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Abstract 

The realization of next-generation quantum-based computing and communication 

devices is dependent upon the advancement in thermal management. These challenges 

include but are not limited to sub-Kelvin temperature cooling for quantum computing and 

sensing and high-density thermal energy dissipation for electronics. Thermal circuit 

designs are limited by the conventional passive thermal components, such as thermal 

resistors and thermal capacitors, in contrast to a wide range of active components in the 

electrical domain. On the verge of the second quantum revolution, the development of 

materials that enable active switching of thermal transport in a wide range of temperatures 

and methods that provide advantages over current thermal management approaches are 

essential. In this thesis, I will introduce new mechanisms for controlling thermal transport 

in solids based on quantum phenomena. 

Only recently was it recognized that topological properties of electrons in certain 

solids can have a dominant impact on the equations of motion of electrons. We discovered 

an ideal Weyl semimetal system, a topological material, that is field-induced: Bi1-xSbx, with 

x varying from 0.04 to 0.22. We developed a theory for the topology-induced mechanism 

for the transport of heat by electrons, the thermal chiral anomaly, and experimentally 

proved its existence. Under the right conditions, the electronic thermal conductivity of a 

Weyl semimetal will increase linearly with the applied magnetic field.  
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Secondly, we investigated the effect of Bose-Einstein condensation of excitons, an 

electron-hole pair, on the lattice thermal conductivity of an excitonic insulator. Our data 

showed a surprisingly high low-temperature thermal conductivity in Ta2NiSe5, an excitonic 

insulator, compared to those in Ta2NiS5, a conventional insulator with a similar lattice 

structure. We postulated the enhancement in thermal conductivity is due to the coupling of 

exciton condensate to the lattice. 

In the last chapter, we studied the effect of magnetism on the thermal transport of 

MnBi2Te4. We discovered an intriguing switch of the magnetic field dependence of in-

plane thermal conductivity in MnBi2Te4 as the material undergoes transition through 

different magnetic ordering in a magnetic field. Our study of the evolution of the magnon 

dispersion in the magnetic field revealed a strong, switchable interaction between magnons 

and the lattice, which strongly affects thermal transport in this solid. 
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Chapter 1. Introduction 

1.1 Switching of thermal transport 

Heat switches, also called thermal switches, are devices that alternate between good 

thermal conductors and good thermal insulators as needed.1 When one is installed in the 

heat-conduction pathway between a hot, heat-producing component and a heat sink, the 

change in thermal conductance can be used to control the component's temperature. The 

thermal conductance of the heat switch can be controlled by an external input such as 

electrical voltage, temperature, or external magnetic field. As indicated in Figure 1, a 

thermal switch is defined as a two-terminal component with a Q vs ∆T relationship that is 

dependent on an external control parameter such as an electric field, magnetic field, or 

applied pressure.2 The thermal conductance changes when this control parameter is 

changed. 

The on/off switching ratio 𝑟𝑟 = 𝐾𝐾𝑜𝑜𝑜𝑜 𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜 ⁄ is a figure of merit for a thermal switch,2 

where 𝐾𝐾𝑜𝑜𝑜𝑜 is the highest thermal conductance and 𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜  is the lowest thermal conductance 

that can be achieved by applying the control parameter.  
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Figure 1. A thermal switch is a two-terminal component with a Q vs ∆T relationship that 

is switchable between on and off states with an external control parameter2 

 
Heat switches can be used for a variety of purposes depending on the control input. 

Without the use of thermostats or heaters, temperature-activated heat switches can manage 

the temperature of heat-producing electronics or instrumentation, reducing power 

consumption and the need for heater control circuitry and software. One motivating 

example for thermal switches is spacecraft thermal management. Radiators that dump the 

spacecraft's excess heat into deep space must be sized to handle peak heat rejection loads. 

When the spacecraft generates far less heat, however, the same radiators may be overly 

effective in rejecting heat, causing the working fluid to freeze. Heat rejection rates and 

spacecraft temperature can be actively controlled using electric field-controlled thermal 

switches.  
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Figure 2. One-shot Adiabatic Demagnetization Refrigerator (ADR) puck from Quantum 
Design (top) in contrast to a continuous ADR cycle (bottom) 
 

The magnetic cooling cycle is a promising technology for enabling sub-Kevin 

refrigeration. Shown in Figure 2 is the One-shot Adiabatic Demagnetization Refrigerator 

puck from Quantum Design. This device uses magnetocaloric material (MCM) which is a 

paramagnet. Cooling operation starts with a magnetic field to align the moments. When 

the field is off, the MCM returns to a disordered state and absorbs heat, and the temperature 

drops down to around 100 mK. However, this device cannot maintain the low temperature 
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for a long time and needs regeneration to get back to 100 mK again. To keep a stable 

temperature, a device like this needs to be operated in cycles. This means switching the 

field on and off continuously and a thermal switch is needed to bring the MCM in and out 

of thermal contact with the cold reservoir every time the field is switched. So far, only 

mechanical switches are found for this application. These switches are slow in switching 

frequency and prone to mechanical issues. Therefore, a solid-state heat switch that can be 

turned on by a magnetic field would be more desirable for this application. 

Among the approaches to thermal switching, phase changing materials show good 

switching ratios and are heavily studied. Current phase changing materials rely on 

differential thermal conductivity between classical phase changes for thermal switching, 

for example: solid-liquid phase transitions or metal-insulator transitions. Our approach to 

thermal switching presented in this dissertation will be based on quantum phase transitions. 

The rest of Chapter 1 will provide theoretical background to the research projects presented 

in Chapter 3, 4 and 5. I will introduce topological electronic phases in Section 1.2. 

Topological electronic phase is an important concept in this dissertation since 2 out of 3 

materials system used in this work (Bi-Sb alloys and MnBi2Te4) can be classified as 

topological materials. Section 1.3 provides background of thermal conductivity in solids 

which consists of contributions from different (quasi-)particles. In section 1.3, I will also 

discuss thermal transport involving Bose-Einstein condensation (Section 1.3.5), and 

magnetic phase transition (Section 1.3.3) pertaining data analysis in Chapter 4 and 5, 

respectively.  
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1.2 Topological electronic phases in solids 

1.2.1 Electronic band structure in solid-state crystals 

Electrons in single atoms occupy orbitals, or discrete quantum energy levels. In a 

solid-state crystal lattice, a large number of atoms arrange themselves into a periodic 

structure. In a crystal lattice, an electron is shared among atoms and the electron can hop 

between different atoms with momentum k.3 An electron now not only sees the potential 

from one atom but a periodic potential of the periodic arrangement of atoms. 

 

Figure 3. Free electrons in crystals move over the periodic potential of the nuclei of the 
atoms. Credit: Joseph Heremans 

 

In this new problem, the electron’s wavefunction 𝜓𝜓(𝑟𝑟) = 𝜓𝜓0𝑒𝑒𝑖𝑖𝑖𝑖.𝑟𝑟  ,where 𝜓𝜓 is the 

wave function and r is position, now not only depends on the momentum k but also 

subjects to a periodic function. Bloch theorem then states that the hybridized state 

wavefunction can be expressed as the product of two components: a plane wave that depicts 

a free electron wave function modulated by a periodic Bloch function 𝑢𝑢(r) that depicts the 

effect of periodic potential in each unit cell on electrons. We have  𝜓𝜓(𝑟𝑟) = 𝑒𝑒𝑖𝑖𝑖𝑖.𝑟𝑟𝑢𝑢(𝑟𝑟). 
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Figure 4. Schematic representation of a Block function in one dimension. Solid line 
represents the real part of a typical Bloch state. The dotted line is from the eik·r factor. 
 

By plotting out energy E(k), we can construct the electron band diagram (Figure 

5). The momentum k can take only certain values since k must follow the periodic 

boundary conditions of the crystal. The de Broglie wavelength 𝜆𝜆=2𝜋𝜋ħ/k associated with 

the wavefunction cannot be smaller than the minimum distance between 2 unit cells, the 

lattice constant a. The momentum in that each direction therefore has a maximum 

magnitude 𝜋𝜋/2a. The ensemble of allowable momenta in k-space is then defined as the 

Brillouin zone (BZ). The BZ shape is a real space to momentum space transformation the 

shape of the unit cell. Same as the unit cell in real space, the BZ has periodic boundary 

conditions. This allows zone folding and the representation of reduced zone scheme for the 

energy bands. 

https://en.wikipedia.org/wiki/File:Bloch_function.svg
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Figure 5. Zone folding and reduced zone scheme representation of the energy bands 
 

1.2.2 Topology in band theory 

We will go over some key characteristics of band structure that give rise to its 

topology. The Berry connection and Berry curvature will be discussed. We will draw some 

analogies to explain the role of topology in band theory. 

Berry connection: Considering the electron wave function in a crystal, with each 

momentum k, the wavefunction has a r dependent spatial distribution that is centered at a 

specific r in the unit cell. This location defines the Berry connection χ, which is a k 

dependent vector field. Because the Berry connection is gauge-dependent, its local value 

cannot be observed. Berry connection can be thought of as analogous to the magnetic 

vector potential A in problems with magnetic fields in that only its curl has a physical 

meaning.3 



8 
 

 

Figure 6. Depiction of Berry connection χ as a vector potential in k space. Credit: Joseph 
Heremans 

 

Berry curvature: Now if we consider the electron band E(k) in k-space, at each 

momentum point the electron wave function possesses a vector χ(𝑘𝑘). Taking the curvature 

of this field with respect to k we have  

𝛺𝛺 ≡ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜒𝜒) = 𝛻𝛻 × 𝜒𝜒                                                                                                                                        (1.1) 

The Berry curvature can be calculated directly from wavefunction using Equation 

1.1. Mathematically, Berry connection can be thought of as analogous to the magnetic field 

𝐵𝐵 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐴𝐴) = 𝛻𝛻 × 𝐴𝐴. The Berry curvature acts like a magnetic field in k-space, giving rise 

to the anomalous velocity, the equivalent of Lorentz force. 

𝑟̇𝑟 = 𝛻𝛻𝑘𝑘𝜀𝜀 + 𝑘̇𝑘 × 𝛺𝛺                                                                                                              (1.2) 

𝑘̇𝑘 = 𝑞𝑞𝛻𝛻𝑟𝑟𝜇𝜇 + 𝑞𝑞𝑟̇𝑟 × 𝐵𝐵                                                                                                        (1.3) 

Symmetry properties of the Berry curvature4,5: Berry curvature under basic 

symmetry operation: For Berry curvature Ω(k), the Berry curvature is inversion symmetric 

if Ω(k)=Ω(-k). It can also be shown that for Berry curvature, it is time-reversal symmetric 

if Ω(k)=-Ω(-k). Combining these two symmetries, if a system has both time reversal 

symmetry and inversion symmetry, Ω(k) must be zero for any k. 

kx 

χ 

1 2 
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Chern number: The concept of a topological invariant emerges from topology, a 

branch of mathematics that studies properties of geometric objects that are conserved under 

continuous deformations. The Gauss–Bonnet theorem is its paradigm: the integral of 

geometric curvature K over the entire surface of an object is 4π(1-g), where g (the genus 

of the surface) is the number of holes in a three-dimensional shape (Figure 7). Its 

remarkable implication is that if one changes the object’s surface continuously without 

poking a hole through the object, g remains unchanged: it is a topological invariant.  

 
Figure 7. What is common between these figures of a dolphin, a cow, and a sphere? Their 
genus g is 0 i.e., their surfaces contain no holes. Credit: Brian Skinner 

 

The integral of the Berry curvature, like the physical Gaussian curvature of a 

manifold, is a quantized topological invariant known as the Chern number. For the nth 

electronic band, the Chern number is: 

𝑐𝑐𝑛𝑛 = 1
2𝜋𝜋 ∫ 𝑑𝑑𝑑𝑑.Ω𝑛𝑛(𝑘𝑘)                                                                                                                   (1.4) 

where k = (kx, ky) is 2D crystal momentum. The integral is integrated over the entire 

Brillouin zone. 

The electronic properties of a topological material are governed by a global 

invariant determined by applying the Gauss-Bonnet theorem to the Berry curvature in k 

space. These properties do not change continuously by defects or perturbations, an effect 

called topological protection, and can be very counter-intuitive. For example, unlike a 
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classic electron which would bounce off an obstacle such as a defect in a crystal, a 

topological electron must travel around a defect then continue with its trajectory if its 

velocity is topologically protected.  

1.2.3. 2D topological electronic systems, quantum Hall effects 

 

Figure 8. The trio of quantum Hall effects and their experimental realizations: the quantum 
Hall effect6, the quantum spin Hall effect7 and the quantum anomalous Hall effect8 
 

Integer quantum Hall effect6: The integer quantum Hall effect is the most basic 

example of the Chern number appearing in a transport property. When a two-dimensional 

electron gas is placed in a strong perpendicular magnetic field at low temperature, the 

integer quantum Hall effect occurs. Here, the Hall resistance Rxy exhibits steps in magnetic 

field that jumps in quantized values determined by: 
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𝑅𝑅𝑥𝑥𝑥𝑥 = ℎ
𝑒𝑒2𝑣𝑣

                                                                                                                  (1.5) 

where e is the elementary charge, h is Planck's constant and the factor ν can take on integer 

values (ν = 1, 2, 3...). As we will show next, ν is the Chern number for this system. 

Quantization of the circular orbits (cyclotron orbits) of electrons results in 

quantized Landau levels (LL). 9 If n LLs are filled and the rest are empty, as in an insulator, 

an energy gap separates the occupied and empty states. A magnetic field breaks time-

reversal symmetry in quantum Hall systems by forcing electrons into spiral trajectories 

with a particular handedness determined by the magnetic field direction. Forcing an 

electron to travel backward on that spiral trajectory without flipping the magnetic field 

would violate the law of Lorentz force, F = qE + qv × B. Either going forward or backward, 

the circular motion of the electron (cyclotron orbit) is preserved, time reversal symmetry 

is therefore said to be broken. For this reason, applying a magnetic field to a fermionic 

system would break time reversal symmetry. Broken time-reversal symmetry allows 

nonzero Berry curvature in k-space. 

 
 
Figure 9. Applying a magnetic field breaks time reversal symmetry: Forcing an electron 
to go backward on its trajectory breaks the law of Lorenz force 
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As discussed previously, the Berry curvature acts like a magnetic field in the 

equation of motion of electrons in k-space10. 

𝑣𝑣𝑛𝑛(𝑘𝑘) = 𝛿𝛿𝜀𝜀𝑛𝑛(𝑘𝑘)
ℏ𝛿𝛿𝛿𝛿

− 𝑒𝑒
ℏ
𝐸𝐸 × 𝛺𝛺𝑛𝑛(𝑘𝑘)                                                                                                         (1.6) 

where 𝑣𝑣𝑛𝑛(𝑘𝑘) is velocity of electron with momentum k in the nth band and Ω𝑛𝑛(𝑘𝑘) is the 

Berry curvature of the nth band. The anomalous velocity, which is a contribution to 𝑣𝑣𝑛𝑛(𝑘𝑘) 

in addition to the band dispersion contribution, is the second term in the equation. This 

velocity is always perpendicular to the electric field, resulting in a Hall current in the 

transverse direction. As a result of the equation above, in a two-dimensional band insulator 

the system's Hall conductivity is given by:10  

𝜎𝜎𝑥𝑥𝑥𝑥 = 𝑒𝑒2

ℏ ∫
𝑑𝑑2𝑘𝑘

(2𝜋𝜋)2
Ω𝑘𝑘𝑥𝑥𝑘𝑘𝑦𝑦

 
𝐵𝐵𝐵𝐵                                                                                                                     (1.7) 

We can immediately recognize the integral in Equation 1.7 is the Chern number 

thus it takes on integer value ν =1,2,…n. As a result, the Hall conductivity of a two-

dimensional band insulator of noninteracting electrons is quantized.10 The transition as the 

LLs passes through the chemical potential is not continuous thus it induces changes in 

topology of the band structure and jumping of Chern number by integer numbers only. For 

the case of a 2D electron gas, the Chern number for each LL is 1. 

The only condition for the quantum Hall effect to occur, as shown by the above 

derivation, is that the Chern number must be finite. Even in the absence of an external 

magnetic field, it is possible for the Chern number of some materials to be nonzero. A non-

zero Chern number arises when the periodic boundary condition fails or there are 

singularities of Berry curvature (band crossing) in the Brillouin zone. If a topological 

material combines broken inversion symmetry with a strong coupling between electron 
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momentum and spin (spin-orbit coupling or SOC), edge states can exist even if time-

reversal symmetry is preserved. For example, in a 2D topological insulator (TI), the two 

spin states will have nonzero Chern numbers with different signs. In this case, there exists 

counter-propagating spin-polarized helical edge states (Figure 8). This effect is known as 

the quantum spin Hall effect (QSHE). 

 
Quantum spin Hall systems, 2D topological insulators and Z2 classification: 

As mentioned in the last section, the time-reversal symmetry is preserved in QSHE, the 

Hall conductivity vanishes and the Chern number, C, is zero. Yet, the Berry phase picked 

up by each spin is not necessarily zero. One can consider opposite spins picking up the 

same Berry phase and hence resulting in the same nonzero spin dependent Chern number, 

however, with opposite signs.11 It was discovered that the QSHE can be described by other 

invariants, and therefore indeed realizes a novel topological phase at zero field, also with 

dissipationless edge states but different from the QHE. The Z2 invariant determines the 

number of pairs of helical edge states in the system. ν is 0 or 1 when there are even or odd 

pairs of helical edge states, respectively.12 If the topological analogy of Chern number is 

the number of holes an object has, then the analogy of Z2 classification is the mobius strip. 

Starting from a cylinder which has 2 surfaces and then proceed to cut the cylinder along its 

length to get a strip, if one twist one edge 180o and reattach the 2 twisted ends of the strip, 

we get a mobius strip with one single continuous surface. If one twists the strip twice then 

reattach, the object once again has 2 surfaces, and so on. The model predicted by Kane and 

Mele11 was realized in materials with strong SOC and band inversion which requires the 

existent of helical edge modes. The bulk-boundary correspondent requires the existence of 
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metallic gapless states on the surface for a smooth transition from topologically nontrivial 

state in the bulk to a topologically trivial state of vacuum without closing the gap in the 

bulk, hence the existence of protected surface states. 

 

Figure 10. Band inversion in materials with strong spin orbit coupling. The conduction 
band near the gap obtains orbital characteristic of valence band and vice versa. Dotted lines 
depict the gapless edge states. Credit: Joseph Heremans 
 

In a Z2 TI, the topological inverted band must come back to topologically trivial 

state at the boundary. The gapless edge mode allows this transition. In transport, the spin-

polarized gapless edge mode can be detected as a quantized Hall conductance. This was 

experimentally realized in HgCdTe heterostructures. The heavier element, Hg in HgTe, 

leads to a strong spin-orbit coupling. Depending on the thickness of HgTe, the band orders 

in the CdTe/HgTe quantum well can be either inverted or normal which shows 

corresponding quantized Hall conductance or non-quantized Hall conductance.7 

 

Quantum anomalous Hall effect 

The quantum anomalous Hall effect is a quantized Hall effect that occurs in a 

system without an external magnetic field. It requires the spontaneous magnetization of a 

ferromagnetic material even in the absence of a magnetic field. The quantum anomalous 
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Hall effect that occurs in magnetic topological insulators is the quantized version of the 

anomalous Hall effect. The Hall conductivity Rxy exhibits quantized values inmultiples 

proportional to e2/h, or the quantum of conductance. Similar to the QHE, the integer 

multiple is the Chern number. Unlike the QSHE, the spontaneous ferromagnetic (FM) 

magnetization favors one spin and results in a single spin polarized chiral edge state. 

Systems in which QAHE are observed are called quantum anomalous Hall insulators or 

Chern insulators.  

Experimental realization of the QAHE was first observed in a thin films magnetic 

topological insulator: Cr-doped (Bi,Sb)2Te3.8 With Fermi level tuning of a gate, anomalous 

Hall resistance reaches the predicted quantized value of h/e2 at zero magnetic field, 

accompanied by a drop in longitudinal resistance. The longitudinal resistance goes to zero 

in a strong magnetic field, while the Hall resistance remains quantized. 

1.2.4. 3D Topological electronic systems 

So far, only 2D topological systems have been considered. This section expands 

those concepts to 3D topological materials and discusses the symmetry of each class. 

Table 1. Classification of the topological electronic solid-state systems 
System Dimensions TRS Topo-

invariant 
Edge state 

IQHE 2 No Chern (n) n gapless chiral edge states 
QSHE – 2D TI 2 Yes Z2 (v) v # of pairs of gapless spin-

locking helical edge state 
QAHE 2 No Chern n gapless chiral edge states 
3D TI 3 Yes Z2 v # of pairs of gapless spin-

locking Dirac surface state 
3D Magnetic 
TI 

3 No Z2 and Chern Additional symmetry other 
than TRS can protect Dirac 
surface states. Some surface 
can have chiral edge states 
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Weyl 
semimetal 

3 Yes or 
No 

Protected 
Weyl pairs 

Fermi arcs 

 

Topological insulator: In a Z2 topological insulator, the non-trivial band gap leads 

to gapless surface states at its boundaries as dictated by Kramer’s theorem.13 First 

discovered in 2D systems, this concept was soon generalized to 3D topological insulators.14 

Similar to the case of 2D topological insulators, their Hamiltonian is time-reversal 

symmetry invariant, which means global Chern number is zero, but Chern number for each 

spin is ±1. This can be achieved in small-gap semiconductors for which the spin-orbit 

coupling is large enough to induce band inversion and spin-momentum locking. Inherently, 

topological insulator protected by time reversal symmetry, with chiral edge states of spin 

polarized electron insulator has an insulating interior but conducting surface. Ordinary 

band insulators can also support conductive surface states. However, topological insulators 

possess surface states that are Dirac fermions propagating in opposite directions.  

Small perturbations have no effect on the Z2 index, and gapless conducting edge 

states are symmetry-protected. However, the edge states can be gapped out in the presence 

of magnetic impurities that break TRS. 

Magnetic TI: Magnetic topological insulators are 3D magnetic materials with a 

non-trivial topological index that are protected by a symmetry other than time-reversal 

symmetry.15 It can also be seen as 3D version of the QAHE. In contrast to topological 

insulators in the previous section, introducing magnetism into topological insulators breaks 

time-reversal symmetry at certain surfaces. Surface states of an 3D MTI can be gapped if 

the topology-protecting symmetry is broken at that specific surface. In these 2D surfaces 
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with broken TRS, a non-zero Chern number can be defined and each gapped surface state 

exhibits a half-quantized anomalous Hall conductivity of e2/2h coming from the edge state 

of the surface. Additional symmetry on other surfaces can protect the gapless surface states 

in an MTI.  

The only example of an intrinsic MTI realized today is MnBi2Te4. In its ground 

state of magnetic ordering AFM-z, the equivalent time-reversal symmetry S=Ττ, which 

combines TR operation and the half-magnetic-lattice translation operation τ along the z 

axis, protects gapless Dirac cones on the <001> and <100> surfaces.16  The <0001> 

surfaces however are gapped under the Neel temperature due to the broken symmetry.17 

Monolayer MBT is ferromagnetic and topologically trivial. Even-layer MBT is fully 

compensated antiferromagnetic with zero net magnetization. The Chern number is 

therefore zero. With the half-quantized edge state conductance of top and bottom surfaces 

of opposite signs, the Hall effect exhibits zero quantized conductance. Odd layer MBT has 

a nonzero Chern number and exhibits QAH effect.18 These striking phenomena were 

experimentally observed by Deng et al.19 

Weyl semimetals 

  

c 
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Figure 11. Band inversion in 3D topological materials can either form (a) TI or (b) Weyl 
semimetal with symmetry breaking. (c) Fermi arc surface states in a Weyl semimetal 20  
 

A Weyl semimetal (WSM) is a topological material of different class than 

previously described systems with a unique band structure that is topologically protected. 

Low energy excitations of WSM are Weyl fermions.21 In a WSM’s electronic band 

structure, Weyl fermions exist as low-energy excitations in which bands disperse linearly 

in three-dimensional (3D) momentum space through a pair of nodes called “Weyl points” 

(WPs) that are separated in momentum space. Weyl fermions have chiralities. In a WSM, 

the chirality of Weyl fermions at the WPs can be seen as topological charges. This leads to 

monopoles and anti-monopoles of Berry curvature in momentum space that act like a 

momentum space magnetic field. Compared to the Dirac fermions in graphene or on the 

surface of topological insulators (TIs), Weyl fermions in a WSM are the most robust 

electrons and do not depend on symmetries except the translation symmetry of the crystal 

lattice.  

A Weyl semimetal either has TRS breaking or inversion symmetry (IS) breaking. 

The BZ has Weyl points which are monopoles of Berry curvature that comes in pairs. The 

existence of WPs and Fermi arc surface states is topologically protected and is its own 

topological invariant classification. It takes a large disturbance to bring the monopoles 

together to cancel them. Like TIs, WSMs also have topologically nontrivial surface states. 

The solutions to the Dirac equation of Weyl fermions on a lattice requires the existence of 

surface states called Fermi arcs. These arcs are discontinuous or disjointed segments of a 

two-dimensional Fermi contour, which are terminated onto the projections of the Weyl 
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fermion nodes on the surface. These so-called Fermi arcs are expected to induce fascinating 

transport properties and this subject is being heavily studied.  

Consider a slice through the BZ between two Weyl points, the net Berry flux 

accumulated across the slice leads to a Chern insulator with a nonzero Chern number, 

which will carry chiral edge states. If the slice stays far away from the two Weyl points, 

the material is a trivial 2D insulator. Thus, the chiral edge states exist only between these 

two Weyl points.20 

The chiral anomaly 

The chiral anomaly is an important phenomenon that occurs in WSM and will be 

the basis for arguments in Chapter 3. The chiral anomaly22 is produced in ideal WSMs by 

applying parallel electric and magnetic fields aligned along the direction of the WP 

separation, giving rise to charge pumping between the WPs of opposite Berry curvature.  

 

Figure 12. Evolution of Weyl bands in a magnetic field parallel to the separation of the 
WPs and the mechanism of the chiral anomaly 
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The remarkable evolution of the band structure into this point is explained as 

follow: (a) At zero field, we have the linear dispersing bands with crossing points WL and 

WR. In real space, the carrier has the same velocity but can move in an arbitrary trajectory. 

(b) By applying a field parallel to WL-WR, because of the Lorenz force, the magnetic field 

confines the electrons’ motion in helixes. At an extreme field, the diameter of these helixes 

becomes so small the motion electrons can be considered 1D motion along the applied 

magnetic field. Now going back to momentum space, the electron bands are separated in 

Landau levels with the lowest energy LLs being two lines either slanted to the left or right. 

Carriers occupying states on these last LLs can only either move left or right. This bulk 

state at the fermi level resembles the surface state in the QHE. (c) Now we can apply an 

electric field in the same direction causing the local Fermi level to to shift up on one WP 

and down on the other WP. This creates an imbalance of left movers and right movers. The 

excess of right movers is given by  𝛿𝛿𝑛𝑛𝑧𝑧 = 𝑒𝑒2𝜏𝜏
4𝜋𝜋2ℏ2

[𝑩𝑩.𝑬𝑬] which counts the number of states 

within the fermi level separation. The excess chiral charges move at the exact velocity 

dictated by the band structure and in the direction of the magnetic field. Their motion is 

said to be protected by topology. The anomalous current is proportional to the Fermi 

velocity v and the change in carrier density between WL and WR. The latter is proportional 

to the 2D density of state (DOS) 1/lB2, where lB≡ �ℏ/𝑒𝑒𝑒𝑒 is the magnetic length and the 

electric field is E = |E|. The longitudinal electrical conductivity along the direction z of an 

ideal WSM then is given by:22 

𝜎𝜎𝑧𝑧𝑧𝑧 = 𝑁𝑁𝑣𝑣
𝑒𝑒2𝑣𝑣𝑣𝑣
4𝜋𝜋ℏ𝑙𝑙𝐵𝐵2

                                                                                                             (1.8) 
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where τ -1 is the inter-WP scattering rate. The increase of 𝜎𝜎𝑧𝑧𝑧𝑧 with Hz gives rise to the 

longitudinal negative magnetoresistance (MR),23 which the scientific community has 

considered the experimental signature of the chiral anomaly.  

 

1.3 Thermal conductivity in solids 

In 1822, Fourier wrote in his book Theorie analytique de la chaleur: “Heat, like 

gravity, permeates all parts of the universe.” The reason is that everything carries thermal 

energy so thermal transport experiments are extremely useful when spin transport or charge 

transport is not accessible. For example, among elementary (quasi-)particles like electron, 

magnon and phonon, some has spin, some has charge but all of them carry thermal energy. 

However, heat transport can have contributions from many different (quasi-)particles and 

we usually can only measure a total effect of these contributions. It is therefore crucial to 

understand the behavior of each contribution in order to recognize and separate the 

contributions when possible.  

𝜅𝜅 = −𝑞𝑞′′

∇𝑇𝑇
= 𝜅𝜅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜅𝜅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + ⋯                                               (1.9) 

Assuming heat is conducted independently by electrons, magnons, and the lattice, 

thermal conductivity can be broken down as the sum of thermal conductivities contributed 

by electrons, magnons, and the lattice. There can be interactions between heat carriers, but 

the interactions are typically small and can be assumed negligible. When these interactions 

are large, special considerations should be taken in theoretical treatment and experiment 

design. 
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In the diffusive regime, thermal conductivity can be derived from the Boltzmann 

transport equation for each type of heat carrier or (quasi-)particle.  

𝜅𝜅 = ∫ 𝑑𝑑3𝒌𝒌
(2𝜋𝜋)3 𝜏𝜏𝒗𝒗 ⋅ 𝒗𝒗 �−

𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕
� (𝜀𝜀−𝜇𝜇)2

𝑇𝑇
                                                                             (1.10) 

With transformation of variable we can also write:  

𝜅𝜅 = ∫𝑑𝑑𝑑𝑑𝑑𝑑(𝜀𝜀)𝜏𝜏𝑣𝑣2 �− 𝜕𝜕𝑓𝑓0
𝜕𝜕𝜕𝜕
� (𝜀𝜀−𝜇𝜇)2

𝑇𝑇
                                                                         (1.11) 

Where 𝐷𝐷(𝜀𝜀) is the density of states and 𝑓𝑓0 is the statistical distribution function 

of each heat carrier. The thermal conductivity is an integral over the entire BZ. One can 

recognize the statistical distribution of the particle also comes into the equation as the 

energy derivative of the distribution function. 

1.3.1 Phonon thermal conductivity 

A phonon is a bosonic quasiparticle that is a quantum of lattice vibration. Like 

electron band structure, phonons in a 1D crystal have dispersion relation 𝜔𝜔(𝑘𝑘) that can be 

solved analytically in a simple model of masses and springs. 

𝜔𝜔±
2 = 𝐾𝐾 � 1

𝑚𝑚1
+ 1

𝑚𝑚2
� ± 𝐾𝐾�� 1

𝑚𝑚1
+ 1

𝑚𝑚2
�
2
−

4𝑠𝑠𝑠𝑠𝑠𝑠2𝑘𝑘𝑘𝑘2
𝑚𝑚1𝑚𝑚2

                                                              (1.12) 

The solution in Equation 1.12 can be plotted out as in the figure below. 
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Figure 13. Schematic plot for solutions of the phonon dispersion in 1D 
 

This solution yields two phonon branches. The acoustic mode is the branch 

resulting from the solution with the minus sign, while the optical mode is the branch 

resulting from the solution with the plus sign. The slope of the acoustic dispersion relation, 

dω/dk, determines the speed of propagation of an acoustic phonon, which is also the speed 

of sound in the lattice. The dispersion relation can be approximated as a linear dispersion 

at low values of k, corresponding to long wavelengths, and the speed of sound is 

approximately the slope of the acoustic branch at low k. Therefore, long-wavelength 

phonon packets can travel long distances across the lattice without scattering. They then 

become the dominant heat-carrying phonon.24 Optical modes usually have much higher 

frequencies than acoustic phonons and have flat dispersions. This optical mode is therefore 

propagates in short distance and becomes the dominant scatterer. 

Phonon thermal conductivity can be calculated from Equation 1.10 over all phonon 

modes to get: 

𝜅𝜅𝐿𝐿 = ∫𝐶𝐶𝑣𝑣(𝑘𝑘)𝑣𝑣(𝑘𝑘)𝑙𝑙(𝑘𝑘)𝑑𝑑𝑘𝑘3                                                                                            (1.13) 
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where l(k) is the mean free path.  

Figure 14. Phonon thermal conductivity of a non-metallic crystal.25 Dominant phonon-
scattering mechanisms are indicated along the abscissa. Upper curve is for a larger crystal 
 

Figure 14 shows the classic phonon thermal conductivity curve.25 At low 

temperature, the Boltzmann transport integral is deduced to 𝜅𝜅 = 1
3
𝐶𝐶𝐶𝐶𝐶𝐶, where C is the 

volumetric specific heat, v is the group velocity, and l is the mean free path. At low 

temperature, the mean free path is assumed to be the size of the sample, which is a constant, 

also called the Casimir regime. For phonons, acoustic phonons dominate at low 

temperature so the velocity is also a constant. Therefore, at low temperature, the phonon 

thermal conductivity is directly proportional to the specific heat, which follows a T3 law. 

Since the mean free path is only limited by the sample size, the peak of thermal 

conductivity of a larger sample is higher at lower temperature. At high temperature, 

phonon-phonon scattering dominates. There are two types of processes: normal and 

Umklapp. Normal processes transfer heat and conserve momentum; they are additive and 
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do not increase a crystal's thermal resistance. Umklapp processes however are resistive and 

doesn’t conserve momentum as the resultant momentum is folded back to the first BZ.  

 

Figure 15. Normal phonon-phonon scattering process and Umklapp scattering process 26 
 

Umklapp scattering becomes a dominant process at high temperature, as high as 

1/2 the Debye temperature Θ. The scattering time now becomes strongly temperature 

dependent and proportional to the number of phonons, following Bose-Einstein statistic. 

The scattering time is proportional to exp(Θ/T), giving phonon thermal conductivity κL a T 

dependency of exp(-Θ/T). In the limit of high temperature, the temperature dependency of 

the number of phonons reduces to a T1 dependency. The region in which the above 2 

regimes meet is where the phonon thermal conductivity is maximum; the peak temperature 

is typically between 1/10 to 1/100 of Θ. In this region, the thermal conductivity is most 

sensitive to defect scattering. As the number of defects in the crystal increases, the κL~exp(-

Θ/T) regime and the κL~T3 regime both smear out and the maximum gets lower and flatter. 
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1.3.2 Electronic thermal conductivity 

Figure 16. Electrical conductivity and electronic thermal conductivity of a metal as a 
function of temperature.25 The dominant electron scattering mechanism is indicated along 
the abscissa. The higher curves are for more perfect samples. 
 

In the free electron gas picture where each electron carries an electric charge e and 

quantity of heat kBT, in the absence of all interactions and the scattering is elastic,  kinetic 

theory of gases gives 𝜅𝜅 = 1
3
𝑐𝑐𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚〈𝑣𝑣〉 where  𝑐𝑐𝑣𝑣 = 3 𝑘𝑘𝐵𝐵

𝑚𝑚
 is the Dulong–Petit specific heat, n 

is electron density, l is the mean free path and 〈𝑣𝑣〉 = �8𝑘𝑘𝐵𝐵𝑇𝑇
𝜋𝜋𝜋𝜋

= � 8
3𝜋𝜋
𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 is the group 

velocity of electrons. From Drude model, the conductivity is 𝜎𝜎 = 𝑛𝑛𝑒𝑒2𝜏𝜏
𝑚𝑚

= 𝑛𝑛𝑒𝑒2𝑙𝑙
𝑚𝑚〈𝑣𝑣〉

. 

Therefore,κ
𝜎𝜎

= 𝑐𝑐𝑣𝑣𝑚𝑚2〈𝑣𝑣〉2

3𝑒𝑒2
= 8

𝜋𝜋
𝑘𝑘𝐵𝐵
2𝑇𝑇
𝑒𝑒2

= 𝐿𝐿𝐿𝐿 which is the classical derivation of the Wiedemann–

Franz law with L being the Lorenz ratio. However, the Lorenz ratio of L=8/π~2.55 from 

this derivation does not accurately predict the correct experimental values. The Lorenz ratio 
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is then corrected to 𝜋𝜋
2

3
≈ 3.29 using the Sommerfeld method, which takes quantum effects 

into account. This value agrees very well with experimental values. 

In metals, the electrical conductivity is governed by the Bloch-Gruneisen law:25  

𝜌𝜌(𝑇𝑇) = 𝐴𝐴 � 𝑇𝑇
Θ𝑅𝑅
�
𝑛𝑛
∫ 𝑥𝑥𝑛𝑛

(𝑒𝑒𝑥𝑥−1)(1−𝑒𝑒−𝑥𝑥)
𝑑𝑑𝑑𝑑Θ𝑅𝑅/𝑇𝑇

0                                                                                     (1.14) 

At low temperature, the electron concentration is constant. Defect scattering limits 

the mean free path to a constant. The electrical conductivity is constant and simply limited 

by the defect level of the crystal so the electronic thermal conductivity follows a κe~T1 law.  

In the high temperature regime (T>Θ), the electron-acoustic phonon interactions 

dominate. The highest energy phonons are the phonons with the k vector as large as the 

size of the BZ which is the same k vector that the electrons at the Fermi level have. 

Electron-acoustic phonon scattering changes the momentum of the electron by a large 

angle that is temperature independent. In this regime, the number of phonon modes is fixed; 

thus, the number of phonons is simply proportion to the temperature. Therefore, the 

scattering rate is proportional to T and electrical conductivity is proportional to T-1, leading 

to a κe~T0 law 

In the intermediate regime (T< Θ), phonons have momenta that are smaller than 

the electrons at the Fermi level, so electron-phonon scattering is small angle scattering. The 

number of phonon modes and the population of phonons in each mode are both temperature 

dependent. Combining these effects, the temperature dependence of electrical conductivity 

in this regime has a T-5 dependency. In this intermediate regime, if the scattering were 

elastic, WFL would predict a T-4 dependence of the electronic thermal conductivity; 
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however, scattering becomes inelastic in this regime which also makes the Lorenz ratio 

vary. 

1.3.3. Spin thermal transport and magnetic ordering 

At a finite temperature, localized spins develop a precession with a cone angle 

normal to the direction of magnetization. The propagation of this cone angle through the 

solid is known as a magnon. Magnons are bosonic quasiparticles which follow a wave 

equation similar to that of phonons. In analogy, the vibrational displacement of the lattice 

is propagated in phonons, while the precession cone angle is propagated in magnons.  

 

Figure 17. Schematic illustration of a magnon or spin wave26 
 

For an antiferromagnetic (AFM) ordering, the magnon dispersion relation is:27 

ℏω = ℏ𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚|sin (𝑘𝑘𝑘𝑘)|                                                                                                (1.15) 

The Taylor expansion at low energy gives:  

ℏω = ℏ𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘                                                                                                                         (1.16) 

Magnetic anisotropy adds a Zeeman term, which manifests as a small energy gap 

at the zone center. For ferromagnetic (FM) magnons, for simplicity, we consider a one-

dimensional dispersion relation: 

ℏω = 4JS(1 − cos𝑘𝑘𝑘𝑘)                                                                                                 (1.17) 
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With small k, Taylor expansion of Equation 1.17 results in a parabolic dispersion, 

ℏω ≅ (2JSa2)𝑘𝑘2, which is more commonly written as ℏω ≅ D𝑎𝑎2𝑘𝑘2, where D is the 

magnon stiffness. Surprisingly, FM magnon dispersions at small k resemble the dispersion 

of electrons near the band edge. When we apply an external magnetic field Bext, a Zeeman 

energy gµBBext is added to the magnon dispersion, which opens a gap. The gap size grows 

linearly with magnetic field. If we figure in magnetic anisotropy, the anisotropy energy 

(i.e., the energy gain that this alignment gives to the magnetic system) can be expressed in 

terms of an anisotropy field Ba by writing it as a Zeeman energy gµBBa. In turn, Ba then 

can be added to the external field Bext to form an “effective” field Beff. The final magnon 

dispersion for FMs is then: 

ℏω = g𝜇𝜇𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐷𝐷𝑎𝑎2𝑘𝑘2                                                                                             (1.18) 

Like phonons, magnons contribute to both specific heat and thermal conductivity.28 

Although the magnonic thermal conductivity can add to the total thermal conductivity, 

magnons can also have add negative contributions to the lattice thermal conductivity by 

scattering into phonons. 

1.3.4 Techniques to separate common contributions of thermal conductivity 

Separate lattice thermal conductivity: In semiconductors or semimetals, 

separation of contributions from electron and phonon from the total thermal conductivity 

can often be done by using magneto resistivity measurements. Using Boltzmann transport 

equation with relaxation time approximation, we get: 

𝜅𝜅𝑒𝑒(𝐵𝐵) = ∫ 𝑑𝑑3𝑘𝑘
(2𝜋𝜋)3

𝜏𝜏𝜏𝜏. 𝑣𝑣 �− 𝛿𝛿𝑓𝑓0
𝛿𝛿𝛿𝛿
� (𝜀𝜀−𝜇𝜇)2

𝑇𝑇
1

1+𝜇𝜇2𝐵𝐵2
                                                                     (1.19) 
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or simply 𝜅𝜅𝑒𝑒(𝐵𝐵) = 𝜅𝜅𝑒𝑒 (𝐵𝐵=0)
1+𝜇𝜇2𝐵𝐵2

, where 𝜇𝜇 is the electron mobility. This shows that the electronic 

thermal conductivity of a high mobility sample approaches zero in a large magnetic field. 

Since 𝜅𝜅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐵𝐵) = 𝜅𝜅𝑒𝑒(𝐵𝐵) + 𝜅𝜅𝐿𝐿(𝐵𝐵) and 𝜅𝜅𝑒𝑒(𝐵𝐵) → 0 𝑎𝑎𝑎𝑎 𝜇𝜇𝜇𝜇 → ∞, we have 𝜅𝜅𝐿𝐿 =

𝜅𝜅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐵𝐵) 𝑎𝑎𝑎𝑎 𝜇𝜇𝜇𝜇 → ∞. In other words, the lattice thermal conductivity is not sensitive to 

magnetic field; so, in high field, the total thermal conductivity asymptote is the lattice 

thermal conductivity value. The electronic thermal conductivity is then deduced simply by 

taking the subtraction of the total thermal conductivity at zero field to the lattice thermal 

conductivity. This is an established method that is commonly used in high mobility 

samples.29  

Separating electronic thermal conductivity: In many cases, calculating 

electronic thermal conductivity using WFL κ
𝜎𝜎

= 𝑐𝑐𝑣𝑣𝑚𝑚2〈𝑣𝑣〉2

3𝑒𝑒2
= 8

𝜋𝜋
𝑘𝑘𝐵𝐵
2𝑇𝑇
𝑒𝑒2

 with free electron value 

of the Lorentz ratio can result in accurate values. However, prior knowledge of cases where 

WFL is violated is important in data analysis. 

Typically, the Lorenz ratio deviates from the free electron value when the scattering 

is inelastic. The free electron gas value of the Lorenz ratio applies at low temperature and 

at high temperature, where large angle, elastic scattering dominates. In the intermediate 

regime where small angle scattering dominates, the Lorenz ratio can be as low as 40% of 

the free electron value. As a rule of thumb, the Lorenz ratio may vary from slightly above 

the free electron value to about half or one-third of the free electron value. The Lorenz ratio 

for semiconductors is dictated by the position of the chemical potential relative to the band 

gap. If the Fermi level is deep into the band or at high temperature, we approach the 

degenerate limit and the Lorenz ratio recovers to the free electron value. As the number of 
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carriers decrease and the fermi energy goes into the band gap, electrons are more sensitive 

to scattering mechanisms. Here, the energy dependence of the scattering time is  

𝜏𝜏 = 𝜏𝜏0𝑒𝑒𝜆𝜆                                                                                                                            (1.20) 

where 𝜆𝜆 is the scattering exponent dictated by the scattering mechanism. The Lorenz ratio 

L therefore is proportional to 𝜆𝜆 + 5
2
. For example,  𝜆𝜆 =0 in case of neutral impurity 

scattering and 𝜆𝜆 =3/2 in case of ionized impurities scattering. The Lorenz ratio L is then 

calculated to be about 2 and 4 respectively, which is ±25% of the free electron value of 

3.29. In summary, in both metals and semiconductors, the Lorenz ratio classically can vary 

above or below about a third of the free electron value due to scattering mechanisms. 

Separate magnon thermal conductivity: With both being bosons, it is typically 

difficult to separate magnon thermal conductivity from phonon thermal conductivity. In 

ferromagnets, one technique to separate the two is to depopulate magnon bands by applying 

a magnetic field that opens a Zeeman-energy gap in the dispersion.  
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Figure 18. Magnon thermal conductivity of YIG, an electrically insulating FM, in an 
applied external magnetic field28 
 

The magnetic-field dependence of the total thermal conductivity is now  κ = κ𝑝𝑝 +

κ𝑚𝑚(𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒). The freeze-out of κm is visible in its field dependence, which shows a saturation 

at low temperature. Assuming that magnon-phonon interactions are negligible and phonons 

are insensitive to the magnetic field, magnon thermal conductivity can be deduced by 

subtracting κ(7T) from κ(0T),28 as seen in Figure 18. Here, we can see that the temperature 

dependence of phonon and magnon thermal conductivity at low temperature follow 

different power laws, which is a result of the difference between phonon linear dispersion 

and FM magnon quadratic dispersion.  

This technique only works in some cases. In several cases, phonons are scattered 

by magnons, and the scattering mechanisms can reduce the thermal conductance. When 

the phonon-magnon scattering is suppressed by the magnetic field, this effect is removed 

and the thermal conductivity can increase, as we will discuss in Chapter 5. 

1.3.5. Thermal conduction by Bose-Einstein condensate 

In many systems with bosonic quasiparticles such as phonons, magnons, and 

excitons (an electron-hole pair), it is often asked if the bosons will form a Bose-Einstein 

condensate (BEC) and further, if the BEC will participate in thermal transport. In Chapter 

4, we will seek to answer these questions in a solid which is expected to host an exciton 

BEC. This section provides some background information on BECs and ways a BEC can 

participate in thermal transport. 
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An extended introduction to Bose-Einstein condensation can be found in Ref30. In 

summary, a BEC is a collective quantum state of bosonic particles in which all the particles 

are at the same quantum state and have the same wave function. BECs thus carry no entropy 

and do not contribute to heat. However, there exists mechanisms which allow extremely 

good thermal transport in systems with BEC. 

 

Figure 19. Creeping effect of Helium II superfluid. 
 

Under certain circumstances, BECs exhibit a remarkable low-temperature 

phenomenon: superfluidity. This phenomenon was observed in the helium isotopes 3He 

and 4He at cryogenic temperatures. 4He atoms are bosons, and although 3He atoms are 

fermions, they can pair up with their counterpart of opposite spins to form boson-like states 

with zero net spin and thus, also undergo Bose condensation. In the superfluid state (also 

called Helium II), the individual particles don’t interact with each other and there is only 

observable interaction between the collective of particles and the physical container. He II 

flows through capillaries as thin as 10−7 to 10−8 m; it has no viscosity.31 He II also exhibits 

a creeping effect. When given solid surfaces that extend across the liquid surfaces of He II 

in two separate containers, He II will creep along solid surfaces against gravity in order to 
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reach an equal level. He II's viscous-free flow allows for extremely efficient mass transfer 

while having no heat transfer. When measured between two moving discs, however, a 

viscosity comparable to that of gaseous helium was measured. The two-fluid model for He 

II is used to explain this. According to this model, liquid helium below the phase 

transition point contains both a fraction of He II atoms in a ground state, which is superfluid 

and flows with zero viscosity, and a fraction of He atoms in an excited state, which behaves 

more like a regular fluid. 

The thermal conductivity of He II is rather extraordinary: the thermal conductivity 

is dependent on the temperature gradient, the vessel dimensions, and is greater than that of 

any other known substance, almost a thousand times larger than copper.32 This is because 

heat conduction in He II is governed by unique quantum mechanisms. When using the two-

fluid model, entropy transfer is governed by equations that are similar to the wave equation 

that describe sound waves. The velocity of heat propagation called ‘second sound’ is given 

by33 

𝑢𝑢2 ≈
𝑇𝑇𝑆𝑆2

𝐶𝐶
𝜌𝜌𝑠𝑠
𝜌𝜌𝑛𝑛
∇2𝑇𝑇                                                                                                             (1.21) 

where T is temperature, S is entropy, C is heat capacity, 𝜌𝜌𝑠𝑠
𝜌𝜌𝑛𝑛

 is the ratio of density between 

the superfluid portion and normal fluid portion. 𝜌𝜌𝑠𝑠
𝜌𝜌𝑛𝑛

 is a function of the order parameter and 

thus, is a function of temperature.  
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Figure 20. Heat conduction in heat pipe and hypothesis for heat-pipe heat and mass transfer 
mechanism in superfluid 
 

Another very interesting hypothesis is that superfluid in two-fluid model can 

conduct heat with a heat pipe mechanism. In a heat pipe, a working fluid sticks to the edges 

of the walls with a wicking layer. There is a cavity in the middle of the pipe. When the heat 

pipe is placed between a heat load and heat sink, the working fluid will evaporate on the 

hot end, vapor will travel through the cavity from hot to cold then condense on the cold 

end. The wick absorbs the working fluid and transfers the working fluid from cold to hot 

using the cohesion-tension mechanism like how water is transported through plants by 

evaporation of water from the leaves. The heat transfer rate is very high with this 

mechanism. Like heat pipes, the effective thermal conductivity is dependent on the 
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temperature gradient and the length of the heat pipe, deviating from the Fourier law in 

solids. With superfluid, we can apply the same two-fluid model with normal fluid in the 

center carrying heat from hot to cold and the superfluid creeping along the wall from cold 

to hot to complete a continuous loop. Because of the creeping property of superfluid, the 

wick is no longer required. Experimentally in He II, under a critical heat current density 

and under a critical temperature, the temperature gradient is reported to deviate from 

Fourier law34. The verification of Fourier law and the sample’s length dependence of 

thermal conductivity will be ample experimental testing for the two-fluid heat conduction 

mechanism. 
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Chapter 2.  Experimental methods 

2.1. Voltage measurements and noises 

The measurement of heat and charge transports revolves around 2 fundamental 

measurements: voltage measurement and temperature measurements. For measuring 

voltage, our lab uses Keithley 2182A nanovoltmeters. The voltage measurement can be 

found in the instrument’s manual and other resources.  

2.1.1. Voltage measurement noises 

A voltage signal Vsignal measured with instruments in the lab often has erroneous 

contributions other than the intrinsic voltage V0 from external factors:35  

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡)  =  𝑉𝑉0  +  𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  +  𝑉𝑉𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡)  +  𝑉𝑉1 𝑓𝑓⁄  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑡𝑡)                                     (2.1) 

The offset voltage Voffset is a residual DC voltage given by the instrumentation and 

wirings. Vwhite noise is the random fluctuation of the noise that has a Gaussian distribution 

and is often characterized as thermal noise or Johnson–Nyquist noise. Fundamentally, it is 

the electronic noise generated by the thermal agitation of the charge carriers (usually the 

electrons) inside an electrical conductor at equilibrium. This type of noise is approximately 

constant over the frequency spectrum. The power spectrum of white noise is independent 

of frequency up to a critical frequency where the noise power goes to zero. White noise 

can be filtered by simply averaging the signal over time. 
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Figure 21. White noise is the flat part of a circuit's intrinsic noise spectrum on a noise 
power spectral density diagram. At lower operating frequencies, pink noise becomes more 
intense, emerging from white noise around the corner frequency and increasing at 3 
dB/octave at lower and lower operating frequencies. 
 

V1/f noise is a component coming from the instruments that slowly drifts over time, 

also called pink noise or flicker noise. Noise spectrum studies have shown that this kind of 

noise has power density proportional to 1/f. It is easily seen that high frequency 

measurements can help reduce the density of 1/f noise. However, it is not always possible 

to operate measuring instrument at higher frequencies than the corner frequency. 

 

Figure 22. Illustration of lock-in phase detection method’s reference, measured signal and 
generated lock-in signal. Credit: Stanford Research Systems 
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2.1.2 Lock-in measurement 

A clever solution to treat time dependent noise is to use the lock-in phase detection 

method. The lock-in generate a reference lock-in voltage 𝑉𝑉𝐿𝐿sin (𝜔𝜔𝐿𝐿𝑡𝑡 + 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟) at the same 

frequency and as the input current (or input voltage in voltage mode). The measured signal 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 sin�𝜔𝜔𝑟𝑟𝑡𝑡 + 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠�is then multiplied by the lock-in voltage to get Vpsd (psd stands for 

Phase Sensitive Detection) 

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝐿𝐿 sin�𝜔𝜔𝑟𝑟𝑡𝑡 + 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠� sin�𝜔𝜔𝐿𝐿𝑡𝑡 + 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟� 

= 1
2� 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝐿𝐿 cos�[𝜔𝜔𝑟𝑟 − 𝜔𝜔𝐿𝐿]𝑡𝑡 + 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟� − 1

2� 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝐿𝐿 cos�[𝜔𝜔𝑟𝑟 + 𝜔𝜔𝐿𝐿]𝑡𝑡 + 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 +

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟�                                                                                                                                  (2.2) 

In practice, there should be additional Vpsd terms coming from frequency dependent 

noises with different frequencies 𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 different from 𝜔𝜔𝐿𝐿. For the moment, we consider 

only the signal with frequency 𝜔𝜔𝑟𝑟, since 𝜔𝜔𝑟𝑟 = 𝜔𝜔𝐿𝐿, the first term will be time independent 

while the second term is time dependent. For the noises, both the first and second terms are 

time dependent since 𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≠ 𝜔𝜔𝐿𝐿. These time dependent terms can be filtered out with a 

low pass filter or software where the AC components are omitted, what we are left with is   

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 = 1
2� 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑉𝑉𝐿𝐿cos (𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟)                                                                                    (2.3) 

From which we can calculate Vsignal once the phases θsig and θref are detected by the 

lock-in. The above description describes “in-phase lock-in” scheme. In systems where θsig 

and θref are exactly 90 degrees out of phase, Vpsd of “in-phase lock-in” will be zero. 
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Additional lock-in reference that is orthogonal to the reference can be used in this case to 

create a phase independent output 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝,𝑅𝑅 = �𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑖𝑖−𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎
2 + 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜−𝑜𝑜𝑜𝑜−𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎

2 . 

2.2. Temperature measurements 

2.2.1. Thermometer selection 

The measurement of temperature has many nuances that special considerations 

should be taken in different contexts. There are different types of thermometers with 

different optimum range of temperatures and different complexity and robustness under 

external fields. In the scope of this dissertation, temperature in thermal experiments were 

measured with either Type T thermocouples or Cernox® thermistors. The table below 

shows key differences in performance of these 2 types of thermometers. 

Table 2. Thermometer types comparison  
Thermocouples (TC) Cernox® 

Temperature 
Range 

T>60K T<60K with options available 

Magnetic field 
induced error 

<3% at 60K (7T field) for  

Cu-Constantan TC 

(see 2.2.3) 

3% at 2K (8T) field 

(Lakeshore website) 

Cost Negligible Hundreds of dollars for each cernox 

Installation Relatively easy Sensors are tiny and fragile, requires 
intricate mounting techniques 

Self-heating Negligible Excitation current dependent 

Calibration Tables readily available In-situ calibration needed, heat 
cycling recommended 
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2.2.2 Working principle of thermocouple 

The working principle of thermocouple involves the Seebeck effect: An electric 

field is developed when there is a temperature gradient in a material of conductor or 

semiconductor. The Seebeck coefficient S is given by: S=dV/dT 

 

Figure 23. Construction of a thermocouple for temperature measurement 
 

Two distinct types of metals are linked together to make two junctions in a 

thermocouple. These two materials are commonly made from opposite-sign Seebeck 

coefficient materials. The body whose temperature is to be measured is attached to the hot 

junction. The other ends are connected to a body with a known temperature that is colder.  

To calculate actual temperatures Th at the hot junction, we first obtain Tb as a base 

temperature, usually at the same temperature as the cryostat sample stage. Tb is measured using 

calibrated Cernox thermometer that comes with the cryostat and temperature controller. 

Assuming the Seebeck coefficient of thermocouple variation between Th and Tc is negligible, Th 

is calculated as  

  𝑇𝑇ℎ = 𝑉𝑉𝑇𝑇ℎ
𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑏𝑏)
� + 𝑇𝑇𝑏𝑏                                                                                (2.4) 
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Here, SCuCon is Seebeck coefficient of copper-Constantan (a Ni-Cu alloy) 

thermocouple as a function of temperature. SCuCon is taken from published reference table 

in NBS handbook.36 In the next section, we detail how SCucon were measured in our lab in a 

calibration process. To ensure that all four ends of thermocouple wires that are attached to 

the base are at temperature Tb and that Th is measured exactly on the sample, thermocouples 

are made of thin wires, dTC=0.0025 mm. This diameter minimizes heat flow through the 

wires while still allows manageable handling of the thermocouples and maintains a low 

electrical resistance. Copper and constantan wires were spot-welded to form the hot 

junction then attached to the sample with a small dot of silver epoxy to ensure 

measurements of voltage and temperature differentials were at exactly same points on the 

sample. Estimated measurement error is at the order of 3% above liquid nitrogen 

temperature, mostly due to noise in the voltages. Estimated error for temperatures down to 

liquid helium temperature is detailed in the next section.  

EMF integration method: The above section describes method of inferring Th 

assuming a small temperature gradient Th-Tc thus the change in Seebeck coefficient SCuCon 

of the thermocouple between Th and Tc is negligible. This is often applicable in experiments 

above liquid nitrogen temperature. It is customary that the temperature gradient is kept 

within 1-3K thus the variation in SCuCon is within a few percent. A more accurate approach 

to calculate Th without the assumption is to use the absolute electromotive force function 

of the thermocouple, defined as 

𝐸𝐸(𝑇𝑇) = ∫𝑆𝑆(𝑇𝑇)𝑑𝑑𝑑𝑑                                                                                                              (2.5) 
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The value of E(T) can be numerically integrated from the calibrated S(T) function. The 

voltage measured across the thermocouples can be written as 

𝑉𝑉𝑇𝑇𝑇𝑇 = ∫ 𝑆𝑆(𝑇𝑇)𝑑𝑑𝑑𝑑𝑇𝑇ℎ
𝑇𝑇𝑏𝑏

= 𝐸𝐸(𝑇𝑇ℎ) − 𝐸𝐸(𝑇𝑇𝑏𝑏) thus 𝐸𝐸(𝑇𝑇ℎ) = 𝑉𝑉𝑇𝑇𝑇𝑇 + 𝐸𝐸(𝑇𝑇𝑏𝑏)                                         (2.6) 

From here, Th can be found by solving for 𝐸𝐸(𝑇𝑇) = 𝑉𝑉𝑇𝑇𝑇𝑇 + 𝐸𝐸(𝑇𝑇𝑏𝑏) numerically 

2.2.3. Thermocouple calibration 

The sensitivity of Cu-Constantan thermocouples used in thermal conductivity 

measurements of this work has been checked experimentally. The Seebeck coefficients of 

constituent 25 µm diameter copper and Constantan wires used to fabricate the 

thermocouples were measured as follows: A temperature gradient was created along the 

length of a slender piece of glass with one end bonded to a resistive heat source and one 

end bonded to a heat sink. At steady-state condition, the heat sink temperature was 

controlled by the temperature controller of Quantum Design PPMS, and the heat flux was 

constant. At two specific points on the glass, where the ends of the sample wires were 

welded, temperatures of these points were measured with cernox temperature sensors that 

were calibrated in the temperature and field range of the experiment by Quantum Design. 

The voltage between two ends of the sample wires were measured with a Keithley 

nanovoltmeter. The measurements were conducted at discreet temperature points between 

5 K to 300 K, in sweeping-down magnetic field from maximum field of 7 T to minimum 

field of -7 T in Quantum Design PPMS. Controls software was programmed using 

LabVIEW. 
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We calculate the Seebeck coefficient of the sample wires using the following 

formulas: 

 𝑆𝑆𝐶𝐶𝐶𝐶 = 𝑉𝑉𝐶𝐶𝐶𝐶
𝑇𝑇𝐻𝐻−𝑇𝑇𝐶𝐶

− 𝑆𝑆𝑀𝑀            (2.7) 

 𝑆𝑆𝐶𝐶𝐶𝐶 = 𝑉𝑉𝐶𝐶𝐶𝐶
𝑇𝑇𝐻𝐻−𝑇𝑇𝐶𝐶

− 𝑆𝑆𝑀𝑀            (2.8) 

where 𝑉𝑉𝐶𝐶𝐶𝐶 and 𝑉𝑉𝐶𝐶𝐶𝐶 are the voltages measured between the two ends of sample wires, 𝑇𝑇𝐻𝐻 

and 𝑇𝑇𝐶𝐶 are temperatures measured at the two ends of sample wires, and 𝑆𝑆𝑀𝑀 is the Seebeck 

coefficient of the measuring circuit. Accordingly, the Seebeck coefficient of the Cu-

Constantan couples was calculated using: 

𝑆𝑆𝑇𝑇𝑇𝑇 = 𝑆𝑆𝐶𝐶𝐶𝐶 − 𝑆𝑆𝐶𝐶𝐶𝐶 = � 𝑉𝑉𝐶𝐶𝐶𝐶
𝑇𝑇𝐻𝐻−𝑇𝑇𝐶𝐶

− 𝑆𝑆𝑀𝑀� − � 𝑉𝑉𝐶𝐶𝐶𝐶
𝑇𝑇𝐻𝐻−𝑇𝑇𝐶𝐶

− 𝑆𝑆𝑀𝑀� = 𝑉𝑉𝐶𝐶𝐶𝐶
𝑇𝑇𝐻𝐻−𝑇𝑇𝐶𝐶

− 𝑉𝑉𝐶𝐶𝐶𝐶
𝑇𝑇𝐻𝐻−𝑇𝑇𝐶𝐶

  (2.9) 

The resulting values are reported in Table 3. 

Table 3. Results of Type T thermocouple calibration 
T(K) 𝑆𝑆𝑇𝑇𝑇𝑇  at 

zero field 
(V/K) 

Max. deviation 
of 𝑆𝑆𝑇𝑇𝑇𝑇 in field 
(V/K) 

Relative 
deviation of 
𝑆𝑆𝑇𝑇𝑇𝑇 field (%) 

𝑆𝑆𝑇𝑇𝑇𝑇 from 
NBS125 (V/K) 

Deviation of 
𝑆𝑆𝑇𝑇𝑇𝑇 from 
NBS125 (%) 

60 1.30E-05 1.33E-05 2.2 1.38E-05 -5.8 
40 9.42E-06 1.02E-05 8.1 1.02E-05 -7.3 
20 5.33E-06 5.83E-06 9.4 5.50E-06 -3.0 
10 2.44E-06 2.62E-06 7.3 3.03E-06 -20 

 

The calculated field dependence of Cu-Constantan thermocouples is the difference 

between columns 2 and 3, given in % in column 4. The total deviation from National 

Bureau of Standards (NBS) table 125 (data repeated in column 5) is given in column 6. 36 
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The absolute values of the error, the deviation from NBS reported in the last 

column, is below 6% down to 60. Above 60 K, the total error is 12%, but the relative error 

on the temperature dependence is below 6%. The relative error in the magnetic-field 

dependence is less than or equal to 2% down to 60 K, and less than 10% at 34 K.  

2.2.4 Working principle of thermistors and thermistor resistance measurement 

Thermistors are semiconductor-based temperature measurement devices. Because 

the resistance of a thermistor varies with temperature, the temperature of the object in 

thermal contact with the thermistor can be inferred by measuring resistance. 

 

Figure 24. Lakeshore Cernox bare chip packaging and dimensions 
 

Thermistors resistance measurement: To use thermistors, we need to measure 

their resistances. Due to limitation of the number of pins out on most cryostat, it is more 

practical to wire the thermistors in series. This way, the setup only needs to use 5 pins for 

2 thermometers in quasi-1D thermal measurements and 1 additional pin for each additional 

thermistor. The wiring diagram is shown below. 
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Figure 25. Wiring diagram for cernox resistance measurement. Resistances of cernox 
sensors are R1, R2 and R3 
 

Note that the resistance measured is the total resistance of the thermistor and 

resistance of the wires from anchoring point to the thermistor, added by the contact 

resistance of between the wire and the thermistor. The later 2 resistances should be avoided 

since they add additional error with varying temperatures and magnetic field. It is 

recommended to use electrically conducting metal lead wires such as gold or copper to 

limit the contribution of wire resistance to less than an ohm at room temperature. Short 

wire or no wire at all (standard 4 leads measurement) is ideal in this regard but this can 

create another problem with heat loss, as will be discussed later. At cryogenic temperature, 

the wire resistance contribution would generally be negligible. To reduce contact 

resistance, it is recommended to attach the leads to the chip using Indium solder or hot-

pressed gold contact from factory. For more detail, refer to Lakeshore Cernox Appendix 

C: Sensor Packaging and Installation.   

DC resistance method: The DC method uses Ohm’s law and measures the DC 

voltage drops across a thermistor. DC current is applied across the thermistor by a Keithley 
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6001 and voltages are measured by Keithley 2182A with 7002 switch box. Thus, the 

resistance can be calculated using Ohm’s law:  

𝑅𝑅 = 𝑉𝑉
𝐼𝐼
                                                                                                                                (2.10) 

AC resistance method: AC resistance bridges such as Lakeshore 370 use lock-in 

method and directly give the resistance as the output. When allowed, AC method is 

preferred over DC method since it is extremely sensitive to small signal that is sometimes 

too miniscule compared to noise. Thus, a smaller excitation current can be used to reduce 

self-heating of the sample. The disadvantage of AC measurement is the delay for the time 

dependence process of phase detection and converting the time domain signal to frequency 

domain. Therefore, AC measurement is less sensitive to signal that changes faster than its 

integration time. For example, it is generally not suitable for measurement in a sweeping 

magnetic field. 

Self-heating consideration: Special care must be given to minimize the heat 

generation on the thermistors due to Joule heating. To be safe, excitation current should be 

chosen to be small enough so that the Joule heating power PJ=I2R on each thermistor is in 

the order of nW.  

2.2.5. Thermistor calibration. 

Zero field measurement: For a thermistor, calibration is the process of generating 

an equation that relates the resistance to the temperature. The Steinhart-Hart Equation can 

be used to approximate the relationship between thermistor resistance and temperature. 37 

𝑇𝑇 = 1
𝑐𝑐1+𝑐𝑐2 ln(𝑅𝑅)+𝑐𝑐3(ln(𝑅𝑅))3

                                                                                                 (2.11) 
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By inverting both sides and adding a quadratic term we can transform the equation to a 

polynomial form 

1
𝑇𝑇

= 𝑎𝑎1 + 𝑎𝑎2 ln(𝑅𝑅) + 𝑎𝑎3(ln(𝑅𝑅))2 + 𝑎𝑎4(ln(𝑅𝑅))3                                                              (2.12) 

The values of the constants, a1, a2, a3 and a4 are determined in the calibration 

process. Calibration was done by measuring the resistance of cernox in-situ, meaning that 

the thermistor is mounted on the sample as it should be measured in the measurement and 

thus, the resistance should be identical in the actual measurement. The sample is mounted 

on the platform of the PPMS. The calibration program then varies the platform temperature, 

waits for temperature stabilization and measures the resistance. A table of temperature vs 

resistance is then constructed that allow calibration constants to be computed. To avoid 

divergence of 1/T, T should be in Kelvin. Polynomial regression functions can be used to 

find the coefficients a1 to a4, which can be done on any common program such as MathCad.  

Calibration in a magnetic field: The same process can be repeated to generate a 

polynomial function that relates 1/T to ln(R) at each magnetic field that the measurement 

will be done at. Generally, magnetic field dependence of cernox sensor is extremely small 

and only becomes necessary for temperature below 10 K. The reported deviation in field 

(dT/T(%)) of these sensor even at 2 K is less than 3% at 8 Tesla. 
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Figure 26. The reported result deviation in field dT/T(%) of CX-1050 sensor from 
Lakeshore website 
 

2.3. Applications in heat and charge transport properties measurements 

2.3.1 Hall and resistivity measurement 

The isothermal electrical resistivity and Hall resistivity were measured using a 

typical Hall bar-geometry setup (5-point probe method) with the magnetic field 

perpendicular to the electric field. The sample was put on an electrically insulating but 

thermally conducting sapphire substrate (see Figure 27). This was done to eliminate the 

effect of secondary Seebeck and Nernst voltage and ensure isothermal measurement 

conditions by keeping the temperature gradient along the length of the sample and across 

the sides of the sample to a minimum. Electrical probing contacts were constructed with 

copper wires that were spot welded to the sample. When necessary, silver epoxy was used 

to reinforce the contact mechanically. A brass or copper current spreader was used to make 

electrical current contacts. The current spreader is electrically contacted to the sample with 

a thin layer of silver epoxy to create an even distribution of current lines. 
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Figure 27. Measurement configurations and sign convention for Hall and resistivity 
measurements 
 

Electrical conductivity is defined as a tensor, describing proportionality of electron 

flux j to the electric field E. For a Hall bar geometry, the conductivity tensor can be 

considered 2D 

�𝑗𝑗𝑥𝑥𝑗𝑗𝑦𝑦� = �
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑦𝑦𝑦𝑦 𝜎𝜎𝑦𝑦𝑦𝑦� �

𝐸𝐸𝑥𝑥
𝐸𝐸𝑦𝑦
�                                                                                                        (2.13) 

we can then define 𝜎𝜎 = �
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑦𝑦𝑦𝑦 𝜎𝜎𝑦𝑦𝑦𝑦�.In our measurement, we measure electrical resistivity 

and the Hall resistivity which can be written as: 

𝜌𝜌𝑥𝑥𝑥𝑥 = 𝐸𝐸𝑥𝑥
𝑗𝑗𝑥𝑥

= 𝑉𝑉𝑥𝑥
𝐼𝐼𝑥𝑥

.𝑊𝑊.𝑡𝑡ℎ
𝐿𝐿

= 𝑅𝑅𝑥𝑥𝑥𝑥.𝑊𝑊.𝑡𝑡ℎ
𝐿𝐿

;  𝜌𝜌𝑥𝑥𝑥𝑥 = 𝐸𝐸𝑦𝑦
𝑗𝑗𝑥𝑥

= 𝑉𝑉𝑦𝑦
𝐼𝐼𝑥𝑥

.𝑊𝑊.𝑡𝑡ℎ
𝑊𝑊

= 𝑅𝑅𝑥𝑥𝑥𝑥. 𝑡𝑡ℎ                                  (2.14) 

Either Vx, Vy, Ix can be obtained from DC method or Rxx and Rxy can be obtained 

from AC measurement. To find conductivities, we apply a tensor inversion 𝜎𝜎 = 𝜌𝜌−1 

The low-field (i.e., H < 5 mT at 10 K and < 50 mT at 100 K) Hall coefficients RH 

were measured and converted into a carrier concentration via the relation:  
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𝑅𝑅𝐻𝐻 = − 1
𝑛𝑛𝑛𝑛

                                                                                                                              (2.15) 

The carrier concentration is therefore 𝑛𝑛 = − 1
𝑞𝑞𝑅𝑅𝐻𝐻

 . The low-field mobility then was 

derived from the resistivity and the carrier concentration. The carrier mobility is obtained 

as follows: 𝜇𝜇𝑛𝑛 = −𝜎𝜎𝑅𝑅𝐻𝐻 

The error in the Hall and resistivity measurements in the transverse magnetic-field 

setup comes from the geometrical effect. If the sample is short with L/W ratio of 

approximately 2, at higher field (i.e. µB > 1), the effect of distorted current lines could lead 

to an underestimation of Hall resistivity and resistivity magnitude by as much as 5 to 10%, 

as reported in literature. 38   

 
 
Figure 28. RH as a function of Fermi level EF 
 

Note that the Hall measurement measures majority carrier concentration. A special 

caution when measuring carrier concentration using RH is when Fermi level near the mid-
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gap in semiconductors or near compensated point in semimetals. The method we use 

assumes RH is a 1/n function as shown in dotted lines in Figure 28 which diverges at charge 

neutrality point. In reality, as Fermi level moves to charge neutrality point, RH will go 

through zero as shown in the red line, since there are as many electrons as holes deflected 

to one side of the sample in magnetic field. The relation RH~1/n is therefore not applicable 

when EF is near zero. To recognize this scenario, one should keep in mind that when EF is 

near zero, the Hall coefficient RH would vary greatly with temperature and magnetic field 

and potentially switch signs, making the Hall resistivity non-linear. Therefore, if 

measurement of RH shows non-linear in field, it is an indication of Fermi level near zero 

and the method for getting majority carrier concentration is no longer applicable. 

2.3.2 Longitudinal Magneto Resistance 

 
Figure 29. A device constructed for a longitudinal magneto resistance and longitudinal 
magneto thermal conductivity 
 

Longitudinal magneto resistivity was measured on samples using standard 4 probes 

set up. The direction of the magnetic field was parallel to the electric field. The sample 

stood vertically on a current spreader which was attached to an alumina base plate. The 
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sample was stabilized thermally at each temperature point for 30 minutes before each 

measurement started. Electrical measurements were conducted with direct current and 

sweeping-down magnetic field from a maximum field of 9 T to a minimum field of -9 T in 

a Quantum Design Physical Property Measurement System with a sweeping rate of 5 mT/s. 

In the device in Figure 29, the sample was mounted in such a way that both electrical and 

thermal measurements were performed in 1 experiment to avoid any effect of dislocations 

due to thermal cycling. Magneto resistance is defined as the relative difference of resistance 

compared to the resistance at zero field.  

𝑀𝑀𝑀𝑀(%) = 𝑅𝑅(𝐵𝐵)−𝑅𝑅(0)
𝑅𝑅(0) ∗ 100%                                                                                                (2.16) 

A negative LMR is deemed a signature transport property of the chiral anomaly in 

Weyl semimetal. However, as discussed in next section, there are other extrinsic effects 

that can create faulty LMR result in an LMR measurement.  

Extrinsic effects in LMR measurement: Longitudinal magnetoresistance (MR) 

measurements on high mobility semiconductors, can contain extrinsic signals unless 

extreme care is taken in sample preparation, dimensions, and alignment. The extrinsic 

signals can be generated in three ways: current jetting39, the galvanomagnetomorphic 

effect, 40–42 and the geometrical MR.43 Current jetting and the galvanomagnetomorphic 

effect give rise to an extrinsic negative longitudinal MR, the same sign as would the chiral 

anomaly.  The galvanomagnetomorphic effect is not likely to occur in our samples, first, 

because their dimensions are orders of magnitude larger than the Larmor radius of the 

electrons in fields above 1 T, and second, because the data show the transport to be robust 
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to defect scattering, so that it is likely also robust to surface scattering.  Current jetting is 

minimized and checked for by keeping sample dimensions small and placing the voltage 

contacts at different locations, looking for variations. 

The geometrical MR gives rise to an extrinsic positive MR, and arises either when 

the sample surface is not smooth, 44 or when the field is slightly misaligned with respect to 

the current flow lines in the sample, as can occur during sample mounting.  This is the main 

cause of difficulties in the present measurements of longitudinal magnetoresistance. The 

positive geometrical magnetoresistance is38 𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝜌𝜌(1 + 𝐴𝐴𝜇𝜇𝑚𝑚𝑚𝑚
2 𝐵𝐵⊥

2) and the relative 

correction for the positive geometrical MR is: 

∆𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝜌𝜌� = 𝐴𝐴𝜇𝜇𝑚𝑚𝑚𝑚
2 𝐵𝐵⊥

2                                                                                                              (2.17) 

 where B⊥=µ0H⊥ is the magnetic induction in the direction perpendicular to the current 

and µmo the mobility and the pre-factor A depends on the ratio between the length of the 

sample along the current flow direction to its width.  The pre-factor varies from A=1 for a 

Corbino disk geometry, to A=0 for an infinitely long and thin sample.  For the geometries 

of concern here, A is of the order of A=0.25 for a square sample and A=0.05 for a length-

to-width ratio near 10:1.38,43 In longitudinal measurements B


 is in theory parallel to the 

current direction, but in practice field misalignment by an angle θ generates a transverse 

component | | sinB B θ⊥ =


 to the magnetic field vis-à-vis the current lines, so that the 

Lorenz force distorts them.  The relative error bar on longitudinal MR measurements is  

∆𝜌𝜌𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝜌𝜌� = 𝐴𝐴𝜇𝜇𝑚𝑚𝑚𝑚
2 𝐵𝐵2𝑠𝑠𝑠𝑠𝑠𝑠2(𝜃𝜃)                                          (2.18) 
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In some samples, this error is the main source of error in the electrical resistivity 

measurements. To overcome these challenges, improvements to sample mount methods 

was developed to avoid the extrinsic effects. First of all, the crystal was shaped in a long 

needle shape with L/W ratio approach a factor of 10. This is to avoid current line distortion. 

Secondly, current spreaders are mounted on both ends of the sample, with the voltage 

probing wires along the spine of the sample to avoid current jetting. Last but not least, it is 

crucial to align the crystal with the base with best precision. A set precision machined 

scaffold was fabricated to make sure the sample is perpendicular to the base and is parallel 

to the field. A goniometer (Wixey Model WT41) was used to measure the angle between 

the long direction of the sample and the base of the heat sink to calculate the error bar. The 

alignment error was limited to 0.1 deg, which limit error of positive MR to 5% given by 

Equation 2.18.  

2.3.4 Thermoelectric coefficient measurements 

 
Figure 30. Measurement configuration and sign convention for Seebeck and Nernst 
coefficient measurement 
 

Seebeck coefficient: Seebeck coefficient relates the developed electric field when 

temperature gradient is established in a material, E=-S∆T. Consider the electron and hole 
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gas in a temperature gradient, electrons and holes are diffused in the sample from hot to 

cold, equilibrium is established by the opposing electric field Ex. Figure 30a above depicts 

a geometry in which heat flux is in the x-direction and it establishes the opposing electric 

field in same direction. This is a one-dimensional case in which the Seebeck coefficient is 

defined as a constant: 

𝑆𝑆 = − 𝐸𝐸𝑥𝑥
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑�
=

−𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�

= 𝑉𝑉𝑠𝑠
𝑇𝑇𝐻𝐻−𝑇𝑇𝐶𝐶

                                                                                       (2.19) 

TH and TC are temperatures measured at two points along the temperature gradient created 

by heating one end of the sample with a resistive heater and thermally anchor the other end 

with the sample stage of the cryostat. VS is the voltage between two points at which these 

temperatures are measured. Note that the measured voltage has a thermoelectric 

contribution of the measuring circuit which is made of copper (See thermocouple 

calibration 2.2.3). To correct for this,  

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝐻𝐻−𝑇𝑇𝐶𝐶

− 𝑆𝑆𝐶𝐶𝐶𝐶                                                                                                  (2.20) 

From this expression, we see that measurement of the Seebeck coefficient does not depend 

on the geometry of a sample. Since holes and electrons are both diffused in the same direction, 

the Seebeck coefficient measures the effect of the majority carrier. 

Nernst coefficient: The Nernst coefficient relates the developed transverse electric 

field observed when heat flux passes through a material which is in a magnetic field, B.  The 

measurement assumes a one-dimensional heat flux going through the sample with magnetic 

field perpendicular to the sample as shown in Figure 30b. Electrons and holes are diffused 



57 
 

from hot end to cold end. Under the influence of the Lorentz force like in the case of Hall effect, 

electrons and holes are deflected to opposite sides of the sample. Equilibrium is established 

by the electric field Ey which can be calculated by measuring Nernst voltage, VN. In this 

configuration Nernst coefficient N is 

𝐸𝐸𝑦𝑦 = 𝑁𝑁 ∙ 𝐵𝐵 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑�                                                                                                                                     (2.21) 

Unlike the Seebeck coefficient, to calculate N, we need to determine sample geometry. 

𝑁𝑁 = 𝐸𝐸𝑦𝑦
𝐵𝐵𝑧𝑧𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑�

=
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑�

𝐵𝐵𝑧𝑧𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑�
= 𝑉𝑉𝑁𝑁

𝐵𝐵𝑧𝑧(𝑇𝑇𝐶𝐶−𝑇𝑇𝐻𝐻)

𝐿𝐿
𝑤𝑤

                                                                                 (2.22) 

In 2 carrier systems, the Nernst effect measure combined effect of both carriers thus it is 

large in 2 carrier systems. Origin of errors is again mainly in measuring sample’s geometry. 

For S and N, errors are estimated to 7%. 
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2.3.4 Thermal Hall and Thermal conductivity 

 
Figure 31. Measurement configuration for thermal Hall conductivity and Thermal 
conductivity 
 

The thermal conductivity measurement uses plate-like sample with cross-sectional 

area A and distances lxx and lxy (when thermal Hall is also measured) between temperature 

measurement points along the x and y direction. The configuration is shown in Figure 31. 

The magnetic field when applied is in z direction perpendicular to the sample plane. The 

thermal conductivity tensor 𝜅𝜅 is then defined as the tensor correlating the applied heat 

current J Q across the sample along the x direction to the resultant temperature gradient ∇T: 

𝐽𝐽𝑄𝑄 = −𝜅𝜅.∇𝑇𝑇 =  −�
𝜅𝜅𝑥𝑥𝑥𝑥 𝜅𝜅𝑥𝑥𝑥𝑥
𝜅𝜅𝑦𝑦𝑦𝑦 𝜅𝜅𝑦𝑦𝑦𝑦�  ∙  ∇𝑇𝑇                                                                                (2.23) 

The thermal resistivity tensor is defined as the inverse, 𝑤𝑤 = 𝜅𝜅−1. The heat current 

can be calculated as JQ = Q/A where Q is the heater power obtained from Joule heating 

power of the resistive heater. The thermal gradients can be calculated from the temperature 

differences δTij such that δTxx = (−∂xT) · lxx and δTyx = (−∂yT) · lxy. The temperature 

differences ∂xT and ∂yT are measured using thermometers such as cernox sensor or 

thermocouples as discussed previously. The thermal resistivities are the quantities that are 

actually measured and are calculated as follow. 
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𝑤𝑤𝑥𝑥𝑥𝑥 = 𝛿𝛿𝑇𝑇𝑥𝑥𝑥𝑥
𝑙𝑙𝑥𝑥𝑥𝑥𝑄𝑄

                                                                                                                                (2.24) 

𝑤𝑤𝑦𝑦𝑦𝑦 = 𝛿𝛿𝑇𝑇𝑦𝑦𝑦𝑦
𝑙𝑙𝑦𝑦𝑦𝑦𝑄𝑄

                                                                                                                           (2.25) 

The Onsager’s relations demand 𝑤𝑤𝑥𝑥𝑥𝑥 = −𝑤𝑤𝑦𝑦𝑦𝑦 (anti-symmetric in field) and we 

may relate the conductivities to the experimentally measured 𝑤𝑤𝑖𝑖𝑖𝑖 as follows5 

𝜅𝜅𝑥𝑥𝑥𝑥 = 𝑤𝑤𝑦𝑦𝑦𝑦
𝑤𝑤𝑥𝑥𝑥𝑥𝑤𝑤𝑦𝑦𝑦𝑦+𝑤𝑤𝑥𝑥𝑥𝑥2

                                                                                                                   (2.26) 

𝜅𝜅𝑥𝑥𝑥𝑥 = 𝑤𝑤𝑦𝑦𝑦𝑦
𝑤𝑤𝑥𝑥𝑥𝑥𝑤𝑤𝑦𝑦𝑦𝑦+𝑤𝑤𝑥𝑥𝑥𝑥2

                                                                                                                (2.27) 

For many cases where only longitudinal thermal conductivity is the property of 

interest, the experiment is simplified to a quasi-1D heat flow problem where we only need 

to measure 𝑤𝑤𝑥𝑥𝑥𝑥 with 2 thermometers along the temperature gradient. With a long and thin 

sample, 𝑤𝑤𝑥𝑥𝑥𝑥  becomes negligible and thermal conductivity can be found by simply invert 

𝑤𝑤𝑥𝑥𝑥𝑥: 𝜅𝜅𝑥𝑥𝑥𝑥 = 1
𝑤𝑤𝑥𝑥𝑥𝑥

 . With this setup, we can also apply the field in arbitrary direction to 

measure field dependence of thermal conductivity. 

Heat loss prevention and treatment: Since the thermal conductivity measurement 

assume a known Q and that the heat flow through the sample, special consideration about 

heat loss should be given when measuring samples with high thermal resistance and at low 

temperature. Like in electrical circuit where current will dominantly flow through the lower 

resistance branch out of a node. Thermal resistance of a sample is given by 

𝑅𝑅 = 𝐿𝐿
𝐴𝐴𝐴𝐴

                                                                                                                                  (2.28) 
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With A the cross-sectional area, L the length of the sample and 𝜅𝜅 the sample’s 

thermal conductivity. For long, or thin, or low thermal conductivity, the thermal resistance 

can be large. Once this thermal resistance becomes large enough and comparable to the 

thermal resistance of the contact wires, we will have large conduction heat loss from the 

wires (Figure 25). Although we have purposefully chosen small gauge wires to 

geometrically limit their thermal conductance. It can be easily seen in Figure 32 that the 

problem exacerbated at low temperatures where thermal conductivity of copper, a common 

contact wire, becomes extremely large.  

 

Figure 32. Thermal conductivity of copper 
 

It is therefore customary to calculate the thermal conductance of the wires and 

estimate that for the sample to compare. When the wire conductance becomes an order of 

magnitude as large as the sample thermal conductance, it is recommended to use smaller 

wire gauge or longer contacting wires.  

For the cernox sensor circuit, insulating the gold/copper leads wires by adding 

manganin wires between the gold/copper wires and thermal anchoring point proved to be 
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effective. The modified circuit (Figure 33, with manganin wires in red) still maintains 4 

probe setup thus resistance of the manganin wires does not contribute to the resistance 

measurement result. Unlike copper, manganin or constantan has thermal conductivity that 

decreases with temperature. At temperatures below 50 K, manganin thermal conductivity 

is reduced to a few W/m.K and to 0.1 W/m.K at 2 K. Its electrical resistivity however 

maintains constant across the temperature range from room temperature to liquid 

helium.45,46  

 

Figure 33. Modified wiring diagram to prevent heat loss at low temperature. Reds are 
manganin wires 
 

Similar to the cernox sensors circuit, the circuitry for the resistive heater that also 

measures heater power should also be insulated with manganin wires using the same 

principle. 
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Chapter 3. Thermal chiral anomaly in field-induced ideal Weyl semimetal phase of 
Bi-Sb alloys 

3.1. Motivation and theory 

The chiral anomaly was predicted22 to be an experimental signature for the 

existence of WSMs. However, previous experimental determination methods for the chiral 

anomaly are tainted. First, currently investigated WSMs47–49 are not ideal; their Fermi 

surfaces contain features other than Weyl nodes. Second, the signature chiral anomaly 

feature is a negative longitudinal magnetoresistance (MR); 23 though the distorted current 

lines in the applied magnetic field complicates the interpretation.  

Ideal WSMs have two distinguishing characteristics. First, the band structure has 

linearly dispersing bands that intersect at Weyl points (WPs) in a system that breaks time 

reversal symmetry (TRS) or inversion symmetry (IS). Second, the electrochemical 

potential µ is at the WP energy (µ = 0). In an ideal WSM, there are no trivial bands at 

energy µ, which is pinned to the WPs. Then, the Fermi surface consists only of WPs with 

opposite Berry curvatures, WR right-handed or WL left-handed. One pair of WPs in the 

Brillouin zone (BZ) is the minimum required by the Nielsen-Ninomiya theorem22 for a 

TRS-breaking ideal WSM. Experimentally, an ideal WSM displays no Shubnikov-de Haas 

(SdH) oscillations; at finite temperature, a nearly equal density of intrinsic holes and 

electrons is excited thermally, with any unbalance due to unintentional doping smaller than 

this intrinsic concentration. 

The chiral anomaly in ideal WSMs results from applying parallel electric E and 

magnetic fields B along the direction of the WP separation as discussed in Section 1.2.4. 
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The anomalous contribution to the electrical conductivity generated by Nw degenerate pairs 

of WPs is:  

 
2 3

2 24 4zz w w z
B

e v e vN N Bτ τσ
π π

= =
 

 (3.1) 

which is a negative longitudinal magneto resistivity. The scientific community considers 

the resulting negative longitudinal MR the crucial experimental chiral anomaly 

signature.39,47–49 

Negative MR was observed in many WSMs, e.g., XPn compounds (X=Nb, Ta; 

Pn=As, Sb)47–49 and Dirac semimetals,39,50–52 but also in materials without Weyl points near 

µ, e.g., XPn2 compounds53–56 and elemental semimetal Bi.39 Broadly observing this effect 

revealed that the negative MR is unlikely a unique chiral anomaly signature; other, classical 

effects might be present, as discussed next.40,57 

The classical effects that make longitudinal MR measurements ambiguous arise 

because the Lorentz force distorts the current flow spatial distribution in samples with high-

mobility (µB) electrons under a magnetic field (i.e., when µB|B| > 1). This causes extrinsic, 

geometry-dependent MR mechanisms. The first is current jetting,48,53,57–59 arising in 4-

contact measurements. With B//E, the Lorentz force concentrates the current in a cyclotron 

motion near the sample center. Progressively less current passes near the voltage probes as 

B increases, lowering the measured voltage and possibly leading to the erroneous 

conclusion that the resistivity decreases with B. The second is an extrinsic positive 

geometrical MR arising if B is slightly misaligned vis-à-vis the current flow lines. In the 

present samples, striations present on the surface of a Czochralski-grown crystal44 can 
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overwhelm the MR measurements, and extreme care needs to be taken with the sample 

alignment and geometry (see Section 2.3.2). Samples with reduced cross-section and 

smooth edges minimize both effects. Thermal conductivity ( )zz zHκ  measurements avoid 

problems with extrinsic MR because there is no external current flow and the lattice 

contribution to κ  maintains a more B-independent heat flux than charge flux distribution 

in the sample (there is a magnetic-field effect on anharmonic phonon scattering,60 but it is 

an order of magnitude smaller than the effects discussed here). 

Energy transport in WSMs poses theoretical challenges not encountered in charge 

transport. From the equations of motion for charge carriers at the WP and the Boltzmann 

transport equation, we write the imbalance between left and right moving particles (δnχ) 

and energy (δεχ, the thermal chiral anomaly) in the presence of both an electric field E and 

thermal gradient ∇rT as:61 

[ ]
2

0 12 2 2 24 4
rTe en C C

Tχ
χ τ χ τδ
π π

−∇ = ⋅ + ⋅  
B E B

 
     (3.2) 

[ ]( ) ( )
2

0 1 1 22 2 2 24 4
rTe eC C C C
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χ τ χ τδε µ µ
π π

−∇ = ⋅ + + ⋅ +  
B E B

 
  (3.3) 

where ( ) 0 ,  {0,1,2...}m
m

fC d mε µ εε
∂ = − − ∈ ∂ ∫ with f0 the Fermi-Dirac distribution 

function. The thermal chiral anomaly thus has two terms: First, a temperature gradient ∇rT 

alone, disregarding any induced electric field, creates an imbalance between the energy 

carried by the left and right movers while maintaining equal populations when µ = 0 (C1 = 
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0, δnχ = 0, δεχ ≠ 0). This response contrasts with the electrical case where ∇rT = 0 and E 

create an imbalance between the populations of left and right movers while, when µ = 0, 

maintaining the same total energy (δnχ ≠ 0, δεχ = 0). Second, when the sample is mounted 

in open-circuit conditions and no external electric field is applied, applying∇rT induces a 

Seebeck electric field E=S (-∇rT) (S is the thermopower), driving both δnχ ≠ 0 and δεχ ≠ 

0. This creates an additional κzz(Hz) term, the ambipolar thermal conductivity, 62 S2Tσ . The 

total thermal conductivity becomes 2
,0zz zz S Tκ κ σ= + , where κzz,0 denotes the energy carried 

directly by the charge carrier. 

 The experimental tests for these theories are first to observe an increase in 

electronic thermal conductivity in a longitudinal magnetic field, and second to verify the 

Wiedemann-Franz law (WFL) in the EQL: 

 zz zzLTκ σ=  (3.4), 

with L the Lorenz ratio. If each electron carries charge e and entropy kB, and conserves its 

energy during scattering, 
2

2

0 3
BkL L e

π  = =  
 

. The experiment consists in testing the 

ratio /zz zzTκ σ , which we define as L, against the independent variables Hz and T, and, if 

L is independent of these, to verify if the value equals L0. In particular, a Weyl semimetal 

in which inelastic scattering is limited by the inter-WP scattering time τ, in the quasi-

classical limit at H=0 is expected to have 
2

27
5

BkL e
π  =  

 
 but L=L0 in the EQL.63 In the 
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presence of ambipolar conduction L>L0, because L0 applies only to κzz,0. Extrinsic effects 

result in underestimations (current jetting) or overestimations (geometrical MR) of L. 

We report the thermal conductivity ( )zz zHκ  dependence on Hz, and show 

experimentally that the chiral anomaly affects energy and charge transport similarly, i.e.,

0zz

z

d
dH

κ > , as expected from Eq. (3.1) and (3.4). We then experimentally derive values 

for L. Previous ( )zz zHκ  measurements exist: an increase in zzκ  for GdPtBi has been 

reported at zH =9 T. 64 However, those samples exhibited SdH oscillations in their MR, 

which proves that µ is not at the WPs, and the increase in zzκ is also observed in transverse 

field, which is difficult to reconcile with Weyl physics. A positive magneto thermoelectric 

conductance is observed in NbP, 65 dubbed a gravitational anomaly due to the formal 

link66,67 between gradients ∇Φ in the gravitational field and ∇rT.  Here, we report ( )zz zHκ  

in magnetic-field induced ideal WSMs, Bi1-xSbx alloys with x = 11 and 15 at.%. We 

demonstrate that these alloy samples, topological insulators (TIs) at | | 0B = , 14 become 

WSMs without trivial bands in a quantizing magnetic field along the trigonal axis 

(z=[001]). We further identify the WP locations. In these material samples, we show their 

carrier concentrations are intrinsic above ~30 K, where the relevant zzκ  data are collected. 

This makes them ideal WSMs by construction. Their ( )zz zHκ  shows an electronic thermal 

conductivity increase by up to 300% at 9 T. Lorenz ratio /zz zzL Tκ σ=  measurements show 

that L≈L0. We show that the effect is robust to disorder and phonon scattering, depends as 
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expected on the ratio of the temperature to the Weyl bandwidths, and is absent in samples 

that fall outside the range of compositions where WSMs form. 

3.2. Magnetic Field-induced Bi1-xSbx Weyl Semimetals. 

 
Figure 34. Evolution of Bi1-xSbx alloys with composition and magnetic field:  
(a) Band-edge energies' composition dependence at zero applied magnetic field. Elemental 
semimetal Bi has electrons residing in a conduction band, Ls, and holes in the valence band, 
T; with a filled second valence band, La. Adding Sb (x in at.%), the La - Ls gap closes until 
the bands intersect near x ≈ 6%. The T-band edge intersects that of the La and Ls bands at 
x ≈ 7.7 % and x ≈ 8.6 %, respectively. The chemical potential µ(x) evolution for samples 
with no unintentional doping is shown as a dashed orange line. Alloys with x < 7.7% are 
semimetals with µ in a band; alloys with x > 8.6 % are direct-gap topological insulators 
with µ at mid-gap in undoped material. (b) Semimetal Bi dispersion relation, (c) Bi94Sb6 
alloys’ Dirac dispersion, and (d) Bi-Sb TIs’ dispersion. (e) Bi BZ and Fermi surfaces: 
electrons fill 6 pockets at the BZ L-points; holes fill 2 pockets at the T-points. (f) TI alloy 
Bi89Sb11 band-edge energies in a magnetic field Hz applied along the trigonal direction. 
The field separates the La and Ls valence bands into Landau levels, with orbital quantum 
number n and spin s. With increasing Hz, the n=0, s=1/2 of the La and Ls bands cross again 
at a critical field HC. At higher fields, the crossing points develop into Weyl points. (g) 
Dispersions along kz at Hz < HC. (h) Dispersion in kz at Hz = HC. (i) Dispersion at Hz > HC 
becomes that of a field-induced Weyl semimetal. (j) Bi1-xSbx BZ with locations of 
calculated WPs schematically; blue and red points indicate WPs with opposite Berry 
curvature.   
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We predict that Bi1-xSbx alloys (∼9 < x < ≈18 at%) become ideal WSMs in a 

magnetic field Hz above a critical threshold HC because: (1) their conduction and valence 

bands cross at HC; (2) at Hz>HC two crossing points appear that are Berry curvature 

monopoles, i.e., WPs; and (3) no trivial bands cross µ.   

The band structure of Bi1-xSbx alloys (Figure 34 (a)-(e)) at zero magnetic field 

evolves with increasing x through four successive regimes:68 conventional semimetals, 

semimetals with an inverted band at the BZ L-point, semiconductors, and TIs. A tight-

binding Hamiltonian describes the band structure of unalloyed bismuth and antimony,69 

incorporating the s- and p-orbitals of the two atoms in the conventional hexagonal unit cell. 

The alloy electronic structure is calculated using a modified virtual crystal approximation 

(VCA) in which the tight-binding parameters are obtained directly from those of the 

elemental semimetals and agree with previous experiments70–72 within the experimental 

uncertainty on compositions (1 at.%). The details of the electronic structure of the Bi-Sb 

alloy change slowly as the band positions change relative to µ, as indicated by the nearly 

unchanged intrinsic spin-Hall conductivity calculated through the semi- metal-TI 

transitions.73  

With these parameters, we show that a quantizing magnetic field along the trigonal 

direction of the TIs (Fig. 34 (f)-(i)) inverts the bands again. The geff-tensors at the high-

symmetry BZ L- and T-points are calculated74 from the tight-binding electronic structure 

above for valence and conduction bands. The T-point geff-tensor has only one non-zero 

component, 20.5hzg = , which only couples to the magnetic field along z. The more 

complicated effective geff-tensor at the L-point shows significant asymmetry. For the 
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conduction and valence bands at the Bi89Sb11 L-point with a magnetic field applied along 

the trigonal direction, the calculated values are gz = -77.5 and -72.3, respectively. SdH 

oscillations75 in Bi confirm the extremely large g-factor values experimentally. This results 

in an anomalously large effective Zeeman splitting energy 4.2 meV/Tz B z zg Bε µ∆ = − ≈ −  

at the L-point that overwhelms the orbital splitting of the LLs. Consequently, the band gaps 

close (Fig. 34 f,h) at a critical field HC, calculated to be ~3 T for alloy compositions near 

x=11%. Magnetic-field-induced band closings are uncommon but have been reported via 

magneto-optical measurements on Bi.76 HC is sensitive to parameter values used in the 

calculations, and is of the order of 1−4 T. At Hz>HC¸the Zeeman energy increase further 

splits the degeneracy of the Kramers doublets (points W in Fig. 34 (i)).  

We further demonstrate that the Kramers doublets become WPs resulting from 

explicit TRS breaking by showing that the Chern number changes by an integer for a 

momentum slice taken between these WPs. The Chern number in this case is an integer that 

counts the monopoles enclosed in a given Gaussian surface in the BZ.  

We calculate the Berry curvature distribution ( )nΩ k  in momentum space to search 

for the WPs where the Berry curvature is concentrated and singular. The two WPs carry 

monopole Berry curvature ( ) 3kχ=Ω k k  with opposite chirality, 1χ =± . Integrating 

the Berry curvature provides the Chern number. A Chern number integer change provides 

evidence of a topology change and existence of WPs, a pair of points separated 

symmetrically near each L-point in the 3D BZ (Fig. 34 (j)). The separation between the 

two WPs is in the binary-trigonal plane with a major component along the trigonal direction 
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(coinciding with the external magnetic field direction) and a minor component along the 

bisectrix direction.  

Finally, to ascertain that the Bi89Sb11 system is an ideal WSM at Hz>HC, the model 

verifies that no trivial bands contribute to transport: neither the T-point band nor any new 

bands move near µ with increasing Hz. In a semiconductor or semimetal without 

unintentional doping, µ is pinned at the energy of the lowest DOS, which, without trivial 

bands, occurs at the WPs. Therefore, if we can minimize unintentional doping, our 

experimental systems below will form ideal WSMs by construction. 

 

Figure 35. Bi89Sb11 and Bi85Sb15 electronic and thermal properties:  
(a) carrier concentration and (b) mobility; the samples switch from dominantly n-type at 
300 K to dominantly p-type at 10 K. (c) Bi89Sb11 zero-field κzz separated into lattice κL and 
electronic κE parts. The dashed blue line is κE calculated from the resistivity and the 
Wiedemann-Franz law (WFL) with L=L0.  The error bars are standard deviation and their 
origins are described in the methods section. 
 
3.3. Magneto-Thermal Conductivity Measurements 

Evidence for the thermal chiral anomaly is shown in six single-crystal samples of 

Bi1-xSbx, x  ~ 11 and 15 at%. For control, we report the absence of the anomaly in two 

semi-metallic samples with x≈5%; for this composition an ideal WSM does not exist. The 

sample compositions and characterizations are presented in Table 4. The temperature 

(a)                                                 (b)                                               (c)  
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dependence of the resistivity and low-field Hall effect of the best samples (#1 with x=11% 

and x=15%) are used to derive carrier concentration and mobility (Fig. 35 (a-b)) showing 

that charge carriers freeze out. This, and the absence of SdH oscillations in the high-field 

longitudinal magneto-resistivity down to 2 K and other transport properties, indicate that 

they are ideal WSMs. The zero-field thermal conductivity κzz along the trigonal direction 

of sample #1 is given in Fig. 35(c). It consists of a phonon κL and electronic κE contribution 

separated by measuring κzz (Hy) which shows a steady decrease to a saturation value at high 

field. This is the ordinary behavior of high-mobility materials29,77 used to isolate 

lim ( ( ))
yL H zz yHκ κ→∞=  for T<120 K. At T>120 K, κL(T) is extrapolated following a T-1/3 

law78 to 300 K. κL dominates κzz below 35 K, limiting measurements of κE to T>35 K. At 

zero field, κE(Hz=0) follows the WFL with L=L0 (dashed line in Fig. 35(c)) above 30 K. 
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Table 4. List of Bi-Sb alloy samples used in the study 
Sample 
name Growth x Used for density mobility 

  at%  cm-3 
cm2 V-1 

s-1 

Sample #1 TMZ 
10.5±0.

5 
κzz (Hz), κzz (Hy) 

κzz (Hz) Ag contacts   

Hall TMZ 
10.5±0.

5 Hall, resistivity 
3 × 1015  
(10 K) 

1.9 × 106  
(10 K) 

Sample #2 
Czochrals

ki 
11.3±0.

7 Negative MR   

  
11.3±0.

7 Magneto-Seebeck   

  
11.3±0.

7 κzz (Hz), κzz (Hy)   

Sample #3 
Czochrals

ki 
11.3±0.

7 κzz (Hz), κzz (Hy)   

  
11.3±0.

7 
κzz (Hz)-angular 

dependence   

Sample #4 
Czochrals

ki 
11.3±0.

7 κzz (Hz), κzz (Hy)   

Hall 
Czochrals

ki 
11.3±0.

7 Hall, resistivity 

1.4 × 
1016  

(12 K) 
2 × 104  
(12 K) 

Sample #5 TMZ 
15.1±0.

7 κzz (Hz), κzz (Hy)   

Hall TMZ 
15.1±0.

7 Hall, resistivity 
3 × 1016 

(10 K) 
4.5 × 105 

(10 K) 

Sample #6 TMZ 
10.5±0.

5 κzz (Hz), ρzz (Hy) as #1 as #1 

semimetal  
Bridgema

n 5±0.5 κzz (Hz)   

   
κzz (Hz) Ag contacts, 

Hall, resistivity 

4.5 × 
1016 

(79 K) 
8 × 104 

(79 K) 
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Figure 36. Bi95Sb5, Bi89Sb11, and Bi85Sb15 thermal conductivity κzz(Hz) dependence on 
longitudinal magnetic field along the trigonal direction at temperatures indicated:  
(a) Bi95Sb5, a conventional, not Weyl, semimetal, has κzz (Hz) that monotonically decreases 
with Hz, due to a positive MR. The κzz(Hz) of (b) Bi89Sb11 (sample 1) and (c) Bi85Sb15 shows 
a decrease due to a conventional positive MR in the TI regime, followed by an increase 
that we posit is evidence for the thermal chiral anomaly. (d) The electronic contribution κE 
of the total thermal conductivity κzz for Bi89Sb11is obtained by subtracting the lattice 
contribution κL. κE shows a >300% increase with field at 9 T.  The error bars, the standard 
deviation relative to the field dependence, are obtained as described in the methods section.  
They are temperature dependent and are the same for all samples at the same temperatures. 

(a)                                                                                    (b) 

     
(c)                                                                                    (d) 
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Figure 36 shows the longitudinal magneto-thermal conductivity κzz(Hz) of three 

samples: (a) Bi95Sb5 (not a WSM); (b) Bi89Sb11¸ and (c) Bi85Sb15; (both WSMs above 1−2 

T). κE(Hz) of Bi89Sb11 is reported as a function of Hz in Fig. 36 (d): the relative κE increase 

in magnetic field reaches above 300% from 34 to 85 K at 9 T. At low field, 0zz

z

d
dH

κ <  

for Hz<1 T at T  <50 K and Hz<3 T at T=160 K. Here, the last LLs of the conduction and 

valence bands have not crossed in energy. At high field, in WSM phase, 0zz

z

d
dH

κ > .  

We posit the large increase in κzz(Hz) (Fig. 36(b-d)) at high field is experimental evidence 

for the thermal chiral anomaly. The following observations justify the thesis. First, Fig. 

36(a) shows that 0zz

z

d
dH

κ <  at all fields for Bi95Sb5, which in zero field is a conventional 

semimetal, not a TI, with a trivial hole pocket in its Fermi surface at the BZ T-point. In 

Bi95Sb5, the band crossing with field does not create an ideal WSM phase; if the 

0zz

z

d
dH

κ >  observation on Bi89Sb11 and Bi85Sb15 resulted from effects other than the 

chiral anolmaly, e.g., ionized impurity scattering, 78 known to be weak even in doped Bi,44 

it also would occur in similarly prepared Bi95Sb5. Second, to ascertain that a circulating 

current or an artifact on the sample surfaces does not induce the effect, samples of Bi95Sb5 

and Bi89Sb11 were mounted with its top and bottom faces covered by electrically 

conducting Ag epoxy. We observe no effect from the added surface conducting layers. 

Third, the 0zz

z

d
dH

κ >  data at high Hz were reproduced on Bi89Sb11 samples 2−4, which 

had a mobility of only 2×104 cm2V-1s-1 at 12 K, demonstrating the robustness of the 
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observations vis-à-vis defect scattering. Fourth, 0zz

z

d
dH

κ > in Fig. 36(b-d) is observed 

up to 200 K, twice the Bi Debye temperature, demonstrating the robustness of the effect to 

phonon scattering. The effect disappears only for T>200 K, which we will demonstrate in 

the next section to be due to thermal smearing of the carrier population between the WPs, 

independent of phonons.  

 

3.4. Verification of the Wiedemann-Franz law and evidence for inter-Weyl point 
scattering 

 
Figure 37. Wiedemann-Franz law verification; temperature and angular dependence of 
theκzz (Hz) increase: 
(a) Bi89Sb11 (sample 6) κzz (Hz) and σzz (Hz). The error bars on the resistivity and thermal 
conductivity are the standard deviation obtained as described in Chapter 2. (b) Lorenz ratio 
L = κzz,e (Hz) / σzz (Hz) derived from (a), normalized to L0T at two values of Hz; L is 
independent of Hz within the error bar.  The error bars arise from the errors on σzz (Hz) and 
on κzz,e (Hz) determined from κzz,e (Hz) and κL. (c) The inter-WP scattering time τ, derived 
from equation (5) fits Arrhenius plots (lines) at T > 60 K with an activation energy of Ea 
=34 meV for Bi89Sb11 and 15 meV for Bi85Sb15. The inset shows the temperature 
dependence of dκzz (Hz)/dHz between 4 and 8 T of TMZ sample #1 Bi89Sb11 and Bi85Sb15. 
The error bars are the standard deviation. 

Simultaneous κzz(Hz) and MR (ρzz(Hz)) measurements were taken on a specially 

prepared Bi89Sb11 sample (sample #6), and are shown Fig. 37a. Subtracting κL77 from 

κzz(Hz) gives κzz,E(Hz). Fig. 37b verifies that the WFL holds in an applied field with L≈ L0, 

(a)                                               (b)                                                 (c)                                  
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as expected theoretically in an ideal WSM where the WSM phase is induced in EQL.  The 

error bar increases with decreasing T as κL increasingly dominates κzz(Hz) and becomes as 

large as the signal below 50 K; κL  masks the electronic contribution completely below 35 

K. This knowledge allows fitting the zz zd dHκ (inset in Fig. 37c) experimental 

temperature dependence for T>60 K.  Using equations (1) and (4) with L=L0, Nw=12 to 

derive the thermal chiral conductivity, then taking its field derivative, we obtain: 

2

2
Bzz

z

evkd TdH
πκ τ=


                     (3.5). 

Using the calculated v≈4.5x105 m/s, Eq. (3.5) can be used to derive the inter-WP 

scatting time τ(T) (Fig. 37(c)). Below ∼ 60 K, τ~10-12 s and temperature independent for 

Bi89Sb11, one order of magnitude longer than the electron relaxation time in Bi95Sb5 at 4.2 

K. This suggests a high degree of charge-transport protection. In Bi85Sb15 and at T > 60 K 

in Bi89Sb11, τ increases exponentially with T-1, activated behavior with an activation energy 

Ea=34±2 meV for Bi89Sb11 and Ea=15±2 meV for Bi85Sb15, as expected when charge 

carriers are thermally excited above the Weyl bandwidth limit τ. The calculated band width 

at 7.5 T is EBW=35 meV for x = 10.5 at.% and EBW = 20 meV at 7.5 T for x=15.1 at.%, the 

measured concentrations in the samples. The correspondence between Ea and EBW for two 

compositions suggests that thermal smearing of the carrier population between the WPs is 

the main mechanism inhibiting the observed increase in κzz(Hz), and that EBW is the only 

energy scale in the observations.  
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Altogether, we posit that the 0zz

z

d
dH

κ >  observation constitutes robust 

experimental evidence for energy pumping between opposite chirality monopoles when a 

thermal gradient is applied parallel to a magnetic field in an ideal WSM. This is related to 

the excess electrical conductivity due to the charge pumping between opposite chirality 

monopoles, the chiral anomaly, and by the Wiedemann-Franz law with a Lorenz number 

of 
2

2

3
bk

e
π   

 
. The robustness of the results vis-à-vis defect and phonon scattering, and 

the identification of the Weyl bandwidth as the only energy scale, all point to the 

topological origin of the data. 
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Chapter 4. Exciton condensate-phonon coupling in Ta2NiSe5 excitonic insulator 

 
 4.1. Introduction 

 Excitons are a bound state of an electron-hole pair that exists in insulators, 

semiconductors, and some liquids. Excitons form in both direct-gap (light exciton) and 

indirect gap (dark exciton) semiconductors. Spatial delocalization increases the exciton 

lifetime, favoring their spontaneous formation. Most excitonic systems are either layered, 

e.g. in the MoSe2–WSe2 system,79 or chained, with electrons and holes localized in 

different layers or chains.  An excitonic insulator (EI) is either a narrow gap semiconductor 

or a semimetal with small band overlap. A flat dispersion around the top of the valence 

band is then assigned as the effect of excitonic coupling between the valence and 

conduction bands; this was observed experimentally.80,81 The flat band signify that the 

electrons and holes are localized as their velocity becomes near zero thus supports its 

spontaneous formation of excitons. Below the critical temperature excitons forms Bose-

Einstein condensates and the material enters excitonic insulator phase.80–82 

Since excitons do not carry charge, the thermal conductivity is the only convenient 

transport measurement that can be carried out on EI systems.  The present paper does so in 

Ta2NiSe5, using Ta2NiS5 as a “null-experiment”.  

Ta2NiSe5, a presumed EI. is layered with the layers stacked along the b direction. 

Each layer in a-c plane consists of TaSe6 and NiSe4 chains along the a direction. The c 

direction is perpendicular to the chains. Band calculations indicate small direct gap at Γ-

point. The valence band is dominantly composed of states associated with the Ni 3d orbitals 
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while conduction band is dominantly composed of Ta 5d orbitals. Holes and electrons both 

exists at the Γ-point, but they are spatially delocalized in real space, residing in the Ni and 

Ta chains, respectively. ARPES data show the signature flat bands at Γ-point,81,83 and high 

temperature gap of about 0.16 eV.84,85 Upon cooling through 328 K, the crystal undergoes 

a structural phase transition from orthorhombic to monoclinic,86 which is often considered 

to be the critical temperature for the transition to an EI state. 

Ta2NiS5 is a sister compound of Ta2NiSe5 with a band gap at Γ-point of ~0.25 eV.85 

ARPES data do not show the signature band flattening of an EI87 and the lattice distortion 

is faint and occurs at lower temperature ~120 K 88. These differences that make the sulfide 

a comparison material to isolate the effect of the excitons in this study of the thermal 

transport in the selenide. 

The formation of a Bose-Einstein condensate (BEC) of excitons in the direct-gap 

Ta2NiSe5 is expected to break the crystal lattice symmetry88 and indeed this lattice 

symmetry breaking was observed to occur below a critical temperature Tc = 328 K. Despite 

arguments that the nature of the symmetry breaking is purely structural,89,90 numerous 

experimental and theoretical studies provided strong evidence that the phase 

transformation and the formation of an EI phase are linked.  Coupling of the excitonic 

continuum with the B2g phonon, which describes oscillation of Ta atoms relative to Ni 

atoms, plays crucial role in driving the structural transition.88,91–93 In S-Se alloys Ta2Ni(Se1-

xSx)5, the structural transition persists, but Tc decreases with increasing x and the EI phase 

disappears for x>0.7. 88,91,94 
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Werdehausen et al95 proved experimentally that in Ta2NiSe5 the condensed exciton 

strongly couples to the Ag TO optical phonon at 1 THz, which describes the transverse 

(relative to a) oscillation of neighboring Ta-Ni-Ta blocks. This coupling is absent in 

Ta2NiS5, where that TO phonon’s frequency is 1.2 THz. In the selenide, the coupled 1 THz 

mode’s amplitude follows the characteristic behavior of a purely electronic Higgs-like 

amplitude mode.   A similar coupling between condensed excitons and a phonon is present 

in Tm mono-chalcogenides.96 More specifically, TmSe0.45Te0.55 can be tuned from a 

semiconductor phase to an EI to a semimetal phase by applying pressure, enabling Wachter 

and Bucher96  to follow the specific heat of the compound through the EI transition.  They 

observe that the specific heat is depleted in the EI phase, and attribute that to the strong 

exciton-phonon coupling.  Upon cooling in the EI phase, the paper stated “more and more 

wave-like phonons become locked onto the excitons, giving no more contributions to the 

specific heat”.96  This work presents similar evidence in Ta2NiSe5. 

There are many interesting theoretical predictions for energy transport in EI’s. First, 

Remez et al97 predict energy propagation with long mean free path by Goldstone modes, a 

gapless branch of the collective modes, which should manifest themselves in an additional 

thermal conductivity and heat capacity. Second, there is a controversy on the potential of 

the BEC collective state for superfluid energy transport.98 Wachter claimed there is 

possibility of a superfluid phase in a Bose condensed excitonic state TmSe0.45Te0.55,96,99 but 

Zittartz’ calculations support a classical phonon thermal conductivity in EI’s.98 A recent 

theory also showed there is additional thermal conductivity produced by the additional heat 

current driven by the EI.100  A third question concerns the role of the 1 THz TO mode in 
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Ta2NiSe5 (1.2THz in Ta2NiS5), because the unique low energy of this mode promises 

possibility to observe its thermal behavior at low temperature. 

In this paper, we first report that Ta2NiS5 has a much lower thermal conductivity κ 

below 100K than Ta2NiSe5 in spite of its lighter average atomic mass.  In the sulfide, heat 

conduction is by phonons. In Ta2NiS5 below 60K we observe a depletion in the temperature 

dependence of κ but an Einstein-mode-like excess in C. Together, these observations 

suggest that in Ta2NiS5 a phonon mode at an energy close to the 1.2THz mode does not 

conduct heat but rather scatters the heat carrying phonons, dominantly the acoustic ones. 

Turning next to Ta2NiSe5, the excess C is also observed, but it is two times smaller than 

in Ta2NiS5.  This is reminiscent of the case of the EI phase of TmSe0.45Te0.55 where the 

phonon coupled to the exciton has no specific heat. 96 Then we address the question as to 

whether the higher κ of the selenide is due to conduction by something other than phonons. 

Inspired by thermal conductivity measurements on superfluid 4He, we looked for 

deviations from Fourier’s law and for size effects as possible evidence for conduction by 

the BEC but found none.  Using the thermal diffusivity as a direct measurement of the 

mean free path (mfp) of the heat carriers, which assumes they are phonons, the values 

found for Ta2NiSe5 are characteristic of phonons, approaching the sample’s thickness at 

4K but decreasing by 4 orders of magnitude at 200 K.  There is no evidence for energy 

conduction by a wave (e.g. a possible Goldstone mode) that would have mean free path 

longer than 1 µm at T>>10K. At T>100K, the mfp of the sulfide and selenide behave 

similarly but within a factor of 2, suggesting that heat is conducted by phonons also in 

Ta2NiSe5.  Below 50K, the difference in phonon mean free path between sulfide and 
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selenide grows to an order of magnitude, suggesting that the phonon-phonon Umklapp 

scattering is much stronger in the sulfide than in the selenide.  We attribute that to the 

possibility that the 1.2 THz mode in the sulfide provides for a high density of available 

states for acoustic phonons to scatter into. In contrast, the 1Thz mode in the selenide, which 

has no heat capacity, does not.  Our results therefore provide an evidence in a transport 

property for a strong coupling between the EI and one particular phonon. The ability to 

deplete the condensate optically95,101 then promises a new pathway to tune thermal 

properties of Ta2NiSe5 and create an optically actuated all-solid-state heat switch. 
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4.2. Experimental Results 

 

Figure 38. Thermal conductivity analysis of 4 different samples of Ta2NiSe5 and of 3 
samples Ta2NiS5: 
(A) Thermal conductivity of 4 different samples of Ta2NiSe5 and of 3 samples Ta2NiS5  
along the a (in-chain) direction. Ta2NiSe5 shows much higher thermal conductivity despite 
Se being a heavier element than S. (B) Anisotropy of the thermal conductivity of Ta2NiSe5 
along the a and c directions. Data by Zhang et al are added. (C)  Heater power dependence 
of the temperature gradient in Ta2NiSe5, showing that the thermal conductivity follows 
Fourier’s law.  (D) electronic thermal conductivity calculated from the electrical 
conductivity and the Wiedemann-Franz law; the values are much lower than the measured 
thermal conductivity. 
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Figure 38a compares the measured thermal conductivity κ along the in-chain (a) 

direction of 4 samples of various thickness of Ta2NiSe5 to that of 3 samples of Ta2NiS5. 

For Ta2NiSe5, κ peaks at over 100 W/m.K around 15 K. At T<15 K, κ decreases with 

decreasing temperature, tending asymptotically toward a T3 law with a magnitude that 

scales with the sample thickness. At T>15 K, the Ta2NiSe5 κ decreases monotonically with 

increasing temperature, tending asymptotically towards a T-1 function.  The value at 100 K 

(46 W/m.K) is that predicted value by the Slack model (see Discussion) and is the same 

for all samples.  Fig. 38a shows that the sample thickness (from 120 µm to 50 µm) does 

not affect the peak position much but affects the a-axis κ below 15 K.  This suggests that 

the heat carrier’s mean free path becomes of the order of tens of micrometers at 2 K.  This 

behavior is consistent with a phonon-dominated thermal conductivity in the Casimir regime 

at T<<15 K and in the Umklapp regime at T>> 15 K.   

The Ta2NiS5 a-axis κ shown in Fig. 38a peaks at over 30 W/m.K at T=60 K.  The 

main feature of this result is that the κ of the selenide is lower than that of the sulfide at all 

temperatures of the measurement, even though the average atomic mass of the selenide is 

101 amu and that of the sulfide 72 amu. This is unexpected for phonon heat conduction. 

The natural isotopic abundance of Se (49.8% of 80Se, 23.69% of 78Se, 9.23% of 76 Se, 

8.62% of 82Se)102 is more varied than that of S (94.99% of 32S), which, all things being 

equal, would result in an isotope-scattering-limited peak in κ that is lower and at a higher 

fraction of the Debye temperature103 in Ta2NiSe5 than in Ta2NiS5, again unlike the 

observation.  Below 60 K, the Ta2NiS5 κ decreases and tends asymptotically toward a T3 

law, but unlike the case of the selenide, the sulfide’s temperature dependence shows 
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inflection points in the 10-60 K temperature range. Note that T=57 K corresponds to the 

Einstein temperature of the 1.2 THz optical phonon mode in Ta2NiS5. 95  As in the selenide, 

the temperature of the maximum in κ appears to be little affected by sample size, but the 

value of κ at T < 10 K is. 

The anisotropy of the Ta2NiSe5 κ is shown in Fig. 38b, where the values along the 

in-chain (a) and cross-chain (c) directions of the 50 µm samples are shown.  In the c 

direction, κ is about half of κ in the a direction, which will be shown to be about the 

anisotropy in the sound velocity. Also shown in Fig. 38b are the results reported earlier by 

Zhang et al. 104  At T>80 K they are consistent with ours; this would be expected κ in the 

regime where dκ/dT <0 is due to phonons in the Umklapp regime.  Zhang et al’s κ along a 

above 80 K also follows a T-1 law closely up to the structural transition temperature Tc=328 

K. Our κ data are not quantitative above 200 K, due to metrology issues with the method 

used, and are not reported.  At T < 80 K, the present data for Ta2NiSe5 peak at much lower 

temperature and much higher in value than Zhang et al’s. The difference can be due to a 

difference between either the samples or the measurement techniques. When compare 

resistivity measured on the crystals, our samples showed lower resistances, especially 

below 60 K. The level of defects and doping in the sample can lead to change in the peak 

position and peak value of thermal conductivity. Zhang et. al. used heat pipe method, a 

comparative method which measure heat power in and out of the samples with 

thermocouples. At low temperatures where the κ of copper is high and that of constantan 

is low (the difference is 2 orders of magnitude), if conduction heat losses through copper 

wires at the heat links becomes significant, the error of the heat flux measurement could 
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be significant, resulting in error in calculated thermal conductivity. Our technique uses an 

absolute measurement of power and is optimized for low temperatures by using manganin 

wires posts to thermally insulate the thermometers wires and minimize heat loss through 

wires especially at the lowest temperatures; and estimate of the heat losses through wiring 

show them to be negligible compared to the heat flow in the sample. 

At the transition temperature, both the Seebeck coefficient and κ along the c 

direction see abrupt change in slope whereas in the κ along the a direction the change is 

gradual and hardly noticeable. The abrupt change in thermal conductivity along c at the 

transition temperature is attributed to softening of a transverse acoustic phonon mode.104 

An extensive search was conducted to see if the κ of the selenide could be due to 

something other than phonons.  The mean free path calculated in the next section (see 

Discussion) is less than 100 nm at 200 K, which is much shorter than the µm-scale 

propagation length of the coherent mode observed by Bretcher et al.,105 although we cannot 

exclude a contribution by the Goldstone mode identified theoretically.97   

To look for heat conduction which involve potential superfluidity of a BEC, a 

careful examination of the power dependence of the temperature gradient and of the effect 

of the distance between thermometers on the sample was carried out.  The heater power 

dependence measurements of κ (Fig. 38c) show that κ follows Fourier’s with no evidence 

of a 2-fluid heat conduction mechanism related to superfluidity33,96,99,106 in 4He, down to 

the lowest temperatures and the lowest power levels where we could still reliably measure 

the gradient. Neither did we observe a variation of κ with the distance between the 
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thermometers, at least at mm length scales. Our data thus offer no evidence for superfluid 

heat transport.   

To look for a contribution of non-condensed excitons, the measurements were also 

carried out in an external magnetic field.  Indeed, Dzyalozinskii107 theorized that in an 

excitonic insulator, the Zeeman energy can open the band gap by gµBB (g is the Landé 

factor, µB the Bohr magneton and B the external applied magnetic induction), thereby 

reducing the exciton population at any given temperature. κ of both the Ta2NiS5 and 

Ta2NiSe5 in an applied magnetic field of 9 T was also measured. No change larger than 

error bar was observed. This is true for an external magnetic field applied along both the a 

and c directions.  Assuming g = 2, the Zeeman energy at 9 T is of the order 2% of the gap 

and of exciton population; had this been important to κ, we could have picked up the effect 

just above the noise level of the measurements below 10K in κ of Ta2NiSe5. The fact that 

we did not observe a change of κ (or indeed specific heat) argues against the presence of a 

free excitonic contribution. 

To look for an electronic contribution to κ, the electrical resistivity was measured, 

along with the Seebeck coefficient and Hall charge carrier concentration and mobility.  In 

Ta2NiS5, Ta2NiSe5 along the a-direction and in Ta2NiSe5 along c-direction, the 

Wiedemann-Franz law with the free electron Lorenz ratio can be used to estimate the 

electronic contribution κE to the total thermal conductivity.  This is reported in Fig. 38d: 

κE rapidly decays below 200 K in both selenide and sulfide.  Taken in to account the 

departures from the free electron Lorenz ratio by amounts that are common in 

semiconductors,108 κE is still at least four orders of magnitude smaller than  κ at T<200 K. 
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Thus κ is mostly free of contributions from by charged particles.  Taken all together, the 

conclusion of the last four paragraphs is that the κ data Fig. 38a give the lattice thermal 

conductivity. 

 

Figure 39. Specific heat of Ta2NiSe5 and Ta2NiS5 
(A) Specific heat C data for Ta2NiSe5 and Ta2NiS5. The C of Ta2NiS5, but not that of 
Ta2NiSe5, shows an excess heat below T~60 K, equivalent to the energy of the 1.2 THz 
optical phonon mode.  (B) Debye specific heat based on te Dulong-Petit value and Debye 
temperatures from Table 5. Subtracting these from the experimental data gives the excess 
C as marked.  In the Ta2NiSe5 there is an excess at Tc = 325 K and around 40 K. In Ta2NiS5 
the excess is at 50 K and is twice as large as in the selenide. 
 

The heat capacity C data are reported in Fig. 39a. for both Ta2NiS5 and Ta2NiSe5.  

At T<10K, C deviates slightly from the T3 law, approaching T2.5. Ta2NiSe5 shows a clear 

excess C at Tc.  Except for that, at T>300K C approaches the Dulong Petit value CD-P 

=3Rn=199.548J/mol.K, for both compounds. C of both samples show deviation from a 

Debye function, but by different amounts: the deviation is very pronounced in the sulfide, 

where it turns into a cusp at T<60K, as indicated by a red arrow in Fig. 39a.  The specific 

heat measurements were also carried out in a magnetic field of 9T, but no difference is 
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found vis-à-vis the zero field data. In particular, no field-induced change is observed in the 

position of the peak in C(T) near Tc in the selenide.   

 

4.3. Discussion 

Table 5. Calculated phonon properties of Ta2NiSe5 and Ta2NiS5 

 

The present section thus starts from the argument made above that κ is dominated by 

phonon conduction.  DFT calculation at 300 K provide values for the sound velocity and 

its anisotropy, the Debye temperature, and the energy-averaged Grüneisen parameter γ 

derived from the thermal expansion coefficient. From these calculated properties, it is 

possible to use the Slack formula109  to obtain an estimate for the Umklapp-limited lattice 

thermal conductivity: 

3

2 2/3

MA
Tn
θ δκ

γ
=                                     (4.1) 

 

 Unit Ta2NiSe5 Ta2NiS5 
Calculated phonon 
properties   a-axis 

b-
axis 

c-
axis a-axis 

b-
axis 

c-
axis 

v, Sound velocity m/s 3817 4300 2310 4611 5000 2610 
θ, Debye temperature K 305     447     
γ, Grüneisen parameter @ 
300 K   1.42     1.36     
M ,Average atomic mass   101.92     72.6     
δ3,Volume primitive cell   344.55     306.39     
n, Number of atoms/prim. 
Cell   16     16     

Prefator A   
3.3E-
08     

3.35E-
08     

κ a-axis (100K) 
W/m 
K 33.4     100     
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Where 8 22.43 10 / (1 0.514 / 0.228 / )A γ γ−= ⋅ − +  and the other variables are identified in 

Table 5.  The values for κ at 100 K are also given in Table 5.  For Ta2NiSe5, the calculated 

value is close to the experimental one.  This is surprising: the Slack model produces reliable 

results for materials with small number of atoms per unit cell (n < 3). In materials with 

large number of atoms per unit cells, like Ta2NiSe5 and Ta2NiS5, Slack’s model would be 

expected to become inaccurate due to the lowering in energy of optical phonon modes.109   

This holds for Ta2NiS5 but not for Ta2NiSe5. The fact that the calculated value is 

unexpectedly close to the experimental value at high temperature raises in Ta2NiSe5 is a 

first indication that the low-lying optical phonons play an important role in the κ of Ta2NiS5 

but not in that of Ta2NiSe5. 
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Figure 40. Mean free path calculated from the samples’ diffusivity along the a-direction 
for the 50 µm thick Ta2NiSe5 and the 26 µm thick Ta2NiS5 samples, as function of 
temperature:  
The behavior of Ta2NiSe5 is classical for phonon heat conduction and reaches 
asymptotically to the sample thickness, but that of the sulfide shows a pronounced cusp 
below 60K.  The ratio of the two is shown in the bottom frame: it increases from about 1 
above 60 K to over one order of magnitude below 8K. 
 
 Figure 40 shows the temperature-dependence of the mean free path λ of the heat-

carrying phonons derived from the thermal diffusivity D, following the formula: 

'
D v

C
κ λ= =                                     (4.2), 

where C’ is the volumetric heat capacity, and κ and v the thermal conductivity and sound 

velocity along the a-axis (v is taken from Table 5).  For Ta2NiSe5, λ tends asymptotically 
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toward the sample thickness, and the values are characteristic of phonon mean free paths 

limited by a combination of size, defect and Umklapp scattering, consistent with the 

assumption that heat is carried by phonons. The behavior of λ in Ta2NiS5 is best illustrated 

by contrasting it to that of the selenide as is done by plotting their ratio in Fig. 40 (lower 

frame). This illustrates that above 100 K, both materials have similar heat conduction 

mechanisms, although the sulfide’s λ is only about half of that of the selenide, but this 

difference in phonon-phonon scattering between the two materials grows to an order of 

magnitude below 60 K, which corresponds to a phonon frequency around 1 THz, and also 

to the temperature below which one observes new modes of vibration as an excess C. 

 The excess C is quantified in Fig. 39b.  Here, Debye specific heats are plotted with 

values for θ from Table 5 and CD-P as high-temperature amplitude.  The difference between 

the measured value and the Debye function is labeled an excess in C.  In Ta2NiSe5, it shows 

two maxima, one at Tc, and one near 30 K.  Only one maximum is seen in Ta2NiS5, at 45 

K, but its intensity is twice that in Ta2NiSe5.  A search for the presence of an amorphous 

phase in the crystals revealed none and the fact that the mean free path in all samples 

reaches above 2 µm eliminates this possibility. This excess in C is therefore ascribed to an 

Einstein mode corresponding to the TO phonon at 1 THz in Ta2NiSe5 and 1.2 THz in 

Ta2NiS5. In Ta2NiSe5, the 1THz Ag mode phonon was reported to show anomalous 

behaviors below the phase transition. 95 It is known as a peculiar mode that couples to the 

excitonic system that affects its amplitude mode behavior. 92,95  We argue that this coupling 

is the reason this mode’s C is much lower in the selenide than in the sulfide.  Indeed, 

Wachter reports a disappearance of phonon specific heat in TmSe0.45Te0.55. 96  He proposed 
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that when the phonon couples to the very heavy excitons it become more localized and no 

longer contribute significantly to the specific heat, 96,99 and we observe the same effect in 

Ta2NiSe5. 

 

Figure 41. Schematic illustration of the phonon (A) and electron (B) dispersions in 
Ta2NiS5 and of the phonon (C) and electron (D) dispersions in Ta2NiSe5:  
In (A), two acoustic phonons, indexed 1 and 2 can interact and a point on the optical branch 
can be found such that the conditions 1 2 3 1 2 3;  k k kω ω ω+ = + =   are obeyed. In the 
proposed model, in the selenide the optical phonon (in light grey in frame C) hybridize 
with electronic states in (D) and develops a dispersion.  Consequently, the optical branch 
in (C) can no longer interact strongly with the acoustic phonons via the conditions for 
conservation of momentum and energy during scattering 

 

We extend the effect that the hybridization of the 1 THz mode has on C to its effect 

on κ using the diagram in Fig. 41, which gives very schematic electron and phonon 

dispersions.  For the phonons, one acoustic mode (e.g. a TA mode), indexed 1. and the 

1.2THz (sulfide) / 1 Thz (selenide) TO mode are shown.  If phonon 1 collides with another 

TA phonon 2 (the shifted dashed dispersion), that constitutes a scattering event only if a 

state indexed 3 exists so that110 1 2 3 1 2 3;  k k kω ω ω+ = + =   .  In the case of Ta2NiS5 (Fig. 

41a) the TO phonon provides phase space so that this scattering event can happen, even 

below 60 K.  At higher temperatures, higher-lying optical modes can supply such phase 
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space, but the 1.2THz mode is the lowest accessible optical mode available, and thus the 

dominant one at T<60 K. Soft optical phonons that greatly increase the scattering phase 

space are responsible for extremely low thermal conductivity in other materials. 111,112  In 

Ta2NiSe5, the TO phonon (grey dashed line) is coupled with the exciton and develops a 

dispersion.  We submit that, the dispersion developed makes the TO phonon behave like a 

Debye specific heat and reduces density of states. The higher energy of the TO phonon 

branch at finite k also makes it provides phase space for acoustic phonons to scatter into: 

this model explains both observations: the decrease in heat capacity and the increase in 

thermal conductivity. 

 



95 
 

Chapter 5. Thermal transport through magnetic ordering transitions of MnBi2Te4 

 
5.1. Introduction 

Crystalline materials that integrate both magnetism and topology are of emerging 

interest, as they often exhibit exotic anisotropic magneto-electro-thermal transport 

phenomena. One such material, MnBi2Te4 has attracted considerable recent attention as a 

potential magnetic topological insulator.  MnBi2Te4 crystalizes in a rhombohedral lattice 

of space group R3�𝑚𝑚 consisting of septuple van der Waals layers of Te-Bi-Te-Mn-Te-Bi-

Te. This creates an intriguing structure that integrates a central layer of MnTe6 octahedra 

inside the Bi2Te3 archetype, making it a magnetic relative of the 3D topological insulator 

(TI) Bi2Te3. Bi2Te3 was first predicted as a TI by Fu and Kane in 2007 and that prediction 

has since been experimentally verified numerous times.113,114 In Bi2Te3 as well as 

MnBi2Te4, the electronic states near the Fermi level mostly consist of Bi and Te p-orbital 

bands which exhibit band inversion. The Mn 3d bands, which contribute magnetic 

moments are many eV away from the Fermi level.115  In first-principles calculation work 

by Otrokov et al. in 2017,116 it was found that in MnBi2Te4 septuple layer, a rather large 

magnetically induced energy gap of the Dirac cones (up to 77 meV, much larger than the 

<1 meV gap in the more typical magnetically doped TIs) is opened at the topological 

surface states (TSSs) <0001>, which promises a Chern insulator state, or a quantum 

anomalous Hall (QAH) state.116,117 Experimentally, Otrokov et al. showed that their 

prediction was correct with angle resolved photoemission spectroscopy (ARPES).118 Deng 

et al. and Liu et al. observed the QAH effect and zero longitudinal resistance in gated few 
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layers of MnBi2Te419,119 in an external magnetic field in the out-of-plane direction. The 

external magnetic field flips individual ferromagnetic SLs and eventually fully polarizes 

all SLs where the sample becomes a robust QAH insulator. 

Magnetic ordering in bulk MnBi2Te4 undergoes many transitions in both temperature 

and field. Intralayer Mn2+ ions are bonded to Te atoms in a slightly distorted octahedron. 

Thus, they experience ferromagnetic FM super-exchange through the Mn-Te-Mn bonds 

(~94° bond angle). Above the Neel temperature, TN = 25 K, MnBi2Te4 is a paramagnet. 

Below TN, without an applied field, MnBi2Te4 has an A-type antiferromagnetic (AFM) 

structure: the Mn2+ spins have moments that are aligned in the out of plane direction, are 

ferromagnetically coupled within each layer, but are weakly antiferromagnetically coupled 

with neighboring layers. A-type AFM magnetic TIs (MTIs) like MnBi2Te4 are expected to 

reveal both topological axion insulating states with AFM ordering and QAHE depending 

on the number of layers and whether an external magnetic field is applied. The interplay 

between the magnetic structure and the topologically nontrivial bands endows the material 

with rich topological phases.118,120–122 In an out-of-plane magnetic field with temperatures 

below TN, it is reported that the bulk magnetic ordering undergoes a spin-flop transition 

followed by a canted AFM ordering before the spins in all layers align, making MnBi2Te4 

ferromagnetic at high field.123,124 The FM ordering is also very interesting as interlayer 

exchange coupling closes the band gap and induces band overlap; thus, in FM phase, 

MnBi2Te4 is a Type II Weyl semimetal with Weyl points separation from Γ-Z.122 The Weyl 

semimetals such as BixSb1-x have shown large changes in thermal and electrical 

conductivities when a magnetic field is oriented along the Weyl points as a consequence 
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of the thermal chiral anomaly.125 Thus, the exploration of magnetothermal transport in a 

potential magnetic Weyl semimetal would be of great interest.  We are not aware of any 

other published magneto-thermal transport studies to date. 

 Here we present the magnetothermal transport properties of MnBi2Te4. We report field 

dependence of thermal conductivity κ in the in-plane direction under an applied magnetic 

field in the cross-plane direction in MnBi2Te4 from 2 K to 30 K. κ shows a decrease with 

field in the AFM phase which we attribute to enhanced magnon-phonon scattering and an 

increase in thermal conductivity in field in the FM phase. Thermal Hall data measured in 

the same configuration shows an anomalous thermal Hall at the spin-flop transition which 

strongly resembles the electrical Hall data and relates to it via the Wiedemann-Franz law. 

Thus, we conclude that the thermal Hall is of electronic origin. Magneto-thermoelectric 

data is also reported for the first time in bulk MnBi2Te4. Particularly, from the results we 

can notice strong magnon-phonon interactions that suggest pathways for a new mechanism 

for magnetic field operated heat switches. 
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5.2. Results 

Figure 42. Electrical transport data. Left panel: Field dependence of in-plane resistivity. 
Right panel: Hall resistivity: 
At Spin flop transition, the resistivity drop, attributed to spin valve effect. Right panel: 
Hall resistivity𝜌𝜌𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) shows anomalous Hall effect at the spin-flop transition. 
 

Single crystals of MnBi2Te4 were grown by adapting the previously established flux 

method by slow cooling Bi2Te3 and MnTe powders in approximately a 5:1 ratio into an 

alumina Canfield crucible and centrifuging at 595 oC.  Crystals having lengths and widths 

of 3-8 mm and thicknesses of 10 – 200 µm were prepared. Hall effect characterization of 

the carrier concentration (Figure 42) of studied samples shows that electrons are the 

majority charge carriers. Electron concentration at 20K is about 6∙1019 - 1∙1020 cm-3. This 

is very similar to reported values typically ranging from 7∙1019 - 1∙1020 cm-3.126,127 The 

carrier concentration indicates that the Fermi level is therefore about 0.3 eV into the 

conduction band.118 The n-type defects responsible for the intrinsic electron doping were 

explored by Hou et al. and Du et al. both experimentally and computationally.128,129 Like 
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Bi2Te3, MnBi2Te4 growth faces challenges with donor BiMn+ antisite defects,126,130 which 

heavily n-type dope the crystal.  

Figure 43. In-plane thermal conductivity of MnBi2Te4:  
(A) Temperature dependence of total in-plane thermal conductivity 𝜅𝜅𝑥𝑥𝑥𝑥. 𝜅𝜅𝑥𝑥𝑥𝑥 decreases at 
the ordering temperature TN=24.5 K indicating scattering of phonon to magnon. The lattice 
thermal conductivity (in red) can be derived as the difference between the total thermal 
conductivity and the electronic thermal conductivity 𝜅𝜅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜅𝜅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜅𝜅𝑒𝑒. Red dashed 
line is a 1/T law temperature dependence of phonon thermal conductivity for comparison, 
which illustrates the negative contribution to total thermal conductivity from spin 
scattering. (B, C) Field dependence of in-plane thermal conductivity 𝜅𝜅𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧). Across the 
ordering temperature, 𝜅𝜅𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) develops contrasting behaviors at different field ranges. 
Above TN, 𝜅𝜅𝑥𝑥𝑥𝑥 plateaus at low field then slightly increases with field. Below TN, 𝜅𝜅𝑥𝑥𝑥𝑥 
decreases with field at low field and increases linearly in field at high field. The magnetic 
field at which the field dependence changes correspond to the transition from AFM to FM 
ordering. Below 20 K, in addition to the initial decrease in AFM phase and linear increase 
in FM phase, there is a plateau in the intermediate Canted AFM ordering phase. (D) A 
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magnetic ordering phase diagram can be reconstructed from a map of 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. The large 
negative value near the boundary of AFM phase correspond to the spin-flop transition. 
 

Figure 43A shows the temperature dependence of in-plane thermal conductivity 𝜅𝜅𝑥𝑥𝑥𝑥. 

Upon cooling down from 200 K, 𝜅𝜅𝑥𝑥𝑥𝑥 initially decreases and forms a minimum at about 120 

K. This decrease is attributed to the decrease in electronic thermal conductivity with 

temperature, shown in Fig. 43A as a blue line, obtained from the resistivity of the sample 

and using the Wiedemann-Franz law with the free-electron Lorenz ratio. The lattice 

thermal conductivity (in red) can be derived as the difference between the total thermal 

conductivity and the electronic thermal conductivity 𝜅𝜅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜅𝜅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜅𝜅𝑒𝑒. At low 

temperature, the lattice thermal conductivity becomes dominant. An apparent suppression 

in 𝜅𝜅𝑥𝑥𝑥𝑥 was observed at the Neel temperature TN = 24.5 K. This is in agreement with data 

reported in the literature.131 Combined with the observation of a peak in heat capacity at 

the Neel temperature at zero field and absence of the peak at 9T field, 131 this suggests the 

emergence of magnons and strong phonon-magnon scattering in the ordered phase. A 

similar behavior of κxx(T) was observed in other magnetic materials near ordering 

temperature.132–134 The red dashed line shows a 1/T function through the highest 

temperature point that we calculated lattice thermal conductivity which is an expected 

temperature dependence of lattice thermal conductivity. 𝜅𝜅𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 measured shows a clear 

deviation from this law, suggesting that phonon-magnon scattering greatly reduces the 

lattice thermal conductivity. 

The field dependence of in-plane thermal conductivity 𝜅𝜅𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) is shown in Figure 

43B. Across the ordering temperature, 𝜅𝜅𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) develops a non-monotonic field 
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dependence. Above TN where the effect of magnetic scattering is observed,  𝜅𝜅𝑥𝑥𝑥𝑥 slightly 

increases with field at high field. Below TN, 𝜅𝜅𝑥𝑥𝑥𝑥 decreases at low field and increases at 

high field. The magnetic field at which the slope dκxx / dB changes correspond to the 

transition from AFM to FM ordering as shown in the magnetic ordering phase diagram in 

the literature.123 Far below TN, the canted AFM ordering phase appears in the intermediate 

field region. Out data in Fig. 43C shows that 𝜅𝜅𝑥𝑥𝑥𝑥 saturates in this region with little field 

dependence. In the FM phase, the field dependence becomes a linear increase with field.  

5.3. Discussion of in-plane thermal conductivity 

Due to the small contribution of electronic thermal conductivity, the origin of the field 

dependence likely involves phonons since the electronic contribution is in the order of 0.05 

W m–1 K–1 and the resistivity data shows less than a 2% change in an 9 T magnetic field at 

25K. Above TN, in a magnetic field, a paramagnet is polarized by the field and becomes 

ferromagnetic. In increasing magnetic field, the magnetic moments are stiffened thus 

magnetic scattering is reduced. This is consistent with the 𝜅𝜅𝑥𝑥𝑥𝑥 data above TN. The strong 

suppression of thermal conductivity in the AFM order and a sharp drop at the spin flop 

transition was also reported in a multiferroic material135 although the origin was not well 

established. A linear increase with field of thermal conductivity was also reported in 

Na2Co2TeO6136 attributed to reduced phonon scattering. An increase in thermal 

conductivity at high field was observed in Bi-Sb TIs attributed to the thermal chiral 

anomaly, realized when an applied magnetic field is colinear with the heat flux and parallel 

to the WPs separation.125 Although the FM phase of MnBi2Te4 is predicted to host a Type 

II Weyl semimetal state with Weyl points separation from Γ-Z,122 in this paper’s 
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experimental setup, the applied heat flux direction is perpendicular to the WPs separation 

in the WSM phase. Theory of a Fermi arc mediated entropy transport in WSM137 also 

predicted an increase of thermal conductance that is linear with an applied magnetic field 

that is perpendicular to the surfaces that host topologically protected Fermi arcs. In our 

experimental setup, it is possible that there is a small unintentional misalignment of the 

out-of-plane magnetic field so there can be a small in-plane magnetic field component Bin-

plane perpendicular to the arcs. However, no change was observed with the Bin-plane 

component was increased by setting a small but intentional angle between the applied 

magnetic field and the sample’s out-of-plane direction, in contradiction to the theory 

prediction of the Bin-plane linear dependence of the Fermi arc mediated heat conduction. In 

the samples measured here, we noted that the position of the Fermi level of MnBi2Te4 is 

far (0.3 eV) from the bulk gap. Thus, the measured magnetothermal transport behavior is 

unlikely to be due to topological properties. It is striking, however, the contrast of the field 

dependence behavior of 𝜅𝜅𝑥𝑥𝑥𝑥 in different magnetic ordering phase. From the 𝜅𝜅𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) data 

we can reconstruct a phase diagram by plotting the derivative dκxx / dBz as function of Bz 

and T, and overlay that to the magnetic phase diagram as shown in Fig 43D. The 

reconstructed magnetic phase diagram using our thermal data shows stark similarities with 

the reported diagrams in literature.  

5.4. Magnon band calculation in a magnetic field 

To understand the behavior of the 𝜅𝜅𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) data, we now discuss the evolution of the 

magnon bands and how they possibly interact with phonon dispersions. Atomistic spin 

dynamics based on the Heisenberg model using parameters from neutron diffraction 
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measurements138 were used to calculate the magnon band dispersion in the ordered 

magnetic phases: AFM, CAFM and FM. The Hamiltonians are;  

𝐻𝐻 = −∑ 𝐽𝐽𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖 ∙ 𝑆𝑆𝑗𝑗 − 𝐽𝐽𝑐𝑐 ∑ 𝑆𝑆𝑖𝑖 ∙ 𝑆𝑆𝑗𝑗 − 𝐷𝐷∑ (𝑆𝑆𝑖𝑖𝑧𝑧)2 − 𝐽𝐽𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∑ 𝑆𝑆𝑖𝑖𝑧𝑧𝑆𝑆𝑗𝑗𝑧𝑧〈𝑖𝑖𝑖𝑖〉,⊥𝑖𝑖〈𝑖𝑖𝑖𝑖〉⊥〈𝑖𝑖𝑖𝑖〉,||                (5.1) 

where i labels the Mn ion with spin 𝑆𝑆𝑖𝑖 at position 𝑅𝑅𝑖𝑖, 𝐽𝐽𝑐𝑐 is the nearest-neighbor interlayer 

exchange, 𝐽𝐽𝑖𝑖𝑖𝑖 are the pairwise intralayer exchanges, D is the uniaxial single-ion anisotropy, 

and the last term of the Hamiltonian accounts for the anisotropic contribution in the 

interlayer interaction. 

Figure 44. Calculated magnon band evolution in an out-of-plane magnetic field:  
(a-d) magnon bands in the AFM ordering phase (e,f) magnon bands in the canted AFM 
ordering phase and (g,h) magnon bands in FM ordering phase. Dashed line in qualitatively 
depicts an acoustic branch of phonon dispersion of MnBi2Te4 adopted from a monolayer 
phonon dispersion. 
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Figure 44 shows the calculated magnon band dispersions. In zero field, the system is 

in the AFM phase and the magnons have a near linear dispersion. A 0.6 meV energy gap 

at the zone center is induced by the magnetic anisotropy. The dashed lines qualitatively 

depicts an acoustic branch of phonon dispersion of MnBi2Te4 adopted from a monolayer 

phonon dispersion.120 Although the bulk phonon dispersion may deviate from this 

dispersion, the deviation is expected to be small since both bulk MnTe and Bi2Te3 have 

similar acoustic phonon branches dispersing from 0 to 5 meV going from BZ center to BZ 

edge. Even at zero field, the magnon dispersion already has a large common phase space 

with this acoustic phonon. An external magnetic field along z breaks the symmetry between 

the spin-up and spin-down moments, thus splits the two degenerate AFM magnon branches 

split into two distinct bands with a gap proportional to the external field strength. Increasing 

the magnetic field causes one branch to blueshift to higher energy and redshifts the other 

branch. The redshifted branch gains more overlap in phase space with a gapless linear 

dispersing acoustic phonon branch as the field increases in AFM regime. This induces 

stronger magnon-phonon scattering and explains the decrease in 𝜅𝜅𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧). Once the energy 

gap of the lower AFM magnon dispersion is closed, further increasing the applied magnetic 

field will cause an instability in the magnetic order, producing the spin-flop transition. In 

the CAFM phase, there exist a gapless magnon branch attributed to a Goldstone mode and 

another high energy branch. The gapless mode retains its dispersion throughout the CAFM 

regime with little dependence on the magnetic field and overlaps well with the acoustic 

phonon mode. Thus the magnon-phonon scattering does not change as the magnetic field 

is increased in this phase. This is in excellent agreement with our experimental findings 
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that  𝜅𝜅𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) is almost independent of field here. Finally, beyond the CAFM phase, the 

magnetic moments are forced to align with the magnetic field and the FM phase is 

established.  In the FM phase the dispersion becomes a single FM branch. All Mn sites are 

now equivalent. The magnetic field increases the gap by a Zeeman  energy, gµBBext. The 

opening of the gap lifts the FM magnon dispersion to higher frequencies, thus reducing the 

phase space for scattering with phonons. This is consistent with the observation of a linear 

increase in thermal conductivity in the FM phase. 

5.5. Thermoelectric and thermal Hall data 

Figure 45. Field dependence of thermoelectric coefficients Seebeck 𝑆𝑆𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) (Left panel) 
and Nernst 𝑁𝑁𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) (Right panel): 
Below TN, Seebeck coefficient shows an increase with B in CAFM phase and plateau out 
at high field (FM). The Nernst coefficient shows a change of slope at the spin flop transition 
below TN. The Nernst data shows behaviors of anomalous Nernst effect, even though the 
signal is small and noisy. 
 

Figure 45 shows the field dependence of the thermoelectric coefficients Seebeck 

𝑆𝑆𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧)  and Nernst 𝑁𝑁𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) at T < 30 K for the same sample. Both 𝑆𝑆𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧)  and 𝑁𝑁𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) 

are small in absolute value. The overall magnitude of 𝑆𝑆𝑥𝑥𝑥𝑥 is in the order of a few μV K-1 in 
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the reported temperature range and a few tenths of μV K-1 for 𝑁𝑁𝑥𝑥𝑥𝑥. Although there are 

hopes for good thermoelectric properties of MnBi2Te4 because of its topological band 

structure, the small thermoelectric coefficients are consistent with a metallic system and 

are another result of the high Fermi level due to unintentional defect doping.  Overall, the 

in-plane Seebeck coefficient and Nernst coefficient in an out-of-plane magnetic field is 

consistent with the resistivity and Hall resistivity data. In the canted AFM phase under TN, 

the Seebeck coefficient is slightly increased, in accordance with the slight decrease of 

resistivity.  The decrease in resistivity is attributed to the spin valve effect.139 Nernst 

coefficient data shows behavior of anomalous Nernst effect and corresponds well with 

magnetization data. Below 20 K, 𝑁𝑁𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) has a small slope near zero field. At the spin flop 

transition, 𝑁𝑁𝑥𝑥𝑥𝑥(𝐵𝐵𝑧𝑧) exhibits a jump where the jump due to spin-flop in magnetization data 

is observed.  
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Figure 46. Thermal Hall and Hall shows good agreement with Wiedemann Franz Law:  
(A) Thermal Hall conductivity 𝜅𝜅𝑥𝑥𝑥𝑥 measured below TN. (B) Thermal Hall conductivity 
calculated from WFL 𝜅𝜅𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑥𝑥𝐿𝐿0𝑇𝑇 at corresponding temperatures. (C,D) Blown-up plot 
of dada at 15.3K and 10.6K shows a clear anomalous Thermal hall effect at spin flop 
transition. Quantitatively, thermal hall conductivity measured is about twice as large as 
values predicted by WFL. 
 

The thermal Hall effect, κxy, was also measured and is reported in Figure 46a. 

Above TN, κxy  is a linear function of field up to 9 T with the slope dκxy /dBz decreasing as 

the temperature decreases. Below TN,  κxy  shows an abrupt increase at the spin-flop 

transition. One can observe the resemblance of the thermal Hall conductivity to the 

electrical Hall resistivity (Fig. 42b). In Figure 46b, we show the calculated thermal Hall 
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conductivity 𝜅𝜅𝑥𝑥𝑥𝑥 using the Wiedemann Franz law, 𝜅𝜅𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑥𝑥𝐿𝐿0𝑇𝑇 , where L0 is the free 

electron value The calculated 𝜅𝜅𝑥𝑥𝑥𝑥 is about half of the measured value for 𝜅𝜅𝑥𝑥𝑦𝑦. Figure 46c 

and d shows detailed raw data points and averaged curves at T=10.6 K and 15.3 K. A clear 

increase in 𝜅𝜅𝑥𝑥𝑥𝑥 at 3.5 T at the spin flop transition is observed and can be attributed to the 

anomalous thermal Hall effect. The close agreement within an order of magnitude strongly 

indicates that the thermal Hall signal has an electronic origin from the bulk. 

In summary, we show that MnBi2Te4 exhibits a significant and complex field-

dependent magnetothermal conductivity and elucidate the mechanism to be of magnetic 

scattering origin. While the topological band structure of MnBi2Te4 promises novel thermal 

transport properties such as a quantized anomalous thermal Hall effect; the Fermi levels in 

these samples are far away from the band gap and thus, it is unlikely there is involvement 

of Weyl physics. Future studies on samples with greatly reduced doping levels may allow 

the realization of Weyl-induced magnetothermal transport phenomena. 

 

  



109 
 

Concluding Remarks 

In this dissertation, we discussed solids in which thermal conductivity is tunable 

with external input. We investigated different sub-atomic particles and quasi-particles and 

their unique band structures to come up with new mechanisms to control their thermal 

transport properties. 

The Bi-Sb alloys system with Sb concentration ranging 4-22 at. % shows highly-

tunable electronic thermal conductivity 𝜅𝜅33(𝐵𝐵3) attributed to the thermal chiral anomaly. 

Not only this is the first experimental realization of the thermal analog of the chiral 

anomaly, but the material system is also extremely promising in engineering a high-

performance thermal switch. Our study has already showed a 300% increase in electronic 

thermal conductivity at 9 T without much optimization. The main drawback for this 

material system is its high background lattice thermal conductivity and small electronic 

thermal conductivity at low temperature. In order to optimize the performance of Bi-Sb 

alloys for thermal switching, the following steps are recommended: 

a. Investigate the effect of alloy scattering in Bi-Sb to lower the lattice thermal 

conductivity of Bi-Sb alloy. At the same time, examine the effect of Sb-doping 

on the thermal chiral anomaly to find the optimized Sb-doping concentration 

b. Investigate the effect of doping on the electronic thermal conductivity of Bi-Sb 

alloys and the effect of doping on the thermal chiral anomaly. 

c. Extend the measurement to low temperatures where lattice thermal conductivity 

is suppressed. 
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The thermal conductivity data of exitonic insulator Ta2NiSe5 shows possible 

hybridization of exciton to optical phonon that enhanced thermal transport in this material. 

The ability to melt the exciton condensate with high fluent LASER is promising in 

engineering a light activated heat switch. However, there are still challenges in proving the 

causal relationship between the enhanced thermal transport and the hybridization of exciton 

condensate and the optical phonons. Following steps are recommended: 

a. Investigate the effect of photo-excitation on thermal conductivity of 

Ta2NiSe5. In my study, I have attempted to measure thermal conductivity 

of Ta2NiSe5 under the influence of a light source, however, the 

measurement method described in Section 2.3 is unfortunately not suitable 

for this type of experiment due to heat addition to the system from the light 

source. Perhaps an optical technique that is independent of heat flux 

measurement such as Frequency Domain Thermoreflectance (FDTR) or 

Time Domain Thermoreflectance (TDTR) will be more suitable for this 

investigation. 

b. Another possible approach to melt the exciton condensate is to change the 

Fermi level in-situ by making a gated device. Measuring with the electrical 

and thermal transport properties of the active layer in this device while 

varying the gate voltage may reveal the effect of the exciton condensate on 

both the electron and phonon band structure. 
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c. An alternative approach to eliminate excitonic order is to dope Ta2NiSe5. 

With dopant, the formation of exciton will be screened by free electron, thus 

preventing the formation of BEC and the structural transition. 

We showed that MnBi2Te4 lattice thermal conductivity is greatly reduced by 

magnon-phonon scattering and revealed that the magnon band structure is responsible for 

this strong scattering. The scattering mechanism, remarkably, can be tuned with a magnetic 

field and can potentially be used to engineer a high switching ratio thermal switch. In order 

to build upon these findings, the following steps are recommended:   

a. Measure the sound velocity and calculate the phonon dispersion and the 

scattering phase space for each magnetic phase. 

b. It is also noteworthy that the magnon dispersion in MnBi4Te7 sister compound 

was also reported140 with almost similar magnon dispersion and a vanished spin 

gap in the AFM phase. This promise even stronger magnon-phonon scattering 

at zero field. MnBi4Te7 also has smaller transition fields thus higher switching 

ratio at lower field. 

c. Finally, efforts to reduce unintentional doping level in MBT can bring the Fermi 

level down to interesting energy range in the bulk band gap in AFM phase and 

at the Weyl point in FM phase and enable additional thermal switching 

mechanisms such as the thermal chiral anomaly.
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