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Abstract 

  

 Honey bees are exposed to an array of potentially toxic chemicals, which differ in 

aspects of their toxicity as well as their fate in the environment. In Chapter 1 of my 

thesis, I discuss the exposure and effects of toxic chemicals to honey bees through the 

lens of chemical kinetics. I also describe applications of kinetic modeling for the 

development of mechanistic models of colony exposure. In chapter 2, I demonstrate how 

kinetic modeling (toxicokinetic-toxicodynamic modeling) can be used to predict the long-

term effects of chemical exposure on the survival of individual honey bees and the 

growth of their colonies. I focus on metal pollutants (As, Cd, Li, Pb, and Zn), which 

honey bees are exposed to in a range of human modified environments. I found that a 

toxicokinetic-toxicodynamic model (the General Unified Thresholds Model of Survival, 

GUTS) better predicted the survival of honey bees in the lab than a simple extrapolation 

of a standard (probit) model that is commonly used in honey bee risk assessments. When 

predicting the effects of metal exposure on colony growth, differences between modeling 

approaches were highly case-specific. In chapter 3, I focus on the exposure and effects of 

metals to immature honey bees. Specifically, I describe an experiment using queen-

rearing boxes to measure the accumulation of metals into larval food (nurse jelly) and 

developing queen larvae. I also describe a laboratory study on the toxicity of different 

metals to honey bee larvae reared in vitro. I found that Cd and Li translocate into larval 

foods at a higher rate than has been observed for pesticides. Furthermore, when applied to 

the larval diet in vitro, As, Li, and Zn affected the survival of honey bee larvae at field-

relevant concentrations. 
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Chapter 1. Literature review: The relevance of chemical kinetics for honey bee risk 

assessment 

 

Abstract 

 The exposure of honey bees to toxic chemicals has received much research 

attention, but the risk posed to honey bee colonies in the field remains challenging to 

determine using routine risk assessment procedures. To that end, mechanistic risk 

assessment models are in development that can simulate chemical exposure and effects at 

the colony level. To be useful, such models must account for the differential fate of 

chemicals in the field, in colonies, and their effects on colony functioning over time. 

Here, I address each of these factors through the lens of chemical kinetics. Specifically, I 

discuss applications of chemical kinetics for modeling the environmental fate of toxic 

chemicals as it relates to colony exposure (kinetic fate modeling) and the effects of toxic 

exposure over time (toxicokinetic-toxicodynamic modeling). I conclude with a brief 

review of toxicokinetic studies at the molecular level and their potential application to 

honey bee risk assessment. 

 

1.1 Introduction 

 The exposure of honey bees to potentially toxic chemicals remains a high-profile 

environmental issue with direct implications for agriculture (Calderone 2012, Reilly et al. 

2020). Additionally, as a biomonitor (Niell et al. 2018, Smith et al. 2019) and a 

toxicological model species (Thompson and Pamminger 2019), the exposure and effects 

of toxic compounds on honey bees has implications for the conservation of other 

terrestrial arthropods. 
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 There’s growing evidence that field-relevant levels of toxic exposure can have 

adverse effects on the functioning of honey bees and their colonies (Fisher et al. 2021, 

Milone et al. 2021, Traynor, VanEngelsdorp, et al. 2021). However, the risk associated 

with a particular toxic chemical, or combination of chemicals, remains difficult to 

determine in real world scenarios (Henry et al. 2015, Carnesecchi et al. 2019, Cullen et 

al. 2019). This difficulty stems from gaps in our understanding of the processes leading to 

exposure (Simon-Delso et al. 2017, Sponsler and Johnson 2017) as well as the effects 

resulting from exposure (Grimm and Martin 2013). The existence of these knowledge 

gaps is unsurprising given the complexity of the situation. The exposure of honey bees to 

a given chemical will fluctuate over time. Toxic chemicals are differentially persistent, 

both in the field (Bonmatin et al. 2015, Gierer et al. 2019) and within colonies 

(Shimshoni et al. 2019). Some chemicals may also be persistent within the bodies of bees 

(Suchail et al. 2001, Mokkapati et al. 2022), which can result in time-cumulative effects 

that are not always predictable from short-term studies (Hesketh et al. 2016, Simon-Delso 

et al. 2018, Tosi et al. 2021). Finally, honey bees are frequently exposed to multiple toxic 

chemicals simultaneously, which opens the possibility of synergistic effects (Carnesecchi 

et al. 2019, Ostiguy et al. 2019). 

 These overlapping factors-- time-variable exposure, chemical persistence, time-

cumulative toxicity, and the hazard arising from chemical mixtures-- comprise the honey 

bee “risk cup” (Fig. 1). The risk cup represents the combined risk (hazard x exposure) 

across all chemicals and routes of exposure. 
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Figure 1. The honey bee risk cup (right) represents combined risk resulting from exposure 

to multiple toxic compounds (colored layers). The risk posed by a given substance (center) 

is the aggregate risk resulting from multiple potential sources of exposure (left), the 

intensity of that exposure over time (from acute to chronic), and the hazard (toxicity) 

associated with each chemical (not shown). 

 

 The risk cup concept is relevant to honey bee colonies, but difficult to implement 

in a standardized risk assessment process owing to its multifactorial nature and the many 

knowledge gaps in this area. For these reasons, current risk assessment models for 

pesticide registration (ex. Bee-REX) (USEPA 2014) make simplifying assumptions and 

reduce the number of factors under consideration. Rather than representing exposure over 

time, these models only consider worst-case daily rates of exposure. Although multiple 

life stages and exposure pathways are represented (Berenbaum 2016), there is currently 

no standardized approach for assessing the combined risk of chemical mixtures. In 

contrast with current approaches to honey bee risk assessment, mechanistic models are 

appealing because they can simulate the colony-level dynamics governing exposure (ex. 

foraging, food sharing) across the members of colonies (Sponsler and Johnson 2017) as 

well as the colony-level effects of exposure over time (Kuan et al. 2018, Schmolke et al. 
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2019). Such models are currently in development for honey bee risk assessment at the 

regulatory level (EFSA 2016, More et al. 2021). 

 Here, I discuss the relevance of chemical kinetics (hereafter, “kinetics”) for 

addressing the components of the honey bee risk cup (Fig. 2). Kinetics is the basis of 

most chemical fate models used for chemical risk assessment, but has seen limited 

application for this purpose in models of honey bee exposure. Instead, models have 

tended to focus on aspects of honey bee’s social biology affecting their exposure 

(Sponsler and Johnson 2017). Kinetic processes also determine the rate that toxic 

chemicals accumulate and are detoxified within individual organisms. This is the subject 

of the field of toxicokinetics (Grech et al. 2017). Survival models accounting for 

toxicokinetic factors stand to improve our ability to predict toxic effects over time at the 

individual and population levels (Ashauer and Escher 2010). These models present the 

most immediate opportunities for improving the risk assessment process for honey bees 

because they can leverage data generated during standard bioassays used to determine 

acute and chronic toxicity. I conclude with a discussion of toxicokinetic studies at the 

suborganismal level (i.e. at the chemical, cellular, and molecular levels). Research in this 

area stands to improve our ability to predict toxicity based on chemical structures 

(Carnesecchi et al. 2020), chemical sensitivities across taxa (López-Osorio and Wurm 

2020), and the development of high-throughput in vitro models to complement existing 

chemical risk assessment practices (Haas and Nauen 2021). 
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Figure 2. The relevance of toxicokinetics and its application to different aspects of honey 

bee risk assessment. 

 

1.2 Kinetic fate 

 The kinetic fate of chemicals is the result of their movement between 

environmental compartments (soils, plants, colony matrices) and their persistence within 

those compartments. This is a complicated topic that will depend on chemical properties 

such as molecular weight, polarity, and vapor pressure, field variables, and the division of 

labor within colonies. Each of these factors have been discussed at length elsewhere 

(Bonmatin et al. 2015, Farha et al. 2016, Gierer et al. 2019). Here, I provide a brief 

review of these factors as they relate to colony exposure and exposure modeling, 

highlighting studies that have been published since the review of mechanistic models of 

exposure by Sponsler and Johnson (2017). 
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 Modeling kinetic fate in the field 

 

 

Figure 3. Routes of chemical exposure for honey bees foraging in the field. 

 

 Kinetic fate is an important consideration during honey bee risk assessment 

because chemical movement and persistence can vary widely across chemicals, studies, 

and environmental compartments. This variability is especially pronounced in the 

environment outside the hive (the field). In soils, for example, the half-lives of 

neonicotinoid insecticides can range from 100 to 1200 days, depending on the chemical 

and study (Bonmatin et al. 2015). In contrast, the soil half-lives of organophosphate 

insecticides are generally much lower (< 30 days) (DiBartolomeis et al. 2019). The 

persistence of chemicals in soils, in combination with other factors like water solubility, 

allows them to translocate into the nectar and pollen of wildflowers, extending the period 

of time that colonies are exposed orally (Long and Krupke 2016). Within plants, pesticide 

half-lives are typically between 1 and 10 days, but some pesticides have in-plant half-

lives as high as 150 days (Fantke and Juraske 2013). In addition to chemical properties, 

the persistence of chemicals across field components will vary with temperature 
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(volatilization), sunlight (photodegradation), humidity (hydrolysis), soil density (aerobic 

decomposition), and the presence of soil microbes (digestion) (Farha et al. 2016). 

 The EPA’s Bee-REX model represents kinetic fate in a minimally mechanistic 

fashion, and only for pesticides applied as soil treatments. If field measurements of 

chemical residues in nectar and pollen are not available, a modified version of the soil-

plant uptake model of Briggs et al. (1983) is used to predict the movement of pesticides 

into nectar and pollen (USEPA 2014). Chemical parameters in this model include the soil 

organic carbon-water partition coefficient (Koc) and the octanol-water partition 

coefficient (Kow). The values of the other parameters (soil organic content, water content, 

and density) are set by default to simulate a high exposure scenario (USEPA 2014). The 

EPA’s implementation of this model is also designed to be conservative in predicting 

pesticide concentrations in nectar and pollen (resulting in worst-case predictions), which 

was confirmed with empirical data for five pesticides (FIFRA 2012). The Briggs model 

outperformed four other models when predicting the uptake of nonionic chemicals into 

plant shoots (Collins et al. 2006). However, the EPA’s guidance document for honey bee 

risk assessment notes several limitations of the Briggs model: it was created to describe 

the uptake of chemicals into the shoots of a single plant species (barley) and had only 

been validated for neutral chemicals, for which translocation through plants will differ 

from those of ionic chemicals (USEPA 2014). 

 Kuan et al. (2018) present what is perhaps the most mechanistic model of 

chemical kinetics as it relates to honey bee exposure in the field. Like Bee-REX, they use 

the Briggs model to estimate pesticide concentrations in nectar and pollen following soil 
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application. Unlike Bee-REX, they model exposure over time. To represent the 

dissipation of pesticides in the field over time, they included two kinetic parameters, 

foliar half-life and aerobic soil half-life. Kinetic parameters are also included in the 

colony exposure model of Crenna et al. (2020), specifically the dissipation half-lives of 

pesticides in nectar and pollen. Each of these studies included a series of Monte Carlo 

simulations to capture the variability in model predictions resulting from variable 

combinations of chemical half-lives, as well as other model parameters. Similar methods 

may be used in future studies to determine kinetic parameters with the greatest influence 

on model outcomes and prioritization for subsequent research. 

 

 Modeling kinetic fate in the colony 

 

 

Figure 4. Routes of chemical exposure within colonies. 

 

 As in the field, the movement and persistence of chemicals within colonies varies 

widely across chemicals and compartments (colony matrices). For example, 
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neonicotinoids are unusually persistent in honey (Shimshoni et al. 2019). This may 

explain the widespread detection of neonicotinoids in honey samples from across the UK, 

despite having no registered use there for several years (Woodcock et al. 2018). 

Organophosphates, on the other hand, have lower persistence in honey, but greater 

persistence in wax (Shimshoni et al. 2019). 

 The best studied driver of chemical diffusion within colonies is lipid solubility. 

This largely determines the partitioning of chemicals between lipid-rich matrices, like 

colony wax (Shimshoni et al. 2019) and propolis (Simsek et al. 2021), versus lipid-

insoluble matrices, like honey. Lipid solubility may also explain the relative affinity of 

chemicals for pollen relative to honey (de Oliveira et al. 2016) and the greater variety of 

chemicals that are typically measured from pollen samples collected in the field versus 

those measured from nectar or honey (Mullin et al. 2010, Ostiguy et al. 2019, Zioga et al. 

2020). Although lipid solubility did not explain the relative translocation of pesticides 

from colony foods into nurse jelly (Böhme et al. 2018, 2019), it is an important 

consideration when predicting the diffusion of pesticides into jelly via contaminated wax 

(Kast and Kilchenmann 2022). 

 In addition to chemical properties like lipid solubility, the accumulation of toxic 

chemicals into the bodies of honey bees may also be an important parameter to include in 

kinetic fate models (Tremolada et al. 2011). Finally, several pesticides are known to form 

toxic metabolites within colonies, whose toxicity and persistence may differ from their 

parent compounds. For example, the miticide amitraz has a much shorter half-life than its 
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major metabolites, DMF and DMPF (Bommuraj et al. 2019), which are also differentially 

toxic to adult honey bees (Bommuraj et al. 2021). 

 The in-hive fate of chemicals is fertile ground for kinetic fate modeling because 

colony matrices differ widely in properties that affect the solubility of different chemicals 

(ex. lipid content) and there is less variability in environmental factors (ex. temperature 

and humidity) relative to conditions in the field. However, most colony exposure models 

do not represent in-hive exposure mechanistically. In Bee-REX, for example, pesticides 

in nectar and pollen are assumed to not degrade once within colonies. For nurse jelly, 

pesticides are assumed to occur at 1% of their concentration in nectar or pollen, 

whichever is greater. Recent studies suggest that the concentrations of pesticides in royal 

jelly are typically lower relative to colony foods (Böhme et al. 2019, Ricke et al. 2021). 

As such, the assumptions of Bee-REX result in worst-case estimates of daily exposure 

within colonies. To account for exposure over greater periods of time, kinetics will have 

to be included. For this reason, “in-hive pesticide residue dynamics” is considered a 

prerequisite for mechanistic models of exposure to be used for regulatory purposes in the 

European Union (EFSA 2016).  

 Perhaps the most mechanistic treatment of in-hive exposure is presented by 

Bonzini et al. (2011). They measured the accumulation of the miticide tau-fluvalinate into 

the bees, honey, and wax of colonies when applied to control the hive pest Varroa 

destructor. Measurements were then used to develop a predictive compartment model of 

the in-hive fate of tau-fluvalinate (Tremolada et al. 2011). Their model uses chemical 

properties including lipid solubility, organic carbon adsorption, and partial pressure to 
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calculate tau-fluvalinate’s diffusion into hive wax, propolis, and honey. The results of a 

validation study corroborated their model, boding well for their general approach 

(Tremolada et al. 2011). Focusing on honey bees’ social biology and food processing, 

Rumkee et al. (2017) modeled the distribution of pesticide-contaminated nectar among 

the honey cells of colonies. This model is certainly mechanistic, but does not incorporate 

chemical properties that may drive kinetics, such as persistence and diffusion across 

colony matrices. 

 

Kinetic fate modeling going forward 

 Applications of kinetic fate modeling for honey bee risk assessment would benefit 

from more mechanistic research (Gierer et al. 2019). At present, most studies on colony 

exposure are observational and do not test mechanisms. This is reflective of the wider 

literature on the kinetic fate of chemicals in agricultural systems. For example, 18% of 

>800 studies reporting the dissipation half-lives of chemicals in plant components 

(leaves, fruits, roots, etc.) directly assessed the chemical properties that may explain 

observed differences across chemicals (Fantke and Juraske 2013). Notably, nectar and 

pollen were among the least represented plant matrices across studies (Fantke and Juraske 

2013). 

 Kinetic fate modeling of honey bee exposure would benefit from a database of 

chemical properties, diffusion rates, and dissipation half-lives across chemicals and 

environmental compartments. Ideally, these parameters would be measured under 

standardized conditions. Shimshoni et al. (2019) provide an exemplary laboratory study 
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on the relative diffusion and persistence of 27 common pesticides in honey and beeswax 

as a function of their hydrophilicity, volatilization, and molar weight. Similar studies 

focusing on additional environmental compartments (pollen, soils) and breakdown 

processes (photodegradation, biodegradation) can be conducted to better characterize the 

kinetic processes throughout the full honey bee exposure pathway. Finally, more long-

term studies of chemical fate in the field and within colonies will be necessary to inform 

and ultimately validate the predictions of kinetic fate models for honey bee protection 

(Zioga et al. 2020). 

 

1.3 Toxicokinetic modeling at the organism level 

 In addition to mechanistic models of exposure, there’s growing interest in 

mechanistic models of toxic effects for use in pesticide risk assessment (Grimm and 

Martin 2013, Vighi et al. 2019). These models represent the stepwise mechanisms 

leading from exposure to the appearance of toxic effects at the organism level (Fig. 5). 

These mechanisms are kinetic in nature and include the absorption, distribution, 

metabolization, and elimination of chemicals from the body (ADME), which make up the 

field of toxicokinetics (Grech et al. 2017). Within organisms, toxicants bind to their sites 

of action and cause damage, which is ultimately responsible for the toxic effects, such as 

mortality, that are the endpoints of bioassays. The formation and potential repair of 

damage is the subject of damage dynamics or toxicodynamics. 
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Figure 5. Mechanisms leading from exposure to toxicokinetics, toxicodynamics, and the 

appearance of toxic effects. TKTD models represent these stepwise mechanisms and 

associated parameters. 

 

 There are now a variety of toxicokinetic-toxicodynamic (TKTD) models available 

to represent the time course leading from chemical exposure to bioaccumulation, damage, 

and the appearance of toxic effects (Ashauer and Escher 2010, Jager et al. 2011). 

Although TKTD models represent processes that are suborganismal (e.g. 

bioaccumulation), there are minimally mechanistic TKTD models that can function with 

individual-level survival data, alone, making them amenable to data from standardized 

bioassays. These assays are conducted to calculate benchmarks of toxicity (LD50 values 

and no-observable-adverse-effect concentrations, or NOECs) during chemical risk 

assessments. The fact that TKTD models can function without information on chemical 

concentrations within organisms is noteworthy given the replication and technical 

expertise required to measure low concentrations of pesticides from bees during 

bioassays (Zaworra et al. 2019, Mokkapati et al. 2022). One such TKTD model, the 

General Unified Thresholds Model of Survival (GUTS) (Jager et al. 2011), was recently 

approved for aquatic risk assessment at the regulatory level in the European Union 

(Ockleford et al. 2018) and has been applied to bioassay data from honey bees in at least 

three studies (Hesketh et al. 2016, Heard et al. 2017, Robinson et al. 2017). This model is 
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a generalization of preexisting TKTD models and can operate with or without data on 

chemical concentrations within the organism (Jager et al. 2011). 

 TKTD models present unique advantages when analyzing data from bioassays 

(Ashauer and Escher 2010). Unlike standard dose-response models (ex. probit and 

logistic models), TKTD models use mortality data from all days over which the bioassay 

was conducted. This allows calculation of benchmarks of toxicity without relying entirely 

on the particular dose-response pattern at the last day of the assay. In addition, the 

parameters of TKTD models are typically rate constants that can be used to predict toxic 

effects over a range of untested exposure conditions. Standard dose-response models, by 

contrast, only provide a “static” picture of toxicity (holding either time or dosage 

constant) that require added assumptions for the purpose of extrapolation (Fig. 6). 
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Figure 6. A comparison of standard toxicological models and TKTD models. 

 

 Toxicity over time 

 Because of their focus on toxicity over time as well as dosage, TKTD models can 

be used to predict toxic effects across a range of untested exposure scenarios. In that 

regard, they’re most relevant for analyzing data from chronic toxicity assays. In the last 

decade, adult and larval honey bee chronic toxicity assays, lasting for ten and 22 days, 

respectively, were approved for use in the pesticide registration processes in the US and 

the European Union (OECD 2017, Schmehl et al. 2018). There remain a number of 

commonly-used pesticides for which chronic toxicity data from honey bees have not been 

generated during registration or reregistration, which occurs at least once every 15 years 

for pesticides registered in the US (USEPA 2021). 
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 TKTD modeling can be used to improve the chronic risk assessment process for 

honey bees in two distinct ways. First, like acute toxicity assays, the data from chronic 

toxicity assays are currently only assessed at a single timepoint (usually the last day of 

the assay). This omits temporal information that may be important when dealing with 

toxicants that exhibit time-cumulative toxicity. Because TKTD models utilize data from 

all days of the assay, they can be used to characterize the degree of time-cumulative 

toxicity exhibited by a given chemical. The outputs of TKTD models can then be cross-

validated with existing metrics of time-cumulative toxicity, such as the Haber constant 

(Cresswell 2018). 

 A second issue related to chronic toxicity testing is the duration of the assay. 

Standard chronic toxicity assays with adult honey bees are shorter (<10 days) than the 

typical honey bee lifespan (for summer bees: about one month, for winter bees: multiple 

months; Winston 1987). Because field-relevant concentrations of most chemicals do not 

produce measurable effects on honey bee survival over this duration, researchers often 

include concentrations that are higher than expected based on field studies. This may be 

sufficient to generate dose-response curves and to calculate the current benchmarks of 

toxicity, but it does not predict a chemical’s effect on survival over the lifespan of the 

organism. TKTD models, by contrast, can be used to predict toxic effects over longer 

periods of time as well as lower exposure concentrations than those included in 

bioassays. This can also assist in identifying chemicals that may warrant more extended 

assays (>10 days) (Moncharmont et al. 2003, Simon-Delso et al. 2018, Tosi et al. 2021). 
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 Methods for extrapolating standard dose-response models (ex. probit and logistic 

models) to predict the long-term effects of toxicants have been described (Sánchez-Bayo 

2009). Similar approaches have been proposed for setting limits of exposure (Doull and 

Rozman 2000). Unlike TKTD models, these approaches lack a mechanistic basis, relying 

instead on transformations of the data and/or linear extension of the dose-response 

relationship over time (Belkebir et al. 2011). This overlooks TKTD processes within 

organisms (detoxification, elimination, damage repair) that may compensate for low 

levels of exposure over time. For example, based on a linear extrapolation of the data of 

Moncharmont et al. (2003), Rondeau et al. (2014) predicted that the long-term exposure 

of overwintering bees to just 0.25 ppb of imidacloprid would result in widespread 

mortality among the bees in a colony. However, in colonies exposed to sucrose solution 

containing 5 ppb of imidacloprid for 6 weeks (July-August), neither colony size nor 

longevity were reduced over the following ~7 months (September-April; Meikle et al. 

2022). This occurred despite imidacloprid concentrations in honey persisting at 

concentrations between 2 and 5.9 ppb between November and February (supplementary 

material of Meikle et al. 2022). 

 TKTD modeling has already been used to extrapolate the results of 10-day 

chronic toxicity assays with honey bees over longer periods of exposure. Hesketh et al. 

(2016) found that the 10-day LC50 for the heavy metal cadmium was ~3X greater than its 

30-day LC50 as estimated by GUTS. Extrapolating to the lifespan of winter bees (~90 

days), the difference was roughly 10-fold, without accounting for differential rates of 

food consumption between summer and winter bees. By contrast, GUTS predicted more 
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similar LC50 values over time for the pesticides included in the study, indicative of lower 

levels of time-cumulative toxicity for those chemicals. A variety of TKTD studies with 

other organisms, primarily aquatic invertebrates, further demonstrate how lethal toxicity 

data can be used to predict toxic effects beyond the duration of bioassays (Brock et al. 

2021). 

 Their ability to predict toxic effects over time also makes TKTD models 

applicable as modules in mechanistic models of honey bee exposure (Hörig et al. 2015). 

GUTS and related TKTD models have already been used to model the population 

dynamics of a variety of taxa under chemical stress, including Daphnia magna (Gergs et 

al. 2016), the mysid shrimp Gammarus pulex (Galic et al. 2014), and the earthworm 

Eisenia fetida (Roeben et al. 2020). Notably, most research on honey bee colony 

modeling has focused on the exposure of colonies to toxicants, with little if any 

exploration of how to model the subsequent effects. For this and other applications of 

population models in honey bee risk assessment, standardized exposure scenarios may be 

required (e.g. the FOCUS surface water scenarios used for aquatic risk assessment in the 

EU; Ockleford et al. 2018). 

 

 Mixture toxicity 

 In addition to assessing the toxicity of individual chemicals over time, TKTD 

modeling can be used to assess the toxicity of chemical mixtures. Again, mixture toxicity 

is highly relevant to honey bees: Large-scale surveys of commercial colonies in the US 

detected between 3 and 15 co-occurring pesticides on average, with over 100 unique 
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pesticides detected across studies (Mullin et al. 2010, Traynor et al. 2016, Ostiguy et al. 

2019). In a given year, pesticides representing >9 modes of action have been detected 

from individual apiaries (Ostiguy et al. 2019). Particular combinations of chemicals are 

also known to have synergistic effects on honey bees, for example, sterol-biosynthesis 

inhibitors and other pesticides, including common apicultural miticides (Johnson et al. 

2013, Carnesecchi et al. 2019). The potential for synergistic interactions significantly 

complicates the task of assessing the risk posed by chemical mixtures. 

 Existing metrics for quantifying the toxicity of chemical mixtures overlook the 

factor of time. Many studies have utilized a simple hazard quotient, sometimes referred to 

as the Toxic Unit (Rortais et al. 2017), calculated by adding the ratios of chemical 

concentrations then dividing by their LD50 or NOEC values (Stoner and Eitzer 2013). 

This quotient may be useful as a simple indicator of risk and it has been correlated with 

adverse colony-level outcomes (Traynor et al. 2016). However, it relies on point-

estimates of toxicity with limited utility for predicting toxic effects over time. It also has 

not been applied consistently across studies, particularly the definition of quotient values 

indicating unacceptable levels of risk (Thompson 2021). 

 A very small number of studies have used pesticide usage data to quantify the 

combined toxicity of chemicals to honey bees across space and over large time intervals, 

which is known as toxicity loading (Goulson et al. 2018, Douglas et al. 2020). One study 

also considered the relative persistence of pesticides in the field (DiBartolomeis et al. 

2019), providing a more mechanistic assessment of toxicity loading over time. Although 

metrics of toxicity loading may capture long-term and large-scale trends in chemical 
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abundance and their associated risk, like the hazard quotient approach, they rely on 

benchmarks of toxicity taken from a single timepoint in bioassays. Other metrics for 

assessing the toxicity of mixtures take synergistic interactions into account (ex. modified 

Toxic Units, Rortais et al. 2017), but do not consider time-cumulative toxicity 

(Carnesecchi et al. 2019). It should be noted that several mechanistic colony models exist 

that represent colony growth over multiple years, which may be suitable for conducting 

simulations of repeated and/or persistent exposure to chemical mixtures over time 

(Becher et al. 2014, Kuan et al. 2018). 

 Like standard approaches utilizing curve-fitting models, TKTD modeling can be 

used to test whether chemicals exhibit interactive effects in combination (Bart et al. 

2021). To that end, TKTD modeling may provide special insights related to the modes of 

action of the chemicals in the mixture. In GUTS modeling, chemicals with similar modes 

of action are expected to produce similar forms of damage such that their combined effect 

can be predicted by adding their respective levels of damage (the concept of damage 

addition, Bart et al. 2021). As such, TKTD modeling can provide a cross-reference with 

existing concepts of mixture toxicity (concentration addition and independent action, 

Cedergreen et al. 2008). Toxic chemicals working through similar modes of action are 

also expected to have GUTS parameters that cluster together in parameter space, 

providing a novel screening-level diagnostic tool for determining probable modes of 

action across chemicals (Ashauer et al. 2015). 
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 TKTD modeling in practice 

 TKTD models present practical advantages in comparison with standard dose-

response models, including the ability to handle censored data, data with replicates of 

varying length, and data from assays with variable levels of exposure over time (Jager 

and Ashauer 2018a). However, TKTD modeling is not a panacea. Like existing methods, 

TKTD models will not be able to make accurate predictions with data from bioassays 

with insufficient dose-response information (e.g. all treatment groups exhibiting the same 

dose-response pattern). As with existing methods, treatments will have to be chosen 

carefully to balance field-relevance and the generation of informative data. Research 

designs and/or TKTD models may also have to be modified to account for factors that are 

not inherently toxicokinetic, such as ageing. Finally, exposure scenarios used in bioassays 

may need to be adjusted to optimize their application for TKTD modeling. For example, 

assays in which exposure occurs in one or two pulses can sometimes help to estimate 

particular TKTD parameters. Assay design will depend on the intended use for the data 

(i.e. generating certain benchmarks of toxicity, predicting toxicity over extended periods 

of exposure, time-variable exposure, etc.; Jager and Ashauer 2018b). 

 It must also be acknowledged that TKTD modeling is relatively data-intensive in 

comparison with approaches based on standard benchmarks of toxicity. Their application 

either requires TKTD parameters from previously fitted models or raw bioassay data for 

each chemical that could be used to estimate these parameters. Even if TKTD parameters 

were available for every chemical in isolation, the number of mixture studies required to 

test their interactions quickly becomes impractical. To simplify the problem, chemical 
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combinations can be prioritized according to their expected likelihood of exhibiting 

synergistic effects. This can potentially be achieved with high-throughput in silico 

docking studies (Mao et al. 2017, Carnesecchi et al. 2019). It may also be helpful to 

organize this effort in terms of chemical mechanisms of action (Ostiguy et al. 2019), as is 

done for the human risk cup (Reffstrup et al. 2010), bearing in mind that chemicals with 

the same mode of action may exhibit differential rates of synergy in combination with the 

same chemicals (Reid et al. 2020). TKTD parameters determined for chemicals 

representative of each group could then be compiled and used to assess the overall risk of 

field-relevant mixtures to honey bees over time via mechanistic modeling. 

 An assessment of mixture toxicity in the field as well as other applications of 

TKTD modeling with honey bees would benefit immensely from the availability of raw 

timeseries data generated from past toxicity assays. Currently, ecotoxicological databases 

focus on benchmarks of toxicity and chemical properties. These have proven useful for 

predicting toxicokinetic parameters and potentially the modes of action of chemicals in 

honey bees (Carnesecchi et al. 2020), but omit the temporal information contained in raw 

timeseries data. Long-term field studies measuring chemical residues from colonies will 

continue to be essential for model development (Zioga et al. 2020, Traynor, et al. 2021), 

combined with detailed pesticide usage data. The quality of such data is highly variable, 

both geographically and across pesticide categories, such as seed treatments (Hitaj et al. 

2020). In the US, the most informative pesticide usage data is that collected annually by 

the California Department of Environmental Protection (“California Pesticide 

Information Portal” 2021). 
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1.4 Toxicokinetics at the suborganismal level 

 Toxicokinetic information at the suborganismal level can also be applied to risk 

assessment. Such data is not included as a standard part of the risk assessment process for 

honey bees, but is essential for the integration of toxicological data across the levels of 

biological organization. This integration is part and parcel of the development of in vitro 

models (e.g. cell cultures, enzyme assays), which may eventually be developed into high-

throughput screening tools (Coecke et al. 2013). Importantly, this will require that in vitro 

measurements can be used to estimate risk at the organism level. This is the motivation 

for the development of adverse outcome pathways (AOPs), a conceptual framework for 

linking molecular events triggered by toxicants to their organism-level effects (Ankley et 

al. 2010). TKTD modeling will be essential to the development of AOPs because, unlike 

the parameters of standard dose-response models, they have explicit biological meaning 

(e.g. rates of chemical uptake, amounts of damage) that can be cross-checked between in 

vivo and in vitro models (Ashauer et al. 2015). 

 Below, we illustrate the utility of toxicokinetic information for honey bee risk 

assessment through a series of studies on neonicotinoids (LaLone et al. 2017). These 

studies illustrate how data from organism-level bioassays have been used to guide 

increasingly mechanistic studies, eventually leading to major insights on the 

toxicokinetics of chemicals within honey bees and across bee species (Fig. 7). 
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Figure 7. The development of toxicokinetic knowledge, beginning with organism-level 

studies (left), leading to increasingly mechanistic studies and elucidation of Adverse 

Outcome Pathways (AOPs) at the sub-organismal level (Ankley et al., 2010). 

 

 Most toxicokinetic research with honey bees below the organism level has been 

informed by organism-level bioassays. Through such assays, it is known that structurally-

related but distinct classes of neonicotinoids (the N-cyanoamidine and N-nitroguanidine 

classes) exhibit marked differences in their toxicity to honey bees (Iwasa et al. 2004) and 

the buff-tailed bumble bee (Bombus terrestris) (Cresswell et al. 2014, Manjon et al. 

2018). It was not known whether these differences in toxicity between chemical classes 

were due to the differential binding affinity of neonicotinoids to their sites of action 

(nicotinic acetylcholine receptors, nAChRs) or the relative activity of bee detoxification 

enzymes against either subclass of neonicotinoids. B. terrestris is also known to be more 

susceptible to imidacloprid than honey bees, and accumulated imidacloprid at a greater 

rate than honey bees in a lab study, but the causes for between-species differences in 

sensitivity (e.g. differential rates of feeding, toxicokinetic factors) were not clear 

(Cresswell et al. 2014). Using chemicals that are known to inhibit particular classes of 

detoxification genes, there was strong evidence that differences in the sensitivity of 
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honey bees to either class of neonicotinoids involved detoxification enzymes in the 

cytochrome monooxygenase (P450) family (Iwasa et al. 2004). Subsequent to these 

organism-level bioassays, researchers applied radio-labeled neonicotinoids from each 

neonicotinoid class to tissue samples of bee brains, finding no significant differences in 

their binding affinity to bee nAChRs (Manjon et al. 2018). 

 The CYP3 clade of P450s was previously shown to be important for 

detoxification across insects (Li et al. 2007) and was implicated in the differential 

tolerance of honey bees to different pesticides (Berenbaum and Johnson 2015). Manjon et 

al. (2018) expressed each gene in the honey bee CYP3 clade in an insect cell line, which 

they exposed to either thiacloprid (N-cyanoamidine) or imidacloprid (N-nitroguanidine) 

and measured rates of metabolism via LC-MS/MS. This approach identified a single 

P450, CYP9Q3, that was primarily responsible for the differential sensitivity of honey 

bees to these neonicotinoid classes. Orthologs of this gene were later identified from the 

genomes of the red mason bee (Osmia bicornis) and the buff tailed bumble bee and 

confirmed to efficiently metabolize N-cyanoamidine neonicotinoids in vitro (Beadle et al. 

2019, Troczka et al. 2019). The P450 genes from each bee species also conferred 

resistance to these neonicotinoids when expressed in transgenic fruit flies (Manjon et al. 

2018, Beadle et al. 2019, Troczka et al. 2019). Similar in vitro methods have also been 

used to identify honey bee P450 enzymes responsible for the detoxification of the 

butenolide insecticide flupyradifurone (Haas, Zaworra, et al. 2021) and synergistic 

effects, between pyrethroids and the miticide coumaphos (Johnson et al. 2009, Mao et al. 
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2011) and azole fungicides and a variety of pesticides, including the diamide insecticide 

chlorantraniliprole (Haas and Nauen 2021, Haas, Glaubitz, et al. 2021). 

 Kinetic factors other than detoxification by P450 enzymes also contribute to the 

differential toxicity of neonicotinoids in honey bees. Zaworra et al. (2019) demonstrated 

that imidacloprid translocates through the honey bee cuticle at a greater rate than 

thiacloprid and acetamiprid. The butenolide insecticide flupyradifurone, which has the 

same mechanism of action as neonicotinoids, had a slower uptake rate across the honey 

bee cuticle than two neonicotinoids in the same study, contributing to its lower overall 

toxicity relative to these chemicals (Haas, Zaworra, et al. 2021). Like imidacloprid, the 

N-cyanoamidine neonicotinoids acetamiprid and thiamethoxam form toxic metabolites, 

the latter including the neonicotinoid clothianidin (Nauen et al. 2003, Mokkapati et al. 

2022). 

 In addition to developing new in vitro models, studies like those just described 

may eventually be used to validate predictive toxicological models incorporating 

chemical structures (Mao et al. 2011, Carnesecchi et al. 2020) and genomic data (López-

Osorio and Wurm 2020). Toxicokinetic studies will also aid in the development of 

genetic biomarkers of honey bee stress. Measures of immune, stress, and detoxification 

gene expression together with organism-level effects have been reported in some studies 

and further investigation in this area is warranted (Christen and Fent 2017, Haas, 

Zaworra, et al. 2021). 
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1.5 Summary 

 Kinetics is relevant to each step of the honey bee risk assessment process, 

including exposure characterization (kinetic fate), the development of adverse outcome 

pathways (toxicokinetics), and hazard characterization (TKTD modeling). These kinetic 

factors will be essential for the continued development of mechanistic colony models to 

assess the impact of toxic exposure. Although mechanistic modeling requires more data 

than alternative modeling approaches, this challenge can be met through greater sharing 

of bioassay data and concerted research efforts to determine the kinetic properties of 

chemicals in different environmental compartments (soil, plants, floral resources, and 

hive matrices). 
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Chapter 2. Modeling the long-term (chronic) toxicity of major metal pollutants (As, 

Cd, Li, Pb, Zn) on honey bee survival and colony growth: A comparison of modeling 

approaches 

 

Abstract 

 Honey bees are regularly exposed to metal pollutants in the environment. Metals 

never break down, allowing them to accumulate into honey bees and exert cumulative 

effects on honey bee health over time. Like other toxic chemicals, our understanding of 

the effects of metals on honey bees is largely based on relatively brief laboratory assays. 

Consequently, there’s interest in modeling approaches that can leverage short-term 

toxicological data collected from individual honey bees to predict the cumulative effects 

of exposure on whole colonies. In the present study, I compared two approaches for 

predicting the effects of metals on honey bee survival: one utilizing a standard (probit) 

model of survival and another utilizing a toxicokinetic-toxicodynamic (TKTD) model 

(the General Unified Thresholds Model of Survival, GUTS). Specifically, I fitted each 

model to data from 10-day oral chronic toxicity assays with As, Cd, Li, Pb, and Zn. Fitted 

models were then used to predict the survival of honey bees in the laboratory under 

longer periods of exposure (> 10 days), which were validated for three of the metals (Cd, 

Li, and Zn). I found that GUTS outperformed probit modeling when predicting the 

survival of honey bees under exposure to Cd and Li, with equivocal results for Zn. 

Models were also used to predict the effects of each metal on colony growth, using a 

preexisting colony population model. The colony-level predictions of each modeling 

approach tended to overlap, with case-specific differences across metals. Based on my 
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results, I advise that colony modelers consider TKTD models when predicting honey bee 

survival and compare the predictions of contending models of survival when possible. 

 

2.1 Introduction 

 Honey bees are regularly exposed to low (chronic) levels of a variety of 

potentially toxic chemicals in the environment, including metals (Johnson 2015, 

Solayman et al. 2016). As a class of toxicants, metals are uniquely persistent in 

environmental media (ex. soils) and are geographically widespread (Vareda et al. 2019). 

Metals are also known to bioaccumulate within exposed organisms, including honey bees 

(Di et al. 2016), which can result in cumulative effects on honey bee health over time, 

even at low levels of exposure (Hesketh et al. 2016, Hladun et al. 2016). 

 Honey bee colonies have long served as biomonitors of metal pollution 

(Bromenshenk et al. 1985, Leita et al. 1996, Conti and Botrè 2001) and related studies 

have shown that honey bees are exposed to metals by multiple routes. Metals in the air 

and soil are transferred into the nectar and pollen of growing plants, to which foraging 

honey bees are subsequently exposed (Leita et al. 1996, Quinn et al. 2011, Hladun, 

Parker, et al. 2013, Meindl and Ashman 2014, Xun et al. 2017, Borsuk et al. 2021). 

Flying bees also come into contact with airborne metals. Studies have shown that the 

metal loads on the bodies of foragers can be attributed to particular sources of metal 

emissions such as leaded gasoline and certain factories (Capitani et al. 2021, Papa et al. 

2021). Metal loads also correlate with overall atmospheric particulate matter (Costa et al. 

2019), though this correlation is sometimes weak (Steen et al. 2015, Goretti et al. 2020). 
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These metals are likely to be consumed during grooming or passed into the components 

of the colony, including colony foods, contributing to the colony’s oral exposure. 

 The above routes of exposure result in metal levels in colony foods (beebread and 

honey) that sometimes reach parts-per-million (mg/kg) concentrations (Appendix A; 

Solayman et al. 2016). These concentrations are typically below regulatory limits based 

on human exposure (Monchanin, Devaud, et al. 2021), though some studies report metal 

concentrations from honey at certain sites that may pose human health concerns if 

consumed very frequently, either alone (Devillers et al. 2002, Gutiérrez et al. 2015, 

Bosancic et al. 2020) or when assessed in combination with pesticide residues 

(Bommuraj et al. 2019). Notably, metal concentrations in the bodies of honey bees are 

often 1-2 orders of magnitude greater than in beebread or honey (Appendix A), indicative 

of bioaccumulation. This has led some researchers to refer to honey bees as biofilters of 

metals from honey (Dżugan et al. 2018, Borsuk et al. 2021). The accumulation of metals 

into honey bees has also been measured directly in the lab (Hladun, Kaftanoglu, et al. 

2013, Di et al. 2016) and some studies have measured the accumulation of metals into 

colonies over time, either in the field (Leita et al. 1996) or under netted enclosures in a 

semi-field study (Hladun et al. 2016). 

 

 Metals pose risk to honey bees in the field 

 There is strong evidence that metals can affect honey bee health at field-relevant 

levels of exposure. Colony-level studies have found correlations between increased metal 

loads within colonies and decreased colony growth or brood production (Bromenshenk et 
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al. 1991, Hladun et al. 2016). These studies are corroborated by field studies with non-

Apis bees, finding reductions to colony size and brood production in nests containing 

greater concentrations of certain metals (Moroń et al. 2014, Sivakoff et al. 2020). 

 At the individual level, the effects of metals are most pronounced for honey bee 

brood (Hladun, Kaftanoglu, et al. 2013, Di et al. 2016, 2020). This is discussed in greater 

detail in Chapter 3. For adult honey bees, exposure to metals at field-relevant 

concentrations can have neurotoxic effects, including reductions to appetitive learning 

(Hladun et al. 2012, Burden et al. 2016, 2019) and acetylcholinesterase activity (Al-

Naggar et al. 2020). Metal exposure also affects the expression rates of genes involved in 

the detoxification of xenobiotics, including a detoxification gene specific to metals 

(metallothionein) and genes involved in the scavenging of reactive oxygen species 

(Nikolić et al. 2016, 2019, Purać et al. 2019, Gizaw et al. 2020). Studies with a variety of 

other invertebrates have also found that metals have negative health effects at field-

relevant levels of exposure, often below regulatory levels set on the basis of human 

exposure (Monchanin, Devaud, et al. 2021). 

 

 Metals and time-reinforced toxicity 

 Metal bioaccumulation results in toxic effects that also accumulate over time. If 

the increase in toxicity over time cannot be explained by dosage alone, it is said to be 

reinforced by time or exhibit time-reinforced toxicity (TRT; Holder 2016). TRT is not 

unique to metals and will occur at some rate for any toxicant that bioaccumulates in a 

toxic form, binds irreversibly to target receptors, causes self-perpetuating damage, or 
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creates persistent toxic metabolites (Holder 2016). TRT is usually assessed with data 

from lethal toxicity assays. The most common metric of TRT is the Haber constant, 

which is the slope of a chemical’s estimated LCx values (ex. LC50 values) over time on a 

log-log scale (Cresswell 2017). This constant has been proposed as a benchmark of TRT 

for use in honey bee risk assessment (Cresswell 2018). 

 TRT is ultimately a function of chemical accumulation (governed by its 

toxicokinetics) and the formation of damage (toxicodynamics). There’s growing interest 

in applications of toxicokinetic-toxicodynamic (TKTD) models that take these 

mechanisms into explicit consideration (Vighi et al. 2019). Such models have historically 

been validated with metals and have been used to model metals’ effects at the individual 

and population levels, primarily for aquatic risk assessment (Grech et al. 2017). 

 TKTD models are appealing because they represent the toxicity of chemicals over 

time. In contrast, standard dose-response models that are used in honey bee risk 

assessment (ex. probit models) are only used to analyze data from the last day of 

bioassays (EFSA 2013, USEPA 2014, OECD 2017). This is sufficient to calculate the 

current benchmarks of toxicity (LC50 values and no-observable-adverse-effect 

concentrations, or NOECs), but omits temporal information that may be important when 

dealing with toxicants that exhibit TRT. 

 The parameters of TKTD models typically include rate constants (ex. rates of 

chemical uptake) that can be used to predict the effects of chemicals over untested 

conditions of exposure (durations and concentrations). Standard dose-response models, 

on the other hand, require added assumptions for the purpose of extrapolation. Methods 
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for extrapolating standard dose-response models have been used to predict honey bee 

survival at the individual level (Sánchez-Bayo 2009) and in colony-level risk assessment 

models (Kuan et al. 2018, Schmolke et al. 2019, Bulson et al. 2021). To our knowledge, 

the predictions of standard dose-response models and TKTD models have only been 

compared in one population modeling study, focusing on the mysid shrimp Gammarus 

pulex (Galic et al. 2014). 

 In the present study, the chronic lethal toxicity of five metal pollutants (As, Cd, 

Li, Pb, and Zn) to honey bees was assessed via standard (10-day) chronic toxicity assays 

(Fig. 8). The results were used to calibrate standard dose-response models (probit 

models) and a TKTD model (the General Unified Thresholds Model of Survival, GUTS; 

Jager et al. 2011). Calibrated models were then used to predict survival over 16 days of 

exposure at lower concentrations, which were subsequently validated by conducting 

longer assays with three of the metals (Cd, Li, and Zn). Going forward, we use the term 

“corroborate” rather than "validate,” in the parlance of (Jager and Ashauer 2018b). We 

hypothesized that the TKTD model, GUTS, would be better at predicting the results of 

corroboration assays than the probit modeling approach. 

 We also compared the colony-level predictions of each modeling approach. Using 

a simple colony population model (Khoury et al. 2011), probit and GUTS models were 

used to predict the effects of each metal on the population growth of colonies over 150 

days of exposure. We hypothesized that GUTS would tend to predict lower rates of 

colony growth over time. We then repeated our simulations after re-fitting the models to 

the longer datasets generated during model corroboration, with the hypothesis that 
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models fitted to the longer datasets would predict lower rates of survival over time. 

Finally, Haber constants were calculated for each metal and compared with a metric of 

TRT known as depuration/repair time (DRTx). This metric is the hypothetical time 

required for a chemical’s damage within the organism to fall by a given percentage, 

denoted by x (Ockleford et al. 2018). Chemicals exhibiting less TRT are expected to have 

lower DRTx values, indicative of rapid depuration of the chemical from the body and/or 

damage recovery. 

 

 

Figure 8. Overview of experimental methodology. GUTS = General Unified Thresholds 

Model of Survival. TRT = time-reinforced toxicity. DRT = depuration/repair time. 

 

2.2 Methods 

2.2.1 Selection of metals 

 Five metals (As, Cd, Li, Pb, and Zn) were included in this study (Table 1). All 

five metals are released into urban areas through vehicle emissions, construction, 
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manufacturing, and improper waste disposal (Wuana and Okieimen 2011, Vareda et al. 

2019). In agricultural areas, they may be introduced as contaminants of fertilizers, 

biosolids, wastewater irrigation, and pesticides (He et al. 2005, Wuana and Okieimen 

2011). Agricultural areas may also contain traces of As, Cd, and Pb from metal-based 

insecticides that were widely used in the past (Wuana and Okieimen 2011, Codling et al. 

2015). Biologically important metals, including Zn, are currently applied to crops as 

micronutrients in fertilizers and foliar sprays (Fageria et al. 2002) or as the active 

ingredients of bactericides (Naranjo et al. 2020). Finally, Li in the form of Li salts have 

received attention as potential treatments against Varroa destructor, a mite which 

parasitizes honey bee colonies (Ziegelmann et al. 2018). The persistence of Li within 

colonies is not well understood and may have long-term effects on adult honey bees 

following feeding. 
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Concentrations reported 

from colony components (mg/kg) 

Metal 

LC50 

(mg/L) 

Assay length 

(h) Honey4 

Pollen or 

Bee Bread Bee bodies 

As 4.031 240 ND-0.10 < 0.01 - 1.385 
< 1.51E-36 - 

13.97 

Cd 3.6971 96 1.7E-5 - 0.373 < 0.0035 - 2.38 
< 4.5E-49 - 

3.1910 

Li ~173.53 ~432 NA NA 
< 0.01 - 

0.0512 

Pb 3452 72 6.3E-4 -3.232 < 0.15 - 4.68 
< 0.0012513 - 

11.2314 

Zn 290* 240 0.23-73.60 < 7.1314 - 108.28 < 8.569 - 

210.5515 

Table 1. Toxicological data from past studies reporting the toxicity and exposure of each 

metal to honey bees. A more detailed table of concentrations from each study is presented 

in Appendix A. **The 10-day LC50 value for Zn was estimated using data from a 

preliminary study in the Summer of 2020. Sources: 1Hesketh et al. (2016), 2Di et al. 

(2016), 3Ziegelmann et al. (2018), 4Solayman et al. (2016), 5Morgano et al. (2010), 
6Matin et al. (2016), 7Bromenshenk et al. (1991), 8Leita et al. (1996), 9Silici et al. (2016), 
10Tomzyk et al. (2020), 12Van der Steen et al. (2012), 13Conti and Botrè (2001), 14Al-

Naggar et al. (2013), 15Goretti et al. (2020). 

 

2.2.2 Toxicity assays 

 Preparation of experimental solutions 

 For calibration assays, five concentrations of each metal were selected that were 

expected to produce a range of effects on survival over ten days, including little to no 

effect (the lowest concentration for each metal) to complete mortality (the highest two 

concentrations) (Table 2). 
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Metal Compound 

Range of 

Concentrations 

(mg/L) 

Replicates 

per 

Concentration 

As Na2HAsO4 · 7H2O 0.3125 - 5 4 - 5 

Cd CdCl2 2.5 - 60 4 - 5 

Li LiCl 86.5-1734 4 - 6 

Pb Pb(NO₃)₂ 250 - 4000 4 - 6 

Zn Zn(CH3CO2)2 250 - 2000 3 - 4 

Table 2. The range of concentrations and number of replicates for each metal included in 

calibration assays. Concentrations are in terms of metal ions in solution. There were six 

treatment groups per metal, including negative controls. 

 

 Stock solutions were prepared by adding metal compounds (Table 2) to the 

appropriate volume of 50% sucrose solution in water (w/w) to achieve the desired 

concentrations of metal ions in solution. The mass of each metal compound for the 

desired volume of stock solution was calculated with the following equation in Excel: 

𝑚𝑔𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 =
𝑚𝑔𝑖𝑜𝑛

𝑚𝐿𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝑥
𝑚𝑔𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑

𝑚𝑔𝑖𝑜𝑛
𝑥
𝑚𝐿𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

1
 

 To prepare experimental solutions at the desired concentrations, stock solutions 

were serially diluted with 50% sucrose solution according to the following equations: 

𝑚𝐿𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛1 =
𝑚𝐿𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛2𝐶𝑜𝑛𝑐𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛2

𝐶𝑜𝑛𝑐𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛1
 

𝑚𝐿𝑠𝑢𝑐𝑟𝑜𝑠𝑒 = 𝑚𝐿𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛2 −𝑚𝐿𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛1 

 

 Calibration assays (10 days) 

 Assays were performed from June through August of 2021 at the Ohio State 

University Wooster campus. For each trial, a hive frame with emerging honey bees was 

taken from a healthy colony and stored in an incubator (60-80% RH, 34°C, Model 
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HH030-AA, Darwin Chambers, St. Louis, MO, USA). None of the colonies were treated 

with antibiotics in the previous four years, but colonies had been treated with formic acid 

and oxalic acid at some point over the previous years for Varroa mite control. 

 To set up each trial, newly emerged bees were anaesthetized at -20°C for 5 min 

then transferred in groups of 20 into 177 cm3 ice cream cups (Uniq Brand, Gilbert, AZ; 

Fig. 9). Newly emerged bees were collected from the incubator every day to ensure that 

all bees were < 1 day old. Each cup received a sterile 3 mL plastic syringe to serve as an 

ad libitum feeder, containing its respective metal at one of five concentrations or no metal 

(negative controls). 

 On each day of the 10-day assay, the number of living and dead honey bees were 

counted and the weight of feeders were measured. Feeders were refilled as needed to 

ensure that no feeder ran out of solution during a given trial. To account for syrup loss 

due to evaporation, evaporation cups containing no bees were included in five of the 10-

day calibration trials and all nine of the 20-day corroboration trials. One evaporation cup 

was included on each shelf of the incubator during these trials, amounting to 148 

measures of daily evaporation. 
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Figure 9. The setup of chronic toxicity assays. Brood frames from healthy colonies (left) 

were stored in the incubator (center) and used to provision same-age adult honey bees, 

which were divided in groups of 20 into ice cream cups (right). Each cup received 

sucrose solution treated with one of five metals (As, Cd, Li, Pb, or Zn) or no metal 

(negative controls). Survival and food consumption was recorded daily for the duration of 

each assay (10-day calibration assays or 20-day corroboration assays). 

 

 Corroboration assays (20 days) 

 After completing the 10-day calibration assays, longer (20-day) corroboration 

assays were conducted with three of the metals (Cd, Li, and Zn) from August 10th-31st, 

2021. These assays were conducted with the same methodology as 10-day assays with the 

same measurements taken on each day. However, the corroboration assays included some 

concentrations that were lower than those included in the calibration assays. Trials with 

each concentration were replicated three times (Table 3). 

Metal Compound 
Range of 

Concentrations 
(mg/L) 

Treatment 
Groups (#) 

Replicates per 
Concentration 

 
Cd CdCl2 0.25 - 5 5 3  

Li LiCl 14 - 173.5 6 3  

Zn Zn(C2H3O2)2 100 - 2000 6 3  

Table 3. The range of concentrations and number of replicates of each metal included in 

corroboration assays. 
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2.2.3 Model calibration 

 Using data from calibration assays for each metal, probit models of survival over 

concentration on day 10 were fitted with the glm function in the R package ‘stats’ (R 

Core Team 2021). Datapoints were weighted according to the number of honey bees in 

each cup (mean = 20.01, SD = 0.81). All other arguments to glm were kept at their 

default values. LC50 values and their 95% confidence intervals were estimated with the 

LC_probit function in the R package ‘ecotox’ (Hlina et al. 2021). 

 GUTS models were fitted to survival data with the survFit function in the R 

package ‘morse’ (Delignette-Muller et al. 2017, Baudrot et al. 2021). Specifically, the 

reduced version of GUTS (GUTS-RED) was used (see Appendix B for a description of 

GUTS and its parameters). To cross-check the parameter values estimated by ‘morse,’ 

GUTS parameters were also estimated using the OpenGUTS software (version 1.1; Jager 

2021). This software does not rely on prior information during model fitting and can be 

considered a more conservative parameter estimation approach. OpenGUTS was also 

used to determine the death mechanism (stochastic death, SD, or individual tolerances, 

IT) that produced the best fit to the data for each metal (Appendix B). In ‘morse’ and 

OpenGUTS, all settings and function arguments were kept at their default values. 

Because mortality in the negative control groups was nearly zero throughout the 10-day 

calibration assays, baseline mortality (hb) was set to zero during model fitting. This 

resulted in three parameter estimates belonging to GUTS-RED-SD (kd, bext, and zext) and 

GUTS-RED-IT (kd, mext, and Fs) for each metal. LC50 values for each metal and version 

of GUTS were then calculated with the LCx function in ‘morse.’ 



41 

 

 The above was repeated using data from the 20-day corroboration assays. This 

allowed a comparison of model outputs when fitted to data of differing length (10 days or 

>10 days). To limit the effect of ageing on our analysis, data from corroboration trials 

were omitted once mortality in any of the negative control cups reached 20%. For each 

metal, this occurred on day 16. During model fitting, baseline mortality (hb) was preset to 

the average daily rate of mortality observed in the negative control group for each metal. 

For Cd, Li, and Zn, this was equal to daily death rates of 0.4, 0.5, and 0.5%, respectively. 

2.2.4 Survival predictions, individual level 

 The survival of honey bees was predicted differently depending on the survival 

model being implemented. GUTS-RED predictions were generated using the predict_ode 

function in ‘morse.’ For the probit models, metal concentrations were used to predict the 

expected rate of survival from the probit dose-response curve for each metal on day 10 

(Fig. 10). Because probit models were fitted with data from a single timepoint (the last 

day of the 10-day calibration assays), they could only be used to predict survival over 10 

days of exposure. To convert these 10-day survival predictions into daily rates, they were 

simply divided by 10. This approach was performed with survival probabilities spanning 

the 95% confidence region of each probit prediction. 
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Figure 10. Approach for extrapolating probit models to predict survival. Survival was 

predicted by taking the expected rate of survival over 10 days from the model’s dose-

response curve. These values were converted into daily rates of survival by diving them 

by 10. 

 

 The accuracy of predictions made with probit and GUTS models were quantified 

with root-mean-square errors, which were calculated with the accuracy function in the R 

package ‘forecast’ (Hyndman and Khandakar 2008). To test the relative accuracy of each 

model for statistical significance, two-sided Diebold-Mariano tests were performed 

between the residual errors of each model, using the function dm.test, also in ‘forecast’. 

 

2.2.5 Survival predictions, colony level 

 Colony modelling 

 An established colony population model (Khoury et al. 2011) was used to predict 

the colony-level effects of oral exposure to each metal via honey. Since its original 

publication, the Khoury model has been adapted for a number of studies on the colony-

level effects of different honey bee stressors, including pesticide exposure, food 

limitation, and impaired brood tending (Myerscough et al. 2017, Holder et al. 2018, 

Zeaiter and Myerscough 2020). 
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 The Khoury model is a relatively simple colony population model comprised of 

just two differential equations (Fig. 11). The first equation represents the rate that brood 

emerge to adulthood, which increases with the colony’s total population size (N), up to 

the value of the parameter L, the queen’s maximum egg laying rate. The emergence rate 

approaches L as a function of a second parameter, w. A second equation calculates the 

proportion of hive bees that are recruited to foraging at each timestep. When no foragers 

are present, the rate of recruitment is at its maximum possible value, represented by the 

parameter α. Recruitment is counterbalanced by the inhibition of recruitment by existing 

foragers, controlled by the parameter σ. 

 For this study, a version of the original Khoury model was written in R using the 

R package ‘deSolve’ (Soetaert et al. 2010). Each parameter in the model was set to the 

default values used in the original publication (Khoury et al. 2011). Model outputs were 

cross-checked with those reported in the original publication to ensure that it was 

correctly implemented. The Khoury model was then modified to simulate the oral 

exposure of adult bees to metals in colony honey (Fig. 11). 

 
Figure 11. The colony population model used for the present study. Our modifications 

are given in blue. Figure modified with permission from Khoury et al. (2011). 
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 In the original Khoury model, only foragers die, at a daily rate determined by the 

parameter for baseline mortality, mb. For the present study, two additional death rate 

parameters, mmh and mmf, were introduced to represent average daily rates of metal-

induced mortality among hive bees and foragers, respectively. The level of exposure at 

each timepoint was represented with the GUTS parameter Cext. The EPA’s Bee-REX 

model was used to estimate the relative oral exposure of foragers and hive bees (USEPA 

2014). Foragers were assumed to consume 292 mg of nectar per day whereas hive bees 

were assumed to consume 100 mg per day, which is the average level of consumption in 

Bee-REX for workers performing in-hive duties. Using these values, the daily exposure 

of hive bees in our simulations were calculated by multiplying the level of exposure 

experienced by foragers (Cext) by 100/292. Because Bee-REX assumes that adult bees 

consume little pollen relative to nectar or honey, metal exposure in our model was 

assumed to originate entirely from contaminated honey. 

 

 Colony simulations 

 The modified Khoury model was used to simulate the growth of colonies over 

200 days. In each simulation, no exposure took place for the first 50 days. For control 

simulations, no exposure continued until day 200. For exposure simulations, oral 

exposure via honey occurred from day 50 to day 200. Modelling was performed with 

each metal across a range of concentrations. The lowest concentrations for As, Cd, Pb, 

and Zn were the mean concentrations measured in honey (Solayman et al. 2016). For Li, 

we used the lowest concentration that was shown to be effective for control of V. 
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destructor (2mM LiCl, or ~ 13.9 mg/L Li) (Ziegelmann et al. 2018). A series of 

simulations were then run for each metal in which metal concentrations were increased 

incrementally until the predicted population size of simulated colonies reached zero by 

day 200. 

 Survival at each timestep of the colony simulations were calculated differently 

depending on the modeling approach being implemented. Probit predictions were 

calculated in the same manner as before (section 2.2.4), using the average concentration 

of each metal in honey over the previous ten days to predict survival at each timestep. To 

implement GUTS in the colony model, metal exposure at each timestep (Cext) was 

substituted into the GUTS equation for scaled damage (Dext) using values for the 

dominant rate constant (Kd) that had been estimated for each metal during model fitting. 

 

 In the context of our colony model, Dext represents the damage experienced by 

adult bees throughout the colony. Because damage is represented at the colony level, it 

was reduced at each timestep by a factor equal to the number of adult bees that had died 

at that timestep. This was necessary to ensure that the damage experienced by previously-

exposed bees that had died wasn’t being reapplied to bees that later emerged. Average 

damage was also reduced at each timestep to account for the proportion of newly-

emerged bees in the colony that had yet to be exposed and therefore had not incurred any 

damage. 
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 To translate damage into rates of survival, Dext was substituted into the GUTS 

equation for the hazard rate (hz), using values for the killing rate parameter, bext, and the 

tolerance threshold. zext, that were previously estimated for each metal during model 

fitting. 

 

 GUTS parameters, like the parameters of probit models, come with uncertainty, 

represented by their 95% confidence intervals. To account for the uncertainty 

surrounding the estimates of each GUTS parameter, a series of Monte Carlo simulations 

were conducted in which parameter values were randomly sampled from the 95% 

confidence region of the posterior distribution of each parameter (Fig. 12). Sampling was 

not conducted uniformly. Rather, the probability of sampling a given value depended on 

the density of the posterior distribution at that value. Each simulation was repeated 1000 

times, using different combinations of randomly sampled parameter values. 

 
Figure 12. The implementation of GUTS parameters during colony modeling. 
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2.2.6 Metrics of TRT 

 Haber Constants 

 Cresswell (2018) describes the Haber constant and its derivation graphically. 

Briefly, survival data from each treatment group in the assay is used to generate logit 

models of survival over time. These models are then used to estimate the time required 

for 50% of the test population to die at each concentration (lethal effect times, or LT50 

values). The resulting LT50 values are plotted over their respective concentrations on a 

log-log plot and the slope of the resulting line of best fit is equal to the Haber constant. In 

the absence of TRT, this slope is expected to be equal to -1, with more negative values 

indicating increasing levels of TRT. 

 The Excel protocol of Cresswell (2017) was replicated in R and used to calculate 

Haber constants for each metal, pooling the data from calibration and corroboration 

assays. The outputs of the R code were cross-checked against the outputs of the original 

protocol to ensure that it was properly replicated. For each metal, an F test was performed 

using the linearHypothesis function in the R package ‘car’ (Fox and Weisberg 2019) to 

determine whether Haber constants (slopes) were significantly different from -1, 

indicative of time-dependent effects on toxicity. Pairwise differences between Haber 

constants belonging to each metal were also compared through a series of Tukey’s HSD 

tests, which were implemented using the lstrends function in the R package ‘lsmeans’ 

(Lenth 2016). 
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 Depuration/repair times 

 The depuration/repair time (DRTx) is an alternative metric of TRT specific to 

GUTS that represents the time for chemical damage to fall by a given percentage, 

denoted by x, in the absence of exposure (Ockleford et al. 2018). Using GUTS-RED, 

DRTx is calculated with the following equation: 

 The European Food Safety Authority recommends using the DRT95 (Ockleford et 

al. 2018). For each metal, DRT95 values were calculated with kd values estimated in 

OpenGUTS, using GUTS models fitted to data from calibration assays. Because the 

lower bound of kd could not be estimated for each metal in OpenGUTS, only the upper 

estimates of DRT95 values could be calculated. 

 

2.3 Results 

2.3.1 Calibration assays 

 In accordance with guidelines for conducting honey bee chronic toxicity assays 

(OECD 2017), none of the control groups in the calibration assays exhibited mortality 

>15% by the end of day 10. There was a clear dose-response relationship for all metals 

throughout calibration assays: at each timepoint, average rates of survival were lower at 

higher metal concentrations (Fig. 13). Raw food consumption data is provided in 

Appendix C, Fig. 30. 
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Figure 13. Rates of survival over time for each metal and concentration during 

calibration assays. Points and error bars represent medians and interquartile ranges, 

respectively. Error bars are only provided for timepoints with mortality >15% to improve 

legibility. 

 

 For each metal, GUTS-SD provided a better fit to the data than GUTS-IT (Table 

4). 
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 As Cd Li Pb Zn 

Criteria SD IT SD IT SD IT SD IT SD IT 

R2 

9.5E

-01 

8.3E

-01 

9.8E-

01 

9.4E

-01 

9.7E

-01 

8.9E

-01 

9.8E

-01 

9.6E

-01 

9.9E

-01 

9.5E

-01 

- Log 

likelihood 

7.6E

+02 

1.0E

+03 

7.19E

+02 

7.7E

+02 

7.1E

+02 

8.6E

+02 

6.9E

+02 

7.2E

+02 

6.2E

+02 

6.5E

+02 

AIC 

1.5E

+03 

2.0E

+03 

1.4E+

03 

1.6E

+03 

1.4E

+03 

1.7E

+03 

1.4E

+03 

1.4E

+03 

1.2E

+03 

1.3E

+03 

NRMSE 

2.0E

+01 

3.4E

+01 

8.1E+

00 

1.3E

+01 

1.3E

+01 

2.4E

+01 

6.0E

+00 

9.6E

+00 

5.2E

+00 

1.1E

+01 

Table 4. Goodness-of-fit criteria for each GUTS model (GUTS-RED-SD and GUTS-

RED-IT) and metal, fitted to the calibration data in the software OpenGUTS. GUTS-SD 

outperformed GUTS-IT in all cases (higher R2 values and lower values for all other 

criteria). 

 

 In OpenGUTS, the lower bound for the dominant rate constant could not be 

estimated for any metal or version of GUTS, but the lower and upper bounds of all other 

parameters could be estimated (Table 5). All GUTS parameters could be estimated using 

the R package ‘morse,’ whose estimates are provided in Appendix C, Table 19. 

 

GUTS 

Model 
Parameter Unit As Cd Li** Pb Zn 

SD 

Dominant 

rate* (kd) 
day-1 

ND-

4.3E-3 

ND-

2.4E-2 

ND-

5.1E-3 

ND-

2.1E-2 

ND-

1.8E-2 

Killing 

rate (bw) 
mg L-1 3.1E-3 2.8E-2 10.92 10.53 3.405 

Threshold 

(z) 

mg L-1 

day-1 
119 2.303 0.03253 0.04524 0.07323 

Table 5. Median parameter estimates of GUTS-SD for each metal, fitted to the 

calibration data. Values were estimated in the OpenGUTS software. *The lower bound of 

the dominant rate constant could not be estimated for any metal (“ND” = not 

determined). **The values of GUTS parameters for Li are in terms of mg/L of LiCl, 

whose concentrations were used when fitting GUTS models. 

 

 Probit models for each metal are presented in Fig. 14. Exact values for all LC50 

estimates are provided in Appendix C, Table 20. 
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Figure 14. Probit models fitted to the calibration data on day 10. Red curves are median 

predicted levels of survival. Shaded regions span the 95% confidence intervals for each 

model. Black lines indicate the estimated LC50 values for each metal. 

 

2.3.2 Corroboration assays 

 As with the calibration data, the corroboration data exhibited a clear relationship 

between survival and concentration, with higher concentrations resulting in lower rates of 

survival (Fig. 15). Raw survival data including data beyond day 16 are provided in 

Appendix C, Fig. 31. Raw food consumption data are provided in Appendix C, Fig. 32. 
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Figure 15. Rates of survival over time for each metal and concentration during 

corroboration assays. Data were omitted once survival in any control group reached 80% 

(day 16). Points and error bars represent medians and interquartile ranges, respectively. 

Error bars are only provided for timepoints with mortality >15% to improve legibility. 

 

 Probit models of the corroboration data on day 16 are presented in Fig. 16. Exact 

values for all LC50 estimates are provided in Appendix C, Table 20. 

 
Figure 16. Probit models fitted to the corroboration data at day 16. Red curves are 

median predicted levels of survival. Shaded regions span the 95% confidence intervals 

for each model. Black lines indicate the estimated LC50 values for each metal. 
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 For all metals included in corroboration assays, the predictions of GUTS-SD had 

lower residual errors than the probit approach (Fig. 17, Table 6). Differences in the 

residual errors between models were significantly different for all metals, except when 

comparing the errors between the probit approach and GUTS-SD for Zn (Table 6). 

 

 

Figure 17. Observed and predicted rates of survival for each metal and concentration 

included in corroboration assays. Points and error bars represent median rates of survival 

and their interquartile ranges. Shaded regions span the 95% confidence intervals of 

predictions made by each modeling approach. 
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 Root-Mean-Square Errors 

Metal Probit Approach GUTS-SD 

Cd 17.24 11.87* 

Li 17.42 11.72* 

Zn 19.76 18.08 

Table 6. Root-mean-square errors for each model fitted to the corroboration data. 

GUTS-SD had lower error for all metals. Asterisks indicate errors that were significantly 

lower than those of the competing model (pairwise Diebold-Mariano tests, p < 0.05). For 

Cd, Li, and Zn, p-values were 0.0051, 0.0017, and 0.3553, respectively. 

 

2.3.3 LC50 estimates 

 LC50 estimates made using the data from day 16 of corroboration assays were all 

lower than those made with data from day 10 of calibration assays (Fig. 18). Although 

the median LC50 estimates made with GUTS-SD tended to be lower than those made with 

probit models, this was not consistent, and their 95% confidence intervals overlapped for 

all metals except As (Fig. 18). Exact LC50 estimates are presented in Appendix C, Table 

20. 
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Figure 18. 10- and 16-day LC50 values for each metal, estimated with data from 

calibration assays or corroboration assays, respectively. Points are median estimates and 

error bars span the 95% confidence interval for each estimate. 

 

2.3.4 Colony-level predictions 

 At the lowest levels of exposure simulated, the predictions of each modeling 

approach overlapped (Fig. 19). The confidence intervals surrounding model predictions 

only diverged at the highest concentrations simulated (>50X field-relevant 

concentrations). 
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Figure 19. An example of the colony-level predictions of each modeling approach, using 

models fitted to calibration data for Cd. In each simulation, exposure took place at a 

constant level from day 50 to day 200 (shaded in grey). Note that the lowest level of 

exposure (0.09 mg/L) is equal to the mean concentration of Cd measured from honey 

(Solayman et al. 2016). 

 

 Regardless of the data used to fit the models (calibration data or corroboration 

data), probit models predicted toxic effects occurring at lower levels of exposure than 

GUTS-SD (Fig. 20). However, GUTS-SD tended to predict lower final population sizes 

across the concentrations simulated (Table 7). 
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Figure 20. Median final population sizes from colony simulations for Cd, Li, Pb, and Zn 

across a range of concentrations. Predictions were either made with GUTS-SD (orange) 

or probit models (blue) and were either fitted to the 10-day calibration data (filled circles) 

or 16-day corroboration data (open circles). For Cd, Pb, and Zn, black vertical lines 

indicate the highest concentrations measured in honey (Solayman et al. 2016). For Li, the 

black line indicates the lowest concentration effective against Varroa mite in the study of 

(Ziegelmann et al. 2018). 

 

 

   

Concentration resulting 
in N < 10,000 (mg/L)  

Metal Data Used Probit 
GUTS 
-SD 

 

 

As Calibration 0.26 0.32  

Cd 
Calibration 10.31 5.93  

Corroboration 3.7 4.47  

Li 
Calibration 212.75 164.73  

Corroboration 80.27 64.19  

Pb Calibration 1106.7 884.08  

Zn 
Calibration 514.85 434.89  

Corroboration 248.05 290.17  

Table 7. Concentrations of each metal resulting in final adult population sizes (N) 

<10,000. The lowest concentration in each row is highlighted in red. 
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 For As, the predictions of the probit approach varied widely depending on the day 

at which the data were taken from bioassays (day 9 or day 10, Fig. 21). 

 
Figure 21. Median final population sizes from colony simulations for As, made with 

probit models fitted to data from day 9 or day 10 of calibration assays. The black vertical 

line indicates the highest concentration of As measured from honey (Solayman et al. 

2016). 

 

2.3.5 Metrics of TRT 

 All Haber constants were less than -1, but only those of As, Cd, and Li were 

significantly less than -1, indicative of TRT (Wald test, p << 0.05, Fig. 22, Table 8). 

Haber constants suggested that Cd exhibits the greatest TRT, followed by As, Li, Zn, and 

Pb. However, none of the Haber constants were significantly different from each other 

(Tukey’s HSD test, p > 0.05, Appendix C Table 21). 
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Figure 22. Estimated LC50 values over time for each metal, pooling data from calibration 

assays and corroboration assays. Haber constants are equal to the slopes of each line of 

best-fit (Table 8). All slopes except those of Pb and Zn were significantly different 

from -1 (Wald test, p < 0.05), indicative of TRT, but slopes were not significantly 

different from each other (Tukey’s HSD test, p > 0.05). 

 

Metal 
Haber 

Constant P value Lower CL Upper CL SE df 

As -1.88 0.001 -2.23 -1.528 0.165 16 

Cd -1.91 0.010 -2.21 -1.605 0.143 16 

Li -1.86 0.002 -2.12 -1.592 0.126 16 

Pb -1.44 0.363 -2.28 -0.602 0.396 16 

Zn -1.48 0.071 -1.83 -1.127 0.167 16 

Table 8. Haber constants for each metal. Haber constants (slopes) that are significantly 

different from -1 are indicative of TRT (F tests, p < 0.05). 

 

 Because the lower bound of kd could not be estimated for any metal in 

OpenGUTS, only the lower bound of DRT95 values could be calculated. These DRT95 

values suggested that As exhibits the greatest time-cumulative toxicity, followed by Li, 
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Zn, Cd, and Pb (Table 9). This ranking differs from that produced using Haber constants 

(Cd, As, Li, Zn, and Pb) (Table 8). 

Metal Assay 
DRT95 
(days) 

As Calibration 694.9-ND 

Cd 
Calibration 125.1-ND 

Corroboration 155.5-ND 

Li 
Calibration 587.9-ND 

Corroboration 420.4-ND 

Pb Calibration 144.7-ND 

Zn 
Calibration 165.9-ND 

Corroboration 
35.82-
357.7 

Table 9. DRT95 values calculated for each metal, using GUTS-SD models fitted in 

OpenGUTS. 

 

2.4 Discussion 

 Honey bees are frequently exposed to persistent toxic chemicals such as metals, 

but methods for predicting their long-term effects remain largely unexplored. In the 

present study, we found that the TKTD model GUTS-RED-SD predicted the survival of 

honey bees exposed to Cd, Li, and Zn more accurately than a simple extrapolation of a 

standard (probit) dose-response model, and this was statistically significant for Cd and Li 

(Table 6). Notably, the differences between the predictions of GUTS-RED-SD and probit 

models would not be evident by simply comparing their LC50 estimates, which 

overlapped for all metals but As (Fig. 18). Instead, differences were due to the ability of 

GUTS to account for time-cumulative toxicity. This produces a more realistic, S-shaped 

dose-response curve, and results in increased rates of mortality over time. 
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 When predicting the effects of each metal on colony growth, differences between 

modeling approaches were less clear cut. GUTS-RED-SD tended to predict lower rates of 

colony growth for the higher levels of exposure that were simulated, but this depended on 

the length of the data used to fit the models (10-day calibration data or 16-day 

corroboration data) (Fig. 20, 21, Table 7). At lower levels of exposure, the probit 

approach predicted lower rates of survival (Fig. 20, Fig. 21). This pattern is related to the 

fact that GUTS is a threshold model: toxic effects will not be predicted unless exposure is 

sufficient to cause damage that exceeds the organism’s estimated tolerance threshold. At 

the lower concentrations that we simulated, damage did not reach this threshold for any 

metal, except Li when fitted to the 16-day corroboration data (Fig. 20). Probit models, on 

the other hand, make no threshold assumption, but they require added assumptions for the 

purpose of extrapolation. As illustrated in Fig. 19, our probit extrapolation approach 

assumes that the rate of mortality will be constant (linear) under constant levels of 

exposure, and this will be equal to the average predicted rate of mortality on the day of 

the assay used to fit the model. This comes with the implicit assumption that toxicity is 

not reinforced by time, but constant with time. For chemicals that exhibit TRT, this will 

result in lower predicted rates of mortality over increasing periods of exposure. On the 

other hand, although our probit extrapolation approach does not account for TRT, over 

longer assays, it will naturally predict lower rates of mortality because higher average 

rates of mortality will be calculated by the last day (for a given concentration). This is an 

artifact of relying on averages and may or may not result in more accurate predictions 

relative to TKTD modeling. 
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 The relative predictions of probit models and GUTS-RED-SD differed between 

metals. Notably, for As, the probit approach predicted much lower rates of colony growth 

than the corresponding GUTS model (Fig. 21), but this difference was reduced when the 

probit model was fitted to data from day 9 of the calibration assay, rather than day 10. 

These differences between days are related to the As concentrations used: on day 10, only 

one As concentration (0.3125 mg/L) exhibited rates of survival between 0 and 1 (Fig. 

13), providing limited dose-response data for probit analysis, whereas more dose-

response information was present on day 9. GUTS modeling, by contrast, uses all 

available timepoints, which obviates this issue. 

 For all metals, lower rates of colony growth were predicted when models were 

fitted to the 16-day data versus the 10-day data. This occurred because some of the 

concentrations in the corroboration assays took longer than 10 days to produce an effect 

and therefore would have appeared benign under shorter durations of exposure. 

Considering this, we recommend that colony modelers use data from assays that match as 

closely as possible the conditions of exposure that they intend to simulate. For models of 

long-term exposure, this will require extended assays such as those performed by (Tosi et 

al. 2021) and (Simon-Delso et al. 2018). It may be possible to use shorter assays, but this 

will require an added margin of safety. Because of the considerable effort required to 

conduct long-term bioassays, applications of TKTD modeling in this area would benefit 

from an open-source database of raw timeseries data from past bioassays. 

 We stress that our colony model is not intended for risk assessment per se. We 

developed it for the sole purpose of comparing the predictions made with standard dose-
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response models (here, probit models) and the TKTD model GUTS. Because our model 

does not include sublethal effects or brood effects, it will necessarily underestimate the 

overall effects of each metal on colony growth. This is supported by laboratory studies 

showing that honey bee larvae can have LC50 values two orders of magnitude lower than 

those of adults (Hladun, Kaftanoglu, et al. 2013, Di et al. 2016). Indeed, our model only 

predicted effects on colony growth at very large concentrations relative to those that have 

been measured from colony honey (Fig. 20, 21), whereas empirical studies with actual 

colonies have found negative effects on colony growth at field-relevant concentrations 

(Hladun et al. 2016). As such, the predictions of our model are best treated as indictors of 

risk rather than literal predictions, and could potentially be used to calculate risk 

quotients like those presented in previous colony risk models (Crenna et al. 2020). 

 A defining characteristic of our model is that it represents both exposure and 

effects at the colony level. This is in contrast with colony models representing the 

exposure of multiple cohorts of bees, either implicitly in the form of additional 

subroutines or explicitly via agent-based modeling (Becher et al. 2014). Population 

modeling studies with GUTS have used agent-based models, reflecting the individual-

level nature of GUTS (Martin et al. 2013, Gergs et al. 2016, Roeben et al. 2020). We 

acknowledge the fact that exposure in colonies is ultimately an individual-level 

phenomenon and the effect of a toxicant will depend on the specific distribution of 

exposures among the members of the colony (Sponsler and Johnson 2017). We believe 

that our colony-level approach is still informative because in large populations, such as 

those in honey bee colonies, individual-level survival probabilities should approximate 
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the population-level average (i.e. the law of large numbers). This is implicit to standard 

bioassays with honey bees, which are conducted with groups of bees rather than 

individuals. Because we modeled exposure at the colony level, we reduced damage at 

each time step to account for changes to the colony population (either newly-dead or 

newly-emerged bees). This does not guarantee that our model’s outputs are equivalent 

with a corresponding agent-based model. This is a complex topic that could be explored 

in future modeling studies utilizing agent-based models. 

 Our long-term assays provide added evidence that metal pollutants pose high risk 

to honey bees in the field. The LC50 values for As and Cd overlapped with concentrations 

that have been reported from pollen and the bodies of bees in some studies (Table 1). For 

Zn, this was only true for LC50 values calculated from the longer, 16-day assays. For Li, 

we observed greater mortality in bees fed 1059 mg/L of LiCl (~173.4 mg/L Li) than 

would be expected from a previous study (Ziegelmann et al. 2018), indicating that this 

concentration is not safe to apply to colonies for Varroa control. In contrast, our 10-day 

LC50 estimates for Cd and Pb were higher than previous estimates, despite our assays 

lasting longer than previous studies (Di et al. 2016). Differences with other studies may 

be related to the Pb compounds used (Pb(NO₃)₂ versus PbCl2), the genetic stock of the 

honey bees (Laurino et al. 2013), and the time of year that the bees were collected 

(Smirle and Winston 1987). 

 Finally, we calculated two metrics of TRT, the Haber constant and the DRT95, for 

each metal. The former has been proposed as a metric of TRT for honey bee risk 

assessment (Cresswell 2018) and has been calculated with data from bioassays with 
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honey bees in a number of studies, including neonicotinoid insecticides (Rondeau et al. 

2014, Sánchez‐Bayo and Tennekes 2020, Bommuraj et al. 2021), the phenylpyrazole 

insecticide fipronil (Holder et al. 2018), miticides and their metabolites (Bommuraj et al. 

2021), the fungicide boscalid (Simon-Delso et al. 2018), and the butenolide insecticide 

flupyradifurone (Tosi et al. 2021). The DRT95 is specific to GUTS modeling and has not 

been applied to data from honey bee bioassays to our knowledge. Because OpenGUTS 

could not estimate the lower bound of the dominant rate constant (kd) for any metal, only 

the lower bound of DRT95 values could be calculated. We may have been able to estimate 

both bounds of kd if assays were designed to include pulses of exposure, rather than 

continuous exposure (Baudrot and Charles 2019), but we chose the latter because it was 

closer to the exposure scenarios that we intended to simulate. There were no apparent 

problems estimating kd or any other parameter using the R package ‘morse,’ which was 

used to make survival predictions, and GUTS models fitted with ‘morse’ or OpenGUTS 

produced visually identical fits to the calibration data (not shown). 

 We did not find that the Haber constant and the lower bound of DRT95 estimates 

agreed when ranking the metals by TRT (Tables 8 and 9). Furthermore, Haber constants 

were only significantly different from -1, which is indicative of TRT, for three of the 

metals (As, Cd, and Li). It would be interesting to compare these metrics of TRT across a 

greater range of chemicals to see if they can distinguish between chemicals that are 

known to exhibit varying levels of TRT. This could be done with existing data from 

honey bee bioassays, including our own data, which is available on FigShare 

(10.6084/m9.figshare.19357973). 
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Conclusion 

 Metal pollution is widespread, posing the risk of bioaccumulation and resultant, 

time-cumulative effects for a variety of wild and managed species, including honey bees. 

We found that the survival model GUTS-RED-SD outcompeted a standard (probit) 

modeling approach when predicting the survival of honey bees in the laboratory under 

exposure to Cd and Li. GUTS-RED-SD also had lower error for a third metal, Zn. 

However, the relative predictions of either modeling approach were highly case-specific 

when implemented in the background of a simple colony population model. Consistently, 

longer assays resulted in lower survival predictions. We therefore recommend that colony 

modelers use data from longer assays when predicting survival under chronic conditions 

of exposure, as well as comparing the predictions of contending models when possible. 

Finally, we found that two metrics of TRT, the Haber constant and the DRT95, diverged 

when ranking each metal by TRT. This finding should be taken with caution, as we could 

only estimate the lower bound of the DRT95. Additional research is necessary to 

determine the sensitivity of metrics of TRT for comparing across chemicals and under 

what conditions different metrics are likely to diverge. 
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Chapter 3.  The accumulation of metal pollutants into royal jelly and their effects on 

the survival of larval honey bee workers and queens 

 

Abstract 

 Honey bees are exposed to metal pollutants in human-modified environments, 

including cities and agricultural areas. Previous studies have shown that metals are more 

toxic to honey bee larvae than adults, but the exposure of larvae to metals in their diet 

(worker-produced jelly secretions) is unknown. This knowledge gap is especially 

important because jelly is the primary component of the queen’s diet throughout her 

larval and adult life. In the present study, a queen-rearing experiment was conducted to 

measure the rates that Cd and Li translocate from colony food, sucrose solution, into 

royal jelly and developing queen larvae. The survival of exposed queens was then tracked 

to their emergence as adults and 7 days following emergence. Separately, an experiment 

was conducted in which worker larvae were reared in vitro to measure the effects of As, 

Li, and Zn on worker survival throughout development. These metals were selected to 

complement data from previous studies with Cd and Pb. We found that Cd and Li 

accumulated into both royal jelly and queen larvae at 1-10% of the concentration present 

in sucrose solution. Based on these translocation rates and the results of in vitro larval 

assays, it appears that metals have lethal effects on honey bee larvae at field-relevant 

concentrations. Additional research will be necessary to quantify the concentrations of 

metals in nurse jelly and their effects on brood production under field conditions, as well 

as their long-term sublethal effects on adult queens exposed as larvae. 
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3.1 Introduction 

 The honey bee society is organized around the gathering of food and the rearing 

of brood. Foragers collect nectar and pollen, which are consumed by adult bees that 

produce the jelly secretions that are consumed by the adult queen and both worker and 

queen larvae (Winston 1987). The nectar and pollen collected by foragers are frequently 

contaminated with toxic chemicals (Ostiguy et al. 2019), including metals (Johnson 2015, 

Solayman et al. 2016, Smith et al. 2019), but their translocation into the jelly secretions 

that make up the larval diet is largely unstudied. This is a major knowledge gap because 

queens and worker larvae feed primarily on nurse jelly (royal jelly and worker jelly, 

respectively) and their exposure has long-term implications for the success of colonies 

(vanEngelsdorp et al. 2013, Traynor et al. 2016, Traynor, VanEngelsdorp, et al. 2021). 

 Studies indicate that honey bee larvae are disproportionately susceptible to metals 

in their diet. The 50% lethal effect concentrations (LC50) of Pb, Cd, Cu, and Se in the 

larval diet were found to be 1-2 orders of magnitude lower than those of adult bees 

(Hladun, Kaftanoglu, et al. 2013, Di et al. 2016). Effects on larval survival coincided with 

reductions to larval growth, which also occurred at lower concentrations (Di et al. 2016). 

Exposure to metals during the larval stage can also have carryover effects in adulthood. 

Larval exposure to field-relevant levels of Pb resulted in reduced head size and cognitive 

ability in adult worker bees (Monchanin, Blanc-Brude, et al. 2021). Acute exposure to 

Mn during development led to precocious foraging and premature death in adults (Søvik 

et al. 2015). Metals’ effects on larval development likely contribute to negative 

correlations observed between metal loads within colonies, colony growth, and brood 
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production in field and semi-field studies (Bromenshenk et al. 1991, Hladun et al. 2016). 

These studies are corroborated by field studies with non-Apis bees where reductions in 

brood production in colonies or nests containing greater concentrations of certain metals 

have been observed (Moroń et al. 2014, Sivakoff et al. 2020). 

 Although metals are uniquely hazardous to honey bee larvae, the risk posed by 

metals in the field is not clear because metal concentrations in jelly, the primary 

component of the larval diet, has hardly been investigated. Existing studies suggest that 

nurse jelly sometimes contains higher concentrations of metals than honey. Leita et al. 

(1996) found that the concentrations of Cd, Pb, and Zn were 1.5-7X greater in jelly 

relative to honey. For 8 of the 9 metals included in their study, Stocker et al. (2005) 

measured 5-20-times higher concentrations in jelly relative to honey. In contrast, 

(Matuszewska et al. 2021) measured higher concentrations of As, Pb, and Cd in pollen 

relative to jelly, by a factor of 2-30, with marginal differences in the concentrations of Zn 

and Cr. Metals typically occur at higher concentrations in pollen compared to honey 

(Appendix A), and jelly may tend to exhibit an intermediate level of metal contamination, 

but the generality of this interpretation is unclear. 

 In the present study, the translocation of two metals, Cd and Li, from sucrose 

solution into royal jelly and developing queens was measured using a bulk queen-rearing 

approach. This approach allowed for the concentrations of metals in the diet of bees 

rearing queens to be controlled and made it possible to collect enough queen larvae and 

royal jelly for analysis of metal concentrations. A subset of developing queen cells were 

monitored to determine the effects of metal treatments on rates of adult queen emergence 
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and survival to 7 days following emergence. Finally, the effects of three metals, As, Li, 

and Zn, on larval survival was assessed through in vitro rearing of worker larvae to 

compare the effects of these metals to similar experiments conducted with Cd, Cu (Di et 

al. 2020) and Pb (Di et al. 2016). 

 

3.2 Methods 

3.2.1 Selection of metals 

 As, Cd, and Zn are major metal pollutants of human-modified environments, 

occurring at elevated levels in agricultural systems as well as urban areas (He et al. 2005, 

Wuana and Okieimen 2011). The heavy metal Cd has been measured in honey, pollen, 

and royal jelly of  colonies located in contaminated environments at concentrations as 

high as 0.375, 1.40, and 3.5 mg/kg, respectively (Leita et al. 1996, Al-Naggar et al. 2013, 

Solayman et al. 2016). These concentrations exceed the larval LC50 of 0.275 mg/L for 

Cd, which was determined when Cd was fed to larvae from day 4 to day 10 of 

development (Di et al. 2016). The metalloid As has been measured from the honey and 

pollen stores of colonies at concentrations as high as 0.10 and 1.38 mg/kg, respectively 

(Conti and Botrè 2001, Solayman et al. 2016). The concentration of As has been 

measured in royal jelly collected directly from colonies at a concentration of 0.02 mg/kg, 

(Murashova et al. 2019) and it has been found in human dietary supplements containing 

royal jelly at concentrations as high as 0.244 mg/kg (Dolan et al. 2003). Finally, Zn has 

been measured from honey, pollen stores, and royal jelly at concentrations as high as 73, 
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108, and 96 mg/kg, respectively (Leita et al. 1996, Stocker et al. 2005, Solayman et al. 

2016). 

 Less is known about the exposure of colonies to Li in contaminated environments 

(but see García et al. 2006, Hernández et al. 2005, Van Der Steen et al. 2012). However, 

Li exposure is relevant to honey bees because Li salts have recently gained attention as 

potential miticides for the treatment of Varroa destructor, a mite that parasitizes honey 

bee colonies (Ziegelmann et al. 2018). Li is toxic to Varroa mites via contact (Kolics, 

Mátyás, et al. 2020) and orally when feeding on honey bees that have been fed Li 

(Ziegelmann et al. 2018). It has been suggested to feed colonies with sucrose containing 

LiCl at concentrations as high as 25 mM (~173.4 mg/L Li) to control Varroa mites 

(Hannus et al. 2017, Ziegelmann et al. 2018). This concentration is lethal when fed 

directly to honey bee larvae reared in vitro (Hannus et al. 2017). As such, Li salts are 

only considered appropriate for use in colonies containing low levels of brood, which 

occurs when colonies are preparing to overwinter (Hannus et al. 2017, Kolics, Specziár, 

et al. 2020). Nonetheless, the concentration of Li that larvae may be exposed to through 

jelly, and the effect of Li exposure on larval development in colonies in which it has been 

applied as a Varroa control, warrants further study. 

 

3.2.2 Queen-rearing experiment 

 Trials 

 Queen-rearing trials were conducted in the summers of 2020 and 2021 at the Ohio 

State University Wooster campus. Queens were reared in modified queen rearing boxes 

(hereafter “queen boxes”) using existing protocols (Spivak et al. 1994, Johnson and 
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Percel 2013, Ricke et al. 2021) (Fig. 23). Each queen box was provisioned with 200 g of 

pollen (BetterBee, Greenwich, NY) and 1.5 liters of 50% (w/w) sucrose solution. Sucrose 

solutions containing 173.5 mg/L of Li or 50 mg/L of Cd were prepared by adding LiCl or 

CdCl2 to sucrose solution to achieve concentrations of 1060 mg/L of LiCl or 81.53 mg/L 

of CdCl2. This concentration of LiCl was previously shown to be efficacious for Varroa 

control and exhibited marginal effects on the survival of adult honey bees over ten days 

of feeding (Ziegelmann et al. 2018). A concentration of 50 mg/L of Cd was chosen 

because this was expected to result in a measurable amount of Cd in royal jelly samples 

by the time queen cells were dissected (day 4 of each trial). 

 

Metal 
Concentration 

(mg/L) 
Metal 

Compound 

Queen 
Boxes 
(2020) 

Queen 
Boxes 
(2021) 

Total 
Queen 
Boxes 

Queen boxes included 
in survival study (2021) 

Control 0 None 3 7 10 4 

Cd 50 CdCl2 2 7 9 4 

Li 173.5 LiCl 3 7 10 4 

Table 10. Metal treatments and number of queen rearing boxes receiving each treatment 

across years. 

 

 Each queen box received thirty worker larvae between 24-48 h old, which were 

grafted into base mount JZ-BZ queen cups on queen cell bar frames (Mann Lake Ltd., 

Hackensak, MN) (Fig. 23). Each queen box also received approximately 1.1 kg of nurse 

bees, which were shaken from multiple healthy colonies into a ventilated swarm box 

prior to being distributed into queen boxes. Queen boxes were weighed before and after 

distributing nurses into them to ensure that the weight of nurses across boxes were within 
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100 g of each other. All hives used in this study were managed according to standard 

beekeeping practices (Honey Bee Health Coalition 2019) and no synthetic miticides that 

accumulate into colony wax were used or applied to hive equipment in the years 

preceding the study. 

 

 

Figure 23. Experimental methodology of queen-rearing trials. In 2020, trials were 

terminated on day 4. In 2021, trials continued to day 19. 

 

 In 2020, trials were terminated on day 4 and all queen cells were dissected to 

collect queen larvae and royal jelly. Samples from each queen box were pooled and 

stored at -20°C for metal analysis. Queen larvae were dehydrated for 72h at 50°C and 

homogenized with a mortar and pestle. Parchment paper was placed between the mortar 

and pestle to prevent cross-contamination between samples, and the mortar was cleaned 

and dried between samples. All samples including royal jelly were sent to the Trace 

Elements Research Laboratory (TERL) at the Ohio State University Columbus campus 

for metal analysis. There, samples were digested in boiling nitric acid (95%) for at least 

30 min and analyzed via ICP-OES (Hladun et al. 2016). 
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 In the summer of 2021, extended assays lasting 19 days were performed. In that 

year, only the cells that were not capped by day 4 were dissected for metal analysis. If at 

least 50% of cells in control queen boxes were capped on day 4, trials continued. This 

occurred for 4 trials (Table 10). During these trials, capped cells were counted and 

distributed into new queen frames. Cells belonging to different treatment groups were 

moved into queen frames in alternating order, starting from the center of frames. These 

frames were then placed into strong incubating colonies in the top box and separated 

from the resident queen by at least two boxes above a queen excluder. On day 8, cells 

that were still capped were moved into plastic queen cages to isolate queens that would 

later emerge. The survival of queen cells to emergence was then monitored every four 

days until day 19. 

 

 Analyses 

 The rate that each metal translocated from treated sucrose solution into jelly and 

queen samples was calculated by dividing the concentration of each metal occurring in 

each sample by the nominal concentration applied to sucrose solution. Differences 

between the translocation rates of each metal into jelly and queens was then compared 

with a Kruskal-Wallis rank sums test using the kruskal.test function in the R package 

‘stats’ (R Core Team 2021). 

 Four trials from 2021 were included in the survival analysis, representing 120 

queens per treatment. Kaplan-Meier survival estimates were calculated for each group 

using the survfit function in the R package ‘survival’ (Therneau 2021). To compare 
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overall survival rates between groups, pairwise log-rank tests were performed with a 

Bonferroni correction using the pairwise_survdiff function in the package ‘survminer’ 

(Kassambara et al. 2021). 

 

3.2.3 In vitro larval rearing 

 In vitro larval assays were conducted at the Waterman Agricultural Research and 

Natural Resources Laboratory (WANRL) at the Ohio State University in Columbus, OH, 

in the summer of 2021. Assays followed the protocol of (Schmehl et al. 2016). Because 

the effects of Cd on larval survival had been studied previously (Di et al. 2016), we 

focused on As, Li, and Zn (Table 11). For each treatment, an aqueous stock solution 

containing the respective metal at 51X the highest desired concentration was prepared. 

For each trial, 74.4 uL of stock solution was diluted with 3.72 mL of untreated diet 

solution. This was serially diluted with additional diet solution to achieve the remaining 

concentrations for each metal (Table 11). 

 

Treatment 
Concentrations 

(mg/L) 

Metal 

Compound 

As 0, 0.05, 0.5, 5 
Na2HAsO4 · 

7H2O 

Li 
0, 8.7, 17.5, 

173.5 
LiCl 

Zn 0, 30, 100, 250 Zn(CH3CO2)2 

Table 11. Metal treatments used during in vitro larval rearing. 

 

 Each larval plate was divided into 3-4 groups of 12-18 wells, depending on the 

availability of larvae on a given day and the number of treatments being prepared (Fig. 
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24). Larvae aged to 4 days were grafted into plates and their development (larval/pupal) 

and survival (dead/alive) was monitored daily for the following 15 days. Each group 

either received the negative control treatment consisting of royal jelly, glucose, fructose, 

yeast extract, and water (“Diet C”, Schmehl et al. 2018) or a metal treatment. Treatments 

were replaced every day for the first five days post-grafting (prior to pupation). Only one 

metal was applied to a given plate. The placement of treatment groups on each plate was 

randomized between plates. All larvae in a given plate were collected from the same 

brood frame. Each treatment was replicated at least 3 times (Table 12). 

 

 

Figure 24. Examples of larval rearing plates for each metal (As, Li, or Zn). In a typical 

plate, 12 larvae were treated with a given metal at a given concentration (A, B, C) or no 

metal (neg). The placement of treatment groups was randomized between trials. 
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Metal Concentration (mg/L) Replicates Larvae 

As 

0 5 59 

0.05 4 48 

0.5 3 36 

5 4 60 

Li 

0 5 69 

8.7 4 52 

17.5 8 52 

173.5 8 52 

Zn 

0 3 59 

30 3 36 

100 3 36 

250 3 36 

Table 12. The number of replicates and larvae included in each treatment group. 

 

 Analysis 

 

 Kaplan-Meier survival estimates and pairwise comparisons of survival rates 

between in vitro treatments groups were generated for each metal using the survdiff and 

pairwise_survdiff functions in the R packages ‘survival’ and ‘survminer,’ respectively 

(Kassambara et al. 2021, Therneau 2021). In addition, LC50 estimates for each treatment 

group were estimated by fitting probit models to the survival data for each treatment 

group, using the glm function in the R package ‘stats.’ 

 

3.3 Results 

 Metal translocation into royal jelly and queens 

 During ICP-OES, limits of detection were 0.1-0.4 and 0.1-3.5 mg/kg for Cd and 

Li, respectively. These limits were determined based on the performance of the ICP-OES 

machine on metal standards prior to analyzing each batch of samples. Metal 

concentrations were below limits of detection for all samples taken from control boxes, 
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except for eight jelly samples that were collected in 2020 that contained detectable levels 

of Li. The mean Li concentration in these samples was 3.46 mg/kg, whereas the mean 

concentration of jelly samples from boxes treated with Li was 12.34 mg/kg. None of the 

boxes that these samples were collected from were included in the survival analysis. 

 On average, Li concentrations in jelly and queen samples were 7.11% (n=10) and 

29.83% (n=8) of the concentration applied in sucrose solution, respectively (Fig. 25, 

Table 13). Cd concentrations in jelly (n=9) and queen samples (n=6) were 3.75% and 

1.40% those in the sucrose solution. Including Cd samples taken during preliminary trials 

in 2020, in which sucrose solution was also treated with 100 mg/L of Cd, jelly (n=11) 

and queen (n=9) samples contained 3.98% and 1.36% as much Cd as was applied in 

sucrose solutions, respectively. 

 

 
Figure 25. The concentrations of each metal in jelly and queen samples relative to 

concentrations applied to experimental sucrose solutions.  

 

 For both metals, translocation rates into jelly and queens were not significantly 

different (p > 0.05, Kruskal-Wallis rank sums tests, Table 13). 
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Treatment 
Jelly 

(%) 

Queens 

(%) 
p df χ² 

50 mg/L 

Cd 

3.75 

(n=9) 

1.40 

(n=6) 
0.4601 1 0.54574 

173.5 

mg/L Li 

7.11 

(n=10) 

29.83 

(n=8) 
0.05718 1 3.6172 

Table 13. Results of Kruskal-Wallis rank sums tests comparing the translocation rates of 

each metal into jelly and queens. Differences between translocation rates into jelly and 

queens were not statistically significant for either metal (p > 0.05). 

 

Queen survival 

 There was a pronounced effect of each metal treatment on queen survival, 

resulting in nearly all queens dying by the end of trials (Fig. 26, Table 14). This occurred 

despite most queen cells containing jelly on day 4 that had not been consumed. Most 

capped cells that had been treated with metals were subsequently uncapped by nurses and 

emptied by day 8. 

 

Figure 26. Kaplan-Meier survival curves for each metal treatment applied to queen-

rearing boxes. Lines represent median survival estimates and shaded regions span the 

95% confidence interval of survival predictions. The p value is the result of a log-rank 

test comparing the overall rates of survival across all treatment groups. 
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Metal Day 4 Day 8 Day 12 Day 16 Day 19 

Control 0.75±0.02 0.69±0.02 0.48±0.08 0.47±0.08 0.45±0.09 

 

Cd 0.46±0.10 0.22±0.07 0.02±0.02 0.02±0.02 0.02±0.02 
 

 

Li 0.37±0.05 0.03±0.02 0.00±0.00 0.00±0.00 0.00±0.00 
 

 
Table 14. Mean rates of survival ± standard errors for each metal and timepoint during 

queen-rearing trials. 

 

 Rates of survival were significantly different when comparing each metal 

treatment with the negative control group (pairwise log-rank tests, p << 0.05), but 

survival rates were not significantly different when comparing between metal treatments 

(Table 15). 

 

 Cd Control 

Control < 2E-16 - 

Li 0.82 < 2E-16 

Table 15. P values from pairwise log-rank tests between the overall rates of survival 

between each metal treatment included in queen-rearing trials. 

 

 In vitro larval rearing 

 There was a dose-dependent effect of each metal on larval survival in vitro (log-

rank tests, p < 0.05, Fig. 27). However, only certain treatment groups had significantly 

lower survival compared with the negative control groups (pairwise log-rank tests, p < 

0.05, Table 16). Significant differences relative to negative controls occurred for As 

applied at 0.5 and 5 mg/L, Li applied at 173.5 mg/L, and Zn applied at 250 mg/L (Table 

16). 
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Figure 27. Kaplan-Meier survival curves for each metal and treatment group included in 

in vitro larval assays. Lines represent median survival estimates and shaded regions span 

the 95% confidence interval of survival predictions for each treatment group. P values 

were calculated from log-rank tests comparing the overall rate of survival across all 

treatment groups for each metal. 

 

 

Metal 
Concentration 

(mg/L) 
P value 

As 

0.05 0.3721 

0.5 0.0067 

5 <2E-16 

Li 

8.7 0.56 

17.5 0.56 

173.5 <2E-16 

Zn 

30 0.955 

100 0.912 

250 0.018 

Table 16. P values from multiple pairwise log-rank tests comparing the survival of each 

in vitro metal treatment group with their respective negative control groups. 
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Metal 
Age at End of 

Trials (d) 
LC50 

As 23 0.15 (0-0.44) 

Cd* 10 0.275 (0.13-0.54) 

Cu* 10 6.97 (3.09-22.21) 

Li 23 29.9 (23.9-37.9) 

Pb* 10 1.12 (0.46-2.46) 

Zn 23 82.71 

 

Table 17. Larval LC50 estimates for each metal, generated with data from larval in vitro 

worker assays. *LC50 estimates for Cd, Cu, and Pb were taken from the studies of (Di et 

al. 2016, 2020). 

 

 

Metal 
Standard 

Error 
χ² df 

As 0.074 10.19 18 

Li 20.83 50.38 57 

Zn 27.84 16.36 16 

Table 18. Goodness of fit criteria for probit models fitted to in vitro larval rearing data. 

 

3.4 Discussion 

 Honey bee larvae are more sensitive to metal exposure than adults, but the 

concentrations of metals in the primary component of their diet, nurse jelly, is largely 

unknown. In the first four days of queen-rearing trials, we found that Li and Cd 

translocated from sucrose solution into royal jelly at rates of 1-10% (Fig. 25). A higher 

rate was found for Li in queens (~25%), but differences between the concentrations of Li 

in jelly and queens were not statistically significant (Table 13). In addition, we found that 

sucrose solution containing 173.5 mg/L of Li (or 1060 mg/L of LiCl) resulted in almost 

complete queen mortality before adult emergence (Fig. 26). High mortality was also 

observed for queen boxes fed 50 mg/L of Cd. In trials in which worker larvae were reared 
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in vitro, As, Li, and Zn all affected larval survival at concentrations that have been 

measured from jelly, colony foods, or the bodies of bees in contaminated sites (Table 16, 

Appendix A). These trials add to the small body of knowledge on the larval toxicity of 

metals (Table 17). 

 The translocation rate of Li into queens that we observed (~7%) is similar to the 

translocation rate into worker larvae reported by Prešern et al. (2020) (~4%). In their 

study, colonies were also fed sucrose solution containing 173.5 mg/L of Li, at a rate of 1 

L per day for three consecutive days. They did not measure jelly concentrations or track 

the survival of brood in treated colonies. However, they did measure the accumulation of 

Li into adult bees and observed increased mortality among them in the 7 days following 

treatment. In the present study, we confirm that this same concentration has severe effects 

on queen development, resulting in near-complete mortality by the 10th day of larval 

development. High larval mortality had previously been shown to occur in vitro when 

worker larvae were directly fed with sucrose containing Li at the same concentration 

(Hannus et al. 2017), but its effects on bee development in vivo had not been reported to 

our knowledge. 

 In queen boxes treated with 173.5 mg/L of Li, royal jelly contained Li at 

concentrations of ~12 mg/L. Although we observed high mortality during queen-rearing 

trials under these conditions, effects of Li on the survival of worker larvae were only 

observed when larvae were fed concentrations >17.5 mg/L (Fig. 27). These differences 

between in vitro and queen-rearing assays suggest that the high mortality observed during 

queen-rearing trials resulted from LiCl’s direct toxicity to queen brood as well as indirect 
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effects on the brood-tending capacity of nurse bees. Previous studies have shown that the 

exposure of nurses to pesticides can have developmental effects on their hypopharyngeal 

glands, which produce royal jelly (Berenbaum and Liao 2019). In recent queen-rearing 

experiments, this has been directly linked to reductions in both the quantity of royal jelly 

produced and its metabolomic profile (Milone et al. 2021). 

 In addition to affecting jelly production, toxic exposure can affect the brood-

tending behavior of nurse bees (Berenbaum and Liao 2019). In queen boxes treated with 

metals, we found that most cells that were capped on day 4 were subsequently uncapped 

and emptied by day 8. This was previously observed when larvae were exposed to 

chronic levels of the neonicotinoid clothianidin and appeared to be triggered by 

pheromone signals produced by treated larvae (Schuehly et al. 2021). Queen exposure 

during development can also affect worker behaviors later in life. For example, queens 

exposed as larvae to common in-hive pesticides via beeswax produced mandibular 

pheromones as adults that were less attractive to workers than those of untreated queens 

(Walsh et al. 2020). The lifelong effects of metal exposure during development on honey 

bee physiology, social interactions, and reproduction is an interesting avenue for future 

studies. In addition to using whole colonies or small nucleus colonies (Milone and Tarpy 

2021), research in this area may utilize novel methods for measuring queen egg-laying 

and larval development in the lab (Fine et al. 2018). 

 In the study of Hladun et al. (2016), which lasted for 60 days, the metal 

concentrations in worker pupae were ~5-75X greater than was applied in sucrose 

solution. This is much higher than the translocation rates observed in this study. The 
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discrepancy may be due to the longer duration of their study, which allowed metals to 

accumulate to a higher final concentration relative to experimental treatments, or to the 

lower concentrations applied, which would be less likely to affect the feeding rate and 

resulting accumulation. Additionally, this study sampled worker brood rather than queen 

brood. It was previously shown that pesticides are transferred at a higher rate into worker 

jelly than queen jelly (Böhme et al. 2018, 2019) and the same may hold for metals. 

However, the concentration of one metal, Zn, has been found to be higher in royal jelly 

relative to worker jelly (Wang et al. 2016). Zn is an essential metal in the honey bee diet 

and its concentration in jelly may be regulated differently than metals that have no known 

biological function (ex. Cd) (Stocker et al. 2005). Hladun et al. (2016) also found that 

queens in experimental colonies exhibited higher concentrations of all metals in their 

study relative to control queens, indicative of metal contamination of royal jelly, though 

this was only significant for 2 of 4 metals tested. In the study of Kolics et al. (2021), Li 

concentrations were below the limit of detection in queens sampled 28 days after 

treatment with sucrose solution containing 173.5 mg/L of  Li, which likely resulted from 

the elimination of Li from the body. 

 Our study and previous studies warn against the overapplication of Li to control 

Varroa mites in colonies containing brood. Previous studies have also shown that Li 

treatments can contaminate hive products that are consumed by humans. In the study of 

Kolics et al. (2021), 1 L of sucrose solution containing 173.5 mg/L of Li was fed to 

colonies on a single day. Li concentrations in uncapped honey, bee bread, and worker 

bodies returned to control levels within ~15 days following treatment. Although 
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uncapped honey contained very low Li concentrations after this time (< 0.25 mg/kg), Li 

persisted in honey that had been capped shortly during or after colonies were treated, at a 

mean concentration of 22.40 mg/kg. Honey containing Li at this concentration can result 

in Li exposure to human consumers exceeding the daily dietary allowance determined by 

Schrauzer (2002) (14.3 ug/kg of body weight). A human weighing 63.5 kg would only 

need to consume ~30 mL at this concentration to reach this threshold. The accumulation 

of Li into hive products can potentially be mitigated through alternative modes of Li 

delivery, such as lithiated contact strips (Kolics, Mátyás, et al. 2020). 

 In addition to metals, larvae are also disproportionately susceptible to a variety of 

common pesticides (Zhu et al. 2014, Tomé et al. 2020). Like metals, the translocation of 

pesticides into nurse jelly is only partially understood. The translocation rates we 

observed for Cd and Li are 1-2 orders of magnitude greater than the translocation rates of 

pesticides applied to queen-rearing boxes in pollen (Böhme et al. 2018, 2019, Ricke et al. 

2021). The greater translocation rates we measured are likely the result of the greater 

persistence of metals relative to pesticides and the fact that metals in this study were 

applied in sucrose solution rather than pollen, which is consumed at a lower rate by hive 

bees (USEPA 2014). 

 

3.5 Conclusion 

 Metal pollution is common in human-modified environments, posing risk to 

honey bees and other terrestrial arthropods. We determined the rates that Cd and Li 

translocate into nurse jelly over the course of four days and measured their effect on the 
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survival of queen larvae. The effects of Li on queen development provide additional 

cause for caution regarding application of Li salts as a control for Varroa. Additionally, 

the effects of As, Li, and Zn on the survival of worker larvae reared in vitro demonstrate 

that larvae are uniquely susceptible to a variety of metals. Future studies should measure 

the exposure and effects of larvae to metals in field colonies, as well as the more long-

term effects of exposure during development on queen fitness. 
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Appendix A. Metal concentrations in colony matrices reported from past field studies. 

Metal Honey* 

Pollen or 

Bee Bread Bee bodies Site Description Reference 

As ND-0.10 

  

0.00151 - 

0.00456  Industrial Matin et al. (2016) 

  

0.011 - 

0.160 Urban and mining areas Zhou et al. (2018) 

  0.66 - 0.83 Mixed Van der Steen et al. (2012) 

< 0.2 < 1 Mixed, some sites near mines Maragou et al. (2017) 

  < 12.5 Puget Sound, downwind from smelters Bromenshenk et al. (1985) 

  < 13.9 Puget Sound, downwind from smelters Bromenshenk et al. (1991) 

< 0.01 - 

1.38   Rural and urban Morgano et al. (2010) 

Cd 
1.7E-5 - 

0.373 

< 0.091 < 0.00423 Extraurban and urban Conti and Botrè (2001) 

  ~ 0.14 Urban Zarić et al. (2017) 

 0.003-

1.798  Mixed Roman (2009) 

  0.01 - 0.21 

Urban areas including near an airport and 

wildlife reserves Perugini et al. (2011) 

  0.01 - 0.39 Nature reserves Ruschioni et al. (2013) 

  0.07 - 0.75 Mixed Van der Steen et al. (2012) 

  0.03 - 0.96 Mixed Dżugan et al. (2018) 

0.01 - 0.15 0.05 - 1.2 Mixed Fakhimzadeh and Lodenius (2000) 

0.067 - 1.4 0.07 - 1.6 Mixed Al Naggar et al. (2013) 

  

0.63775 - 

1.636 Industrial Matin et al. (2016) 

  0.02 - 1.75 Mixed Velemínský and Stary (1990) 

  < 1.8 Puget Sound, downwind from smelters Bromenshenk et al. (1985) 

Table A1. Metal concentrations (in mg/kg) from field studies. *Honey concentrations taken from review paper by Solayman et al. 

(2016). Continued on next page.  
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Table A1 continued 

Metal Honey 

Pollen or Bee 

Bread 

Bee 

bodies Site Description Reference 

Cd 
1.7E-5 

- 0.373 

  0.03 - 2.93 Mixed Goretti et al. (2020) 

  ND - 3.19 Mixed Tomzyk et al. (2020) 

  < 4.07 Puget Sound, downwind from smelters Bromenshenk et al. (1991) 

  

0.00045 - 

0.00766 Near thermal power plants Silici et al. (2016) 

0.003 - 0.233   Rural and urban Morgano et al. (2010) 

1.8 - 2.3   Extraurban crossroad Leita et al. (1996) 

0.89 - 9.31**   Urbanization gradients approaching smelters Moroń et al. (2012) 

Li NA NA 0.01 - 0.05 Mixed Van der Steen et al. (2012) 

Pb 
6.3E-4 

- 3.23 

< 0.332 < 0.00125 Extraurban and urban Conti and Botrè (2001) 

  

0.03036 - 

0.05206  Industrial Matin et al. (2016) 

  ND - 0.58 Mixed Dżugan et al. (2018) 

  ~ 0.65 Urban Zarić et al. (2017) 

  ND - 0.77 Mixed Tomzyk et al. (2020) 

 0.007-3.9  Mixed Roman (2009) 

  

0.075 - 

1.1450 Mixed Gutiérrez et al. (2015) 

  < 1.20 Nature reserves Ruschioni et al. (2013) 

  0.17 - 1.34 

Urban areas, including near an airport, and 

wildlife reserves Perugini et al. (2011) 

< 0.2 - 0.37 0.33 - 1.5 Mixed 

Fakhimzadeh and Lodenius 

(2000) 

  0.13 - 1.53 Mixed Goretti et al. (2020) 

Continued 

** These pollen concentrations were measured from the nests of red mason bees (O. bicornis). 
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Table A1 Continued 

Metal Honey 

Pollen or 

Bee Bread Bee bodies Site Description Reference 

Pb 
6.3E-4 - 

3.23 

  0.19 - 1.67 Mixed Van der Steen et al. (2012) 

  0.026 - 3.1 Urban and mining areas Zhou et al. (2018) 

  < 0.25 - 7.8 Mixed Velemínský et al. (1990) 

0.65 - 14.23 2.32 - 11.23 Mixed Al Naggar et al. (2013) 

  

0.00401 - 

0.0241 Near thermal power plants Silici et al. (2016) 

< 0.01 - 0.44   Rural and urban Morgano et al. (2010) 

3.2 - 4.6   Extraurban crossroad Leita et al. (1996) 

42.05 - 

356.16**   

Urbanization gradients approaching 

smelters Moroń et al. (2012) 

Zn 
0.23 -

73.60 

  8.56 - 17.0 Near thermal power plants Silici et al. (2016) 

  31 - 58 Urban and mining areas Zhou et al. (2018) 

  14.15 - 68.20 Mixed Dżugan et al. (2018) 

7.13 - 42.42 13.8 - 77.95 Mixed Al Naggar et l. (2013) 

  

59.18 - 

100.46 Mixed Van der Steen et al. (2012) 

29 - 49 55 - 101 Mixed 

Fakhimzadeh and Lodenius 

(2000) 

  ~103 Urban Zarić et al. (2017) 

  8.8 - 204.4 Mixed Velemínský et al. (1990) 

  

87.91 - 

210.55 Mixed Goretti et al. (2020) 

89.8 - 108.2   Extraurban crossroad Leita et al. (1996) 

55.90 - 

440.11**   

Urbanization gradients approaching 

smelters Moroń et al. (2011) 

** These pollen concentrations were measured from the nests of red mason bees (O. bicornis). 
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Appendix B. Description of GUTS 

 

 The General Unified Thresholds Model of Survival (GUTS) is a mechanistic model of 

toxicity that was designed to analyze survival data from standard laboratory bioassays (Jager et 

al. 2011). Unlike curve-fitting models such as probit models, whose parameters have no fixed 

biological meaning, GUTS makes explicit assumptions about the mechanisms by which toxicants 

are taken into organisms (toxicokinetics) and cause damage (toxicodynamics), which ultimately 

leads to effects on survival. 

 The creation of GUTS was motivated by the existence of a variety of preexisting 

toxicokinetic-toxicodynamic (TKTD) models of survival that lacked a common theoretical 

framework (Ashauer and Brown 2008). Most of these earlier models were subsequently shown to 

be special cases of GUTS (Jager et al. 2011). GUTS was recently approved for aquatic risk 

assessment at the regulatory level in the European Union (Ockleford et al. 2018). Although 

GUTS was largely developed in the context of aquatic risk assessment, it has been applied to a 

variety of organisms, including honey bees (Hesketh et al. 2016, Heard et al. 2017, Robinson et 

al. 2017). 

 In the full version of GUTS (GUTS-FULL), toxicokinetics and toxicodynamics are 

represented in individual compartments, forming a two-compartment model (Fig. B1, part A). 

First, chemical concentrations in the organism’s environment and/or diet (Cext) are converted into 

some internal concentration within the organism (Ci). The equation for this and most other 

GUTS equations are given in Fig. B1. The meanings of all variables and parameters are given in 

Table B1. The chemical’s internal concentration is then converted into a metric of damage 

known as scaled internal damage (Di). Once damage exceeds a certain tolerance threshold (zi) 
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specific to the given organism and chemical, the probability of death, or the hazard rate (hz), 

increases at a linear rate (Fig. B2). 

 GUTS-FULL requires information on the internal concentration of the chemical within 

the organism, which is rarely measured during standard honey bee bioassays. In contrast, a 

reduced version of GUTS (GUTS-RED, Fig. B1 part B) can be used with survival data, alone. 

GUTS-RED represents toxicokinetics and toxicdynamics as occurring together, forming a one-

compartment model. The overall rate that the chemical’s external concentration is translated into 

damage is represented by a single, dominant rate constant (kd). The utilization of kd relies on a 

key assumption: Because toxicodynamics follows from toxicokinetics in a linear chain, the 

slower of the two processes will constitute the rate-limiting step and will drive the overall rate 

that external concentrations are translated into damage. For this reason, in GUTS-RED, kd is 

assumed to approximate the slower of the two processes. This obviates the need for additional 

rate constants and associated parameters in this version of the model. 
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Figure 28. Diagrams of GUTS. (A) The full version of GUTS (GUTS-FULL) includes a 

toxicokinetic compartment, which represents the uptake and elimination of the chemical from the 

organism, followed by a toxicodynamic compartment, which represents the accrual of chemical-

induced damaged. (B) The reduced version of GUTS (GUTS-RED) represents toxicokinetics and 

toxicodynamics in a single compartment. 
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Symbol Description 
Model 

version 

Death 

mechanism 

Example 

Units 

ke 
Elimination rate constant 

of chemical from the organism 
FULL Both d-1 

Kiext 

Bioconcentration factor of chemical 

into organism from source of 

exposure 

FULL Both mL/mg 

kr Damage repair rate constant FULL Both d-1 

Ci Internal chemical concentration FULL Both mg/L 

kd 
Dominant rate constant 

of all TKTD processes 
RED Both d-1 

hb Baseline hazard Both Both d-1 

Di* Scaled internal damage Both Both mg/L 

hz 
Total hazard for individual 

with tolerance threshold z 
Both Both d-1 

Cext 
Chemical concentration in 

organism's diet or media 
Both Both mg/L 

Fs 
Spread factor of distribution 

of tolerance thresholds 
Both IT - 

m* 
Median of distribution of 

tolerance thresholds 
Both IT mg/L 

b* Killing rate Both SD 
L mg-1 d-

1 

z* Tolerance threshold Both SD mg/L 

Table 18. All constants, variables, and parameters in either version of GUTS (FULL or RED) 

representing either death mechanism (SD or IT). Parameters that are estimated during model 

calibration are presented in bold. All other symbols represent state variables. * These symbols 

have different subscripts depending on the version of GUTS being used: “i” (internal 

concentrations) is used in GUTS-FULL, whereas “ext” (external concentrations) is used in 

GUTS-RED. Unlike previous publications on GUTS, the subscript “ext” is used rather than “w,” 

which stands for “water” and is a vestige of GUTS history of use with aquatic organisms. 

 

 In addition to the full and reduced versions of GUTS, there are also two subtypes of 

GUTS that convert damage into survival probabilities differently (Fig. B2). In the “stochastic 

death” version of GUTS (GUTS-SD), death is represented as a stochastic event whose 

probability increases linearly once the tolerance threshold is exceeded, and every individual in 

the population is assumed to have the same threshold. In the “individual tolerance” version 

(GUTS-IT), individuals are allowed to have varying tolerance thresholds, but the probability of 

death is infinite (certain) once that threshold is reached. These different “death mechanisms” 
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have their roots in the toxicological literature (Ashauer et al. 2015). Neither version is 

universally better and either version may fit a particular dataset more closely than the other, 

though data from certain chemicals can be expected to fit one version better than the other. 

 

 
Figure 29. Diagram of GUTS death mechanisms. GUTS assumes that the hazard rate or 

probability of death (hz) increases above its baseline value (hb) once damage exceeds the 

organism’s tolerance threshold (z). In GUTS-SD (orange), z is the same for all members of the 

study population and once it is exceeded, hz increases linearly at a rate dependent on the killing 

rate parameter (b). In GUTS-IT (blue), z varies among individuals, and once it is exceeded, the 

hazard rate becomes infinite, represented by a vertical line in the above diagram. Figure modified 

with permission from (Jager and Ashauer 2018). 

 

 GUTS parameters can be estimated by a variety of independent modeling approaches. 

This includes Bayesian (Delignette-Muller et al. 2017) and frequentist approaches (Jager and 

Ashauer 2018, Jager 2021). For the current study, the survFit function in the R package ‘morse’ 

was used to fit the parameters of GUTS-RED-SD and GUTS-RED-IT to experimental data for 

each metal and assay (Baudrot et al. 2021). ‘morse’ uses the input data for each chemical to infer 

reasonable prior distributions for each GUTS parameter (Delignette-Muller et al. 2017). These 

prior values are iteratively refined through a Bayesian Gibbs sampling algorithm implemented in 

the R package ‘RJAGS’ (Plummer 2021). This results in posterior probability distributions for 

each parameter that are used to calculate median estimates for each parameter and their 95% 
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confidence intervals. These posterior distributions were used to predict survival during colony 

level simulations (main text, section 2.2.5). 

 To cross-check the parameter values estimated by morse, GUTS parameters were also 

estimated using the OpenGUTS software, which implements a frequentist maximum likelihood 

parameter estimation procedure (Jager 2021). This software does not rely on prior information 

during model fitting and can be considered a more conservative approach than ‘morse’. For this 

reason, only its parameter estimates are provided in the main text (Table 5). OpenGUTS was also 

used to determine the best-fitting version of GUTS-RED (SD or IT) for each metal (main text, 

Table 4). 
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Appendix C. Supplementary Figures and Tables 

 

 
Figure 30. Food consumption data from calibration assays for each metal, after correcting for 

evaporation. Curves are Loess models of food consumption for each concentration. 
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GUTS 

Model 
Parameter Unit As Cd Li* Pb Zn 

SD 

Dominant 

rate (kd) 
day-1 0.015 0.096 0.021 0.081 0.064 

Killing 

rate (bw) 
mg L-1 10.782 0.040 0.002 0.000 0.001 

Threshold (z) mg L-1 day-1 0.022 0.639 70.378 106.344 65.735 

IT 

Dominant 

rate (kd) 
day-1 0.005 0.006 0.004 0.007 0.013 

Median of 

threshold 

distribution (mw) 

mg L-1 day-1 0.023 0.685 69.042 90.324 70.114 

Spread of 

threshold (Fs) 
-- 3.581 2.908 4.131 4.316 4.632 

Table 19. Median estimates of GUTS parameters (SD or IT) for each metal, fitted to the 

calibration data. Values were estimated with the R package ‘morse.’ * Values for Li are in terms 

of concentrations of LiCl. 

 

Metal Assay n Probit Models GUTS-RED-SD 

As Calibration 29 0.24 (0.19-0.28) 0.33 (0.31-0.34) 

 

Cd Calibration 29 10.33 (7.50-14.64) 6.77 (6.10-7.46) 
 

 

Li Calibration 32 183.6 (161.9-208.5) 172.2 (163.6-184.3) 
 

 

Pb Calibration 31 1011.26 (885.01-1149.15) 853.62 (787.51-928.00) 
 

 

Zn Calibration 23 473.12 (431.81-514.43) 408.65 (382.72-437.04) 
 

 

Cd Corroboration 13 2.5 (1.78-3.57) 2.26 (1.97-2.65) 
 

 

Li Corroboration 18 353.8 (11.4-170.5) 58.5 (51.6-66.9) 
 

 

Zn Corroboration 18 177.07 (139.73-221.57) 150.82 (138.38-164.97) 
 

 
Table 20. LC50 estimates (medians and 95% confidence intervals) for each metal and modeling 

approach, using data from calibration assays or corroboration assays. 
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Figure 31. Survival observed during corroboration assays for each metal and treatment group. 

Concentrations are given in mg/L. Lines are colored by trial. Datapoints and lines in grey (days 

17-20) were omitted from the analysis because at least one cup from the negative control groups 

for each metal exhibited mortality >20% by those times. 
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Figure 32. Food consumption data from corroboration assays for each metal, after correcting for 

evaporation. Curves are Loess models of food consumption for each concentration. 

 

Comparison P value t ratio Estimate SE df 

As - Cd 1.000 0.142 0.031 0.218 16 

As - LiCl 1.000 -0.093 -0.019 0.207 16 

As - Pb 0.845 -1.014 -0.435 0.429 16 

As - Zn 0.463 -1.697 -0.398 0.234 16 

Cd - LiCl 0.999 -0.265 -0.050 0.191 16 

Cd - Pb 0.801 -1.107 -0.466 0.421 16 

Cd - Zn 0.332 -1.952 -0.429 0.220 16 

LiCl - Pb 0.851 -1.001 -0.416 0.416 16 

LiCl - Zn 0.400 -1.814 -0.378 0.209 16 

Pb - Zn 1.000 0.087 0.037 0.430 16 

Table 21. Pairwise comparisons of Haber constants for each metal. No pair of Haber constants 

were significantly different from each other (Tukey’s HSD, p < 0.05). 

 


