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Abstract

In this thesis we study extensions to higher dimensions of several versions of

percolation within a torus. We include the contents of two papers, one cov-

ering independent percolation and the other covering a well-known dependent

model.

Percolation traditionally studies the appearance of infinite components in ran-

dom subgraphs of lattices. The canonical subgraphs studied this way are

obtained by taking a constant fraction of the vertices or edges independently

at random. One can build higher dimensional random complexes in this way,

but it is not clear what the equivalent of the infinite component should be.

Bobrowski and Skraba offered a partial answer in finite volume complexes

called homological percolation. In the torus Td, homological percolation in di-

mension i means that the subcomplex contains a representative of a nontrivial

element of Hi

(
Td
)
. In section 2 we consider analogues of both bond and site

percolation in the torus and show that such percolation has a sharp threshold
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function in all dimensions. We also show that percolation in half the dimen-

sion of the torus occurs at p = 1/2, analogous to the classical Harris-Kesten

theorem.

Another percolation model of interest is the random-cluster model, which

weights configurations of independent percolation according to the number

of connected components. This is a particularly interesting model because it

can be coupled with the Ising and Potts models of magnetism. In section 3 we

study a higher dimensional version of this model introduced by Hiraoka and

Shirai, which also admits a coupling to a higher dimensional Potts model. It

is worth noting that the two dimensional random-cluster model is associated

to a Potts lattice gauge theory, which is related to interesting questions from

physics. We prove similar results about sharp thresholds for homological per-

colation in the random-cluster model, which sheds some light on the Wilson

loops in the associated lattice gauge theory.
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Chapter 1: Introduction

1.1 Organization of this Thesis

This thesis is organized as follows.

In Chapter 1, we will review relevant background on classical percolation the-

ory and algebraic topology. In Chapter 2, we prove the existence of sharp

thresholds for homological percolation in higher dimensional analogues of bond

and site percolation in a torus. Chapter 3 contains analogues of the results of

Chapter 2 in a higher dimensional random cluster model, which we then use

to study the associated Potts lattice gauge theory. In Chapter 4, we discuss

future directions and open problems.

1.2 Motivation

The relationship between small scale and large scale properties is central to

much of mathematics and physics. In this thesis, we consider this question

in the context of percolation models originally introduced to model physics.

Broadbent and Hammersley introduced bond percolation, which we will define
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in the next section, in order to model the flow of water through a porous

rock [13]. One can imagine that at a very small scale, the cavities through

which the water may pass appear at random. When the rock is relatively

dense, the holes are isolated, but as more holes appear, they eventually join

together to form long channels that the water can pass through.

From a theoretical perspective, these kinds of models are often interesting be-

cause they exhibit phase transitions. A familiar example of this is the physical

transition between states of matter. The temperature of water, for example, is

a measurement of the speed of the atoms at a small scale, and whether water is

in the liquid or solid phase is observable at a large scale. Unlike many physical

processes, changes in states of matter occur discontinuously as temperature is

varied; there is a single critical temperature value at which the change occurs.

It turns out that the mathematical model for the porous rock has a similar

property, namely a single critical density value at which the holes suddenly

combine in a way that is visible at a large scale.

Percolation of one-dimensional objects such as the paths of water through

a rock mentioned before has been well studied and remains a highly active

area of research. Less is known about percolation of higher dimensional ob-

jects. An informal analogy comparing the different models is randomly sewing

together patches to make a huge quilt instead of randomly tying together

segments to make a long rope. In order to make this precise, we will use
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the tools of algebraic topology, which measures shapes in a way that remains

consistent when they are continuously deformed. The idea of studying higher

dimensional percolation from a topological perspective also came from physics.

Frisch and Hammersley wrote in 1963: “Nearly all extant percolation theory

deals with regular interconnecting structures, for lack of knowledge of how to

define randomly irregular structures. Adventurous readers may care to rectify

this deficiency by pioneering branches of mathematics that might be called

stochastic geometry or statistical topology.”

We are also motivated by the study of lattice gauge theories, which offer dis-

crete approximations to fundamental forces in the Standard Model of physics.

These are often also thought of as one-dimensional objects, namely random

assignments of certain kinds of values to the edges of a graph. However, this

turns out to be connected to a type of two-dimensional percolation, which we

explore in Chapter 3.

1.3 Independent Percolation

Let G be an infinite graph with vertex set V and edge set E. For historical

reasons, vertices are often referred to as sites and edges are referred to as bonds.

Bernoulli bond percolation on G with parameter p ∈ [0, 1] is the random

subgraph obtained by taking V and adding each edge of E independently

with probability p. Bernoulli site percolation is similar, except that we take

each vertex of V independently with probability p, and then add all edges of E
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between the remaining vertices. Equivalently, we can designate each edge or

vertex open with probability p and closed with probability 1−p independently,

and then consider the open subgraph.

The focus of percolation theory is the event that there is an infinite component

in the random subgraph. Let θbondG (p) be the probability that there is an

infinite component in bond percolation with probability p on G. Then we

define the critical probability

pbondc (G) = inf
{
p : θbondG (p) > 0

}
.

The critical probability psitec (G) is defined analogously. The results we state in

this section will apply to both settings, so we will only state them in the bond

case. One reason that percolation is interesting is that θbondG (p) ∈ {0, 1} , which

can be proven by Kolmogorov’s 0-1 law, among other methods. In particular,

this means that θ is discontinuous as a function of p at pc. Such discontinuities

are called phase transitions, and are of interest in physical models.

The percolation literature is substantial, and we will not attempt to cover all of

it here, but we will mention a few of the important questions for background.

Determining pbondc (G) or psitec (G) exactly is thought to be intractable on most

graphs G, even among familiar lattice such as Zd. However, Z2 is a notable

exception. Harris showed that θbondZ2 (1/2) = 0 [34], and twenty years later

Kesten [39] showed that θbondZ2 (1/2 + ϵ) > 0 for any ϵ > 0, completing the proof

that pbondc (Z2) = 1/2. An underlying philosophy is to use the self duality of

4



Z2, and this is also at the heart of much of the work in this thesis. A similar

technique can be used to show that psitec (T ) = 1/2, where T is the triangular

lattice.

We will also mention a couple of well known results characterizing the behavior

of percolation when p < pc and p > pc, called the subcritical and supercritical

regimes respectively. In the subcritical regime, the connected components

of the graph are in some sense probabilistically as small as possible. This

is made precise by the following theorem due to Menshikov[45], also proven

independently by Aizenman and Barsky [2]. For a vertex x and a subset S of

Zd, denote the event that x is connected to a vertex in S by a path of edges

in the open subgraph by x↔ S.

Theorem 1.3.1 (Menshikov/Aizenman–Barsky). Consider bond percolation

on Zd. If p < p̂c then there exists a κ (p) > 0 so that

Pp
(
0↔ ∂[−M,M ]d

)
≤ e−κ(p)M

for all M > 0.

We stated the theorem for Zd for simplicity, but a more general version with a

functionally similar bound can be found in [12]. Note that this theorem does

not rule out large components in an absolute sense. Indeed, any set of k edges

is open with probability pk, so in an infinite graph one will almost surely find

arbitrarily large components. However, such components will be as rare as
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they can possibly be in such a random model. We will use this theorem in

Chapter 2 to show that homological 1-percolation in the torus Td has the same

critical probability as bond percolation in Zd.

The supercritical regime is characterized by a fundamental theorem of Aizen-

man, Kesten, and Newman [5] on the uniqueness of the infinite component.

Theorem 1.3.2 (Aizenman–Kesten–Newman). Consider bond percolation on

Zd. Let p > pc
(
Zd
)
. Then

Pp (there is exactly one infinite open component) = 1 .

Again, we have given a more narrow statement of this theorem than is neces-

sary. A later proof given by Burton and Keane [14] showed that amenability

is a sufficient condition for the uniqueness of the infinite component in almost

transitive graphs. Benjamini and Schramm [9] conjectured that it is also nec-

essary, spurring a flurry of activity in the study of nonamenable percolation.

We do not use a uniqueness result directly in this thesis, but we do cite results

using this important tool.

We will now mention a couple of results that are somewhat more general,

but are often useful in studying percolation models. Most constructions in

classical percolation involve putting together smaller paths in order to build

larger paths. In order to bound the probability of such a construction from

below, it is useful to be able to describe the correlations between the events
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describing the existence of the building blocks. In independent percolation,

Harris [34] showed that many such events are positively correlated. Let X

be the probability space formed by the product of n Bernoulli(p) random

variables, and let µp be the probability measure on the power set P (X) defined

by taking each element of X independently with probability p. That is, if

Y ⊆ X,

µ (Y ) = p|Y | (1− p)|Y | .

An event B is increasing if

Y0 ⊂ Y1 and Y0 ∈ B together imply that Y1 ∈ B .

Theorem 1.3.3 (Harris’s Inequality). If B1, . . . , Bj are increasing events then

P

(
j⋂

k=1

Bk

)
≥

j∏
k=1

P (Bk) .

We will also later use a result of Friedgut and Kalai on sharpness of thresh-

olds [28].

Theorem 1.3.4 (Friedgut–Kalai). Let B be an increasing event that is in-

variant under a transitive group action on X. There exists a constant ρ > 0

so that if µp (B) > ϵ > 0 and

q ≥ p+ ρ
log (1/ (2ϵ))

log (|X|)
(1.1)

then µq (B) > 1− ϵ.
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1.4 Random-cluster Percolation

Perhaps the most important dependent percolation model is the random-

cluster model, sometimes called Fortuin-Kasteleyn(FK) percolation [27]. Un-

like independent percolation, the random-cluster model only comes in a bond

percolation version. The probability of an edge configuration ω in the random

cluster model with parameters p and q on a finite graph G is given by

µG,p,q (ω) =
1

Z
pη(ω) (1− p)|E−η(ω)| qk(ω),

where η (ω) is the number of open edges in ω, k (ω) is the number of connected

components of the open subgraph, and Z is a normalizing constant.

One reason that the random-cluster model is interesting from a physics per-

spective is that it is closely related to the Potts model of magnetism. The

states of the q-state classical Potts model can be thought of as the functions

f : V → Zq, where the value of a given vertex is interpreted as its spin. The

energy of a state f is given by the Hamiltonian

Hq (f) =
∑

{v,w}∈E

K (f(v), f(w)) ,

whereK (x, y) is the Kronecker delta function (written this way to avoid confu-

sion with the notion of coboundary that will be explained in the next section).

Then the probability of a state is given by

ν (f) =
1

Z
e−βHq(f) ,
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where Z is again a normalizing constant and β is a constant representing in-

verse temperature. Edwards and Sokal showed that the random-cluster model

with parameters p, q and the q-state Potts model with β = 1 − e−β can be

naturally coupled [24]. Informally, the two measures are the marginals of

independent bond percolation with probability p and uniform independent as-

signments of states to vertices, conditioned on there only being open edges

between vertices of the same state. We will give a more detailed description

of the coupling in the higher dimensional version.

The random-cluster model on an infinite graph can be defined as a weak limit

of the random cluster model on a sequence of subgraphs [33]. In Zd, for exam-

ple, one can take the limit in boxes Λn := {−n,−n+ 1, . . . , n− 1, n}d . How-

ever, when discussing the random-cluster model on a subgraph H ⊂ G, there

is some ambiguity regarding connected components that reach the boundary,

since they may or may not become connected outside of H. Because of this,

it is often useful to consider boundary conditions that encode these possible

connections. The free random-cluster model with measure µf
H,p,q (sometimes

written µ0
H,p,q) makes no identifications on the boundary and simply weights

by the number of connected components in the random subgraph of H. On the

other extreme is the wired random-cluster model with measure µw
H,p,q (some-

times written µ1
H,p,q), which identifies the vertex boundary of H in G before

counting connected components in the percolation subgraph. For fixed q, it is

known that the free and wired limits coincide in Zd for all but countably many
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values of p(see Chapter 4 of [33]), but whether or not they always coincide is

an open problem. In the torus, we need not worry about boundary conditions,

but when we work in Zd we will use the free boundary limit unless otherwise

stated.

The states of different edges are now no longer independent because changing

the state of a given edge may or may not change the number of connected

components, depending on its surroundings. Since many standard percolation

arguments rely on dealing with different parts of the graph separately, the

random cluster model is much more difficult to work with. However, there has

been a significant amount of progress, some quite recent, that has established

versions of several of the previously mentioned results from independent per-

colation in this dependent setting. One reason the random cluster model is

tractable at all is that when q ≥ 1, Fortuin, Kasteleyn, and Ginibre showed

that it retains the positive association property given by Harris’ Lemma in the

independent model [26].

Theorem 1.4.1 (Fortuin–Kasteleyn–Ginibre). Let G be a finite graph. Let

p ∈ [0, 1] and q ≥ 1. Then if B1, . . . , Bj are increasing events then

µG,p,q

(
j⋂

k=1

Bk

)
≥

j∏
k=1

µG,p,q (Bk) .

It is also useful to be able to compare different random-cluster models via

coupling. This is straightforward in the independent model, but requires some

10



work when edges are dependent. Fortunately, Holley gave a useful criterion for

one model to have more open edges than another in a certain sense [37]. Let

E be a finite set and let µ1, µ2 be probability measures on Ω = {0, 1}E . We

say that µ1 is stochastically dominated by µ2 if there is a probability measure

κ on Ω× Ω with first and second marginals µ1 and µ2 such that

κ ({(ω1, ω2) : ω1 ≤ ω2}) = 1 .

In this case we write µ1 ≤st µ2. The following formulation of Holley’s theorem

can be found as Theorem 2.3 of [33].

Theorem 1.4.2 (Holley). Let E be a finite set and let µ1, µ2 be strictly positive

probability measures on Ω = {0, 1}E . Suppose that for each pair ξ, ζ ∈ Ω with

ξ ≤ ζ and each e0 ∈ E,

µ1 (ω (e0) = 1 : ω (e) = ξ (e) for all e ∈ E \ {e0})

≤ µ2 (ω (e0) = 1 : ω (e) = ζ (e) for all e ∈ E \ {e0}) .

Then µ1 ≤st µ2.

There is also a version of the Harris-Kesten theorem for the random-cluster

model. It is not difficult to check that the dual percolation is also distributed

a random-cluster model with parameters q and p∗ = p∗ (p, q) where

p∗ :=
(1− p) q

(1− p) q + p
.

We will prove this in a higher dimensional setting in Chapter 3. Beffara and

Duminil-Copin proved that in Z2, the critical probability is the value of p at
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which p = p∗ [8], namely

psd :=

√
q

1 +
√
q

at which the system is self dual.

The subcritical and supercritical regimes of the random-cluster model were

much less well understood than their independent counterparts, but a recent

breakthrough paper of Duminil-Copin, Raoufi, and Tassion provided the fol-

lowing characterization [21].

Theorem 1.4.3 (Duminil-Copin–Raoufi–Tassion). Fix d ≥ 2 and q ≥ 1. For

a finite graph G, let µw
G,p,q be the random-cluster model with wired boundary

conditions on G. Let µw
Zd,p,q

be the random-cluster model on Zd defined by the

weak limit of wired subsets of Zd. Let θ(p) = µw
Zd,p,q

(0↔∞) . Then

• there exists a c0 > 0 such that θ (p) ≥ c0 (p− p̂c) for any p ≥ pc suffi-

ciently close to pc;

• for any p < p̂c, there exists a cp such that for every n ≥ 0,

µw
Λn,p,q (0↔ ∂Λn) ≤ exp (−cpn) .

Graham and Grimmett proved a dependent analogue of the Friedgut-Kalai

sharp threshold result that will be useful to us in a random-cluster setting [30].

Theorem 1.4.4 (Graham–Grimmett). There exists 0 < c1 < ∞ such that

the following holds. Let N ≥ 1, I = {1, . . . , N} , Ω = {0, 1}N , and let F

12



be the set of subsets of Ω. Let A ∈ F be an increasing event. Let µ be a

positive probability measure on (Ω,F ) which is monotonic and let Xi = ω (i) .

If there exists a subgroup A of the symmetric group on N elements ΠN acting

transitively on I such that µ and A are A-invariant, then

d

dp
µp (A) ≥

c1µp (X1) (1− µp (X1))

p (1− p)
min {µp (A) , 1− µp (A)} logN .

1.5 Homology and Cohomology

In this section we will give a brief review of homology and cohomology, two

fundamental invariants studied in algebraic topology. These theories exhibit

a number of dualities, which are closely related to classical dualities between

lattice spin models and allow them to be generalized to higher dimensions.

Though this thesis is not self-contained with respect to topological background,

we hope to provide enough context for a reader with minimal previous knowl-

edge of the area to make sense of our results. More detail can be found in [35]

or [20] which provides an exposition specific to the context of lattice spin

models but does not cover all the material we need here. Those familiar with

differential forms but not algebraic topology may find some of these concepts

familiar, as they are important in a continuous version of the discrete theories

developed here.

For concreteness, this section will describe homology and cohomology in spaces

called cubical complexes. This is the setting for most, though not all of our

results. These are composed of i-dimensional plaquettes for various i, which
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are isometric to the unit i-cubes [0, 1]i . Two references with details specific to

this setting are [38, 47]. The first example is the integer lattice cubical complex

Zd, which is a union of all i-plaquettes for 0 ≤ i ≤ d which have corners in

the integer lattice. In order to convert vague geometric questions about “the

number of holes” of a topological space into concrete algebraic quantities,

homology theory defines a space Ci (X) of linear combinations of i-plaquettes

(called chains) and boundary operators ∂i, which maps an i-plaquette to a sum

of its (i − 1)-faces. The continuous analogues of these concepts are, roughly

speaking “i-dimensional spaces on which one can integrate an i-form” (called

an i-current) and the geometric boundary of the space.

For reasons that become apparent below, it is important to give each term in

the boundary of a plaquette a sign, which corresponds to the orientation of a

plaquette. The formula is relatively simple in low dimensions. A zero-plaquette

is a vertex and its boundary is zero. A 1-plaquette is an edge (v1, v2) and its

boundary is the difference v2 − v1. A two-plaquette is an oriented unit square

with vertices (v1, v2, v3, v4) and its boundary is (v1, v2) + (v2, v3) + (v3, v4) −

(v1, v4) . More generally, let 1 ≤ k1 < k2 < . . . < ki ≤ d and let Ij = [0, 1] for

j ∈ {k1, k2, . . . , ki} and Ij = {0} for j ∈ [d]\k1, k2, . . . , ki. Then σ =
∏

1≤j≤d Ij

is an i-plaquette in Rd, and its boundary is given by

∂iσ =
i∑
l=0

(−1)l−1

( ∏
1≤j<kl

Ij × {1} ×
∏

kl<m≤d

Im −
∏

1≤j<kl

Ij × {0} ×
∏

kl<m≤d

Im

)
.
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Figure 1.1: The boundary map for a two dimensional plaquette.

The reason that the sum is alternating in sign is so that the boundary operator

satisfies the equation

∂i ◦ ∂i−1 = 0 . (1.2)

Of particular interest are the chains α ∈ Ci (X) satisfying ∂α = 0. Such chains

are called cycles, the space of which is denoted Zi (X) . Equation 1.2 provides

one source of i-cycles, namely the boundaries of (i+1)-plaquettes. We denote

the space of boundaries Bi (X) . However, it turns out that the most interesting

cycles are the ones that are not boundaries.

To illustrate why this is the case, consider the unit square Q = [0, 1]2 ⊂

R2. In the cubical complex structure we defined earlier, we have that Z1 (Q)

consists of multiples of a single 1-cycle, namely the boundary of Q. But now

imagine that we make our lattice spacing 1/2 instead of 1. Now Z1 (Q) contains

linear combinations of the boundaries of the four 2-plaquettes contained in Q.

Though Q has not changed, our choice of lattice has made the cycle space

significantly more complicated.
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Figure 1.2: The boundary of a union of 4 plaquettes computed with the lin-
earity of the boundary operator.

Therefore, in order to measure the shape of spaces in a way that does not

depend on our choice of lattice, we define the homology group

Hi (X) = Zi (X) /Bi (X) .

Now whatever cubical structure we put on Q, every 1-cycle is a boundary,

so H1 (Q) = 0. It turns out that homology groups are invariant up to both

different cell complex structures on the same space and up to continuous defor-

mations of the space. In fact, one can show that H1 (Q) = 0 by continuously

deforming Q to a point, which has no nonzero 1-chains, let alone 1-cycles.

For an example with nontrivial homology, consider H1 (∂Q) , where ∂Q is the

topological boundary of Q, i.e. the empty square formed by the union of

the four sides of Q. There is still the 1-cycle from before but there are no

2-plaquettes, so H1 (∂Q) ̸= 0. This example illustrates the often repeating in-

formal description of Hi (X) as a measurement of the number of i-dimensional

holes of X. In the case of H1, the cycles that remain are the loops that cannot

be filled in by 2-plaquettes.
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Much of this thesis takes place in a cubical structure on the torus that is locally

the same as the previously described complex on Zd. Write TdN = Zd/ (NZ)d

as the cubical complex as the d-dimensional cubical complex made up of Nd

unit d-cubes. We can now define giant cycles in a subcomplex of the torus.

If X ⊂ TdN consists of a subset of the cubical cells of TdN , then the chains

groups of X are subgroups of the chain groups of TdN . The giant cycles of X

are the cycles that are not boundaries when considered as chains in TdN . These

cycles differ by boundaries from the nonzero cycles of the torus, which will be

described later. In the case i = 1, a giant cycle is a loop that spans the torus

TdN in some sense, and must therefore have length at least N. We interpret

this as a finite volume analogue of an infinite path in the lattice.

So far, we have been vague about the kind of linear combinations used in the

chains and the groups derived from them. Integer linear combinations are a

natural choice, but one can also use coefficients from other groups. For any

abelian group G, we write the i-th homology group of X with coefficients in

G as Hi (X;G) . Although different choices of coefficients can detect different

topological features, the universal coefficient theorem tells us that knowledge

of Hi (X;Z) for each value of i determines the corresponding homology groups

for any group G. In this thesis, we will almost exclusively work with homol-

ogy over the finite field of integers mod q for prime q, denoted Fq. This is

the correct choice to study the higher dimensional q-state Potts models for

reasons we will discuss later, and has the advantage of simplifying the algebra
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required, since a homology group with field coefficients is a vector space. The

information gained from field coefficients is also not far from the whole picture,

since again by the universal coefficient theorem, knowing Hi (X;Fq) for every

q and Hi (X;Q) is enough to reconstruct Hi (X;Z) .

For an example where different coefficients produce different results, consider

the identifications of the sides of the 2-plaquette in Figure 1.5. In the first case

we roll up the plaquette into a cylinder and then put the opposite ends of the

cylinder together to form a torus T. In the second, we also form a cylinder but

put the opposite ends of the cylinder together in the reverse orientation to form

a Klein bottle K. Consider the second homology of both spaces. In both cases

there are no 3-plaquettes and only one 2-plaquette σ, so it suffices to check if

the 2-chains generated by σ contain nontrivial cycles. In the torus,

∂σ = e1 + e2 − e1 − e2 = 0 ,

so H2 (T;F ) ≃ F for any field F. In the Klein bottle,

∂σ = e1 + e2 + e1 − e2 = 2e1 ,

which is nonzero over most fields, but is zero over Z2. Thus, H2 (K,Z2) ≃ Z2,

and H2 (K,Zq) = 0 for any prime q ̸= 2. Of course, there are no single pla-

quettes with sides identified this way in the integer lattice, but non-orientable

surfaces such as the Klein bottle appear as unions of plaquettes in dimensions

4 and higher.
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Figure 1.3: A torus T and a Klein bottle K, the resulting shapes of two possible
identifications of the opposite sides of a plaquette. The left plaquette is a cycle
with any field coefficients and the right is only a cycle with Z2 coefficents.

A small algebraic change in the definitions that give the homology groups leads

to cohomology. The i-th cochain group Ci (X;F ) is defined as the group of

F -linear functions from Ci (X;F ) to F. Since we are using field coefficients,

this is the dual vector space to Ci (X;F ) . Then the coboundary operator δi :

Ci (X;F )→ Ci+1 (X;F ) is defined by δif (α) = f (∂α) for f ∈ Ci (X;F ) , α ∈

Ci+1 (X;F ) . The smooth analogues of an i-cochain and and its coboundary

are a differential form and its exterior derivative. Note that if f is an i-cochain

and α is an i-chain, the evaluation f (α) corresponds to integration and the

definition of the coboundary operator corresponds to Stokes’ Theorem.

As before, we define the i-th cocycle group Zi (X;F ) to be the kernel of δi

and the i-th coboundary group Bi (X;F ) to be the image of δi+1. Then i-th

19



cohomology group is the quotient

H i (X;F ) = Zi (X;F ) /Bi (X;F ) .

In the continuous setting, the analogue of the i-dimensional cohomology group

is the i-dimensional de Rham cohomology of closed forms modulo exact forms.

This is more than just as analogy: de Rham’s theorem states that the de Rham

cohomology of a smooth manifold is isomorphic to H i (M,R) computed using

a cell complex structure on M.

In some ways cohomology does not add more information than homology al-

ready provided. The universal coefficient theorem tells us that Hi (X;F ) ≃

H i (X,F ) when F is a field. However, this algebraic equivalence does not pre-

clude problems lending themselves more naturally to one perspective or the

other. For example, the notion of giant surfaces that motivates the definition

of giant cycles that we use is homological in nature, while we argue later that

the Potts model and lattice gauge theories should be thought of as random

co-chains and Wilson loop variables as cohomological quantities. It is also

worth noting that although the homology and cohomology groups themselves

may be isomorphic, there is a relationship between the different cohomology

groups in the form of a multiplication of cocycles called the cup product that

does not always have a homological analogue.

Homology and cohomology come together in global duality theorems, of which

there are many versions. We primarily use variations of Alexander duality, the
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original form of which says that for a sufficiently nice subspace X ⊂ Sd,

Hi (X;F ) ≃ Hd−i−1
(
Sd \X;F

)
for 1 ≤ i ≤ d− 1. Since the complement of a set of plaquettes is a thickening

of the dual system by Lemma 2.1.2, we are able to use techniques related to

the proof of Alexander duality to relate both the giant cycles and local cycles

of the two sets. The relationship is quantified in terms of the dimension of

the relevant subspaces of the homology groups, and is important in showing

that the dual complex to the higher dimensional random-cluster model (de-

fined in the next section) is itself close to a higher dimensional random-cluster

model..

We will now briefly discuss the relevant information about the topology of the

torus specifically. Although we most often think of the d-torus in a percolation

context as a d-cube with the opposite sides identified, it is useful topologically

to think of it as the product of d copies of the circle S1. In such a product space,

the Künneth formula tells us that there is an isomorphism of the form⊕
i+j=k

Hi (X;F )×Hj (Y ;F ) ≃ Hk (X × Y ;F ) .

Since H1 (S
1;F ) ≃ H0 (S

1;F ) ≃ F and Hi (S
1;F ) = 0 for all i ≥ 2, we see

that

Hi (T;F ) ≃ F (
d
i) .

Furthermore, there is a set of generating i-cycles consisting of the products of

i of the d possible S1 factors.
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Figure 1.4: Two giant cycles for a random system of 1-dimensional plaquettes
(bonds) on a 2-dimensional torus, shown in a square with opposite sides iden-
tified.

1.6 Higher Dimensional Percolation Models

Plaquette percolation was studied by Aizenman, Chayes, Chayes, Frölich, and

Russo in [1] as a higher dimensional version of bond percolation in Zd. They

proved the following generalization of the quantitative phase transition of The-

orem 1.3.1.

Theorem 1.6.1 (Aizenman–Chayes–Chayes–Frölich–Russo). Let γ be a rect-

angular loop in Z3, and let Vγ be the event that γ is null-homologous. Then,

for 2-dimensional plaquette percolation,

Pp(Vγ) ∼

{
exp(−c3(p)Area(γ)) p < 1− pc(Z3)

exp(−c4(p)Per(γ)) p > 1− pc(Z3)

for some 0 < c3, c4 <∞.

We work in an analogous random subcomplex of TdN . Define the independent

plaquette system P = P (i, d,N, p) to be the random set obtained by taking
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Figure 1.5: A giant cycle for 2-dimensional plaquette percolation on a 3-
dimensional torus, shown in a cube with opposite sides identified.
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the (i−1)-skeleton of TdN and adding each i-face independently with probability

p. Let ϕ : P ↪→ TdN be the inclusion, and let ϕ∗ : Hi (P ) → Hi

(
TdN
)
be the

induced map on homology. Also, denote by A□ = A□(i, d,N, p) the event

that ϕ∗ is nontrivial, and denote by S□ = S□(i, d,N.p) the event that ϕ∗

is surjective (the superscript is to differentiate between our versions of bond

and site percolation). For example, in Figure 1.4 the two giant cycles shown

are homologous with standard generators for H1(T2), so we have the event

S□.

Our higher dimensional site percolation is performed on the tiling of the torus

by d-dimensional permutohedra, which was previously studied in [10]. The

precise definitions are as follows. Let

R̂d :=

{
(x0, x1, ..., xd) :

d∑
k=0

xk = 0

}
.

Recall that the root lattice Ad is defined by

Ad := R̂d ∩ Zd+1.

The dual lattice is then defined by

A∗
d :=

{
x ∈ R̂d : ∀y ∈ Ad, x · y ∈ Z

}
which is generated by the basis

B := {1− dek : 1 ≤ k ≤ d} .

Let π : R̂d → Rd be the natural isometry. Then the closed Voronoi cells of

π(Ad) are d-dimensional permutohedra. When d = 2, A∗
2 is the triangular
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lattice and the permutohedra are hexagons. For the case d = 3, A∗
3 is the

body-centered cubic lattice and the permutohedra are truncated octahedra

(see [7] for a detailed exposition).

Consider the torus Td
N as the parallelepiped generated by {Nv : v ∈ B} with

opposite faces identified. Define Q = Q(d,N, p) to be the random set obtained

by adding each permutohedron independently with probability p. The topolog-

ical justification for calling this site percolation is that the adjacency graph on

the permutohedra of Q is exactly site percolation on the lattice A∗
d. In other

words, site percolation is the one-skeleton of the nerve of the cover of Q by

the closed permutohedra. By the nerve theorem, Q is homotopy equivalent to

this nerve and as such has the same connected components as site percolation

on A∗
d.

The giant cycle events are defined as before, except that i-dimensional giant

cycles exhibit interesting behavior for all 1 ≤ i ≤ d − 1 (for the plaquette

model P (i, d,N, p) , all giant cycles in homological dimensions less than i are

automatically present, and there can be no giant cycles in homological dimen-

sions exceeding i.) More precisely, let φ : Q ↪→ Td
N be the inclusion, and let

φi∗ : Hi (Q)→ Hi

(
Td

N

)
be the induced maps for homology in each dimension.

For each i, Let A7i be the event that φi∗ is nonzero and let S7i be the event

that φi∗ is surjective.
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In both models, we will need a notion of dual percolation. In the permutohe-

dral case, we simply define

Q = Q (d,N, p) := Qc,

i.e. the union of the permutohedra that are not included in Q. Defining the

dual system to plaquette percolation requires more work.

To define the dual system of plaquettes P■ = P■ (i, d,N, p), let (TdN)■ be

the regular cubical complex obtained by shifting TdN by 1
2
in each coordinate

direction. Each i-face of TdN intersects a unique (d− i)-face of (TdN)■ and they

meet in a single point at their centers. For example, the faces [0, 1]i × {0}d−i

and {1/2}i × [−1/2, 1/2]d−i intersect in the point
{

1
2

}i × {0}d−i .
Define the dual system P■ to be the subcomplex of (TdN)■ consisting of all

faces for which the corresponding face in TdN is not contained in P . See Fig-

ure 1.6. Observe that the distribution of P■ (i, d,N, p) is the same as that of

P (d− i, d,N, 1− p) . If B■ is an event defined in terms of P■ we will write

Pp
(
B■
)
to mean the probability of B■ with respect to the parameter p of

P.

We always use the notation ϕ : P ↪→ Td and ψ : P■ ↪→ Td for the respective

inclusion maps, and ϕ∗ : Hi (P ) → Hi

(
TdN
)
and ψ∗ : Hd−i

(
P■
)
→ Hd−i

(
Td
)

for the induced maps on homology. Also, we consistently use notation A□ =

A□(i, d,N, p) for the event that imϕ∗ ̸= 0, S□ = S□(i, d,N, p) for the event
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Figure 1.6: Bond percolation at criticality (i.e. p = 1/2) on the torus T 2
10 in

blue, with the corresponding dual system of bonds in orange. Giant cycles
are shown in bold. Observe that while rankϕ∗ + rankψ∗ = 2 (as required by
duality), neither the bond system nor its dual has a giant cycle homologous
to one of the standard basis elements of H1(T2).
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that ϕ∗ is surjective, and Z□ = Z□(i, d,N, p) for the event that ϕ∗ is zero.

Denote by A■, S■, and Z■ the corresponding events for ψ∗.

We also have a higher dimensional version of the random-cluster model. A sim-

ilar model in a random simplicial complex analogous to the Linial-Meshulam

complex [41] was introduced by Hiraoka and Shirai [36]. Our notation will

be somewhat similar to the independent case, but since the results in the two

models are confined to separate chapters, we do not expect this to be confus-

ing. Let F i
N be the set of i-plaquettes of TdN . We say that ω : F i

N → {0, 1}

is a configuration, and we call the elements of ω−1 {1} and the elements of

ω−1 {0} the open and closed plaquettes of ω respectively. We then define Pω

to be the union of the (i−1)-skeleton of TdN and the open plaquettes of ω. Let

η (ω) := |ω−1 {1}| be the number of open plaquettes of ω. Let ϕ : Pω ↪→ TdN

be the inclusion map and let ϕi∗ : Hi (Pω)→ Hi

(
TdN
)
be the induced map on

ith homology. Then we can define ρ (ω) := rankϕi∗, informally the number

of giant cycles in Pω. Since there is no site percolation counterpart, we will

simplify notation denote the events A = A(ω) that ϕi∗ is nontrivial and denote

S = S(ω) that ϕi∗ is surjective.

Now can now define the i-random-cluster model on the torus as the random

complex Pω, where ω is distributed in the following way:
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µp,q,i,N (ω) :=
1

Zp,q,i,N
pη(ω) (1− p)|F

i
N |−η(ω) qbi−1(Pω).

where Zp,q,i,N is a normalizing constant, chosen so that the probabilities of the

possible open subgraphs sum to 1.. We also define a “balanced” version [8]

which we will later show satisfies exact duality:

µ̃p,q,i,N (ω) :=

(√
q
)−ρ(ω)

Z̃p,q,i,N
pη(ω) (1− p)|F

i
N |−η(ω) qbi−1(Pω) .

The two densities are absolutely continuous with respect to each other with

a Radon-Nikodym derivative bounded above and below by functions of q and

the same is true for their dual models. Since our arguments involve sharp

thresholds, this will be a sufficient duality relationship.

Hiraoka and Shirai showed that the i-random-cluster model also satisfies the

FKG inequality [36].

Theorem 1.6.2 (Hiraoka–Shirai). Let p ∈ (0, 1) and q ≥ 1. Then µp,q,i,N

satisfies the FKG lattice condition and is thus positively associated, meaning

that for any events E,F that are increasing with respect to ω,

µp,q,i,N (E ∩ F ) ≥ µp,q,i,N (E)µp,q,i,N (F ) .
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As before, there is a coupled (i−1)-dimensional Potts model. Now we consider

states in Ci−1
(
TdN ;Zq

)
with Hamiltonian

Ĥ (f) =
∑
σ∈F i

N

K (f (∂σ) , 0) .

Then the probability of a state is

ν (f) = e−βĤ(f) .

In this setting, Hiraoka and Shirai [36] showed an analogue of the Edwards-

Sokal coupling.

Proposition 1.6.3 (Hiraoka–Shirai). Let q ≥ 1, p ∈ [0, 1), and suppose p =

1− e−β. Consider the coupling on Ci−1
(
TdN
)
× {0, 1}F

i
N defined by

ν (f, ω) ∝
∏
σ∈F i

N

[
(1− p)K (ω (σ) , 0) + pK (ω (σ) , 1)K

(
δi−1f (σ) , 0

)]
.

Then ν has the following marginals:

• The first marginal is the q-state Potts model with inverse temperature β

given by ∑
ω∈{0,1}F

i
N

ν (f, ω) ∝ e−βH(f) ,

where H(f) = −
∑

σ∈F i
N
δδi−1f(σ),0.

• The second marginal is the i-random cluster model with parameters p, q

given by ∑
f∈Ci−1(Td

N)

ν (f, ω) ∝ pη(ω) (1− p)|F
i
N |−η(ω) qbi−1(Pω ;Zq) .
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the first marginal of ν is the (i − 1)-dimensional q-state Potts model with

p = 1− e−β and the second marginal is the i-random cluster model.

The case i = 2 is of particular interest because the coupled 1-dimensional

Potts model is an example of a lattice gauge theory. Lattice gauge theories

are discretized models of Euclidean Yang–Mills theory [16]. We will only work

with a specific type of lattice gauge theory here, but we give more general

background for context.

Let G be a complex multiplicative matrix group. For a 1-cochain f ∈ C1 (T,G)

and 2-plaquette σ with oriented edges (e1, e2, e3, e4) in cyclic order, define

Wσ (f) = ReTr f (e1) f (e2) f (e3) f (e4) ,

where this is the only place in this thesis that we will use multiplicative nota-

tion, to emphasize that G may be non-abelian. Note that this is well-defined

because the trace of a product of matrices is invariant to cyclic permutations

of the matrices. 1-dimensional lattice gauge theory on T with gauge group G

is the Gibbs measure on the co-chain group C1 (T,G) induced by the Hamil-

tonian

H (f) =
∑
σ∈F 2

N

Wσ (f) (1.3)

That is, it is the probability measure

dηβ,i,d (f) =
1

Z
e−βH(f)d τ
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where Z is a normalizing constant and dτ is the Haar measure on G. In this

thesis, G will be a finite group and dτ will be the uniform measure. However,

the most physically relevant cases are given by G = U(1), G = SU(2), and G =

SU(3) (when i = 1 and d = 4), which correspond to the the electromagnetic,

weak nuclear, and strong nuclear forces, respectively. Note that the above

definition can be readily generalized to define a measure on Ci (T,G) for i > 1

when G is abelian, but that difficulties arise for non-abelian groups due to the

dependence of the order of the terms in the boundary of σ in the definition of

Λf .

1-dimensional Potts lattice gauge theory is a the probability measure on C1 (T,G)

given by replacing the Hamiltonian above with the simpler formula

Ĥ (f) =
∑
σ

K (Wσ (f) , 1) .

In this thesis, we will focus exclusively on the cases where G = Z(q) for prime

q, where Z(q) is the multiplicative group of q-th complex roots of unity. While

they are not themselves physical, they have been studied extensively in the

physics literature as they are more tractable and thought to present some of

the same behavior as more physically relevant cases [4, 40, 29, 43]. The special

cases G = Z(2) and G = Z(3) coincide with the Z(2) (Ising) and Z(3) “clock”

lattice gauge theories in the sense defined in the previous paragraph after an

appropriate rescaling of the coupling constant β. These models have themselves
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been studied in the physical and the mathematical literatures as relatively

approachable examples of lattice gauge theories [42, 48, 44, 50, 51, 6, 17].

Some of the most important observables in lattice gauge theory are the Wilson

loop variables. For an 1-cochain ω ∈ C1 (T,G) and an oriented loop γ =

(e1, . . . , ek) define

Wγ (ω) = f (e1) . . . f (ek) .

An important conjecture — called the Wilson area law — is that if γ = ∂σ

is a 1-boundary and σ is the minimal bounding chain then the expectation of

W∂σ (ω) should decay as e−c|σ|. For G = SU(2) or SU(3), this conjecture is

thought to be related to the phenomenon of quark confinement, that charged

particles for the weak or strong nuclear forces are not seen in isolation, unlike

for the electromagnetic forces [49, 18]. It was recently shown, first for Ising

(Z(2)) lattice gauge theory by Chaterjee [17] and then for lattice gauge theory

with any finite gauge group by Cao [15], that the expected Wilson loop variable

decays exponentially in the perimeter of the loop for sufficiently large values

of β.
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Chapter 2: Homological Percolation in Bernoulli

Percolation on a Torus

This chapter is based on joint work with Matthew Kahle and Benjamin Schwein-

hart [22].

2.0.1 Main results

Our main result for plaquette percolation is that if d = 2i, then i-dimensional

percolation is self-dual and undergoes a sharp transition at p = 1/2.

Theorem 2.0.1. Suppose char (F ) ̸= 2. If d = 2i then{
Pp
(
A□
)
→ 0 p < 1

2

Pp
(
S□
)
→ 1 p > 1

2

as N →∞.

Using results on bond percolation on Zd, we also prove dual sharp thresholds

for 1-dimensional and (d− 1)-dimensional percolation on the torus.
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Theorem 2.0.2. Suppose char (F ) ̸= 2. Let p̂c = p̂c(d) be the critical threshold

for bond percolation on Zd. If i = 1 then{
Pp
(
A□
)
→ 0 p < p̂c

Pp
(
S□
)
→ 1 p > p̂c

as N →∞.

Furthermore, if i = d− 1 then{
Pp
(
A□
)
→ 0 p < 1− p̂c

Pp
(
S□
)
→ 1 p > 1− p̂c

as N →∞.

In the above, we also show that the decay of Pp
(
A□
)
below the threshold

and Pp
(
S□
)
above the threshold is exponentially fast for both i = 1 and

i = d− 1.

For other values of i and d we show the existence of a sharp threshold function

as follows. For each N ∈ N, let λ□ (N, i, d) satisfy

Pλ□(N,i,d)

(
A□
)
=

1

2
. (2.1)

Note that Pp
(
A□
)
is continuous as a function of p, so such a λ□ (N, i, d) exists

by the intermediate value theorem. Since the tori of different sizes do not

embed nicely into each other, it is not obvious that λ□ (N, i, d) should be

convergent a priori.

We should mention that this choice of λ□ (N, i, d) is somewhat arbitrary. We

could replace 1
2
in Equation 2.1 with any constant strictly between 0 and 1,
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for example, and the sharp threshold results we use would apply just as well.

In several cases we show that λ□ (N, i, d) converges, and in those cases the

limiting value could also be taken as a constant threshold function.

Define

p□c (i, d) = inf
{
p : lim inf

N→∞
Pp
(
A□
)
> 0
}

and

q□c (i, d) = sup

{
p : lim sup

N→∞
Pp
(
S□
)
< 1

}
.

As we show below, we could alternatively define p□c (i, d) and q□c (i, d) as the

limit supremum and limit infimum of the threshold function λ□ (N, i, d) , re-

spectively.

With the understanding that these depend on choice of i and d, which are

always understood in context, we sometimes abbreviate to simply p□c , q
□
c , and

λ□(N).

Theorem 2.0.3. Suppose char (F ) ̸= 2. For every d ≥ 2, 1 ≤ i ≤ d − 1, and

ϵ > 0 {
Pλ□(N)−ϵ

(
A□
)
→ 0

Pλ□(N)+ϵ

(
S□
)
→ 1

as N →∞.

Moreover, for every d ≥ 2 and 1 ≤ i ≤ d− 1 we have

0 < q□c = lim inf
N→∞

λ□ (N) ≤ lim sup
N→∞

λ□ (N) = p□c < 1 ,
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and p□c (i, d) has the following properties.

(a) (Duality) p□c (i, d) + q□c (d− i, d) = 1.

(b) (Monotonicity in i and d) p□c (i, d) < p□c (i, d− 1) < p□c (i+ 1, d) if

0 < i < d− 1.

It follows that p□c = q□c for i = d/2, i = 1, and i = d − 1, and we conjecture

that this equality (and hence sharp threshold from a trivial map to a surjective

one at a constant value of p) holds for all i and d. Bobrowksi and Skraba make

analogous conjectures for the continuum percolation model in [11].

For each N ∈ N, let λ7i (N, d) satisfy

P
λ7i (N,d)

(
A7i
)
=

1

2
.

Define

p7i = p7i (d) = inf
{
p : lim inf

N→∞
Pp
(
A7i
)
> 0
}

and

q7i = q7i (d) = sup

{
p : lim sup

N→∞
Pp
(
S7i
)
< 1

}
.

Theorem 2.0.4. Suppose char (F ) ∤ d + 1. For every d ≥ 2, 1 ≤ i ≤ d − 1,

and ϵ > 0 {
P
λ7i (N)−ϵ

(
A7i
)
→ 0

P
λ7i (N)+ϵ

(
S7i
)
→ 1

as N →∞. For every d ≥ 2 and 1 ≤ i ≤ d− 1 we have

0 < q7i = lim inf
N→∞

λ7i (N) ≤ lim sup
N→∞

λ7i (N) = p7i < 1 .
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In some cases the threshold converges, namely

lim
N→∞

λ71 (N) = p71 = q71 = pc(A
∗
d) ,

lim
N→∞

λ7d−1 (N) = p7d−1 = q7d−1 = 1− pc(A∗
d) ,

and if d is even, then

lim
N→∞

λ7d/2 (N) = p7d/2 = q7d/2 =
1

2
.

Moreover, p7i (d) has the following properties.

(a) (Duality) p7i (d) + q7d−i (d) = 1.

(b) (Monotonicity in i and d) p7i (d) < p7i (d− 1) < p7i+1 (d) if

0 < i < d− 1.

In particular, when d = 4, the random set Q exhibits three qualitatively

distinct phase transitions at pc(A
∗
4),

1
2
, and 1− pc(A∗

4), where pc(A
∗
4) is the site

percolation threshold for the lattice A∗
4.

2.0.2 Proof sketch

We provide an overview of our main argument. Much of it is the same, mutatis

mutandis, whether we are working with plaquettes or permutohedra. Through-

out the chapter, we shall make a note at points of substantial difference, but

otherwise we only include proofs with plaquettes for brevity. In the section on

topological results (Section 2.1), we show that duality holds in the sense that

rankϕ∗ + rankψ∗ = rankHi

(
Td
)
(Lemma 2.1.4). This is similar in spirit to
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results of [10] and [11] for other models of percolation on the torus including

permutohedral site percolation. In particular, at least one of the events A□

and A■ occurs, S□ occurs if and only if Z■ occurs, and S■ occurs if and only

if Z□ occurs.

Our strategy is to exploit the duality between the events S□ and Z■ =
(
A■
)c
.

Toward that end, we show that a threshold for A□ is also a threshold for S□

in Section 2.2. First, we use the action of the point symmetry group of the

torus on the homology to show that there are constants b0 and b1 so that

Pp
(
S□
)
≥ b0Pp

(
A□
)b1 . This follows from a more general result for events

defined in terms of an irreducible representation of the point symmetry group

(Lemma 2.2.1) and the fact that Hi

(
Td;F

)
is an irreducible representation of

the point symmetry group of Zd assuming the characteristic of F does not equal

2 (Proposition 2.2.3). This is one point at which the argument differs for site

percolation on the permutohedral lattice; to account for the symmetries of that

lattice we include a different argument that assumes that the characteristic of

F is not divisible by d+ 1 (Proposition 2.2.2).

Recall that λ□ was chosen such that

Pλ□(N,i,d)

(
A□
)
=

1

2
.
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By the above, it follows that Pλ□(N)

(
S□
)
> b0

(
1
2

)b1 . S□ is increasing and

invariant under the symmetry group of Td so Friedgut and Kalai’s theo-

rem on sharpness of thresholds (Theorem 1.3.4) implies that for any ϵ > 0,

Pλ□(N)+ϵ

(
S□
)
→ 1 as N →∞.

The proof of Theorem 2.0.1 is then straightforward (Section 2.3). By dual-

ity

P1/2

(
A□
)
= P1/2

(
A■
)

and P1/2

(
A□
)
+ P1/2

(
A■
)
≥ 1 ,

so P1/2

(
A□
)
≥ 1

2
for allN. It follows from the previous argument that Pp

(
S□
)
→

1 for p > 1/2. On the other hand, if p < 1/2 duality implies that

Pp
(
A□
)
= 1− Pp

(
S■
)
= 1− P1−p

(
S□
)
→ 0 .

Next, in Section 2.4 we study the relationship between duality and conver-

gence. Recall that

q□c (i, d) = sup

{
p : lim sup

N→∞
Pp
(
S□
)
< 1

}
.

We show that p□c (i, d) + q□c (d− i, d) = 1 by using Lemma 2.1.4 and applying

Theorem 1.3.4 to A□ above p□c (d− i, d) and to A■ below q□c (i, d) (Propo-

sition 2.4.2). It follows that the threshold for A□ converges if and only if

p□c (d− i, d) + p□c (i, d) = 1 (Corollary 2.4.3).

In Section 2.5 we show that p□c (1, d) and q□c (1, d) coincide and equal the

critical threshold for bond percolation on Zd by applying classical results on
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connection probabilities in the subcritical and supercritical regimes (in the

proofs of Propositions 2.5.3 and 2.5.1). This together with Corollary 2.4.3

demonstrates Theorem 2.0.2.

Finally, in Section 2.6, we complete the proof of Theorem 2.0.3 by showing the

monotonicity property p□c (i, d) < p□c (i, d− 1) < p□c (i+ 1, d) if 0 < i < d− 1,

and corresponding result for the thresholds q□c (Proposition 2.6.1). This is done

by comparing percolation on TdN with percolation on a subset homotopy equiv-

alent to Td−1. The proof of the corresponding result for permutohedral site per-

colation is different, but the overall idea is similar (Proposition 2.6.3).

2.1 Topological Results

In this section, we discuss duality lemmas which will be useful in many of our

arguments.

In [10], Bobrowski and Skraba prove a duality lemma for the permutohedral

lattice. We will use their notation which, for a subcomplex X ⊂ Td
N, de-

fines

Bk (X) := rankφ∗,

where φ∗ : Hk (X) → Hk

(
Td

N

)
is the map on homology induced by inclu-

sion.

Lemma 2.1.1 (Bobrowski and Skraba). For 0 ≤ k ≤ d,

Bk (Q) + Bd−k (Qc) = rankHk

(
Td
)
.

41



This is a point at which one must consider permutohedra and plaquettes sep-

arately. We use the previous lemma in the permutohedral case, but we must

prove an analogue in order to work with plaquettes. First, we show a prelim-

inary result demonstrating a relationship between the complement of P and

P■.

Lemma 2.1.2. Td \ P deformation retracts to P■.

Proof. Let T (j) and T
(j)
■ denote the j-skeletons of TdN and

(
TdN
)■

, respectively,

and let

Sj = T
(d−j)
■ \ T (j) .

Observe that Sj is obtained from T
(d−j)
■ by removing the central point of each

(d− j)-cell. Also, let

Ŝj = T
(d−j)
■ \ P .

We construct a deformation retraction from T d \ P = Ŝ0 to P■ by iteratively

collapsing Ŝj to Ŝj+1 for j < i, then collapsing Ŝi to P
■.

For an j-cell σ of T
(j)
■ with center point q let

fσ : σ \ {q} × [0, 1]→ σ \ {q}

be the deformation retraction from the punctured j-dimensional cube to its

boundary along straight lines radiating from the center. Observe that the

restriction of fσ to (σ \ P )× [0, 1] defines a deformation retraction from σ \P

to ∂σ \P (for j > d− i); this is because σ intersects P in hyperplanes spanned

42



Figure 2.1: of the deformation retraction for the case N = 3, d = 2, i = 1. P
is shown in blue and P■ in orange. Td \P is first retracted to T

(1)
■ \P via the

dashed gray arrows radiating from each vertex of P, then to P■ by the solid
black arrows radiating from the midpoints of the edges of P.

by the coordinate vectors based at q. When projecting radially from q, points

inside σ ∩ P remain inside σ ∩ P and points outside of σ ∩ P remain outside

of σ ∩ P.

For x ∈ Td, let σ (x) be the unique (d− j)-cell of (TdN)■ that contains x in its

interior. Define Gj : Sj × [0, 1]→ Sj by

Gj (x, t) =

{
fσ(x) (x, t) x ∈ Sj \ T d−j−1

■

x otherwise .

Gj collapses Sj to T
(d−j−1) by retracting the punctured (d − j)-cells to their

boundaries. It follows from the discussion in the previous paragraph that the

restriction of Gj to Ŝj× [0, 1] defines a deformation retraction from Ŝj to Ŝj+1.
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Similarly, define H : Ŝi × [0, 1]→ Ŝi by

H (x, t) =

{
fσ(x) (x, t) x ∈ Ŝi \ P■

x otherwise .

That is, H collapses the (d − i)-faces of T
(d−i)
■ that are punctured by i-faces

of P to deformation retract Ŝi to P
■.

In summary, we can deformation retract Td \ P to P■ via the function F :

T d \ P × [0, i]→ T d \ P defined by

F (x, t) =


G0 (x, t) t ∈ [0, 1]

Gj (F (x, j) , t− j) t ∈ (j, j + 1] , 0 < j < i

H (F (x, i) , t− i) t ∈ (i, i+ 1] .

In fact, the same deformation retraction works when P is slightly thickened,

which will be useful for the next Lemma. Let Pϵ denote the ϵ-neighborhood

Pϵ = {x ∈ TdN : d(x, P ) ≤ ϵ} .

Corollary 2.1.3. For any 0 < ϵ < 1/2, the closure (Td \ Pϵ) deformation

retracts to P■.

Proof. Consider the deformation retraction as in Lemma 2.1.2 restricted to

(Td \ Pϵ). When a punctured j-cell σ is retracted via fσ, the property that

points outside of σ ∩ Pϵ remain outside of σ ∩ Pϵ is preserved even though

σ ∩ Pϵ now is a union of thickened hyperplanes. The deformation retractions

44



Gj and H are defined by collapsing different cells via the functions fσ, so the

restricted retraction does not pass through Pϵ.

The next result is a key topological tool we use in many of our arguments. It

is very similar to results of [10] and [11] for other models of percolation on the

torus including Lemma 2.1.1 above. For convenience, let

D = rankHi

(
Td
)
=

(
d

i

)
.

Lemma 2.1.4 (Duality Lemma). rankϕ∗ + rankψ∗ = D. In particular, at

least one of the events A□ and A■ occurs, S■ ⇐⇒ Z□, and Z■ ⇐⇒ S□.

Proof. We proceed similarly to Bobrowski and Skraba’s proof of Lemma 2.1.1.

Let ϵ = 1/4 and define P c
ϵ :=

(
TdN \ Pϵ

)
. Consider the diagram

Hi (Pϵ) Hi

(
TdN
)

Hi

(
TdN , Pϵ

)
Hi−1 (Pϵ)

Hd−i (TdN , P c
ϵ

)
Hd−i (TdN) Hd−i (P c

ϵ ) Hd−i+1
(
TdN , P c

ϵ

)
i∗ δi

∼=

j∗

∼=

δd−i

∼= ∼=

Here i and j are the inclusions of Pϵ and P
c
ϵ respectively into TdN . The first iso-

morphism from the left is from Lefschetz Duality, the second is from Poincaré

Duality, and the third is from the five lemma. (A similar diagram is used in

the proof of Alexander duality). In particular note that by exactness and a

diagram chase,

Hi(TdN) ∼= im i∗ ⊕ im j∗ .
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Furthermore, since we are considering homology with field coefficients, rank j∗ =

rank j∗. Now by Corollary 2.1.3,
(
TdN \ Pϵ

)
retracts to P■, and Pϵ clearly re-

tracts to P, so rankϕ∗ = rank i∗ and rankψ∗ = rank j∗. Putting these together

gives rankϕ∗ + rankψ∗ = D.

2.2 Surjectivity

The goal of this section is to show that if p > p□c then Pp
(
S□
)
→ 1 as N →∞,

where

p□c = p□c (i, d) = inf
{
p : lim inf

N→∞
Pp
(
A□
)
> 0
}
.

First, we will prove that Pp
(
S□
)
≥ b0Pp

(
A□
)b1 for some b0, b1 > 0 that do

not depend on N. This argument is another point of distinction between our

argument in the permutohedral lattice and the cubical lattice because the

symmetries of the lattices become relevant. However, we start with a general

lemma that we use in both cases.

Recall that a vector space V that is acted on by a group G is called an ir-

reducible representation of G if it has no proper, non-trivial G-invariant

subspaces. That is, the only subspaces W of V so that {gw : w ∈ W} = W

are {0} and V.

Lemma 2.2.1. Let V be a finite dimensional vector space and Y be a set. Let

A be the lattice of subspaces of V. Suppose f : P (Y ) → A is an increasing

function, i.e. if A ⊂ B then f (A) ⊂ f (B) . Let G be a finite group which
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acts on both Y and V whose action is compatible with f. That is, for each

g ∈ G and v ∈ V g (f (v)) = f (gv) . Let X be a P (Y )-valued random variable

with a G-invariant distribution that satisfies the conclusion of Harris’ Lemma,

meaning that increasing events with respect to X are non-negatively correlated.

Then if V is an irreducible representation of G, there are positive constants

C0, C1 so that

Pp (f(X) = V ) ≥ C0Pp (f(X) ̸= 0)C1 ,

where C0 only depends on G and C1 only depends on dimV.

Proof. Let Ak = {X ∈ P (Y ) : rank f(X) ≥ k} and Wk = f(Ak). For a sub-

space W of V let Stab(W ) denote the stabilizer of W, {g ∈ G : gW = W} ,

and for H ≤ G let

Sk(H) = {X : Stab(f(X)) = H} ∩ Ak .

Then in particular, since Ak = ⊔H≤GSk(H), there is a subgroup H ′ of G so

that

Pp (Sk(H ′)) ≥ 1

cG
Pp (Ak) , (2.2)

where cG is the number of subgroups of G.

If H ′ = G then

Sk(H
′) = Sk(G) = {X : f(X) = V }

because V is an irreducible representation of G, and it follows that

Pp (f(X) = V ) = Pp (Sk(H ′)) ≥ 1

cG
Pp (Ak) . (2.3)
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Otherwise, if Stab(W ) = H ′ then the orbit {gW : g ∈ G} contains |G| / |H ′|

elements, where the elements of each coset of H ′ in G have the same action

on W. Let B be a collection of subspaces of V that contains one element from

each orbit of {W ∈ Wk : Stab(W ) = H ′} so

f(Sk(H
′)) =

⊔
g∈G/H′

gB.

Taking B := {X : f(X) ∈ B} , we have that

Sk(H
′) =

⊔
g∈G/H′

gB.

Let g ∈ G \H ′. The events B and gB are symmetric so

Pp (B) = Pp (gB) =
|H ′|
|G|

Pp (Sk(H ′))) ≥ 1

cG |G|
Pp (Ak)

using Equation 2.2. By construction, gB ∩B ⊆ Ak+1 and the Harris’ Lemma-

like property of X yields

Pp (Ak+1) ≥ Pp (B ∩ gB) ≥ Pp (B)2 ≥
(

1

cG |G|
Pp (Ak)

)2

.

Since either the preceding equation or Equation 2.3 holds for all k, we can

conclude that there are positive constants C0(G, V ) and C1(V ) so that

Pp (f(X) = V ) = Pp (AdimV ) ≥ C0Pp (A1)
2 dimV−2

= C0Pp (f(X) ̸= 0)C1 .
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Now it suffices to check the irreducibility of the homology of the torus as

a representation of the point symmetry group of each lattice, which we do

separately. We begin with the case of the permutohedral lattice A∗
d whose

point symmetry group is the symmetric group Sd+1.

Proposition 2.2.2. Let F be a field, d > 0, and 1 ≤ k ≤ d− 1. Hk(T
d
N;F) is

an irreducible representation of Sd+1 if and only if char (F ) ∤ d+ 1.

Proof. First, we review the action of Sd+1 on A
∗
d. The lattice A

∗
d ⊂ F d+1 has a

basis

B := {1− dek : 1 ≤ k ≤ d}

where 1 is the vector whose entries all equal 1. Sd+1 acts on F
d+1 by permuting

the coordinates, and this restricts to an action on A∗
d which permutes the

elements of B ∪ {1− ded+1} . The F -vector space generated by A∗
d is called

the standard representation of Sd+1. Denote it by F̂ d. F̂ d is an irreducible

representation of Sd+1 if and only if char (F ) ∤ d + 1. This can be shown

directly or deduced from [25], for example.

The exterior powers of the standard representation
∧k F̂ d give other repre-

sentations of Sd+1. Sd+1 acts on v1 ∧ . . . ∧ vk ∈
∧k F̂ d by g (v1 ∧ . . . ∧ vk) =

gv1∧. . .∧gvk. These representations are irreducible if and only if char (F ) ∤ d+1

by the criterion given in [25].
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Consider Td
N as the parallelepiped generated by {Nv : v ∈ B} with opposite

faces identified. The homology group H1

(
Td;F

)
is generated by the circles

in the coordinate directions corresponding to the elements of B. This corre-

spondence induces an isomorphism of Sd+1-representations H1

(
Td

N;F
)
≃ F̂ d.

By the Künneth formula for homology, Hk

(
Td

N;F
)
≃
∧k F̂ d. This is easily

seen to be an isomorphism of Sd+1-representations by comparing the action

of Sd+1 on the homology generators with the definition of the kth exterior

power of a representation. As such, the proposition follows from the previous

paragraph.

Next, we consider the case of the square lattice Zd. The point symmetry group

of Zd is the hyperoctahedral group Wd = S2 ≀ Sd, where ≀ denotes the wreath

product. It is generated by permutations of the coordinate directions and

reflections which reverse a coordinate direction.

Proposition 2.2.3. Let F be a field, d > 0, and 1 ≤ i ≤ d− 1. Hi(TdN ;F ) is

an irreducible representation of Wd if and only if char (F ) ̸= 2.

Proof. Consider TdN as the cube generated by {Nek}1≤k≤d with opposite sides

identified. For similar reasons as in the proof of Proposition 2.2.2, Hi

(
T dN ;F

)
is isomorphic to the Wd -representation

∧i F d. We will give a direct proof that

this is an irreducible representation of Wd by showing that if w ∈
∧i F d \ {0}

then ⟨Wdw⟩ = ⟨
∧i F d⟩.
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Let w be an arbitrary non-zero element of
∧i F d \ {0} by dividing by the

leading coefficient if necessary we may write

w = el1,1 ∧ . . . ∧ el1,i + . . .+ cmelm,1 ∧ . . . ∧ elm,i
.

Let σv ∈ Sd ≤ Wd be a permutation so that

σw
(
el1,1 ∧ . . . ∧ el1,i

)
= e1 ∧ e2 ∧ . . . ∧ ei.

For each 1 ≤ k ≤ d, let ρk ∈ Wd be the reflection about the hyperplane

orthogonal to ek, and let fk(v) := v + ρk(v) for v ∈
∧i F d. Then

fi+1 (fi+2 (. . . fd (σw (w)))) = 2d−ie1 ∧ e2 ∧ . . . ∧ ei.

char (F ) ̸= 2 so 2d−i ̸= 0 and thus e1 ∧ e2 ∧ . . . ∧ ei ∈ ⟨Wdw⟩. But then using

the action of Sd ≤ Wd, we can obtain a basis for
∧i F d, so ⟨Wdw⟩ =

∧i F d for

any non-zero w and the action of Wd is irreducible.

We can combine Lemma 2.2.1 with the preceding propositions to obtain the

following corollary.

Corollary 2.2.4. Then there are constants C0, C1 > 0 not depending on N, i

such that

Pp
(
S7i
)
≥ C0Pp

(
A7i
)C1

and

Pp
(
S□
)
≥ C0Pp

(
A□
)C1

.
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It is worth noting that Lemma 2.2.1 is more general than some of our other

tools. For example, in the case of continuum percolation studied in [11], this

Lemma can be used to show the analogue of Corollary 2.2.4, even in the

absence of stronger duality results.

Proposition 2.2.5. Let {YN}N∈N be a sequence of finite sets with |YN | → ∞,

each of which has a transitive action by a symmetry group HN . Also, let

R (N, p) be the random set obtained by including each element of YN inde-

pendent with probability p, and suppose there are functions fN : P (YN) → V

which satisfy the hypotheses of Lemma 2.2.1 for some fixed symmetry group

G. Assume that G is a subgroup of HN for all N and that the action of HN/G

on V is trivial. If fN (∅) = 0 and fN (YN) ̸= 0 for all sufficiently large N then

there exists a threshold function λ (N) so that for any ϵ > 0

P (fN (R (N, λ (N)− ϵ)) = 0)→ 1

P (fN (R (N, λ (N) + ϵ)) = V )→ 1

as N →∞.

Proof. For a fixed value of N, P (R (N, p)) is an increasing, continuous function

of p with P (R (N, 0)) = 0 and P (R (N, 1)) = 1 for all sufficiently large N. By

the intermediate value theorem we can choose λ (N) so that for all sufficiently
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large N,

P (fN (R (N, λ (N))) ̸= 0) = 1/2 .

Then by Lemma 2.2.1, there exist C0, C1 > 0 such that

P (fN (R (N, λ (N))) = V ) ≥ C0P (fN (R (N, λ (N))) ̸= 0)C1 =
C0

2C1
> 0 .

Choose an ϵ0 between 0 and C0

2C1
. Note that the event {fN (R (N, p)) = V } is

increasing in p and invariant under the action of HN . By assumption, HN acts

transitively on X, so the hypotheses of Theorem 1.3.4 are met. Let ϵ > 0.

Re-arranging Equation 1.1 gives that P (fN (R (N, λ (N) + ϵ)) = V ) > 1 − δ

when

log (|YN |) >
ρ log (1/ (2δ))

ϵ
.

On the other hand, the event {f (R (N, p)c) = 0} is also increasing, so by a

similar argument, P (fN (R (N, λ (N)− ϵ)) = 0)→ 1 .

In our models of interest, this tells us that λ□ (N) and λ7 (N) are sharp

threshold functions of N for the appearance of all giant cycles. From the

definitions of pc and qc, we also obtain the inequalities

q□c = lim inf
N→∞

λ□ (N) ≤ lim sup
N→∞

λ□ (N) = p□c

and

q7c = lim inf
N→∞

λ7 (N) ≤ lim sup
N→∞

λ7 (N) = p7c .

We can then describe the behavior of both models below qc and above pc.
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Corollary 2.2.6. If p1 > p□c (i, d) and p2 > p7c (i, d) then

Pp1
(
S□
)
→ 1

and

Pp2
(
S7
)
→ 1

as N →∞. Conversely, if p1 < q□c (i, d) and p2 < q7c (i, d) then

Pp1
(
A□
)
→ 0

and

Pp2
(
A7
)
→ 0

as N →∞.

2.3 The Case d = 2i

We now prove Theorem 2.0.1, that p□c (i, 2i) = 1/2 is a sharp threshold for A□

when d = 2i. The proof of the corresponding result for the site percolation

model is nearly identical.

Proof of Theorem 2.0.1. Half-dimensional plaquette percolation is self-dual so

P1/2

(
A□
)
= P1/2

(
A■
)
. By Lemma 2.1.4 at least one of the events A□ and A■

must occur. Therefore,

2P1/2

(
A□
)
= P1/2

(
A□
)
+ P1/2

(
A■
)
≥ 1

and

P1/2

(
A□
)
≥ 1/2
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for all N. It follows that p□c ≤ 1/2. Thus, if p > 1/2 then

Pp
(
S□
)
→ 1

as N →∞, and if p < 1/2 then

Pp
(
A□
)
→ 0

as N →∞ by Corollary 2.2.6.

2.4 Sharpness and Duality

In this section, we combine the Duality Lemma (Lemma 2.1.4) with Corol-

lary 2.2.6 to examine the behavior of Pp
(
A□
)
below q□c (i, d) and above p□c (i, d) .

We also relate these thresholds to p□c (d− i, d) and q□c (d− i, d) . Direct ana-

logues of these statements hold for site percolation model hold by very similar

arguments, and we do not state them separately here.

We remind the reader that

q□c (i, d) = sup

{
p : lim sup

N→∞
Pp
(
S□
)
< 1

}
.

First, Corollary 2.2.6 above has the following corollary.

Corollary 2.4.1. q□c (i, d) ≤ p□c (i, d) .

Now we show a partial duality result for any i and d.
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Proposition 2.4.2.

p□c (i, d) + q□c (d− i, d) = 1 .

Proof. Let p > p□c (i, d) . Then

Pp
(
A■
)
= 1− Pp

(
Z■
)

by definition

= 1− Pp
(
S□
)

by Lemma 2.1.4

→ 0 by Corollary 2.2.6

as N →∞. Therefore, 1− p ≤ q□c (d− i, d) for all p > p□c (i, d) and

p□c (i, d) + q□c (d− i, d) ≥ 1 . (2.4)

Until now, we have suppressed the dependence of probabilities of events on

N. To work with subsequences in this argument, denote the probability of an

event B for P (i, d,N, p) by Pp,N (B) .

Let p < p□c (i, d) . Then there is a subsequence {n1, n2, . . .} of N for which

Pp,nk

(
A□
)
→ 0 .

By Lemma 2.1.4,

Pp,nk

(
S■
)
→ 1

so

lim sup
N→∞

Pp
(
S■
)
= 1
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and 1− p ≥ q□c (i, d) for all p < p□c (i, d) . Therefore,

p□c (i, d) + q□c (d− i, d) ≤ 1

which holds with equality by Equation 2.4.

Propositions 2.2.5 and 2.4.2 show that duality between p□c (i, d) and p
□
c (d− i, d)

is equivalent to the convergence of the threshold function λ□ (N) .

Corollary 2.4.3. The following are equivalent.

(a) limN→∞ λ□ (N) exists.

(b) p□c (i, d) = q□c (i, d) .

(c) p□c (i, d) + p□c (d− i, d) = 1.

In the next section, we demonstrate that the statements of Corollary 2.4.3

hold in the cases i = 1 and i = d− 1.

2.5 The Cases i = 1 and i = d− 1

We show that p□c (1, d) and q
□
c (1, d) coincide and equal the critical threshold

for bond percolation on Zd, denoted here by p̂c = p̂c(d). As in the previous

sections, the proofs for the corresponding results for the site percolation model

are nearly identical and we do not state them here.
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In the subcritical regime, we apply Theorem 1.3.1 to show that the probability

of a giant one-cycle limits to zero as N →∞ when p < p̂c.

Proposition 2.5.1. q□c (1, d) ≥ p̂c

Proof. Let p < p̂c and let M = ⌊N/2⌋. For a vertex x of TdN , denote by Ax the

event that there is a connected, giant 1-cycle containing an edge adjacent to

x. If A0 occurs then 0↔ ∂[−M,M ]d because a 1-cycle contained in [−M,M ]d

is null-homologous in TdN . Therefore,

Pp (Ax) ≤ e−κ(p)M (2.5)

for all vertices x of TdN , using translation invariance and Theorem 1.3.1.

Let X be the number of vertices in TdN that are contained in a connected,

giant 1-cycle. A□ = {X ≥ 1} so

Pp
(
A□
)
= Pp (X ≥ 1)

≤ Ep (X) by Markov’s Inequality

=
∑
x∈Td

N

Pp (Ax)

≤ NDe−κ(p)M using Equation 2.5

= Nde−κ(p)⌊N/2⌋

which goes 0 as N →∞.
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In the supercritical regime, we use the following lemma on crossing probabili-

ties inside a rectangle (which is Lemma 7.78 in [31]).

Lemma 2.5.2. Let p > p̂c. Then there is an L > 0 and a δ > 0 so that if

N > 0 and x ∈ [0, N − 1]d−1 × [0, L] , the probability that 0 is connected to x

inside P ∩
(
[0, N − 1]d−1 × [0, L]

)
is at least δ.

Proposition 2.5.3. p□c (1, d) ≤ p̂c

Proof. Let p > p̂c, and let B be the event that there is a path of edges of P

connecting 0 to (N − 1) e1 = (N − 1, 0, . . . , 0) inside of [0, N − 1]d. By the

previous lemma, there is a δ > 0 so that Pp (B) ≥ δ.

If B occurs, then the path obtained by adding the edge between (N − 1) e1

and Ne1 = 0 is a giant 1-cycle. It follows that

Pp
(
A□
)
≥ pPp (B) ≥ pδ

for any choice of N. Therefore, p□c (1, d) ≤ p for all p ≥ p̂c and p□c (1, d) ≤

p̂c.

The proof of Theorem 2.0.2 is completed by combining Propositions 2.5.1 and

2.5.3 with Corollary 2.4.3.
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Proof of Theorem 2.0.2. Propositions 2.5.1 and 2.5.3 show that

p□c (1, d) ≤ p̂c ≤ q□c (1, d) .

However, q□c (1, d) ≤ p□c (1, d) by Corollary 2.4.1 so

p□c (1, d) = q□c (1, d) = p̂c .

Therefore, it follows from Corollary 2.4.3 that p̂c and 1−p̂c are sharp thresholds

for 1-dimensional and (d− 1)-dimensional percolation on the Td, respectively.

2.6 Monotonicity

Next, we prove that the critical probabilities p□c (i, d) are strictly increasing in

i and strictly decreasing in d. This will complete the proof of Theorem 2.0.3.

Here again we will need to differentiate between the cubical and permutohedral

lattices.

First we consider the cubical case, in which we compare percolation on TdN

with the thickened d − 1-dimensional slice TdN ∩ {0 ≤ x1 ≤ 1} . Compare the

first part of the proof to that of Lemma 4.9 of [11].

Proposition 2.6.1. For 0 < i < d− 1,

p□c (i, d) < p□c (i, d− 1) < p□c (i+ 1, d) .

Proof. First, we will show that

p□c (i, d) ≤ p□c (i, d− 1) ≤ p□c (i+ 1, d) . (2.6)
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Let T = TdN ∩{x1 = 0} . T is a torus of dimension d−1 and, by a standard ar-

gument, the map on homology α∗ : Hj (T )→ Hj

(
Td
)
induced by the inclusion

T ↪→ Td is injective for all j. P ∩ T is distributed as P (i, d− 1, N, p) .

Define A□
d−1 to be the event that γ∗ : Hi (P ∩ T )→ Hi (T ) is non-zero, where

γ∗ is induced by the inclusion P ∩T ↪→ T. If A□
d−1 holds then α∗◦ϕ∗ is also non-

zero, as α∗ is injective. But α∗ ◦γ∗ = ϕ∗ ◦β∗, where β∗ is the map on homology

β∗ : Hi (P ∩ T ) → Hi (P ) induced by the inclusion P ∩ T ↪→ P , so ϕ∗ is also

non-zero. It follows that A□
d−1 =⇒ A□. Therefore p□c (i, d− 1) ≥ p□c (i, d) by

the definition of that threshold.

Observe that Hi

(
Td
)
is generated by the images of the maps on homology

Hi

(
Td ∩ {xj = 0}

)
→ Hi

(
Td
)
induced by the inclusions Td ∩ {xj = 0} ↪→ Td

as j ranges from 1 to d.Denote by Sj the event that the mapHi (P ∩ {xj = 0})→

Hi

(
Td ∩ {xj = 0}

)
induced by inclusion is surjective and let q > q□c (i, d− 1).

Then there is a subsequence (n1, n2, . . .) of N so that

Pp,nk
(Sj)→ 1

as k → ∞ for j = 1, . . . , d. As S ⊂ ∩jSj, Harris’s Inequality implies that

Pp,nk
(S) → 1 also. Therefore, p > q□c (i, d) and q□c (i, d− 1) ≥ q□c (i, d) for

all i and d. Combining this inequality (for a different choice of i and d) with

Proposition 2.4.2 we obtain

p□c (i, d−1) = 1−q□c (d− i−1, d−1) ≤ 1−q□c (d− i−1, d) = p□c (i+1, d) , (2.7)
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which shows Equation 2.6.

It will be useful later in the argument to observe that these inequalities, to-

gether with Theorem 2.0.2 and known lower bounds on p̂c (see [12], for exam-

ple), imply that

0 < p□c (1, d) ≤ p□c (i, d) ≤ p□c (i, i+ 1) < 1 . (2.8)

Furthermore, we can show p□c (i, d) < p□c (i, d− 1) using the thicker cross-

section T ′ = TdN ∩{0 ≤ x1 ≤ 1} . Note that an i-face v of T is in the boundary

of a unique (i + 1)-face w(v) of T ′ that is not contained in T (for example, if

v = {0} × [0, 1]i × {0}d−i−1 , then w(v) = [0, 1]i+1 × {0}d−i−1). The idea is to

sometimes add v to T when the other i-faces of w(v) are present, effectively

increasing the percolation probability in T by a small amount. However, we

must be careful to do so in a way so that the i-faces remain independent.

The i-faces of T ′ are divided into three subsets: those included in T, those

which are perpendicular to T (that is, i-faces not included in T which intersect

T in their boundary), and those parallel to T (that is, i-faces of the form

v + e1, where v is an i-face of T ). For an i-face v of T, let J(v) be the set of

all perpendicular i-faces that meet v at an i− 1 face. v, v + e1, and J(v) are

the i-faces of the (i+1)-face w(v). Also, for a perpendicular i-face u of T ′, let

K(u) = {v : u ∈ J(v)} . Note that for any u and v

|J(v)| = 2i and |K(u)| = 2(d− i) . (2.9)
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Figure 2.2: The setup in the proof of Proposition 2.6.1 for the case d = 2, i = 1.
On the left, P ′ is shown in black and the remaining faces of P are depicted in
gray. On the right, P ∩ T is in black and the additional faces of R are shown
in blue. Note that giant cycles exist in P, P ′, and R, but not in P ∩ T.

We define a coupling between i-dimensional plaquette percolation P ′ on T ′

with probability p and i-dimensional percolation R with probability p+ p(1−

p)q2i on T, where q = q(p) is chosen to satisfy p = 1−(1−q)2(d−i). For all pairs

(v, u) where v is an i-face of T and u ∈ J(v), define independent Bernoulli

random variables κ (u, v) to be 1 with probability q and 0 with probability

1− q. Let P ′ ⊂ T ′ be the subcomplex containing the i−1-skeleton of T ′ where

each i-face in T or parallel to T is included independently with probability

p, and the other i-faces u of T ′ are included if κ (u, v) = 1 for at least one

v ∈ K (u) . Observe that

P (u ∈ P ′) = 1− P
(
∩v∈K(u) {κ (u, v) = 0}

)
= 1− (1− q)2(d−i) = p

(using Equation 2.9), and that the faces u are included independently. That

is, P ′ is percolation with probability p on T ′. On the other hand, define R ⊂ T

by starting with all faces of P ′ ∩ T and adding an i-face v /∈ P ′ if v + e1 ∈ P ′
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and κ (v, u) = 1 for all u ∈ J (v) . Then R is percolation on T with probability

p+ p(1− p)q2i > p. See Figure 2.2.

As p + p(1 − p)q2i is a continuous function of p and 0 < p□c (i, d − 1) < 1

(Equation 2.8), we can choose p to satisfy

0 < p < p□c (i, d− 1) < p+ p(1− p)q2i < 1 .

Then

Pp+p(1−p)q2i (ξ∗ is non-trivial)→ 1 (2.10)

as N → ∞ by the definition of p□c (i, d− 1), where ξ∗ : Hi(R) → Hi(T ) is the

map on homology induced by the inclusion R ↪→ T.

Extend P ′ to plaquette percolation P on all of TdN by including the i-faces in

TdN \ T ′ independently with probability p. If σ is an i-cycle of R we can write

σ =
∑
j

ajuj +
∑
k

bkvk

where uj /∈ P and vk ∈ P for all j and k. Then, by construction, we can form

a corresponding i-cycle σ′ of P by setting

σ′ = σ +
∑
j

aj∂w (uj) .

σ and σ′ are homologous in Td, so α∗ ◦ ξ∗ ([σ]) = ϕ∗ ([σ
′]) In particular, if ξ∗ is

non-trivial then ϕ∗ is non-trivial as well. Using Equation 2.10, it follows that

Pp
(
A□
)
≥ Pp+p(1−p)q2i (ξ∗ is non-trivial)→ 1 ,
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Figure 2.3: Percolation on T ′′ (left) mapping to percolation on T ′ (right) for
i = 1, d = 2. The blue edges are in R \ P.

as N →∞. Therefore,

p□c (i, d) ≤ p < p□c (i, d− 1) .

We can define similar couplings between percolations on TdN ∩ {xj = 0} and

on TdN ∩ {0 ≤ xj ≤ 1} for j = 1 . . . d. Combining these couplings with the

argument leading to Equation 2.7 yields q□c (i, d) < q□c (i, d − 1). Then from

Proposition 2.4.2 we obtain

p□c (i, d− 1) = 1− q□c (d− i− 1, d− 1) < 1− q□c (d− i− 1, d) = p□c (i+ 1, d) .

An alternative approach to the proof of Proposition 2.6.1 is to construct a third

space T ′′ by attaching a new i + 1-cube to each i-face of T along one of the

cube’s i-faces. We can define inhomogeneous percolation P ′′ on T ′′ by starting

with the i − 1-skeleton of T ′′, adding each i-face of T and and each i-face

parallel to T independently with probability p, and adding the perpendicular

i-faces independently with probability q (these faces play the same role as the
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random variables κ (u, v) above). Giant cycles in P ′′ are ones that are mapped

non-trivially to Hi (T
′′) by the map on homology induced by the inclusion

P ′′ ↪→ T ′′, and they appear at a lower value of p than p□c (i, d− 1) (precisely

when they appear in R as defined above). The proof is finished by observing

that the quotient map π : T ′′ → T ′ identifying the corresponding perpendicular

faces of neighboring cubes induces an injective map on homology, and therefore

the existence of giant cycles in P ′′ implies the existence of giant cycles in P.

This idea is illustrated in Figure 2.3. Note that our definition of giant cycles in

T ′′ can be adapted to give a more general notion of homological percolation in

the i-skeleton of a cubical or simplicial complex whose i-dimensional homology

is nontrivial.

Now we consider the permutohedral lattice. The idea of the proof is again to

find a copy of Td−1 within Td, but here the correct embedding is slightly less

obvious.

Before beginning the proof, it will be useful to discuss the combinatorial struc-

ture of the permutohedron. Recall that R̂d ⊂ Rd+1 is the subspace

R̂d :=

{
(x0, x1, ..., xd) :

d∑
k=0

xk = 0

}
.

We review the expositions of [19] and [52]. The d-permutohedron centered at

the origin in R̂d has vertices obtained from permuting the coordinates of

1

2d+ 1
(d, d− 2, d− 4, . . . ,−d+ 2,−d) .
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Let σ be this permutohedron centered at 0. It is enough to understand the

geometry of σ because the other permutohedra of the lattice are translates

of σ. The k-faces of σ correspond to ordered partitions of the coordinate in-

dices into d− k + 1 subsets M1, . . . ,Md−k+1, where every coordinate in places

Mj is smaller than every coordinate in Ml for j < l. We will abuse nota-

tion and identify these partitions with the faces associated to them. For

example, the 4-permutohedron has a 2-face {{1, 3} , {4} , {2, 5}} containing

the vertices, and by extension all points, satisfying the property that the two

smallest coordinates are in positions 1 and 3, and the next smallest coordi-

nate is in position 4. This face has 1-subfaces corresponding to refinements of

its ordered partition, namely {{1} , {3} , {4} , {2, 5}} , {{3} , {1} , {4} , {2, 5}} ,

{{1, 3} , {4} , {2} , {5}} , and {{1, 3} , {4} , {5} , {2}} . Since antipodal vertices

have reversed coordinate order, it is not hard to check that opposite k-faces

correspond to the same partition with reversed blocks.

We will be also interested in the combinatorial structure of the permutohedral

lattice as it relates to translates of a fixed (d− 1)-face. Let f be the (d− 1)-

face corresponding to the partition {{1, 2, . . . , d} , {d+ 1}} . Then f is itself a

(d − 1)-permutohedron with subfaces corresponding to ordered partitions of

{1, 2, . . . , d} . Let f ′ be the opposite (d − 1)-face, i.e. the one corresponding

to {{d+ 1} , {1, 2, . . . , d}} . Consider (d − 1)-face paths between f and f ′,

meaning sequences (f1, f2, . . . , fm) of (d− 1)-faces such that f1 = f, fm = f ′,

and fk ∩ fk+1 is a (d− 2)-face for each 1 ≤ k ≤ m− 1. Then there is no path
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of length 3, but for a (d− 2)-face h ⊂ f corresponding to an ordered partition

{A,B, {d+ 1}} , there is a path (f, {A,B ∪ {d+ 1}} , {A ∪ {d+ 1} , B} , f ′) of

length 4 passing through h. Thus, the other (d− 1)-faces can be decomposed

into one pair for each (d− 2)-face of f, each pair consisting of a neighbor of f

and a neighbor of f ′.

We start with an easy lemma.

Lemma 2.6.2. Let σ1 and σ2 be the two other permutohedra adjacent to σ

along {A,B ∪ {d+ 1}} and {A ∪ {d+ 1} , B} respectively. Then σ1 ∩ σ2 is a

translate of f. In fact, letting v be such that σ+v = σ1, we have σ1∩σ2 = f ′+v.

Proof. By Lemma 3.4 of [19], the centers of the permutohedra are in general

position, so a (d− k)-cell of the Voronoi complex is an intersection of exactly

(k + 1) top dimensional cells. In particular, there are exactly 3 (d − 1)-faces

among all permutohedra of the lattice that contain {A, {d+ 1} , B} . We will

show that the face not contained in σ is σ1 ∩ σ2 = f ′ + v.

Let G = σ ∩ σ1 = {A,B ∪ {d+ 1}} ⊂ σ and G′ = {B ∪ {d+ 1} , A} ⊂ σ, and

let Tv : R̂d → R̂d be translation by v. Also, denote the reflections about the line

spanned by v and the hyperplane orthogonal to v by ρ1 and ρ2, respectively.

Then G = Tv (G
′) since opposite (d − 1)-faces of σ have reversed ordered

partitions. Moreover, G and G′ are orthogonal to v so Tv |G′= ρ2 |G′ .

68



Now, consider the action of ρ1 on the (d − 2)-faces of G′. ρ1 sends a (d − 2)

face to the face opposite to it in G′, which can be obtained by reversing the

subpartitions within each of B ∪ {d+ 1} and A. This can be seen from the

fact that opposite vertices of G′ are maximally far apart via edge paths within

G′, so they must have reversed coordinates within B ∪ {d+ 1} and A.

Then ρ2 ◦ ρ1 is reflection about the origin (the antipodal map), so since an-

tipodal (d− 2)-faces have reversed ordered partitions,

{A, {d+ 1} , B} = ρ2 ◦ ρ1 ({B, {d+ 1} , A}) = ρ2 ({{d+ 1} , B,A})

= Tv ({{d+ 1} , B,A}) ⊂ f ′ + v.

But f ′ + v is not contained in σ, so it must be the third (d− 1)-face adjacent

to {A, {d+ 1} , B} (in addition to σ∩σ1 and σ∩σ2, which are both contained

in σ) and therefore σ1 ∩ σ2 = f ′ + v.

Now we are ready to prove the monotonicity of p7i (d) in i and d.

Proposition 2.6.3. p7i (d) < p7i (d− 1) < p7i+1 (d)

Proof. First we prove p7i (d) ≤ p7i (d− 1) ≤ p7i+1 (d) . Unlike the case of

plaquettes in Zd, there is no obvious isometric embedding of the (d − 1)-

dimensional permutohedral lattice into the d-dimensional permutohedral lat-

tice. We will instead find a set of d-permutohedra that is combinatorially

and homotopy equivalent to the (d− 1)-lattice. The idea is to associate each
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d-permutohedron with a fixed (d−1)-face and then project a thickened (d−1)-

surface of permutohedra orthogonally to that face.

Now we can begin constructing the sublattice. Let w be the vector pointing

to the center of f. Let Ld−1 ≃ A∗
d−1 be the sublattice of A∗

d generated by

the vectors of A∗
d orthogonal to w and let Ld be the sublattice generated by

Ld−1∪{2w} . Call an equivalence class of the d-permutohedra under the action

of translation by 2Zw a pile of permutohedra. For any permutohedron θ, define

Bθ = {θ′ : θ′ ∩ θ ̸= ∅} ,

the union of the permutohedra that intersect θ. Identifying permutohedra with

their centers, let

S :=
⋃

θ∈Ld−1

Bθ.

Then take S ′ be the set of permutohedra intersecting the upper envelope of S

with respect to w. In other words, S ′ is the union of one permutohedron of S

from each pile such that for each pile Π we have

(S ′ ∩ Π) · w = sup
θ∈S∩Π

θ · w.

Alternatively, one can construct S ′ explicitly. For a permutohedron θ, let vθ

be such that σ + vθ = θ. Define

Uθ := {θ′ ∈ A∗
d : θ

′ ∩ (f + vθ) ̸= ∅} \ θ.

Then we can write

S ′ =
⋃

θ∈Ld−1

Uθ.
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Figure 2.4: The set S (left) in orange with the centers of each ball in blue.
Taking the highest element of S in each column gives S ′ (right).

Now we will show the homotopy equivalence respecting the cell structure via

the nerve theorem, seen in Corollary 4G.3 of [35]. Let U be the open cover

of S ′ induced by the permutohedra it contains. Since the permutohedra are

convex, it is a good cover and therefore S ′ is homotopy equivalent toNU . Then

we compare this to the the cover V of the (d− 1)-dimensional permutohedral

lattice induced by its (d− 1)-permutohedra and the corresponding nerve NV .

Let θ be a permutohedron of S ′. Let fθ = f+vθ and let f ′
θ = f ′+vθ. Lastly, let

h be an arbitrary (d−2)-dimensional face of fθ and let h′ be the corresponding

(d − 2)-dimensional of f ′
θ obtained via translation by −2w. By the definition

of S ′, there is at most one other permutohedron of S ′ containing h, since

the one adjacent to θ along fθ would be in the same pile. The same is true

for h′, and by Lemma 2.6.2 we cannot have both because this would again

be two elements of the same pile. However, one or the other must be present

because adjacent piles of S are connected by (d−1)-faces and taking the upper
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Figure 2.5: A portion of S ′ in 3 dimensions.

envelope preserves this property. Thus, the permutohedra of S ′ adjacent to θ

are in bijection with adjacent (d− 1)-permutohedra to a fixed permutohedron

θd−1 ∈ A∗
d−1. Then it only remains to check that the intersections are the same

in each case.

Let α1, α2, . . . , αk ∈ A∗
d−1 be d− 1-permutohedra adjacent to θd−1. For each j,

take γj ∈ S ′ to be the d-permutohedron in the pile corresponding to αj. Again

using Lemma 3.4 of [19], any k pairwise adjacent permutohedra intersect at a

(d−k+1)-face and any set that is not pairwise adjacent has empty intersection.

From the construction of S ′, γj ∩ γl = ∅ if and only if αj ∩ αl = ∅. Thus,

{γ1, . . . , γk, θ} are pairwise adjacent if and only if
{
α1, . . . , αk, θ

d−1
}
are, and

so we have (⋂
j≤k

γj

)
∩ θ ̸= ∅ ⇐⇒

(⋂
j≤k

αj

)
∩ θd−1 ̸= ∅.
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We have then shown that the NU ≃ NV . Furthermore, we have shown that

there is a bijection between the permutohedra of S ′ and those of A∗
d−1 such

that for any U ′ ⊂ U , the corresponding V ′ ⊂ V satisfies NU ′ ≃ NV ′.

The strict inequality p7i (d) < p7i (d− 1) can be obtained by a similar proof

to the plaquette case. For a permutohedron θ ∈ S ′, it is easy to check that if

there is a giant cycle in Q∪θ, there is also a giant cycle in Q∪ (BG (θ, 1) \ S ′) .

There is overlap between the added permutohedra, but we deal with this in

the same way as the overlap in the plaquette construction. This also gives the

strict inequality p7i (d− 1) < p7i+1 (d) by duality as before.

Proof of Theorem 2.0.3. By Equation 2.8, q□c (i, d) , p□c (i, d) ∈ (0, 1) . The re-

maining statements follow from Corollary 2.2.6 and Propositions 2.4.2 and 2.6.1.

Note that we could alternatively show that p□c (i, d) , q
□
c (i, d) ∈ (0, 1) by mod-

ifying the proof of Proposition 2.5.1 to work for the lattice of i-plaquettes in

Zd and using a Peierls-type argument to obtain the bound

1

2d− i+ 1
≤ q□c (i, d) ≤ p□c (i, d) ≤ 1− 1

d+ i+ 1
.

Proof of Theorem 2.0.4. Theorem 2.0.4 follows from the proofs of Theorems 2.0.1, 2.0.2,

and 2.0.3 with the adjustments for the permutohedral lattice noted throughout

73



the chapter. In particular, Lemma 2.1.4 and Propositions 2.2.3 and 2.6.1 are

replaced by Lemma 2.1.1 and Propositions 2.2.2 and 2.6.3 respectively.
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Chapter 3: Homological Percolation in Random-Cluster

Percolation on a Torus

This chapter is based on joint work with Benjamin Schweinhart [23].

Recall that the i-random cluster model is defined by the following measure on

configurations of plaquettes:

µp,q,i,N (ω) :=
1

Zp,q,i,N
pη(ω) (1− p)|F

i
N |−η(ω) qbi−1(Pω) ,

where Z is a constant, η (ω) is the number of open plaquettes, F i
N is the total

number of i-plaquettes in the torus TdN , and bi−1 (Pω) is the (i − 1)st Betti

number of the subcomplex composed of the (i− 1)-skeleton together with the

open plaquettes of ω.

3.1 Main Results

Recall that

p∗ :=
(1− p) q

(1− p) q + p
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and

psd :=

√
q

1 +
√
q
.

Our first result is a higher dimensional analogue of the following result of

Beffara and Duminil-Copin [8] for self-dual random cluster percolation.

Theorem 3.1.1 (Beffara–Duminil-Copin). Let q ≥ 1. Then the critical prob-

ability for the random cluster model with parameter q in Z2 is psd.

Theorem 3.1.2. Suppose q ≥ 1 and char (F ) ̸= 2. If d = 2i, then

{
Pp (A)→ 0 p < psd(q)

Pp (S)→ 1 p > psd(q)

as N →∞.

We also show that there are dual sharp phase transitions for i = 1 and i = d−1

that are consistent with the critical probability for the random-cluster model

in Zd, assuming a conjecture about the continuity of the critical probability in

slabs.

Let

Sk := Z2 × {−k,−k + 1, . . . , k}d−2 ⊂ Zd .

Fix q ≥ 1 and let pc (Sk) be the critical probability for the random-cluster

model with parameter q on Sk with free boundary conditions. This can be
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constructed by a limit of free random-cluster models on

Sk,l := {−l,−l + 1, . . . , l}2 × {−k,−k + 1, . . . , k}d−2 .

Since Sk,l ⊂ Sk+1,l, it follows that pc (Sk) is decreasing in k. Then let

pslabc = lim
k→∞

pc (Sk) .

Let p̂c = p̂c(q, d) be the critical threshold for the random-cluster model with pa-

rameter q on Zd. These two critical values are conjectured to coincide [46].

Conjecture 3.1.3. For all q ≥ 1,

pslabc = p̂c

Theorem 3.1.4. Let q ≥ 1 and char (F ) ̸= 2. Then the following statements

hold:

If i = 1 then {
Pp (A)→ 0 p < p̂c

Pp (S)→ 1 p > pslabc

as N →∞.

Furthermore, if i = d− 1 then{
Pp (A)→ 0 p < (p̂c)

∗

Pp (S)→ 1 p >
(
pslabc

)∗
as N →∞.

If Conjecture 3.1.3 is true, then there is a sharp threshold at p̂c = pslabc .
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In general dimensions we have a sharp threshold function defined as follows:

Let λ = λ (q, i, d,N) satisfy

Pλ,q (A) = 1/2

and let pl = pl (q, i, d) := lim infN→∞ λ (q, i, d,N) and pu = pu (q, i, d) :=

lim supN→∞ λ (q, i, d,N) .

Theorem 3.1.5. Suppose q ≥ 1 and char (F ) ̸= 2. For every d ≥ 2, 1 ≤ i ≤

d− 1, and ϵ > 0 {
Pλ−ϵ (A)→ 0

Pλ+ϵ (S)→ 1

as N →∞.

Moreover, for every d ≥ 2 and 1 ≤ i ≤ d− 1 we have

0 < pl ≤ pu < 1 ,

and pl and pu have the following properties.

(a) (Duality) pu (q, i, d) = (pl (q, d− i, d))∗ .

(b) (Monotonicity in i and d) pu (q, i, d) < pu (q, i, d− 1) < pu (q, i+ 1, d)

for 0 < i < d− 1.

In the infinite volume case the coupling between the 2-random-cluster model

and the associated Potts lattice gauge theory (which is a 1-dimensional Potts

model) leads to a short alternative proof of area law and perimeter law for

Wilson loops at high and low temperatures respectively.
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Theorem 3.1.6. Suppose q ≥ 1 is a prime integer, let γ be a rectangular loop

in Z4, and let Wγ be the Wilson loop variable for γ. Also, let ϕ be sampled

from the q-state Potts lattice gauge theory. For all β > 0 there exist constants

C2(β, q), C3(β, q) > 0 so that

exp(−C2(β, q)Area(γ)) ≤ Eβ,q(Wγ) ≤ exp(−C3(β, q)Per(γ)) . (3.1)

Furthermore, there exist 0 < β1 ≤ β2 <∞ so that

log (Eβ,q(Wγ))

{
→ −C2(β, q)Area(γ) β > β2

= Θ(−Per(γ))) β < β1
.

3.2 Homological i-random-cluster percolation

The i-random cluster model considered in this chapter and the Bernoulli pla-

quette model in Chapter 2 differ in their distributions, but have the same set

of possible states. Thus, we can use the same topological tools for specific

configurations without modification. However, it is less clear what the dis-

tribution of the dual model is in a dependent setting. We show that it is a

(d− i)-random cluster model with related parameters.

We first consider duality in the balanced i-random cluster model, which we

recall has measure

µ̃p,q,i,N (ω) :=

(√
q
)−ρ(ω)

Z̃p,q,i,N
pη(ω) (1− p)|F

i
N |−η(ω) qbi−1(Pω) .
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Lemma 3.2.1. The balanced i-random-cluster model satisfies

µ̃p,q,i,N
(
ω■
) d
= µ̃p∗,q,d−i,N (ω) .

Proof. The idea of the proof is the same as in the classical random-cluster

model. We need only take care to keep track of the giant cycles and local

cycles separately, since they behave differently under duality.

Let ak = dimkerϕk∗, a
■
k = dimkerψk∗, bk = rankϕk∗, and b

■
k = rankψk∗. We

think of ai as counting the local k-cycles and bk as counting the global ones.

Furthermore, let bk = dimHk (Pω) and b■
k = Hk

(
P■
ω

)
. Then we immediately

have

ak + bk = bk, a■k + b■k = b■
k (3.2)

for each 1 ≤ k ≤ d, and by Lemma 2.1.4, we have

bi + b■d−i = dimHi(TdN). (3.3)

Theorem 3.44 of [35] gives the isomorphism

Hd−i−1 (Pω) ∼= Hi+1

(
TdN ,TdN \ Pω

)
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Combining this with the long exact sequence of relative homology, we obtain

the following commutative diagram:

Hi+1

(
TdN \ P■

ω

)
Hi+1

(
TdN
)

Hi+1

(
TdN ,TdN \ P■

ω

)
Hi

(
TdN \ P■

ω

)
Hi

(
TdN
)

Hd−i−1
(
TdN
)

Hd−i−1
(
P■
ω

)∼=

φ

∼=

χ ϵ

By Lemma 2.1.2 and the definition of the plaquette system,

Hi+1

(
TdN \ P■

ω

) ∼= Hi+1 (Pω) ∼= 0 ,

so φ is surjective. Also by Lemma 2.1.2,

Hi

(
TdN \ P■

ω

) ∼= Hi (Pω) .

Then since ϵ is the map on homology induced by the inclusion
(
TdN \ P■

ω

)
↪→

TdN , its image is isomorphic to the space of giant cycles of Pω. Thus, χ restricts

to an isomorphism between vector spaces of dimension b■
d−i−1 − b■d−i−1 and

bi − bi respectively, so

ai = a■d−i−1 . (3.4)
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Now by the coupling of the plaquette and dual plaquette systems we have

η (ω) + η
(
ω■
)
=
∣∣F i

N

∣∣ , (3.5)

and by the Euler–Poincaré formula we have

d∑
j=0

(−1)j bj =
i−1∑
j=0

(−1)j
∣∣F j

N

∣∣+ η (ω) . (3.6)

In particular, since
∣∣F j

N

∣∣ is constant for 1 ≤ j ≤ i − 1 and bj is constant for

1 ≤ j ≤ i− 2, there is a constant C4 = C4 (i, d,N) such that

bi − bi−1 = η (ω) + C4 . (3.7)

It is not crucial to the argument, but we can simplify the upcoming calculation

slightly to note from the bijection between plaquettes and dual plaquettes that

∣∣F i
N

∣∣ = ∣∣F d−i
N

∣∣ . (3.8)

Lastly, we recall the following property of p∗,

pp∗

(1− p) (1− p∗)
= q . (3.9)
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Now by combining (3.2)–(3.9), we compute

µ̃p,q,i,N =

(√
q
)−bi
Z

pη(ω) (1− p)|F
i
N |−η(ω) qbi−1

=
(1− p)|F

i
N |

Z
(
√
q)−bi

(
p

1− p

)η(ω)
qbi−1

=
qc (1− p)|F

i
N |

Z
(
√
q)−bi

(
p

q (1− p)

)η(ω)
qbi

=
qc (1− p)|F

i
N |

Z
(
√
q)−bi

(
q(1− p)

p

)−η(ω)

qai+bi

=
qc (1− p)|F

i
N |

Z
(
√
q)−bi

(
p∗

1− p∗

)−η(ω)

qai+bi

=
qc+(

d
i)/2 (1− p)|F

i
N |

Z
(
√
q)b

■
d−i

(
p∗

1− p∗

)η(ω■)−|F i
N |
qa

■
d−i−1−b

■
d−i

=
qc−b

■
d−i−1+(

d
i)/2 (1− p)|F

i
N |

Z (p∗)|F
i
N |

(
√
q)−b

■
d−i (p∗)η(ω

■) (1− p∗)|F
d−i
N |−η(ω■) qb

■
d−i−1

∝ µ̃p∗,q,i,N
(
ω■
)

as desired.

3.2.1 The case d = 2i

The arguments in this section proceed similarly to their counterparts in Chap-

ter 2, but we include them for completeness.

Proposition 3.2.2. Let λ be defined as before so that µλ,q (A) = 1/2 for each

N. The for any ϵ > 0, we have

µλ−ϵ,q (A)→ 0
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and

µλ+ϵ,q (S)→ 1

as N →∞.

Proof. We first prove the second statement. Note that increasing events with

respect to µ are positively correlated by Theorem 1.6.2 and that the group of

symmetries of the torus contains an irreducible representation of Hi

(
TdN
)
by

Proposition 2.2.3. Then by Lemma 2.2.1,

µp,q (S) ≥ C0µp,q (A)
C1 ,

where C0, C1 do not depend on N. In particular there is a δ > 0 such that

µλ,q (S) ≥ δ for all N.

Now we show that µ (S) has a sharp threshold. By Theorem 1.6.2, µ satisfies

the FKG lattice condition and is thus monotonic [32]. Then since the sym-

metries of TdN act transitively on the plaquettes, we apply Theorem 1.4.4 to

obtain

d

dp
µp,q (S) ≥

c1
q
min {µp,q (S) , 1− µp,q (S)} log

∣∣F i
N

∣∣ .
In particular, for p close to λ, d

dp
µp,q (S) ≥ c1δ

q
log |F i

N | . By integrating this

inequality, we have µλ+ϵ,q (S)→ 1 as N →∞.

To obtain the first statement, we apply the same argument to the dual system.

Since µλ,q (A) = 1/2, it follows that µ∗
(λ),q (A) ≥ 1/2 by Lemma 2.1.4. Then
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since p∗ is continuous as a function of p, the above argument shows that

µ(λ−ϵ)∗,q (S)→ 1 as N →∞. By another application of Lemma 2.1.4, we then

have µλ−ϵ,q (A)→ 0 as N →∞.

Corollary 3.2.3. If p0 > pu (q) , then

µp0,q (S)→ 1

as N →∞. If p0 < pl (q) , then

µp0,q (A)→ 0

as N →∞.

Proof of Theorem 3.1.2. By self duality and Lemma 2.1.4,

µpsd,q (A) ≥ 1/2 .

In particular, pu ≤ psd. Then by monotonicity and Corollary 3.2.3,

µp,q (S)→ 1

as N →∞ for all p > psd. Since p
∗ is decreasing as a function of p with fixed

point psd, applying Lemma 2.1.4 again gives

µp,q (A)→ 1

as N →∞ for all p < psd.
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Proposition 3.2.4. For any d ≥ 2, 1 ≤ i ≤ d− 1,

pu (q, i, d) = (pl (q, d− i, d))∗ .

Proof. This follows from Lemma 3.2.1, Lemma 2.1.4, and Corollary 3.2.3 in

a similar manner to Proposition 2.4.2.

3.2.2 The Cases i = 1 and i = d− 1

Since we have exponential decay of subcritical clusters by Theorem 1.4.3, one

inequality is a straightforward adaptation of Proposition 2.5.1.

Proposition 3.2.5. pl (1, d) ≥ p̂c (d)

Proof. Let p < p̂c and let M = ⌊N/2⌋. For a vertex x of TdN , let Ax the event

that a giant 1-cycle passes through x. Since [−M,M ] is contractible in TdN ,

A0 ⊂
{
0↔Td

N
∂ΛM

}
. Moreover, µwΛM ,p,q stochastically dominates µp,q,1,d|ΛM

,

so by Theorem 1.4.3 and translation invariance,

µp,q,1,d (Ax) ≤ µwΛM ,p,q (0↔ ΛM) ≤ exp (cpM) (3.10)

for all vertices x of TdN .

Let X be the number of vertices in TdN that are contained in a giant 1-cycle.

Since A = {X ≥ 1} ,
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µp,q,1,d (A) = µp,q,1,d (X ≥ 1)

≤ Eµ (X) by Markov’s Inequality

=
∑
x∈Td

N

µp,q,1,d (Ax)

≤ Nde−cpM by Equation 3.10

= Nde−cp⌊N/2⌋ → 0

as N →∞.

We will now assume Conjecture 3.1.3 in order to prove the reverse inequality.

Let

Λn,k := [−n, n]2 × [−k, k]d−2 ∩ Zd ⊂ Sk .

Let Dn,k := {v ∈ Λn,k : v ∼ u for some u ∈ Sk \ Λn,k} be the boundary of Λn,k

in Sk.

Lemma 3.2.6. Fix q ≥ 1, d ≥ 2, k ≥ 1. There is a C5 > 0 such that for any

p > pc (Sk) sufficiently close to pc (Sk) and n sufficiently large,

µfΛn,k,p,q
(0↔ Dn,k) ≥ C5 (p− pc (Sk)) .

The proof follows from the proof of Theorem 1.4.3 in [21], replacing Λn with

Λn,k.
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Lemma 3.2.7. Fix q ≥ 1, d ≥ 2, k ≥ 1, p > pc (Sk) . Let Λ = [−3n, 3n] ×

[−2n, 2n] × [−k, k]d−2 ∩ Zd. There is a constant C6 > 0 not depending on n

such that

µfΛ,p,q ((−n, 0, . . . , 0)↔ (n, 0, . . . , 0)) ≥ C6 .

Proof. Consider the random-cluster model defined by µfΛ,p,q. Define two cross-

ing events

H+ := {(0)↔ {(n, j, x3, . . . , xd) : 0 ≤ j ≤ n,−k ≤ x3, . . . , xd ≤ k}} ,

H− := {(0)↔ {(−n, j, x3, . . . , xd) : 0 ≤ j ≤ n,−k ≤ x3, . . . , xd ≤ k}} ,

V+ := {(0)↔ {(j, n, x3, . . . , xd) : 0 ≤ j ≤ n,−k ≤ x3, . . . , xd ≤ k}} ,

and

V− := {(0)↔ {(−j, n, x3, . . . , xd) : 0 ≤ j ≤ n,−k ≤ x3, . . . , xd ≤ k}} .

By Lemma 3.2.6 and symmetry, there is a C7 > 0 not depending on n such

that µfΛ,p,q (H+) = µfΛ,p,q (H−) = µfΛ,p,q (V+) = µfΛ,p,q (V−) ≥ C7.

Let v0 = (−n, 0, . . . , 0) and wo = (n, 0, . . . , 0) . Let π12 : Zd → Z2 be the

projection onto the first two coordinates. Our aim will be to create overlapping

paths (i.e. paths with intersecting images under π12) coming from v0 and w0,

which are then close enough to be connected with positive probability. We

will do this by the following recursive process: Fix an arbitrary ordering of

the finite paths in Zd. Given vt, let v
′
t+1 be the endpoint on ∂Λn (vt) of the
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minimal path witnessing H+ if t is odd and V+ if t is even. Then let vt+1

be the projection of v′t+1 onto the hyperplane {x3 = x4 = . . . = xd = 0} . If no

such path exists, we set vj = vt for all j > t.We obtain wt+1 from wt similarly,

except that we replace H+ and V+ and H− and V− respectively. Let F+ be

the event that v8 ̸= v7 and F− the event that w8 ̸= w7. Note that by the FKG

inequality and symmetry, µfΛ,p,q (F+) = µfΛ,p,q (F−) ≥ C8
7 .

Figure 3.1: The two paths constructed in Lemma 3.2.7. The blue vertices are
the v2k’s, the blue boxes are the B2k’s, and the region enclosed by the blue
dotted loop is B. The corresponding orange objects are the w2k’s, D2k’s, and
D respectively.
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We now consider the possible paths created when F+ holds. It is not difficult

to check that π12 (v2t) must lie in a square of side length nt/2 with lower left

corner at π12 (v0) + t (1/2, 1/2) . Explicitly,

π12 (v2) ∈ B2 := [−n/2, 0]× [n/2, n] ,

π12 (v4) ∈ B4 := [0, n]× [n, 2n] ,

π12 (v6) ∈ B6 := [n/2, 2n]× [3n/2, 3n] ,

and

π12 (v8) ∈ B8 := [n, 3n]× [2n, 4n] .

Likewise,

π12 (w2) ∈ D2 := [0, n/2]× [n/2, n] ,

π12 (w4) ∈ D4 := [−n, 0]× [n, 2n] ,

π12 (w6) ∈ D6 := [−2n,−n/2]× [3n/2, 3n] ,

and

π12 (w8) ∈ D8 := [−3n,−n]× [2n, 4n] .

We claim that on the event F+ the image of the open bonds under π12 contain

intersecting paths between π12 (v0) and π12 (w0) . Let B0 = {π12 (v0)} and

D0 = {π12 (v0)} . By construction, we have a path P+ between π12 (v0) and

π12 (v6) that remains within L1 distance n/2 of
⋃3
t=0B2t and a path P− between

π12 (w0) and π12 (w6) that remains within L1 distance n/2 of
⋃3
t=0D2t.
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Let

B :=

{
y ∈ R2 : d

(
y,

4⋃
t=0

B2t

)
≤ n/2

}
and

D :=

{
y ∈ R2 : d

(
y,

4⋃
t=0

D2t

)
≤ n/2

}
,

where d (y, z) is the L1 distance. Then since

d (B0, D) = d (B8, D) = d (D0, B) = d (D8, B) = n/2 ,

the endpoints of P+ and P− are outside of B∩D. Thus, the boundary of B∩D

is partitioned into four pieces, with crossings between opposite pieces. These

crossings must then intersect by a standard argument that can be found in

chapter 3 of [12], for example.

We now turn these overlapping sets of open edges into a path in Sk between

v0 and w0. Any two points in Sk with the same image under π12 are at graph

distance at most 2k (d− 2) . In our earlier construction, we had paths between

vt and a vertex with the same image under π12 as vt+1 for each t and likewise

for each wt. Therefore, we can add at most 17 (2k (d− 2)) open edges in order

to connect v0 to v8, connect w0 to w8, and then connect these two paths at

their point of overlap.

Let p > r > pc (Sk) . Given a configuration ω, define

Sm(ω) =

ω′ :
∑

e∈E(G)

|ω (e)− ω′ (e)| ≤ m

 .
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For an event F, we then define

Em(F ) = {ω : Sm(ω) ∩ F ̸= ∅} .

Then by Theorem 3.45 of [32] and the FKG inequality there is a constant C8

such that

µfΛ,p,q ((−n, 0, . . . , 0)↔ (n, 0, . . . , 0))

≥ C
34k(d−2)
8 µfΛ,p,q

(
E(34k(d−2)) ((−n, 0, . . . , 0)↔ (n, 0, . . . , 0))

)
≥ C

34k(d−2)
8 µfΛ,p,q (F+ ∩ F−)

≥ C16
7 C

34k(d−2)
8 .

Since this bound does not depend on n we are done.

Proposition 3.2.8. Suppose Conjecture 3.1.3 holds. Then pu (1, d) ≤ p̂c (d)

Proof. Let p > p̂c (d) . Since we are assuming Conjecture 3.1.3, there is a k

such that p > pc (Sk) . Let N ≥ 2k. We will construct a giant cycle by using

Lemma 3.2.7 to connect the centers of three pairwise overlapping boxes in

the torus, each of diameter ⌊2N/3⌋. If N is not divisible by 3, the starting

and ending points of this constructed path may not exactly match. However,

they will be at graph distance at most 3, and are therefore connected with

probability at least
(
p
q

)3
. We will therefore assume that N is divisible by 3 in

the remainder of the proof for simplicity. We apply Lemma 3.2.7 to copies of

Λ := [−N,N ]× [−2N/3, 2N/3]× [−k, k]d−2 ∩ Zd
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centered at u1 = (N/3, . . . , 0) , u2 = (N, . . . , 0) , and at u3 (−N/3, 0, . . . , 0) to

connect v− = (−2N/3, 0, . . . , 0) , 0, and v+ = (2N/3, 0, . . . , 0) . If the events{
0↔Λ(u1) v+

}
,
{
v+ ↔Λ(u2) v−

}
, and

{
v− ↔Λ(u3) 0

}
all occur, then there is an

open path that is homotopic to the standard generator of H1

(
TdN
)
contained

in {x2 = x3 = . . . = xd = 0} . Thus,

A ⊇
{
0↔Λ(u1) v+

}
∩
{
v+ ↔Λ(u2) v−

}
∩
{
v− ↔Λ(u3) 0

}
.

We then apply the FKG inequality to bound

µTd
N ,p,q

(A) ≥ µTd
N ,p,q

({
0↔Λ(u1) v+

}
∩
{
v+ ↔Λ(u2) v−

}
∩
{
v− ↔Λ(u3) 0

})
≥ µfΛ(u1),p,q (0↔ v+)µ

f
Λ(u2),p,q

(v+ ↔ v−)µ
f
Λ(u3),p,q

(v− ↔ 0)

≥ C3
6 .

Note that the final bound is uniform in N. By Proposition 3.2.2, we then have

p ≥ λ (N) for all sufficiently large N, so p ≥ pu (1, d) as desired.

3.2.3 Monotonicity

We now show that the i-random cluster model also has monotone critical

probabilities when we vary d or when we vary i and d in parallel. First we

compare i-random-cluster percolation in a full complex to percolation in a

subcomplex.

Lemma 3.2.9. Fix q ≥ 1. Let X, Y be finite i-dimensional cell complexes with

X ⊂ Y and let µX and µY be i-random-cluster measures with parameter q on

X and Y respectively. Then µY |X stochastically dominates µX .
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Proof. Let σ ⊂ X be an i-cell. Given a configuration ω on Y, let Yω be the

induced subcomplex of Y and let Xω be subcomplex on X induced by ω|X .

Let ι : X ↪→ Y be the inclusion and let ι∗ : Hi (X) → Hi (Y ) be the induced

map on ith homology. Notice that ι∗ is injective since Y has no (i + 1)-cells.

Then we have

bi (Xωσ)− bi (Xωσ) ≥ bi (Yωσ)− bi (Yωσ) .

Then by the Euler–Poincaré formula we see that

bi−1 (Xωσ)− bi−1 (Xωσ) ≥ bi−1 (Yωσ)− bi−1 (Yωσ) . (3.11)

Recall that for any i-cell σ ⊂ Z,

µZ (ω (σ) = 1|ω (Z \ σ)) =

{
p bi−1 (Zωσ)− bi−1 (Zωσ) = 0

p/q
1−p+p/q bi−1 (Zωσ)− bi−1 (Zωσ) = 1

(3.12)

Now let ξ be a configuration on X and ζ be a configuration on Y with ζ|X ≥ ξ.

Then we have

µX (ω (σ) = 1 | ω (τ) = ξ (τ) for all τ ∈ X \ σ)

≤ µX (ω (σ) = 1 | ω (τ) = ζ (τ) for all τ ∈ X \ σ) by FKG

≤ µY (ω (σ) = 1 | ω (τ) = ζ (τ) for all τ ∈ Y \ σ) by (3.11) and (3.12)

By Theorem 1.4.2, µX stochastically dominates µY |X as desired.

Now we can prove an analogue of Proposition 2.6.1.
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Proposition 3.2.10. For all 1 ≤ i ≤ d− 1,

pu (q, i, d) < pu (q, i, d− 1) < pu (q, i+ 1, d) .

Proof. The topological properties of any given configuration of plaquettes are

identical to those discussed in Proposition 2.6.1. We will therefore only modify

the probabilistic arguments as necessary.

First we will show

pu (q, i, d) < pu (q, i, d− 1) .

Our strategy will be to define a sequence of models between the random-cluster

model on TdN and Td−1
N in which the giant cycle space of each model stochas-

tically dominates the giant cycle space of the one before. More precisely, for

a configuration of plaquettes ω, let G (ω) be the associated subspace of giant

cycles of Pω in Hi

(
TdN
)
. Then we say µ1 ≤G µ2 if there is a coupling κ of µ1

and µ2 such that

κ ({(ω1, ω2) : G (ω1) ⊆ G (ω2)}) = 1 .

Note that µ1 ≤st µ2 implies µ1 ≤G µ2.

Let T0 = TdN , T1 = TdN ∩{x1 ∈ [0, 1]} , and T2 = TdN ∩{x1 = 0} . For j = 0, 1, 2,

let µTj be such that µTj |Tj is the random-cluster model on Tj and µTj |Td
N\Tj

sets all plaquettes to be closed almost surely. By Lemma 3.2.9, we have

µT0 ≥st µT1 .
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We now put a different measure µ′
T1 on configurations that are closed outside

T1. Let F2 be the set of i-cells of T1 contained in T2 and let F1 be the rest of the

i-cells of T1. We Let η1 and η2 be the open cells of F1 and F2 respectively. We

set µ′
T1|T2 = µT2|T2 . We then let µ′

T1|T1\T2 be independent Bernoulli plaquette

percolation with probability p/q and declare all other plaquettes closed. More

explicitly,

µ′
T1 (ω) :=

1

Z
pη1(ω) (1− p)|F1|−η1(ω) q

bi−1

(
Pω|T1

)(
p

q

)η2 (
1− p

q

)|F2|−η2
.

We think of this as doing Bernoulli percolation on F1 with parameter p/q and

then a random-cluster percolation on F2. For σ ∈ F1 and a configuration ξ on

T1, we clearly have

µ′
T1 (ω (σ) = 1 | ω (τ) = ξ (τ) for all τ ∈ T1 \ σ)

≤ µT1 (ω (σ) = 1 | ω (τ) = ξ (τ) for all τ ∈ T1 \ σ) .

By Lemma 3.2.9, for σ ∈ F2 we also have

µ′
T1 (ω (σ) = 1 | ω (τ) = ξ (τ) for all τ ∈ T1 \ σ)

≤ µT1 (ω (σ) = 1 | ω (τ) = ξ (τ) for all τ ∈ T1 \ σ) .

The again applying Theorem 1.4.2, we have

µT1 ≥st µ
′
T1 .

We now perform a splitting of the state of a plaquette into several Bernoulli

variables similar to one found in Proposition 2.6.1. We adapt some of the
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definitions used there. Let S be the set of i-faces of T1 that intersect, but are

not contained in T2. For an i-face v of T2, let J(v) be the set of all perpendicular

i-faces that meet v at an i − 1 face. Then v, v + e1, and J(v) are the i-faces

of an (i + 1)-face w(v). Also, for a perpendicular i-face u of S, let K(u) =

{v : u ∈ J(v)} . Let pS satisfy

p

q
= 1− (1− pS)2(d−i) .

For all pairs (v, u) where v ∈ T2 and u ∈ J(v), let κ (v, u) be independent

Ber (pS) random variables. Then by construction, Bernoulli percolation with

parameter p/q on S is equivalent to setting each cell v ∈ S to be open if and

only if
∑

u∈J(v) κ (v, u) > 0. Now given Bernoulli p/q percolation on F1, let

H = {v ∈ T2 : κ (v, u) = 1 for each u ∈ J (v) and v + e1 is open} .

Let p′ = p+ p
q
(1− p)p2iS and take µT2,p′ to be the random-cluster model on T2

with parameter p′ instead of p. By construction, for any plaquette σ ∈ H, each

giant cycle in Pω is homologous to a giant cycle in Pωσ . Therefore we have

µ′
T1 ≥G µT2,p′ ,

and so

µT0 ≥G µT2,p′ ,

Now as in Chapter 2 we may take p such that p < pu (q, i, d− 1) < p′. Then

for each N we have

µp,q,i,d,N (A) ≥ µp′,q,i,d−1,N (A) ,
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so

lim inf µp,q,i,d,N (A) ≥ lim inf µp′,q,i,d−1,N (A) ≥ 1/2 ,

and thus

pu (q, i, d) ≤ p < pu (q, i, d− 1) .

Combining this with Proposition 3.2.4 also gives pu (q, i, d− 1) < pu (q, i+ 1, d) .

3.3 Comparisons to Potts Lattice Gauge Theory

We now consider the relationship between the i-random-cluster model and the

q-state Potts lattice gauge theory. Recall that the latter has the Hamilto-

nian

Ĥ (f) =
∑
σ∈F i

N

K (Wσ (f) , 1) ,

or equivalently,

Ĥ (f) =
∑
σ∈F i

N

K (f (∂σ) , 0) ,

where f ∈ Ci−1
(
TdN ;Z (q)

)
or f ∈ Ci−1

(
TdN ;Zq

)
respectively. The probability

of a state f in the Potts lattice gauge theory with parameter β is then

1

Z
e−βĤ(f) ,

where Z is a normalizing constant.

Hiraoka and Shirai [36] showed that there is a coupling similar to the coupling

between the classical random cluster model and the Potts model [27, 24].
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Proposition 3.3.1 (Hiraoka and Shirai). Let q ≥ 1, p ∈ [0, 1), and suppose

p = 1− e−β. Consider the coupling on Ci−1
(
TdN
)
× {0, 1}F

i
N defined by

ν (f, ω) ∝
∏
σ∈F i

N

[
(1− p)K (ω (σ) , 0) + pK (ω (σ) , 1)K

(
δi−1f (σ) , 0

)]
.

Then ν has the following marginals:

• The first marginal is the q-state Potts model with inverse temperature β

given by ∑
ω∈{0,1}F

i
N

ν (f, ω) ∝ e−βH(f) ,

where H(f) = −
∑

σ∈F i
N
K (δi−1f (σ) , 0) .

• The second marginal is the i-random cluster model with parameters p, q

given by

∑
f∈Ci−1(Td

N)

ν (f, ω) ∝ pη(ω) (1− p)|F
i
N |−η(ω) qbi−1(Pω ;Zq) .

The first marginal of ν is the (i − 1)-dimensional q-state Potts model with

p = 1− e−β and the second marginal is the i-random cluster model.

It will be useful to have the conditional measures from this coupling available,

which are also analogous to the conditional measures of the Edwards-Sokal

coupling.

Proposition 3.3.2. Let p = 1− e−β. Then the conditional measures of ν are

as follows:
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• Given f ∈ Ci−1
(
TdN
)
, the conditional measure ν (· | f) is Bernoulli pla-

quette percolation with probability p on the set of plaquettes σ that satisfy

δi−1 (σ) = 0.

• Given ω ∈ {0, 1}F
i
N , the conditional measure ν (· | ω) is the uniform

measure on (i− 1)-cocycles in Pω.

Proof. From the definition of ν (f, ω) , under ν (· | s) a plaquette σ is open

with probability p independently of other plaquettes when δi−1 (σ) = 0 and

always closed otherwise, giving the first conditional measure. The second

conditional measure follows from the observation that ν (· | ω) is supported on

the s ∈ Ci−1
(
TdN
)
such that δi−1s (σ) = 0 for each σ ∈ ω, and that each such

cochain has the same weight.

3.3.1 Higher Dimensional Random-Cluster and Potts
Models in Infinite Volume

In this section we will first show that, like the classical random cluster model,

the i-random-cluster model can be extended to an infinite volume setting.

Specifically, we will define the i-random-cluster model on Zd via limits of

i-random cluster models on finite boxes Λn. The proof given in chapter 4

of [33] only requires minor changes to extend to higher dimensions, and we

will describe them here. We will then use this to define an infinite volume

Potts lattice gauge theory.
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We start by generalizing the notion of boundary conditions. Let Ω be the

space of configurations of i-plaquettes in Zd. For a subset of vertices V ⊂ Zd,

let F k
V be the set of k-plaquettes with all vertices contained in V. Then given

ξ ∈ Ω, let

Ωξ
Λn

=
{
ω ∈ Ω : ω (σ) = ξ (σ) for all σ ∈ F k

Zd \ F k
Λn−1

}
.

Intuitively, the boundary condition should describe how the states of external

plaquettes affect the random cluster measure within Λn. In the classical model,

this is done by keeping track of which vertices of ∂Λn are connected externally.

In higher dimensions we will need slightly more information, but the idea is the

same. Let Pξ,V be the complex consisting of the union of the (i− 1)-skeleton

of Zd and the open plaquettes of ξ contained in F i
V . Let D

i−1
n be the (i − 1)-

skeleton of ∂Λn. Then we construct a cubical complex Qω,ξ (not necessarily a

subcomplex of Zd) by taking Pω,Λn and attaching a cubical complex Aξ such

that

• Aξ ∩ Pω,Λn ⊂ Di−1
n .

• The map φA : Hi−1 (D
i−1
n ;F ) → Hi−1 (Aξ;F ) induced by the inclusion

Di−1
n ↪→ Aξ is surjective.

• The kernel of φA is the same as the kernel of the map Hi−1 (D
i−1
n ;F )→

φP : Hi−1

(
Pξ,Zd\Λn−1

;F
)
induced by the inclusion Di−1

n ↪→ Pξ,Zd\Λn−1
.
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Such an Aξ can be constructed by taking Pξ and filling the (i− 1)-cycles that

are not homologous to cycles in Di−1
n .

Now we can define the i-random-cluster model on Λn with boundary condition

ξ as follows:

µξΛn,i,p,q
(ω) =

 1

Zξ
Λn

[∏
σ∈F i

Λn
pω(σ) (1− p)1−ω(σ)

]
qbi−1(Qω,ξ;F) ω ∈ Ωξ

Λn

0 otherwise.

Lemma 3.3.3. Let p ∈ [0, 1] , q ≥ 1, and n ∈ N. Then for every ξ ∈ Ω, µξΛn,p,q

is positively associated.

Proof. The proof is analogous to the proof of Theorem 4.14 of [33]. Consider

the i-random-cluster model µΛn∪Aξ,i,p,q. This satisfies the FKG lattice condition

and is thus strongly postively associated. Then since µξΛn,i,p,q
is µΛn∪Aξ,i,p,q

conditioned on the plaquettes of Aξ being open, it follows that µξΛn,i,p,q
is

postively associated.

As usual, the free and wired boundary conditions are the most important

explicit examples. The free boundary measure µf
Λn,i,p,q

and the wired boundary

measure µw
Λn,i,p,q

are obtained by taking ξ to be the all closed and all open

configurations respectively. By an analogue of Theorem 4.19 of [33], the weak

limits of each of these measures exist.

Proposition 3.3.4. Let p ∈ [0, 1] and q ≥ 1.
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(a) The limits µf
i,p,q := limn→∞ µf

Λn,i,p,q
and µw

i,p,q := limn→∞ µw
Λn,i,p,q

exist.

(b) µf
i,p,q and µ

w
i,p,q are automorphism invariant.

(c) µf
i,p,q and µ

w
i,p,q are positively associated.

Proof. (a), (b) Both proofs are the same as in Theorem 4.19 of [33]

(c) Both measures are limits of positively associated measures by Lemma 3.3.3,

so they are positively associated by Proposition 4.10 of [33].

We can use the infinite volume random cluster measures to define corre-

sponding infinite volume Potts models using the coupling given in Proposi-

tion 1.6.3.

Lemma 3.3.5. For any ω ∈ Ω, there is a basis B of the finitely supported

subspace of Hi−1 (Pω, F ) such that each (i− 1)-cube of Zd is in the support of

finitely many elements of B.

Proof. Take any basis and put it as the rows of an infinite matrix. Then we

can perform row operations to obtain an upper triangular matrix, the rows of

which will be the desired basis.

We will call the minimal such basis with respect to lexicographical order

Bω
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Corollary 3.3.6. Let p ∈ [0, 1), q ∈ {2, 3, . . .} , and p = 1− e−β.

(a) Let ω be distributed according to µf
i,p,q. Conditional on ω, let {Ag : g ∈ Bω}

be i.i.d. Unif (Zq) random variables. Then the limit νfβ,q := limn→∞ νfΛn,β,q

exists, and the random cocycle

f =
∑
g∈B

Agg

is distributed according to νfβ,q.

(b) Let f be distributed according to νfβ,q. Conditional on f, let ω be a ran-

dom configuration in which each i-plaquette σ is open with probability

p if f (∂σ) = 0 independent of the states of other plaquettes and closed

otherwise. Then ω is distributed according to µf
i,p,q.

Proof. We proceed similarly to proof of Theorem 4.91 of [33].

(a) By the proof of Theorem 4.19 of [33], there is an increasing set of configura-

tions ωn such that each ωn is distributed according to µf
Λn,i,p,q

and limn→∞ ωn is

distributed according to µf
i,p,q. Moreover, for any i-plaquette σ, ωn (σ) = ω (σ)

for large enough n.

Now let
{
Ag : g ∈ Ci−1

(
Zd;Zq

)}
be i.i.d. Unif (Zq) random variables. Then

let

fn :=
∑
g∈Bωn

Agg .
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By the construction of Bωn , fn is distributed according to νfΛn,β,q
and is even-

tually constant on any finite set of (i− 1)-cubes. Since Bωn → Bω, limn→∞ fn

is distributed as νfβ,q and we are done.

(b) Let {Bσ : σ ∈ F i} be independent Ber (p) random variables. Let fn be

distributed as νfΛn,β,q
, coupled as before so that fn is eventually constant on any

finite set of (i−1)-cubes. Let ωn (σ) = BσK (fn (∂σ) , 1) . By Proposition 3.3.2,

ωn is distributed according to µf
Λn,i,p,q

. But then ω := limn→∞ is distributed

according to µf
i,p,q = µf

Λn,i,p,q
.

3.3.2 Wilson Loops in Potts Lattice Gauge Theory

A straightforward calculation shows for the purposes of Wilson loops, Potts

states are equivalent up to coboundaries.

Proposition 3.3.7. Fix ω ∈ {0, 1}F
i
N . Let γ ∈ Zi−1 (Pω;Zq) and s ∈ Zi−1

(
TdN ,Zq

)
.

Then for any s′ ∈ Zi−1
(
TdN ,Zq

)
with [f ] = [f ′] ∈ s ∈ H i−1

(
TdN ,Zq

)
, we have

s (γ) = s′ (γ) .

Proof. If i = 1, s = s′ and the result is trivial. Assume i ≥ 2, let h ∈ F i−2
N ,

and let h∗ ∈ Ci−2
(
TdN ;Zq

)
be supported on the element of Ci−2

(
TdN ;Zq

)
associated to h. Note that since γ is a cycle, h∗ (γ) = 0. Then since s and s′

are cohomologous, we can write

s− s′ =
∑

h∈F i−2
N

chh
∗
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for some {ch} ∈ ZF
i−2
N
q . This then gives

s (γ) = s′ (γ) +
∑

h∈F i−2
N

chh
∗ (γ) = s′ (γ) .

We can now compute the distribution of the values of Wilson loops, conditioned

on the state of the coupled i-random cluster percolation.

Proposition 3.3.8. Let γ ∈ Zi−1

(
TdN ;Zq

)
. Then

Eν (f (γ) | ω) =

{
0 0 = [γ] ∈ Hi−1 (Pω;Zq)
Unif (Zq) 0 ̸= [γ] ∈ Hi−1 (Pω;Zq)

.

Proof. Fix ω and γ. First, assume that 0 = [γ] ∈ Hi−1 (Pω;Zq) . Then there is

a chain a =
∑

σ∈ω cσσ ∈ Hi (Pω;Zq) such that [γ] = ∂a. By Proposition 3.3.2,

f (∂σ) = 0 for each open plaquette σ in ω. Thus,

f (γ) =
∑
σ∈ω

cσf (σ) = 0 .

Now assume that 0 ̸= [γ] ∈ Hi−1 (Pω;Zq) . By Proposition 3.3.2, ν (f | ω)

can be sampled by fixing a basis of H i−1 (Pω) and taking a random linear

combination with independent Unif (Zq) coefficients. Thus, f (γ) is uniformly

distributed on an additive subgroup of Zq. Since the only such subgroups are

Zq and {0} , we only need to rule out the latter. By the universal coefficent

theorem, there is a dual element 0 ̸= [γ] ∗ ∈ H i−1 (Pω;Zq) such that [γ]∗([γ]) ̸=

0. so f (γ) is distributed as Unif (Zq) .
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Recall that when we writeWγ, we are referring to a product involving a cochain

with coefficients in Z (q) , the multiplicative group of complex qth roots of

unity. Z (q) is isomorphic to the additive group Zq that we have used so far

in accordance with topological convention, but we want to emphasize that the

expectations in the following corollary are in the former group in accordance

with the physical convention.

Corollary 3.3.9.

Eν (Wγ | 0 = [γ] ∈ Hi−1 (Pω;Zq)) = 1

and

Eν (Wγ | 0 ̸= [γ] ∈ Hi−1 (Pω;Zq)) = 0 .

In particular, if Vγ is the event that γ is null-homologous in Pω then

E (Wγ) = P (Vγ) , .

The previous result is false when q is not prime, as noted in [4]. Also, note that

this provides an topological explanation for the phenomenon that Wilson loop

expectations are always in [0, 1] , a phenomenon was was observed in [17].

Corollary 3.3.10. Let γ, γ′ ∈ Zi
(
TdN ;Zq

)
. Then conditioned on

[γ] = [γ′] ∈ Hi (Pω;Zq) ,

Wγ = Wγ′ almost surely. Conversely, conditioned on

[γ] ̸= [γ′] ∈ Hi (Pω;Zq) ,
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Wγ and Wγ′ are independent.

Combining this with Theorem 3.1.5 gives a relationship between certain Polyakov

loops, which are Wilson loops that represent giant (i−1)-cycles. First we show

that surfaces with giant i-cycles contain such loops.

Lemma 3.3.11. Let X ⊂ TdN be a subcomplex. Then for any l < k ≤ d, if X

contains a giant k-cycle, X also contains a giant l-cycle.

Proof. Fix l < k ≤ d. Let ψ : X ↪→ TdN be the inclusion map, and for each

0 ≤ j ≤ d let ψj∗ : Hj (X) ↪→ Hj

(
TdN
)
be the induced map on homology and

let ψ∗
j : H

j (X)←↩ Hj
(
TdN
)
be the induced map on cohomology. Now for any

α ∈ Hk−l (TdN) , the cap product gives us the following commutative diagram:

Hk (X) Hl (X)

Hk
(
TdN
)

H l
(
TdN
)ψk∗

(·)⌢ψ∗
k−l(α)

ψl∗

(·)⌢α

By assumption, there is β ∈ Hk (X) such that ψk∗ (β) ̸= 0. Then by the

Künneth formula for homology,

H∗
(
TdN ;F

)
≃
⊗
1≤j≤d

H∗
(
S1
)
.

In particular, there is an α ∈ Hk−l (TdN) such that ψk∗ (β) ∩ α ̸= 0. It then

follows from the commutative diagram above that ψl∗
(
β ∩ ψ∗

k−l (α)
)
̸= 0, so

β ∩ ψ∗
k−l (α) is a giant l-cycle of X.
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Corollary 3.3.12. There is a sharp threshold function βsurf = βsurf (q, d,N) :=

− log (1− λ (q, d,N)) for the appearance of a giant surface on which the value

of Polyakov loops is constant within homology classes.

3.3.3 Area and Perimeter Law

Our previous results show that the 2-dimensional random cluster model in

Z4 random cluster model exhibits a sharp phase transition to a “surface–

dominated regime” in a global, qualitative sense. For percolation in three

dimensions, this phase transition coincides with that of Theorem 1.6.1: a

sharp phase transition to “surface–dominated regime” in a quantitative sense.

Such a result is unknown for two-dimensional percolation in four dimension,

let alone the random cluster model. However, we conjecture that it occurs at

the same point as the corresponding transition to a surface-dominated regime

in the global sense.

Conjecture 3.3.13. Let γ be a rectangular loop in Z4, and let Vγ be the event

that γ is null-homologous. Then, for the 2-dimensional random cluster model

in Z4,

Pp(Vγ) ∼

{
exp(−C9(p)Area(γ)) p < psd(q)

exp(−C10(p)Per(γ)) p > psd(q)

for some 0 < C9(p), C10(p) <∞.
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Conditional on this result, we have the following phase transition for expecta-

tions of Wilson loop variables.

Corollary 3.3.14. Suppose q ≥ 1 is a prime integer, let γ be a rectangular

loop in Z4, and let Wγ be the Wilson loop variable for γ. Also, let ϕ be sampled

from the q-state Potts lattice gauge theory and let βsd (q) = log
(
1 +
√
q
)
.

Then, assuming the previous conjecture,

Ep,q(Wγ) ∼

{
exp(−C11(p, q)Area(γ)) β > βsd(q)

exp(−C12(p, q)Per(γ)) β < βsd(q)

for some 0 < C11(p, q), C12(p, q) <∞.

We can, however, show a partial result by comparison to plaquette percola-

tion. First, we show a stochastic domination result for the plaquette random

cluster model which is a direct generalization of the corresponding classical

result [27].

Lemma 3.3.15. The plaquette random cluster model µp,q,i,N is stochastically

decreasing in q ≥ 1 for fixed p. On the other hand, if we fix p̂ = p/q
1−p+p/q then

µp,q,i,N is stochastically increasing in q ≥ 1.

Proof. This is a consequence of the fact that adding an i-plaquette can only

reduce bi−1 by one or leave bi−1 unchanged.
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Recall that by Equation 3.12, p̂ is the conditional probability that a plaquette is

open given that it reduces bi−1 by one given the states of the other plaquettes.

First fix p. Since p̂ is decreasing in q and the conditional probability that a

plaquette is open given that it does not kill an (i − 1)-cycle is constant in q

(namely, it equals p), an application of Theorem 1.4.2 shows that µp,q,i,N is

stochastically decreasing in q. Now fix p̂. Then p is decreasing as a function of

q, so again applying Theorem 1.4.2 to the conditional probabilities given by

Equation 3.12 gives that µp,q,i,N is stochastically increasing in q.

Next, we need two more results from [1].

Theorem 3.3.16 (Aizenman–Chayes–Chayes–Frölich, Russo [3]). Let γ be a

rectangular loop in Zd, and let Vγ be the event that γ is null-homologous. There

exist constants ĉ1(p, d), ĉ2(p, d) > 0 for which

exp(−ĉ1(p, d)Area(γ) ≤ P(Vγ) ≤ exp(−ĉ2(p, dPer(γ)) . (3.13)

Furthermore, There are constants 0 < p̃1 (d) ≤ p̃2 (d) < 1 so that

log (Pp(Vγ))

{
∼ −ĉ1(p, d)Area(γ) p < p̃1 (d)

= Θ (Per(γ))) p > p̃2 (d)
.

The proof of the following is identical for the plaquette random cluster model

and plaquette percolation, requiring only positive association.
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Lemma 3.3.17. Let {γn} be a sequence of planar, rectangular loops whose di-

mensions diverge with n. Then, for the plaquette random cluster model µp,q,i,∞

lim
n→∞

P (Vγn)

Area(γn)

converges.

Proof of Theorem 3.1.6. Let p1 (β) = 1 − e−β and p2 (β) =
p1(β)/q

1−p1(β)+p1(β)/q . It

follows from Lemma 3.3.15 and Corollary 3.3.9 that

Pp1(β) (Vγ) ≤ Eβ (Wγ) ≤ Pp2(β) (Vγ)

where the first and third terms are probabilities taken with respect to plaquette

percolation, and the expectation is taken with respect to Potts lattice gauge

theory. Then the inequalities in Equation 3.1 follow from the corresponding

statements in (3.13). In addition, we may set β1 = − log (1− p̂) where

p̂ =
p̃1 (d) q

p̃1 (d) (q − 1) + 1

and p̃1 (d) is given by Lemma 3.3.16. Finally, we may set β2 = − log (1− p̃2 (d))

and note that the existence of the constant−C2(β, q) follows from Lemma 3.3.17.
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Chapter 4: Future Directions

Although the idea of higher dimensional percolation has been around for a

long time, many fundamental questions remain unanswered. We will give a

few possible directions of varying difficulty to pursue.

4.1 Finite Volume Homological Percolation

An immediate followup question to our work in Chapter 2 is whether λ□ (N, i, d)

and λ7i (N, d) converge as N →∞ for all i, d. Often one can work with cross-

ing probabilities by using monotonicity, but tori of different sizes do not seem

to be easily comparable. A similar and likely more difficult question can be

asked in the setting of Chapter 3 as well.

Another question is whether our restrictions on the characteristic of the coef-

ficient field for homology are necessary or not. There seem to be important

dependencies when the Potts model is involved (see [4]), but it would be in-

teresting to know whether the representation-theoretic differences cause giant

cycles to appear at multiple thresholds.

113



4.2 Infinite Volume Homological Percolation

This work was originally intended to work towards a generalization of the

Harris–Kesten theorem when d = 2i, on the whole lattice Zd rather than

on the torus TdN . The first difficulty is one of definitions. The notion of

homological percolation that we have studied in this thesis requires nontrivial

homology in the ambient space, which is not present in Rd. There are many

possible approaches, one example being compactifying Rd to a torus T d. A

possibly artificial way to do this is as follows:

Let f : Rd → (−1, 1)n be defined by

f (x) :=

(
x1

1 + |x1|
,

x2
1 + |x2|

, . . . ,
xd

1 + |xd|

)
,

where x = (x1, x2 . . . , xd) . Then let Td be the torus obtained by identifying

opposite faces of the hypercube [−1, 1]d, let i : (−1, 1)n ↪→ Td be the inclusion

map, and let fTd := i ◦ f. Then we can take plaquette percolation P on Zd

and consider the threshold for homological percolation in P̃ = P̃ (p, i, d) :=

fTd (P ) ⊂ Td.

Conjecture 4.2.1. The limit limN→∞ λ□ (N, i, d) exists and is a sharp thresh-

old for the appearance of giant cycles in P̃ .

A second difficulty lies in putting together sheets of plaquettes from smaller

pieces. In various proofs of the Harris–Kesten theorem, a key step is to go

from crossing squares to crossing long, skinny rectangles—see, for example,
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Chapter 3 of [12]. We do not currently have a high-dimensional version of

the Russo–Seymour–Welsh method, passing from homological “crossings” of

high-dimensional cubes to long, skinny boxes.

4.3 Criticality

Critical percolation on graphs has been intensely studied in the past few

decades. Many questions asked there have higher dimensional analogues, none

of which have been answered to our knowledge. Scaling limits for plaquette

percolation would be particularly interesting to explore. Bond percolation in

the plane at criticality conjecturally converges to Schramm Loewner Evolution

(SLE) under certain conditions. It would be very interesting to find a higher

dimensional analogue, either in a torus or in the full lattice. This could be a

reasonable question to approach experimentally.

4.4 Lattice Gauge Theory

The coupling between the classical random-cluster model and the Potts model

has been highly fruitful, and we would hope that the higher dimensional version

will also be useful. Upgrading Theorem 3.1.6 to a sharp threshold would

certainly be of interest, and perhaps a better understanding of the infinite

volume 2-random-cluster model could help. Since the decay of correlations is

a key feature in the phase transition of the Ising model, an analogue for Wilson

along the lines of Corollary 3.3.12 would also be interesting.
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