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Abstract

This dissertation is about physical computation, mathematical computation, and
their relationship. The primary contribution is the development of a novel account
of physical computation, which I call the resemblance account. On this account,
physical systems compute to the extent that they resemble mathematically defined
computational models in certain contextually-specified respects.

Chapter 1 situates my project with respect to the broader philosophical land-
scape, tables a few specific questions for later investigation, and considers a range of
adequacy criteria that should constrain our answers to these questions.

Chapter 2 clears the ground by looking more closely at the relationship be-
tween physical and mathematical computation. Here I argue that we should take
a ‘mathematics-first” approach, which develops the theory of physical computation
in terms of a prior mathematical theory of computation. The primary task for such
a theory, as I conceive of it, is to characterize the implementation relating linking
physical systems to the mathematical computational structures they realize.

Chapter 3 develops a novel response to a longstanding skeptical worry that phys-
ical computation is trivial. I argue that relative to a specific, contextually specified
way of regarding a system computationally there is little reason to think that phys-

ical computation is trivial. This response is flexible enough to take on board other
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suggestions found in the literature, but unlike these accounts avoids positing global
constraints on computation generally.

Chapter 4 examines an important class of explanations in computer science. These
explanations, which I call ‘limitative’ explanations, explain why certain problems
cannot be solved computationally. I argue that limitative explanations are a kind of
non-causal, mathematical explanation that depend on highly idealized computational
models such as Turing machines. However, because they are highly idealized, the
relationship between Turing machines and the physical systems that implement is
not best understood in terms of isomorphism.

Chapter 5 pulls these conclusions together and sketches the resemblance account.
On this account, a physical system computes just to the extent that it resembles
a computational model — or, as I prefer to call it, a computational architecture
— in certain antecedently specified respects. Just what these respects are typically
depends on a variety of contextually determined considerations, concerning both ob-
jective features of the system under consideration as well as facts about our goals and
interests in describing a system computationally. After sketching the account, I close

the chapter by noting a few directions for further work.
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Chapter 1: Introduction

This dissertation is about physical computation, mathematical computation, and
the relationship between them. This chapter situates my project with respect to the
broader philosophical landscape, tables a few specific questions for later investigation,

and considers what adequate answers to them ought to look like.

1.1 The philosophy of physical computation: a brief history

To start, I'll distinguish between two broad projects in the philosophy of physical
computation. Philosophical interest in physical computation has a long history, but
I'll pick up the thread in the mid-20th century with the emerging computationalist
program in the philosophy of mind. At the center of this program is the view that
the mind is in some important sense computational. While specific formulations of
this view vary considerably, I will refer to them loosely as the computational theory
of mind (CTM). For example, perhaps the most well-known version of CTM is the
classical computational theory of mind, which holds roughly that the mind performs
Turing-style computations over formally defined symbol structures (Rescorla, 2017a).

Although CTM per se makes no claims about how mental computations are per-
formed, underwriting much of this work was the expectation that mental computa-

tions are performed by the brain. This expectation relied on a view about what it is



for a physical system such as the brain to compute. This view was almost universally
taken for granted and was typically invoked without explicit mention. For instance,
here’s Putnam:

A ‘machine table’ describes a machine if the machine has internal states
corresponding to the columns of the table, and if it ‘obeys’ the instruction
in the table in the following sense: when it is scanning a square on which
a symbol s; appears and it is in, say, state B, that it carries out the
‘instruction’ in the appropriate row and column of the table (in this case,
column B and row s;). Any machine that is described by a machine table
of the sort just exemplified is a Turing machine. (Putnam, 1975, 365)

The following remarks by Fodor seem to rely on a similar thought:

A programming language can be thought of as establishing a mapping of

the physical states of a machine onto sentences of English such that the

English sentence assigned to a given state expresses the instruction the

machine is said to be executing when it is in that state. Conversely, if L

is a programming language for machine M, then it is a fact about each

(computationally relevant) physical state of M that a certain sentence of

English is its image under the mapping effected by L. (Fodor, 1968, 639)
Although neither Putnam nor Fodor explicitly offer a theory of physical compu-
tation here, their remarks suggest that they are operating with what is now known
as the simple mapping account. Roughly put, this is the view that a physical system
computes just in case it stands in an appropriate structural relationship (typically
isomorphism or homomorphism) to some formal computational structure, such as a
Turing machine or a program. These structures are often referred to generically as
‘computations’. When a physical system stands in such a relationship, it is said to
‘implement’ or ‘realize’ the computation in question. Here is a fairly typical statement

of the view:

The Simple Mapping Account
A physical system P implements a computation M if and only if:
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1. There is grouping of states of P into state-types and a function f (a
‘realization’ or ‘implementation’ function) mapping state-types of P
to states of M, such that

2. Under f, the state transitions of P are isomorphic to the formal state
transitions of M; i.e., whenever P is in state p;, where f(p1) = my,
and m; — mo is a formal state transition, then P goes into state po,
where f(py) = mo.

One notable feature of this view, which I will discuss at greater length in later
chapters, is that it characterizes physical computation in terms of a prior mathemat-
ical notion of computation. Thus, even in these early days, philosophical thinking
about physical computation recognized a close connections between theories of phys-
ical computation on the one hand, and mathematical theories of computation, chiefly
computability and computational complexity theory, on the other.

The simple mapping account, or something close to it, was (with a few exceptions)
widely accepted for close to thirty years. However, it came under sustained attack
in the late eighties and early nineties in the form of so-called ‘triviality arguments’
leveled by Putnam (1987) (repudiating his earlier view), and Searle (1992). These
arguments attempted to show that the notion of physical computation furnished by
the simple mapping account was ‘trivial’ or ‘vacuous’, on the grounds that every
physical system implements every computation.

Putnam and Searle’s attacks were prefigured in certain respects by earlier ar-
guments in the philosophy of mind. For instance, Block’s (1978) nation of China
thought experiment and Hinckfuss’s pail (reported in (Lycan, 1981)) put pressure on
the idea that having a certain functional organization (computational or otherwise)

was sufficient for mentality. Putnam and Searle’s arguments, however, departed from



these earlier critiques by focusing more directly on the notion of physical computa-
tion underwriting CTM. Their avowed aim was to show that, owing to the nature of
physical computation, no version of CTM is viable.

The Putnam-Searle challenge elicited two main responses. One was to give up
CTM. This is the response favoured by Putnam and Searle.! The other was to give
up the theory of physical computation targeted by the challenge — that is, the simple
mapping account. This is by far the more popular option. Indeed, it would not be an
exaggeration to say that philosophical thinking about physical computation has been
motivated, in large part, by the task of crafting a theory of physical computation that
avoids the Putnam-Searle challenge.

Perhaps the most well-known response along these lines is due to Chalmers (1994,
1996). Chalmers’ overall strategy, in a nutshell, was to impose additional constraints
on the simple mapping account to block triviality. This approach accepts isomor-
phism/homomorphism as a necessary condition on implementation, but requires that
the realization map f meets some further condition. For instance, one of Chalmers’
proposals was that under f formal state transitions should mirror causal state tran-
sitions: if f(p;) = my and m; — may, then P’s being in state p; should cause it to go
into a state p,, where f(p2) = ma.

Although there was significant disagreement about the success of Chalmers’ pre-
ferred constraints, the strategy itself was by and large taken to be sound.? Chalmers’
proposal thus inaugurated a particular research program in the philosophy of physical
computation, the primary goal of which was to identify a suite of constraints that

! And more recently revived in (Schweizer, 2019b).

2See, for instance, Chalmers (2012) and the articles cited therein for critical discussion of
Chalmers’ proposal.



rendered physical computation non-trivial. This program dominated philosophical
work on physical computation through the mid 1990s and early 2000s. Schematically
put, the idea was to solve for X in the following account:

The Complex Mapping Account

A physical system P implements a computation M if and only if:

1. There is grouping of states of P into state-types and a function f (a
‘realization’ or ‘implementation’ function) mapping state-types of P
to states of M, such that

2. Under f, the state transitions of P are isomorphic to the formal state
transitions of M; i.e., whenever P is in state p;, where f(p;) = my,
and m; — my is a formal state transition, then P goes into state po,
where f(py) = mo.

3. f satisfies condition X.

While all of this transpired, the computational sciences — here I have in mind
computer and cognitive science — flourished. In its early days computer scientific
research occurred primarily in mathematics and electrical engineering departments,
but by the mid 1990s it had largely extracted itself and was established as a field with
its own peculiar disciplinary interests and concerns. Similarly, cognitive science had
by then emerged as a rich interdisciplinary field with its own distinctive approaches to
the mind. Eventually philosophers began to take these developments more seriously
in their theorizing about physical computation. Although vindicating CTM remained
a central motivation for work on physical computation, accounting for practice in the
computational sciences quickly became a prominent item on the agenda.

Motivation for the latter project was not found primarily in the philosophy of
mind, but rather in the philosophy of science, where the primary goal is to under-
stand and illuminate scientific practice. Although this might be taken to signal a de-
parture from the earlier project of vindicating CTM, it is perhaps better understood
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as a broadening of scope. Whereas before philosophical accounts of physical compu-
tation were geared chiefly towards understanding computations in the mind/brain,
on the broader project such accounts should understand computation wherever it
occurs. Insofar as the computational sciences are the best guide to computation in
general, the task for the philosopher becomes to understand those sciences, such as
computer and cognitive science, which explicitly describe and explain physical sys-
tems computationally. Perhaps the most well-known approach along these lines is
due to Gualtiero Piccinini, whose mechanistic view of computation is one of the most
thoroughly elaborated accounts of physical computation to date (Piccinini, 2015).
Piccinini’s mechanistic view was, among other things, explicitly advertised as bet-
ter capturing computer scientific practice than its competitors. However, despite an
avowed interest in actual computer scientific practice, Piccinini’s view displays strik-
ingly little engagement with that practice. What engagement there is focuses largely
(although not exclusively) on the subfield of computer architecture (see, e.g., (Pic-
cinini, 2015, ch. 8-13)). My own view is that this leads Piccinini to overlook certain
important phenomena elsewhere in computer science. Indeed, chapter 4 of this work
is dedicated to examining one such phenomenon that arises in theoretical computer
science.

Of course, Piccinini’s restricted focus is to some extent understandable. Computer
science is a large field, and getting larger. One can only do so much. Nonetheless,
a satisfactory account of physical computation should engage with a fuller sample
of computer scientific practice than one finds in typical philosophical discussions.
One goal of this dissertation is to investigate what happens if we focus more directly

on practice in the computational sciences. I hope to better understand physical



computation in part by seeing what contemporary computer science, and to a lesser
extent cognitive science, have to say about it.

Let me turn next to some of the more specific questions I will address. To date,
most philosophical interest in physical computation has focused on broadly semantic
questions about the content of central computational concepts, and broadly meta-
physical questions about the nature of physical computation. Representative exam-

ples of the former include:

What is the content of the concept of physical computation? What are
the relationships between the concepts of an algorithm, of computing, of
a computation, of something’s being a computer, etc.? Are one or more
of these more fundamental than the others, in some appropriate sense of
‘fundamental’? To what extent can these concepts be analyzed (given
some suitable conception of analysis)?

While representative examples of the latter include:

What is it for a physical system to compute, or for a system to be a com-
puter? What distinguishes computational states, properties, processes,
events, etc. from their non-computational counterparts? What is the
relationship between theories of physical computation and the formal,
mathematical theories of computation developed in computability and
complexity theory?

The traditional focus on such questions will come as no surprise given the semantic
and metaphysical interests driving much interest in CTM. While I will have something
to say in response to these questions in later chapters, one theme of the dissertation is
that overemphasis on such questions has led to a third class of questions receiving less
attention than they deserve. Questions in this third class are motivated principally

by the goal of understanding the theoretical role played by physical computation in

the contemporary computational sciences:



What, if anything, makes computational descriptions and explanations
scientifically valuable? If they are valuable, what makes them that way
(e.g., accurate description, predictive utility, theoretically fruitful, etc.)
How are these related to or different from non-computational descrip-
tions and explanations? What makes a given computational description
descriptively/explanatorily salient in a specific scientific context?

Of course, these lists could undoubtedly be expanded, and the questions them-
selves are in need substantial clarification and refinement before they can be satis-
factorily addressed. Moreover, it is unlikely that these questions can be pursued in
isolation. Views about the metaphysics of physical computation bear in complicated
ways on how we understand the role of computation in the computational sciences.
Similarly, a particular view about the scientific role of computation might require
taking a particular stand on the metaphysics. This is of course a familiar philosoph-
ical point, but it’s worth bearing in mind. Where we start more likely than not will
partly determine where we end up.

These caveats notwithstanding, I am inclined to think that an adequate under-
standing of the computational sciences requires much closer engagement with the
third class of questions. This dissertation is intended to be a small step in that

direction.

1.2 Adequacy Criteria

It is quite plausible to think that our answers to these questions should meet
certain adequacy criteria. Since these criteria play an important role in later chapters,
it will be useful to survey and appraise of some of the more prominent ones found

in the literature, and to identify those I take to be most important for my purposes.



The goal at this stage is just to get these criteria on the table. Later chapters will

discuss them in more detail.
1.2.1 Extensionality

Extensional adequacy criteria are perhaps the most straightforward and widely
accepted adequacy criteria in the literature on physical computation. In general, these
criteria hold that the range of systems or processes countenanced as computational by
a specific theory must match, in a sense to be explained shortly, some predetermined
stock of computational systems or processes. Theories which more closely match this
stock are preferable to those that do not.

Just what goes into the stock? The standard approach is to identify a set of
paradigms on the one hand, and a set of anti-paradigms on the other, so that a
theory ought to classify paradigms and anti-paradigms correctly. As Piccinini (2015,
12) puts its, we must ensure both that the right things compute and that the wrong
things don’t:

The right things compute

A theory should correctly classify paradigm physical computing systems
as computational.

The wrong things don’t compute

A theory should correctly classify anti-paradigm computing systems as
non-computational.
These criteria are schematic, because they depend on a choice of paradigms and
anti-paradigms. Different choices may yield quite different adequacy criteria. A
theory that succeeds relative to one choice may fail relative to another. Thus, the

choice of paradigms and anti-paradigms is itself an important, non-trivial problem.



Given my interest in capturing computational practice, the most obvious approach
starts with the computational sciences. These sciences furnish a rough and ready list
of paradigms and anti-paradigms, if only tacitly. I will take paradigm computing
systems to be those that are routinely treated as computational by computer and
cognitive science. To a first approximation, these are the systems that are described
as computational or explained in broadly computational terms. Anti-paradigmatic
computing systems, by contrast, are those that are not so treated.

By this measure, paradigm physical computing systems comprise both natural
and artificial systems. On the natural side are, among other things, brains, certain
parts of nervous systems, and human agents working effectively. On the artifactual
side are calculators, digital computers, quantum computers, and analog computers.
Anti-paradigms include certain middle-sized dry goods such as rocks, walls, and pails
of water. Also included are digestive systems, planetary systems, thunderstorms, and
tectonic plates.

These lists are obviously not exhaustive. For one thing, there are unclear cases.
For instance, do abaci compute, or are they merely instruments used in the course
of human calculation? More exotically, do insect swarms, RNA strands, or even the
whole universe compute? Although it is sometimes suggested that these systems com-
pute, there is no consensus on the matter. Indeed, for such cases there may be no
straightforward answer one way or the other. Some indeterminacy is likely unavoid-
able, and we should learn to live with it. I do not take it to be a further constraint
that a theory should exhaustively classify physical systems into the computational

and non-computational.
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Note also that the computational sciences now recognize a wider range of comput-
ing systems than they did fifty years ago, and we can expect the same in the future.
Because of this, our paradigm and anti-paradigm lists are liable to evolve over time.
This, of course, is as it should be. Science changes, and our philosophical theories
should change with it.

The two extensionality criteria above concern computing systems. They say that
a theory must classify systems, as a whole, the right way. But it is also important that
we capture not just which physical systems compute, but also what they compute and
how they do it. For instance, a theory which entails that a calculator is computing
addition when it is actually computing subtraction is arguably unsatisfactory. The
foregoing criteria are pitched at too coarse a grain to capture this distinction. This

motivates the following additional criterion:

The right things compute the right things
If a physical computing system computes X, then a theory of physical

computation should entail that that system computes X.

Here too the notion of a system ‘computing X’ is in a way schematic. It stands in
for a variety of different things that might plausibly regarded as being computed —
problems, outputs, functions, etc. Moreover, because there may be different ways to
compute the same thing, relative to some choice of what it is that gets computed —
different choices of X — a theory should also capture the specific way that a system

computes X:

The right things compute the right things the right way

If a physical computing system computes X via procedure P, then a theory
of physical computation should entail that it computes X via P.

11



1.2.2 Explanation

Another main adequacy criterion (or cluster of adequacy criteria) concern com-
putation’s explanatory role in science. Here the starting point is the observation
that the computational sciences contain many explanations framed in computational
terms. A theory of physical computation should account for this central aspect of
computational practice.

To bring out my preferred version of this criterion, I'll contrast it with a similar
one proposed by Gualtiero Piccinini:

Computations performed by a system may explain its capacities ... A good
account of computing mechanisms should say how appeals to program
execution, and more generally to computation, explain the behavior of
computing systems. (Piccinini, 2015, 12)

It seem to me that this criterion is too narrow. For one thing, it is framed in
terms of Piccinini’s proprietary notion of a computing mechanism. But we should not
assume that all physical computing systems are computing mechanisms in Piccinini’s
sense, nor should we restrict our focus to just those systems, if it turns out that
there are computing systems which are not Piccinini-style computing mechanisms.
Second, Piccinini’s’ criterion is framed explicitly in terms of the behavior of computing
systems. Although the notion of behavior is highly flexible, it seems to me that
the computational sciences might aim to explain phenomena which aren’t obviously
behavioral. One example of this, which I return to at much greater length below,
concerns limits on the computational powers of physical devices. Here we wish to
explain, not what systems do or can do, but rather what they cannot do.

Consequently, for these reasons I prefer a broader, more neutral criterion:

Explanatory adequacy
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A theory of physical computation should identify explanatory uses of com-
putation in the contemporary computational sciences, and should illumi-
nate how such uses work.

This criterion has two parts. The first is that a theory of physical computation
should correctly identify explanatory uses of computation when they occur in the
comptuational sciences. This is a sort of extensionality criterion, now directed towards
computational explanations. A theory should have the resources to identify paradigm
cases of computational explanation, and should be able to distinguish these from, for
example, failed explanations or descriptive but non-explanatory uses of computation.
As before, this criterion is sensitive to choice choice of paradigms. I will have more
to say about this in later chapters.

The second part is that a theory should ‘illuminate’ computational explanations.
This involves, among other things, situating computational explanations with respect
to more well-known kinds of scientific explanation and identifying the distinctive
explanatory contributions (if any) that they make. For instance, are computational
explanations a kind of causal explanation? If so, what distinguishes them from non-
computational causal explanations? If not, what kind of explanation are they? A
theory of physical computation should say something about questions such as these.

Some philosophers reject explanatory adequacy criteria on the grounds that they
assume too much. For instance, Shagrir writes that although he “think]s| that compu-
tation has a substantive explanatory role ... this substantivity is not a desideratum of
an account of computation” (Shagrir, 2022, 30). This is because our task, as philoso-
phers of science, “is not to require an explanatory role, but to clarify whether the

notion of computation has one” (Shagrir, 2022, 31-2).
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However I am much less pessimistic than Shagrir that computation plays an ex-
planatory role in science. Frankly, it seems to me to be almost undeniable that it
does. Computational scientists routinely and without compunction explain phenom-
ena computationally. Accordingly, I take my job, qua philosopher of science, to be to
understand this practice. Of course, in saying this I do not claim that every putative
computational explanation succeeds. I allow that computational scientists get things
wrong, at least sometimes. A theory of physical computation should account for such

cases as well.
1.2.3 Objectivity

A common third criterion holds that it should turn out that computation is in

some sense objective. One statement of this comes from Piccinini:

A account with objectivity is such that whether a system performs a
particular computation is a matter of fact. Contrary to objectivity, some
authors have suggested that computational descriptions are vacuous —
a matter of free interpretation rather than fact... Computer scientists
and engineers appeal to empirical facts about the systems they study to
determine which computations are performed by which systems ... Unless
the prima facie legitimacy of those scientific practices can be explained
away, a good account of concrete computation should entail that there is
a fact of the matter as to which computations are performed by which
systems. (Piccinini, 2015, 11-2)

It seems to me that this statement runs together a couple different ideas. One is
that whether a physical system computes should not be ‘a matter of free interpreta-
tion’. Although Piccinini does not elaborate on the relevant notion of free interpre-
tation, the idea seems to be that computation should be objective in the sense of not

being observer-relative — i.e., being observer-independent (cf. Searle (1992, ch. 9)).

In particular, here Piccinini seems to want to rule out a very permissive conception
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on which an agent merely interpreting a system as computing (whatever exactly that
amounts to) suffices for it to be a computing system.

This is not entirely unreasonable, but it is worth noting that computation may be
observer-relative even if it is not obviously a matter of ‘free interpretation’. Indeed,
there are a range of possible notions of observer-relativity, of varying strength, that
might be relevant for thinking about physical computation. For instance, it is not
implausible to think that sometimes what a system computes depends on facts about
the broader linguistic or social environment in which it is embedded. To take an ex-
ample from Rescorla (2013), one might think that the fact that a system is embedded
in an environment where its users interpret it as using base-10 rather than base-13
notation at least partly determines what number-theoretic function it computes. If
this is right, then what the calculator computes is in some sense observer-relative
even though it is not obviously a matter of ‘free interpretation’. A strict ban on some
degree of observer-relativity would make our theory deliver the wrong results for cases
such as this.

At the same time, an observer-independence requirement is not unreasonable from
the point of view of CTM. Historically, CTM was developed in part to rebut homuncu-
lar regress and circularity worries in the philosophy of mind Fodor (1968, 1965). Al-
though it depends substantially on the details of the theory, an account of physical
computation on which physical computation is observer-relative at least threatens to
reintroduce these old worries. However, even if such a constraint is plausible for the
project of developing a computational theory of mind, it is less clear that we should

endorse it as a global adequacy condition.
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For this reason, it seems to me that we should endorse a more attenuated observer-
independence criterion. Rather than hold that physical computation is observer-
independent across the board, a theory should have the resources to discriminate

between observer-relative and observer-independent forms of computation:

Observer-relativity

A theory of physical computation should have the resources to discrimi-
nate between physical computing systems, if there are any, whose compu-
tational status and/or identity is observer-relative (in some appropriate
sense), and those whose status and/or identity is not so relative.

As it stands, this is criterion needs to be filled out with an appropriate notion of
observer-relativity. I will say a little bit more about this in chapter 3.3

Piccinini also appeals to the idea that empirical facts should be relevant to what
a system computes. This is at least partly an epistemological point. Again, although
Piccinini does not elaborate, the rough idea seems to be that whether and what a
system computes shouldn’t turn out to be the kind of thing we can discover entirely
from the armchair. This is different from observer-independence per se. True, if com-
putation were a matter of ‘free interpretation’, empirical facts may not matter very
much to how one interprets a system computationally. But it is presumably at least
partly an empirical fact that a device, embedded in a certain linguistic environment,
computes a certain function, even if this is in some sense a mind-dependent fact about
that device. Certainly, what it computes is not the sort of thing one could discover
entirely from the armchair.

There are of course a range of well-known epistemic notions of varying strength

that could be used to develop an appropriate epistemological criterion for theories of

3For a pair of similar criteria, see (Shagrir, 2022, 26-7).
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physical computation. The following negative formulation allows us to sidestep this
issue for the time being while still recognizing that theories of physical computation

should be assessed at least in part in terms of their epistemic commitments:

Empirical content

A theory of physical computation should not entail that a physical sys-
tem’s computational status and/or identity can be discovered wholly a
priori.

1.3 What’s to come

So much for background and methodology. Let me sketch where we're going.
The overall goal of the dissertation is to build towards a novel account of physi-
cal computation, which I call the resemblance account. Very roughly, according to
this account, a physical system computes just in case it resembles a mathematically
characterized computation in certain antecedently specified respects. This account
departs from more familiar theories of implementation at two main points. First, on
this account implementation is a ternary relation, and computational ascriptions are
highly context-sensitive: a system implements a computation relative to a contextu-
ally specified way of regarding a system computationally. Second, on this account
implementation is not in general a matter of being isomorphic to a mathematical com-
putation, but rather involves resembling it in respects that may outstrip isomorphism
(or similar structural relationships). I build up to this view in a few steps.

Chapter 2 clears the ground by looking more closely at the relationship between
physical and mathematical computation. As I noted above, philosophers have long
accepted close connections between the two, but their exact connection remains ob-
scure. One view, which I call unificationism, holds roughly that a theory of com-
putation should apply uniformly to both physical computing systems such as digital
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computers and mathematical computing systems such as Turing machines. Chapter
2 argues that this position is untenable. Specifically, it is very hard to see how to
endorse this position without running into the Putnam-Searle triviality worry. In
light of this concern, I argue that we should distinguish between the physical and
mathematical theories of computation. I call this alternative bifurcationism.

Bifurcationism per se underdetermines the exact relationship between physical and
mathematical computation. It says that we cannot assimilate physical and mathe-
matical computation without significant cost, but it does not offer a positive charac-
terization of their relationship. At the end of Chapter 2 I delineate three different
options and suggest that we should take a ‘mathematics-first’ approach, which devel-
ops the theory of physical computation in terms of a prior theory of mathematical
computation. The primary task for such a theory, as I conceive of it, is to character-
ize the relationship of realization that relates physical systems to the mathematical
computations they implement.

Chapter 3 motivates the idea that implementation is a ternary relation. I argue
that treating implementation this way yields a novel and attractive response to the
Putnam-Searle triviality worry. Specifically, I argue that relative to a specific, con-
textually specified way of regarding systems computationally, there is little reason
to think that every physical system implements every computation. This response
is flexible enough to take on board many other suggestions in the literature but un-
like ‘complex’ mapping accounts avoids positing global constraints on computation
generally.

Chapter 4 puts pressure on the idea that isomorphism is a necessary condition

on implementation through an examination of an important class of explanations in

18



computer science. These explanations, which I call ‘limitative’ explanations, explain
why certain problems cannot be solved computationally, either in principle or under
certain constraints on computational resources such as time or space. I argue that
limitative explanations are a kind of non-causal, mathematical explanation that de-
pend on highly idealized computational models such as Turing machines. However,
because they are highly idealized, the relationship between Turing machines and the
physical systems that implement is not best understood in terms of isomorphism.
Chapter 5 pulls these conclusions together and sketches the resemblance account.
On this account, a physical system computes just to the extent that it resembles
a computational model — or, as I prefer to call it, a computational architecture
— in certain antecedently specified respects. Just what these respects are typically
depends on a variety of contextually determined considerations, concerning both ob-
jective features of the system under consideration as well as facts about our goals and
interests in describing a system computationally. After sketching the account, I close

the chapter by noting a few directions for further work.
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Chapter 2: Why do we need a theory of implementation?

2.1 The received view of physical computation

The contemporary computational sciences describe and explain certain physical
systems in terms of the computations they perform. Philosophical theories of physical
computation attempt to codify and illuminate this practice. But what form should
such theories take? The received view characterizes physical computation in terms
of mathematical computation. Ordinarily this is taken to be a matter of relating

mathematical computations to the physical world:

Determining what conditions a physical system must satisfy in order to
compute is the focus of theories of computational implementation, or phys-
ical computation . . . An account of implementation aims to specify the
conditions under which a physical system performs a computation defined
by a mathematical formalism — it is a theory of physical computation.
(Ritchie and Piccinini, 2019, 192-3)

Though I will say more about this in due course, the crucial point is that this
view begins with a mathematical notion of computation, and applies it to physical
systems by way of an implementation relation. Call this ‘implementationism’ about

physical computation.*

4Particular implementationist views are developed and defended by (Chalmers, 1994, 1996,
2011; Egan, 2010; Matthews and Dresner, 2017; Millhouse, 2019; Rapaport, 1999; Rescorla, 2014b;
Schweizer, 2019a), among others. Ritchie and Piccinini (2019) and Sprevak (2019) survey the major
issues.
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Implementationist theories must negotiate a number of further issues, concerning
both the nature of implementation, and what constraints, if any, there are on which
physical systems may implement a computation. Perhaps unsurprisingly, there is
widespread disagreement about how these issues should be addressed. But this is
disagreement over details — how to develop implementationism, and not whether we
should. What is the rationale for characterizing physical computation this way in the
first place? The standard answer, roughly, is that we already have a mathematical
theory of computation, so we might as well use it. Here’s David Chalmers:

The mathematical theory of computation in the abstract is well-understood,
but cognitive science and artificial intelligence go beyond the domain of
abstract objects to deal with concrete systems in the physical world. The
difficult questions about computation are largely questions about the re-
lationship between these domains. How does the abstract theory of com-
putation relate to a science of concrete, causal systems, and how might it
help us explain cognition in the real world? To answer these questions, we
need a bridge between the abstract and the concrete domains. (Chalmers,
1994, 341-2)

As Chalmers goes on to suggest, a theory of implementation is just what is needed
to ‘bridge’ the gap between mathematical and physical reality.?

It seems to me that this ‘mathematics-first’ approach rests on a more basic atti-
tude towards the relationship between the theories of mathematical computation and
physical computation. Implementationist theories say nothing about mathematical
computing systems, such as Turing machines, because they are assumed to be dealt
with by a prior mathematical theory. Given such a theory, the implementationist’s
task is to use it to develop an account of physical computation. Thus, by taking

a mathematical theory of computation for granted, implementationism divides the

>Chalmers’ attitude persists today. For instance, Rescorla (2017b, 288) writes that “philosophical
discussion of computation should ground itself in the mathematical theory of computation.”
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theory of computation into two parts, each of which plays a different explanatory
role. One part explains computation in the mathematical case, while the other ex-
plains computation in the physical case. Call this ‘bifurcationism’ about the theory
of computation. I shall say more about bifurcationism shortly.

Bifurcationism has been tacitly assumed by much of the literature on physical
computation. This is striking, for a couple reasons. First, what little argument
exists for it rests on questionable assumptions about the nature and character of the
mathematical theory of computation. Second, and perhaps more seriously, it seems
that considerations from both the general philosophy of science, as well as from the
philosophy of computer science in particular, augur against bifurcationism. These
considerations point towards a theory which offers the same account of computation
in both the physical and mathematical cases. I call this alternative ‘unificationism’.

The upshot is that if we are to endorse bifurcationism, much less implementation-
ism, a new argument is needed. The main contribution of this chapter is to provide
one. I argue that the prospects for a unificationist theory which does not trivialize
physical computation are grim. To the extent that a non-trivial theory of physical
computation is desirable — I will assume that it is — and to the extent that bifurca-
tionist accounts stand a better chance of avoiding triviality — I will eventually argue
that they do — we ought on balance to prefer bifurcationism to unificationism.

As we will see, however, bifurcationism per se does not mandate implementa-
tionism. That is, bifurcationism as such does not require that we take Chalmers’
‘mathematics-first” approach to physical computation. In fact, bifurcationism is com-
patible with at least two other views about the relationship between the theories of

physical and mathematical computation. These other views have not received much

22



attention, and I submit that this partly because bifurcationism itself has not yet been
isolated for independent treatment. Thus, a second contribution of this chapter is
to clarify the possible relationships between theories of physical and mathematical
computation, and to provide new motivation for the mathematics-first approach.
Here is the plan for the rest of the chapter. Section 2 fleshes out the distinction
between unificationism and bifurcationism. Section 3 argues that extant motivation
for bifurcationism, such as it is, is uncompelling. Section 4 makes a prima facie case
for unificationism. Sections 5 and 6 argue that, initial attractions aside, unificationism

faces serious problems. Section 7 concludes.

2.2 Unificationism and bifurcationism

I take it that any theory of computation must answer two main questions. The
first concerns the computational status of computing systems. Here we're interested
in the difference between systems that compute and those that don’t. The second
concerns the computational identity of computing systems. Here we'’re interested in
the conditions under which two computing systems are computationally equivalent
or distinct — modulo some appropriate standard for individuating systems compu-
tationally, e.g., in terms of the functions they compute, the algorithms they follow,

and so forth. I will call these the status and identity questions, respectively:
Status What distinguishes systems that compute from those that don’t?

Identity Under what conditions are two computing systems computa-
tionally identical or distinct?

The contrast between unificationism and bifurcationism can be understood as a
disagreement about how these questions should be answered. To a first approxima-
tion, the bifurcationist holds that the theory which furnishes answers to the status
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and identity questions concerning physical computing systems needn’t also furnish
answers to these questions as they concern mathematical computing systems. The
unificationist, by contrast, holds that one and the same theory which furnishes an-
swers to these questions concerning physical systems must also furnish answers to
their mathematical counterparts.

So construed, unificationism and bifurcationism are methodological claims about
which questions a theory of computation ought to address. It will be useful to have a
‘metaphysical’ version of the contrast on the table, too. On this second way of drawing
the distinction, a theory is unificationist if it supplies the same kind of answer to the
status and identity questions for both sort of computing system, and a theory is
bifurcationist if it doesn’t.%

How are the methodological and metaphysical claims related? For now it’s enough
to notice that if unificationist or bifurcationist theories are in general untenable, it’s
likely that the corresponding methodologies are misguided too. That is, the method-
ological versions of either unificationism or bifurcationism should be abandoned if it
can be shown that their metaphysical counterparts are unsustainable. Accordingly,
even though I focus on the prospects for unificationist and bifurcationist theories in
particular, the methodological versions of these views are implicated by my arguments

as well.

6 Additionally, while I've drawn the distinction at the level of theories, we might also characterize
it in terms of a variety of more fine-grained notions, such as the truth-conditions of computational
statements, the applicability conditions of computational concepts, or the instantiation conditions
of computational properties. For our purposes, however, the theory-centric characterization will
suffice.
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One might doubt that the unificationism/bifurcationism distinction marks a sub-
stantive contrast, on the grounds that it is very easy to turn any putatively bifurca-
tionist theory into a unificationist theory. Suppose that M is a theory which answers
the status and identity questions for mathematical systems and that P is a theory
which answers these questions for physical systems. Then M A P is a unificationist
theory, for one and the same theory, namely M A P, answers the status and identity
questions for both sorts of system.

However, this sort of construction doesn’t get to the heart of the matter. What’s
at issue is not just the form a theory of computation takes, but how it answers the
status and identity questions concerning different sorts of system. Moreover, this sort
of construction can be ruled out easily enough: let unificationism be as before, but
require that there be no proper sub-theory which supplies answers to the status and
identity questions for physical systems alone.

To help bring out the intended contrast, it is instructive to compare some par-
ticular theories of physical computation. The first is Chalmers’ implementationist

theory.”

A physical system P implements a CSA M if there is a decomposition
of internal states of P into components [s', s?,...], and a mapping f from
the substates s; into corresponding substates S; of M, along with similar
decompositions and mappings for inputs and outputs, such that for every
state-transition rule ([I',...,I*],[S*, S?,...]) — ([, S, ..],[0%,...,0Y)
of M: if P is in internal state [s',s? ...] and receiving input [i',...., "]
which map to formal state and input [S!,S?, ...] and [I', ..., I*] respec-
tively, this reliably causes it to enter an internal state and produce an
output that map to [St, S, ...] and [O%,. .., O] respectively. (Chalmers,
1994, 394)

"Chalmers’ account is couched in terms of combinatorial state automata (CSAs), a generalization
of finite state automata.
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Thus on this view whether a physical system computes is a matter of implement-
ing a CSA, and what it computes is determined by the CSA (or CSAs) it implements.
This approach relies on a prior mathematical theory of CSAs, specifying what math-
ematical entities count as CSAs and what computation a given CSA performs, which
is then used to define physical computation. The account thus offers different kinds
of answers to the status and identity questions as they concern physical and math-
ematical systems. The latter are addressed by the mathematical theory of CSA
computation; the former by the account of implementation just cited. For this reason
Chalmers’ account seems to me a paradigmatic bifurcationist account of computa-
tion. And to the extent that Chalmers’ view is representative of implementationist
accounts generally, implementationism overall incurs a commitment to bifurcationism
too.

Contrast this with the account of function computation found in (Copeland, 1996).

According to Copeland’s account:

Entity e is computing function f if and only if there exists a labelling
scheme L and a formal specification SPEC (of an architecture and an
algorithm specific to the architecture that takes arguments of f as inputs
and delivers values of f as outputs) such that (e, L) is a model of SPEC.
(Copeland, 1996, 338)

The relevant notion of modeling, taken from model theory, is Tarskian satisfaction.
Importantly, this notion allows that both physical and mathematical structures may
model a given architecture—algorithm specification. In order for an entity e to be a
model, all that is required is that there be a way to use it to identify a domain of
objects and a suite of relations on them. As far the modeling relation is concerned,
these entities and relations may be physical, mathematical, or indeed just about
anything you like. Moreover, this flexibility with respect to physical and mathematical
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models is not just a technical quirk. That both physical and mathematical structures
may stand as models is an important part of Copeland’s account, a point about which

he is quite clear:

The construction [i.e. the labelling scheme] must be applicable not only
to real hardware but also to merely conceptual machines. For example,
we wish to say that each action of a Turing machine is the result of its
configuration (i.e. the combination of its state and the scanned symbol).
Unless we intend to speak metaphorically, the phrase ‘is the result of’
cannot be replaced here by ‘is caused by’, for the machine is a purely
abstract entity. (Copeland, 1996, 341)

I submit that this account of computation is unificationist, not bifurcationist.
On Copeland’s view, whether and what a system computes is determined by the
architecture-algorithm specifications of which it is a model. Consequently, the status
and identity questions for both physical and mathematical computing systems are
answered in terms of algorithm-architecture specifications.

To my knowledge, Copeland’s view is perhaps the clearest illustration of unifica-
tionism in the literature. But at times other philosophers appear to flirt with unifica-
tionism, too. For instance, in some moods Piccinini appears to offer the mechanistic
account of computation in a unificationist spirit. This account holds that computing
systems are a kind of mechanism with teleological functions—or a ‘functional mech-
anism’, for short—whose function is computing (Piccinini, 2015). At times, Piccinini
appears to suggest that the account applies in equal measure to both physical com-
puting systems, such as digital computers, and mathematical computing systems,

such as Turing machines:

All paradigmatic examples of computing mechanisms, such as digital com-
puters, calculators, Turing machines, and finite state automata ... per-
form digital computations. Thus, the mechanistic account properly counts
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all paradigmatic examples of computing mechanisms as such. (Piccinini,
2015, 143)

[a] similar notion of functional mechanism [as that which applies to physi-
cal computing mechanisms| applies to computing systems that are defined
purely mathematically, such as (unimplemented) Turing machines. Turing
machines consist of a tape divided into squares and a processing device.
The tape and processing device are explicitly defined as spatiotemporal
components. They have functions (storing letters; moving along the tape;
reading, erasing, and writing letters on the tape) and an organization
(the processing device moves along the tape one square at a time, etc.).
(Piccinini, 2015, 119-20)

Whether abstract or concrete, Turing machines are mechanisms, subject
to mechanistic explanation no more and no less than other mechanisms.
(Piccinini, 2010, 290)

Thus on this view, the status and identity questions are answered in mechanistic

terms. Whether and what a system computes amounts to being a certain sort of

functional mechanism.??

I think that this is enough to get a feel for the distinction. As I remarked above,
it seems to me that much work on physical computation has been guided by a tacit
commitment to bifurcationism. Chalmers, for instance, simply assumes bifurcation-
ism without argument. But once we isolate the unificationism /bifurcationism contrast

8[s fair to Piccinini? In other moods he seems downright hostile to unificationism (see, for
instance, (Piccinini, 2015, 8-9)). Yet, even if this is right, it is not clear how to reconcile this with
the outlook expressed in the previously cited passages, which seem to me clearly unificationist. In
any event, while I think this points towards an interesting tension in Piccinini’s view, I don’t propose
to get bogged down in exegesis at this stage. I'll return to this point again in Section 6.1, where I
argue that Piccinini is committed to unificationism by his own lights.

9These views raise another issue worth clarifying. Much of the literature on physical computation
takes a realist attitude towards the relevant mathematics: witness Chalmers’ talk of computational
objects, for instance. But we shouldn’t read too much into this. Given the variety and subtlety
of extant nominalization strategies, such as those developed in Burgess and Rosen (1997), I see no
obvious reason why this literature couldn’t be developed in nominalist terms without distorting the
major issues. Accordingly, we can set aside questions about fundamental mathematical ontology
and focus on issues internal to the philosophies of computer and cognitive science. For convenience,
I will continue to adjudicate matters in realist vocabulary.
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we can begin to see that matters are not so straightforward. Indeed, as I will argue

next, there is a real worry that bifurcationism is misguided.

2.3 Troubles with bifurcationism

If I'm right that bifurcationism has been endorsed only tacitly, it is perhaps un-
surprising that we find little explicit argument for it. However, those who appear
to endorse it oftentimes emphasize the distinctively ‘mathematical’ subject matter of
computability theory. Sprevak (2010, 262-3) expresses this idea vividly:

Mathematical computation theory is a branch of pure mathematics and
concerns relations between mathematical structures and objects. The
‘computers’ it studies are mathematical entities not physical systems. Ac-
cording to mathematical computation theory, a Turing machine is not a
physical system; it does not ‘perform’ a computation in the sense that a
physical system does.

And a bit later:

The computations studied in mathematical computation theory are inde-
pendent of how things are in the physical world. They are independent
of empirical ink-marks, they do not ‘take place’ in time, or depend on the
physical possibility of infinitely long tapes. Computers in mathematical
computation theory are mathematical entities that bear certain relations,
studied by that theory, to other mathematical entities, the functions they
compute ... physical entities are not the subject matter of the relevant
mathematical claims. Mathematical computaion theory does not say any-
thing about physical systems.!°

These remarks suggest the following sort of argument: (1) the mathematical the-
ory of computation is concerned solely with mathematical entities, such as Turing

machines, recursive functions, and the like. But (2) these are not physical entities

10Tt should be noted that what Sprevak calls ‘the received view’ is the claim that all physical
computation essentially involves representation. This is distinct from how I use the term above,
to refer to implementationist theories of physical computation generally. Sprevak’s received view is
just one kind of implementationist view, that is, just one instance of my ‘received view’.
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— they are ‘independent of how things are in the physical world’. So (3) a theory
of such systems is not automatically a theory of physical systems, in which case (4)
bifurcationism follows.!!

However, if this is the master argument for bifurcationism, it leaves much to be
desired. One issue is that premise (1) comes perilously close to begging the question.
Our topic is the extent to which the mathematical and physical theories of compu-
tation share a subject matter. To assume that the mathematical theory is concerned
only with mathematical computing systems appears to assume that the status and
identity questions concerning physical systems cannot be answered by that theory,
which is just what we are wondering about. Another issue is that (2) presupposes
a substantial view about the nature of mathematical entities, in effect that they are
not physical entities of some sort or another. Yet it is not clear why one must endorse
this claim in order to be a bifurcationist, for the unificationism/bifurcationism distinc-
tion presumably cuts across issues of fundamental mathematical ontology. That is, it
would be rather surprising if endorsing bifurcationism (much less implementationism)
required one to take this particular attitude towards the relevant mathematics.

But even setting these worries aside, the crucial move from (2) to (3) is suspect.
Suppose it’s true that the primary subject matter of computability theory are highly
idealized mathematical computing systems. That doesn’t show that computability
theory can’t also be a theory of certain non-idealized physical systems, too. Certainly
it is not clear that this reflects how computability theorists conceive of their own
subject matter, for at times they seem to be describing actual or possible physical
devices. This outlook goes right back to Turing’s foundational work on effective

1Tt would be unfair to attribute this argument, at least in this form, to Sprevak. But it does
seem to me that this kind of reasoning lies behind bifurcationism.
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calculability, for Turing’s focus was, in the first instance, on the sorts of problems
that could be solved by a human working effectively. In this respect the situation is
quite unlike that found in, for example, the more exotic branches of set theory, where
there is typically no pretension that the objects of interest are in any sense physical,
idealized or not.

Moreover, it seems that computability theory actually has the resources to describe
physical systems directly. This can be illustrated by looking at the standard definition
of a deterministic finite automaton. On that definition, DFAs are five-tuples A =
(@Q,%,6,q0, F), where ) is a finite set of states, ¥ is a finite set of input symbols,
0:@Q xY — @QULF is a transition function, gy € @ is a start state, and F' is a set
of final states. As Rescorla (2014b) observes, this definition imposes no restrictions
on the members of ) or F: all that is required that they be sets of states. Now, we
might take the states to be purely abstract, but then again we might also take them
to be states of a particular physical system. And in the latter case it’s unclear why
computability theory wouldn’t describe the computational characteristics of physical
systems. Indeed, it would be surprising if it didn’t!

In light of all this, I am skeptical that bifurcationism can be motivated by an
appeal to the supposedly ‘mathematical’ subject matter of computability theory. If
we are going to endorse it, we’ll need a more sophisticated argument. That’s coming

up. But first let’s what can be said in favour of unificationism.

2.4 Three arguments for unificationism

This section argues that unificationism exhibits certain theoretical virtues, some

of which concern philosophical theories generally and some of which are more specific
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to theories of physical computation. In light of this, I claim that we shouldn’t dismiss
unificationism out of hand. Of course, that a theory has certain virtues only counts
towards endorsing it if all else is equal. I don’t pretend that the considerations
presented here are demonstrative. In fact, I'll eventually argue that all else is not
equal, and that for other reasons unificationism should ultimately be abandoned. But,
taken together, I submit that these considerations make a strong prima facie case for

unificationism. Strong enough, at any rate, to give the bifurcationist pause.
2.4.1 The value of unification

Many philosophers hold that more unified theories are preferable to less unified
theories. This is a familiar point, so I'll be brief.!? Unificationist theories of computa-
tion promise to unify computation, with a twist. Normally unified scientific theories
are taken to unify diverse physical phenomena. But unificationism, as a thesis about
the theory of computation, would unify both physical and mathematical phenom-
ena. I see no reason why this sort of unification would be any less preferable to the
usual sort, in which case a unificationist theory of computation is preferable to a

bifurcationist one.
2.4.2 Extensional adequacy

Perhaps the strongest case for unificationism comes from computer scientific prac-
tice. If that practice marks no clear distinction between the theory of computation as
applied to physical versus mathematical systems, then that is some reason to accept
unificationism. In Chapter 1 I noted that this involves capturing both descriptive and

12See, for instance, (Kitcher, 1981, 1989; Swoyer, 1999).
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explanatory practice. I'll discuss one important aspect of descriptive practice here,
and then I'll turn to explanatory practice.

For a theory to capture descriptive practice it ought, at a minimum, to be exten-
sionally adequate. What this comes to depends largely on the choice of paradigms
and anti-paradigms, and here scientific practice is our guide. If the ordinary thought
and talk of computer scientists marks no clear distinction between computations car-
ried out by mathematical computing systems and physical computing systems, and
if computer scientists routinely apply what appear to be the same computational
notions to systems of either type, then this is some evidence that both physical and
mathematical computing systems should be counted among the paradigms.

Some unificationists seem to interpret computational practice this way. For in-
stance, on Piccinini’s (2015, 12) interpretation, computer scientific practice suggests
that plausible paradigms include “digital computers, calculators, both universal and
non-universal Turing machines,” while plausible anti-paradigms are “planetary sys-
tems, hurricanes, and digestive systems,” among many others. Here both mathemat-
ical computing systems, such as Turing machines, and physical computing systems,
such as digital computers, are taken to be paradigms. Thus it appears that an exten-
sional adequacy requirement, coupled with this choice of paradigms, points towards
a single account which captures both mathematical and physical computation. Uni-

ficationism naturally fits the bill.
2.4.3 Explanatory practice in computer science

We find similar tendencies in the explanatory practice of computer science. Of-

tentimes the same explanations are offered in order to explain the computational
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Algorithm 1 Mul(z, y)

if © =0 then
return 0

end if

Py

while z > 1 do
PPty
r+—x—1

end while

return p

features of both mathematical and physical systems. Since this seems to me the more
revealing datum, I’ll take a minute to gnaw on it.

To fix ideas, focus on an explanation of a system’s behavior in terms of the function
it computes. And consider a mathematical computing system, such as an abstract
register machine, that computes multiplication by repeated addition.'® Let’s suppose
that the explanation why the device outputs x X y when given x and y is that it follows
something like Algorithm 1. This simple explanation is familiar from elementary
computability theory, and others like it are readily come by. The point to notice is
that this pattern of explanation may equally well be applied to a contemporary digital
computer. Just like an abstract register machine, contemporary digital computers
manipulate strings of digits in finite memory locations. Given such a device, we can
explain that it too outputs x x y when given x and y because it follows Algorithm 1.

In neither case does the explanation advert to the character of the items manip-
ulated. In the register machine’s case the strings are mathematical objects, perhaps
defined in terms of pure sets, whereas in the digital computer’s case the strings are

13See (Cutland, 1980) for such devices.
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physical, perhaps realized as voltage levels in silicon. But these differences are irrele-
vant to the explanation why the devices multiply; what matters, from the perspective
of computing multiplication, is that the algorithm takes x and y to x X y. Whether
this happens in sets or silicone is simply beside the point.

Of course, computer scientists are not just concerned to explain why a system
computes some function. They also wish to explain why certain functions are uncom-
putable in principle, or are at least uncomputable in a feasible amount of time. Here
too we find patterns of explanation applicable to both mathematical and physical
systems.

A vivid example comes from work on performance bounds for comparison sorting
algorithms.'* It is known that any comparison sorting algorithm must make approx-
imately n lg n comparisons to sort a list of length n.'> A standard explanation notes
that comparison sorting is equivalent to the task of guessing which permutation of
a list one is given, if one can only ‘see’ two elements at a time. There are n! per-
mutations of an n-element list, and each guess, or comparison, eliminates half of the
remaining permutations from consideration. The guessing procedure can be repre-
sented by a binary tree whose internal nodes are comparisons, and whose leaves are
permutations.

A path from root to leaf corresponds to a sequence of comparisons—a sorting—in
which case a lower bound on the number of comparisons required to sort the list
corresponds to the minimum height of such a binary tree, and this is more or less n
lg n.

14Given an unsorted list Iy, l2, ..., I, of items and a linear order < on them, a comparison algorithm
sorts by checking whether /; < [; holds, and manipulating the list depending on the outcome.

15See (Cormen et al., 2001, 166-7) and (Knuth, 1998, 180-2).
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Details aside, the important point is again that this explanation can be applied
to any comparison sorting system, physical or mathematical. Anything that sorts by
comparison must compare list members, and differences in the nature of the items
compared are irrelevant as far as the explanation is concerned. That these differences
are irrelevant suggest that unificationism, or so the thought goes.

So far, then, I've argued that the case for bifurcationism is uncompelling, and that
the alternative, unificationism, is more attractive than one initially might suppose. To
the extent that the received, implementationist view tacitly endorses bifurcationism,
this argument threatens the received view as well. Nonetheless, as I argue next,

unificationist theories face a serious challenge of their own.

2.5 No unificationism without trivialization

Perhaps the most significant problem unificationism is that it falls prey to the
Putnam-Searle triviality worry, mentioned in Chapter 1. Triviality follows from two
claims. The first is pancomputationalism, the claim that at one and the same time,
every (or at least many) physical system performs every (or at least many) compu-
tations. The second claim links pancomputationalism to computational explanation,
and holds that computational explanation succeeds only if a unique, or at any rate
a select few, computations are performed at a time. Although in later chapters I'll
offer a more careful appraisal of this argument, for now I'll simply assume that it is
valid and that triviality ought to be avoided.'¢

16This way of formulating triviality issues ignores a few distinctions sometimes made between
different kinds of pancomputationalism (Piccinini, 2015, ch. 4). While it is surely problematic if a
given system performs every computation, it is perhaps tolerable if only a select few computations
are performed at once. For instance, a given digital circuit may reasonably be said to compute
both logical AND and logical OR, depending how one looks at it Dewhurst (2018). However, this

36



For the most part triviality arguments have been deployed against the received
view. And with the received view in their sights, these arguments purport to show that
every physical system implements every, or at least many, computations. I mention
this only so that I can distinguish it from what I'm up to. The question I'm interested
in is whether, and to what extent, triviality worries emerge for unificationism in
particular. My claim is that they do, and that they do so in a particularly insidious
form.

Here’s the problem in brief. Unificationism requires that the account of compu-
tation applied to mathematical computing systems also apply to physical computing
systems. Let’s say that an account that satisfies this requirement ‘accommodates’
unificationism. Now, it seems clear that a theory which accommodates unification-
ism must characterize computation only in terms of characteristics shared by both
physical and mathematical computing systems. If it didn’t, it’s hard to see how it
would be a genuinely unificationist theory in the first place. But here’s the rub: it
appears that there is no account of computation which at once appeals only to shared
characteristics, but which is also sufficient to block triviality. One can accommodate
unificationism, or avoid triviality, but not both.

To argue for this in any detail we must get into the weeds on various accounts of
computation. That happens in the next section. But to get a feel for the problem,
the rest of this section sketches a triviality result for a simple structuralist theory of
computation. With a few exceptions (e.g. (Schweizer, 2019b)), not many philosophers

observation is of no help to the unificationist. Even if we can tolerate some degree of pancomputa-
tionalism, my claim will be that unificationism entails an unacceptably strong version of it. Thanks
to an anonymous referee for urging me to clarify this point.
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endorse this account any more. But it nicely brings out the threat posed by triviality
arguments, and the bind in which unificationists find themselves.

On the structuralist view theory, to compute is just to have a certain abstract,
formal structure. This account straightforwardly accommodates unificationism, for
it is plausible to think that both mathematical and physical systems have structural
features of the right sort. But the problem is that structure is cheap, which leads
directly to pancomputationalism and hence triviality.

To illustrate, consider Putnam’s version of the argument. We’ll describe com-
putations in terms of finite state automata (FSAs). Given the structuralist account
under consideration, we can think of FSA computations as describing computational
structures. For instance, the two state automaton which moves from one state to
another and then halts describes a computational structure, instantiation of which
is a matter of having two parts (states, for instance) which stand in some sequential
relationship.

We wish to establish that every physical system performs every FSA computation.
This amounts to showing that every physical system goes through the state-transitions
described by every FSA. So consider the particular FSA M with two states, A and
B, which proceeds through the following state transitions: A - B - A — B — A.
We define a ‘maximal state’ of some physical object O at a time to be its total
intrinsic state at that time. Next, we consider five sequential maximal states of O:
My — My — My — M3 — M,. The idea is to define two new states of O, Ap and
Bo, so that these new states evolve in a way that corresponds to the state transitions

described by M.
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The following will do: Ap = My V My V My; Bo = M; V Ms. Thus O proceeds
through a series of state transitions capture by M: Ap — Bo — Ao — Bo — Aop.
So O performs M’s computation. But since this kind of construction can be had for
any FSA and any physical entity, the argument generalizes and triviality follows.

Of course, nothing about this construction is novel. The important point is how
it interacts with the background theory of computation: while the structuralist ac-
count smoothly accommodates unificationism, it does so at the cost of triviality. The
question I take up next is whether some other account can be found which both

accommodates unificationism and resists trivialization.

2.6 Four accounts of computation

The implementationist literature contains a variety of strategies for avoiding trivi-
ality, and this section explores whether any of them can be appropriated in the service
of unificationism. I focus on accounts which hold that computation essentially involves
causation, counterfactual dependencies, teleological functions, or representation, re-
spectively. In each case I argue that the proposal fails to avoid the problem outlined
in the last section. Some fail to avoid triviality, while others accommodate unifica-
tionism only at great cost. The lesson I draw is that the prospects for unificationism
seem grim.

I should make a couple more clarificatory points before getting down to business.
First, my aim is not to show the impossibility of a unificationist theory of computation.
I see no way to establish such a strong result. Rather, and more modestly, my aim
is to shift the burden onto the unificationist to articulate a theory that at once

accommodates unificationism and avoids triviality. The proposals I investigate below

39



seem to me to be the most plausible options, but they are not the only ones available.
I leave open the question whether some other account can do the job. But to the
extent that the options canvassed here stand the best chance of avoiding triviality,
unificationism is in trouble.

Second, it is worth highlighting how the responses to triviality investigated below
differ from those employed by the received, implementationist view. Because they
endorse bifurcationism, proponents of implementationism are under no pressure to
employ constraints that apply to mathematical computations. For them, the problem
is to just say which physical objects are allowed to figure in the implementation
relation. Accordingly, they are free to impose constraints on the physical side which
may make no sense in the context of mathematical computation. The unificationist,
by contrast, has an altogether different task to pull off. They must impose constraints
that apply equally to physical and mathematical computing systems. And this, we

will see, is the source of their troubles.
2.6.1 The causal-mechanical account

A natural first response to triviality requires that the computational structure
of a physical system track its causal structure.!” A related suggestion is found in
the mechanistic account of computation, which holds that computing systems are
mechanisms.'® Given their close resemblance, we can treat these proposals together.
On this view, to have a computational property is just a matter of having a certain
causal-mechanical structure. The reason why an arbitrary physical object doesn’t

17See (Chalmers, 1996; Godfrey-Smith, 2009; Scheutz, 2001) for proposals in this vein.

18 (Milkowski, 2011; Piccinini, 2015). Depending on one’s views about causation and mechanism,
the mechanistic conception might collapse into the causal conception; see (Glennan, 2017) and
(Woodward, 2013) for discussion.
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perform every computation is that the computational ‘states’ cited by triviality ar-
guments are not causally related, or are not genuine mechanistic components of the
system. Pancomputationalism (hence triviality) fails because ‘pan-causation’ and
‘pan-mechanism’ fail, or so the thought goes.

But the question is whether the causal-mechanical account accommodates unifica-
tionism. And it seems not, at least on the face of it. Nowadays Turing machines are
defined as consistent sets of 5-tuples (Q;, 01,02, m, (Q);) where Q; and (), are states,
o1 and oy are letters in the machine’s alphabet, and m is an instruction for moving
the read/write head. Sets of 5-tuples fix a set of state-space transitions, which cap-
ture the behavior of the machine at every possible stage of operation. Now, whether
we identify Turing machines with sets of 5-tuples or with a set of state-space transi-
tions, each of these items is constructed, or at least constructible, out of pure sets.
Such pure set theoretic entities are abstract, non-causal, and non-spatiotemporal.
But given this view of Turing machines it is hard to see how the causal-mechanical
theory accommodates unificationism, for the simple reason that Turing machines, so
construed, lack causal-mechanical characteristics altogether.

One response to this is to abandon unificationism. Piccinini takes this tack in
his more pessimistic moods, writing that he is “after an account of computation in
the physical world” and that “[i]f Turing machines and other mathematically defined
computational entities are abstract objects ... they fall outside the scope of my
account” (Piccinini, 2015, 9). But it is unclear how to square this with his later
claim, in the very same book, that the mechanistic account correctly counts Turing
machines as computing mechanisms. Moreover, it seems that this move is unavailable

to Piccinini by his own lights, for “[tJhe primary aim of the mechanistic account is
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doing justice to the practice of computer scientists and engineers™ (Piccinini, 2015,
118). As I argued earlier, that practice supports unificationism, at least prima facie.
So this sort of response is unavailable to anyone impressed by computer scientific
practice, as Piccinini appears to be.

A more radical response denies that Turing machines are purely mathematical
entities. Instead, we should regard them as idealized physical entities, which re-
tain some, but not all, of the physical properties of their unidealized counterparts.

Copeland and Shagrir (2011) call this view ‘Turing-machine realism’. As they explain:

Turing-machine realism recognizes an ontological level lying between the
realization level and the level of pure-mathematical ontology. We term
this the level of notional machines. At this level are to be found notional
or idealized machines that are rich with spatiotemporality and causality.
Copeland and Shagrir (2011, 234)?

Such a view would allow the unificationist to endorse a causal-mechanical theory
of computation, unifying computation in causal-mechanical terms.

One worry about this maneuver concerns the status of the idealized machines. It
is far from clear how we are to make sense of their ‘in between’ ontological status.
Are they abstract objects, or mental entities, or what??® This question demands an
answer before we can legitimately claim that Turing machines ‘have’ causal features.

However, even if we can make sense of notional machines, there appears to be
a general problem which undercuts any attempt to recharacterize Turing machines,
spatiotemporally or otherwise. The trouble is that the computational explanations

surveyed above apply not just to physical systems, but also to pure mathematical

19Tt should be noted that Copeland and Shagrir don’t endorse Turing—machine realism, but merely
flag it as a live option.

20See (Thomson-Jones, 2010) for critical discussion of a related proposal found in (Giere, 1988).
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computing systems. Those systems, such as the pure set-theoretic counterparts of
Turing machines, haven’t gone anywhere. And if unificationists take this practice
seriously, which they presumably do, they must furnish a theory which accounts for
Turing machines in their pure set-theoretic guise too: adding a new kind entity ‘in
between’ physical systems and the level of pure mathematics doesn’t discharge that
task. For this reason it seems to me that Turing machine realism is a dead end, and

that we should explore other options.
2.6.2 The counterfactual account

Copeland (1996) explicitly disavows a causal-mechanical theory of computation in
light of the difficulties raised in the last section. He complains that causal-mechanical
theories are “intolerably narrow” because they don’t capture abstract Turing ma-
chine computations Copeland (1996, 353). Despite this, he maintains that causal-
mechanical accounts do capture something important about computation, namely
that later computational states counterfactually depend upon earlier states. This is
true even for Turing machines, for there certainly seems to be some sense in which a
Turing machine’s later states depend on its earlier states (plus tape contents).

One immediate question is how we should understand the notion of counterfactual
dependence Copeland has in mind. The suggestion seems to be that it is a gener-
alization of causal dependence. But whereas causal dependence relations holds only
between spatiotemporal particulars, such as physical events, counterfactual depen-
dence relations may hold between either spatiotemporal particulars on the one hand,
or between non-spatiotemporal particulars, such as the ‘events’ in a Turing machine

computation, on the other.
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Now, this doesn’t clear everything up. In what sense do Turing machine oper-
ations involve events, for instance? But Copeland thinks we can skirt these sorts
of questions. The target notion of counterfactual dependence is logically equivalent
to causal dependence, in the sense that both relations underwrite counterfactual as-
sertions about the behavior of computing systems. So, to determine whether the
target dependence relation obtains it is enough to determine whether a system satis-
fies certain ‘computational counterfactuals’. Thus, on this account whether a system
computes reduces to the question whether the system satisfies certain counterfactual
assertions about its behavior.

How does this avoid triviality? We already remarked that most of the physical
states appealed to by the triviality argument are not causally related; by similar
reasoning it is not hard to see that they will fail to support counterfactuals as well.
For example, recalling the construction from above, the following is plausibly false of

the physical object O:

1. If it were the case that O was in state Ap, it would transition into state Bo.

In which case O doesn’t compute, as desired. And to see that the proposal cor-
rectly captures mathematical computations, consider an abstract register machine M
with an instruction register whose contents contain a code for the next operation to
be performed. M operates by reading the contents of the instruction register and then
performing the encoded operation. The device is defined to be sensitive to contents
of the instruction register, so that differences in register contents make for differences
in the operations performed. Accordingly, M satisfies computational counterfactuals

of the form:
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2. If it were the case that at some time M’s instruction register held such-and-such

instruction, M would perform so-and-so operation.

Thus the counterfactual proposal accommodates unificationism while avoiding
triviality.

But it seems to me that this proposal runs up against two difficulties. First,
Copeland’s own version succumbs to a revenge triviality argument. Standard trivial-
ity arguments can be tweaked to show that every sufficiently complex physical sys-
tem computes every computable function while satisfying appropriate computational
counterfactuals.?! So Copeland’s account fares no better than the simple structuralist
account, from before.

It gets worse. There are reasons to be pessimistic that any other counterfac-
tual account will be forthcoming any time soon. The trouble is that an account of
computational counterfactuals general enough to apply to the operations of abstract
computing systems must also be an account of counterpossibles, and it is not at all
clear how to understand counterpossible assertions about the behavior of mathemat-
ical computing systems.

To illustrate, consider a Turing machine M described informally by the following

two instructions:

e If in state y and reading a 1, write 0, move the read/write head to the right,

and go to state Q.

21T develop one such argument in (Curtis-Trudel). In brief, the trouble is that Copeland supplies a
standard satisfaction-based semantics for his counterfactual conditionals. Absent further constraints
on satisfaction—and Copeland doesn’t supply any that even remotely do the trick—it’s not hard
to devise deviant physical models of these counterfactuals. Moreover, on reflection this isn’t even
all that surprising, since completeness guarantees the existence of models, and it’s not hard to
manipulate particular physical models in order to come up with arbitrarily many distinct physical
interpretations of the counterfactuals.
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e If in state ); and reading a 1, write 1, move the read/write head to the right,

and go to state Q).

This machine erases a contiguous block of 1s and then halt. In line with the

counterfactual account, we presumably want M to satisfy counterfactuals such as

3. If M had been in state ()1 and read 1, it would write 1 and go into state ().

However, if we make the standard assumption that M starts in state (Qg, there
is no possible sequence of state transitions which will take it into state ;. So the
antecedent of (3) is impossible in a strong mathematical sense, making (3) not merely
counterfactual, but counterpossible.

This is fine as far as it goes, but how should we understand (3)? It seems inap-
propriate to endorse the view that all such counterpossibles are vacuously true, as is
sometimes suggested (Lewis, 1973; Williamson, 2007). This is because we presumably

wish to distinguish (3), which is intuitively true, from (4), which is intuitively false:

4. If M had been in state (; and read 1, it would write 0 and go into state Q).

Yet we cannot capture the apparent truth of (3) and falsity of (4) in the usual
possible worlds semantics, for the familiar reason that there is no possible world in
which M is in state ().

Of course, the unificationist might make various maneuvers at this point. One is
to introduce impossible worlds to distinguish between (3) and (4) (Berto and Jago,
2019). Such moves are not unheard of, but it is no understatement to say that
impossible worlds are problematic and perplexing. It is far from clear whether a
counterfactual conception of computation can be worked out in such a framework.
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But I think it is enough for the present, burden-shifting argument, to notice that if
this is the road to non-triviality, then friends of unificationism have their work cut

out for them. One can be forgiven for exploring other routes.
2.6.3 The teleological account

Some versions of the mechanistic account hold that computing systems are not
just mechanisms, but mechanisms with teleological functions. While the causal-
mechanical aspects of this view sits poorly with unificationism, perhaps teleological
functions alone suffice to avoid triviality. According to the view explored next, pos-
session of certain teleological functions is necessary for computing and sufficient to
avoid triviality.??

One task is to specify the notion of teleological function at play. I will focus on
the account developed in (Piccinini, 2015, ch. 6), since it is apparently designed to
apply to both digital computers and Turing machines. A first-pass account is couched
in terms of objective goals, which include things such as survival and reproduction:

A teleological function is a stable contribution to an objective goal of
organisms by a trait or an artifact of the organisms.

But even if we can make sense of the thought that Turing machine operations
are a ‘trait’ or ‘artifact’ of an organism, it is frankly incredible to think that such
operations stably contribute to anyone’s survival and reproduction, even, I regret to
report, those of the professional computer scientist.

Perhaps recognizing this, Piccinini broadens the account to include ‘subjective
goals’ (Piccinini, 2015, 116). These include desires, among other things, so that

22 An anonymous reviewer asks whether anyone nowadays would really endorse a teleological view
of mathematical computing systems. The short answer is apparently ‘yes’, for Piccinini appears to;
see (Piccinini, 2015, ch. 7) and the passages quoted earlier.
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something contributes to a subjective goal if it stably contributes to the satisfaction

some desire:

A teleological function (generalized) is a stable contribution to a goal
(objective or subjective) of organisms by either a trait or an artifact of
the organisms.

So while Turing machine operations might not stably contribute to computer sci-
entists’ survival and reproduction, it’s not completely unreasonable to think that they
might help to satisfy certain of their desires for example, their desires for knowledge
about computable sets, Turing degrees, and so on.

But it seems to me that this account faces a number of problems. One is that there
are not enough desires to go around. There are only finitely many actual desires, but
denumerably many Turing machines. If Turing machines compute only by virtue of
satisfying some actual desire, then there will be denumerably many Turing machines
which, whatever else they do, don’t compute. Surely a bad result!

We might try to get around this by appealing to the desires of possible agents, so
that a Turing machine computes if there is some possible agent some of whose desires
would be stably satisfied by that machine’s operations. Now the trouble is that
the suggestion overshoots. There are many possible agents — enough, let us grant,
that every Turing machine’s operations satisfy some possible agent’s desires. If stably
satisfying the desire of a possible agent is sufficient to have a teleological function, then
given the abundance of possible agents, any object can have a teleological function. In
particular, now paradigmatic non-computing systems such as rocks, walls, and pails
of water will have teleological functions in this generalized sense, which is just what

we want to avoid.
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The proper response to this worry, it seems to me, is to grant that generalized
teleological functions are in principle universally realizable, but nevertheless deny that
this poses a problem for a theory of physical computation in particular. A system
computes some mathematical function f only if computing f is one of its teleological
functions. As long as the conditions on having computing f as a teleological function
are stringent enough, an abundance of generalized teleological functions does not
threaten computational explanation. Triviality is avoided not because generalized
teleological functions are hard to come by, as it were, but because the particular
teleological function of computing f is.

But whether this maneuver succeeds turns crucially on just what it is to compute
f. A notion couched in terms of formal string manipulations plausibly applies to
Turing machines, but encounters a problem familiar from the structuralist account:
how do we determine which parts of a system are strings? There are many ways to
arbitrarily identify parts of a physical entity as strings, and it is straightforward to
reverse-engineer deviant interpretations according to which computes every function.
So we're back to where we started. Moreover, we cannot impose causal-mechanical
constraints on string identification, for in this case we’re back to the problems encoun-
tered with the causal-mechanical account. So, absent some other account of what it

is to compute f, it seems the teleological account fares no better than the others.
2.6.4 The representational account

The last account I will consider holds that to compute is, at least in part, a matter
of having certain representational features.?> The version considered here takes this

23 A number of philosophers have endorsed accounts of computational implementation which are
either partly or wholly representational; see (Rescorla, 2014b; Sprevak, 2010; Shagrir, 2020).
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to involve representing entities in some external domain, such as a system’s distal
environment or a set of mathematical objects.

One point in favour of this account is that it is plausible to think that represen-
tational notions feature in the mathematical theory of computation (Rescorla, 2015).
Turing machines directly compute string-theoretic functions. Computation over non-
linguistic domains is characterized relative to a mapping from linguistic entities to
non-linguistic entities. When such a mapping is in place, it is natural to regard the
linguistic entities as representing the non-linguistic entities. In the case of computa-
tion over the naturals, for instance, strings of digits are taken to represent natural
numbers. However, the notion of representation that emerges from the mathematical
theory of computation is quite thin: all that is required for a Turing machine to rep-
resent is that there be an effective mapping from its language to some non-linguistic
domain (Shapiro, 1982). Such mappings are abundant; indeed, if the linguistic and
non-linguistic domains are denumerable, there will be denumerably many. But plainly
pancomputationalism is unavoidable if this is the notion of representation underwrit-
ing physical computation, for there are simply too many mappings from physical
systems and their states to external entities.

At this point we could cast about for a more stringent account of representation, so
that physical systems stand in determinate representational relations to comparably
few entities. A causal constraint is natural but unavailable for familiar reasons: a
causal notion of representation will not obviously apply to abstract Turing machines,
and at any rate there seems to be little sense in which a microprocessor’s states

stand in causal relations to abstract numbers. Similar points apply to other robust
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conceptions of representation too, whether they appeal to functional roles, teleological
functions, or whatever.?*

A different option is to take representational notions as primitive (Burge, 2010;
Rescorla, 2013). From this perspective, we shouldn’t attempt to characterize repre-
sentational notions in non-representational terms. Rather, representational notions
earn their keep because they play an indispensable explanatory role in our scientific
theories. T'll make just one remark about this strategy. If attributions of represen-
tational properties are warranted in virtue of the explanatory work they do, then
an immediate problem is that there appear to be physical computing systems, such
as simple embedded systems in ordinary appliances, whose behavior and character
can be exhaustively explained without appeal to representational notions (Rescorla,
2014b; Piccinini, 2008). If this is right, then by the primitivist’s lights we have no
reason to ascribe representational properties to them. But then it begins to look
very difficult to use representational notions to solve the unificationist’s woes, for we
re-encounter the problem that not every computing system can be brought under a

single (primitive representational) rubric. Once again, there seems to be no way to

hold on to both unificationism and a substantive theory of physical computation.
2.6.5 Summary

The counterfactual and representational accounts accommodate unificationism
but at the cost of triviality. The causal-mechanical and teleological accounts might
avoid triviality, but don’t accommodate unificationism. Perhaps the unificationist

24Note that I am not asking for a naturalization of representation, whatever that amounts to,
but a guarantee that representation is non-trivial. Such a guarantee might come on the heels of a
naturalistic account of representation, but then again it might not. The worry is that absent an
appeal to these other notions, no such guarantee is forthcoming. Naturalization is a separate issue.
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has another trick up their sleeve, but I think by now we’ve seen enough. It is doubt-
ful that a single theory can supply satisfactory answers to the status and identity
questions for both physical and mathematical machines. Unificationism has got to

go. Instead, we should be bifurcationists about computation.

2.7 Life after bifurcation

Given bifurcationism, how should we approach the status and identity questions
concerning physical computing systems? Note that bifurcationism per se does not
mandate Chalmers’ mathematics-first approach. Indeed, it is neutral between a few
different possibilities. One is the received, mathematics-first view. A second reverses
this order of things, and addresses the status and identity questions with respect to
mathematical computing systems in terms of prior answers to their physical coun-
terparts. We might call this the ‘mathematics-last’ view. A third possibility denies
that either pair of questions ought to be answered in terms of the other — this would
be ‘mathematics-never’. I’ll close with some brief reflections on these alternatives,

starting with the last, which seems to me the least promising of the three.?
2.7.1 Mathematics-never

On this approach neither the mathematical nor the physical theories of computa-
tion should be developed in terms of the other. In its strongest form, this approach
holds that these are simply two different theories, with different goals and theoretical

25Recall that these are, first and foremost, methodological proposals about how we should ad-
dress the status and identity questions. However, questions of methodological priority aren’t the
only ones we might ask when thinking about the relationships between physical and mathematical
computation. For instance, we might wonder whether one or the other is ‘basic’ or ‘fundamental’
than another, in any of a variety of senses, e.g., conceptually, metaphysically, or epistemologically.
I do not have space to investigate these alternatives here.
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concerns. Although probably no holds quite such a strong view, some philosophers
flirt with more attenuated versions of this approach. For instance, Shagrir rejects
what he calls the ‘logical dogma’, which holds that “there is a strong linkage between
the mathematical theories we find in logic and computer science ... and physical
computation” (Shagrir, 2022, 5).

However, It’s hard to see what can be said for this view. For one thing, it leaves
us no better off with respect to theories of physical computation than we were when
we started. Indeed, if anything, we’re in a worse position, for now we must craft such
a theory without the help of a prior mathematical theory. Although I do not have an
argument that no such theory is possible, it is an open question at this stage whether
one can be developed. Second, and perhaps more seriously, this proposal sits badly
with certain aspects of computational practice. Computer scientists do characterize
physical computing computing systems in broadly mathematical terms. It is hard to
see how a mathematics-never approach would capture this aspect of computational

practice.
2.7.2 Mathematics-last

According to a mathematics-last approach, questions about the status and identity
of mathematical computing systems ought to be addressed by appeal to a prior theory
of physical computation. Here we ‘apply’ the physical theory to the mathematics,
rather than the other way around.?¢

What could motivate such a view? Here’s one sketchy suggestion. As we know,
the task facing Church, Godel, Turing, and others in the 1930’s was to give a pre-

cise mathematical statement of the intuitive idea of a worker proceeding effectively.

26For proposals in roughly this neighbourhood, see (Joslin, 2006) and (Cleland, 2001, 2002).
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Turing’s landmark characterization proceeded, in the first instance, by careful re-
flection on the abilities of actual human workers (Sieg, 2009). Historically, at least,
mathematical conceptions of computation emerged from reflection on computation in
actual physical systems. This suggests that in order to say what it would be for a
Turing machine to compute, we must already grasp some notion (however inchoate)
of a physical system computing. Thus, on the envisioned theory, we begin with a
notion of physical computation—e.g., of a human working effectively —and refine it
through a process of idealization and abstraction to arrive at a mathematical notion
of computation— e.g., of a Turing machine computation. Crucially, these mathemat-
ical objects count as computational only to the extent that they are idealizations or
abstractions of physical computing systems.

One advantage of this approach is that it does not obviously run into the Putnam-
Searle triviality worry, because our pre-theoretical conceptions of physical computa-
tion are plausibly non-trivial. Plainly not every physical system is a human work-
ing effectively, for instance. Because, on this approach, a mathematical theory of
computation is grounded in a prior physical theory, the question of ‘applying’ the
mathematics to the physical world does not arise. A fortiori, neither does the threat
of over-application.

However, it seems to me that this approach also faces a few substantial hur-
dles. For one thing, it runs into the two problems raised in connection with the
mathematics-never approach. A third concern is that some mathematical computing
systems do not bear a straightforward connection to any physical computing system.
If this is right, then there will be mathematical computing systems unaccounted for

by this approach. For instance, there are systems for which there is a well-worked
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out formalism but whose physical realizations have yet to be constructed. In some
cases, such as quantum computers (Nielsen and Chuang, 2010), this is because current
technology is not up to the task. In other cases it’s because the formalism requires
physically unrealizable operations. Infinitary Turing machines are perhaps the most
plausible example of this Hamkins and Lewis (2000); Copeland (2002). Again, while I
do not have an argument that some mathematics-last approach, suitably elaborated,
might account for such cases, it seems to me that the prospects for such an approach

are dim.
2.7.3 Mathematics-first

So we're left with the mathematics-first approach. On this approach, we ad-
dress the status and identity questions by appeal to a prior mathematical theory of
computation. The central task of this approach is to delineate a relation of compu-
tational implementation or realization linking physical systems to abstract mathe-
matical computations. This approach has certain obvious advantages over the other
two bifurcationist proposals. As Chalmers is keen to note, we already have a well
defined mathematical notion of computation, and it is a natural starting point for
philosophical theorizing about physical computation. However, perhaps the most sig-
nificant obstacle for this approach is that it faces triviality worries of its own. Thus,
the next item on the agenda is to develop a response to triviality on behalf of the
implementationist. That is the primary task of the next chapter.

By way of closing, let me return to the title question. Why do we need a theory

of implementation? The short answer is: it’s the best we've got.
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Chapter 3: Computation in context

3.1 The state of play

In the last chapter I argued that unificationist theories of physical computation
should be rejected on the grounds that they succumb to a version of the triviality
problem identified by Putnam and Searle. 1 further argued that in light of this we
should be bifurcationists, and that in particular we should adopt the mathematics-
first implementationist approach advocated by Chalmers and others. However, this
may seem to be little progress, given that implementationist theories themselves run
up against Putnam and Searle’s argument. The task of this chapter is to develop a
response to their argument on behalf of the implementationist.

Putnam and Searle’s original argument targets the simple mapping account of
physical computation. On this account, recall, a physical system implements a com-
putation if the physical structure of the system ‘mirrors’ the formal, mathematical
structure of that computation. ‘Mirroring’ is typically cashed out in terms of a formal,

structural relationship such as isomorphism, so that we have:

The Simple Mapping Account
A physical system P implements a computation M if and only if:

1. There is grouping of states of P into state-types and a function f (a
‘realization’ or ‘implementation’ function) mapping state-types of P
to states of M, such that
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2. Under f, the state transitions of P are isomorphic to the formal state
transitions of M; i.e., whenever P is in state p;, where f(p;) = my,
and m; — my is a formal state transition, then P goes into state po,
where f(py) = ma.

Putnam and Searle’s argument has met fierce resistance, of course, and a variety of
defensive maneuvers have been deployed to blunt the force of their attack. Perhaps the
most popular maneuver is to beef up the simple mapping account by adding further
necessary conditions on implementation (Sprevak, 2019). Such an approach yields a
‘complex’ mapping account, as mentioned in chapter 1. No complex mapping account
enjoys widespread acceptance, however, and even the most plausible versions would,
if successful, vindicate the use of computational notions for a limited class of physical
systems only. For instance, one well-known response imposes a causal condition on
implementation in an effort to carve out a notion of computation appropriate for
theorizing about the mind (Chalmers, 1996, 2011). But, even if this response blocks
triviality for a restricted class of physical systems, it does not obviously resolve the
more general challenge. It is a local solution to a global problem.

This chapter takes a different approach to the Putnam-Searle challenge. Given
certain plausible assumptions about the nature of computational ascription, I argue
that the Putnam-Searle argument loses much of its force. These assumptions concern
both the relativity and context-sensitivity of computational ascription: specifically,
computational notions apply to a physical systems only relative to a contextually
determined way of regarding that system computationally — what I shall in this
chapter call a ‘labelling scheme’. But, relative to such particular labelling scheme,

there is little reason to think that computation is trivial. Or so I shall argue.
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Here is the plan of the chapter. Sections 2 and 3 reconstruct the Putnam-Searle
argument in some detail. Sections 4 and 5 develop the core of my response to their
argument. Section 6 elaborates on my response and situates it with respect to others

in the literature. Section 7 concludes.

3.2 Pancomputationalism

On my reconstruction, triviality arguments proceeds in two main steps. The first
establishes pancomputationalism — the claim that every physical system implements
every computational architecture. The second moves from pancomputationalism to
the claim that physical computation is trivial. I consider the pancomputationalist
step in this section, and the second step in the next.

Pancomputationalism is the claim that every physical system implements every
computation.?” It is straightforward to verify that the simple mapping account entails
pancomputationalism. For, according to the simple mapping account, a physical
system implements a computation if there is a one-to-one mapping from that system’s
components, states, or parts to the components, states, or parts of a computation,
such that, under that mapping the two are isomorphic. Thus, to show that the
simple mapping account entails pancomputationalism, it is enough to show that every
physical system is isomorphic with every computation. And this follows under a few
very modest additional assumptions.

2TThis is sometimes called ‘unlimited’ pancomputationalism (Piccinini, 2015, ch. 4). In practice,
triviality arguments typically aim at a weaker conclusion than this. For instance, Searle argues that
every ‘sufficiently complex’ system computes every program, while Putnam argues that every ‘ordi-
nary open system’ realizes every deterministic finite automaton. However, given the way triviality
arguments are typically deployed, the differences between these claims are negligible. For this reason
I will take the target of the pancomputationalist step of the argument to be the claim that every
physical system simultaneously implements every computation.
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3.2.1 Push-Through

The first is a basic mathematical technique for defining isomorphic copies of a
given structure. Although it goes by various names, it is known in model theory
as ‘Push-Through’ (Walsh and Button, 2018). Structures in the relevant sense are
set-theoretic objects comprising a domain of objects plus a suite of functions and
relations defined thereon. For simplicity, I'll focus on the case where they contain a
single unary function each.

First, recall the definition of isomorphism. Let M = (M, Ty;) and P = (P, Tp)
be structures, where Ty, : M — M and Tp : P — P are unary functions. These
structures are isomorphic just in case there is a structure preserving bijection f : M —
P between them, so that for any m € M, f(Ty(m)) = Tp(f(m)). For illustrative
purposes, we can think of these structures as a mathematical computation and a
physical system, respectively, where T}, is a transition function on mathematical
states and Tp a transition function on physical states.

Now, if a computation M = (M, Ty) plus a set P of physical states are given,
Push-Through tells us how to define a new physical structure P = (P, Tp) isomorphic
with M. The only requirement for applying Push-Through is that P and M are
equinumerous. So suppose for the moment we have established that M and P are
equinumerous. Since two sets are equinumerous just in case there is a bijection
between them, let f : P — M be such a bijection. Given f, we define the physical
transition function Tp on P as follows: say that Tp(p1) = p2 just in case Ty (f(p1)) =
f(p2). That is, the physical transition function is constructed by looking at the image
of Ty in M under f. It is trivial to verify that the new structure P = (P,Tp) is

isomorphic with the given structure M.
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3.2.2 Equinumerosity

Thus, if we can show that the states of some mathematical computation are
equinumerous with the states of some physical system the physical states, by Push-
Through we can construct a physical state transition function which perfectly mirrors
the action of the formal state transition function T),. At this point we appeal to the
empirical assumption, not unreasonable, that physical systems have vastly many com-
ponents (e.g., microphysical states or parts). These components are the raw material
out of which a set of physical state types are defined. The force of this assumption is
to ensure that, no matter how many states a given mathematical computation has,
we will always be able to find a set of physical state types equinumerous with those
of a given computation.?®

Of course, we must also ensure that the underlying physical states can be grouped
into state types. Here too different strategies are possible. Searle suggests that any
‘assignment’ of computational states to microphysical states by an observer implicitly
defines a physical state type. Alternatively, Putnam claims that any disjunction of
physical states constitutes a physical state type. Other approaches are possible.
However we proceed, what ultimately matters is that there is some mechanism for
defining state types out of microphysical states.

Thus pancomputationalism follows from the simple mapping account with only
basic model theory and a modest empirical assumption. Briefly: let P be any physical

28Gearle makes this assumption directly. Putnam is more circumspect. He invokes two physical
principles, the principle of continuity and the principle of noncyclical behaviour, whose joint effect
ensures that, over any interval of time, any ordinary open physical system proceeds through con-
tinuously many particular physical states. More recently, Hemmo and Shenker (2019) have argued
that this assumption is justified on quite general statistical mechanical grounds. For this reason they
suggest that spancomputationalism is a theorem of statistical mechanics. Note additionally that we
needn’t assume that physical state types be defined out of microphysical states. What ultimately
matters is not that they are microphysical, but that there are enough of them.
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system and C' be any computation. By the empirical assumption, P’s components
(states, etc.) are equinumerous with those of C'. By Push-Through, the two are
isomorphic. Hence, by the simple mapping account, P implements C'. Pancomputa-

tionalism follows, since P and C' were arbitrary.

3.3 From pancomputationalism to triviality

Putnam and Searle hold that pancomputationalism renders a theory of imple-
mentation ‘trivial’. Trivial in what sense? In my estimation, this charge is best
understood as a complaint about the theoretical status of the notion of computa-
tion, in that any account which entails pancomputationalism suffers from a variety of
distinct but related theoretical failures. These failures fall into roughly two camps,
concerning an account’s descriptive and explanatory ambitions, respectively. I'll take

each in turn.
3.3.1 Descriptive Defects

The argument for pancomputationalism relies on extraordinarily weak empirical
assumptions. The only empirical facts cited in the argument are facts about number
of component states or parts of physical systems. The argument does not rely on
facts about the character of these states or parts, nor does it rely on facts about
their arrangement, interactions, or activities. Nor, for that matter, does it rely on
facts about the gross structure of physical reality, concerning things such as the
distribution of matter or which natural laws obtain. In light of this, it is perhaps
no surprise that any theory that entails pancomputationalism confronts a battery of

problems concerning its descriptive capabilities:
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e Lack of empirical content. The empirical demands required to establish pancom-
putationalism are very modest, concerning only the cardinalities of a system’s
components. Insofar as these demands would be met in almost every physically
possible situation, it would thus appear that theories of physical computation

lack empirical content almost entirely.

e No empirical discoveries. Concerns about empirical content are closely related
to the question whether we could empirically discover the computation imple-
mented by a system (cf. (Searle, 1992, 208)). While one might have thought
that a great deal of empirical investigation would be required to determine
whether a system computes, if pancomputationalism holds such questions are
answerable largely from the armchair, by reflecting on the size of the system in

question.

o Fatensional inadequacy. Whereas the computational sciences ascribe compu-
tational properties to comparably few physical systems — chiefly engineered
devices and cognitive systems — pancomputationalism entails that these no-
tions apply to every physical system. Thus while the account correctly classifies
paradigmatic cases, it incorrectly classifies anti-paradigms more or less across

the board.

o Widespread predictive failure. Knowledge about what a system implements
ought to be predictively useful. Knowledge that a robot implements this pathfind-
ing algorithm would presumably allow one to predict that it will take that path

through an obstacle course. Yet it is hard to see how such knowledge can help
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one predict anything, if the robot implements everything. For the robot simul-
taneously implements a wide variety of different pathfinding algorithms, some
of which may find quite different paths through the course. It is thus hard to
see what would justify the prediction that the robot will take one path instead

of another.

o Unwarranted retrodictive success. While one might have thought that retrodic-
tion of past pathfinding behavior is the sort of thing that we could in principle
get wrong, under pancomputationalism our retrodictions can’t help but be true.
This is because, no matter what path the robot in fact takes, there will be some

pathfinding algorithm it implements under which it would have taken that path.
3.3.2 Explanatory Failures

A second and perhaps more serious concern is that pancomputationalism drains
theories of implementation of their explanatory power. Here is how Mark Sprevak

describes the problem with respect to explanation in cognitive science:

Cognitive science explains particular aspects of behavior and mental pro-
cessing (behavioral or psychological “effects”) by appeal to the brain
implementing specific computations. Specific effects occur because the
brain implements one computation rather than another. This explanatory
methodology is threatened by the triviality results. If implementation is
trivial, then no distinctive computations are implemented by the brain.
The brain, like almost every other physical system, implements almost
every computation. Explaining psychological effects by appeal to distinc-
tive computations cannot work because there are no distinctive physical
computations. (Sprevak, 2019, 186)

While I am in broad agreement with Sprevak’s diagnosis, it can be refined by

more sharply distinguishing two distinct explanatory scenarios. Both highlight the
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contrastive character of computational explanation. In intersystemic scenarios, com-
putations explain differences between different systems or system kinds. For instance,
the fact that the visual system computes depth from binocular disparity partly ex-
plains why healthy individuals exhibit competent grasping behavior while those with
various cortical injuries — not to mention manifestly non-cognitive systems such as
rocks, walls, and pails of water — do not. In intrasystemic scenarios, computations
explain contrasts between the actual and merely possible properties or behavior of
a single system or system kind. Here we might explain why a robot takes one path
through a maze (rather than another) because it implements this path-finding algo-
rithm (rather than that one).

Successful explanation in either case presupposes a contrast (Hitchcock, 2013).
The fact that healthy visual systems compute some depth-extraction function explains
differences in grasping behavior or perceptual capacities only if those same depth-
extraction computations are not also implemented by injured visual systems (or rocks,
walls, etc.). Similarly, the