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Abstract

This thesis reports development of a new, broad-domain quantifier scope corpus including all

of the factors, for use training and testing the system. Training materials, a work process, and the

annotator-facing data format were each designed to reduce barriers to entry and safeguard accuracy,

with revisions resulting from an inter-annotator agreement study and error analysis.

The thesis discusses appropriate measures of agreement for scope annotations, both between

human annotators and between predicted and gold labels. For appropriate calculation of chance-

corrected agreement between human annotators, an inter-annotation distance metric is introduced

and justified. For evaluation of automated predictions, where human-like constraints on the structure

of a set of predictions are not enforced, results are evaluated both for small-scale accuracy and for

compliance with these holistic constraints.

The scoping data of the corpus are developed into a natural language understanding task suitable

for automatic prediction, framing it as a span pair classification problem, with outscoping treated as

a semantic dependency between words.

This thesis reports the application of the RoBERTa language model to this task. The model

encodes properties of lexis, syntax, and semantics that correlate with human scoping judgements

(‘scoping factors’). Previously published scope-annotated corpora and scope prediction systems

either do not cover all of the scoping factors, do not apply them to the full set of quantifiers, or do

not represent the full range of subject-matter domains in which humans routinely predict quantifier

scope.

Predictions from the RoBERTa system are shown to be more accurate than the majority-pre-

diction baseline, to a degree not due to chance. The system successfully complies with the holistic

constraints. The system’s principal shortcomings are its relatively small improvement over the

baseline, its dependence on some other system to screen pairs of scope-bearers for the presence of
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scopal interaction, and the inability thus far of its architecture to serve as that screener. Further steps

to address these are proposed.
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Chapter 1

Introduction and background

Explanatory generalizations in natural language represent extensive experience in a compact and

wieldy form, greatly accelerating human learning and enabling complex cultural development. Gen-

eralizations characteristically include quantificational noun phrases, often several of them in a sim-

ple sentence like Example (1).

(1) Most people have two hands with five fingers.

Where multiple quantifiers occur, there are often multiple distinct readings of the sentence or dis-

course, some of which may be true and others false at the same time, depending on the facts of the

world. Example (1) could be taken to mean that or even that more than half of the population are

in joint possession of the same five fingers, among other possibilities. Which meaning we reach

depends on whether we evaluate the claim about five fingers inside or outside the claims about two

hands and most people, a consideration known as scope.

A human reader will generally have little trouble recognizing the intended meaning, with dif-

ferent hands for each person and different fingers for each hand, if the ambiguity is even noticed at

all. But as a computational task, predicting the preferred reading has been quite challenging, and

systems that succeeded in it have been narrowly limited as to the quantifiers, syntactic structures, or

subject-matter domains they handled.

Recently, powerful new tools have emerged for natural language processing, with the BERT

system of Devlin et al. (2018) often cited as a turning point. BERT greatly expanded the utility of

contextualized word embeddings, which are computed representations of a word’s meaning and use
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in its context, and this allowed eleven diverse natural language tasks1 to share a majority of their

architecture and training time, while each reaching a new state of the art.

Contextualized word embeddings incorporate multiple kinds of information known to correlate

with human scoping judgements: the lexical realization of quantifiers (e.g. whether a universal is

expressed as every or each), the linear order in which the quantifiers appear, the syntactic structure

around them, the sense in which ambiguous words are used, the nature of the objects and events

under discussion, and the anaphoric, inferential, and rhetorical connections between sentences in a

discourse (including coherence and coreference) (Alshawi, 1992; AnderBois et al., 2012; Dwivedi,

2013; Kuno, 1991).2 No previous quantifier scope disambiguation system has made use of all of

these scoping factors. This, and the BERT approach’s remarkable success in and after its debut,

suggested these word embeddings might bring new power to the scope prediction task. Below,

Section 1.2 gives further background on the nature and use of contextualized word embeddings, and

Section 1.3 reviews the indications for and against their potential to predict scope.

1.1 Summary of thesis

This thesis applies a BERT-derived word embedding system to a set of scoping problems that exceed

previous tasks’ diversity of quantifiers, of syntactic environments in which they appear, and/or of

subject matter. Unlike previous tasks, they are set in naturally produced connected texts, and so the

quantifiers are are found in a wider variety of information structures than out-of-the-blue sentences

usually offer, and their interpretation can be shaped by discourse relations among sentences.3 The

1Including grammaticality and sentiment judgements, semantic similarity scoring and paraphrase detection, question
answering, and inferential reasoning

2AnderBois et al. summarize from Micham et al. (1980); Fodor (1982); Gillen (1991); Kurtzman and MacDonald
(1993); Tunstall (1998); Anderson (2004).

3Moreover, the scoping problems are set in texts whose purpose is only met if they accurately yet briefly communicate
generalizations about complex subjects. The tension between accuracy and brevity demands a careful balance between
building up knowledge through the text and presuming on the reader to supply background. The balance is not always
struck successfully—as of our 2014 dump of the wiki, the article about fire called it ‘one of the most familiar examples of
the chemical process of oxidation’, then proceeded to explain that ‘A person should never touch fire’—but the practical
communicative purpose and the tension within it help to ensure that presumed and previously stated knowledge each
come into play often.
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predicted labels are more accurate than a baseline, and separate predictions are logically consistent

with one another in spite of their potential to create paradoxical scoping cycles. Chapter 4 describes

how the scope judgements are extracted from a corpus and framed as a natural language processing

task; Chapter 5 discusses the correct way to evaluate the results, then does so.

Creating scoping problems to fully exercise word embeddings’ potential requires appropriate

source data: scope-annotated documents that contain many quantifiers, talk about many aspects

of the world, and exhibit a natural range of variation on the scoping factors. No extant corpus

of quantifier scope judgements met this requirement, so we4 have built our own out of excerpts

from the Simple English Wikipedia.5 This entailed annotating documents myself, developing and

revising guidelines, measuring inter-annotator agreement and analyzing disagreement, and training

and advising additional annotation workers. The corpus and the annotation process are described in

Chapter 2.

The inter-annotator agreement study is discussed separately. Scoping annotations in connected

texts violate the assumptions of statistics used for inter-annotator agreement in previous scope cor-

pora. Krippendorff’s α is a more appropriate measure, but requires a distance metric suited to the

annotations’ nature and able to compare any two of them (even annotations of two different docu-

ments). Chapter 3 explains the problem and the α statistic, describes and justifies the distance metric

I devised, and reports the findings. Although the distance metric is specialized for this annotation

scheme, aspects of its design are relevant to other kinds of internally-structured data. The findings

include an error analysis, which led to improvements in the annotation process.

Chapter 6 summarizes the work and briefly discusses ways forward.

1.1.1 A cognitive caveat

A note of caution must be sounded. Although the scoping factors were identified in psycholinguistic

literature, this is not a psycholinguistic model.

4Herein, by default, ‘we’ means Dr. Schuler, myself, and when context so indicates, other annotators.
5https://simple.wikipedia.org/
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Human knowledge of the world is situated, or rooted in experience, even though it is greatly

supplemented by language-borne generalizations. Word embeddings begin with world knowledge

derived entirely from counting collocations in documents. Then they are enriched with linguistic

knowledge acquired through an even less human-like process, by an encoder not at all resembling a

silicon Wernicke’s area, as it reads every word of the document simultaneously. In short, RoBERTa

is a Martian.

A Martian with a good grasp of how we imply and infer quantifier scope can still do useful

work, of course, whether or not its internal processing is analogous to Earthlings’. And by showing

us our linguistic behavior ‘from the side’, so to speak, it may even reveal things about it that we

were unaware of.

This research is offered to establish landmarks and break trail toward natural language com-

puting that can handle our full palette of scopal cues, and can cooperate with our quick intuitive

judgements about this subtle, important facet of meaning. Using the psycholinguistically identified

scoping factors will, I hope, help to build a more complete model of what we do, but it should not

be mistaken for a model of how we do it.

1.1.2 On notation

Our semantic model of quantification is the Generalized Quantifier (Barwise and Cooper, 1981),

but this document sometimes paraphrases them as first-order quantifiers for brevity.

1.2 Contextualized word embeddings and BERT

This section describes contextualized word embeddings generally, and the BERT-like varieties more

particularly. The tale begins with uncontextualized word embeddings, perhaps better called vocab-

ulary embeddings.

4



1.2.1 Vocabulary embeddings

Vocabulary embeddings such as GloVe (Pennington et al., 2014) and Word2Vec (Mikolov et al.,

2013) represent each word type as a point in a many-dimensional space, such that syntactic and

semantic similarities between words are reflected in their spatial relationships. A widely known

example from Word2Vec, treating each embedded point as the vector to that point from the ori-

gin/zero point of the space, is that the vector for ‘king’, minus the vector for ‘man’, plus the vector

for ‘woman’, approximately equals the vector for ‘queen’. Thus, the semantic structure of the vo-

cabulary is embedded in the space.

This is possible because word meaning is reflected in word usage; ‘you shall know a word by

the company it keeps’ (Firth, 1957). The settings in which ‘king’ appears are much like those for

‘queen’, except for their correlation with gendered language such as pronouns. Their statistical

patterns of co-occurrence with other words therefore reflect the semantic relationship. Morphosyn-

tactic facts like part of speech are also captured by the same statistics; words that we would call

countable common nouns will tend to appear directly after ‘the’, ‘a’ or ‘an’, or various adjectives,

and to appear directly before auxiliary verbs, main verbs, or postmodifiers such as relative pronouns

and prepositions.

When the vast, diffuse statistics describing co-occurrence among several thousand word types

are condensed to a few hundred more abstract values that adequately predict their distribution, the

semantic and morphosyntactic patterning is retained, and the result is a vocabulary embedding.

Each of the few hundred values locates a word along one dimension; knowledge about the seman-

tic and morphosyntactic patterns is implicit in and distributed across the word’s position on these

dimensions and its spatial relationships with other words.

The technique can be extended in various reasonable ways. For example, subword-enriched

vectors (Bojanowski et al., 2017) also provide embeddings for character n-grams within words, so

that appropriate points can be assigned to words that were not seen in training but that are related to

trained words (either by morphology or by misspelling).
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In natural language processing tasks, using these vectors to represent words provides an injec-

tion of (usually helpful) information about their semantics and typical syntactic behavior. However,

any embedding that provides a fixed representation of each word type suffers from homonymy and

polysemy, which limit the amount of world knowledge a word can provide; and it cannot represent

grammatical relationships between words in use, which are believed to affect human scoping deci-

sions. Thus, as an information source for scope prediction (and for many other tasks), vocabulary

embeddings are incomplete.

1.2.2 Contextualization and attention

Contextualized word vectors (for example, Melamud et al., 2016; McCann et al., 2017; Peters et al.,

2017, 2018a; Devlin et al., 2018; Radford et al., 2018), represent word types’ identities and mean-

ings as vocabulary embeddings do, but refine the representation of each word token to embed in-

formation about its use in its own unique sentence context—its position relative to other words, the

subset of its typical syntactic behaviors that are actually in use, the sense in which it is used, and so

forth.

Generally this is done by training a neural network on a task that requires that information. It

will begin with a text’s vocabulary embeddings, impose a representation of their position in the

text’s sequence,6 process them in a way that allows their values to be affected by the values of other

words in the text, and use them for the task, so that the training process will teach the network to

extract the additional semantic and syntactic details for each word from the words around it. After

training, arbitrary texts can be read by the network as though to perform the task, and its internal

representation of each word can be extracted as a contextualized embedding.

Various tasks can be used to induce the network to represent the additional information about

use-in-context. Kawakami and Dyer (2015) take the approach that the additional information about

word sense and syntax is implicit in a correct translation into another language, and so their word-in-

context representation is the hidden state reached at a word by a neural machine translation system,

6Either explicitly by altering the vector, or implicitly by processing them in order with the help of a persistent memory.
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which encodes one language into embeddings that it then decodes into another language. McCann

et al. (2017) do much the same, but the translation system they train has an attention component.

Attention (Bahdanau et al., 2014) uses the state of the output decoder to select words of the input

that are particularly relevant for predicting the next output word, so that in effect the system is

learning to predict dependencies between input and output words.

Melamud et al. (2016), on the other hand, conceive of contexts as the additional information

needed for a good model of monolingual text. This approach has the advantage that monolingual

text for training is much easier to obtain than quality translation pairs are, particularly if the training

task is one like cloze completion that requires no additional annotator input. Language modeling

has become the usual form of pretraining as subsequent work has explored various architectures for

the trainee (Peters et al., 2017, 2018a; Devlin et al., 2018; Radford et al., 2018; Zhou and Srikumar,

2019).7 Many of these models, including BERT, also use self-attention: attention for predicting

dependencies among the words of the monolingual text, rather than between translation equivalents.

1.2.3 Fine-tuning

The quantity of training that goes into such models continues to grow. As they learn to make each

word’s embedding a useful predictor of other words for language modeling, the information they

incorporate has indeed proven to be transferable to a wide variety of other language processing

tasks. A particularly strong technique uses the (typically much smaller) task-specific data not just to

train a task-specific neural network that uses the embeddings from the language modeling encoder,

but to fine-tune the encoder itself.

It is generally thought (for example Devlin et al., 2018; Peters et al., 2018b; Tenney et al., 2019)

that the encoder is able to discover more about inter-word dependencies than is strictly necessary for,

say, cloze completion. However, the last few layers of its architecture, because they are structurally

7There is evidence (Wang et al., 2019) strongly suggesting that different tasks benefit to different degrees from lan-
guage modeling or other forms of pretraining, and that language modeling alone may not suffice to produce truly general-
purpose embeddings. However, it seems to be the most productive single task at the moment, and its data availability is
unmatched.
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closest to the task output, become specialized for the pretraining task. They therefore learn to filter

out information that is, for that task’s purposes, unduly noisy or complex.

Fine-tuning reworks these layers to better suit the new task, fishing up information that they

formerly discarded and/or suppressing information the new task does not need. The early and

middle layers of the encoder already have vast experience extracting the patterns of language; fine-

tuning takes advantage of it.

BERT’s original elevenfold success on a range of tasks was accomplished exactly this way.

Ongoing successes, both with BERT and with other (usually attention-enabled) massively pretrained

language modeling encoders, have led to the conclusion that “language models are unsupervised

multitask learners” (Radford et al., 2019). Though that claim may be under-nuanced (see discussion

in Appendix A), this is in any case good news for a task like scope prediction, where task-specific

training data is scarce and older techniques have been taxed to their limits.

1.3 Feasibility

This section reviews the performance of BERT (and, to a lesser extent, other contextualized word

embeddings, particularly others that are encoded with self-attention) on tasks judged to be similar

in nature or difficulty to scope prediction, as of the date I evaluated and chose this approach.

Quantifier scope is generally described in terms of recursive structural embedding, either the

recursion of predicate logic terms in the approach of Montague (1973), or that of covert syntactic

constituents in the approach of May (1977). But if the structural pattern is abstracted away from

some of the details of the material it structures, outscoping can take the appearance of a dependency,

as it does in Schuler and Wheeler (2014). In fact, we can view it as a dependency between words as

well as a structural relationship of the semantic objects they signify, just as syntax can be viewed in

terms of dependencies between words as well as of the structural relationships between constituents

they head.
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From this perspective, BERT’s potential for the outscoping task can be roughly gauged by its

ability to encode other long-distance semantic relationships/dependencies, as it may do in tasks of

coreference identification, summarization, or even clozing, if it is highly context-sensitive.

1.3.1 Overviews

This section contains discussion about the feasibility of the approach in general.

1.3.1.1 Optimistic overviews

In terms of the scoping factors where vocabulary embeddings fall short, contextualization appears

to make up the difference: They support word sense disambiguation (Peters et al., 2018a), which

improves access to world knowledge. They capture very substantial information about the syntac-

tic environment of the words they represent (Kitaev and Klein, 2018; Peters et al., 2018b). And

they carry discourse information suitable for resolving anaphora (Lee et al., 2018; Peters et al.,

2018b). Identifying an outscoper is likely more difficult on average than identifying a coreferential

antecedent, but from the perspective of scope-as-dependency it may be a difference of degree and

not one of kind entirely. Thus, they may already be the right sort of representation for a quantifier

prediction task.

1.3.1.1.1 Contextualization represents syntax thoroughly Several studies demonstrate that

syntax is represented especially well in the contextualization. Mohammadshahi and Henderson

(2019) used an attention-based system to generate a sequence of parsing actions and resulting syn-

tactic dependencies. In addition to encoding the parser state, history of actions, and the dependents

of the top words on the parse stack, they devised a way to encode the dependencies already created

as an input to the attention function. The word encoder could be either trained from scratch, or ini-

tialized with pre-trained BERT parameters (no fine-tuning). With BERT initialization, the combined

system set a new state-of-the-art for unsupervised transition-based dependency parsing.
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It is already interesting that BERT initialization improved the whole system and (in ablation

tests) every subset of it, even though neither the system’s input data nor its modeling task much

resemble the cloze predictions BERT is trained for. But in fact, of the various ablated configurations,

those that emphasized dependency graphs most in the inputs and in the output mechanism are the

ones where BERT initialization helped the most, strongly suggesting that robust dependency syntax

information is implicit in the BERT encodings despite its superficially non-syntactic pretraining

task.

Hewitt and Manning (2019) confirm this by direct inspection of ELMo (Peters et al., 2018a,

non-attentional contextualized embeddings) and BERT embeddings. They identified projections

of the embeddings into low-dimensional spaces, in which distances accurately represent necessary

structural properties of a syntactic parse tree: inter-word tree distance and per-word depth. They

demonstrated that this outcome was dependent on training for inter-word dependencies, in that it

did not occur with a baseline (randomly initialized BiLSTM) that uses word-to-word memory to

generate embeddings but is not trained to optimize anything about them.

Reif et al. (2019) replicated their findings, demonstrated that different dependency types charac-

teristically have their own slightly different lengths (with narrow variation), and furthermore showed

that other projections of the embeddings represent word sense disambiguation.

Unfortunately, neither paper reported unbounded dependencies separately from the vastly more

numerous bounded ones, so the stated results do not prove anything particular about long-distance

syntactic dependencies, far less semantic or pragmatic ones.

1.3.1.1.2 Contextualization represents more abstract relationships, less thoroughly Tenney

et al. (2019) probed the extent to which limited spans of ELMo, GPT (Radford et al., 2018, atten-

tional encodings), and BERT embeddings contain information from other parts of the sentence, as

measured by the spans’ ability to inform eight assorted NLP labeling tasks. They found that tasks

requiring word-level or syntactic information benefited more from contextualization than those re-

quiring semantic or pragmatic information, understood to mean that the syntactic information was
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propagated and encoded into word representations within the span more reliably or clearly.

Up to 79% of ELMo’s contextualization benefit could be matched by a control whose word

representations were contextualized only locally, which hints at the ratio of local to long-distance

information ELMo contains. However, ELMo’s advantage over the strictly local context was wider

on semantic tasks than syntactic, and (as one would hope) wider when labeling longer dependencies,

suggesting that if contextualized representations do not embed long-distance semantic relationships

as efficiently as local or syntactic ones, they nevertheless embed them.

Further performance gaps, from the two-layered ELMo encoder up to 12-layered BERT-base

and from there to 24-layered BERT-large, were also much bigger for semantic than syntactic tasks,

suggesting that an encoder’s depth helps to extract/abstract semantics from the details of individual

words. The improvement granted by the extra layers of BERT-large was particularly dramatic in the

case of the Winograd schema task (Levesque et al., 2012), a pronoun resolution challenge designed

to require particularly sensitive use of world knowledge invoked by linguistic context.8

Though outscoping is predicted both by syntax and by highly abstract semantic/pragmatic fac-

tors, drawing mixed implications from these results, there may be a bright side to the extremely

thorough representation of syntax in the embeddings. The linear order of two quantifiers is a scop-

ing factor in its own right, when not redundant with their syntax. In that capacity, it describes

their information structure, albeit only to the smallest meaningful degree. Syntactic features used

by some previous scope prediction systems, such as a feature identifying a quantificational noun

phrase’s role use prepositional object, transitive verbal object, or subject, would also identify the

use, often information-structurally motivated, of such devices as passivization or dative shift.9 But

descriptions as minimal as these are likely to miss some of the reflections in information structure

8Context-sensitivity is ensured by identifying a single-word alternation that changes the preferred antecedent. A
well-known example is

(i) The city councilmen refused the demonstrators a permit because they [feared/advocated] violence.

I ended up modeling my approach to the scoping problem on a system for the Winograd challenge; see Section 4.1.
9So far as reports of these systems reveal, this feature would, however, give no sign of heavy shift or topicalization.
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of other known scoping factors, such as coreference linking (Kuno, 1991) and coherence with other

parts of the discourse (Dwivedi, 2013), that a more complete description could capture.

Information structure is, of course, created by choosing syntax so as to manipulate the sequence

in which referents, predications, and assertions appear. Since the contextualization process begins

by encoding sequence and proceeds to encode syntax, the contextualized embedding of a quantified-

over noun potentially contains a better description of its information-structural situation than scope

predictors have previously had access to. Whether or not the encoder is able to nail down its

information-structural relationships as discourse dependencies, it certainly can represent the syn-

tactic choices that result.10

1.3.1.1.3 ‘Language models are unsupervised multitask learners’, to an extent A broad op-

timism emerges from Radford et al. (2019). They trained GPT-2, an attentional language model of

enormous size (by 2019 standards; both by parameter count and by mass of training data), couched

diverse NLP tasks in language modeling terms, and announced on the basis of its task performance

that ‘language models are unsupervised multitask learners’. On closer examination (Appendix A),

this is quite true for narrowly linguistic tasks, where the cognitive content of the task is closely akin

to small-scale text generation. In such tasks, not only syntax and morphology, but lexical semantics

and even some discourse organization (namely semantic prosody) are within its grasp. For more

cognitive tasks, and even for linguistic tasks if sufficiently unlike a cloze, a model of stating an an-

swer is not necessarily a good model of finding an answer, and training the latter solely by training

the former is, at present, too indirect to be effective.

1.3.1.2 Pessimistic overviews

Two general critiques of language-modeling pretraining apply. First, after a thorough combinatorial

study of pretraining and retraining among various tasks, Wang et al. (2019) suggests that language

10This is in addition to the fact that the syntactic relationship between two quantifiers, in and of itself in an out-of-the-
blue sentence, is already a scope factor underutilized by previous prediction systems other than Manshadi et al. (2013)
and perhaps Higgins and Sadock (2003).
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modeling alone will not lead to truly general-purpose contextualized embeddings, but that we will

need to know more about how different tasks complement each other, how to prevent catastrophic

forgetting, and how to maximize the benefit of multitask training.

All of this may be true. Their findings include particularly pervasive indications that the Multi-

genre Natural Language Inference (Williams et al., 2017) and Quora Question Pairs (Iyer et al.,

2017) tasks rely on information that language modeling does not rely on, that training on language

modeling does not provide, and that can benefit other downstream tasks.11 But by the same token,

they found that language modeling was a more beneficial pretraining, on average across target tasks,

than any of the supervised tasks were. Together, this is not so much a recommendation against

attempting to predict scope on the basis of pure language-modeling pretraining as a recommendation

against stopping there.

Second, Chaves (2020) explores the ability of a (non-attentional) contextualized representation,

trained on language modeling, to reproduce island effects on the acceptability of filler-gap con-

structions. Human acceptability judgements here are shaped by a complex array of semantic and

pragmatic constraints, but the computational model seems to miss all of these details and learn about

the construction only superficially.

Since the expressive capacity of the system that is trained falls above the requirements of human

language on the Chomsky (1956) hierarchy, and the training data exceed the amount of language a

human learner is exposed to, Chaves concludes that what the model lacks is not found in the training

data: The human judgements involve ‘rich morphological, syntactic and semantic dependencies

which crucially interact with pragmatics and world knowledge’ of which the model is ignorant.

This objection strikes right to the heart of the proposal, since the gaps he sees in model knowl-

edge fall squarely within the scoping factors we know humans use. But they are somewhat at

odds with what we believe the models do contain. Their world knowledge may have less situated

grounding than ours, as discussed in Section 1.1.1, but they are extremely widely read and capable

11Based both on these two tasks’ effects when used as pre-/intermediate training for others, and on the effects of other
pre-/intermediate training on them.
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of inferring much; and BERT is trained on multi-sentence inputs, giving it at least the means to

learn some of what sentences are used for.12

The great interest and success in using models like these for sophisticated inference tasks such

as SuperGLUE (Wang et al., 2020) demands and reveals, precisely, pragmatic and world knowledge.

And Chaves himself has found that some, though not all, attentional language modeling encoders

do learn filler-gap much better, though still with some brittleness (Da Costa and Chaves, 2020,

discussed below).13 But it is certainly possible that relevant semantic and pragmatic facts may be

lost in the noise or even not captured at all by the pretraining. A priori discussion may have taken

this point as far as it can go; it may be more useful now to experiment and find out.

1.3.2 Comparison to other tasks

This section discusses specific experimental results on tasks with long-distance dependencies, done

with BERT and with other encoders, to fill in the picture of its potential for this application. Overall,

it is shown able to noisily capture semantic and pragmatic information about its inputs, although it

is stronger on matters of syntax, and the advantages it brought to comparable and related tasks

suggest that it brings broad-domain natural-language outscoper identification just into the realm of

possibility.

1.3.2.1 Long-distance syntactic dependencies

Long-distance syntactic dependencies include mere morphosyntactic agreement, primarily of inter-

est only because it allows extensive testing of the length of dependencies that an encoder can learn,

but also include more abstract and challenging relationships.

12The encoder I use, RoBERTa, has different multi-sentence training than original BERT, but both have it. RoBERTa
omits BERT’s ‘next-sentence prediction’ training objective but compensates by packing each input window with as many
contiguous sentences as possible.

13BERT performed the best of those tested. GPT-2 did well also. Two others, Transformer-XL and XLNet, did worse
than the previously studied non-attentional models on the filler-gap task.
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1.3.2.1.1 Morphosyntax Da Costa and Chaves (2020) probed the learning of filler-gap depen-

dencies in LSTM- and Transformer-based neural models, using both wh-extraction and clefting

across 1–4 clause boundaries. Stimuli had gaps in subject positions, such that their verbs had to

agree in number with the filler. Given the sentence up to the verb as context, if the dependency has

been learned, surprisal should be lower for the form of the verb with correct number agreement than

without. A second set of stimuli probed models’ ability to await a gap after encountering a filler,

without any agreement requirement. Here the gap was the object of a preposition, and the crucial

measure was surprisal of the post-gap word vs. surprisal of an ungrammatical resumptive pronoun.

Transformer-XL had lower surprisal for the agreeing verb only across a single clause boundary,

and got the resumptive pronoun test exactly backward. XLNet was similarly poor.

BERT got correct agreement across four boundaries for it-clefts, and across three for wh-

questions, but only by making use of the rightward context of the verb; in a variant of the resumptive-

pronoun stimuli that made this following context unhelpful, surprisals were precisely the opposite

of what they should have been, even across just one clause boundary: low surprisal for a fillerless

gap or a gapless filler, high surprisal for both or neither. Da Costa and Chaves conclude that BERT

learns filler-gap constructions, but not robustly.

GPT-2 outperformed BERT on the basic tests, but also broke down in certain constructions

when following context was unhelpful. On tests they passed, both of these models showed clearer

distinctions in surprisal at lower levels of embedding, but it would not surprise me to see human

subjects also uncertain when required to produce number agreement across four clause boundaries.

Goldberg (2019) finds that a BERT-based system is able to correctly predict reflexive anaphora,

though doing so across clause boundaries was the least successful of all his anaphora and agreement

tasks.

Lin et al. (2019) probed BERT’s learning of subject-verb agreement and reflexive anaphora

by examining attention weights on the correct subject or antecedent, when processing the verb or

anaphor, in the presence of theoretically and psycholinguistically motivated distractors. Decreased

attention to the true trigger increases a statistic termed ‘confusion’, which was calculated at each
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layer. Distractors may or may not share the true target’s agreement features, and may or may not be

in appropriate syntactic positions (same clause versus relative clause for subject-verb, c-command

for anaphora).

In subject-verb agreement, BERT distributes its attention widely even in unambiguous cases,

but confusion is higher when distractors are in the same clause and when they match the subject’s

number. Thus it is attending, albeit weakly, to the proper linguistic features.

In reflexive anaphora, all distractors raise confusion, including those that are featurally incorrect

and those that do not c-command, but again, confusion is higher for gender-matched distractors and

slightly higher for those that c-command. Once again, this is the correct signal, but in heavy noise.

Humans’ ‘sharp sensitivity to hierarchical structure’ is not reproduced.

For both tasks, within the encoder the layer-wise trend is for lower confusion in higher lay-

ers, suggestive of the morphosyntactically relevant facts being progressively abstracted away from

details of the input.

1.3.2.1.2 Toward pragmatics, toward scope Suites of tasks illustrated that as task demands

shifted further from surface patterns and toward semantics and pragmatics, success was no longer

so easy as with morphosyntax. Acceptability of negative polarity items, which depends on semantic

scope of negations rather than on syntax as such (Ladusaw, 1979), was one of the most difficult of

these.

Warstadt et al. (2019b) prepared and validated a broad-domain corpus of minimal sentence pairs

(in which a single change toggles grammatical acceptability), each characterizing a single phe-

nomenon. They evaluated GPT-2 and Transformer-XL attention-based language models on their

ability to assign higher probability to the grammatical sentence in each pair. No task-specific super-

vision was provided.

These models also coped well with morphological agreement. They fell furthest short of human

performance on islands, negative polarity items (GPT-2 accuracy 78.9% vs. human 88.1%), and

quantifiers (GPT-2 accuracy 71.3% vs. human 86.8%). The latter two involve pragmatic reasoning
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and semantic distinctions increasingly distant from syntax, precisely the sort of task I propose, and

correct use of NPIs requires inferring a semantic scope.

Warstadt and Bowman (2019) report a similar study with BERT and GPT, using the fine- and

coarse-grained subsets of CoLA (Warstadt et al., 2019c) as a survey of syntactic phenomena such

as adjunction, complement clauses, extraction islands, or ellipsis.

Interrogatives were associated with notably lower performance, which the authors ascribe to

long-distance dependencies created by wh-extraction. With occasional exceptions, lower perfor-

mance was also associated with movements for focus/information structure, dislocations (such as

heavy shift), coordination,14 subordination (such as relative clauses), conditionals—that is, con-

structions often associated with filler-gap and/or anaphoric dependencies—and interesting deter-

miners such as quantifiers.

BERT and GPT greatly outperformed a baseline without attention in cases involving unbounded

dependencies, particularly reflexive pronouns and dislocations, presumably because long-distance

comparisons are the very essence of attentional decoding. However, they did notably worse than

baseline on sentences involving negating auxiliaries and/or negative polarity items, so they may not

be capturing scopal relationships between words as effectively as purely syntactic ones.

Warstadt et al. (2019a) follow up on negative polarity items and BERT. They find that BERT

(with no fine-tuning) does in fact represent all of the features of NPI licensing, but its ability to

demonstrate this knowledge varies dramatically with experimental method, and its knowledge of

negation’s scope is weaker.

1.3.2.1.3 Textual scope McKenna (2019) trained a system to predict the textual scope of nega-

tion, i.e. the span of words considered to be negated, rather than a containing term of predicate

logic. Strangely, he got near-state-of-the-art performance from a tree neural network that abstracted

14Since CoLA items are selected from linguistics publications, they heavily represent unusual uses of ‘and’, among
them non-constituent coordination, ellipsis, and causative readings.
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a sentence to just its syntax, and performance was slightly degraded by adding and fine-tuning con-

textualized word embeddings, whether BERT or learned from scratch. Using BERT embeddings

without fine-tuning degraded performance substantially.

Whatever the reason for this aggressively anti-semantic outcome, I do not expect it to generalize

to quantifier scoping. From experience as an annotator, scoping judgements heavily involve world

knowledge.

Sergeeva et al. (2019) predicted the textual scopes of supposition and negation from various con-

textualized word embeddings. Fine-tuned BERT outperformed ELMo, which in turn outperformed

pretrained BERT. Adding explicit syntax features to fine-tuned BERT did not improve performance,

whereas it did with the other two embeddings.

I take these results to mean that syntactic knowledge useful for this task, but not for the pretrain-

ing word prediction tasks, was acquired in the course of language modeling, but fine-tuning was

necessary to get it out of the encoder.

Both studies show a surprisingly tight connection between syntax and the textual scopes they

study. This does put it in question whether they are really analogous to quantifier scoping, where

nonsyntactic factors are highly relevant.

1.3.2.2 Various other relevant tasks

We now pivot to an array of more semantic tasks that may be similar to outscoper identification in

nature or difficulty, including semantic parsing, entailment recognition, and some context-sensitive

inference tasks.

Pütz and Glocker (2019) adapted a state-of-the-art transition-based semantic parser by replacing

its custom recurrent encoder (for input words and output graph states) with a small convolutional

network atop ELMo embeddings. When supplemented by silver training data from the baseline

systems, this approach achieved competitive results. Semantic parsing may not involve particularly

long-distance dependencies, but as a meaning-oriented task I judge it at least as relevant to my

scoping challenge as filler-gap was.
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Wang et al. (2018) prepared a diagnostic set of entailment recognition tasks, labeled as to partic-

ular linguistic/semantic phenomena they depended on, for the purpose of comparing the strength of

various contextual encoders (some attentional, all pre-BERT). As a guide to the difficulty of the var-

ious phenomena, we can compare reported performance on labeled subsets to average performance

across the whole diagnostic set.

Among the fine-grained subsets, models handled the Universal Quantification subset well, but

deducing entailment from universal quantification does not necessarily require good scope predic-

tion. In the absence of a second, different quantifier, most of these entailment tasks amount to

recognizing an entity in one sentence as belonging to the restrictor set of the universal in the other

sentence. For comparison, models performed only half as well as whole-set on the Downward

Monotone subset,15 to which scoping has the same partial relevance. Although quantification is

involved, these subsets are probably not very informative for judging the prospects of scope predic-

tion.

The coreference subset was also handled well, which is mildly encouraging since both corefer-

ence and scope disambiguation are pragmatic judgements about the relationship between two nouns

or pronouns, but coreference is certainly the eaiser task. However, worst-performing of all the

fine-grained subsets reported was Restrictivity, a phenomenon tightly intertwined with scoping and

quantification. So the prognosis thus far leans negative.

Of the coarse-grained subsets, only Logic had a preponderance of phenomena relevant or sim-

ilar to quantifier scope prediction. With a few exceptions, models’ performance on this subset was

70–80% of whole-set average. The noteworthy exceptions are language models trained solely as en-

coders for entailment detection and supplemented by CoVe (attentional machine translation-based;

McCann et al., 2017) contextualized word representations. These were relatively stronger in the

Logic subset than others, though still not as strong as on other, less challenging parts of the task set.

Impressionistically, the Wang et al. (2018) diagnostic results suggest that contextualized repre-

sentations had then become barely sophisticated enough to make scope prediction possible. And, as

15Not all downward monotone terms are quantifiers, but the others (negations) are still scopal.
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noted, BERT made clear advances over this state of affairs in tasks of all sorts.

Finally, out of the tasks that Radford et al. (2019) attempted to reduce to language modeling,

three I find particularly relevant are the Winograd Schema Test (Levesque et al., 2012), LAM-

BADA (Paperno et al., 2016), and Natural Questions (Kwiatkowski et al., 2019). As mentioned in

Section 1.3.1.1.2, the Winograd Schema Test requires the calculation of coreference that is highly

sensitive to the semantic context, which is a reasonably close parallel to scope-as-dependency.

LAMBADA is a sentence-final cloze task, selected to be impossible from the sentence alone,

but possible with the preceding 50 tokens as context. Unlike in coreference or scoping, the correct

answer does not necessarily have a literal antecedent in the materials of the question; but as in

scoping, it can depend on the semantics of the situation described and/or the direction the discourse

takes, and may require assembling multiple clues from across the context.

Natural Questions requires extracting a word or phrase from encyclopedic text, in answer to

questions for which that text may not have been designed, possibly with the use of knowledge not

found in the text, and often with reference to the relationships among entities the text describes.

Again, that is a reasonably good description of identifying outscopers in our corpus materials.

To summarize their findings, the GPT attentional language model performed not too badly on

the Winograd Schemas and LAMBADA, relative to the difficulty of the task, but underperformed

dramatically on Natural Questions. This may in part be an artifact of trying to stuff all the tasks

into a language modeling framework as directly as possible, since Alberti et al. (2019) did succeed

in getting BERT to answer Natural Questions with some supervised training and an ensemble-like

approach to generating the answer.

1.4 Prospects and plans

To summarize, BERT and similar models encode numerous intra-text dependencies, but they are

strongest on the syntactic and local ones. Plausibly, this is because their pretraining to model lan-

guage supplies a better, less ambiguous learning signal for syntax than for semantics, and many
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more examples of local dependencies than long-distance. Optimizing for their cloze training task

implicitly optimizes for a lot of syntactic analysis and a certain amount of world knowledge. This,

I believe, underwrites most of their success on assorted NLP tasks.

Using very high-dimensional representations leaves room for training to pick up subtler con-

nections among words and/or among the concepts they represent, information that is relevant to

semantic and pragmatic tasks such as outscoper identification. I believe this is the auxiliary factor

that extends their success to tasks that are more reasoning-oriented. But two obstacles intervene.

The first obstacle is that these signals are surrounded by a lot more noise. They are not so con-

stantly in evidence as facts of constituency or semantic prosody are. The second obstacle is that

these subtler factors just play vastly less of a role in the selection of single words than local or even

long-distance syntax. Although no blatant failures recommend frank pessimism about applying a

BERT-like to tasks like these, it is unlikely to be an easy success.

1.4.1 Encode-and-classify with RoBERTa

RoBERTa is the result of searching for ways to improve BERT’s pretraining, and was state-of-the-

art for many tasks (Liu et al., 2019) when this project reached the point of selecting an encoder. For

the job of determining whether these embeddings have anything to offer for scoping, it was therefore

a logical choice. Reasons for selecting it are discussed more fully in Section 4.3.1.

The encodings of two quantified-over nouns would then be fed to a classifier to categorize the

relationship between them, as in the Manshadi et al. (2011) evaluation, as direct, inverse, or non-

scopal. Fine-tuning the encoder with task data, as opposed to using it as a feature extractor and only

training the classifier, usually improves task performance, and so was adopted as part of the plan.

Since the encodings of the nouns could reasonably be expected to include the full range of

scoping factors, this design potentially results (if not necessarily immediately) in a substantially

more general scoping system than has previously been built.
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1.5 Previous quantifier scope disambiguation systems

The semantic task of determining all possible scopal readings of a sentence can be addressed with

compositional rules, and the task of identifying the weakest readings can be done algorithmically

(Koller and Thater, 2010). However, the pragmatic task of identifying the preferred scoping has not

been solved in the general case.16

1.5.1 Descriptive efforts

We here group several scope-prediction attempts that rely on hand-written heuristics devised by in-

specting scoping judgements on a small number of artificial example sentences. Empirical measures

of prediction quality are typically not reported.

As part of the Lunar Sciences Natural Language Information System (Woods et al., 1972), Van-

Lehn (1978) studied syntactic influences on quantifier scoping and developed three theories of it.

The first theory introduced syntactic structure sufficient to reduce every quantifier scope ambigu-

ity to a syntactic ambiguity. The second drew an analogy between anaphora and universal-over-

existential scoping, on the basis of syntactic structures that disfavor both. The third postulated a

lexical iterability property of each predicate, and a syntactic ‘iteration phrase’ that is capable of iter-

ating over multiple variables in parallel but that is only felicitous when dominating a highly iterable

predicate. By way of measuring empirical performance, VanLehn reports judgements from multi-

ple informants on the sentences that illustrate how these theories apply. However, he concedes that

‘none of the three theories predicts the data with an accuracy that demands conviction’ (VanLehn,

1978, 18).

TEAM (the Transportable English database Access Mechanism) used heuristics of syntax, word

order, and quantifier lexical realization to score scopings of natural-language database queries (Mar-

tin et al., 1983).
16Manshadi et al. (2013) may be quite strong, but limitations of the data confound the issue. Highly successful algo-

rithms are available for certain special cases (Evang and Bos, 2013; Schuler and Wheeler, 2014).
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Precision

Baseline 61.2%
Naı̈ve Bayes 72.6%

Maximum entropy 73.5%
Perceptron 77.0%

Re-annotation 76.3%

Table 1.1: Higgins & Sadock (2003) empirical accuracy.

The SRI Core Language Engine employed a Cooper store (Cooper, 1983) and imposed six rules

and eight preferences on withdrawing quantifiers from the store to impose scoping (Moran, 1988).

The engine’s compliance with the rules and preferences was tested, but the empirical validity of the

rules and preferences was not.

Another, similar set of scoping heuristics was described and implemented by Hurum (1988).

1.5.2 Higgins and Sadock (2003) and WSJ

Higgins and Sadock used machine learning to identify features that predict quantifier scoping in

sentences that contain precisely two quantifiers other than the determiners a, an, the, extracted from

the WSJ portion of the Penn Treebank.

Their single-layer perceptron learned that truth-conditional equivalence of the two possible

scopings (i.e. scopal non-interaction) was predicted by a comma, colon, or conjunct intervening

between quantifiers, or by the second quantifier being all. Inverse scoping was favored when the sec-

ond quantifier was each or most. In-situ scoping was favored when the first quantifier c-commanded

the second, or when a clause boundary intervened. Maximum-entropy and naı̈ve Bayes classifiers

produced similar results to the perceptron. Empirical accuracy is shown in Table 1.1, with two stan-

dards of comparison: a baseline system that always predicted non-interaction, and an independent

re-coding of the sentences by a second annotator.

Of the traditional four scoping factors summarized by AnderBois et al. (2012), this project made

use of three: Quantifier lexis, quantifiers’ linear order, and syntax. Its coverage of syntactic features

was extensive, not outdone or even matched until QuanText (Manshadi and Allen, 2011; Manshadi
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et al., 2013). Like all of the earlier work reported here, it did not employ the factors related to

connected texts. Apart from this, its major weakness is the very small diversity of quantifiers it

models.

1.5.3 Andrew and MacCartney (2004)

Andrew and MacCartney predicted quantifier scoping in two-quantifier sentences extracted or adapt-

ed from Law School Admissions Test (LSAT) logic puzzles, using naı̈ve Bayes, logistic regression,

and support vector machine classification. These systems performed two binary classifications.

For sentences whose truth conditions depend on quantifier scoping, they predicted whether the

correct scoping was in-situ or inverse (the scope direction task). As a baseline, always predicting

in-situ produced 82.9% correct predictions; the best of their classifiers raised this to 94.3%.

Adding to these a second class of sentences, those in which quantifier scoping is irrelevant

to truth conditions, they predicted which class each sentence belonged to (the scope interaction

detection task).17

As a baseline, always predicting an interaction produced 76.1% correct predictions, a standard

which none of their classifiers beat and which only one classifier matched.

Their results on the scope direction task may make it appear that scope prediction is largely

a solved problem. However, as the baseline score reveals, this is partly an artifact of the great

uniformity of their data. All sentences were edited down to exactly two quantifiers, and logic

puzzles are constructed to be unambiguous or easy to disambiguate.

Moreover, logic puzzles are constructed to be solvable given only what is stated in the problem;

in other words, to specifically avoid any contribution from world knowledge. Thus, although the

project accepted a wide variety of quantifiers for prediction, its other linguistic diversity was limited

and the breadth or narrowness of its subject matter was deliberately rendered irrelevant.

17Note that the two tasks were tested independently; that is, the scope prediction classifiers ran on the entire test set,
not just the sentences in which another classifier detected the scopal interaction.
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The predictor relied on the factors of lexis, linear order, and two syntactic features per quantifier:

whether it fell within the syntactic scope of a negation, and whether it fell within a conjunction

whose other conjunct contained the other quantifier.

1.5.4 Srinivasan and Yates (2009)

Srinivasan and Yates built a classifier to predict preferred and plausible scoping in predicates whose

two arguments are quantified by a/an and every, using world knowledge heuristically extracted from

unlabeled text. The heuristic takes numeric quantifiers in the training text as indications of the

typical size of sets of entities; in particular, a training sentence like ‘The grand jury returned three

indictments’ is taken to suggest that three is a typical size both for sets of indictments and for sets

of things that are returned. On such grounds the classifier predicts the size of the restrictor sets for

a/an and every in its test items. The relevant intuition is that for a/an, a small or singleton restrictor

set correlates with wide scope, whereas a restrictor set about as large as that of every correlates with

falling under the scope of every.

Though this study treats only two quantifier types and only two possible scopings per item,

the data (taken from the Web1Tgram Corpus) are much more naturalistic (i.e. unruly) than those

of Andrew and MacCartney (2004), and the task performance correspondingly lower: A baseline

always predicting that in-situ scope is preferred had an accuracy of only 53%, versus 74% for the

trained classifier. A baseline always predicting that inverse scope is plausible had an accuracy of

67%, versus 73% for the trained classifier. I am impressed that only a single, rough-hewn form of

world knowledge was able to produce such performance gains.

The other scoping factors were absent, and in addition to extremely limited quantifier diver-

sity, other linguistic diversity is absent, since the data consist of Minimum Recursion Semantics

(Copestake et al., 2005), and not of natural language at all.

1.5.5 Dinesh et al. (2011)

Dinesh et al. (2011) annotate the scoping of quantifiers, modals, and other operators in 195 sentences
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of FDA regulations (average 30 words each). They predict each operator’s most likely outscopers

with a maximum-entropy classifier, as part of a project in automatically verifying compliance with

regulations (Dinesh, 2010).

Under the most generous of their metrics, scoring the prediction as accurate or inaccurate for

each pair of operators, their classifier achieved an F-score of 90.6%. They themselves describe this

score as “inflated by inclusion of reflexive pairs” (correctly classifying the scope of an operator

relative to itself) and conclude that “it is better to consider the relative improvement in F-score over

the [in-situ] baseline,” which was only 36.6%. They also offer a less inflated scoring measure, on

which the accuracy of their best model is 69.4%.

In a scope prediction task confined to quantificational determiners, but also confined to predict-

ing de re or de dicto scoping, their classifier reached an accuracy of 81.2%.

Regardless of the exact metric, these results suggest there is room for improvement in scope

prediction. Moreover, like logic puzzles, regulations as a genre are meant to be unambiguous and

are allowed considerable verbosity toward that end. Most genres must trade unambiguousness for

brevity, and in these the prediction problem will be correspondingly harder.

Of the classic scoping factors, quantifier lexis is partly reflected by a feature classifying the

quantificational determiner in a partly semantic, partly lexical scheme. A linear order feature is used:

the quantifier’s position relative to its clause’s main verb. Since this project predicts only de re/de

dicto, which in scopal terms amounts to the quantifier’s scope relative to an implicit ‘postcondition’

operator, this feature is more or less analogous to the linear order of two quantifiers used elsewhere.

The abstraction used in the prediction, called a Processed Parse Tree, is flatter than a full-blown

syntactic analysis, but contains structures for e.g. prepositionally modified noun phrases. Some

use of world knowledge may inhere in working with texts consisting exclusively of food and drug

regulations, though this is not clear. In any case, a scope predictor so trained may not generalize to

other domains or other, less exact linguistic registers.
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1.5.6 AnderBois et al. (2012)

AnderBois et al. (2012) return to the LSAT logic puzzle genre and improve data quality by having

multiple annotators code each item. They cover only non-cumulative two-quantifier sentences with

at least one quantifier as subject or direct object (the other quantifier may perform some other

function).

They model four predictors of the subject or object quantifier’s scope:18 its grammatical func-

tion, the two quantifiers’ lexical realizations, and the relative order of the two quantifiers. All four

independently predict scoping, with similar effect sizes.

AnderBois et al. (2012) write in the corpus linguistics tradition, rather than computational lin-

guistics, and so do not provide an accuracy score against a test set, but their statistical model ac-

counts for 84.7% of the variability in their dataset, in spite of considering the syntactic scoping

factor only minimally. The same caveats about the nature of the data apply here as for Andrew and

MacCartney (2004): It is linguistically homogeneous and prevents world knowledge from being

useful, which exaggerates the model’s effectiveness at capturing the full natural phenomenon.

1.5.7 Manshadi et al. (2013)

QuanText, by Manshadi et al., consists of 500 imperative sentences similar to Example (2), giving

instructions for manipulating text files.

(2) Print every line of the file that starts with a digit followed by punctuation.

This corpus forms the basis of the first attempt to statistically predict quantifier scope over materials

with such complexities as more than two quantifiers. (Manshadi and Allen, 2011). A support

vector machine was given a large and sophisticated set of lexical and grammatical features and

achieved complete recall of scoping in 72% of test sentences (Manshadi et al., 2013), a figure made

18In sentences whose two quantifiers were subject and direct object, one of the two was taken at random as the quantifier
of interest.
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more impressive by comparing it to QuanText’s inter-annotator agreement of 75% (Manshadi et al.,

2012). However, this result must be read cautiously.

The principal objects of QuanText’s domain—characters, words, lines, and files—are over-

whelmingly in part–whole relationships, so that a very simple scoping heuristic based on these

head words has the same 72% per-sentence complete recall accuracy as the support vector machine

(Schuler and Wheeler, 2014). This confirms that world knowledge contributes usefully to quanti-

fier scope disambiguation, but probing its full contribution will require predicting scopes in broader

subject matter.

This project’s syntactic predictors are a superset of those from Higgins and Sadock (2003),

using both phrase-structure and dependency representations. The phrase-structural features are rich

enough to imply quantifier linear order as well. Quantifier lexis is used. By encompassing sentences

with more than two quantifiers, this project includes previously neglected linguistic diversity—offset

somewhat by the fact that all of its sentences are imperatives. Its quantifier diversity is extremely

good. It is primarily the issue of its single, very regular domain that brings some dissatisfaction

(and, as always, the single-sentence limitation that misses discourse-related factors).

1.5.8 Tsiolis (2020)

Tsiolis (2020) reports two unsuccessful applications of pretrained attentional language models to

quantifier scope disambiguation. The first attempt formulates scoping as a natural language infer-

ence problem, then uses BERT fine-tuned on MNLI (Williams et al., 2017). The original sentence

is given as premise, then BERT is asked whether it entails a hypothesis consistent with one or the

other scopal reading. Unfortunately, the system predicts entailment for every hypothesis.

The second attempt paraphrases a subset of the Higgins and Sadock (2003) data into forms

with less scopal ambiguity, then scores the paraphrases’ probability, operationalized by their GPT-2

perplexity. Unfortunately, this method fared much worse than the baseline of always predicting

direct scope.
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Tsiolis also reports personal communications from Justyna Grudzińska, Aleksander Wawer,

and Marek Zawadowski about two unpublished systems. One, with BERT, is reported to have been

unsuccessful. The other, with a different sentence encoder, is reported to have been successful within

the AnderBois et al. (2012) logic puzzle data, taking advantage of predictable scopal effects of

certain prepositions. This apparently relates to the theoretical work in Grudzińska and Zawadowski

(2020).
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Chapter 2

Building the scope-annotated corpus

2.1 Prior scope corpora

The semantic task of determining all possible scopal readings of a sentence can be addressed with

compositional rules, and the task of identifying the weakest readings can be done algorithmically

(Koller and Thater, 2010). The pragmatic task of identifying the preferred scoping is unsolved in the

general case, although successful algorithms are available in certain narrowly limited cases (Evang

and Bos, 2013; Schuler and Wheeler, 2014).

To build a general-purpose model of human scoping preferences calls for training data not so

narrowly limited in syntax or subject matter. Indeed, it calls for data covering the full range of

cues that correlate with human scoping judgments: text coherence (Dwivedi, 2013), linear order of

scope-bearers, syntactic structure, choice of lexis, and use of knowledge about the world (AnderBois

et al., 2012). The world knowledge humans rely on may be partly expressed explicitly in the text

being interpreted, and partly presumed background knowledge; the data should realistically reflect

this. Table 2.1 uses these criteria to review previously collected scope data.

2.1.1 VanLehn (1978)

VanLehn studies syntactic influences on quantifier scoping, as an outgrowth of an effort to improve

scope disambiguation in the Lunar Sciences Natural Language Information System (Woods et al.,

1972). He reports that ‘well over 1500 [quantifier scope] judgments [...] and hundreds of pages
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of natural text’ were collected in this effort, but with ‘inconclusive’ and ‘remote’ prospects for

improving the system. The later fate of this system, and thus of the scope data, is not known to us.1

2.1.2 Higgins and Sadock (2003) and WSJ

Higgins and Sadock also studied quantifier scoping. They identified 893 sentences having two

quantified expressions within the WSJ subset of the Penn Treebank (out of 41,191 sentences total),

and annotated each as having in-situ scoping, inverse scoping, or no scopal interaction. The no

interaction category proved to be dominant, with 545 members (61%).

Machine learning on this corpus identified some features conducive to each outcome. For ex-

ample, in their single-layer perceptron, scopal non-interaction was predicted by a comma, colon, or

conjunct intervening between quantifiers, or by the second quantifier being all. Inverse scoping was

favored when the second quantifier was each or most. In-situ scoping was favored when the first

quantifier c-commanded the second, or when a clause boundary intervened. Maximum-entropy and

naı̈ve Bayes classifiers produced similar results.

A second, independent coder agreed with the reference coding on 76% of sentences, at a Cohen

κ of 0.52. Unsurprisingly, the sentences on which coders agreed were also predicted more accurately

by the classifiers. Again taking the perceptron as an example, it agreed with the annotators on 83%

of these, versus 77% on the test set generally.

This corpus comes near to meeting the modeling requirements. It provides linear order, syntax,

lexis, and presumptions of world knowledge. The coherent text from which the sentences were

drawn is available. We have chosen not to reuse it for two reasons.

The first reason is the low overall density of quantificational noun phrases in this text genre,

reflecting the fact that news writing is about particulars. Our interest lies in explanatory text, which

concerns generalities and (in our experience) quantifies much more often.

The second reason is the phenomena deliberately avoided. Higgins and Sadock did not treat the

determiners a, an, the as quantifiers of interest, which in their words ‘avoids the problem of generics

1It is frequently cited in later literature, but the VanLehn paper seems to be the last allusion to active work on it.
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and the complexities of assigning scope readings to definite descriptions.’ Limiting the scope of the

problem is a legitimate choice, of course, but both phenomena are prominent in explanations such

as Example (1).

(1) Bus runs must keep to a timetable. The driver may need to hurry or delay to stay on schedule.

In this example, the generic bus runs states a generalization, and the definite the driver is subordi-

nated to it in order to elaborate on the statement.2

2.1.3 OntoNotes

The Penn Treebank WSJ is one of the foundations of OntoNotes (Pradhan et al., 2007), and for in-

teroperability of resources it is worth considering whether to build a scope corpus as an OntoNotes

overlay. The requirements of text coherence, order, syntax, lexis, and presumption of world knowl-

edge remain met as before. Unfortunately, the text’s low quantifier density remains a problem, one

that carries over to the broadcast news portion due to the similarity of genre.

The other sections of OntoNotes are informal writing and conversation, which bring with them

the additional complexities of social identity, turn-taking cues, incomplete sentences, imprecise

language due to time pressure, and the fact that multiple participants may not even have the same

understanding of the situation they discuss. We wished to avoid these complexities, at least for the

time being, and so declined to attempt an annotation layer for OntoNotes.

2We construe generics as quantificational, as argued by Leslie (2015) and as assumed by the ‘implicit universal’ of
Manshadi et al. (2013). But their quantification is more like that of many than of some, in that its meaning depends on
the discourse context. We have paraphrased this meaning as ‘enough that you should know about it, given the question
(expressly or implicitly) under discussion,’ taking ‘question under discussion’ in the sense of Roberts (2012), or less
formally as ‘more than you might think’ (with the understanding that, until the subject came up, you might not have
thought about it at all).
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2.1.4 Andrew and MacCartney (2004)

Andrew and MacCartney found a quantifier-rich genre in logic puzzles from the Law School Ad-

missions Test (LSAT), and were able to acquire 305 two-quantifier sentences either by extracting

them directly or by editing them down from more complex sentences. Their inventory of quantifiers

does include a, an but still not the, nor generics expressed by bare plurals and bare mass nouns.

They do not mention inter-annotator agreement, but this is reasonable enough, since these texts

are designed to minimize ambiguity in order to have a single right answer. This has some strange

effects; the no interaction class that predominated in the WSJ comprises only about 20% of their

data, whereas 70% of their sentences were scoped in-situ.

The puzzle genre suits their purpose well, since it reduces the importance of world knowledge

and discourse context for interpretation. But these are factors we wish to model, so these somewhat

artificial texts suit us poorly despite providing order, grammar, and lexis.

2.1.5 Srinivasan and Yates (2009)

Srinivasan and Yates labeled 92 semi-synthetic quantifier scope disambiguation problems, as test

data for an experiment in automatically extracting world knowledge from unlabeled text.

From the Web1Tgram corpus they semi-automatically extracted 128 predicates of two argu-

ments, then identified 46 n-grams in which both arguments to such a predicate were named classes

(or could be edited to supply a named class). From each of these 46, they constructed two quanti-

fier scope disambiguation puzzles, each quantifying one class with a and the other with every, and

labeled the preferred scoping as direct or inverse.

Their classifier then predicted preferred and plausible scoping based on the numbers that co-

occur with each named class (as in ‘billions of stars’ or ‘fifty million Frenchmen’) and each predi-

cate’s argument position (as in ‘bought a dozen eggs’), taking this as a readily available source of

world knowledge on the typical size of such sets.
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These are unquestionably broad-domain data, and textual co-occurrence is known to cap-

ture world knowledge, as demonstrated by prediction- and count-based vocabulary embeddings

(Mikolov et al., 2013; Pennington et al., 2014). But by the same token, these are fairly artificial

data.

The labeled quantified expressions are not themselves naturally occurring. They have no dis-

course context, an absolute requirement for us. They all have precisely two scope-bearers and all use

the same two quantifiers. Only two scopal relationships were possible; since a predication must fall

within the scopes that bind its arguments, one quantifier always outscoped the other, and since the

two scopings of these quantifiers are not truth-conditionally equivalent, there was no opportunity for

a no interaction label. This limited range of possible scopings is not representative of explanatory

generalizations as a whole.

Finally, though the training data for the classifier were natural-language n-grams, these test

items were already in an MRS-like logical form (Copestake et al., 2005). Linear order is destroyed,

semantic roles are abstracted away from their syntactic realization, and predicates are abstracted

away from their lexical realization. The presumption of world knowledge is the only criterion of

ours that this corpus does meet.

2.1.6 Dinesh et al. (2011)

Dinesh et al. (2011) annotate the scoping of quantifiers and other operators in 195 sentences of FDA

regulations (average 30 words each). This is explanatory text, specially enriched in modals. They

predict each operator’s most likely outscoper with a maximum-entropy classifier, as part of a project

in automatically verifying compliance with regulations (Dinesh, 2010).

For our purposes, three causes for concern are the narrow subject matter (limiting the variety of

lexis), the deeply specialized world knowledge that it presumes, and the small size of the corpus.

However, text coherence, order, and syntax are intact, and there may be advantages to regulations’

position at the interface of exact legal reasoning with complex real events. Regulations are meant to

convey meaning more exactly than many other explanations do, which suggests they would provide
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a clear training signal. Nevertheless, regulations are forced to grapple with complexity; they must

address a certain subject matter, whereas an LSAT problem (for example) can be written about

whichever domain allows for the least interpretive ambiguity. For these reasons, the Dinesh et al.

(2011) corpus might at a future date prove to be valuable supplementary training data.

2.1.7 AnderBois et al. (2012)

AnderBois et al. (2012) return to the LSAT logic puzzle genre and improve data quality by hav-

ing multiple annotators code each item. They report 358 observations within the scope of their

investigation—non-cumulative two-quantifier sentences with at least one quantified noun phrase as

subject or direct object (the other quantified noun phrase may perform some other function). They

imply the existence of other annotated data in the corpus, though without mentioning its quantity.

They model four predictors of the subject or object quantifier’s scope:3 its grammatical func-

tion, the two quantifiers’ lexical realizations, and the relative order of the two quantifiers. All four

independently predict scoping, with similar effect sizes.

As before, we worry that the genre is unnatural. Moreover, it purposely limits the role of

presumed world knowledge.

2.1.8 Manshadi et al. (2013)

QuanText, by Manshadi et al., is to our knowledge the most thoroughly developed corpus of scope

annotations. It consists of 500 imperative sentences, giving instructions for manipulating text files.

Sentences were derived from tutorials, help documents, a survey of computer users, and crowd-

sourced descriptions of data manipulation demonstrations (Manshadi et al., 2011).

QuanText is the first scope corpus to consider all NP chunks as candidate scope-bearers, in-

cluding indefinites, definite descriptions, and generics; the first to embrace the complexities added

by negation, modals, or sentential adverbs; and the basis of the first attempt to statistically predict

3In sentences whose two quantifiers were subject and direct object, one of the two was taken at random as the quantifier
of interest.
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quantifier scope over such complex materials (Manshadi and Allen, 2011). This more comprehen-

sive coverage aligns with our goals.

Another point in favor is that QuanText sentences, like explanations, routinely contain three or

more scope-bearers. This necessitates a more complex annotation scheme than the ternary classi-

fication that sufficed for previous projects, and as we shall see, this incurred some problems in the

methodology for comparing annotations with one another or with machine predictions. Neverthe-

less, the closer resemblance to our genre of interest is welcome.4

The sole disadvantages of QuanText for our purposes are its narrow subject matter and its lack

of any connected, multi-sentence discourse. Subject matter in particular turns out to be a severe

disadvantage.

The principal objects of the domain—characters, words, lines, and files—are overwhelmingly

in part–whole relationships, so that a very simple scoping heuristic based on these head words

has the same per-sentence complete recall accuracy (72%) as a support vector machine using a

large and sophisticated set of both lexical and grammatical features (Schuler and Wheeler, 2014;

Manshadi et al., 2013), and both are comparable to QuanText’s 75% inter-annotator agreement

(Manshadi et al., 2012). This confirms that world knowledge can be an effective clue for quantifier

scope disambiguation, but neither the small amount of world knowledge that explains so much of

QuanText, nor the crude representation of it as merely the identities of head words, promises to

generalize well to a broader domain. The data are just too regular to train on.

Finally, the QuanText sentences have been edited to be understandable out of the blue. This

prevents any investigation of text coherence or other discourse influences on quantifier scope dis-

ambiguation. But natural language is rarely out of the blue, and a cognitive model should account

for this.
4Not every genre shares this tendency. In WSJ, for example, Higgins and Sadock (2003) found a mere 61 sentences

with three quantifiers from their list, and 12 sentences with four.
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2.1.9 Evang and Bos (2013)

Evang and Bos extracted from the Groningen Meaning Bank (Basile et al., 2012) all occurrences

of PP modifiers with one of every, each, all quantifying either the modificand or the prepositional

object. Aside from fixed expressions and other exceptional cases, 456 were found and annotated.

Because the syntactic environment is so specific, a binary attribute on the preposition suffices to

capture the scoping information.

This corpus thus features text coherence, order, syntax, and a particular emphasis on the lexical

realization of universal quantifiers. Its subject matter is broad, allowing for modeling of world

knowledge effects.

Evang and Bos are optimistic about the potential for automatically generating a near–gold-

standard layer of binary scope attribute tags for the GMB, using their hand annotations as train-

ing data. But we do not expect these annotations to adequately train scope prediction in a broad-

coverage integrated system. Evang and Bos acknowledge that the selected phrases and the purely

binary annotation are not adequate to model the semantic/pragmatic behavior of specific indefi-

nites, scopal interactions between quantifiers and negation, and certain scope orderings (Evang and

Bos, 2013). Moreover, the syntactic environments annotated are very limited, limiting the corpus’s

potential to train a model of grammatical function as an influence on scoping.

2.1.10 Groningen Meaning Bank

Even if we find Evang and Bos’s (2013) method poorly aligned with our purposes, might we not

rather contribute a stand-off annotation to the GMB than create a new, unrelated resource? As with

OntoNotes, integrating diverse annotations of shared texts is a strength, and we would not have

to limit our annotations to a narrow class of PPs or a small set of quantifiers. Text coherence,

linear order, grammatical function, lexical realization, and presumed world knowledge would all be

represented.
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The problem again is genre and density. Evang and Bos state that their method covers ‘some of

the most common configurations giving rise to scope ambiguities involving universal quantifiers,’

but at 456 examples in the meaning bank’s million words, this ‘most common’ is not very frequent.

Of the GMB’s main genres, the legal documents and descriptions of countries favor generalizations,

but the fables and news articles disfavor them. Upon developing a good model of human quanti-

fier scope prediction, we would be glad to use it to contribute a layer to a resource like GMB or

OntoNotes, but for use in development we prefer something more dense in quantificational general-

izations.

2.1.11 Building data de novo

Finding no suitable dataset extant, we have developed our own. We take excerpts of a few sen-

tences from articles in the Simple English Wikipedia, parse them, and annotate with semantic and

pragmatic judgments sufficient to render (what we believe to be) the intended reading in logical

form.

For the scope prediction project here described, the main point of interest is to disambiguate

the outscoping relationships that are required in order to correctly formalize the truth conditions of

the intended meaning. Related secondary concerns include disambiguating implied quantificational

force, as well as coreference.5 But this work does not take place in a vacuum.

Another consumer of the annotated data that affects many aspects of the work is a project to

prepare a corpus of formalized generalizations—lambda-calculus representations of the Simple En-

glish Wikipedia excerpts. These might themselves be used for background knowledge in a compu-

tational model of the world (or some domain of it), or the relationship between them and the natural-

language source data might help to train models for correctly formalizing verbal explanations from

5In the broad sense: Multiple mentions that refer to the same entity or entities. The terminology is vexed here.
‘Coreference’ should not be assumed to exclude multiple uses of a variable under the same binding. ‘Anaphora’ should
not be assumed to exclude cataphora, let alone taken as distinct from pronouns as in Government and Binding theory.
And although some traditions make an exact distinction between anaphora and coreference (e.g. Kempson, 1977), I write
in the computational linguistics tradition, which historically has not (but see Sukthanker et al. 2020 for a recent attempt
to bring some clarity).
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experts in other domains. In any case, the lambda expression project has requirements of its own

in addition to a shared interest in quantifier scope. And both of these projects have emerged from a

broader research program to model incremental processing from language to semantics within the

human mind. Its influence will be visible from time to time also.

2.2 New corpus overview

This section summarizes the current state of the Simple English Wikipedia scope-annotated corpus.

Simple English Wikipedia is a smaller sister project of the well-known collaborative encyclope-

dia. Its genre is the same: informative text on many subjects. This offers many generalizations and

a broad domain. However, its target audience is non-native users of English, a category to which,

with some imagination, we can assign natural language processing computers.

The ‘simple English’ register is not a controlled language; there is no closed list of words,

word senses, or grammatical constructions to which writers are confined, although several such lists

are published on the wiki for reference. Editorial guidelines encourage using simple tenses, active

voice, and short sentences of a single clause, but the guidelines are not meant to override common

sense, and the final definition of ‘simple’ remains subjective. That is, this is still natural language,

and not merely a semantic formalism with an unusually English-like syntax.

2.2.1 Two generations of documents

Each document in the corpus is the beginning of a Simple English Wikipedia article. The corpus

includes two ‘generations’ of documents.

First-generation documents are sourced from among the earliest-created articles. Articles that

had not grown past two sentences were skipped. Articles of three or four sentences were taken in

their entirety. Longer articles were truncated to three sentences (or rather, three segments, counting

any standalone noun phrase used as a header). I annotated scope and coreference in these docu-

ments, constituting just over 1000 sentences.
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Tokens Segments Sentences Documents

Superseded 1st-gen 2876 180 180 59
Remaining 1st-gen 14,708 844 843 279

Current 2nd-gen 22,866 1435 1373 256

Current 37,574 2279 2216 535

Table 2.2: Summary of fully annotated corpus

Second-generation documents retain the three-segment minimum, but run as long as six seg-

ments where possible. The annotation guidelines have also been expanded, reflecting lessons

learned from experience and from an inter-annotator agreement study (described in Chapter 3).

Second-generation source articles are selected by the frequency of their (single-word) titles

within the text of the Simple English Wikipedia, in descending order. When this criterion over-

laps with the earliest-creation criterion, the first-generation document is superseded in favor of the

second generation’s longer excerpts and better-informed annotation guide.

2.2.2 Size

Table 2.2 describes the fully-annotated data currently available. The count of tokens includes titles

and headers; the count of segments excludes titles; the count of sentences excludes both.

This represents the documents that have been annotated for coreference, scope, and implied

quantificational force, and have had their parse tree hand-checked and corrected. However, 24 of

these documents (100 segments) could not pass the data preparation pipeline, either at the syntax-to-

semantics stage or during subsequent semantic processing (for details, see Section 4.2.1.3), and had

to be dropped, leaving 511 processable documents (2179 segments) to be divided among training,

test, and validation sets (Section 4.2.3).
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2.2.3 Pending expansions

The corpus is to be expanded with additional materials now being annotated. A large supplement is

now in progress, but was not ready for use at the time the prediction project’s dataset was finalized.

This supplement totals 22,924 tokens, 1464 segments, and 265 documents, which will roughly

double the available second-generation content. It supersedes 34 first-generation documents.6

Scope and coreference annotations are done and have been manually reviewed. Hand-correction

of syntax trees and annotation for quantificational force (e.g. generic versus existential) are still

underway. These are required both for an automated final check that the annotated scopes and

coreferences come out acyclic, and for this project’s data preparation pipeline, so these documents

are presently unreleased and unused.

Coreference annotation has now begun on a second supplement of roughly the same size. Scope

annotation is pending further training of new workers.

2.2.4 Density of scopal interaction

Table 2.3 shows the distribution of segments by count of scopally interacting quantifications, within

the processable documents.

The ‘any quantification’ column groups segments by the number of scopally interacting quantifi-

cations they contain, and measures the groups’ relative size. Those in the ‘one quantification’ group

must interact with a quantifier in another segment. For sentence segments, an interaction is any

scopal relationship that, if reversed, would produce a proposition with different truth conditions; for

noun phrase segments, it is any scopal relationship that, in some possible world, produces a differ-

ent restrictor set than its reverse. Many of the interacting quantifications counted are quantifications

over eventualities, such as when the phrase ‘two blue guitars’ implies that there exist, for each entity

in its restrictor set, periods of being a guitar and being blue in which the entity participates.

6Compare this with the current corpus’s 59 supersessions. There is a trend toward more supersessions with more-
frequent words (verified with smaller segments of the ranked list). We have construed both the early Simple English
Wikipedians’ choices of what to write about and the more recent writers’ vocabulary use as collective decisions about
what ideas are important and accessible, so the correlation between them, though modest, pleases me.
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Note that these claims of existence interact with the outscoping ‘two’, because reversing the

scoping implies the very different scenario in which two objects are both the guitar of the same

single being-a-guitar. If the phrase were just ‘a blue guitar’, however, they would not have that

interaction, and if they had no other interaction, they would not count toward their segment’s total

and its position in this column.

In addition to eventualities, this column counts quantifications over possible worlds (such as the

epistemic ‘must’) and other similar exotica. Note also the eight segments that each contain a single

scopally interacting quantification. This column does not require the two interacting quantifications

to come from the same segment.

The ‘entity’ column counts only quantifications that are signified by noun phrases, which limits

it to quantifications over entities. Guitars are still eligible to be counted, but being-a-guitar is not.

The only other requirement, though, is that the quantification has a scopal interaction; it may be

with a quantification of some other kind, which is the case in 420 or more segments that have now

moved to the ‘one interactor’ bin, and it may still cross segment boundaries.

The ‘entities’ column adds the further limitation of only counting entity quantifications that

interact with entity quantifications, and the ‘same-sentence entities’ limits it to the quantifications

whose interactions are predicted in this project. The last of these is the most comparable to the

distribution table in Rasmussen and Schuler (2020). Note, though, that none of these columns

is limited to counting overt quantificational determiners such as numbers. Bare plurals and even

pronouns are still included.

2.3 Document preparation

Documents are excerpted from a 2014 dump of Simple English Wikipedia, which contains over

100,000 articles.

The syntax and vocabulary of the Simple English Wikipedia are limited, by the standards of

prose for experienced L1 readers. However, the language is as varied as in any existing scope corpus,
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Any quantification Entity Entities Same-sentence entities
0 interactors 43.6% 40.2% 83.8% 84.8%
1 interactor 0.37% 19.6% 0.78% n/a

2 interactors 14.6% 12.3% 9.27% 9.18%
3 interactors 9.87% 4.22% 3.07% 2.98%
4 interactors 8.63% 1.93% 1.47% 1.47%
5 interactors 7.57% 1.24% 1.01% 0.96%
6 interactors 4.59% 0.41% 0.46% 0.46%
7 interactors 3.40% 0.18% 0.09% 0.09%
8 interactors 2.71% 0.28% 0.05% 0.05%
≥ 9 interactors 4.64% 0% 0% 0%

Table 2.3: Percent of segments with scopally interacting quantifiers

and more varied than in most, since it was not filtered for particular quantifiers or constructions.

It presents sentences in a discourse context and with information structure encoded in syntactic

choices, not just a collection of out-of-the-blue utterances or abstract predications. And it must

balance the need for brevity against the need for precision, often by presuming on the reader’s

knowledge of the world.

For all of these reasons, it is much more representative of natural explanatory language than

any of the previous resources. But most importantly, despite its linguistic simplicity it is still a rich

source of quantifiers of all kinds.

2.3.1 Text selection

First-generation standards for excerpting documents reflected two concerns. The first was text

lengths; many articles in this encyclopedia were very short.7

The other was domain breadth. The state-of-the-art QuanText corpus (Manshadi, 2014) con-

cerned a single, small subject matter (text editing), and Schuler and Wheeler (2014) had found that

the mere identities of the nouns heading two NP chunks were a powerful predictor of their scopes.

It seemed that a few simple facts about meronymic (part/whole) relationships in that domain—files

7Many still are. A random sample of 40 suggests that at present, the median length is only about 4 sentences.
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consist of lines, which consist of tokens, which consist of characters—added up to a devastatingly

effective heuristic.

Our decisions to take only three-sentence excerpts and to use the earliest-created articles had

both concerns in view, making many short articles usable but preventing long ones from skewing

the subject matter to any one domain. The second-generation selection standards reflect lessons

learned from this experience.

2.3.1.1 First generation standards

Requiring three sentences excluded numerous stub articles about small municipalities (most of them

created automatically from public records), but it retained important, general topics that simply

hadn’t had much editorial attention. This gave a large pool of articles to choose from, and so a large

pool of domains.

The earliest-created articles would have had the most opportunity to be expanded beyond a

sentence or two. Moreover, although articles are created by volunteers following their own interests,

we expected that many of the people who would volunteer to write a new encyclopedia would take

an interest in covering general knowledge broadly.

The wiki’s page creation history provided a list of 459 articles that had existed before Simple

English Wikipedia migrated to its current software platform, which did appear sufficiently ency-

clopedic to confirm our expectation,8 and some 423 of these met the three-sentence minimum (see

Table 2.4 for a sample).

As a final check before adopting this list of articles as our source pool, I verified that few of

their domains are as meronymic as the QuanText domain is. From their entire content of 13,444

sentences, I extracted every word for which WordNet (Fellbaum, 1998) had one or more noun

senses, and queried WordNet for a part/whole relationship in each combination of senses of each

pair of words appearing together in one sentence. This is a liberal estimate of meronymy, since

8The list is not totally devoid of hobby horses. Early contributors seem to have taken particular interests in Hawai’i,
Web technology, and varieties of sausage.
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Astronomy Infinity Pet
Archaeology Knowledge Paradox
Biology Leap Year Right angle
Brazil Montreal Ranch
Classical element MediaWiki Spache Readability Formula
Cooking Mustache Sport
Capitalization Metaphor Salami
Earth Mercury (planet) Soul
Fine Molecule Temple
Good Fishing net Vocabulary
Green North America Microsoft Windows

Table 2.4: Sample of first-generation article titles

there is no guarantee that either word is used as a noun at all, much less in the particular sense

needed. But even by this generous measure, only 698 sentences, or about one in nineteen, contained

a possible part/whole pair.

2.3.1.2 Second generation

Working with the first generation of documents revealed that our source articles have fairly stereo-

typed beginnings. The first sentence usually begins with the article’s title and consists of a definition.

The second and third sentences are often dedicated to explaining parts of it. Longer excerpts in the

second generation are intended to capture a wider variety of discourse relations and information

structures than before, as well as more facts about the article’s subject.

The question of article selection returned also, because clearing the 1000-sentence mark had

consumed 338 of the original pool of 423 articles.9 We were going to need a new way of locating

well-developed articles on a wide variety of subjects.

Since the inception of Simple English Wikipedia, the Wikipedia community has developed con-

sensus lists of essential articles, which can be used to guide an encyclopedia’s growth or check that

its coverage is appropriate to its size. We experimented with their list of 1000. However, we quickly

9In fact, the other 85 were also excerpted to three sentences and annotated for scope and coreference, but were
abandoned without syntax review and other annotations when the second-generation standard turned out to be much
more satisfactory.
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Building Energy Love
Mother Lake Village
Art Professional Pakistan
Storm Computer Canada
Republic Star Mean
Role Force Ice
God Something Championship
Hockey Minister Empire
Battle Summer Space
Military China Wife
Information Want Cup

Table 2.5: Sample of second-generation article titles

found that the list was skewed toward proper nouns, in the form of historical figures, locations,

artworks, and so forth, at the expense of generalizations.

After this false start, we based the selection on word frequency. A sample of titles is in Ta-

ble 2.5. The sample is visibly skewed by the wiki’s numerous articles about geographic features

and sports celebrities; television, film, and popular music are other topics where it has heavy cov-

erage. Homographs occasionally intrude; the frequency of ‘something’ is doubtless because of the

indefinite pronoun, but the article is about the song by George Harrison, and the article ‘mean’ is

about averaging, not denoting. Nevertheless, widely used words have also brought a broad sample

of general-knowledge topics to the fore, and proper nouns are largely avoided.

2.3.2 Syntactic preparation and annotation

Though not of primary concern for this project, the corpus’s syntactic annotation determines which

data we can prepare and will be described briefly.

The article excerpts are automatically segmented and parsed, using the Petrov and Klein (2007)

parser trained on the Nguyen et al. (2012) reannotation of the Penn Treebank (Marcus et al.,

1993), into a generalized categorial grammar markup. Scope/coreference annotators then desig-

nate outscopers and antecedents, while the parse tree is reviewed separately.
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The first concern of that review is the tree’s structure. Modifier attachment errors are relatively

common and require some rebracketing. Segmentation and even tokenization errors occur from time

to time as well; these are coordinated with the scope/coreference team so that the two annotations

can be merged correctly when both are done. The larger concern, though, is at the syntax/semantics

interface.

The generalized categorial grammar markup distinguishes composition operations for argu-

ments, modifiers, and various non-local constructions such as filler-gap constructions, and each

composition operation defines constraints to be placed on a restrictor or nuclear scope set. In gen-

eral, meanings of modifier predicates constrain restrictors of quantifiers associated with modifi-

cands, and meanings of non-modifier predicates constrain nuclear scopes of quantifiers associated

with arguments. These marked-up operations are then used to define a set of elementary predica-

tions (Copestake et al., 2005) over variables in restriction and nuclear scope expressions for each

quantification over entities (typically expressed by a noun phrase) or eventualities (expressed by

some verbs, adjectives, and prepositional phrases).

The syntax review therefore includes passing this markup through an automated implementation

of the above definitions to ensure that valid elementary predications can be obtained, and editing as

necessary.

Loosely speaking, then, one annotation job marks up the pragmatic end of semantics, and the

other marks up the syntactic end. There are certain overlaps and exceptions. The coreference task as

defined for annotators includes marking the antecedents of reflexive pronouns, although that could

be deduced from their syntax, and pragmatic judgments about implied quantificational force fell to

the syntactic review to avoid a disruptive retraining of scope annotators.

When a document has been annotated both ways, the pragmatic annotation tags can be automat-

ically transferred to the parse, and the elementary predications can be assembled into lambda terms

with the algorithm of Schuler and Wheeler (2014).

48



Most people have two hands , which have five fingers.

Figure 2.1: Sentence with scope arcs

2.4 Pragmatic annotation task

The annotation process is designed to safeguard accuracy while reducing mental labor.

2.4.1 Scope as dependency

Discussions of scope are often conducted in terms of fairly complex formalisms: Predicate logic

following Montague (1973), and/or covert syntactic movement followingMay (1977). Our annota-

tion instead uses a lightweight representation of dependencies (labeled directed graph edges, also

called ‘arcs’) within the original natural-language text. Annotators can visualize, reason about, and

discuss scoping judgments in a form analogous to Figure 2.1, then mark them up on preterminal

nodes of the parse, reusing skills they learned for annotating coreference chains.10

Intuitively, coreference dependencies are pointers from a noun or pronoun to (the head word of)

the last prior mention of the same entities/entity. Outscoping dependencies, pointing from one (low)

noun to another (high) noun, specify that a set of entities described by the low noun relates to each

entity described by the high noun. Behind the scenes, we maintain a convention that maps heads of

noun phrases, modal auxiliaries, and negations to quantifications and entities in logical form, so that

these word-to-word dependencies can be used as the skeleton for building a generalized quantifier

expression like Figure 2.2, but from the annotator side the task largely amounts to drawing arrows.

10The sparsity of this representation may seem more reasonable after considering the overlap between any underspec-
ified scope representation and one of its fully-scoped extensions, e.g. the Hole Semantics formula for ‘Every boxer loves
a woman’ diagrammed in Blackburn and Bos (2005, p. 134) and the direct-scoped logical form on the facing page. All
of the predicates, logical operators, entity variables, and binding quantifications are duplicated; the difference between
them, the ‘plugging’, is very small.
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most (λx person x)
(λx two (λy hand y)

(λy have x y,
five (λz finger z)

(λz have y z)))

Figure 2.2: Lambda expression with the same scoping; generalized quantifiers in small capitals

After marking the dependencies, annotators discuss any concerns in a review meeting and run

their work through automated validation, in either order. The validation program checks that nei-

ther kind of dependency forms a cycle, and that the annotated scoping suffices for the Schuler and

Wheeler (2014) algorithm to assemble a well-formed expression, in which all variable arguments to

elementary predications are bound by the lambda abstraction of an enclosing restrictor or nuclear

scope set. Any validation failures are hand-corrected and retried.

Formulating the task in this way removes (most of) annotators’ need to work with formalized

predicate-argument semantics, leaving them free to concentrate on inferred coreference and scope.

Keeping the natural-language source text at the center preserves all of its influence on these prag-

matic judgments. Doubts are easier to communicate orally, errors are less likely, and error spotting

is easier, when other considerations about the correct semantics neither intrude on the question ‘How

are these quantifiers scoped?’ nor are intertwined with its answer. And the scope-as-dependency

approach simplifies recruiting and training by reducing prerequisites and allowing us to teach the

file formats and computer tools of the job through the coreference task, before tackling the concepts

of scope.

2.4.2 The annotator at work

Figure 2.3 shows the beginning of a document, as it might appear on an annotator’s computer while

at work. At right is the vertical text, with blank lines between segments. The left margin gives

each token an address for dependencies to point to. In between sits the syntactic parse, in the
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0001:(N-lS (N-aD-xN%y|N%y City))

0101:(S-lS (S (V (N-lA (N-b{N-aD} A

0102: ) (N-aD-lU (N-aD-xN%y|N%y-n0001-yQ city

0103: ))) (V-aN (V-aN-b{A-aN}-xV%is|B%be-xCOPU is

0104: ) (A-aN-lU (N-lZ (N (N-b{N-aD}-x%| a

0105: ) (N-aD-lU (N-aD-xN%|N%-n????-s???? place

0106: ))) (C-rN-lR (V-rN (R-aN-rN-lG (R-aN-rN-xR%|A% where

0107: )) (V-g{R-aN} (N-lA (N-aD (A-aN-x-lM (A-aN-x many

0108: )) (N-aD-xN%ople|N%rson-yQ-s02 people

0109: ))) (V-aN-g{R-aN} (V-aN-lE (V-aN (V-aN-xV%e|B%e live

0110: ) (R-aN-lM (R-aN-xR%|A% together

0111: ))))))))))))) (.-lM (.-x%| .)))

0201:(S-lS (S (V (N-lA (N-b{N-aD} A

0202: ) (N-aD-lU (N-aD-xN%y|N%y-n0102-yQ city

0203: ))) (V-aN (V-aN-bN-xV%has|B%have has

0204: ) (N-lA (N-lC (N-aD (A-aN-x-lM (A-aN-x many

0205: )) (N-aD-xN%s|N%-n????-s???? buildings

0206: ))) (N-cN (X-cX-dX-x%|-yQ and

0207: ) (N-lC (N-aD-xN%s|N%-n????-s???? streets

0208: ))))))) (.-lM (.-x%| .)))

Figure 2.3: Scope/coreference file, mid-annotation
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Generalized Categorial Grammar of Nguyen et al. (2012). It is consulted occasionally, when there

is serious doubt whether the annotator’s reading of a syntactic ambiguity agrees with the parse,11

but otherwise plays very little part in this task, so it has been compacted to one line per token, given

the smallest meaningful indentation, and spaced away from the text. Its right edge is annotated

with tags, each beginning with a hyphen and a lowercase letter and running until the next hyphen or

space.

The figure represents a file that has been updated from the automatic parse to the hand-corrected

syntax, and so includes syntax-to-semantics annotations beginning with -x, which do not concern

us here.12

Semantic placeholder tags of the form -n????-s???? are automatically attached to every nom-

inal preterminal category when the file is formatted for annotation. Here the annotator has replaced

three placeholders with real annotations, but has not yet double checked and deleted the others.

Placeholders identify potential sites of coreference and quantification. They are slightly overde-

ployed, which is why three remain here. ‘Place’ only represents a predicate applied to the nuclear

scope set of ‘city’, not an entity reference of its own, so its placeholder is a false positive, and

the placeholders in ‘buildings and streets’ have gone unused because they can be annotated jointly

on the conjunction. However, the placeholders have greatly reduced the problem of overlooking

scopables, which was noteworthy in the first-generation documents (see Section 3.4.1.1).

The -n half of the placeholder represents inheritance, a mechanism for formalizing discourse

anaphora and the maintenance of knowledge. It is used at 0202 ‘city’, pointing back to 0102,

whereby all the facts previously predicated of cities (being a place, being many people’s site of liv-

ing) are included in the new reference.13 Annotators in fact use -n not only for discourse anaphora,

11The pragmatic and syntactic annotations must agree, but there is no fixed rule giving any annotator priority. Consen-
sus is usually quick or immediate.

12For the curious, lemmatizing tags, with percent signs and vertical bars, set a predicate’s name and use. The -xCOPU
lexical rule ensures that ‘a place’ will generate a predicate but not a new entity referent.

13The title, 0001 ‘city’, offers no facts for 0102 to inherit. We annotate anyway because there is nevertheless a reader
judgment of coreference, and because the title’s special status in the document may make the structure of the dependencies
itself informative. It is reasonably possible, for example, that the title as a device of information structure affects how
later, coreferring noun phrases are read; and it is certainly the case in our documents that the title is strongly associated
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but for any non-first mention of an entity or entities. Post-processing re-tags those that are actually

second uses of one bound variable, rather than new bindings.

2.4.2.1 Marking scopal interactions

After coreference, annotators perform a pass adding -yQ tags. This is a second, more careful form of

placeholding to refine the set of words that may need scope annotations. Nominals signifying quan-

tification over entities are our main focus to begin with, but other words such as modal auxiliaries

also signify quantifications and can have scopal interactions.

Moreover, not every word that signifies a quantification will need annotation. Neo-Davidsonian

semantics (Parsons, 1990) quantifies over eventualities for each elementary predication,14 and al-

most all of these quantifiers are existential and low-scoped. Most existential quantifications over

entities in our data are low-scoped as well. We have introduced a convention that allows low-scoped

existentials to be left unannotated (discussed further in Section 4.2.1.1.1), and the -yQ tagging is

also in part a process of identifying where the convention applies and dismissing these sites from

further attention.

We have found that delaying the step of writing the dependencies by inserting this methodical

tagging step produces more accurate work than diving right in. It clarifies the questions at hand

by defining where the annotator should and should not look for scopal interactions.15 It tends to

produce a mental sketch of the answers also, so that there is less error-prone backtracking to edit a

half-annotated text.

with a distinctive pattern of discourse that both uses and mentions the title word (See Section 2.4.3.4.6). Dependencies to
the title capture this information.

14Akin to representing ‘Sandy introduces Kim to Chris’ not as introduce(Sandy,Kim,Chris) but as

∃e : introduction(e) ∧ agent(e,Sandy) ∧ theme(e,Kim) ∧ patient(e,Chris)

.
15Among other things, it relieves a liability of leaving low existentials unannotated, which is that existential and generic

assertions compete for the same morphology: bare plurals, mass nouns, and even some singular count nouns with a/an.
-yQ tagging defines a time to consider this when there are fewer distractions. Leaving it to be done in the heat of battle,
as it were, leads to generics being overlooked.

53



With -yQ tags flagging where annotatable scope dependencies may begin and end, the last step

is to record where they actually do. The -s tag appears at the lower scope and contains the address

of the higher. The figure shows this step half-done, with a tag on 0108 ‘people’ but none yet on

0206 ‘buildings and streets’. The -s tag shown abbreviates the address to two digits for a token

within the same segment, a provision also available for -n; some annotators use it, while others

prefer four-digit addresses everywhere. For historical reasons, it is not customary to remove -yQ

when an -s tag is placed, but it is not used in further processing of the data.

2.4.3 The annotator instructed

This section describes some distinctive points of the training materials for pragmatic (and especially

scopal) annotation.

2.4.3.1 Intended reading

Annotators are asked to mark the coreference and scopal interactions of a document’s most probable

intended reading. Training materials illustrate some of the cues that may make a certain reading

more natural in its context. For example, in

(2) All lizards have scales. Gila monsters’ scales are pink and black.

we are probably meant to understand that Gila monsters are a kind of lizard. Elements that may

play into this judgment include

• Information structure: ‘Gila monsters’ is leftmost in its sentence, a position often given to

things that are familiar.

• Metadiscourse: A connective like ‘specifically’ or ‘however’ would have shaped what we

inferred.

• Presumed relevance: We expect the sentences to share an informative purpose.
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assume answer "false"

for each foot f:

if f smells fine, make answer "true"

if not, don’t change answer

stop and report answer

Figure 2.4: Robot program verifying an existential quantifier

• Presupposition: ‘Gila monsters’ scales’ presumes that they have them, and we expect that the

text justifies this.

• Lexical meaning: ‘Monster’ connotes fright, which fits many people’s feelings about lizards.

• Factual knowledge: The writer may have expected (justifiably or not) that readers would

already be familiar with Gila monsters.16

For the writer of the text, it might have been wise to make the intent more clear by deploying

such cues differently, but for annotators, the example serves to emphasize that they are fair game.

Technically it doesn’t say that Gila monsters are lizards, but almost everything we want annotated

is something the text technically doesn’t say—a conclusion we’re not forced to draw, a judgment.

So if it looks like we’re supposed to read ‘Gila monsters are lizards’ into the text, then annotators

should write it in (with an inheritance dependency).

2.4.3.2 Teaching scope: quantifiers as robot programs

The basic practice, traceable to Tarski (1933), of interpreting quantifiers by iterating over individuals

in the universe can be extracted from symbolic logic and deployed to create an intuition about

scope. Annotator training materials use the analogy of programming a very durable robot to verify,

for example, ‘Some foot smells fine’ by examining every foot in the world (see pseudocode in

Figure 2.4).

16In an online text, the expectation could be justified by making the phrase ‘Gila monster’ a link. Because our corpus
strips out most wiki markup, it is blind to hypertextual rhetoric like this, but we haven’t missed it much. Only about one
sentence in a thousand has been so questionably relevant as to drive us back to check the source article, and more of these
are explained by seeing sentences that were truncated than by seeing hyperlinks.
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assume every-kid-answer "true"

for each kid k:

assume this-kid-answer "false"

for each table t:

if k is standing on t, make this-kid-answer "true"

if not, don’t change this-kid-answer

if this-kid-answer is "true", don’t change every-kid-answer

if not, make every-kid-answer "false"

stop and report every-kid-answer

Figure 2.5: Robot program verifying an existential quantifier

This may amount to replacing one formalism with another, but the idea of an algorithm is

culturally current in a way that symbolic logic is not. The training materials next demonstrate

a universal quantifier in an analogous format, as a program for verifying ‘Every Gila monster is

venomous’ by assuming truth and searching for a counterexample.

A program is then proffered for verifying ‘Every kid is standing on a table’ (Figure 2.5), where

a kid is identified as a counterexample not by checking a single simple property, but by running

an inner loop that examines tables as they relate to that kid. The exact wording of the previous

pseudocode is designed for this scenario, to keep both quantifier loops recognizable and their nesting

clear.

This program corresponds to the intuitively preferred direct scoping of the sentence. Once it

is understood, a program for the inverse scoping is offered as an alternative. The discussion shows

how it is also a reasonable approach to the sentence, then leads around to highlight some possible

worlds where they don’t produce the same answer. Since the two programs are extremely similar,

the difference between them is easy to reduce to which set of entities gets searched by the outer loop

or the inner, and this is scope itself.

2.4.3.3 Teaching scope: bag of tricks

For annotators better acquainted with computer programming, a final robot program cements the re-

lationship between how linguists talk about scope and how programmers do: if g is biting k,
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report "Danger, Will Robinson! Danger!" is well-intentioned, but the robot should reply

‘That does not compute’. The variable names are not defined to refer to any particular entities, when

no for each statement is walking them across the universe. They are meaningful only within the

loop bodies, and ‘scope’ to a programmer is the portion of a program where a name is meaningful.

So the programmer scopes exhibit the same nesting as the linguist scopes.

A series of useful heuristics is provided also. Paraphrasing an assertion to begin ‘for each X,

for that X’s set of Ys’ is often easy to do and brings the intended scope forward. Attempting to

substitute determiners may help: ‘each’ seeks wide scope, ‘the same’ avoids narrow scope, ‘one

or another’ tends moderately toward narrow scope. Follow-up sentences with singular or plural

pronouns may be compatible only with one scoping or another.

A challenging but powerful last resort is to devise possible worlds where the scopings have

different truth values, and ask which is the kind of world the writer wants readers to believe in.

Between the natural credibility of each world and their fit to the writer’s point, there is usually a

distinct difference.

2.4.3.4 Selected other guidelines

Annotator reference materials covered a range of relevant fine points and challenges. The most

important of these was not to annotate a dependency where there is no scopal interaction, i.e. for

an outscoping that can be reversed without changing the conditions that make the statement true or

false.

2.4.3.4.1 Indifferent scope Consider one universal quantifier immediately outscoping another:

(3) Every Hatfield hated all McCoys.

As a matter of deductive logic, either quantifier can be given the wider scope. Both formulations

will be true, or both false, under any given set of facts, so the quantifiers’ relative scope is a matter of

indifference; they cannot interact scopally. The same is true for two adjacent existential quantifiers:
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(4) Some singer shot some sheriff.

Though this case is vastly more common, it mostly occurs among existential quantifiers at the nar-

rowest scopes, where the previously mentioned convention (Section 2.4.2.1) suppresses annotations

anyway. On the rare occasions when non-interacting quantifiers appear at wider scopes, special

markup is needed to accommodate corpus users’ different needs (described in Section 4.2.1.1.2),

but just omitting any annotation is sufficient to make validation fail, ensuring that the document will

come up in a review meeting.

2.4.3.4.2 Noun/referent mismatches Another special circumstance is nouns that do not intro-

duce an additional referent. Complements of copulas, appositives, and certain quasi-appositive

postmodifiers (such as in ‘the Republic of Austria’) signify predications, which do not (typically)

participate in coreference chains or scopal interaction, so annotators are warned to pass over them

and use their subjects/heads instead. Phrases like ‘a lot of’ typically serve as multiword quantifiers,

in that there is no ‘lot’ available for anaphora afterward (real estate and auctions being the principal

exceptions).

‘For example’ and similar metadiscourse are an adjacent case; they do refer to entities, but the

entities exist with us, the readers, not among the things the rest of the text describes, and so very

seldom have any referential or scopal interactions.

On the other hand, annotators occasionally work with entity referents other than directly through

nouns. Annotations on a conjunction represent duplicating the annotation on each of the conjuncts,

which downstream software can spell out in full.

When nouns are elided, guidelines recommend a substantive adjective or determiner as proxy.

Our software does not include general-purpose syntax-to-semantics rules for elision, but the valida-

tion failure brings the document in for review, where the proxy annotation reports the coreference

and scope judgments, so that the correct logical form can be patched in by hand.
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2.4.3.4.3 Anaphora to restrictor sets Lastly (for the present discussion), guidelines provide for

a few species of anaphora beyond simple coreference, with two special notations.

(5) Most feet stink, but some of them smell fine.

In this sentence, contrary to ordinary coreference, ‘some of them’ should acquire only footness from

its antecedent, not stinking also. In logical form, this is done by referring back to the restrictor set

of ‘most’ rather than the nuclear scope set as usual. Outscoper dependencies may also need to target

the restrictor, as in

(6) Most bears with three paws are exceptionally dangerous.

If the elementary predication of having paws uses the bear variable bound by the nuclear scope

set, the generalization is wrong: The logical form would then turn out to say that most bears have

three paws and are exceptionally dangerous. To restrict the generalization to three-pawed bears, that

predication must use the bear variable bound by the restrictor set, and so the paw variable it uses

must be within that scope. The notation for a dependency to a restrictor set is the letter r suffixed to

the address.

2.4.3.4.4 Bridging anaphora and presupposition The other special notation is a catchall de-

pendency type for pragmatic judgments about justified presupposition, several of which have the

effect of making a referent available.

Bridging anaphora, as seen in Example (7), might be analyzed in terms of a special class of

nouns that have an implied argument.

(7) Each bus stopped at the border and the driver got out.

On such an analysis, ‘driver’ has a patient argument like verbs do, but it is pragmatic judgment

rather than syntax that points it toward ‘bus’. That analysis is less comfortable for discourses like

59



Example (8).

(8) Chris’s shower stall fell through the floor. The joists were rotten from water damage.

We do not want to propose that joist is a noun of a special kind, with an implied argument for the

floor it is a part of. Nearly any noun can trigger bridging anaphora, not just a special subclass, and

the relationships between these nouns and their antecedents are more like the numerous relationships

of noun–noun modification (for example, see the taxonomy of Tratz and Hovy, 2010) than like a

small set of syntactic theta roles.

This suggests modeling bridging anaphora in terms of weak familiarity (Martin, 2012): A def-

inite noun phrase like the joists projects the presupposition that its referent is uniquely identifiable.

We supply a dependency back to a prior referent that justifies the presupposition, if finding that

referent is a pragmatic judgment (though not if a syntactic device like of-modification makes the

connection clear). This is in the spirit of ‘presupposition as anaphora’ (van der Sandt, 1992).

In Example (7), we would annotate an outscoping parallel to the presupposition dependency,

which is a frequent pattern in bridging anaphora,17 but other presupposition triggers often stand

in some other relationship to the justifying referent. For example, words like another and later

presuppose an identifiable prior entity or point in time.

Admittedly, this dependency (which we mark with -w for ‘weakly familiar’ or ‘weird anaphor’)

has barely a shadow of a meaning. It shows that we have read into the text some kind of semantics

that both referents participate in, but it is silent as to their structure and truth conditions. To classify

its uses more narrowly, describe those semantics, and predict them falls beyond this project’s am-

bit.18 But the pragmatic phenomena it stands for, inexactly described as they are, routinely touch

17Further study of this pattern should also examine it an extreme case of implied domain restriction or of quantifier
subordination.

18To quote William, ‘It’s not ideal, but it postpones the complication until somebody else’s thesis.’ A reasonable step in
that direction might be to predict the exact semantics of noun–noun coordinations, which are similarly underspecified at
present. The success of neural methods in that area (e.g. Dima and Hinrichs, 2015) and in intricate structured prediction
(e.g. Prange et al., 2021) suggests that revisiting -w need not be a far-future project.
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upon the ones we are presently concerned with, and can even be confused with them. This makes

recording it useful anyway.

For annotators, marking the catchall dependency is not just a more rewarding action after dis-

covering a subtle pragmatic relationship than forgetting about it (although it is that). It also unbur-

dens memory of a factor that coreference and scope must stay consistent with, it may even provide

some insight about which variables need to be in scope where, and it fills the annotation site with a

record of the conclusion that the relationship is not coreference or scope, so that it cannot be mis-

taken for an omission on later re-examination. Meanwhile, for future researchers, it flags interesting

phenomena for followup.

2.4.3.4.5 -w for slippage Simple English Wikipedia writers are often willing to presume, when

they have introduced a whole, that its parts are identifiable, and vice versa. Having introduced either,

they slip to the other and back, trusting the reader to fill in the connection with world knowledge.

They do the same with such distinctions as use/mention, group/member, or type/token. The -w

presupposition dependency helps annotators to document how they resolve this fluid usage into

exact semantics.

2.4.3.4.6 Use/mention A non-trivial fraction of our documents has slippage between ordinary

uses of a word or phrase that refer to some set of other entities and occasional mentions that refer

to the word or phrase itself. Simple English Wikipedia writers are generally not scrupulous about

using quotation marks or other formatting to distinguish the two, which increases the chances that

an unprepared annotator will incorrectly mark them as coreferring. Training materials warn against

this by illustrating that the word ‘potato’ cannot be fried golden brown, the vegetables do not consist

of six letters, etc., so we have to establish two separate coreference chains to avoid mixing up the

facts.

Sometimes wiki writers expressly establish both the relationship and the distinction between
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word and object, using verbs like ‘to mean’ and ‘to be called’.19 In this case, the foregoing advice

is enough to get a proper annotation.

Often, though, writers take the relationship for granted, and produce texts like

(9) Potatoes come from South America. They are an edible tuber. The word is borrowed from a

Carib language via Spanish.

The definite description ‘the word’ presupposes identifiability, which is justified by the previous use

‘potatoes’. In the general case, this is what the -w dependency is for. It stands for the understood

eventuality of meaning or being-called, in which the vegetables and the word participate (modulo

some adjustments for lemmatization).

We have made special provisions for annotating the most common case of slippage, but if they

did not apply, the annotator would have to make sure to point the dependency to the restrictor set of

‘potatoes’, because the only thing that determines whether a vegetable participates in that eventuality

is whether that use of the word referred to it. Pointing to (the nuclear scope set of) ‘they’ would

pick up all of the later asserted facts, amounting to a claim that we are thinking of the word ‘potato’

not because we read it, but because we read a pronoun that referred to the edible, South American

subset of potatoes. The annotator guidelines cover such details.

However, in our documents, nearly all use/mention slippage is limited to the document’s title

and its referent. Construing a title like ‘Potato’ (somewhat generously) to refer to the entire set of

things that can be called ‘potato’, with no other facts yet predicated to constrain it, the set contains

both vegetables and utterances. Both coreference chains can inherit from the title and add a pred-

icate to take a subset containing only potatoes or only ‘potato’s, which keeps them separate and

gives this distinctive kind of discourse a distinctive bifurcated inheritance structure. Pointing the

19‘To mean’ is quite reliable: Words mean entities. ‘To be called’, unfortunately, serves dual duty as a fancy copula. In
‘I was called “Sūn Wěixiáng” in Taiwan’, an entity is called words, but ‘[Repeated daily] traveling is called commuting’
doesn’t just express a fact about how people speak. It names a predicate, which is why later reference can just say
‘commuting’ and not ‘what is called “commuting”’.
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dependency to the title makes it unnecessary to attend to the careful distinctions discussed in the

previous paragraph.

2.4.3.4.7 Group/member, type/token A group, population, collection, or type can be referred

to its own right, and things can be said of it that are not true of its members:

(10) a. The Mudville Ballet is large and uncoordinated.

b. All of the dancers are small and graceful.

In this example, terminology makes the distinction fairly easy to maintain; I have conveniently not

named the organization the Mudville Dancers, and no one person who dances can be called a ballet.

Elsewhere, the terminology can obscure equally valid distinctions:

(11) a. The Beatles were men of flesh and bone.

b. The Beatles dissolved in the 1970s.

(12) a. In the whole language there are only seven words you can’t say on TV.

b. In George Carlin’s 873-word routine, there were 46 words you can’t say on TV.

Making the distinction is not our annotators’ primary mission, but sometimes it affects correct coref-

erence, or has to be clear before trying to reason about truth conditions for scoping.

Clouding the issue, ordinary language includes making claims apparently about a group that

actually apply distributively to the group’s members:

(13) This line of computers had a built-in floppy drive.

We have to read ‘this line’ to refer to the computers produced in said product line, to make the

floppy drives come out right. A product line is an organizational abstraction in which hardware

like a floppy drive cannot be mounted, let alone the many drives used in the manufacturing run.
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Similarly, phrasing like ‘that kind of X’ is short for ‘Xes of that kind’ when not discussing ontology

or type theory. And discourses easily slip across the divide:

(14) a. There are two types of albums, studio albums and live.

b. Sam owns 65 studio albums and only two live.

We have made it a rule to take overt language at face value where possible, so the first of these

sentences would be taken to genuinely discuss types, but the second is clearly iterating through

the album tokens that inhabit them. Then the first use of ‘studio albums’ signifies the one type

that participates in the eventuality being-the-type-inhabited-by-studio-albums, but the second use

signifies the many tokens that participate in eventualities of being-a-studio-album.

Just as with use/mention, annotators could use the catchall pragmatic -w here to hint that there

is a distinctive relationship, but not identity, between the type and token referents, and in particular

to record that knowing the type makes the tokens identifiable. But type/token often has an addi-

tional complication. Apart from our finagle with article titles, a given word in the documents is

almost always unambiguously a use or a mention. Simple English Wikipedia writers freely elide

the repetitions and stipulations that would make this true for type/token.

The guidelines for assigning group/set/type or member/element/token status are, in brief:

1. Being exact about type/token may require referents for both, and the type and token referents

may both have good claims to be represented by the same word. The word-and-dependency

notation cannot handle this case. Make an informal note and bring it to our attention.

2. Align with overt wording such as ‘type, kind, set, sort, group, species’ wherever it can rea-

sonably be done, but depart from it wherever necessary.

3. In the absence of such overt wording, try to construe the semantics as predicating of tokens,

and leave it to our ubiquitous quantifications to represent claims about the type. Again, apply

this guideline so far as is reasonable, but use predications of types where necessary.
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4. When you can unambiguously assign words to type and token status, avoid -n inheritance

between the type and token. Add -w if the relationship between them is unstated.

Examples (15) through (17) further illustrate the slippage, with sentences first as found in the

source documents, then rewritten for type/token rigor.

(15) a. [The Nēnē] gets its name from its soft call.

b. The type ‘Nēnē’ gets its name from its tokens’ soft calls.

The type reading is required because under an all-token reading, a Hawai’ian goose cannot be called

a nēnē until it calls, and because the species, which was under discussion, really does have the name

in its own right.20

(16) a. The macadamia nut is the fruit of a tree that first came from the east coast of Australia.

b. A generic macadamia nut is the fruit of some tree of a type whose tokens first came

from the east coast of Australia.

The nuts are still macadamias even if grown on a tree that has never been in the Southern Hemi-

sphere. The logical form here will be more than our annotator-friendly word-based front end can

handle, with three tree referents: The tokens on which the nuts grow, the type, and the tokens

originating in Australia.

(17) a. Hydrogen is the true primordial substance, the first atom produced after the Big Bang.

b. A portion of hydrogen is a portion of the true primordial substance, a set of atoms of

the type of the first atom produced after the Big Bang.

‘Substance’ could be construed as referring to a type, but the semantics for connecting tokens to

the type would have to be shoved into the copula. In any case, the mass noun ‘hydrogen’ must

20Means could of course be contrived to propagate the name nēnē to the type when it pertains to enough of the tokens,
but that’s a lot of tacit mechanism.
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be bridged to its countable atoms across the apposition with more finesse than is built into our

compositional syntax-to-semantics rules.

As these examples show, type/token slippage creates a streamlined, ‘simple’ phrasing with an

intricate relationship to the exact type/token semantics. That intricacy goes beyond what our an-

notation system can express, which is perhaps unsatisfying, but also unsurprising and (for present

purposes) unproblematic.

Type/token proved ‘very challenging’ for the QuanText team ‘in spite of choosing a specific

domain with fairly intuitive quantifier scoping’ (Manshadi et al., 2011), and predictably did not get

any easier in the encyclopedia. However, resolving it in detail was rarely necessary for our direct

purpose of marking annotation and scope, and recording it was, like other uses of catchall -w, an

error reduction device and a piece of opportunistic future-proofing.

No, it could not record everything we figured out in our occasional forays into type/token res-

olution. In that sense, some effort has been lost. For any hypothetical future effort to exhaustively

annotate type/token, what was lost is a drop in the bucket. For present uses of the corpus, only

the coreference and scope dependencies are directly relevant, and the impact of -w lies in the erro-

neous coreference and scope annotations it helped to prevent. In that sense, we have the type/token

annotation we need.

2.4.4 Summary of pragmatic annotation

The annotator-facing task for both coreference and scoping largely amounts to drawing arrows on

the original text, omitting a large number of highly predictable scopings for quicker work. This

lowers barriers to entry, spreads out training, and supports using a full range of pragmatic cues to

inform coreference and scoping judgments. Training materials teach about scope from this perspec-

tive, without including the entire apparatus of formal semantics.

Annotation placeholders, a methodical sequence of tasks, and automatic validation serve to

further highlight what needs to be annotated, safeguarding accuracy and completeness. Reference
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materials address the most frequent complications in the areas of determining scope, annotating it

on the text, and distinguishing scope and coreference from other, related pragmatic judgments.

2.5 Proper nouns

I took part in the other, primarily syntactic annotation on a limited basis, after we found our lambda

terms were ascribing too many scopal interactions to proper nouns. As a practicality, we handle

them with essentially the same syntax-to-semantics machinery as common nouns, which allows

them to scope,21 but they should not have scopal interactions, if they are constant references to a

single entity—not contingent on how an outscoping variable is assigned, nor offering alternatives

for an outscoped variable’s binding to be contingent on. Therefore their scoping is indifferent.

In practice, single reference is an oversimplification. Names of people, places, and even calendar

entities like months and years are not always univocal; we disambiguate by finding a candidate

referent that is relevant to the eventualities and co-participants mentioned in context. This is much

like bridging anaphora.

I ran through the syntax annotation files and added a tag to take proper nouns down to the

narrowest scopes, where the set of co-participants is best filled out, and to prevent the vast majority

of their scopal relationships from being identified as truth-conditionally relevant during the data

processing pipeline. I tagged 333 proper nouns in first-generation documents, 420 in the second-

generation documents used in this study, 382 in the documents now passing through the rest of their

syntax annotation, and 254 in documents just now entering coreference annotation.

21Although there is a philosophical debate about whether names refer as descriptions of some sort, or as pointers
directly to an entity (see e.g. Michaelson and Reimer, 2019), it is fairly remote from our interests in generalizations and
quantification. As a practicality, we act as though there is a predicate for being Kermit the Frog just as there is a predicate
for being green. From this perspective, the debate amounts to asking whether that predicate is our summary of some more
complex intensional expression, or just the indicator function of an entity set.

67



Chapter 3

Inter-annotator agreement

This chapter reports work done to devise an appropriate measure of inter-annotator agreement,

scores of first-generation data on that measure, and an analysis of the reasons for annotator disagree-

ments. This analysis shaped additions to annotation procedure and annotator guidelines adopted for

the second generation of documents.

The design of the measure and the analysis of errors include assumptions and semantic modeling

decisions that have since been changed. The most prominent of these is miscellaneous existential

quantifications floating to the topmost scope, since this is scored in the agreement measure. These

are now scoped low. Semantics for pronouns, copulas, appositives, and relative clauses have also

been rethought. They are reported here as they were understood during first-generation annotation.

A human-annotated scoping of a document is highly structured, in that we can expect it to be

transitive and acyclic, treat multiple mentions of an entity consistently, and so forth. One can com-

pare two such annotations by decomposing them into ‘atomic’ scopings between pairs of entities,

but the global, structural concerns just mentioned mean that the atomic scopings are not independent

of one another. Merely counting agreements among atomic scopings risks mis-stating the degree of

agreement between two annotations. To address this, I have developed a chance-corrected measure

of agreement.

Two annotators produced independent markups of a random sample of 33 documents (99 sen-

tences), none of which they had previously discussed. Their titles were seen previously in Ta-

ble 2.4.1 Agreement between the annotators was calculated with the chance-corrected measure, and

1Three of these documents have since been superseded by second-generation annotations: Earth, Good, Green.
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for the sake of comparison was also calculated with measures reported in Manshadi et al. (2011) for

QuanText.

3.1 Measures of Manshadi et al. (2011)

In QuanText, a 100-sentence sample was annotated by three annotators for IAA. Agreement was

calculated only over scope relations, not coreference, because they considered the coreference an-

notations very easy to produce and did not want them to artificially boost the agreement score.

For comparison, each scoping of a sentence was considered as a directed acyclic graph (DAG),

its nodes being the scope-bearers (NPs, negations, and other operators) and its arcs being the an-

notated outscoping relations. Outscoping is transitive; if A outscopes B and B outscopes C, A

necessarily outscopes C. Therefore an arc between A and C can be added without contradiction.

Adding all such arcs to the graph expands it to its transitive closure.

Now each pair of scope-bearers can be labeled. If an arc exists between them in the transitive

closure, they interact scopally, and the label is either direct or inverse according to their word order.

Otherwise, the label is no interaction.

Manshadi et al. defined constraint-level agreement by comparing the labels of individual pairs in

different scopings, and sentence-level agreement as agreement on every pair that can be generated

from the sentence. For each level, they used Fleiss’s κ (Davies and Fleiss, 1982) as a chance-

corrected measure of agreement.2

They also defined a variant measure, κ-ez, which considers two labels to match when either of

them is no interaction, as well as when they are the same, increasing the level of observed agree-

ment. The generalization from constraint-level to sentence-level agreement is all-pairs matching as

before. Unsurprisingly, κ-ez scores were much higher than plain κ.

2The measure is misreported as ‘Cohen’s κ for multiple annotators’, but as pointed out by Artstein and Poesio (2005),
Fleiss’s κ actually generalizes not Cohen’s κ but Scott’s π (Scott, 1955), .
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3.1.1 Criticism

The notion of comparing transitively closed DAGs by comparing labeled pairs of nodes is an im-

portant one to which we will return, but as applied here it is problematic. Fleiss’ κ is unsuited for

the constraint level, generalizing to the sentence level by total agreement loses information, and the

κ-ez variations overstate reliability. We take each point in turn.

To be meaningful, chance correction requires an accurate model of what can happen by chance.

κ’s chance model assumes that every item compared is independent of every other, but this is not

true if our items are single arcs.

The presence and direction of each outscoping arc are strongly constrained by other arcs in the

graph. The arcs that are added in the transitive closure are determined by the elementary arcs in

the raw annotation. The annotator observes local and global requirements: Anaphors and cataphors

must fall within the scope where their antecedent is bound; the graph as a whole must be acyclic.

Violating κ’s independence assumptions in this way would be particularly a problem for us,

because the larger the graph, the more such constraints there are. Moreover, we expect users of a

scope-annotated corpus to be concerned with the semantics of entire clauses, sentences, and dis-

courses, and not solely with the relative scopes of individual referents. For both of these reasons,

the proper granularity for measuring chance-corrected IAA is whole DAGs, not individual arcs.

At the sentence level, a single disagreement overrides arbitrarily many agreements, producing a

substantial undercount. Again, this is a larger problem for us since our items are not single sentences

(typically 10–20 words in QuanText) but documents (average length slightly over 30 words).

Manshadi et al. (2011) are correct that no interaction pairs do not affect a sentence’s truth

conditions. However, I do not take this to justify counting them as matches to upward and downward

pairs, as in the κ-ez measure. If the no interaction annotator is correct, the other party has asserted a

scoping relationship with no truth-conditional effect. If the other annotator is correct, no interaction

misses a scoping relationship that does affect truth conditions. We would not count either of these

as supporting the data’s reliability.
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upward downward incomparable

upward 24 6 35
downward 6 128 140

incomparable 47 192 10224

Table 3.1: Pair-label confusion matrix.

3.1.2 Comparison

In light of these issues, I determined to find a more appropriate measure of IAA for scope annota-

tions. However, for the sake of comparison with previous work, I have also calculated some Fleiss’s

κ values. Our confusion matrix at the constraint level is shown in Table 3.1.

Our Fleiss’s κ at this level was 0.409, versus 0.750 for the comparable measure in QuanText

or a Cohen’s (1960) κ of 0.52 in the Higgins and Sadock (2003) data. Whatever methodological

concerns one might have had with using this statistic, the outcome strongly suggested expanding

our annotation guidelines and performing a second pass through our corpus.

I did not calculate the κ-ez measure to compare. One reason is methodological, as discussed

above. The other is practical: I could not extract sufficient implementation details from the Man-

shadi et al. (2011) description. They state the effect on observed agreement of counting no interac-

tion as a universal match, but not whether or how it is accounted for in expected agreement. It is

clear enough that one might merge, say, the upward/incomparable cell of the confusion matrix into

the upward/upward agreement cell, but not clear what happens to the incomparable/incomparable

cell.

I did calculate a variant measure, which might be considered the opposite of κ-ez. I knew

that incomparable results would be frequent, because they arise profusely when the scope DAG

branches, as it does in Example (1).

(1) Every car here has four wheels and an engine with four cylinders.

The ordinary scoping is shown in Figure 3.1. Wheels and engine are both outscoped by car, but do
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car

wheels engine

cylinders

Figure 3.1: Branching scope in Example (1).

not interact with one another. Consequently, any scope-bearers below either of them, as cylinders

is here, will also not interact, and the number of non-interacting pairs grows quadratically with the

depth of the branching.

Fearing that the incomparable results might inflate our score, I therefore also calculated agree-

ment over only those pairs that both annotators labeled as interacting. This raised our Fleiss’s κ to

0.755, which suggests that our inter-annotator disagreements were most often about the presence of

scoping, rather than its direction. On inspection, incomparable pairs were generally the result of

one of the annotators overlooking a scope-bearer (see Section 3.4). A second annotation pass would

benefit from tools to highlight all scope-bearers and so prevent oversights.

In the end, though, all of these variant measures attempt in various ways to work around the fact

that scope annotations have internal structure. We turn now to the possibility of addressing that fact.

3.2 Chance-corrected IAA over Structured Items

Artstein and Poesio (2008) argue for computational linguists to measure IAA with chance correction

in general, and with Krippendorff’s α specifically (Hayes and Krippendorff, 2007). Krippendorff’s

α defines observed disagreement between two codings of an item in terms of a distance function,

and determines expected disagreement by using the same function in an exhaustive permutation

test, measuring the distance between codings of different items. Crucially, α is agnostic as to which

distance function is employed, as long as it is a metric.3 In fact, by choosing certain metrics one can

3A distance function δ is a metric iff it satisfies these axioms for all a, b, c in its domain:

• δ(a, b) = 0⇔ a = b
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re-create many other IAA statistics in terms of Krippendorff’s α.

Skjærholt (2014) sees in this the solution for IAA over annotations with internal structure—

syntax trees, in his case. One finds a distance metric able to embrace the complexity of the an-

notations, and plugs it into the Krippendorff α formula. The mean squared distance between an-

notations of the same item gives Do, observed disagreement; the mean squared distance between

all annotations, of whatever items, by whatever annotators, gives De, expected disagreement, and

α = 1 − Do/De.

Edit distance measures for trees and other graphs are surveyed in Bille (2005); Zeng et al.

(2009); Gao et al. (2010); not all are metrics, however. For purposes of exposition, Skjærholt

uses an off-the-shelf tree edit distance metric (Zhang and Shasha, 1989) as his metric, but for real

applications he suggests using a distance function adapted to the specific nature of one’s data:

‘The use of a distance function to describe [α] means that more fine-grained distinctions can be

made; for example, if the set of labels on [syntax trees] is highly structured, partial credit can be

given for differing annotations that overlap’ (Skjærholt, 2014, p. 941)4

We have defined a distance function to capture meaningful overlap between scope annotations:

We preprocess the annotations to create an explicit scope arc for every scopal interaction. We

establish a correspondence between two annotations’ scope-bearers, and therefore between their

scope arcs. Finally, we use the symmetric difference of the two sets of scope arcs to measure the

distance between annotations.

Each step of this process must account for the meaning of the data it handles, in order to credit

annotator overlaps properly. The earlier steps are most strongly affected by the nature of the data.

The remainder of Section 3.2 will review the considerations at each step and conclude with examples

of chance and non-chance agreements in Section 3.2.4.

• δ(a, b) > 0⇔ a , b
• δ(a, b) = δ(b, a)
• δ(a, b) + δ(b, c) ≥ δ(a, c)

4In that vein, SuMoTED (McVicar et al., 2016) might be a better edit distance function for syntax trees. Unlike
Zhang/Shasha, it does not insert or delete nodes, and its elementary moves are topologically local, so it traces an intelli-
gible path through the space of possible parses on its way from one annotation to the other.
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3.2.1 Preprocessing: Inheritance and Transitivity

Preparing an annotation for IAA testing must involve at least the following steps: Identifying

scope-bearers, extracting inheritance dependencies that affect them (some annotated by hand, some

supplied by the syntactic parse, and one between each nuclear scope set and its restrictor), infer-

ring transitive inheritance, extracting annotated scope dependencies, locating scope-bearers with no

outscoper, propagating scoping through inheritance dependencies (including inheritance paths that

run through restrictor sets), and inferring transitive scoping.

Most of these steps are straightforwardly implied by the nature of the data. A few call for some

explanation.

The following were identified as scope-bearers: all noun phrases; any term with a scoping arc

annotated from or to it; and any term connected by inheritance (in either direction) to a scope-bearer.

Special attention must be paid to propagating scoping through inheritance dependencies, and to

scope-bearers with no annotated outscoper.

3.2.1.1 Propagating scoping through inheritance

The bottom of a scoping arc must be propagated down any inheritance chain. The precise meaning

of an inheritance arc is that every constraint that applies to its target (e.g. an antecedent) must also

apply to its source (e.g. an anaphor). Being outscoped by another referent is one such constraint, so

we must infer an outscoping arc from the anaphor to its antecedent’s outscoper.

Less obviously, the top of the scope arc must be propagated up the inheritance chain.5 Exam-

ple (2) shows why.

(2) I visited each woman there, and she always had a well-fed donkey.

5This conclusion, built into the IAA software, rests on the incorrect assumption that the two clauses must use the same
variable in the semantics. In our current understanding, ‘she’ is a discourse anaphor, with its own variable and its own
implied quantification, and with the collected facts about ‘every woman’ defining its restrictor set.
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woman she

donkey

(a)

MP minister

portfolio

(b)

Figure 3.2: Propagating outscoperhood up inheritance chains. Dashed arrows show inheritance,
single arrows show annotated scope, and dotted arrows show inferred scope.

The inheritance and scope arcs are shown in Figure 3.2a donkey is outscoped by she, which inherits

from each woman. The inheritance dependency is directional, carrying predications such as being

there from woman down to she. But each woman there is just as validly the outscoper of donkey

as she is, because they are identical. There is no problem inferring that woman outscopes donkey.

However, Example (3) has the same pattern of scope and inheritance without such an identity (see

Figure 3.2b).

(3) All the Members of Parliament assembled. Each cabinet minister held a portfolio.

In this discourse, portfolio is outscoped by minister because each minister has a unique portfolio,

and minister inherits from Member of Parliament because all the cabinet ministers are MPs. But not

every MP is a cabinet minister or necessarily corresponds to a portfolio. Though it seems desirable

to infer that woman outscopes donkey, the analogous scope of Member of Parliament over portfolio

has no intuitive interpretation.

However, formal interpretation shows that this scoping is harmless. Its truth-conditional effect

can be understood in terms of the algorithm for translating a cued-association structure to a lambda

term, which is given in Schuler and Wheeler (2014). In this algorithm, lambda terms are built

from the inside out; elementary predications are translated first, and are then wrapped successively

in variable bindings and generalized quantifiers. Preconditions on the translation of bindings and

quantifiers ensure a well-formed formula.

Scope dependencies merely impose one such precondition. They delay the translation of an
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outscoping property until the outscoped property is translated. Thus, for example, the scope depen-

dency from portfolio up to minister ensures that the portfolio variable will be bound closer to the

predication hold than the minister variable is.

The inheritance dependency also imposes a precondition on binding the minister variable. It

says that whatever is true of the MPs is true of the ministers in question. Thus the nuclear scope

property being an MP that assembled must be translated into a lambda term first, so that we can

conjoin it with the property being a Cabinet minister to form the restrictor property for the transla-

tion of each. Only then can we write a lambda term for the nuclear scope of each that incorporates

the previously translated portfolio properties.

What, then, of the inferred scope arc between MP and portfolio? Without it, both have to be

bound before (i.e. within) minister. With it, portfolio additionally has to be bound within MP, which

does not conflict with the other requirements, so it will not make the lambda translation impossible.

And although scope arcs affect translation order, they cannot rewrite elementary predications, so it

is still always a minister who holds said minister’s portfolio, and not some arbitrary other MP.

It would be dangerous to propagate outscoper-hood up inheritance chains if entities at higher

scopes could inherit from entities at lower scopes. This might cause ordering paradoxes in the

translation. But an inheritance arc pointing to a lower scope is analogous to the subscripts in Exam-

ple (4).

(4) *Shei approved of everyone’s motheri.

X’s mother is only meaningful under the scope of everyone, where X refers to someone. Where

she is, mother does not refer, so there are no facts about mother’s referent that she can inherit.

The same problem afflicts any attempt to inherit from a lower scope, making all such inheritance

arcs meaningless. Since they are meaningless, they are not expected in the corpus, and ordering

paradoxes cease to threaten.6

6But my preprocessor has been made robust to cycles, just in case.
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3.2.1.1.1 Every woman’s donkey revisited Our device for preserving common-ground infor-

mation down inheritances is too simple to be accurate in anaphoric references to quantified nouns,

which can be illustrated with Example (2).

Brasoveanu (2010) introduces Plural Compositional DRT in order to support correct anaphora

in sentences like this one. In PCDRT, the information states that successive utterances modify are

sets of variable assignments, each compatible with what has been uttered so far. Each variable

assignment represents a correspondence between quantified-over individuals. Update operators in

subsequent discourse must retain a structured subset of these assignments, which is to say they must

preserve the correlations between individuals established by previous quantifications. In this way,

when ‘always’ quantifies over my visits, ‘she’ does not quantify afresh over all the women, but only

has access to the woman corresponding to my visit.

On our inheritance model of anaphora, this is difficult. The occasions quantified over by ‘al-

ways’ have to inherit the constraints predicated of their antecedents, such as being a visit and being

by me, into their restrictor sets. The facts just mentioned are easy to capture, but ‘every woman

there’ has to be existentialized as ‘there was a woman there’, to be outscoped not by the nuclear

scope set of ‘always’ but by its restrictor set, in order to finish capturing the facts about the visit.

And then, in order to refer to that visit’s woman, ‘she’ must inherit from that virtual woman, and

not (as we annotate it) from the woman variable in the previous clause.

We have explained this away among ourselves with the notion that ‘always’ is a disguised and

displaced quantifier of ‘she’, so that the second clause in fact means ‘every woman whom I visited

had a well-fed donkey’ rather than quantifying over visits. That implies and is implied by ‘every

visit was one with a woman who had a well-fed donkey’ so strongly as to seem like the meaning

of the sentence itself. Unfortunately, even if accepted in this case, that trick does not save similar

situations elsewhere.

Suppose that my discourse about well-fed donkeys continued,

(5) Most of them had free access to her root cellar.
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Structured anaphora would likewise require that most of the donkeys had access to the owning

woman’s root cellar, not to some arbitrary woman of the set, let alone to ‘every’ one per the quan-

tification that introduced them to the discourse.7 Once again, we annotate from ‘her’ back to ‘she’,

and no matter whether ‘she’ is subordinate to a quantification over all visits or is quantified by ‘al-

ways’ directly, in either case it is predicated that she has a well-fed donkey. Thus the existentializing

copy operation once again places a virtual ‘there is a donkey that she has’ into the restrictor of ‘her’.

However, nothing at this point forces it to be identical to whichever donkey is, at any given time,

bound by ‘most of those’. The correspondence has been severed.

‘Most of those’ has to scope high, because it ranges across all the donkeys I met, not across all

the donkeys each woman owns, so its binding cannot be controlled by looking up the scope chain to

learn which woman is under consideration. ‘Those’ as such has its own virtual copy of the preceding

common ground, which includes ‘there exists a woman who owns it’ provided that the woman was

in scope for the original ‘well-fed donkey’ variable.8 But once again, we have annotated ‘her’ as

inheriting from ‘she’, when what we actually need is to fetch the virtual woman from ‘those’. That

variable’s reference can be resolved relative to the outscoping donkey. But nothing in our annotation

indicates this course of action.

One argument is that nothing should have to. Plain lexical semantics and inheritance provide

information supporting a pragmatic inference that the woman–donkey correspondence of the first

sentence ought to be imported into the second, in preference to unlikely scenarios in which different

donkeys are in the woman’s vicinity when I discuss their food source than when I mention their

being well-fed.

However, I and all of our annotators have been susceptible to misusing scope in an attempt to

record these sorts of correspondences among individuals (see Section 3.4.2.2), suggesting that deep

7Of course, the problem has a different, blunter solution at this point for readers whose grammar does not allow that
use of ‘her’, but we all would accommodate and understand it even if we wouldn’t produce it, so I believe we still have
to account for it.

8This is guaranteed by the displaced-quantifier analysis ‘every woman I visited’, but the ‘for each visit’ analysis can
be modeled in ways that do or don’t provide it, depending on the quantificational force we assign to the pronoun ‘she’,
without affecting its truth conditions.
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down, none of us really buy this argument of mine. Structured anaphora of some kind would be the

correct annotation for what we meant.

Brasoveanu’s particular approach is difficult to implement in the dependency semantics that

lie between the annotation and our processed lambda expressions.9 Jeffery King’s (2004) Context

Dependent Quantifiers offer ‘minimal situations’, which are a more natural fit and would likewise

serve to relay the woman-visit-donkey correspondences from one quantification to the next.

The alternative is to devise some notation for marking an inheritance to be diverted from its

literal textual antecedent to an existentialized copy of it held by one of the outscopers of the anaphor.

The fact that there may be multiple such outscopers makes this particularly messy. With semantics

for minimal situations, it may just be possible to solve these proportion problems while retaining

our annotator-friendly surface layer.

3.2.1.2 Top-scopedness

In any document, there is at least one topmost scope-bearer, one without an outscoper. There may

be more than one topmost, as in Example (6), so long as the topmosts cannot interact scopally.

(6) A cat meowed and a horse whinnied.

The relative scoping of two existentials cannot affect truth conditions, so in this case, both are

considered topmost and no outscoper is annotated for either. We presume that topmosts such as

these fall directly under a global scope. Therefore all other scope-bearers fall indirectly under the

global scope.

However, despite transitivity, we do not supply an arc to the global scope from each and every

scope-bearer. Only when a scope-bearer is topmost does its arc to the global scope reflect an an-

notator decision about which there could be disagreement. Such arcs we create. Arcs from other

scope-bearers to global would signify nothing, and so are omitted.

9We employ dependency semantics for their compositionality, as described in Schuler and Wheeler (2014), and for
cognitive modeling reasons beyond the scope of this thesis, no pun intended, such as incrementality and a plausible neural
implementation.
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Aramaic letters are the ancestor of several families of scripts.

Aramaic letters are the ancestor of several families of scripts.

Figure 3.3: Matching two annotations of a single document.

3.2.2 Vertex Correspondence

To measure the distance between two annotations, after preprocessing, they were brought into cor-

respondence as follows:

1. Scope-bearers correspond if they arise from the same word in the same position of the same

sentence.

2. Remaining scope-bearers correspond by the order in which they appear in their documents.

3. If one document has more annotated scope-bearers than the other, top-scoped10 dummy en-

tries fill out the correspondence.

Under this rule, two annotations of the same document will largely be matched mention-for-

mention, as shown in Figure 3.3, and a scope-bearer that only one annotation identifies as such (a

‘one-sided annotation’) will be represented in the other annotation by a dummy scope-bearer with

an arc to the global scope and no other scoping.11

When comparing annotations of two different documents in the permutation test, scope-bearers

are matched up arbitrarily, as shown in Figure 3.4, to provide a model of random annotations. The

arbitrary matching can be imagined as adapting the structure of one scope DAG to the scope-bearers

of the other (but no matter which one is adapted, the distance measure comes out the same).

10This provision is no longer appropriate; non-interacting dummies should be used instead.
11Except in the extremely unlikely case where both annotators provide distinct one-sided annotations.

80



Aramaic letters are the ancestor of several families of scripts.

Opossums have pouches and echidnas lay eggs. dummy

Figure 3.4: Matching annotations of two different documents.

One can imagine creating a correspondence not by this arbitrary matching but by creating dum-

mies prolifically—in effect, treating every scope-bearer in either document as a one-sided annota-

tion. But this is an unreasonable model of a random annotator; it implies annotators who from time

to time just skip a document entirely. Arbitrary matching simulates an annotator whose product has

no rational connection to the contents of the document, but who does mark scoping and inheritance

dependencies just as often as the real annotators do, and who shares their slight bias toward topmost

scoping.

3.2.3 Symmetric Difference as Graph Distance

A distance metric for directed acyclic graphs was introduced by Critchlow (2012). Critchlow’s

metric is computationally expensive (Brandenburg et al., 2012), but Malmi et al. (2015) prove an

efficient approximation. With parameters appropriate for comparing scope annotations, the approx-

imation is equivalent to the size of the symmetric difference between two graphs’ sets of scope arcs.

Symmetric difference is itself a metric. The remainder of Section 3.2.3 defines the metrics and the

approximation, justifies the parameters, and shows how the approximation reduces to symmetric

difference.

Given a correspondence between two annotations’ scope-bearers, measuring the distance be-

tween the DAGs is equivalent to measuring the distance between two partial orders over the set of

scope-bearers.

The conventional distance metric on total orders is Kendall’s τ, defined as total pairwise dis-

agreements (Kendall, 1938). The generalization to partial orders by Critchlow (2012) is Hausdorff
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Kendall τ distance. Critchlow represents each partial order as the set of total orders that extend it;

in this representation they can be compared with Hausdorff distance, which is the largest (Kendall

τ) distance from any member of either set to its nearest neighbor in the other set. Because the un-

derlying Kendall τ is a metric, the Hausdorff distance derived from it is a metric also (Hausdorff,

2005).

Hausdorff Kendall τ distance requires enumerating all pairs of total orders that extend the pair

of partial orders, and all pairs of arcs in each pair of total orders. The Malmi et al. (2015) approxi-

mation enumerates all possible arcs just once, summing the following elementary distances (where

1 ≥ p ≥ q ≥ 0):

1 for agreeing that the arc is present and disagreeing on its direction

p for disagreeing whether the arc is present

q for agreeing that the arc is absent

0 for agreeing on the arc’s presence and direction

Because disagreeing on the existence of scope arc is a disagreement about truth conditions (see

Section 3.1.1), we maximize the penalty for it: p = 1. Likewise, agreeing on no interaction is an

agreement about truth conditions, and we treat it just as positively as agreeing on the direction of an

interaction: q = 0.12

In our transitively closed graphs, an arc is present for every scopal interaction, so the distance

function amounts to scoring 1 for every arc not shared. Taking each graph as the set of its arcs,

the distance is the size of the graphs’ symmetric difference (their union without their intersection).

Although the Malmi et al. (2015) approximation does not always satisfy the metric axioms, the size

of symmetric distance does.

Summing over all possible edges and scoring disagreements is the very measure from Manshadi

et al. (2011) that I previously rejected for violating independence assumptions. The difference is that

now it is wrapped in a permutation test. The non-independence of pairwise comparisons inflates the
12Positive q increases the distance between sparse graphs. It is suggested for applications where agreeing on many

arcs’ presence should be favored over agreeing on many arcs’ absence (Malmi et al., 2015), i.e. when an arc’s presence is
more meaningful than its absence. Positive q does violate two of the metric axioms (footnoted in Section 3.2).
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agreement between any two annotations, so the random annotator reveals the extent of the inflation.

Agreement calculations with and without this correction are demonstrated in Section 3.2.4.

3.2.3.1 Normalized distance functions: An open question

We would also have a metric, Jaccard distance, if we normalized the symmetric distance by dividing

out the size of the union. Normalization increases the impact of an arc agreement or disagreement

when the DAGs compared are small.

Our short documents usually produced small scope DAGs, often consisting of just two or three

scope-bearers. As usual, in-situ scoping was much more frequent than inverse scoping, which

allowed small DAGs from different documents to agree often when their scope-bearers were put

into correspondence in the permutation test. Furthermore, comparisons of two small DAGs made

up a much larger fraction of expected agreement than of observed agreement.

So in our case, the effect of normalization was to drive α down by an order of magnitude.

Without normalization, α remained on the same order of magnitude as the κ values, confirming that

the much lower result with normalization was pathological. But this in no way settles the question

of whether to normalize comparisons for DAGs in general, or even for scope DAGs in general.

Skjærholt (2014) studies the analogous question for tree edit distance and concludes that the

non-normalized metric is ‘clearly the best’—but on the grounds that in his experiments, the nor-

malized metric led to α scores that were modestly higher. And to me, his results do not make its

superiority all that clear.

In simulations where he generates a second annotation by permuting the structure of gold trees

to varying degrees, the normalized metric tracks closer to the current standard measure, labeled

attachment score, except for the very most severe permutations, when the probability of reassigning

a token to another head at random is 0.8 or above (see Skjærholt’s Figures 3 and 5). And on natural

data (four corpora divided into nine parts), agreement scores from the normalized metric correlate

to LAS better than those from the non-normalized metric (Pearson’s r of 0.5126 versus 0.4788,

calculated from Skjærholt’s Table 2).
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But if it is not clear to me that normalizing is inappropriate for tree edit distance, neither is it a

given that the best practices for trees would generalize to non-tree DAGs. Choosing good distance

functions for structured annotations is a craft in its infancy.

3.2.4 Non-independence Revisited

We share with Manshadi et al. (2011) the practice of scoring the labels for every possible pair of

scope-bearers, in order to extract all of the information they contain. But when they are generated

to satisfy global properties like acyclicity, whether by a human annotator or an algorithm, most

of them contain redundant information, and counting it multiple times overstates two annotations’

agreement.

The response in Manshadi and Allen (2011) is to define additional measures that only score the

transitive reduction of the scope DAG,13 but how to combine these with or weigh them against the

measures based on the entire transitive closure is not clear.

Krippendorff’s α by contrast permits the distance function to overstate agreement this way in

the observed-disagreement term. But in the expected-disagreement term, the distances between un-

related annotations as measured by the same function serve to characterize its overstating tendency.

By way of example, I will first illustrate agreement/disagreement arising from paired anno-

tations of the document excerpted from the article ‘Metaphor’, and then chance agreement/dis-

agreement from one annotation of ‘Metaphor’ and one annotation of ‘Leap year’. The excerpts

themselves are given in Examples (7) and (8).

(7) Metaphor is a term for a figure of speech. It does not use a word in its basic literal sense.

Instead, it uses a word in a kind of comparison.

Agreement between annotations has two components: Which scope-bearers are at the topmost

scope, and which pairs of scope-bearers have a scopal interaction.

13The unique smallest set of arcs having the same transitive closure.
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In ‘Metaphor’, nine scope-bearers were identified as topmost by at least one annotator. Out of

these nine possible agreements, eight scope-bearers were identified as topmost by both annotators.

All eight were noun phrases. The ninth scope-bearer was a point of disagreement: One annotator

also left the word not topmost, but the other placed it under the scope of one of the noun phrases.

Five more noun phrases were marked with outscopers by both annotators, making 14 scope-

bearers in total and
(
14
2

)
= 91 possible pairs. Annotators agree that 84 pairs have no scopal in-

teraction; the number is so high because of the large number of top-scoped existential quantifiers,

which are incapable of interaction. In five more pairs, the annotators agree about the presence and

direction of a scope interaction, and in two pairs they disagree about the presence of one. There-

fore interaction contributes 89 actual agreements out of 91 possible. Together with the topmostness

agreements, the total is 97 agreements out of 100 possible.

Chance agreement will be calculated the same way, except for the additional step of creating a

correspondence between the scope-bearers of ‘Metaphor’ and those of ‘Leap year’.

(8) A leap year comes once every four years. It is a year in which an extra day is added to the

Gregorian calendar which is used by most of the world. An ordinary year has 365 days.

An annotator found 12 scope-bearers in ‘Leap year’ and 13 in ‘Metaphor’.14 A dummy scope-bearer

was created in ‘Leap year’ to make their numbers equal.

When the two lists of scope-bearers were matched in order, there were 12 possible agreements

about top-scoping. Five topmosts in each list were matched to topmosts in the other and contributed

agreements. Seven more scope-bearers were marked as topmost in only one list, and contributed

disagreements: three topmosts in ‘Metaphor’ and four topmosts in ‘Leap year’.

Among 13 scope-bearers, there are
(
13
2

)
= 78 possibly interacting pairs. Seven pairs had an arc

in ‘Metaphor’, but no matching arc in ‘Leap year’, and four arcs in ‘Leap year’ had no match in

14The 14th scope-bearer, not, had no scope interactions in this annotation, and so my agreement system was unable to
detect it as a scope-bearer. Had it been detected, it would have been matched with a dummy, and there would have been
additional agreements about not and the dummy being top-scoped, and about neither one interacting with anything.
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outscoped topmost

outscoped 134 64
topmost 86 552

Table 3.2: Topmostness confusion matrix.

‘Metaphor’, for 11 disagreements about interaction out of 78 possible. For the other 67 pairs, both

annotations agreed that there was no arc.

Adding interaction to topmostness, total agreement in this chance matchup is 72 agreements out

of 90 possible. Naı̈vely, 80% agreement sounds rather good! But the only thing these annotations

have in common is that they were done by the same hand, and probably about the same time. This

is the context in which we should understand the 97% agreement about ‘Metaphor’.

3.3 Findings and Chance-corrected Agreement

Our confusion matrix for the labels of pairs of scope-bearers was already given in Table 3.1 (see

Section 3.1.2). Each scope-bearer was also checked for topmostness, with the results shown in

Table 3.2. The comparisons underlying both tables are only those between different annotations of

the same document.

Summing through both tables, raw observed agreement is 11,062 agreements out of 11,638

possible, or 95.1%. Chance-corrected α = 60.9%.

3.4 Error Analysis

In the two confusion matrices, eight cells represent disagreements. I randomly selected five dis-

agreements from each cell for review, then added the sixth and final disagreements from the down-

ward/upward and upward/downward cells. In this discussion, the first mention of each cell will be

boldfaced.
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cause count

annotator error 23
gap in guidelines 19

other 5

Table 3.3: Broad causes of the disagreements reviewed.

An observable disagreement about scopal interaction can arise from just one act or omission by

an annotator, or from several acts or omissions interacting. Moreover, one such act or omission can

contribute to several different observed disagreements. Reviewing the 42 selected disagreements

revealed 47 contributions from underlying causes. In most cases, the cause was either annotator

inattention or a difficult matter not anticipated by the annotation guidelines.

Table 3.3 gives the tally in these broad categories. Annotator errors are analyzed in Sec-

tion 3.4.1, gaps in the guidelines are analyzed in Section 3.4.2, other causes are analyzed in Sec-

tion 3.4.3, and a more detailed count follows as Table 3.4 in Section 3.4.4.

3.4.1 Annotator error

Annotator errors include oversights such as overlooking scope-bearers and mis-typing annotations;

annotating contrary to guidelines that concern proper names and meronyms; and annotating scopes

with strange truth-conditional consequences.

3.4.1.1 Oversights

Example (9) comes from the article titled ‘Right angle’. Subscripts have been added to distinguish

two mentions of the word angles.

(9) When two lines cross each other so that all the angles1 have the same size, the result is four

right angles2.
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In one annotation, all the angles had a scope arc up to two lines, showing that the angles in question

are specific to this crossing of these two lines. This makes the lines–angles1 pair a ‘downward’

scoping.15

In the other annotation, all the angles has no outscoper, amounting to a claim that crossed lines

result in four right angles when all angles in the universe have the same size. This was an oversight,

not the annotator’s intended meaning. But because it leaves angles1 at the topmost scope, it creates

an outscoped/topmost disagreement, and because it also expresses no interaction between lines and

angles1, it also creates a downward/incomparable disagreement.

Five of the disagreements selected for review are owed to annotators overlooking scope-bearers.

Two more disagreements are because each annotator miswrote the token number for the target of

one scope arc. A final three oversights (again, implicating both annotators) are idiosyncratic con-

tradictions, either of the meaning of the scope dependency, or of the plain sense of the sentence.

These three subgroups are reported as three separate causes of error in Table 3.4, but all of them

result from misperceiving the content of the annotator’s raw materials, and all might be considered

as variations on a theme. If they are all grouped together as oversights, they constitute the most

prolific source of disagreements in the review (in a tie with one other source, to be discussed in

Section 3.4.2.2).

To mitigate this problem, second-generation documents are presented to annotators with a place-

holder on every nominal.

3.4.1.2 Proper Names

The annotators agreed that the reference of proper names is not (usually) relative to some other

variable binding; thus they are not (usually) outscoped. This guideline was disregarded in one

annotation of Example (10).

(10) North America is a continent in the Northern and Western hemispheres of Earth.

15I use upward and downward to describe the direction of scoping between mentions in the order in which they appear
in the sentence. In the absence of inheritance dependencies, these correspond to in-situ and inverse scope.
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stove

[internal]oven

part box

(a)

part

box

oven

stove

[internal]

(b)

Figure 3.5: Annotations of Example (11), discussed in Sections 3.4.1.3–3.4.1.5. Dashed arcs repre-
sent parser-supplied inheritance; solid arcs represent scope

The correct first-generation annotation would have had both hemispheres and continent topmost,

since hemispheres is the head of proper names (even though Wikipedia writers have not capitalized

it) and continent is indefinite. The erroneous annotation has hemispheres outscoped by continent,

producing an incomparable/upward disagreement for the pair and a topmost/outscoped disagree-

ment for hemispheres, both of which were selected for review.

Scope/coreference annotators are now explicitly instructed not to scope proper nouns under

ordinary circumstances. Their scopal neutrality is now handled via a tag in the syntax-to-semantics

annotation.

3.4.1.3 Part/whole

Annotators were instructed that wholes usually outscope their parts. In Example (11), from the

article ‘Cooking’, oven was named as a part of stove. The two annotations are shown in Figure 3.5.

(11) An oven is a part of a stove that is like a box.

In Figure 3.5a the part/whole guideline is followed. In Figure 3.5b, it is violated by the stove–

part scope arc, creating an upward/downward disagreement. Propagating the scope up the part–

oven inheritance arc made the oven–stove pair an upward/downward disagreement also. Both of

these disagreements were among those selected for review.

89



3.4.1.4 Identity, Not Scope

Figure 3.5a includes the strange assertion that part is both outscoped by oven and identical to it.

Here the annotator misused a heuristic for scoping.

In cases like two hands with five fingers, an indication that hands outscopes fingers is that the

referent of fingers depends on the referent of hand. In an oven is a part, it is trivially true that the

referent of part depends on the referent of oven, but not because of scoping.

This error contributes to a downward/upward disagreement over the oven–part pair.16 Another

selected disagreement revealed the same annotator making the same mistake in one other location.

3.4.1.5 Like

Example (11) was also implicated in two other selected disagreements relating to the construal of

like.

Figure 3.5a has box under oven with the sense that, for a generic oven, there exists one or another

box that it is like. Figure 3.5b has the reverse, i.e. there is a certain box which the oven is like.

Not only was the oven–box pair itself one of the reviewed disagreements (downward/upward),

but the same difference between the annotations emerged in the review in two other ways:

In Figure 3.5b, the oven–box arc combines with the erroneous stove–part arc that was discussed

in Section 3.4.1.3 to create a downward/upward disagreement over the stove–box pair.17 In addition,

implementing the semantics of that introduces a scope-bearer (labeled internal in the illustration).

This node inherits from stove because the parser erroneously attached that is like a box as a modifier

of stove, rather than of part. Because it inherits from stove, it receives the same scoping relative

to box. But even if the parser had attached the modifier correctly, there would still be a disagree-

ment about the pair of the internal scope-bearer with box, because of the two annotations’ different

directions for the oven–box arc.
16The strange oven–box–part scope chain in Figure 3.5b makes it a downward/upward disagreement rather than a

downward/incomparable, but the error in Figure 3.5a would cause a disagreement regardless.
17Either arc would suffice to make it a downward/incomparable disagreement; both are necessary to make it down-

ward/upward.

90



One might argue that Figure 3.5b’s scoping indicates not a certain physical box that is the

prototype of ovens, but an ideal box. If that was the intended reading, these disagreements are less a

matter of annotator error than of needing a guideline to identify the better of two plausible readings,

a matter similar to disagreements about concrete and ideal units of measure (see Section 3.4.2.1).

3.4.2 Guideline Gaps

Several disagreements arose because of phenomena not addressed in the annotation guidelines—

sometimes because a phenomenon had not been seen previously, sometimes because no satisfying

treatment of the phenomenon had yet been found, and sometimes because the annotators did not

foresee any difference of opinion about how to treat it.

This discussion of gaps in the guidelines will begin with annotators’ two ways of handling units

of measure, an issue that somewhat resembles their different treatments of like in Section 3.4.1.5.

Other areas where the guidelines were inadequate follow: a frequent error in which annotators

used scopes to express relationships that are better expressed with predications; treatment of non-

quantifier scopal operators; certain forms of redundant annotation; the semantics of one-to-one

relationships expressed by once every; and the semantics of each other.

3.4.2.1 Units of Measure

Annotators had not yet agreed on the proper handling of units of measure, as shown by the two

annotations of Example (19) in Figure 3.6.

(12) A right angle is an angle with a measurement of 90 degrees.

Figure 3.6a implies that every angle measurement has its own degrees, an unsatisfying implica-

tion because a right angle contains infinitely many one-degree-wide spans, not just 90. Figure 3.6b

implies that there are degrees or one degree that is shared by all angle measurements, an unsatisfying

implication because such a degree must be omnipresent, but still of a specific, limited size. Lacking
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angle

measurement

degrees

(a)

angle

degrees

measurement

(b)

Figure 3.6: Annotations of angle with a measurement of 90 degrees in Example (19).

a clear agreement about what to do here, annotators produced an upward/downward disagreement

for measurement–degrees.

The semantics for units of measure, and how they correspond to words in the text, were subse-

quently agreed on (Rasmussen and Schuler, 2020), and corresponding advice added to the scoping

guidelines.

3.4.2.2 Predication, Not Inter-quantifier Scope

The article ‘Temple’ includes the phrase a house of worship, which produced two of the disagree-

ments reviewed (an upward/downward disagreement and a topmostness disagreement) because the

annotators marked opposite scopes between house and worship.

Both annotators are in error. There is a correspondence between acts of worship and the places

where they take place, but it is expressed by a predication: A structure exists, and worship exists,

and the structure is dedicated to hosting the worship. As existentials, the two quantifications cannot

interact scopally in a way that affects truth conditions.

Annotators may have been led to their errors by these factors: Scoping worship over house

is a typical pattern for of -phrases, because most such phrases describe a part and a whole, like

the sides of the face. Scoping house over worship reflects either the higher topicality of house in

the discourse, or a habit of composing lambda terms with predicates in sentence order by default.
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contract

rules customer business

(a)

customer

rules

contract business

(b)

Figure 3.7: Erroneous annotations of Example (13).

If guidelines were more explicit about checking for erroneous scoping between existentials, such

factors might have been less influential.

Similar errors about a sentence from the article ‘Fine’, shown in Example (13), produced a

downward/incomparable disagreement about the contract–rules pair (Figure 3.7).

(13) When agreeing to a contract with a business, a customer may agree to certain rules.

Customer, business, and contract are all indefinite, and rules is likewise existential, so their

relative scoping is irrelevant to truth conditions. The annotators’ scope arcs are an attempt to bind

each customer, contract, etc., into a correspondence with its counterparts from the same transaction.

However, the eventualities that are predicated of them and the syntax of when accomplish this

without additional scope.18

All of the disagreements in this category feature an annotator attempt to bind together exis-

tentially quantified entities by misusing scope, when in fact the entities are bound together by an

eventuality in which they participate.

Errors of this kind are the largest source of disagreements seen in the review except for over-

sights, with which they are tied. A particular caution against this error was added to the annotation

guidelines. The use of the -w annotation to mark unique identifiability relationships also helps to

divert annotators from trying to mark them with scope.

18‘When’ may also be analyzed as introducing a generic assertion about eventualities of agreeing to a contract, which
should outscope the participants. At the time we were somewhat blind to eventuality quantification. The eventuality here
is not unlike the ‘minimal situation’ used by King (2004) for donkey anaphora.
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countries

can

fines

Figure 3.8: Modal can scoped between noun phrases in Example (14).

3.4.2.3 Other Scopal Operators

The second-largest source of disagreements seen was annotator confusion about when to annotate

non-quantifier scopal operators. Annotation guidelines include ‘Do not annotate by hand what

can be recovered automatically from syntax’ and ‘Annotating non-quantifier scopal operators is

obligatory only if they interact scopally with quantifiers’, but interact scopally with quantifiers can

be construed more or less broadly, and it was not spelled out which (if any) such interactions are

recoverable from syntax. Six of the reviewed disagreements arose because one annotator included

an operator in the scoping that the other did not. For example:

(14) In many countries, fines can be ordered by police, court judges and some government

officers.

The pair fines–can appeared in the review. One annotator did nothing with the word can, whereas the

other placed it above fines and below countries (see Figure 3.8), leading to an upward/incompar-

able disagreement.

The guidelines have been revised to clarify the conditions for annotating other operators.

3.4.2.4 Redundancy

Guidelines allow redundant scope annotations, but in certain cases information could be expressed

either by scope or by anaphora, and there is no guideline on this form of redundancy.
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Microsoft Windows Windows

Microsoft company
?

Figure 3.9: Disputed scope in Example (15). Inheritance supplied by annotators.

The pair Windows–company, one such case, appears in Example (15), from the article ‘Microsoft

Windows’.

(15) Windows is made by the Microsoft company.

Ordinarily, proper names do not need their referent annotated, but Windows alone occasionally

refers to the X Windows system, not Microsoft Windows. As Figure 3.9 shows, both annotators

noticed this and disambiguated the term by marking Windows in this sentence as inheriting from

Microsoft Windows, which appeared in the previous sentence. One annotator also provided a scope

arc within this sentence, from Windows up to Microsoft company. This arc resulted in an incompa-

rable/upward disagreement on the Windows–company pair. The annotation guidelines do not state

whether it is appropriate to redundantly disambiguate a term in this way.

Another observed disagreement concerned the topmost status of a special graph node in the

semantics of Example (16), from the article ‘Sport’:

(16) Sportsmen need coaches to teach or train teams or individuals how to do better.

The node in question is labeled internal in Figure 3.10 and represents the agent of the eventuality

do better. Embedding how to do better as the theme of teach or train makes this node inherit from

teams or individuals, which is where the annotations actually differ.

Each annotator attempted to express the correspondence between coaches and their trainees, but

not by the same means. One made teams or individuals anaphoric to sportsmen and placed coaches

at narrow scope—incidentally leaving the internal node at topmost scope, as shown in Figure 3.10a.
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sportsmen

coaches

teams or
individuals

[internal]

(a)
teams or

individuals
[internal]

coaches

sportsmen

(b)

Figure 3.10: Annotations of Example (16). Inheritance from sportsmen supplied by annotator.

The other annotator used scope arcs to make the referent of coaches depend on the referent of

sportsmen, and also to make the referent of teams or individuals depend on the referent of coaches,

through the scoping shown in Figure 3.10b.

This approach establishes the coach–trainee correspondence twice, which the guidelines do not

prohibit. Unfortunately, it also overlooks the anaphoric fact that sportsmen’s coaches’ trainees

are the sportsmen themselves. And quite incidentally it makes sportsmen the outscoper of our

internal node, creating the disagreement that was observed. Better guidelines about establishing the

correspondence, such as ‘prefer anaphora to scope’, might have prevented the omission.

3.4.2.5 One-to-one Correspondences

One annotator used an unorthodox technique to solve a novel problem in ‘Mercury (planet)’ and

‘Leap Year’:

(17) [Mercury] makes one trip around the Sun once every 87.969 days.

(18) A leap year comes once every four years.

Example (17) means ‘for each orbit, there exists an interval of 87.969 days, and for each such

interval, there exists an orbit’; leap years and four-year intervals are related in much the same way.
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every

trip days

Figure 3.11: Scopal semantics of one trip [. . . ] once every 87.969 days in Example (17).

One of the annotators recognized the semantic element that the two sentences share, shown

in Equation 3.1—the assertion that two sets are in a one-to-one correspondence. But the guide-

lines do not explain how to annotate this assertion, and the ‘prefer anaphora’ guideline proposed in

Section 3.4.2.4 would not be sufficient.

∀p[∃!q] ∧ ∀q[∃!p] (3.1)

The annotator who recognized the shared semantic element treated it as a scope-bearer in its own

right and determined that it is best represented by the word every in its unusual position preceding

another quantifier. The result was the annotation shown in Figure 3.11 for Example (17), and a

corresponding annotation for the sentence about leap years.

Guidelines permit dependencies to be attached to determiners (and other non-nouns) when the

corresponding noun is elided. In this case, the elided noun is something like interval of 87.969

days. However, the guidelines are silent on the once every construction specifically. Lacking such

guidance, the other annotator noticed only the existential parts of its meaning, and left both common

nouns topmost. The observed consequences were a topmost/outscoped disagreement on days and

an incomparable/downward disagreement on year-every.

Semantics for intervals of recurrence have recently (autumn 2021) been worked out, allowing

for guidelines about constructions like this.

3.4.2.6 Each other

In Example (20), repeated from Example (9) the pair lines–each was an upward/incomparable dis-

agreement.
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lines each

other

(a)

lines other

(b)

Figure 3.12: Annotations of lines cross each other in Example (20).

(19) When two lines cross each other so that all the angles have the same size, the result is four

right angles.

The annotators agree that each other is in some way a reference back to lines but have expressed

this idea differently, and the guidelines are silent.

Figure 3.12a shows each and other treated as two substantives, just as in Example (20), con-

sidering cross each other as a fossil of VSO word order that was permissible in the days of noun

case.

(20) There are two lines. Each crosses the other.

On this view, the restrictor of each inherits from lines, and other is outscoped by each because its

otherness is defined relative to each [line]. The noun line has been elided, but the guideline dis-

cussed in Section 3.4.2.5 permits the dependencies of the annotation to be attached to a determiner

like each or a substantive adjective like other.

Figure 3.12b treats each other as a single determiner/noun phrase, whose head other inherits

from lines. This treatment leaves open the question of how the reciprocal semantics of each other

are brought about, but it avoids introducing diachronic esoterica as Figure 3.12a requires.

We have subsequently conferred, and agree that the truth conditions are approximately as found

in the first analysis (we continue to debate edge cases from time to time), but we have decided that

responsibility for spelling out the particular semantics of each other will fall to a lexicalized rule,

rather than annotators building it up themselves.

98



lip

hair

(a)

men

lip hair

growing

(b)

Figure 3.13: Competing understandings of Example (22).

Annotators are instructed to mark scope and -w dependencies to the antecedent from other, and

not to treat each as referential but to target later dependencies to the antecedent. This suffices to

capture the information the lexical rule needs, and avoids conflict between its semantics and any

others annotated by hand.

3.4.3 Other Causes

A small proportion of observed disagreements could not be ascribed to annotator error or guideline

inadequacy. In most of these, both annotators seem to have a good claim to a correct reading.

Annotators disagreed about the pairs opinions–experience and opinions–death in this sentence

from the article ‘Soul’:

(21) Many different opinions exist as to what happens to personal experience after death.

Not only this statement about opinions, but such an opinion itself must refer to personal experience

and death. One annotator imagines the opinions to be generalizations, each of which introduces

its own referents under conditionals. The other imagines opinions about particular actual lives and

deaths. We find both readings equally persuasive.

In ‘Mustache’ we find this:

(22) The hair that grows on the upper lip of some men is called a mustache.
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cause count

predication, not inter-quant. scope 10
non-scopal operator 6

overlooked scope-bearer 5
part/whole 4

fair differences 3
misc. oversights 3

identity, not scope 2
like 2

one-to-one 2
proper names 2

scope-anaphor redundancy 2
typo 2

each other 1
measurement 1
software bug 2

Table 3.4: Causes of disagreements.

One annotator wanted hair in the scope of lip, as shown in Figure 3.13a, on grounds that the lip

variable is used in the restrictor of hair: the hair that grows on the upper lip. The other annotator

thought that both lip and hair fall directly under the scope of some men, as in Figure 3.13b, and are

related to each other only through the eventuality of growing. It is a question of how the hair gets

its definiteness, and we think the answer debatable.

Apart from fair differences of annotator opinion, one of the selected disagreements was caused

solely by a software error.

3.4.4 Summary

Table 3.4 groups and ranks the 47 causes underlying the 42 disagreements that were selected for

review.

A note is in order about the distribution of disagreements across documents.

The 42 selected disagreements (out of 576 total) touched on 18 of the 33 IAA documents. The

most error-prone document was the excerpt from ‘Cooking’, both in the selection (8 out of 43;
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18.6%) and in the whole IAA test set (74 out of 576; 12.8%). Both annotators did very poorly on

this document.

Nearly all of the other documents represented in the selection contributed about the same frac-

tion of its disagreements as they contributed to the whole IAA set, but by chance the selection

strongly over-represented ‘Soul’ (14.0% of reviewed disagreements, only 4.7% of all), ‘Right An-

gle’ (7.0% of reviewed, 2.4% of all), and ‘North America’ (2 disagreements reviewed, 4.7%; versus

3 disagreements in all, 0.5%). Their over-representation comes at the expense of the documents not

touched on by the selected disagreements.
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Chapter 4

Task framing and data preparation

4.1 WSC as analogous task

To frame the scoping task in encode-and-classify form while treating scope as a dependency, as

proposed in Section 1.4.1, I emulated the WSC task from SuperGLUE (Wang et al., 2020), as

implemented in jiant version 2 (Phang et al., 2020).

WSC is a task of resolving pronoun references that are highly sensitive to semantic context, a

superset of the original Winograd Schema Challenge (Levesque et al., 2012). Sample problems1

show that as intended, world knowledge often points to the correct antecedent. In items like

(1) Nancy not only provided the policeman with an excellent description of the heavyset thirty-

year-old prowler, but drew a rough sketch of his face.

the gold-standard human judgement may also have been influenced by other cues such as informa-

tion structure and syntactic parallelism. The items from the original Winograd Schema Challenge

come with an additional, stricter proof of context-sensitivity, a single-word alternation elsewhere

in the sentence that changes human raters’ preferred antecedent. So the range and importance of

contextual information in WSC is somewhat analogous to the factors of scope judgement.

Previously the Winograd Schema Challenge has been framed in terms of substituting each candi-

date antecedent for the pronoun, and then either calculating the probability of the resulting sentence

(Radford et al., 2019), or predicting whether it is entailed by the original (the WNLI framing; Wang

et al., 2019). In the WSC framing, the pronoun and a candidate antecedent are just two marked
1http://commonsensereasoning.org/disambiguation.html
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spans of the text, and the system must classify the relationship between them: coreferential, or not?

Unlike substituting antecedents for the pronoun, feeding spans into a classifier is a general technique

applicable to other long-distance dependencies, such as our scopal relations.

4.2 Item preparation

A single training or test item for scoping thus consists of a text, two spans, and (in training) a label.

In WSC the two spans consist of a noun or noun phrase and a pronoun; here they consist of two

nominals. The WSC labels and predictions are binary. Here, it is in question not only which but

whether any particular scoping between the nominals is necessary to reach the intended reading of

the text, so there may be three or even four labels. The data item is labeled ‘direct’ or ‘inverse’

when the intended reading does require a certain scoping, but must take some other label when it

does not.

In the three-label system, used by Manshadi and Allen (2011), all other items are ‘none’. The

four-label system, used by Andrew and MacCartney (2004), distinguishes two kinds of ‘none’s:

‘Equivalent’ items are those where either quantifier may be in the other’s scope without affecting

truth conditions. ‘Independent’ items are those where neither quantifier need be in the other’s scope,

because there is no predication to which both variables are arguments.

Although the greater specificity of the four-label system is appealing, this project may have

three or more quantifiers interacting in a single sentence, as Manshadi and Allen (2011) did. Their

measure for scoring multi-quantifier scoping relies on the three-label system, so for compatibility,

this project begins with the same.2

However, in preliminary experiments, validation scores from a 3-way predictor never quite beat

the majority-prediction baseline (then 89.65%). I divided the labor on the same lines as Andrew

and MacCartney (2004) and attempted only to predict the direction of verified scope interactions,

2Our corpus often has equivalent scopings among existential quantifiers from a single sentence, and ubiquitously
has non-interaction of the “independent” kind between quantifiers of different sentences. Anyone interested in the four-
label system can extract the independent items in their myriads from the lambda-expression form of the corpus (see
Section 2.1.11).
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by filtering the items to exclude “none”s.3 This division of labor immediately proved more tractable

(validation scores at that time up to 85.4% versus that data’s majority-baseline 67.5%), and was

pursued further.

I now also train a separate predictor for the complementary subtask of predicting whether there

is a scopal interaction. Thinking in terms of an application pipeline, this predictor would screen

items before sending some to the direction predictor Thus I build two reductions of the ideal ternary

data down to binary: One filtered for the direction subtask, and the other retaining the “none”s but

conflating “direct” and “inverse” to “scoped,” for screening.

4.2.1 Extracting necessary scopes from annotations

As mentioned in Section 2.4.2.1, the annotations in our corpus are not simply a statement of all and

only the truth-functionally necessary scopal interactions among nominals. Most obviously, scopings

implied by transitivity are left implicit in the annotation. But before deriving these, there are other

implied scopings, and scopings annotated in unusual ways, that must be collected; and afterward,

there are by-products of the data pipeline that must be removed from the task set.

Each scoping emerging from this extraction process is the nucleus of one data item. Fleshing

them out into the full WSC-like form, with the document text etc., is described in Section 4.2.2.

4.2.1.1 Notational complexities

The implicit scopings and unusual annotations communicate two kinds of scope interactions: many

of the immediate outscopings of narrow-scoped existential quantifiers, and all necessary outscopings

that do not form a tree. There is some overlap between the two kinds.

4.2.1.1.1 Implicit existential sinking The other implied scopings are those covered by a con-

vention we call ‘existential sinking’. Briefly stated, an unannotated existential quantifier implicitly

3This is somewhat analogous to dividing anaphora resolution into subtasks of identifying candidate antecedents and
selecting among them.
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takes the narrowest scope sufficient to avoid unbound variables in predications, or a scope made

wider than this only by interposing other unannotated existentials.

This convention was originally created to address the existentially quantified eventualities that

a Neo-Davidsonian semantics (Parsons, 1990) must create for every predication, whose scope is

almost always4 narrow as described, although it also applies to existential quantification over enti-

ties. ‘Sinking’ saves time annotating their scopes and allows less predictable scoping to stand out

visually.

Existential sinking also tidies the corpus in another way, by sidestepping the biggest difference

between two ways of using scope data, which might be called ‘tree-oriented’ and ‘DAG-oriented’.

The other major consumer of our annotated documents is tree-oriented. It is software that com-

piles them out into a corpus of lambda expressions. Since lambda terms are tree-structured, it must

assign exactly one immediate outscoper to each quantifier in an expression (except for the topmost).

Transitive outscopings are implicit in these, and so need not be tracked directly. In the presence of

equivalent scopings (as defined in Section 4.2), more than one lambda term can express the same

truth conditions, and the software arbitrarily produces one of them. In such a case, the term will

contain outscopings that are merely allowed by the correct reading of the text, as well as outscopings

that are actually required for it. The software has no need to track which is which.

This project is DAG-oriented. So that scope predictions can be scored fairly, it must not assign

the same status to allowed as to required outscopings, and it must track the required ones, regardless

of whether they are immediate in every lambda term with the correct truth conditions, or immedi-

ate in some but transitive in others. In other words, it needs different data from the tree-oriented

software precisely where there are equivalent scopings.

Where necessary, these differing requirements are met with double notation: distinct sets of tree-

oriented and DAG-oriented annotation tags. This system is described in Section 4.2.1.1.2. However,

4In ‘13,674 people set the first world record for simultaneous skinny dipping’, the setting-a-record should outscope
the people. It is true but weak that for each of the people there exists one or another setting-a-record such that the
person participated, it was the record whose count was 13,674, and so on. To assert that they all participated in the same
setting-a-record, we must either put it at higher scope, or somehow bake it into lexical semantics of ‘world record’ that
the (single, high-scoped) record they set uniquely identifies the eventuality of setting it.
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Figure 4.1: Double notation for dual-use data

the vast majority of equivalent scopings come from adjacent narrow-scoped existential quantifiers,

i.e. the ones covered by the existential sinking convention.

Sinking therefore suppresses a thicket of double notation that would obscure the more interest-

ing, less predictable annotations—at the cost of some preprocessing for everyone. Tree-oriented

users must fill in immediate outscopings that are not strictly necessary, both among the sunk exis-

tentials and from the topmost of them to the next higher non-existential. DAG-oriented users can

neglect outscopings among the sunk existentials entirely, and infer outscoping that are necessary but

not strictly immediate from each of them directly to the non-existential.

4.2.1.1.2 Double notation As mentioned, on occasion, a document has multiple equivalent log-

ical forms not covered by existential sinking. In such cases we use double notation. Figure 4.1

represents this schematically.

One of the equivalent alternatives is selected, and special annotation tags (dotted arrows in

the figure) trace its immediate outscopings for the lambda generator. Other special tags (dashed

arrows) mark any-distance outscopings that are necessary to the intended meaning, but need not

be immediate, i.e. the outscopings that are immediate in some but not all of the equivalent logical

forms. The regular annotation tags can still be used above and below the double-annotated region

of the graph, for outscopings that are immediate in all of the logical forms.

Conceptually, we need only ignore the lambda generator’s special notation, read off the scopings

from our own notation, and add them to the ones from the common, shared notation. In practice, we

accept some extra complexity handling these in order to reuse existing code for existential sinking.
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4.2.1.2 Existential sinking in practice

The statement of the existential sinking convention in Section 4.2.1.1.1 is succinct but inexact. The

actual rule has edge cases and idiosyncracies because of its development history.

Because some of the outscopings implied by sinking are truth-functionally necessary, the scope

prediction project needs an implementation of existential sinking. I have reused the implementation

from the lambda generator. Although its tree-oriented output has to be post-processed for this DAG-

oriented application, we found this less costly than an exact reimplementation.

The lambda generator does not translate from syntax directly to lambda terms, but takes the

information through an intermediate representation as dependencies. It is on this representation

that it performs existential sinking and other useful processes, such as copying semantics from

conjunctions down to their conjuncts.5

After these processes, which we collectively call normalization, the lambda terms proper can be

read off of the dependency graph with the Schuler and Wheeler (2014) algorithm. I added an option

to dump the normalized dependencies instead of proceeding to read-out.

This dump is not entirely suitable for the prediction project. The fact that it contains only

immediate outscopings is of minor importance, because we can transitivize. However, the fact that

the normalizing code works only in terms of immediate outscopings causes information to be lost

(or at least buried).

Providing immediate outscopings means the normalizer must adopt outscopings that are not

strictly necessary whenever two existentials sink to the same place, and in all other cases of multiple

truth-conditionally equivalent logical forms. It takes its half of double notation (Section 4.2.1.1.2)

as authoritative where present, breaks ties arbitrarily otherwise, and does not distinguish between

the outscopings so created and the ones that are genuinely necessary to obtain the correct truth

conditions. All of these are hindrances to a DAG-oriented application, but unfortunately, the process

of imputing outscopers to unannotated existentials is woven into them.

5Since scopes may be among the semantic information annotated on a conjunction, it is necessary and proper that
these processes run together.
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To obtain the results of existential sinking but also preserve other information this project needs,

I therefore modified the syntax-to-semantics translator and subsequent processing code beyond just

adding the dump option. The modified code passes both halves of the double notation through to

the output, unchanged except for the conjunction-related processing.

The arcs for necessary but not strictly immediate outscoping could be reconstructed with al-

gebraic manipulation of the lambda terms, but passing them through normalization spares us the

trouble. The arcs for immediate but not strictly necessary outscoping are duplicated when the anno-

tations are read, and the processing code is allowed to continue taking one copy as authoritative, so

that its work will proceed exactly as before. The other copy is passed through separately, to preserve

the information that the outscoping is arbitrary (or, colloquially, to mark it as tainted).

Helpful as this is when there is double notation, for existential sinking it does nothing. Further

processing downstream would be necessary.6

4.2.1.3 Preparing clean scopings

The data preparation pipeline thus began with the annotated corpus files and reached the desired

scopings through three programs and a small amount of hand-hacking.

The syntax-to-semantics program produced ‘discourse graphs’ (semantic dependencies). A

small number of annotated documents contained syntactic oddities not yet accommodated by this

program, and the resulting error messages had to be hand-culled from its output. A smaller subset

of these documents had errors that could not be worked around, and did not yield discourse graphs

at all.

The modified normalizer performed the desired existential sinking on the discourse graphs.

Another small subset of documents was lost at this stage, this time because of semantic oddities that

could not pass the lambda generator.7

6It appears to me at present that the further processing in fact makes the passed-through arcs unnecessary. At the time
I designed the data processing pipeline, I believed I knew a possible scenario where they were indispensable. But if the
passed-through arcs are redundant, at least they did not corrupt the data, were quick to implement, and made it easier to
reason about the rest of the problem.

7Some annotation errors were caught and fixed this way.
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A postprocessor, described in this section, winnowed out the desired information about truth

conditionally necessary scopings and formed up the list of truth-conditionally meaningful any-

distance outscopings.

4.2.1.3.1 Sift and untaint Working document by document, the postprocessor first sorted the

dependency arcs of the normalized graph. It discarded arcs for predicate-argument semantics and

built collections of the arcs that mark immediate outscoping, any-distance necessary outscoping,

and truth-functionally arbitrary (‘tainted’) outscoping. For use in later processing, it built lists of

the graph nodes representing existential and universal quantifications, and of the arcs joining these

to their restrictor and nuclear scope sets.

The lists of quantifications collected in this step have one peculiarity, connected with the article

‘the’. When definite descriptions are considered as referential, most of them denote a single entity

(and have singular grammatical number). The equivalent, when they are considered as quantifi-

cational, is that their restrictor set is a singleton.8 And although I understand a definite article’s

asserted meaning as a universal quantifier (as discussed in Section 5.1.3.8), when the restrictor set is

a singleton, an existential has exactly the same truth conditions: If there is exactly one Dalai Lama,

then whenever some Dalai Lama sneezes, every Dalai Lama sneezes (and, of course, vice versa).

The upshot is that many noun phrases with ‘the’ are logically indistinguishable from existentials.

Moreover, we frequently find these definites at the narrowest of scopes, adjacent to the sunken

existentials. In this position, their equivalence to an existential includes them in the existentials’

freedom to nest scopes in any order without affecting truth conditions. The normalized dependencies

make it very easy to identify definites of this kind in this position, so they are included in the list of

the graph’s existential quantifiers.9

8A singleton within its scopal environment. That is, ‘Each bus stopped and the driver got out’ may describe five buses
and five drivers, but when considering any given bus, ‘the driver’ is a single individual.

9Strictly speaking, they should also have been included in the list of universal quantifiers, but true universals (as
opposed to generics) are much rarer in the data than existentials, so this is unlikely to have made much difference.
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∀ a

∃ b

∃ c

Figure 4.2: An irrelevant arc is needed to infer a relevant one

∃ a

∃ b

∃ c

Figure 4.3: An irrelevant arc (briefly) comes into being

Immediately after this step, the list of immediate outscoping arcs was filtered to eliminate those

that match a taint-marker arc. At this point it was not yet safe to eliminate all arcs without truth-

conditional effect, for reasons illustrated in Figure 4.2. The arc from ∃ c up to ∃ b is such an

arc, but without it, the arc from ∃ c up to ∀ a cannot be inferred. Taint markers, however, arise

from double notation, which also supplies the truth-conditionally necessary non-immediate arcs

that detour around the tainted ones, so that the problem does not arise.

4.2.1.3.2 Double transitivization Taking the transitive closure of the immediate arcs will at this

point produce all of the outscopings that are to become data items, but it will also produce more

of the arcs we wish to eliminate, as shown in Figure 4.3. The relative scope of two existential

quantifiers is without truth-conditional effect not only when one immediately outscopes the other,

but at any distance, so long as only existentials intervene.

From this it follows that whenever it is truth-conditionally necessary for one existential to

outscope another, some non-existential quantifier must fall between them. The arcs from the lower

existential to the non-existential, and from there to the higher existential, are themselves truth-

conditionally necessary. They also transitively imply the arc between the existentials.
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∃ a

∀ b

∃ c

Figure 4.4: A necessary arc is destroyed and re-created

This provides a convenient way to finally eliminate unnecessary outscoping arcs from the data.

Wherever a contiguous chain of one or more existential quantifiers outscopes or is outscoped by

any non-existential, by taking the transitive closure a first time, among other arcs we create truth-

conditionally necessary arcs directly between that non-existential and every existential in the chain.

Now we can drop every arc whose endpoints are both existentials. By so doing we lose all of the

unnecessary outscopings within the contiguous chain. We also lose necessary outscopings that cross

from one contiguous chain to another over a non-existential. However, after the first transitivization,

each of these necessary arcs is in a position similar to Figure 4.4. It can be reconstructed just by

taking the transitive closure a second time.

The lists built and set aside when sorting the arcs were used in this step. The discourse graph

marks scoping on the sets/properties that are quantifiers’ arguments, but marks quantificational force

on nodes representing the quantifiers themselves, so identifying scope arcs between two existentials

requires some data to bring them together.

Outscopings within a contiguous chain of universal quantifiers are without truth-conditional

effect also. Mutatis mutandis, the same reasoning applies, and the same two transitivizations can

prepare and repair both kinds of arc-dropping. I implemented both.

The final remnant of double notation, the necessary upward arcs, can be added into the data

before either transitivization. Since the first transitivization can do what it needs to without them, I

held them until the second.
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4.2.1.3.3 Scopings not attempted After these steps, the known scopings include scope-bearers

and scoping patterns beyond the needs, ambit, or abilities of this project. Up through transitiviza-

tion, these had to be retained to avoid information loss, but keeping them around longer would

entail complications not desirable for a limited, well-defined attempt at predicting scope with a new

technology.

The known scopings include quantifications that cannot be straightforwardly construed as hav-

ing a one-to-one correspondence with a word or phrase. It is difficult to reconcile these with a

prediction approach that revolves around classifying the relationship between two spans of text.

The known scopings include quantifications nested not only within other quantifications’ nu-

clear scope sets, but within their restrictor sets, such as when restrictive relative clauses contain

quantification:

(2) Most netizens know someone that doesn’t have a cat.

In fact, this is a special case of the one-to-one problem; the word ‘someone’ can stand for a nuclear

scope set (which is the object of a netizen’s acquaintance), or for a restrictor set (which immedi-

ately outscopes a negation), but making it represent both at different times is a complication better

deferred. The most common and familiar examples of scopal interaction involve nuclear scope sets

only, so for purposes of the present work, I construed these rather than restrictor sets as the referents

of nouns and pronouns.

Finally, the known scopings include quantified eventualities and non-nominal operators (such

as the negation above, or modal verbs). But again, these are less prototypical scopal interactions

than those of nominals, and less common, so I chose to exclude them from early work.10

Present purposes therefore required filtering the known scopings. The final step in the post-

processor just described was to begin this filtering. It took advantage of systematically constructed

node IDs in the discourse graph to identify nuclear scope sets directly denoted by a single word, and

to keep only those scopings whose endpoints both met this description.

10Expanding to cover these operators is a logical future step.
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Other programs downstream excluded modal verbs and eventualities by verifying that the words

in question were nouns or pronouns. I also used them to eliminate a huge, almost entirely trivial

source of ‘no interaction’ items by dropping scopings that crossed sentence boundaries, after a pilot

project showed that these outnumbered interesting scoping items by orders of magnitude.

4.2.2 Rendering items

A complete data item, presented as a span pair classification problem in the image of the Winograd

Schema Challenge, requires information about the document that is lost in the foregoing semantic

processing: its full text, the texts of the two spans, and their positions within the document. In

addition, expanding an outscoping to a complete data item requires reconciling some technical

differences between the ways of our corpus and the ways of RoBERTa, the language model that

encodes the spans for classification. Finally, a complete set of data items for a document includes

an item for every pair of nominals that are in the same sentence, including the ‘no scopal interaction’

items. Text processing cleared these hurdles in two steps—first collating the necessary information

from the annotated corpus files, then using it with the extracted outscopings to generate and write

out ready-to-use data items.

4.2.2.1 Collating the formalities

The first step went back to the corpus files to recover, for each document, its tokenized full text and

a table of all its nouns and pronouns. The table contained their positions in two formats, one used

in the corpus and the other in the RoBERTa tokenizer.

The corpus treats texts hierarchically, as a list of sentences which consist in turn of tokens.

This lends itself to a hierarchical description of token positions: sentence number, then position-

in-sentence. It also delimits each document’s title from its first sentence as a matter of course.

RoBERTa uses a flat list of tokens, and positions are described accordingly).

The software for this step therefore maintained running counts in both forms as it extracted

tokens from each document’s sentences’ parse trees. It used these counts to build a new table entry
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{"idx": 306, "label": "direct", "target": {"span1_index": 26,

"span1_text": "human", "span2_index": 32, "span2_text": "nose"},

"text": "1 ( number ) . One ( 1 ) is a natural number after zero and

before two . It represents a single item . A human typically has one

head , nose , mouth , and navel ( belly - button ) ."}

Figure 4.5: A jiant-ready scoping item in JSON format.

whenever the token’s preterminal category was nominal. It also inserted a separator at the end of

each document’s title.

After processing each document in this fashion, I culled the few that had not survived the nor-

malization pipeline, and pasted the rest onto the corresponding lists of extracted scopes.

4.2.2.2 Writing out data items

When writing out complete data items, the tokenized text is used in full (as input to the encoder)

and to generate the two spans.11 The table of nominals has numerous uses.

After reading in the extracted scopings, the table is used to drop those that use a non-nominal,

and to translate the token positions of the others into the flat format. Comparing the positions of

outscoper and outscoped determines whether the scoping is direct or inverse, and this judgement is

recorded.

The table is then used to generate pairs of nominals, with the constraint that the two must come

from the same sentence. These pairs drive the remainder of the process; each is checked against the

recorded judgements to determine its gold label, and the entire data item is built as a JSON string.

Figure 4.5 shows an example.

Finally, items in training sets are shuffled, each item is assigned a unique identifier, and the two

reductions of the data are prepared: the filtered subset with scopal interactions, for the direction

task, and the version conflating the two directions, for the screening task.

11They are provided as text, not just as indices into the text, so that differences between the data’s tokenization and the
encoder’s tokenization can be smoothed over.
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4.2.3 Train/val/test splits

I divide the data into training, development/validation, and test sets at the granularity of documents,

not of individual items, in the common 8:1:1 proportion. Different documents generate different

numbers of data items, so at that granularity the proportion is only approximate.

I use document granularity because any given word token is encoded the same in every data item

where it is found.12 We fully expect this encoding to reflect several qualities that predict scoping:

choice of quantifier, syntactic environment, and the properties of the entity the nominal represents.

There may be as many such items as there are other nominals in its sentence, and each of these

other nominals may likewise participate in several data items. When a document creates such a

family of items, training on nearly all of them and then testing on one may not literally be peeking

at the test during training, but it comes uncomfortably close.

In the worst possible case, it risks giving the appearance of great success to a model that memo-

rizes a nearly complete scoping graph for each document during training, and acquires a minimum

of generalizable knowledge (perhaps nothing more than transitivity) sufficient to infer an arc or two

after retrieving that graph from memory.

For a less extreme, more probable, and still undesirable scenario, consider a sentence with three

nominals in direct scoping, forming a transitive triple, as shown with arbitrary labels in Figure 4.6.

If the training set contains the two shorter arcs, CB and BA, they tune the encoder and classifier for

words A and C in their respective contexts, to produce a representation of word A that inclines the

classifier to predict direct scope when A is in the left position, and a representation of the word C

that has the same effect when it is on the right.

If arc CA is in the test set, the test item will contain the very same representations of A and C in

these very positions. That literal item may not be in the training set, but it is the most straightforward

possible hybrid of two items that were, and not a very rigorous test. Many other common scoping

patterns present variations on this theme of reused representations, but the issue is avoided when

training and test items are from entirely separate documents.

12Except that it may be the head or the tail when the two words’ encodings are concatenated, depending on word order.
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A

B

C

Figure 4.6: A transitive triple leads to reused word representations

A final consideration when splitting the data is that different parts of the corpus are the work of

different annotators, each of whom ascended a learning curve. I distribute documents round-robin

to ten folds, to avoid a test or validation set specially enriched in work by one person or at one

proficiency level.

For the screening subtask, one fold is arbitrarily taken for the validation set, another for the test

set, and the rest for training. The documents are then rendered down to 22,250 individual scoping

items by a process detailed in Sections 4.2.1–4.2.2).

Unfortunately, filtering for the direction subtask leaves only 588 items, and such a small dataset

is vulnerable to sampling artifacts, so I cross-validate this subtask; the validation set comes from

the same fold as before, and each of the other nine folds serves once as the test set with a classifier

trained on the other eight. This allows 523 items to be tested, instead of just 60 or so from a single

fold.

4.2.4 Summary of prepared data items

Table 4.1 summarizes the data items produced by the pipeline. Fold 1 received 52 documents; all

other folds received 51. The screening task used fold 1 as its test set (2226 items, of which 67 had a

scopal interaction) and folds 2–9 for training (17,837 items, of which 456 had a scopal interaction).
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Fold No interaction Direct scope Inverse scope

1 2159 38 29
2 2027 20 12
3 2103 48 20
4 2245 33 14
5 2112 48 14
6 2284 59 28
7 2116 47 12
8 2368 43 15
9 2126 32 11

Validation 2122 48 17

Table 4.1: Summary of data items

4.3 Use of jiant

I trained my models using jiant (Phang et al., 2020) v2.1.2, a library designed to use a large

pretrained language model from HuggingFace Transformers (Wolf et al., 2020) as an encoder for

one or several task heads, which may be linear classifiers, span extractors, masked token predictors,

etc., for experiments in transfer learning.

It is built for downloading shared tasks and uploading predictions to a leaderboard, but it ac-

commodates locally prepared data, and the code that formats predictions for SuperGLUE (Wang

et al., 2020) can be cannibalized to extract predictions for local viewing and analysis.13

4.3.1 RoBERTa as encoder

Having established that contextualized word embeddings generally capture the factors that correlate

with scoping (see Section 1.3.1.1), and that among encoders for these, large attention-based pre-

trained language models do learn highly context-sensitive long-distance semantic dependencies in

various tasks (see Section 1.3), I needed to choose such a model.
13The code that scores validation sets during training allows many sophisticated kinds of evaluation against gold labels

and could, with some effort, be abused to score test sets as well. For my simple scoring on accuracy, this was excessive.
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Much of the relevant research had used BERT (Devlin et al., 2018), which would have been a

reasonable choice, but I found that RoBERTa (Liu et al., 2019) was also available. It is a variation

on BERT, with an improved Byte Pair Encoder (Sennrich et al., 2016) and a few other simple

changes to tokenization and pretraining. These allowed it to improve on BERT’s performance for

a wide variety of tasks. Many other models were and are available, but after discounting those

more radically different from BERT (trained on other or multiple languages, on multimodal data,

with entirely new pretraining objectives, etc.), RoBERTa stood out as a model likely to share the

properties that make BERT a plausible scope predictor, but likely to outperform it.

RoBERTa is available in two sizes. To improve training speed, I worked with the smaller one:

125M parameters, with 12 layers, 768 nodes per hidden layer, and 12 attention heads.14 I used

default values for all configuration of the tokenizer and the model architecture, except for expanding

the tokenizer’s maximum sequence length from 128 tokens to 256.15

4.3.2 Span comparison classifier as task head

After encoding with RoBERTa, I used jiant’s span comparison classifier to label scopal relation-

ships.

As the name suggests, this task head begins by calculating a number of span encodings from

token encodings, using the AllenNLP self-attentive span extractor (Gardner et al., 2018; Lee et al.,

2017). Although my two spans are always single words, they may be tokenized as a whole or as

multiple sub-words. The span extractor serves to produce a single representation for the word in

either case.

The span encodings are then concatenated in an order determined by the data item. I used only

left-to-right word order. Dropout is applied, then a linear classifier. The screening subtask was built

14For unclear reasons, when work began, the compute nodes available to this project ran roughly an order of magnitude
slower than they should have. Later, an update to the job scheduler corrected this, but it was a poor time to revisit basic
architectural decisions. It would certainly have been preferable to use RoBERTa-large if that had been possible at the
outset, particularly in light of Tenney et al.’s 2019 results on the Winograd task (see Section 1.3.1.1.2).

15Our longest document was 188 tokens. The default maximum in the model itself, unlike that of the tokenizer, was
already large enough.
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to purpose and uses a two-output classifier. The direction subtask retains the three-output classifier

of the whole task it was adapted from.16

4.3.3 Hyperparameters

Learning rate, gradient clipping, hidden-layer dropout, and attention dropout values were roughed

in iteratively using a preliminary version of the data, and the neighborhood thus identified was grid-

searched with the final data, training on folds 2–9 and predicting the labels of the validation set

(scored by accuracy). The chosen hyperparameters represent a consensus of the runs with highest

validation scores in this final grid search.17

Iterations grid-searched at least two hyperparameters at a time, to account for non-independ-

ence.18 All runs in an iteration used the same seed for random number generation. For each run,

the best of several validation scores was taken. Trends in these scores directed the next iteration’s

search ranges. Matching trends in the runs’ final validation scores were used to confirm that the

search was improving accumulation of knowledge in the model, and not just increasing the chance

that extreme updates would briefly drive a model through a useful state. Iterations continued until

performance plateaued.

The final grid search was run similarly. For each combination of hyperparameters, the screening

task was trained for 30 epochs, with 45 regularly spaced validations.19 The direction task was

trained for 120 epochs, validating after each. Several runs tied for highest validation score and were

collated.

Where the collated values of a hyperparameter showed a clear best choice, that value was taken.

Runs with these values were given additional weight, to clarify the best choices for remaining

parameters. Where the group of highest-scoring runs was too small for any clear consensus, the

next-highest were added.

16Training on two-output data sufficed to ensure it behaved as a two-output classifier at test time.
17Earlier iterations showed no effect of varying the Adam optimizer’s epsilon, and it was left at its default 10−7.
18For example, for best performance, learning rate had to co-vary with dropout.
19A default setting limited these to the first 500 items out of 2187 in the validation set.
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Screening Direction

Learning rate 3.16 ∗ 10−5 7.50 ∗ 10−6

Max gradient norm 3.2 4.6
Attention dropout 0.08 0.20

Hidden-layer dropout 0.08 0.23

Table 4.2: Final hyperparameters by task

Table 4.2 gives the hyperparameters that were chosen. Because the grid search was trained on

folds 2–9, the models with those hyperparameters could be directly reused to make predictions on

fold 1/the screening task test set. Of course, new models were trained for the other folds of the

direction task, again taking the model with the best validation score out of 120 epochs.
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Chapter 5

Results and analysis

The next sections discuss various measures of the model’s success on the direction task. The screen-

ing task was less successful and is reviewed separately in Section 5.3.

5.1 Accuracy and other counts of predictions

Models were evaluated before all else on accuracy, i.e. the fraction of all items predicted correctly.

This has been the common measure of success in previous work on scope prediction, whether with

exactly two scope-bearers (Higgins and Sadock, 2003; Andrew and MacCartney, 2004; Srinivasan

and Yates, 2009; Dinesh et al., 2011) or generalized to any number of them (Manshadi et al., 2013).

Because our data set is transitively closed, accuracy in a full 3-way classification is identical

to the Manshadi et al. σ measure. Accuracy in the screening subtask is equivalent to scoring the

3-way task with a relaxed definition of ‘correct prediction’ that treats the two directional predictions

as interchangeable with each other, and only ‘no interaction’ as distinct.

The effect on accuracy of the direction subtask is more ambiguous. Excluding the ‘no inter-

action’ cases removes a source of score inflation, since this is by far the most numerous outcome,

but it leaves fewer ways to mispredict the items that remain. In any case, this means that accuracy

scores are not comparable across subtasks.

Because the predictor works arc by arc, without biases incurred by reconciling one prediction to

another to make the graph acyclic and transitively closed, the accuracy measure can be used directly,

without the correction procedures it was wrapped in for IAA.
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Items RoBERTa Baseline

67 77.61% 56.72%
32 81.25% 62.50%
68 75.00% 70.59%
47 72.34% 70.21%
62 69.35% 77.42%
87 81.61% 67.82%
59 79.66% 79.66%
58 82.76% 74.14%
43 83.72% 74.42%

Total 523 78.01% 70.36%

Table 5.1: Accuracies for direction

Most previous work used accuracy alongside other measures. I do likewise in Section 5.1.2, to

better characterize the performance of the current models relative to the current baseline and relative

to future work.

Finally, inspired by the well-known tendency of ‘each’ to take outer scopes, in Section 5.1.3 I

examine accuracy on particular determiners.

5.1.1 Overall accuracy

Table 5.1 gives accuracies for the cross-validated direction task, compared to the majority-prediction

baseline. Because folds containing equal numbers of documents do not necessarily produce equal

numbers of items, the number of items in each fold is given also.

The trained system outperforms the baseline in aggregate, and on seven folds out of nine (an

eighth fold being a tie), but the test sets are small, and the variance is hard to ignore for either sys-

tem. The sampling distribution for the trained system’s accuracy is unknown,1 so many customary,

parametric tests of significance are inapplicable, but permutation offers a suitable nonparametric

test.
1Cross-validation is an unbiased estimator for its center, but a high-variance one, and there is no general-purpose,

unbiased estimator for that variance (Bengio and Grandvalet, 2004).
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The null hypothesis, that the trained system and the baseline are equally accurate on arbitrary

documents, is simulated by exchanging their predictions with 50% probability for each document.

The alternative hypothesis is one-sided, i.e. a simulation supports the null if its performance gap is

equal to or larger than the observed one and in the same direction.

Document granularity is used because different items involving the same word token use the

same encoding of it, as discussed in Section 4.2.3). Exchanging predictions at the granularity of

single items underestimates the variability caused by any given encoding being especially adequate

or inadequate for the classifier’s use, and thus overstates the significance of the observed accuracy

gap.

After 100,000,000 simulations, p ≈ 0.004 and the null hypothesis is rejected.

This predicts that the training data and procedure will generalize better than the majority-

prediction baseline to arbitrary new Simple English Wikipedia excerpts prepared in the same way.

That interpretation takes the models for the folds, each trained on a large subset of the data, as ap-

proximations of a model trained on all current data. The finding of significance also suggests that the

procedure would generalize well to other training sets, but we should be cautious of overinterpreting

it.

On one hand, using broad-domain data by many authors is intended to support generalization;

consistent authorial habits or single-domain patterns, such as the meronymy Schuler and Wheeler

(2014) exploited for QuanText, would likely make the task easier. On the other hand, the finding

of significance rests on an implied estimate of variance for procedure and data. As an estimate of

variance for the procedure alone, it is biased low, because the shared training data from document

to document, within and across folds, makes the documents non-independent trials (Demšar, 2006).

5.1.2 Other item-counting measures

Accuracy is the measure previous scope-prediction efforts share, but most also used other measures,

to give a better picture. This would help to characterize the performance of the current models

relative to the current baseline and relative to future work.
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Prediction
Direct Inverse Total

Direct 341 27 368
Inverse 88 67 155

Total 429 94 523

Table 5.2: Contingency table of the direction predictors

The fact that the majority-prediction baseline does so well suggests looking more closely at the

minority case, inverse scope. The trained models collectively predicted inverse scope with precision

67/94 = 71.2% and recall 67/155 = 43.2% (F1 = 53.8%).

However, these measures run amiss conceptually by assuming that only inverse scope is of in-

terest. They would be the same if there had been zero correctly predicted direct scopes, or arbitrarily

many. But if we want to use scope predictions to build semantic representations, that would have

a considerable effect on their reliability. Of course, we can calculate the same measures for direct-

scope predictions: precision 341/429 = 79.5% and recall 341/368 = 92.7% (F1 = 85.6%). But this

just leaves out a different class of interest. The two wrongs do not really make a right.

This one-class flaw is among those discussed by Powers (2015). As conceptually similar but

more principled replacements for precision, recall, and F1, Powers argues for markedness, in-

formedness, and Matthews correlation. Markedness amounts to joint precision: Precision for in-

verse scope plus precision for direct scope, minus one. Informedness amounts to joint recall in the

same way. Matthews correlation is their geometric mean. Collectively, the trained systems achieved

50.8% markedness, 35.9% informedness, and 42.7% Matthews correlation.

These (and other) measures can be calculated from the summed contingency table (Table 5.2).

Tables for the individual folds are in Appendix B.

5.1.3 Accuracy breakdown by determiner

Although the classifier operated on encodings of nouns (and pronouns), contextual encoding allows

for influence from the noun phrase’s determiner (if any), and we might well wonder whether this
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Determiner
Direct Inverse

Likelihood
Correct Out of Correct Out of

a/an 101 107 15 27 86.6%
cardinal 15 18 3 10 64.3%

demonstrative 10 11 10 19 66.7%
many 23 24 7 14 78.9%
misc. 12 14 4 8 72.7%
most 16 16 0 0 100%
null 257 273 37 110 76.8%
one 10 11 4 5 87.5%

possessive 11 14 1 2 75.0%
some 22 22 0 4 84.6%

the (definite) 49 63 27 45 70.4%
the (generic) 7 7 3 7 71.4%

Table 5.3: Correct predictions given determiner

contributed to accurate prediction. For example, did the models learn not to put ‘each’ at narrow

scope?

I identified the determiners for the two nominals in each data item, and used the predicted

and gold scopings to calculate likelihoods conditioned on them. The primary calculation is the

probability that an item is predicted correctly given that a certain determiner is present. I wrote a

script to tally the successes and failures for each determiner and produce the likelihoods, which I

summarize (consolidating extremely small counts) in Table 5.3.

For better perspective, my script also kept more specific tallies and calculated some likelihoods

of secondary importance. I kept separate counts for determiners of the first or second nominal in the

item, and by their position in the gold scoping. In various combinations with the primary counts,

these produced an assortment of other conditions and outcome probabilities.

Even the primary tallies were often small, and the secondary tallies were almost always smaller.

For the sake of prudent doubt about estimates of population proportion from small samples, I here

report the counts as well as the ratios, and I reviewed the likelihoods as calculated and ranked with

various amounts of Laplace smoothing (pseudocounts).
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An ad-hoc combination of those smoothed rankings suffices to organize the following discus-

sion, bringing some more noteworthy findings to the front while striking a reasonable balance be-

tween the size of the likelihood and the size of the supporting sample. Smoothing also helps to

identify a small, relevant subset of the secondary results, since it pulls smaller samples toward 0.5

with greater strength; I mention the secondary findings only when the likelihood exceeds the cor-

responding primary result under the traditional ‘plus four’ estimate (adding two successes and two

failures; Wilson, 1927).

5.1.3.1 a/an

The count in the table includes ‘another’, which was predicted correctly 10/11 times (90.9%). With-

out it, accuracy on ‘a/an’ falls very slightly to 106/123 (86.2%).

Grouping ‘a/an’ with other existential determiners (bound and free ‘some’, ‘one’) made no

particular difference because ‘a/an’ dominates the combined counts.

Many of the determiners, including some with respectable sample sizes, have a preferred side

of the data item; ‘some’ and ‘many’ quantify the first noun in the item much more often than the

second one, whereas the null determiner of bare mass nouns and the generic use of ‘the’ strongly

favor the second noun. Somewhat unusually, ‘a/an’ appeared almost equally often in both positions

(57 first vs. 75 second), and moreover was predicted correctly at almost identical rates for both.

5.1.3.2 most

The quantifier ‘most’ was always on the first noun, always at high scope, and always predicted

correctly. The sample size of only 16 tempers the accomplishment. So does the fact that the behavior

to be learned is just not to depart from the majority prediction.

5.1.3.3 The null determiner

Though without an overt quantifying word, pronouns (when serving as discourse anaphora), proper

nouns, bare plurals, bare mass nouns, and even a scattering of bare count nouns are understood with
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Determiner
Direct Inverse

Likelihood
Correct Out of Correct Out of

bare singular count noun 11 12 0 7 57.9%
bare mass noun 91 97 23 39 83.8%
bare plural noun 112 115 16 49 78.0%

pronoun 91 95 0 20 79.1%
proper noun 24 27 4 7 82.4%

Table 5.4: Correct predictions given null determiner type

quantificational force and occur in necessary scopal relations.

The understood quantificational force varies. When proper nouns do have a single unique refer-

ent, existential and universal force are indistinguishable. Singular pronouns are similar. In Simple

English Wikipedia, plural pronouns, bare plurals, and bare mass nouns are often generic as subjects

or existential as objects.

Ignoring these distinctions, and collecting all of their outcomes on the basis of their surface sim-

ilarity, creates a category that appears in both the first and the second positions of data items in very

equal balance, is associated with both scopings in fairly equal balance, and is predicted correctly at

a rate of 294/383 (76.8%). Some of the individual classes are not much better; bare plurals manage

128/164 (78.0%) and pronouns 91/115 (79.1%). Table 5.4 gives the details. Summing through the

table exceeds the total counts given for this category above because data items containing two of

these classes will counted twice.

Pronouns are predicted somewhat more accurately when they appear in their typical, first posi-

tion (80/97, 82.5%), and especially when they are at their typical high scope (80/92, 87.0%). This

appears to combine a learned lexical regularity with the direct-scope bias.

Bare plurals have a similar small gain in accuracy from being in second position, and they cannot

be said to have a typical position, but they have a clear tendency toward low scope, so direct-scope

bias probably accounts for this.

Bare mass nouns do somewhat better to begin with, at 114/136 (83.8%). They have a much
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weaker tendency toward second position (63 items vs. 51 for first position, plus 22 items with bare

mass nouns in both), and hardly any tendency to a particular scope (59 items low, 51 high, and the

22 doubles), and yet are predicted better in the slightly more common cases: second position 70/81

(86.4%), low scope 67/77 (87.0%). This then may reflect more adequate training for these cases,

and not just direct-scope bias.

5.1.3.4 some

‘Some’, including seven instances of ‘someone’ and five of ‘something’, was predicted correctly in

22/26 items (84.6%), including all seven ‘someone’s but only three ‘something’s.

All four mispredictions were of direct scope when the correct scope was inverse: Two instances

of high-scoped ‘something’ in second position, and two instances of (the word) ‘some’ low-scoped

in first position. All 22 correct predictions were of direct scope. The correct prediction rate for both

first position and high scope therefore rises to 17/19 (89.5%), a respectable number but one based

on a small sample, and again a case where fairly consistent training data reinforces the default.

5.1.3.5 one

Though rare relative to ‘a/an’, ‘one’ appeared three times more often than all other ordinals put

together, and with a strikingly high proportion of accurate predictions: 14/16 (87.5%). For what

small samples are worth, 8/8 were correct with ‘one’ scoped low, and 6/8 with it scoped high. There

was one misprediction in each direction.

5.1.3.6 many

‘Many’ chalked up a less impressive ratio but a fair sample size: 30/38 (78.9%, just slightly better

than the all-items average 78.0%). For the 14 items with inverse scope, it split its predictions evenly,

but erred only once on the 24 with direct scope.

This quantifier is skewed toward high scope and toward the first position, and when found

in these conditions was predicted correctly more often: 24/29 (82.8%)and 23/27 (85.2%). In the
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intersection of these conditions, high in direct scope, the ratio was an excellent 20/21 (95.2%). All

of the direct scopes in which it was low were predicted correctly also (5/5). But in the 14 items

whose gold scope was inverse, the predictions were evenly split: 3/6 when low in inverse scope, 4/8

when high.

5.1.3.7 the (generic)

‘The’, used with generic meaning, was present in 14 items, with 10/14 (71.4%) correct: When it

was in second position, six correct predictions of direct scope and three of inverse; and when it was

in first position, one further prediction of direct scope. The four mispredictions were all of direct

scope when gold was inverse: Two when it was low in first position, two when it was high in second.

The three correctly predicted inverse scopes are a good sign and suggest training was effective for

something other than reinforcing the direct default, though again the sample size demands caution.

5.1.3.8 the (definite)

Without claiming to have resolved a century-long debate about whether definite descriptions quan-

tify (among many others Russell, 1905; Strawson, 1950; Kripke, 1977; Fodor and Sag, 1982), as a

matter of practice, in the Simple English Wikipedia genre we usually find definite ‘the’ under the

scope of a generic assertion, where its asserted meaning can be formalized as a universal quantifier,2

and this involves it in scopal interactions.
2The rest of the meaning of ‘the’ is presuppositional: ‘Fungi get the carbon they need from other organisms’ or ‘Each

bus stopped and the driver got out’ presupposes that needed carbon or bus drivers exist, and that the particular portion of
carbon or the particular driver can be uniquely identified, relative to a given fungus or bus.

These are part of the facts about fungi or buses. The reader is expected to understand something like, ‘Where all fungi
need carbon, a generic fungus needs carbon and gets its carbon from other organisms.’ We can formalize accordingly:
The restrictor set λ f (fungus f ) becomes

λ f (fungus f ∧ ∀ f ′ (fungus f ′ → ∃c(carbon c ∧ needs f ′ c)))

i.e. ‘fungus, where every fungus needs carbon’. The nuclear scope set can fold this down to

λ f (fungus f ∧ ∃c(carbon c ∧ needs f c))

or ‘fungus that needs carbon’.
This device of pushing presuppositions into the outer scope is not limited to definite descriptions. ‘Other organisms’

presupposes that for a given fungus, it is an organism and there exist organisms that are not it. These propositions can be
handled similarly.
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Prediction
Direct Inverse Total

Direct 49 14 63
Inverse 18 27 45

Total 67 41 108

Table 5.5: Contingency table for items with definite ‘the’

This category excludes ordinals and superlatives, which have been counted separately because

of the additional quantification embedded in their semantics.3 It includes 89 items in which one

noun had definite ‘the’, and 19 items in which both did. See Table 5.5 for the outcomes, which are

quite distinct from the average behavior (Table 5.2).

Correct predictions in the presence of ‘the’ were well below average (76/108 or 70.4% vs. 78.0%

overall), partly because the frequency with which inverse scope was predicted was more than twice

the average. The aforementioned pattern of a generic outscoping definite ‘the’ usually appears as

direct scope, so this high frequency is peculiar, and accuracy is certainly not the only statistical

measure that suffered for it.

The higher frequency of inverse predictions reduced precision and especially recall of direct

scoping (precision 73.1% vs. 79.5% overall; recall 77.8% vs. 92.7% overall; F1 = 75.4% vs. 85.6%

overall).

Fans of robust simplicity can imagine that wherever the predicate ‘fungus’ goes, it simply totes along all the extra
material about carbon—and about other organisms, and every other background fact about fungi. Cognitive scientists and
pragmaticists might instead imagine that when the predicate ‘fungus’ is in working memory, all generalizations about it
are easier to retrieve from semantic memory, and the relevant ones are found and imported to its restrictor set when they
match a hypothesis triggered by ‘the’ or ‘other’ about what facts have been presupposed.

(Definites are usually treated as presupposing maximal reference, as well as existence and identifiability; ‘Fungi get the
carbon they need’ is taken to mean not just some of the carbon a fungus needs, but all of it; similarly for definite plurals.
Maximality is not overtly asserted in the fungi/carbon sentence, but unlike existence, it is at-issue. If fungi got half of
their carbon from other organisms and half from the atmosphere, the sentence would be wrong, whereas if fungi did
not need carbon, the sentence would be not-even-wrong. And, just as many generics seem to make universal claims but
allow for pragmatic exceptions, so too does maximality (Schwarz, 2013). For these reasons I tend to view it as a genuine
generic, supplied pragmatically as the tacit quantificational force of the noun phrase, not as a part of the outscoper’s
restrictor like existence and unique identifiability. But, as with many other questions, we do not claim to have settled the
debate. all of this treatment of definites is experimental and provisional, maximality included. ‘Simplicity’ of the wiki
notwithstanding, a large corpus of logical forms touches upon all sorts of open semantic and pragmatic questions, and we
adopt provisional answers like these in order to move ahead with it at all.)

3We model ‘the third’ as ‘the one such that two members of this set precede it’, and superlatives similarly.
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Precision for inverse scoping also dropped modestly (down to 65.9% from 71.2% overall), but

with a considerable rise in recall (to 60.0% from 43.2%; F1 = 62.8%, up from 53.8%).

The net effect was a heavy loss on markedness (39.0% vs. 50.8%), a small victory on informed-

ness (37.8% vs. 35.9%)), and a loss on Matthews correlation (38.4% vs. 42.7%).

5.1.3.9 Other definite determiners

The accuracy of definite ‘the’ is compared to other definite determiners in Table 5.6. Superlatives

and ordinals that were removed from the count of ‘the’ appear here, as does ‘the first’ (which is

arguably both). Apart from ‘the first’, they are grouped because the individual types are extremely

rare.

Five items included an ordinal number other than ‘one’, and were predicted without error. These

were grouped in the expectation that few of them would be attested more than once.

The fairly good performance of possessives likely reflects the fact that the possessor is routinely

also the immediate outscoper. Speculatively, the fact that they fall close together in word order and

in the syntax tree may help to get them predicted alike with respect to other scope-bearers, but much

more data would be needed to investigate this.

If demonstratives are grouped, their accuracy is 20/30 (66.7%). ‘Those’ was not attested. My

only worthy hypothesis about the relatively good performance of ‘these’ is sample size.

5.1.3.10 Cardinal numbers

This heading collects all cardinal numbers other than ‘one’, on account of their rarity.

The number two was found in seven data items, once as an Arabic numeral and six times spelled

out. One of the spelled-out instances was mispredicted as direct scoping when the gold label was

inverse. All other instances were correctly predicted as direct. ‘Two or more’ was also attested

once, mispredicted as inverse scoping when the gold label was direct.

‘Three’ occurred twice and was predicted correctly (in direct scope) both times.
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Determiner
Direct Inverse

Likelihood
Correct Out of Correct Out of

the first 1 1 2 2 100%
ordinal 3 3 2 2 100%

possessive 11 14 1 2 75.0%
superlative 3 3 3 5 75.0%

that 1 2 4 7 55.6%
the (definite) 49 63 27 45 70.4%

these 4 4 4 6 80.0%
this 5 5 2 6 63.6%

Table 5.6: Likelihoods of correct prediction given definite determiner

The number 87.969 (which is the orbital period of Mercury in days) appeared in two data items.

Both had inverse scope in the gold labeling; one was predicted correctly.

No other cardinal numbers were repeated, but the synonyms ‘at least one’ and ‘one or more’

occurred in one data item each, which were mispredicted as inverse and direct respectively.

The other cardinals ranged from a low of 1.5 to a high of 200 billion, with a median halfway

between 70 and 184, and covered eight direct scopes (seven predicted correctly) and six inverse

scopes (two predicted correctly).

5.1.3.11 Miscellaneous determiners

The few remaining determiners are summarized in Table 5.7.

‘All’ occurred in five items, but with only three correct predictions. Other attested universals

were ‘both, each, every’ and, as it happens, all four tokens of ‘any’,4 but combining all of their

counts still gives a sample too small for comment. Whether RoBERTa can learn the generalization

about ‘each’ remains for practical purposes unanswered.

‘A lot of’ was treated as a multi-word quantifier because the context made it clear that ‘lot’ did

not denote an entity.

4I.e. negative-polarity ‘any’ was absent.
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Determiner
Direct Inverse

Correct Out of Correct Out of

a lot of 0 0 1 1
all 3 5 0 0

(bound) any 2 2 0 1
(free) any 1 1 0 0

both 1 1 0 0
each 3 3 0 0

(bound) every 0 0 0 1
(free) every 1 1 2 2

much 0 0 1 1
no 1 1 0 1

several 0 0 0 1

Table 5.7: Accuracies of sparsely-attested determiners

A

B

C

(a)

A

B

C

(b)

Figure 5.1: A misprediction creating a cycle

5.2 Cyclicity

Counting misdirected arcs is a reductionist view on mispredictions. A complementary, holistic view

considers patterns in the graph.

The truth-conditionally necessary scopings of the gold data form transitively closed directed

acyclic graphs. The test sets contain corresponding undirected graphs, to which the predictor must

restore direction arc-by-arc. In other words, the predicted graph can be generated from the gold

graph by reversing zero or more arcs.

The most damaging effect this can produce is a directed cycle, as seen in Figure 5.1. A transitive
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Figure 5.2: Two cycles that count and two compound circuits that do not

triple like 5.1a is a cycle in the undirected graph, which becomes a directed cycle with the mispredic-

tion shown in 5.1b. But no lambda expression can be constructed consistent with a cyclic scoping.

From the scope-as-continuation perspective of Schuler and Wheeler (2014), we cannot describe the

quantification corresponding to any of the three terms until we have described the quantification that

points to it. The cycle has to be broken arbitrarily to make a verifiable (true or false) claim.

Producing few or no directed cycles is therefore a requirement for any arc-by-arc scope predic-

tor.5 Any approach that is cycle-prone needs to be extended to break them (perhaps by examining

the weights for each arc prediction, as the greedy approximation algorithm of Manshadi et al. 2013

does), constrained to avoid attempting them (perhaps by only predicting the arcs of the graph’s

transitive reduction), or abandoned.

In fact, the predictor produced no directed cycles. The magnitude of this accomplishment de-

pends on just how many cycles the predictor could have produced.

5.2.1 Count of undirected cycles

A directed cycle can only be predicted where the undirected graph of test items contains a cycle, so

a count of undirected cycles helps to contextualize the success of acyclic predictions.

I count cycles in the graph-theoretical sense, so all rotations (and both reflections of an undi-

rected cycle) are equivalent. The definition of cycles also excludes compound circuits, such as

ABCEDCA and ABCDECA on Figure 5.2, which make multiple uses of a single vertex.

These two circuits hint at my reason for excluding compounds. Using the point where cycles

touch (C) to divide the graph into trails, two distinct compounds are formed by reversing one of the

5Disrupting the gold graph’s other property, transitive closure, turns out to be unimportant to measure. Discussion is
in Appendix C.
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trails.6 As slightly larger numbers of cycles touch each other, the options for reversing and skipping

trails increase, and compound circuits proliferate wildly.

However, checking for directed compound circuits amid this proliferation, instead of for directed

cycles, does not improve our ability to spot faulty graphs. A directed compound circuit certainly

causes the same interpretability problems as a directed cycle, but it also necessarily includes at least

two directed cycles, so finding cycles suffices to warn us that the graph is bad.

Moreover, the fraction of compound circuits that are predicted as directed compound circuits7

is not a better measure of a faulty prediction’s faultiness than the fraction of cycles is. If anything,

it is worse.

Note that it is impossible to assign directions to the edges of Figure 5.2 such that ABCEDCA

and ABCDECA are both directed circuits. A trail they share is reversed from one circuit to the

other,8 so if the directed edges are right for entering C and leaving it again along one of the circuits,

they are wrong for the other one. Any way the directions run, at least one of the two gets credit for

not being a directed circuit.

In a graph with many compound circuits, there are many pairs of circuits in a similar relation-

ship, and one circuit may participate in several such pairs. This effect drives down the fraction

predicted to be directed circuits no matter how badly the directions are predicted. By counting only

cycles, I blunt its impact on my measure of quality.

The direction data offered 144 undirected cycles for the predictor to avoid. For additional clarity,

I surveyed the documents that produced them and the predictions that were made.

5.2.2 Document sources of undirected cycles

Of the 511 documents that were successfully processed, 210 had one or more truth-functionally

necessary outscopings, but only ten had an undirected cycle.

6“Reversing” is relative to some other part of the circuit, because of equivalence under reflection. To avoid perpetual
double vision, it is convenient to treat undirected cycles/circuits in terms of a canonical forward direction assigned by
arbitrary rule. Here, I’ve made “forward” the direction from A to B.

7Or, mutatis mutandis, all circuits both simple (i.e. cycle) and complex.
8Again, relative to whichever trail is arbitrarily deemed to run “forward” in both.
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Cycles per document Documents

0 200
1 5
3 2
6 1

36 1
91 1

Table 5.8: Distribution of undirected cycles across documents

These documents are distributed fairly evenly across folds: two each in three folds; one each in

four folds; none in the two folds that remain. However, the distribution of undirected cycles across

documents is notably skewed, as outlined in Table 5.8.

Two unusual sentences were extremely cycle-rich:

(1) Farming is growing crops or keeping animals by people for food and raw materials.

(2) The home page of a web site is the document that a web server sends to another computer’s

web browser application when it has been contacted without a request for specific informa-

tion.

Both sentences are noun-heavy by Simple English Wikipedia standards, Example (1) because it is

so densely packed (a more typical rate is one noun per three words), and Example (2) because it is

so long (around the 95th percentile).

Noun-heavy sentences are usually that way because they include lists, which build scoping

graphs that are broad, shallow, and tree-structured. By contrast, these sentences’ scope graphs have

structures and depth that give their nouns a large number of non-immediate outscopers, which means

that taking the transitive closure builds more edges and thus more undirected cycles.

The conjunctions in Example (1) also gave it a scope graph, shown in Figure 5.3,9 with more

reticulation than usual. Only fifteen edges are possible among six vertices; after closure, this sen-

9Transitive reduction is shown.
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farming

people

crops animals

food materials

Figure 5.3: Scope DAG for Example (1)

browser request information

[client] computer

site server

Figure 5.4: Scope DAG for Example (2)

tence’s graph had thirteen, more than any other document in the data. This produced the set of 91

undirected cycles.

Example (2) also has a six-noun graph (see Figure 5.4).10 With less depth and less reticulation,

after transitive closure it has eleven edges, second-most of any document in the data set. It produces

36 undirected cycles.

The proliferation of cycles in these two graphs is much like the proliferation of compound

circuits discussed in Section 5.2.1, in that the fraction of them predicted as directed cycles is not a

very straightforward measure of bad predictions’ badness. Fortunately for us, the fraction is zero,

which is the most straightforward value it could take.

Zero would be the value if the gold labeling were reproduced exactly by the predictor. But it is

10Again in transitive reduction.
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also the value under assorted mispredictions. Out of 24 test items related to these two graphs, only

22 were predicted correctly. The two mispredictions just did not happen to be in positions where

they could (jointly or singly) form a directed cycle.

The mispredicted items had gold inverse scope and were mispredicted as direct. The 22 items

correctly predicted were also direct scope. So in fact, on these items the trained predictor performed

identically to the baseline predictor.

This highlights the other factor in cyclic predictions: inverse scope. The baseline cannot predict

directed cycles for the simple reason that it never assigns upward scopes that point rightward in the

document, only leftward.

5.2.3 Predictions in undirected cycles

To be vulnerable to directed cycles, a predictor needs to predict scopes in both directions. But this

is also necessary to beat the baseline on accuracy. To anthropomorphize, a predictor can avoid the

challenge of cycles by simply avoiding inverse scope, at a certain cost in accuracy. By predicting

inverse scope, it engages this challenge, potentially either well (where inverse scope is correct) or

at unnecessary risk (where the correct scope is direct).

Inspecting all the data items that participate in undirected cycles lets us quantify the predictor’s

tendencies to be bold or foolhardy. One of the documents, “Sausage” in fold 3, had a single cycle

of three edges only because of a processing error11 and I exclude it from further discussion. I

also exclude test items from the same documents (and even the same connected components of the

graph) that do not themselves form part of any cycle.12 The remaining items can usefully be divided

into two subsets by referring to the gold directed graph.

If reversing a single edge causes a directed cycle, consistency with other predictions weighs

heavily in getting it right. These are the edges that are implied by other edges through the transitive

property. They are vulnerable to cycles because of this effect when reversed. In our data they are

11Scoping was incorrectly assigned among several conjoined examples of types of meat products.
12There are nine of these, all predicted with direct scope, eight of them correctly.
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Prediction
Direct Inverse Total

Direct 19 0 19
Inverse 2 2 4

Total 21 2 23

(a) More cycle-associated

Prediction
Direct Inverse Total

Direct 16 0 16
Inverse 11 3 14

Total 27 3 30

(b) In transitive reduction

Table 5.9: Contingency tables for edges included in undirected cycles

almost necessary for cycles also; only three of the undirected cycles do not include any of these

edges (the 4-edge cycles formed from the six lowest edges in the “Farming” graph, Figure 5.3).

There are 23 edges in this more cycle-associated subset.

The other edges are those in the graph’s transitive reduction.13 A single error on one of these

edges results in a different acyclic directed graph, but cannot produce a directed cycle.14 At least two

reversals are required. For example, a transitive triple can be turned cyclic either by reversing the

redundant edge or by reversing both of the basic ones. Edges belonging to the transitive reduction

carry less of the freight of cycle avoidance because of this, and because only the three undirected

cycles (previously mentioned) occur solely within this subset. There are 30 such edges.

Counts of predictions, broken out by these subsets, are in Table 5.9. If one considers the six

lowest edges in “Farming” cycle-associated and wishes to move them to that subset, all six were

predicted as direct scope, correctly in four cases and incorrectly in two.

Mispredictions were present in sufficient numbers to allow for directed cycles either by single

reversals of more cycle-associated edges or by multiple reversals among the others. The two single

reversals among more cycle-vulnerable edges were salvaged by other mispredictions that restored

consistency at a small cost in accuracy; each was a member of a transitive triple including multiple

inverse scopings, all of which were predicted as direct. Among edges of the transitive reduction, the

mispredictions never fell in dense enough arrangements to set up further transitive cycles.

13I.e. the smallest subset of the graph that has the same transitive closure.
14Informal proof: Any configuration in which a single edge reversal creates a directed cycle can be derived by starting

with a directed cycle and reversing one edge. But after the reversal, it is redundant; its endpoint can be reached from its
start by traversing the other part of the cycle. By definition, no such edge is in the transitive reduction.
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Prediction
Scope None Total

Scope 6 61 67
None 15 2144 2159

Total 21 2205 2226

Table 5.10: Contingency table of the screening predictor

In anthropomorphic terms, the predictor has been cautious, avoiding cyclicity mostly by taking

a bias toward direct scope. It has great precision on inverse scope, but sacrifices recall of inverse

and precision of direct in order to get there. Broadly speaking, on these and similar statistics its

behavior on this portion of the data is consistent with the rest of the dataset.15 This is to be expected,

since the training process did not include loss factors for cyclic predictions (or any other holistic

phenomenon).

5.3 Screening subtask

In contrast to the direction subtask, the screening subtask met with little success. The trained model

achieved an accuracy of 96.59% in its test set, but the majority-prediction baseline beat it with

96.99%. Table 5.10 counts outcomes by the predicted label (columns) and gold label (rows), where

“Scope” indicates a truth-conditionally necessary scopal interaction.

Prediction of interaction had a precision of 0.2857; markedness (combined precision for in-

teraction and non-interaction) was 0.2580. Recall of interaction was 0.0896, and informedness

(combined recall) was 0.0826. F1 was 0.1364 and MCC was 0.1460. For comparison, the majority-

prediction baseline scores -0.0301 for markedness, and the remaining statistics are variously zero

or undefined.

The screening subtask was not tested on the other folds, because of this poor result and because

of other indications that the current data are inadequate to train it. During the hyperparameter grid

15The exact percentages are somewhat more extreme, but then, the sample is small.
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search, validation accuracies tended to top out early regardless of the values being tried. A logistic

regression across all of the validations in the grid search determined that the probability of a new

best score fell steeply as training steps increased; at 16,000 minibatches the probability was only

3.3 ∗ 10−3, and at 25,000 minibatches it sank to 2.2 ∗ 10 − 4.16

Moreover, peak validation scores were always fairly close to baseline performance, with very

little effect from hyperparameter tuning. Some did beat the baseline, but the ratio of those that did

to those that did not was unconvincing.

These dismal results were achieved in spite of having 37 times more data than the direction

subtask and training for 37 times as long. I therefore set the screening task aside.

I interpret these indications to mean that the training process quickly extracted all the informa-

tion that could be extracted from the available data by an encoder self-trained on RoBERTa’s tasks

and fine-tuned solely on this one. If so, improving screening performance will require more scope

data and/or more data for training other related tasks.

In the meantime, be it noted that writing a lambda expression usually requires adding scopings

without truth-conditional effect to the true scopal interactions this subtask is meant to detect. In

other words, meaningful practical applications include and accommodate underscreening. Under-

screening would increase the opportunities for the direction task to make mutually contradictory

predictions, but it has avoided that error very successfully so far.

16These probabilities pertain to validations performed at intervals. If I had evaluated after each minibatch, the corre-
sponding probabilities would be vastly lower.
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Chapter 6

Remarks and conclusion

This thesis reports the application of the RoBERTa language model to quantifier scope disambigua-

tion, framed as a span pair classification problem with outscoping treated as a semantic dependency

between words.

The problem can be expected to fall within the model’s abilities on grounds that the model

encodes properties of lexis, syntax, and semantics that correlate with human scoping judgements

(‘scoping factors’). The results of applying similar models to other long-distance, context-sensitive

semantic dependency prediction problems are reviewed.

Previously published scope-annotated corpora and scope prediction systems are surveyed. It is

found that the systems, or the corpora themselves, either do not cover all of the scoping factors,

do not apply them to the full set of quantifiers, or do not represent the full range of subject-matter

domains in which humans routinely predict quantifier scope.

The thesis reports development of a new, broad-domain quantifier corpus. Texts are selected for

linguistic and domain diversity from a crowdsourced encyclopedia. Training materials, a work pro-

cess, and the annotator-facing data format were each designed to reduce barriers to entry and safe-

guard accuracy, with revisions resulting from an inter-annotator agreement study and error analysis.

Truth-conditionally meaningful scopal interactions are identified, extracted, and processed into a

collection of scope prediction problems.

The thesis discusses appropriate measures of agreement, both between human annotators and

between predicted and gold labels, for data having internal structure as a document’s scope anno-

tation must. For appropriate calculation of chance-corrected agreement between human annotators,
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an inter-annotation distance metric is introduced and justified. For evaluation of automated predic-

tions, where human-like constraints on the structure of a set of predictions are not enforced, results

are evaluated both for small-scale accuracy and for compliance with these holistic constraints.

Where scopal interaction is known to exist and only the direction of scope is in question, always

predicting direct, or in-situ, scope is a strong baseline. Predictions from the RoBERTa system are

shown to be more accurate, to a degree not due to chance, although the system’s predictions of

inverse scope are still too cautious. The system successfully complies with the holistic constraints,

avoiding cyclical outscoping predictions that would block complete semantic interpretation.

6.1 Concerns, next steps, and prospects

The system’s narrow margin over the baseline is of concern. So also are the facts that it does not

handle the full 3-way prediction problem, in which ‘no interaction’ is a valid (and the most common)

label, or the screening problem of identifying scope interaction without predicting its direction. Next

steps to address these, aside from expanding the data (now underway), should include adopting

RoBERTa-large in place of RoBERTa-base. With twice as many layers in the encoder, it is likely

much better equipped to recognize and extract high-level semantic and pragmatic dependencies.

This may make it possible not only to predict scope direction more accurately, but to screen for

scope at better than chance levels, and even to re-merge the subproblems and do the full 3-way

prediction in a single trained system.

From an engineering perspective, computers to date have little ability to handle the scopings we

imply and infer in language about generalizations. Advancing this ability means making them able

to engage with more of our linguistic abilities. It is a step toward being able to tell a machine what

we know, without having to learn a special formal language for talking to it first. But in the long

run, there may be benefits from a scientific perspective too. Working with a system like this may

help us to study human cognition of scoping.
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Linguists are familiar with formal theories that model human phonological or syntactic compu-

tations, but may only loosely approximate our algorithm and may not even attempt to describe our

implementation of it in vivo. Despite stopping in the upper reaches of the Marr (1982) hierarchy (or

rather, continuum; see Poggio 2012), these theories can send us back to human subjects with new

predictions to test and new questions to ask, precisely because they stand apart from the linguistic

awareness we have when simply using language competence intuitively.

A trained predictor of human scoping judgements is also a theory of their computation, even

though a statistical and (technically) neural predictor’s theory is a tacit one. The fact that its internals

are unlike ours does not invalidate that theory, it just positions it higher on the Marr continuum.

Its areas of success or failure may tip us off to previously unrecognized patterns in our scoping

judgements. Moreover, since the encode-and-classify architecture is able to share its encoder with

multiple other tasks, joint training (particularly adversarial training, designed to burn abilities out

of the encoder) followed by scoping accuracy evaluation can reveal what kinds of information are

most useful for emulating human scoping judgements. This is certainly no proof that human scoping

judgements rely on that information, but it is a good place to look for credible hypotheses about the

computation that can be tested and walked down the continuum.

In spite of its architectural alienness—twelve attentions and hundreds of simultaneous readers—

the encoder is at heart a word-prediction machine, and human language computations apparently

have a lot to do with prediction (Schrimpf et al., 2021). So there is a meaningful possibility that

what helps a ‘Martian’ imitate us is, if not what we use, at least connected to it.

6.1.1 Formal theories of scope islands

In ‘Rethinking scope islands’, Barker (2021) provides an explicit formal description of unavailable

inverse-scope readings, which suggests an investigative use for this thesis’s corpus and avenues for

constructing further scope predictors.

Barker traces the fortunes of the idea that clauses are scope islands, such that a quantifier or

other scope-bearer originating within a clause cannot outscope one originating outside it, beginning
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with a strained analogy between prohibited inverse scopings and prohibited syntactic movement

in the heady ‘All grammar is syntax’ days of the mid-1970s. He catalogues the strains it suffers

(backing up the challenges in the literature with additional naturally occurring examples) and the

attempts to salvage it, before breaking apart the island-or-not binary into multiple levels to good

descriptive effect. I here summarize.

The early 1980s literature abundantly demonstrates indefinites scoping out of clauses. They

were immediately relegated to a separate status, and various analyses were devised in the 1990s and

2000s to excuse them from scope island effects: They are not quantifiers but variables, or alternative

sets, or they quantify but can be used in a fashion which delivers truth conditions equivalent to wide

scope anyway.

But even for non-indefinite quantifiers, the purported scope islands (clauses generally) are not in

fact syntactic islands, and the evidence mounted that actual syntactic islands (e.g. relative clauses)

are not scope islands either: In the 1980s literature, Mandarin wh-in-situ scopes out of clauses, and

universals scope out of tensed comparative clauses. In the 1990s and 2000s literature, universals

also scope out of tensed complement clauses, embedded interrogatives, and relative clauses. Barker

backs up these reports with additional naturally-produced examples.

In light of all this, Barker revisits the original evidence for clauses as scope islands, and shows

that it does not hold up. Rodman’s (1976) sentences fail to prohibit inverse scoping if ‘every’ is sub-

stituted by ‘each’, and what remains of May’s (1977) data has a more coherent semantic description

than a syntactic one. Subsequent evidence from cardinal quantifiers also dissolves when their se-

mantics are understood to contain multiple quantifications, and then the indefinite part seemingly

remains able to escape to wide scope. And with clause-as-scope-island now thoroughly in ques-

tion, assorted special mechanisms for producing certain scopes in spite of it have little independent

motivation.

Barker’s new empirical contribution is that the attested pattern of permitted and prohibited in-

verse scope can be described with a single well-ordered dimension of strength, on which the scope-

taker and the embedding predicate both fall:
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• Expressive

• ’Only’ focus

• Indefinite

• ’Doubt’ complement

• Negative-polarity

• ’Claim’ complement

• Universal

• ’Make sure’ complement

• Downward monotone

Scope-takers listed higher on this list than some domain are permitted to take scope out of it;

those listed lower are not. The quantifier raising allowed by the hierarchy is intended to accommo-

date everything that can invert to higher scope, obviating a collection of proposed mechanisms that

detoured around the former island theory’s over-strict constraints to allow some scoping. However,

the hierarchy’s prohibitions are not meant to similarly obviate all proposed mechanisms that forbid

a scoping.

The strength hierarchy can be piggybacked on the function types of logical form; a functional

type’s strength is fixed in the lexicon, or assigned when it is formed by abstracting over a predi-

cation, being in the latter case no stronger than the strongest sub-expression containing the bound

variable. Previous formalisms either underdistinguished among scope-takers, or under-constrained

their ascent to higher scope, or overconstrained it and required a mechanism for exceptions, or could

not handle non-clausal scopes.
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6.1.2 ‘Rethinking scope islands’ with the corpus

Barker’s natural-language examples considerably strengthen his argument against theories in which

clausehood itself (or some subtype of it) creates an island (at least for non-indefinites), and as

he puts it, ‘to make progress we will need to find a way to collect large data sets of scope judg-

ments’. My corpus could be searched for counterexamples to most of the constraints proposed by

his hierarchy—those in which the islands are syntactically defined. His description also makes the

focus domain of ‘only’ an island (for everything except expressives, even indefinites!), which may

not always be identifiable in our data.

We do know which words were given typographic emphasis by the writer (bold, italic, etc.),

which may designate a focus domain as prosody does in speech, or may perform other functions

(again, as prosody does). We can also infer focus domain from information-structural choices such

as clefting. But writers may not have been familiar with either the wiki markup for typography

or the syntactic constructions (or they may have considered the syntax too advanced for ‘simple

English’), so our coverage of focus domains is less complete.

Barker has made a point, too, of keeping the description in semantic terms where possible and

avoiding overcommitment to particular syntactic instantiations of it. This seems prudent, but it

leaves the door open for refined theories with additional non-syntactic island types. Such would

likewise be troublesome for our corpus.

6.1.3 Rethinking scope predictors

Using this island theory to support a scope predictor, like any other infusion of human expertise

into the system, is all right as far as it goes. When disambiguating scope for practical purposes,

any advantage is a good one; if consulting a parse tree can rule out misreadings at less cost than

running inference on word embeddings, so much the better. Introducing a new subsystem always

has complexity costs, but parsing is getting cheaper all the time, so for the foreseen near future the

balance is favorable.
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This is assuming the theory is correct. It is undoubtedly less wrong than its predecessor, but

I maintain reservations about sentences out of the blue. Judging that ‘Someone thought everyone

left’ must scope in-situ is easy, until I precede it with ‘Ella thought Louis left, when he was just out

having a smoke. Louis thought Iola and Dave left, when they were in the green room writing. Billie

thought Ella and Louis left. In fact—’.

For science, introducing another subsystem is unappealing unless there is some principled rea-

son for it. Citing Steedman (2012), Mike White (personal communication) proposes that this predic-

tor’s low performance results from data sparsity, and that scope island restrictions alleviate sparsity

(for humans as well as computers) by suppressing a combinatorial explosion of possible analyses.

Confirming a sparsity problem with the predictor would then motivate adding such a system.

In the absence of such an indication, an island-based prefilter may still be expedient, just as

separating the scope prediction problem into screening and direction was. If a predictor avoids

island-violating errors no better than it avoids other errors, we may well ask why. Filtering the data

to investigate two classes of errors separately is legitimate and useful. But for a system built on

BERT-like representations, the island-compliant dataset does nothing to address the question, ‘If

embeddings have all this syntax in them, what’s stopping the classifier from learning which verbs’

complements trap which quantifiers?’ The informational capacity of these high-dimensional vectors

is vast, so it is much likelier there is something to discover about their processing than that the data

itself is just too diverse to handle.

6.2 Data and code availability

The corpus data used in this thesis have been released via the website of the Schuler Computational

Cognitive Modeling Lab, and further increments to the corpus will follow in the same location. The

task data, as extracted from the corpus, rendered into single scopal interactions, and formatted for

use in jiant, will be available the same way, together with the scripts for preparing them and the

jiant task plugin for training and testing the predictor. These materials are not as yet properly
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arranged to be downloaded from within jiant, but this is a logical next step I hope to pursue, for

the sake of engaging a larger population of experimenters with the challenge of scope prediction.
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Appendix A

Language models as multitask learners

Radford et al. (2019) provocatively title their paper, ‘Language models are unsupervised multitask

learners’. On closer inspection of their results, I have to qualify this claim: Language models are

unsupervised multitask learners insofar as the language that is modeled represents the cognitive

content of the task, and the training data is sufficient for this cognitive content to shine through the

language.

Outside of these conditions, language models are effective scavengers of interesting information

that can support task performance, but there are meaningful NLP tasks for which ‘Given a question

as context, find the linguistically most probable answer’ is no more a general solution than ‘Pretend

to be a 13-year-old Ukrainian boy’ (Warwick and Shah, 2016) is a general solution to artificial

intelligence.

Radford et al. (2019) attempted zero-shot transfer learning to several downstream tasks with

a suite of four language models spanning an order of magnitude in size (from 117M parameters

to 1542M, dimensionalities from 768 to 1600). Two of the four were larger than the largest BERT

model of Devlin et al. (2018). Given the size advantage, it is unsurprising that the largest of these set

a new state of the art for most of the language modeling tasks strictu senso. Other downstream tasks

were cast in language-modeling terms, but retained significant non-linguistic task requirements, and

merely establishing an enormous language model does not seem to have conferred much leverage

against these.

In the Children’s Book Test (Hill et al., 2015), where the task is selecting correct mid-sentence

cloze fillers from a slate of ten options, all four models beat the state-of-the-art (SOTA) accuracy

both for common-noun fillers and for named-entity fillers. In this setting, modeling word probability
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amounts to modeling the entities in the preceding discourse and their likely activities and roles.

Given the models’ vast capacity, it is unsurprising that they were able to manage this information,

and given how closely the downstream task resembles the pretraining task, it is not surprising that

the training transferred well.

In LAMBADA (Paperno et al., 2016), the task is again filling a blank, this time sentence-final

and considerably more difficult. Human judges are unable to fill the blank given the sentence alone,

but are able to do so given the preceding 50 tokens as context. Modeling the probability of this

last word therefore amounts to modeling the topics or themes of a discourse. Here, all four models

improved on SOTA perplexity, but only the larger two improved on SOTA accuracy.1 It is again

not surprising either that language modeling was good training, or that a fairly large model was

necessary.

The Winograd Schema challenge (Levesque et al., 2012) is a task of context-dependent pronoun

resolution. Each item contains a pronoun with two candidate antecedents, a possible single-word

substitution that would cause the preferred candidate to change, and a natural-language question

asking about the pronoun’s reference. This is couched as a language modeling task by inserting

the candidate antecedents in place of the pronoun and calculating the probability of the resulting

sentence. Here modeling language implicitly models knowledge about the properties of the entities

language represents. Once again the larger two models improved on SOTA.

Conversation Question Answering (Reddy et al., 2019) requires disambiguating questions within

a dialog and returning the correct answer from a preceding document. Training data include not only

an answer but a span of the document that justifies it. This is only incidentally a language generation

task, just as giving an answer by moving a robot arm to point at the document would be only inci-

dentally a motor control task. The bulk of the problem lies in reading comprehension and pragmatic

reasoning.

Radford et al. presented results only from their largest system, which beat three out of four

supervised baselines with an F1 of 55% and came nowhere near (supervised) SOTA. Error analy-

1This curious outcome was possible because SOTA for perplexity and accuracy were from two different systems.
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sis suggested its reading comprehension and pragmatic reasoning were extremely shallow. This is

understandable, since its Internet-derived training data would have included few examples of doc-

uments immediately followed by multi-turn question-and-answer dialog, but it does illustrate the

limitations of “everything can be a language modeling problem.” Everything can be a language

modeling problem if there is sufficient linguistic demonstration of the underlying task.

The CNN/Daily Mail summarization tasks (Hermann et al., 2015; Nallapati et al., 2016) il-

lustrate that “sufficient linguistic demonstration” can be a very high bar to clear. Summarization

is widespread on the Internet, often conveniently marked “TL;DR” which was a useful cue for

the system. Nonetheless even the largest model was competitive only with the trivial technique

of randomly selecting sentences from the text, . Its summaries were syntactically acceptable and

somewhat on-topic but often factually inaccurate; it did not see through the language of its training

data to perceive the underlying task requirement that summaries must be factual.

The language model’s data was filtered to exclude non-English web pages, but 10 MB of scat-

tered French passed the filter, which allowed the language model to gloss English sentences in

French and to produce baseline-quality English translations from French.2 This task appears to

have been ‘language-modely’ enough for the system to do well despite the lack of relevant data. I

question whether the same would be true for a pair of languages that have not been in close contact

with one another, and with the same neighbors, for a thousand years.

Natural Questions (Kwiatkowski et al., 2019) comprise questions originally entered as Google

searches, which brought up a suitable Wikipedia page among the top 5 hits. Data includes a short

answer and a longer evidence passage from Wikipedia. Here again the language model can only be

as good as the reading comprehension model implicit in it. The largest model answered 4.1% of

questions correctly, an order of magnitude behind dedicated question answering architectures. So

it may not be impossible to train an information extraction model through the veil of a language

generation model, but it is certainly inefficient.

To summarize, the more narrowly linguistic a task is, and the more it resembles small-scale text

2Using the test set from http://www.statmt.org/wmt14/translation-task.html
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generation, the more a language model really is an unsupervised learner for it. Language models

capture sufficient information about lexical semantics and semantic prosody to perform well on

tasks that require them. But it is not at all the case that a model of talking is necessarily a model of

saying the right thing. Even when the task is linguistic, if it is in essence a receptive task, modeling

the production of talk about it is a poor proxy for modeling the task itself.
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Appendix B

By-fold contingency tables for scope direction predictor

This appendix gives a separate contingency table for the scope direction predictor in each fold of

the data.

Prediction
Direct Inverse Total

Direct 34 4 38
Inverse 11 18 29

Total 45 22 67

Table B.1: Contingency table of Fold 1 direction predictor

Prediction
Direct Inverse Total

Direct 20 0 20
Inverse 6 6 12

Total 26 6 32

Table B.2: Contingency table of Fold 2 direction predictor

Prediction
Direct Inverse Total

Direct 45 3 48
Inverse 14 6 20

Total 59 9 68

Table B.3: Contingency table of Fold 3 direction predictor
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Prediction
Direct Inverse Total

Direct 33 0 33
Inverse 13 1 14

Total 46 1 47

Table B.4: Contingency table of Fold 4 direction predictor

Prediction
Direct Inverse Total

Direct 36 12 48
Inverse 7 7 14

Total 43 19 62

Table B.5: Contingency table of Fold 5 direction predictor

Prediction
Direct Inverse Total

Direct 57 2 59
Inverse 14 14 28

Total 71 16 87

Table B.6: Contingency table of Fold 6 direction predictor

Prediction
Direct Inverse Total

Direct 44 3 47
Inverse 9 3 12

Total 53 6 59

Table B.7: Contingency table of Fold 7 direction predictor
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Prediction
Direct Inverse Total

Direct 42 1 43
Inverse 9 6 15

Total 51 7 58

Table B.8: Contingency table of Fold 8 direction predictor

Prediction
Direct Inverse Total

Direct 30 2 32
Inverse 5 6 11

Total 35 8 43

Table B.9: Contingency table of Fold 9 direction predictor
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Appendix C

Against scoring predictions for transitive closure

Since the gold standard graph is transitively closed as well as directed acyclic, it was worth consid-

ering whether to score the predicted graphs on transitivity. Two kinds of transitivity failures might

be scored:

Mispredicted directions can produce paths with no transitive “shortcut,” as in Figure C.1, so that

the predicted graph is not transitively closed. But this does not leave the graph uninterpretable, as

predicting a cycle does, and there is no special reason these are worse disruptions of the semantics

than mispredictions that do preserve transitive closure, such as that seen in Figure C.2.

Mispredictions can also destroy transitive triples that are present in the gold graph. But these

are also caught by accuracy. Their only further significance is if they create a cycle, which we are

already measuring in its own right, instead of just creating a different triple.

In fact, both of these are strict subsets of accuracy violations, and their intersection is a strict

A

B

C

(a)

A

B

C

(b)

Figure C.1: A misprediction destroying transitive closure
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(a)

A
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C

(b)

Figure C.2: A misprediction preserving transitive closure

superset of cyclicity violations,1 so if they have no particular significance of their own for the

predicted semantics, we might as well leave them alone.

1Transitively closed directed cycles exist, but cannot be reached by arc reversal. Transitively closing a directed cycle
requires arcs in both directions between any two nodes in the cycle, and the gold graph has at most one arc between any
two nodes.
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