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Abstract

Generalization is a big issue in machine learning. At first we show that classi-
cal notion of U shaped generalization behavior is not true for modern day ML
models. Instead modern day ML models show double descent characteristics
of generalization. To address issue of generalization for different problems we
show different strategies are useful. For information extraction from document
we show that data augmentation using rule based technique is highly effective.
For prediction of different pandemic related government decision, we show that
clustering based feature augmentation improves generalization performance of
models. For disinformation detection we show that graph based information
propagation improves generalization performance. In general we show different
strategies to improve generalization performance for different applications and in
this process we also show new way of looking into bias-variance trade-off of ML
models.
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Chapter 1: Double Descent Behavior : U Shaped Bias Variance

Trade-off Is Not True

1.1 Introduction

Recently Machine Learning has become indispensable to important applications in sci-

ence, technology and commerce. The focus of machine learning is on the problem of pre-

diction: given a sample of training examples (x1, y1), . . . , (xn, yn) from Rd × R, we learn a

predictor hn : Rd → R that is used to predict the label y of a new point x, unseen in training.

The predictor hn is commonly chosen from some function classH, such as neural networks

with a certain architecture, using empirical risk minimization (ERM) and its variants. In

ERM, the predictor is taken to be a function h ∈ H that minimizes the empirical (or training)

risk 1
n

∑n
i=1 `(h(xi), yi), where ` is a loss function, such as the squared loss `(y′, y) = (y′−y)2

for regression or zero-one loss `(y′, y) = 1{y′ 6=y} for classification.

The goal of machine learning is to find hn that performs well on new data, unseen in

training. To study performance on new data (known as generalization) we typically assume

the training examples are sampled randomly from a probability distribution P over Rd×R,

and evaluate hn on a new test example (x, y) drawn independently from P . The challenge

stems from the mismatch between the goals of minimizing the empirical risk (the explicit goal

of ERM algorithms, optimization) and minimizing the true (or test) risk E(x,y)∼P [`(h(x), y)]

(the goal of machine learning).
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Conventional wisdom in machine learning suggests controlling the capacity of the function

class H based on the bias-variance trade-off by balancing under-fitting and over-fitting :

1. If H is too small, all predictors in H may under-fit the training data (i.e., have large

empirical risk) and hence predict poorly on new data.

2. If H is too large, the empirical risk minimizer may over-fit spurious patterns in the

training data resulting in poor accuracy on new examples (small empirical risk but

large true risk).

The classical thinking is concerned with finding the “sweet spot” between under-fitting and

over-fitting. The control of the function class capacity may be explicit, via the choice of H

(e.g., picking the neural network architecture), or it may be implicit, using regularization

(e.g., early stopping). When a suitable balance is achieved, the performance of hn on the

training data is said to generalize to the population P . This is summarized in the classical

U-shaped risk curve, shown in fig:double-descent(a) that has been widely used to guide model

selection and is even thought to describe aspects of human decision making [9]. The textbook

corollary of this curve is that “a model with zero training error is overfit to the training data

and will typically generalize poorly” [11, page 221], a view still widely accepted.

Yet, practitioners routinely use modern machine learning methods, such as large neural

networks and other non-linear predictors that have very low or zero training risk. In spite of

the high function class capacity and near-perfect fit to training data, these predictors often

give very accurate predictions on new data. Indeed, this behavior has guided a best practice

in deep learning for choosing neural network architectures, specifically that the network

should be large enough to permit effortless zero loss training (called interpolation) of the

training data [21]. Moreover, in direct challenge to the bias-variance trade-off philosophy,

recent empirical evidence indicates that neural networks trained to interpolate the training

2
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Figure 1.1: Curves for training risk (dashed line) and test risk (solid line). (a) The
classical U-shaped risk curve arising from the bias-variance trade-off. (b) The double descent
risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together
with the observed behavior from using high capacity function classes (i.e., the “modern”
interpolating regime), separated by the interpolation threshold. The predictors to the right
of the interpolation threshold have zero training risk.

data obtain near-optimal test results even when the training data are corrupted with high

levels of noise [26, 1].

The main finding of this work is a pattern for how performance on unseen data depends on

model capacity and the mechanism underlying its emergence. This dependence, empirically

witnessed with important model classes including neural networks and a range of datasets, is

summarized in the “double descent” risk curve shown in Figure 1.1(b). The curve subsumes

the classical U-shaped risk curve from Figure 1.1(a) by extending it beyond the point of

interpolation.

When function class capacity is below the “interpolation threshold”, learned predictors

exhibit the classical U-shaped curve from Figure 1.1(a). (In this paper, function class ca-

pacity is identified with the number of parameters needed to specify a function within the

class.) The bottom of the U is achieved at the sweet spot which balances the fit to the

training data and the susceptibility to over-fitting: to the left of the sweet spot, predictors

are under-fit, and immediately to the right, predictors are over-fit. When we increase the

function class capacity high enough (e.g., by increasing the number of features or the size

3



of the neural network architecture), the learned predictors achieve (near) perfect fits to the

training data—i.e., interpolation. Although the learned predictors obtained at the interpo-

lation threshold typically have high risk, we show that increasing the function class capacity

beyond this point leads to decreasing risk, typically going below the risk achieved at the

sweet spot in the “classical” regime.

All of the learned predictors to the right of the interpolation threshold fit the training

data perfectly and have zero empirical risk. So why should some—in particular, those from

richer functions classes—have lower test risk than others? The answer is that the capacity of

the function class does not necessarily reflect how well the predictor matches the inductive

bias appropriate for the problem at hand. For the learning problems we consider (a range

of real-world datasets as well as synthetic data), the inductive bias that seems appropriate

is the regularity or smoothness of a function as measured by a certain function space norm.

Choosing the smoothest function that perfectly fits observed data is a form of Occam’s razor:

the simplest explanation compatible with the observations should be preferred (cf. [24, 2]).

By considering larger function classes, which contain more candidate predictors compatible

with the data, we are able to find interpolating functions that have smaller norm and are

thus “simpler”. Thus increasing function class capacity improves performance of classifiers.

1.2 Models That Shows Double Descent Behavior

We start with simple models at first, and the slowly show result for complex models.

We first consider a popular class of non-linear parametric models called Random Fourier

Features (RFF ) [19], which can be viewed as a class of two-layer neural networks with fixed

weights in the first layer. Once we show result for RFF, then we move to more variation of

RFF named Random-RELU feature. This is another random model with sinusoids in RFF

replaced by RELU. Random-RELU is a very shallow version of modern day fully connected

4



neural network. Once we have result for Random-RELU model, we show result for fully

connected neural network. We also show result for CNN.

1.3 Random Fourier Feature

1.3.1 Model

Sampling from probability distribution : In this section we derive the distribution

from which we can the angular frequencies . For a Gaussian kernel e‖x−y‖
2
2/2∗σ2

, x ∈ RD×1

where D is number of features in original data and σ is the bandwidth is a scalar . So we

need Fourier Transform of Gaussian kernel to find the ω’s for making RFF .

F (g(x)) = G(f) =
1

2π

∫ ∞
−∞

g(x)e−i2πfx dx =
1

2π

∫ ∞
−∞

g(x)e−iωx dx

Fourier Transform of 1-dimensional Gaussian kernel is :

G1(ω) =
1

2π

∫ ∞
−∞

e−x
2/2σ2

e−iωx dx

=
1

2π

∫ ∞
−∞

e−x
2/2σ2

e−sx dx

=
eσ

2s2/2

2π

∫ ∞
−∞

e−
(x+σ2s)2

2σ2 dx

=
e−σ

2ω2/2

2π
σ
√

2π

tg =
σ√
2π
e−σ

2ω2/2

= N(0, 1/σ2)
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Fourier Transform of D-dimensional Gaussian kernel is :

GD(ω) =

(
1

2π

)D ∫ ∞
−∞

e−‖x‖
2
2/2σ

2

e−iωx dx (dimensions are independent)

=

(
1

2π

)D ∫ ∞
−∞

e−
x21+...+x

2
D

2σ2 e−i(ω1x1+...+ωDxD) dx

=
σ√
2π
e−σ

2ω2
1/2...

σ√
2π
e−σ

2ω2
D/2

=

(
σ√
2π

)D
e−σ

2‖ω‖22/2

= N(0, diag(1/σ2...1/σ2)) (diag() ∈ RD×D is covariance matrix)

Since, G1(ω) and GD(ω) are Gaussian distributions, they integrate to 1 and are valid prob-

ability distributions. For D dimensional case, we can sample from N(0, 1/σ2) distribution

D times and get a vector. So the weight matrix we get is W = [ω1ω2...ωa/2] where W

∈ RD×a/2 and ωi ∈ RD×1 and a is number of RFF. xtrain = [x1...xn]T ; xtrain ∈ Rn×D

,and xtest = [x1...xm]T and xtest ∈ Rm×D . Training data in RFF domain Ztrain =√
2
a
[cos(xtrainW).sin(xtrainW)] and testing data in RFF domain Ztest =

√
2
a
[cos(xtestW).sin(xtestW)].

Ztrain ∈ Rn×a and Ztest ∈ Rm×a where n is number of training data and m is number of

test data. According to [19] Random Fourier Feature is defined as : z(x) ≡
√

2
a
[cos(ωT

1 x +

b1)...cos(ωT
a x+ba)]T or z(x) ≡

√
2
a
[cos(ωT

1 x)...cos(ωT
a/2x)sin(ωT

1 x)...sin(ωT
a/2x)]T . These

two equations are equivalent to each other provided the fact that bi’s are sampled from

U(0, 2π). a is number of RFF we want and is a variable parameter in our setting.

Dual solution : In dual form we get Ktrain = ZtrainZtrain
T and Ktest = ZtestZtrain

T . So

once we get Ktrain, we solve for dual form Ktrain∗α = ytrain. While inverting Ktrain , Ktrain

is a matrix with the form ZtrainZtrain
T . Ztrain ∈ Rn×a and Ktrain ∈ Rn×n where n is number

of training data points and a is number of RFF . As a increases, the rank of Ztrain increases.

When a is below number of training data points, the Rank(Ztrain) is at most same as number

of RFF. Since Rank(AB) ≤ min(Rank(A), Rank(B)) , Rank(Ktrain) is at most number of

6



RFF. As a increases more, the rank of Ktrain increases till RFF becomes same as number

of train data points. After this point the rank of Ktrain is at most number of training data

point, even if we vary number of RFF as to be as high as 6 times number of training data.

So, when a ≤ (number of train data point), Ktrain is rank deficient and when a ≥ (number

of train data point), Ktrain is full rank. We need regularization for solving inverse of Ktrain

in lower range i.e. (Ktrain + λ ∗ Iden(n)) ∗ α = ytrain. Without regularization Ktrainα =

ytrain ⇒ ZtrainZtrain
Tα = ytrain ⇒ α* = (ZtrainZtrain

T )−1ytrain. Once we have solution,

Ktrainα
* = ytrain−est ⇒ ZtrainZtrain

Tα* = ytrain−est ⇒ Ztrainw* = ytrain−est and similarly

Ztestw
* = ytest−est. Here w* = Ztrain

Tα* = Ztrain
T (ZtrainZtrain

T )−1ytrain. When directly

solving dual form, we compute approximation error for Ktrain as
‖(Ktrain−orig−Ktrain)‖F∗100%

‖(Ktrain−orig)‖F

, where Ktrain−orig is the original kernel matrix obtained from evaluating kernel function

for pairwise data points and Ktrain is the kernel matrix using RFF. Approximation error

for Ktest :
‖(Ktest−orig−Ktest)‖F∗100%

‖(Ktest−orig)‖F
, where Ktest−orig is the original kernel matrix obtained

from evaluating kernel function for pairwise data points and Ktest is the kernel matrix using

RFF. As #RFF increases, the error between original kernel matrix and RFF approximated

kernel matrix decreases implying good approximation.

Primal solution :

Instead of solving the dual form , this problem can be solved in RFF space. Loss

function is : ‖(Ztrainw − ytrain)‖22 where Ztrain ∈ Rn×a and w ∈ Ra . Optimal w* =

(Ztrain
TZtrain)−1Ztrain

Tytrain . C := Ztrain
TZtrain where C ∈ Ra×a.

When a is below number of training data points, the Rank(Ztrain) is at most same as

number of RFF and a is above number of training data points, the Rank(Ztrain) is at most

same as number of training data . Since Rank(AB) ≤ min(Rank(A), Rank(B)) , for a ≤

—training data—, Rank(C) is at most number of RFF making C almost full rank . As

a increases more, the rank of C increases till number of RFF becomes same as number of

7



train data points. After this point the rank of C is at most number of training data point,

even if we vary number of RFF as to be as high as 6 times number of training data and

this makes C rank deficient. So, when a ≤ |train data point|, C is almost full rank and

when a ≥ |train data points|, C is rank deficient. We need regularization for solving inverse

of C in higher range i.e. w* = (C + λ ∗ Iden(a))−1Ztrain
Tytrain. Once we get solution,

ytrain−est = Ztrainw* and ytest−est = Ztestw
*.

In both primal and dual setup, once we get the all predictions, we compute the L2 loss by∑n
i=1

∑l
j=1(ŷ

j
i − y

j
i )

2. Here n is the number of data points in training data and l is the total

number of options available for labels. We compute classification accuracy by calculating

argmaxj ŷ
j
i and matching it against the original label of data. Since we don’t have multi-label

data, the argmax returns just one label.

Model in summary : So in summary, we first consider a popular class of non-linear

parametric models called Random Fourier Features (RFF ) [19], which can be viewed as a

class of two-layer neural networks with fixed weights in the first layer. The RFF model

family HN with N (complex-valued) parameters consists of functions h : Rd → C of the form

h(x) =
N∑
k=1

akφ(x; vk) where φ(x; v) := e
√
−1〈v,x〉,

and the vectors v1, . . . , vN are sampled independently from the standard normal distribution

in Rd. (We consider HN as a class of real-valued functions with 2N real-valued parameters

by taking real and imaginary parts separately.) Note that HN is a randomized function

class, but as N → ∞, the function class becomes a closer and closer approximation to the

Reproducing Kernel Hilbert Space (RKHS) corresponding to the Gaussian kernel, denoted

by H∞. While it is possible to directly use H∞ (e.g., as is done with kernel machines [3]),

the random classes HN are computationally attractive to use when the sample size n is large

but the number of parameters N is small compared to n.

8



Our learning procedure using HN is as follows. Given data (x1, y1), . . . , (xn, yn) from

Rd ×R, we find the predictor hn,N ∈ HN via ERM with squared loss. That is, we minimize

the empirical risk objective 1
n

∑n
i=1(h(xi) − yi)

2 over all functions h ∈ HN . When the

minimizer is not unique (as is always the case when N > n), we choose the minimizer whose

coefficients (a1, . . . , aN) have the minimum `2 norm. For problems with multiple outputs

(e.g., multi-class classification), we use functions with vector-valued outputs and sum of the

squared losses for each output.

1.3.2 Experiments

To demonstrate the double descent risk curve, we train a number of representative models

on several widely used datasets that involve images, speech, and text.

Datasets : Table 1.1 describes the datasets we use in our experiments. These datasets

are for classification problems with more than two classes, so we adopt the one-versus-rest

strategy that maps a multi-class label to a binary label vector (one-hot encoding). For the

image datasets—namely MNIST [15], CIFAR-10 [13], and SVHN [17]—color images are first

transformed to grayscale images, and then the maximum range of each feature is scaled

to the interval [0, 1]. For the speech dataset TIMIT [8], we normalize each feature by its

Table 1.1: Descriptions of datasets. In experiments, we use subsets to reduce the computa-
tional cost.

Dataset
Size of

full training set
Feature

dimension (d)
Number of

classes

CIFAR-10 5 · 104 1024 10
MNIST 6 · 104 784 10
SVHN 7.3 · 104 1024 10
TIMIT 1.1 · 106 440 48

20-Newsgroups 1.6 · 104 100 20
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Figure 1.2: Double descent risk curve for RFF model on MNIST. Test risks (log
scale), coefficient `2 norms (log scale), and training risks of the RFF model predictors hn,N
learned on a subset of MNIST (n = 104, 10 classes). The interpolation threshold is achieved
at N = 104.
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z-score. For the text dataset 20-Newsgroups [14], we transform each sparse feature vector

(bag of words) into a dense feature vector by summing up its corresponding word embeddings

obtained from [18].

For each dataset, we subsample a training set (of size n) uniformly at random without

replacement. For the 20-Newsgroups dataset, which does not have a test set provided, we

randomly pick 1/8 of the full dataset for use as a test set.

Model training : For MNIST, each model is trained to minimize the squared loss on

the given training set. Without regularization, such model is able to interpolate the training

set when its capacity surpasses certain threshold (interpolation threshold). For comparison,

we report the test/train risk for zero-one and squared loss. For rest of datasets we use

zero-one loss only and show double descent behavior. The random feature vectors v1, . . . , vN

are sampled independently from N (0, σ−2 · I), the mean-zero normal distribution in Rd with

covariance σ−2·I. The bandwidth parameter σ is set to 5, 5, 5, 0.1, and 16 for MNIST, SVHN,

CIFAR-10, 20-Newsgroup, and TIMIT, respectively. For all the values of σ we observe same

double descent behavior.

Results : In Figure 1.2, we show the test risk of the predictors learned using HN on a

subset of the popular data set of handwritten digits called MNIST. The same figure also

shows the `2 norm of the function coefficients, as well as the training risk. We see that

for small values of N , the test risk shows the classical U-shaped curve consistent with the

bias-variance trade-off, with a peak occurring at the interpolation threshold N = n.

The interpolation regime connected with modern practice is shown to the right of the

interpolation threshold, with N ≥ n. The model class that achieves interpolation with fewest

parameters (N = n random features) yields the least accurate predictor. (In fact, it has no

predictive ability for classification.) But as the number of features increases beyond n, the

11



0 10 20 30 40 50 60

60

73

89

69

Te
st

 (%
)

CIFAR-10, Zero-one loss

RFF
Min. norm solution hn,
(original kernel)

0 10 20 30 40 50 60

50

89
95

57
Te

st
 (%

)

20Newsgroup, Zero-one loss

RFF
Min. norm solution hn,
(original kernel)

0 10 20 30 40 50 60

4

1333

140

No
rm

 

RFF
Min. norm solution hn,

0 10 20 30 40 50 60

1

1494

128

No
rm

 

RFF
Min. norm solution hn,

0 10 20 30 40 50 60
Number of Random Fourier Features (×103) (N)

0

30

66

Tr
ai

n 
(%

) RFF

0 10 20 30 40 50 60
Number of Random Fourier Features (×103) (N)

0

45

88

Tr
ai

n 
(%

) RFF

Figure 1.3: Double descent risk curve for RFF model. Test risks (log scale), coefficient
`2 norms (log scale), and training risks of the RFF model predictors hn,N learned on subsets of
CIFAR-10 and 20Newsgroups (n = 104). The interpolation threshold is achieved at N = 104.
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accuracy improves dramatically, exceeding that of the predictor corresponding to the bottom

of the U-shaped curve. The plot also shows that the predictor hn,∞ obtained from H∞ (the

kernel machine) out-performs the predictors from HN for any finite N .

What structural mechanisms account for the double descent shape? When the number

of features is much smaller then the sample size, N � n, classical statistical arguments

imply that the training risk is close to the test risk. Thus, for small N , adding more features

yields improvements in both the training and test risks. However, as the number of features

approaches n (the interpolation threshold), features not present or only weakly present in the

data are forced to fit the training data nearly perfectly. This results in classical over-fitting

as predicted by the bias-variance trade-off and prominently manifested at the peak of the

curve, where the fit becomes exact.

To the right of the interpolation threshold, all function classes are rich enough to achieve

zero training risk. The model continues to improve as function complexity grows.

Figure 1.3 illustrates double descent behavior for CIFAR-10 and 20Newsgroup. Figure 1.4

shows similar curves of zero-one loss for TIMIT and SVHN.

1.4 Random RELU Feature

1.4.1 Model

We show that the double descent risk curve also appears with Random ReLU feature

networks [5]. Such networks are similar to the RFF models, except that they use the ReLU

transfer function. Specifically, the Random ReLU features model family HN with N param-

eters consists of functions h : Rd → R of the form

h(x) =
N∑
k=1

akφ(x; vk) where φ(x; v) := max(〈v, x〉, 0).
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Figure 1.5: Double descent risk curve for Random ReLU model. Test risks (log scale),
coefficient `2 norms (log scale), and training risks of the Random ReLU Features model
predictors hn,N learned on subsets of MNIST and SVHN data (n = 104). The interpolation
threshold is achieved at N = 104. Regularization of 4 · 10−6 is added for SVHN to ensure
numerical stability near interpolation threshold.

The vectors v1, . . . , vN are sampled independently from uniform distribution over surface

of unit sphere in Rd. The coefficients ak are learned using linear regression. All details in

Random-RELU is same as RFF except the RELU transformation instead of sinusoid.

1.4.2 Experiments

Figure 1.5 illustrates zero-one loss with Random ReLU features for MNIST and SVHN

data. Ridge regularization with parameter λ = 4 · 10−6 is added in SVHN experiments to

ensure numerical stability near the interpolation threshold. For MNIST experiments, no
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regularization is added. We observe that the resulting risk curves and the norm curves are

very similar to those for RFF.

1.5 Neural Networks and Backpropagation

1.5.1 Model

In our experiments, we use fully connected neural networks with a single hidden layer. To

control the capacity of function class, we vary the number of hidden units. We use stochastic

gradient descent (SGD) to solve the ERM optimization problem in this setting.

In general multilayer neural networks (beyond RFF or ReLU random feature models), a

learning algorithm will tune all of the weights to fit the training data, typically using versions

of stochastic gradient descent (SGD), with backpropagation to compute partial derivatives.

This flexibility increases the representational power of neural networks, but also makes ERM

generally more difficult to implement. Nevertheless, as shown in Figure 1.6, we observe that

increasing the number of parameters in fully connected two-layer neural networks leads to a

risk curve qualitatively similar to that observed with RFF models.

The computational complexity of ERM with neural networks makes the double descent

risk curve difficult to observe. Indeed, in the classical under-parametrized regime (N � n),

the non-convexity of the ERM optimization problem causes the behavior of local search-based

heuristics, like SGD, to be highly sensitive to their initialization. Thus, if only suboptimal

solutions are found for the ERM optimization problems, increasing the size of a neural

network architecture may not always lead to a corresponding decrease in the training risk.

This suboptimal behavior can lead to high variability in both the training and test risks

that masks the double descent curve. Hence to smooth out this variability, we use weight

reuse scheme. For smaller model, we save the weights and initialize larger model with these

weights.
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Figure 1.6: Double descent risk curve for fully connected neural network on
MNIST. Training and test risks of network with a single layer of H hidden units, learned
on a subset of MNIST (n = 4 · 103, d = 784, K = 10 classes). The number of parameters
is (d + 1) ·H + (H + 1) ·K. The interpolation threshold (black dotted line) is observed at
n ·K.
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1.5.2 Experiments

Model training : The ERM optimization problem in this setting is generally more dif-

ficult than that for RFF and ReLU feature models due to a lack of analytical solutions

and non-convexity of the problem. Consequently, SGD is known to be sensitive to ini-

tialization. To mitigate this sensitivity, we use a “weight reuse” scheme with SGD in the

under-parametrized regime (N < n), where the parameters obtained from training a smaller

neural network are used as initialization for training larger networks. This procedure, de-

tailed below, ensures decreasing training risk as the number of parameters increases. In the

over-parametrized regime (N ≥ n), we use standard (random) initialization, as typically

there is no difficulty in obtaining near-zero training risk.

We now provide specific details below. We use SGD with standard momentum (parameter

value 0.95) implemented in [6] for training. In the weight reuse scheme, we assume that we

have already trained a smaller network with H1 hidden units. To train a larger network with

H2 > H1 hidden units, we initialize the first H1 hidden units of the larger network to the

weights learned in the smaller network. The remaining weights are initialized with normally

distributed random numbers (mean 0 and variance 0.01). The smallest network is initialized

using standard Glorot-uniform distribution [10]. For networks smaller than the interpolation

threshold, we decay the step size by 10% after each of 500 epochs, where an epoch denotes

a pass through the training data. For these networks, training is stopped after classification

error reached zero or 6000 epochs, whichever happens earlier. For networks larger than

interpolation threshold, fixed step size is used, and training is stopped after 6000 epochs.

Results : Fully connected neural network results have been shown in Figure 1.6 with

weight reuse scheme in action. This shows double descent behavior for MNIST dataset. More

additional experimental results for fully connected neural networks are shown in Figure 1.7.
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Figure 1.7: Double descent risk curve for fully connected neural networks. In each
plot, we use a dataset with n subsamples of d dimension and K classes for training. We
use networks with a single hidden layer. For network with H hidden units, its number of
parameters is (d+ 1) ·H + (H + 1) ·K. The interpolation threshold is observed at n ·K and
is marked by black dotted line in figures. (a) Weight reuse before interpolation threshold
and random initialization after it on MNIST. (b) Same, on a subset of CIFAR-10 with 2
classes (cat, dog) and downsampled image features (8 × 8). (c) No weight reuse (random
initialization for all ranges of parameters).

Results for MNIST and CIFAR-10 with weight reuse are reported in Figure 1.7(a) and

Figure 1.7(b). Results for MNIST without weight reuse are reported in Figure 1.7(c). In

this setting, all models are randomly initialized. While the variance is significantly larger,

and the training loss is not monotonically decreasing, the double descent behavior is still

clearly discernible.

1.6 Related Literature

Bias variance trade-off for machine learning models goes back to the day of statistical

machine learning. There people used to deal with toy machine learning models. Most of

the statisticians mainly dealt with as parameters increases how the combined effect of bias-

variance vary. The classical work shows that U shaped generalization behavior. This has

effected all models in various ways. Usage of regularization is one of the motivating factor
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for trade-off. In linear regression case one can use p-norm of the solution to constraint the

solution. Same goes true for logistic regression, SVM also. For decision tree and related

algorithm, one can control the depth of trees and number of trees to achieve regularization.

In Bayesian models one can use priors to act as regularizer. However, since the models were

small and datasets were small, mostly there were theoretical works. With the advent of GPU

and deep neural network and internet, comes real dataset and big models. To best of my

knowledge this is first work which shows double descent behavior for modern day machine

learning models.

1.7 Conclusion

It is common to use neural networks with extremely large number of parameters [4]. But

to achieve interpolation for a single output (regression or two class classification) one expects

to need at least as many parameters as there are data points. Moreover, if the prediction

problem has more than one output (as in multi-class classification), then the number of

parameters needed should be multiplied by the number of outputs. This is indeed the case

empirically for neural networks shown in Figure 1.6. Thus, for instance, data sets as large

as ImageNet [20], which has ∼106 examples and ∼103 classes, may require networks with

∼109 parameters to achieve interpolation; this is larger than many neural network models

for ImageNet [4]. In such cases, the classical regime of the U-shaped risk curve is more

appropriate to understand generalization. For smaller data sets, these large neural networks

would be firmly in the over-parametrized regime, and simply training to obtain zero training

risk often results in good test performance [26].
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Chapter 2: Information Extraction from Document

2.1 Introduction

Information extraction from document has been around for many years in research com-

munity. Given a document, we can extract various information like paragraph, triple, QA on

these documents. A document can be in image format or language format. If the document

is in image format, typically, these tasks are solved as joint vision and NLP extraction tasks.

If the document is in text format, the we just extract the language from the document using

standard tools and apply ML on these to perform several downstream jobs. The problem

becomes far more interesting if the document is in image format and there is text inside

them. We try to solve this problem. We assume that the vision part has been given to us.

This is a reasonable assumption given the fact that OCR engine performances are very high

these days. Now given the OCR engine output, we process the text using some algorithm.

The end goal is to do information extraction from these documents.

Let’s look at the overall flow. A data can be given as (x,y) where x is the document and

y are the label(in our case information to be extracted). But we have plethora of documents,

and do not have labels for them. This is typical data generation task that modern machine

learning/AI systems face, and try to solve this. For example, in NLP community, given

a paragraph, we can generate QA pair for solving question answer task. Researchers have

tried to generate artificial QA pair to augment the original job of QA on NL. In vision, given
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an image we can generate rules/heuristics to generate instance segmentation in an image.

Label/data generation is a research problem in ML, and here we are facing same problem.

Hence, we try to generate fields given an invoice/structured document.

At first we write rule based solution to extract labels with high precision. Since these

rules have high precision, if they return empty for certain documents, we manually annotate

them. At the end of this stage, 70% documents were labeled automatically by the rules,

and rest 30% we manually annotated. This reduces the expensive, and time consuming

manual annotation part of documents, and useful for business: they have lower yield time

to deliver to the customer, lower cost because we need less manual annotation. Also, from

research point of view, label generation for any data is an important task. This way we can

generate data in unsupervised fashion. Once we have the data ready, i.e., both x and y are

ready, we can train our favorite ML algorithm: deep neural network, support vector machine,

BERT, Bayesian models etc. This model, given a document, rolls out the information to be

extracted. For example, information like vendor name, invoice number, invoice date, total

amount, tax amount, final date, address etc. are extracted by the model given a financial

document.

2.2 Problem Statement

In this work we focus on financial documents. The financial documents are in image

format, and there are texts inside them. Given a financial document, we want to extract

invoice number, invoice date, total amount, tax amount, final date, address etc. In Figure 2.1,

we show an example of a document and the information to be extracted from it; invoice

number is INV02081, invoice date is 11/11/18, etc. We train a machine learning model

on these documents. However, there is data annotation problem as data annotation is

expensive. The basic pipeline is: we apply OCR on the document followed by machine
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Figure 2.1: Information to be extracted from document.

23



learning algorithm to extract the information. OCR output is word with bounding box of

coordinate information. We are trying to learn patterns on top of OCR output. One problem

with OCR is that the output of this does not have any structure information that is present

in the document. However, we can detect the structure information using some technique.

Also another observation is that the vocabulary of the information to be extracted is not as

varied as natural language. We have variations here, but they are pretty limited.

We believe a hybrid system with machine learning model and high precision rules is

suitable for this job. But we don’t have annotated data for ML model. Hence we need to

collect data. But data collection is expensive, and in long run that is not a viable option.

Hence can we develop high precision method for doing data annotation. This leads to the

methods in next sections. Once we have the data, a large fraction of data is covered by

these high precision rules, and rest documents where the high precision rules can not have

a prediction, we annotate manually. Once the entire data is ready, we train any machine

learning model and obtain desired result. As a by product of these high precision rules is

that we can have a hybrid system of rule and machine learning model. But this is not our

focus. We focus on data generation part for the document information extraction.

2.3 Proposed Solution

We now explain in details the proposed solution for the hybrid system. We construct high

precision rules based upon spatial and language patterns in the data. These high precision

rules help in efficient data augmentation and act as a first stage in the hybrid system. Once

we obtain the data, we train a deep learning system on the overall data.
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Figure 2.2: Invoice number extraction pipeline.

2.3.1 Invoice Number and Date

We now describe data generation for invoice number and date. As we mentioned before

since the vocabulary variability for information is smaller compared to natural language, we

have the flexibility to write high precision rules through which we can generate data.

In Figure 2.2 we show the overall diagram of the data generation of invoice number and

date. We at forst obtain a good seed set of phrases that correspond to invoice number and

date. Then we find the phrase (RBP) to the immediate right or down of this seed matched

phrase. To make it high precision, we do a data type match of the RBP. For invoice number

RBP should be a number, for date it should be of date data type. Here we use three aspects

- the vocabulary variability for phrases is less, the structural information of phrases, data

type of the information. These helps us to write high precision data generation.

2.3.2 Amount Detection

We now describe data generation for amount detection. As we mentioned before since

the vocabulary variability for information is smaller compared to natural language, we have

the flexibility to write high precision rules through which we can generate data.

Like the previous section, we at first obtain a good seed set of phrases that correspond

to total amount. Then we find the phrase (RBP) to the immediate right, left or down of

this seed matched phrase. To make it high precision, we do a data type match of the RBP.

Here the data type will be money. If we don’t have result out of this rule, we do partial
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table column detection. For table column detection we start with highly occurring phrases

in table and based upon that we detect the table rightmost column. Once we have found the

rightmost column, maximum element out of this is the amount we are interested in. Similar

to the date and number, here we use three aspects - the vocabulary variability for phrases

is less, the structural information of phrases, data type of the information. In addition to

these, we use partial table detection to arrive at the result. These helps us to write high

precision data generation. These rules described above is very high precision, that is if they

can say it they say with very high confidence. If they can not say, then they simply return

null. Detecting vendor name is similar to detecting amount detection.

2.4 Experimental Results

We use data that consists of several thousands of documents from which we extract these

information. We pass the documents through OCR engine and rule modules.

At first we manually annotate 500 documents, and then we pass these documents thor-

ough the data generation rules to observe precision and coverage of these rule modules. The

result is shown in In Figure 2.3 where we observe that with very high precision, we can gen-

erate the data for the information to be extracted. For example for the invoice number let’s

assume there are 1000 documents. Then for 870 documents the rules are able to generate

the number, and for rest 130 document it returns empty string. For the 130 documents we

do human annotation for obtaining the labels. Same arguments hold true for the rest of the

information to be extracted.

Once we obtain all the data collected from the documents, we can train deep learning

model (variant of BERT or so) on this data. Some advantages of this approach are : cost of

expensive human annotation decreases, time to annotate decreases, yield time to customer

decreases, and we can augment data to a ML/DL model to obtain better performance.
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Figure 2.3: Precision and coverage for the rule modules on different fields.

2.5 Related Literature

There are variety of literature for this job. One line of research says that we can obtain

a joint vision and language detection model on these. The advantage of this is that since

model is trained joint, the error rate goes down. A downside of this approach is that we now

need a very big model since vision and language part has to be handled at the same time.

This is not good for maintainability and interpretibility. Another approach has started it’s

way into research community is optical character recognition based method. Since computer

vision, especially OCR is a evolved and mature technology, with accuracy nearing more

than 95%, it is easier for industrial settings to do detection on top of OCR output. Now

one advantage if this method is that the developer or researcher need not focus on vision

part of the model. Just machine learning on language part will suffice. However, a major

drawback of this approach is that there is no structure information in the OCR output.

All these leads to added complexity. Another few approaches are - fixed template-based
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information extraction,and feature based Conditional Random Field (CRF) where we extract

string features and do ML on top this [16, 23].

2.6 Conclusion

Information is an important task to solve, and data augmentation in this scenario is

an important issue for machine learning models. Using the rules mentioned above one can

generate labeled data to be augmented with original data for training machine learning

model. In this way we can do better training of ML models. Also as a byproduct of this

process, the high precision rules also act as an integral part of hybrid system (rule+ML

based solution). We show on real dataset that the rule based system performs well although

coverage is an issue.

28



Chapter 3: Mandates from Government Prediction Using COVID

Data

3.1 Introduction

COVID 19 has affected all of us. It has led to many effects which are beyond our imagi-

nation. Due to different death rate, different state governments have closed the state/issued

stay at home order/partial or full closing of state at different time. This decision can be

taken by simply observing COVID confirmed/death/recovered cases or it can be taken in

more complex way such as projection of possible cases in future and possible economic dam-

age this closure order may cause. It is an optimization between death and financial damage.

In this complex decision making part, demographic information from USA census data can

be useful since different age group gets affected differently by this pandemic. Since now we

know that this pandemic has social and economic consequences, here are some points. At

first, let’s look at some economic aspect of it. Economic aspect of pandemic: • Throughout

the world different places have different industries, different businesses, different sources of

income. Some places thrive on agriculture, while some other on technology industry. With

in technology industry also there are differences – core sector (like mechanical, electrical,

civil) and software/computer science sector. So, it is obvious that different industries are

going to be affected differently by pandemic. Since different states have different major in-

dustries, they are going to be affected differently. For example, California or Washington in
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USA is mostly dominated by software/internet companies while Michigan is dominated by

car industry. So due to stay home order Michigan is going to be affected more by pandemic,

and contrary to that California/Washington is not going to be that affected by pandemic

money wise. Now coming to the question of which state should enforce stay at home order

and when, depends on the job people do there. So different states might have different

time frame to implement stay at home order. • Another part government should possibly

consider is shut down different businesses at different time. We have different categories of

business – high priority(medical/grocery), medium priority, and low priority. As a result,

low priority businesses are going to be shut down first, gradually followed by medium prior-

ity businesses. What are the possible reasons for this gradual shutting down of businesses

to ensure containment of disease and overall less financial loss. Since different states have

different proportion of medium and low priority businesses, they will have different shutting

down time. As a result, how people there are getting affected? Once pandemic is over

how exactly governments are going to reopen the businesses? Social aspect of pandemic: •

People, mostly above 60, have been affected by this pandemic. As in different states the

number of infected people is on the rise, we have to be attentive to the primary health care

worker’s condition. Due to the outbreak and implementing public health measures, health

workers often are getting infected which in return makes more pressure on health system.

So, the governments should be more careful about the health workers. One way to ensure

is give more proper PPE, hand sanitizer and other precautionary and protective agents to

them. But initially, since different states have different rate of increase of pandemic, and

there was shortage of precautionary and protective equipments, governments took different

measures at different time. How did these different timing affect the overall health of health

care workers is an social aspect we can possibly look into. • Another important aspect of

this pandemic is the underlying drivers of fear, anxiety and stigma that fuel misinformation,
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particularly through social media. Social media and internet are now a day one of the ma-

jor sources of information. Due to fear, stigma people have been spreading misinformation

regarding various aspects of pandemic. For example, there was a rumor that Coronavirus is

not going to survive in hot and humid climate condition which neither does has any scientific

basis nor empirical basis. So, such a misinformation must be addressed since it gives false

hope to the people. Did governments take care of this misinformation? One way to know

that it did is by reading the official statements or public briefing. Some selected group of

persons also have been heckled as a source/originator of pandemic with out any valid reason.

Did governments address this? If it did not what was the possible social implications. We

can possibly get these information from crawling social media, news articles, and websites

in general, make models to identify these misinformation, take a note of government policy

on addressing these issues, if not addressed what were the implications. • Another social

aspect can be unfortunate more death of the poor in society because they live in crowded

space, don’t have blue collar job where they can work from home, and inadequate money

to survive cover health cost in case they gets infected. I think demography of states plays

huge role in this. Governments should be extra careful where the per capita income is less,

and people also live in crowded place. So how did governments handled this situation, what

measures did they take to address this, and if there was delay in this procedure what was

the effects on poor?

3.2 Problem Statement and Results

The task here is given any day’s features for a state and day can we decide whether

the government should have ‘STAY AT HOME’, ‘OTHERBUSINESSCLOSE’ , ‘GATHRE-

STRICT10’, ‘GATHRESTRICTANY’ order in that place or not. So, we have supervised

binary classification task where the classification model is Logistic Regression, SVM with
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RBF, and Random Forest. Once we have the result with full features, we remove one feature

at a time, retrain the model, predict performance, and find difference of this performance

with that of full feature. This is how we find feature importance. For Random Feature we

also can have feature importance based upon contribution to entropy decrease – but we do

not use this to consistently evaluate all kinds of classifiers. The features that was used are

ICUbed − mean, democrat, republican − vote − prct, newICU − mean, admis − mean,

allbed−mean, icuover−mean, InvV en−mean, bedover−mean, total− claims, initial−

claims, and total − claims− rate. We also show that proactivity or reactivity of a state is

important to predict the different decision we are trying to predict.

STAY AT HOME Government encouraged stay at home so that the pandemic does not

spread. Table 3.2 shows stay at home order prediction from government of different US

states for different models.

OTHER BUSINESS CLOSE Government form different states took precautionary

measure so that essential business remains open like hospital, groceries, petrol pumps etc. On

the other hand non essential business mostly restaurant, show business, and different other

kinds should be shut down. Table 3.2 shows non essential business close orders prediction

from government of different US states for different models.

Method Precision Recall F1-score

Random forest 0.96 0.96 0.96
Logistic regression 0.75 0.75 0.75
SVM with RBF 0.97 0.97 0.97

Table 3.1: Stay at home order prediction for all states on each day.
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GATHRESTRICT 10 There are states where government thought that may be gather-

ing of 10 people won’t be serious. Hence Table 3.2 shows no more than 10 people gather

restriction orders prediction from government of different US states for different models.

GATHRESTRICTANY The states with very serious surge of COVID, government de-

cided to shut down all movements of people. Hence Table 3.2 shows any number of people

gather restriction orders prediction from government of different US states for different mod-

els.

3.2.1 Proactive and Reactive Nature of States

We have to decide some of the states as proactive and rest as reactive. Since we don’t

have ground truth, we have to do it in unsupervised way. The following algorithm shows

how we defined proactive or reactiveness of a state. Few definitions: D10percent – the day

when 10 percent of total death has happened, Dsah – the day when stay at home order has

been issued . Algorithm:

1. Find difference (D) of 2 days (D10percent, Dsah) from people dying curve for each state.

Final output is in number of days. So, for each state we have delay days (D).

2. We define a threshold (T) on top of D to define a state as proactive or reactive. If

D < T then that state is proactive, else reactive. However, we don’t know optimal T.

Method Precision Recall F1-score

Random forest 0.95 0.95 0.95
Logistic regression 0.7 0.7 0.7
SVM with RBF 0.96 0.96 0.96

Table 3.2: Other business close prediction for all states on each day.
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3. To find reasonable T we vary T and observe effect of it. For a given T, we clus-

ter the states in 2 clusters using Gaussian Mixture Model (GMM). To do cluster we

need features for state. The features for each state will be - summary statistics from

(D10percent+T ) day to (D10percent+T+30) day for total-death , total-hospitalization , total-

unemploy and many more.

4. Since with each T, dataset of clustering is different, we get different clustering scores

(for GMM we use AIC/BIC). For each T we get a clustering score. We take the Toptimal

= T where clustering score is minimum.

5. Since we got Toptimal, we assign proactive or reactive status for all states as 1/0 status.

6. Append this proactive/reactive status as feature. Run random forest model for several

downstream classification tasks we hope to improve.

Final result comparison with and without proactive and reactive features The

states with proactive and reactive feature shows improvement on the four decisions we are

trying to make. Hence Table 3.2.1 shows results for stay at home, business close, any gather

10 and any gather decision from government of different US states for Random Forest model

with and without proactive/reactive feature.

Method Precision Recall F1-score

Random forest 0.95 0.95 0.95
Logistic regression 0.6 0.6 0.6
SVM with RBF 0.96 0.96 0.96

Table 3.3: Gathering of more than 10 people restriction prediction for all states on each day.
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Method Precision Recall F1-score

Random forest 0.96 0.96 0.96
Logistic regression 0.85 0.85 0.85
SVM with RBF 0.97 0.97 0.97

Table 3.4: Gathering of any people restriction prediction for all states on each day.

Classification task With proactive/reactive feature Without proactive/reactive feature

Stay at home 96.5 96.0
Business close 95.0 94.5

Any gather of 10 95.3 95.0
Any gather 96.5 96.0

Table 3.5: F1 score using Random forest with and without proactive and reactive feature.
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Chapter 4: Misinformation Detection from Social Media

4.1 Introduction

With the advent of internet, initially there were very few people o the internet and mostly

it was used for social good and used to portray nice side of people. It was mostly dominated

by rich people doing nice things to connect the world. But then came information age.

With the democratization of internet, and rapidly decreasing technological advancement

to give almost free internet gave people access to the wonderful world of internet. It is a

parallel universe where people can do almost anything these days. Our world has always

revolved around good and bad deeds. With democratization came evil actors in the internet

whose purpose is to spread rumor and fake news thereby corrupting the niceness of internet.

Political propaganda, social unrest, maligning somebody, fake review of products to name a

few of the misinformation types. These misinformation has both social and economic aspects

associated to them. Propagating misinformation about a person can do social harm to the

point of maligning and physical harm. Misinformation about a product can ruin a companies

personal brand and do financial damage. Since these are detrimental to various aspects

of society, they need to be curbed. Hence there has been proliferation of misinformation

detection tasks on social media platforms like Facebook, Google, Twitter to name a few.

These companies invest billions of dollars into making their platform misinformation free so

that balance is maintained.
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There has been different types of misinformation detection. Initially people just took

raw tweet or social media post and classify it. One of the main modalities we can augment

with text is graph of the internet. Graph is an essential part of internet based upon which

internet was made. Hence misinformation detection on social media is very much dependant

upon graph and text part. With the proliferation of image and text research one can imagine

that image will be also a part of the misinformation where a corrupted text is added to right

image or a corrupted image is added to a right text. Hence multimodal misinformation

detection is slowly getting popular.

Given a misinformation dataset which is mainly natural language, we can classify a

Transformer type model to arrive at a decent performance. However, if the graph component

can be augmented wit this text based part, we can get better result. Hence we can pass the

graph component to Graph Convolution Network (GCN) and get the embeddings out of it.

Then we can augment BERT embeddings for the text with the GCN embeddings and obtain

better result for misinformation detection (DD) job. However a very serious concern in this

kind of research is that since multimodal components are getting added, how to do effective

augmentation. A recent work has shown that the graph component can augmented to the

self attention layer to find better model for graph+text type classification job. This work

has been shown to have good performance for semantic parsing job where the relations from

the database and NL to table mapping relations form graph relation and the classification

job is to predict right first order logic form detection.

Misinformation detection also can be formulated as graph information with natural lan-

guage information. The BERT with relational embedding mentioned above can be used as

a new way of detecting disinformation.
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4.2 Problem Statement

Misinformation in social media platform as Twitter is very concerning these days. In

Twitter there is main user, followers of that main user and the tweet/main text/post that

main user created or shared. Hence form social graph or relation point of view there are

edge types - ‘create’ edge between main user and tweet, ‘follow’ edge between main user

and followers, ‘share’ edge between followers of the main user and tweet. Since this relation

information is available, we can pass this social graph through graph convolution network and

get embeddings for the tweet nodes. This propagates the neighborhood graph information

from few hops away and as a result of this the tweet node has information from the main user

node and followers node. But a main disadvantage of this approach is that GCN [12] depends

only on graph node embeddings - it does not take into consideration the relation types. Also

if the nodes has some other context embedding, it does not know how to propagate that

information through graph. Once we obtain the tweet node embeddings, we concatenate

with BERT [7] embeddings and classify - which leads to the general question of merging

embeddings together effectively.

A recent work RalationalBERT [25, 22] tries to the relation embedding along with natural

language embeddings, and merge then together inside BERT. This model has flexibility to do

natural language modeling, graph/relation information propagation, merging them together

inside BERT model in one go. This type of model has shown improved performance on

text to SQL job [25, 22]. In this work we investigate the efficacy of relational-BERT for

disinformation detection job.

4.3 Experimental Results

For misinformation detection form social media, we test two different kinds data on

different models. We test the misinformation detection performance using LSTM, BERT,
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GCN+BERT and RelationalBERT model. We expect that RelationalBERT model should

have the best result.

4.4 Future Direction

In the context of social media, different types of approaches has been adopted - text based,

separate graph based. In this work we do model graph and text in same model. However,

how to effectively integrate graph inside a language model is still an unsolved problem. In

future we wish to investigate more on this. Multimodal disinformation detection is getting

more prominence day by day. In future we also plan to investigate on this.

39



Bibliography

[1] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we

need to understand kernel learning. In Proceedings of the 35th International Conference

on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages

541–549, 2018.

[2] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Oc-

cam’s razor. Information processing letters, 24(6):377–380, 1987.

[3] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory, pages 144–152. ACM, 1992.

[4] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural

network models for practical applications. arXiv preprint arXiv:1605.07678, 2016.

[5] Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Advances

in Neural Information Processing Systems, pages 342–350, 2009.

[6] François Chollet et al. Keras. https://keras.io, 2015.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding, 2019.

40



[8] John S Garofolo, Lori F Lamel, William M Fisher, Jonathon G Fiscus, and David S

Pallett. Darpa timit acoustic-phonetic continous speech corpus cd-rom. NIST speech

disc, 1-1.1, 1993.

[9] Gerd Gigerenzer and Henry Brighton. Homo heuristicus: Why biased minds make

better inferences. Topics in cognitive science, 1(1):107–143, 2009.

[10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the thirteenth international conference on

artificial intelligence and statistics, pages 249–256, 2010.

[11] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning, volume 1. Springer, 2001.

[12] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolu-

tional networks, 2017.

[13] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. Master’s thesis, University of Toronto, 2009.

[14] Ken Lang. Newsweeder: Learning to filter netnews. In Machine Learning Proceedings,

pages 331–339. Elsevier, 1995.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. In Proceedings of the IEEE, volume 86, pages 2278–2324, 1998.

[16] Bodhisattwa Majumder, Navneet Potti, Sandeep Tata, James B. Wendt, Qi Zhao, and

Marc Najork. Representation learning for information extraction from form-like docu-

ments. In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics (ACL 2020), pages 6495–6504, 2020.

41



[17] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading digits in

natural images with unsupervised feature learning. In NIPS workshop, volume 2011,

page 4, 2011.

[18] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors

for word representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing, pages 1532–1543, 2014.

[19] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In

Advances in Neural Information Processing Systems, pages 1177–1184, 2008.

[20] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International

Journal of Computer Vision, 115(3):211–252, 2015.

[21] Ruslan Salakhutdinov. Deep learning tutorial at the Simons Institute, Berkeley,

https://simons.berkeley.edu/talks/ruslan-salakhutdinov-01-26-2017-1, 2017.

[22] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position

representations. In Proceedings of the 2018 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, Volume

2 (Short Papers), pages 464–468, New Orleans, Louisiana, June 2018. Association for

Computational Linguistics.

[23] Sandeep Tata, Navneet Potti, James B. Wendt, Lauro Beltrao Costa, Marc Najork, and

Beliz Gunel. Glean: Structured extractions from templatic documents. In Proceedings

of the VLDB Endowment, pages 997–1005, 2021.

[24] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

42



[25] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richard-

son. Rat-sql: Relation-aware schema encoding and linking for text-to-sql parsers, 2021.

[26] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Un-

derstanding deep learning requires rethinking generalization. In International Confer-

ence on Learning Representations, 2017.

43


	Abstract
	Dedication
	Acknowledgments
	Vita
	List of Tables
	List of Figures
	Double Descent Behavior : U Shaped Bias Variance Trade-off Is Not True 
	Introduction
	Models That Shows Double Descent Behavior 
	Random Fourier Feature
	Model
	Experiments

	Random RELU Feature
	Model
	Experiments

	Neural Networks and Backpropagation
	Model
	Experiments

	Related Literature
	Conclusion 

	Information Extraction from Document
	Introduction
	Problem Statement
	Proposed Solution
	Invoice Number and Date
	Amount Detection

	Experimental Results
	Related Literature
	Conclusion

	Mandates from Government Prediction Using COVID Data
	Introduction
	Problem Statement and Results
	Proactive and Reactive Nature of States


	Misinformation Detection from Social Media
	Introduction
	Problem Statement
	Experimental Results
	Future Direction


