer application, treat pests, disease, and

other crop stressors, and predict and improve yield before harvest. This chapter con-

tributes an initial reinforcement learning process (§1) that uses machine learning to

guide FAAS through crop fields to generate crop yield maps. I use simulation to

generate yield maps of crop regions using ground truth UAV-captured images.

Chapter 4 presents a FAPA Application using new autonomy techniques (§1, §5)

and validated modeling using methods presented in Chapter 2. I use UAV to imple-

ment an adaptive autonomous approach to FAAS crop scouting for rice lodging. I

use semantic segmentation of aerial images in real-time to predict rice lodging using

real aerial images from lodged Taiwanese rice paddies. Using EDANet for semantic

segmentation, and my adaptive autonomous scouting technique which scouts at mul-

tiple heights to minimize UAV batter consumption, my solution achieves very high

lodged detection accuracy while executing considerably faster than naive approaches.

This approach generates considerable cost savings and demonstrates an approach far

beyond the real-world state of the art for lodged rice detection in Taiwan.
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Chapter 5 discusses early work in distributed reinforcement learning for FAAS

swarms (§1, §3, §4, §5). I describe the design and implementation of a network and

power aware scheduling process for online training of FAAS reinforcement learning

pathfinding algorithms on consumer edge hardware. I call this technique the Fleet

Computer. The Fleet Computer is an end to end platform for designing, program-

ming, and deploying autonomous systems and swarms. The fleet computer relies

heavily on multi-agent reinforcement learning theory to train autonomous swarms

based on pre-defined goals and representative autonomy cubes. The fleet computer

can then interact with robotic control platforms like SoftwarePilot to deploy autono-

mus swarm applications across a cluster of edge resources. Relying on Kubernetes, the

fleet computer can dynamically expand and contract the cluster’s resource footprint

by duty-cycling resources. Finally, the fleet computer incorporates online federated

learning capabilities which improve system performance over time for autonomous

systems whose models are built using limited data.

Chapter 6 covers findings from a real-world Fleet Computer deployment (§3,§5). I

deployed a fleet computer cluster and swarm of drones in a crop field in Central Ohio

to model Soybean Defoliation, an important crop health condition. I flew over 150

real swarm missions to test the effects of environmental conditions on swarm deploy-

ments. Using my deployment results, I built an adaptive deployment model which

uses weather information to schedule swarm missions in conditions which minimize

risk of failure.
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Chapter 2: Managing Edge Resources for Fully Autonomous

Aerial Systems

Fully autonomous aerial systems (FAAS) fly complex missions guided wholly by

software. If users choose software, compute hardware and aircraft well, FAAS can

complete missions faster and safer than unmanned aerial systems piloted by humans.

On the other hand, poorly managed edge resources slow down missions, waste energy

and inflate costs. This paper presents a model-driven approach to manage FAAS. We

fly real FAAS missions, profile compute and aircraft resource usage and model ex-

pected demands. Naive profiling approaches use traces from previous flights to infer

resource usage. However, edge resources can affect where FAAS fly and which data

they sense. Usage profiles can diverge greatly across edge management policies. In-

stead of using traces, we characterize whole flight areas to accurately model resource

usage for any flight path. We combine expected resource demands to model mis-

sion throughput, i.e., missions completed per fully charged battery. We validated our

model by creating FAAS, measuring mission throughput across many system settings.

Our FAAS benchmarks, released through our open source FAAS suite SoftwarePilot,

execute realistic missions: autonomous photography, search and rescue, and agricul-

tural scouting using well-known software. Our model predicted throughput with 4%

error across mission, software and hardware settings. Competing approaches yielded
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10–24% error. We used our SoftwarePilot benchmarks to study (1) GPU acceler-

ation, scale up, and scale out, (2) onboard, edge and cloud computing, (3) energy

and monetary budgets, and (4) software driven GPU management. We found that

model-driven management can boost mission throughput by 10X and reduce costs by

87%.

2.1 Introduction

Unmanned aerial systems (UAS) hover, fly to waypoints and perform defined

actions, e.g., landing and takeoff. In addition to rotors and motors, these aircraft

carry computer systems, cameras, batteries, etc. They can access high, vast or unsafe

places and capture detailed images and sensor readings. Photographers, farmers and

first responders pilot UAS via remote control or smart phone [16, 65, 105, 134, 197].

These end users decide where the UAS flies, when it senses data and when missions

are complete.

UAS piloting mistakes can have severe consequences. For example, flying UAS in

restricted areas risks human lives. Other common mistakes, e.g., flying to unneeded

waypoints, degrade mission throughput (i.e., the number of missions completed).

Aerial systems that require less human piloting are needed [134,196]. There is growing

support for software development kits that control aircraft. Da-Jiang Innovations

(DJI) aircraft support software control from iOS, Android and Linux devices [174].

Pixhawk and Aerostack also provide platforms for software control [137,167,168].

Fully autonomous aerial systems (FAAS) are an emerging workload wherein UAS

execute dynamic missions defined wholly by software. End users do not pilot FAAS

nor do they define preset waypoints. Instead, they provide goals, constraints and
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software that execute missions. Like edge-driven video analytics [63,81,89,97,201,211,

217], FAAS process images in real time and leverage AI for scene analysis. However,

FAAS also control aircraft flight, making flight paths (and which data gets sensed)

dynamic.

Recent UAS carry sophisticated processors. For example, the DJI Mavic carries

the Myriad 2, a system on chip that includes streaming vector engine processors,

hardware accelerators, multiple RISC cores and 2 MB on-chip memory. However,

compared to UAS, FAAS increase computational demands significantly [16, 123, 196,

201, 211]. If aircraft surrender battery capacity to onboard processors and carry

heavier payloads for data storage, flight times will suffer [201]. Instead of using

onboard resources, FAAS workloads may run on land using networked messages to

control the aircraft (i.e., edge cloudlets). Another choice connects aircraft to fast

cloud data centers. Latency, processing capacity and cost differ among these choices.

Professional end-users must understand how these factors affect their bottom line, but

it is hard to answer what-if questions comparing architecture and software designs.

For example, how many missions would complete per fully charged battery (i.e.,

mission throughput) if I ran FAAS software onboard the aircraft instead of edge

servers? Or does data processing speedup provided by a GPU warrant its cost?

Autonomous systems combine many independent software components. Many

components support settings that trade compute demand for energy savings. It is

hard to predict the effects of these settings on mission throughput because they affect

where FAAS fly, how many compute resources they require, and the effects are mission

specific. For example, lightweight image classifiers can lower compute demand and

save energy, but FAAS also fly to more waypoints which can negate savings. End
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users could test each setting and measure mission throughput directly. However, long

complex missions and many software settings make exhaustive testing impractical.

This paper presents a modeling approach that predicts mission throughput. Our

approach profiles energy demands for aircraft and compute. We model missions as a

sequence of waypoints. The waypoint that exhausts battery capacity defines mission

throughput. It is hard to profile energy demands across system settings that affect

autonomous decisions; we call these autonomy settings. Autonomy settings change

flight paths, affecting which data is sensed during mission execution and ultimately

energy demands. We propose autonomy cubes, data structures that characterize the

whole flight area for a mission. Autonomy cubes can approximate sensed data for

any flight path, much like data cubes (their intellectual inspiration) [82].

To validate the model, we created SoftwarePilot, an FAAS suite that performs the

following complex missions: (1) autonomously capture high quality photographs of

human faces, (2) search and map defined areas for first responders, and (3) scout crop

fields for representative samples. SoftwarePilot uses path finding and AI approaches

found in prior research [123,167]. Each FAAS supports a wide range of software and

hardware settings. Toggling these settings can increase waypoints per mission by 4X

and compute demands by 35X.

We collected 122 autonomy cubes, flying in 56 locations and capturing 20970

data readings. We also flew 145 actual FAAS missions and measured ground-truth

mission throughput. FAAS used DJI Spark and Mavic Pro aircraft. We compared

our modeling approach to Aerostack [167] and Autoware [98,123]. These approaches

use reference traces from prior missions to model energy usage. Our model predicted

throughput with 4% error. When trace and mission settings differed on multiple
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dimensions, Aerostack and Autoware yielded error up to 5X and 10X larger than our

approach.

After validating our modeling approach, we explore model-driven management of

edge resources. First, we consider scenarios where end users buy aircraft, software

and hardware separately and then combine them to make a FAAS. After purchasing

aircraft and software, these end users would like to purchase compute hardware that

will provide high throughput. Under a cost budget, these end users may have to

maximize throughput per dollar. End users can use our models to answer these

questions. We used our modeling approach to compare onboard, edge and cloud

architectures. Onboard compute and storage reduced flight time by 50%, significantly

degrading mission throughput. Edge computing eventually provided best mission

throughput and throughput per dollar. However, we observed that larger aircraft

could boost onboard architectures. We also used our modeling approach to compare

scale out, scale up and GPU approaches to meet compute demands. We found that

the best approach depended on (1) autonomy settings and (2) energy capacity. GPU

improve throughput, but deplete batteries quickly. Scaling up cores on chip provided

a reliable approach to increase throughput.

We also study the management scenario where end users control the design and

implementation of aircraft, processor and software [134]. These end users may sell

FAAS to militaries, smart cities or other large operations and can adjust all facets of

FAAS to find high throughput settings. We studied software and hardware co-design.

We set up an adaptive policy that toggles between deep, compute intensive AI models

and less precise but energy efficient AI models. An edge system running CPU and

GPU can power off the GPU for less precise models. We compared approaches that
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toggle GPU states during missions and between missions. Toggling GPU states during

a mission provided higher mission throughput. We also modeled end-to-end cost for an

industrial application: agricultural scouting. With model-driven edge management,

FAAS missions are 87% cheaper than human piloted UAS missions.

Our contributions are as follows:

- Our modeling approach precisely predicts mission throughput. We show that au-

tonomy settings have large effects on FAAS flight path and energy usage.

- We built three open source FAAS through SoftwarePilot (autonomous photography,

search and rescue, and agricultural scouting). We measure their mission throughput

directly and validate our modeling approach.

- We demonstrate edge resource management techniques that boost throughput and

lower costs.

The remainder of this paper is as follows. Section 2.2 provides an overview of

FAAS. Section 5.3 presents an energy model driven by autonomy cubes. Section 2.4

describes the implementation of FAAS. Section 2.5 validates our model and studies

FAAS workloads. Section 2.6 uses our modeling approach to guide FAAS system

management. Section 2.7 discusses future work and limitations of our approaches.

Section 5.7 discusses related work. Section 5.8 presents conclusions.

2.2 Motivation and Background

Autonomous systems perform complex tasks in vaguely defined areas without

receiving commands from humans. By this definition, UAS are not autonomous.

Humans decide (1) where to fly, (2) when to sense data and (3) when a mission is

complete. Figure 2.1 depicts UAS workflow. Humans set high-level mission goals,
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Fig. 2.1: With FAAS, humans set mission goals but do not pilot.

e.g., take a great photo of a human target. Then, they pilot the aircraft to waypoints

by (1) using remote control devices, (2) making gestures or (3) providing a list of

GPS coordinates. At each waypoint, the UAS senses data from its surroundings, e.g.

detailed images or GPS data. After studying data, humans decide if their goals are

met. If not, they choose new waypoints and repeat.

Figure 2.1 also depicts workflow for FAAS. Humans set goals, but all remaining

work is done by software. The system is capable of completing multiple missions

without a human issuing commands. To remove humans from the loop, software

must decide when a mission is complete, meaning both human end users and software

can understand mission goals. There is a semantic gap between true goals and goals

that can be expressed in software. Today, autonomous systems require end users

to translate their vague, high-level goals into mathematical equations (called utility

functions). If the mission is not complete, FAAS software must also choose the next

waypoint.
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An Example FAAS Mission: Crop fields are vast. Scouting reports can miss

subtle problems, e.g., over crowding or crop disease. Human piloted UAS have trans-

formed scouting. Companies, like Fly The Farm [115], fly over fields and capture

detailed images. These images inform farmers, guiding the application of fertilizer

and pesticides. However, UAS pilots charge $1–$5 per acre. One scouting report can

cost nearly 3% of net profits for corn fields [34, 80, 197]. By eschewing human pilots,

FAAS can lower costs.

Figure 2.2 depicts flight area and two agricultural scouting missions explored

similarly in prior research [23]. Flight area comprises waypoints where the aircraft can

fly. Each cell in Figure 2.2 represents a waypoint (here, a GPS location). Following

the blue line, our FAAS flight controller directs the aircraft to a waypoint (A1) and

captures a detailed image. FAAS software analyzes the image, counting corn crops.

If the image contains enough crops to accurately measure the state of the field, the

mission is complete. (Note, the image may be fed into subsequent analysis, such as

yield modeling [105].) If not, FAAS path finding software chooses a new waypoint

(B1). This process repeats and the mission completes at waypoint B2.

FAAS visit only some waypoints on each mission. As shown in Figure 2.2 path

finding software (A* search versus nearest neighbors) changes where FAAS fly and

how quickly missions complete. The settings represented by the red line choose a

longer flight path. This is a key distinction: Video analytics using UAS fly to preset

waypoints and adapt video quality dynamically [201]. With FAAS, analytics can

affect flight actions, changing resource demands in ways that are hard to predict.
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Fig. 2.2: Two agricultural scouting missions. Each image represents an allowed way-
point where the aircraft could have flown (i.e., flight area). Lines represent actual
waypoints visited. Both missions begin at A1.

Runtime Execution: Figure 2.1 depicts runtime execution with key software in

red. First, software manages flight controls for takeoff, landing and maneuvers. Sens-

ing software pulls data from aircraft sensors. These data producing and actuation

components are latency sensitive and normally use processors placed onboard the

aircraft [16]. Like video analytics, FAAS use AI models to convert sensed images to

multi-dimensional points [81, 89, 150, 201]. Each dimension represents the output of

a model. This discussion does not require a specific class of model (e.g., DNN or

regression) and models are built offline. During runtime, models are evaluated to

classify scenes. This execution can use onboard processors, edge cloudlets or cloud

resources [201]. Reinforcement learning can be a robust approach to autonomously

control devices [109]. In this approach, FAAS are distributed with training data on
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Fig. 2.3: Modeling mission throughput for multiple architectures, aircraft and auton-
omy settings.

observed settings. Each training data element contains (1) scene features computed

using AI models, (2) a flight action and (3) a utility gain. An entry means that taking

the flight action after observing the scene features, at one point in time, led to the

utility gain. Reinforcement learning maps scenes to actions. End users must define

utility of sensed data as a function over extracted features. This software too can

execute onboard, at edge cloudlets or cloud.

2.3 Performance Modeling

Figure 2.3 outlines our approach to model mission throughput. Model inputs

relate to autonomy (goals & workload), compute architecture and aircraft.

Our approach has four stages, shown as boxes in Figure 2.3. First, we collect

all data that could be sensed during a mission, i.e., an autonomy cube. Autonomy

cubes are used to construct precise flight paths along with a pathfinding algorithms

discussed later (KNN, A*). Given a flight path, the next stages profile compute and

aircraft workloads using empirical data. Finally, bottleneck analysis predicts whether

aircraft or compute exhausts batteries first.
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2.3.1 Autonomy profiling

FAAS are hard to model, because their flight path depends on which data is sensed

at runtime. Two FAAS flying only a few feet apart can differ on the utility of their

sensed data. Their flight paths could diverge, affecting energy usage per mission and

ultimately mission throughput. We mitigate variation caused by spatial displacement

by modeling expected mission throughput averaged over many runs. Path finding, AI

models, utility functions and other autonomy settings have systemic and non-linear

effects on flight path.

Competing Approaches: Before detailing our approach, it helps to explain how

recent work models autonomous systems [98, 123, 168]. Autoware [98, 123] uses a

long, representative trace from a self-driving car. This trace suffices for research

because safety concerns constrain driving maneuvers and execution environments.

Aerostack [168] creates multiple traces where users change the environment between

traces. This approach captures a wide range of maneuvers, but, if autonomy settings

change, flight paths will diverge from previous traces.

We use autonomy cubes, a data structure that captures all images that can be

sensed during a mission within user defined constraints. Autonomy cubes represent

a principled ideal for benchmarking; they can be used to compute flight paths across

any FAAS autonomy setting. By depicting captured images at each allowed GPS

location, Figure 2.2 presents a simple 2-D autonomy cube.

Defining autonomy cubes: Shown in Equation 2.1, A waypoint x is a multi-

dimensional point. Dimensions can abstract (1) GPS or grid positions (e.g., Fig-

ure 2.2), (2) aircraft poses (e.g., aircraft attitude, gimbal positions), and localized

data (e.g., altimeter and compass readings). Waypoint x is a set of dimensions d1...dn
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that uniquely describes the UAVs real world position and state. FAAS fly in a dis-

crete and finite space. where the dimensions are constrained either by limitations

of the vehicle, the user, or communication range. For each dimension di in which

the vehicle can move (e.g yaw, upward motion, northward motion). dimensions are

constrained to some maximum magnitude Di, describing the maximum range of the

vehicles motion in said direction as such: ∀i : 0 < di < Di.

x = (d0, ..., dK) (2.1)

fai ∈ FA : {xm} → {xn} (2.2)

FS : {x, fai, y} → {1|0} if fai(x) = y (2.3)

ug =
u(ai(x))

u(ai(y))
◦ FS{x, fai, y} (2.4)

As shown in Equation 2.2, we abstract flight actions FA as a set of functions that

move the UAV between waypoints. Precisely, a flight action applies a set force. The

force moves a hovering aircraft along six degrees of freedom. Actions are calibrated

offline. Each action fai moves aircraft from one expected waypoint to another. Due to

spatial displacement, actual and expected positions may differ slightly. For example,

wind can apply unexpected force, moving the aircraft away from its expected position.

Note, waypoints reachable by any combination of actions define flight area.

A single step along a flight path has a starting point, action and ending point. The

flight step function FS (Equation 2.3) indicates valid steps where the flight action

leads to an end point within the confines of the FAAS flight areas dimensions. A

waypoint will always have |FA| flight actions, but only some may produce valid flight

steps. At each waypoint, FAAS senses its surroundings, transforms sensed data using
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AI models (ai) and computes utility (0 <= u(x) <= 1) of its current state, which we

call a featureset. Each valid flight step, i.e., FS(...) → 1, has utility gain. Referring

to Figure 2.2, the first flight step for the blue line is: {[A, 1],FlyNorth, [B, 1]}. The

AI models for this mission include A* (i.e., aiA∗).

We now define autonomy cube, ∀x ∈ X ac = ∪ (x, ai(x)), where X represents

the set of all reachable waypoints. This is to say that an autonomy cube is a data

structure that represents the set of all reachable waypoints and their featuresets.

Equation 2.4 shows that ac allows FAAS to compute utility gain for any valid

flight step. As shown in Equation 2.5, a flight path is a sequence of N valid flight

steps. Autonomous systems aim to maximize total utility gain TG, i.e., the product

of utility gains acquired at each step in the path.

fp = {xn, faf(n), yn}N

TG : {fp} → r ∈ R : r =
∏
n

ug(xn, faf(n), yn)
(2.5)

Using autonomy cubes: Autonomy cubes can be used to simulate a FAAS mission.

For this paper, we constrain flight areas to an n-dimensional mesh of waypoints, e.g.,

a building or crop field. Each dimension corresponds to a FAAS flight action. Each

action has an inverse action that is expected to return the aircraft to its original

position. Supported actions include x,y, z translation and pitch, yaw, roll and gimbal

pitch.

Capturing autonomy cubes: Quadcopters support 6 controllable degrees of free-

dom, meaning they can use pitch, yaw and roll to fly in any direction along an x,y,z

coordinate system [129]. Unlike cars and fixed wing planes, the coordinate system can

be explored in any direction relatively quickly, requiring at most rotation and thrust.
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However, they only move forward in time. We exploit quadcopter maneuverability

to capture sensed data before it changes, i.e., we transform time into discrete blocks

based on how frequently the utility of sensed data changes.

Equation 2.6 defines scene persistence P as the minimum discrete time slots t

such that a hovering aircraft perceives qualitatively similar utility. As shown in

Equation 2.7, to capture an autonomy cube, the aircraft or aircrafts fly to each

waypoint in X before P seconds have elapsed. Due to the unpredictable nature of

FAAS pathing, we must safely assure that a cube can be created within persistence

constraints before flight. This is done by assuming that each flight action takes

worst-case time. If a worst-case flight path can complete an autonomy cube within

P seconds, so can all others. for this reason, we use the slowest flight action (fas) to

model shifting between waypoints.

It is possible to use multiple aircraft to collect an autonomy cube. Equation 2.6

introduces the variable s representing swarm size (the number of UAV capturing the

autonomy cube) to account for the decrease in latency of using a swarm of UAV.

P = Latency(fas(x))× t : (2.6)

Maxi(Latency(fai(x))) ∗ |X|
s

< P (2.7)

Examining Equation 2.7, we observe four techniques to scale our approach.

1. Increase scene persistence: Scenes can be tweaked manually so that key features

change less frequently. For example, we have tested our FAAS benchmarking suite

using mannequins in place of fidgety humans, and farm land.

2. Shrink flight area: We can shrink the total area where aircraft can fly or allow

fewer flight actions. Of course, fewer flight actions degrades total utility gain.
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3. Speedup flight actions: We could also reduce flight time going between waypoints.

Scheduling autonomy cube flight paths by prioritizing waypoints with the shortest

flight time relative to the current waypoint would minimize delay per flight step.

4. Use swarms to partition cubes: Finally, multiple quadcopters can be deployed at

once, allowing each to capture a fraction ( 1
S
) of the flight area. We have used swarms

to capture autonomy cubes used with our FAAS. However, for workloads that require

tight maneuvering (autonomous photography), partitioning presents several research

challenges. First, partitioning to minimize expected delay per action is challenging.

Seconding, partitioning should consider the effects of battery capacity. Partitioning on

search and rescue (partitioning by rooms) and agricultural sampling (by field region)

are much more feasible. Finally, aircraft flying in the same region may interfere with

each other.

We used swarms comprising 2 & 3 aircraft to partition flight area along the vertical

axis (y-axis) for our autonomous photography benchmark. As expected, we were

able to cover up 3X more flight area in the best case. However, we also observed

anomalies unique to aerial systems. Placing aircraft immediately under each other

(i.e., partitioning y while strictly keeping x & z the same) affected wind patterns,

creating suctions. The aircraft crashed into each other. Partitions that worked well

slightly offset the aircraft in the x & z dimensions.

2.3.2 Aircraft profiling

In the second stage of our modeling approach, we profile latency and energy func-

tions for flight actions on an input aircraft. In Equation 2.8, the LatencyA function
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estimates latency using the average delay of flight actions executed at multiple, sam-

pled points within the flight area denoted by N . Conceptually, we do the same for

energy and hover power. This profiling is done offline.

LatencyA = {fai(x)} → r ∈ R :

r =

∑
n′ LatencyA(fai((xn′))

N
,N << |X|

(2.8)

2.3.3 Compute profiling

Compute latency and energy vary depending on the content of data sensed at a

waypoint. Unlike UAV actions, which have a tight latency distribution, compute la-

tency has more variance. Scheduling fluctuations, unpredictable threading overhead,

model timing, and network interference all cause compute timings to vary. Com-

pute latency was profiled online, requiring a varied set of execution environments and

conditions. experimental latency numbers for all individual components of our bench-

mark were compiled into normal distributions (represented my µ and σ), truncated to

the third standard deviation. Our model uses these distributions to predict compute

latency for offline missions similarly to Equation 2.8.

LatencyC = {ai(x)} → (µ, σ) ∈ R :

σ =

∑
n′ Latency(ai((xn′))

N
,N << |X|

(2.9)

2.3.4 Throughput modeling

Recall, FAAS compute their flight path fpi at runtime. As shown in Equation 2.10,

each flight step fs[i,n] ∈ fpi is informed by data observed during execution.

ûgn,n+1 : {xn, faf(n), yn}N → {xn+1, faf(n+1), yn+1} (2.10)
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Specifically, FAAS compute expected utility gain ûg , using past and training data

comprised of additional autonomy cubes to infer the effects of flight actions. Flight

path fpi is the result of iterative invocations of expected utility gain given an au-

tonomous cube, i.e., fpi = {̂ug ◦N ac}. To model throughput, we assume we access to

ûg and ac.

We model energy used by the aircraft with two terms. First for every step along

a flight path, we sum energy used for the corresponding action. Second, multiply

latency for compute by power used when hovering. The inverse applies to compute.

When both compute and aircraft have distinct energy sources with known storage

capacities (Cair and Ccmp), mission throughput is computed by looking at the number

of missions completed before exhausting one energy sources.

Equations 2.11 shows how we calculate final throughput based on aircraft and

compute energy (Eair and Ecmp). Eair can be calculated by summing the energy

consumption of all individual flight actions. The energy consumption of a flight action

amounts to its latency times the base power consumption of the UAV (hover power)

plus the extra energy required to perform that flight action. Ecmp is similarly profiled,

using compute idle power as its base. Throughput (tput) describes the maximum

number (N) of waypoints reached in a mission, which is dependent on Eair and

Ecmp. When one component runs out of energy, the system’s mission completes, as

shown in 2.11.

Eair(N) :
∑
n

(EnA(fan) + LatencyC(ai(xn))× PwrA(fahover))

Ecmp(N) :
∑
n

(EnC(ai(xn)) + LatencyA(fan)× PwrC(idle))

tput = min N : Cair − Eair(N) = 0 or Ccmp − Ecmp(N) = 0

(2.11)
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1) high utility req.
2) max waypoints
   (10, 20 or 30)

FAAS 
mission

AI classifier 
accuracy &
complexity

1) Integer precision (int) fast but less accurate,
2) floating point precision (fp), 
3) deep most accurate but require GPU (all)

utility functions 
and flight 

constraints

1) prioritize high utility  (util)
2) prefer short missions (tput) 
3) good mix 

flight actions

path finding 
algorithm

1) choose from K-nearest neighbors
2) use A* search to avoid local optima 
3) use energy aware A* (EA*) which 
prioritizes low power movements

execution 
context

edge systems, cloud, or onboard

arch. support scale up, scale out, gpu acceleration

autonomous
photography

search 
and rescue

agricultural 
scouting

15 hyper 
cubes in a 

target area 

flight area 2x2x3x3 hyper 
cube near 

subject

n x m grid over 
crop field

translate x, y and z, 
gimbal pitch

translate x 
and y

Table 2.1: Layered implementation and system settings.

2.4 Implementing FAAS

Table 2.1 decomposes FAAS and presents a layered, systems view of their com-

ponents. This section presents each layer and compares system settings for 3 FAAS.

FAAS missions: We implemented (1) autonomous photography, (2) search and

rescue, and (3) agricultural scouting. For autonomous photography, the FAAS posi-

tions itself and takes high-quality portraits of human faces. It autonomously explores
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its flight area. This workload was inspired by computational photography and Sky-

Dio [3, 16].

The search and rescue FAAS extends autonomous photography. It searches mul-

tiple areas for humans. During emergencies or disasters, it could help first responders

discover victims. The FAAS navigates the aircraft between areas, e.g., rooms in a

building, and also explores areas thoroughly.

As discussed, agricultural scouting is commercially viable today. This FAAS takes

aerial images of a crop field similar to prior work [23]. For this work, we had access to a

corn field, so our missions produce detailed images of corn and planting rows. Scouting

as a workload kernel underlies aerial surveillance and military target detection.

Flight area and flight actions: Autonomous photography covers a 2x2x3x3 hyper

cube. The aircraft can translate X, Y and Z axes and rotate the camera. We have

collected 110 autonomy cubes for this benchmark. Search and rescue explores 15

2x2x3x3 hyper cubes and supports the same actions.

Agricultural scouting covers a 75-acre crop field. The flight area is a 55x43 grid.

The aircraft can translate X and Y dimensions only. In total, we have collected 122

autonomy cubes (20970 images) across (1) all 3 FAAS, (2) diverse settings: outdoors,

indoors, raining and windy, and (3) with multiple targets: humans and corn. Captur-

ing a cube took roughly 11 minutes for autonomous photography cubes and 4 hours

for agricultural scouting.

Utility functions and constraints: Photography and crop analysis use different

utility functions. A good portrait contains a centered, bright and crisp face [48]. We

created a utility function using the following features: face detection, face location

in the image, image brightness and size of the facial bounding box. A good picture
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of a crop field avoids blur, contrasts crops and soil and does not include extraneous

objects. Our utility function here considers glare, image brightness and corn crops

counted. For all utility functions, each feature is weighted and the whole function is

normalized.

End users set thresholds. When utility exceeds the threshold, the FAAS mission is

complete. Our photography FAAS support 3 thresholds. A high threshold encourages

the FAAS to explore its flight area. As a result, missions are longer. A low threshold

encourages the FAAS to land quickly. We label this setting as high throughput.

Finally, the default settings aims for a medium threshold that provides good mix.

Flight area bounds FAAS flight path spatially. Flight actions that cause the

aircraft to leave that area are not executed. If the aircraft battery falls below 10% of

its capacity, our FAAS lands immediately. The Max Waypoints setting bounds flight

path temporally. After exceeding this threshold, the mission completes.

Path finding: By default, 4000 training data entries are used to decide where to fly.

Each training data entry describes a single image from a collected autonomy cube.

Training data entries consist of a vector of utility features, as well as pointers to other

training data entries that represent sensed data within the autonomy cube that the

FAAS could reach with one motion (e.g a training data entry may have pointers to

data sensed using the left, right, up, and down flight actions). This reduces dozens or

hundreds of autonomy cubes containing tens of gigabytes of image data into portable

CSV files on the order of megabytes.

Pathfinding algorithms run on top of our cubes and training set to model FAAS

actions. The K-Nearest Neighbors (KNN) algorithm finds 9 entries with utility fea-

tures nearest to the sensed image. By default, we implement greedy path finding.
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The expected utility gain is the mean gain observed by nearest neighbors grouped by

flight action. This approach takes the flight action with the largest expected utility

gain.

A* Search improves greedy KNN with a linear heuristic to model the whole flight

area, choosing a flight action along the best expected path. Energy-aware A* Search

weights flight actions according to aircraft profiles. It produces flight paths that prefer

low energy actions. A* Search and its energy-aware variant are well studied and have

been used in recent research [55,98,123].

AI models: Each FAAS characterizes sensed data into a vector with up to 64 di-

mensions. Each dimension represents the output of an AI classifier. We distinguish

classifiers by compute demand and support any subset of these groups. Integer models

include OpenCV local binary pattern, cascade models using only integer data types,

and RGB image classifiers. These models are lightweight, fast and imprecise. Floating

point models include DLIB histogram of gradients. The are more precise than integer

models but also slower to compute. Deep models include DLIB’s convolutional neural

network (CNN) for face recognition and our custom CNN for crop recognition. We

execute deep models only when GPUs are available (i.e., not on CPUs).

Execution context and architectural support: SoftwarePilot, our FAAS suite, is

composed of micro services. Each micro service provides basic functions, e.g., issuing

aircraft commands, data sensing, data storage, running sensed data through an AI

model, querying path finding algorithms etc. Micro services exchange messages using

Californium UDP CoAP clients and servers [114]. Our suite allows for execution of

autonomy cube-based pathfinding and modeling on edge or cloud systems.
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2.5 Evaluation

Modeling simplifies testing of a wide array of hardware settings on FAAS through-

put. Given ground truth data and profile information, the goal of our modeling

approach is to make results from modeled flights and actual FAAS missions virtu-

ally indistinguishable. Our FAAS provide ground truth. We can measure mission

throughput directly with real aircraft, goals, software settings and compute hard-

ware. This section first compares our model predictions to observed throughput.

Then, we compare competing modeling approaches. Finally, we isolate compute and

aircraft profiles, and characterize these workloads.

2.5.1 Model validation

We flew each benchmark under the system settings in Table 2.1. Our FAAS

uses the DJI Android SDK to control the aircraft via WiFi connected laptop (edge

device). Our platform can also run software components across multiple devices or

on the cloud. Edge devices run Ubuntu Linux 18.04.

Each test started with fully charged aircraft and edge batteries. We then flew

missions until one of the batteries fell below the safe landing threshold. Observed

mission throughput is the number of missions completed. We repeated each test 6

times and report mean throughput.

Unless noted otherwise, we used the DJI Spark aircraft [57]. Its body is roughly 6

square inches. It weighs 300 grams. We observed that it can hover for 11–13 minutes

without recharging its 16 Wh lithium ion battery. Also unless otherwise noted, we

use edge architecture setup, because it is easier to change architecture settings. We

tested edge devices with the following compute architectures.

30



2c 2x
2

c

4c 4c
+

g
p

u

4c 4c
+

g
p

u

2c 2c 2c 2c 2c

0
5

10
15
20
25 predicted observed

th
ro

ug
h

pu
t

(m
is

si
on

s)

2carch

gpu

AI models

path find

waypoints

goal

2c

no

fp

knn

10

mix

2x2c

no

fp

knn

10

mix

4c

no

fp

knn

10

mix

4c

yes

all

knn

10

mix

4c

no

fp

a*

10

tput

4c

yes

all

a*

10

tput

2c

no

int

ea*

6

tput

2c

no

int

a*

15

util

2c

no

int

knn

15

util

2c

no

int

a*

6

util

2c

no

fp

knn

10

util

Fig. 2.4: Our model predicts mission throughput precisely. Baseline setting is high-
lighted

• 2c: HP G6 laptop; 2-core i5 7200u processor; 3.1 GHz; 3 MB cache; 4 GB DDR4

RAM; 500 GB hard drive.

• 2x2c: 2 HP G6 laptops using 1 Gbps Ethernet router. One laptop runs flight control,

pulls images from the aircraft and computes integer AI models. The other laptop runs

path finding algorithms and floating point models.

• 4c: 4-core i5 7300u processor; 3.5 Ghz Ghz; 3 MB cache; 4 GB DDR4 RAM; 500 GB

hard drive.

• 4ci7: 4-core i7 7500u processor; 3.5 Ghz; 4 MB cache; 8 GB RAM; 256 GB SSD.

• 4c+gpu: 4ci7 connects to an NVIDIA 1080 Ti.

• 2c+gpu: GPU is connected to 2c.
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Prediction accuracy: Recall, our modeling approach predicts expected mission

throughput, i.e., an average over many missions. For autonomous photography and

search and rescue, our approach uses autonomy cubes to produce 50 mission flight

paths for each autonomy setting. Note, compute hardware settings do not affect flight

paths. Autonomy settings include AI models, path finding and utility functions. For

each flight path, Section 5.3 describes the workflow to predict mission throughput.

Agricultural scouting covers a larger area. We have fewer cubes. Here, we generate

6 flight paths for each autonomy setting. Autonomy cubes were implemented by a

micro service that returns an image from a cube waypoint in place of the aircraft

camera. FAAS software interacts with the micro service as it would with the aircraft.

Figure 2.4 compares predicted and observed mission throughput for autonomous

photography. We shorten the names of mission goal parameters to mix, util and tput

for space. We also shorten integer and floating point settings for AI models to int

and fp. Our tests cover every autonomy setting supported. Mean absolute percent

error (i.e., |pred−obs|
obs

) was 4%. Error can be attributed to subtle differences in flight

conditions, battery age, and hardware timing between profile and test flights. We

found that GPU, goals and path finding settings affected throughput by up to 1.8X,

1.75X and 1.71X in isolation. Combined, settings had complex effects. For example,

adding a GPU sped up throughput by 1.15X under 4c, KNN and util. However, under

4c, A* and tput speed up was 1.23X–a 7% improvement. Util and KNNmissions spent

more time hovering. Energy used hovering lessened whole system speedup gained by

adding a GPU.

Competing modeling approaches: We also studied modeling approaches inspired

by recent research. In Autoware [98, 99, 123], researchers use ROSBAG recordings

32



knn
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autoware using knn trace to model a*
our approach using autonomy cubes
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a* [A,1]→fly[B,1]→a* [B,1]→fly[B,2]→a* [B,2]→complete

autonomy cube supplies data

flight path (based on Fig 2)

a*

Fig. 2.5: Depicting Autoware versus our approach.

from a real, long-running self-driving car. We mimicked this approach by collecting

long traces over multiple missions. For autonomous photography and search and

rescue, we combined 100 mission flight paths. Scouting used 12 missions.

Autoware does not consider autonomy settings. As such, this approach does not

model flight path well. Figure 2.5 depicts the problem using examples from Figure 2.2.

Autoware profiles compute workloads on new hardware. However, Autoware can not

acquire data outside of the trace. If autonomy settings change where FAAS would

fly, Autoware doesn’t have access to the sensed data and profiles using available data.

Figure 2.5 highlights the problem: A* missions complete faster than KNN and Mix

missions. As a result, Autoware over estimates the total compute workload.

Aerostack flies autonomous aircraft in a wide range of settings by manually insert-

ing obstacles [168]. This approach improves Autoware’s methodology, because traces

include data from multiple settings. We mimicked this approach by creating 3 long

running traces for each setting.

Figures 2.6 (a – d) compare our approach, Autoware and Aerostack. We also

compare a simple modeling approach driven by data collected from DJI and Intel
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Fig. 2.6: (a – d) Comparing trace and cube driven modeling approaches. (e) poor
image quality degrades mission. (f) Autonomy settings shift compute and aircraft
energy demands. (g) Autonomy settings affect common architecture counters.

(DJI). This approach ignores autonomy and uses flight time and aggregate cycles

per second to model throughput as a function of speedup, max waypoints and flight

time. Autoware and Aerostack traces used missions conducted under baseline setting.

Aerostack traces toggled waypoints (15) and A* for multiple traces.

Across all workloads, settings, and architectures, competing approaches increase

relative error from 1.2x–10x. Workloads with high flight overhead and lower detail

sensed data experienced less error than low overhead workloads. In autonomous

photography, where subtle differences in pathing can cause massive differences in

sensed data, sees between 1.7X to over 10X error when using other approaches.

In Figures 2.6 (a,c & d), we used a setting close to the reference trace: we changed

mix to util. In these graphs, Autoware and Aerostack avoid inflating error by 2X.
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Given our model predicts throughput with 4%, these results are not too bad. However,

Figures 2.6(b) makes 2 major changes: we changed mix to tput and knn to A*. As

shown earlier, these settings affect throughput greatly. DJI inflates relative error

10X, Autoware by up to 20X and Aerostack by 5%. These results suggest that

benchmarking must account for flight path— and, more broadly, software settings

related to autonomy.

Changing aircraft: To assure the validity of our modeling approach, we created and

validated models for the DJI Mavic Pro as well as the Spark. The DJI Mavic Pro is a

734g personal UAV, roughly 12 inches in length. It has a 43 Wh lithium ion battery

and a maximum hover time of 23-25 minutes. Mavic, with more powerful motors and

processors, requires more energy to run than Spark. Across the flight components

we modeled, Mavic consumes 45-55% more energy than Spark. Validation through 5

fully autonomous missions provided an average error of 3% for our Mavic model.

Image Quality: Figure 2.6(e) describes the effects of image quality on throughput.

Recent UAS work suggests using high compression ratios [20, 77] (such as JPEG60)

or low resolution images to speed up detection. As shown, processing times decrease

with compression ratio. However, image quality degrade object detection. As a result,

aircraft explore more waypoints, possibly without producing valuable outcomes.

Figure 2.6(e) shows the decrease in throughput as image quality degrades using

DLIB’s facial recognition CNN. At the default quality of the DJI Spark camera (12

megapixels), our FAAS can complete 27 missions per charge. At lower image quality

(3 megapixels [20,77]), mission throughput has degraded 62%. This result shows that

end-to-end metrics are critical in autonomous systems— results driven by processing

time alone can miss whole system impacts.
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2.5.2 Workload study

Figure 2.6(f) reports the impact of aircraft hover, flying, networked data transfer,

idle compute and runtime software on total system energy. The aircraft accounts for

58-90%. The use of GPU increases the impact of compute by 4.6X. Table 2.6(g) delves

into the architectural metrics affecting compute latency on facial recognition work-

loads. These data were collected on the 4c hardware using the Linux Perf tool. We

observe that autonomy settings affect waypoints per mission (WPM). Integer mod-

els are too imprecise, causing the FAAS to visit many waypoints. However, integer

models execute efficiently on general purpose processors, reducing the frequency of

cache and branch misses by 25%. This setting provided the lowest latency, speeding

up runtime by 4X.

Under A* search, the runtime executes more instructions per waypoint (IPW)

before encountering cache misses than baseline setting. However, despite the lower

cache miss rate, it also incurs more branch misses and executes more IPW (i.e.,

instructions spent computing utility gain for a sequence of actions). The net result is

a 29% slowdown.

2.6 System Management

Our model can help FAAS end users: (1) manage compute hardware, (2) assess

trade-offs between tightly and loosely coupled aircraft, software and hardware, and

(3) adapt hardware and software at runtime.
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2.6.1 Managing compute resources

Our modeling approach uses autonomy settings to construct realistic flight paths.

Flight paths and autonomy cubes yield representative compute workloads. These

workloads can be tested without flying the aircraft. Consider an end user that owns

a commodity aircraft. This end user may ask, which hardware resources will provide

good throughput? Reusing flight paths across competing hardware solves this problem.

When upgrading compute resources, there are 3 options. With scale out, compute

resources are replicated and the workload is balanced across them. Upgrading from

our 2c to 2x2c setups reflects scale out. Scale up replaces resources with faster

or more energy efficient resources, e.g., 2c i5 to 4c i7. Finally, workload targeted

accelerators can augment existing resources, e.g., 2c+gpu.

Figure 2.7(a) plots speedup achieved by scaling out, scaling up, and adding GPU

using the autonomous photography FAAS. Speedup is tputnew
tputold

. For this plot, the

denominator is from a 2c processor running on a device that has 2 Wh battery.

Under 2 Wh battery, only scale up provides speedup greater than the increase in

system cost. If the upgrade includes a 20 Wh battery, scale out and scale up are

worthy investments. GPU speedup does not match its 9X cost increase. However, a

GPU provides greatest increase in throughput.

2.6.2 Comparing onboard, edge and cloud

DJI software development kits support edge architecture where tablets run AI

software and control aircraft remotely [56]. For developers, these devices offer one

hop, low latency access to the aircraft and powerful compute. Further, developers

can procure resources as needed.
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Processors located onboard could provide lower latency, but there is a downside:

onboard devices take energy from the aircraft, decreasing flight time. Note, flight

time decreases for two reasons. First, and most directly, processors use energy for

vision processing, path finding, etc. Second, more subtly, their weight increases thrust

needed to take off, hover and fly. Small aircraft simply can not move enough air to

carry an Nvidia 1080 Ti (1041 g). Even larger unmanned aerial vehicles would notice

decreased in flight time.

The cloud is also an option. Elastic cloud services could dynamically provision re-

sources, allowing end users to lease hardware on demand and avoid over provisioning.

The downside is that slow network latency reduces responsiveness.

We extended our aircraft profiles to model flight time given added payload. The

relationship between flight time and payload weight depends on nominal thrust and
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aircraft weight [129]. Specifically, we modeled flight time lost to carry Intel i5 CPU,

DDR4 RAM and SSD using manufacturer provided thrust and power loading data.

We compared three aircraft: (1) Spark, a 300g UAV that can carry 500g; (2)

Mavic, a 734g UAV that can carry 1300g; And (3) Matrice 100, a 2400g enterprise

UAV that carries 3600g. For Spark, onboard CPU and RAM would degrade flight

time by 20%. The full compute system would degrade flight time by 50%. For Mavic

and Matrice, the full compute system onboard would degrade flight time by 10%.

We updated our aircraft profiles to get onboard throughput. We increased energy

needs for each flight action in proportion to flight time degradation caused by onboard

payload. Then at each waypoint, we subtracted compute energy from aircraft capac-

ity. For cloud throughput, we deployed 2x2c set up using an AWS micro instance

as the second processor. This led to a 12% throughput degradation due to moving

images between the edge and cloud.

Figure 2.7(b) explores the relationship between throughput per dollar and aircraft

lifetime (measured in missions). This figure uses the Spark aircraft and assumes that

users either purchase hardware or cloud time on an instance that has a static cost

per FAAS mission. Throughput per dollar of the cloud system remains static. We

used AWS on-demand micro instances for pricing. Onboard and edge systems have

overhead cost that cloud systems do not, but minimal maintenance costs, meaning

they experience gains in total throughput per dollar as the system is used. Cloud

systems also experience much higher latency than edge systems making edge systems

more attractive for live FAAS processing. The crossover point is where onboard

and edge systems become more cost effective compared to cloud systems. Using

our 4c configuration with a high throughput autonomy setting and a DJI Spark, an
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edge system would become cost effective after only 10 missions. Moving the system

onboard takes 5X as long to cross over.

2.6.3 Adaptive hardware-workload co-design

End users may have many options as to which AI models they choose to deploy

on their FAAS. Our benchmarks can switch between multiple models that vary in (1)

recognition accuracy and (2) latency. Highly accurate models are needed to detect

distant or dark objects. Less complex models suffice for clear, crisp images. However,

highly accurate DNN with DLIB (deep models) require a costly, power hungry GPU.

We also use the OpenCV LBP cascade classifier (int models) which, when run on a

2 core laptop, has lower latency than DNN, but also lower accuracy. Deep models

can find small, unclear faces in large, noisy images, but as images become clearer, it’s

performance converges with that of int models.

As the performance of Deep and Int models converge, it is prudent to turn off the

GPU and use only the faster Int models. This approach conserves edge battery and

increases throughput by decreasing feature extraction latency.

Figure 2.7(c) depicts an experimentally obtained example mission sequence where

the GPU is duty cycled. We set a utility threshold of 0.5, turning off the GPU and

using Int models only after a 0.5 utility image was found. All signifies waypoints

where deep models were computed whereas Int signifies waypoints where only Int

models were computed. For waypoints occurring after the duty cycle threshold, Int

models and deep models performed similarly, finding images at comparable utility

and choosing the same paths.
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Figure 2.7(d-e) explore the differences in throughput and utility of duty cycling

GPU using 3 different policies:

• Our Approach: Assigns a user defined threshold for duty cycling. Once one image

in a flight path exceeds that threshold using the DNN model, the GPU is turned off

and the LBP model is used for facial recognition.

• Ubora: Mimicks adaptive quality management in recent research [101, 102]. Each

mission is treated as a query. GPU and Int models are toggled once at the start of

each mission. Average utility taken over the flight path is compared to a duty cycle

threshold. If average utility exceeds the threshold, GPU is turned off until average

utility falls below the threshold.

• Static: Uses deep models for all feature extraction, with no GPU duty cycling.

Figure 2.7(d) shows a 1.3X gain from using our duty cycling approach as compared

to the static approach, and a 1.4X gain as compared to Ubora when using either A*

configuration. The A* configurations both have large enough edge batteries such

that they are bottlenecked by the UAV battery, so gains or losses in throughput

are entirely dependent on execution time savings during feature extraction, which are

realized by the GPU configuration. The Ubora approach sees a decrease in throughput

as compared to both others. Using a cumulative utility threshold allows for the

Ubora approach to miss local utility spikes in a high variance workload like UAV data

collection. In our test configurations, Ubora duty cycled the GPU either too early or

too late. Duty cycling too late (after integer models and deep models converge) causes

Ubora to function like our approach, but with more GPU usage. Duty cycling too

early potentially switches to integer models before accuracy converges, taking more

waypoints on average to meet utility goal. This affect can be seen in Figure 2.7(e),
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Fig. 2.8: Agricultural scouting cost as end users use parallelism to increase through-
put. Our model-driven edge management provides savings at scale.

where Ubora sees considerably lower average utility than both our approach and the

static approach. The failings of the Ubora approach in this context, contrasted with

the success of our simpler approach, demonstrate that while duty cycling models and

hardware in FAAS workloads can be advantageous, one must carefully choose their

duty cycling approach.

Average utility across autonomy setting is also important. As our architecture,

models, and path-finding algorithms improve, so does average utility. Our KNN con-

figuration sees 0.83X lower image utility as compared to A* using the same models.

When transitioning to a deep model on the GPU configuration, we see a 1.06X im-

provement in average utility which can be attributed to the higher accuracy of the

deep model. Using our low battery configuration (where edge battery is a throughput

bottleneck), we see that our approach makes a 1.65X improvement over a non-duty

cycling approach, and a 1.15X improvement over Ubora.
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2.6.4 Speedup for autonomous photography

Our model-driven approaches found highest throughput using 4-core Intel I7 with

GPU while using low utility threshold, adaptive duty cycling and A* search. This

setting completed 34 missions using Spark without recharging. Compared to 2-core

Intel I5 using greedy KNN to find high utility images, the 4-core setting sped up

compute latency by 15X. Looking deeper, the following changes were significant:

• Autonomy settings: A* search and lower threshold reduced waypoints per mission,

providing 4.1X speedup.

• Using a GPU: Up to 2.25X over other approaches.

• Software driven power management: 1.3X throughput increase over static GPU

usage.

Combined, the best settings yield a 10.2X increase in mission throughput compared

to the 2-core setting mentioned above.

2.6.5 End-to-end savings for crop scouting

Our scouting FAAS covers roughly 1-acre per mission and completes 15 missions

per hour. 1 FAAS would require 10 hours to scout a 150-acre field. However, multiple

FAAS can work in parallel to scout the whole field faster. Given a deadline, we can

estimate total hardware and software cost for all parallel FAAS. In contrast, UAS

require human piloting. Based on first hand experience, we assume human pilots can

execute 11 lawnmower missions for $20 per hour [115]. We also model cost for UAS

equipment such as batteries, compute resources, and aircraft.

Figure 2.8 shows the cost for parallel UAS and baseline FAAS to achieve x mis-

sion throughput per hour. Baseline FAAS (2c, autoware, KNN) outperforms human
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piloted UAS. additional equipment and labor costs inflate UAS costs. Our model-

driven approaches improve mission throughput significantly, gaining 6X and 4.2X

on UAS and baseline. Adaptive GPU power cycling provides further improvements.

Model-driven, adaptive FAAS reduce costs by 87% compared to human-piloted UAS.

2.7 Limitations and Future Work

Our Autonomy Cube modeling approach and analysis includes many limitations

and future opportunities. First and foremost, autonomy cubes can be difficult to

collect. We flew over 100 FAAS missions to collect autonomy cubes for both FAAS

modeling and as input to pathfinding algorithms. This is not feasible for all FAAS

tasks. Future work should explore the creation of autonomy cubes from extant geo-

tagged multidimensional image sets. For instance, large available datasets like Google

Street View [8], or autonomous driving datasets like KITTI [76] could be used to con-

struct autonomy cubes for a multitude of relevant FAAS tasks.

Many of our management strategies focused on decreasing compute power con-

sumption of a single FAAS. Multiple FAAS, i.e., swarms, can share edge compute

systems while each UAV carries its own battery on board. The aggregate compute

demands of a large swarm could transform power usage, making edge system batter-

ies the bottleneck resources. Our approach can adjust battery sizes, but we can not

model how swarms will inflate compute demands.
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2.8 Related Work

FAAS choose their flight path at runtime similar to self-driving cars. Workload

settings that affect their flight path can change energy usage and throughput signif-

icantly. We quantified this and proposed autonomy cubes to capture representative

traces when settings change. Autoware is a project designed to make autonomous

driving more open [98]. Autoware presents open algorithms, libraries, and consumer

hardware components for autonomous driving, many of which are applicable to FAAS.

It’s motion planning design, as referenced in section 5, was improved upon in this

paper. Lin et. al extend Autoware to study accelerators [123]. Object detection and

tracking for self-driving cars can be sped up 169X using consumer grade hardware,

but compute speedup can reduce driving range. This result parallels our observations

with mission throughput. Aerostack [168] presents an open source, component based

software architecture for aerial robotics, emphasizing full autonomy. Aerostack’s de-

sign influenced the design and implementation of our own FAAS software.

Other recent studies explore acceleration and edge devices. Sirius [86] studied

FPGAs, CPUs, GPUs, and coprocessors on personal assistant benchmarks. In-situ

AI [183] studied autonomous IoT. Computational sprinting has targeted interactive,

mobile workloads with dynamic architectural optimizations [146,147].
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2.9 Conclusion

Unmanned aircraft are changing industries from agriculture to surveillance and

photography. Fully autonomous aerial systems are piloted by software—eschewing

costly and mistake prone human piloting. Software and hardware settings affect

where these systems fly and when missions complete. Recent benchmarking papers

use few settings, e.g., from prior traces, but extrapolate throughput broadly. This

paper presents a modeling approach that can model flight paths across autonomy

settings. Autonomy cubes provide sensed data for any reachable waypoint, enabling

our approach. We have collected autonomy cubes for real FAAS executing diverse

missions across a wide range of settings. Our model predicts FAAS throughput within

4%. We used our model to evaluate system management problems and uncovered

insights that can improve throughput 10X and FAAS reduce costs 87%. Code for our

modeling approach and autonomy cubes are open source, made available through the

SoftwarePilot project.

46



Chapter 3: Autonomic Computing Challenges in Fully

Autonomous Precision Agriculture

Precision agriculture examines crop fields, gathers data, analyzes crop health and

informs field management. This data driven approach can reduce fertilizer runoff, pre-

vent crop disease and increase yield. Frequent data collection improves outcomes, but

also increases operating costs. Fully autonomous aerial systems (FAAS) can capture

detailed images of crop fields without human intervention. They can reduce operating

costs significantly. However, FAAS software must embed agricultural expertise to de-

cide where to fly, which images to capture and when to land. This paper explores fully

autonomous precision agriculture where FAAS map crop fields frequently. We have

designed hardware and software architecture. We use unmanned aerial systems, edge

computing components and software driven by reinforcement learning and ensemble

models. In early results, we have collected data from an Ohio cornfield. We use this

data to simulate a FAAS modeling crop yield. Our results (1) show that our approach

predicts yield well and (2) can quantify computational demand. Computational costs

can be prohibitive. We discuss how research on adaptive systems can reduce costs

and enable fully autonomous precision agriculture. We also provide our simulation

tools and dataset as part of our open source FAAS middleware, SoftewarePilot.
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3.1 Introduction

In 2050, the planet will support 9.7B people. People (and the livestock they eat)

will demand 1.7X more food [79]. However, rising sea levels and city sprawl will

decrease arable land in growing countries. Atmospheric CO2 will dampen food pro-

duction as climate change worsens [165, 222]. Producing enough food and providing

access to it is a grand challenge.

Food demand will require larger crop yields per arable acre. Today, only 60–80% of

planted seeds yield edible crops [170]. Nitrogen deficiency, hydration, crop diseases,

pests and fungi degrade yield. Precision agriculture uses satellites, aircraft, soil

sensors and digital weather stations to sense field conditions, monitor crop health,

detect problems early and improve crop yields [194, 215]. For example, Integrated

Pest Management uses images collected from aircraft to detect and count insects

and vermin in a crop field [62]. Armed with this data, farmers can apply pesticides

parsimoniously to reduce costs and sustain the planet. More generally, we broadly

define yield maps as whole-field characterizations of crop and/or soil health. One goal

of precision agriculture is to produce yield maps which farmers may use to manage

crops.

Crop health changes over time because nitrogen levels diminish, pests emerge

and water needs vary. Yield maps produced frequently can detect changes promptly.

Problems detected early afford cost effective solutions. However, frequent mapping

is costly and can exceed savings. Figure 3.1 plots costs to map a 250-acre corn field

frequently (weekly) for 12 weeks. In comparison, current practice creates a field map

once per growing season [105]. Corn fields in Ohio USA profit $148 per acre on

average [70]. Figure 3.1 plots costs relative to profit. Airplane pilots charge $5–$10
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Fig. 3.1: Fully autonomous precision agriculture reduces and shifts costs.

per acre to produce maps [74,155]. At $5 per acre, 12 whole-field maps would cost 40%

of profits. Unmanned aerial systems (UAS) use small aircraft and do not carry pilots

onboard. Instead, they are piloted remotely. Figure 3.1 assumes UAS pilots charge

$20 per hour and cover 12 acres per hour. Frequent mapping using UAS consumes

14% of profits. Despite remote piloting, labor associated with piloting would account

for 12% of profits.

Fully autonomous aerial systems (FAAS) eschew human piloting. Instead, FAAS

software manages flight, captures images and analyzes data. FAAS software can fly

more safely and efficiently than human pilots. Experts agree that fully autonomous

systems will replace unmanned aerial systems [135,196]. However, as shown in Figure

3.1, the economic case for precision agriculture is complicated. We model fully au-

tonomous precision agriculture (FAPA), i.e., FAAS that produce yield map reports.

FAPA reduces labor costs significantly from $20 per hour to $10 per hour, but the

compute resources needed to execute FAAS software increase total costs. Naive FAPA

accounts for 13% of profits.
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Autonomic computing systems adapt their execution at runtime, speedup compute

workloads and use fewer resources. FAPA systems can use autonomic computing to

reduce labor and compute costs. As shown in Figure 3.1, if autonomic computing

techniques can reduce costs by 66%, frequent mapping would be cost competitive

with current practices. We contend thatRosa autonomic computing is the missing

ingredient in FAPA systems.

This paper reports design and implementation for an early FAPA prototype. Our

FAPA system uses consumer-grade UAV, edge and cloud infrastructure. Reinforce-

ment learning and deep feature extraction are key software components. FAPA must

compare recently sensed data to anticipated outcomes, because image analysis alone

does not fully capture utility for reinforcement learning. Our prototype uses en-

semble models. Each model correlates to expected yield. Variance among models

captures utility. When our prototype achieves desired utility, it lands and produces

a yield map. Our reinforcement learning approach intelligently samples the field and

produces a yield map without exhaustively exploring the field in its entirety.
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We evaluated our FAPA system on aerial, cornfield images. Each image represents

a GPS location. The FAPA aircraft flies between recorded locations. At each location,

the aircraft computes its reinforcement learning workload and improves its yield map.

Our FAPA system produced low-error yield maps. Error decreased with sample size,

but converged when 40% of the field was sampled. In terms of cost, accelerated

computing systems inflate hardware costs but also execute faster and reduce hourly

labor. Early analysis of the FAPA workload reveals opportunities for autonomic

computing. For example, self-aware integration between FAPA systems could reduce

sample size. Edge to cloud bursting could reduce hardware costs.

All software tools used to collect and extract our dataset and simulate FAPA can

be found as part of our open source FAAS middleware SoftwarePilot, which is hosted

on Github [26].

3.2 Design

In this section, we outline a hardware and software architecture for FAPA. The

hardware design considers agricultural settings and resource constraints. The software

design employs reinforcement learning to manage flight actions, e.g., fly north, south,

east, west and land.

Hardware Architecture: Figure 3.2 depicts the main hardware components. Un-

manned aerial systems (UAS), base stations, edge gateways, and data centers play

unique roles. Below, we describe each.

UAS provide remote sensing. They capture and store images and tag their geo-

graphical position (e.g., using GPS). Modern UAS cameras support still images and

video across a number of spectra. UAS fly between positions without human pilots,

51



reducing operating costs. However, their battery life is limited. Modern UAS can fly

20–40 minutes but recharge 60–80 minutes. UAS have onboard processors, and can

perform lightweight processing on-board. Complex processing is offloaded to support

long battery life and reduce execution delay.

Due to power constraints, maximizing the utility of UAS flight is important. The

number of images required to map an acre of cropland has a quadratic relationship

with the spatial resolution of the images taken. The spatial resolution of the images

taken must be chosen thoughtfully depending on the application. Some systems may

only need centimeter precision for tasks like yield monitoring, while more complex

pest and disease detection systems may need sub-millimeter precision to properly

discern features. The average area covered per UAS mission is dependent on the pre-

cision of each image, and is a primary metric that designers should account for when

considering UAS storage capacity, charge time, classification needs, total scanning

time, total number of UAS, and edge compute resource provisioning.

Base stations enable communication between UAS, power edge computing sys-

tems and recharge UAS in the field. The electric grid and/or sustainable off-grid

power supplies base stations. As a result, the base station houses wireless networks

and edge computers. FAPA require long range wireless networks capable of com-

municating with multiple UAS over many acres. In swarm setups [164], UAS may

proxy communication through base stations. The base station can also provide dock-

ing and charging for UAS. Route planners can use in-field charging stations to avoid

long return flights to the UAS home base. Configuration of the base station varies

across applications and fields. Specifications of radio frequency, charging dock, and
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Fig. 3.3: Reinforcement learning underlies our approach.

edge gateway link depend on farm size, distance from the gateway, compute resource

power constraints, and the number of UAS supported.

[t]

Edge servers pull images from UAS, extract pertinent features, direct high-level

flight paths and produce yield maps. They are the computational engine for FAPA

workloads. Workload kernels hosted on edge servers include: image analysis, deep

learning, path planning, crop modeling and flight API management. These com-

putationally intensive kernels can require powerful processors and accelerators, e.g.,

GPUs. Edge servers can have significant energy demands. These demands can stress

base stations powered by sustainable, off-grid sources, e.g., power cells or renewable

energy. Edge servers may also draw expensive consumer electricity from electric grids.
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Edge servers are constrained by base station power supplies. Large clusters are

not permissible, but at times, edge servers may suffer large compute workloads. For

example, a swarm of UAS executing FAPA may simultaneously capture images that

require heavy processing. Data centers can offload demands when Internet connec-

tions are available. Complex feature extraction, i.e., the execution of deep neural

networks, SVM and other classifiers, are attractive offloading workloads. Offloading

also helps when many models must be run and may be used adaptively, e.g., only

when load is high enough to cause service level violations. Cloud offloading requires

bi-directional Internet connection capable of transmitting images and classification

results rapidly.

Software Architecture: As shown in, Figure 3.3, FAPA software executes fea-

ture extraction, state modeling and reinforcement learning. FAPA software is fully

autonomous— humans neither fly nor direct UAS. The workflow is (1) collect data,

(2) extract features related to FAPA goals, (3) determine if goals have been met, and

(4) create new flight paths such that future sampled data will fulfill modeling goals.

We use the term features extraction broadly. Any image or data processing re-

duction constitutes feature extraction. Examples include geographic location (data
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processing), object detection (image processing), pose estimation (image and data

processing) and simple brightness and contrast computations. Feature extraction

procedures differ greatly in compute needs and their ability to be reused across ap-

plications and fields.

Feature extraction produces a feature vector, i.e., a vector containing numerical

values representing each extracted feature. The feature vector is used to compute

utility, i.e the usefulness of an image/state toward accomplishing FAPA goals. Utility

calculations are customized for each precision agriculture objective. Usefulness clearly

depends on purpose. Once a utility value is obtained, the FAPA system uses the utility

value along with historical information to model the state of its explored area. This

may include updating maps of sensed information, or using high level models to gain

meta-information about the collection of feature vectors the FAPA system has already

collected. This state model can be used to determine whether the user-provided FAPA

system goal has been accomplished and the UAS must land, or whether more data

must be collected.

Fully Autonomous Precision Agriculture: This sensing, extracting, modeling,

and pathfinding cycle is repeated until the FAPA system runs out of data, a system

component runs out of power, or the FAPA system goal is met. Many FAPA systems

can be composed using this basic design. In this paper, we implement a FAPA system

to model crop yield in corn fields.

Figure 3.4 describes the design of the yield-modeling FAPA system. The goal

of this system is to generate a yield map of the crop field. Due to the size of crop

fields and the lack of resources available in them, it is wise to sample the field, taking

pictures of only a percentage of the field to predict yield. Using our FAPA system
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design, we have created a system that can sample a crop field based on the goal of

yield modeling and extrapolate sampled ground truth points into a yield map of the

entire field with low error.

To do this, the system must have appropriate feature extraction models, state

models, and historical training data. Green Excess and Leaf Area Index are strongly

correleted with yield. We use them in our feature extraction procedure and to create

yield maps. The details of these models are orthoganol to this paper. We refer the

reader to [105] for details.

Our FAPA goal targets yield map error. Low error maps bolster confidence for

costly management choices. Hence, high utility samples— i.e., useful images— reduce

yield map error. However, a problem emerges: how can we compute utility without

knowing true yields in advance?

We estimate error by using an ensemble modeling approach. We assume whole-

field yield error and aggregate variance coverge comparably with sample size. We

use multiple models to obtain better predictive performance, i.e., ensemble modeling.

Once the ensemble models converge beyond a user defined threshold, we consider our

map complete. If the1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . error of the ensemble models is above the user defined threshold, we fly to a new

location and sample the field again. Using Green Excess and Leaf Area Index, we can

calculate utility gain by estimating the change in error for our ensemble models for

each possible path the UAS may take. The direction which decreases ensemble error

the most is chosen.
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Algorithm 1 FAPA Simulation

1: yieldmap← empty
2: i← starting image
3: ensembleError←∞
4: while ensembleError > threshold do
5: featVec← extract(i)
6: yieldmap[featVec[lat],featVec[lon]] = featVec[GE]
7: errVector← findNextFlightAction(featVec)
8: dir = min(errVector)
9: i = nextImage(i, dir)
10: imagesMapped← error(dir)

11: return extrapolate(yieldmap)

3.3 Implementation

Using this design, we have implemented a FAPA system that is capable of gen-

erating such yield maps in simulation. Our simulation environment relies on data

sensed from real UAVs to generate yield maps. Our dataset consists of over 10,000

12 megapixel images captured at 33 feet over a 75 acre Ohio corn field at a spatial

resolution of 4mm2. Our images were captured at 3 points in the growing season,

June, August, and September. The images are all geo-tagged, allowing us to place

them in a virtual map. Using this data set, appropriate feature extraction, FAAS

control algorithms, and ensemble error models, we fully simulate a FAPA system.

Our simulator takes the series of coarse steps denoted in Algorithm 1 to replicate

FAAS action. The simulator described takes three arguments: a set of geo-tagged

images representing a crop field, a starting image in the image set, and an ensemble

model error threshold. The simulator will use these arguments to output an estimated

green excess yield map. Algorithm 1 starts by initializing an empty yield map, a

starting image (i), and ensemble error. The yield map is initialized as a 2 dimensional
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array of zeros. Each cell in the array represents an image in the image set. The goal

of the FAPA simulation is to fill this map with real and extrapolated green excess

values that can be used to predict yield. Until ensemble error falls below the user

provided threshold, it loops over the sampling procedure.

The sampling procedure begins by extracting features from image i. The goal of

feature extraction is to retrieve from an image a vector of floating point values repre-

senting specific, user defined features that are useful for pathfinding, yield estimation,

and geo-location. Our simulator extracts 15 features, including GPS location, green

excess, leaf area index, and corn detection. These features are represented in the

featVec variable.

The next step in the sampling procedure is to add the information learned from

feature extraction to our yield map. To do this, we add the green excess value of i

(GE ) into the position in yieldmap corresponding to the latitude and longitude of i

(Lat, Lon) obtained from the feature vector.

Once the yield map has been updated, we must find the next image to sample.

To conserve energy and sample efficiently, we choose this image based on the images

directly adjacent to i. To find the next image, we must find the next flight action (i.e

a movement north, south, east, or west) then find the image corresponding to that

movement. To find the next flight action, we use a reinforcement learning approach.

Our approach uses a series of feature vectors from past FAAS executions to make

pathing decisions. For each feature vector, information is also known about the

possible flight actions for that position. For our simulation, our feature vector data

set includes the green excess of all adjacent images. This information can be used
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to calculate utility gain, a quantification of improvement of our model based on the

addition of that feature vector’s information.

Using reinforcement learning, we can estimate the utility gain for each flight action

using similar prior execution data without actually sampling each flight action. To

find similar execution data to a feature vector, the simulator runs the K-Nearest

Neighbors [92, 213] algorithm using our feature vector data set as the reference set

and the current feature vector as the query. This returns the K most similar feature

vectors in the data set to the current feature set. These feature sets are used to

calculate utility gain.

To determine the best direction to choose for sampling, the simulator uses the

green excess of each of the K-Nearest Neighbors to minimize the error in its unfinished

yield map. Map error is estimated using ensemble models. Ensemble models are very

simple formulae that converge when the map is complete. In the case of this FAPA

simulation, ensemble models all converge to mean green excess. We use five models

to make up our ensemble: mean, median, 95% confidence interval min and max, and

coarse mean (i.e (min + max)/2). To determine ensemble error, we find the range

between the ensemble model values. For each flight action, we calculate the average

ensemble error when adding each of the K-nearest neighbors of the current feature

vector to the current yield map. The flight action which decreases ensemble error the

most is chosen. In Algorithm 1, the findNextFlightAction function takes the feature

vector, finds its K-Nearest Neighbors using our feature vector data set, calculates

ensemble error, and returns a error vector containing the average ensemble errors of

each flight action. The direction with the smallest error is chosen.
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Fig. 3.5: Early results: (a) Yield error decreases as sample size increases, (b) FAPA
aircraft and compute have comparable energy demands and (c) low cost FAPA re-
quires balancing compute and labor costs. Sampling percentages are relative to a 75
acre field.

Once the flight action is chosen, the next image is selected based on the current

image and flight direction, and is assigned to i. This sampling procedure continues

until the user provided amount of images are sampled. Once sampling concludes,

empty regions of the yield map must be filled in. This is done using recursive dilation.

The extrapolate function in Algorithm 1 recursively dilates the unfinished yield

map until it is full. The dilation procedure begins by creating a copy of the current

yield map. The procedure iterates over the original map, looking for empty squares

with full indices in their eight-connected neighborhood. Once an index fitting this

description is found, the mean of its full eight-connected neighbors is added to the

copy map. Once all indices have been checked, the copy map is evaluated. If all

indices of the copy map are full, it is returned. If any index in the copy map is empty,

it is then extrapolated and its extrapolated version is returned.
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3.4 Early Results

The simulator supplied was sensed data from 7,000 cornfield images composed

into 1350 sample runs. We profiled energy demands for aircraft and compute offline.

For aircraft, we repeatedly tested flight commands in each direction in isolation and

use average energy demand. For FAPA software, we measured delay and power on

a Lenovo Thinkpad T470 with Intel i7 7500u CPU and NVIDIA 1080 GPU. We did

not use cloud offload for these tests. Figure 3.5 shows early results pertaining to yield

error, energy demand, and cost.

Figure 3.5 (a) describes the sum of squared error (SSE) between our extrapolated

yield maps and ground truth yield maps. We normalized to SSE of a 2.5% sam-

pling size. Figure 3.5 (a) shows extrapolated yield map error decreases as sampling

area increases. The selected sampling points reflect knee-points in our ensemble of

models. Variance in the ensemble converges with SSE. This property generalizes our

reinforcement learning approach, because utility models can transfer across fields and

applications, compute local ensemble variance and identify sample sizes that yield

good accuracy. For example, consider accuracy reported across monthly data sets.

We are able to reuse ensemble models while still finding good sample sizes. The

correlation is imperfect. August data converges more quickly September and June.

Future work will explore the factors affecting convergence and look for techniques to

further align local model calculations with global objectives. In addition, we observed

that our pathfinding algorithm (nearest neighbors) performed poorly. At times, the

FAPA system took clearly wrong turns. We believe that redundancy elimination in

selected features, i.e., PCA, could improve pathfinding. Algorithms like A* search

will help also.
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Figure 3.5 (b) depicts estimated energy consumption. The aircraft is a DJI spark

with a stock battery. Aircraft discharge slightly outpaces edge discharge. FAPA com-

posed with battery powered edge servers must include substantial off-grid batteries

to avoid frequent recharge. For our 75 acre field, an aircraft can map about 10% of

the field before recharge.

While the edge system can be easily provisioned with greater battery capacity,

aircraft must land to be recharged, or have their batteries swapped. Highly provi-

sioning edge system batteries may be an important step towards realizing FAPA. A

highly provisioned edge system should be able to control multiple UAS, increasing

energy demands linearly. For large fields, links from the edge to the cloud may be

required to offload computation to meet objectives for all aircraft.

Figure 3.5 (c) shows the cost of implementing FAPA systems. System A is an

accelerated FAPA system, equipped with one UAV and an edge device equipped with

an accelerator (GPU, FPGA, etc). System B is a basic FAPA system, equipped with

an edge system with only a simple CPU. System I is an ideal FAPA system, including

autonomic software components that allow the system to operate labor free.

The cost of each system is broken down between aircraft, compute, and labor.

Each system requires the same aircraft and basic compute hardware. Systems A

requires accelerators that decrease the runtime of our FAPA algorithms and increase

system throughput. Systems A and B also both require labor. Without autonomic

software components, workers would be required to set up, execute, and take down

the FAPA system. System I eschews this cost by implementing autonomic policies

in software. Workers being paid $10 an hour would cost hundreds of dollars over the

course of the season performing tasks that can be performed by autonomic software
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Topic Systems Layer Adaptive Computing Challenges

Self-Aware Integration Autonomic Management Seamlessly integrate features extracted by other devices on nearby fields

Quality-Adaptive Models Autonomic Management Speedup feature extraction when accuracy does not degrade outcome

Load Balancing Middleware In swarms, dynamically re-partition fields to avoid long recharging delays

Adaptive Power Management OS/Architecture Duty cycle power hungry devices while keeping execution time low

Edge to Cloud Bursting OS/Architecture Use cloud resources to multiplex thin edge clients across multiple fields

Micro-UAV Swarms Cyber physical Reuse smaller, cheaper aircraft over multiple mapping missions and fields

Performance Modeling Pervasive Model end-to-end execution time of mapping missions

Table 3.1: Autonomic computing opportunities in FAPA.

alone. Labor costs increase as sample rate and field size increase. The addition of

autonomic software components to intelligently manage aircraft charging, scheduling,

and dispatching, as well as data movement and reporting could considerably cut the

cost of FAPA system implementation, especially for large farms.

3.5 Discussion

Table 3.1 outlines autonomic software techniques that could greatly reduce FAPA

costs. There are opportunities across the software stack. In this section, we highlight

a few opportunities to motivate future work.

Self-aware system integration seeks autonomous component reuse, integrating

components without human programmer intervention. FAPA could use self-aware

integration to expand their feature vector. Features computed by FAPA on nearby

fields could influence where FAPA systems fly and when they land. Integrating more

features can reduce sample size required for low yield error which reduces labor costs.

The challenge is to produce a scalable infrastructure for feature sharing in resource

constrained agriculture settings.
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Quality-adaptive models [101,102,117] allow multi modal feature extraction. One

mode uses computationally intensive but accurate models. Other modes use less inten-

sive models when inaccurate features do not affect FAPA outcomes. Quality-adaptive

models seek to switch between models to conserve battery life on edge and aircraft.

The ability to choose lower quality models in situations that allow for them should

speed up FAPA compute time, decreasing labor costs or allowing for an increase in

sampling percentage and relative battery life.

Self integration and quality-aware models necessitate a new system layer between

middleware and application. We propose the Autonomic Management Layer, a new

system layer between application and middleware responsible for the management

of autonomic software components. To maximize the utility of a FAPA system, an

ensemble of autonomic components must be added to decrease labor expenses and

increase sampling and mapping accuracy. These components are too high level for the

middleware, which handles data movement, aircraft flight, and classification. Con-

versely, they are too low level for the application layer, which handles user interaction

and reporting. The new layer is required to interpret user provided data like field

maps, utility functions, and classifiers, into middleware actions that implement high

level autonomic policies.

Adaptive power management duty cycles power hungry devices including: unused

aircraft, GPUs and accelerators and compute processors. This technique prolongs

aircraft and edge battery life and avoids long recharging delays. To be sure, air-

craft consume energy hovering idly. Computation delays affect energy usage on edge

servers and aircraft. Smart power management prolongs both aircraft and edge bat-

teries (or reduces edge energy costs). For example, by autonomically decreasing the
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number of active aircraft in a swarm or the number of accelerators operating [147,199],

classification and pathing latencies will change and impact system life. When com-

bined with quality-adaptive models, adaptive power management may be able to

save power at zero cost to system performance. In addition, lessons from sustain-

able computing where multiple energy sources power compute (and now devices) are

pertinent [119,130,187,204].

Edge to cloud bursting also requires interaction between the autonomic layer and

OS/Architecture layer. The FAPA model described in this paper uses relatively

simple models to cover a relatively small area with one aircraft. If the number of

aircraft, size of the farm, or model complexity increase within reason, it is plausible

that normal edge systems will not be able to process all of the images they receive

quickly enough for aircraft. Aircraft will have to hover, wasting power, waiting for

instructions from edge systems. The autonomic and OS/Architecture layers can work

together to instead move data to the cloud when aircraft hover times are too high.

3.6 Conclusion

Precision agriculture is increasing crop yields across the globe in an effort to

feed our growing population. Using FAAS in precision agriculture applications can

considerably reduce labor costs and increase field mapping frequency. In this paper,

we present a design of a FAPA system along with a simulated implementation. We

examine trade-offs concerning accuracy, power, and cost of the total system using

profile information from real FAAS missions. We demonstrate that our FAPA system

can produce low-error yield maps by sampling 40% or less of the total crop field,

decreasing the energy and labor costs of a FAPA implementation. We also identify
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autonomic computing mechanisms that can help decrease labor and hardware costs

of FAPA systems further.
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Chapter 4: Adaptive Autonomous UAV Scouting for Rice

Lodging Assessment Using Edge Computing with Deep

Learning

Rice is a globally important crop that will continue to play an essential role in

feeding our world as we grapple with climate change and population growth. Lodg-

ing is a primary threat to rice production, decreasing rice yield, and quality. Lodging

assessment is a tedious task and requires heavy labor and a long duration due to

the vast land areas involved. Newly developed autonomous crop scouting techniques

have shown promise in mapping crop fields without any human interaction. By com-

bining autonomous scouting and deep lodged rice detection with edge computing, it

is possible to estimate rice lodging faster and at a much lower cost than previous

methods. This study presents an adaptive crop scouting mechanism for Autonomous

Unmanned Aerial Vehicles (UAV). We simulate UAV crop scouting of rice fields at

multiple levels using deep neural networks and real UAV energy profiles, focusing on

areas with high lodging. Using the proposed method, we can scout rice fields 36%

faster than conventional scouting methods at 99.25% accuracy.
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4.1 Introduction

Rice, Oryza sativa L., is an essential staple crop worldwide and has a significant

impact on world politics and economics. Under the effects of global climate change

and a world population increase by 2 billion persons in the next 30 years [35, 158],

maintaining stable rice production is a priority task for many countries to maintain

food security. Many studies have shown that rice lodging is the primary factor that

weakens rice production. Lodging reduces photosynthesis [177] decrease yield [116],

and significantly diminishes rice quality [226]. A large number of studies address rice

lodging problems from a cultivation perspective analyzing the mechanisms and the

causes of rice lodging [153, 154]. In contrast, other studies concentrate on develop-

ing effective methods to assess rice lodging [88, 152, 206]. Traditional rice lodging

assessment relies heavily on manual in-situ assessment and random sampling [206];

however, the traditional manual assessment method has significant drawbacks. Typ-

ically, a preliminary disaster valuation, a comprehensive investigation, and a review

sampling assessment are needed to complete a rice lodging assessment, which may

take approximately 1 to 2 months to accomplish in total. Consequently, the rice field

cannot be replanted, and the field owner’s livelihood is dramatically impacted. Ad-

ditionally, the delineation of the rice lodging area is performed by officers manually,

which is prone to subjectivity and frequently leads to controversies. Lastly, due to

the vast land areas involved in natural disasters, the traditional manual assessment

faces challenges of high labor cost and efficiency. An effective rice lodging assessment

method is urgently needed.

Remote sensing techniques like satellite imagery provide a feasible solution to

investigate rice lodging over vast areas of land [126]. Nonetheless, satellite images

68



are usually limited by their spatial and temporal resolution, as well as their spec-

tral band features [151]. Additionally, cloud contamination can limit the usability

of optical satellite images as thick clouds can completely occlude target landscapes.

In recent years, utilizing unmanned aerial vehicle (UAV) technology to obtain timely

information on crop lodging has created numerous opportunities due to UAVs ability

to fly in cloudy conditions [226]. UAVs can be equipped with high-spatial-resolution

cameras to collect high spatial aerial red-green-blue (RGB) images for crop lodging

assessment. The capability of UAV to obtain high spatial accuracy aerial images is

complemented by the benefit of a global positioning system (GPS) and inertial navi-

gation system (INS) technology. Yang et al. (2017) [206] used UAV images combined

with a spatial and spectral mixed image classification method, which classified rice

lodging at 96.17% accuracy. Based on UAV images, Chu et al. (2017) [45] produced

a 3D canopy height model to detect corn lodging severity depending on height per-

centiles against preset thresholds. Later, Chu et al. (2017) [46] developed a lodging

index to automatically reflect the severity of corn lodging and yield after harvesting.

Liu et al. (2018) [126] combined thermal infrared images with UAV images to identify

lodging rice, which has a false positives rate and a false negative rate of less than 10%.

In the meantime, the development of deep learning techniques has achieved evident

results in agriculture applications [94]. Chu and Yu (2020) [47] developed an end-to-

end prediction model by fusing two back-propagation neural networks (BPNNs) with

an independently recurrent neural network (IndRNN) for rice yield prediction. Wang

et al. (2020) [200] proposed a deep learning and depth camera combined solution to

improve UAV environmental perception and autonomous obstacle avoidance. Zhao

et al. (2019) [225] used a deep learning U-shaped Network (UNet) architecture for
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rice lodging, with results showing that the dice coefficients on the RGB and mul-

tispectral datasets reach 0.942 and 0.9284, respectively. Yang et al. (2019) [210]

compared vegetation index (VI) based with a convolutional neural network (CNN)

based approaches for rice grain yield estimation at the ripening stage using UAV im-

ages. The results show that this CNN based approach performs much better than the

VI-based regression model. Yang et al. (2020) [209] applied deep-learning to UAV

images to estimate rice lodging in paddies over a large area. The semantic segmenta-

tion networks, including FCN-AlexNet and SegNet, are proven to have lower latency,

approximately 10 to 15 times faster, and a lower misinterpretation rate than that

of the maximum likelihood method. However, the studies, as mentioned earlier, all

perform their analysis from an offline approach. Few applications attempt real-time

rice lodging assessment. Mardanisamani et al. (2019) [131] presented a deep convo-

lutional neural network (DCNN) architecture using a transfer learning technique for

lodging classification, which achieves comparable results while having a substantially

lower number of parameters. The author emphasized that DCNN can be deployed

on low-cost hardware, which can be suitable for real-time applications. Recently,

the development of edge computing devices and techniques has improved researchers’

ability to process large amounts of data in a real-time manner without offloading to

the cloud [169]. The usage of graphical processing units (GPUs) for deep learning

and the availability of powerful processors at the edge allow practitioners to analyze

data quickly without the cloud.

Edge computing has been used to advance many emerging research areas in Com-

puter Science, from the internet of things (IoT) applications [11] to smart homes [5]

and smart cities [36]. Edge computing has also been applied to agricultural scouting
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applications. Vasisth et al. (2017) [197] used edge computing techniques to create

FarmBeats, a novel precision agriculture platform that gathers data from sensors,

cameras, and drones to enable precision agriculture techniques. Instead of transmit-

ting all data to the cloud, a local computer or laptop device is used to process drone

imagery data, which corresponds to the concept of edge computation [212]. As shown

in Figure 4.1, the connection of edge computing nodes to sensors like UAVs provides

advantages, including high mobility, simplicity, interactive, and responsive. Addi-

tionally, a simplified ad hoc NN (neural network) can be implemented for a specific

purpose/target. In contrast, several challenges, such as high communication latency

and information complexity, need to be considered in the cloud-based system. In

the present study, the connection of edge computing nodes to sensors is taken as the

primary focus on developing an effective rice lodging assessment method.

Precision agriculture techniques like satellite imagery, UAV scanning, and even

advanced platforms like FarmBeats are all linked in that they are automated. These

approaches perform low-level tasks without human decision-making but require high-

level human planning to perform well. Advancements at the edge allow for more

complex autonomy policies to be implemented, allowing for autonomous, rather than

automated systems to perform agricultural scouting and management tasks. Early

attempts at fully autonomous precision agriculture using fully autonomous aerial sys-

tems (FAAS) have been implemented [23, 30], and early fully autonomous precision

agriculture software is available [26]. Boubin et al. (2019) [23] presented an open-

source software package for FAAS, which includes autonomous UAV routines for

agricultural scouting and demonstrates that fully autonomous routines can benefit
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Fig. 4.1: Comparison of Functions of edge computation and cloud-based system

significantly from correct edge compute architectures and autonomy policies. Simu-

lated approaches to FAAS have also been demonstrated. Boubin et al. (2019b) [30]

show that given appropriate pathfinding algorithms and autonomy policies, accurate

yield maps of crop fields can be generated by viewing only 40% of a field, saving power,

time, and money for the farmer. Combining FAAS techniques with deep learning at

the edge may greatly impact future precision agriculture techniques. In this study, an

effective rice lodging assessment method is proposed by combining deep learning and

FAAS techniques with UAV images. Notably, the EDANet model was trained to study

rice lodging information extracted by conventional digital RGB images. Three UAV
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scouting approaches, namely 200m high altitude scouting, 50m low altitude scouting,

and an adaptive fly height, are investigated, and the corresponding energy consump-

tion and rice lodging accuracy are assessed. Specifically, the following contributions

of this paper are highlighted as follows. 1. An adaptive autonomous UAV scouting

technique utilizing EDANet, a deep learning model, is proposed to assess rice lodging.

The adaptive autonomous UAV scouting mechanism is designed based on a threshold-

based rice lodging assessment derived from the EDANet model. 2. Visible spectrum

information and three vegetation indices are extracted and calculated from UAV im-

ages collected from two real rice lodging occasions in Taiwan. Both visible spectrum

information and vegetation indices were used for EDANet model training and test-

ing. 3. The proposed adaptive autonomous UAV scouting approach is compared

with the other two approaches- 50m low altitude scouting and 200m high altitude

scouting in terms of associated rice lodging identification accuracy and scouting time.

4. The comparison of three approaches is performed in a simulation-based research

software SoftwarePilot, in which an autonomous cube data structure [30] links UAV

images with spatial information and an energy profiling using DJI Phantom 4 Pro

(P4P) is applied. 5. Through a series of lodged percentage threshold settings for

the simulator, our proposed adaptive autonomous UAV scouting approach demon-

strates excellent performance in significantly reducing scouting time and preserving

relatively high rice lodging identification accuracy. The remainder of this paper is or-

ganized as follows. Section 2 describes our experimental methods, datasets, machine

learning process, and adaptive scanning algorithm. Section 3 provides results from

experiments. Section 4 discusses the results, their impact, and future work. Section

5 provides conclusions.
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4.2 Materials and Methods

Two rice lodging occasions associated with massive rainfall events in June 2017

and May 2019 in the Mozi Shield Park in Wufeng District, Taichung City, Taiwan,

were investigated. Visible spectrum information of the field was collected in June

2017 by a fixed-wing UAV and in May 2019 by a rotary-wing UAV for training and

testing, respectively. Detailed camera, flight height, area covered, training, and test-

ing dataset information are shown in Table 1. Besides visible spectrum information,

three vegetation indexes, Excess Green index (ExG), Excess Red index (ExR), and

Excess Green minus Excess Red index (ExGR), were calculated for the training and

testing datasets [139,203]. Formulas of these three vegetation indexes are listed below.

ExG = 2×Gn −Rn −Bn (4.1)

ExR = 1.4×Rn −Gn (4.2)

ExGR = ExG− ExR = 3×Gn − 2.4×Rn −Bn (4.3)

4.2.1 Semantic segmentation model training

We used an implementation of the Efficient Dense modules with Asymmetric con-

volution network (EDANet) developed by Lo et al. (2019) [127] to detect rice lodging.

The network architecture of EDANet is shown in Table 4.1, which comprises of three

major components, including three downsampling blocks, which are adopted from the

ENet initial block [18], two EDA blocks consist of 5 and 8 EDA modules respectively

and one projection layer. A two-branch design of the downsampling layers saves the
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Table 4.1: Detail of training and testing datasets

computation of convolutional layers by adding a max-pooling layer when the input

channel number is less than the output channel number. Inspired by DenseNet [88],

EDANet modifies the concept of dense connectivity to module-level in which the out-

put of each EDA module concatenates its input and the newly learned features. A

single EDA module consists of a point-wise convolution layer and two pairs of asym-

metric convolution layers. Additionally, a specific dilated asymmetric convolution

technique, which inserts zeros between two consecutive kernel values along each di-

mension, is employed at the second asymmetric convolution pair in an EDA module.

The dilated asymmetric convolution technique can aggregate more contextual infor-

mation by enlarging the effective receptive field without increasing the number of

parameters for accuracy improvement purposes. The projection layer, which is a 1 x

1 convolution layer, produces the output C (the number of classes) feature maps. In

the end, a bilinear interpolation process is applied to upsample feature maps by a fac-

tor of 8 to the size of the input image. In short, the densely connected EDA modules
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Fig. 4.2: EDANet architecture (Figure adapted from Lo et al. (2019))

with asymmetric convolution structures play the most critical role in reducing the

number of parameters and computational costs, which makes EDANet a promising

network for real-time semantic segmentation. In the present study, the EDANet was

trained using Adam optimizer with weight decay 1e-4, batch size 10, for 50 epochs.

As suggested by Lo et al. (2019) [127], the initial learning rate was set to 5e-4, and

a polynomial learning rate policy was employed with power 0.9 for the learning rate

of each iteration lr iter in formula (4).

lr iter = init lr × (1− iter/max iter)power (4.4)

The model training environment information is shown in Table 2 below. The

EDANet model performance was evaluated using six matrices listed in Table 3. Due

to the limited space, only the F1 score and overall accuracy (OA) among the six matri-

ces are reported for the training results. As shown in Table 4, the highest OA reaches
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Table 4.2: Model training environment information

94.87% when RGB information is used. For these five classes (rice paddy, rice lodging,

road, bare land, and background), the associated F1 scores are quite stable for each

class. The bare land class has the highest F1 score of 96.97%, whereas the road class

shows the lowest F1 score of 80.26%. Table 5 shows the testing results for the 2017

and 2019 datasets. Based on the testing results, the entire testing process can be

performed in around one minute, which is the most compelling evidence demonstrat-

ing the real-time capability of EDANet. Figure 4.2 represents testing results from

a subset of the 2019 field dataset. As shown in Figure 4.2, EDANet performs well

in capturing rice lodging, rice paddy, and other classes. Based on the results of the

2019 dataset, EDANet using RGB+ExG+ExGR information illustrations the highest

value in recall (85.22%), accuracy (92.83%), and F1 score (78.51%). Therefore, the

EDANet using RGB+ExG+ExGR information is the final model that been applied

in this study for further investigation in UAV scouting simulation.

4.2.2 UAV Scouting

To gain an accurate assessment of rice lodging, fields must be scouted in their

entirety to determine the percent of total lodged crops throughout. When scouting

an area, operators must concern themselves with a number of factors, of which UAV
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Table 4.3: Model performance evaluation matrices

Table 4.4: EDANet model training results F1 score and overall accuracy (OA) (highest
value in bold)
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Table 4.5: Model testing results for the 2017 and 2019 datasets (highest value in bold)

Fig. 4.3: Model testing results demonstration. (a)original image, (b)ground
truth, and (c1-c4) represent EDANet with RGB, RGB+ExG, RGB+ExGR, and
RGB+ExG+ExGR information, respectively. (Red represents rice lodging, green
represents rice paddy, and black represents other classes)
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battery life and image ground sample distance (GSD) are principal. UAV batteries

are highly constrained, lasting for flight times between 20 and 40 minutes depend-

ing on the UAV model. We define one UAV flight as one full discharge of the UAV

battery by assuming that the UAV takes off with a full battery and ends the mission

with an empty battery. Mapping a field of considerable size may require many flights

over hours to days, depending on the number of UAVs and batteries available, their

recharge time, and GSD. Flight times can be decreased by increasing UAV altitude,

which will, in turn, increase GSD. GSD, and consequently, flight altitude and camera

quality, must be considered. Image quality and clarity directly influence the ability

of subject matter experts and machine learning algorithms to detect field abnormali-

ties [207,208]. When scouting for lodged rice, it is important to assure that all regions

of the field can be accurately classified, and consequently, each image must have a

GSD high enough to allow this. Given that raising GSD increases scouting time (in-

dependent of camera quality), a tradeoff emerges. Crop scouters must simultaneously

balance detection accuracy and total scouting time, which can lead to increased costs,

respectively, from unsubsidized lost crops, labor, and equipment.

Three mapping strategies are shown in Figure 4.4 that demonstrate these differ-

ences. For a small section of a field (requiring 36 images to fully map at low altitude

and four at high altitude), we outline three mapping strategies: high altitude, low

altitude, and adaptive scouting. Low altitude and high altitude scouting exhibit the

two principal differences previously described. Low altitude scouting requires signif-

icantly more energy and time to complete its task, requiring a second UAV mission

in this scenario to take each picture. In contrast, high altitude scouting is capable of

capturing the entire section of the field in only four images. The tradeoff, however,
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Fig. 4.4: 3 scouting methods over a small area of cropland: 1) Low altitude scout-
ing, 2) high altitude scouting, and 3) adaptive scouting. For each scouting method,
scouting is tracked at 4 step intervals, logging battery of each necessary UAV mission,
scouting completion percentage, and position.
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is that high altitude scouting is less capable of predicting lodging. It can not prop-

erly guarantee the correctness of its predictions at its decreased GSD. We can see in

Figure 4.4 that high altitude scouting mispredicts lodging in a number of regions.

Given the high GSD of low altitude scouting, we can accept its lodging predictions

as credible. A strategy that combines the high accuracy of low altitude scouting and

the low energy costs of high altitude scouting could be dominant. In this paper, we

present an autonomous scouting procedure that uses high altitude scouting to inform

selective low altitude scouting.

4.2.3 Autonomous Scouting

Autonomous scouting allows UAVs to make decisions on where to scan for high

GSD images based on potentially inaccurate, but informative predictions from low

GSD scouts at high altitude. In short, UAVs scout the field at high altitude first. An

edge system analyzes these images in situ, then uses machine learning to determine

positions to investigate at low altitudes based on classification accuracy and certainty.

Figure 4.5 shows how autonomous scouting can help balance the accuracy of low

altitude scouting with the energy efficiency of high altitude scouting. The UAV

first performs a high altitude scan and predicts lodging in each region of the field

at the edge. Once lodged areas are known, the UAV investigates all areas that are

classified as lodged at high altitude. In this example scenario, the UAV can gain a

100% accurate picture of lodging in the field subsection by using half the energy of

low-altitude scouting.

Autonomous scouting does, however, include a substantive hardware addition to

the above requirements for both high and low altitude automated scouting procedures.
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Fig. 4.5: A visual depiction of the autonomous scouting algorithm for 200m and 50m
altitudes.
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Automated scouting can be done by a pilot or lightweight edge system. Images do

not need to be processed locally, so simple systems are sufficient. Autonomous scout-

ing, however, requires an edge system capable of controlling the UAV and executing

simplified machine learning algorithms within a reasonable time-frame, which would

require a hardware accelerator such as a GPU. Figure 4.5 describes the autonomous

scouting algorithm in detail. For this scenario, we define the high altitude scouting

height as 200 meters, and the low altitude scouting height as 50 meters. There are

six key steps to complete an entire mission.

1. UAV must map at least one high altitude section of the field. This entails the

UAV flying to a GPS waypoint at the center of the 200m region being mapped

and capturing an image.

2. Once the edge system downloads images of at least one region, machine learning

is used to predict rice lodging in regions of high altitude images. Each image

is decomposed into subsections that correspond to a possible 50m image (i.e.,

a 200m image decomposes into 16 50 meter subsections). Each region is then

given a certain lodged percentage (i.e., the percentage of pixels in that region

represents lodged rice). Regions are then marked as uncertain if their lodged

percentage is above a user-provided threshold. Uncertain regions are regions

that must be explored further to accurately gauge lodging.

3. Once all regions are predicted, our system finds the most efficient route in

which a UAV can fly to visit all uncertain regions. To do this, the edge system

calculates the least cost Hamiltonian path between a fully connected graph

whose vertices include the UAV’s current position and all uncertain regions.

84



This Hamiltonian path is then remapped to a UAV flight path, such that the

UAV flies to each uncertain region once.

4. The UAV descends from its 200m height and flies to the next region in the

Hamiltonian path at 50 meters altitude.

5. The UAV then captures a 50m image of each uncertain region, flying along the

prescribed Hamiltonian flight path.

6. Once all images are captured, the edge system downloads each image. It cal-

culates its lodged percentage using the high GSD 50m images, thus gaining a

more accurate picture of actual rice lodging.

4.2.4 Scouting in Simulation

Crop scouting with autonomous UAV requires considerable infrastructural sup-

port, including software construction, testing, and regulation compliance. Further-

more, rice lodging on a large scale happens mainly after severe typhoons or storms.

Given the unprecedented trend of global climate change and warming, severe typhoons

and storms occur more often and become much stronger. Therefore, developing an

efficient crop scouting method is urgently needed. For these reasons, we chose to

simulate our scouting algorithms using the lodged rice data sets mentioned earlier in

this section. Crop scouting and autonomous UAV simulation mechanisms have been

tested and validated in prior work [23, 30]. Using these methods, we were able to

construct valid simulations and gather results for our scouting techniques.
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Autonomy Profiling

Autonomous systems must have the ability to fully navigate dynamic environ-

ments. For UAV, this implies the ability to fly to any point with some two-dimensional

or three-dimensional space relevant to the problem at hand. When scouting a crop

field for lodged rice, an autonomous UAV must have the ability to fly to and sense

data at any point within the three-dimensional region where sensed data would be

relevant to the field being scouted. When planning a crop scout, however, certain

components of this bounding region can be abstracted to obtain similar results. For

instance, the UAV may only fly at one altitude, presumably selected to balance image

GSD and flight time. Similarly, UAVs are usually only required to fly to a subset

of points within the space, such that the subset of points allows the UAV to fully

observe the crop field. Crop scouting and UAV mission plans in this respect are usu-

ally represented by a set of GPS waypoints and altitudes read by mission planning

software that pilots the UAV automatically. Unlike automatic flight, autonomous

systems make high-level decisions, like which waypoint to fly to next, in flight.

Given both the amount of possible sensed data by an autonomous crop scouting

UAV and its ability to choose which data is sensed at runtime, profiling autonomous

UAV for simulation can be difficult. To simulate lodged rice crop scouting, we used

the autonomy cube, a data structure specifically created to aid in autonomous vehicle

simulation [23]. Autonomy cubes are data structures that combine sensed data (e.g.,

images, videos, other sensor readings) with spatial information (e.g., altitude, GPS

locations). Each piece of data in an autonomous cube is linked to both an altitude

and GPS location. As shown in Figure 4.6, data also have links to surrounding data

points based on possible flight actions. A flight action is defined as any movement or
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Fig. 4.6: Autonomy cubes capture both sensed data and spatial information. Sensed
data points are spatially linked by flight action. In this figure, sensed data is liked by
both cardinal direction and altitude.
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process that the UAV can undertake to solve its autonomy goal (e.g., takeoff, land,

fly up 150 meters, fly west 10 meters, capture an image, hover). Flight actions are

combined to create a complete UAV flight. Missions generally consist of UAV takeoff

and landing combined with some series of UAV translation actions (e.g., fly left, fly

up) and data sensing (e.g., capture images). For our simulation, we have created a

set of standard flight actions that can be used for aerial scouting. For every possible

flight action of the UAV being modeled that displaces the UAV, a link will exist to

data sensed at that position. These links allow simulated UAV to navigate virtual

environments easily, accessing sensed data from real UAV missions. To construct

autonomous cubes, a considerable amount of profile data is required. We sensed

lodged rice data from Mozi Shield Park in Wufeng District in Taichung City, which

we built into autonomy cubes using available research software [26].

Energy Profiling

To properly evaluate the performance of a simulated UAV flight, the energy ex-

penditure of each possible flight action for both UAV and compute must be known.

To construct valid simulations, we created energy profiles for both UAV and compute.

We define an energy profile as the execution time in seconds and energy expenditure

in joules for every action available to a given system. In this context, an aircraft’s

energy profile would include energy and execution time information for each flight

action. For a base station, this would include energy and execution time information

for each flight control, classification, or data movement task. To obtain this informa-

tion, we used methods from prior work [23]. We performed each computes and flight

action 100 times, fitting the execution time and to normal distributions and recording

energy expenditure in watts to construct energy profiles. We gathered energy and
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Fig. 4.7: Aerial view of Glacier Ridge Metropark in Dublin, Ohio, where the flight
action profiling was performed.

execution time information from UAV and edge systems using SoftwarePilot [26].

Flight actions were profiled at Glacier Ridge Metropark in Dublin, Ohio (Figure 4.7),

using a DJI Phantom 4 Pro (P4P).

Flight actions include translation at 2m/s, data capture and transfer, hovering,

and takeoff/landing. The simulated UAV translates at 2 m/s in all directions for

consistency. At the height of 50m, the UAV must move 10m along one of its horizontal

axes to see a different image in our dataset, and similarly, at 200m, the UAV must

move 35m. For this reason, we profiled each movement along the horizontal axis

(left, right, forward, and backward) at both 10m and 35m. Vertical translations (fly

up, down, takeoff/landing) were also profiled. We combined takeoff and landing into

one action per prior work [30], and profiled translation between the 50m and 200m

heights at 2m/s. Lastly, we profiled interactions with edge systems. The Sense Data
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Table 4.6: Results of the profiling with the P4P.

action includes capturing an image with the UAV camera and transferring it to the

edge system. The hover action is used when the UAV idles, awaiting commands from

the edge system during the adaptive approach.

Simulated Scouting

Using autonomy cubes and energy profiles, we constructed software to simulate

the three whole field mapping strategies detailed earlier in this section. Table 4.6

shows how to construct the simulator. Inputs include workload settings (e.g., machine

learning models, flightpath type), the autonomy goal (i.e., to estimate the lodged

percentage of the crop field), and autonomy cubes. Based on the flightpath type,

potentially sensed data and model outputs, flight paths for the UAV are generated.

Once a flightpath is generated, it can be used to determine the number of each flight

and compute the actions required. We sample the normal distributions of these

actions latency, which are used to calculate energy expenditure in joules.
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Fig. 4.8: Workload settings, goals, autonomy cubes, and energy profiles are taken as
inputs to the simulation.

These inputs are used to generate flight paths and determine the overall power

consumption and execution time of UAV missions. Adaptive scouting in the simula-

tion was principally compared to low and high altitude scouting, which both scout

the entire field using EDANet to predict lodging at 50m and 200m respectively after

the flight. All three methods were simulated with UAV starting at one of 4 corners of

the waypoint grid and moving first in either of the two possible directions from the

start point in a lawnmower fashion for a total of 8 possible traversals of the grid. Sim-

ulations were run on a Lenovo Thinkpad T470 laptop with an Intel 7500U CPU and

24GB of RAM running Ubuntu Linux 18.04. The simulator was written in Python

3.6 and was given pre-segmented images from our EDANet model.

4.3 Results

The adaptive scouting process was evaluated in simulation using autonomy cubes,

a DJI P4P UAV profile, and a series of lodged percentage thresholds. Autonomy

cubes were constructed from the Wufeng rice crop dataset using the SoftwarePilot

autonomy cube builder [26]. Autonomy cubes were created for images captured at

both 200m and 50m heights. Out of 215 Wufeng crop images captured at 50m, 73

contained no rice or exclusively rice that could be seen from other waypoints, so
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the simulated UAV did not capture data at those waypoints. The 200m autonomy

cube contained 12 images that were able to encompass all 215 50m images. An energy

profile was created for the P4P by profiling each simulated movement under real-world

conditions using SoftwarePilot. Ten lodged percentage thresholds were also assigned

for the simulator, denoting what estimated lodged percentage a region must have at

200m in simulation to be investigated at 50m, meaning that a 5% lodged threshold

would only scout 50m regions showing 5% or greater lodging at 200m. The lodged

percentages were chosen between 2.5% to 25% at intervals of 2.5%. The simulator

used EDANet to estimate lodged percentages. Figure 4.9 shows example results from

one simulation comparing the three methods where all methods begin on the same

path, at the southwest corner of the grid, and move immediately north. The number of

each flight action, total discharges, and lodged percentage prediction of each method

are reported. Note that the adaptive method’s Hamiltonian path is not included as

a flight action. Figure 4.9 also shows the route taken by the adaptive approach. The

adaptive approach originally follows the same route as the 200m approach, sensing

data at each 200m waypoint. Once all data is sensed, uncertain sections are found,

and the best possible waypoints are determined to explore them. A Hamiltonian

path between those waypoints is determined and is explored at 50m by the UAV.

The principal comparison points between the three approaches are accuracy and time

in figure 4.10. Figure 4.10a compares a normalized accuracy between 200m and the

adaptive scouting as they compare to 50m scouting. 200m scouting has a normalized

error of 24.2%, meaning that an overall field scout at 200m differs in predicted lodged

percentage by 24.2% from a 50m scout.
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Fig. 4.9: Sample simulation results with the adaptive lodged threshold (T) set to
2.5%. Depicted is the simulated FAAS path for the adaptive approach at both 200m
and 50m.

93



Fig. 4.10: a) Adaptive scouting is up to 99.25% accuracy compared to 50m scouting,
while 200m scouting alone is 75.8% accuracy. b) Adaptive scouting takes at most 35%
less missions to completely scout the field as compared to 50m scouting. c) Adaptive
scouting balances the high speed of 200m scouting with the accuracy of 50m scouting,
sacrificing little accuracy for significant speed gains.

Adaptive scouting differs between 0.75% and 16.73% depending on the lodged

threshold, steadily increasing as the lodged threshold increases. Until the lodged

threshold exceeds 12.5%, the normalized error between 50m scouting and the adap-

tive scouting does not exceed 2%. Higher lodged percentages, however, increase a

normalized error by 5.03% to 16.73% due to their higher frequency to ignore largely

lodged regions of the field due to inaccuracies in the 200m scout.

Figure 4.10b shows the differences in UAV missions required to scout the field

between 50m, 200m, and the adaptive scouting. In the analysis, a P4P would have

access to extra batteries, and when the battery depletes, the UAV battery would

be changed, and scouting would resume. 200m scouting is considerably faster than

either adaptive or 50m scouting, taking only 0.34 flights (at least one flight) to map

the field. 50m scouting, on the other hand, took 2.43 total (at least three flights)

flights to map the entire field. The adaptive scouting was able to map the field in

94



Fig. 4.11: Lodged rice predictions at 200m correlate with observed values at 50m but
are inaccurate enough to yield valuable results alone. By informing 50m scouting
using 200m results, high accuracy can be achieved while decreasing scout times.

between 1.6 to 1.27 (at least two flights) flights depending on the lodged threshold,

saving one recharge period and mapping the field in 65%-52% the total time required

by 50m scouting. Figure 4.10c shows the relationship between time and accuracy

experienced by each scouting method. Of all approaches, 200m scouting is by far

the fastest but suffers from accuracy issues. On the other hand, 50m scouting is

highly accurate but requires considerable execution time. The adaptive scouting at

low thresholds experiences less than 1% normalized error compared to 50m scouting

but completes in 36

The adaptive scouting approach is able to decrease scouting time and preserve

accuracy due to the correlation between 200m and 50m lodged predictions. As shown

in figure 4.11, predicted lodging at 200m and 50m for highly lodged regions are

correlated, with a bias toward higher prediction rates at 200m. By following the
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overall correlation, we are able to scout at 200m and successfully predict which regions

contain lodging, but not accurately predict the amount. By then scouting only those

regions at 50m, the adaptive approach can improve on total mission time without

losing significant accuracy. The largest differences between 200m and 50m scouting

predictions can be found at low levels of lodging, where 200m scouts predict lodging

where there is none or predict no lodging where there is some at 50m. Many of these

points are regions which contain smaller amounts of rice crop, in lieu of buildings and

roadways. 200m scouting could mispredict these regions as lodged or healthy rice to

the detriment of the overall scout, requiring either the scouting of unlodged regions

or the skipping of lodged regions. While these outlier points may be mispredicted

as highly lodged or healthy, they generally encompass only a small percentage of

the overall field. They, therefore, have little effect on the overall performance of

the adaptive scouting model, as demonstrated by the results presented in figure 4.9.

Handling outlier cases such as these, however, should be addressed by future work. A

flight plan must be specifically made before executing the UAV mission, and consists

of parameter setting, including the required scale of the photography, the camera

focal length, the film format size, (forward) overlap, sidelap, the flying height above

the ground, the ground speed of UAV, and the time interval between exposures. The

purpose of photography is a major consideration in the flight plan. In this study, the

overlap and the sidelap are required only for image mosaic in the 200m scouting. In

the 50m flight mission, a higher overlap, larger than 67% of overlap and sidelap so

that one feature point and its corresponding points appear on at least three successive

photos, is required for image-based modeling. To increase robustness and accuracy,

the redundancy should be afforded with a large number of mutually overlapping
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photos simultaneously, so-called multi-ray photogrammetry, which requires a very

high overlap (80%-90%) and sidelap (up to 60%) [120]. The overlap and the sidelap

are 85% and 85%, as well as 80% and 60% for 200m and 50m scouts, respectively.

Moreover, the total number of exposures necessary for a mission should be computed

prior. Each photo has an incremental area, A, as

A = (1− p)× h/S × (1− q)× w/S = (1− p)× (1− q)× h× w × S−2 (4.5)

p is the overlap, q is the sidelap, h is the height of the photo, w is the width of

photo, and S is the scale and shows an inverse relationship with the flying height

above the ground using the same focal length. As the setting overlap in the previous

flight plan, the ratio of the numbers of total photos at 50m scouting over 200m

scouting is 35 for a designated area. Furthermore, the overlap can be reduced to 60%

for a 200m scouting that can increase the ratio of the total photos up to 71. The

cost of 50m, 200m, and adaptive scoutings varying with the scouting area can be

illustrated in figure 4.12. The initial costs are 100USD and 500USD for 50m scouting

and 200m scouting, respectively, in Taiwan. According to the regulation of Taiwan

Civil Aviation Law, an out-of-sight flight that 200m scouting may encounter needs an

extra supervisor standing at commanding heights, who is responsible for connecting

the nearby airport controlling center in case of emergency, beside a UAV operator.

Thus, the extra supervisor results in a different initial cost between 50m and 200m

scouting. In general, the cost of 50m and 200m scouting increases with area coverage.

Adaptive scouting combines the cost estimation at 200m and 50m and depends on the

area of fine and coarse coverages. In this case study, the adaptive scouting combines
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Fig. 4.12: The estimated cost of 50m, 200m, and adaptive scouts varying with the
scouting area.

one 200m flight and two 50m flights as one mission to efficiently reduce the total cost

and achieve the goal of lodging identification, as shown in figure 4.12.

4.4 Discussion

As demonstrated in the results, we are able to construct a deep neural net-

work for lodged rice detection that outperforms prior work using SegNet and FCN-

AlexNet(17). The EDANet approach classifies rice paddy at 95.28% accuracy using

RGB, as compared to SegNet at 91.49 and FC-AlexNet at 92.77%. EDANet classi-

fies Lodged rice at 86.17% accuracy compared to SegNet at 70% and FCN-AlexNet
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at 77.91%. Even with more information in the form of vegetation indices, the best

performance from prior work was garnered using FCN-Alexnet yielding 93% rice

paddy accuracy and 80.08% lodged rice accuracy. The adaptive algorithm was able

to maintain this newfound accuracy. The adaptive approach scouts at two levels,

first estimating highly lodged regions at high altitude, then confirming lodging at low

altitude at only those highly lodged areas as efficiently as possible. We were able

to maintain 99.25% accuracy using EDANet as compared to a complete scout of the

entire field by simply avoiding regions that showed less than 2.5% lodging at high

altitude. The adaptive approach allows for a considerable time and costs savings

compared to a complete scout of the crop field. Adaptive scouting at optimal accu-

racy takes 35% less flight time to achieve and saves precious UAV battery life. Flight

time is important from a number of perspectives, including urgency, resource savings,

and labor costs. Crop scouting for lodged rice is particularly sensitive to these fac-

tors. Rice lodging generally only occurs in reasonable quantities during periods of

high flooding and serious rainfall, which often coincide with other effects like power

loss or limited labor availability and assessment time, which make aerial scouting dif-

ficult. Furthermore, lodging must be determined quickly to allow farmers to remove

lodged rice or replant crops and promptly receive government subsidies [206] so that

aerial scouting resources will be in high demand during these periods. This double

effect of high demand and low resources makes the time and energy savings of the

proposed approach much more consequential. Scouting approaches also commonly

utilize skilled independent pilots or aerial photography companies to survey cropland

and locate lodging, which can be expensive. In a period of high volume for aerial

scouting, demand for pilots may also increase, raising prices or delaying scouts. The
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proposed approach is fully autonomous, requiring only compute resources, UAVs, and

labor for setting up and taking down systems. This process could be done easily by

farmers, especially if they already use UAVs on the farm and own a reasonably pow-

erful computer. Because the proposed approach does not require human piloting, it

costs considerably less over time. There are many available avenues for future work

to improve our neural network and approach. First and foremost, increased data col-

lection of lodged rice fields is imperative. Rice lodging, though devastating, is not a

regular situation, so gathering lodging datasets is difficult. Increasing the number of

samples available will increase the ability of machine learning techniques to accurately

detect lodging, like the proposed EDANet approach. Techniques to increase the accu-

racy of the proposed approach or other approaches with higher lodged rice detection

accuracy are also valuable directions for future work. The adaptive approach is not

simply useful for rice lodging, but for finding and counting any anomaly that can be

detected using aerial image analysis. This could include finding other crop diseases

or estimating crop yield but is also applicable to other areas of aerial photography

like infrastructure inspection or battlefield surveillance. Applying this technique to

other domains may yield superior results compared to simply scouting entire areas

at low altitudes, as shown here. The most pressing avenue for future work is to take

the proposed approach out of the simulation and test it on an actual rice lodging

scenario. Additionally, many newly developed embedded edge computing devices are

lightweight and portable, such as Nvidia Jetson TX2, AGX Xavier, or Xavier NX.

These devices are suitable for real-time onboard computing power on small drones

with restricted space [37], which can be useful to empower our approach. We plan
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to address this in future work by using the SoftwarePilot framework for fully au-

tonomous aerial systems [26] and our EDANet for lodged rice detection to implement

the proposed approach to scout crop fields in real-time.

4.5 Conclusions

Rice is a globally important crop that will be a necessary component of the earth’s

food supply for the foreseeable future. Rice lodging is a threat to rice production,

hurting yield, and diminishing farmers’ income. Assessing rice lodging should be

more efficient because current methods rely primarily on random manual sampling.

This paper presents an autonomous scouting approach to estimate rice lodging using

machine learning and UAVs. The machine learning model using EDANet is capable

of identifying rice at 95.28% accuracy and lodging at 86.17%, improving in prior work

by 2.51% and 8.26%, respectively. The adaptive scouting approach, which scouts rice

at multiple altitudes to target lodged regions, in particular, maintained 99.25% lodged

prediction accuracy compared to a complete scan of the field at low altitude while

taking 35% less time. The adaptive scouting approach saves considerable money and

time and provides a great opportunity to enhance rice lodging assessment over a large

area using deep learning techniques on UAV images. The adaptive scouting approach

is ready to be implemented in lodging assessments to provide low-cost and in-time

digital maps. In the future, edge computing will be integrated into adaptive scouting

to identify field anomalies in real-time and complete multi-scale imaging tasks in one

flight.
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Chapter 5: Programming and Deployment of Autonomous

Swarms using Multi-Agent Reinforcement Learning

Autonomous systems (AS) carry out complex missions by continuously observ-

ing the state of their surroundings and taking actions toward a goal. Swarms of

AS working together can complete missions faster and more effectively than single

AS alone. To build swarms today, developers handcraft their own software for stor-

ing, aggregating, and learning from observations. We present the Fleet Computer,

a platform for developing and managing swarms. The Fleet Computer provides a

programming paradigm that simplifies multi-agent reinforcement learning (MARL)

– an emerging class of algorithms that coordinate swarms of agents. Using just two

programmer-provided functions Map() and Eval(), the Fleet Computer compiles and

deploys swarms and continuously updates the reinforcement learning models that

govern actions. To conserve compute resources, the Fleet Computer gives priority

scheduling to models that contribute to effective actions, drawing a novel link between

online learning and resource management. We developed swarms for unmanned aerial

vehicles (UAV) in agriculture and for video analytics on urban traffic. Compared to

individual AS, our swarms achieved speedup of 4.4X using 4 UAV and 62X using

130 video cameras. Compared to a competing approach for building swarms that is

widely used in practice, our swarms were 3X more effective, using 3.9X less energy.
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5.1 Introduction

Autonomous systems (AS) continuously sense their surroundings, model their cur-

rent state and take actions toward a goal. Edge computing, a paradigm where com-

pute resources are provisioned near sensing devices, has propelled AS in a wide range

of industries [23,87,144,228].

Groups of AS working toward a common goal are called swarms. Compared

to AS working alone, swarms can speed up mission execution. First, missions can

be partitioned into tasks that swarm members execute in parallel. Second, swarm

members can share observations of their surroundings to help other members take

effective actions. Today, human programmers manually partition missions for swarm

operations and each swarm member uses pre-programmed behaviors. For example,

in precision agriculture, such automated swarms divide a crop field among multiple

UAV and each UAV executes pre-programmed scouting routines on its region [15].

Recent research provides automated partitioning and fault tolerance for automated

swarms [87]. However, pre-programmed behaviors fundamentally waste resources by

collecting and processing data of low value relative to the mission. Further, by limiting

autonomy, data sharing between members can not improve efficacy.

Multi-Agent Reinforcement Learning (MARL) is an emerging class of reinforce-

ment learning algorithms where agents cooperate to maximize a reward. Agents

learn their own reinforcement-learning policies, but they can also learn from the ac-

tions and outcomes of other agents. MARL algorithms applied to AS swarms can

speedup missions via partitioning (like the automated approach above) and via ef-

ficacy (i.e., taking better actions). Further, recent research on MARL algorithms

provides provable guarantees and strong empirical results [39,51,122,218]. However,
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MARL systems are not simple to develop and manage; they require infrastructure for

AS workflows, selecting MARL algorithms and reward functions, and data manage-

ment policies. Developers must create this infrastructure by hand and incorporate it

into a real-world system. The result is that, despite their potential, these algorithms

rarely go beyond theoretical studies or highly specialised applications with bespoke

components.

We present the Fleet Computer, a platform for developing and managing MARL-

driven swarms. To program AS in the Fleet Computer, developers provide two

functions: Map() and Eval(). Map() converts sensed observations (e.g., images) to

application-specific feature vectors. Eval() evaluates system performance towards au-

tonomy goals. In addition, developers also provide hardware resources and mission

configuration settings, e.g., allowed actions and goals. With these inputs, the Fleet

Computer compiles MARL models that govern autonomous actions. Then, during

execution, the Fleet Computer aggregates data from swarm members and retrains

the models governing actions. However, retraining stresses limited computational re-

sources at edge sites. The Fleet Computer prioritizes retraining for models most useful

for effective actions, making a novel link between online learning and resource man-

agement. The Fleet Computer also expands and contracts edge compute resources

via duty cycling to save energy and reducing over provisioning.

Just as MapReduce [53] simplified parallel data processing, the Fleet Computer

demystifies fully autonomous swarms. In addition to its novel programming paradigm,

the Fleet Computer provides end-to-end control, deployment, and scheduling of an

entire swarm-support infrastructure – from individual swarm units, such as a UAV,

to the supporting heterogeneous compute resources at the edge.
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The Fleet Computer comprises 3 main contributions:

1. A programming model and toolchain that allows users to easily build MARL-driven

swarms.

2. A novel, online-learning approach to aggregate observations from swarm members

and dynamically update models governing actions.

3. A runtime platform that manages, schedules and duty-cycles edge compute re-

sources, simplifying deployment.

We used the Fleet Computer to build both aerial crop scouting and video analytics

systems, demonstrating its broad applicability to significantly different problems. We

developed a swarm of unmanned aerial vehicles used to predict crop yield from flyover

images. We also developed a taxicab tracking workload using a swarm of autonomous

cameras. By providing a simple way to take advantage of state-of-the-art MARL

algorithms, our crop yield mapping application outperforms state of the art yield

mapping, improving mapping times by 4.4X using 3.9X less UAV power. Similarly,

our vehicle tracking workload built using the Fleet Computer outperforms prior work,

tracking taxis up to 62X faster as a swarm compared to centralized processing while

maintaining good performance over time by updating models regularly. Using these

applications, we demonstrate that a compute cluster running Fleet Computer software

can easily scale up from a single UAV, camera, or other agent to a complete swarm

that can learn from its actions while dynamically allocating resources to fit demand

and save precious power at the edge.

The remainder of the paper is organized as follows: Section 5.2 describes at a high

level the overarching design of the Fleet Computer. Section 5.3 details our program-

ming model, which allows users to easily build autonomous swarms that perform well.
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Section 5.4 discusses the Fleet Computer’s runtime, which includes a priority-based

online learning approach to maintain model performance as environments change,

and cluster autoscaling which saves edge power without sacrificing performance. Sec-

tion 5.5 covers two Fleet Computer implementations: video analytics and autonomous

crop scouting. Section 5.6 presents results for the Fleet Computer on both applica-

tions. Section 5.7 presents related work and Section 5.8 provides conclusions.

5.2 Background

Self-driving cars [123, 195], UAV [30, 167, 216], and other autonomous systems

(AS) [33,66,156,180] are transforming society. Investments in self-driving cars exceed

$56B [132]. UAV are transforming delivery, infrastructure monitoring, and surveil-

lance [4,7,30,87,175]. Autonomous cameras with mobile gimbals are powering traffic

monitoring and smart cities [90]. In this paper, the term autonomous describes sys-

tems that sense their surroundings, infer their state, and take actions toward mission

goals without human intervention.

By design, AS execute in unfamiliar surroundings. Their efficacy depends on how

well their actions align to mission goals. Broadly, AS can be characterized by two

key design choices: (1) Do they learn from their own observations? And (2) do they

learn from the observations of other AS? For many AS used in practice today, the

answer to both questions is no. These pre-programmed AS repeat the same routine

across all missions, often taking unneeded and wasteful actions.

With reinforcement learning, AS can learn from prior observations [30,65,98,123,

167]. However, often in practice, AS observe the world too slowly to capture enough

data for learning, especially in non-stationary contexts where the best actions change.
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Multi-agent reinforcement learning (MARL) addresses this problem by aggregating

data from multiple AS (i.e., swarms). Previously, the challenge for MARL-driven AS

has been deciding from which swarm members to learn, but recent research has de-

veloped online algorithms to explore data aggregations that have provable guarantees

and/or strong empirical results [39,51,122,218]. However, even with recent research,

swarms require additional compute resources compared to single-agent AS. To share

data, swarms members must be networked, e.g., via hubs [17,197] or wireless [85,198].

Exploring data aggregations also requires additional compute resources.

Autonomous UAV for Crop Yield Modeling: To illustrate these concepts, con-

sider a farmer that owns 4 UAV controlled via apps running on 4 tablets. The tablets

and an edge-hub desktop share a wireless Internet connection. The mission is to map

the expected crop yield for each 0.01× acre lot in a 1, 000 acre field with accuracy

above 80%. For the approach most commonly used in practice, the farmer would use

pre-programmed routines to exhaustively capture images from 100, 000 waypoints.

This approach is slow and unnecessarily exceeds accuracy goals. A pre-programmed

swarm could split the mission into 4 parallel tasks. With reinforcement learning,

AS can visit significantly fewer waypoints [23,167,223] by continuously modeling the

expected accuracy of their map and prioritizing valuable waypoints to visit next.

MARL-driven AS improve upon naive reinforcement learning by using shared images

to visit fewer waypoints. However, the computational load for reinforcement learning

and MARL exceeds the capacity of UAV processors and tablets, requiring resources

of an edge hub or the cloud.
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5.3 Design

As shown in Figure 5.1, the Fleet Computer is an end-to-end platform for au-

tonomous swarms, covering the development of AS, their workflow and coordination,

and their execution on edge computing devices.

To create an AS, developers implement two functions, Map() and Eval(), and

specify mission configuration. Map() functions convert quantized input from sens-

ing devices (e.g., cameras, GPS, etc.) into a feature vector that represents the state

of the AS. Eval() functions aggregate all outputs from Map() invocations during an

epoch and assess the extent to which the mission has been completed. The mis-

sion configuration defines key parameters that developers can adjust across swarm

applications. Figure 5.1 depicts three examples of mission configuration settings.

First, developers can provide thresholds to determine when missions are complete.

By default, the Fleet Computer supports thresholds on accuracy and energy usage.

Second, developers specify the type of resources needed for sensing, processing, and

data aggregation by stipulating quantitative requirements, such as CPU and memory

required for Map() execution. Third, users provide qualitative requirements, such as

support for specific Action Drivers. Action Drivers support a cyber-physical system’s

actions, e.g., take off, land, sense, and fly to waypoint.

The Fleet Computer compiles these inputs to create AS workflows for sensing

surroundings and taking actions. Here, the challenge is to decide which actions to

take after running Map() and Eval(). The Fleet Computer automatically builds

state-to-action (SA) models and history-to-action (HA) models by (1) replaying data

from prior execution contexts, and (2) learning effective actions that improve Eval()
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outcomes. SA models convert a single map output to actions whereas HA models

convert multiple observed outputs.

The Fleet Computer models MARL-driven AS as three asynchronous components:

Sensors, AS Workflow, and Data Aggregation. These components execute in shared-

nothing containers connected via distributed storage (e.g., HDFS [179]). Containers

are replicated to support swarms. Precisely, a swarm of size N will comprise N

Sensor and AS containers and up to 2N Data Aggregation containers (representing

every possible combination of aggregations). Clearly, Data Aggregation containers

impose computational demands that exceed system capacity— a challenge common

to all MARL-driven approaches [39, 122, 218]. For small swarms (N ≤ 8), The Fleet

Computer deploys all Data Aggregation containers and employs a novel, priority-

based online learning and scheduling to manage compute demand. For larger swarms,

the Fleet Computer supports developer-provided heuristics to limit aggregation.

In this section, we first provide a rigorous primer on MARL algorithms. Then,

we introduce the specification of Fleet Computer applications, i.e., swarms of AS.

Finally, we describe each of the key functions and models listed above.

5.3.1 MARL Primer

Broadly, reinforcement learning approaches determine a policy π∗ that approx-

imates an optimal solution to a Markov Decision Process (MDP). MDPs comprise

States S, Actions A, a transition probability function P → SxA → ∆(S), a reward

function R(si, ai, si+1) defining the immediate reward an agent receives from perform-

ing an action, and a discount factor γ [219]. A policy π is a means of determining
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Fig. 5.1: The architecture of the Fleet Computer.

which action to take in a given state to transition to another state. The optimal pol-

icy π∗ is the policy that results in the set of state transitions that maximizes overall

reward.

MDP : (S,A, P,R, γ) (5.1)

MDPs are a useful tool for solving simple state transition problems, but fleet missions

are too complex for this framework. Consider the crop yield modeling example from

Section 2. Crop scouting is a complex workload where the execution context changes

over time and reward is difficult to define. If the system is rewarded based on the

110



estimated yield it predicts in each state, it will likely over or under-predict yield

based on how reward is assigned. Furthermore, even if reward is properly assigned,

it is likely that states and transition probabilities will change over time as crops

grow and conditions change. In many cases, an optimal policy is nearly impossible to

determine a priori. For these tasks, reinforcement learning is used to develop π∗′ ≈ π∗,

an approximately optimal policy for navigating execution contexts while maximizing

reward.

There are many methods for approximating π∗ through reinforcement learning

including value based methods like Q-learning, policy based methods like actor-critic

RL, and analogous deep methods like Deep Q-Networks and Deep Deterministic Pol-

icy Gradients [83, 121, 142, 202]. Throughout this paper, we will use Q-learning as a

basis for MARL, but other techniques fit into our programming model as well. Q-

learning is a value-based method for reinforcement learning which uses a Q-function

to determine π∗′. Q(Si, Ai) is the Q-function which predicts the expected value (Q-

value) of an action Ai taken at state Si. In practice, Q-values are stored in a Q-table

Q[S,A] indexed by state-action pairs. When an action is performed, the Q-table is

updated using the bellman equation shown in equation 2, which uses dynamic pro-

gramming to update the Q-value for a state-action pair based on the reward for a

given action, plus expected reward of all future actions modified by learning rate α

and discount factor γ. Properly informed Q-tables and other RL mechanisms solve

MDPs with high accuracy by learning π∗′, allowing them to learn complex behaviors

through exploration.

Q(si, ai) = (1− α) ∗Q(si, ai)+

α[R(si, ai, si+1) ∗ γmax(Q(si+1, ai+1))]
(5.2)
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This process translates quite well to multi-agent systems. Transitioning a rein-

forcement learning algorithm to a multi-agent domain can involve constructing care-

ful global reward functions [42]. Another approach, team-average reward [59, 96],

maximizes the reward received by the system given agents with different and poten-

tially discordant reward functions. MARL algorithms of this type are called Markov

Games (MGs) [125]. MGs, shown in equation 3, expand the MDP by adding multiple

agents, defined by N ≥ 1. Each agent i ∈ N has its own action set Ai and reward

function Ri. Similar to MDPs, the solution to the MG is policy π∗, the set of state

transitions that maximizes reward. Much work has also been done with networked

agents [160,218,220], agents within a MG that communicate over some time-varying

network, may have individual reward functions, and may require data privacy.

MG = (N,S,Ai
i∈N , P,R

i
i∈N , γ) (5.3)

Given this specification, the Fleet Computer should accommodate different MARL

algorithms using the same base components while assuring that these algorithms fit

within the fleet framework. To allow the design and deployment of MARL algorithms

for real-world AS, the Fleet Computer takes some of these base MARL components

as inputs and generates others offline.

5.3.2 The FleetSpec

FleetSpec : (N,S,Ai
i∈N ,Map(), Eval(),C) (5.4)

Equation 5.4 presents the minimum specification for Fleet Computer applications,

called the FleetSpec. Similar to a Markov Game, the FleetSpec accepts a number of
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agents N ≥ 1, states S, and action sets Ai for each agent. States are non-injective

and surjective mappings from action sequences to integers < att=0, a
t
t=1...a

t
t=T >→ Z

where at ∈ Ai
i∈N . States affect the behavior of action drivers. For example, if a

vehicle is at the eastern edge of allowed states, the command go East is muted by the

action driver. Unlike Markov Games, FleetSpec eschews state transition probabil-

ity and reward functions. First, Fleet Computer developers can reuse action drivers

created by others. The action drivers may support states about which the develop-

ers are unaware, making state transition models incomplete. Second, constructing

mathematical reward functions is challenging. Real-world AS take on missions that

involve complex, domain-specific knowledge. The value of their actions can be subtle

and may depend on prior actions, requiring complex non-linear reward functions that

overly complicate the development of AS.

Instead, the Fleet Computer learns state-to-action (SA) models and history-to-

action models (HA) automatically through training and reward shaping. These mod-

els represent an approximation of π∗′. The Map() and Eval() functions, coupled with

representative observations from prior missions C, suffice to compile initial MARL

models and reward functions. The remainder of this section details the compilation

process.

5.3.3 Map() and Eval() Functions

Like in MapReduce, Map() functions in the Fleet Computer structure input data.

AS get their input data from sensor containers. The output is a feature vector, called

a state-space vector (SSV), that describes sensed observations in the system’s current

state. Precisely, let Dj be the sensor data observed in state Si, Map(Dj) directly
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translates observed sensor data to a SSV, as shown below.

D =< d1, d2, ...dn > (5.5)

Map(D) = SSV =< f1, f2, ...fm > (5.6)

By emitting a structured SSV, Map() functions in the Fleet Computer can compose

multiple extractor functions that process a portion of the sensed data D′ ⊂ D and

emit part of the SSV. Extractor functions are shown in Figure 5.2 for our crop scouting

example. Map(Dj) for crop scouting provides data Dj to extractors including ExG()

which determines excess green [105] (a metric for predicting crop yield), LAI() which

estimates the leaf area index [162] of crops in the image, and a CNN which counts the

number of corn stalks in the image among other extractors. Each of these extractors

provides important information about the execution context that can be used to

both build final yield maps and predict optimal actions for sampling. Each of these

extractors return one or more floating point values which are added to the final SSV.

Eval() determines whether and to what degree an AS has accomplished its goal.

For some AS, this can be as simple as reaching a certain state. For others, like the

autonomous crop scouting example, goal evaluation is more difficult. Depending on

the size and type of field being modeled, the goal may be to make the most accurate

yield map possible within some timeframe, cost, or sampling coverage.

FS = {SSV1, SSV2, SSV3...SSVn} (5.7)

P = {ρ1, ρ2, ρ3...ρm} (5.8)

Eval(FS,m) = P (5.9)
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1 func[] extractors = [ExG(), LAI(),

2 CornCountCNN (), ...]

3 float[] Map(Obj data) {

4 float[] SSV = [];

5 for(e in extractors) {

6 SSV.append(e(data));

7 }

8 return SSV;

9 }

10

11 Obj[] Eval(float [][] FS , float [][] perf) {

12 finished = checkGroups(FS, HA)

13 map_final = []

14 if(finished) {

15 map_gt = buildMap(FS)

16 map_final = extrap(map_gt)

17 }

18 P = buildMetrics(perf)

19 return [finished , P, map_final]

20 }

Fig. 5.2: Map and Eval function pseudocode for crop scouting.

Eval(), defined above, accepts a feature space FS comprised of n ≥ 1 SSVs and

a set of system-level metrics m, and outputs an evaluation P which includes x ≥ 1

evaluation metrics ρ1..ρm. The number of state-space vectors and evaluation metrics

required is task and goal dependant.

For our crop scouting UAV example, many or all sensed SSVs from a mission

may be needed to build an accurate yield map. Evaluation metrics for crop scouting

may include system execution time, accuracy, energy expenditure, monetary cost and

any other metric that determines real-world performance. Eval() pseudocode for crop

scouting is shown in Figure 5.2.
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Eval accepts two parameters, a featureset of all SSVs collected by the system, and

a set of performance metrics for each agent. First, we use the HA model to determine

whether the mission has concluded by exploring all state groups, a process detailed in

section 3.4. If the mission is finished, a final yield map is generated by converting FS

into a ground-truth yield map by mapping ExG from each SSV into a yield prediction

and mapping it onto the execution context. Then, unvisited zones are extrapolated

using an approach from prior work [223]. Next, Eval() uses performance metrics from

every agent to build a set of global metrics that can be used for goal evaluation, P .

Finally, Eval() returns a Boolean stopping condition based on HA, evaluation metrics,

and potentially a final yield map which will be returned to the user.

5.3.4 State-To-Action and History-To-Action Models

Designing MARL policies and reward functions is a complicated problem with

many situational solutions. Each action taken by an agent must be assessed by a

policy before it is selected, and assigned reward if it is taken. The Fleet Computer’s

model training and reward shaping steps simplify this process, allowing users without

predefined models or reward functions the option to build them automatically.

Training reinforcement learning policies generally requires releasing an agent into

an execution context and allowing it to explore, building a policy using a reinforcement

learning model from the reward it garners from its actions. Characterizing entire

real-world execution contexts for training models is a well-explored problem. Point-

cloud datasets have long been used in robotics and computer vision for simulating

navigation and robotic manipulation in real-world environments [52, 149, 181, 188].

Data sets for self-driving vehicles [75, 103, 214] and video analytics [145, 227] provide
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Name Linkage Data
Type

Devices Use-
Cases

Point
clouds

Spatial RGBD,
ASCII

Robots Indoor
and
outdoor
Naviga-
tion

Video
streams

Spatial,
Tempo-
ral

Video Self-
driving
cars,
Video
analyt-
ics

Trans-
portation,
Track-
ing,

Autonomy
cubes

Spatial,
Tempo-
ral

Images,
Video

UAV Precision
agricul-
ture,
Rescue,
Photog-
raphy

Table 5.1: Execution context data sets and their use cases.

labeled video streams of fully explored environments used to train algorithms in both

domains. A similar approach, Autonomy Cubes, provides spatially and temporally

linked images in the form of hypercubes representing completely explored execution

contexts regularly used to develop autonomous UAV workloads [30,205,223].

Any of these execution context representations can be used to train MARL mod-

els for the Fleet Computer. In the FleetSpec, these execution contexts are defined

as C. Map() and Eval() combined with autonomy goals allow agents to navigate

these environments just like the real world, with Map() extracting data from a given

state, and Eval() determining whether autonomy goals are sufficiently accomplished.

These functions do not, however, constitute a policy. The policy for navigating these

environments is defined by State-to-Action and History-to-Action models detailed

below.
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A State-to-Action model (SA) is a blank or pretrained MARL model SA ≈ π∗.

SA accepts a SSV as input and returns an action. SA is not strictly tied to any RL

or MARL model format, and is meant to be general. By default, the Fleet Computer

supports Q-learning, but other model types, like DQNs or DDPGs can be substituted

as an SA baseline. SA can also be provided pre-trained, or the Fleet Computer can

instantiate it from a blank model and train it with data from C. The only restriction

placed on SA by the Fleet Computer is that it must accept an SSV produced by

Map() as an argument.

History-to-Action() models provide spatial support to SA models. An HA model

determines if an AS has accomplished its goal within its execution context. As an

AS explores its execution context, some states of low relevance can be excluded or

extrapolated to conserve time, energy, and compute resources. MARL models gen-

erally rely solely on reinforcement learning to determine which states to search, but

recent video analytics work [90] demonstrates how spatial and temporal correlations

can help prune search spaces effectively. In response to this work, we propose that

groups of states (state groups) be allocated in conjunction with HA models to better

search across execution contexts.

A state group is a collection of states within the execution context, with each state

belonging to one or more state groups. State groups provide spatial bounds on AS.

Often, phenomena sought by AS is spatially correlated [90, 223]. By defining spatial

bounds, AS can limit their searches, saving time and resources. HA determines the

number of states explored in each group. After a state in the state group is visited, the

feature vectors of each visited state in that group are provided to HA to determine

whether to explore another state in that group, or to visit another group. If the
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system decides to visit another state group, all unexplored zones in the group are

either disregarded or predicted by Eval(). HA is defined as follows.

HA(FS) =

{
U > Tu or V > Tv 0

else 1
(5.10)

U =
n∑

i=0

R(Si, Ai, Si+1) (5.11)

V = ∥FS∥ (5.12)

HA accepts a feature space FS comprised of one or more state-space vectors

SSV1..SSVn from the same state group. HA(FS) returns a Boolean value repre-

senting whether to continue exploring a state group (0) or to move on and explore

another (1). This decision is made using U , the total utility of the feature space, and

V , the size of the feature space (number of visited states in the group). The utility

of a feature space is the aggregate reward received from all state transitions within

that space. If U is above Tu, the utility threshold, or V is above Tv the visited states

threshold, all remaining states in the group are ignored or predicted by Eval() and

another state group is visited. The two thresholds strike a balance between allowing

the MARL algorithm time to find high reward state transitions and limiting the total

number of states visited to maintain efficiency.

These thresholds, as well as the means for determining reward, are difficult to

determine a priori. Rigorous construction of high-quality reward functions is still an

open problem, and could be difficult for users attempting to apply autonomy to a new

domain or in an unclear application [108, 219, 229]. Work has been done on reward

shaping [84, 124, 229], but there is still no best practice on how reward functions

should be developed. We take inspiration from recent work that used meta-learning
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via gradient descent to construct reward functions [229]. Because our Map() functions

have smaller numbers of features, we can define a rigorous means for estimating

optimal reward functions and thresholds through a simpler and faster technique,

Bayesian optimization [71].

5.3.5 Reward Shaping and Training

Provided one or more execution context data sets, Map() and Eval() functions,

and SA, our algorithm initializes hyperparameter values for the reward function and

HA thresholds, then simulates autonomous missions over each execution context, and

evaluates performance. We use bayesian optimization [71] to find a goal-maximizing

combination of Reward, SA, and HA.

R(Si, Aj, Si+1) =
n∑

f=0

Sf
i+1 ∗ wf (5.13)

Reward, shown above, is the sum of each normalized feature of Si+1 multiplied by

its corresponding weight wi. Weights are a feature specific hyperparameter between

0 and 1. Using these properties, we can determine that the output of R(Si, Ai, Si+1)

will be in the range [0, ∥Fi∥]. For this reason, Tu may only fall in the same range.

Similarly, Tv must be an integer value between [0, V ]. Through simulation, Bayesian

optimization tunes these values until user-specified accuracy and energy requirements

are met.

Bayesian optimization is a function approximation technique that minimizes or

maximizes objective functions with many parameters through creatively searching

their state-space [71]. Users must provide a set of defined autonomy goals G =
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1 float[] buildReward(int nFeats , Obj[] C, int numEpochs , float []

G) {

2 float[] W = initWeights(nFeats)

3 int T, T* = GROUP_SIZE

4 int V, V* = MAX_INT

5 int bestLoss = MAX_INT

6 float[] maxWeights = []

7

8 for i in range(numEpochs){

9 float loss = 0

10 for con in C{

11 float[] e = sim(con ,W,T,V)

12 loss += F(G, e)

13 if(loss < bestLoss and goalsMet(G, e)]

14 bestLoss = loss

15 maxWeights , T*, V* = W, T, V

16 W, T, V = Bayes([W, T, V], loss)

17 }

18 return maxWeights;

19 }

Fig. 5.3: Bayesian reward shaping pseudocode. Reward Shaping seeks to find the set
of hyperparameters which minimizes loss and meets goals.

{g1, g2, ..gn} corresponding with outputs of the Eval() function. Using G we can con-

struct a multi-variate loss function which serves as the objective function for Bayesian

optimization.

Figure 4 shows our Bayesian reward shaping process in pseudocode. Our buil-

dReward function accepts 4 parameters: the number of features from Map() to be

weighted, the subsetset of contexts to be simulated across Ct, the number of training

epochs, and the list of autonomy goals G. Before training, weights and thresholds

are initialized. Training consists of simulating missions using each context c ∈ Ct.

Loss is calculated based on autonomy goals G and the final simulation evaluation
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e∀con using objective loss function F (e,G). The additive loss for all cubes is then

compared to the best prior loss. If loss is less than the best previous loss and all goals

are met, the hyperparameters are saved. When the last training epoch concludes, the

hyperparameters with the least additive loss that met all goals are returned, providing

complete HA and reward functions.

Once reward shaping has concluded, SA is retrained with a separate subset of

contexts Cr using a similar process. Missions are simulated across Cr with the new

reward function and evaluated against prior training examples to select the best

combination. The number of retraining periods for both SA and reward shaping are

specified by user-defined hyperparameters.

5.4 Runtime

Using our goal-based development techniques for AS, users can more easily develop

and train MARL algorithms for their individual problems. Output SA models may,

however, be insufficiently trained to operate well in specific deployments. To help

build high quality systems with limited initial training data, and allow algorithms

to adapt to dynamic environments, we introduce a federated online learning system

for MARL algorithms within the Fleet Computer. This system allows SA and HA

models for individual swarm members to diverge to maximize global reward. Using

an online learning component also introduces a scheduling and resource management

problem domain for executing online learning tasks at the edge. In this section we

first describe our federated learning approach to MARL for AS which uses Bayesian

optimization to determine model usefulness for efficient retraining. We then present

122



our runtime scheduling and resource management system for these online learning

tasks, aided by Kubernetes.

5.4.1 Bayesian optimization for system-level hyperparame-
ters

When a swarm is deployed, each member uses the original model SA for pathfind-

ing decisions. As missions complete, swarm members’ future performance may benefit

from retraining using the the data they sense. It is unclear, however, whether retrain-

ing will immediately help or hurt performance, and which data should be used for

maximum retraining performance. To solve these problems, we retrain a set of models

SAs using different subsets of collected data and weight their performance for every

system.

Our solution to this problem is depicted in Figure 5.4. After a deployment’s first

mission, each swarm member has sensed and stored new data that can be used by

aggregation containers for retraining. The sensed data can be partitioned into an

infinite number of subsets to retrain SA → SAs. Using intuition from the federated

learning community [110], we define the upper bound of SAs as the set of models

retrained using all combinations the powerset of N , P(N). This gives us latitude

in selecting optimal models, but provides resource challenges for large swarms. The

Fleet Computer provides developers the option to provide heuristics to prune aggre-

gators from SAs, and can use usefulness to prune SAs online. It is unclear a priori

how each model in SAs will affect each swarm member, so training effects must be

determined online. Therefore, we track a series of performance-based system level

hyper-parameters.
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We track model weights {U1
w..U

i
w} for models {SA1..SAi} ∈ SAs. Model weights

describe the weighted percentage (0 ≤ Ux
w ≤ 1,

∑i
n=1 U

n
w = 1) that decisions from

that model are incorporated into a pathfinding decisions. The goal of our approach

is to determine the values for these hyperparameters which yield us the best mission

performance. Per swarm member, we define these hyperparameters as x.

x = {U1
w, U

2
w, ..U

i
w} (5.14)

SAs(x) describes the Fleet Computer mission whose pathfinding decisions for a

single agent are determined by SAs weighted by x. The Fleet Computer’s goal is to

determine a set of hyperparameters x∗ that best accomplishes autonomy goals. More

specifically, we want to optimize the following objective function.

x∗ = x s.t. argmax(Eval(SAs(x))|SAs(x) > G) (5.15)

We use Eval(SAs(x)) representing the evaluation of a full mission informed by

SAs(x). Our goal is to find x*, the set of weights that maximize the evaluation, while

assuring that our autonomy goals G are met.
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Bayesian optimization [71,143] is a powerful technique often used in hyperparam-

eter tuning to improve machine learning algorithms performance. Bayesian optimiza-

tion works well for optimization problems where objective functions are derivative

free, expensive to evaluate, noisy, lack structures that are easy to optimize, and

have small parameter sets [71]. Reinforcement learning approaches often fit all of

these criteria, ours included. To optimize our hyperparameters, we use expected

improvement to quickly minimize our objective function given specified goals. Ex-

pected improvement approximates the global maximum of our objective function by

sampling hyperparameters based on the posterior distribution of prior sample points

and loss. Expected improvement determines hyperparameter samples with a balance

between the highest probability for improvement and the largest magnitude of that

improvement. We model this as a Gaussian process.

The above approach frames Bayesian optimization in the scope of a single agent’s

parameters, but we can use this approach to optimize hyperparameters for multiple

agents. Using the same local-optimization approach, we can determine a near-optimal

x to maximize global goals. Each swarm member maintains its own set of hyperpa-

rameters xi which is updated asynchronously after each mission. The collective set

of hyperparameters provides us a simple metric for determining how ’useful’ each

model in SAs is to overall pathfinding decisions. Models with higher average U i
w pro-

vide more insight into pathfinding decisions, and therefore should be updated more

regularly and provided more retraining resources.
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5.4.2 Scheduling and power management

The Fleet Computer consumes edge resources to support movement, actuation,

pathfinding, data storage, and online learning. Within this set of activities it is

important to balance the resource needs of critical real-time latency-sensitive pro-

cesses, like movement control, with compute intensive tasks like retraining routines

that offer significant long-term gain. It is also important for edge resources to be

responsive to workload changes, powering down edge devices in low load periods

to maximize system liveness and mission length, and scaling out in peak loads to

support effective decision-making. Here we describe our solutions to both of these

challenges: Section 5.4.2 presents our priority-based container scheduling solution

for latency-sensitive and compute-intensive tasks, which factors in utility of each

compute-intensive training task to overall mission objectives, and Section 5.4.2 de-

scribes our cluster autoscaling mechanism to adjust to workload changes.

Priority-based Scheduling

The Fleet Computer deploys all of its core components in containers [138] to

maintain hardware independence and support scale-out. Figure 5.1 shows the different

container types that encapsulate pre-built inputs like MARL algorithms, retraining

routines, and feature extractors along with core Fleet Computer platform elements.

Container scheduling across clusters is well understood [40]. We use Kuber-

netes [171] for automated bin-backing of containers across clusters, allocating re-

sources for all Fleet Computer components defined as Docker containers. We use

priority-based scheduling to ensure that latency-sensitive real-time tasks such as UAV

flight control are assured to be executable within their latency window; we then use
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additional edge compute to schedule model retraining tasks based on newly-received

data from swarm members of the in-progress mission.

For model retraining tasks, we augment the resource allocation algorithm used by

Kubernetes to optimise placement and task selection for Fleet Computer operations.

Placement decisions are impacted by data locality, where training data for SA and HA

models is typically fragmented across multiple systems within the Fleet Computer.

Our resource allocation algorithm guarantees that containers will be scheduled on an

edge node that either (1) has at least some of the data required for model retraining,

or (2) is within a user-defined edge hub with expanded compute. This provides

Kubernetes with sufficient flexibility in scheduling, but guarantees that data transfer

times remain relatively low and allows for the potential of partial or complete data

locality at the training site.

Task selection is impacted by the likely utility of a retraining task: when edge

compute resources cannot support all retraining tasks, we choose those with the

highest average utility. The Fleet Computer uses Kubernetes’ priority scheme for

scheduling training procedures using the aggregate usefulness of each model provided

by AS containers as shown in Figure 5.4. Model usefulness is simply the floating point

value Ui = [0, 1] assigned by Bayesian optimization, as explained in Section 5.4.1. If

model usefulness is calculated by multiple swarm members, usefulness is weighted

evenly among them. Scheduler priority for model i is then:

Pi = ⌊10 ∗ Ui⌉ ∗ 100, 000, 000 (5.16)
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Pi then becomes a priority value in range [0..900, 000, 000] at intervals of 100, 000, 000,

allowing for 10 possible priority values. This range maps into the entire range of pri-

ority levels available in Kubernetes, which is specified by integers between 0 and

1 billion, while providing a coarse granularity that clearly differentiates retraining

routines of different utilities and allows us to reserve the priority level 10 for sensor

containers.

We also use usefulness to assign compute resources. Kubernetes allows users to

provide minimum and maximum resource usage constraints when pods are instan-

tiated. We use the same priority numbers [0, 9] to assign relative CPU and RAM

maximums to pods. All available RAM and CPU units are portioned among pods

based on their priority levels.

CPUi =
CPUt∑s
j=0 Pj

∗ Pi (5.17)

Shown above, all CPU cores available across the system CPUt for retraining are

split evenly among pods based on priority. This same process is used to allocate

memory. Pods with a priority of 0 are not scheduled. This priority mechanism allows

us to provide more resources to retrain models that agents consider useful, and avoid

retraining models that provide little to the system.

Cluster Autoscaling

Because Fleet Computers may include many nodes, and edge devices in particular

are likely to be provisioned for peak loads rather than average load, it is beneficial to

regularly scale the cluster up and down in response to workloads.
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The Fleet Computer includes a custom Kubernetes autoscaler which drains com-

pute tasks from superfluous nodes and powers them down, saving on edge power when

loads are low, and re-powers decommissioned nodes using Wake-On-LAN [140] when

the system detects that more compute will soon be required.

Powering down nodes in this way must be sensitive to cluster storage implications.

Each edge node stores different fragments of data, so we must ensure that no data

becomes unavailable. For this purpose we use the Hadoop Distributed File System

(HDFS) [179] for cluster data management, configured to replicate all data twice

across the edge node cluster. When data is ‘lost’ from a decommissioned node it will

therefore still be available at one other node in the cluster; after each decommission we

simply wait for data to be re-replicated by HDFS before powering down any further

nodes, guaranteeing data availability as the active node population changes.

5.5 Applications

We use two very different application types to help evaluate the Fleet Computer:

one using a swarm of crop scouting UAVs, and one using a swarm of taxi tracking

cameras.

Our crop scouting swarm builds on prior work [223] where UAVs navigate a corn

field and capture images which are used to construct a yield map as outlined in Section

2. Farmers use yield maps to inform crop management strategies like fungicide,

pesticide, and herbicide application. Large crop fields may cover hundreds of acres,

requiring days of swarm coverage and human labor to gather a complete yield map.

Prior work used reinforcement learning to creatively sample fields, covering a fraction

of the field autonomously and predicting the rest. This approach creates usable yield
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maps in a fraction of the time at lower cost, but requires considerable developer

effort. Actions in the crop scouting application are UAV direction movements, in a

field which is divided into a grid. In this application we used the same dataset of corn

images as prior work, consisting of 684 UAV sensed 4608x3456 images of a corn field

in London, Ohio. We input the same Q-learning based model and feature extraction

from prior work into the fleet spec as SA and Map(), and modified the extrapolation

function from prior work which generated crop yield maps to produce an Eval(),

which provides goal information like edge and UAV energy along with overall map

accuracy. We used the Fleet Computer’s reward shaping mechanism to build reward

and distance functions, defining state-groups as unique 3x3 regions of states.

Our taxi tracking swarm also builds on prior work in video analytics [90]. Spatula

is a cross-camera video analytics framework: for a specific target (a person, taxi, etc)

in one video stream, it returns all frames across all cameras which contain that tar-

get. Spatula avoids searching all cameras by searching only cameras that are highly

spatially and temporally correlated. Spatula builds these correlation matrices offline

using prior execution data. Online, cameras are only searched if their spatial and

temporal correlation scores are higher than user-provided thresholds. This approach

performs considerably better than searching all cameras and frames, but runs the risk

of staleness as movement patterns change over time, and also requires users to man-

ually determine threshold values. To implement this application we used the Porto

Taxi Service Trajectory dataset [145], also used to test Spatula. Similar to the origi-

nal implementation, we generated spatial and temporal correlations using 130 virtual

cameras pinned in an evenly spaced grid within Porto, Portugal. Correlation matri-

ces were provided to the Fleet Spec as the State-to-Action model, and trajectories
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from the Porto data set were provided in place of Map(). We built a custom Eval()

function which reports overall accuracy and the total number of frames checked for

targets throughout execution, and we generated an HA function to determine op-

timal temporal and spatial thresholds. We defined state-groups as 50% overlapped

1-minute sets of video frames from each camera.

Online learning for both systems consists of retraining models and rebuilding re-

ward and distance functions using recently received execution data. For crop scouting,

swarm sizes were small, so we dispatched P(N) aggregators for retraining after every

crop-scouting mission (i.e when a swarm generates a final yield map). For Spatula,

swarm sizes are large, so we dispatched N aggregators after every simulated day to

rebuild correlation matrices and relearned thresholds.

5.6 Evaluation

We implemented swarms for both applications described in Section 5.5 using mul-

tiple competing approaches. In this section, we describe our experimental testbed

and then evaluate the efficacy and performance of Fleet Computer swarms.

5.6.1 Architecture

The Fleet Computer is designed for edge deployments. Our canonical prototype

uses 6 total machines, comprising 5 consumer laptops as gateways and a server as an

edge hub. Consumer laptops include 3 HP 250 G6 laptops with i5 CPUs and 8GB

RAM and two Lenovo Thinkpad T470s with i7 CPUs and 8GB RAM. The server

includes an i9 CPU, 32GB RAM, and an Nvidia RTX 3080 GPU. Each machine runs

Ubuntu 20.04 Linux. All systems in the Fleet Computer are connected by Ethernet

to a 10 Gbps Netgear router.
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Fig. 5.5: Experimental results: a,b,e) The Fleet Computer’s programming model
and swarm capabilities improve performance considerably, c-d) Online learning keeps
models fresh and helps adapt to new execution contexts, f-h) The Fleet Computer’s
system management features save energy and improve performance by duty cycling
hardware, expanding compute efficiently, and prioritizing high-value model updates.

The Fleet Computer uses one of the Lenovo Thinkpads as a master node to control

Kubernetes, Docker, and HDFS. The master node also runs a custom Kubernetes gov-

ernor, a collection of daemons that create the Kubernetes cluster, start autonomous

missions, automatically allocate and prioritize retraining containers, autoscale the

cluster, and duty-cycle other machines. When retraining occurs, containers are sched-

uled by the governor as pods in the Kubernetes cluster. Each pod is scheduled based

on its aggregate usefulness as determined by all swarm members as discussed in Sec-

tion 5.5.
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For our crop scouting application, DJI Mavics provide the base UAV character-

istics for emulation. Each UAV in a swarm is assigned an HP or Lenovo laptop as

a gateway for communication with the Fleet Computer. The UAV’s control software

runs in a container on the gateway. To gather crop scouting results, we simulated

UAV by replaying data captured from previous missions. All UAV control software

executed as it would in the field, but data was provided by software. This allowed us

to execute all UAV commands without flying, but receive appropriate execution data

based on validated energy and latency models [30].

5.6.2 Results

We evaluate the Fleet Computer’s comparative performance against state-of-the-

art swarm control, the effectiveness of our runtime scheduling approach in saving

energy on edge devices, and the effectiveness of our online learning approach at

autonomously selecting effective data aggregations for retraining on our resource-

constrained edge devices.

Figure 5.5 (a-b) shows the Fleet Computer’s performance on our crop scouting

and video analytics workloads without additional online learning. For crop scouting,

we compare against the state of the art in prior work [223] (Classic RL) which utilized

Q-learning to map crop fields. We test the Fleet Computer against classic RL using 3

swarm sizes (1, 2, and 4 UAVs), and two autonomy goals: one seeking high-accuracy

(¿90%) maps; and the other prioritizing throughput, accepting 70% accurate maps

in exchange for fast sampling. Both approaches started with the same Q-learning

State-to-Action model, but the Fleet Computer generates its own History-to-Action

model and reward function from experience.
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For the both accuracy conditions, the Fleet Computer decreased mission length by

10-75% compared to Classic RL. Using a swarm of 4 UAVs, compared to a single UAV

as used in prior work, we observe a mission length decrease of 3.9-4.4X. This decrease

is in part due to having more UAVs, but represents more than 4x the performance

gain due to the Fleet Computer’s intelligent mission learning and redesign.

Figure 5.5(e) shows why Fleet Computer missions complete more quickly – com-

pared against both a Classic RL and current-industry-practice automated search

which scouts waypoints linearly, row by row until the coverage goal is reached [15,87].

The Fleet Computer consistently outperforms both prior approaches, most notably

at lower accuracy goals, by sampling an average of just 26% of a crop field to generate

a 70% accurate yield map, improving over Classic RL and automated by 1.73X and

2.2X respectively. These improvements are gained because the Fleet Computer learns

from experience which areas of a field are likely to be similar to adjacent regions and

so do not need detailed data capture.

Figure 5.5(b) shows the Fleet Computer’s performance against Spatula. Spatula

uses a shared correlation matrix and a single controller to implement cross-camera

analysis, and so is only shown in the ‘1’ category on Figure 5.5(b). The Fleet Com-

puter enables us to easily model cross-camera analytics as a distributed swarm of

cameras, where each agent is provided compute resources to respond to global queries

across one or more cameras. Using this approach, the Fleet Computer can highly par-

allelize query response and so offers very large potential performance gains without

complex programming. We used the Fleet Computer’s History-to-Action model to

automatically set Spatula’s spatial and temporal thresholds, and tested performance

by swarm size and for high throughput and high accuracy goals. Our experiments
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examine performance gains at increasing numbers of swarm agents applied to the

same problem, which is easy to configure through the Fleet Computer; at the high-

est number of 130 swarm agents we found that the Fleet Computer can parallelize

Spatula’s workload highly effectively, processing queries 39X and 62X faster than the

single Spatula controller.

When we introduce online learning to these scenarios we see further improvements

for both applications. Figures 5.5(c) and (d) show how crop-scouting can improve over

time, and how regularly updating HA models can maintain Spatula’s performance as

movement patterns evolve.

Figure 5.5(c) shows how online learning improves crop scouting accuracy. In

this experiment we run 10 successive real-time swarm missions across simulated crop

fields, allowing online learning to continually improve models across a 4 UAV swarm

for accuracy goals between 75% and 95%. By the 10th mission we see that every

condition moves closer to its target accuracy level by between 1% and 3%; if we

measure this as decrease in relative model error from the target accuracy this equates

to between 5% and 28% improvement. These savings improve accuracy goals with no

increase in resource requirements or mission lengths.

Figure 5.5(e) shows that Spatula’s performance with retraining remains consistent

with autonomy goals if retrained, but degrades quickly without retraining. We trained

Spatula on one day of Porto Taxi Data using all 130 cameras and 448 Taxis, then

examined its performance compared to the Fleet Computer on each following day

of a two-week period after its initial training. For both high accuracy and high

throughput goals, the Fleet Computer remains consistent (within 1%) with accuracy

goals. Spatula, in both cases, consistently under-performs accuracy goals after 2 and
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4 days for high accuracy and throughput respectively. At the end of the two week

period, the Fleet Computer outperforms Spatula by 5% and 3% for high accuracy

and throughput respectively by maintaining fresh models.

We next examine the Fleet Computer’s resource management approach and its

effect on edge site energy usage. Figures 5.5(f-h) show how the Fleet Computer’s edge-

focused Kubernetes runtime improves overall edge performance on our crop scouting

benchmark. Using the prototype Fleet Computer, we ran 10 real-time crop scouting

missions for each swarm setting using UAV-collected data with modeled UAV move-

ment, timings, and data-transfer provided by prior work [30]. Energy was calculated

using an AC watt meter. We tested 1, 2, and 4 drone swarms with both high accuracy

and high throughput goals. Figure 5.5(f) shows the Fleet Computer’s performance

against Classic RL in terms of energy consumption. The Fleet Computer conserves

energy in two different ways: mission lengths are shorter overall, and use of edge sites

during a missing is cheaper due to automated power-down of resources in non-peak

load periods. Compared to Classic RL, similar sized Fleet Computer missions con-

sume 1.58X-2X less power. A swarm of multiple UAVs is also more energy efficient

per-device than fewer UAVs; compared to Classic RL using a single UAV as in prior

work, a swarm of four fleet-computer-controlled UAVs uses 3.7X-3.9X less energy

depending on swarm size and goals.

Figure 5.5(g) shows how the Fleet Computer manages resources across extremes

during a swarm mission. For a single UAV, one node of the Fleet Computer cluster

is enough to handle all resource needs. As the swarm grows, more nodes must be

provisioned. As nodes increase from 2 to 4, peak and trough allocation change. For

instance, a 4-UAV swarm can operate at troughs using just 4 nodes, but requires all
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6 to handle peak loads. The Fleet Computer’s energy savings shown in Figure 5.5(f)

are a direct result of its ability to spread resources evenly across the cluster and shut

down unnecessary nodes until they are needed.

Finally, we examine the Fleet Computer’s usefulness-aware model retraining; this

offers better use of finite edge resources by selecting which training tasks are likely

to yield the highest benefit to an ongoing mission. Figure 5.5(h) shows how our use-

fulness metric affects model retraining times compared to average retraining times.

When the system is not under load, Kubernetes is easily able to distribute contain-

ers across it. If the system is correctly provisioned for the edge, however, it may

experience peak loads where containers must contend for resources. We evaluated re-

training times for 4-UAV on our crop-scouting benchmark. We found that wait-times

for high-priority containers (8-9 on the x-axis) were insignificant even at peak loads,

but could be up to 2.4X normal retraining time for very low (0-2) priority containers.

Similarly, high-priority containers experienced only modest (1.3X) lifetime increases

even when the system was highly pressured. This was at the expense of lower priority

containers, which experienced lifetimes up to 4.6X longer than usual. This behavior

allows the system to take resources from models with low utility to the system and

give them to high utility models.

5.7 Related Work

Much recent work has dealt with tackling the concerns of real-world autonomous

systems using strong theoretical foundations. Lin et al [122] explores a federated

meta-learning approach to train models with small datasets in an edge setting. Singh
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et. al [182] demonstrates a novel reward-training mechanism for reinforcement learn-

ing to eliminate the need for reward shaping. Kilinc and Montana [108] constructs

a framework for sharing data among agents in execution contexts that are noisy and

non-stationary using intrinsic reward and temporal locality. Other recent work [160,

218,220] on networked agents provide considerable insight into the behaviors of real-

world cooperative MARL systems with limited communication capabilities. Porter

et. al [159] presents a novel development platform for creating software that au-

tonomously assembles itself and discovers optimal execution policies online without

the need for expert model building and reward shaping.

Much related work deals specifically with autonomous aerial systems. Boubin et.

al [30] demonstrates that naive hardware and algorithm selection for fully autonomous

aerial systems can have serious performance consequences. Cui et. al [51] implements

MARL for allocating networking resources across a network of UAV base-stations. In

agriculture Zhang et. al [223], Yang et. al [205], and FarmBeats [197] provide new

techniques for automated and autonomous UAV crop scouting.

5.8 Conclusion

Swarms of autonomous systems powered by resources at the edge can provide

insight and actuation that will revolutionize industries like agriculture, construction,

transportation, and video analytics. We present the Fleet Computer, an end-to-end

platform for building, deploying, and executing swarms. To use the Fleet Computer,

developers implement Map() and Eval() functions and specify mission configurations.

The Fleet Computer compiles and deploys swarms using a multi-agent reinforcement
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learning framework. At runtime, the Fleet Computer manages data aggregation be-

tween swarm members, linking online learning outcomes to the efficient management

of edge resources. Our evaluation showed that the Fleet Computer can produce ef-

fective and efficient swarms, suggesting this tool chain could make swarms accessible

to everyday developers.
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Chapter 6: Adaptive Deployment for Fully Autonomous

UAV Swarms

Unmanned aerial vehicles play a critical role in many edge computing deployments

and applications. UAV are prized for their maneuverability, low cost, and sensing

capacity, facilitating many applications that would otherwise be prohibitively expen-

sive or dangerous without them. UAV are cheaper than alternative aerial analysis

methods, but still incur costs from expensive human piloting and workloads which ne-

cessitate high-resolution coverage of large areas. Recently, autonomous UAV swarms

have emerged to increase the speed of deployments, decrease the cost and scope of

human piloting, and improve the quality of autonomous decision making through

data sharing. Autonomous UAV deployments, however, suffer from external factors.

UAV are inherently power-constrained, with low onboard battery lives and limited

ability to siphon power from the edge systems that support them. Certain environ-

mental conditions, like inclement weather, wind, extreme heat, and low light also

affect UAV power consumption, sensed data quality, and ultimately mission success.

In this paper, we present an empirically based model for efficient autonomous swarm

deployment. We built and deployed a real autonomous UAV swarm to map leaf defo-

liation in soybeans. Using this deployment, we determined environmental conditions

which led to malfunctions, inefficient edge energy usage, and mispredictions. Using
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these findings, we developed a deployment model for UAV swarms which decreases

malfunctions and data irregularities by 4.9X and decreases edge energy consumption

by 45%, while increasing deployment times by only 4%.

6.1 Introduction

Throughout the past decade, edge computing has matured from an active area

of research among academics to an industry. Currently the global edge computing

market is valued at over $36 Billion, and is predicted to grow to over $87 Billion by

2026 [133]. The rise of the internet of things (IoT) and the need for privacy and

near-sensor processing has spawned a number of interesting consumer edge computing

products, including smart homes and buildings [68], medical devices [1], Unmanned

Aerial Vehicles (UAV) and more [30]. UAV, in particular, have formed broad aca-

demic, industry, and hobby communities. UAV are fast (moving upwards of 40 miles

per hour), highly maneuverable, easy to fly, and can be equipped with high resolution

cameras. Their flight can also be automated, making UAV an important tool for any

task which requires precise, high resolution sensing that is too dangerous, expensive,

or time consuming for humans to perform.

This use-case is common to many edge and IoT-related application areas. UAV

have found considerable use in areas like precision agriculture [205, 223], search and

rescue [6], infrastructure inspection [43], and remote sensing in disaster areas, forest

fires, and other areas too dangerous for humans to approach [93]. UAV allow ex-

perienced operators to sense broad areas quickly at high altitude, with the freedom

to investigate target areas at high spatial resolution. UAV flyover images have been

used for coarse-grained crop-health monitoring, forest fire monitoring, and battlefield
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target recognition. High spatial-resolution images have allowed subject matter ex-

perts and machine learning models to detect specific phenomena like leaf defoliation

in soybeans [224], cracks in bridges, or humans in disaster areas.

While UAV are quite useful, they can be difficult to use for large or complex

deployments. First, UAV have small battery lives. Most UAV fly for less than

40 minutes on one battery charge. Long missions are often solved by groups of

cooperating UAV (called swarms) to both cover areas faster and mitigate short mission

times. Second, the intelligence of each UAV agent affects mission time and capability.

UAV can be piloted by humans, operating as an extension of their pilot and her

expertise, or flow by software. Human piloting is by far the most common piloting

method, but comes with drawbacks. UAV pilots are often licensed and can command

high hourly rates, can be scarce or difficult to schedule for long deployments, and can

not control multiple UAV at once.

UAV flown by software [137] can replace expensive human pilots by either au-

tomating UAV flight for pre-defined missions, or autonomously controlling UAV.

Automated UAV fly pre-defined routes where the flight-path and sensing locations

are specified before takeoff. Autonomous UAV sense and respond to their environ-

ment [167], accomplishing complex missions using machine learning. Software piloting

of UAV both decreases deployment cost from human labor and allows for increased

intelligence and response to sensed data. Furthermore, edge machines can be provi-

sioned to fly multiple UAV at once as a swarms. Swarms of UAV cooperate to solve

high-level goals as a team. Swarms of autonomous UAV can learn from one-another

to influence eachothers actions, specialize, and update learning models online [22].
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While autonomy can drastically simplify deployment for UAV applications, de-

ployments must still contend with environmental issues. Any outdoor edge or IoT

deployment must contend with weatherproofing, but UAV applications are partic-

ularly vulnerable. Unlike embedded sensors and edge devices, UAV explore their

environments, making them susceptible to failures due to rain, lightning, heat, and

other environmental factors. Furthermore, limited UAV battery life and continual

recharges can put energy pressure on already constrained edge systems. These is-

sues are compounded again by the remote nature of many UAV deployments. UAV

are often most useful in large areas with limited power and network capabilities like

crop fields, remote infrastructure, or disaster areas. UAV malfunction, data loss, and

weather-related misclassification can lead to incorrect results, extension of deploy-

ments, or complete mission failure if incorrectly mitigated.

A successful autonomous UAV deployment must contend with these environmental

challenges. Prior work has dispatched UAV and duty-cycled edge hardware based on

cloud-cover to conserve renewable power [197]. Other viable flight conditions, such

as heat, low light, and moderate wind may affect the energy that UAVs consume in

flight, the odds of UAV malfunction, and model classification results. In this paper,

we explore a range of environmental effects that UAV deployments experience and

provide an empirical model that reserves edge resource for environmental conditions

conducive to UAV flight.

We designed a crop scouting UAV swarm that assesses leaf defoliation in soybeans,

a globally important crop. We flew over 150 autonomous crop scouting missions in dif-

ferent environmental conditions to measure the effects that environmental conditions
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have on UAV malfunctions, data quality, and energy consumption. Using this infor-

mation, we develop and simulate a deployment model for autonomous UAV swarms

which saves UAV batteries for conditions where malfunction is least likely, energy

consumption is minimized, and data quality is assured. Our simulation results show

that this model decreases malfunctions by 4.9X and decreases UAV battery consump-

tion by 45% over the course of a deployment while only increasing total deployment

lengths by 4% on average.

This paper is organized as follows. Section 2 covers background information on

UAV deployment concerns and prior deployment models. Section 3 describes the

design and implementation of our deployment. Section 4 details results from our

deployment. Section 5 presents our empirical deployment model for autonomous

UAV swarms.

6.2 Background

Recent UAV work has led to automated and autonomous deployments in a wide

range of areas [44,87,173,197]. Particularly in agriculture, UAV have been deployed

to scout important crops [44,205], diagnose disease and pest infections [2], and apply

treatments [78]. Crop scouting and treatment application is a continual process, with

best practice suggesting repeated scouting every 7-10 days over the course of a growing

season [69]. While researchers (and, increasingly, companies [115]) work to build crop

scouting models, techniques are often tested in simulation or through manned flights

or short-term deployments.

As the ability to scout and treat crops, diagnose infrastructure faults, and map

wildfires matures, the need for more long-term deployment automation arises. Today’s
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Fig. 6.1: Deployment Overview: UAVs scout a crop field to build defoliation maps
over time using edge hardware and machine learning software for classification and
map generation.

deployments are generally supervised by research teams regardless of the amount of

automation or autonomy the UAV have in flight. This expert supervision removes the

need to implement a complex deployment model, replacing it with expert human in-

tuition and planning. FarmBeats [197], however, deployed a long-term UAV scouting

solution which required some weather awareness, duty-cycling components of their

IoT base-station to save solar-generated edge power. More recent theoretical work

has explored the effects that weather can have on package delivery [191,192] by using

optimization to maximize customer satisfaction under different weather conditions.

In this paper, we take inspiration from these approaches by deriving a model from

long-term deployment experience.

6.3 Design

Computer system deployments in the wild can be complicated and error-prone,

with risk factors increasing for UAV deployments where equipment traverses its en-

vironment. We deployed a long-term UAV swarm to study the risks that UAV and
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equipment face in the wild. In this section, we describe this deployment and it’s

implementation.

UAV Deployment: Our UAV deployment, depicted in figure 6.1 uses 3 UAV to

regularly scout a crop field for leaf defoliation. The goal of aerial crop scouting is to

turn sensed field images into useful reports for farmers. UAV fly over crop fields peri-

odically and capture images which are then analyzed and compiled into field reports

which farmers can use to diagnose and treat pests, disease, environmental stress, and

other crop health issues. Our deployment seeks a specific crop health condition: leaf

defoliation. Leaf defoliation denotes loss of leaf area which occurs naturally as plants

mature, but can be caused prematurely by pests, resulting in decreased yield [224].

Pre-mature defoliation in soybeans caused by pests is a common problem experienced

by farmers around the world.

To scout soybeans using UAV, we implemented a convolutional neural network

(CNN) model, called DefoNet [224], to predict the leaf defoliation conditions quickly

from aerial images. DefoNet is a binary CNN model that classifies soybean leaves into

two classes: defoliated or healthy as shown in figure 6.1. DefoNet accepts as input

108x108 pixel soybean leaf images. The main structure contains eight convolutional

layers divided into three sections (Three layers in the fist section, three layers in the

section, and two in the last). Following each convolutional section are activation and

pooling layers. Before the final fully connected layer, we add a dropout layer to avoid

model overfitting. In our test cases, Defonet is able to achieve over 92% accuracy on

classifying soybean leaf defoliation.
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To efficiently and quickly build crop-scouting maps, we relied on prior work to

sample crop fields using multi-agent reinforcement learning. We used WholeField-

RL [223], a reinforcement learning based sampling technique for crop health model-

ing, and the Fleet Computer [22], an edge-conscious autonomous swarm deployment

architecture to simplify our deployment. Whole-field RL allows our UAV swarm to

build accurate crop maps while sampling a subset of the field, using neural networks to

extrapolate ground truth samples across unsampled regions. The fleet computer pro-

vides us an efficient dispatch mechanism which automatically schedules UAV flights,

conserves edge resources by duty-cycling edge hardware, and retrains reinforcement

learning policies online to improve mapping performance.

Implementation: Using this design, we built and deployed a UAV swarm to track

soybean defoliation on LaRue farms in Central Ohio. Our swarm was deployed for 3

weeks from August 27th to September 16th 2021, running over 150 missions over that

time. Our swarm consisted of 3 DJI Mavic Pro UAV with 6 interchangeable UAV

batteries. UAV were controlled by SoftwarePilot [25] running on 3 android Tablets as

shown in Figure 6.1c. Each tablet was connected via USB to a Mavic RC Controller

via 5GHz WiFi to a fleet computer cluster.

Our fleet computer cluster consisted of two Lenovo T470 Thinkpads and one Dell

precision 7920 workstation. Each Lenovo had an Intel i7 CPU and ran Ubuntu 18.04.

One Lenovo was used as the Fleet Computer head node, controlling all UAV com-

munication and acting as the Fleet Computer Kubernetes master. This machine

was provisioned with 24 GB of RAM. The second Lenovo was used for UAV control

and retraining offloading, and was provisioned with 8GB of RAM. The Dell worksta-

tion had one Intel Xeon 6258R CPU, 64 GB of RAM, and an NVIDIA RTX 2080Ti
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GPU. This machine was used for Defonet classification and as the primary node for

reinforcement learning retraining.

Each swarm mission was managed by the fleet computer but was manually dis-

patched by one of two on-site researchers. Missions covered 0.4 hectares of soybeans

per UAV, taking between 5 and 20 minutes depending on coverage. To determine

the effects of environmental conditions on UAV swarms, we deliberately executed

missions in varying degrees of heat, wind, humidity, lighting, and cloud cover. We re-

frained, however, from executing missions in hazardous conditions with winds higher

than 15mph, rain, or storms. We sought specifically to find the effects that seemingly

reasonable flight conditions could have on UAV swarm performance.

6.4 Deployment Results

Throughout our deployment, we collected data on UAV and edge battery drain,

system malfunctions and causes, machine learning mispredictions, and flight times

for certain weather conditions. Our analysis shows that 3 key conditions (wind,

temperature, and lighting) have serious effects on mission performance. Shown in

Figure 6.2, wind speeds greatly affect flight times. We found that average single-

UAV mission times degraded as wind speed increased. Our data shows that UAV in

calm conditions (wind less than 5mph) had 19% longer battery lives than UAV flown

in conditions where wind was on average faster than 10mph. Wind affects the power

required for our UAV to fly between GPS waypoints. Wind can be helpful if it blows

in the direction the UAV is traveling [197], but more often UAV must fight the wind

to traverse the field and stabilize while capturing images and waiting for instructions,

leading to increased battery drain.
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Fig. 6.2: high winds, extreme heat, and low light all contribute to malfunctions.
We recommend flying in calm conditions, avoiding extreme temperatures, and flying
when the sun is high for best results.

Heat also has negative effects on equipment. Throughout our deployment, we

ran missions in various temperatures between 60F and 95F. We found that 5% of

missions run in temperatures below 80F experiencing a malfunction due to equipment

failure, while 51% of missions run at temperatures over 90F experienced malfunctions.

Equipment malfunctions included communication errors between UAV and remotes,

network errors, equipment overheating, and heat-based UAV battery malfunctions.
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Not all errors were caused directly by overheating, but many were compounded by

high temperatures as suggested in Figure 6.2.

Lighting was another major contributor to mission errors. Lighting, in this case

sunlight, affects the quality of images that UAV capture. While all missions were flown

within United States FAA regulated flight periods (30 minutes before sunrise or after

sunset), low light and long shadows from a low solar angle contributed to increased

mispredictions from DefoNet. We found that 50% of missions flown between sunrise

and 10:00am and 57% of missions flown between 6:00pm and sunset contained mis-

predictions, while only 6% of missions flown between 10:00am and 6:00pm contained

mispredictions. Mispredictions were generally false-negatives (predicting defoliated

crop regions as healthy) due to DefoNet’s inability to discern holes in leaves obscured

by shadow.

Using these identified failure points for UAV missions, we provide recommenda-

tions for UAV deployments to avoid failures and unnecessary energy consumption.

First, we recommend flying in conditions where sustained winds do not exceed 10

mph. While UAV can fly safely in winds higher than 10mph, we recommend con-

serving UAV battery for periods where weather is calm to maximize mission lengths,

especially for deployments where power is scarce, harvested from compute resources,

or generated by renewable sources. Second, we suggest avoiding flights during extreme

temperatures, and always providing ample shade for equipment. High temperatures

(over 90F) greatly increased incidence of equipment failure from UAV, edge, and net-

working hardware. For UAV, failures were limited mainly to battery malfunctions

from short-term exposure to sun and high temperatures while flying which can be

mitigated by conserving UAV batteries for cooler periods of the day. Furthermore,
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dispatching, b) adaptive dispatching encounters less malfunctions, c) adaptive dis-
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edge equipment malfunctions were often due to overheating from direct sun exposure.

We suggest shading equipment from direct sunlight and potentially moving through-

out the day as shade shifts with solar angle. Lastly, lighting effects on mispredictions

can be mitigated by flying UAV when the sun is high, especially when areas are

obscured in shadow at dawn or dusk.

6.5 Adaptive Deployment Model

UAV deployments are, at heart, a resource allocation problem. UAV and edge

devices require power which can be drawn from electric grids, stored in batteries, or

supplied by renewable sources. Conventional UAV rely entirely on batteries which

must be recharged between short missions. Flights generally last between 15 and 30

minutes, while battery recharge periods can extend to over 90 minutes, incensing the

importance both parallel execution of UAV flights in the form of swarms and over-

provisioning of batteries. Swarm deployment workflows are cyclical, with periods of

151



UAV flight, battery interchange, and downtime where all batteries are depleted or

recharging.

Using our deployment results, we designed a simple adaptive deployment model

to dispatch UAV flights based on environmental factors. Our goal is to implicitly

leverage the flight and charging cycle to charge batteries in unfavorable conditions to

maximize flight times in favorable condition. Specifically, our goals are to minimize

the following three quantities: 1) total mission time for aerial coverage of a target

region, 2) total UAV energy consumption by avoiding re-scouting due to malfunctions,

and 3) re-scouting of areas deemed mispredictions.

T =< Tt, Tds, Tde, Tw >=< 85, 10:00, 18:00, 10 > (6.1)

Model Definition: Our model explicitly schedules UAV flights for periods where

conditions are favorable, and keeps UAV grounded while conditions are deemed un-

favorable regardless of battery availability. Favorable conditions are determined via

user-provided threshold vector T set based on deployment type, risks, and empirical

experience. T , shown as an example in Equation 1, holds thresholds for the three

unfavorable environmental conditions we determined from our experiments: temper-

ature (Tt), appropriate start and end flight times (Tds and Tde), and wind speed (Tw).

Dispatch(T ) =

{
True t ≤ Tt, Tds ≤ dt ≤ Tde, w ≤ Tw

False
(6.2)

Equation 2 shows the dispatch equation which determines whether waiting UAV

with charged batteries should begin their mission or wait until conditions improve.

This simple method charges and conserves batteries through unfavorable conditions,
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assuring longer flights and less malfunctions. It may, however, lead to underuti-

lization of UAV resources and greatly increased total mission times if unfavorable

conditions persist for too long. To test the effectiveness of our model under a variety

of conditions, we tested it in a simulated version of our deployment.

Simulation and Results: Our simulator was created using SoftwarePilot [25], the

same UAV control platform used to build our original deployment. We simulated UAV

flight over a 50-hectare field similar in size to our deployment field. The field was

cut into 10,000 individual management zones for UAV sampling. Our simulated UAV

flight characteristics were based on data from our deployment, maintaining similar

mission times, battery discharge rates, and sampling rates.

Environmental characteristics and their effects were simulated using prior work

and empirical information. Sunrise and Sunset were set at 7:00 am and 8:03 pm re-

spectively, the corresponding sunrise and sunset for September 1st 2021 in Circleville,

Ohio when and where our deployment was performed. Temperature was modeled us-

ing a sinusoidal curve with each given day being given a random temperature within

two standard deviations of Circleville Ohio seasonal weather data obtained from the

United States National Weather Service [176]. Temperatures experienced in flight

by simulated UAV were between 60F and 93F. Wind was modeled by selecting a

random wind value at the beginning of every simulated day and randomly increasing

or decreasing it by up to 3mph (between 0 and 15mph) twice per simulated hour.

Each simulated configuration was executed 100 times until the field was completely

mapped without mispredictions. We simulated configurations with both single-UAV

flights and swarms of 3 UAV as performed in our deployment, and with between 1

and 18 interchangeable batteries shared between UAV. For each configuration, our
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deployment model was compared against a naive greedy model which dispatches UAV

missions whenever sufficient batteries are available.

Figure 6.3 shows results from our simulations. Figure 6.3 (a) shows total energy

expenditure for both swarms and single UAV using both greedy and adaptive de-

ployment models. Total energy expenditure is 41.4% less for single UAVs and 45.8%

less for swarms when dispatched adaptively. This decrease is due to multiple factors.

First, These UAV do not operate in windy conditions, which degrade batteries 19%

faster than calm conditions, but this accounts for only part of the decrease. The main

decrease comes from repeated scouting of areas that were mispredicted or where data

was lost or missions were cut short due to malfunction. Flying back to these po-

tentially remote areas of the field for partial missions cuts other missions short and

overall wastes energy compared to flying missions at opportune times.

Figure 6.3 (b) dives deeper into the malfunctions that both deployment models

experience. Both single UAV and swarms experience about 4.9X less malfunctions

when dispatched using our adaptive model compared to the greedy method. Mal-

functions in this case, include any region that has to be re-sampled due to a hardware

malfunction or data misprediction. For greedy dispatching 33-35% of all zones must

be sampled more than once due to malfunction as opposed to 6% with adaptive dis-

patching. This decrease in resample is the primary driver for energy savings in Figure

6.3 (a).

Figure 6.3 (c) shows total mapping times for single UAV and swarm mapping us-

ing both greedy and adaptive dispatching with varying numbers of available batteries.

One concern with adaptive dispatching is that UAV idle while they could be sampling

the field which should lead to commensurately increased mapping times. Contrary
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to this supposition, figure 6.3 (c) shows that adaptive dispatching does not signif-

icantly impact overall deployment times. Across all simulations, deployment times

were increased by only 4% when using our adaptive strategy, with the largest increases

(11-12%) shown when sufficient batteries are available to eliminate UAV wait-time for

battery recharging (7 batteries for single UAV, 18 for swarm). Adaptive dispatching

performs best when batteries are scarce and UAV wait-times are long, but main-

tains effectiveness even when batteries are plenty due to aforementioned decreases in

malfunction-based remapping.

6.6 Conclusion

UAV deployments are complicated, requiring environmental considerations beyond

those of normal edge and IoT deployments. While extreme weather will clearly impact

UAV flight, some viable flight conditions like excessive heat, moderate winds, and low

lighting can cause malfunctions and waste UAV energy. In this paper, we use data

from over 150 missions of a long-term autonomous crop scouting UAV swarm to inform

UAV deployment scheduling. In simulation, our empirical model decreases machine

learning mispredictions by 4.9X, decreases overall swarm energy consumption by 45%,

and increases total deployment times by only 4%.
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Chapter 7: Conclusion

In this chapter, I restate the problems previously posed and their solutions pre-

sented throughout this dissertation. I also discuss future work opportunities in FAAS

design, implementation, and applications. In the introduction, I posed five key prob-

lems for FAAS research to overcome:

§1. Creation of new general and domain-specific machine learning algorithms and

careful utilization of others

§2. Selection of hardware at all levels in the FAAS hierarchy

§3. Power and environmental awareness informing selection and switching of auton-

omy policies, hardware devices, machine learning techniques and deployment

characteristics.

§4. Online learning capabilities resilient to limited cloud access, network interruption,

and power scarcity.

§5. Thorough applications which demonstrate the technological value of FAAS, drive

adoption, and determine future research challenges.

Chapters 2-5 all contributed to the creation and careful usage of machine learning

algorithms for FAAS development (§1). Chapter 3 introduces a novel reinforcement
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learning and feature extraction technique for FAAS pathfinding in agricultural en-

vironments. Chapter 2 improves on this algorithm, expanding it to incorporate any

domain and FAAS where sensed data can be analyzed in real-time. Chapter 2 also

improves the mechanism further by using A* search on the reinforcement learning

data set to improve results. Chapter 2 further explores the efficacy of different ob-

ject detector models in autonomous photography and search and rescue, and how

model-aware edge hardware selection and duty-cycling can affect their performance.

Chapter 4 introduces a novel semantic segmentation approach to rice lodging detec-

tion using EDANet that is capable of executing using FAAS provisioned with edge

GPUs. Chapter 4 also introduces a novel FAAS pathfinding mechanism that uses a

high-cost low-altitude search of problem areas detected using a low-cost high altitude

exhaustive search. This approach takes 36% less time to accomplish compared to

a low-altitude search while being 99.25% as accuracy. Chapter 5 generalizes prior

pathfinding approaches using MARL theory. By defining autonomy in terms of a

Markov Game, a set of autonomy goals, and initial input data, the Fleet Computer

can automatically design reinforcement learning models for swarms of autonomous

agents. I also present an algorithm for online learning that can allow FAAS members

to inform each other’s pathfinding. I used hyper-parameter optimization to assure

that pathfinding is weighted towards useful information, and that useful models are

retrained quicker than less useful models.

All chapters discuss hardware selection, but chapters 2 and 5 discuss it most

prominently. Chapter 2 outlines specific hardware selection mechanisms for FAAS,

primarily at the edge. Many edge hardware configurations are compared with different

software configurations, models, and autonomy policies to determine best practices

157



in selecting compatible edge hardware and machine learning algorithms. Chapter 2

also discusses systems-level optimizations like hardware duty-cycling and adaptive

model switching, and compares edge configurations to potential onboard and cloud

offloading solutions. Chapter 5 discusses the implications that multiple layers of edge

hardware resources can have on autonomous system model retraining.

Chapters 2, 4, 5, and 6 all discuss power and environmental awareness for FAAS.

Chapter 2 poses FAAS power problems in terms of mission throughput, the amount

of FAAS missions that can be completed in one UAV battery discharge. This is an

important metric for determining the effects that hardware architectures, machine

learning inference times, and network latency and throughput have on overall FAAS

performance. Chapter 2 poses findings for all configurations in terms of mission

throughput. All models in Chapter 2 also incorporate network throughput as part of

their mission throughput calculations. Chapter 4 also focuses on the need to max-

imize throughput for FAAS. The adaptive autonomous exhaustive search algorithm

presented in chapter 4 entirely focuses in maximizing throughput to limit edge and

UAV power consumption. Much of the proposed work in chapter 5 is focused on

maximizing throughput over time across an entire swarm and accounting for under-

provisioning at the edge to conserve power. The purpose of the Bayesian optimization

scheduling algorithm is to assure that the models most likely to maximize throughput

are updated ahead of less impactful models given that potentially few models will be

updated before the start of the next FAAS mission, where new models can be used.

Chapter 6 takes into account environmental characteristics in an effort to not only

conserver prescious UAV power and minimize mission times, but also to minimize

mission and equipment failure.
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Chapter 5 primarily deals with online learning and its resilience at the edge. My

Fleet Computer design assures that, even if only local edge compute node is accessible,

that the most effective models will be retrained first. My design can utilize cloud and

distant edge resources, but is tolerant to network connectivity issues and limited or

unavailable cloud resources, and attempts to maximize throughput given the resources

at its disposal to shorten missions and save edge and UAV power in the field.

Finally, all chapters deal with applications. FAAS applications drive my research.

Throughout this thesis I have implemented FAAS to solve problems in search and

rescue, autonomous photography, and a number of precision agriculture tasks. These

systems were used to build models (chapter 2-3), test techniques (3-6), and act as

real-world deployment case-studies (chapters 5-6). I have also built and distributed

an open source FAAS software package SoftwarePilot, which was used throughout

this thesis to implement FAAS.

7.1 Future Work

Many future work opportunities exist for FAAS research. Much work is currently

being done on onboard and embedded computing for FAAS [20, 38, 77]. My work

assumes a hard link between UAV sensed data and processing at the edge. Depending

on the application domain, some or all machine learning may efficiently occur on

the UAV. New hardware accelerators for machine learning such as FPGAs [193],

neuromorphic hardware [123,172], and embedded systems equipped with GPUs [141]

may inform future FAAS applications.

Considerable work can also be done on how emerging network technologies, like

5G [157] affect FAAS deployments. With sufficient bandwidth, direct data transfer
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from UAV to cloud may be possible. Given that FAAS operate in remote environ-

ments, increased cellular data coverage and the growing prevalence of 5G may improve

FAAS efficiency and expand their potential application domains. Domain specific im-

provements to FAAS also require future work. Improvements in machine learning and

architecture selection for search and rescue, crop scouting, infrastructure inspection,

autonomous photography, and other domains FAAS may service could lead to in-

creased industry adoption.

One key challenge in artificial intelligence that broadly affects FAAS is the building

of accurate general models using limited data. FAAS operate on tasks which often

do not have large datasets. Almost all of the work presented in this thesis relied

on hand collected and curated datasets produced by myself or my colleagues. Data

collection is difficult, time consuming, and presents a significant barrier to adoption.

The construction of accurate, general, and fast models with few-shot learning could

prove to be a breakthrough in the wide-spread adoption and and industrialization of

FAAS.
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