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Abstract

This dissertation is about physical computation, mathematical computation, and

their relationship. The primary contribution is the development of a novel account

of physical computation, which I call the resemblance account. On this account,

physical systems compute to the extent that they resemble mathematically defined

computational models in certain contextually-specified respects.

Chapter 1 situates my project with respect to the broader philosophical land-

scape, tables a few specific questions for later investigation, and considers a range of

adequacy criteria that should constrain our answers to these questions.

Chapter 2 clears the ground by looking more closely at the relationship be-

tween physical and mathematical computation. Here I argue that we should take

a ‘mathematics-first’ approach, which develops the theory of physical computation

in terms of a prior mathematical theory of computation. The primary task for such

a theory, as I conceive of it, is to characterize the implementation relating linking

physical systems to the mathematical computational structures they realize.

Chapter 3 develops a novel response to a longstanding skeptical worry that phys-

ical computation is trivial. I argue that relative to a specific, contextually specified

way of regarding a system computationally there is little reason to think that phys-

ical computation is trivial. This response is flexible enough to take on board other
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suggestions found in the literature, but unlike these accounts avoids positing global

constraints on computation generally.

Chapter 4 examines an important class of explanations in computer science. These

explanations, which I call ‘limitative’ explanations, explain why certain problems

cannot be solved computationally. I argue that limitative explanations are a kind of

non-causal, mathematical explanation that depend on highly idealized computational

models such as Turing machines. However, because they are highly idealized, the

relationship between Turing machines and the physical systems that implement is

not best understood in terms of isomorphism.

Chapter 5 pulls these conclusions together and sketches the resemblance account.

On this account, a physical system computes just to the extent that it resembles

a computational model — or, as I prefer to call it, a computational architecture

— in certain antecedently specified respects. Just what these respects are typically

depends on a variety of contextually determined considerations, concerning both ob-

jective features of the system under consideration as well as facts about our goals and

interests in describing a system computationally. After sketching the account, I close

the chapter by noting a few directions for further work.
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Chapter 1: Introduction

This dissertation is about physical computation, mathematical computation, and

the relationship between them. This chapter situates my project with respect to the

broader philosophical landscape, tables a few specific questions for later investigation,

and considers what adequate answers to them ought to look like.

1.1 The philosophy of physical computation: a brief history

To start, I’ll distinguish between two broad projects in the philosophy of physical

computation. Philosophical interest in physical computation has a long history, but

I’ll pick up the thread in the mid-20th century with the emerging computationalist

program in the philosophy of mind. At the center of this program is the view that

the mind is in some important sense computational. While specific formulations of

this view vary considerably, I will refer to them loosely as the computational theory

of mind (CTM). For example, perhaps the most well-known version of CTM is the

classical computational theory of mind, which holds roughly that the mind performs

Turing-style computations over formally defined symbol structures (Rescorla, 2017a).

Although CTM per se makes no claims about how mental computations are per-

formed, underwriting much of this work was the expectation that mental computa-

tions are performed by the brain. This expectation relied on a view about what it is
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for a physical system such as the brain to compute. This view was almost universally

taken for granted and was typically invoked without explicit mention. For instance,

here’s Putnam:

A ‘machine table’ describes a machine if the machine has internal states
corresponding to the columns of the table, and if it ‘obeys’ the instruction
in the table in the following sense: when it is scanning a square on which
a symbol s1 appears and it is in, say, state B, that it carries out the
‘instruction’ in the appropriate row and column of the table (in this case,
column B and row s1). Any machine that is described by a machine table
of the sort just exemplified is a Turing machine. (Putnam, 1975, 365)

The following remarks by Fodor seem to rely on a similar thought:

A programming language can be thought of as establishing a mapping of
the physical states of a machine onto sentences of English such that the
English sentence assigned to a given state expresses the instruction the
machine is said to be executing when it is in that state. Conversely, if L
is a programming language for machine M, then it is a fact about each
(computationally relevant) physical state of M that a certain sentence of
English is its image under the mapping effected by L. (Fodor, 1968, 639)

Although neither Putnam nor Fodor explicitly offer a theory of physical compu-

tation here, their remarks suggest that they are operating with what is now known

as the simple mapping account. Roughly put, this is the view that a physical system

computes just in case it stands in an appropriate structural relationship (typically

isomorphism or homomorphism) to some formal computational structure, such as a

Turing machine or a program. These structures are often referred to generically as

‘computations’. When a physical system stands in such a relationship, it is said to

‘implement’ or ‘realize’ the computation in question. Here is a fairly typical statement

of the view:

The Simple Mapping Account

A physical system P implements a computation M if and only if:

2



1. There is grouping of states of P into state-types and a function f (a
‘realization’ or ‘implementation’ function) mapping state-types of P
to states of M , such that

2. Under f , the state transitions of P are isomorphic to the formal state
transitions of M ; i.e., whenever P is in state p1, where f(p1) = m1,
and m1 → m2 is a formal state transition, then P goes into state p2,
where f(p2) = m2.

One notable feature of this view, which I will discuss at greater length in later

chapters, is that it characterizes physical computation in terms of a prior mathemat-

ical notion of computation. Thus, even in these early days, philosophical thinking

about physical computation recognized a close connections between theories of phys-

ical computation on the one hand, and mathematical theories of computation, chiefly

computability and computational complexity theory, on the other.

The simple mapping account, or something close to it, was (with a few exceptions)

widely accepted for close to thirty years. However, it came under sustained attack

in the late eighties and early nineties in the form of so-called ‘triviality arguments’

leveled by Putnam (1987) (repudiating his earlier view), and Searle (1992). These

arguments attempted to show that the notion of physical computation furnished by

the simple mapping account was ‘trivial’ or ‘vacuous’, on the grounds that every

physical system implements every computation.

Putnam and Searle’s attacks were prefigured in certain respects by earlier ar-

guments in the philosophy of mind. For instance, Block’s (1978) nation of China

thought experiment and Hinckfuss’s pail (reported in (Lycan, 1981)) put pressure on

the idea that having a certain functional organization (computational or otherwise)

was sufficient for mentality. Putnam and Searle’s arguments, however, departed from
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these earlier critiques by focusing more directly on the notion of physical computa-

tion underwriting CTM. Their avowed aim was to show that, owing to the nature of

physical computation, no version of CTM is viable.

The Putnam-Searle challenge elicited two main responses. One was to give up

CTM. This is the response favoured by Putnam and Searle.1 The other was to give

up the theory of physical computation targeted by the challenge — that is, the simple

mapping account. This is by far the more popular option. Indeed, it would not be an

exaggeration to say that philosophical thinking about physical computation has been

motivated, in large part, by the task of crafting a theory of physical computation that

avoids the Putnam-Searle challenge.

Perhaps the most well-known response along these lines is due to Chalmers (1994,

1996). Chalmers’ overall strategy, in a nutshell, was to impose additional constraints

on the simple mapping account to block triviality. This approach accepts isomor-

phism/homomorphism as a necessary condition on implementation, but requires that

the realization map f meets some further condition. For instance, one of Chalmers’

proposals was that under f formal state transitions should mirror causal state tran-

sitions: if f(p1) = m1 and m1 → m2, then P ’s being in state p1 should cause it to go

into a state p2, where f(p2) = m2.

Although there was significant disagreement about the success of Chalmers’ pre-

ferred constraints, the strategy itself was by and large taken to be sound.2 Chalmers’

proposal thus inaugurated a particular research program in the philosophy of physical

computation, the primary goal of which was to identify a suite of constraints that

1And more recently revived in (Schweizer, 2019b).

2See, for instance, Chalmers (2012) and the articles cited therein for critical discussion of
Chalmers’ proposal.
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rendered physical computation non-trivial. This program dominated philosophical

work on physical computation through the mid 1990s and early 2000s. Schematically

put, the idea was to solve for X in the following account:

The Complex Mapping Account

A physical system P implements a computation M if and only if:

1. There is grouping of states of P into state-types and a function f (a
‘realization’ or ‘implementation’ function) mapping state-types of P
to states of M , such that

2. Under f , the state transitions of P are isomorphic to the formal state
transitions of M ; i.e., whenever P is in state p1, where f(p1) = m1,
and m1 → m2 is a formal state transition, then P goes into state p2,
where f(p2) = m2.

3. f satisfies condition X.

While all of this transpired, the computational sciences — here I have in mind

computer and cognitive science — flourished. In its early days computer scientific

research occurred primarily in mathematics and electrical engineering departments,

but by the mid 1990s it had largely extracted itself and was established as a field with

its own peculiar disciplinary interests and concerns. Similarly, cognitive science had

by then emerged as a rich interdisciplinary field with its own distinctive approaches to

the mind. Eventually philosophers began to take these developments more seriously

in their theorizing about physical computation. Although vindicating CTM remained

a central motivation for work on physical computation, accounting for practice in the

computational sciences quickly became a prominent item on the agenda.

Motivation for the latter project was not found primarily in the philosophy of

mind, but rather in the philosophy of science, where the primary goal is to under-

stand and illuminate scientific practice. Although this might be taken to signal a de-

parture from the earlier project of vindicating CTM, it is perhaps better understood
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as a broadening of scope. Whereas before philosophical accounts of physical compu-

tation were geared chiefly towards understanding computations in the mind/brain,

on the broader project such accounts should understand computation wherever it

occurs. Insofar as the computational sciences are the best guide to computation in

general, the task for the philosopher becomes to understand those sciences, such as

computer and cognitive science, which explicitly describe and explain physical sys-

tems computationally. Perhaps the most well-known approach along these lines is

due to Gualtiero Piccinini, whose mechanistic view of computation is one of the most

thoroughly elaborated accounts of physical computation to date (Piccinini, 2015).

Piccinini’s mechanistic view was, among other things, explicitly advertised as bet-

ter capturing computer scientific practice than its competitors. However, despite an

avowed interest in actual computer scientific practice, Piccinini’s view displays strik-

ingly little engagement with that practice. What engagement there is focuses largely

(although not exclusively) on the subfield of computer architecture (see, e.g., (Pic-

cinini, 2015, ch. 8-13)). My own view is that this leads Piccinini to overlook certain

important phenomena elsewhere in computer science. Indeed, chapter 4 of this work

is dedicated to examining one such phenomenon that arises in theoretical computer

science.

Of course, Piccinini’s restricted focus is to some extent understandable. Computer

science is a large field, and getting larger. One can only do so much. Nonetheless,

a satisfactory account of physical computation should engage with a fuller sample

of computer scientific practice than one finds in typical philosophical discussions.

One goal of this dissertation is to investigate what happens if we focus more directly

on practice in the computational sciences. I hope to better understand physical
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computation in part by seeing what contemporary computer science, and to a lesser

extent cognitive science, have to say about it.

Let me turn next to some of the more specific questions I will address. To date,

most philosophical interest in physical computation has focused on broadly semantic

questions about the content of central computational concepts, and broadly meta-

physical questions about the nature of physical computation. Representative exam-

ples of the former include:

What is the content of the concept of physical computation? What are
the relationships between the concepts of an algorithm, of computing, of
a computation, of something’s being a computer, etc.? Are one or more
of these more fundamental than the others, in some appropriate sense of
‘fundamental’? To what extent can these concepts be analyzed (given
some suitable conception of analysis)?

While representative examples of the latter include:

What is it for a physical system to compute, or for a system to be a com-
puter? What distinguishes computational states, properties, processes,
events, etc. from their non-computational counterparts? What is the
relationship between theories of physical computation and the formal,
mathematical theories of computation developed in computability and
complexity theory?

The traditional focus on such questions will come as no surprise given the semantic

and metaphysical interests driving much interest in CTM. While I will have something

to say in response to these questions in later chapters, one theme of the dissertation is

that overemphasis on such questions has led to a third class of questions receiving less

attention than they deserve. Questions in this third class are motivated principally

by the goal of understanding the theoretical role played by physical computation in

the contemporary computational sciences:
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What, if anything, makes computational descriptions and explanations
scientifically valuable? If they are valuable, what makes them that way
(e.g., accurate description, predictive utility, theoretically fruitful, etc.)
How are these related to or different from non-computational descrip-
tions and explanations? What makes a given computational description
descriptively/explanatorily salient in a specific scientific context?

Of course, these lists could undoubtedly be expanded, and the questions them-

selves are in need substantial clarification and refinement before they can be satis-

factorily addressed. Moreover, it is unlikely that these questions can be pursued in

isolation. Views about the metaphysics of physical computation bear in complicated

ways on how we understand the role of computation in the computational sciences.

Similarly, a particular view about the scientific role of computation might require

taking a particular stand on the metaphysics. This is of course a familiar philosoph-

ical point, but it’s worth bearing in mind. Where we start more likely than not will

partly determine where we end up.

These caveats notwithstanding, I am inclined to think that an adequate under-

standing of the computational sciences requires much closer engagement with the

third class of questions. This dissertation is intended to be a small step in that

direction.

1.2 Adequacy Criteria

It is quite plausible to think that our answers to these questions should meet

certain adequacy criteria. Since these criteria play an important role in later chapters,

it will be useful to survey and appraise of some of the more prominent ones found

in the literature, and to identify those I take to be most important for my purposes.
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The goal at this stage is just to get these criteria on the table. Later chapters will

discuss them in more detail.

1.2.1 Extensionality

Extensional adequacy criteria are perhaps the most straightforward and widely

accepted adequacy criteria in the literature on physical computation. In general, these

criteria hold that the range of systems or processes countenanced as computational by

a specific theory must match, in a sense to be explained shortly, some predetermined

stock of computational systems or processes. Theories which more closely match this

stock are preferable to those that do not.

Just what goes into the stock? The standard approach is to identify a set of

paradigms on the one hand, and a set of anti-paradigms on the other, so that a

theory ought to classify paradigms and anti-paradigms correctly. As Piccinini (2015,

12) puts its, we must ensure both that the right things compute and that the wrong

things don’t:

The right things compute

A theory should correctly classify paradigm physical computing systems
as computational.

The wrong things don’t compute

A theory should correctly classify anti-paradigm computing systems as
non-computational.

These criteria are schematic, because they depend on a choice of paradigms and

anti-paradigms. Different choices may yield quite different adequacy criteria. A

theory that succeeds relative to one choice may fail relative to another. Thus, the

choice of paradigms and anti-paradigms is itself an important, non-trivial problem.
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Given my interest in capturing computational practice, the most obvious approach

starts with the computational sciences. These sciences furnish a rough and ready list

of paradigms and anti-paradigms, if only tacitly. I will take paradigm computing

systems to be those that are routinely treated as computational by computer and

cognitive science. To a first approximation, these are the systems that are described

as computational or explained in broadly computational terms. Anti-paradigmatic

computing systems, by contrast, are those that are not so treated.

By this measure, paradigm physical computing systems comprise both natural

and artificial systems. On the natural side are, among other things, brains, certain

parts of nervous systems, and human agents working effectively. On the artifactual

side are calculators, digital computers, quantum computers, and analog computers.

Anti-paradigms include certain middle-sized dry goods such as rocks, walls, and pails

of water. Also included are digestive systems, planetary systems, thunderstorms, and

tectonic plates.

These lists are obviously not exhaustive. For one thing, there are unclear cases.

For instance, do abaci compute, or are they merely instruments used in the course

of human calculation? More exotically, do insect swarms, RNA strands, or even the

whole universe compute? Although it is sometimes suggested that these systems com-

pute, there is no consensus on the matter. Indeed, for such cases there may be no

straightforward answer one way or the other. Some indeterminacy is likely unavoid-

able, and we should learn to live with it. I do not take it to be a further constraint

that a theory should exhaustively classify physical systems into the computational

and non-computational.
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Note also that the computational sciences now recognize a wider range of comput-

ing systems than they did fifty years ago, and we can expect the same in the future.

Because of this, our paradigm and anti-paradigm lists are liable to evolve over time.

This, of course, is as it should be. Science changes, and our philosophical theories

should change with it.

The two extensionality criteria above concern computing systems. They say that

a theory must classify systems, as a whole, the right way. But it is also important that

we capture not just which physical systems compute, but also what they compute and

how they do it. For instance, a theory which entails that a calculator is computing

addition when it is actually computing subtraction is arguably unsatisfactory. The

foregoing criteria are pitched at too coarse a grain to capture this distinction. This

motivates the following additional criterion:

The right things compute the right things

If a physical computing system computes X, then a theory of physical
computation should entail that that system computes X.

Here too the notion of a system ‘computing X’ is in a way schematic. It stands in

for a variety of different things that might plausibly regarded as being computed —

problems, outputs, functions, etc. Moreover, because there may be different ways to

compute the same thing, relative to some choice of what it is that gets computed —

different choices of X — a theory should also capture the specific way that a system

computes X:

The right things compute the right things the right way

If a physical computing system computes X via procedure P, then a theory
of physical computation should entail that it computes X via P.
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1.2.2 Explanation

Another main adequacy criterion (or cluster of adequacy criteria) concern com-

putation’s explanatory role in science. Here the starting point is the observation

that the computational sciences contain many explanations framed in computational

terms. A theory of physical computation should account for this central aspect of

computational practice.

To bring out my preferred version of this criterion, I’ll contrast it with a similar

one proposed by Gualtiero Piccinini:

Computations performed by a system may explain its capacities ... A good
account of computing mechanisms should say how appeals to program
execution, and more generally to computation, explain the behavior of
computing systems. (Piccinini, 2015, 12)

It seem to me that this criterion is too narrow. For one thing, it is framed in

terms of Piccinini’s proprietary notion of a computing mechanism. But we should not

assume that all physical computing systems are computing mechanisms in Piccinini’s

sense, nor should we restrict our focus to just those systems, if it turns out that

there are computing systems which are not Piccinini-style computing mechanisms.

Second, Piccinini’s’ criterion is framed explicitly in terms of the behavior of computing

systems. Although the notion of behavior is highly flexible, it seems to me that

the computational sciences might aim to explain phenomena which aren’t obviously

behavioral. One example of this, which I return to at much greater length below,

concerns limits on the computational powers of physical devices. Here we wish to

explain, not what systems do or can do, but rather what they cannot do.

Consequently, for these reasons I prefer a broader, more neutral criterion:

Explanatory adequacy
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A theory of physical computation should identify explanatory uses of com-
putation in the contemporary computational sciences, and should illumi-
nate how such uses work.

This criterion has two parts. The first is that a theory of physical computation

should correctly identify explanatory uses of computation when they occur in the

comptuational sciences. This is a sort of extensionality criterion, now directed towards

computational explanations. A theory should have the resources to identify paradigm

cases of computational explanation, and should be able to distinguish these from, for

example, failed explanations or descriptive but non-explanatory uses of computation.

As before, this criterion is sensitive to choice choice of paradigms. I will have more

to say about this in later chapters.

The second part is that a theory should ‘illuminate’ computational explanations.

This involves, among other things, situating computational explanations with respect

to more well-known kinds of scientific explanation and identifying the distinctive

explanatory contributions (if any) that they make. For instance, are computational

explanations a kind of causal explanation? If so, what distinguishes them from non-

computational causal explanations? If not, what kind of explanation are they? A

theory of physical computation should say something about questions such as these.

Some philosophers reject explanatory adequacy criteria on the grounds that they

assume too much. For instance, Shagrir writes that although he “think[s] that compu-

tation has a substantive explanatory role ... this substantivity is not a desideratum of

an account of computation” (Shagrir, 2022, 30). This is because our task, as philoso-

phers of science, “is not to require an explanatory role, but to clarify whether the

notion of computation has one” (Shagrir, 2022, 31-2).
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However I am much less pessimistic than Shagrir that computation plays an ex-

planatory role in science. Frankly, it seems to me to be almost undeniable that it

does. Computational scientists routinely and without compunction explain phenom-

ena computationally. Accordingly, I take my job, qua philosopher of science, to be to

understand this practice. Of course, in saying this I do not claim that every putative

computational explanation succeeds. I allow that computational scientists get things

wrong, at least sometimes. A theory of physical computation should account for such

cases as well.

1.2.3 Objectivity

A common third criterion holds that it should turn out that computation is in

some sense objective. One statement of this comes from Piccinini:

A account with objectivity is such that whether a system performs a
particular computation is a matter of fact. Contrary to objectivity, some
authors have suggested that computational descriptions are vacuous —
a matter of free interpretation rather than fact... Computer scientists
and engineers appeal to empirical facts about the systems they study to
determine which computations are performed by which systems ... Unless
the prima facie legitimacy of those scientific practices can be explained
away, a good account of concrete computation should entail that there is
a fact of the matter as to which computations are performed by which
systems. (Piccinini, 2015, 11-2)

It seems to me that this statement runs together a couple different ideas. One is

that whether a physical system computes should not be ‘a matter of free interpreta-

tion’. Although Piccinini does not elaborate on the relevant notion of free interpre-

tation, the idea seems to be that computation should be objective in the sense of not

being observer-relative — i.e., being observer-independent (cf. Searle (1992, ch. 9)).

In particular, here Piccinini seems to want to rule out a very permissive conception
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on which an agent merely interpreting a system as computing (whatever exactly that

amounts to) suffices for it to be a computing system.

This is not entirely unreasonable, but it is worth noting that computation may be

observer-relative even if it is not obviously a matter of ‘free interpretation’. Indeed,

there are a range of possible notions of observer-relativity, of varying strength, that

might be relevant for thinking about physical computation. For instance, it is not

implausible to think that sometimes what a system computes depends on facts about

the broader linguistic or social environment in which it is embedded. To take an ex-

ample from Rescorla (2013), one might think that the fact that a system is embedded

in an environment where its users interpret it as using base-10 rather than base-13

notation at least partly determines what number-theoretic function it computes. If

this is right, then what the calculator computes is in some sense observer-relative

even though it is not obviously a matter of ‘free interpretation’. A strict ban on some

degree of observer-relativity would make our theory deliver the wrong results for cases

such as this.

At the same time, an observer-independence requirement is not unreasonable from

the point of view of CTM. Historically, CTM was developed in part to rebut homuncu-

lar regress and circularity worries in the philosophy of mind Fodor (1968, 1965). Al-

though it depends substantially on the details of the theory, an account of physical

computation on which physical computation is observer-relative at least threatens to

reintroduce these old worries. However, even if such a constraint is plausible for the

project of developing a computational theory of mind, it is less clear that we should

endorse it as a global adequacy condition.
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For this reason, it seems to me that we should endorse a more attenuated observer-

independence criterion. Rather than hold that physical computation is observer-

independent across the board, a theory should have the resources to discriminate

between observer-relative and observer-independent forms of computation:

Observer-relativity

A theory of physical computation should have the resources to discrimi-
nate between physical computing systems, if there are any, whose compu-
tational status and/or identity is observer-relative (in some appropriate
sense), and those whose status and/or identity is not so relative.

As it stands, this is criterion needs to be filled out with an appropriate notion of

observer-relativity. I will say a little bit more about this in chapter 3.3

Piccinini also appeals to the idea that empirical facts should be relevant to what

a system computes. This is at least partly an epistemological point. Again, although

Piccinini does not elaborate, the rough idea seems to be that whether and what a

system computes shouldn’t turn out to be the kind of thing we can discover entirely

from the armchair. This is different from observer-independence per se. True, if com-

putation were a matter of ‘free interpretation’, empirical facts may not matter very

much to how one interprets a system computationally. But it is presumably at least

partly an empirical fact that a device, embedded in a certain linguistic environment,

computes a certain function, even if this is in some sense a mind-dependent fact about

that device. Certainly, what it computes is not the sort of thing one could discover

entirely from the armchair.

There are of course a range of well-known epistemic notions of varying strength

that could be used to develop an appropriate epistemological criterion for theories of

3For a pair of similar criteria, see (Shagrir, 2022, 26-7).
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physical computation. The following negative formulation allows us to sidestep this

issue for the time being while still recognizing that theories of physical computation

should be assessed at least in part in terms of their epistemic commitments:

Empirical content

A theory of physical computation should not entail that a physical sys-
tem’s computational status and/or identity can be discovered wholly a
priori.

1.3 What’s to come

So much for background and methodology. Let me sketch where we’re going.

The overall goal of the dissertation is to build towards a novel account of physi-

cal computation, which I call the resemblance account. Very roughly, according to

this account, a physical system computes just in case it resembles a mathematically

characterized computation in certain antecedently specified respects. This account

departs from more familiar theories of implementation at two main points. First, on

this account implementation is a ternary relation, and computational ascriptions are

highly context-sensitive: a system implements a computation relative to a contextu-

ally specified way of regarding a system computationally. Second, on this account

implementation is not in general a matter of being isomorphic to a mathematical com-

putation, but rather involves resembling it in respects that may outstrip isomorphism

(or similar structural relationships). I build up to this view in a few steps.

Chapter 2 clears the ground by looking more closely at the relationship between

physical and mathematical computation. As I noted above, philosophers have long

accepted close connections between the two, but their exact connection remains ob-

scure. One view, which I call unificationism, holds roughly that a theory of com-

putation should apply uniformly to both physical computing systems such as digital
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computers and mathematical computing systems such as Turing machines. Chapter

2 argues that this position is untenable. Specifically, it is very hard to see how to

endorse this position without running into the Putnam-Searle triviality worry. In

light of this concern, I argue that we should distinguish between the physical and

mathematical theories of computation. I call this alternative bifurcationism.

Bifurcationism per se underdetermines the exact relationship between physical and

mathematical computation. It says that we cannot assimilate physical and mathe-

matical computation without significant cost, but it does not offer a positive charac-

terization of their relationship. At the end of Chapter 2 I delineate three different

options and suggest that we should take a ‘mathematics-first’ approach, which devel-

ops the theory of physical computation in terms of a prior theory of mathematical

computation. The primary task for such a theory, as I conceive of it, is to character-

ize the relationship of realization that relates physical systems to the mathematical

computations they implement.

Chapter 3 motivates the idea that implementation is a ternary relation. I argue

that treating implementation this way yields a novel and attractive response to the

Putnam-Searle triviality worry. Specifically, I argue that relative to a specific, con-

textually specified way of regarding systems computationally, there is little reason

to think that every physical system implements every computation. This response

is flexible enough to take on board many other suggestions in the literature but un-

like ‘complex’ mapping accounts avoids positing global constraints on computation

generally.

Chapter 4 puts pressure on the idea that isomorphism is a necessary condition

on implementation through an examination of an important class of explanations in
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computer science. These explanations, which I call ‘limitative’ explanations, explain

why certain problems cannot be solved computationally, either in principle or under

certain constraints on computational resources such as time or space. I argue that

limitative explanations are a kind of non-causal, mathematical explanation that de-

pend on highly idealized computational models such as Turing machines. However,

because they are highly idealized, the relationship between Turing machines and the

physical systems that implement is not best understood in terms of isomorphism.

Chapter 5 pulls these conclusions together and sketches the resemblance account.

On this account, a physical system computes just to the extent that it resembles

a computational model — or, as I prefer to call it, a computational architecture

— in certain antecedently specified respects. Just what these respects are typically

depends on a variety of contextually determined considerations, concerning both ob-

jective features of the system under consideration as well as facts about our goals and

interests in describing a system computationally. After sketching the account, I close

the chapter by noting a few directions for further work.
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Chapter 2: Why do we need a theory of implementation?

2.1 The received view of physical computation

The contemporary computational sciences describe and explain certain physical

systems in terms of the computations they perform. Philosophical theories of physical

computation attempt to codify and illuminate this practice. But what form should

such theories take? The received view characterizes physical computation in terms

of mathematical computation. Ordinarily this is taken to be a matter of relating

mathematical computations to the physical world:

Determining what conditions a physical system must satisfy in order to
compute is the focus of theories of computational implementation, or phys-
ical computation . . . An account of implementation aims to specify the
conditions under which a physical system performs a computation defined
by a mathematical formalism – it is a theory of physical computation.
(Ritchie and Piccinini, 2019, 192-3)

Though I will say more about this in due course, the crucial point is that this

view begins with a mathematical notion of computation, and applies it to physical

systems by way of an implementation relation. Call this ‘implementationism’ about

physical computation.4

4Particular implementationist views are developed and defended by (Chalmers, 1994, 1996,
2011; Egan, 2010; Matthews and Dresner, 2017; Millhouse, 2019; Rapaport, 1999; Rescorla, 2014b;
Schweizer, 2019a), among others. Ritchie and Piccinini (2019) and Sprevak (2019) survey the major
issues.
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Implementationist theories must negotiate a number of further issues, concerning

both the nature of implementation, and what constraints, if any, there are on which

physical systems may implement a computation. Perhaps unsurprisingly, there is

widespread disagreement about how these issues should be addressed. But this is

disagreement over details — how to develop implementationism, and not whether we

should. What is the rationale for characterizing physical computation this way in the

first place? The standard answer, roughly, is that we already have a mathematical

theory of computation, so we might as well use it. Here’s David Chalmers:

The mathematical theory of computation in the abstract is well-understood,
but cognitive science and artificial intelligence go beyond the domain of
abstract objects to deal with concrete systems in the physical world. The
difficult questions about computation are largely questions about the re-
lationship between these domains. How does the abstract theory of com-
putation relate to a science of concrete, causal systems, and how might it
help us explain cognition in the real world? To answer these questions, we
need a bridge between the abstract and the concrete domains. (Chalmers,
1994, 341-2)

As Chalmers goes on to suggest, a theory of implementation is just what is needed

to ‘bridge’ the gap between mathematical and physical reality.5

It seems to me that this ‘mathematics-first’ approach rests on a more basic atti-

tude towards the relationship between the theories of mathematical computation and

physical computation. Implementationist theories say nothing about mathematical

computing systems, such as Turing machines, because they are assumed to be dealt

with by a prior mathematical theory. Given such a theory, the implementationist’s

task is to use it to develop an account of physical computation. Thus, by taking

a mathematical theory of computation for granted, implementationism divides the

5Chalmers’ attitude persists today. For instance, Rescorla (2017b, 288) writes that “philosophical
discussion of computation should ground itself in the mathematical theory of computation.”
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theory of computation into two parts, each of which plays a different explanatory

role. One part explains computation in the mathematical case, while the other ex-

plains computation in the physical case. Call this ‘bifurcationism’ about the theory

of computation. I shall say more about bifurcationism shortly.

Bifurcationism has been tacitly assumed by much of the literature on physical

computation. This is striking, for a couple reasons. First, what little argument

exists for it rests on questionable assumptions about the nature and character of the

mathematical theory of computation. Second, and perhaps more seriously, it seems

that considerations from both the general philosophy of science, as well as from the

philosophy of computer science in particular, augur against bifurcationism. These

considerations point towards a theory which offers the same account of computation

in both the physical and mathematical cases. I call this alternative ‘unificationism’.

The upshot is that if we are to endorse bifurcationism, much less implementation-

ism, a new argument is needed. The main contribution of this chapter is to provide

one. I argue that the prospects for a unificationist theory which does not trivialize

physical computation are grim. To the extent that a non-trivial theory of physical

computation is desirable — I will assume that it is — and to the extent that bifurca-

tionist accounts stand a better chance of avoiding triviality — I will eventually argue

that they do — we ought on balance to prefer bifurcationism to unificationism.

As we will see, however, bifurcationism per se does not mandate implementa-

tionism. That is, bifurcationism as such does not require that we take Chalmers’

‘mathematics-first’ approach to physical computation. In fact, bifurcationism is com-

patible with at least two other views about the relationship between the theories of

physical and mathematical computation. These other views have not received much
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attention, and I submit that this partly because bifurcationism itself has not yet been

isolated for independent treatment. Thus, a second contribution of this chapter is

to clarify the possible relationships between theories of physical and mathematical

computation, and to provide new motivation for the mathematics-first approach.

Here is the plan for the rest of the chapter. Section 2 fleshes out the distinction

between unificationism and bifurcationism. Section 3 argues that extant motivation

for bifurcationism, such as it is, is uncompelling. Section 4 makes a prima facie case

for unificationism. Sections 5 and 6 argue that, initial attractions aside, unificationism

faces serious problems. Section 7 concludes.

2.2 Unificationism and bifurcationism

I take it that any theory of computation must answer two main questions. The

first concerns the computational status of computing systems. Here we’re interested

in the difference between systems that compute and those that don’t. The second

concerns the computational identity of computing systems. Here we’re interested in

the conditions under which two computing systems are computationally equivalent

or distinct — modulo some appropriate standard for individuating systems compu-

tationally, e.g., in terms of the functions they compute, the algorithms they follow,

and so forth. I will call these the status and identity questions, respectively:

Status What distinguishes systems that compute from those that don’t?

Identity Under what conditions are two computing systems computa-
tionally identical or distinct?

The contrast between unificationism and bifurcationism can be understood as a

disagreement about how these questions should be answered. To a first approxima-

tion, the bifurcationist holds that the theory which furnishes answers to the status
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and identity questions concerning physical computing systems needn’t also furnish

answers to these questions as they concern mathematical computing systems. The

unificationist, by contrast, holds that one and the same theory which furnishes an-

swers to these questions concerning physical systems must also furnish answers to

their mathematical counterparts.

So construed, unificationism and bifurcationism are methodological claims about

which questions a theory of computation ought to address. It will be useful to have a

‘metaphysical’ version of the contrast on the table, too. On this second way of drawing

the distinction, a theory is unificationist if it supplies the same kind of answer to the

status and identity questions for both sort of computing system, and a theory is

bifurcationist if it doesn’t.6

How are the methodological and metaphysical claims related? For now it’s enough

to notice that if unificationist or bifurcationist theories are in general untenable, it’s

likely that the corresponding methodologies are misguided too. That is, the method-

ological versions of either unificationism or bifurcationism should be abandoned if it

can be shown that their metaphysical counterparts are unsustainable. Accordingly,

even though I focus on the prospects for unificationist and bifurcationist theories in

particular, the methodological versions of these views are implicated by my arguments

as well.

6Additionally, while I’ve drawn the distinction at the level of theories, we might also characterize
it in terms of a variety of more fine-grained notions, such as the truth-conditions of computational
statements, the applicability conditions of computational concepts, or the instantiation conditions
of computational properties. For our purposes, however, the theory-centric characterization will
suffice.
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One might doubt that the unificationism/bifurcationism distinction marks a sub-

stantive contrast, on the grounds that it is very easy to turn any putatively bifurca-

tionist theory into a unificationist theory. Suppose that M is a theory which answers

the status and identity questions for mathematical systems and that P is a theory

which answers these questions for physical systems. Then M ∧ P is a unificationist

theory, for one and the same theory, namely M ∧ P , answers the status and identity

questions for both sorts of system.

However, this sort of construction doesn’t get to the heart of the matter. What’s

at issue is not just the form a theory of computation takes, but how it answers the

status and identity questions concerning different sorts of system. Moreover, this sort

of construction can be ruled out easily enough: let unificationism be as before, but

require that there be no proper sub-theory which supplies answers to the status and

identity questions for physical systems alone.

To help bring out the intended contrast, it is instructive to compare some par-

ticular theories of physical computation. The first is Chalmers’ implementationist

theory.7

A physical system P implements a CSA M if there is a decomposition
of internal states of P into components [s1, s2, ...], and a mapping f from
the substates sj into corresponding substates Sj of M , along with similar
decompositions and mappings for inputs and outputs, such that for every
state-transition rule ([I1, ..., Ik], [S1, S2, ...]) → ([S ′1, S ′2, ...], [O1, . . . , Ol])
of M : if P is in internal state [s1, s2, ...] and receiving input [i1, ...., in]
which map to formal state and input [S1, S2, ...] and [I1, ..., Ik] respec-
tively, this reliably causes it to enter an internal state and produce an
output that map to [S ′1, S ′2, ...] and [O1, . . . , Ol] respectively. (Chalmers,
1994, 394)

7Chalmers’ account is couched in terms of combinatorial state automata (CSAs), a generalization
of finite state automata.
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Thus on this view whether a physical system computes is a matter of implement-

ing a CSA, and what it computes is determined by the CSA (or CSAs) it implements.

This approach relies on a prior mathematical theory of CSAs, specifying what math-

ematical entities count as CSAs and what computation a given CSA performs, which

is then used to define physical computation. The account thus offers different kinds

of answers to the status and identity questions as they concern physical and math-

ematical systems. The latter are addressed by the mathematical theory of CSA

computation; the former by the account of implementation just cited. For this reason

Chalmers’ account seems to me a paradigmatic bifurcationist account of computa-

tion. And to the extent that Chalmers’ view is representative of implementationist

accounts generally, implementationism overall incurs a commitment to bifurcationism

too.

Contrast this with the account of function computation found in (Copeland, 1996).

According to Copeland’s account:

Entity e is computing function f if and only if there exists a labelling
scheme L and a formal specification SPEC (of an architecture and an
algorithm specific to the architecture that takes arguments of f as inputs
and delivers values of f as outputs) such that (e, L) is a model of SPEC.
(Copeland, 1996, 338)

The relevant notion of modeling, taken from model theory, is Tarskian satisfaction.

Importantly, this notion allows that both physical and mathematical structures may

model a given architecture–algorithm specification. In order for an entity e to be a

model, all that is required is that there be a way to use it to identify a domain of

objects and a suite of relations on them. As far the modeling relation is concerned,

these entities and relations may be physical, mathematical, or indeed just about

anything you like. Moreover, this flexibility with respect to physical and mathematical
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models is not just a technical quirk. That both physical and mathematical structures

may stand as models is an important part of Copeland’s account, a point about which

he is quite clear:

The construction [i.e. the labelling scheme] must be applicable not only
to real hardware but also to merely conceptual machines. For example,
we wish to say that each action of a Turing machine is the result of its
configuration (i.e. the combination of its state and the scanned symbol).
Unless we intend to speak metaphorically, the phrase ‘is the result of’
cannot be replaced here by ‘is caused by’, for the machine is a purely
abstract entity. (Copeland, 1996, 341)

I submit that this account of computation is unificationist, not bifurcationist.

On Copeland’s view, whether and what a system computes is determined by the

architecture-algorithm specifications of which it is a model. Consequently, the status

and identity questions for both physical and mathematical computing systems are

answered in terms of algorithm-architecture specifications.

To my knowledge, Copeland’s view is perhaps the clearest illustration of unifica-

tionism in the literature. But at times other philosophers appear to flirt with unifica-

tionism, too. For instance, in some moods Piccinini appears to offer the mechanistic

account of computation in a unificationist spirit. This account holds that computing

systems are a kind of mechanism with teleological functions—or a ‘functional mech-

anism’, for short—whose function is computing (Piccinini, 2015). At times, Piccinini

appears to suggest that the account applies in equal measure to both physical com-

puting systems, such as digital computers, and mathematical computing systems,

such as Turing machines:

All paradigmatic examples of computing mechanisms, such as digital com-
puters, calculators, Turing machines, and finite state automata ... per-
form digital computations. Thus, the mechanistic account properly counts
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all paradigmatic examples of computing mechanisms as such. (Piccinini,
2015, 143)

[a] similar notion of functional mechanism [as that which applies to physi-
cal computing mechanisms] applies to computing systems that are defined
purely mathematically, such as (unimplemented) Turing machines. Turing
machines consist of a tape divided into squares and a processing device.
The tape and processing device are explicitly defined as spatiotemporal
components. They have functions (storing letters; moving along the tape;
reading, erasing, and writing letters on the tape) and an organization
(the processing device moves along the tape one square at a time, etc.).
(Piccinini, 2015, 119-20)

Whether abstract or concrete, Turing machines are mechanisms, subject
to mechanistic explanation no more and no less than other mechanisms.
(Piccinini, 2010, 290)

Thus on this view, the status and identity questions are answered in mechanistic

terms. Whether and what a system computes amounts to being a certain sort of

functional mechanism.8,9

I think that this is enough to get a feel for the distinction. As I remarked above,

it seems to me that much work on physical computation has been guided by a tacit

commitment to bifurcationism. Chalmers, for instance, simply assumes bifurcation-

ism without argument. But once we isolate the unificationism/bifurcationism contrast

8Is fair to Piccinini? In other moods he seems downright hostile to unificationism (see, for
instance, (Piccinini, 2015, 8-9)). Yet, even if this is right, it is not clear how to reconcile this with
the outlook expressed in the previously cited passages, which seem to me clearly unificationist. In
any event, while I think this points towards an interesting tension in Piccinini’s view, I don’t propose
to get bogged down in exegesis at this stage. I’ll return to this point again in Section 6.1, where I
argue that Piccinini is committed to unificationism by his own lights.

9These views raise another issue worth clarifying. Much of the literature on physical computation
takes a realist attitude towards the relevant mathematics: witness Chalmers’ talk of computational
objects, for instance. But we shouldn’t read too much into this. Given the variety and subtlety
of extant nominalization strategies, such as those developed in Burgess and Rosen (1997), I see no
obvious reason why this literature couldn’t be developed in nominalist terms without distorting the
major issues. Accordingly, we can set aside questions about fundamental mathematical ontology
and focus on issues internal to the philosophies of computer and cognitive science. For convenience,
I will continue to adjudicate matters in realist vocabulary.
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we can begin to see that matters are not so straightforward. Indeed, as I will argue

next, there is a real worry that bifurcationism is misguided.

2.3 Troubles with bifurcationism

If I’m right that bifurcationism has been endorsed only tacitly, it is perhaps un-

surprising that we find little explicit argument for it. However, those who appear

to endorse it oftentimes emphasize the distinctively ‘mathematical’ subject matter of

computability theory. Sprevak (2010, 262-3) expresses this idea vividly:

Mathematical computation theory is a branch of pure mathematics and
concerns relations between mathematical structures and objects. The
‘computers’ it studies are mathematical entities not physical systems. Ac-
cording to mathematical computation theory, a Turing machine is not a
physical system; it does not ‘perform’ a computation in the sense that a
physical system does.

And a bit later:

The computations studied in mathematical computation theory are inde-
pendent of how things are in the physical world. They are independent
of empirical ink-marks, they do not ‘take place’ in time, or depend on the
physical possibility of infinitely long tapes. Computers in mathematical
computation theory are mathematical entities that bear certain relations,
studied by that theory, to other mathematical entities, the functions they
compute ... physical entities are not the subject matter of the relevant
mathematical claims. Mathematical computaion theory does not say any-
thing about physical systems.10

These remarks suggest the following sort of argument: (1) the mathematical the-

ory of computation is concerned solely with mathematical entities, such as Turing

machines, recursive functions, and the like. But (2) these are not physical entities

10It should be noted that what Sprevak calls ‘the received view’ is the claim that all physical
computation essentially involves representation. This is distinct from how I use the term above,
to refer to implementationist theories of physical computation generally. Sprevak’s received view is
just one kind of implementationist view, that is, just one instance of my ‘received view’.
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– they are ‘independent of how things are in the physical world’. So (3) a theory

of such systems is not automatically a theory of physical systems, in which case (4)

bifurcationism follows.11

However, if this is the master argument for bifurcationism, it leaves much to be

desired. One issue is that premise (1) comes perilously close to begging the question.

Our topic is the extent to which the mathematical and physical theories of compu-

tation share a subject matter. To assume that the mathematical theory is concerned

only with mathematical computing systems appears to assume that the status and

identity questions concerning physical systems cannot be answered by that theory,

which is just what we are wondering about. Another issue is that (2) presupposes

a substantial view about the nature of mathematical entities, in effect that they are

not physical entities of some sort or another. Yet it is not clear why one must endorse

this claim in order to be a bifurcationist, for the unificationism/bifurcationism distinc-

tion presumably cuts across issues of fundamental mathematical ontology. That is, it

would be rather surprising if endorsing bifurcationism (much less implementationism)

required one to take this particular attitude towards the relevant mathematics.

But even setting these worries aside, the crucial move from (2) to (3) is suspect.

Suppose it’s true that the primary subject matter of computability theory are highly

idealized mathematical computing systems. That doesn’t show that computability

theory can’t also be a theory of certain non-idealized physical systems, too. Certainly

it is not clear that this reflects how computability theorists conceive of their own

subject matter, for at times they seem to be describing actual or possible physical

devices. This outlook goes right back to Turing’s foundational work on effective

11It would be unfair to attribute this argument, at least in this form, to Sprevak. But it does
seem to me that this kind of reasoning lies behind bifurcationism.
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calculability, for Turing’s focus was, in the first instance, on the sorts of problems

that could be solved by a human working effectively. In this respect the situation is

quite unlike that found in, for example, the more exotic branches of set theory, where

there is typically no pretension that the objects of interest are in any sense physical,

idealized or not.

Moreover, it seems that computability theory actually has the resources to describe

physical systems directly. This can be illustrated by looking at the standard definition

of a deterministic finite automaton. On that definition, DFAs are five-tuples A =

(Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is a finite set of input symbols,

δ : Q × Σ → Q ∪ F is a transition function, q0 ∈ Q is a start state, and F is a set

of final states. As Rescorla (2014b) observes, this definition imposes no restrictions

on the members of Q or F : all that is required that they be sets of states. Now, we

might take the states to be purely abstract, but then again we might also take them

to be states of a particular physical system. And in the latter case it’s unclear why

computability theory wouldn’t describe the computational characteristics of physical

systems. Indeed, it would be surprising if it didn’t!

In light of all this, I am skeptical that bifurcationism can be motivated by an

appeal to the supposedly ‘mathematical’ subject matter of computability theory. If

we are going to endorse it, we’ll need a more sophisticated argument. That’s coming

up. But first let’s what can be said in favour of unificationism.

2.4 Three arguments for unificationism

This section argues that unificationism exhibits certain theoretical virtues, some

of which concern philosophical theories generally and some of which are more specific
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to theories of physical computation. In light of this, I claim that we shouldn’t dismiss

unificationism out of hand. Of course, that a theory has certain virtues only counts

towards endorsing it if all else is equal. I don’t pretend that the considerations

presented here are demonstrative. In fact, I’ll eventually argue that all else is not

equal, and that for other reasons unificationism should ultimately be abandoned. But,

taken together, I submit that these considerations make a strong prima facie case for

unificationism. Strong enough, at any rate, to give the bifurcationist pause.

2.4.1 The value of unification

Many philosophers hold that more unified theories are preferable to less unified

theories. This is a familiar point, so I’ll be brief.12 Unificationist theories of computa-

tion promise to unify computation, with a twist. Normally unified scientific theories

are taken to unify diverse physical phenomena. But unificationism, as a thesis about

the theory of computation, would unify both physical and mathematical phenom-

ena. I see no reason why this sort of unification would be any less preferable to the

usual sort, in which case a unificationist theory of computation is preferable to a

bifurcationist one.

2.4.2 Extensional adequacy

Perhaps the strongest case for unificationism comes from computer scientific prac-

tice. If that practice marks no clear distinction between the theory of computation as

applied to physical versus mathematical systems, then that is some reason to accept

unificationism. In Chapter 1 I noted that this involves capturing both descriptive and

12See, for instance, (Kitcher, 1981, 1989; Swoyer, 1999).
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explanatory practice. I’ll discuss one important aspect of descriptive practice here,

and then I’ll turn to explanatory practice.

For a theory to capture descriptive practice it ought, at a minimum, to be exten-

sionally adequate. What this comes to depends largely on the choice of paradigms

and anti-paradigms, and here scientific practice is our guide. If the ordinary thought

and talk of computer scientists marks no clear distinction between computations car-

ried out by mathematical computing systems and physical computing systems, and

if computer scientists routinely apply what appear to be the same computational

notions to systems of either type, then this is some evidence that both physical and

mathematical computing systems should be counted among the paradigms.

Some unificationists seem to interpret computational practice this way. For in-

stance, on Piccinini’s (2015, 12) interpretation, computer scientific practice suggests

that plausible paradigms include “digital computers, calculators, both universal and

non-universal Turing machines,” while plausible anti-paradigms are “planetary sys-

tems, hurricanes, and digestive systems,” among many others. Here both mathemat-

ical computing systems, such as Turing machines, and physical computing systems,

such as digital computers, are taken to be paradigms. Thus it appears that an exten-

sional adequacy requirement, coupled with this choice of paradigms, points towards

a single account which captures both mathematical and physical computation. Uni-

ficationism naturally fits the bill.

2.4.3 Explanatory practice in computer science

We find similar tendencies in the explanatory practice of computer science. Of-

tentimes the same explanations are offered in order to explain the computational
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Algorithm 1 Mul(x, y)

1: if x = 0 then
2: return 0
3: end if
4: p← y
5: while x > 1 do
6: p← p+ y
7: x← x− 1
8: end while
9: return p

features of both mathematical and physical systems. Since this seems to me the more

revealing datum, I’ll take a minute to gnaw on it.

To fix ideas, focus on an explanation of a system’s behavior in terms of the function

it computes. And consider a mathematical computing system, such as an abstract

register machine, that computes multiplication by repeated addition.13 Let’s suppose

that the explanation why the device outputs x×y when given x and y is that it follows

something like Algorithm 1. This simple explanation is familiar from elementary

computability theory, and others like it are readily come by. The point to notice is

that this pattern of explanation may equally well be applied to a contemporary digital

computer. Just like an abstract register machine, contemporary digital computers

manipulate strings of digits in finite memory locations. Given such a device, we can

explain that it too outputs x× y when given x and y because it follows Algorithm 1.

In neither case does the explanation advert to the character of the items manip-

ulated. In the register machine’s case the strings are mathematical objects, perhaps

defined in terms of pure sets, whereas in the digital computer’s case the strings are

13See (Cutland, 1980) for such devices.
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physical, perhaps realized as voltage levels in silicon. But these differences are irrele-

vant to the explanation why the devices multiply; what matters, from the perspective

of computing multiplication, is that the algorithm takes x and y to x × y. Whether

this happens in sets or silicone is simply beside the point.

Of course, computer scientists are not just concerned to explain why a system

computes some function. They also wish to explain why certain functions are uncom-

putable in principle, or are at least uncomputable in a feasible amount of time. Here

too we find patterns of explanation applicable to both mathematical and physical

systems.

A vivid example comes from work on performance bounds for comparison sorting

algorithms.14 It is known that any comparison sorting algorithm must make approx-

imately n lg n comparisons to sort a list of length n.15 A standard explanation notes

that comparison sorting is equivalent to the task of guessing which permutation of

a list one is given, if one can only ‘see’ two elements at a time. There are n! per-

mutations of an n-element list, and each guess, or comparison, eliminates half of the

remaining permutations from consideration. The guessing procedure can be repre-

sented by a binary tree whose internal nodes are comparisons, and whose leaves are

permutations.

A path from root to leaf corresponds to a sequence of comparisons—a sorting—in

which case a lower bound on the number of comparisons required to sort the list

corresponds to the minimum height of such a binary tree, and this is more or less n

lg n.

14Given an unsorted list l1, l2, ..., ln of items and a linear order < on them, a comparison algorithm
sorts by checking whether li < lj holds, and manipulating the list depending on the outcome.

15See (Cormen et al., 2001, 166-7) and (Knuth, 1998, 180-2).
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Details aside, the important point is again that this explanation can be applied

to any comparison sorting system, physical or mathematical. Anything that sorts by

comparison must compare list members, and differences in the nature of the items

compared are irrelevant as far as the explanation is concerned. That these differences

are irrelevant suggest that unificationism, or so the thought goes.

So far, then, I’ve argued that the case for bifurcationism is uncompelling, and that

the alternative, unificationism, is more attractive than one initially might suppose. To

the extent that the received, implementationist view tacitly endorses bifurcationism,

this argument threatens the received view as well. Nonetheless, as I argue next,

unificationist theories face a serious challenge of their own.

2.5 No unificationism without trivialization

Perhaps the most significant problem unificationism is that it falls prey to the

Putnam-Searle triviality worry, mentioned in Chapter 1. Triviality follows from two

claims. The first is pancomputationalism, the claim that at one and the same time,

every (or at least many) physical system performs every (or at least many) compu-

tations. The second claim links pancomputationalism to computational explanation,

and holds that computational explanation succeeds only if a unique, or at any rate

a select few, computations are performed at a time. Although in later chapters I’ll

offer a more careful appraisal of this argument, for now I’ll simply assume that it is

valid and that triviality ought to be avoided.16

16This way of formulating triviality issues ignores a few distinctions sometimes made between
different kinds of pancomputationalism (Piccinini, 2015, ch. 4). While it is surely problematic if a
given system performs every computation, it is perhaps tolerable if only a select few computations
are performed at once. For instance, a given digital circuit may reasonably be said to compute
both logical AND and logical OR, depending how one looks at it Dewhurst (2018). However, this
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For the most part triviality arguments have been deployed against the received

view. And with the received view in their sights, these arguments purport to show that

every physical system implements every, or at least many, computations. I mention

this only so that I can distinguish it from what I’m up to. The question I’m interested

in is whether, and to what extent, triviality worries emerge for unificationism in

particular. My claim is that they do, and that they do so in a particularly insidious

form.

Here’s the problem in brief. Unificationism requires that the account of compu-

tation applied to mathematical computing systems also apply to physical computing

systems. Let’s say that an account that satisfies this requirement ‘accommodates’

unificationism. Now, it seems clear that a theory which accommodates unification-

ism must characterize computation only in terms of characteristics shared by both

physical and mathematical computing systems. If it didn’t, it’s hard to see how it

would be a genuinely unificationist theory in the first place. But here’s the rub: it

appears that there is no account of computation which at once appeals only to shared

characteristics, but which is also sufficient to block triviality. One can accommodate

unificationism, or avoid triviality, but not both.

To argue for this in any detail we must get into the weeds on various accounts of

computation. That happens in the next section. But to get a feel for the problem,

the rest of this section sketches a triviality result for a simple structuralist theory of

computation. With a few exceptions (e.g. (Schweizer, 2019b)), not many philosophers

observation is of no help to the unificationist. Even if we can tolerate some degree of pancomputa-
tionalism, my claim will be that unificationism entails an unacceptably strong version of it. Thanks
to an anonymous referee for urging me to clarify this point.

37



endorse this account any more. But it nicely brings out the threat posed by triviality

arguments, and the bind in which unificationists find themselves.

On the structuralist view theory, to compute is just to have a certain abstract,

formal structure. This account straightforwardly accommodates unificationism, for

it is plausible to think that both mathematical and physical systems have structural

features of the right sort. But the problem is that structure is cheap, which leads

directly to pancomputationalism and hence triviality.

To illustrate, consider Putnam’s version of the argument. We’ll describe com-

putations in terms of finite state automata (FSAs). Given the structuralist account

under consideration, we can think of FSA computations as describing computational

structures. For instance, the two state automaton which moves from one state to

another and then halts describes a computational structure, instantiation of which

is a matter of having two parts (states, for instance) which stand in some sequential

relationship.

We wish to establish that every physical system performs every FSA computation.

This amounts to showing that every physical system goes through the state-transitions

described by every FSA. So consider the particular FSA M with two states, A and

B, which proceeds through the following state transitions: A → B → A → B → A.

We define a ‘maximal state’ of some physical object O at a time to be its total

intrinsic state at that time. Next, we consider five sequential maximal states of O:

M0 → M1 → M2 → M3 → M4. The idea is to define two new states of O, AO and

BO, so that these new states evolve in a way that corresponds to the state transitions

described by M .
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The following will do: AO = M0 ∨M2 ∨M4; BO = M1 ∨M3. Thus O proceeds

through a series of state transitions capture by M : AO → BO → AO → BO → AO.

So O performs M ’s computation. But since this kind of construction can be had for

any FSA and any physical entity, the argument generalizes and triviality follows.

Of course, nothing about this construction is novel. The important point is how

it interacts with the background theory of computation: while the structuralist ac-

count smoothly accommodates unificationism, it does so at the cost of triviality. The

question I take up next is whether some other account can be found which both

accommodates unificationism and resists trivialization.

2.6 Four accounts of computation

The implementationist literature contains a variety of strategies for avoiding trivi-

ality, and this section explores whether any of them can be appropriated in the service

of unificationism. I focus on accounts which hold that computation essentially involves

causation, counterfactual dependencies, teleological functions, or representation, re-

spectively. In each case I argue that the proposal fails to avoid the problem outlined

in the last section. Some fail to avoid triviality, while others accommodate unifica-

tionism only at great cost. The lesson I draw is that the prospects for unificationism

seem grim.

I should make a couple more clarificatory points before getting down to business.

First, my aim is not to show the impossibility of a unificationist theory of computation.

I see no way to establish such a strong result. Rather, and more modestly, my aim

is to shift the burden onto the unificationist to articulate a theory that at once

accommodates unificationism and avoids triviality. The proposals I investigate below
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seem to me to be the most plausible options, but they are not the only ones available.

I leave open the question whether some other account can do the job. But to the

extent that the options canvassed here stand the best chance of avoiding triviality,

unificationism is in trouble.

Second, it is worth highlighting how the responses to triviality investigated below

differ from those employed by the received, implementationist view. Because they

endorse bifurcationism, proponents of implementationism are under no pressure to

employ constraints that apply to mathematical computations. For them, the problem

is to just say which physical objects are allowed to figure in the implementation

relation. Accordingly, they are free to impose constraints on the physical side which

may make no sense in the context of mathematical computation. The unificationist,

by contrast, has an altogether different task to pull off. They must impose constraints

that apply equally to physical and mathematical computing systems. And this, we

will see, is the source of their troubles.

2.6.1 The causal-mechanical account

A natural first response to triviality requires that the computational structure

of a physical system track its causal structure.17 A related suggestion is found in

the mechanistic account of computation, which holds that computing systems are

mechanisms.18 Given their close resemblance, we can treat these proposals together.

On this view, to have a computational property is just a matter of having a certain

causal-mechanical structure. The reason why an arbitrary physical object doesn’t

17See (Chalmers, 1996; Godfrey-Smith, 2009; Scheutz, 2001) for proposals in this vein.

18(Milkowski, 2011; Piccinini, 2015). Depending on one’s views about causation and mechanism,
the mechanistic conception might collapse into the causal conception; see (Glennan, 2017) and
(Woodward, 2013) for discussion.
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perform every computation is that the computational ‘states’ cited by triviality ar-

guments are not causally related, or are not genuine mechanistic components of the

system. Pancomputationalism (hence triviality) fails because ‘pan-causation’ and

‘pan-mechanism’ fail, or so the thought goes.

But the question is whether the causal-mechanical account accommodates unifica-

tionism. And it seems not, at least on the face of it. Nowadays Turing machines are

defined as consistent sets of 5-tuples (Qi, σ1, σ2,m,Qj) where Qi and Qj are states,

σ1 and σ2 are letters in the machine’s alphabet, and m is an instruction for moving

the read/write head. Sets of 5-tuples fix a set of state-space transitions, which cap-

ture the behavior of the machine at every possible stage of operation. Now, whether

we identify Turing machines with sets of 5-tuples or with a set of state-space transi-

tions, each of these items is constructed, or at least constructible, out of pure sets.

Such pure set theoretic entities are abstract, non-causal, and non-spatiotemporal.

But given this view of Turing machines it is hard to see how the causal-mechanical

theory accommodates unificationism, for the simple reason that Turing machines, so

construed, lack causal-mechanical characteristics altogether.

One response to this is to abandon unificationism. Piccinini takes this tack in

his more pessimistic moods, writing that he is “after an account of computation in

the physical world” and that “[i]f Turing machines and other mathematically defined

computational entities are abstract objects ... they fall outside the scope of my

account” (Piccinini, 2015, 9). But it is unclear how to square this with his later

claim, in the very same book, that the mechanistic account correctly counts Turing

machines as computing mechanisms. Moreover, it seems that this move is unavailable

to Piccinini by his own lights, for “[t]he primary aim of the mechanistic account is

41



doing justice to the practice of computer scientists and engineers’” (Piccinini, 2015,

118). As I argued earlier, that practice supports unificationism, at least prima facie.

So this sort of response is unavailable to anyone impressed by computer scientific

practice, as Piccinini appears to be.

A more radical response denies that Turing machines are purely mathematical

entities. Instead, we should regard them as idealized physical entities, which re-

tain some, but not all, of the physical properties of their unidealized counterparts.

Copeland and Shagrir (2011) call this view ‘Turing-machine realism’. As they explain:

Turing-machine realism recognizes an ontological level lying between the
realization level and the level of pure-mathematical ontology. We term
this the level of notional machines. At this level are to be found notional
or idealized machines that are rich with spatiotemporality and causality.
Copeland and Shagrir (2011, 234)19

Such a view would allow the unificationist to endorse a causal-mechanical theory

of computation, unifying computation in causal-mechanical terms.

One worry about this maneuver concerns the status of the idealized machines. It

is far from clear how we are to make sense of their ‘in between’ ontological status.

Are they abstract objects, or mental entities, or what?20 This question demands an

answer before we can legitimately claim that Turing machines ‘have’ causal features.

However, even if we can make sense of notional machines, there appears to be

a general problem which undercuts any attempt to recharacterize Turing machines,

spatiotemporally or otherwise. The trouble is that the computational explanations

surveyed above apply not just to physical systems, but also to pure mathematical

19It should be noted that Copeland and Shagrir don’t endorse Turing–machine realism, but merely
flag it as a live option.

20See (Thomson-Jones, 2010) for critical discussion of a related proposal found in (Giere, 1988).
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computing systems. Those systems, such as the pure set-theoretic counterparts of

Turing machines, haven’t gone anywhere. And if unificationists take this practice

seriously, which they presumably do, they must furnish a theory which accounts for

Turing machines in their pure set-theoretic guise too: adding a new kind entity ‘in

between’ physical systems and the level of pure mathematics doesn’t discharge that

task. For this reason it seems to me that Turing machine realism is a dead end, and

that we should explore other options.

2.6.2 The counterfactual account

Copeland (1996) explicitly disavows a causal-mechanical theory of computation in

light of the difficulties raised in the last section. He complains that causal-mechanical

theories are “intolerably narrow” because they don’t capture abstract Turing ma-

chine computations Copeland (1996, 353). Despite this, he maintains that causal-

mechanical accounts do capture something important about computation, namely

that later computational states counterfactually depend upon earlier states. This is

true even for Turing machines, for there certainly seems to be some sense in which a

Turing machine’s later states depend on its earlier states (plus tape contents).

One immediate question is how we should understand the notion of counterfactual

dependence Copeland has in mind. The suggestion seems to be that it is a gener-

alization of causal dependence. But whereas causal dependence relations holds only

between spatiotemporal particulars, such as physical events, counterfactual depen-

dence relations may hold between either spatiotemporal particulars on the one hand,

or between non-spatiotemporal particulars, such as the ‘events’ in a Turing machine

computation, on the other.
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Now, this doesn’t clear everything up. In what sense do Turing machine oper-

ations involve events, for instance? But Copeland thinks we can skirt these sorts

of questions. The target notion of counterfactual dependence is logically equivalent

to causal dependence, in the sense that both relations underwrite counterfactual as-

sertions about the behavior of computing systems. So, to determine whether the

target dependence relation obtains it is enough to determine whether a system satis-

fies certain ‘computational counterfactuals’. Thus, on this account whether a system

computes reduces to the question whether the system satisfies certain counterfactual

assertions about its behavior.

How does this avoid triviality? We already remarked that most of the physical

states appealed to by the triviality argument are not causally related; by similar

reasoning it is not hard to see that they will fail to support counterfactuals as well.

For example, recalling the construction from above, the following is plausibly false of

the physical object O:

1. If it were the case that O was in state AO, it would transition into state BO.

In which case O doesn’t compute, as desired. And to see that the proposal cor-

rectly captures mathematical computations, consider an abstract register machine M

with an instruction register whose contents contain a code for the next operation to

be performed. M operates by reading the contents of the instruction register and then

performing the encoded operation. The device is defined to be sensitive to contents

of the instruction register, so that differences in register contents make for differences

in the operations performed. Accordingly, M satisfies computational counterfactuals

of the form:
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2. If it were the case that at some time M ’s instruction register held such-and-such

instruction, M would perform so-and-so operation.

Thus the counterfactual proposal accommodates unificationism while avoiding

triviality.

But it seems to me that this proposal runs up against two difficulties. First,

Copeland’s own version succumbs to a revenge triviality argument. Standard trivial-

ity arguments can be tweaked to show that every sufficiently complex physical sys-

tem computes every computable function while satisfying appropriate computational

counterfactuals.21 So Copeland’s account fares no better than the simple structuralist

account from before.

It gets worse. There are reasons to be pessimistic that any other counterfac-

tual account will be forthcoming any time soon. The trouble is that an account of

computational counterfactuals general enough to apply to the operations of abstract

computing systems must also be an account of counterpossibles, and it is not at all

clear how to understand counterpossible assertions about the behavior of mathemat-

ical computing systems.

To illustrate, consider a Turing machine M described informally by the following

two instructions:

• If in state Q0 and reading a 1, write 0, move the read/write head to the right,

and go to state Q0.

21I develop one such argument in (Curtis-Trudel). In brief, the trouble is that Copeland supplies a
standard satisfaction-based semantics for his counterfactual conditionals. Absent further constraints
on satisfaction—and Copeland doesn’t supply any that even remotely do the trick—it’s not hard
to devise deviant physical models of these counterfactuals. Moreover, on reflection this isn’t even
all that surprising, since completeness guarantees the existence of models, and it’s not hard to
manipulate particular physical models in order to come up with arbitrarily many distinct physical
interpretations of the counterfactuals.
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• If in state Q1 and reading a 1, write 1, move the read/write head to the right,

and go to state Q1.

This machine erases a contiguous block of 1s and then halt. In line with the

counterfactual account, we presumably want M to satisfy counterfactuals such as

3. If M had been in state Q1 and read 1, it would write 1 and go into state Q1.

However, if we make the standard assumption that M starts in state Q0, there

is no possible sequence of state transitions which will take it into state Q1. So the

antecedent of (3) is impossible in a strong mathematical sense, making (3) not merely

counterfactual, but counterpossible.

This is fine as far as it goes, but how should we understand (3)? It seems inap-

propriate to endorse the view that all such counterpossibles are vacuously true, as is

sometimes suggested (Lewis, 1973; Williamson, 2007). This is because we presumably

wish to distinguish (3), which is intuitively true, from (4), which is intuitively false:

4. If M had been in state Q1 and read 1, it would write 0 and go into state Q1.

Yet we cannot capture the apparent truth of (3) and falsity of (4) in the usual

possible worlds semantics, for the familiar reason that there is no possible world in

which M is in state Q1.

Of course, the unificationist might make various maneuvers at this point. One is

to introduce impossible worlds to distinguish between (3) and (4) (Berto and Jago,

2019). Such moves are not unheard of, but it is no understatement to say that

impossible worlds are problematic and perplexing. It is far from clear whether a

counterfactual conception of computation can be worked out in such a framework.
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But I think it is enough for the present, burden-shifting argument, to notice that if

this is the road to non-triviality, then friends of unificationism have their work cut

out for them. One can be forgiven for exploring other routes.

2.6.3 The teleological account

Some versions of the mechanistic account hold that computing systems are not

just mechanisms, but mechanisms with teleological functions. While the causal-

mechanical aspects of this view sits poorly with unificationism, perhaps teleological

functions alone suffice to avoid triviality. According to the view explored next, pos-

session of certain teleological functions is necessary for computing and sufficient to

avoid triviality.22

One task is to specify the notion of teleological function at play. I will focus on

the account developed in (Piccinini, 2015, ch. 6), since it is apparently designed to

apply to both digital computers and Turing machines. A first-pass account is couched

in terms of objective goals, which include things such as survival and reproduction:

A teleological function is a stable contribution to an objective goal of
organisms by a trait or an artifact of the organisms.

But even if we can make sense of the thought that Turing machine operations

are a ‘trait’ or ‘artifact’ of an organism, it is frankly incredible to think that such

operations stably contribute to anyone’s survival and reproduction, even, I regret to

report, those of the professional computer scientist.

Perhaps recognizing this, Piccinini broadens the account to include ‘subjective

goals’ (Piccinini, 2015, 116). These include desires, among other things, so that

22An anonymous reviewer asks whether anyone nowadays would really endorse a teleological view
of mathematical computing systems. The short answer is apparently ‘yes’, for Piccinini appears to;
see (Piccinini, 2015, ch. 7) and the passages quoted earlier.
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something contributes to a subjective goal if it stably contributes to the satisfaction

some desire:

A teleological function (generalized) is a stable contribution to a goal
(objective or subjective) of organisms by either a trait or an artifact of
the organisms.

So while Turing machine operations might not stably contribute to computer sci-

entists’ survival and reproduction, it’s not completely unreasonable to think that they

might help to satisfy certain of their desires for example, their desires for knowledge

about computable sets, Turing degrees, and so on.

But it seems to me that this account faces a number of problems. One is that there

are not enough desires to go around. There are only finitely many actual desires, but

denumerably many Turing machines. If Turing machines compute only by virtue of

satisfying some actual desire, then there will be denumerably many Turing machines

which, whatever else they do, don’t compute. Surely a bad result!

We might try to get around this by appealing to the desires of possible agents, so

that a Turing machine computes if there is some possible agent some of whose desires

would be stably satisfied by that machine’s operations. Now the trouble is that

the suggestion overshoots. There are many possible agents — enough, let us grant,

that every Turing machine’s operations satisfy some possible agent’s desires. If stably

satisfying the desire of a possible agent is sufficient to have a teleological function, then

given the abundance of possible agents, any object can have a teleological function. In

particular, now paradigmatic non-computing systems such as rocks, walls, and pails

of water will have teleological functions in this generalized sense, which is just what

we want to avoid.
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The proper response to this worry, it seems to me, is to grant that generalized

teleological functions are in principle universally realizable, but nevertheless deny that

this poses a problem for a theory of physical computation in particular. A system

computes some mathematical function f only if computing f is one of its teleological

functions. As long as the conditions on having computing f as a teleological function

are stringent enough, an abundance of generalized teleological functions does not

threaten computational explanation. Triviality is avoided not because generalized

teleological functions are hard to come by, as it were, but because the particular

teleological function of computing f is.

But whether this maneuver succeeds turns crucially on just what it is to compute

f . A notion couched in terms of formal string manipulations plausibly applies to

Turing machines, but encounters a problem familiar from the structuralist account:

how do we determine which parts of a system are strings? There are many ways to

arbitrarily identify parts of a physical entity as strings, and it is straightforward to

reverse-engineer deviant interpretations according to which computes every function.

So we’re back to where we started. Moreover, we cannot impose causal-mechanical

constraints on string identification, for in this case we’re back to the problems encoun-

tered with the causal-mechanical account. So, absent some other account of what it

is to compute f , it seems the teleological account fares no better than the others.

2.6.4 The representational account

The last account I will consider holds that to compute is, at least in part, a matter

of having certain representational features.23 The version considered here takes this

23A number of philosophers have endorsed accounts of computational implementation which are
either partly or wholly representational; see (Rescorla, 2014b; Sprevak, 2010; Shagrir, 2020).

49



to involve representing entities in some external domain, such as a system’s distal

environment or a set of mathematical objects.

One point in favour of this account is that it is plausible to think that represen-

tational notions feature in the mathematical theory of computation (Rescorla, 2015).

Turing machines directly compute string-theoretic functions. Computation over non-

linguistic domains is characterized relative to a mapping from linguistic entities to

non-linguistic entities. When such a mapping is in place, it is natural to regard the

linguistic entities as representing the non-linguistic entities. In the case of computa-

tion over the naturals, for instance, strings of digits are taken to represent natural

numbers. However, the notion of representation that emerges from the mathematical

theory of computation is quite thin: all that is required for a Turing machine to rep-

resent is that there be an effective mapping from its language to some non-linguistic

domain (Shapiro, 1982). Such mappings are abundant; indeed, if the linguistic and

non-linguistic domains are denumerable, there will be denumerably many. But plainly

pancomputationalism is unavoidable if this is the notion of representation underwrit-

ing physical computation, for there are simply too many mappings from physical

systems and their states to external entities.

At this point we could cast about for a more stringent account of representation, so

that physical systems stand in determinate representational relations to comparably

few entities. A causal constraint is natural but unavailable for familiar reasons: a

causal notion of representation will not obviously apply to abstract Turing machines,

and at any rate there seems to be little sense in which a microprocessor’s states

stand in causal relations to abstract numbers. Similar points apply to other robust
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conceptions of representation too, whether they appeal to functional roles, teleological

functions, or whatever.24

A different option is to take representational notions as primitive (Burge, 2010;

Rescorla, 2013). From this perspective, we shouldn’t attempt to characterize repre-

sentational notions in non-representational terms. Rather, representational notions

earn their keep because they play an indispensable explanatory role in our scientific

theories. I’ll make just one remark about this strategy. If attributions of represen-

tational properties are warranted in virtue of the explanatory work they do, then

an immediate problem is that there appear to be physical computing systems, such

as simple embedded systems in ordinary appliances, whose behavior and character

can be exhaustively explained without appeal to representational notions (Rescorla,

2014b; Piccinini, 2008). If this is right, then by the primitivist’s lights we have no

reason to ascribe representational properties to them. But then it begins to look

very difficult to use representational notions to solve the unificationist’s woes, for we

re-encounter the problem that not every computing system can be brought under a

single (primitive representational) rubric. Once again, there seems to be no way to

hold on to both unificationism and a substantive theory of physical computation.

2.6.5 Summary

The counterfactual and representational accounts accommodate unificationism

but at the cost of triviality. The causal-mechanical and teleological accounts might

avoid triviality, but don’t accommodate unificationism. Perhaps the unificationist

24Note that I am not asking for a naturalization of representation, whatever that amounts to,
but a guarantee that representation is non-trivial. Such a guarantee might come on the heels of a
naturalistic account of representation, but then again it might not. The worry is that absent an
appeal to these other notions, no such guarantee is forthcoming. Naturalization is a separate issue.
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has another trick up their sleeve, but I think by now we’ve seen enough. It is doubt-

ful that a single theory can supply satisfactory answers to the status and identity

questions for both physical and mathematical machines. Unificationism has got to

go. Instead, we should be bifurcationists about computation.

2.7 Life after bifurcation

Given bifurcationism, how should we approach the status and identity questions

concerning physical computing systems? Note that bifurcationism per se does not

mandate Chalmers’ mathematics-first approach. Indeed, it is neutral between a few

different possibilities. One is the received, mathematics-first view. A second reverses

this order of things, and addresses the status and identity questions with respect to

mathematical computing systems in terms of prior answers to their physical coun-

terparts. We might call this the ‘mathematics-last’ view. A third possibility denies

that either pair of questions ought to be answered in terms of the other — this would

be ‘mathematics-never’. I’ll close with some brief reflections on these alternatives,

starting with the last, which seems to me the least promising of the three.25

2.7.1 Mathematics-never

On this approach neither the mathematical nor the physical theories of computa-

tion should be developed in terms of the other. In its strongest form, this approach

holds that these are simply two different theories, with different goals and theoretical

25Recall that these are, first and foremost, methodological proposals about how we should ad-
dress the status and identity questions. However, questions of methodological priority aren’t the
only ones we might ask when thinking about the relationships between physical and mathematical
computation. For instance, we might wonder whether one or the other is ‘basic’ or ‘fundamental’
than another, in any of a variety of senses, e.g., conceptually, metaphysically, or epistemologically.
I do not have space to investigate these alternatives here.
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concerns. Although probably no holds quite such a strong view, some philosophers

flirt with more attenuated versions of this approach. For instance, Shagrir rejects

what he calls the ‘logical dogma’, which holds that“there is a strong linkage between

the mathematical theories we find in logic and computer science ... and physical

computation” (Shagrir, 2022, 5).

However, It’s hard to see what can be said for this view. For one thing, it leaves

us no better off with respect to theories of physical computation than we were when

we started. Indeed, if anything, we’re in a worse position, for now we must craft such

a theory without the help of a prior mathematical theory. Although I do not have an

argument that no such theory is possible, it is an open question at this stage whether

one can be developed. Second, and perhaps more seriously, this proposal sits badly

with certain aspects of computational practice. Computer scientists do characterize

physical computing computing systems in broadly mathematical terms. It is hard to

see how a mathematics-never approach would capture this aspect of computational

practice.

2.7.2 Mathematics-last

According to a mathematics-last approach, questions about the status and identity

of mathematical computing systems ought to be addressed by appeal to a prior theory

of physical computation. Here we ‘apply’ the physical theory to the mathematics,

rather than the other way around.26

What could motivate such a view? Here’s one sketchy suggestion. As we know,

the task facing Church, Gödel, Turing, and others in the 1930’s was to give a pre-

cise mathematical statement of the intuitive idea of a worker proceeding effectively.

26For proposals in roughly this neighbourhood, see (Joslin, 2006) and (Cleland, 2001, 2002).
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Turing’s landmark characterization proceeded, in the first instance, by careful re-

flection on the abilities of actual human workers (Sieg, 2009). Historically, at least,

mathematical conceptions of computation emerged from reflection on computation in

actual physical systems. This suggests that in order to say what it would be for a

Turing machine to compute, we must already grasp some notion (however inchoate)

of a physical system computing. Thus, on the envisioned theory, we begin with a

notion of physical computation—e.g., of a human working effectively —and refine it

through a process of idealization and abstraction to arrive at a mathematical notion

of computation— e.g., of a Turing machine computation. Crucially, these mathemat-

ical objects count as computational only to the extent that they are idealizations or

abstractions of physical computing systems.

One advantage of this approach is that it does not obviously run into the Putnam-

Searle triviality worry, because our pre-theoretical conceptions of physical computa-

tion are plausibly non-trivial. Plainly not every physical system is a human work-

ing effectively, for instance. Because, on this approach, a mathematical theory of

computation is grounded in a prior physical theory, the question of ‘applying’ the

mathematics to the physical world does not arise. A fortiori, neither does the threat

of over-application.

However, it seems to me that this approach also faces a few substantial hur-

dles. For one thing, it runs into the two problems raised in connection with the

mathematics-never approach. A third concern is that some mathematical computing

systems do not bear a straightforward connection to any physical computing system.

If this is right, then there will be mathematical computing systems unaccounted for

by this approach. For instance, there are systems for which there is a well-worked
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out formalism but whose physical realizations have yet to be constructed. In some

cases, such as quantum computers (Nielsen and Chuang, 2010), this is because current

technology is not up to the task. In other cases it’s because the formalism requires

physically unrealizable operations. Infinitary Turing machines are perhaps the most

plausible example of this Hamkins and Lewis (2000); Copeland (2002). Again, while I

do not have an argument that some mathematics-last approach, suitably elaborated,

might account for such cases, it seems to me that the prospects for such an approach

are dim.

2.7.3 Mathematics-first

So we’re left with the mathematics-first approach. On this approach, we ad-

dress the status and identity questions by appeal to a prior mathematical theory of

computation. The central task of this approach is to delineate a relation of compu-

tational implementation or realization linking physical systems to abstract mathe-

matical computations. This approach has certain obvious advantages over the other

two bifurcationist proposals. As Chalmers is keen to note, we already have a well

defined mathematical notion of computation, and it is a natural starting point for

philosophical theorizing about physical computation. However, perhaps the most sig-

nificant obstacle for this approach is that it faces triviality worries of its own. Thus,

the next item on the agenda is to develop a response to triviality on behalf of the

implementationist. That is the primary task of the next chapter.

By way of closing, let me return to the title question. Why do we need a theory

of implementation? The short answer is: it’s the best we’ve got.
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Chapter 3: Computation in context

3.1 The state of play

In the last chapter I argued that unificationist theories of physical computation

should be rejected on the grounds that they succumb to a version of the triviality

problem identified by Putnam and Searle. I further argued that in light of this we

should be bifurcationists, and that in particular we should adopt the mathematics-

first implementationist approach advocated by Chalmers and others. However, this

may seem to be little progress, given that implementationist theories themselves run

up against Putnam and Searle’s argument. The task of this chapter is to develop a

response to their argument on behalf of the implementationist.

Putnam and Searle’s original argument targets the simple mapping account of

physical computation. On this account, recall, a physical system implements a com-

putation if the physical structure of the system ‘mirrors’ the formal, mathematical

structure of that computation. ‘Mirroring’ is typically cashed out in terms of a formal,

structural relationship such as isomorphism, so that we have:

The Simple Mapping Account

A physical system P implements a computation M if and only if:

1. There is grouping of states of P into state-types and a function f (a
‘realization’ or ‘implementation’ function) mapping state-types of P
to states of M , such that

56



2. Under f , the state transitions of P are isomorphic to the formal state
transitions of M ; i.e., whenever P is in state p1, where f(p1) = m1,
and m1 → m2 is a formal state transition, then P goes into state p2,
where f(p2) = m2.

Putnam and Searle’s argument has met fierce resistance, of course, and a variety of

defensive maneuvers have been deployed to blunt the force of their attack. Perhaps the

most popular maneuver is to beef up the simple mapping account by adding further

necessary conditions on implementation (Sprevak, 2019). Such an approach yields a

‘complex’ mapping account, as mentioned in chapter 1. No complex mapping account

enjoys widespread acceptance, however, and even the most plausible versions would,

if successful, vindicate the use of computational notions for a limited class of physical

systems only. For instance, one well-known response imposes a causal condition on

implementation in an effort to carve out a notion of computation appropriate for

theorizing about the mind (Chalmers, 1996, 2011). But, even if this response blocks

triviality for a restricted class of physical systems, it does not obviously resolve the

more general challenge. It is a local solution to a global problem.

This chapter takes a different approach to the Putnam-Searle challenge. Given

certain plausible assumptions about the nature of computational ascription, I argue

that the Putnam-Searle argument loses much of its force. These assumptions concern

both the relativity and context-sensitivity of computational ascription: specifically,

computational notions apply to a physical systems only relative to a contextually

determined way of regarding that system computationally — what I shall in this

chapter call a ‘labelling scheme’. But, relative to such particular labelling scheme,

there is little reason to think that computation is trivial. Or so I shall argue.
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Here is the plan of the chapter. Sections 2 and 3 reconstruct the Putnam-Searle

argument in some detail. Sections 4 and 5 develop the core of my response to their

argument. Section 6 elaborates on my response and situates it with respect to others

in the literature. Section 7 concludes.

3.2 Pancomputationalism

On my reconstruction, triviality arguments proceeds in two main steps. The first

establishes pancomputationalism — the claim that every physical system implements

every computational architecture. The second moves from pancomputationalism to

the claim that physical computation is trivial. I consider the pancomputationalist

step in this section, and the second step in the next.

Pancomputationalism is the claim that every physical system implements every

computation.27 It is straightforward to verify that the simple mapping account entails

pancomputationalism. For, according to the simple mapping account, a physical

system implements a computation if there is a one-to-one mapping from that system’s

components, states, or parts to the components, states, or parts of a computation,

such that, under that mapping the two are isomorphic. Thus, to show that the

simple mapping account entails pancomputationalism, it is enough to show that every

physical system is isomorphic with every computation. And this follows under a few

very modest additional assumptions.

27This is sometimes called ‘unlimited’ pancomputationalism (Piccinini, 2015, ch. 4). In practice,
triviality arguments typically aim at a weaker conclusion than this. For instance, Searle argues that
every ‘sufficiently complex’ system computes every program, while Putnam argues that every ‘ordi-
nary open system’ realizes every deterministic finite automaton. However, given the way triviality
arguments are typically deployed, the differences between these claims are negligible. For this reason
I will take the target of the pancomputationalist step of the argument to be the claim that every
physical system simultaneously implements every computation.
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3.2.1 Push-Through

The first is a basic mathematical technique for defining isomorphic copies of a

given structure. Although it goes by various names, it is known in model theory

as ‘Push-Through’ (Walsh and Button, 2018). Structures in the relevant sense are

set-theoretic objects comprising a domain of objects plus a suite of functions and

relations defined thereon. For simplicity, I’ll focus on the case where they contain a

single unary function each.

First, recall the definition of isomorphism. Let M = 〈M,TM〉 and P = 〈P, TP 〉

be structures, where TM : M → M and TP : P → P are unary functions. These

structures are isomorphic just in case there is a structure preserving bijection f : M →

P between them, so that for any m ∈ M , f(TM(m)) = TP (f(m)). For illustrative

purposes, we can think of these structures as a mathematical computation and a

physical system, respectively, where TM is a transition function on mathematical

states and TP a transition function on physical states.

Now, if a computation M = 〈M,TM〉 plus a set P of physical states are given,

Push-Through tells us how to define a new physical structure P = 〈P, TP 〉 isomorphic

with M. The only requirement for applying Push-Through is that P and M are

equinumerous. So suppose for the moment we have established that M and P are

equinumerous. Since two sets are equinumerous just in case there is a bijection

between them, let f : P → M be such a bijection. Given f , we define the physical

transition function TP on P as follows: say that TP (p1) = p2 just in case TM(f(p1)) =

f(p2). That is, the physical transition function is constructed by looking at the image

of TM in M under f . It is trivial to verify that the new structure P = 〈P, TP 〉 is

isomorphic with the given structure M.
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3.2.2 Equinumerosity

Thus, if we can show that the states of some mathematical computation are

equinumerous with the states of some physical system the physical states, by Push-

Through we can construct a physical state transition function which perfectly mirrors

the action of the formal state transition function TM . At this point we appeal to the

empirical assumption, not unreasonable, that physical systems have vastly many com-

ponents (e.g., microphysical states or parts). These components are the raw material

out of which a set of physical state types are defined. The force of this assumption is

to ensure that, no matter how many states a given mathematical computation has,

we will always be able to find a set of physical state types equinumerous with those

of a given computation.28

Of course, we must also ensure that the underlying physical states can be grouped

into state types. Here too different strategies are possible. Searle suggests that any

‘assignment’ of computational states to microphysical states by an observer implicitly

defines a physical state type. Alternatively, Putnam claims that any disjunction of

physical states constitutes a physical state type. Other approaches are possible.

However we proceed, what ultimately matters is that there is some mechanism for

defining state types out of microphysical states.

Thus pancomputationalism follows from the simple mapping account with only

basic model theory and a modest empirical assumption. Briefly: let P be any physical

28Searle makes this assumption directly. Putnam is more circumspect. He invokes two physical
principles, the principle of continuity and the principle of noncyclical behaviour, whose joint effect
ensures that, over any interval of time, any ordinary open physical system proceeds through con-
tinuously many particular physical states. More recently, Hemmo and Shenker (2019) have argued
that this assumption is justified on quite general statistical mechanical grounds. For this reason they
suggest that spancomputationalism is a theorem of statistical mechanics. Note additionally that we
needn’t assume that physical state types be defined out of microphysical states. What ultimately
matters is not that they are microphysical, but that there are enough of them.
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system and C be any computation. By the empirical assumption, P ’s components

(states, etc.) are equinumerous with those of C. By Push-Through, the two are

isomorphic. Hence, by the simple mapping account, P implements C. Pancomputa-

tionalism follows, since P and C were arbitrary.

3.3 From pancomputationalism to triviality

Putnam and Searle hold that pancomputationalism renders a theory of imple-

mentation ‘trivial’. Trivial in what sense? In my estimation, this charge is best

understood as a complaint about the theoretical status of the notion of computa-

tion, in that any account which entails pancomputationalism suffers from a variety of

distinct but related theoretical failures. These failures fall into roughly two camps,

concerning an account’s descriptive and explanatory ambitions, respectively. I’ll take

each in turn.

3.3.1 Descriptive Defects

The argument for pancomputationalism relies on extraordinarily weak empirical

assumptions. The only empirical facts cited in the argument are facts about number

of component states or parts of physical systems. The argument does not rely on

facts about the character of these states or parts, nor does it rely on facts about

their arrangement, interactions, or activities. Nor, for that matter, does it rely on

facts about the gross structure of physical reality, concerning things such as the

distribution of matter or which natural laws obtain. In light of this, it is perhaps

no surprise that any theory that entails pancomputationalism confronts a battery of

problems concerning its descriptive capabilities:
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• Lack of empirical content. The empirical demands required to establish pancom-

putationalism are very modest, concerning only the cardinalities of a system’s

components. Insofar as these demands would be met in almost every physically

possible situation, it would thus appear that theories of physical computation

lack empirical content almost entirely.

• No empirical discoveries. Concerns about empirical content are closely related

to the question whether we could empirically discover the computation imple-

mented by a system (cf. (Searle, 1992, 208)). While one might have thought

that a great deal of empirical investigation would be required to determine

whether a system computes, if pancomputationalism holds such questions are

answerable largely from the armchair, by reflecting on the size of the system in

question.

• Extensional inadequacy. Whereas the computational sciences ascribe compu-

tational properties to comparably few physical systems — chiefly engineered

devices and cognitive systems — pancomputationalism entails that these no-

tions apply to every physical system. Thus while the account correctly classifies

paradigmatic cases, it incorrectly classifies anti-paradigms more or less across

the board.

• Widespread predictive failure. Knowledge about what a system implements

ought to be predictively useful. Knowledge that a robot implements this pathfind-

ing algorithm would presumably allow one to predict that it will take that path

through an obstacle course. Yet it is hard to see how such knowledge can help
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one predict anything, if the robot implements everything. For the robot simul-

taneously implements a wide variety of different pathfinding algorithms, some

of which may find quite different paths through the course. It is thus hard to

see what would justify the prediction that the robot will take one path instead

of another.

• Unwarranted retrodictive success. While one might have thought that retrodic-

tion of past pathfinding behavior is the sort of thing that we could in principle

get wrong, under pancomputationalism our retrodictions can’t help but be true.

This is because, no matter what path the robot in fact takes, there will be some

pathfinding algorithm it implements under which it would have taken that path.

3.3.2 Explanatory Failures

A second and perhaps more serious concern is that pancomputationalism drains

theories of implementation of their explanatory power. Here is how Mark Sprevak

describes the problem with respect to explanation in cognitive science:

Cognitive science explains particular aspects of behavior and mental pro-
cessing (behavioral or psychological “effects”) by appeal to the brain
implementing specific computations. Specific effects occur because the
brain implements one computation rather than another. This explanatory
methodology is threatened by the triviality results. If implementation is
trivial, then no distinctive computations are implemented by the brain.
The brain, like almost every other physical system, implements almost
every computation. Explaining psychological effects by appeal to distinc-
tive computations cannot work because there are no distinctive physical
computations. (Sprevak, 2019, 186)

While I am in broad agreement with Sprevak’s diagnosis, it can be refined by

more sharply distinguishing two distinct explanatory scenarios. Both highlight the
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contrastive character of computational explanation. In intersystemic scenarios, com-

putations explain differences between different systems or system kinds. For instance,

the fact that the visual system computes depth from binocular disparity partly ex-

plains why healthy individuals exhibit competent grasping behavior while those with

various cortical injuries — not to mention manifestly non-cognitive systems such as

rocks, walls, and pails of water — do not. In intrasystemic scenarios, computations

explain contrasts between the actual and merely possible properties or behavior of

a single system or system kind. Here we might explain why a robot takes one path

through a maze (rather than another) because it implements this path-finding algo-

rithm (rather than that one).

Successful explanation in either case presupposes a contrast (Hitchcock, 2013).

The fact that healthy visual systems compute some depth-extraction function explains

differences in grasping behavior or perceptual capacities only if those same depth-

extraction computations are not also implemented by injured visual systems (or rocks,

walls, etc.). Similarly, the fact that the robot implements some pathfinding algorithm

explains why it takes a certain path only if it doesn’t also implement another algorithm

which charts a different path. The trouble is that under pancomputationalism no

such contrasts obtain. Rocks and injured visual systems implement exactly the same

computations as healthy visual systems, and the robot implements every pathfinding

algorithm no matter what path it in fact takes. Pancomputationalism thus violates

certain plausible necessary conditions on successful contrastive explanation.

These failures in contrast illustrate a more fundamental problem raised by pan-

computationalism. Whatever else they might involve, scientific explanations answer
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“what if things had been different?” questions (see, e.g., (Woodward, 2003)).29 In the

computational case in particular, such questions ask how the properties or behavior of

physical systems would be different, if those systems had been different computation-

ally. Yet under pancomputationalism there is no clear sense in which things might

have been different computationally, for in every possible world even remotely similar

to ours every physical system implements everything. Under pancomputationalism,

it thus appears that the computations implemented by physical systems are utterly

irrelevant to the explanation of their properties and behavior, for those computations

do not appear to make a difference to anything at all.

3.3.3 Panpsychism

Worries about pancomputationalism ramify under certain computationalist views

in the philosophy of mind. Although many such views are possible, David Chalmers’

‘computational sufficiency thesis’ is representative of the genre. This view holds that

implementing certain computations is sufficient for possessing a mind and certain

mental properties (Chalmers, 2011). Clearly, given pancomputationalism, the compu-

tational sufficiency thesis entails panpsychism. Thus to the extent that panpsychism

is itself objectionable, some philosophers find pancomputationalism objectionable as

well (Schweizer, 2019a; Sprevak, 2019).

But I mention this concern only to set it aside. Triviality arguments cannot be

resolved merely by rejecting the computational sufficiency thesis.30 Indeed, one can

29In saying this, I do not mean to endorse any particular view of scientific explanation. The
failures discussed here plausibly arise on all the major theories of scientific explanation, albeit in
subtly different ways.

30This is the tactic pursued in (Schweizer, 2019b).
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think that computation plays an important theoretical role in science, including cog-

nitive science, even if one rejects the strong link between computation and cognition

expressed by the computational sufficiency thesis. As long as computation is expected

to play some descriptive or explanatory role in cognitive science, pancomputational-

ism threatens its ability to play this role.

3.3.4 Taking stock

While I do not claim to have identified all of the problems that might be raised

by pancomputationalism, the failures outlined above are arguably the most serious.

In light of this, I will take the principle task in responding to triviality arguments to

be to meet the following two adequacy criteria:

1. The response should ameliorate all or at any rate most of the foregoing descrip-

tive defects.

2. The response should vindicate computational explanation in both intersystemic

and intrasystemic scenarios.

The task of the next two sections is to develop a response that fits this bill.

3.4 Implementation and the applicability of mathematics

My response has two parts. I develop the first part in this section and the second

part in the next. Here I point out that when a system implements a computation, it

does so relative to a specific assignment of mathematical states or values to physical

components. I will call such an assignment a ‘labelling scheme’. I argue that, relative

to a specific labelling scheme, physical systems typically implement just a single

computation.
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3.4.1 The relativity of applications

My starting point is the observation that ascribing computations to physical sys-

tems is an instance of the more general practice of applying mathematics to physical

systems. Important for my purposes is a particular, widely-noted aspect of this more

general practice: that physical systems do not wear their mathematical characteris-

tics on their sleeves. Regarded one way, a physical system has a certain mathematical

character or structure; regarded a different way, it has another. Perhaps the most

well-known example of this involves the application of finite cardinal numbers. Here

is Frege in the Grundlagen:

If I give someone a stone with the words: Find the weight of this, I have
given him precisely the object he is to investigate. But if I place a pile
of playing cards in his hands with the words: Find the Number of these,
this does not tell him whether I wish to know the number of cards, or
of complete packs of cards, or even say of points in the game of skat ...
Number, cannot be said to belong to the pile of playing cards in its own
right, but at most to belong to it in view of the way in which we have
chosen to regard it ... What we choose to call a complete pack is obviously
an arbitrary decision, in which the pile of playing cards has no say. (Frege,
1884, section 21)

Frege observes that different 1ways of regarding’ one and the same hunk of phys-

ical stuff yield different counts. That is, finite cardinals apply to physical stuff only

under a (sortal) concept, which individuate undifferentiated physical matter into ob-

jects. Relative to the concept card this stuff is fifty-two; relative to deck, it is one.

Physical matter does not wear its cardinality on its sleeve.

Poincaré makes a similar observation with respect to physical geometry:

All the geometries I considered had thus a common basis, that tridimen-
sional continuum which was the same for all and which differentiated itself
only by the figures one drew in it or when one aspired to measure it ...
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In this continuum, primitively amorphous, we may imagine a network of
lines and surfaces, we may then convene to regard the meshes of this net
as equal to one another, and it is only after this convention that this con-
tinuum, become measurable, becomes Euclidean or non-Euclidean space.
From this amorphous continuum can therefore arise indifferently one or
the other of the two spaces, just as on a blank sheet of paper may be
traced indifferently a straight or a circle. (Poincaré, 2015, 235)

Crudely, Poincaré is pointing out that application of geometric notions to physical

space depends on a choice of metric. Relative to one metric, space has Euclidean

structure; relative to others, non-Euclidean structure. Different ways of regarding

the primitive amorphous continuum of space yield different physical geometries.

Frege and Poincaré use their observations to motivate specific views in the philoso-

phies of mathematics and science: Frege argues that number belongs to (Fregean)

concepts, not physical objects, while Poincare advocates for a conventionalist view of

the geometry of physical space. I take no stand on these further issues here. These

conclusions follow only under certain additional assumptions over and above the ob-

servation that physical systems do not wear their mathematical characteristics on

their sleeves.

The point I wish to emphasize is simpler, and more fundamental. As Frege puts

it, mathematical notions apply to physical systems relative to a way of regarding the

system in question. While a certain interpretation of this expression would suggest

that the mathematical features of physical systems depend on agents who regard

those systems in certain ways, I wish to distance myself from any such interpretation

here. Ways of regarding a physical system mathematically (concepts in the case of

arithmetic, metrics in the case of geometry) can be understood as functions assigning

mathematical entities or values to physical components (entities, states, properties,
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magnitudes, etc.).31 On this approach, whether a physical system has some mathe-

matical feature thus depends on the existence of a mapping from certain components

of that system to some mathematical structure. Thus the first step in my response

is the observation that mathematics applies to physical systems relative to specific

assignments of mathematical entities to physical components.

3.4.2 Labelling schemes

Insofar as the application of computational notions is an instance of the more

general practice of applying mathematics, we should expect analogous remarks to

hold in the computational case too. Perhaps the simplest illustration of the claim

that physical systems do not wear their computational characteristics on their sleeves

concerns a single digital circuit. The circuit transforms input voltages into output

voltages according to a certain pattern. Perhaps it outputs 2V just in case both

input voltages are 2V, otherwise it outputs 0V. If we interpret the 2V state as logical

1 and the 0V state as logical 0, the gate computes logical AND; under the reverse

assignment, it computes logical OR.32 Viewed one way, the circuit is an AND gate,

while viewed another, it is an OR gate. (Under more recondite interpretations, it

presumably computes other logical functions, too.)

In light of this, it would appear that the computational features of physical sys-

tems are determined relative to specific ways of regarding systems computationally.

Following Copeland (1996) I will refer to these ways as labelling schemes. In the case

31This way of understanding the applicability of mathematics traces back at least to Quine (1960);
see Pincock (2011, ch. 2) for a recent statement. Even philosophers otherwise hostile to mapping
accounts of the applicability of mathematics, such as Batterman (2010) and Bueno and Colyvan
(2011), recognize that mappings play an important role in applications.

32See (Shagrir, 2001; Piccinini, 2008; Sprevak, 2010) for discussion of such cases.
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just considered, there are two schemes. The AND-scheme assigns logical 1 to the 2V

state and logical 0 to the 0V state, while the OR-scheme assigns 0 to 2V and 1 to

0V. Of course, there may be others as well. As in the general mathematical case, I

will take labelling schemes to be functions from physical components (entities, states,

properties, events etc.) to mathematical states or values. Thus when a physical

system implements a computation, it does so relative to a specific labelling scheme.33

In light of this relativity, we should thus construe implementation, not as a two

place relation between a physical system and a computation, but rather as a three-

place relation between a physical system, computation, and labelling scheme:

The Simple Mapping Account (three-place)

A physical system P implements a computation M relative to a labelling
scheme f if and only if:

1. f maps state-types of P to states of M , such that

2. Under f , the state transitions of P are isomorphic to the formal state
transitions of M ; i.e., whenever P is in state p1, where f(p1) = m1,
and m1 → m2 is a formal state transition, then P goes into state p2,
where f(p2) = m2.

In principle there are as many labelling schemes as there are functions from phys-

ical components to states of computations. This in turn depends on the abundance

of physical components, where these are understood broadly to include objects and

their parts, properties, relations, and states. Although many views on this mark are

possible — from very liberal views which countenance a wide array of physical com-

ponents, to quite sparse parts which do not — I take it that whatever one’s views of

physical reality, it will turn out that vastly many labelling schemes apply to even a

single physical system.

33See Blackmon (2013) for a related thought.
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Insofar as labelling schemes are functions from physical systems to mathematical

structures, a scheme is well-defined only if, under that scheme, a system implements

a single computation. While I do not deny that it is in principle possible to define

‘schemes’ that fail to discriminate between two or more computations, we can safely

ignore such possibilities here. This is because the Putnam-Searle argument does not

rely on ‘schemes’ that underdetermine the computation implemented by a system.

To see this, consider Putnam’s (1987, Appendix) example of a rock that implements

every deterministic finite automaton. Relative to one scheme, the rock implements a

three-state automaton: ABA. Relative to another scheme, it implements a five-state

automaton: ABABA. And so on for the rest of the automata implemented by the

rock: each is implemented relative to a different labelling scheme.

Putnam’s point is not that a single labelling scheme underdetermines the compu-

tation implemented by a system. His point, rather, is that many different schemes

apply simultaneously, and that there are no grounds for preferring any one of them to

any other when describing a system computationally. I will return to Putnam’s pes-

simism about singling about a scheme below. For now, I wish to emphasize that, even

if for every finite automaton there is some scheme relative to which the rock imple-

ments it, there is no single scheme relative to which it implements them all. Relative

to a specific labelling scheme, the rock implements just a single finite automaton.

That is, relative to a specific labelling scheme, pancomputationalism fails.

Thus if there were grounds for ascribing a computation to a physical system in

terms of a specific labelling scheme, we would arguably be in a better position to

address triviality worries. For, relative to that scheme, the system would implement

just a single computation, in which case it would not be unreasonable to expect
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that we could frame substantive, non-trivial hypotheses about the descriptive and

explanatory adequacy of that computation. We would thus be in a position to meet

the two adequacy criteria introduced above. Of course, this observation helps only if

such grounds are forthcoming. Happily, as I shall suggest in the next section, such

grounds are near at hand.

3.5 Computational ascription is context-sensitive

When computational scientists ask whether a system implements a given com-

putation, they do so in a particular investigative context. That context determines,

more or less explicitly, a labelling scheme relative to which they address questions

about the computational features of a physical system. They wish to know, given

this way of regarding a system computationally, what it computes. Relative to other

schemes, the system will undoubtedly implement other computations. But to the

extent that such implementations rely on labelling schemes irrelevant in that spe-

cific investigative context, they are irrelevant to questions about the computational

characteristics of the system in that context.

In this respect, applying computational notions once again mirrors the more gen-

eral practice of applying mathematics. By way of illustration, consider the numerical

case. We cite finite cardinals to address numerosity questions of the form “how many

F s are there?”. Such questions are raised in particular investigative contexts, which

fix the relevant sortal F . It is of course true that, had we employed a different concept

in that context, we may have arrived at a different count. But as long as a given count

is produced by the contextually salient concept, it is hard to see how the existence

of different counts, generated by different concepts, trivializes anything. The reason
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is straightforward: in that context, those alternative counts answer questions that

weren’t being asked.

In light of these remarks I can sketch, in rough outline, a response to the Putnam-

Searle argument. First, computational ascription does not occur in a vacuum. Rather,

it occurs in a specific investigative context. This context, I suggest, fixes a specific,

contextually salient labelling scheme — or at least a narrowly circumscribed set of

such schemes. But, as I argued in the previous section, relative to a specific labelling

scheme a system typically implements just a single computation. Hence, relative to

a contextually salient labelling scheme, we are arguably in a position to offer sub-

stantive, non-trivial computational descriptions and explanations of physical systems.

Put computational ascription in its proper context, and triviality disappears.

However, this sketch leaves two issues unresolved. First: what makes a labelling

scheme salient for computational description and explanation in any given case? Sec-

ond: given a specification of these features, to what extent are the descriptive and

explanatory adequacy criteria encountered in section 3 satisfied? I address these

questions in the remainder of this section.

3.5.1 What makes a labelling scheme salient?

The bad news is that I somewhat doubt that there is an illuminating general

story to be told here, because I somewhat doubt that there is an illuminating general

story to be told about the sorts of theoretical goals and interests that drive inquiry in

the computational sciences. Of course, computational inquiry is guided by theoreti-

cal ideals found throughout science (simplicity, predictive accuracy, explanatoriness,

etc.). In light of this, computational scientists will presumably place a premium on
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labelling schemes that lead to theories that exemplify familiar scientific ideals. But to

say this is not to say very much. The relevant scheme depends on the task at hand,

and the tasks of computational science are many and diffuse. I am pessimistic that

there are many substantive features common to successful labelling schemes in every

computational context.

The good news is that matters are more promising once we attend to more specific

theoretical projects. Here it is instructive to treat artificial and natural computing

systems separately. For an artificial system, such as a microprocessor, the salient

scheme will presumably be determined by the manufacturer or electrical engineers

who designed it. In contemporary devices voltages in certain circumscribed ranges

are assigned certain logical values. It is standard to assign logical 0 to the low or

‘ground’ range, and logical 1 to the high range.34 This convention is not inevitable, of

course. Early computers such as the Atanasoff-Berry computer employed the reverse

assignment (Burks and Burks, 1988). Here, as elsewhere in science, it is reasonable

to defer to expert practitioners, so that the computational features of an artificial

ought, all else equal, to be identified by whatever labelling scheme is employed by its

designers.35

Matters are more complicated for natural computing systems, for here it is often

an open empirical question just which scheme is appropriate for theorizing about

some system. In practice, there may be a range of incompatible schemes consistent

with the available data. Nevertheless, even if it is an open empirical question which

scheme is most appropriate for some system, it is not the case that any scheme is as

34This oversimplifies somewhat. For details see (Harris and Harris, 2013, 22-6).

35I do not deny that all else might not be equal, in which case there may be grounds for departing
from the designer’s scheme. This might be warranted if a device systematically behaves in unexpected
ways, or if we attempt to repurpose it to perform some new computational task.
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good as any other. Acceptable schemes must account for available behavioral data as

well as known structural and functional features of the system under consideration.

For instance, even if we cannot yet determine which of a variety of schemes is most

appropriate for computations in the visual system, any such scheme will presumably

be ‘neurobiologically plausible’, in the sense that it must cohere with knowledge about

the structure and function of various components of the visual system. Gruesome

schemes that join arbitrary neuron parts, for instance, aren’t even on the radar.

The importance of behavioral data deserves special mention. Computations are

cited (often if not exclusively) in order to explain some behavioral phenomenon.

Absent such a phenomenon, it is unclear what grounds there would be for ascribing

any computations to a system. This is not to say that we cannot do so. But it is

to say that such ascriptions must be motivated on other grounds. Putnam’s rock

exhibits no behavior which might reasonably be explained in computational terms.

While Putnam is surely correct that we can ascribe all manner of computations to the

rock, it is hard to see what theoretical interest there would be in doing so. Moreover,

even if we can devise some reason for ascribing computations to the rock, that does

not obviously threaten well-motivated computational ascriptions elsewhere.36

In general, which physical features are relevant in a given case will depend on

both the phenomena of interest, as well as our own explanatory goals in describing

systems computationally. Thus whether a scheme is relevant will typically be an

empirical question. Elaboration on this point would benefit from detailed case studies

which go beyond typical pronouncements about causal-mechanical, representational,

etc. features of computational systems. What particular schemes are employed in

36Egan (2012) makes a similar point.
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computer and cognitive science? What sorts of features do practitioners focus on

when applying computational notions? What is it about these features that makes

for successful science? I do not have the space to pursue these questions here, and

for now they must remain on the agenda for future work.37

3.5.2 Meeting the adequacy criteria

The adequacy criteria introduced in section 3 concern both the descriptive and

explanatory power of computational implementation. Although the question whether

a particular labelling scheme meets these criteria is ultimately an empirical question,

I will suggest that in general, relative to a specific labelling scheme, we are well

positioned to offer both descriptively and explanatorily satisfactory computational

descriptions of physical systems.

Descriptive criteria

• Lack of empirical content. Relative to a fixed labelling scheme, it is an empirical

question whether a given system implements a computation, relative to that

scheme. Consider the AND-scheme considered earlier. This scheme mapped

voltage levels to logical values. We can thus determine empirically whether a

given physical system implements an AND-gate, by determining whether it has

the right physical properties and transforms them in the right way.

37I return to this thought briefly in section 6. One might worry that this approach will simply
enumerate different applications without illuminating computational practice.We will be left simply
with a motly, unruly collection of ad hoc applications. I think this is a reasonable concern, but it
would be premature to press the worry at this stage. Ultimately, whether such principles exist is an
empirical question, to be determined by detailed investigation of computational practice.
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• No empirical discoveries. Similarly, relative to a fixed scheme we may well

discover that a physical system implements one computation rather than an-

other, or indeed no computation at all. While this criterion is less important

for artificial computing systems, it is more important for natural systems. For

instance, relative to the AND-scheme, by examining how a configuration of

neurons transforms voltage levels we may discover that they compute logical

AND.

• Extensional inadequacy. Questions about extensional adequacy should be as-

sessed relative to the sorts of schemes that feature prominently in the compu-

tational sciences. For instance, if contemporary hardware engineers typically

label states according to specific electromagnetic properties, it would turn out

that very few systems compute in the sense relevant for inquiry into designed

computing systems. Once we focus attention on the schemes that feature in

computational practice, there is little reason to expect widespread extensional

inadequacy.

• Widespread predictive failure. Relative to a specific scheme, a robot will im-

plement a specific pathfinding algorithm, hence will choose a determinate path

through the obstacle course. We can thus make substantive predictions about

the robots behavior, at least some of which may succeed.

• Unwarranted retrodictive success. Similarly, given the path actually taken,

once we fix upon a particular scheme there is a genuine question whether the
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pathfinding computation implemented relative to that scheme could have pro-

duced that path. Under the salient scheme, we can make substantive retrodic-

tions about the robot’s past pathfinding behavior, at least some of which may

fail.

Explanatory Criteria

Recall that the explanatory failures revolved around the contrastive character

of computational explanation. We must account for two explanatory scenarios in

particular: in the intersystemic scenario, we explain differences between systems or

system kinds in terms of a computation implemented by one but not the other, while

in the intrasystemic scenario, we explain differences in the behavior or properties of

a single system or system kind in terms of a specific computation it implements.

The overall point is that there can be genuine computational contrasts relative

to a fixed labelling scheme. Start with the intrasystemic case. Relative to a specific

labelling scheme, there is a fact of the matter about what computation a system

implements. We can thus advert to that specific computation to explain the properties

and behavior of that system. For instance, we can explain that the robot takes

this path because it implements that pathfinding algorithm, relative to a scheme

appropriate for explaining how the robot moves about its environment.

With respect to the intersystemic case, the point to notice is that schemes ap-

propriate for explaining one kind of system will typically not apply to other kinds of

system. A scheme appropriate for explaining computations in healthy visual systems

will presumably rely on the specific features of visual systems: the specific voltages

employed by neurons in the visual system, spike rates, their organization, and so on.
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Not all of these features will be displayed in injured visual systems, which presum-

ably differ in certain of these respects from healthy systems. Moreover, relative to a

scheme appropriate for healthy visual systems, it is highly unlikely that manifestly

non-cognitive systems such as rocks, walls, or pails of water implement anything,

much less a complex depth-from-disparity computation. The reason is straightfor-

ward: these systems lack the kinds of features relevant for computational ascription

in the visual system.

Of course, rocks presumably implement these computations somehow, relative to

some (perhaps highly gerrymandered) labelling schemes. A degree of pancompu-

tationalism is, in this sense, unavoidable. But, from the point of view of cognitive

neuroscience, these schemes are utterly inappropriate for explaining physical systems.

Cognitive neuroscience countenances schemes relevant for explaining the kinds of sys-

tems it investigates, namely brains. Claims about computations in, say, the visual

system, must be assessed relative to such schemes. Insofar as rock-computations rely

on schemes utterly appropriate for describing brains, there is little reason to think

that pancomputationalism threatens the use of computational notions in cognitive

neuroscience.

This point is general. For nearly every computation there is some (perhaps grue-

some) scheme relative to which a physical system will implement it. I am happy to

concede that a context-insensitive account of computation is trivial. But, in most

scientific contexts, these computations will rely on schemes that are explanatorily

irrelevant. Relative to a specific, contextually determined labelling scheme, applica-

tions of computational notions are as non-trivial as one could reasonably want.
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3.6 Elaborations

This completes the main task of the chapter. In the space remaining, I will clarify

my position and draw out its relationship to others in the literature.

3.6.1 No special problem for computation

Some readers may be unsatisfied with my response, on the grounds that it is

little more than a promissory note. Have I really given us reason to think that

computation will be non-trivial, at least in the most important scientific contexts?

More worryingly, insofar as I have declined to offer a theory of what makes a given

labelling scheme relevant in a given context, how can we be sure that my response

doesn’t simply relocate triviality problems at the level of a contextually determined

labelling scheme?

I have a few responses to this worry. On the one hand, it is true that I have

not attempted to show that computation is not trivial in every theoretical context.

This is because, on my view, whether computation is trivial in a specific theoretical

context is ultimately an empirical question. For this reason I allow that in some

contexts computation might turn out to be trivial. But rather than undermine our

confidence in computation wholesale, this would constitute a philosophically impor-

tant discovery, for it would further illuminate which kinds of physical phenomena are

fruitfully understood in computational terms and which ones are not.

Nevertheless, there is little reason to think that computation will be non-trivial

in most scientific contexts. When applying mathematics to physical systems, there

are two kinds of case to consider (Steiner, 1998). In one kind of case there is no

non-mathematical description of the target system available. In the other kind, there
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is. The former sort of case raises a variety of deep, difficult questions about how

mathematical descriptions get a toehold on the world. This sort of case arises fre-

quently in cases of measurement, especially of fundamental magnitudes (Chang, 2007;

Van Fraassen, 2008). In the latter sort of case, we can appeal to these pre-existing

descriptions when applying new mathematical structures to the target system.

The application of computational notions often resembles the second sort of case

more closely than the first.38 Artificial computing systems are designed in light of

detailed scientific knowledge of the materials out of which they are built. And enough

is known about basic brain structure and function that computational ascription is

fairly tightly constrained in the cognitive case as well. Thus with respect to the

applications of computational notions most directly targeted by triviality worries,

there will typically be a large stock of prior non-computational descriptions (some

mathematical but non-computational, some non-mathematical) on which we can rely

when applying computational notions in particular.

What about the worry that my response simply relocates the problem? In reply, I

would point out that my response doesn’t relocate triviality worries; rather, it reduces

them to a more familiar general issue. Recall that the original worry was supposed

to pose a special problem for computational implementation. Computational de-

scriptions were supposed to be unlike other kinds of descriptions (physical, chemical,

biological, etc.) description in that the former but not the latter applied to physical

systems indiscriminately. However, the question now before us is just the question of

38Often but not always. Views on which physical reality is fundamentally computational arguably
fall under the first case. For discussion of such views see (Piccinini, 2015, ch. 4) and (Piccinini and
Anderson, 2018).
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determining when a given scientific description is descriptively or explanatorily ade-

quate, where the instance in question concerns specifically computational descriptions

of physical systems. To be sure, a problem is no less problematic for being general

(or familiar). But to the extent that progress has been made on the more general

issue, there is little reason for pessimism about the computational case in particular.

3.6.2 Observer-relativity

While I have focused on the descriptive and explanatory challenges raised by

pancomputationalism, one might think that the deeper threat raised by Putnam and

Searle is not that computation is trivial, but that it is observer-relative — ‘a matter of

free interpretation’, to use Piccinini’s phrase. For if every computational description

applies to every physical system, it would seem that there can only be pragmatic,

instrumental reasons for working with one description rather than another. Insofar as

my account gives pride of place to specific investigative contexts, doesn’t my account

capitulate this deeper point?

This worry derives some of its force from the suspicion that observer-relative no-

tions are unsuitable for serious scientific or philosophical work (see, e.g., (Searle, 1992,

211-2)). Maybe that’s right, maybe not. Ultimately, I think it’s a red herring, because

my response does not commit me to an observer-relative conception of computation.

By the same token, however, neither does it commit me to an observer-independent

conception. Indeed, as I will suggest next, the issue of observer-relativity is ultimately

orthogonal to the triviality issue. This point is not always appreciated, so I will take

a moment to work through it.
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Here is a typical statement of the view that computation is observer-relative:39

Computation is not an ‘intrinsic’ property of physical systems, in the
sense that (a) it is founded on an observer-dependent act of ascription,
upon an entirely conventional correlation between physical structure and
abstract formalism ... there is no deep or metaphysically grounded fact
regarding whether or not a physical system ‘really’ implements a given
computational formalism. (Schweizer, 2019b, 31)

If this is what is meant, then my account is not committed to the claim that

computation is observer-relative. On my view, physical systems implement compu-

tations relative to labelling schemes. But whether a given labelling scheme applies

to a physical system does not necessarily depend on whether anyone ascribes that

scheme to that system. Rather, it depends only on the features of the system un-

der consideration. Labelling schemes are simply functions from physical components

(states, parts, properties, etc.) to mathematical entities. Such functions quite plau-

sibly exist whether or not anyone ascribes them to anything. Neither they nor the

computational descriptions they sanction depend for their existence or satisfaction

on observer-dependent acts of ascription.40

Moreover, relative to a specific labelling scheme it would appear that there can be

‘metaphysically grounded’ facts about what computation a system implements. Rel-

ative to neurobiologically plausible labelling schemes, the details of which we are only

beginning to understand, certain properties and behaviors of the visual system can

be described and explained computationally. It is moreover an observer-independent

39Schweizer uses ‘observer-dependent’ rather than ‘observer-relative’. See also (Searle, 1992;
Matthews and Dresner, 2017; Szangolies, 2020; Fletcher, 2018).

40Of course, one could think that functions depend for their existence on observer-relative acts
of ascription. Such a proposal bears obvious affinities to certain intuitionist programmes in the
philosophy of mathematics, for more on which see, e.g., (Iemhoff, 2020). While nothing I’ve said
precludes developing a theory of computational implementation along these lines, it should be clear
that my response is not committed to such an approach.
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fact about the visual system that it implements certain computations relative to such

schemes. Insofar as the computations in question satisfy standard scientific adequacy

criteria — are predictively useful, explanatorily fruitful, etc. — there are strong

grounds for thinking that the visual system objectively realizes the computational

features ascribed to it.

The view that computation is observer-relative is sometimes motivated by the

thought that the only reasons we have for preferring one labelling scheme over another

derive from facts about our cognitive capacities:

the crucial requirement [on computational implementation] ... is that of
supporting and enabling ... surrogative reasoning and conceptualization
... And this is precisely where the imagined computational implemen-
tations proposed by Putnam and Searle fail ... We can neither reason
nor conceptualize surrogatively with either. This failure manifests itself
in the shortcomings diagnosed in the Putnam/Searle constructions by
extant rebuttals to their challenge: These constructions do not support
counterfactuals, for example, nor do they rely on groupings of physical
states that arise in a natural way from extant physical theory. However,
according to the picture presented here these shortcomings are manifesta-
tions of the more basic failure, i.e. lack of surrogativity. (Matthews and
Dresner, 2017, 852, emphasis mine)

Here the suggestion appears to be that whether or not a labelling scheme is rel-

evant in a given theoretical context is ultimately explained, not by the fact that it

captures some objective feature of a physical system, but instead by the fact that

it supports practical surrogativity. However, nothing I’ve said commits me to the

claim that practical surrogativity (whatever that amounts to) is the only or even

the most fundamental criteria for determining whether a labelling scheme is relevant.

Computational ascription is guided by a variety of considerations, not all of which

are pragmatic. For instance, one plausible adequacy condition is that computational

ascriptions be true. Yet pragmatically useful theories may be false and true theories
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may be practically useless. Practical surrogativity, suitably understood, may be an

important theoretical goal, but it is one goal among many.

To be sure, there is an utterly uncontroversial sense in which my account relies

on pragmatic, observer-relative considerations. Which scheme is used in a given

investigative context very obviously depends on the theoretical goals and interests of

the researchers in that context. Indeed, how could it not? A scheme that fails to be

practically useful, for instance by failing to yield useful predictions about a system,

is unlikely to play a role in computational practice. But dependence on practical

considerations in this sense is found throughout science. On its own, it warrants no

strong conclusions about the ‘observer-relativity’ of computation per se.

It is instructive to consider other applications of mathematics in connection with

this point. For instance, relative to the concept deck, it is an objective fact that

there are (say) exactly fifty-two cards on the table. It is also an objective fact that

there is one deck on the table. These facts are true simultaneously. But the fact

that we must use one concept or another when counting does not entail that number

is observer-relative. By the same token, the fact that we must use one labelling

scheme or another when ascribing computations does not entail that computation is

observer-relative.41

3.6.3 An ecumenical approach

So far I have largely avoided discussing specific theories of implementation, be-

cause I think that offering such a theory is unnecessary to defuse the Putnam-Searle

41Of course, some philosophers have concluded on nearby grounds that number is observer-relative;
recall Berkeley’s argument that number is a ‘creature of the mind’ (Berkeley, 1999, PHK 12). How-
ever, as Frege (1884, sec. 26) points out, Berkeley’s inference is too quick. That different mathemat-
ical descriptions of a physical system may hold simultaneously does not entail that such descriptions
track only mind-dependent features of that system.
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challenge. However, most responses assume that offering such a theory is required

to meet the challenge. Given this, I will take a moment to say something about the

relationship between my account and others in the literature. In particular, I will

suggest that my response opens a route for unifying extant responses to triviality, in

a sense to be explained shortly.

To make matters concrete, consider Chalmers’ (1996) well-known account of combinatorial-

state automaton (CSA) implementation. On this account, the descriptive content of

any computation is expressed in terms of some CSA, and a physical system imple-

ments a CSA if it exhibits the ‘causal isomorphism-type’ described by that CSA.

In the language of labelling schemes, the account holds that only certain labelling

schemes are adequate for computational theorizing: namely, those which capture the

causal isomorphism-type of a physical system (at a certain level of description).

This account imposes a global, context-insensitive condition on computational

implementation. Although it is not unreasonable to think that pancomputationalism

fails if such a condition is in place, it is questionable whether this tactic yields a

fully satisfactory solution to triviality worries. Chalmers provides little reason for us

to think that all fruitful applications of the CSA formalism must involve realizing a

certain causal isomorphism type. Indeed, insofar as Chalmers’ account is motivated on

a priori philosophical grounds, it would be frankly miraculous if the account captured

every application of computational notions found in the computational sciences.42 For

this reason, it is doubtful that Chalmers has offered a plausible general solution to

the Putnam-Searle challenge.

42This point is borne out by more recent work, which suggests that the computational features of
some physical systems outstrip their local, causal features. See, e.g., (Shagrir, 2001; Rescorla, 2013).
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This is not to say that Chalmers’ account should be abandoned outright. The

account is primarily designed to vindicate a version of computational functionalism

(Chalmers, 2011). Whether or not Chalmers’ specific proposal succeeds at this task,

the project itself is not unreasonable. Thus I would suggest that we understand

Chalmers’ suggestion, not as a global condition on implementation per se, but rather

as a condition on labelling schemes adequate for the purposes of computational func-

tionalism. Relative to that theoretical endeavour, Chalmers’ proposal is rather more

reasonable.43

I would suggest we understand other responses to triviality found in the litera-

ture in a similar spirit. These responses appeal variously to counterfactual (Copeland,

1996), causal-mechanical (Chalmers, 1996; Godfrey-Smith, 2009; Piccinini, 2015), dis-

positional (Klein, 2008), representational (Shagrir, 2001; Sprevak, 2010; Rescorla,

2014b; Peacocke, 1995), teleological (Bontly, 1998; Piccinini, 2015), information-

theoretic (Millhouse, 2019), and pragmatic (Matthews and Dresner, 2017) condi-

tions on implementation. Others are surely possible. But rather than posing global,

context-insensitive conditions on implementation, these proposals are instead bet-

ter understood as isolating features of physical systems salient for certain specific

theoretical projects.

Thus the current perspective arguably unifies extant responses to triviality ar-

guments by revealing that they need not compete with each other as accounts of

implementation. Instead, we can regard them as proposals about how computational

notions are (or at any rate ought to be) applied to subserve scientific theorizing in

different domains. This is not to say that there cannot be disagreement, of course.

43Of course, I take no stand here on whether Chalmers’ proposal is ultimately successful with
respect to this particular project.
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But any such disagreement will concern the suitability of a particular kind of labelling

scheme for a given theoretical purpose, rather than whether a given kind of scheme

captures some fact about implementation as such.

For instance, it is hotly disputed whether a computational account of the mind

ought to involve representation — that is, whether when theorizing about the mind

we ought to employ labelling schemes in which representational properties play a

central role. Without taking a stand on this issue here, I would point out that

this not a disagreement about computation — it is a disagreement about cognition.

Computation as such is flexible enough to accommodate both of these views of the

mind (and others besides). But which is correct ultimately depends on the nature of

the mind, not the nature of computation.

3.7 Conclusion

Throughout this chapter I framed my response in terms of the simple mapping

account. This was to show that the simple mapping account, properly understood,

has the resources to avoid triviality without the need to develop a complex mapping

account, as many philosophers have been tempted to do. Having seen how the re-

sponse works, however, we can also see that it is not solely the property of the simple

mapping account either. The idea that systems implement computations relative to

specific ways of regarding systems computationally is, strictly speaking, orthogonal to

the question of the formal character of the implementation relation. Indeed, because

my response relies only on some straightforward observations about the applicability

of mathematics to physical systems, it is compatible with a wide range of views about

the relationship between mathematics and physical reality.
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In the next chapter I argue that against the simple mapping account, not on the

grounds that it is trivial, but on the grounds that in many cases implementation

should not be understood in terms of isomorphism. In light of this, I will eventually

suggest that we should characterize implementation in terms of the broader notion of

resemblance. Nevertheless, the response to triviality developed here is available on a

resemblance-based account. I shall return to this point in Chapter 5.
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Chapter 4: Limitative Explanations in Computer Science

4.1 Introduction

This chapter investigates a broad class of explanations of central importance to

contemporary computer science. These explanations, which I call ‘limitative’ expla-

nations, explain why certain problems cannot be solved computationally, either in

principle or under certain constraints on computational resources such as time or

space. Limitative explanations are philosophically rich, but they have not received

the attention they deserve. The primary goal of this chapter is isolate limitative

explanations as a distinctive kind of computational explanation and providing a pre-

liminary account of what makes them explanatory. In the first half of the chapter I

argue that limitative explanations are best understood as a kind of non-causal math-

ematical explanation which depend crucially on certain highly idealized models of

computation.

In the second half of the paper I trace out some upshots of this account for philo-

sophical accounts of computational explanation and computational implementation,

respectively. I argue for two negative claims in particular. First, according to the

received view of computational explanation, computational explanation is a kind of

causal explanation. However, if my account of limitative explanations is correct, then
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the received view is wrong: not all computational explanations are causal explana-

tions. Second, as we have seen in previous chapters, many philosophers hold that

being isomorphic to a mathematically defined computation is at least a necessary (if

not sufficient) condition on implementation. However, I argue that the way limita-

tive explanations apply to physical systems cannot obviously be understood in terms

of isomorphism. In particular, there are typically no isomorphisms relating highly

idealized computational models to physical computing systems.

Here is the plan. Section 2 surveys a battery of limitative results from across

theoretical computer science. Section 3 explains how these results apply to physical

systems. Section 4 argues that these results are prima facie explanatory of the com-

putational limits of physical systems. Section 5 develops my positive account of their

explanatory power. Sections 6 and 7 trace out the aforementioned upshots of this

account for computational explanation and implementation.

4.2 Limitative results in computer science

At the broadest level, computer science addresses two kinds of problems: those

which can be solved computationally, and those which cannot. To address the first

kind of problem, we must describe a computational procedure, such as an algorithm

or program, that solves it. To address the second kind, by contrast, we must show

that no such procedure exists. The goal of this section is to survey a representative

selection of the latter sort of problem.

As I will use the term, a ‘limitative result’ is a mathematical theorem that identi-

fies limits or constraints on computational solutions to a certain problem or problem

kind. These results vary according to the kind the limit they identify. Non-existence
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theorems show that a problem cannot in principle be solved computationally. Other

results show that a problem cannot be solved under certain constraints on computa-

tional resources such as time or space, or that any solution faces ineliminable tradeoffs

between competing adequacy criteria.

In what follows I do not attempt to exhaustively survey or categorize every dif-

ferent kind of limitative result found in contemporary computer science. Nor do I try

to sharply demarcate the kinds of limitative results I have discussed. Rather, and

more modestly, I survey a representative selection of these results, grouped coarsely

for expository purposes according to the kind of limits they identify.

4.2.1 Non-existence Theorems

Perhaps the most well-known limitative results come from computability theory.44

Limitative results here typically take the form of non-existence theorems, which state

that no computational procedure exists for the problem in question. One famous

result of this sort is the unsolvability of the halting problem. Informally, this the

problem of determining whether a given Turing machine halts on an arbitrary input.

Notoriously, however, no Turing machine exists which solves this problem. This cap-

tures a limit on the computational powers of Turing machines: even given unlimited

time and space, it is a problem which they simply cannot solve.

Non-existence theorems are perhaps the most striking kind of limitative result, and

they play a central role in nearly every branch of contemporary computer science, in-

cluding algorithmic analysis (Sedgewick and Flajolet, 2013; Knuth, 1998), distributed

systems theory (Attiya and Ellen, 2014), artificial intelligence (Minsky and Papert,

44For introductions to computability theory, see (Rogers, 1987; Cutland, 1980; Davis, 1982; Sipser,
2013; Savage, 2008). (Soare, 1996) is a more advanced treatment.
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1988), computer security (Cohen, 1987), computer graphics (Hughes, 2014), and soft-

ware engineering and compiler design (Appel and Palsberg, 2002). While these results

take different forms in different cases, one common technique involves showing how

a solution to the new problem would yield a procedure for solving a problem already

known to be unsolvable.

To illustrate, consider the following problem from compiler design. A compiler

is a program for translating a program written in one language into another. One

basic requirement is that a compiler preserve the input/output profile of the program

being translated. Very often, however, to improve performance compilers to attempt

to optimize the program being translated, for instance by detecting and eliminat-

ing needlessly duplicated instructions. We define a fully optimizing compiler as one

which, given some program produces the smallest possible program with the same

input/output profile as the original. The fully optimizing compiler problem is the

problem of writing such a compiler.

Unfortunately, however, it can be shown that no fully optimizing compiler exists

(Appel and Palsberg, 2002, ch. 17). The reason is that the problem of fully optimizing

a program is equivalent to the halting problem. For consider a program which never

halts. The smallest possible program with the same input/output profile is:

L : goto L

Given any input, this program immediately goes into an infinite loop. Thus,

to detect whether an arbitrary program is input/output equivalent to this one, a

compiler would have to be able to detect infinite loops. However, if a program could

detect infinite loops, it could solve the halting problem. Since this is impossible, it is

impossible to write a fully optimizing compiler.
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This is an informal illustration of a computational reduction.45 Reductions reveal

that one problem is at least as ‘hard’ as another, in the sense that a solution to one

of them could be used to identify a solution to the other. For instance, the problem

of writing a fully optimizing compiler is just as hard as the halting problem: if we

could write a fully optimizing compiler, we could use it to solve the halting problem.

Reductions are crucial for extending limitative results to new domains.

Non-existence theorems will be the primary focus of the discussion in what follows.

Nevertheless, as intimated above, limitative results take many different forms, and

for completeness’ sake, I will briefly mention two more families of limitative result.

4.2.2 Resource Constraints

Suppose we restrict attention to problems with can be solved computationally in

principle. Even given this restriction, there is a sense in which even some in-principle

solvable problems cannot be solved, on the grounds that the computational resources

required to solve them may be prohibitively large. Computational complexity theory

investigates such problems and classifies them according to their intrinsic difficulty,

understood roughly in terms of the amount of time or space required to solve them.46

Here too limitative results play an important theoretical role, and many problems are

known to be unsolvable without using a certain amount of time or space.

45Formally, if X and Y are computational problems, a reduction is a computable function f :
X → Y mapping X-instances to Y -instances. Many different reduction relations are known; see,
e.g., (Rogers, 1987, ch. 6-9).

46For introductions to computational complexity theory, see (Papadimitriou, 1994; Sipser, 2013).
For a more advanced treatment, see (Arora and Barak, 2009). (Dean, 2021) is a useful survey.
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Central to computational complexity theory is the notion of a ‘tractably’ solvable

problem. Tractability is typically explicated in terms of polynomial time computabil-

ity. Roughly, a problem is tractably computable just in case it can be computed in

time polynomial in the size of its instances, and it is intractable if cannot. That is,

a problem is intractable if it can only be solved in time exponential (or more) in the

size of its input. An extreme example is the problem of computing the Ackermann

function, which grows extraordinarily quickly even for modest inputs.47 Another is

the satisfiability problem for propositional logic. This is the problem of determining

whether a given propositional formula has a satisfying truth-value assignment. As is

well-known, satisfiability is NP-complete (Cook, 1971), thus quite likely intractable.48

Many practically important problems are known to be NP-complete; see for instance

the appendix to (Garey and Johnson, 1979).

4.2.3 Tradeoffs

A standard technique for dealing with a problem known or strongly suspected to be

intractable is to attempt to find good (albeit suboptimal) solutions through optimiza-

tion or approximation techniques. Investigation into such techniques has furnished

a third family of limitative results, known colloquially as No Free Lunch Theorems.

47See, for instance, (Boolos et al., 2007, 84-5).

48I say that the satisfiability problem is quite likely intractable because we have not (yet) proved
that it is intractable. Whether it is intractable turns on the currently open question whether P =
NP. This is because satisfiability is NP-complete. Since it is unknown whether P = NP, we have
at best the conditional result that if P 6= NP, satisfiability is intractable. Although it is quite
plausible that P 6= NP, , we do not yet have a proof to this effect. See (Arora and Barak, 2009, ch.
2).
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These results identify tradeoffs between different approximation techniques.49 In-

formally put, these theorems state that there are always tradeoffs between different

search or optimization strategies. Improved performance for some range of problems

is offset by decreased performance for some other range. There are thus limits to the

scope of optimal search or optimization algorithms.

4.3 How limitative results apply to physical computing sys-
tems

Limitative results are, in the first instance, mathematical theorems. They are

characterized in terms of the members of a class formal, mathematically character-

ized computational models. The most familiar computational models are Turing

machines, although outside of computability and complexity theory it is standard to

work with a less cumbersome formalism, typically some generic programming lan-

guage or pseudocode. Generally speaking, however, the expectation is that a result

framed in more informal terms could in principle be expressed in terms of Turing

machines, albeit with significantly more labour. Consequently, these results apply

first and foremost to the computational powers of more or less mathematically char-

acterized computational models; the halting problem tells us something about what

Turing machines in particular cannot do.

Nonetheless, these results are widely taken to bear on the computational powers

of physical computing systems as well. It is no accident that Turing machines are

frequently referred to as computational models, for they are taken to be scientific mod-

els of ordinary physical computing systems, such as general-purpose stored-program

49For classic No Free Lunch theorems see (Wolpert and Macready, 1997; Wolpert, 1996). (Ho and
Pepyne, 2002) is a useful introductory survey.
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computers (Savage, 2008). As such, they are used to describe (and, as I shall argue,

explain) certain aspects of physical computing systems. In particular, to the extent

that Turing machines capture the computational capacities of such systems, limits on

what can be computed by Turing machines apply to the physical systems that they

describe too. In the vocabulary of previous chapters, such limits apply to any system

that implements a Turing machine.

Incidentally, although in previous chapters I characterized implementation broadly

in terms of isomorphisms, for the moment I wish to remain neutral about whether this

is the right way to think about the implementation conditions of Turing machines.

Later on I will argue that this is not the right way, but to appreciate this we will first

need to examine how limitative results are applied in practice.

For concreteness, let’s get a typical application of a limitative result on the table.

Since it will likely be familiar, I’ll use the halting problem. This is the problem of

computing the following function:

HALT (M,x) =

{
1 if M halts on input x

0 otherwise

Where M is (a code for) a Turing machine and x is an arbitrary input string. Now,

the halting problem would be computable if some Turing machine computed HALT ,

that is, if there was a machine which, when given M and x as input, either halts and

outputs 1 if M halts on x, or halts and outputs 0 otherwise. As is well known, of

course, no such Turing machine exists. For this reason we say that HALT is Turing-

uncomputable. We know that certain physical systems do not compute HALT . But

we should distinguish two ways this can happen. One is that a system may fail

to compute at all. Deviant Putnamesque interpretations notwithstanding, this is

presumably the reason why rocks, walls, tables, and chairs do not compute HALT .
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But notice that we do not need to appeal to a limitative result to conclude that rocks

don’t solve the halting problem, because no one realistically expects them to compute

anything.

The other way a system can fail to compute HALT is by implementing a com-

putational model that fails to compute HALT . This is the sense in which laptops

fail to compute HALT . Unlike rocks (etc.), digital computers compute. They stood,

as it were, a fighting chance at computing HALT . Unfortunately, insofar as they

implement a computational model such as a Turing machine that cannot compute

HALT , neither do they.

Of course, that a problem cannot be solved by some computational model does not

show that some problem cannot be solved full stop. Rather, it shows that it cannot be

solved in a certain way, i.e., with the sorts of computational operations and processes

furnished by that model. This does not rule out the possibility of solving that problem

non-computationally, or even of solving it with a different computational model. For

example, certain hypercomputational models, such as accelerating Turing machines,

can compute HALT . Nonetheless, since laptops (etc.) presumably do not implement

accelerating Turing machines, this does not undermine the claim that they do not

compute HALT either.

Accordingly, when thinking about how limitative results apply to physical systems,

we must bear in mind that what problems a system can or cannot solve are indexed

to the specific computational model(s) it implements. In particular, we should allow

for the possibility that, qua implementation of model M a system fails to solve some

problem, but qua implementation of a different model M∗, it does not. Bearing this

distinction in mind will help us to avoid some potential worries later on.
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Putting the pieces together, I would suggest that applications of limitative re-

sults such as the unsolvability of the halting problem are mediated by the following

principle:

Uncomputability

If a system implements a computational modelM , then, quaM -implementation,
it cannot compute any M -uncomputable function.

Here, then, is how the unsolvability of HALT applies to physical computing sys-

tems. Suppose P is some physical system, such as a laptop, that implements a Turing

machine. By the foregoing principle, P does not compute any Turing-uncomputable

function. But, of course, HALT is one such function. So P does not compute HALT

either.

Incidentally, note that this story about how limitative results applies does not

appeal to the Physical Church-Turing thesis. Although there are stronger and weaker

versions of the Physical Church-Turing thesis, they all purport to identify a connec-

tion between Turing machines and physical computation in general.50 The principle

appealed to here, by contrast, restricts attention to physical implementations of some

computational model. It does not purport to tell us whether a problem is physically

computable full stop, nor does it attempt to identify some connection between phys-

ical computation and Turing computability. Rather, it merely identifies a sufficient

condition on a physical system (or class of systems) failing to solve some problem.

4.4 Limitative results are explanatory

Going forward I will take it for granted that limitative results play an important

theoretical role in contemporary computer science. But what is that role? In light of

50For discussion of physical CT see (Piccinini, 2015, ch 15, 16).
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the discussion so far I think it is uncontroversial that limitative results describe limits

on the computational powers of certain physical computing systems. But this is not

all they do. In addition to describing limits on computational powers of physical

systems, limitative results explain those limits as well, or so I shall argue next.

To avoid begging questions about the nature of scientific explanation, my argu-

ment does not rely on a specific theory of scientific explanation. Instead, I argue

that limitative results display certain characteristics prima facie indicative of expla-

nation elsewhere in science: they are regarded as explanatory by the relevant scientific

community; they answer ‘why?’ questions; and they are both deep and broad, in a

sense that I will explain below. These considerations are obviously not apodictic, but

they do make a strong prima facie case for the conclusion that limitative results are

explanatory. I’ll take them one by one.

4.4.1 Computer Scientific Practice

To begin, limitative results are a primary output of computer scientific theorizing

and they are widely regarded by computer scientists as explanatory. For one thing, as

will likely be familiar to anyone with a modest amount of computer scientific training,

these results are often cited in informal thought and talk with broadly explanatory

locutions: “the reason why no laptops solves the halting problem is that it’s a Turing

machine and no Turing machine solves the halting problem;” “you failed to write a

fully optimizing compiler because it’s impossible;” and so on.

Moreover, the explanatoriness of limitative results appears to be a primary mo-

tivation for much work in theoretical computer science. For instance, a popular
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introductory monograph on computational complexity motivates its subject matter

with the following parable, which I quote at length:

Suppose that you, like the authors, are employed in the halls of industry.
One day your boss calls you into his office and confides that the company
is about to enter the highly competitive “bandersnatch” market. For this
reason, a good method is needed for determining whether or not any given
set of specifications for a new bandersnatch component can be met and, if
so, for constructing a design that meets them. Since you are the company’s
chief algorithm designer, your charge is to find an efficient algorithm for
doing this.

After consulting with your bandersnatch department to determine exactly
what the problem is, you eagerly hurry back to your office, pull down your
reference books, and plunge into the task with great enthusiasm. Some
weeks later, your office filled with mountains of crumpled-up scratch pa-
per, your enthusiasm has lessened considerably. So far you have not been
able to come up with any algorithm substantially better than searching
through all possible designs. This would not particularly endear you to
your boss, since it would involve years of computation time for just one set
of specifications, and the bandersnatch department is already 13 compo-
nents behind schedule. You certainly don’t want to return to his office and
report: “I can’t find an efficient algorithm, I guess I’m just too dumb.”

To avoid serious damage to your position within the company, it would be
much better if you could prove that the bandersnatch problem is inherently
intractable, that no algorithm could possibly solve it quickly. You could
then stride confidently into the boss’s office and proclaim: “I can’t find
an efficient algorithm because no such algorithm is possible!” (Garey and
Johnson, 1979, 1-2)

This ‘because’ is telling. Suppose we have a limitative results which states that no

efficient algorithm for the bandersnatch problem exists. Then it is no mere accident

that despite concerted effort you fail to find one. Moreover, this failure cannot merely

be chalked up to the fact that you’re not clever enough. Rather, it would appear that

your failure is in an important sense preordained, and this is explained by the fact

that no efficient algorithm for the bandersnatch problem exists.
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Although fictitious, this example illustrates one important way limitative results

explain. The explanandum is a pattern of failure exhibited by a single system, and

the explanans is an appropriate limitative result. Not all limitative explanations take

this form however. Sometimes they have a stronger explanandum: that no class

of physical computing systems (stored-program computers, e.g.) solves a certain

problem, or, even more strongly, that it’s impossible for a problem to be solved by

members of a certain class of computing system. Sometimes the explanans is merely a

limitative result: “why does no implementation of a Turing machine compute HALT?

Because no Turing machine does.” Other times, the explanans is a limitative result

plus a contingent claim about the system under consideration: “Why does this laptop

keep failing to compute HALT? Because it implements a Turing machine, and no

Turing machine does.”

The fact that limitative results are regarded as explanatory by computer scientists,

at least some of the time, is perhaps the most compelling reason to think that they

are explanatory. I am happy to take this practice at face value, but let me mention

a few further considerations for skeptics in the audience.

4.4.2 Answering ‘why?’ questions

Whatever else they might do, explanations answer ‘why?’ questions. As the

foregoing discussion already suggests, in some circumstances it seems that we can

satisfactorily answer ‘why?’ questions by citing an appropriate limitative result.

Of course, what counts as a good answer to a ‘why?’ question is highly context-

sensitive. For this reason I do not claim that such questions are in every conversational

context adequately answered this way. Sometimes the reason for repeated failure is
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more mundane. Suppose one attempts to write a compiler that detects infinite loops.

In some contexts, the question ‘why does the program keep failing to detect infinite

loops?’ can be adequately answered by appealing to facts about the compiler or to

its programmer’s skill (or lack thereof). For instance, perhaps the compiler missed

an edge case that it would have detected, were it better written.

Nevertheless, even in such cases there remains a deeper reason for one’s failure,

namely in that one is trying to solve a mathematically unsolvable problem. The

theorem that no fully optimizing compiler exists constrains the possible programs one

could have written. Given this constraint, one’s failure should come as no surprise.

In this respect, limitative results resemble other explanatory uses of mathematical

results, in which a mathematical theorem seems to constrain a whole range of possible

physical systems — I return to this point below.

4.4.3 Breadth and depth

Limitative results apply broadly, in the sense that they apply to a wide range of

different computing systems, and are deep, in that they seem to capture a fundamental

computational limit that transcends the peculiarities of individual physical systems.

The ideas of breadth and depth figure commonly in discussions of explanation, albeit

in different ways in different cases. If these are genuine marks of explanatoriness,

then it suggests that limitative results are explanatory too.

Something like a notion of breadth appears in the unificationist tradition (Kitcher,

1981; Friedman, 1974), which emphasizes that explanation is at least partly a matter

of capturing what’s common to otherwise different phenomena. Although traditional

unificationist views characterize unification as a property of theories, and characterize
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unification in terms of recycled argument patterns, the fundamental insight is that

in explanation is a matter of pulling together what, on the surface, might appear to

be different phenomena. Unified theories are explanatory, on this mark, because they

show us what is common to a wide range of different physical systems.

Physical computing systems comprise a highly heterogenous class. They include

humans working effectively, early mechanical devices such as the pascaline or Bab-

bage’s analytical engine, contemporary silicon-based computers with widely ranging

architectures (e.g. Stanford architectures, von Neumann architectures), and a mot-

ley assortment of unconventional systems based on, to name just two, slime mold

(Adamatzky, 2015) and RNA (Akhlaghpour, 2022). Despite their differences, insofar

as they can all be seen as implementation of Turing machines, limitative results ap-

ply to all of them. They thus reveal a common computational limit shared by many

different kinds of physical computing systems.

Similarly, the idea that explanations reveal the ‘deeper’ sources of a phenomenon

is attractive, if somewhat inchoate. Although the notion of depth could be clarified

in various ways, one natural thought is that depth involves abstracting away from

the peculiarities of system to identify only what is essential to the phenomenon of

interest. Something like this seems operative with limitative explanations. Absent

an appropriate limitative result, a persistent pattern of failure could potentially be

chalked up to any of a variety of disparate causes: programmer inability, software

bugs, or even hardware defects. However, if we know that a problem cannot be

solved, it will come as no surprise that our attempts to do so routinely fail. This

story transcends the peculiarities of a given system to reveal a fundamental limit on

its computational powers.
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4.5 How limitative explanations explain

Going forward I assume that limitative results are explanatory. But where does

their explanatory power come from? Because limitative explanations rely on mathe-

matical theorems, a natural starting point is the idea that they are a kind of math-

ematical scientific explanation. Thus I will start by attempting to characterize them

in terms of a popular, well-known account of mathematical scientific explanation due

to Marc Lange. As we will see, Lange’s account captures some but not all of what

seems to make limitative results explanatory.

4.5.1 Limitative explanations as mathematical explanations

According to a familiar line of thought, scientific explanations explain by ren-

dering a phenomenon nomically expectable (Hempel, 1965). Paradigmatic limitative

explanations proceed in much the same way. In light of an appropriate limitative

result it is unsurprising that a physical computing system or system kind fails to

solve certain problems. However, whereas more traditional DN-explanations rely on

natural laws or law-like generalizations, limitative explanations rely on mathematical

limitative results. Consequently, limitative explanations do not merely reveal that

their explanans are nomically expectable. Rather, they seem to show that their ex-

plananda are mathematically inevitable, as it were. This is because limitative results

hold with whatever degree of necessity is held by pure mathematical facts more gen-

erally. If, as is plausible, mathematical facts hold with a very high degree of necessity

— perhaps the highest — then at least part of the explanatory power of limitative

results derives from the fact that they provide a mathematically necessary sufficient

condition for their explanans.
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In this respect, limitative explanations resemble more familiar instances of math-

ematical explanation. Perhaps the most well-developed account of mathematical ex-

planation is due to Marc Lange (2013, 2017, 2018), and it is instructive to think about

how we might account for limitative explanations using Lange’s theory. Mathematical

‘explanations by constraint,’ as Lange sometimes calls them, work by “describing how

the explanandum involves stronger-than-physical necessity by virtue of certain facts

(”constraints”) that possess some variety of necessity stronger than ordinary causal

laws” (Lange, 2018, 17). Although the explananda of such explanations can them-

selves come in varying modal strengths, they are in general modally stronger than the

explananda of typical causal explanations. Accordingly, their explanans must involve

facts which are at least as modally strong as they.51

To illustrate with a well-known case, consider the bridges of Königsberg. Crudely,

the reason why no one has successfully crossed all of the bridges without crossing

at least one of them more than once is that (a) the bridges realize a certain graph-

theoretic structure (specifically, they form a non-Eulerian graph), and (b) that as a

matter of mathematical necessity any complete circuit of a non-Eulerian circuit has

at least one double-crossing (cf. (Pincock, 2007b)). Here the explanans — that no

one has successfully crossed the bridges in a certain way — is itself stronger than

ordinary causal laws such as the force laws. We could presumably change the laws,

and it would still hold that there would be no successful crossing. Thus, to explain

this latter fact we must appeal to something modally stronger — in this case, a

mathematical necessity.

51This brief summary suppresses many of the subtleties of Lange’s view, especially concerning the
rich hierarchy of necessities he identifies. It would be interesting to investigate in detail how to map
the necessities found in theoretical computer science onto Lange’s hiearchy, but unfortunately would
take us too far afield.
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Similarly, it would seem that the reason why my laptop fails to solve the halting

problem is that (a) it has a certain computational structure, of the sort roughly cap-

tured by a Turing machine, and (b) it is mathematically necessary that no object with

that structure can solve the halting problem. As with the bridges case, the explandum

seems itself to be more necessary than ordinary causal laws. Vary the force laws, and

my laptop still wouldn’t solve the halting problem. Accordingly, to explain it we need

something stronger. Turing’s result that the halting problem is Turing-uncomputable

explains this in part because it entails that no physical implementation of a Turing

machine solves the halting problem. Moreover, it explains why the explanandum has

stronger-than-physical necessity: the reason is that it is entailed by a result which

itself holds as a matter of mathematical necessity.

Elsewhere, Lange suggests that explanations by constraint concern the ‘frame-

work’ in which more ordinary causal explanations operate: these explanations work

“not by describing the world’s actual causal structure, but rather by showing how the

explanandum arises from the framework that any possible physical system ... must

inhabit” (Lange, 2017, 30). This contrasts with ordinary causal explanation, because

such explanations take for granted a certain framework — e.g., as captured by the

force laws — in which causes operate. Explanations by constraint, by contrast, often

arise by consideration of the framework of causal explanation itself and what must

(or cannot) be the case, given how it is constituted.

Clearly limitative explanations do not rely on claims about the framework that

any possible physical system must inhabit. However, it is not implausible to think

that they concern general facts about the frameworks that structure causal compu-

tational explanations in particular. To see this, consider an uncontroversially causal
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example of computational explanation, such as explanation by program execution

(Piccinini, 2015, ch. 5). Explanations via program execution take for granted a

stock of primitive computational operations (typically basic logical, arithmetical, or

string-theoretic operations), and explain by citing a causal process composed of an

appropriate sequence of basic operations. Which operations may be cited depends the

programming language in question, since different languages typically supply a dif-

ferent stock of primitive operations. Different languages thus delimit a broad class of

potential causal explanations, which differ primarily with respect to the composition

of the causal processes they may describe.

A different kind of computational explanation becomes possible, however, when

we focus on a fixed class of computational operations and resources — for example,

by focusing on a fixed programming language — and then ask what problems can be

solved with respect to that fixed class. This leads us towards limitative explanation.

For, by showing that some problem falls outside of that class, we thereby show that

no program written in that language can solve that problem, and hence have a story

about why attempts to do so systematically fail. Thus, limitative explanations arise

from consideration of the framework structuring, not causal explanations in general,

but rather causal computational explanations in particular.

All of this suggests that limitative explanations can be understood as a kind of

non-causal, mathematical explanation by constraint. However, as noted above, I

don’t think this is the whole story. Part of what seems to make limitative results ex-

planatorily powerful is their breadth: the unsolvability of the halting problem holds

not just for physical realizations of Turing machines, but for any digital computing

system. An adequate account of limitative explanations should explain their wide
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applicability. The trouble is that merely noting that limitative explanations cite a

mathematically necessary sufficient condition does not address this. Why not think

that limitative results framed in terms of Turing machines apply only to a specific, re-

stricted class of physical computing systems rather than to digital computing systems

quite generally? I take up this question next.

4.5.2 Essential idealization

My account of the wide applicability of limitative results proceeds in two steps.

To keep things simple, I start by looking more closely at the implementation relation

connecting Turing machines to a single class of physical computing systems, namely

human agents working effectively. Then, in the next subsection, I will consider how

to extend this basic story to other kinds of physical computing systems.

As I said earlier, I wish to set aside specific theories of implementation for moment.

Instead, I will start with the following intuitive idea: a physical system implements

a computational model if that model captures the basic computational architecture

of that system. This involves capturing, among other things, its basic computational

operations and its memory structure.

Because different computational models take different computational operations

as primitive and have different memory structures, implementation conditions will

typically differ from model to model. Rather than try to tell a completely general

story about implementation here, I’ll illustrate with a standard deterministic Turing

machine (DTM). DTMs are equipped with a read/write head and a one-dimensional

tape. They manipulate symbols one at a time on the tape according to a finite,

predetermined set of instructions. Thus, at least to a crude first approximation, a
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physical system implements a DTM if it manipulates symbols one at a time according

to a finite set of determinate instructions on a one-dimensional tape.

So construed, however, few physical systems literally implement DTMs. This is for

two main reasons. One is that the DTM architecture differs substantially from that

found in many contemporary computing systems. For instance, few contemporary

systems manipulate symbols one at a time, nor do they manipulate these symbols by

scanning back and forth across a one-dimensional memory. A second reason is that

DTMs are highly idealized. For instance, physical devices are prone to errors and

malfunctions, and accordingly will not always follow their instructions perfectly in

the way that DTMs do.

Among physical systems that might reasonably be construed as DTMs, human

agents working effectively are perhaps the most plausible example. This is of course

unsurprising given that Turing’s characterization aimed, in the first instance, to cap-

ture the basic elements of effective human calculation (Sieg, 2009). Nevertheless,

even here the differences are substantial. Whereas DTMs are assumed to never break

down, to follow instructions perfectly, and to have an infinitely long tape (or at least

potentially infinite: we can always add more tape if we need it), humans working

effectively may fail to follow instructions correctly, only have a finite amount of mem-

ory to work on (there is only so much scratch paper in a finite universe), and, alas,

will in the fullness of time break down.

These observations suggest that humans working effectively implement DTMs only

under significant idealization. This is in some respects a familiar point. Quite often we

must idealize physical systems to bring mathematics to bear. However, as I will argue

next, what is striking about the computational case is that absent these idealizations
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limitative results do not even begin to apply to physical computing systems. These

idealizations are thus essential to limitative explanations.52

First, notice that actual human calculators have access to only a finite amount of

memory. In fact, they are more literally described as Turing machines with only a

finite amount of tape, sometimes known as bounded tape Turing machines (BTTMs).

Human agents working effectively implement full-strength DTMs only under the ide-

alizing assumption that they have unbounded memory. Now consider an in principle

unsolvable problem such as the halting problem. In practical terms, the unsolvability

of the halting problem ensures that no human calculator can determine whether a

given algorithm will halt on a given input. Strikingly, however, it turns out that

this problem is unsolvable only under the idealization that human calculators have

unbounded memory resources.

To see this, consider the bounded halting problem:

BOUNDED-HALT (M,x, b) =


1 if M halts on x when restricted

to b bits of memory

0 otherwise

This is the problem of determining whether a machine with only a bounded amount of

memory halts on a given input. This problem is computable, because a deterministic

system with bounded memory has only finitely many possible configurations (i.e.,

combinations of internal states and memory contents). Thus, we can let the system

run until either it produces the desired output, or it goes into a previously seen

configuration. In the latter case, because the system is deterministic we know that

the system has entered an infinite loop, and so can determine that it will never halt.53

52There are significant questions about how mathematics applies under idealization, but I propose
to set them aside for the time being. See (Pincock, 2007a; Bueno and French, 2018) for discussion.

53See Theorem 5.9 of (Sipser, 2013, 222).
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Given all of this, we could in principle simulate M on x using only b bits of memory

and thereby compute BOUNDED-HALT .

There is thus a sense in which the halting problem doesn’t even concern ordinary

human calculators. If any version of the halting problem applies to them, it’s the

bounded halting problem. But that problem is computable. If we knew how much

memory they had at their disposal, we could determine whether a human calculator

following an effective procedure would halt on a given input. But if this is right,

then it would seem that limitative results such as the halting problem do not after

all apply to physical computing systems. And if these results do not apply, then they

quite clearly cannot be used to explain anything about these systems either.

So why, despite this fact, do computer scientists continue to use DTMs rather than,

say, BTTMs to investigate the powers of actual physical computing systems? Part of

the reason is convenience. Even though the bounded halting problem is computable,

it’s NP-complete (Garey and Johnson, 1979, 175). Thus for all practical purposes

it’s just as hard to solve the one problem as the other. Because of this, the choice to

use the DTM model rather than the BTTM model comes down partly to practical

considerations such as the familiarity and mathematical elegance of the DTM model

over its bounded counterpart.

However, a much more important point is that we treat human calculators as

if they were DTMs rather than BTTMs is that the former allows us to capture

deeper facts about the computational powers of humans working effectively. The

fact that we only have finite memory to work with is not so much a reflection on

our basic computational capacities so much as a contingent fact about the kind of

world we happen to find ourselves in. If human calculators did have an unbounded
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memory resources, Turing machines would much more closely approximate them and

the traditional halting problem would more straightforwardly apply. The problem is

‘merely’ that the world doesn’t cooperate, as it were.

Another way to put the point is that idealizations that provision more memory do

not require that we change the basic computational operations carried out in effective

human calculation (roughly, finite operations on bounded data structures). For this

reason, they allow identify deep facts about what kinds of problems can and cannot be

solved using such operations. Contrast this with idealizations concerning basic com-

putational operations, for instance by allowing infinitary instructions or architectures

in which successive operations are executed twice as quickly. These idealizations seem

to depart much more drastically from effective human calculation than do idealiza-

tions concerning memory. Although a human working effectively may in some sense,

and under significant idealization, implement an infinitary computational model, it

is much less clear that characterizing human calculation this way reveals much of

interest about the powers of actual human calculation.

Thus it is only under significant idealization that limitative results framed in terms

of DTMs apply to human agents working effectively. The required idealizations hold

fixed the basic computational operations carried out in effective human calculation,

and this idealization is justified on the grounds that basic computational operations

are much more intimately tied to a system’s computational powers than are facts

about how much space or time the system has available. Moreover, these idealizations

are essential to limitative explanations in the sense that without them limitative

results do not even apply to physical computing systems.
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4.5.3 Simulation equivalence

The final part of my account extends this story to explain how these results apply

as widely as they do. Here the problems are of a rather different character. Earlier

I noted that the DTM architecture differs significantly from the architecture found

in many actual computing systems. Idealizations notwithstanding, why should we

think that limitative results framed in terms of DTMs apply to systems with widely

different computational architectures?

To bring out the problem, consider a contemporary microprocessor. Like a DTM, a

microprocessor has memory and processing unit, and manipulates finitely many digits

at a time. But the similarities end there (plus or minus a few details). Unlike a Turing

machine, the physical system’s workspace is broken up into different components

(registers, RAM, storage, etc.), it operates directly on 32- or 64-bit words, and its

datapath is typically highly parallelized, to name just a few differences.

Indeed, contemporary microprocessors are much more accurately described as

register machines. Register machines are an idealized representation of the von Neu-

mann architecture employed in many contemporary computers. Whereas a DTM has

a single contiguous block of one-dimensional memory, register machines are equipped

with a bank of discrete memory locations (‘registers’), each of which holds an integer.

And whereas DTMs take certain string-theoretic operations as primitive (e.g. reading,

erasing, and writing individual symbols), register machines typically take as primitive

basic logical and arithmetical operations. In light of these architectural similarities
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it is much more natural to think that microprocessors implement register machines

(under appropriate idealizations) than that they implement Turing machines.54

In spite of this, many limitative results framed in terms of DTMs are nonetheless

taken to apply to contemporary microprocessors. How do we reconcile this with the

fact that microprocessors are more accurately described as register machines? The

answer is that DTMs are, in a sense to be explained shortly, computationally equally

as powerful as register machines. Thus, limits on the computational powers of DTMs

carry over to register machines and thereby to their implementations.

The standard technique for showing that two computational models M1 and M2

are computationally equally powerful is to show that any given procedure framed

in terms of one can be simulated by the other. This involves demonstrating how

to systematically transform an M1-computation into an M2-computation, and vice

versa. In practice, this is facilitated by first proving a universality theorem, which

identifies a single machine which can solve any problem solvable by a given model. For

example, Turing famously constructed a universal Turing machine, capable of solving

any problem solvable by a DTM. With a pair of universality theorems in hand, we

need only show how to transform computations carried out by one universal machine

in terms of the other. When two computational models are equivalent in this sense,

I will say that they are simulation equivalent.

Simulation equivalent models can solve exactly the same computational problems.

On the one hand, suppose we know how to solve a problem with an M1 machine. Then

given the simulation equivalence of M1 and M2, we can systematically transform the

M1-solution into an M2-solution. Similarly, if no M1 machine solves some problem,

54Register machines were introduced by (Shepherdson and Sturgis, 1963). See (Cooper, 2004) for
a more recent treatment.
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then no M2-solution exists either. For suppose not. By their simulation equivalence,

we could transform the M2-solution into an M1 solution, a contradiction.

Computational models simulation equivalent to Turing machines are said to be

Turing-complete. A wide variety of computational models are known to be Turing

complete, including register machines and many different programming languages.

Because simulation equivalence is a bona fide equivalence relation, all of these models

are computationally equipowerful. Thus a limitative result framed in terms of one

member of the class automatically applies to the class as a whole.

This notion of simulation equivalence captures a sense in which two computational

models can solve the same problems in principle. A similar but more restricted notion

of simulation equivalence can be used to characterize models which can solve the same

problems tractably. Here the idea is to restrict attention to simulations which induce

at most a polynomial slowdown in the simulating system. Two models related by

a polynomial time simulation are polynomially equivalent. Since polynomials are

closed under addition, anything (not) tractably solvable by one computational model

is (not) tractably solvable by any polynomially equivalent model.

I can now explain how limitative results apply so widely. Different kinds of phys-

ical computing systems directly implement different kinds of computational models.

Which computational model a given system implements depends on its architectural

features: its primitive operations, memory organization, and so forth. For instance,

humans working effectively implement DTMs, while digital computers machines im-

plement register machines. Limitative results framed in terms of one kind of compu-

tational model apply to implementations of a different kind of computational model
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Figure 4.1: How limitative results apply widely.

just in case the two models are simulation equivalent. (See figure 4.1 for a partial

sketch of the situation.)

4.6 Upshots for computational explanation

In this section and the next I want to trace out, in a preliminary way, some

upshots of my discussion for broader issues in the philosophy of computation.55 The

first of these issues concerns computational explanation. By and large, philosophical

accounts of computational explanation treat it as a kind of causal explanation. Indeed,

at times computational explanations are held up as causal explanations par excellence.

For want of a name, I’ll call this the received view of computational explanation:

The received view of computational explanation

All computational explanations are causal explanations.

55This section and the next are excerpted and highly abridged from two stand-alone papers,
currently in progress.
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However, if my account of limitative explanations is correct then limitative expla-

nations are a kind of non-causal, mathematical explanation. If, moreover, they are

bona fide computational explanations, then the received view is false. That, at least,

is the main argument of this section:

Premise 1. Limitative explanations are computational explanations.

Premise 2. Limitative explanations are not causal explanations.

Conclusion. Not all computational explanations are causal explanations.

If this argument is sound, then the received view is false and limitative explana-

tions are a kind of non-causal computational explanation hitherto unaccounted by

theories of computational explanation. The goal for the remainder of this section is

to elaborate on the received view and then to briefly motivate each premise of the

argument.

4.6.1 Background on causal explanation

Since I will argue that limitative explanations are not causal explanations, it will

be useful to have a reasonably precise characterization of causal explanation on the

table. This will not only provide a standard for discriminating causal from non-causal

explanations, but it will also help clarify the received view.

Although there are many different accounts of causal explanation in the litera-

ture, the interventionist account (Woodward, 2003; Spirtes et al., 2000) is especially

appropriate for my purposes. This is for a couple different reasons. For one thing, the

account is well-suited for capturing causal explanation in scientific contexts. Thus, it

is a natural framework for understanding extant views of computational explanation

118



which assimilate it to causal explanation. More importantly for my purposes, the

interventionist account is highly liberal among contemporary accounts of causal ex-

planation. Compared, for instance, to mechanistic accounts (e.g., (Glennan, 2017)),

it treats a wider range of explanations as causal. Thus, if limitative explanations are

causal explanations, we should be able to capture this fact in interventionist terms.

And if limitative explanations cannot be so captured, this is strong evidence they are

not causal explanations.

Although I assume general familiarity with the interventionist framework, here

are a few reminders. Like many contemporary accounts of causal explanation, it

rests on the idea that causation should be understood in terms of counterfactual

dependence. The guiding idea is that if X is causally relevant to Y (or, as it is

sometimes put, if X is a cause of Y), then it is possible to change Y by changing X. On

this view, causal explanations reveal patterns of counterfactual dependence between

X and Y, and provide what is sometimes called ‘what-if-things-had-been-different’

information, or w-information (Woodward, 2003, 203). On this broad conception of

causal explanation, in the sense that any information about how changes in X make

for changes in Y constitutes a causal explanation of Y in terms of X.

On this picture, causation is a relation between variables. Roughly put, variables

can be thought of as properties which can take on different values at different times.

A variable X is a cause of a variable Y (with respect to a variable set V) iff there

is a possible intervention on X that will change the value of Y, when holding fixed

the values of all other variables in V (Woodward, 2003, 59). While there is disagree-

ment about how to understand the notion of possibility at play here, interventions

are traditionally taken to involve physically possible manipulations to the variables in
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question. This is important, because it helps to distinguish causal counterfactual de-

pendencies from other sorts of dependencies, such as those that rely on mathematical,

constitutive, or conceptual relationships. Thus, if an explanation works by providing

information about how one variable changes under possible interventions to another,

it is a causal explanation by the interventionist’s lights.

4.6.2 The received view

There are many accounts of computational explanation in the literature, and it

would be tedious to survey them all. My goal here is to consider a few of the more

popular accounts and to suggest that they all endorse the idea that that computa-

tional explanations are causal explanations. I shall focus on accounts that treat com-

putational explanation in formal-syntactic, mechanistic, and representational terms,

respectively.

I should note also that not all of the philosophers I discuss would accept the claim

that computational explanations are causal explanations. This is because many of

them do not endorse interventionism, but instead some more restricted account of

causal explanation. My claim that these accounts treat computational explanations

as causal explanations is not the claim about how their defenders conceive of them.

Rather, it is the claim that on the broad conception of causal explanation furnished

by the interventionist account, computational explanations as conceived of by these

philosophers turn out to be causal explanations.

The Formal-Syntactic Account

One historically influential conception of computational explanation holds that it

is explanation in terms of a system’s formal-syntactic features. This view rests on the
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the formal-syntactic conception of computation, a classic statement of which is due

to Fodor:

Computational processes are both symbolic and formal. They are sym-
bolic because they are defined over representations, and they are formal
because they apply to representations in virtue of (roughly) the syntax
of the representations . . . being syntactic is a way of not being seman-
tic. Formal operations are the ones that are specified without reference
to such semantic properties of representations as, for example, truth, ref-
erence, and meaning. (Fodor, 1981, 226-7)

Other proponents of the formal-syntactic conception of computation include Field

(1978) and Stich (1983).56 Although these philosophers does not explicitly offer a

theory of computational explanation, it seems reasonably clear that they take com-

putational explanations to be causal explanations which advert to formal-syntactic

states or processes of a system. For example, here’s how Stich proposes to use of

formal-syntactic conception to frame his preferred computational theory of cognition,

the syntactic theory of mind (STM):

The basic idea of the STM is that the cognitive states whose interaction
is (in part) responsible for behavior can be systematically mapped to
abstract syntactic objects in such a way that causal interactions among
cognitive states, as well as causal links with stimuli and behavioral events,
can be described in terms of the syntactic properties and relations of the
abstract objects to which the cognitive states are mapped ... If this is
right, then it will be natural to view cognitive state tokens as tokens of
abstract syntactic objects. (Stich, 1983, 149)

Thus, on the view of computational explanation suggested by this passage, a com-

putational explanation of some bit of behavior proceeds, roughly, by citing causally

relevant cognitive states described syntactically. To take a slight adaptation of one of

Stich’s examples, the explanation why a system comes to be in a particular syntactic

56A more recent incarnation of the formal-syntactic view is developed by Chalmers (2011).
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state B is that (a) the system was in the syntactic states A and A→ B, and (b) it is

in general true that when systems are in the states A and A → B, they go into the

syntactic state B. It is not hard to see how to capture this in interventionist terms.

Suppose we intervened on a system so that it failed to be in either state A or A→ B.

Then, in light of (b), it would not go into state B either (assuming for simplicity

that the only way to enter state B is). Thus, this explanation would count as causal

according to interventionism.

The Mechanistic Account

A currently popular view identifies computational explanation with mechanistic

explanation:

Computational explanation is a form of mechanistic explanation. As a
long philosophical tradition has recognized, mechanistic explanation is ex-
planation in terms of a system’s components, functional properties, and
organization. Computational explanation is the form taken by mecha-
nistic explanation when the activity of a mechanism can be accurately
described as the processing of vehicles in accordance with appropriate
rules. (Piccinini, 2015, 142)

On this view, computational explanation is distinctive among mechanistic expla-

nations in that involves transformations of ‘medium-independent’ vehicles. Trans-

formations vehicles are medium-independent if, roughly, they are “sensitive only to

differences between portions (i.e., spatiotemporal parts) of the vehicles along spe-

cific dimensions of variation—it is insensitive to any other physical properties of the

vehicles” (Piccinini, 2015, 122).

How does this fit the received view? Let me first distinguish between two styles

of mechanistic explanation typically distinguish: etiological and constitutive (Craver

and Kaplan, 2020; Craver and Tabery, 2019). Etiological mechanistic explanations
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explain a phenomenon by appeal to its causally relevant antecedents. Constitutive

mechanistic explanations, by contrast, explain a phenomenon in terms of the hier-

archical arrangement of a mechanism’s components and the way those components

interact. One and the same phenomenon can be explained both etiologically and

constitutively. For instance, an etiological explanation why a calculator displayed

‘10’ might appeal to the fact that it was at an earlier moment given ‘5’, ‘5’, and ‘+’

as input. A constitutive explanation might appeal (among other things) to the way

that the atomic logical or mathematical operations performed by the device (e.g.,

atomic operations on individual binary digits) constitute the more complex logical or

mathematical operations (e.g., operations on binary strings) it performs.

Etiological computational explanations are obviously causal explanations, and it

is not implausible to think that they can be captured in interventionist terms.57 It is

more controversial whether constitutive mechanistic explanations can be understood

causally, in interventionist terms or otherwise. Some say yes (Craver, 2007), while

others say no (Gillett, 2020). I will not attempt to settle that issue here. I constitutive

mechanistic explanations are causal explanations, then so much the better for my

argument. If they are not, then, if in addition some computational explanations are

constitutive mechanistic explanations, we have an alternative challenge to the received

view. Nevertheless, since limitative explanations are not plausibly understood as

constitutive explanations, the claim that they are a kind of non-causal computational

explanation is novel and in my estimation is a more compelling challenge to the

received view.

57There is some dispute about this, however. Woodward (2011) argues that mechanistic causal
relations ‘bottom out’ in counterfactual dependencies of the sort emphasized by the interventionist. If
this is right, it suggests that mechanistic etiological explanations can be understood in interventionist
terms. But see (Waskan, 2011) for some discussion.
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Representational explanation

Computational explanation is often associated with explanation in terms of a

system’s representational properties. Although there is longstanding dispute about

whether representational properties per se are causally efficacious, and if so, how, it is

more widely accepted that explanations in terms of a system’s representational prop-

erties are in at least some cases causal explanations (Fodor, 1981; Peacocke, 1995,

1999; Rescorla, 2017b; Burge, 2010). It is interesting to note that (Rescorla, 2014a)

goes further than this, and develops an account of the causal efficacy of represen-

tational properties in broadly interventionist terms. However, such a strong claim

isn’t strictly speaking required to accept that explanation in terms of a system’s

representational properties can be a kind of causal explanation.

Limitative explanations are computational explanations

My argument for premise 1 is brief, because I think this premise is highly plausible.

Not only are limitative explanations framed in terms of core computational notions

like Turing machines, but they also play a central role in contemporary computer

science. Insofar as explanatory practice is our best guide to computational explana-

tion, it is hard to imagine a better indicator than this that limitative explanations

are computational explanations. To deny premise 1, one would apparently have to

reject or at least radically reinterpret large swathes of computational practice. This,

to my mind, is a highly unpalatable option.

Limitative explanations are not causal explanations

I have two arguments for premise 2. One ‘indirect’ argument proceeds by noting

the similarities between limitative explanations and mathematical explanations by
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constraint, a la Lange. If limitative explanations are a kind of explanation by con-

straint, then, insofar as explanations by constraint are in general non-causal, so too

will be limitative explanations. This argument is indirect in the sense that it doesn’t

appeal to a specific conception of causal explanation. Instead, it assumes that expla-

nations by constraint are in general non-causal (so says Lange, at any rate), limitative

explanations are at least in part explanations by constraint, and concludes on this

basis that limitative explanations are non-causal too.

Since some philosophers may balk at the claim that explanations by constraint are

non-causal — or, at least, hold that it requires further argument — it will be useful

to have a ‘direct’ argument for premise 2 as well. The direct argument proceeds by

arguing that limitative explanations cannot be captured in interventionist terms. I’ll

sketch this argument next.

For concreteness, I’ll focus on a specific limitative explanation. Let the explanan-

dum be the failure of a particular system, such as a contemporary laptop, to solve

the halting problem. The explanans is that the laptop implements a certain compu-

tational model, such as a universal Turing machine, plus the fact that no universal

Turing machines solves the halting problem. It is instructive to consider how we

might intervene on the explanans in an effort to reveal counterfactual dependencies

between the explanans and explanandum. If such dependencies exist, this is some

evidence that the explanation can be captured in interventionist terms.

I think we can immediately rule out ‘interventions’ on the limitative result that no

Turing machine solves the halting problem. For one thing, there is little sense in which

we can ‘intervene’ on a mathematical fact or object. What would that even mean? At

least on standard views, Turing machines are abstract objects and limitative results
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hold with whatever degree of necessity is had by mathematical facts more generally.

These are simply not the kinds of things we can manipulate. Moreover, we if we

could make sense of the idea of a mathematical ‘intervention’, applying it to the case

at hand would require us to be able to make sense of countermathematicals like the

following:

If a universal Turing machine could solve the halting problem, then so too could

a physical system that implements it.

As I’ve noted in earlier chapters, there are serious challenges for interpreting

countermathematicals such as this. In light of these worries, it is hard to see the

explanatory relationship between limitative results and the physical systems they

apply to as one of counterfactual dependence. Rather, it would appear to involve the

much stronger relation of mathematical necessitation.

The other possibility would be to intervene on the computational model imple-

mented by the laptop. Here we have at least some intuitive sense of what this might

involve, since it does seem possible to change what computations a system implements

by, for instance, changing its hardware or running a different program on it. Never-

theless, there are no obvious physical interventions we could make on the laptop that

would allow it to solve the halting problem. It would seem the only possible changes

either leave us with a system equivalent in power to a universal Turing machine or

would make the laptop strictly weaker than a universal Turing machine. Either way,

there is no way to intervene on the laptop to make it solve the halting problem.

The upshot of these points is that limitative explanations do not seem to provide

what-if-things-had-been-different information. For, given the mathematical necessity

of limitative theorems, it is quite literally impossible for things to have been different
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in the relevant respects. If a physical system implements a Turing machine, then it is

impossible for that system (in its capacity as a Turing machine) to solve the halting

problem. By appealing to mathematical limits on the computational powers of certain

kinds of machines, limitative explanations provide, as it were, how-things-must-have-

been information. Given the fact that a system implements a Turing machine (or

equivalent model), it couldn’t have helped but fail to solve certain kinds of problems.

This line of reasoning could be objected to in various ways, and I do not take

the argument presented here, at least as it stands, to be definitive. Nonetheless, it

at least suggests that limitative explanations prose a serious prima facie challenge to

the received view of computational explanation. A fuller development and appraisal

of the ideas presented in this section remains on the agenda for future work.

4.7 Upshots for computational implementation

On the account developed above, limitative results apply to physical computing

systems only under significant idealization. As I shall argue next, this poses a problem

for many traditional accounts of computational implementation. In particular, it is

a problem for accounts which conceive of the relationship between physical systems

and computational models as one of isomorphism. For, as I shall argue, for highly

idealized computational models the required isomorphisms may not obtain.

To make matters concrete, I’ll focus on a particular isomorphism-based account

due to Michael Rescorla. In order to provide uniform implementation conditions for

different computational models, Rescorla introduces the notion of a canonical state

space descriptions 〈S, I,Ω, s0〉, where S is a set of computational states, I is a set of

inputs, Ω : S × I → S is a transition function, and s0 is a designated start space.
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To obtain the implementation conditions for a given computational model, such as

a particular Turing machine, we first redescribe it as a CSSD, and then consult the

following definition:

CSSD Implementation

A physical system P implements a CSSD M = 〈S, I,Ω, s0〉 just in case
there is a function f mapping states and inputs of P to states and inputs
of M such that:

1. For each s ∈ S, there is a possible state p of P such that f(p) = s.

2. For each i ∈ I, there is a possible input k to P such that f(k) = i.

3. P conforms to the transition function Ω. More precisely: if P were
to enter into state p and to receive input k, where f(p) = s and
f(k) = i, then P would transit to a state p∗ at the next stage of
computation, where f(p∗) = Ω(s, i).

4. Absent external interference or internal malfunction, P always begins
computation in state p0, where f(p0) = s0 (assuming that s0 ∈ S).58

Now consider what it would take for, say, a microprocessor to implement some

universal Turing machine according to this account. First, we translate the machine

into an appropriate CSSD, with corresponding state space S, inputs I, and transi-

tion function Ω. Although the details of the translation depend significantly on the

specifics of the Turing machine (e.g., its alphabet, number of heads, internal states,

and so forth), we can at least note that I, and perhaps also S (depending on the

translation), will be infinite. This is because universal TMs are defined over count-

ably infinite sets of inputs.

As I noted in section 3, however, physical computing systems have only finite

memory, while Turing machines in general have unbounded memory. So there will be

possible inputs i ∈ I and/or states s ∈ S with no analogue in any microprocessor — in

58(Rescorla, 2014b, 1281). This definition modifies Rescorla’s slightly in order to make the action
of the implementation function f explicit.
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which case clause (2) and potentially clause (1) of the above definition fail. Moreover,

for those inputs too large for the microprocessor to handle, clause (3) will be true

only vacuously if at all, since its antecedent will be typically fail to hold.59 Indeed,

according to the above account it would seem that microprocessors never implement

full-strength Turing machines; at best they implement bounded tape Turing machines.

Since BTTMs accept only finitely many inputs, it will be possible to find a CSSD

characterization of a BTTM that satisfies clauses (1) and (2). However, as I noted in

section 3, this conclusion sits awkwardly with computational practice. In particular,

it becomes hard to understand why computer scientists take limtiative results such

as the unsolvability of the halting problem to describe and explain systems such as

microprocessors if these systems do not implement Turing machines.

Perhaps the most obvious response to this worry is to amend the definition of

implementation, for instance by dropping or modifying clauses (1) and/or (2). The

most straightforward response drops the requirement that each i ∈ I or s ∈ S be the

value under f of some input or state of P . Instead, we simply require that each input

and state are in I and P , respectively, but don’t require that this exhaust I or P :

1∗. If p is a possible state of P , then for some s ∈ S, f(p) = s.

2∗. If k is a possible input to P , then for some i ∈ I, f(k) = i.

The trouble with this redefinition is that it may turn out that a system implements

many different Turing machines the action of whose transition function coincides for

those states and/or inputs in the image of f , but which diverges otherwise. This may

59This depends to a large extent on how we interpret the counterfactual conditional in (3). On a
standard similarity-based semantics (Lewis, 1973), for instance, and for sufficiently large choices of
input i, there will be no nearby possible worlds in which P can receive i as input.
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be a problem, because those Turing machines may have radically different computa-

tional properties owing to the behavior of their transition function on the states and

inputs lacking physical counterparts. For example, the machines might differ in their

asymptotic running time complexity. This is because results about asymptotic perfor-

mance are results about the behavior of a machine over all possible inputs. Indeed, in

some cases the asymptotic behavior of a machine ‘kicks in’ only for sufficiently large

inputs. Nevertheless, results about the asymptotic performance of Turing machines

are taken to bear on the performance capabilities of actual physical devices. But if

a system implements many machines which differ in their asymptotic performance,

then it is hard to see how to pick just one (or even a select few) of these machines

to describe the computational properties of the microprocessor in particular, for the

microprocessor would legitimately implement each according to the modified defini-

tion.60

Briefly, the proponent of the isomorphism-based account faces a dilemma. Either

the implementation function f maps onto the states and inputs of a mathematical

computation, or it does not. If it does, the physical systems do not implement Turing

machines, contra computer scientific practice. If it does — if f merely maps into

but not onto S and I — then it is indeterminate which Turing machine a system

implements. And this raises problems for how we use such machines to describe the

properties and behavior of physical systems.

Obviously, this this dilemma is sketchy and open to challenge. Nevertheless, it

suggests that the implementation conditions of highly idealized computational models

such as Turing machines are not best understood in terms of isomorphism. And while

60This worry bears certain affinities to the rule-following paradox (Kripke, 2000). For some recent
discussion, see (Warren, 2020). I will not pursue this connection here.
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I am happy to concede that isomorphism-based accounts may correctly capture the

implementation conditions for certain kinds of computational model — especially,

if not exclusively, those which require only finite memory — it seems to me they

mischaracterize the implementation conditions for others. And this is a problem, if,

as I’ve argued, highly idealized models often underwrite limitative explanations in

computer science.

So, if physical computing systems don’t implement Turing machines in virtue of

being isomorphic to them, then in virtue of what do they implement Turing machines?

I take up this question in the next chapter.
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Chapter 5: Implementation as resemblance

5.1 Introduction

I’ll start by summarizing my conclusion so far. In Chapter 2 I argued that we

ought to take a ‘mathematics-first’ approach to theories of physical computation.

In particular, I argued that we ought to answer the status and identity questions

at least partly in terms of the mathematical computations implemented by physical

systems. In Chapter 3, I argued that the most promising way for implementationist

theories to avoid the Putnam-Searle triviality worry emphasizes the relativity and

context-sensitivity of computational implementation. And in Chapter 4, through

an examination of limitative explanations, I argued that implementation does not

always involve an isomorphism between a physical system and the computation it

implements.

This chapter synthesizes these results and uses them to motivate a new account

of computational implementation, which I call the resemblance account. On this

account, implementation is not always or solely a matter of being isomorphic to a

mathematically characterized computation. Rather, implementation is understood in

terms of the more general notion of resemblance. Whether a physical system com-

putes, and if so, what it computes, is determined by the mathematical computation(s)

it resembles.
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The goal for this chapter is to develop the resemblance account in broad outline

and to make a prima facie case for it. I should emphasize at the outset, however, that

my discussion is programmatic. I do not have the space here to develop some finer

points of the account in the amount of detail they deserve. For now they remain on

the agenda for future work, and I will flag them as they arise.

Here is the plan. Section 2 introduces the resemblance account and provides some

intuitive motivation for it. Sections 3 and 4 develop the account in more detail.

Section 5 elaborates on the account and ties off a few loose ends. Section 6 concludes

by considering some directions for future work.

5.2 The resemblance account

I propose to begin at the beginning. In his landmark 1936 paper, Turing offers

the following description of a Turing machine (what Turing called an ‘a-machine’):

The machine is supplied with a “tape” (the analogue of paper) running
through it, and divided into sections (called “squares”) each capable of
bearing a “symbol” ... the configuration [of the machine] determines the
possible behaviour of the machine. In some of the configurations in which
the scanned square is blank (i.e. bears no symbol) the machine writes
down a new symbol on the scanned square: in other configurations it
erases the scanned symbol. The machine may also change the square
which is being scanned, but only by shifting it one place to right or left.
(Turing, 1936, 231)

As we know, Turing arrived at this conception by carefully considering the activity

of human workers proceeding effectively. The restriction that Turing machines may

only ‘observe’ one symbol at a time, for instance, is justified on the grounds that

human workers can only distinguish between finitely many different primitive symbol

types (Turing, 1936, 249-52).
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The importance of Turing’s insight is not hard to appreciate. By linking the char-

acterization of a Turing machine directly to the activities of actual human workers,

Turing’s analysis sheds light on the computational capacities and limitations of hu-

mans working effectively. Very roughly, the computational power of Turing machines

bears on the computational power of effective human workers because the former

resemble the latter in certain important respects: both have certain ‘perceptual’ lim-

itations, both follow only finitely many instructions one at a time, and so on. Indeed,

alternative analyses, such as λ-definability or Herbrand-Gödel general recursivity,

were unsatisfactory because they fail to adequately illuminate the basic activities of

a human working effectively.

It seems to me that Turing’s analysis contains the essentials of the resemblance

account. Turing machines bear on the computational powers of human workers be-

cause, and to the extent that, the former resemble the latter in certain respects. The

resemblance account generalizes Turing’s insight:

The Resemblance Account

A physical system implements a computational architecture in certain
antecedently specified respects just in case, and to the extent that, it
resembles that architecture in those respects.

Subsequent sections unpack the notion of a computational architecture and will

explain the notion of resemblance at play. Before that, let’s consider how the resem-

blance account answers the status and identity questions about physical computing

systems.

First, on this account, being a physical computing is a matter of resembling what

I will call a computational architecture. Computational architectures are objects

like Turing machines, microarchitecture specifications, programs, or neural networks.
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They are ‘blueprints’ for physical computing devices in the sense that they specify

a range of features a system must have in order to count as a computing device of

a particular sort. If a physical system resembles an architecture in the appropriate

respects, it thereby counts as a physical computing system. If a system resembles no

architecture in the appropriate respects, it does not.

With respect to the identity question, physical computing systems are individu-

ated by what they compute. This is determined by the computational architecture(s)

it resembles. Although there are different possibilities for what we might take sys-

tems to compute, for illustrative purposes consider the notion of a system computing

a function. This is a coarse-grained way of individuating systems computationally,

because there are typically different ways of computing the same function. In any

event, we know what it is for a Turing machine to compute a function: crudely, M

computes f just in case it halts with f(x) on its tape when given x as input. Accord-

ingly, a physical system computes f if it resembles M in the appropriate respects. A

physical system that resembles a different machine M∗, which computes a different

function h, is accordingly is computationally distinct from a system that implements

M .

One other aspect of the resemblance account is worth highlighting up front. Philo-

sophical interest in physical computation has revolved largely around two closely re-

lated notions: that of a physical system being a computing system, and that of a

physical system carrying out computations. At least to a first approximation, being

a physical computing system is a property of a physical system as a whole, whereas

being a computation is a property of a physical processes. The resemblance account

takes the notion of being a physical computing system to be the more basic of the
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two, in the sense that the kinds of computational processes that a system is capa-

ble of carrying out depends on the computational architecture(s) that the system

implements.

In this respect the resemblance account follows practice in computer science. Much

work in theoretical computer science begins by characterizing a computational archi-

tecture and then goes on to characterize the kinds of computational processes that

can be carried out by that architecture. Similarly, computer engineering and archi-

tecture investigate the overall computational structure a system must have if it is to

meet certain design standards concerning performance, reliability, and so forth. Thus,

initial motivation for the resemblance account derives from this widespread aspect of

computational practice.

5.3 Computational architectures

As I will use the term, a computational architecture is any mathematically or semi-

mathematically characterized structure used by contemporary computer or cognitive

scientists to describe physical systems computationally. So construed, computational

architectures comprise a large and heterogenous class of computational objects. De-

spite their differences, some of which I catalogue below, computational architectures

are united by the fact that they attempt to characterize the computational structure

of physical systems, albeit in different ways and at different levels of granularity.

A word on terminology. The objects I refer to as ‘computational architectures’

are sometimes referred to as ‘computational models’ (see, e.g., (Rescorla, 2014b)),

on the grounds that there are important similarities between the use of objects such

as Turing machines in computer and cognitive science, and the use of mathematical
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models encountered elsewhere in science. That is, the primary rationale for ‘model’-

talk is that Turing machines (etc.) are genuine scientific models. However, I am

unhappy with this choice of terminology, for two reasons.

First, although I agree that computational architectures are scientific models, sci-

entific models in general are used in many of different ways (Frigg and Hartmann,

2020). Computational architectures are unique in that they purport to characterize

phenomena which are themselves computational, and they purport do so by describ-

ing the computational structure and organization of physical systems. ‘Architecture’

seems to me to better emphasize this aspect of how objects like Turing machines

are used in computer science, at least sometimes. Second, ‘computational model’ is

ambiguous (Piccinini, 2007). On one usage, it means what I mean by ‘computational

architecture’. On another usage, a computational model is a computational system,

such as a program, which models some phenomenon which is not itself computational.

Computational models of the weather are a prime example — they model weather

patterns, but not by ascribing computational structure to the weather. Again, ‘ar-

chitecture’ seems to me to better capture the focus on computational structure.

In any event, whatever we decide to call them, computational architectures are

at the center of the resemblance account. This section starts with some illustrative

examples before discussing their features more generally.

5.3.1 Some examples

The contemporary scientific literature contains a variety of different kind of com-

putational formalism. These include machine models such Turing machines or fi-

nite automata, programs written in some programming language such as C, Java, or
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Python, and formal languages such as regular or context-free languages.61 Machine

models and programs are perhaps the most familiar and straightforward examples of

computational architectures in my sense.

For example, Turing’s original description constitutes a blueprint which specifies

the features a physical system must have in order to ‘counts as’ an Turing machine.

Some of these features concern the physical or mechanical features of the device. For

instance, on Turing’s characterization the machines have a read/write head and a

tape divided into squares, and operates by scanning the tape, writing symbols, and

shifting left or right. Other features are more abstract, and concern the patterns or

regularities the machine or its components exhibit. Others still concern what states of

the device represent. The symbols on the tape refer to natural numbers, for instance,

and a machine as a whole may be taken to represent, in some sense, the function it

computes. The upshot of all of this is that if a physical system exhibits these sorts

of features, it thereby counts as a Turing machine.

However, while Turing’s characterization is illustrative, it is also highly idealized.

Few physical systems compute if any in exactly the same way that Turing machines do.

Elsewhere in computer science we find architectures that more closely approximate

the structure of actual physical devices. On the more theoretical side are VLSI

(very-large-scale-integration) models that attempt to capture the high-level structure

and properties of contemporary microprocessors (Savage, 2008, ch. 12). On the more

practical end is work in computer architecture and engineering which produces highly

specific descriptions of computational architectures. For instance, the blueprint for

a contemporary microprocessor is known as a microarchitecture specification Harris

61(Savage, 2008) is a nice recent survey of the various formalisms found in contemporary theoretical
computer science.
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and Harris (2013); Weste and Harris (2011). Microarchitecture specifications detail

the features required for a system to count as a certain kind of microarchitecture.

Some of these features are described explicitly, for instance that the system have

a datapath with a certain pipelining scheme, certain components for sign extension

operations, and so on. Others are left tacit, such as the requirement that the system

be cast in a silicon wafer, that it have a certain clock rate, and so on.62

I also include programs among computational architectures. Unlike machine mod-

els, which specify a collection of components and a description of how those compo-

nents interact, programs are better understood as lists of instructions. They are more

abstract than machine models in that they do not always specify the kinds of com-

ponents that carry out their instructions. However, just how much more abstract a

given program is depends substantially on the language in which it is written. Pro-

grams written in an assembly or even machine code bear a much closer relationship to

hardware than do programs written in high-level languages such as Java or Python.

Nevertheless, despite this variability, programs are used to describe physical systems

computationally and consequently are computational architectures according to the

broad, ecumenical standard adopted here.

Although these are perhaps the clearest examples of computational architectures, I

would also include various unconventional and non-standard computing systems in the

class of computational architectures as well. Examples here include neural networks

(Rumelhart et al., 1987), analog computing systems (Maley, 2021), DNA and RNA

62Microarchitecture descriptions are often extraordinarily complicated. For instance, the
OpenSPARC specification, a relatively modest microarchitecture developed by Sun Microsystems,
runs over five hundred pages. See https://www.oracle.com/servers/technologies/opensparc-t1-
page.html.
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computing systems (Akhlaghpour, 2022), reservoir computers (Tanaka et al., 2019),

and quantum computers (Nielsen and Chuang, 2010), to name just a few.

5.3.2 General features

Next I will step back and consider computational architectures more abstractly.

To start, I want to highlight the apparent dual nature of computational objects like

Turing machines. Crack open a textbook on computability theory and you will likely

find Turing machines described in two main ways. Sometimes they are described

broadly physical terms, as devices with certain components (read/write head, tape,

etc.) which interact with each other in specific ways (reading, writing, moving left

or right, etc.). This is how Turing described them, at least initially. Soon after this

however, one will typically encounter a formal, set-theoretic characterization like the

following:

A Turing machine is a 6-tuple M = (Γ, β,Q, δ, s, h) where:

1. Γ is the tape alphabet;

2. β is the blank symbol, with Γ ∩ {β} = ∅;
3. Q is a finite set of states;

4. δ : Q× (Γ∪{β})→ (Γ∪{β})×{L,N,R} is the transition function;

5. s is the initial state;

6. h ∈ Q is the accepting halt state.

If M is in state q with letter a under tape head, and δ(q, a) = (q∗, a∗, C),
its control unit enters state q∗, writes a∗ under the head, and moves left,
right, or not at all as C is L, R, or N , respectively (cf. (Savage, 2008;
Sipser, 2013)).

What is the connection between these two ways of thinking about Turing ma-

chines? Given computability theory’s express goal of proving theorems about what
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can or cannot be computed by Turing machines, contemporary standards of math-

ematical rigor ensure that the set-theoretic characterization is all but inevitable

(Burgess, 2015). Nevertheless, on its own the set-theoretic construal bears no obvious

connection to physical computing systems. It is only by providing the formalism with

a specific physical interpretation that it comes to bear on actual physical devices.

This is the role of the physical description — it describes in a rough and ready way

the connection between abstract mathematical formalism and the concrete systems

that formalism applies to.

I think this dual character of Turing machines is representative of computational

architectures in general. On my view, architectures consist of two parts. At the

core of a given architecture is a formal, mathematically characterized computational

structure. On top of this is a specific physical interpretation of that structure. For ease

of reference, I’ll call these the ‘mathematical core’ and the ‘physical interpretation’,

respectively. Let me take each in turn.63

Mathematical core

The mathematical core has two main roles: it specifies the basic computational

operations carried out by an architecture of a given kind, and it delineates the data

structures over which those operations are carried out. For instance, in a classical Tur-

ing machine the basic operations are manipulations on single digits, and the memory

structure is a single one-dimensional array. Variations on the basic Turing machine

tinker with either the basic operations, or the memory structures, or both. For exam-

ple, K-graph machines generalize Turing machines by taking the memory structure to

63The account developed here is indebted to recent work in the philosophy of scientific model-
ing and the applicability of mathematics, especially (Cartwright, 1983; Giere, 1988; Teller, 2001;
Weisberg, 2013; Pincock, 2011).
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be an undirected graph, the basic operation on which consists of ‘rewiring’ large but

still finite chunk of graph (Sieg and Byrnes, 1996). More radical departures may in-

volve infinitary instructions (as in (Hamkins and Lewis, 2000)) or more sophisticated

data structures.

Just what form the computational operations and data structures take varies from

architecture to architecture. Turing machines embody a sharp distinction between

operations and memory, in that these two aspects correspond to different machine

components: the instruction set and read/write head on the one hand, and the ma-

chine tape on the other. This is not always the case. In neural networks, for instance,

the weights between nodes play a dual role: they store the learning history of the

network, and through the activation function at the various nodes they are part of

the computational operation performed by the network too.

Although each computational architecture has a mathematical core, this core is

not always described in fully formal, set-theoretic terms. Typically, one finds fully

set-theoretic characterizations only in contexts where mathematical rigor is at a pre-

mium: chiefly but not exclusively in computability and computational complexity

theory. Usually a more informal description suffices. For instance, although it would

be possible in principle to describe the mathematical core of a microarchitecture spec-

ification in purely set-theoretic terms — e.g., as a specific finite state automaton —

there is little reason to do so. For purposes in computer architecture and engineering,

a semi-formal description usually suffices. Even if it is not described in fully formal

terms, the mathematical core exists nonetheless.

At the most abstract level, we can treat a data structure as a set of internal

states S, plus a set of inputs I. The internal states may include output states, and
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one of these might be a designated ‘start’ state. Computational operations can be

captured in terms of a transition function φ : I × S → S (or transition relation,

if the architecture is non-deterministic).64 I should emphasize, however, that the

mathematical core is rarely presented in such austere terms, nor should we try to

translate a given architecture into some canonical description, such Rescorla’s CSSDs.

Doing so may obscure features of the architecture relevant to its implementation

conditions (Sprevak, 2012). Thus although the mathematical core can for certain

purposes be understood in terms of states plus transition function, it would be a

mistake to try to frame implementation conditions for architectures the in these terms.

I will return to this point below.

Finally, because it imposes no restrictions on I, S, or the action of φ, this charac-

terization of the mathematical core casts a very wide net. This is intentional, because

we wish to account for a wide range of different architectures. This includes highly

idealized architectures, such as those with infinitary instructions, or oracle machines

whose oracle contains solutions the halting problem. It seems to me undeniable that

these are genuine computational architectures — they are the kinds of things that

could be realized, if only physical reality cooperated.

Physical interpretation

The second part of a computational architecture is the physical interpretation.

This consists of an assignment of physical components, properties, states, values, etc.

to the mathematical core. One and the same mathematical core may be equipped

with different physical interpretations. For instance, consider the mathematical core

of a standard Turing machine, given above. One possible physical interpretation

64For a similar characterization, see, e.g., (Moschovakis, 2001).
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Figure 5.1: One way to be a Turing machine.

hews closely to Turing’s original informal description, and takes the data structure

to be a one-dimensional, segmented tape, and locates the basic operations in the

behavior of a physical read/write head — perhaps something like a trolley cart —

that literally moves left and right across the tape. This possibility is sketched in Figure

?? (courtesy of Boolos et al. (2007, 25)). Another possible physical interpretation,

not without historical precedent, ties the formalism more closely to the behavior of

humans working effectively. Here the states of the machine might correspond to states

of a human agent or their brain, and the action of the transition function might be

realized in the perceptual and motor apparatus of the agent (e.g., their eyes, hands,

and the tip of the pen).

Other physical interpretations are of course possible. Indeed, in principle, there

will be as many physical interpretations of a given mathematical core as there are

assignments of physical components, properties, or values to the parts of that core.

Which is to say: there will be quite a few. Rather than enumerate the possibilities

here, I will simply point out that the physical interpretations of interest will often

rely on the kinds of features that philosophers have long though important to physical

computation, some of which we encountered in previous chapters. These include, but
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are not limited to, specific physical properties, abstract causal/functional properties,

representational properties, teleological properties, and pragmatic properties concern-

ing how a system is or ought to be used. Of course, I don’t take this list to exhaust

the features that may be specified by a computational architecture. Indeed, it would

be a mistake to try to specify such a list once-and-for-all. Instead, we should regard

this list as open to addition or amendment, as computational scientists discover and

design new kinds of computational architecture.

The inclusion of specific physical properties deserves special mention. There is

a tendency among some philosophers to regard a system’s physical composition —

whether it is composed of silicon or sillyputty, for instance — as wholly irrelevant

to its status as a computational system. In practice, however, there are often subtle

relationships between a system’s physical composition and its broader computational

features. These relationships may be encoded in the description of a computational

architecture, so that a physical system counts as a particular kind of architecture

not only because it has the right functional, representational, etc. features, but also

because it is made out of the right stuff. Let me explain.

One goal in computer architecture is to design systems with a certain level of

performance. The most straightforward measure of perforamce is the number of

seconds it takes to execute a program:

performance =
seconds

program

We can unroll the right hand side somewhat. Programs are composed of instructions,

and instructions take a certain number of (internal) clock cycles to be executed. Clock
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cycles in turn take a certain amount of time, so this amounts to:

seconds

program
=
instructions

program
× clock cycles

instruction
× seconds

clock cycle

Now, because the number of instructions per program is typically outside of the

computer architect’s control, there are two main ways to improve performance: (1)

increase the number of clock cycles per second, for instance by increasing the clock

rate, which increases power consumption; (2) decrease the number of clock cycles per

instruction, for instance by reducing the instruction set (so that individual instruc-

tions take fewer cycles), or increasing parallelization.

Quite often these two improvements are complementary, and this has contributed

to the massive improvements in microprocessor performance witnessed in the last fifty

or so years. In some cases, however, they pull in different directions. For instance,

increased CPU miniaturization means that more transistors can be packed into the

same amount of space. However, increasing transistor density worsens heat dissipa-

tion. This is a problem, because errors become more likely as CPU core temperatures

increase. Slower clock rates decrease power consumption, but at the cost of decreased

performance. However, this can be offset somewhat by varying the thermal properties

of the silicon chip (Sohel Murshed and Nieto de Castro, 2017) or by tinkering with

the chip’s architecture (Azizi et al., 2010), among other things.

The point is that there can be intimate connections between multiple levels of a

system’s computational organization, from its physical composition to its datapath

and memory organization, and these connections are reflected in certain physical in-

terpretations. Of course, the mathematical core of a given CPU microarchitecture

might be given a different physical interpertation — in terms of cogs and gears, for

instance. But realizations of that interpretation would operate much more slowly.
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Only certain kinds of physical substrate will be able to meet high performance de-

mands, and this is reflected in the specific choice of physical interpretation for the

microarchitecture core.

As a final note, observe that computational architectures can be that more or

less fine-grained. This can be because the mathematical core is specified in more or

less detail, or because the physical interpretation is more or less exacting, or both.

A bare description of a Turing machine as a set of states plus transition function

imposes far fewer conditions on its physical realizations than does a microarchitecture

specification that specifies a highly parallelized datapath, multiple cache levels, a

certain number of cores, and specific kind of silicon substrate, and so on. As one

would expect, more exacting architectures will be realized by fewer system than less

exacting ones.

5.4 Resemblance

So much for computational architectures. Next up: resemblance. To a very rough

first approximation, the idea pursued here is that a physical system resembles a

computational architecture to the extent that it (a) has features ‘specified’ by the

architecture, and (b) lacks features not so specified. A physical system resembles an

Turing machine, for instance, to the extent that it has a read/write head, a control

unit, tape, and so on. I’ll start by motivating the use of resemblance. Then, I’ll draw

on recent work in the philosophy of science to offer a precise account of resemblance.

5.4.1 Why resemblance?

As we have seen, perhaps the most serious alternative to a resemblance-based

account of implementation is an account based on isomorphism. This is the approach
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adopted by the simple mapping account and others. There are certain advantages to

working with the broader notion resemblance, however. I’ll mention three.65

Isomorphism can be too demanding

Perhaps the most serious concern is that isomorphism is in some cases too de-

manding a requirement on implementation. In the previous chapter, I argued that

limitative explanations depend upon the implementation of highly idealized computa-

tional models such as Turing machines or register machines, but that it is questionable

whether the relevant isomorphisms obtain between ordinary physical computing sys-

tems and such architectures. If this is right, then whatever makes it the case that these

systems implement Turing machines, it isn’t the fact that the two are isomorphic.

In fact, I think this conclusion can be motivated on much more mundane grounds.

The reason is that physical computing systems suffer from the usual travails of phys-

ical existence: among other things, they are subject to environmental noise, defects

may occur in the manufacturing or development process, and they accumulate dam-

age over time and decay (Anderson, 2019). Sometimes these defects are catastrophic,

but not always; a few dead transistors in a little-used part of a chip likely won’t brick

a device. To illustrate, consider a microprocessor and the microarchitecture speci-

fication it is based on. If we conceive of microarchitecture specifications as highly

detailed formal structures, detailing the placement of each transistor, then, owing

65This is in many respects an instance of a larger debate about the nature of scientific modeling.
Many philosophers have suggested that the relationship between scientific models and physical sys-
tems is one of isomorphism or homomorphism (French and Ladyman, 1999; da Costa and French,
2000; Pincock, 2011). Suarez (2003) critically assesses the alternatives. More recently, others have
suggested that the relationship is better understood in terms of resemblance or similarity (Giere,
1988; Godfrey-Smith, 2006; Weisberg, 2013). While I do not claim that scientific modeling generally
ought to be understood in terms of resemblance, I do think that it is a natural tool for understand-
ing the relationship between computational architectures and the physical systems that implement
them.
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to damage and defects, there will typically be no one-one, structure-preserving map

from the physical transistors to the microarchitecture.66 Despite this, few computer

scientists would deny that the microprocessor implements a certain microarchitecture

specification.

In general, there is frequently more slack between physical computing systems and

the computational architectures they implement than is recognized by the suggestion

that implementation is isomorphism. Working in terms of resemblance allows us to

recognize this slack while nevertheless maintaining a connection between systems and

the architectures they implement.

Gradability and fine-grained judgments

Isomorphism-based accounts of implementation treat implementation as a yes/no

matter: either an appropriate isomorphism obtains, or it does not. Working in terms

of resemblance, by contrast, allows us to make finer-grained judgments about what

computational architectures a system implements. Because resemblance is always

resemblance to a certain degree and in certain respects, we are able to capture the

sense in which a system more faithfully implements one architecture instead of an-

other. For instance, although there is a sense in which a microprocessor implements a

Turing machine, there is also a sense in which it more faithfully implements a register

machine, and a sense in which it even more faithfully implements a microarchitecture

specification. It is not clear that an isomorphism-based account has the resources to

66In fact, there is typically substantial token-level variation between individual microprocessors.
Contemporary microprocessors contain redundant components. If in the course of quality-control
testing it is found that one component has failed, it is possible to toggle a backup which achieves
the same effect (this can happen either at the hardware level or through software). Indeed, different
versions of a single microprocessor family are often built from the same specification, but with
certain components disabled. For instance, chips in the intel family (i3, i5, etc.) have the same basic
architecture, but less powerful chips have cores disabled, while more powerful chips do not.
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capture this, whereas it is straightforward to do so in terms of resemblance. Working

with resemblance thus allows us to make a wider range of judgments about what a

system implements, and at a finer grain of analysis than otherwise.

Flexibility

A third point is that the notion of resemblance is highly flexible. This is ad-

vantageous for a couple different reasons. For one thing, given the wide variety of

computational architectures found in contemporary computer and cognitive science,

it is unlikely that there will be a straightforward one-size-fits-all approach that cap-

tures the implementation conditions for every computational architecture. Rather,

different computational architectures will have different implementation conditions,

depending on the particular mix of features they specify. While this may in many

cases involve isomorphisms, it need not in every case.

Of course, there are no free lunches. Because the notion of resemblance is so

flexible, it turns out that the resemblance account does not have a much to say about

what implementation consists in generally. Consequently, much of the interesting

work happens at the level of individual computational architectures or architecture

kinds, where we focus on the particular features required to implement that particular

(kind of) architecture. Although some philosophers will be displeased with this, I

don’t think it’s problem. For one thing, in Chapter 3 we saw that something like this

is a natural consequence of my response to triviality arguments. I’ll come back to

this brief below.

Second, because it is highly flexible, nothing is lost by moving to a resemblance-

based framework. If we wish, we can require that one of the respects in which physical

computing systems resemble architectures is that they are isomorphic. Moreover, as
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I will suggest below, it is possible to define a binary yes/no notion of implementation

within the resemblance framework. So while the resemblance account goes beyond

more traditional, isomorphism-based accounts, it has the resources to account for

their insights, too.

5.4.2 The relativity of implementation, redux

At a few points in the discussion I’ve mentioned that physical systems should not

be taken to resemble architectures tout court, but rather resemble them in certain

predetermined respects. What is the rationale for this, and what fixes the relevant

respects? Notice first that, Goodman (1972) points out, everything resembles ev-

erything else in some respect or other. Absent some restriction on the respects in

which a physical system might resemble a computational architecture, we encounter

the potentially problematic consequence that every physical system will implement

every computational architecture. Restriction makes resemblance substantive.

As noted in Chapter 3, when computational scientists wish to describe or explain a

system computationally, they do so in a particular investigative context. This context

accomplishes a few different tasks. One is fixing a particular conceptualization of the

physical system or systems under consideration. This includes a non-computational

description of certain select properties and/or behaviors of the system, typically just

those that are relevant, or at least believed to be relevant, to whatever it is about the

system that is to be described or explained computationally. The context also delin-

eates a range of possible computational architectures with which to characterize that
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system computationally. The choice of both conceptualization and candidate archi-

tectures is guided to a large extent by the theoretical goals, interests, and standards

of the researchers in question.

Thus an investigative contexts delimits a range of features relative to which com-

putational scientists judge the degree of fit between a system and a computational

architecture. That is, it fixes a ‘way of regarding’ a system computationally (or ways,

if there is more than one possibility). In the context of isomorphism-based accounts,

such ways were called labelling schemes. For resemblance-based accounts, I’ll call

the set containing these contextually salient features the ‘resemblance base’. The

members of the resemblance base will typically be the kinds of features encountered

earlier: the properties of the physical system we wish to describe or explain computa-

tionally, including its (non-computationally described) structure and organization the

descriptively or explanatorily salient properties of the computational architecture(s)

used to characterize the system.

On this approach implementation is fundamentally a relative notion: a physical

system implements a computational architecture relative to a contextually specified

resemblance base. Relative to a different resemblance base, a system may more closely

resemble a different architecture, or no architecture at all. This is as it should be.

As we have seen, different computational architectures are appropriate for different

descriptive and explanatory purposes. An account of physical computation should

have the resources to capture this.
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5.4.3 Resemblance scores

Some philosophers might be content to rest with an intuitive, or commonsensi-

cal, notion of resemblance. This is fine as far as it goes, but there are benefits to

working with a more precise account. Different formal accounts have been proposed

in the literature, some of which depart more substantially than a more traditional

isomorphism-based approach than others. For instance, French and Ladyman (1999)

suggest that resemblance can be understood in terms of partial isomorphism. Here

I will develop a view of resemblance based on Weisberg’s weighted feature-matching

account of similarity Weisberg (2012, 2013). However, I am quite open to the idea

that we could develop a resemblance-based account of implementation in other terms

(e.g., in terms of partial isomorphisms).

As I noted, resemblance always determined relative to a distinguished class of

properties in a resemblance base B. If C is a computational architecture and P is

a physical system, we’ll let BC ⊆ B be the features specified by C and BP ⊆ B be

the set of features of P . Then we can say that P resembles C, with respect to F , to

degree n just in case

|BC ∩BP | − |BC −BP | − |BP −BC | = n

For convenience, I’ll write Res(B,C, P ) = n. Here BC∩BP are the features shared

by C and P . BC −BP are the features specified by C which P lacks. And BP −BC

are the features had by C not specified by C. This equation, in effect, measures the

extent to which P ‘fits’ C’s specification.

This account treats resemblance as a graded notion. I think this is the most

basic notion of resemblance, but as I mentioned earlier we can define other notions
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as the need arises. For instance, we can say that P perfectly resembles C just in case

Res(B,C, P ) = n and |BC ∩ VP | = n. Similarly, we can say that C and P resemble

each other simpliciter just in case Res(B,C, P ) ≥ m, for some predetermined ‘cutoff’

degree of resemblance m. The notion of resemblance simpliciter can be used to

capture the kind of binary yes/no judgment furnished by isomorphism-based accounts

of implementation.

Exactly what degree of resemblance is required for implementation? On the one

hand, perfect resemblance seems too exacting: it is useful to allow that a physical

system may implement an architecture even when they don’t perfectly resemble each

other. On the other, too low a degree threatens to trivialize the notion of physi-

cal computation: there are plausibly some simple physical or functional properties

shared by paradigmatically non-computing systems and any computational architec-

ture. This is a non-trivial problem, and I do not have a satisfactory answer to it at

this point. It remains on the agenda for future work. For the time being, I will simply

say that implementation requires a ‘sufficiently high’ degree of resemblance, noting

that this is just a placeholder for what will undoubtedly be a complicated theory of

just what a ‘sufficiently high’ degree amounts to.

5.5 Further issues

This concludes my discussion of the core of the resemblance account. In the space

remaining I will fill out the account in certain respects.
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5.5.1 Do we need to provide uniform implementation condi-
tions?

The resemblance account declines to give much in the way of an informative gen-

eral story about implementation. Instead, it holds that we should focus on the im-

plementation conditions of specific architectures or architecture kinds, in the specific

scientific contexts in which they are deployed. Some philosophers may be unhappy

with this approach. For instance, Rescorla holds that a theory of implementation

should furnish a “canonical notation that can uniformly express the descriptive con-

tent of any computational model” (Rescorla, 2014b, 1280), and introduces the notion

of a canonical state-space description for this purpose. In a similar spirit, Chalmers

writes that “the theory of implementation for combinatorial-state automata provides

a basis for the theory of implementation in general” (Chalmers, 2011, 331).

The expectation underwriting these remarks is that it is possible, at least in princi-

ple, to redescribe any given computational model in terms of some designated canon-

ical formalism — canonical state-space descriptions for Rescorla, and combinatorial-

state automata for Chalmers. Strikingly, however, both Rescorla and Chalmers say

little about the translation procedure. Chalmers claims, but does not argue, that in

many cases the translation will be straightforward (Chalmers, 2011, 330). Rescorla

calls the translation an ‘inducement relation’, and declines to say when a given a com-

putational architecture induces a given canonical state-space description. Instead,

Rescorla “treat[s] the ‘inducement relation’ as primitive” on the grounds that he is

“not pursuing a reductive analysis,” but is instead “trying to offer an illuminating
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theory that respects how computational implementation figures within contempo-

rary scientific practice” and so “may legitimately presuppose a primitive inducement

relation” (Rescorla, 2014b, 1283).

It seems to me that this is a rather significant lacuna, especially given that there

is no a priori guarantee that the translation can be carried out without descriptive or

explanatory loss. For instance, Sprevak (2012) argues that in Turing machines there

is an distinction between control element (i.e., its transition table) and functional

architecture (i.e., read/write head and tape organization), but that this distinction

is lost in translation into the CSA formalism. If Sprevak is right, Chalmers’ account

thus mischaracterizes the implementation conditions for Turing machines.67

What of Rescorla’s refusal to give a ‘reductive’ analysis of implementation (what-

ever exatly that amounts to)? Of course, one is free to pursue whatever philosophical

projects one likes. I have no argument that Rescorla should not attempt to provide a

‘non-reductive’ account, whatever exactly that comes to. Nonetheless, all else equal

it seems to me that we should prefer a theory that does not rely on a primitive in-

ducement relation. For, absent such an account, it is little more than an article of

faith that a given canonical state-space description in fact captures the descriptive

content of a given computational architecture. It is thus far from clear that results

and properties framed in terms of one architecture apply to the canonical state-space

description as well. Again, there is a threat that something might get lost in trans-

lation.

67Milkowski (2011) raises a similar worry. For a reply, see (Chalmers, 2012, 11-15).
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One way to get around these worries is to provide a substantive account of the

translation/inducement relation. Although nothing I’ve said precludes the develop-

ment of such a theory, it remains an open issue whether one will be forthcoming any

time soon. Another option is to avoid the issue altogether. This is the route taken by

the resemblance account. That account concedes that there is much to be said about

the implementation conditions of computational architectures generally, and instead

suggests that we focus on the implementation conditions for particular architectures

or architecture kinds. I take it to be a point in favour of the resemblance account that

it avoids the awkward questions about translation confronting Chalmers’ account, and

that it needn’t retreat to the ‘non-reductive analysis’ of Rescorla’s.

5.5.2 Medium-independence and multiple realizability

On the resemblance account, to implement a give computational architecture a

system may need to have quite specific physical features. For instance, many con-

temporary microarchitectures are designed with the expectation that they will be

realized in a certain kind of silicon wafer. This may seem to cut against the idea,

widely endorsed, that computations are medium-independent (Haugeland, 1985; Pic-

cinini, 2015). I next explain how a notion of medium independence can be developed

within the resemblance framework.

To a first approximation, a property or process is medium independent if it can

be realized in different physical media. Cooking lentils is not medium independent,

because it can be realized in only quite specific physical media; powering a drive-

train is, because it can be accomplished by otherwise quite different physical systems

(internal combustion engines, electric motors, etc.).
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Medium independence is closely related to multiple realizability. A property or

process is multiply realizable if, roughly, it can be realized by different kinds of phys-

ical systems. Medium independence entails multiple realizability: if a property or

process is medium independent, then it can be realized in different physical media.

Note, however, that the converse fails. Being a corkscrew is multiply realizable, since

many different corkscrew designs might do the trick, but not medium independent.

Being a corkscrew is a matter of interacting with a specific physical medium (or, at

least, a restricted range of physical media), namely cork (both artificial and synthetic).

It seems undeniable that computations are medium independent, hence multiply

realizable. Recall Block’s (1995) remark an AND-gate might be realized either by

transistors, or by mice, string, and cheese. Moreover, the literature on unconventional

computation is replete apparent cases in which the same computation (e.g., a sorting

task) is performed by quite different physical systems. But it’s not clear that the

resemblance account can capture this apparent datum. The trouble is that there

appears to be no single computational architecture, in the above sense, common to

the wide variety of computing systems hypothesized by computer scientists. There is

no architecture, for instance, which both silicon and murine AND gates resemble.

What should the resemblance theorist make of this? The solution, I think, becomes

clear once we reflect on the role played by medium independence (or multiple realiz-

ability) in computational theorizing. In general we require a way to describe physical

systems that abstracts away from (some of) their physical details. So abstracted, we

can consider whether, e.g., two systems compute the same logical function despite

physical dissimilarities. Now, ordinarily this role is played by the alleged medium in-

dependence (multiple realizability) of computations. But if the resemblance account
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can supply a way to abstract from physical details, it can furnish a way to describe

physical systems at the desired level of abstraction. And this, I submit, is just what

is needed for computational theorizing. Let me sketch how this might go.

To begin, while above resemblance is characterized in terms of a single class of

features, we can also define a notion of resemblance that discriminates between dif-

ferent classes of features. If B1, B2, ..., Bm are classes of features, then we can say

that P resembles C with respect to the Bi (1 ≤ i ≤ m), to degree n just in case∑m
i=1Res(Bi, P, C) = n. Moreover, by adding coefficients we can discount (or boost)

the contribution of a particular class of features to the overall resemblance score.

Doing so gives

x(|BC ∩BP | − |BC −BP | − |BP −BC |) = n

I will write Res(B, x, P, C) = n as shorthand. In general, then, if xi ∈ R, (1 ≤ i ≤

m) are coefficients, the generalized resemblance score is given by
∑m

i=1Res(Bi, xi, P, C) =

n.

By appropriately choosing coefficients we can define a notion of pattern resem-

blance between systems. For instance, if B1, B2, B3 are classes of physical, functional,

and semantic features, respectively, with corresponding coefficients x1, x2, x3, then

by setting x1 = x3 = 0 and setting x2 = 1 we can say that P pattern resembles

C to degree n just in case
∑3

u=1Res(Bi, xi, P, C) = n, that P pattern resembles C

simpliciter just in case P pattern resembles C to a high enough degree, and so on.

How does all this help? Medium independence is naturally thought to concern

what I’ve called functional features. We say that silicon and mouse-and-string systems

compute AND, when they do, because at a certain abstract level of description they
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exhibit the same patterns, regardless of their physical substrate. The resemblance ac-

count can accommodate this fact by noting that different AND gates pattern resemble

each other. Thus the resemblance account can furnish a level of description appro-

priate for this part of computational theorizing, without abandoning the insight that

inclusion of specific physical features is an important part of computational practice.

5.5.3 Computational explanation

In Chapter 4 I argued that limitative explanations are non-causal explanations,

and that dominant theories of computational explanation do not capture their ex-

planatory power. There thus seem to be at least two kinds of computational expla-

nation: causal and non-causal. This final section connects them by sketching a view

of computational explanation that naturally emerges from the resemblance account.

To begin, the fact that a system implements a certain computational architecture

bears on the causal processes it can go through. If a system implements a Turing

machine, then (at one level of description) it is capable of the kinds of causal processes

typical of such machines: roughly, step-by-step processes according to finite effective

instructions. If, by contrast, a system implements a neural network architecture,

then (at the appropriate level of description) it is capable of different sorts of causal

processes: roughly, the kind captured by patterns of activation in a neural network.

Thus, given that a system implements a certain architecture, it is possible to causally

explain some property or behavior of a system by appeal to the specific causal pro-

cesses sanctioned by that architecture. In this way the notion of a computational

architecture underwrites causal computational explanations.
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However, reflection on an architecture itself allows us to identify limits on its com-

putational powers, and thereby on the limits of any physical system that implements

it. Reflection on the kinds of operations supported by Turing machines, for instance,

allows us to reason about what kinds of problems can be solved (in principle or in

practice) using only such operations. As I have been at pains to emphasize, identi-

fying such limits is a central part of contemporary computer science, an information

about such limits underwrites the wide applicability of limitative results.

Incidentally, although the focus in chapter 4 was on Turing-complete architec-

tures, the view sketched here straightforwardly generalizes, in two directions. On

the one hand are architectures strictly weaker than Turing machines, such as finite

automata or pushdown automata. On the other are architectures strictly stronger

than Turing machines, either in respect of which problems they can solve tractably

(this may include quantum computing architectures; see e.g. (Nielsen and Chuang,

2010) or in respect of which problems they can solve in principle [e.g., through various

forms of hypercomputation; see (Copeland, 2002). The primary difference between

these and more familiar Turing-complete architectures concerns the character of the

computational architecture involved (e.g., how much memory is available, or what

kinds of basic operations are supported). Nonetheless, in these cases too we can

explain systems causally by considering the kinds of causal computational processes

they support, and non-causally by considering the limits on those processes imposed

by the system’s overall architecture.

Thus information about what architecture(s) a system implements serves two

distinct but intimately related explanatory goals: it provides information about what
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a system can do, computationally speaking, but it also provides information about

what it cannot so do.

5.6 What’s next?

The goal of this dissertation was to develop a preliminary argument for the resem-

blance account. One theme of my discussion that philosophical thinking about phys-

ical computation often overemphasizes the importance of global, context-insensitive

conditions on implementation. Although such conditions are not unimportant, much

work remains to be done illuminating how computational scientists use computational

architectures in specific investigative contexts for particular descriptive or explana-

tory purposes. Work on physical computation would benefit from a wider and more

systematic survey of the uses of computation in the computational sciences. I’ll close

by mentioning a few potential avenues for future work.

First, much work remains to be done understanding how computer engineers

apply computational notions in the design of artificial computing systems such as

microprocessors. Of particular interest are the sorts of tradeoffs in performance,

power-consumption, etc. mentioned earlier in this chapter that arguably bear on

the implementation conditions of specific architectures. Especially interesting in this

connection is work on unconventional computing, which presents a variety of novel

computing systems which have received scant philosophical attention. Examining

these systems and understanding in what sense, if any, they compute, will further

our understanding of physical computation. The resemblance account is a natural

framework in which to pursue this work.
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Second, my discussion of limitative explanations in Chapter 4 lumped together

in-principle uncomputability results on the one hand and intractability results on

the other. However, it seems to me that there are important differences between

these cases. For instance, what it is for a problem to be solved ‘tractably’ is philo-

sophically contentious (Dean, 2021), and it seems to me that better understanding

the notion of tractability would illuminate how intractability results are applied to

physical computing systems, and what such applications show.

Finally, in an effort to more directly engage with computer scientific practice, I

have not discussed the computational theory of mind. However, a fuller development

of the theory should say something about this. It remains to be seen whether the

resemblance account can furnish a notion of physical computation adequate for the

computational theory of mind.
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