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Abstract

ML applications are driving the next computing revolution. In this context both

performance and security are crucial. We propose hardware/software co-design solu-

tions for addressing both. First, we propose RNNFast, an accelerator for Recurrent

Neural Networks (RNNs). RNNs are particularly well suited for machine learning

problems in which context is important, such as language translation. RNNFast lever-

ages an emerging class of non-volatile memory called domain-wall memory (DWM).

We show that DWM is very well suited for RNN acceleration due to its very high

density and low read/write energy. RNNFast is very e�cient and highly scalable,

with a flexible mapping of logical neurons to RNN hardware blocks. The accelerator

is designed to minimize data movement by closely interleaving DWM storage and

computation. We compare our design with a state-of-the-art GPGPU and find 21.8⇥

higher performance with 70⇥ lower energy.

Second, we brought ML security into ML accelerator design for more e�ciency

and robustness. Deep Neural Networks (DNNs) are employed in an increasing number

of applications, some of which are safety-critical. Unfortunately, DNNs are known

to be vulnerable to so-called adversarial attacks. In general, the proposed defenses

have high overhead, some require attack-specific re-training of the model or careful

tuning to adapt to di↵erent attacks. We show that these approaches, while successful
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for a range of inputs, are insu�cient to address stronger, high-confidence adversar-

ial attacks. To address this, we propose HASI and DNNShield, two hardware-

accelerated defenses that adapt the strength of the response to the confidence of the

adversarial input. Both techniques rely on approximation or random noise deliber-

ately introduced into the model. HASI uses direct noise injection into the model

at inference. DNNShield uses approximation that relies on dynamic and random

sparsification of the DNN model to achieve inference approximation e�ciently and

with fine-grain control over the approximation error. Both techniques use the out-

put distribution characteristics of noisy/sparsified inference compared to a baseline

output to detect adversarial inputs. We show an adversarial detection rate of 86%

when applied to VGG16 and 88% when applied to ResNet50, which exceeds the de-

tection rate of the state of the art approaches, with a much lower overhead. We

demonstrate a software/hardware-accelerated FPGA prototype, which reduces the

performance impact of HASI and DNNShield relative to software-only CPU and

GPU implementations.
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Chapter 1: Introduction

Deep learning is transforming the way we approach everyday computing. Deep

neural networks (DNNs) are rapidly becoming indispensable tools for solving an in-

creasingly diverse set of complex problems, including computer vision [70], natural

language processing [28], machine translation [13], and many others. In this context

both performance and security are crucial. Di↵erent applications in deep learning

have di↵erent requirements that may not necessarily be aligned. Some applications

need more memory or compute resources depending on the underlying neural net-

work while in other applications privacy and security concerns have higher priority.

However, compute e�ciency is not necessarily unrelated to security and privacy. For

instance, techniques designed to improve energy e�ciency can be used indirectly for

ML privacy purposes. Mobile devices, while energy constrained, are su�ciently pow-

erful to allow complex ML computation to be performed locally, avoiding the transfer

of potentially sensitive user data to the cloud. This does however require energy

e�cient ML solutions. This is especially important for memory-intensive ML models

such as recurrent neural networks.

Applications like speech recognition empower today’s digital assistants, business

intelligence applications fueled by the analysis of social media postings, etc. For

these applications, processing information in a way that preserves the correct context
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is crucial. For instance, The sentences “white blood cells destroying an infection”

and “an infection destroying white blood cells” have very di↵erent meanings even

though they contain the same words. Machine learning models such as Convolutional

Neural Networks (CNNs) do not consider context and are therefore not well suited

for solving such problems. Recurrent Neural Networks (RNNs) are a powerful class

of networks designed to consider context by retaining and using information from

previously processed inputs. RNNs can learn sequences and can be applied to any

problems that require context that needs to be remembered. The popularity of RNN

networks in production applications was highlighted by Google in a recent paper [65],

which reports that RNN workloads represent almost 30% of the workloads on Google’s

TPU datacenters. This is in contrast to only 5% for CNN workloads. RNNs have

been shown to scale better than CNNs to large input sizes even for applications for

which CNNs are generally well suited, such as image processing [12]. Enabling mobile

devices to run such workloads on device benefits from preserving users data privacy.

At the same time, these and other application domains, such as medical, self-

driving cars, face recognition, etc. require high accuracy outputs to gain public

trust and widespread commercial adoption. Unfortunately, DNNs are known to be

vulnerable to so-called ”adversarial attacks” that purposefully compel classification

algorithms to produce erroneous results. For example, in the computer vision domain,

a large number of attacks [18, 92, 93, 46, 20, 73, 103, 88] have demonstrated the ability

to force state-of-the-art classifiers such as ResNet[54], AlexNet[71], VGG[121], etc. to

misclassify inputs that are carefully manipulated by an attacker. In most of the

attacks, input images are only slightly altered such that they appear to the casual

observer to be unchanged. However, the alterations are made with sophisticated
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attacks that, in spite of the imperceptible changes to the input, resulting in reliable

misclassification. Running models on local devices also cannot prevents such attacks,

therefore security of the ML models is another issue that needs to be addressed

directly.

Advancements in commercial hardware accelerators (e.g. Google’s TPUs[66],

NVIDIA’s Volta and Turing architectures, or Microsoft’s Brainwave [39]), and new

frameworks [4] are making the deployment of machine learning algorithms to increas-

ingly diverse domains possible. Emerging accelerator architectures [23, 21, 36, 81,

36, 52, 22, 118, 24, 69, 6, 79, 113, 82, 26] hold the promise of continued performance

gains, driving new applications. Most of these accelerators target specific types of

neural network or design accelerators for general deep learning algorithms. More

importantly, almost none of them address security issues.

In this work, we introduce three hardware accelerators, RNNFast, HASI and

DNNShield. RNNFast is an accelerator for RNN, while HASI and DNNShield are

hardware accelerators for CNNs that are robust against adversarial attacks. RNNFast

leverages domain-wall memory (DWM), an emerging non-volatile memory technology,

to provide high-density on-chip storage as well as energy-e�cient computation. DWM

[107, 139, 140, 147, 60, 26, 153] is a magnetic spin-based memory technology, which

stores information by setting the spin orientation of so-called magnetic domains in a

ferromagnetic wire. Multiple magnetic domains can occupy a single wire (referred to

as “racetrack”) allowing up to 64 bits to be represented.

HASI and DNNShield are hardware/software co-designed defense that relies

on a novel stochastic inference process to e↵ectively defend against state-of-the-art
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adversarial attacks. We show that HASI and DNNShield can easily generalize to

di↵erent attacks while requiring no changes to the DNN models.

1.1 Organization of this Thesis

The rest of this thesis is organized as follows.

Chapter 2 will introduce RNNFast architecture. In this chapter, we first provide

background and related works around neural network acceleration. Then we present

RNNFast architecture and its detailed design. We conclude the chapter with the

evaluation of RNNFast and comparing with other accelerators.

Chapter 3 discusses the security issues of neural networks within the scope of image

classification. We first introduce adversarial attacks for image classification and then

discuss limitations of existing defenses. Next we introduce HASI and DNNShield,

hardware/software co-designed defense methods, and compare them with the state of

the art defenses.
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Chapter 2: RNNFast: An Accelerator for Recurrent Neural

Networks Using Domain Wall Memory

Recurrent Neural Networks (RNNs) are a powerful class of networks designed to

consider context by retaining and using information from previously processed inputs.

RNNs have the ability to learn sequences and can be applied to any problems that

require context that needs to be remembered. RNNs are used across a wide range

of applications that include speech recognition for digital assistants such as Siri and

Google Now, sentiment analysis for classifying social media postings, and language

translation.

However, RNN workloads are data-intensive because they store a partial history

of the output sequence and perform computations on that history along with the

current input. As a result, RNNs require both vast amounts of storage and increased

processing power. For example, the RNN neuron requires 8⇥ the number of weights

and multiply-accumulate (MAC) operations of a typical FC neuron. RNN networks

are also generally quite large. For instance, Amodei et al. [7] developed a network

for performing speech recognition that utilized seven recurrent layers and a total of

35 million parameters. At this scale, RNNs with large input sets are susceptible

to memory bottlenecks when running on existing accelerators such as GPUs [49] or

FPGAs [49, 76, 38, 91, 11, 135, 77, 136]. In addition, the fundamentally di↵erent
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design of the RNN cell makes previously proposed custom CNN accelerators [131,

120, 105, 23, 21, 81, 36, 52, 22, 19, 118, 24, 69, 6, 137, 64, 72, 79, 113, 82] not directly

applicable to RNN workloads.

In this chapter we introduce RNNFast, a hardware accelerator for RNN networks.

RNNFast leverages domain-wall memory (DWM), an emerging non-volatile memory

technology, to provide high density on-chip storage as well as energy e�cient compu-

tation. DWM has many attractive characteristics. It has read and write latencies that

are close to SRAM and write performance and energy that are substantially lower

than STT-RAM and other non-volatile memories [133]. Perhaps more importantly,

DWM is expected to have 30⇥ higher density than SRAM and 10⇥ higher than

DRAM or STT-RAM. The technology would therefore allow dramatically higher stor-

age capacity in the same chip area. While the technology is still in the early stages of

development, prototypes have yielded encouraging results [10]. We show that DWM

is very well suited for RNN acceleration due to its very high density, linear access

pattern, and low read/write energy.

The RNNFast architecture is modular and highly scalable forgoing the need for

long communication buses despite the high output fanout of typical RNN networks.

RNNFast allows flexible mapping of logic neurons to RNN hardware blocks. The

accelerator is designed to minimize data movement by closely interleaving DWM

storage and computation. The basic hardware primitive, the RNN processing element

(PE) includes custom DWM-based multiplication and custom nonlinear functional

units for high performance and low-energy. RNNFast also includes an error mitigation

mechanism for position errors, expected to be relatively common in DWM. The error

mitigation is tailored to the RNNFast data access pattern to minimize overhead. We

6



compare RNNFast with a state-of-the art NVIDIA P100 GPGPU and find RNNFast

improves performance by 21.8⇥ while reducing energy 70⇥.

We also compare with two alternative RNNFast designs. 1) a CMOS-based RN-

NFast design in which both memories and logic use traditional CMOS. We find the

RNNFast design to be up to 2⇥ more energy e�cient than the CMOS version, in a

much smaller chip area. 2) a memristor-based implementation that uses an analog

dot-product engine, a state-of-the-art design that has been shown to be very e�cient

for CNNs [24, 9]. RNNFast shows better performance, energy and area than the

memristor-based design. Qualitative comparisons with FPGA-based RNN accelera-

tors, Google’s TPU and Microsoft’s Brainwave [39] also indicate RNNFast has better

performance and lower energy for similar workloads.

The rest of this chapter is organized as follows: Section 2.1 provides background

information. Section 2.2 discusses related work. Section 2.3 details the RNNFast

architecture. Section 2.4 presents the error mitigation aspects of the design. Sections

2.5 and 2.6 describe the evaluation and Section 2.7 concludes this chapter.

7



Input vector

output vector

C0,0 C0,1 C0,2

x[0] x[1] x[2]

h[0] h[1] h[2]

C1,0 C1,1 C1,2

h'[0] h'[1] h'[2]

C2,0 C2,1 C2,2

h"[0] h"[1] h"[2]

xtht-1

+
xtht-1

+

ht-1

xt +

xt ht-1

+

X

it

ct

ft

ot

X

X
Forget 

gate

Input 
gate Output 

gateCell
ht+

(a)

C C C. . .

Time

x1 x2 xt

h1

h1

h2

h2 ht-1

ht

(c)

(b)

Figure 2.1: (a) 3-layer RNN with 3 LSTM cells/layer, (b) LSTM cell, (c) an LSTM cell
unrolled over time

2.1 Background

Recurrent neural networks (RNN) are a powerful class of networks that have the

ability to learn sequences. They are applicable to anything with a sense of order that

needs to be remembered. RNNs are used across a wide range of applications that

includes speech recognition for enabling today’s digital assistants, sentiment analysis

for analyzing posts (text and video) and classifying them as positive or negative, and

machine translation for sequence to sequence translation between languages.

2.1.1 The Long Short-Term Memory Cell

Most recurrent neural networks make use of special ”neurons” called Long Short-

Term Memory (LSTM) cells [56, 48]. LSTMs are designed to process and remember

prior inputs and factor them into their outputs over time. Figure 2.1 shows an

example of a very simple 3-layer RNN with 3 LSTM cells/layer. The output of each
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layer is a vector that is supplied as the input to the following layer. In addition to

those inputs, a feedback loop takes the output vector of each layer and feeds it back as

an additional input to each LSTM neuron. An illustration of the inputs and outputs

of a single LSTM cell C unrolled over time is shown in Figure 2.1(c). An input x0

into neuron C at time step t = 0, will generate an output h0 that is propagated

downstream to the next layer. In addition, h0 is saved within the neuron’s memory

cell for use in the next time step. At time step t = 1, the same neuron C will process

input x1, but also use the previously stored output h0 to generate the new output h1.

A detailed look inside the LSTM neuron (Figure 2.1(b)) reveals a significantly

more complex operation compared to CNN neurons. The strength of the LSTM lies in

the way it regulates the fraction of information it recalls from its embedded memory

and the fraction of input it processes for generating outputs over time. In other

words, the LSTM cell progressively memorizes and forgets contextual information as

it processes more inputs. This is achieved through special gates that are controlled

through a set of mathematical functions [47] governed by equations 2.1–2.5.

it = �(Wxixt +Whiht�1 + bi) (2.1)

ft = �(Wxfxt +Whfht�1 + bf ) (2.2)

ot = �(Wxoxt +Whoht�1 + bo) (2.3)

ct = ft � ct�1 + it � tanh(Wxcxt +Whcht�1 + bc) (2.4)

ht = ot � tanh(ct) (2.5)

The input gate it receives the input to be written into a neuron’s memory cell at

time step t. The forget gate ft controls what information should be erased from a

neuron’s memory cell at time step t. The cell ct represents the content of the neuron’s
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memory cell. The output gate ot controls the amount of information read from the

neuron’s cell and how much of it contributes to the output. The output ht represents

the output of the cell to the next layer at time step t. This output is also fed back

into the input gate it+1 of the same LSTM cell at time step t + 1. The W s and bs

represent the weights and biases, respectively.

Note that � used in equations 2.4 and 2.5 represents the dot product operator.

In addition, equations 2.1–2.5 represent neurons for an entire layer within a network.

Therefore, it, ft , ot, ct, ht, ht�1, and xt are vectors and all W s are matrices. As such,

if we augment a given matrix W to include the weights for both x and h such that

its dimensions are n ⇥m, then each row in W
l for hidden layer l would be mapped

to neuron j where j 2 [1, n]. The value m is the size of input vector.

Because of the complex design, LSTM cells require substantially more storage and

computation relative to their CNN counterparts. Moreover, RNN networks are also

generally fully-connected, further increasing the data movement overhead.

W l =

2

64
W l

11 ... W l
1m

...
. . .

...
W l

n1 ... W l
nm

3

75 (2.6)

The tanh and � activation functions are also outlined in equations (2.7) and (2.8)

for clarity. These functions are applied as elementwise operations on the resulting

vectors.

� (z) =
1

1 + e�z
(2.7)

tanh (z) = 2� (2z)� 1 (2.8)
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2.1.2 Domain-wall Memory

Domain wall (a.k.a. racetrack) memory was first proposed by Parkin et al. [107]

from IBM in 2008. In 2011, Annunziata et al.[10] demonstrated the first 200mm

DWM wafer, fabricated with IBM 90nm CMOS technology. Each die contained 256

racetrack cells, proving the feasibility of DWM fabrication. A large body of research

has since sought to improve and optimize the technology at device and circuit levels

[125, 43, 123, 151, 94, 148, 132] and find solutions to improve its reliability [149].

Domain wall (racetrack) memory represents information using the spin orientation

of magnetic domains in a ferromagnetic wire, as shown in Figure 2.2. Each of these

domains can be independently set to an up-spin or down-spin to represent the value

of a single bit. Since multiple magnetic domains can reside on a single wire, multiple

bits (32-64) of data can be packed in a single DWM device, resulting in a very high

density. Three basic operations can be performed on a DWM device: read, write and

shift. A magnetic tunnel junction (MTJ) [145, 122] structure is used to read data

from the DWM cell (read port in Figure 2.2).
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In a DWM device, all the magnetic domains share a single read MTJ (generally

referred-to as a read head or port). The bit to be read needs to be aligned with

the MTJ before it can be accessed. This is accomplished using a property that is

unique to DWM, called domain wall motion, which refers to the shifting of magnetic

domains down the ferromagnetic wire. When a current pulse of a suitable magnitude

is applied through the ferromagnetic wire, the magnetic spins of all domains “move”

across the wire in a direction opposite to the direction of the current. The number

of bit positions in a shift motion is controlled by the duration of the shift current.

Additional blank domains are included at the ends of each racetrack to allow all data

domains to be shifted to the read head without data loss at the ends of the wire [112].

Formerly, the write operation was also performed with the MTJ similar to STT-

RAM. This write operation is highly energy consuming. However, a recent develop-

ment in DWM has eliminated this ine�ciency. It has been experimentally shown that

domain wall motion (originally intended to realize shifts) can also be used to perform

fast, energy-e�cient writes in DWMs. This operation, often referred as shift-based

writes, is demonstrated in Fig. 2.2-b. The structure for the write operation consists

of a ferromagnetic wire with three domains: two fixed domains and a free domain.

The magnetization of the two fixed domains are hardwired to up-spin and down-spin

during fabrication. However, the magnetization of the free domain, which is sand-

wiched between the fixed domains, can be varied by shifting the magnetization of one

of the fixed domains by applying a current pulse in the appropriate direction. The

spin of either of the fixed domains can be shifted into the free domain through the

domain motion process by applying a current pulse in the appropriate direction. The

latency and energy of shift-based writes are equivalent to those of simple shifts.
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The main challenge of racetrack memory is the access latency to data stored in a

DWM tape which is variable depending upon the number of shifts required to align

the accessed bit with the read or write heads. RNNFast mitigates this disadvantage by

optimizing data placement for sequential access such that most accesses only require

a single shift.

Reliability

DWM technology also presents reliability challenges including possible misalign-

ment of the data domains leading to erroneous reads and/or writes [61, 149]. Prior

work [149] has classified DWM errors into two main types: ”stop-in-the-middle” and

”out-of-step” errors. The first class of errors is caused when data domains are not

aligned with the read/write heads, leading to invalid accesses. The second class of

errors is caused when the incorrect domain is aligned with the read/write head which

causes the wrong bit in the track to be accessed. The errors are generally caused

by variability in the magnitude or duration of the current pulse applied during the

domain shift operation. Zhang et al.[149] has developed a technique for eliminating

”stop-in-the-middle” errors that relies on the application of a short subthreshold shift

current to nudge the misaligned domain back into alignment. They also demonstrate

that the subthreshold pulse is small enough that it cannot misalign a correctly aligned

domain. As a result, sub-threshold shifts can virtually eliminate ”stop-in-the-middle”

errors, at the cost of increasing the number of ”out-of-step” errors.

While subthreshold shifts can be applied in both directions, we choose to apply

them in the shift direction. As a result, all ”out-of-step” errors will be converted into

overshift errors by 1 or more positions in the shift direction. For a single-position

shift, which represents virtually all shifts in RNNFast, the probability of single-bit
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overshift is on the order of 10�5 [149], which is quite high. However, the probabil-

ity of multibit overshift is about 10�21, which is negligible. As a result, RNNFast

implements mitigation for single-bit overshift errors.
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2.2 Related Work

Many customized accelerators for machines learning algorithms and DNNs have

been proposed recently [23, 21, 36, 81, 36, 52, 22, 118, 24, 69, 6, 79, 113, 82, 26]. The

majority of this work focuses on improving the performance of CNNs, exploring the

potential for resources sharing, leveraging emerging memory technologies, optimizing

basic operations, and developing domain specific methods.

Han et al. [52] used compression of the network model to reduce the memory

footprint and accelerate real-time networks in which batching cannot be employed

to improve data reuse. Eyeriss [22] explored local data reuse of filter weights and

activations in high-dimensional convolutions in order to minimize the energy of data

movement.

Emerging memory technologies and in-memory processing have been leveraged

for CNN designs to address memory latency limitations and to implement custom

logic. PRIME [24] combined processor-in-memory architecture and ReRAM-based

neural network computation. The crossbar array structure in ReRAM can be used

to perform matrix-vector multiplication as well as regular memory to increase mem-

ory space. PUMA [8], a recently proposed general-purpose and ISA-programmable

accelerator built with ReRAM. It has a spatial architecture organized in cores, tiles,

and nodes. PUMA features a microarchitecture, ISA, and compiler co-designed to

optimize data movement and maximize energy and area e�ciency. The PUMA design

is more general than ISAAC [118], and, as a result, it generally performs worse in

terms of throughput and energy e�ciency. ReRAM-based DNN accelerators benefit
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from the speed and e�ciency of the memristor crossbar; however the need for addi-

tional peripheral circuits such as ADCs and DACs, and other components, reduce the

benefits of crossbar-based computation.

Neurocube [69] proposed a programmable and scalable digital neuromorphic ar-

chitecture based on 3D high-density memory integrated with a logic tier for e�cient

neural computing. The design in [84] also used ReRAM cross bar for RNN accelera-

tion for a case of human activity detection with a small network size of 100 and simple

vanilla RNN. CNV [6] accelerates DNNs in hardware by eliminating a large fraction

of ine↵ectual zero-valued operand multiplications. It improves the performance and

energy using data-parallel units and a co-designed data storage format without losing

accuracy. RedEye [79] reduces analog readout and computational burden by moving

convolutional processing into an image sensor’s domain. Minerva [29] automates the

co-design flow by optimizing across the algorithm, architecture and circuit levels. In

details, it aggressively optimizes data types, selectively pruning operations, and re-

duces SRAM voltages safely with novel fault mitigation techniques. Cambricon [82]

propose a novel domain-specific Instruction Set Architecture (ISA) for neural network

accelerators which is a load-store architecture that integrates scalar, vector, matrix,

logical, data transfer, and control instructions.

PuDianNao [81] focuses on a range of popular machine learning algorithms. How-

ever all these optimizations are CNNs/DNNs specific. Chung et. al [26] used DWM for

CNN computations as well. They proposed a new design that replaces the ReRAM

cross bar with a DWM-based CNN layer for dot product. However, they still use

costly ADC/DAC circuits and also did not address DWM shift errors in their design.
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Brainwave [39] proposed a single threaded SIMD architecture for CNN/RNN. It

expands the compound SIMD operations into thousands fixed vector size operations

which form primitives that are fanned out to compute units. These parallelized vector

operations that are mapped to one-dimensional flat functional units, connected in a

way that allows vectors to flow through the pipeline without any bubbles.

Relatively little work has focused on the acceleration of RNNs. Nurvitadhi et

al. [100] performed a comprehensive study of multiple accelarators for Gated Recur-

rent Units (GRUs), an LSTM variant. They compare CPU/GPU, to FPGAs and

their own ASIC design. GRUs have a simpler design than LSTM, with only two

control gates (and associated weights) vs four for LSTMs.

On the other hand, some works focused on FPGAs in order to boost up the

performance of Neural Networks [49, 76]. Guan et.al focused on LSTM accelaration

over FPGA and read 20⇥ speed up regarding CPU implementation for 3 layer 250

neuron per layer network. However, FPGA design cannot compete with ASIC design.

[100] performed a comprehensive study over all type of RNN accelarators from CPU-

GPU to FPGAs and ASIC. The study shows that FPGA accelators are 7⇥ less

e�cient than the ASIC designs in the best case. They used external DRAM to store

the parameters, inputs and outputs and load the data into FPGA for computation.

They reshape parameters o↵-line in the external DRAM to insure that they can be

accessed sequentially regarding the irregular data access in LSTMs. They benefit

from data bu↵ers for incoming and outgoing inputs to overlap communication with

inference computation.

They configure the FPGA in order to have 4 main LSTM gates (Forget Gate,

Cell Gate, Input Gate and Output Gate) and get vetor data from input bu↵er groups
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through a crossbar. These four gate modules perform LSTM-RNN inference, and

transport results to LSTM Functional Logic to perform the remaining computation

(element-wise multiplication and addition of gate vectors, activations, etc.). Then,

the final results are loaded to output bu↵er groups through a crossbar. The current

state of the LSTM cell is stored in am on-chip bu↵er, called Cell Bu↵er.

Inside each gate module, gate vector is calculated in a tiling scheme. Tiled input

vectors and the correspond-ing parameters are transferred into the LSTM gate module

in parallel to perform inference. Inside each LSTM gate module, all multiplications

between input elements and parameters are performed in parallel. The results are

then summed up through a addition tree to minimize latency. The whole architecture

is also pipelined to further improve throughput. The outputs are fed into activation

nodes to generate the final output vectors of each gate.

Domain-Wall Memory is an increasingly popular candidate for replacing conven-

tional memories such as Flash, DRAM and SRAM, and there are prior work utiliz-

ing DWM in reconfigurable computing and machine learning architectures designs

[139, 140, 147, 60, 26, 153]. Zhao et al. [153] employed racetrack memory for recon-

figurable computing to achieve high density and low energy compared with SRAM .

Chung et al. [26] proposed a DWM dot product engine using a DWM-based analog

design, which requires ADCs.Yu et al. [147] designed data intensive machine learning

image-processing into in-memory DWM. The high storage density o↵ered by race-

track memory makes it a promising candidate for the data-intensive machine learning

applications.
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Figure 2.3: RNNFast architecture overview at chip level.

2.3 RNNFast Architecture

We present RNNFast, a new architecture that leverages domain wall memory for

accelerating recurrent neural networks. Figure 2.3 shows a comprehensive view of the

RNNFast architecture.

At a high level the RNNFast chip consists of Global Memory, a Computational

Memory array, Configuration Memory and I/O interface as shown in Figure 2.3. The

Global Memory is a dense memory block implemented using DWM. This is the main

memory of the accelerator and is used to store inputs and results. The Computational

Memory is the compute engine and is implemented primarily using DWM elements

augmented with CMOS logic where appropriate. The compute array is organized as

a pool of highly reconfigurable and tightly interconnected tile groups.

One or more multi-layer RNN networks can be mapped to multiple tile groups, in a

weight-stationary design (weights are stored locally in the Computational Memory).
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The Configuration Memory holds the runtime configuration settings for the chip.

RNNFast is optimized to deliver low latency without batching, and it is also e�cient

for batch workloads.

2.3.1 Compute Tiles

A compute tile consists of multiple LSTM hardware units that share a single input

and a single output racetrack. They are interconnected with their nearest horizontal

and vertical neighbors through racetrack memories. Figure 2.4 shows the tile design

and layout. The results of the computation within each tile are written directly onto

the input track of the tile belonging to the next layer in the network. Tiles are

organized in tile groups, which are connected to each other through traditional wired

interconnection networks.

Inter-tile Communication

RNNs are typically fully connected networks requiring all inputs to be delivered

to all the neurons in a given layer. The high degree of connectivity that has to be

supported by the hardware can lead to substantial energy and area overheads when

traditional wired interconnects are used. To address this challenge, we leverage the

shifting mechanism of DWM racetracks for communication both within and across

tiles.

Within a tile, inputs are read sequentially from the tile’s input racetrack and

broadcast to all LSTM units across a locally-shared bus. Each read is followed by a

shift of the input track to align the next input element with the read head. Figure 2.4

(b) illustrates two timesteps in this process. In addition to the tile-local broadcast,

each input is also sent to the neighboring tile on the left for addition to its input
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chains. (b) Reading inputs into tiles in two consecutive timesteps.
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track. We call this process ”chaining”. Chains are essentially circular bu↵ers that

circulate all inputs to all tiles that are mapped to the same layer of the NN. Chains

of di↵erent lengths can be configured depending on the number of neurons in each

layer of the network. Racetracks are connected through MUXs (Figure 2.4 (a)) that

enable di↵erent chain lengths. A variable number of tracks can be included in a chain

by simply setting the right most track MUX to 0 and the rest to 1.

2.3.2 LSTM Units

Each tile consists of multiple LSTM compute units (64 in our design). RNNFast

is a weight-stationary design, with fixed capacity for weight storage in each LSTM

unit. A logical neuron can be mapped to one or more LSTM compute units depending

on the number of weights it requires. We expect a 1-to-1 mapping between logical

neurons and hardware LSTM units for most networks. However, when a logical neuron

requires more weights than a single LSTM unit can store, it is mapped to multiple

LSTM units. Figure 2.5 (a) shows three mapping examples for a single logical LSTM

cell: 1 LSTM unit (top), 2 LSTM units (middle) and 4 LSTM units (bottom).

Processing Elements

The architecture of an LSTM cell is shown in Figure 2.5 (b). Each cell is subdi-

vided into four processing elements (PEs) 1 . Per equations (2.1) – (2.5), each input

Xt is multiplied with four di↵erent sets of weights. A single PE can be assigned to

any one of the weight sets (known as gates), e.g. IG, FG, OG or CG. However, an

LSTM cell gate can be mapped to one or more PEs across LSTM units depending

on its storage requirements and input/output fanout. Allocating four hardware PEs

22



Aggregation 
Unit

LSTM Unit-0 
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-0 
PE PE
PE PE

LSTM Cell-0 

Aggregation 
Unit

LSTM Unit-0 
PE PE
PE PE

LSTM Cell-0 

Aggregation 
Unit

LSTM Unit-1 
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-1 
PE PE
PE PE

LSTM Cell -1

Aggregation 
Unit

LSTM Unit-1 
PE PE
PE PE

LSTM Cell -1

Aggregation 
Unit

LSTM Unit-2 
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-2 
PE PE
PE PE

LSTM Cell-2 

Aggregation 
Unit

LSTM Unit-2 
PE PE
PE PE

LSTM Cell-2 

Aggregation 
Unit

LSTM Unit-3 
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-3 
PE PE
PE PE

LSTM Cell -3

Aggregation 
Unit

LSTM Unit-3 
PE PE
PE PE

LSTM Cell -3

Aggregation 
Unit

LSTM Unit-0 
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-0 
PE PE
PE PE

LSTM Cell-0

Aggregation 
Unit

LSTM Unit-1
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-1
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-0 
PE PE
PE PE

LSTM Cell-0

Aggregation 
Unit

LSTM Unit-1
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-2 
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-2 
PE PE
PE PE

LSTM Cell-1 

Aggregation 
Unit

LSTM Unit-3
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-3
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-2 
PE PE
PE PE

LSTM Cell-1 

Aggregation 
Unit

LSTM Unit-3
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-0 
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-0 
PE PE
PE PE

LSTM Cell-0 

Aggregation 
Unit

LSTM Unit-1 
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-1 
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-2
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-2
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-3 
PE PE
PE PE

Aggregation 
Unit

LSTM Unit-3 
PE PE
PE PE

1-LSTM  Unit/
LSTM Cell

Network size =512
One step  

aggregation
2-LSTM Units/

LSTM Cell
Network size = 1024

Two steps 
aggregation

4-LSTM  Unit/
LSTM Cell

Network size = 2048
Three steps  
aggregation

༬ 

��GHOD\�(a)

(b)

PE

IG: Input Gate
FG: Forget Gate
OG: Output Gate
CG: Wc×[X:H]

PE2
Weights SetWeights Set

MAC

MAC

Multipliers set

ADD

MAC

MAC

Multipliers set

ADD

PE2
Weights Set

MAC

MAC

Multipliers set

ADD
Aggregation Unit

LSTM Unit

PE0
IG

PE1
FG

PE2
OG

PE3
CG

1

Aggregation Unit

LSTM Unit

PE0
IG

PE1
FG

PE2
OG

PE3
CG

1

3

Activation 
Function

Activation 
Function

Aggregation 
Unit AccumulatorAccumulator

From 
LSTM UnitTo LSTM 

Unit

From PEs

Bypass line

PEs or Acc. 
output

To next layer

PE

IG: Input Gate
FG: Forget Gate
OG: Output Gate
CG: Wc×[X:H]

PE2
Weights Set

MAC

MAC

Multipliers set

ADD
Aggregation Unit

LSTM Unit

PE0
IG

PE1
FG

PE2
OG

PE3
CG

1

3

Activation 
Function

Aggregation 
Unit Accumulator

From 
LSTM UnitTo LSTM 

Unit

From PEs

Bypass line

PEs or Acc. 
output

To next layer

Figure 2.5: (a) Three mapping examples of logical LSTM cells to LSTM units. (b)
LSTM unit design.
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to each LSTM unit allows RNNFast to accommodate di↵erent RNN variants (see

Section 2.3.4).

PEs have racetrack-based storage for weights and racetrack-based compute units,

including multiply accumulator (MAC) engines for matrix multiplication. The MAC

engine is composed of 256+16 DWM based full adders. The MAC unit is deeply

pipelined into 48 stages. In order to increase parallelism, each PE uses two MAC

engines, one for the main input Xt and one for the feedback input ht�1.

Each PE unit holds a set of weights and performs the dot product on the cor-

responding subset of inputs. Each PE only consumes inputs corresponding to the

weights it stores. Each input to a PE is multiplied by its weight and accumulated

with the result of the previous multiplication 2 . Each PE stores the result of the

accumulation in its own output racetrack.

As in the LSTM neural networks di↵erent set of inputs and weights are matrix

multiplied, in order to maximize parallelism, the appropriate number of cheap ma-

trix multiplication are implemented inside the memory for each of input-weight sets.

Specifically for LSTM networks, the incoming input is multiplied by 4 di↵erent set of

weights. Thus, the same input with di↵erent weight will go to di↵erent MAC engine.

This is also true for the feedback loop of a LSTM cell which needs same resources

in PE unit. The controller inside PE takes advantage of a bitmap and a counter to

select the correct weight to use with incoming input.

Input and Weight Mapping

The input and weight assignment to racetracks is a trade-o↵ between access la-

tency and hardware overhead. In RNNFast, inputs are spread across multiple race-

tracks with 1 bit per track. This allows an entire input word to be read in a single
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Figure 2.6: Mapping of inputs and weights to racetracks.

cycle, as the top half of Figure 2.6 illustrates. Error detection bits are also included

in the tracks and their role will be detailed in Section 2.4. Note that the input tracks

do not require dummy domains (Figure 2.4-b). Values at the end of the track are

read and sent to the neighboring track.

Unlike inputs, which move from track to track along the chain, weights are station-

ary at the PE level and are reused multiple times. This means that after scanning

all weights, the tracks need to be returned to the initial weight. To minimize the

number of shifts, weight values are distributed both within and across multiple race-

tracks. Weight racetracks are provisioned with multiple read/write heads (5 in our

design) which divide the racetrack into 6 10-bit segments. The left-most segment

domains are used as dummy domains and the rest of the segments are used to store

weight values. Data layout is such that all read heads across all tracks can access

all the bits of a single weight simultaneously. Racetracks are grouped in sets of 4,

with each set storing 10 weights. The bottom of Figure 2.6 illustrates this layout.
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Weight W0 (red) is currently aligned with the read heads. A single-position shift to

the left will align the next weight W1 (blue) with all the read heads. Access to each

set of weight racetracks is pipelined. When all 10 weights are read from the current

set of racetracks, the next set of weights will be read from the next set. While the

new weights are accessed, the weights in the previous set are shifted back to their

initials positions. This takes place when the racetrack set is not being accessed and

is therefore o↵ the timing critical path.

Result Aggregation

If more than one LSTM unit is mapped to a neuron, the partial results of the

individual LSTMs have to be combined to form the neuron’s output. Aggregation

units 3 in each LSTM are used to sum up partial results in that LSTM block. In

addition, the aggregation units apply the sigmoid and tanh functions and perform

the multiplication and accumulation operations in order to generate the final output

of the cell.

For cases in which neurons span multiple LSTM blocks, aggregation units in those

blocks are linked to produce the final result. This is achieved by collecting all the

partial results computed by each LSTM unit (mapped to the same neuron) to a single

aggregation unit. Aggregation units are also chained through adjacent LSTM units.

Each aggregation unit sends out its final result to the adjacent aggregation unit to

its left. The adjacent unit will use the incoming result to either accumulate or bypass

it to the next unit (Figure 2.5- 3 ). Even-indexed aggregation units consume and

odd-indexed aggregation units forward the incoming result. The leftmost LSTM in

a neuron will be responsible for the final aggregation and will apply the sigmoid and

tanh. Aggregation time is a logarithmic function in the number of LSTM cells mapped
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to a single neuron. This is also done by setting multiplexers in the aggregation unit

and power gating the inactive units in output generators at odd indexed LSTM units.

The design tradeo↵ for LSTM units is driven by the need to support networks

that are both large and small. If LSTM units and PEs are too large, storage space

will be wasted when small networks are mapped. If they are too small, large networks

will require several LSTM units per neuron, increasing the aggregation time.

2.3.3 Nonlinear Functions

The nonlinear functions are an important component of the RNN cells and are

used for output activation. As is shown in prior work [14], LUT is an e�cient dig-

ital implementation of the sigmoid and tanh function for re-programmable logics.

RNNFast uses hardware acceleration for the sigmoid and tanh nonlinear functions.

The hardware is included in each Aggregation Unit (Figure 2.5). We propose an

area e�cient approximate logic function-based unit implemented using DWM for the

nonlinear functions.

The approximation has been proposed by prior work [127] as an alternative to the

standard sigmoid and follows Equation 2.9:

� (z) =

8
><

>:

1
2+

ẑ
4

2|(z)|
ifz < 0

1� � (�z) ifz > 0

(2.9)

This approximation has the advantage of being easier to implement in hardware.

As Equation 2.9 shows, the hardware has to support division by 2n numbers. This

can be implemented using shift operations which are a feature of racetrack memories.

The tanh approximation function can be computed from the sigmoid function through

two multiplications and a subtraction. Note that ẑ = z+ | (z) |, where (z) is the
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Figure 2.7: DW based implementation of sigmoid/tanh.

integer part of z. Figure 2.7 shows our DWM-based implementation of the sigmoid

approximation. The sigmoid for a negative value will be computed as follows: a) the

output integer part is initialized with binary ’1’; b) two right shifts are performed

to compute ẑ/4; c) +1/2 is applied to the result; d) the final result is shifted right

| (z) | times. For a positive number two subtraction steps are added in the beginning

and end of above steps. To compute the tanh approximation, a right shift (2 ⇥ z)

and a subtraction will be applied in the first and last steps respectively. This design

is very area and energy e�cient utilizing only a 16 bit racetrack memory, along with

some simple subtraction and counting logic. Deep RNNs have a very large number

of neurons. This implies dedication of high number of LUT for sigmoid and tanh

functions in each LSTM cells which leads to massive storage overhead. Section 2.6

evaluates the relative merits of the approximate designs regarding LUTs.

28



...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
Tile group 0 Tile group 1

L1

L2

L3

L1

L2

Interconnection 
network

Tile

Connection 

Net D

0
1

0
1 Look ahead 

read port

Net A

L1

L2

Net B Net C

Figure 2.8: Mapping multiple LSTM networks to RNNFast. Interconnection network helps
extend racetrack chains beyond tile groups for large networks.

2.3.4 RNNFast Mapping and Configuration

The RNNFast hardware can be configured to implement di↵erent network sizes

and topologies. Moreover, multiple distinct neural networks can be mapped to the

same chip. Outputs from one network can be delivered directly to the following

network or stored in the on-chip memory for further processing, if needed. Figure 2.8

illustrates an example of four networks A, B, C and D mapped to two tile groups.

Tile groups are connected through a wired interconnect. The racetrack chains for

each row of tiles have additional read/write heads to provide access to the inter-tile

network.

Multilayer networks span multiple rows with di↵erent layers mapped to consecu-

tive rows. Tile groups are designed with wide rows to accommodate most network

sizes (e.g. Nets A and C). However, when a network layer cannot fit in a single row,
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RNNFast supports splitting it across tile groups (e.g. Nets B and D). This is achieved

by extending the input/output racetrack chains to neighboring tile groups using the

inter-group wire interconnect. We chose to split layers across tile groups (as opposed

to within a tile group) in order to allow consecutive network layers to continue to be

mapped to adjacent rows, preserving inter-layer communication.

One important design constraint was to enable the extension of the racetrack

chains across tile groups without adding to the track chain shift latency. This is

accomplished by implementing a look-ahead read port at the end of the track that

reads inputs several cycles ahead of the end of the track, as illustrated for Net D in

Figure 2.8. This allows the input to reach the destination row in the neighboring tile

through the higher latency interconnect by the time the same input reaches the end

of the source track.

Other LSTM Variants

RNNFast is designed for the more demanding LSTM design. However it is also

compatible with LSTM variants like Gated Recurrent Unit (GRU) and Vanilla RNN,

which require fewer compute resources. Unlike LSTM, the GRU unit does not use

a memory element to control the flow of information and are useful when input

sequences are not very long. Figure 2.9 shows how a GRU cell can be mapped to a

RNNFast LSTM unit. The shaded areas represent unutilized components. A GRU

utilizes 75% of the MAC resources. Simpler RNNs like Vanilla RNN, only utilize a

single PE per neuron and do not need the aggregation unit. As a result, RNNFast

can map four Vanilla RNN neurons in each LSTM unit.

Moreover, RNNFast allows the mapping of other network types such as Bidirec-

tional RNNs (BiRNN). A BiRNN consists essentially of two RNNs stacked on top of
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Figure 2.9: LSTM vs GRU cell configuration on RNNFast

each other. The output is computed based on the hidden state of both networks. In

our design, the two networks are mapped on the hardware in an interleaved fashion.

The aggregation hardware is used to link the two networks. The input data is also

duplicated and interleaved in reverse order (x1, xn, x2, xn�1, x3, xn�2, ..., xn, x1).

RNNFast Configuration

The RNNFast configuration is programmed through configuration registers that

control input assignment at the PE level, input track chaining, result aggregation

setup, etc. A configuration file with the LSTM network(s) specifications is loaded

into the device driver of the accelerator and propagated to the appropriate registers.

A config file with LSTM network specifications is fed to device driver config file

contains the number of LSTM cells, layers, input size, bit precision, etc. Then device

driver decides on whether the RNNFast is capable of placing Network. In the case

that a network cannot fit fully into the architecture, the device driver breaks the
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LSTM network down into multiple networks in order to place the part of the network

into the architecture.
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2.4 Error Mitigation Design

As mentioned earlier, DWM technology presents reliability challenges including

possible misalignment of the data domains leading to erroneous reads and/or writes

known as shift errors. In this section we address shift errors in DWM and its e↵ect

on RNNFast.

2.4.1 DWM Position Errors

Out-of-step shift errors, in which the wrong bit is aligned with the read/write

heads, are a significant reliability challenge for DWM. Since RNNFast accesses data

sequentially, that means virtually all accesses require only single-position bit shifts.

While prior work [149] has shown that single-bit shifts are less likely to result in an

error compared to multi-bit shifts, these errors are still significant and have to be

addressed. For single-position shifts, the probability of single-bit overshift errors is

on the order of 10�5 [149], which is quite high. However, the probability of multibit

overshift is about 10�21, which is negligible. We therefore focus only on single-bit

overshift errors, which are expected to occur with a relatively high probability (10�5).

While prior work [113] has shown that neural networks are quite resilient to er-

rors, we find that error rates on the order of DWM overshift errors can degrade

output accuracy substantially. Figure 2.10 shows the accuracy of the output for two

benchmarks, measured by the BLEU (bilingual evaluation understudy) metric [104],

relative to an error-free baseline. BLEU is an algorithm for evaluating the quality

of text which has been machine-translated from one natural language to another.

Quality is considered to be the correspondence between a machine’s output and that

of a human. The models that we used have reported very close BLEU scores to the
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state of the art models [128]. We inject single-bit overshift errors in di↵erent DWM

components of RNNFast: the racetrack chains used to hold inputs and outputs for

each NN layer, the weights associated with all PEs, the DWM components of the

logic functions (MAC units and the nonlinear functions). Shift errors are modeled as

a uniform distribution with an overshift probability of 4.55⇥ 10�5 [149].

Figure 2.10 shows that when errors are injected only in the logic, the drop in output

accuracy is very low: ¡1% for im2txt and 3% for seq2seq, two of the benchmarks we

run. This is because overshift o↵-by-one errors in the MAC and nonlinear functions

tend to produce results that are relatively close to the correct value. As a result, the

accuracy of the output is very high. However, when errors are injected into the input

chains and the weight arrays, the output accuracy drops dramatically to between 10%

and 35% of the original. When errors are injected uniformly in all DWM tracks, the

output accuracy drops below 5% for im2txt and below 10% for seq2seq, meaning that

the results are essentially useless. This data highlights that mitigation solutions for

errors in the inputs as well as weights are essential.
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To better understand which errors have the worst e↵ect on output quality, we se-

lectively inject errors into di↵erent bits of data words. RNNFast uses 2’s complement

fixed point representation for both inputs and weights. We inject errors separately

into the integer and the fraction portions of the word. Figure 2.11 shows the results

of this experiment. When errors are injected only in the fraction, the drop in accu-

racy is less than 3% for both inputs and weights in im2txt. For seq2seq, the accuracy

degradation is worse when errors are injected in the weights compared to inputs, but

the overall output quality is still reasonably high.

Injecting errors with the same probability in the integer portion of the data words

has a much more dramatic e↵ect, leading to a drop in output accuracy of between

35% and 10%. The large e↵ect is due to the fact that in these workloads both

inputs and weights are represented with small fractional numbers. A single bit flip

in the integer fraction can turn a small number into a much larger value, which has

a disproportionate e↵ect on the rest of the network.

The large e↵ect on output accuracy is due to the 2’s complement representa-

tion. This is because a single shift error in a data word that stores a small value

can cause that value to be interpreted as a large value with the opposite sign.

For example the binary ”00000011.10000010” (3.5078125 in decimal) would flip into

”00100011.10000010” (35.5078125) or ”10000011.10000010” (-124.492188) when a

non-sign or sign bit in the integer part is inverted, respectively. This is also true

for a negative number. The value ”11111111.00101010” (-0.8359375) turns into

”01111111.00101010” (127.1640625) after the sign bit is flipped.
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2.4.2 RNNFast Error Mitigation

RNNFast addresses overshift errors by implementing an e�cient error mitigation

mechanism that considers the sensitivity of RNN workloads to errors that result in

very large values. We implement di↵erent error detection and mitigation mecha-

nisms for input/output racetrack chains and for weight arrays. We take advantage

of their design characteristics to implement a more e�cient single error detect, single

error correct (SEDSEC) design that has lower area overhead and requires fewer extra

domains and access ports compared to prior DWM EDC solutions such as [149].

Input Errors

In order to detect overshit errors in the input tracks, we append a 3-bit pattern to

the left side of each track, as shown in the example in Figure 2.12. The figure shows

a single track that stores bit n for multiple inputs I1 � I7. In the initial state, the

Error Detection Code (EDC) ”101” is stored in the leftmost bits of the track. Input

I1 is read in the current cycle. At time t1 the track is shifted left by 1 to access the

next input. If the shift is correct, the leading (check) bit should be a ”1”. Input I2 is

read and sent to the LSTM units. A new EDC code is written at cycle t3 in the first

three bits of the track using three parallel write ports. Note that updating the EDC

does not introduce any time overhead since a write cycle already exists following each

read to allow data to be written into the next track in the chain.

At cycle t4 we show an overshift error. The track has incorrectly shifted left two

positions instead of one. This means that I3 (instead of I2) is now aligned with the

read head. The check bit is now ”0” indicating a shift error. To recover from this

error we use an additional read head to also read I2. The outputs of the two read
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heads are connected to a multiplexer. The check bit value selects the multiplexer

output (shown in blue in Figure 2.12). A ”1” selects the error-free output and a ”0”

selects the overshifted output. A similar mechanism selects the correct location for

writing the input coming from the previous track in the chain. If an overshift error

occurs, the write location is also shifted to the left, as the right hand side of Figure

2.12 shows.

At t6 the EDC code is updated again. Following an overshift error, the shift

controller will not issue a shift command for the following cycle (t7) since the track is

already properly aligned to access the next input (I4) during that cycle. Note that,

since individual words are stored across multiple tracks to enable single-cycle access,

an overshift error will a↵ect all inputs that share that track (up to 60 in our design).

It is therefore important to detect and correct these errors.

Errors in Weight Arrays

A similar mechanism is deployed to detect and mitigate errors in weight arrays

associated with each PE. However, because the access timing to the weights array is

more critical and weights are stored in a more compact representation, the detection

and mitigation steps are implemented di↵erently. Unlike inputs, which move from

track to track along the chain, weights are stationary at PE level and are reused mul-

tiple times. This means that after scanning all weights, the tracks need to be returned

to the initial weight. To minimize the number of shifts, weight values are distributed

both within and across multiple racetracks. Weight racetracks are provisioned with

multiple read/write heads (5 in our design). Data layout is such that all read heads

across all tracks can access all the bits of a single weight simultaneously.
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Similarly, unlike the input racetrack chain, access to the weight arrays does not

require a write cycle, so an update to the EDC code is not feasible. We instead store

a fixed EDC pattern of ”01010” at the rightmost edge of the weight tracks as shown

in Figure 2.13. Error detection logic detects an overshift error when the current EDC

bit does not match the expected value. For instance, in the initial state, the read

heads are aligned with bits from weight W0 and the error detection logic expects to

read ”0” from the EDC.

At time t1 a correct shift takes place and W1 can be read. At time t2 an overshift

error occurs and weight W3 is read instead of W2. A recovery mechanism similar to

the one for inputs could be employed. This would require doubling the number of read

heads in each track and extra logic. Since weight storage in RNNFast is substantial,

the overhead would be nontrivial. We can, however, avoid this extra overhead by

leveraging the observation that replacing the incorrect weight with ”zero” yields very

little loss in output accuracy compared to error-free execution. This is in contrast

with using the erroneous weight, which can be a large value. The following cycle at

t3, the shift controller will not shift because the track is already aligned for accessing

the next weight.
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Figure 2.12: Mitigation mechanism for overshift errors in the input track chains.
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2.5 Evaluation Methodology

In this section we describe the methodology for evaluating the RNNFast, dis-

cuss RNNFast parameters and design variations and introduce the benhcmarks and

baseline architecture that we will compare RNNFast against them.

2.5.1 RNNFast Modeling Infrastructure

We implemented a detailed behavioral model to evaluate performance, chip area

and energy consumption of the RNNFast design. A cycle-level model that accounts

for the latency of each component in the design is used for the timing simulation. The

simulated hardware is configured for each neural network in our benchmark set, by

enabling the appropriate number of hardware tiles, LSTMs and PEs. Since all LSTM

units execute independently and in parallel, only a single LSTM per tile is simulated

to speed up simulation time. For the energy evaluation, we include the number of

reads, writes, shifts as well as decoder, adder/multiplier and LUT accesses for all the

units in the design.

To understand the energy consumption, an electrical model for the shift and write

latency of the Domain Wall Memory (DWM) is necessary. To this end, a Verilog-A

based SPICE model for DWM from [95, 97, 96] was simulated on Cadence Virtuoso.

The DWM model estimates the e↵ective resistance as a function of the length of

the track and uses the width and thickness of the strip to calculate current density

and position shift. A Cadence component was created for the DWM model and a

test-bench was setup to stimulate the device. A sensitivity analysis was conducted

to study the e↵ect of track length on the shift latency and energy. Table 2.1 shows

the characteristics of the DWM we model.
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Description Default Value
racetrack width/length/thickness 1F / 64F / 3nm
domain length 1F
number of bits per track 64
read/shift/write energy 0.39pJ/0.24pJ/9.6fJ
read/shift/write latency 1ns/0.5ns/0.5ns
E↵ective cell size 2.56F 2

Technology node 32nm

Table 2.1: Summary of racetrack memory parameters.

Table 2.2 shows the architectural parameters for RNNFast and the power/area

breakdown for the di↵erent components. Since the weight values use 16-bit precision,

each four set of racetracks stores 10 weights. Therefore, storing 512 weights requires

each PE to have 205 recetracks. We performed an energy analysis on the number of

LSTMs per tile and chose the number of LSTMs per tile to be 64. A more detailed

discussion on parameter tuning is included in section 2.6.4. The number of accumu-

lator, multiplier, sigmoid and tanh units in the Aggregation unit (figures 2.1 and 2.9)

is optimized for energy and performance. We select the smallest number of units that

allows the LSTM to operate without stall cycles.

RNNFast Design Variations

We compare our design with two alternative RNNFast architectures that use

CMOS and Memristor technologies. We call them RNNFast-CMOS and ISAAC-

RNN, respectively. For RNNFast-CMOS, we used SRAM bu↵ers for both LSTM

inputs and weight storage within PEs. MAC units are also implemented with CMOS

logic. We used SRAM-based LUTs for the nonlinear functions. Input SRAM bu↵ers
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Tile properties
Component Configuration Specification Power(mW) area(µm2)
Input bu↵er 1 track/tile 16 stripes/track 2.59 2.68

with EDC 64 cell/stripe
LSTM unit 64 per tile 4 PEs/LSTM 9.74 2046

1 Aggre./LSTM
Total tile 256 PEs 626 0.130mm2

64 Aggre. Unit

PE properties
MAC 2/PE 272 Adder

2.43 422Weight array 2 track/PE 205 stripes/track
with EDC 64 cell/stripe

Aggregation Unit properties
Accumulator 4/LSTM -

0.004 356
Multiplier 2/LSTM -
sigmoid 3/LSTM Approx. nonlinear func. design
tanh 2/LSTM Approx. nonlinear func. design

On-chip DW Memory
Size: 128MB, 4R/W ports, Area: 6.2mm2, Acc. Eng.: 0.89nJ, Acc. lat.: 1.69ns, Leakage 24.3mW

Table 2.2: RNNFast design parameters with associated power and area overheads.

are also chained like racetrack memories in order to deliver all the inputs to the LSTM

units.

ISAAC-RNN is an ISAAC [118]-like design for RNN that stores inputs in eDRAM

and is entirely CMOS and memristor-based. ISAAC-RNN uses 128x128 2-bit mem-

ristor crossbars, similar to what was used in ISAAC, for the dot product engine. We

kept the input bu↵er and aggregation unit designs the same as RNNFast in order

to observe the e↵ect of memristor in the design and have a more fair comparison

since eDRAM and CMOS logic has higher energy consumption than DWM. Each

memristor dot product engine is capable of 128⇥ 16 multiplications in parallel (128

inputs by 16 weights). Within an LSTM neuron, each input is multiplied by 4 dif-

ferent weight sets. Thus, each memristor dot product engine can handle 4 neurons,

making each crossbar in the ISAAC-RNN computationally equivalent to 4 LSTMs

in RNNFast. Thus, there are 16 LSTM units per tile for ISAAC-RNN instead of

64 per tile in RNNFast. Inputs are delivered bit by bit to the memristor crossbars.
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Therefore, a chuck of 128 inputs needs to be supplied in a single cycle. Memristor

based dot product engine performs on single bit of 128 set of inputs simultaneously.

For a fair comparison, we changed the input layout to maximize the performance of

ISAAC-RNN.

GPU Baseline

We choose as a baseline system for our evaluation a GPGPU optimized for machine

learning: the NVIDIA Tesla P100 (Pascal architecture) with 16GB of CoWoS-HBM2

memory. All of our benchmarks use the DNN-optimized cuDNN NVIDIA libraries

version 7 [2], which deliver roughly 6⇥ performance improvement relative to a stan-

dard GPU implementation for LSTM on Torch [3]. We measure the runtime of the

forward passes through the LSTM layers using instrumentation in Deepbench. We

measure power consumption using the NVIDIA SMI profiler. Since the SMI profiler

provides the total board power, we subtract the power measured at idle in order to

isolate the active power of the GPU. Since the board components are less energy

proportional with activity compared to the GPU, they account for most of the idle

power.

PUMA

We also compared our design with PUMA [8], a recently proposed DNN accelerator

built with ReRAM. The authors of PUMA released a simulator and toolchain that

we use to compile and run our benchmarks. We used the PUMA compiler to find the

number of tiles required for each benchmark. We then set the simulator configuration

file to inference mode and used the PUMA simulator to measure runtime and energy

consumption.
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2.5.2 Benchmarks

We used LSTM-based RNN workloads from the Deepbench [1] open source bench-

mark suite for DNNs, released by Baidu. For our experiments we used:

Bench. Platform Precision
Layers⇥ Time-

Description
Neurons step

im2txt DeepBench 16 bit 1⇥512 11 image caption
seq2seq DeepBench 16 bit 3⇥1024 15 language translation

1⇥512
mach-tran DeepBench 16 bit 1⇥1024 25 Machine translation

1⇥2048
lang-mod DeepBench 16 bit 1⇥1536 50 language modeling
D-Speech DeepBench 16 bit 1⇥2816 1500 Deep Speech

Table 2.3: Summary of the benchmarks evaluated.

Image Caption Generator: This benchmark is based on the “Show and Tell”

Model [134], which is an encoder-decoder type neural network. The decoder is an

LSTM RNN that generates captions from a fixed-length vector input.

Sequence-to-Sequence Model: This benchmark is based on the RNN encoder-

decoder model by Cho et al. [25], which performs language translation. The encoder

and decoder are 3-layer LSTM networks.

Machine Translation: also based on the RNN encoder-decoder model by Cho et

al. [25].

Language Modeling: a probability distribution over sequences of words. It is used

in speech recognition, sentiment analysis, information retrieval and other applications

[108].

Deep Speech: a Speech-To-Text engine that uses a model trained by machine

learning techniques, based on Baidu’s Deep Speech research [53].
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All benchmarks are run using 16-bit precision arithmetic.
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2.6 Evaluation

We evaluate the RNNFast performance and energy consumption compared to

the NVIDIA GPU, PUMA, the CMOS-based and the Memristor-based RNNFast

design. We evaluate the reliability of the RNNFast error mitigation. We show an area

utilization estimate for di↵erent benchmarks. We also include a high-level comparison

to other RNN accelerators.
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2.6.1 Performance Improvements and Energy Savings

Figure 2.14 shows the execution time speedup for RNNFast, RNNFast-CMOS and

ISAAC-RNN relative to the P100 GPU for the seven benchmarks we run. RNNFast

speedup relative to the GPU varies between 12⇥ for im2txt and 34.5⇥ for D-speech,

with an average speedup of 21.8⇥. RNNFast speedups increase with the network

size, demonstrating the excellent scalability of the design. For instance, in mach-trans

we test three di↵erent network sizes ranging from 512 to 2048, We observe speedups
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increase from 15.4⇥ to 29.3⇥. This is because the large number of threads required to

handle the larger network becomes a bottleneck even for the GPU, whereas RNNFast

scales much better.

ISAAC-RNN also brings a substantial speedup relative to the GPU ranging be-

tween 1.88⇥ for im2txt and 5.8⇥ for D-speech. Although this is significant, ISAAC-

RNN is more than 6.1⇥ slower than the DWM RNNFast implementation. This is

primarily due to the higher latency of the LSTM unit in ISAAC-RNN, which is 7.3⇥

higher than a RNNFast LSTM unit. The higher latency is due to the memristor ar-

ray read latency (100ns) and overheads that stem from the ADC/DAC components.

Even though a single memristor array can handle up to 4 neurons, which increases

throughput, ISAAC-RNN is still fundamentally slower than RNNFast. RNNFast-

CMOS shows 2.1⇥ speedup compared to RNNFast. This is due to faster CMOS

adders and random memory access instead of the shift-based access in RNNFast.

The PUMA ReRAM-based design is more general than ISSAC and RNNFast,

supporting both CNNs and DNNs. However, its performance is lower than both

ISAAC-RNN and RNNFast. In general, PUMA tends to have better performance

than the GPU for larger networks, especially for multi-layer networks (seq2seq) where

PUMA benefits from its pipelined architecture.

Figure 2.15 shows the energy consumption for RNNFast, RNNFast-CMOS and

ISAAC-RNN relative to the GPU, on a log scale. RNNFast reduces energy consump-

tion on average by 70⇥. This is due to a much faster execution time achieved with

about 1/3 the power of a GPU. The RNNFast-CMOS design has 55% higher energy

compared to RNNFast. This reaches a 100% increase for D-speech due to higher re-

source demand, which increases the leakage energy for both compute and memory
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logic in CMOS. This causes the CMOS design to reach its maximum thermal design

power (TDP) at smaller network sizes. ISAAC-RNN also has higher energy usage

than RNNFast due to its ADC/DAC and CMOS logic. PUMA energy consumption

is much lower than the GPU. However, as expected, it is not lower than ISAAC-RNN.

RNNFast is much more energy e�cient, using about 25% the energy of PUMA.

RNNFast o↵ers a much more scalable design relative to a GPU due to its modu-

larity and very high storage density of DWM. Figure 2.16 shows the log scale of exe-

cution time for the mach-tran benchmark as a function of problem (neural network)

size ranging from 128 nodes to 16K nodes per layer in a single-layer configuration.

For problem sizes larger then 16K, the GPU runs fail because the device runs out of

memory. The GPU execution time exhibits a super-linear increase in execution time

with problem size due to memory pressure. RNNFast is consistently faster than the

GPU with an improvement that ranges from 13.9⇥ (0.5K) to 156⇥ (16K). RNNFast

also scales better to very large problem sizes of 16K nodes and beyond. ISAAC-

RNN also scales well, but it is 6.2⇥ slower than RNNFast on average for mach-tran.

RNNFast-CMOS shows almost 2⇥ speedup over RNNFast. However, this speedup

comes at the cost of a much higher energy.

Figure 2.17 shows a similar trend for im2txt. The GPU shows good performance

up to 0.5K, but runtime increases exponentially beyond that.

2.6.2 Error Mitigation

We also evaluate RNNFast resilience to position errors. Figure 2.18 shows the

accuracy of the output as evaluated by the BLEU metric [104], as a function of the

probability of position errors. We can see that for a relatively low probability of errors
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of 4.5 ⇥ 10�7, the output accuracy is virtually una↵ected. This is primarily due to

the inherent robustness of the RNN to errors. However, without error mitigation, the

output accuracy degrades substantially at higher errors rates. In the region around

4.5⇥10�5 (highlighted region), which is the expected rate for single bit position errors,

the output accuracy drops to 45% for im2txt and 10% for seq2seq, an unacceptable

performance for most applications. When RNNFast error mitigation is enabled, the

drop in output accuracy is negligible at less than 2%.

The RNNFast error mitigation produces outputs with less than 5% accuracy loss

even for much higher error rates of 10�3 or around 20% accuracy loss for 10�2. This

shows that RNNFast EDC is robust to much higher error rates than what is expected

for DWM technology.

It is also worth highlighting the fact that error mitigation incurs no performance

penalty even when errors are detected. Correction or mitigation are performed with-

out stalling the execution pipeline. This is an important design consideration because
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of the highly synchronized nature of the design. A single stall to correct an error would

result in lost cycles for thousands of functional units.

2.6.3 Nonlinear Function Hardware

We evaluate two designs for the nonlinear function hardware: a LUT-based im-

plementation, and an approximate logic function-based unit. The function-based

implementation is area e�cient since it does not require as much storage as the LUT-

based design. While the function-based implementation is slower than the simple

lookup of the LUT version, the activation functions are not a significant latency bot-

tleneck. The advantage for our design is the area reduction. At this scale we have

thousands of nonlinear units on chip and reducing their area adds up to real savings.

Figure 2.19 shows the storage savings and performance degradation of the function-

based sigmoid/tanh relative to the LUT design for multiple network sizes. The stor-

age savings diminish as the network size increases because the storage space for the

weights dominates. For large networks the storage savings are about 4%, which rep-

resents ¿1GB of DWM for a 16K network. As for the performance cost, it starts

at about 9%, but falls below 1% for larger networks. The approximated nonlinear

function does not result in loss of accuracy as measured by the BLEU score.

2.6.4 RNNFast Parameter Tuning

We also conduct a sensitivity analysis on the number of LSTM units per tile.

Figure 2.20 illustrates the tile input bu↵er energy versus di↵erent number of LSTMs

per tile for di↵erent network sizes. As the number of LSTMs per tile increases, the

power/area overhead for the within tile bus increases super-linearly. The minimum
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energy point is di↵erent depending on the size of the network. The 64 LSTM units

per tile represents a reasonable compromise for medium-to-large networks.

2.6.5 Comparison to Other RNN Accelerators

Several recent papers have proposed FPGA-based accelerators for RNNs [124,

77, 75, 142, 152, 38, 39, 91, 51]. We provide a qualitative comparison with some

of the more recent ones, for which runtime and energy numbers were available and

similar applications were evaluated. Table 2.4 summarizes the energy and runtime

for FPGA-based designs from [38, 91, 51, 39] as well as the energy and runtime of

RNNFast while running networks of equivalent size.

The networks used in [38, 91, 51] vary from vary small to large. RNNFast shows

from 4.7⇥ to 64⇥ speedup. Compared to [38] RNNFast has 19⇥ less energy con-

sumption.

Recently Fowers et al.[39] introduced Brainwave, an FPGA-based accelerator for

RNN with no batching for real time AI. While a very e�cient design, Brainwave has
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50-70% higher energy energy than RNNFast. Brainwave also shows poorer perfor-

mance for smaller networks, but slightly better performance for large ones, compared

to RNNFast. Note that this is not a quantitative apples-to-apples comparison to our

design given that Brainwave uses 8 bit precision (vs 16 bit for RNNFast) and a 14nm

techology node (vs. 32nm for RNNFast).

FPGA
Net size Timesteps run time(µs) energy (µJ)

RNNFast RNNFast
Design run time (µs) energy (µJ)
[38] 32 1 1.586 0.8 0.332 0.0419
[91] 256 7735 42.48E3 NA 2.13E3 1.28E3
[51] 1024 1 82.7 NA 1.29 12.8
[39] 256-1k-2K 150-25-25 425-74-74 Est.: 425-1091-4356 117-58-110.7 252-643-2575

Table 2.4: Energy and run time for FPGA-based RNNs.

The Google TPU is also capable of running RNN workloads e�ciently. In [65]

they report up to 8⇥ better performance for LSTM workloads compared to NVIDIA
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K80. RNNFast is up to 260⇥ faster than the newer NVIDIA P100 for workloads of

similar size.
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2.7 Conclusion

The unprecedented growth of available data is accelerating the adoption of deep

learning across a wide range of applications including speech recognition, machine

translation, and language modeling. In this study, we present RNNFast, a novel ac-

celerator designed for recurrent neural networks. Our design demonstrates that using

domain wall memory is not only feasible, but also very e�cient. We compare RNN-

Fast with a state-of-the-art P100 NVIDIA GPU and find 21.8⇥ better performance

with 70⇥ lower energy.
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Chapter 3: Accelerator Architecture for ML Security

Convolutional neural networks have demonstrated high accuracy on various tasks

in recent years. However the are extremely vulnerable to adversarial examples. For

example, imperceptible perturbations added to clean images can cause convolutional

network to fail. Figure 3.1 shows two examples of adversarial images generated using

the state-of-the art CW-L2 attack [18]. The leftmost images are benign, unmodified

samples. They are correctly classified by a DNN model such as VGG16 with 99% and

87% confidence, respectively. The middle and rightmost pairs of images represent

the output of two versions of the CW-L2 attack, each resulting in misclassification.

Note that all adversarial images are virtually indistinguishable from the original to

the casual observer, even though the confidence of the classifier in all cases is very

high.

Several defenses have been proposed to address adversarial attacks [86, 102, 146,

34, 15, 87]. Most rely on purely software implementations, with high overheads,

limiting their utility to real-world applications. A recent line of research has ex-

plored hardware-assisted approximate computing to introduce controlled errors into

the inference process, either through model quantization [41, 101] or approximate

computation [50]. This inference approximation disrupts the e↵ect of the adversarial
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Figure 3.1: Benign vs Adversarial Images.

modifications, making the attacks less likely to succeed. At the same time, if the er-

rors are kept small, approximate inference tends to have less e↵ect on benign inputs’

classification accuracy.

We investigate the scalability of noise based and defensive approximation ap-

proaches to a broader class of attacks. We find that, while approximation methods

work well for some inputs, they do not scale well to strong adversarial attacks that are

trained to have high classification confidence. This is because the noise introduced

through approximation is insu�cient to reverse the adversarial e↵ects. We also show

that, even if noise is increased, full recovery of strong adversarials is less likely. We

therefore argue that defensive techniques should focus on detecting adversarial inputs,

which has higher probability of success, rather than recovery of the original class. A

key observation we make in this work is that tailoring the approximation error
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rate to the confidence of the input classification dramatically increases the

adversarial detection rate, while at the same time maintaining a low false positive

rate for benign inputs. This is the first work to recognize the importance of this

correlation for accurate adversarial detection.

In this chapter, first we present Hardware-Accelerated Stochastic Inference (HASI),

a defense that relies on a novel stochastic inference process to e↵ectively defend against

state-of-the art adversarial attacks. We show that HASI can easily generalize to dif-

ferent attacks, while requiring no changes to the DNN models. We observed that,

under certain conditions, adversarial inputs can be identified based on the DNN’s re-

sponse to the injection of random noise into the network. We show that by injecting

small amounts of noise into the activation step of select convolution operations, we

can identify adversarial inputs with high accuracy and low false negative rate.

While prior work has similarly explored ways of discriminating adversarial inputs

by randomly perturbing either inputs or model[114, 27, 55, 74], our approach is dif-

ferent. The main idea behind HASI is to inject noise throughout the model and run

multiple inference passes, each pass with a di↵erent noise distribution. We call this

process stochastic inference. We then use the distribution of classification outputs to

determine if the input is potentially adversarial.

HASI requires multiple inference passes, potentially increasing inference latency.

To mitigate this overhead we augment a hardware accelerator design with hardware

that speeds up the main HASI functions, including hardware support for random

noise injection, the e�cient reuse of intermediate results, custom adversarial detection

function, etc.
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Later in this chapter, inspired by HASI, we presentDNNShield, a hardware/software

co-designed defense that takes a di↵erent approach to inference approximation and

addresses some of the limitations of the previous approach to reduce the overhead

more with less tuning parameters. DNNShield is an online adversarial detection

framework that uses the e↵ects of model sparsification to discriminate between ad-

versarial and benign inputs. Same as HASI, DNNShield runs both precise and

sparse inference passes for each input and compares their output. It then uses the

deviation in output classification that is triggered by the sparsification to classify the

inputs as benign or adversarial.

Unlike prior work, DNNShield dynamically and randomly varies the approx-

imation error and distribution. Dynamic approximation error is needed to adapt to

the confidence of diverse inputs. Randomness in the error distribution is crucial in

ensuring that adversaries cannot re-train to account for predictable inference noise.

To achieve these goals DNNShield uses hardware-assisted dynamic and random

model sparsification to implement approximate inference. Model sparsification in-

volves dropping weights from the model, and has been used to improve performance

and energy e�ciency [31, 44]. DNNShield controls the sparsification rate dynam-

ically to enable flexible control over the approximation error. Sparsification is also

random to make the noise input independent and consequently training defense-aware

attacks di�cult.

DNNShield demonstrates robust detection across a broad set of attacks, with

high accuracy and low false positive rate. We show an adversarial detection rate of

86% when applied to VGG16 and 88% when applied to ResNet50, which exceeds the
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detection rate of the state of the art approaches. We also show that DNNShield is

robust against attacks that are aware of our defense and attempt to circumvent it.

The accelerator design builds explicit support for dynamic and random model

sparsification. The DNNShield accelerator is optimized for e�ciently executing

sparsified models in which the sparsification rate changes as a function of the input –

which is more challenging compared to models for which weight sparsity is fixed. We

show that the DNNShield accelerator reduces the performance impact of approxi-

mate inference-based adversarial detection to 1.53⇥�2⇥ relative to the unprotected

baseline, compared to 15⇥–25⇥ overhead for a software-only GPU implementation.

The rest of this chapter is organized as follows: Section 3.1 provides background

information. Section 3.2 discusses related work. Section 3.3 explains the threat model.

Section 3.4 focuses on high confident adversarial examples and how prior approximate

methods fail to detect such anomalies. Section 3.5 presents the fundamental of the

detection mechanism used in our work. Section 3.9 and 3.7 present the details of the

HASI and DNNShield designs. Section 3.8 provide the information of the FPGA

implementation of both designs. Finally section 3.9 and 3.10 shows the evaluation

results and Section 3.11 concludes the chapter.
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3.1 Background

3.1.1 Adversarial Attacks

Adversarial attacks were first introduced by Szegedy et al. in [126], which showed

that despite the high accuracy of machine learning models, small perturbations to in-

puts can reliably force misclassifications–while the perturbed input remains indistin-

guishable from the original seed to the naked eye. This phenomena has other intrigu-

ing properties, for instance, carefully crafted perturbations may result in very high

confidence for these coerced incorrect predictions; additionally, perturbed inputs, or

adversarial examples, can be transferable, causing a deliberate misclassification across

many di↵erent networks, even when these networks have di↵erent architectures and

training sets.

The objective of an adversarial attack is to force the output classification for some

maliciously crafted input x0, based on a benign input x, to be incorrect with respect

to x. Attacks can be targeted, where the adversary’s goal is for x0 to be misclassified

as a particular class t, or untargeted, such that a misclassification of x0 to any class

other than the correct class of x (ground truth) is su�cient. Targeted attacks were

formally defined by Szegedy et al. [126] as solving the following optimization problem:

min d(x, x+ �) subject to: C(x+ �) = t x+ � 2 [0, 1]n, (3.1)

where � is the added noise, t is the desired target label for the adversarial example pro-

duced by x+�, and d is a metric to measure distance between the benign example and

the adversarial one. E↵ective adversarial example generation is achieved by coercing

prediction results while maintaining similarity to the original image, where similarity
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is measured by a chosen distortion metric that is ideally capable of approximating

human perception.

Early work on adversarial example generation for image classifiers proposed one-

step methods, which make a single (relatively large) change to the input and con-

sequently are only applicable in the untargeted setting. Fast Gradient Sign Method

(FGSM) [46] is one such attack, which perturbs an image by maximizing the loss sub-

ject to some distortion constraints. Perturbations are calculated using the gradient

vector of the training loss with respect to the benign input:

�(x, x0) = ✏ · sign(rx J(g(x), y)) (3.2)

In Equation (3.2), ✏ specifies the allowable magnitude of distortion between x and x0,

and sign(r J(·, ·)) is the sign of the gradient. �(·) is typically an Lp-norm distance

metric–the selection of optimal similarity metrics is still an open research problem.

Three Lp norms have been consistently used in existing adversarial attacks: L1, L2

and L0. The L1 norm measures the maximum change in any dimension and will be

applied uniformly to all pixels, the L2 norm measures the Euclidean distance between

x and x0 and the L0 norm measures the total number of pixels that may be altered,

but not the magnitude of perturbation.

Subsequently, several attacks were proposed [46, 18, 88, 103, 93, 73] with vari-

ations on this theme, gradually becoming more iterative in nature, with increased

sophistication and accuracy. Some examples include Basic Iterative Method (BIM)

[73], proposes a refinement to FGSM suggesting that instead of taking a single step

of size ✏ in the direction of the gradient-sign, to take multiple, smaller steps, where

the result is clipped by ✏. DeepFool [93] is an untargeted attack optimized for the L2

distance metric which imagines that the network is linear, in which case a hyperplane
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separates classes from one another. From this simplified formulation, the authors an-

alytically derive the optimal solution, which is the minimum noise required to move

the adversarial example to the linearized classification boundary. Jacobian-Based

Saliency Map Attack (JSMA) [103] is a targeted attack optimized for the L0 distance

metric, using the gradient to compute a saliency map representing, for each pixel, the

likelihood that changing it will result in the image being classified as a target class

l. Given this saliency map, an algorithm modifies the most important pixels at each

iteration to increase the probability that the input will be classified as l.

The Carlini-Wagner (CW) attack di↵ers from prior attack formulations in

several ways which allows it to finds adversarial examples with considerably smaller

perturbation amounts and higher accuracy. CW has a variant for each of the popular

Lp-norm distance metrics. The CW-L2 attack reformulates Equation (3.1), noticing

that it is expressed in a way not easily amenable to optimization solvers,

minimize d(x, x+ �) + c · f(x+ �) such that x+ � 2 [0, 1]n (3.3)

In Equation (3.3), c is a constant weighting the relative importance of the distance

and loss terms and f(·) is the objective function. The authors found that a logits-

based objective function resulted in superior adversarial examples compared to the

commonly-used softmax-cross-entropy loss in previous optimization-based attacks.

To ensure that modifications result in a legal image, constraints must be placed on

�, where 0  xi + �i  1 for all i. To more easily optimize for these constraints,

CW further proposes to employ the change-of-variables (COV) method with a tanh

space transformation on x in order to remove the box-constraint. Now, instead of

optimizing over the variable �, optimization is done over a new variable w, setting

�i =
1

2
(tanh(wi) + 1)� xi. (3.4)
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Since -1  tanh(wi)  1, it follows that 0  xi + �i  1, therefore the solution will

automatically be valid. Combining these insights, CW is able to obtain a method

for finding adversarial examples with competitively low distortion in the L2 metric.

Formally, the CW-L2 attack can be expressed as the following optimization problem:

Given an input x and a target class t, the attack searches for w that solves,

minimize k1
2
(tanh(w) + 1)� xk22+c · f(1

2
(tanh(w) + 1)

with f defined as:

f(x0) = max(max{Z(x0)i : i 6= t}� Z(x0)t,�).

(3.5)

The parameter  in Equation (3.5) controls the confidence with which the misclassi-

fication occurs.

CW also has variants for the L0 and L1 distortion metrics. The CW-L0 at-

tack takes a di↵erent approach, as the L0 distance metric is non-di↵erentiable and

ill-suited for gradient descent. CW-L0 employs an iterative algorithm that, at each

iteration, uses the CW-L2 attack to identify pixels which do not contribute much to

the classifier output and freeze those pixel values. At the end, by process of elimina-

tion, the minimum sets of pixels which require modification in order to generate an

adversarial example have been identified. The CW-L1 attack uses the L1 distance

metric, which also is not fully di↵erentiable. The authors found that it is di�cult to

optimize because only the maximum term is penalized during gradient descent. As

a result, CW-L1 revises the objective function to limit perturbations to be less than

a threshold. The attack iteratively searches for the smallest possible threshold which

still produces a solution.

The EAD attack [20] formulates the objective function in terms of regularized

elastic-nets, incorporating the L1 distance metric for distortion, where elastic-net
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regularization is a linear mixture of L1 and L2 penalty functions. EAD has two

variants, where the optimization process can be tuned by two di↵erent decision rules:

EN, the elastic-net loss or L1, the least L1 distortion.

3.1.2 Robustness in Neural Networks

Robustness can be informally defined as the measure of how di�cult it is to find

adversarial examples close to their original inputs. There have been many theoretical

contributions in this area [35, 33, 117, 89, 35], which have studied the underlying data

distributions on which networks are trained in order to determine intrinsic properties

of robustness to adversarial examples. Several methods for designing robust neural

networks to adversarial attacks have been proposed in the literature. These methods

typically fall into four broad categories [5]:

1. Hardening the model, also known as adversarial training. In this case, the

defense is limited by the samples used in training.

2. Hardening the test inputs, also known as applying input transformations,

such as filtering or encoding the image.

3. Adding a secondary, external network to classify unseen examples or fea-

tures of intermediate layers. This approach generally requires careful tuning

that may a↵ect generality.

4. Modifying the network post-training, such as removing/adding layers,

tweaking activation functions, etc.

Approaches which modify or extend the network can be further categorized based

on whether they aim to (a) provide a correction, that is, continue to provide the
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correct classification in the presence of adversarial inputs; or (b) aim to provide

detection, rejecting suspicious inputs. We will discuss some of the important works

in section 3.2.
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3.2 Related Work

3.2.1 Noise-Based Approaches

Prior work has similarly explored ways of discriminating adversarial inputs using

noise. However, prior approaches have either proposed injecting noise into the input

[27, 15] – with lower detection rate – or into the model during training [114, 55, 74,

116]. However, the challenge with training-based approaches such as [55] is that the

noise parameters tend to converge to zero as training progresses, making the noise

injection progressively less e↵ective over time [63]. While training-based approaches

have enabled ”certified robust” inputs, that certification is generally limited to a very

narrow set of inputs.

Region-based Classification (RC) [15] assembles information from the region around

an example to predict its label. When predicting a label for an image, m data points

are sampled uniformly at random from the hypercube centered at the testing example

with distance r. The final classification is given by the majority vote of the outputs

among the sampled data points. This method has high overhead and is focused on

correction, with a lower success rate.

Recent works also created certified robust models by training models under Gaus-

sian noise injection into the inputs [27] or the model [55, 74]. While these methods

represent a systematic solution to adversarial attacks, they are limited to certain

perturbation norms (e.g L2) and do not scale for large-scale dataset like ImageNet.

Liu et al. [83] propose a solution for adversarial scene detection in robotics, based

on a generative sampling-based search where each sample represents some possible

distortion e↵ects. The final classification is then determined based on the likelihood
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of a particular object under these di↵erent e↵ects, not simply from the traditional

hard-threshold of the network from a single sample.

Stochastic Activation Pruning (SAP) [34] introduces randomness into the

evaluation of a neural network to defend against adversarial examples. SAP is a com-

plete defense tries to recover the accuracy of the model by classifying the adversarial

correctly. SAP randomly drops some neurons of each layer to 0 with a probability

proportional to their absolute value. Values which are retained are scaled up to re-

tain accuracy. SAP is a single forward path execution and does not use any voting

or averaging mechanism.

Hardening the test inputs, also known as applying input transformations, such

as filtering or encoding the image. Input hardening methods require profiling to

select appropriate parameters, such as Feature Squeezing [146] and Path Extraction

[110, 42]. Xie et al. [143] propose to defend against adversarial examples by adding

a randomization layer before the input to the classifier. The defense first randomly

rescales the image, and then randomly zero-pads to fit the expected dimensions.

[42] showed that adversarial inputs tend to activate distinctive paths on neurons

from those of benign inputs. They proposed hardware accelerated adversarial sample

detection, which uses canary paths from o✏ine profiling.

Feature squeezing (FS) [146, 78] is a correction-detection mechanism that re-

lies on the observation that the input feature space is typically unnecessarily large

and provides ample opportunity for constructing adversarial examples. The strategy

taken in this work is to limit the input space by removing features. Two feature

reduction techniques are evaluated for ”squeezing” images: reducing the color depth

and smoothing to reduce the variation among pixels. Detection of adversarial images
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is achieved by comparing the output of the network using the original image with the

output of the squeezed image(s).

3.2.2 Approximation-Based Defenses

Some prior works have used approximate inference to improve model robustness

against adversarial attacks using approximate compute logic [50] or quantization [101,

40, 111, 68, 80]

Recent work has proposed using hardware-based approximation methods as sim-

ilar defenses. Guesmi et al. [50] proposed “Defensive Approximation” (DA) which

used custom approximate multipliers, to introduce controlled errors into a CNN ac-

celerator. Similarly, Fu et al. [41] used hardware-assisted parameter quantization

as the approximation mechanism. Model quantization is the process of reducing the

precision of the model parameter representation, and has been used to improve perfor-

mance, energy and storage e�ciency of DNNs. In [41] a 2-in-1 hardware accelerator

dynamically chooses between 12 quantization levels to use at inference, introducing

approximation into the model. While these approaches are e↵ective and have low

overheads, they use either fixed approximation error [50] or randomly-selected error

from a limited set of up to 12 precision levels [41]. In addition, both techniques gen-

erate input-dependent noise, which an attacker could reproduce to circumvent the

defense.

3.2.3 Other Defense Methods

Wang et al. [141] propose to interpret Neural Networks by identifying Critical

Data Routing Paths (CDRP) which leverages class-level sparsity and can be used as

adversarial detection mechanisms. CDRP requires retraining and thus is not able
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to detect adversaries at inference-time. Deepfense [115] proposed by Rouhani et

al. represents a class of detection mechanisms that use modular redundancy and

which requires training a set of redundancy modules (checkpoints) to isolate potential

adversarial sub-spaces in the Pre-processing phase. Deepfence employs multiple latent

models as redundancies.

Recently [42] showed that adversarial inputs tend to activate distinctive paths on

neurons from those of benign inputs. They proposed hardware accelerated adversarial

sample detection framework, which uses canary paths generated from o✏ine profiling

to detect adversarial samples at runtime based on the work in [110]. Paths are

unique per class and need to be profiled o✏ine and stored in memory. Also switching

to di↵erent models requires re-profiling. In contrast, HASI does not need profiling.

Unlike HASI, [42] did not study high confidence adversarials.

Local Instrinsic Dimensionality (LID) [87] detects adversarial examples by

comparing the expansion rate of local distance distributions. The expansion of ad-

versarial subspaces was empirically found to be higher than normal data subspaces;

in other words, adversarial images were found by the authors to have higher dimen-

sionality.

Adding a secondary, external network solely responsible for adversarial detection

and with a separate training phase, such as NIC [86]. DNNGuard [138] proposed an

accelerator for such detection mechanism but has not evaluated a specific detection

classifier. Secondary network detection-based methods are not as e↵ective, and can

be evaded by adaptive attacks [17].
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3.3 Threat Model

We assume in this work that the adversary has complete access to the network,

including the output prediction and logits, with full knowledge of the architecture and

parameters, and is able to use this in a white-box manner. We focus mainly on state-

of-the-art optimization-based attacks–CW and EAD–since it has been demonstrated

that all earlier attacks can be overcome utilizing other methods, such as adversarial

training [45] or defensive distillation [102], which could be used in combination with

our approach. Additionally, we verify our evaluation includes high confidence adver-

sarial examples, as some previously proposed defenses were later shown to perform

poorly under a more holistic treatment which included these [85].
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3.4 Motivation

Strong attacks such as CW and EAD can be tuned to produce a class of adversarial

inputs that present a significant challenge to approximation-based defenses. Prior

work has shown that adversarial inputs can be constructed to induce misclassification

with very high confidence [119, 16, 18]. In other words, the victim model assigns a very

high probability to the adversarial input belonging to the wrong class. These so-called

“high confidence” adversarials can be constructed while minimizing the distortion to

original input.

3.4.1 High-Confidence Attack Variants

Figure 3.2 shows an example of multiple adversarial samples for a benign image

with di↵erent levels of classification confidence and the corresponding distortion. To

measure classification confidence we used the Z-score (the number of standard devi-

ations by which the value of a raw score is above or below the mean value) of the

maximum logit value, which corresponds to the class with the highest confidence.

Adv1 is a low distortion adversarial of the benign with low classification confidence

of 4.18. Adv2 is a high confidence example of the same input with very high classi-

fication confidence of 12. While distortion is also higher, it is still imperceptible to

the naked eye. We will show that existing defenses are ine↵ective against this type

of adversarial. Increasing the confidence beyond 12 increased distortion significantly,

as Adv3 shows.

71



'LVWRUWLRQ�����������
&RQILGHQFH������

%HQLJQ�

�����
�����

$GY�

������
������

$GY�

������
������

$GY�

Figure 3.2: Benign and adversarial examples with various distortion and confidence
values.

3.4.2 Classification Confidence and Approximation

Approximate computing defense methods introduce noise into the input and/or

the model and often result in the recovery of the original class. Figure 3.3 schemat-

ically illustrates how approximation can recover adversarial inputs. Figure 3.3 illus-

trates the decision space of a classifier, with four output classes: C1, C2, C3 and C4,

represented as regions with di↵erent colors. The darkness of the color represents the

confidence of the classification. We consider a benign input X1 classified with low

in class C1, and an adversarial sample Adv1(X1) that is misclassified into class C2

with low confidence. The dotted circles around each input represent the range of

classification outcomes as a result of noise.

Prior work has observed that high-quality adversarial inputs occur with low prob-

ability, which means they reside in small and low-density pockets of the classification

space. As a result, their output class distribution di↵ers from that of their closest

data submanifold [37]. We can see in Figure 3.3 (a) that Adv1(X1) resides in a nar-

row cone of class C2, where benign images do not generally exist. This means that
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Figure 3.3: Schematic illustration of decision regions of a base classifier. Di↵erent
classes are drawn in di↵erent colors with darker shades indicating higher confidence.
X1 and X2 are benign inputs, Adv1(X1) and Adv2(X1) are low confidence and high
confidence adversarial inputs generated from X1. The circles shows range of classifi-
cation deviation under a certain amount of noise.

approximation can easily change the classification of Adv1(X1) and move it back into

its original class, C1.

In this work we show for the first time, that high-confidence adversarials do not

respond in the same way to approximation errors. To illustrate why, let’s consider

Adv2(X1), a high-confidence adversarial of X1. As Figure 3.3 (a) shows, for the same

error, the classification area of Adv2(X1) lands within region C2, failing to recover

the original class C1.

73



Figure 3.3 (b) shows that, if we increase the approximation error, the probability

of recovering Adv2(X1) increases. However, if the same approximation error is ap-

plied uniformly to X1, there is an increased probability that X1 will be misclassified,

resulting in false positives.

In order to address this limitation, we propose correlating the approximation error

to the confidence of the classification. Figure 3.3 (c) illustrates this with circles of

di↵erent radii: small radius corresponding to lower approximation error for X1 and

Adv1(X1) – which are low confidence classifications – and larger radius (approximation

error) for Adv1(X1) and a high confidence benign, X2. We can see that the low

error does not lead to misclassification for X1, while recovering Adv1(X1) with high

probability. At the same time, a high error rate will not lead to misclassification for

X2, while increasing the probability of recovering Adv2(X1).

3.4.3 Approximation-Based Defenses

Prior work has used input noise and approximate inference to improve model

robustness against adversarial attacks. For example, [58] and [27] have shown that

adding some amount of random noise to images can help DNNs correctly classify

adversarial inputs.

Recent work has proposed using hardware-based approximation methods as sim-

ilar defenses. Guesmi et al. [50] proposed “Defensive Approximation” (DA) which

used custom approximate multipliers, to introduce controlled errors into a CNN ac-

celerator. Similarly, Fu et al. [41] used hardware-assisted parameter quantization

as the approximation mechanism. Model quantization is the process of reducing the

74



precision of the model parameter representation, and has been used to improve perfor-

mance, energy and storage e�ciency of DNNs. In [41] a 2-in-1 hardware accelerator

dynamically chooses between 12 quantization levels to use at inference, introducing

approximation into the model. While these approaches are e↵ective and have low

overheads, they use either fixed approximation error [50] or randomly-selected error

from a limited set of up to 12 precision levels [41]. In addition, both techniques gen-

erate input-dependent noise, which an attacker could reproduce to circumvent the

defense.

In order to study the response of these approximation techniques to high con-

fidence adversarials, we re-implemented both the DA and the 2-in-1 defenses for

VGG16 and ResNet50 models. The original DA defense uses a single AMA5 floating-

point based approximate multiplier. In order to explore a wider range of approx-

imation errors we use a set of seven Int8 approximate multipliers from the Evoap-

proxlib library [98]. We created approximated models using approximate convolution

(AxConv) implementations from [130, 99]. We also used the quantized model from

2-in-1 [41] and generated high confidence adversarial samples targeting two fixed

quantization levels of 16 and 4-bit precision. We then tested the 2-in-1 defense on

these samples. We generated several sets of adversarial samples with di↵erent classi-

fication confidences by changing the k parameter in the CW and EAD attacks.

Figure 3.4 (a) shows correction rate (percentage of adversarial examples that are

correctly classified by the approximate inference) vs. adversarial confidence for two

approximate multiplier versions DA(125K) and DA(KEM), and the two 2-in-1 ad-

versarial variants. For reference, we also include two software-only approximation
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Figure 3.4: (a) Adversarial correction and (b) adversarial detection for di↵erent de-
fense methods versus confidence of adversarial attacks on VGG16 and ResNet50.

techniques: Feature Squeezing (FS ) [119] and SAP [34]. We can see that most approx-

imation techniques perform relatively well with low and medium confidence samples.

However, as adversarial confidence increases, correction rate drops below 20%. The

software-only methods perform the best, but they also have the highest overhead.

FS, which exhibits the highest correction rate, also has a 4⇥ performance/energy

overhead.

Given the low correction rate of defense methods for high confidence adversarial

inputs, we also evaluated an adversarial detection approach. Except FS which has its

own detection methodology, for detection we simply compared the classification out-

puts of the unprotected and protected models for the same input. If the outputs do

not match, the input is classified as adversarial. The intuition behind this approach

is that the classification of adversarial examples is more likely to change during ap-

proximate inference, although the output classification may not be the correct one.

This is especially important for very strong adversarial examples which are far from

decision boundaries (e.g. Adv2(X1) in Figure 3.3), and approximation is unlikely to
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recover the correct classification, as observed in [57]. However, as we will show in

this paper, approximate inference is su�cient to change output distribution of all

adversarials in a way that makes them detectable with high probability.

Figure 3.4 (b) shows adversarial detection for the same adversarial inputs and

defense methods. We can see that the detection rate is much higher than correction for

low-confidence adversarials, but still drops below 50% for adversarials with confidence

greater than 8. FS performs better than other methods, but it is still inadequate for

high confidence samples.

These results show that approximation methods used in prior work, which use

fixed error rates are insu�cient to detect high confidence adversarial examples.

Other Approximate Multipliers

We expand the study in [50] to include a range of approximate multipliers with

di↵erent degrees of approximation errors. We aimed to study the potential of approx-

imate multipliers as alternative sources of noise in an approximation-based defense.

Figure 3.5 (a) shows correction rate (percentage of adversarial examples that are cor-

rectly classified by the approximate inference) vs. adversarial confidence. We show

multiple approximated models using approximate multipliers with di↵erent error rates

– measured using the mean square error (MSE). The MSE for each multiplier is shown

in Figures 3.5 (b) and (d) on the left Y-axis on a log scale.

Figure 3.5 (a) shows that, as the adversarial confidence increases, the correction

rate decreases for all the approximated multipliers. Although high MSE approximate

multipliers have better correction rate (e.g. KEM, 14VP), all models have very low

correction rate for high confidence adversarial examples. Note that increasing MSE
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has the downside of degrading the accuracy of classification for benign examples, as

Figure 3.5 (b) shows, and cannot therefore be increased further.

Figure 3.5: Adversarial correction (a) and detection rates (c) for di↵erent adversarial
strengths. Benign accuracy (b) and FPR (d) for VGG16

Given the low correction ability of approximate multipliers for high confidence

adversarial inputs, we also evaluated an adversarial detection approach. For detection

we simply compared the classification outputs of non-approximated and approximated

models for the same input. If the outputs do not match, the input is classified as

adversarial. The intuition behind this approach is that the classification of adversarial

examples is more likely to change during approximate inference, although the output
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classification may not be the correct one. This is especially important for very strong

adversarial examples which are far from decision boundaries, and approximation is

unlikely to recover the correct classification, as observed in [57]. However, as we will

show in this paper, approximate inference is su�cient to change output distribution

su�ciently to be used in a detection mechanism.

3.4.4 The Case for Adaptive Approximation

The solution we propose in this work is to dynamically adapt the level of er-

ror/approximation to the confidence of the classification. To motivate an adaptive

approximation over simply increasing the approximation error, we conduct an exper-

iment in which errors are introduced directly into the model, in the activation layers.

Figure 3.6 shows the adversarial detection rate and benign false positive rate (FPR)

for fixed and adaptive error rates. We can see that fixed errors below 50% have very

low detection rates. Increasing the injected error to 100% results in high detection

rate, but at the cost of an unacceptable 80% false positive rate. The Adaptive error

rate, correlated with the input confidence, achieves both high adversarial detection

and low benign FPR.

The next research question we tackle is how to introduce a well controlled, vari-

able and randomly distributed approximation error into the inference process in a

performance-e�cient way. Unfortunately, approximate computation using approxi-

mate functional units does not o↵er su�cient flexibility to tune the error rate since

they are generally not easily tunable. The same is true for quantization methods,

which do not provide su�cient granularity for the approximation errors. In addition,
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Figure 3.6: Adversarial detection and benign FPR for fixed versus adaptive inference
errors in VGG16.

both quantization and approximate computation tends to be deterministic, producing

predictable and reproducible error distributions that can be exploited by an attacker.
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3.5 Dynamic Noise and Adversarial Detection

3.5.1 Impact of Noise Rate on Classification Output

In order to understand the impact of model approximation on classification output,

we use the L1-norm metric to measure the di↵erence between noisy and non-noisy

outputs for the same inputs. The L1-norm (also known as Manhattan Distance) is the

sum of the absolute pair-wise di↵erences between elements of two vectors. We refer

to this di↵erence as the Classification Probability Deviation under Noise (CPDN).

Figure 3.7: Classification Probability Deviation under Noise (CPDN) distribution un-
der variable noise rate and classification confidence for (a) benign and (b) adversarial
samples, for VGG16.

For this analysis we randomly select 1000 benign images from ImageNet. We

further generate a total of 1000 adversarial images using 10 di↵erent attacks (or

attack variants). We run each input 8 times with di↵erent noise distributions to
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generate 8000 sample points for benign as well as adversarial inputs. We measure the

CPDN for each input. Figure 3.7 shows a 3D representation of CPDN for varying

classification confidence levels and average noise rates, for benign (a) and adversarial

samples (b). Figure 3.7 shows that across the entire sample space of 8000 data points,

CPDN is consistently higher for adversarials compared to benigns, confirming lower

robustness to noise for adversarials.

Figure 3.8: CPDN distributions for benign and adversarial images when noise is
correlated to the confidence of the non-noisy classification for VGG16.

The data also shows that benign inputs, while more robust to noise than adversar-

ials, are sensitive to high levels of noise if their classification confidence is low. This

can be observed in Figure 3.7 (a) from the high CPDN at high noise and low Z-score.

This suggests that low-confidence benign inputs should receive lower noise. Figure 3.7

(b) shows that low-confidence adversarials exhibit relatively high CPDN even at low

noise levels. If we turn our attention to high confidence adversarial samples, we see

that they require higher noise levels to exhibit high CPDN. The same high levels of
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noise, however, when applied to high confidence benigns exhibit a much lower CPDN,

indicating that they are robust to high noise. This data suggests that correlating the

noise to the confidence of the classification is important to using CPDN in adversarial

detection.

Figure 3.8 shows the CPDN distributions for benign and adversarial images when

noise is correlated to the confidence of the non-noisy classification – higher noise for

higher confidence. Figure 3.8 shows a clear separation between the CPDN distribu-

tions of adversarial and benign images, across the entire range of classification confi-

dence that our attacks can generate. As expected, adversarial inputs exhibit higher

CPDN deviation from non-noisy baseline compared to benign inputs. DNNShield

uses this separation with appropriate thresholds to detect adversarial inputs.

3.5.2 Robustness Analysis

In order to understand why it is important to correlate approximation noise to

classification confidence, let us consider a model that classifies input X in the most

probable class C1 with probability P1 and the runner-up class C2 with probability P2.

Cohen et al. [27] showed that the distance between P1 and P2 has a direct correlation

to the amount of the noise around X that can be tolerated by the classifier.

The L2 radius R around X can be calculated by:

R =
�

2
(��1(P1)� ��1(P2)) (3.6)

where ��1 is the inverse of standard Gaussian CDF and � is the standard deviation

of the noise. The higher the R value for an input X, the more noise the classifier

can tolerate and still classify X correctly. According to Equation 3.6 the radius R is

large when the probability of top class C1 is high and the probability of the next class
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is low, which corresponds to high confidence classification. This shows robustness

to noise is correlated to classification confidence. We therefore expect that benign

images will not su↵er from high false positive rate regardless of confidence, if the

approximation noise is scaled with the confidence.

3.5.3 Adversarial Detection

The detection framework relies on the CPDN metric to detect adversarial inputs.

This process is depicted in Figure 3.9. Initially, a first inference pass through the

network is performed without noise injection to establish a reference. The output

classification is recorded as P
b. This is followed by another approximate inference

pass. The confidence of the classification P
b is used to determine the amount of noise

to be injected.

%DVH
0RGHO

1RLV\
�0RGHO 31

3E1RLVH�OHYHO
�

�

Figure 3.9: Adversarial detection using CPDN (L1 distance).

The L1 distance between the output vectors of the noisy (PN) and non-noisy (P b)

inference passes is computed. The L1 distance is then compared with di↵erent thresh-

olds values. Depending on the outcome, subsequent inference passes may be required.
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Figure 3.8 shows the 4 thresholds used by the detection mechanism overlaid on the

L1 distance distribution for VGG16. t1 and t2 represent the L1 distance below/above

which most benign/adversarial images fall, respectively. t
0
1 and t

0
2 represent tighter

thresholds below/above which about 80% of the benign/adversarial images fall.

If the measured L1 distance is either very high or very low (< t
0
1 or > t

0
2) the

input image can immediately, and with high confidence, be classified as benign or

adversarial, respectively. Most inputs (>⇡ 80%) from both our benign and adversarial

test sets fall in this category. In this case the detection algorithm terminates and the

outcome is reported.

Otherwise, detection mechanism cannot yet make a high-confidence detection, and

another noisy inference pass is required. The average L1 distance over all the previous

noisy runs is computed and compared with the more conservative thresholds t1 and

t2. The images with average L1 < t1 are classified as benign and those with average

L1 > t2 are classified as adversarial. If t1 < L1 < t2, a new noisy pass is performed

and the average L1 distance is recomputed. The algorithm repeats until a maximum

M number of iterations is reached (M = 4 and M = 8 in our experiments). If a

classification is still not possible, the algorithm defaults to Benign.
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3.6 HASI: Hardware-Accelerated Stochastic Inference

The HASI architecture relies on a process of stochastic inference for adversarial

detection. The stochastic inference relies on noisy activation function at the end of

each layer in the network.

3.6.1 Noisy Activation

In our design and evaluation we use two popular image classification networks:

VGG16 and ResNet50. Figure 3.10 shows the network architectures highlighting

the layers in which we inject noise. VGG16 includes multiple convolution and fully

connected (FC) layers. ResNet50 includes several Conv and Identity blocks each

consisting of multiple convolution and activation layers, as illustrated in Figure 3.10.

In VGG16 the Relu activation is fused to the convolution output while in ResNet50

there is batch normalization layer between convolution and activation.

HASI injects noise in multiple layers of both models. In both networks noise is

injected in the output of the activation by multiplying a coe�cient to the activation

value. The magnitude of the noise is proportional to the activation value. The noise

coe�cient is randomly generated with a certain range. The range is set as a function

of the classification confidence obtained from the non-noisy run. At runtime, noise

injection can be enabled in some or all layers through software control.

Adaptive Noise Regulation

In Section 3.5 we showed that adapting the noise level to the confidence of the

classification results in better separation of adversarial from benign distributions.

Algorithm 1 shows the method used to determine the appropriate noise level for each
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Figure 3.10: Noisy activation in the VGG-16 and ResNet50 models.
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input. It computes a maximum range value (↵) for the random noise generation

function (�). The maximum range value increases exponentially as a function of the

classification confidence. The intuition behind this relationship is that high-confidence

adversarials require high levels of noise to be detectable. At the same time, high

confidence benign inputs are more robust to noise and are classified correctly in spite

of the higher noise levels. This insight allows HASI to reliably detect adversarial

inputs with a broad range of classification confidences.

Algorithm 1 Noise Regulation
1: function Noise range(logit,↵,�) . Where logit - array, ↵,� - tuning parameters
2: µ = mean(logit),� = std(logit)
3: sort logit = sort(logit)
4: max1st = sort logit[�1],max2nd = sort logit[�2]
5: z score1st =

max1st�µ
� , z score2nd = max2nd�µ

�
6: diff = z score1st � z score2nd
7: step = z score1st � z score2st/diff

8: range = ↵⇥e�⇥step
Pn

i=0 e
logit[i]

9: return range
10: end function

3.6.2 Performance Optimizations

Running multiple noisy inference passes, although rare, can have a substantial

performance impact. We make the observation that full re-execution of the model

is not needed to obtain high adversarial detection rates. To reduce performance

overhead, we can reuse some of the computation performed in previous passes. We

refer to this approach as re-execution branching, illustrated in Figure 3.11. First, noise

injection can skip the first few layers of the model. This allows the output of these

first layers to be saved and reused for the execution of multiple noisy runs. Figure
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3.11 (a) illustrates this approach. The initial m non-noisy layers are only executed

once. The output of the last non-noisy convolution is saved and used by multiple

noisy execution paths for the last n layers of the network. This can significantly

reduce the performance overhead since initial layers are often large. However, this

can also reduce the entropy of the noisy outputs.

A second optimization, which we call tree branching (TB), depicted in Figure

3.11 (b) allows the re-execution paths to diverge at di↵erent branching points in the

network, forming a tree structure. This approach enables more computation reuse and

lower overhead, while achieving slightly lower level of noise entropy, as some noisy

activation outputs are re-used. For instance, Path 2 in Figure 3.11(b) starts from

branching point b (re-executing only n
0 layers), instead of the original branching

point 1 . The branching factor b determines the frequency of branching. The higher

the branching factor, the larger the computation reuse and lower the overhead.
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3.7 DNNShield: Dynamic Randomized Model Sparsification
Defense Design

The research question we tackle is how to introduce a well controlled, variable and

randomly distributed approximation error into the inference process in a performance-

e�cient way. Unfortunately approximate computation using approximate functional

units does not o↵er su�cient flexibility to tune the error rate since they are generally

not easily tunable. The same is true for quantization methods, which may not provide

su�cient granularity for the approximation errors. In addition, both quantization and

approximate computation tends to be deterministic, producing predictable results

that may be exploited by an attacker. Although HASI porovides some optimizations

as discussed earlier but it has higher overhead than approximation methods.

In order to address the aforementioned challenges we introduce the DNNShield

framework, which includes a new flexible and e�cient mechanism to add controlled

approximation into the model inference, a method to correlate the amount of error

introduced into the model to the confidence of the non-noisy classification and a

mechanism for using the approximate inference to detect adversarial inputs.

3.7.1 Dynamic Random Sparsification

We set a few important criteria for our approximate inference design: (1) flexibility

to tune the error rate dynamically at runtime – to allow error rate to be correlated

to input confidence, (2) randomness of the error distribution – to make defense-aware

attacks less likely to succeed, and (3) low overhead.

In order to satisfy these criteria DNNShield introduces noise into the DNN

by randomly ”dropping” (essentially ignoring) weights from the model, through a
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Figure 3.12: (a) Baseline accelerator, (b) DNNShield accelerator tile.
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process we call dynamic random sparsification. The fraction of dropped weights, or

sparsification rate (SR) controls the amount of error in the model. The sparsification

rate for each input is determined based on the classification confidence of the non-

noisy run of that input.

The main advantage of dynamic random sparsification is the potential reduction in

performance overhead. Prior work on sparse convolution accelerators [30, 150, 67, 106,

59, 32, 62, 109, 90] targeted statically weight sparsed models with the ultimate goal of

improving performance/energy e�ciency. However, exploiting sparse filters is more

challenging in the case of DNNShield because the filter sparsity changes randomly

from run to run. To address these new challenges we developed a hardware/software

co-design that profiles the model first and performs scheduling for e�cient resource

utilization. The hardware accelerator supports dynamic-random sparse execution of

the inference with minimum stalls with the help of the software scheduler and flexible

control flow.

3.7.2 DNNShield Accelerator

Figure 3.12 shows the DNNShield accelerator tile (b) compared to a baseline

Dense CNN accelerator (a). The baseline design consists of N tiles which share k

filters. Each tile shares the same set of inputs and consists of k ⇥ m MAC units

which perform k ⇥m 8-bit multiplications per cycle. After a total of k ⇥M (M =

filter size) MAC operations, tree-adders accumulate m partial results per output and

generate k outputs per tile. The baseline accelerator processes all available weights

uniformly, assuming no sparsity. Since the DNNShield random sparsification is a

dynamic process, using conventional sparse accelerators is not practical since they
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require deterministic o✏ine preprocessing of the statically sparsed model to utilize

the resources e�ciently at runtime. Our DNNShield accelerator consists of two

components: 1) software scheduler and 2) hardware accelerator.

DNNShield Software

The DNNShield software handles two main tasks: 1) one-time o✏ine profiling

and 2) runtime scheduling (Figure 3.13). In order to reduce the overhead of online

sparsification, the DNNShield software parses the model o✏ine and generates a

table of threshold values for each filter, corresponding to di↵erent sparsification rates

1 .
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Figure 3.14: DNNShield sparse weights dataflow example through dense baseline
(a), DNNShield accelerator (b).
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At runtime, the SR distribution generator generates random sparsification rates

for each filter 2 , extracts the corresponding threshold value for each filter from the

threshold array, and creates a threshold vector 3 . The threshold values are used by

the filter sparsifier to drop/ignore weight values below the thresholds assigned to each

filter 4 . At the same time, a bit mask of active weights is generated, and will be

used by the hardware to map the correct inputs to the active weights 5 .

Finally, the scheduler groups the filters with roughly similar number of active

weights and places them in the task queue 6 . This will increase the e�ciency of the

inference run since the filters scheduled in the same group will require similar numbers

of multiply-accumulate operations, reducing load imbalance and the number of idle

cycles. Finally each group is sent to the accelerator together with the active weight

bit mask 7 .

DNNShield Hardware

The DNNShield accelerator modifies the baseline dense accelerator to leverage

the dynamically sparsified model. The DNNShield scheduler attempts to sched-

ule the k filters with approximately the same number of active weights. However,

DNNShield needs to make sure that di↵erent weights in each kernel can get access

to their corresponding input with minimum stalling. For this purpose we used a look-

ahead mechanism similar to that in [90] to match inputs and weights. Figure 3.12-b

shows the DNNShield accelerator tile. The MUXes are added per each MAC unit

to deliver the correct inputs to the active weights in each filter. The accelerator uses

the active bit mask to generate the MUX select signals and also identify the o↵set by

which the input window will be shifted every cycle.
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Figure 3.14 shows an example of how sparse weights and their corresponding inputs

flow through for baseline accelerator (Figure 3.14 (a)) and through DNNShield

(Figure 3.14 (b)). Figure 3.14 shows 4 filters sharing the input line within the tile.

At cycle 1 I0 is ready to be used by the MAC units sharing the input, however,

only two filters have corresponding weights active (w2
0 and w

3
0). While the baseline

accelerator leaves two MAC units underutilized, DNNShield fully utilizes the MAC

units by performing 4 multiplication at cycle 1 due to the flexibility of selecting

appropriate input through MUXes on top of each MAC unit. Therefore w
0
1 and w

1
1

are consumed by the MAC unit in the same cycle. Since no filter needs I0 or I1 the

next two inputs I2 and I3 will be loaded into the input bu↵er in cycle 2. The non-

deterministic scheduling of filter groups at runtime prevents pre-generating the signals

that drive the selection multiplexers shown in Figure 3.14 (b). DNNShield instead

uses a ”MUX signal logic” unit that uses the bit mask of active weights produced by

DNNShield scheduler to dynamically generate the control signals.
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3.8 Prototype Implementation

As a proof-of-concept, we implement both HASI and DNNShield in a FPGA-

based DNN accelerator, the Xilinx CHaiDNN architecture [144]. Figure 3.15 shows

a diagram of the design. The baseline includes dedicated hardware for Convolution,

Pooling, and Deconvolution functions. All the compute elements are connected to

a Memory Interface Block which allows access to the on-chip SRAM as well as the

main system DRAM via a custom AXI Interconnect.

HASI augments the baseline accelerator with the programmable random noise

generation unit highlighted in yellow. DNNShield augments the baseline accelerator

with the modified convolution supporting noisy sparsification including MUX select

generator logic, input window bu↵ers and priority encoders, color coded blue. The

common component for HASI an DNNShield is color coded green which is custom

logic for computing CPDN, additional control logic for coordinating partial result

reuse and early termination.

Random Noise Generation One of the more compute intensive functions that

HASI needs is the random number generation for noise injection. We use custom

hardware to implement a pseudo-random number generator that has low performance

overhead. The design, detailed inside the Figure 3.15 diagram, uses a Linear Feedback

Shift Register (LFSR). The traditional LFSR design only produces 1 random bit per

cycle. We unroll the single-bit design to produce n-bits every cycle, where n is

configurable in software. This allows the HASI API to control the level of random

noise to be injected in each layer of the model. The higher the values of n, the larger

the range of noise values that will be added to activation output.
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Figure 3.15: HASI and DNNShield hardware design based on the Xilinx CHaiDNN
accelerator.

Convolution is the core of noisy sparsification with MUXes distributed through PEs

for and MUX signal generators. PEs within the column share MUX signals. Also,

priority encoders are used to determine the number of inputs that need to be bypassed

regarding the ignored weights in sparsification. Then the address o↵set is calculated

and the next set of inputs will be loaded in the input bu↵er.

CPDN Unit is used to compute the CPDN between a noisy and non-noisy output.

It primarily consists of logic to subtract vector elements and accumulate the absolute

value of the result, shown in Figure 3.15.

Detection API The CHaiDNN/HASI/DNNShield software stack as shown in Fig-

ure 3.16 that color-coded modifications based on di↵erent design. A Defense-specific
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Figure 3.16: Defense API integrated with CHaiDNN software.
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configuration file will set the noise mask, indicating which layers require noise injec-

tion. The Defense API is invoked by the pre-processor following the initial non-noisy

run to determine the noise level to be injected for HASI design. This will be trans-

lated to sparsification rate for DNNShield. A high-level scheduler schedules the

execution of the model functions on the embedded processor and the hardware accel-

erators. The handler is designed to invoke the scheduler when the CPDN needs to be

computed in the hardware. The CPDN Unit receives two input bu↵ers containing the

probabilities of the initial non-noisy run and the current noisy run and a L1 Distance

bu↵er, where we maintain the running average of the L1 distance, updated after ev-

ery noisy run. After all the layers are processed, the value stored in L1 Distance is

compared to the L1 threshold. If a benign/adversarial classification can be made, the

response along with the classification output is returned. Otherwise, a new noisy run

is scheduled until a decision is reached.

DNNShield profiler is added to the ChaiDNN parser to create the threshold

array that later will be used by DNNShield. For DNNShield, the handler also

augments the scheduler with DNNShield scheduler for grouping the balanced filter

together for more e�cient execution.
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3.9 Methodology

3.9.1 Evaluation platform

We implement, synthesize and deploy both HASI and DNNShield on CHaiDNN

running on a Xilinx Zynq UltraScale+ FPGA. The SoC associated with the board

is ZU7EV which integrates a quad-core Arm Cortex-A53 processor. CHaiDNN is an

open-source Deep Neural Network accelerator designed to run on Xilinx Ultrascale

MPSoCs. CHaiDNN is built using Xilinx’s Software-Defined System on Chip (SD-

SoC), which generates a synthesizable hardware design from a high-level description

language. A quantizer is used to reduce weight representation precision from 32-bit

float to 6-bit or 8-bit fixed point integers. We compare our FPGA accelerator with

two software implementation of DNNShield on a CPU and GPU. We implemented

the software HASI and DNNShield using TensorFlow2 [4]. We run our software

DNNShield on Intel Core-i7 Ivy Bridge CPU@3.40GHz and NVIDIA RTX-2060

Turing GPU.

3.9.2 DNN Models, Input Dataset, Attacks

We used two networks VGG16 [121] and ResNet50 [54] trained on ImageNet [70]

for running attacks and generating adversarial images. We randomly selected 100

images from the ImageNet dataset and generated 100 adversarial images for each

attack we evaluate (for a total of 4600). All attacks are orchestrated in order to make

high confidence adversarial images with minimum modifications. Targeted attacks,

which aim to misclassify an input into a target class, use two types of targets called

Next and LL. Next corresponds to choosing the target class t = L+ 1 mod #classes

where L is the sorted index of top ground truth classes. For LL the target class t
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is chosen as least likely class (t = min(ŷ)) where ŷ is the prediction vector of an

input image. Table 3.1 summarizes the adversarial attacks alongside their detailed

parameters, success rate, average confidence and average distortion with di↵erent

metrics per model.

3.9.3 Comparison with Existing Defenses

We compared our detection rate of adversarial as well as True Positive rate (TPR)

of benign images with two state-of-the-art post-training defense mechanisms, detailed

below. Stochastic Activation Pruning (SAP) [34] introduces randomness into

the evaluation of a neural network to defend against adversarial examples. SAP

randomly drops some neurons of each layer to 0 with a probability proportional to

their absolute value. Values which are retained are scaled up to retain accuracy.

Feature squeezing (FS) [146, 78] is a correction-detection mechanism that re-

lies on the observation that the input feature space is typically unnecessarily large

and provides ample opportunity for constructing adversarial examples. The strategy

taken in this work is to limit the input space by removing features. Two feature

reduction techniques are evaluated for ”squeezing” images: reducing the color depth

and smoothing to reduce the variation among pixels. Detection of adversarial images

is achieved by comparing the output of the network using the original image with the

output of the squeezed image(s). FS requires o↵-line profiling and training to find

the best squeezer and corresponding thresholds for each pair of data-set and attack,

making it less practical to deploy in real-world applications. FS also requires at least

3 squeezers, resulting in at least 4⇥ performance overhead.
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Table 3.1: Attack parameters for multiple variants of CW and EAD attacks. Original
attack success rate, confidence, and distortion. Dataset from ImageNet, on VGG16
and ResNet50.

Attack Target
Param k Mean Confidence

Distortion
L0 L1 L2 L1

VGG RNet VGG RNet VGG RNet VGG RNet VGG RNet VGG RNet

CWL0
Next 5 5 92.9% 94.5% 42.2% 42.0% 232 105 10.44 6.26 0.94 0.88
LL 84.8% 87.9% 42.4% 42.1% 382 185 13.65 8.33 0.96 0.92

CWL2

Next 10 30 100.0% 100.0% 100.0% 100.0% 412 411 1.69 1.63 0.07 0.06
LL 100.0% 100.0% 100.0% 100.0% 555 531 2.24 2.07 0.08 0.06
Next 70 140 100.0% 100.0% 99.9% 100.0% 2,015 2,609 7.43 9.22 0.24 0.2
LL 100.0% 100.0% 99.9% 100.0% 2,176 3,267 8.07 11.56 0.25 0.24

CWL1
Next 5 5 94.7% 95.3% 100.0% 100.0% 735 523 2.27 1.6 0.01 0.01
LL 91.8% 93.4% 99.9% 100.0% 1,023 699 3.05 2.12 0.01 0.01

EADL1

Next 10 30 100.0% 100.0% 52.4% 58.3% 173 205 2.69 2.79 0.24 0.22
LL 100.0% 100.0% 54.7% 59.4% 269 276 3.56 3.47 0.29 0.26
Next 70 140 100.0% 100.0% 78.8% 80.5% 1,400 1,734 9.92 12.34 0.54 0.49
LL 100.0% 100.0% 78.3% 85.5% 1,510 2,782 10.65 17.36 0.55 0.58

EADEN
Next 10 30 100.0% 100.0% 47.9% 52.4% 191 421 4.36 6.73 0.6 0.73
LL 100.0% 100.0% 48.0% 57.4% 252 596 5.9 8.59 0.72 0.8

RNet: ResNet50, VGG: VGG16

For a fair comparison we retrained FS on our set of benign and Adversarial images

for both VGG16 and ResNet50 separately. We also used the best three FS squeezers

for ImageNet reported in the paper.
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3.10 Evaluation

We evaluate HASI and DNNShield adversarial detection rate, robustness to

defense-aware attacks, and performance and area overheads. We also conduct a num-

ber of sensitivity studies for the main design parameters.

3.10.1 Adversarial Detection

We first look at DNNShield’s ability to identify adversarial images. We measure

the detection rate for adversarial inputs as well as the false positive rate (FPR) for

benign inputs. We compare HASI and DNNShield with Feature Squeezing (FS)

and SAP for multiple configurations of CW and EAD. Table 3.2 lists the detection

rate for all the attack variants we evaluate, for both VGG16 and ResNet50.

The results show that both DNNShield significantly outperforms both FS and

SAP on average. DNNShield shows an average detection rate of 86% and 88% for

VGG16 and ResNet50, respectively These numbers are 86% and 93% for HASI. HASi

and DNNShield also significantly outperform the state of the art defense, FS which

averages 55% and 79% for VGG and ResNet, respectively. This is especially true for

high-confidence attack variants, for which FS does not work as well. For instance,

under the EADL1 attack with k = 70 we see 93% detection rate for DNNShield vs.

4% for FS (VGG16). This shows that HASI and DNNShield are resilient to very

strong attacks. Since DNNShield is more e�cient design that HASI, we will only

show results for DNNShield in the rest of this section.

Figure 3.17 shows detection rate versus adversarial confidence for DNNShield,

FS and the Approx. mul8u KEM as a function of classification confidence. Both

FS and Approx. mul8u KEM detection rates fall steeply as confidence increases while
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Table 3.2: Detection rates for 4 defenses: SAP, FS, Approximate-MUL, HASI and
DNNShield. Dataset from ImageNet, on VGG16 and ResNet50.

Attacks Defenses

Attack Target
Param k SAP⇤ FS+

Approximate
HASI DNNShield

mul8u KEM
VGG RNet VGG RNet VGG RNet VGG RNet VGG RNet VGG RNet

CWL0
Next 5 5 35% 42% 100% 100% 34% 59% 90% 95% 67% 82%
LL 29% 43% 100% 100% 56% 96% 100% 100% 100% 100%

CWL2

Next 10 30 45% 45% 84% 89% 68% 11% 86% 99% 91% 100%
LL 36% 46% 100% 100% 81% 28% 100% 100% 100% 100%
Next 70 140 0% 21% 6% 48% 7% 0% 78% 97% 84% 89%
LL 0% 17% 9% 67% 19% 0% 92% 99% 96% 98%

CWL1
Next 5 5 42% 47% 91% 96% 69% 71% 89% 97% 83% 89%
LL 45% 45% 100% 100% 94% 98% 99% 100% 100% 100%

EADL1

Next 10 30 27% 52% 78% 98% 41% 2% 84% 99% 91% 98%
LL 34% 41% 100% 98% 59% 0% 100% 100% 100% 100%
Next 70 140 0% 16% 4% 46% 2% 0% 62% 94% 78% 88%
LL 0% 18% 4% 81% 4% 0% 87% 90% 93% 84%

EADEN
Next 10 30 17% 40% 63% 89% 27% 0% 82% 93% 80% 94%
LL 12% 26% 98% 98% 36% 2% 100% 97% 99% 97%

RNet: ResNet50 AVG 16.6% 33.2% 55% 79% 36% 15% 86% 93% 86% 88%
VGG: VGG16 FPR 58% 37% 6% 3% 29% 19% 5% 5% 6% 6%
+FS threshold: VGG16: 1.022, ResNet50: 1.229, ⇤Values for SAP are accuracy

DNNShield detection rate remains high. These results re-emphasize the importance

of adapting the approximation error to the confidence of the classification.

3.10.2 Defense-Aware Attacks

In order to investigate the robustness of the HASI/DNNShield defense, we con-

struct a set of attacks tailored specifically to defeat it. These attacks assume full

knowledge of the HASI/DNNShield design. In theory, HASI/DNNShield could

be defeated by an attack that generates adversarial examples for which the model’s

robustness to approximate inference is similar to that of benign examples. In order

to attempt to generate such adversarial examples, we used the approach suggested

in [129] to generate adversarial examples that target the probability vector of an

arbitrary benign example from another class. The idea is to create an adversarial

example that mimics the response of benign images under noise. Hence, for sample
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Figure 3.17: Detection rate for di↵erent adversarial confidence generated by CWL2

attack, (a) VGG16 and (b) ResNet50
.

x of class y, we pick a target t 6= y and create adversarial example x
0 that minimizes

the objective:

minimize ||y(x0)� y(xt)||1 (3.7)

where y(x0) and y(xt) are the probability vector of the adversarial and target inputs

respectively. While we try to minimize the L1 distance between adversarial and the

benign target, we need to also minimize the adversarial perturbation under the L2

distortion metric. The final objective function is:

minimizex cf(x, t) + �||y(x0)� y(xt)||1 + ||x� x0||22

such that x 2 [0, 1]n
(3.8)

where f(x, t) denotes the loss function and � is the regularization parameter for L1

penalty. Increasing � forces a lower L1 distance between the adversarial and target

benign and could evade HASI/DNNShield detection.
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Figure 3.18: L1 distance vs. L2 distortion for di↵erent � values.

Table 3.3 summarizes the adaptive attack parameters and detection rates under

HASI/DNNShield. We can see that for low-� attacks, HASI/DNNShield detec-

tion rate is very high (A1-A3). For A4, with � = 10�1 the detection rate is lower.

However, in order to generate A4, the L2 distortion has to be increased by 4-5⇥ rela-

tive to A3. To understand why, Figure 3.18 shows the e↵ect of � on the L1 distance

of probability distribution and L2 distortion. Optimizing for both low L2 distortion

and L1 distance are competing objectives. Increasing � will decrease the L1 distance,

making the adversarial harder to detect, but it also increases L2 distortion. The tar-

get benign input, which the adversarial sample is trying to mimic, is chosen randomly

from 1000 images in the adversarial targeted class. While a few of these targets do

lead to lower distortion, the average distortion, for high � (10�1), is very high. An-

other popular approach is using an EoT attack in which noise (transformation) was

applied during adversarial generation. We injected variable noise correlated to the

confidence of the classification in each training iteration, as in HASI/DNNShield.

The result was that, because of the variable noise, the attack could not converge on
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a successful adversarial. Using fixed noise as in traditional EoT did not work either

because of the adaptive HASI/DNNShield response.

Table 3.3: HASI/DNNShield aware adaptive attacks

�
Success rate Mean Confidence L2 Distortion HASI/DNNShield det.

Attack VGG RNet VGG RNet VGG RNet VGG RNet
A1 10�4 100% 100% 94.3% 95.9% 3.91 2.71 99% 100%
A2 10�3 100% 100% 92.3% 94.0% 2.48 1.42 99% 100%
A3 10�2 100% 100% 96.1% 96.9% 10.14 8.45 95% 84%
A4 10�1 58% 31% 97.7% 97.9% 41.58 46.99 81% 39%

Figure 3.19 shows two examples of adversarial inputs generated with di↵erent �

values. We can see that distortion artifacts are clearly visible for � = 10�1, and can

be detected through other means.

At high � values, the attack is also less likely to succeed. For � = 10�1, only 58%

(VGG) and 31% (ResNet) of examples can be converted into adversarials that defeat

the unprotected baseline. HASI/DNNShield is still able to detect 81% and 39% of

the VGG16 and ResNet50 ones, respectively.

This shows that HASI/DNNShield is robust to defense-aware attacks that op-

timize for low L1 distance.

3.10.3 Performance, Area and Power Overheads

We next examine the performance, area and overheads of the HASI andDNNShield

framework. Figure 3.20 shows the average normalized run time of HASI andDNNShield

on the GPU, CPU and DNNShield accelerator. The runtime overhead of software

DNNShield on GPU is 15⇥ to 25⇥ higher than the baseline. This high overhead is
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Figure 3.19: Adversarials generated by HASI/DNNShield-aware attacks.

primarily due to the random number generation function used by the dynamic spar-

sification algorithm – which does not appear to be optimized on the GPU – and is

called when sparsifying each filter. This overhead is highlighted by the ”DNNShield

overhead”, shown as a pattern in Figure 3.20.

In contrast, the overhead of the DNNShield accelerator implementation is much

lower at 1.53⇥ and 2⇥ for ResNet50 and VGG16, respectively. Unlike the GPU, the

DNNShield accelerator performance overhead is primarily due to re-execution of

the approximate inference. While not trivial, the DNNShield performance overhead

compares favorably with that of FS which exceeds 4⇥. For software-DNNShield on

the CPU the overhead ranges from 2.43⇥ to 4.47⇥ which is again, higher that for

DNNShield. In addition, the total runtime of the models on the CPU is dramat-

ically longer than the FPGA. Very slow runtime of convolutional and FC layers on

CPU dominate execution time. Hardware support for dynamic sparsification reduces
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Figure 3.20: HASI/DNNShield runtime on (a) GPU, (b) CPU and (c)
HASI/DNNShield accelerator for VGG16 and ResNet50.

overhead by 15% and 30% relative to the DNNShield without sparsification sup-

port. DNNShield reduced the overhead of HASI from 2.4⇥ to 2⇥ for VGG16 and

from 2.1⇥ to 1.5⇥ for ResNet50.

Table 3.4 summarizes the area and power overhead of the combined DNNShield

hardware relative to the baseline CHaiDNN accelerator. We can see that the total

overhead is low, with FPGA resource utilization increasing by at most 2.56%. Power

overhead is higher, but still small at 4.5% dynamic.

3.10.4 Sensitivity Studies

The DNNShield design spans a broad design space that a↵ects performance

overhead for adversarial detection accuracy.

Sparsification Approaches

We evaluate multiple approaches for dynamic sparsification. The naive approach

of randomly dropping any weight subject to the sparsification rate (SR) results in, as

Figure 3.21 shows, a very high (> 90%) false positive rate (FPR) for benign inputs,
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Table 3.4: FPGA resources and power overhead of DNNShield over baseline
CHaiDNN accelerator.

Resource Baseline DNNShield Overhead%
BRAM 202.5 204 0.75%
DSP 696 696 0.0
FF 112501 113630 1.1%
LUT 158060 159381 0.8%

URAM 80 80 0.00
BUFG 3 3 0.00
PLL 1 1 0.00

Power Baseline DNNShield Overhead%
Static 0.721W 0.726 0.6

Dynamic 5.567W 5.822W 4.5

indicating that random weight sparsification results cannot be used to discriminate

adversarial inputs. This is because random sparsification can result in the dropping

of large weight values, with large impact on classification output. To address this

issue, in DNNShield we drop a random number of weights between 0 and SR from

each filter, in ascending order of their values. This results in high adversarial detec-

tion, with low benign FPR. This is mostly due to the fact that dropping weights in

ascending order enables more precise control over the approximation error. We also

show that adapting the SR to classification confidence is very important. The High

SR and Low SR experiments in Figure 3.21 show the e↵ects of weight dropping at

fixed rates of up to 80% and 20% respectively. The Low SR is insu�cient to achieve

adversarial detection, while fixed 80% results in very high benign FPR.

Detection Convergence

Figure 3.22 shows the attack success rate as a function of the number of runs

with inference approximation. More runs should ensure higher detection accuracy
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Figure 3.21: Adversarial detection and benign FPR with di↵erent sparsification
approaches.

Figure 3.22: Adversarial attack success rate for multiple attacks as a function of the
number of noisy runs in DNNShield.
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by generating more samples for the L1 distance average. We can see that the attack

success rate drops rapidly after 1-2 noisy runs, and remains mostly constant after that.

This translates in DNNShield converging rapidly on a detection decision. Figure

3.23 shows the number of runs required to make a decision (on the X-axis) for benign

and adversarial inputs. We can see that a single run is su�cient for ¿80% of the

benign inputs, and less than 10% require more than 2. Only the benign re-execution

rate is relevant to the overhead since adversarials are rare events.

Figure 3.23: Number of noisy runs required by DNNShield to make a classification
decision for multiple adversarial data sets and benign inputs.

Detection Thresholds

Finally, we performed a sensitivity analysis on the threshold parameters used for

adversarial detection. To study the e↵ect of detection thresholds, we varied t
0
1 in

the [0.05, t1] range in 0.1 increments. Then, for each value of t01 we varied t
0
2 in the

[t2, 1.95] range and computed the average false positive rate (FPR). Figure 3.24 shows
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the average FPR for benign and adversarial inputs for di↵erent values of t01. ResNet50

exhibits a tighter distribution for L1 distance under approximation and is therefore

not sensitive to the threshold values. VGG16 on the other hand is more sensitive due

to its wider distribution The threshold value allows a small tradeo↵ between FPRs

for benigns vs. adversarials.

Figure 3.24: Benign and adversarial FPR for di↵erent threshold values, left VGG16
and right ResNet50.
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3.11 Conclusion

In conclusion, this chapter showed that adaptive noise injection in DNN mod-

els enables robust > 90% adversarial detection across multiple strong attacks, for

di↵erent image classifiers. We also showed that a hardware/software co-design of

DNNShield reduces performance overhead relative to a software-only GPU imple-

mentation to 1.5 ⇥ �2.⇥ relative to an unprotected baseline running on an FPGA,

with < 3% hardware overhead.
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