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Abstract 

Recent developments in connected and autonomous vehicles (CAV) improve traffic safety 

and fuel efficiency and take away the driving burden partially or completely from the 

driver. CAVs are improving the traffic safety using their on-board sensors such as camera, 

lidar, radar and ultrasonic sensors. While these sensors are effective in sensing the objects 

in their field of view, CAVs can also sense other road users by utilizing communication 

modems, and learn more about the traffic patterns such as the signal phase and timing 

(SPaT) information of a traffic light at an intersection. One recent approach to boost 

capabilities of CAVs is the sharing of perceived target detections with other road users. 

This practice significantly increases the situational awareness of connected road users. 

Since the cooperative perception concept is still in early stages, the development of use 

case scenarios and capabilities of this concept are still active research areas. Therefore, a 

Cooperative Perception (CP) architecture and CAV functionalities are developed in this 

research to improve the traffic safety, fuel economy, and ride comfort. Their effectiveness 

is demonstrated with use case scenarios. The developed CP architecture relies on Joint 

Probability Data Association (JPDA) multi object tracking algorithm to track detected 

objects and create CP messages. Then, with the simulations, it is shown that situational 

awareness of the road users increased significantly, thereby improving their traffic safety. 

Later, another use case scenario for CP is developed to improve Green Light Optimized 
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Speed Advisory (GLOSA). In this use case, the vehicle not only relies on SPaT and MAP 

messages but also relies on the shared CP messages by a smart intersection. As a result, 

two different algorithms are developed to utilize infrastructure CP messages. While the 

first approach to generate speed advisory was to create a rule-based solution, the second 

approach utilizes a Deep Deterministic Policy Gradient (DDPG) reinforcement learning 

agent to control the vehicle. The developed approaches showed promising fuel efficiency 

and ride comfort advantages. Finally, as part of the CAV functionalities, lateral and 

longitudinal controllers are designed to aid the driver whenever needed. While the designed 

lateral controller has lane centering and path following functionalities, the designed 

cooperative adaptive cruise control reduces time gap between the ego vehicle and the target 

vehicle to being followed utilize roads more efficiently and improve fuel economy for 

platoons. The designed CAV subsystems can be used as standalone functionalities to 

improve safety, efficiency and comfort of the passengers or they can be used as an enabling 

part of a highly automated vehicles. 
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Chapter 1. Introduction 

1.1 Background and Motivation 

Automotive companies, and their suppliers are focusing on the development of highly 

automated vehicle technologies, considering the potential of autonomous vehicles in 

improving traffic safety, energy efficiency, and mobility. Aligning with these efforts, SAE 

published the levels of driving automation from level 0 (no automation) to level 5 (full 

vehicle autonomy) [1]. This standard also defines the responsibilities of drivers and the 

automated driving features at each autonomy level. As the aim of the autonomous vehicles 

is to improve the safety of its occupants, full control of the autonomous vehicle for levels 

4 and 5 requires higher situational awareness of the system in order not to compromise the 

safety of occupants. Motivated by the need to improve situational awareness of vehicles, 

this research focuses on developing connected and automated driving solutions.  

To start, the perception of the surrounding vehicles and environment information using 

only range sensors is challenging for automated vehicles. It is not possible to detect 

vehicles with rage sensors when the objects are outside of the Field of View (FOV). This 

research aims to maximize the situational awareness of all the vehicles in a mixed traffic 

environment with the use of combined range sensors and communication technologies. As 

an example scenario, the mixed traffic shown in Figure 1 consists of vehicles without any 
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detection or communication capability (no sensing), connected vehicles, and connected 

vehicles with range sensors, such as connected and autonomous vehicles (Figure 1).  

 

 

Figure 1 Mixed traffic scenario visualization for the defined problem 

 
In the presented scenario, if the vehicles share what they perceive via their communication 

sensors, in other words with Cooperative Perception (CP), the situational awareness of the 

traffic participants increases significantly. This is shown in Figure 2, where vehicles 4, 13, 

14 and 15 are connected vehicles without range sensors and broadcast only their own BSM 

values. The host vehicle (HV) and vehicles 3, 9, 19 are connected vehicles that are also 

equipped with range sensors. They share not only their own BSMs but also generate and 

share BSM data for the detected vehicles which do not have a V2X unit. Therefore, thanks 

to cooperative perception capability of some neighboring vehicles, the host vehicle (HV) 

is now aware of all the vehicles on the road except vehicles 7, 8, 17 and 18. As can be seen 
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from this simple illustration, the situational awareness of the HV can be improved 

significantly by utilizing cooperative perception. 

 

Figure 2 Cooperative Perception in a Mixed Traffic Simulation Environment. 

As cooperative perception enables cooperative driving, its use is being standardized by the 

SAE [2]. A summary of the relationship between cooperation type and levels of automation 

is given in Figure 3. Motivated by the need of cooperative driving solutions, a cooperative 

perception architecture is developed in this research to improve the situational awareness 

of vehicles by sharing what is perceived. This solution corresponds to Class A (Status-

sharing) level of Cooperative Driving Automation (CDA) cooperation class.  
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Figure 3 “Relationship between classes of CDA cooperation and levels of automation” [2]
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As Cooperative Perception (CP) solution can enable several cooperative driving solutions, 

the sample ones are implemented to demonstrate the benefits achieved. In the first 

application, it is shown that the shared CP messages from other vehicles can increase the 

situational awareness of the host vehicle and improve the safety of vulnerable road users. 

Another advantage of the automation of the driving task is to be able to control the vehicle 

speed profile for better fuel economy and mobility. Therefore, in the second application, a 

use case scenario with smart intersections is presented. It is shown that if the perceived 

traffic information at a smart intersection is shared via CP messages, the connected vehicles 

can modify their speed profiles when they are approaching the intersection. Thus, the 

vehicles can improve their energy consumption by considering the traffic conditions at the 

intersection. Since the goal of this research is to contribute to cooperative and automated 

driving, as part of the vehicle automation, lateral and cooperative longitudinal controllers 

are developed to improve safety and comfort level of the road users.  

1.2 Contributions of Dissertation 

This dissertation builds connected and autonomous vehicle blocks which will enable 

cooperative driving and a better situational awareness as well as better fuel economy. To 

achieve these goals, first a cooperative perception architecture is proposed to improve the 

situational awareness of connected vehicles. The main components of the proposed 

architecture are object detection and tracking, and creation of CP messages. While there 

are many research results on CP architectures, the existing solutions are still in their early 

stages. Therefore, the proposed modular CP design is one of the few implementations of 
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CP in the literature which will help improve the situational awareness of connected and 

autonomous vehicles.  

Integrating connected vehicle solutions to vehicles which are already equipped with other 

ADAS sensors brings the data association problem. When multiple sensors or sources (CP, 

V2X, camera, radar, ultrasound etc.) are used simultaneously to make threat assessment, 

vehicles should be able to identify which detections are coming from the same target and 

which ones are new tracks. Therefore, in this work a Mahalanobis Distance track to track 

association algorithm is developed and implemented in connected vehicles equipped with 

a smart camera and DSRC communication radio. With the proposed implementation, the 

data association between the tracks from camera and DSRC sensors can be efficiently used 

for associating the tracks reported by CP messages with the objects detected by the on 

board sensors.  

Another main contribution of the dissertation is the designed Green Light Optimized Speed 

Advisory (GLOSA) with Traffic Preview. While conventional GLOSA systems are 

promising for improving fuel efficiency and reducing wait time at the traffic intersections, 

they do not consider the other traffic between the traffic light and the ego vehicle. 

Therefore, the advisory speed announced by conventional GLOSA systems is not accurate 

when there is a slower traffic in-front of the ego vehicle. To address this issue, two different 

solutions are proposed in this dissertation to utilize the smart intersection CP messages for 

generating more accurate speed advisories. Both of the proposed systems rely on spatial 

and temporal speed predictions generated from the CP messages. While the first proposed 

solution is rule based, the second one is a reinforcement learning controller which controls 
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the vehicle so that vehicle passes at the green light by avoiding unnecessary acceleration 

and decelerations. The proposed approaches show significant fuel economy benefits, and 

more comfortable ride. 

Finally, to achieve higher autonomy, lateral and longitudinal controllers are designed. The 

designed lateral controller is a robust PD controller which considers the changes within the 

vehicle weight and speed operation range. The designed controller relies on the look-ahead 

controller approach and the performance of the designed controller is used interchangeably 

for both lane centering and path following tasks. The designed controller is tested in HIL 

simulation. For longitudinal control, a string stable Cooperative Adaptive Cruise Controller 

is designed and implemented. The designed controller is tested on an experimental vehicle. 

1.3 Scope and Organization 

This research explores connected and autonomous vehicle applications which enable better 

fuel economy, and safer transportation practices. In the upcoming chapters, the main 

components designed in this research to enable future connected and autonomous vehicles 

are presented. The scope of the following chapters is presented in this section. 

In Chapter 2, the developed Cooperative Perception architecture is presented. This chapter 

details the designed CP architecture which employs lidar object detection algorithm and a 

Joint Probability Data Association (JPDA) filter object tracking algorithm. The section also 

covers the coordinate transformation and information on broadcasting practices for the 

tracked objects. Then, the practicality of the designed system is demonstrated with an 

example application.  
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In Chapter 3, a track-to-track data association algorithm for associating camera and V2X 

targets is presented. As a simple and effective method, the Mahalanobis Distance based 

Track to track data association algorithm is introduced and implemented. The designed 

system is then tested with the real-world data for two different scenarios.  

In Chapter 4, the implementation of Pass at Green (GLOSA) algorithm in Hardware in The 

Loop (HIL) simulation is presented. The formulation of GLOSA and the Hardware in the 

Loop system used are explained. Then, the fuel efficiency benefit of the implemented 

algorithm is shown. 

In Chapter 5, a new approach is presented to show how traffic preview can be employed to 

improve GLOSA performance. In this chapter, a representative traffic preview prediction 

approach which relies on cooperative perception data acquired from smart infrastructure is 

presented. Then, two GLOSA algorithms with traffic preview are given. While one of the 

developed algorithms is rule based, the other one uses reinforcement learning to control 

the vehicle. The effectiveness of both of the algorithms are shown with simulations.  

In Chapter 6, a longitudinal controller is presented as part of the cooperative automated 

driving functionalities. As the longitudinal controller, a Cooperative Adaptive Cruise 

Controller (CACC) design is presented . The designed CACC controller is tested both in 

HIL simulation and also experimentally with the automated vehicle research platform of 

the Automated Driving Lab at The Ohio State University. It has been shown that the 

designed system can follow the vehicle in-front with the desired 0.6s time-gap.  

In Chapter 7, a robust lane centering application is presented as part of the lateral controller 

task for the automated driving functionality. The designed system can use both lane lines 
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and GPS way points to keep the vehicle at the center of the road. The designed solution is 

tested in the HIL simulator.  

As the final chapter, the summary of the dissertation and potential improvements and future 

research directions are presented in Chapter 8. 
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Chapter 2. Cooperative Perception 

Connected and Autonomous vehicles are improving traffic safety by using their on board 

sensors and communicated data. Recent studies on Cooperative Perception (CP) 

applications show that they improve the situational awareness of road users by enabling 

the sharing of perceived information. In this chapter, a cooperative perception architecture 

and its one implementation are presented. To implement the CP realistically, a customized 

game engine-based simulation environment is developed [3]. Then the multi object 

tracking algorithm of Joint Probability Data Association (JPDA) tracker is used to track 

objects and create CP messages. To demonstrate the effectiveness of the CP, a use case 

scenario is created and simulated. With the simulations, it is shown that situational 

awareness of the road users increases significantly, which improves the traffic safety of 

road users. This work demonstrates how to track and create CP messages and how they 

improve the situational awareness of road users. The presented work can be used as a 

starting point for implementing CP system in a vehicle or in smart infrastructure.  

2.1 Background 

Today’s vehicles are getting more automated then ever thanks to the advances in the 

automotive sensors and computational resources. While most of the automation comes in 

the form of driver assistance technologies, the automotive industry is racing towards the 

goal of  developing fully autonomous vehicles. Since the automated driving task is a safety 

critical task, it is essential to utilize multiple sensors as a redundancy measure to overcome 

shortcomings of sensors. Therefore, the typical sensors used for vehicle automation include 

combination of lidar, camera, radar, and ultrasonic sensors [4]. As an addition to these 
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sensors, vehicle to everything (V2X) communication is another sensing technology which 

is proven to be effective for increasing the situational awareness of vehicles. This 

technology is especially effective in providing information about traffic participants that 

are not in line of sight. This technology relies on the communication channel between the 

vehicle and other road users. Considering the number of sensors deployed on automated 

vehicles and smart infrastructure, a new opportunity arises to enhance the connected 

vehicle applications significantly. By sharing what they see, the vehicles and smart 

infrastructure could share the information of non-communicating road users which are 

detected by their sensors. Therefore, connected vehicles will be aware of the other road 

users which are normally outside their perception range even if they are not communicating 

their own status. Hence, CP increases the situational awareness of vehicles which allows 

automated vehicles to perform threat assessment much earlier and increase safety. 

Additionally, the information received from CP can be another redundancy in the system 

or it can be used to improve detection accuracy.  

As explained above, the use of Vehicle-to-Everything (V2X) communication as an extra 

sensor significantly increases the total field of view of the vehicle. Extension of the field 

of view helps to eliminate accidents due to the occlusion of obstacles/objects. Also, sharing 

the detected objects through V2X communication (cooperative perception) can increase 

the effectiveness of existing V2X applications [5]–[7]. For example, the authors of [6],  

implemented a cooperative perceptions system, which has a camera and Dedicated Short 

Range Communication (DSRC) onboard unit (OBU). They showed that when the 

target/remote vehicles are reported by the cooperative perception system, V2V 
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applications, such as Left Turn Assist (LTA), Intersection Movement Assist (IMA), and 

Blind Spot Warnings (BSW) still perform well even though the cooperative perception data 

processing introduces delays.  

It is worth noting that, although the cooperative perception concept is relatively new, it has 

been studied from different perspectives by the researchers. Also, it is being standardized 

by both the European Telecommunications Standards Institute (ETSI) [8] and the  Society 

of Automotive Engineers SAE [9], [10].  

One of the main problems in cooperative perception is efficient utilization of 

communication bandwidth. Considering that each vehicle can broadcast what they 

perceive, the targets can be broadcasted more than once, creating unnecessary occupation 

of the communication channel. To address these issues several redundancy methods are 

highlighted in the ETSI in detail [8]. The common approach for the redundancy measures 

is to keep useful data based on a metric. Some of the metrics considered for reporting a 

target via cooperative perception are, confidence level of the detections, distance of the 

detected objects, and dynamics of the objects. One should note that, although each of these 

mitigation approaches helps to reduce the transmitted data size, they all have to 

compromise by losing some important data.  

As an application of cooperative perception, Shan et al. [11] demonstrate the use case 

scenario for cooperative perception where connected vehicles can communicate with an 

Intelligent Roadside Unit (IRSU) and avoid potential accidents with Vulnerable Road 

Users (VRU)s. They experimentally tested their system in a scenario where they share the 

tracked object information with autonomous vehicles to demonstrate the effectiveness of 
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their application [11]. In [12] Gunther et al. implemented a cooperative perception 

application and  in a simulation environment, they showed that cooperative perception can 

be used to improve reaction time of the vehicles to obstacles on the road. Checking the 

literature, it can be seen that the common consensus to realizing cooperative perception is 

by sharing detection level information rather than sharing the raw data. This is because 

sharing raw data requires large communication bandwidth and high processing power 

especially considering the increasing number and quality of sensors on the vehicles. 

However, as stated in [8] if the communication channel resources permits, like future ^G 

communication, it might be possible to include raw sensor data in the cooperative 

perception messages.  

As cooperative perception is still far from being a mature field and its benefits are 

promising to improve overall situational awareness of connected vehicles, a cooperative 

perception architecture is proposed in this work. To simulate the developed architecture, a 

customized simulation environment is developed. In the created simulation environment, 

the potential benefit of cooperative perception is demonstrated.  

2.2 Simulation Environment 

There are many commercial and non-commercial simulators that can be used to develop 

autonomous vehicles. In this work, Carla is selected because of its flexible architecture, 

which allows extending the simulator capabilities [13]. In Figure 4, one can see how this 

simulator can be extended with other simulation environments. Most of the shown co-

simulation capabilities are supported by Carla. For example, ROS bridge, Autoware, Sumo, 

and Vissim co-simulation environments are directly supported by Carla. Also, one can 
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create new maps and simulation environments with MATLAB RoadRunner and import 

them to Carla. Considering that Carsim, MATLAB, and Carla software can communicate 

with Unreal Engine, it is possible to create co-simulation environments where the vehicle 

dynamics are simulated in MATLAB or Carsim in a Carla simulation. Finally, by using the 

property of MATLAB for running Python scripts, one can utilize MATLAB - Carla co-

simulation. For the presented work, we decided to use a subset of the shown simulation 

architecture. Since the demonstrated work will mostly focus on cooperative perception 

applications, we are primarily interested in range sensor data, such as lidar. Therefore, our 

co-simulation subset consists of MATLAB – Carla simulation environment with Sumo co-

simulation. While the MATLAB interface is used to transfer sensor data to MATLAB, with 

the addition of Sumo co-simulation we can also inject traffic into our simulation 

environment.  
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Figure 4 Carla Simulator extension diagram [3]. 

2.2.1 Python Interface 

The main interface for the Carla simulator is Python scripts. By using PythonAPI, it is  

possible to select maps, change the weather, spawn vehicles, pedestrians, and other actors, 

control the actors, and more. In our application, we set our simulation environment using 

our custom Python script based on the target task, such as sensor fusion or car following.  

2.2.2 ROS Interface 

The Robot Operating System (ROS) is a robotics middleware which eases managing 

multiple processes in a system. It provides services to exchange common messages 

between processes and lets developers control hardware. ROS also allows users to create 

packages that can be reusable in different systems. The latest version of Carla (version 
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9.13) supports both ROS and ROS2 by having a ROS bridge. In this work, the ROS 

interface is used to connect to Autoware and MATLAB to collect data and interact with 

the Carla simulator. Autoware can be utilized for path planning, localization, object 

detection, and lateral & longitudinal control tasks. The implemented Carla-Autoware co-

simulation is presented in Figure 5. 

 

Figure 5 Top Left: Carla simulator interface. Background: Snapshot of Rviz ROS interface 

to Carla Autoware integration showing point cloud map, HD map, LiDAR, and camera 

sensor outputs [3]. 
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2.2.3 MATLAB Interface 

As explained in previous sections, there are two main interfaces for Carla, which are the 

ROS and Python script interfaces. Since MATLAB supports both of these interfaces, 

MATLAB - Carla simulation can be realized by using one of them. While Python scripting 

is supported directly within MATLAB scripts, to interact with the Carla ROS interface, the 

MATLAB ROS toolbox is used. We built our MATLAB Carla integration based on [14]. 

One should note that the MATLAB ROS integration is limited by the implemented features 

in the Carla ROS Bridge. On the other hand, the Python interface in MATLAB provides 

much more flexibility for customizing the simulation environment. 

2.2.4 Traffic Simulation 

Carla creates traffic around the host vehicle by randomly spawning vehicles. For evaluating 

the potential mobility or fuel-efficiency benefits of connected and autonomous vehicles, 

enhanced traffic simulations can be used to create realistic traffic simulation. Some of the 

examples of these applications can be seen in [15]–[17]. Among many of the micro traffic 

simulators, Sumo and PTV Vissim are the most commonly preferred simulators in use. 

They are also supported by Carla. In Figure 6, a screenshot from our sample Sumo- Carla 

co-simulation implementation can be seen. The Sumo road network is shown on top and 

the corresponding Carla road environment is shown at the bottom in Figure 6. 
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Figure 6 Carla – Sumo Integration [3]. 

2.2.5 Vehicle Dynamics 

Vehicle dynamics in Carla are modeled using the NVIDIA PhysX Vehicle, and which does 

not accurately represent realistic vehicle dynamics. However, to develop and analyze 

control algorithms for AVs, the use of a realistic vehicle dynamics model is required to 
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develop algorithms which can handle the dynamic behavior of the vehicle under 

consideration. In some cases, having the full vehicle model with powertrain also helps to 

develop more accurate fuel-efficiency algorithms. To address this, it is proposed to extend 

the simulation by integrating it with CarSim as shown in [18] or MATLAB vehicle models. 

Models developed in MATLAB can be generated using its recent Vehicle Dynamic 

Toolbox, or it can be a completely custom model. In the Vehicle Dynamics co-simulation 

environment, vehicle dynamics would be simulated in Carsim or MATLAB, while the 

photo-realistic simulation environment and other simulated sensor data come from Carla. 

2.3 Cooperative Perception System Architecture 

The designed and implemented Cooperative Perception system architecture is shown in 

Figure 7. While it is possible to fuse from more than one sensor data and share what is 

perceived, as part of a proof-of-concept architecture, a 360-degree lidar sensor is selected 

as the main sensor for this work. The lidar outputs point cloud raw data. Then the in the 

bounding box detector block selects object cluster and puts a bounding box around them. 

Then these are sent to the Multi Object Tracker to be associated with existing tracks or to 

create new ones. False detections are also removed in the Multi Object Tracker stage. From 

the track list, BSM messages are created as Cooperative Perception Message (CPM) by 

converting detection locations to global coordinate system. One can easily improve the 

effectiveness of the system by fusing more than one sensor instead of using only lidar.  
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Figure 7 Cooperative Perception System Architecture.  

2.3.1 Lidar sensor and Multi Object Tracking  

One of the main reasons for choosing lidar over other sensors is its accuracy and its 360° 

field of view. For the implementation of the architecture in Figure 7, the simulation 

environment presented in section 2.2 is used. In the Carla simulation environment, the 

vehicles can be equipped with custom sensor combinations. In the presented work, the 

vehicles are customized such that they have 360° field of view lidars and a forward camera. 

The lidars on the vehicle are modeled based on a 64 channel Ouster OS0 digital lidar [19] 

which has 90° vertical and 360° horizontal field of view. The lidar can measure 1,310,720 

points per second.  

The object detection from raw lidar data can be achieved in multiple ways including neural 

network models such as PointPillars [20], Frustum Pointnets [21]. In this work, the object 

detection is achieved by processing the raw point cloud data using the nearest 

neighborhood clustering algorithm. While the code for this approach is given in [22], the 

final implementation is done in MATLAB as in [23]. 

Obstacle detection from raw lidar point cloud is done in three main steps:  

1- Points outside the region of interest are removed. 

2- Ground plane points are detected and removed. 
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3- Remaining point clouds are clustered and a bounding box for each cluster is created. 

Among these three steps the first step is very straightforward. One can simply remove the 

raw points which are not of interest to the operation of the vehicle. This helps to improve 

the speed of the data processing and removes unwanted detections such as the roof of the 

ego vehicle from the raw data measurement.  

As a next step the road surface or ground plane is segmented. For this purpose, the Random 

Sample Consensus, RANSAC algorithm for 2D plane detection can be utilized. RANSAC 

is an iterative algorithm to determine outliers in data. The detailed explanation of the 

RANSAC algorithm can be seen for finding outliers in a 2D data in [24]. Since the lidar 

data is a 3D, our ground plane can be considered as the data that we are interested in, and 

the obstacles can be considered as the outliers. The pseudocode of the iterative ground 

plane segmentation is given below in Algorithm 2.1 [25]. The implementation [22] results 

of the algorithm is shown in Figure 8. In the figure, one can see that the green points are 

the part of ground plane (inliers) founded by the RANSAC algorithm and the red points 

are the part of obstacles on the road.  
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Algorithm 2.1: RANSAC Ground Plane Detection 

Inputs: Raw Point Cloud Data, max number of iterations, distance tolerance 

Output: Ground Plane (Road), Outliers (Obstacles) 

for (max number of iterations)  

    Select 3 random data points from the point cloud 

    Fit a plane to selected points 

    Log the inliers (data points that are within the distance tolerance from the plane) 

    Form the ground plane with the plane max number of inliers.  

    Segment out remaining data points(obstacles) as obstacles. 

 

 

Figure 8 Ground plane segmentation from raw lidar point cloud data. 
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Figure 9 Obstacle clustering and bounding box creation.  

After segmentation of the ground plane, one needs to cluster each obstacle in the remaining 

point cloud data. The points which are close to each other can be clustered using Nearest 

Neighborhood algorithm or Euclidean Cluster [26] algorithm which clusters the points 

whose Euclidean distance to each other is within the predetermined distance tolerance. To 

increase the speed of this algorithm, one can use the  k-d tree algorithm [27]. K-d tree 

algorithm starts searching from the root data point then partitions the search space to 

narrow down the search space. Once clusters are formed, bounding boxes are created for 

the clustered objects. The created clusters and corresponding bounding boxes using the 

implementation in [22] are presented in Figure 9. 

In the last step, the detected bounding boxes are fed to a Joint Probability Data Association 

(JPDA) Multi Object Tracker from the MATLAB Sensor Fusion Toolbox to track targets 
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[28]. The JPDA tracker has the functionality to create and maintain tracks based on their 

age. When the tracker receives the measurement list, the tracker updates the existing tracks 

with the measurements which lie in the validation gate of the existing tracks. While the 

JPDA tracker can handle more than one sensor, to simplify the architecture, the solution is 

presented only for the lidar detections. An example of the JPDA object tracking from lidar 

data can be seen in Figure 10.
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Figure 10  JPDA object tracking example from lidar raw sensor data.     
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2.3.2 Coordinate Transformation & BSM Creation 

After detecting the target vehicles with range sensors (such as lidar), position, speed, and 

heading information of the target vehicles should be shared with other vehicles. While the 

range sensor measurements and GPS sensor measurements are fused at the vehicle 

coordinate system, the position of the targets needs to be converted to the geographic 

coordinates to be transmitted by the V2X communication module. One can refer to Figure 

11 to see Universal Transverse Mercator (UTM) and the vehicle coordinate systems. The 

coordinate transformation between the local and UTM coordinate systems requires the 

knowledge of the host vehicle position, heading and speed information, which can be 

received from the GPS of the V2X communication module. 

 
Figure 11  UTM and vehicle coordinate systems. Transparent regions in front of the host 

vehicle (HV) show the FOVs of the range sensors. 
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Figure 12 shows the coordinate transformation process used in the designed system. First, 

remote vehicles (RV) are detected at the vehicle coordinate system. Then, their position is 

converted into the UTM coordinate system by rotating the relative position of the target 

vehicles and adding the rotated relative positions to the UTM coordinates of the host 

vehicle. The rotation matrix is given in Equation 2.1. The resultant UTM coordinates then 

transferred to the geographic coordinate system. For the UTM coordinate system to 

geographic coordinate system conversion, a MATLAB function in [29] is used.  

 

𝑅 =  
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

                                     (2.1) 

 

 
 
Figure 12  Coordinate transformation & BSM generation process [3]. 

After converting UTM coordinates to global coordinates, BSM messages should be created 

for the tracked vehicles. One should note that BSMs should be created only for the vehicles 

that are not broadcasting their BSMs. This requirement can be met by using a track -to-

track data association algorithm to identify if the tracked vehicles are already broadcasting 

their own BSMs. An example of the algorithm will be explained in the Chapter 3. 
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2.4 Pedestrian Scenario  

Motivated by the capabilities of the cooperative perception architecture, a use case scenario 

for the cooperative perception algorithm is constructed in the customized simulation 

environment. A screenshot of the scenario is shown in Figure 13. In this scenario, a 

pedestrian is already in the cross walk, but she is not visible to the host vehicle because the 

perception of the host vehicle is obstructed by a large truck. Since the truck is equipped 

with a cooperative perception sensor module, it can increase the situational awareness of 

the host vehicle and help avoid a serious accident. In this scenario, it is shown that the host 

vehicle is aware of the pedestrian as long as she is detected by the lidar sensor on the truck 

and shared with other vehicles through cooperative perception. 

  

 
Figure 13 Right bottom foreground: Host vehicle camera image, Background:  scenario 

image from an external camera showing view that is obstructed by truck [3]. 
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2.5 Summary 

In this section a cooperative perception architecture and its application to improve the 

safety of vulnerable road users is presented. The presented architecture consists of lidar 

object detection and a JPDA multi object tracker. The tracked object information can then 

be converted to the global frame to share the location and speed information of detected 

objects. Also, to simulate the CP applications, a customized simulation environment was 

developed. Then, a practical scenario is simulated in the designed simulation environment. 

By tracking the pedestrian location with the lidar sensor and sharing its location, the 

situational awareness of the host vehicle is improved significantly.  

Another possibility for implementing the cooperative perception is placing the range 

sensors at the intersections where most of the interactions between the vulnerable road 

users and vehicles occur. The intersections equipped with range sensors and 

communication modems are called smart intersections and they can share the location and 

speed information of vulnerable road users and vehicles at the intersection. In Chapter 5, 

an improvement of the Green Light Speed Advisory application is presented by utilizing 

the data shared by smart intersections.  
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Chapter 3. Data Association  

The connectivity between vehicles, infrastructure, and other traffic participants brings a 

new dimension to automotive safety applications. Soon, all the newly produced cars will 

have Vehicle to Everything (V2X) communication modems alongside the existing 

Advanced Driver Assistant Systems (ADAS). It is essential to identify the different sensor 

measurements for the same targets (Data Association) to use connectivity reliably as a 

safety feature alongside the standard ADAS functionality. Considering that  the camera is 

the most common sensor available for ADAS systems , an experimental implementation 

of a Mahalanobis distance-based data association algorithm between the camera and the 

Vehicle to Vehicle (V2V) communication sensors is presented in this chapter. The 

implemented algorithm has low computational complexity and the capability of running in 

real-time. One can use the presented algorithm for sensor fusion algorithms or higher-level 

decision-making applications in ADAS modules. 

3.1 Background 

Many automotive companies invest in connected vehicle applications, such as Left Turn 

Assist (LTA), Intersection Movement Assist (IMA), and Collison Avoidance (CA). While 

these communication-based driver-assist technology applications aim to reduce the number 

of accidents on the road, some existing driver-assist technologies aim to avoid accidents 

by detecting the threats using range sensors such as camera and radar. It is crucial to 

accurately identify if both systems refer to the same target to warn the driver in a potential 

collision scenario. This problem is called a data association problem. This chapter focuses 

on identifying the association between the two different sensor measurements of a camera 
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(range sensor) and a Vehicle to Vehicle (V2V) communication modem. After the data 

association step, a higher-level module, i.e., threat assessment module, would use the data 

association results to take necessary safety precautions.  

There are three main categories for the data association problem which are used for tracking 

and sensor fusion applications. The first one is the measurement-to-measurement 

association, which is also called the track initiation problem. The second one is the 

measurement to track association, which is also called a track maintenance problem. The 

final one is the track-to-track association problem, which is also called the track fusion 

problem. Among these, this work focuses on the implementation of the track-to-track data 

association.  

This part will summarize some of the data association work in the literature. Some of the 

commonly used perception/range sensors in ADAS are camera, lidar, radar, and ultrasonic 

sensors. Different working principles of these sensors result in different resolutions, ranges, 

and detection rates depending on the sensor's physical characteristics and environmental 

conditions. The strength, weaknesses, and working principles of these sensors are 

presented in [4]. Connected and autonomous vehicles use Vehicle to Everything (V2X) 

[30] communication as another sensor alongside the existing perception/range sensors, 

which improves connected vehicles' self-awareness. 

In autonomous vehicles, multi-sensor multi-object tracking modules handle sensor fusion 

tasks, which increases the accuracy of detections by combining the measurements from 

multiple sensors. One essential stage of the multi-sensor multi-object tracking is the data 

association. In [31], the authors developed a track to track data association algorithm, 
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which compares the Mahalanobis distance between tracks from multiple sensors. Similarly, 

in [32], the authors used minimum Mahalanobis distance with the Chi-square test for their 

application's association problem. In [33], [34] the Hungarian Algorithm is used for data 

association.  Alongside these methods, there are also some other probabilistic data 

association algorithms in the literature for target tracking. Some of these are Probabilistic 

Data Association Filter (PDAF), Joint PDAF (JPDAF), and Multi Hypothesis Tracking 

(MHT) algorithm. In PDAF, instead of using hard assignments, multiple detections inside 

the validation gate are considered to update the current track [35]–[37]. The PDAF is more 

appropriate for single track scenarios than multi-track scenarios. Therefore, JPDAF is 

developed for multiple target scenarios [38]. The JPDAF works by calculating the joint 

probability distribution between the tracks and measurements. Other methods used for 

multi-object tracking data associations are Multiple Hypothesis Tracking (MHT) [39] and 

Markov Chain Monte Carlo Data Association (MCMCDA) [40], [41] and Markov 

Decision Process [42]. The application area of these data association algorithms can be 

extended to autonomous vehicles as well [1]. Some of the examples of data association 

applications in autonomous vehicle research can be seen in [1], [42], [43]. 

As for the computational load, Mahalanobis distance is the simplest algorithm, which is 

calculated by the square of the error with respect to its covariance [44]. In PDAF, it is 

assumed that only one target is tracked, and it is already initialized. PDAF algorithm 

calculates data association probabilities for each measurement to target track which are 

used in the PDAF tracking algorithm [44]. The Joint Probability Data Association Filter 

(JPDAF) application is the extended version of PDAF. JPDAF jointly computes the 
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measurement to target associations for multiple established tracks. Another algorithm to 

be considered is Multi Hypothesis Tracking (MHT) Algorithm. MHT algorithm creates 

multiple data association hypotheses to track the targets in a cluttered environment. This 

allows the algorithm to postpone challenging data association decisions to a time when 

more data is available [45]. The main drawback of this algorithm is that it is costly to 

maintain the growing number of data association hypotheses. As we look at the comparison 

of the aforementioned data association and target tracking algorithms with data association 

functionality, it is also important to differentiate the type of the data association task used. 

Most of the algorithms in the presented literature, such as PDAF, JPDA, and MHT [39], 

[45] and others, are appropriate for measurement to track association, and they are used to 

track the targets with a filter stage. Considering that this research focuses on the 

implementation of a track-to-track data association rather than target tracking, a 

Mahalanobis distance-based data association algorithm is preferred. 

In the rest of the chapter, first, the experimental setup and overall architecture with an 

explanation of the algorithm used is presented. Then, the results and conclusion sections 

conclude the chapter. 

3.2 The Experimental Setup and System Architecture 

This section describes the overall architecture of the designed and implemented data 

association architecture. Our experiment setup is used to depict the general architecture. In 

our experiment, a host vehicle (HV) and two remote vehicles (RV_1 and RV_2) are used. 

HV is equipped with a camera and V2V communication onboard unit (OBU), and remote 

vehicles are fitted with only V2V OBUs. The video stream from the host vehicle and high 
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accuracy RTK GPS measurements for all the vehicles are recorded for ground truth 

creation purposes. The HV data association system architecture is shown in Figure 14, 

which consists of measurements, coordinate transformation (for V2V measurements), 

synchronization and filtering, buffering, and track to track association modules. When 

reading the rest of this section, readers can refer to Figure 14 to see each module's 

relationship with other modules. 

 

Figure 14 The designed data association architecture for the host vehicle. The architecture 

consists of measurement, coordinate transformation, synchronization & filtering, 

buffering, and track to track association modules [46].  

 

3.3 Measurements and Associable Parameters 

Most of the new vehicles have a camera sensor as a standard ADAS sensor. Although some 

of the vehicles also have radar, it is generally available for higher-end vehicles with 

Adaptive Cruise Control functionality. Therefore, this study focuses on Track to Track 

Association implementation between the most common ADAS sensor, the camera, and the 
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V2V communication modem. If required, one can quickly adapt the same algorithm to 

include more than two sensors. In our experimental vehicle architecture, the host vehicle 

is equipped with an automotive-grade smart, forward-looking camera. The measurement 

rate of the camera used is around 40 Hz with a 100° field of view. The camera can detect 

other vehicles on the road and track them. Therefore, the camera has its own object 

management algorithm, and it publishes the tracked objects' IDs alongside their spatial 

position, dimensions, type, relative speed, and bearing angle. The host vehicle is also 

equipped with a V2V OBU, which transmits and receives Basic Safety Messages (BSM) 

to communicate with other traffic participants. The full definition of BSM, which is a 

message set broadcasted by each connected vehicle at 10Hz is given in [47]. This message 

set has the ID, global position, heading, speed, dimensions, and path history of the vehicle. 

Although both sensors offer other measurements, the measurements shown in  Table 1 are 

comparable with each other. While this setup is the minimum requirement for the host 

vehicle, remote vehicles do not necessarily have to have this whole setup. They only need 

to have V2V OBUs to transmit their BSMs.  

Camera V2V 
Id Id 
Processor time UTC Time 

Lateral Distance Latitude  
Longitudinal Distance Longitude 
Relative Heading Heading 
Relative Speed & Speed Speed 
Length  Length  
Width  Width 

Table 1 Some of the camera and V2V measurement parameters 
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Figure 15 Paths were followed by the host and remote vehicles in the global coordinate 

system. "*" represents the starting location of the paths. Vehicles start to move from the '*' 

mark and proceed to '∆' and 'o’, successively. For example, at timestep t, both vehicles will 

be at ‘∆’ on their path. 

It is essential to determine associable parameters between the two automotive sensors 

considered here: the camera and the V2V modem, to implement the data association 

module. This task aims to find common and comparable parameters between these two 

sensors, which will help identify an ADAS target. In Table 1, the relevant measurement 

parameters for the automotive-grade smart camera and V2V module are listed. We 

conducted experiments to verify which one of these parameters is associable. In the 

experiments, a host vehicle and a remote vehicle drive in opposite directions towards each 
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other in a slightly curved path, as shown in Figure 15. Vehicle starting location and 

positions with five-second intervals are marked with ‘*’, ‘∆’, and ‘o’ successively on their 

trajectories to reflect vehicle motion through time. After having all measurements in the 

host vehicle coordinate system, measurement parameters are analyzed, to be used for the 

data association task. It is observed from the plots in Figure 16 that the relative 

distance/offset measurements from the camera and V2V are comparable to each other. 

Similarly, relative heading between the Host Vehicle and Remote Vehicle and lateral and 

longitudinal velocities from the camera and V2V sensor are also comparable with each 

other. Therefore, these parameters are chosen as associable parameters. However, the 

Remote Vehicle (length and width) size measurement from the camera do not match with 

actual dimensions published via V2V communication. Therefore, vehicle size 

measurements are not considered as reliable parameters for the data association task.  

3.4 Coordinate Transformation 

In the constructed architecture, the measurements from the V2V sensor are in the global 

coordinate system, whereas the measurements from the camera are in the vehicle 

coordinate system. In Figure 17, one can see the global and local coordinate frames for the 

host and remote vehicles. In order to associate measurements between the HV sensors, both 

measurements must be in a common coordinate system. For this purpose, the V2V 

measurements representing the remote vehicle positions are transformed into the host 

vehicle coordinate system. Thus, it becomes possible to compare the camera measurements 

with the V2V measurements. The coordinate transformation mentioned requires the 

knowledge of the Host Vehicle (HV) and Remote Vehicle (RV) global coordinates and 
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heading which are measured by their V2V modems. In the translation step, the global 

coordinates (latitude, longitude) of the HV and RV are transformed into Universal 

Transverse Mercator (UTM) grid coordinates in (3.1) where the deg2utm function is used 

from [48]. Then, the relative distance between the HV and RV is calculated in the North 

and East directions as given in (3.2) and (3.3). In the coordinate transformation step, the 

calculated relative distances in the global coordinate system are transformed into the HV 

coordinate system in (3.4). Finally, the relative distance 𝑑  between the host and remote 

vehicle can be calculated as given in (3.5).  

[𝑁, 𝐸, 𝑢𝑡𝑚𝑧𝑜𝑛𝑒] = deg2utm(𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔)       (3.1) 

∆𝐸 = 𝐸 − 𝐸          (3.2) 

∆𝑁 = 𝑁 − 𝑁          (3.3) 

𝑝
𝑝 =

cos (𝜃 ) −sin (𝜃 )

sin (𝜃 ) cos (𝜃 )
∆𝐸
∆𝑁

      (3.4) 

𝑑 = 𝑝 + 𝑝            (3.5) 
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Figure 16 Camera and V2V sensor measurement performance comparison for when HV 

and RV are approaching each other, as shown in Figure 15. Measurements are received via 

camera and V2V sensors, while the ground truth data is acquired from high precision RTK 

GPS [46].  
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Figure 17 Sample host vehicle and remote vehicle coordinate systems with respect to the 

global coordinate system. These coordinate systems are used for coordinate transformation 

of V2V measurements from global coordinate system to host vehicle coordinate system. 

The blue transparent region represents the field of view of the camera [46]. 

3.5 Synchronization and Filtering 

For filtering the camera and V2V track measurements, Kalman Filters (KF) are used for 

each sensor type. The purpose of having the filtering stage is to estimate the state of the 

tracks at the desired time step. It should be noted that V2V position measurements are 

transferred to the vehicle coordinate system before they are fed to the Kalman Filter. Thus, 
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all the filtering and tracking tasks are achieved in the vehicle coordinate system. The 

prediction and update stages of the Kalman Filter algorithm are given in Algorithm 3.1. 

 

Algorithm 3.1:  Kalman Filter   

Prediction: 

𝑥 = 𝐹𝑥 + 𝑢 

𝑃 = 𝐹𝑃𝐹 + 𝑄 

Measurement Update: 

𝑦 = 𝑧 − 𝐻𝑥′ 

𝑆 = 𝐻𝑃 𝐻 + 𝑅 

𝐾 = 𝑃′𝐻 𝑆  

𝑥 = 𝑥 + 𝐾𝑦 

𝑃 = (𝐼 − 𝐾𝐻)𝑃′ 

 

In the Kalman Filter Algorithm the state vector is:  

𝑥 =

𝑝
𝑝
𝑣
𝑣

            (3.6) 

 

where p is position and v is velocity.  𝑢  is process noise which is assumed to be a zero 

mean Gaussian process. The state prediction function 𝐹 for a 2D constant velocity linear 

motion model is the 4x4 matrix in:   
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⎝

⎜
⎛

𝑝 ′

𝑝 ′

𝑣 ′

𝑣 ′
⎠

⎟
⎞

=

1 0
0 1

∆𝑡 0
0 ∆𝑡

0 0
0 0

1 0
0 1

𝑝
𝑝
𝑣
𝑣

         (3.7) 

 

The measurement function for camera 𝐻 𝑖𝑠 the 2x4 matrix in: 

𝑝
𝑝 =

1 0
0 1

0 0
0 0

𝑝
𝑝
𝑣
𝑣

       (3.8) 

 

Q and R represent the covariance matrices for processes noise and measurement noise, 

respectively. While the measurement process noise for GPS is directly retrieved from 

Horizontal Dilution of Precision (HDOP) and values, from GPS measurements, 

measurement noise for camera estimated based on collected data from previous experiment 

runs. 

To accurately track each track from camera and V2V measurements, each track for each 

sensor is individually tracked with V2V KF and Camera KF (Figure 14) whenever a new 

measurement is received at the rate of sensor measurements. However, one should be 

careful when associating measurements from sensors with different measurement time 

stamps. Associating measurements without synchronization can result in false data 

association. Therefore, in our design, data synchronization is done between the camera and 

V2V OBU sensor measurements. The synchronization is realized periodically with a 10 

Hz trigger. The synchronization trigger generator block in Figure 14 triggers the camera 

and V2V Kalman Filters simultaneously at each rising edge of the trigger signal to generate 
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state estimations for each sensor. For track-to-track data association purposes, the resulting 

state estimations are used.  

 

3.6 Buffering 

In the data association task, if the targets are well separated from each other, it is easier to 

associate the measurements which are originating from the same target. However, if the 

targets are getting closer to each other with high spatial uncertainty in the measurement, it 

is hard to differentiate them from each other. Buffering is introduced to enhance track to 

track data association performance by creating a track history for each sensor measurement 

and comparing the distance between two tracks over the buffer size. This is especially 

useful for eliminating false associations due to high spatial uncertainties for short time 

intervals. An example of where the buffering improves the data association performance is 

illustrated in Figure 18. In Figure 18, the vehicles detected by the camera are positioned 

almost on top of each other. The ambiguity in the data association process is eliminated by 

considering the path history of targets. Thus, the correct data association assessment is 

performed. The buffering integration into the track-to-track data association will be 

introduced in next section.  
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Figure 18 Sample scenario where the camera measurements for remote vehicles have high 

spatial uncertainty. In this scenario, HV follows two RVs. One of the RV is traveling in 

front of the other RV on a curved track. HV camera measurement for these vehicles falsely 

shows these vehicles almost on top of each other [46]. 
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3.7 Track to Track Data Association 

The implemented Track to Track Data Association module in  Figure 14 is designed based 

on the method proposed in [31]. In this module’s development, two sensors are considered 

S1: camera and S2: V2V modem. Each of these sensors outputs a list of detections 𝐴 =

{𝑎 , 𝑎 , … , 𝑎 } and 𝐵 = {𝑏 , 𝑏 , … , 𝑏 }. The designed module finds the detections from 

each sensor for the same target and associates them. Since the comparison of the detections 

location history would improve the data association performance, detections over time are 

buffered in the Buffering Module to form tracks. Thus, we can define a track as the state 

estimate vector of a single target over a time interval, where each element of the vector 

corresponds to a state estimate at the corresponding measurement time. The algorithm used 

for this task, which uses position similarity for data association, is presented below.  

Algorithm 3.2: Track-to-Track Association 
1: Concatenate the tracks of all the sensors. 
2: Numerate the concatenated tracks from 1 to N. 
3: Create an N x N matrix for the Track to Track Distances (TTTD) between the tracks.  

Set the cells over the diagonal entries to infinity (∞) in order to avoid repeating the 
calculations. 
Set cells that represent the distance between the same sensor measurements to ∞.  
Set the remaining cells to Mahalanobis Distance between the corresponding tracks. 
Set the cells to ∞, where the distance is larger than a defined threshold.  

4: while there is any value other than ∞ do: 
 Choose the minimum value in the matrix (row, column).  
 if corresponding tracks not in a cluster do: 
  Create a new cluster from these two clusters 
 else if one of the tracks is in an existing cluster do: 
  Add the other track into the existing cluster 
 else do: 
  Nothing 
 Set the selected column and row cells to infinity for the corresponding sensors.  
5: if there is a track which is not in any cluster do: 
 Form new clusters, for tracks that are not in existing clusters. 
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In the presented algorithm, the Mahalanobis Distance calculation between two tracks (𝑎, 𝑏) 

is performed over the history size of 𝑛 to measure the position similarity between two 

tracks as in (3.9) & (3.10).  

 

 𝐷( , )
=  ∑ 𝑑

( , )               (3.9) 

 

where, 

 

𝑑
( , )

= (𝑋 − 𝑋 ) (𝑃 + 𝑃 ) (𝑋 − 𝑋 )   (3.10) 

 

Here 𝑋  is the state estimate and the 𝑃  is the covariance matrix of the state estimate for 

the corresponding tracks at time step 𝑘. The covariance matrices are acquired from the 

Kalman Filter state estimation for each sensor.  

In Figure 19 and Figure 20, an example of the matrix representation of the Track to Track 

Association (TTA) Algorithm stages 3 and 4 are shown. In the example shown, the V2V 

has two measurements, and the camera has four target detections. In these figures, Tracks 

are named as 𝑇  where  𝑖 is the sensor ID, and  𝑗 is the detection number. For example, 𝑇  

represents the second V2V detection. Similarly, since the camera is the second sensor 𝑇  

represents the third detection of the camera sensor.  
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Figure 19 Stage 3 example for V2V & camera TTA in Algorithm 3.2. In the left matrix, 

Track to Track Distances (TTTD) is formed. In the right matrix, entries larger than the 

threshold are set to “∞” [46].  

 

Figure 20 Stage 4 example for V2V & camera TTA in Algorithm 3.2. In the left matrix, by 

selecting the lowest entry, the first data association cluster is selected. After setting the 

corresponding column and rows of the selected cluster to “∞”, the second cluster is selected 

[46].  

T11 T12 T21 T22 T23 T24

T11 ∞ ∞ ∞ ∞ ∞ ∞

T12 ∞ ∞ ∞ ∞ ∞ ∞

T21 4.31 ∞ ∞ ∞ ∞ ∞

T22 ∞ 2.92 ∞ ∞ ∞ ∞

T23 8.97 ∞ ∞ ∞ ∞ ∞

T24 11.38 ∞ ∞ ∞ ∞ ∞

Stage 4: Loop

T11 T12 T21 T22 T23 T24

T11 ∞ ∞ ∞ ∞ ∞ ∞

T12 ∞ ∞ ∞ ∞ ∞ ∞

T21 4.31 ∞ ∞ ∞ ∞ ∞

T22 ∞ ∞ ∞ ∞ ∞ ∞

T23 8.97 ∞ ∞ ∞ ∞ ∞

T24 11.38 ∞ ∞ ∞ ∞ ∞

Clusters:{T12, T22} Clusters: {T12, T22},{T11, T21}



48 
 

3.8 Results 

Two different experiments are conducted to demonstrate the effectiveness of the 

implemented algorithm. These two scenarios look at the data association task for car-

following and Intersection Movement Assist (IMA) scenarios. Figure 21 illustrates the 

travel direction and layout of the vehicles for both scenarios.  

 

Figure 21 Left: Car following scenario (Scenario I). Two RVs are following each other, 

and HV follows both of them. Right: Intersection Movement Assist (IMA) scenario 

(Scenario II). All the test vehicles approach an intersection simultaneously. Host vehicle 

stops at the intersection while RV_1 and RV_2 pass the intersection. Blue transparent 

regions represent the camera field of view [46].  

3.8.1 Scenario I: Car Following 

 
In the first conducted experiment, target vehicles are traveling in front of the host vehicle. 

Their distance with respect to the host vehicle and with respect to each other changes 

throughout the experiment Figure 21 (left). In the figure, RV_1 and RV_2 represent the 
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remote vehicles, PV represents the parked vehicle, and HV represents the host vehicle. 

Parked vehicles on the track are not transmitting any V2V messages, but the camera can 

detect them. As for sensors, only the host vehicle has a forward-looking camera capable of 

detecting the target vehicles and their positions. All three vehicles are equipped with V2V 

modems. From time to time, remote vehicles travel side by side, but mostly all the vehicles 

follow each other in the test track shown in Figure 22 , which consists of small curves and 

straight parts.  

 
 
Figure 22 Test track and recorded trajectory of host vehicle for the car-following scenario 

(Scenario I) as shown in Figure 21. The track consists of straight and curved paths [46].  

At each measurement time step, the camera outputs detected objects as a list by 

identifying each detection with an ID number. Time to time, the camera changes the ID for 

the same target when an occlusion occurs. V2V BSM messages for remote vehicles are 

received continuously and they maintain the same IDs throughout the entire experiment. 
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By considering these characteristics of the received measurements, we created ground truth 

IDs for camera detections of RV_1 and RV_2. It is created by comparing the camera 

detection IDs with the recorded video stream. In Figure 23, the upper part represents the 

RV_1 camera detection IDs, and the middle part represents the RV_2 camera detection IDs 

over time. The ground truth for the camera IDs corresponding to the remote vehicles is 

shown with blue color, and the result of the data association is marked with yellow. As can 

be seen from Figure 23, most of the data associations are performed successfully. Most of 

the failures occur for RV_2. This is because the RV_2 is generally partially occluded from 

the camera and the accuracy of the camera distance measurement is affected significantly 

for the occluded objects.  

To assess how closely the detected objects are associated, a data association confidence 

level is introduced (3.11).  

 

𝐶𝑜𝑛𝑓 = 𝑚𝑖𝑛(0, 100 ∗ )          (3.11) 
    

Where 𝑡ℎ is the selected inter-vehicle distance threshold, and D is the distance between the 

two tracks. This equation will yield a 100 percent confidence level if the two measurements 

are exactly the same. On the other hand, if the measurements are separated from each other, 

it gets closer to 0 confidence. If the two measurements are separated more than the set 𝑡ℎ 

distance, the confidence will be 0, showing that selected measurements are not associated. 

In Figure 23 it is seen that the confidence level for the remote vehicle RV_1 is between 90-

100 percent. On the other hand, for the RV_2, the confidence level varies between 45-100 

percent when it is detected. The larger confidence level variation occurs because the RV_2 
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is mostly occluded by RV_1, HV’s camera could not measure the position of RV_2 

accurately. 

 

 
 
Figure 23 Scenario 1: Track to Track Association V2V - Camera id assignment for car 

following scenario. The data association algorithm outputs the corresponding camera 

detection IDs for each RV. Top two images represent the associated camera detection IDs 
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for RV_1 and RV_2, respectively. The bottom graph shows the data association confidence 

levels with respect to time [46].  

 

 
Figure 24 Recorded trajectories of test vehicles for the IMA scenario (Scenario II). 

Vehicles heading and position representations for occlusion instance are shown with car 

images at the positions marked with ‘o’. ‘*’ represents vehicles’ starting points, and ‘∆’ 

represents vehicles’ positions at an intermediate time instance [46].  

Track Matching Accuracy (TMA) [32] is used as another performance measure for the 

TTA association. It is defined as the percentage of correct matching decisions taken by the 

TTA algorithm among all the test cases. In the conducted experiment, camera 

measurements were able to be associated with the V2V measurements for RV_1 with 100 

percent TMA.  
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However, for the second remote vehicle, TMA drops to 98.8 percent. 

3.8.2 Scenario II: Intersection Movement Assist (IMA) 

In the second scenario, HV, RV_1 and RV_2 experimental vehicles travel towards an 

intersection from different directions. In the scenario, the host vehicle aims to match V2V 

detections with the camera detections to issue an appropriate warning by comparing ADAS 

outputs from V2V and camera-based systems. In V2V ADAS applications, this scenario 

corresponds to Intersection Movement Assist (IMA) application. As a V2V safety 

application, IMA warns the host vehicle driver if there is a high collision chance in an 

intersection [49]. In the experiment, the HV is moving to the intersection from the 

southbound of the road. The remote vehicles RV_1 and RV_2 are moving to the 

intersection from westbound and eastbound, respectively. When the remote vehicles come 

to the intersection, they continue traveling alongside each other on separate lanes. On the 

other hand, the host vehicle stops at the intersection. The layout of the experiment and the 

vehicle recorded positions are shown in Figure 21 (right) and Figure 24. In Figure 24, the 

vehicles’ positions in three different time instances are marked on their trajectories to show 

travel history. Vehicles start from the ‘*’ mark and proceed to ‘∆’ and then to ‘o’. At the 

‘o’ mark RV_1 starts to block RV_2. The camera frame for this instance can be seen in 

Figure 25.  
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Figure 25 Captured camera frame just before the RV_1 occludes RV_2 in Scenario 2. In 

this scenario, HV stops at the intersections while RV_1 and RV_2 travel across the 

intersection in opposite directions [46]. 

 
In Figure 26, one can see the V2V camera data association results. While the camera 

detection ID for the RV_1 is 12 throughout the experiment, RV_2 got two different IDs: 

110 and 92. RV_1 blocks RV_2 for a short time interval (Figure 25) when the remote 

vehicle paths seem to cross each other. After RV_2 becomes visible to the host vehicle, the 

camera assigns a new ID to RV_2. Data association results in Figure 26 show that the 

developed method is implemented successfully. All the data association results match with 

the ground truth for this scenario. 
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Figure 26 Scenario 2: Track to Track Association V2V - Camera id assignment for IMA 

experiment. The data association algorithm outputs the corresponding camera detection 

IDs for each RV. Top two images represent the associated camera detection IDs for RV_1 

and RV_2 respectively. The bottom graph shows the data association confidence levels 

with respect to time[46]. 

3.9 Summary 

The designed and implemented data association method aims to identify measurements for 

the same target from different sensors. Although this method can be generalized and 

applied to different sensors like radar and lidar, this work focused on the V2V modem and 
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camera measurements. As a first step, associable parameters for the considered sensors 

were investigated. It was found out that the location, relative heading, and relative speed 

measurements from these two sensors are comparable, and they can be used for the data 

association tasks. Among these parameters, the location measurements were the main 

parameters used in the implemented algorithm. On the other hand, speed and relative 

heading parameters were also used as another gating to prevent any false data association 

assessment. This chapter contributes to the literature by presenting an experimental 

implementation of V2V and camera data association method. While the presented method 

was experimentally tested and shown to be effective for even curved roads and 

intersections, it is required to conduct more experiments with a higher number of vehicles 

in more complex scenarios before the deployment of the algorithm. As another 

improvement for the developed method, one can drop the buffering stage for V2V and use 

the path history information, which is available in the BSM message set. 
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Chapter 4. Hardware in the Loop Simulation for Pass at Green Function 
Validation and Development 

Many smart cities and car manufacturers have been investing in Vehicle to Infrastructure 

(V2I) applications by integrating the Dedicated Short-Range Communication (DSRC) 

technology to improve the fuel economy, safety, and ride comfort for the end users. For 

example, Columbus, OH, USA has placed DSRC Road Side Units (RSU) to about 100 

traffic lights which publish traffic light Signal Phase and Timing (SPaT) information. With 

DSRC On Board Unit (OBU) equipped vehicles, people will start benefiting from this 

technology. In this work, to accelerate the V2I application development for Connected and 

Autonomous Vehicles (CAV), the use of a Hardware in the Loop (HIL) simulator with 

DSRC RSU and OBU is presented. The HIL simulator environment is employed to 

implement, develop and evaluate V2I connected vehicle applications in a fast, safe and 

cost-effective manner. The simulator allows realistic, real-time evaluation of mobility and 

fuel economy benefits over simulated actual routes in a safe lab setting before actual 

deployment in an experimental vehicle. To show the capabilities of the HIL simulator, a 

Pass at Green (PaG) method, which lowers the idling time at the signalized intersections 

and improves fuel economy, is simulated.  

4.1 Background 

Transportation has become one of the main contributors of undesired emissions [50], and 

fuel economy studies have taken a new level with the increase of vehicle autonomy. 

Research has been conducted on various topics that include green driving [51], clean 

energy [52], [53], advance traffic control [54], [55] and vehicle control [56].  
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With the development of V2I communication and control technologies, eco-driving control 

which attempts to smooth the speed profile of vehicles promptly became a hotspot of 

research. Optimizing the vehicle speed trajectory to minimize its fuel consumption can 

significantly enhance the vehicle fuel efficiency. For example, it is shown in this chapter 

that up to 7% fuel efficiency improvement could be achieved for the multiple traffic light 

scenario under ideal conditions. This result might vary for different traffic and road 

conditions. Techniques used for this purpose are called Eco-Driving and this optimization 

tool predicts the future constraints that the vehicle will be subject to and generates a speed 

profile that is fuel-optimal. This prediction of future constraints was impossible until 

vehicle connectivity was introduced. In addition to the safety benefits, this technology 

promises valuable information to the vehicles and traffic controllers such as speed-

acceleration-brake status and signal phasing and timing (SPaT) information. This 

information can be leveraged to develop spatial and temporal constraints to optimize the 

vehicle trajectory to achieve maximum fuel efficiency.  

Many eco-driving methods have been proposed in the literature. Saboohi developed an eco-

driving strategy, which can reduce the fuel consumption by optimizing the speed and gear 

ratio of the vehicles [57]. Mandava proposed an arterial velocity planning algorithm which 

could minimize the acceleration/deceleration rates to reduce the fuel consumption and 

emissions of an individual vehicle [58]. Kamal used Model Predictive Control (MPC) to 

improve eco driving performance in varying traffic environment [59]. Rakha designed an 

eco-driving framework that has detailed microscopic fuel consumption and emission 



59 
 

models in the objective function [60]. Mensing utilized the dynamic programming 

approach to optimize the speed trajectories of vehicles [61]. 

This chapter focuses on extending our previous HIL simulation environment [62] with an 

actual Traffic Light Controller, DSRC Road Side Unit and DSRC On Board Unit and a fast 

prototyping controller to embed fuel efficient eco-driving algorithms. Created simulation 

environment runs the virtual road and car model in the HIL hardware while emulating the 

actual SPaT communication with the traffic light controller. Thus, one can employ the HIL 

simulator to evaluate the achieved fuel efficiency benefit with the developed algorithms in 

a safe environment before actual deployment. As an example, an application Pass at Green 

algorithm, which minimizes idling time at the traffic light will be simulated. 

4.2 Pass at Green Algorithm 

4.2.1 Overview 

In the Pass at Green (PaG) application, the algorithm uses the Signal Phasing and Timing 

(SPaT) information from an upcoming traffic light and modifies the vehicle speed, so that 

the vehicle can pass at the green light phase and does not have to stop and wait for the 

traffic light to turn green. The PaG algorithm used in this section is based on the work 

reported in [63] and [64]  

 

Figure 27: Structure of Pass at Green algorithm (adapted from [63]) 
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As seen in  Figure 27, when the vehicle is in the range of the DSRC range of the RSU, the 

Pass at Green State Selection block receives the available SPaT information and the 

position of the traffic light using OBU. For this simulation environment only SPaT is 

broadcasted through RSU. The position of the traffic light is simulated in the HIL. Based 

on the measured speed of the vehicle and these received signals, the State Selection block 

chooses the most fuel efficient and applicable state for passing the intersection. Based on 

the selected state, the Speed Trajectory Generation block generates the desired velocity 

trajectory for the selected state. The trajectory generation provides a smooth velocity 

profile between the current velocity and the recommended velocity for the vehicle. The 

trajectories are generated based on piecewise trigonometric functions that ensure 

drivability and fuel economy [63]. Generated velocity trajectory is sent to the vehicle speed 

controller to follow this desired speed. Once the vehicle crosses the traffic light in green, 

the desired speed generated by the Pass at Green algorithm is discarded to give the control 

back to the autonomous vehicle speed generator to reach to the original desired speed. In 

this work, an Intelligent Driver Model (IDM) is used to control the vehicle in case there is 

no upcoming traffic light. The driver selection behavior for the Pass at Green algorithm 

implementation is summarized in Equation 4.1.  

𝐷𝑟𝑖𝑣𝑒𝑟 =
𝑃𝑎𝐺, 𝑤ℎ𝑒𝑛 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑙𝑖𝑔ℎ𝑡 𝑖𝑠 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 

𝐼𝐷𝑀,                                          𝑒𝑙𝑠𝑒 
    (4.1) 

4.2.2 Definition of States 

There are four main states for managing the longitudinal behavior of an autonomous 

vehicle at signalized intersections in the PaG model. By employing the information coming 

from the DSRC systems installed on the vehicle and traffic lights, it is possible to manage 
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how to approach a signalized intersection in a fuel-efficient manner. These four states can 

be listed as follows:    

State 1: Vehicle maintains its current speed and catches the Green phase of the 

traffic light to pass. 

State 2: Vehicle accelerates to a set speed and catches the Green phase of the traffic 

light to pass. 

State 3: Vehicle decelerates to a stop, stops at the traffic light at Red, then passes 

when the traffic light turns Green. 

State 4: Vehicle decelerates to a set speed and catches the Green phase of the traffic 

light to pass. 

4.2.3 State Selection 

As stated earlier, State Selection is done based on the SPaT information from the traffic 

light, traffic light location and the velocity of the vehicle at the instant it is in the DSRC 

range of the RSU. There are 2 different outcome sets based on the status of the traffic light.   

For the 1st case, if the traffic light phase is already green when the vehicle enters the 

communication range of the RSU, then PaG has the necessary information of when the 

traffic light will turn red. Using this information, the vehicle speed can be modified to make 

the vehicle pass the traffic light before the light turns red by choosing either State 1 or State 

2. If the vehicle speed cannot be modified to pass at the current green light, then State 3 is 

selected, so that the vehicle decelerates and comes to a stop smoothly, waits for the traffic 

light to turn green, then accelerates smoothly to the reference speed.  
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For the 2nd case, if the traffic light phase is already red when the vehicle enters the 

communication range of the traffic light, then it has information about when the red light 

will end, as well as when the next green light phase will begin. Depending on how much 

the vehicle has to accelerate or decelerate to catch the next green light, the State Selection 

is carried out and State 1, State 3 or State 4 is chosen, by taking the 

acceleration/deceleration and jerk limits, as well as the speed limit into account. If the 

traffic light state phase changes during one state, the state can be updated with the new 

available SPaT information for a more fuel-efficient state, if desired. 

4.3 HIL Simulator 

4.3.1 HIL Simulator Setup 

Hardware in the Loop Simulator is a tool to simulate the vehicle dynamics and interaction 

of the vehicle with other traffic and infrastructure in real-time. Since the HIL simulator 

runs in real time and has CAN and Ethernet interfaces, it is possible to employ actual 

hardware and software components into the simulation. Thus, the simulations done in the 

HIL simulator provide a realistic environment to test main functionalities of the designed 

system. A well-prepared HIL simulation is not only a time saver and cost effective, but 

also safer than doing in-vehicle experiments. After the HIL simulations, one can conduct 

experiments in a more reliable environment.  
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Figure 28: Connected and Autonomous Vehicle HIL simulator setup [65] 

HIL simulator used (Figure 28) in this work consists of five main parts. The first part, 

dSPACE Scalexio HIL computer, runs the designed vehicle dynamics and environment 

simulation in real time. Second one is the user interface of the simulator. The computer 

used for user interface has both CarSim and dSPACE Control Desk software, and both are 

used for monitoring the chosen parameters via displays and plots. Additionally, the vehicle 

dynamic modelprogram CarSim can also show a real-time video of the simulation. One of 

the main parts of the simulator is the dSPACE MicroAutoBox controller. Since the 

MicroAutoBox is also used as a controller in the vehicle, developed control software can 

be used in the actual vehicle with minor modifications. The Traffic Light Controller in the 

HIL setup determines how long each Red, Green and Yellow phase is going to last, 

depending on the traffic density and time of the day. The SPaT messages generated by the 

Traffic Light Controller are sent to the Road Side Unit (RSU). The RSU can transmit the 

SPaT messages to vehicles equipped with DSRC OBU. In this HIL Simulator, the messages 

transmitted by the RSU are received by the DSRC modem to be used in the Pass at Green 
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model. One can see the data exchange and communication protocol structure between each 

part of the simulator in  Figure 29.  

 

 

Figure 29: HIL Simulation data flow [65]  

The HIL simulation block diagram is seen in Figure 30. In a real setup, the vehicle and 

traffic lights would be able to communicate through DSRC radios. For this simulation 

setup, two different drivers are used to simulate the driving behaviors of the vehicles as 

Intelligent Driver Model (IDM) and Pass at Green drivers. Finally, CarSim vehicle is 

driven by a Proportional Integral Derivative (PID) controller to follow recommended speed 
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profile provided by IDM or Pass at Green to evaluate the fuel consumption. The fuel 

consumption of the vehicle is calculated internally inside the chosen generic D-Class sedan 

vehicle model in CarSim.  

 

Figure 30: Simulation block diagram [65]  

4.3.2 Infrastructure Creation in HIL Simulator 

To simulate the behavior of vehicles in a simulation environment as accurately as possible, 

the roads that actual vehicles are tested should be generated in the simulation environment. 

To do that, route information needs to be acquired from a map with the global positioning 

system (GPS) points and elevation information. OpenStreetMap is a source to get maps 

online, and the maps can be downloaded and processed [66]. OpenStreetMap provides the 

longitude and latitude information of the roads, as well as speed limits and traffic lights 

and STOP signs. 
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It is possible to improve the fuel economy of a vehicle by previewing the road slope and 

modifying the speed of the vehicle accordingly. In this chapter, the simulation environment 

used is CarSim, a simulation tool to simulate the performance of passenger vehicles and 

light-duty trucks. One of the routes that were generated in the software environment can 

be seen in Figure 31 (marked with a sloid black line for the route). This route was put into 

OpenStreetMap to get the portion of the map that is of interest.  

 

Figure 31: Test route on the map with traffic lights [65] 

A real-life traffic simulation was run on microscopic traffic simulator SUMO [67] with 

different traffic density states; no traffic, low-density traffic, medium-density traffic and 

high-density traffic. Using SUMO, another set of road GPS information, as well as 

locations of the traffic lights and STOP signs were acquired.  
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Additionally, the speed limit information for the road was acquired from SUMO. The 

maximum speed limit for the route vs cumulative distance travelled by the vehicle can be 

seen below. There are 5 traffic lights on the road, and the speed limit ranges from 11.2 m/s 

(~25 mph) to 29 m/s (65 mph) (Figure 32). The route consists of roads in urban areas, as 

well as part of a highway.  

 

Figure 32: Speed limit vs Distance [65]. 

For the CarSim part, after getting the necessary GPS waypoints and elevation information 

for the route, they were put into the simulator environment in CarSim to design the road. 

Afterwards, appropriate road shapes and lane lines were added to the road, as well as the 
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traffic lights. Then route was visualized using the preview tool in the CarSim environment 

(Figure 33). 

 

Figure 33: Visualization of traffic light approaching state in CarSim [65]. 

4.4 Simulation Methods and Results 

In the HIL simulation environment, selected urban-highway mixed route is created by 

importing all the relevant features of the road. To evaluate the effect of the Pass at Green 

algorithm for the chosen route, two sets of simulations are conducted. In the first case, the 

IDM driver is used in the simulation to drive the vehicle to simulate a regular driver. In the 

second case, V2I communication is introduced into the system. When the vehicle is in the 

communication range of the traffic lights, speed profile is acquired from the Pass at Green 

algorithm to make sure that the vehicle passes the traffic light with a more fuel-efficient 

speed profile. Additionally, the Pass at Green algorithm tries to prevent the vehicle from 

making unnecessary braking maneuvers and idling at traffic lights. Comparison of these 
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two cases for different states of the Pass at Green algorithm can be seen in Figure 34 - 

Figure 36. 

 

Figure 34: State 2 speed profile [65] 
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Figure 35: State 3 speed profile [65] 
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Figure 36: State 4 speed profile [65] 

The Intelligent Driver Model (IDM)  [68] is a deterministic car following model. The IDM 

can generate speed profiles that replicate human driving behavior in car following or speed 

following scenarios. In this chapter, IDM has been modified to have the added capability 

of responding to traffic light phases, as well. In case of red traffic light, a stationary vehicle 

where the traffic light originally positioned is virtually inserted to the simulation as a target 



72 
 

vehicle, so that the host vehicle stops at red. When the traffic light turns green, this virtual 

target is removed from the simulation, so that the host vehicle does not try to stop. Thus, 

the IDM driver can obey the traffic light status like a real human driver would. 

As mentioned in the Pass at Green algorithm section, there are 4 states in the Pass at Green 

algorithm. Each state was simulated with a single traffic light to show fuel economy benefit 

and speed profile set by the Pass at Green algorithm.  

State 1 (the cruising case), where the vehicle maintains its speed at the time the algorithm 

chooses which state, the speed set by the IDM is also equal to the speed recommended by 

the Pass at Green algorithm. Since the speed at which the vehicle passes the traffic light is 

the same for both Pass at Green and IDM, there would not be any fuel economy comparison 

between the two models. Therefore, State 1 was not simulated. 

 

State 2 (accelerate and pass case) was simulated (Figure 34), where the vehicle accelerates 

to a higher speed while staying within the acceleration and jerk limits of the Pass at Green 

algorithm, as well as attaining a speed lower than the speed limit of the route. For the Pass 

at Green algorithm, when the vehicle is within the DSRC range of the RSU, the host vehicle 

accelerates to a higher speed than its current speed. After accelerating and passing the 

traffic light, the vehicle decelerates to its original speed, the speed at the instant when the 

State 2 has been activated. The IDM speed for this case was to follow a reference speed of 

11.2 m/s (25 mph) before reaching the traffic light, come to a stop at the red light, then 

wait for the next green light, then finally, pass the traffic light. The fuel economy benefit 

for the vehicle when it follows the Pass at Green strategy rather than the IDM was 42.72%. 
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Another advantage that Pass at Green had over the IDM model for this state was the total 

travel time. As seen in the 2nd plot in Figure 34, the Pass at Green was able to utilize the 

SPaT information of the traffic light to accelerate and pass, whereas IDM did not have this 

information and had to make the vehicle stop at the upcoming red light. Therefore, Pass at 

Green algorithm also helped with total travel time by decreasing it significantly as 

compared to the IDM model. 

State 3, decelerate and stop, then pass case, was simulated (Figure 35). For this case, when 

the vehicle was in the range of the DSRC modem, the speed of the vehicle was set to drop 

to zero smoothly, whereas the IDM for this case decelerated with a sharper slope. The fuel 

economy benefits due to Pass at Green algorithm compared to the vehicle travelling with 

IDM speed was 2.56% for this state.  

State 4, decelerate and pass case, was simulated (Figure 36), where the vehicle decelerates 

to a lower speed, while staying within the deceleration and jerk limits. The IDM speed for 

this case was to follow the reference speed of 11.2 m/s (25 mph) until the vehicle arrives 

at the DSRC range of the RSU. The IDM model noticed that the traffic light phase was red 

way later than Pass at Green had, thus IDM tried to decelerate rapidly. When the traffic 

light turned green, IDM accelerated just as rapidly to reach the reference speed. Pass at 

Green, on the other hand, utilized the SPaT information of the upcoming traffic light to 

decelerate smoothly knowing that the light phase was going to turn green soon after the red 

phase, maintained the low speed, and then accelerated after passing the traffic light at 

green. With the Pass at Green algorithm, 3.78% fuel economy benefit was achieved as 

compared to the vehicle travelling with IDM speed. 
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In Table 2: Simulated fuel economy values for IDM and Pass at Green., how the fuel 

economy changes depending on the DSRC range of the modem is summarized. Depending 

on the DSRC range value, the fuel economy ranges between 2.56% and 47.72%.  

PaG State 

IDM Reference Pass at Green (PaG) 

FE improv. (%) Total Fuel 

(gal.) 
FE (mpg) 

Total Fuel 

(gal.) 
FE (mpg) 

2 0.0305 26.73 0.0213 38.15 42.72 

3 0.0263 26.97 0.0256 27.66 2.56 

4 0.0239 28.3 0.0231 29.37 3.78 

Table 2: Simulated fuel economy values for IDM and Pass at Green. 

To simulate a more realistic case with multiple traffic lights, the simulation route shown in  

Figure 31 is modelled in the HIL simulator shown in Figure 28. Two simulation scenarios 

are considered. First the simulation vehicle driven by the IDM (Figure 37). In this case the 

IDM will try to reach the desired speed which is set to 3 km/h lower than the speed limit 

for the simulated route section. The modified IDM model will also let the vehicle obey 

traffic lights when they change state. For the first traffic light, the driver stops for red. For 

the second traffic light, the driver detects yellow traffic light state and brakes to decelerate 

but since it is too late to stop, it passes at yellow phase. This driver behavior can be 

considered as dangerous. Similarly, for the rest of the traffic lights, it either stops or 

decelerates until the traffic light phase turns to green. This leads to unnecessary 

deceleration and fuel consumption.  
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Figure 37: Simulation of multiple traffic lights with different speed limit conditions and 

IDM driver [65] 

Similarly, in the second simulation scenario, vehicle is driven in the same route but this 

time the vehicle communicates with the RSU connected to the traffic light controller using 

DSRC modem. Thus, the informed autonomous vehicle can manage its speed in a more 

fuel efficient and safe manner. Simulation results for the Pass at Green driver can be seen 
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in Figure 38. As it can be seen from the figure, the vehicle safely stops for the first two 

traffic lights because it is not able to catch the green light in the green light interval without 

violating the speed limits. For the 3rd traffic light, it accelerates and passes at green instead 

of stopping at red. Similarly, for the 4th traffic light, the vehicle decelerates when the light 

is red to wait for it to turn green and pass at green by slowing down. In the same case, a 

human driver would slow down more to stop at the red light because the driver would see 

the red light. Finally, it passes at green by maintaining its speed at the last traffic light.  

 

Figure 38: Simulation of multiple traffic lights with different speed limit conditions and 

Pass at Green model [65] 



77 
 

In Figure 39, the Pass at Green and IDM speeds with respect to distance, as well as the 

total distance travelled by the vehicle with respect to time can be seen. In the 2nd plot in 

Figure 39,it is seen that the total trip time for Pass at Green was 490 seconds, whereas the 

total trip time for IDM was 499 seconds. Therefore, it can be concluded that Pass at Green 

decreases the total trip time, as well helping with fuel economy and drive comfort.  

 

Figure 39:  Comparison of IDM with Pass at Green velocities with respect to distance 
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As far as fuel economy is concerned, the vehicle travelling with Pass at Green model has a 

7.01% fuel economy benefit compared to the vehicle travelling with the IDM driver (Table 

3). 

Method Total Fuel (gal.) FE (mpg) FE improv. (%) 

IDM 0.1009 42.51   

Pass at Green 0.0943 45.49 7.01 

Table 3: Fuel economy comparison of IDM and Pass at Green models for a realistic road 

simulation 

4.5 Summary 

This chapter presented the HIL simulation for modifying the speed profile of a connected 

and autonomous vehicle at signalized intersections. The developed simulation environment 

speeds up the V2I application development in a safe and realistic environment with 

automotive grade hardware and software. To show the capabilities of the HIL simulator, 

the Pass at Green algorithm, which lowers the idling time at signalized intersections and 

improves fuel economy has been simulated. By simulating the human driver behavior with 

IDM and comparing it with the Pass at Green model, this chapter demonstrated the 

possibility of fuel efficiency improvement by using DSRC technology (Table 3). 
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Chapter 5. Green Light Optimized Speed Advisory (GLOSA) with Traffic 
Preview   

By utilizing the vehicle to infrastructure communication, the conventional Green Light 

Optimized Speed Advisory (GLOSA) applications give speed advisory range for drivers to 

travel to pass at the green light [69]. However, these systems do not consider the traffic 

between the ego vehicle and the traffic light location, resulting in inaccurate speed 

advisories. Therefore, the driver needs to intuitively adjust the vehicle's speed to pass at 

the green light and avoid traffic in these scenarios. Furthermore, inaccurate speed 

advisories may result in unnecessary acceleration and deceleration, resulting in poor fuel 

efficiency and comfort. To address these shortcomings of conventional GLOSA, in this 

chapter, the utilization of cooperative perception messages shared by smart infrastructures 

to create an enhanced speed advisory for the connected vehicle drivers and automated 

vehicles is proposed. Two different algorithms were designed by utilizing the available 

traffic preview (Signal Phase and Timing (SPaT), MAP, and Collaborative Perception 

Messages), predicted traffic preview from these messages, and measurements from 

onboard range sensors. While in the first algorithm, the vehicle is controlled with a rule-

based approach, a reinforcement learning-based approach is used in the second algorithm. 

The designed algorithms are then simulated in a simulation environment created in a 

Simulink. Simulation results demonstrated the effectiveness of the developed algorithms 

with better fuel efficiency performance and more comfortable ride performance.  The 

GLOSA with Traffic Preview application presented here is a case study of the cooperative 

perception concept presented in Chapter 2. Cooperative perception examples in Chapter 2 



80 
 

were simulation based as it is difficult to run experiments since multiple cooperating 

vehicles are needed. A smart intersection does this cooperative messaging automatically as 

it monitors all incoming traffic and broadcast BSMs for all those vehicles, enabling a basic 

implementation of cooperative perception. 

 

5.1 Background 

One of the first applications of the vehicle to infrastructure communication is called Green 

Light Optimized Speed Advisory (GLOSA). However, early versions of GLOSA did not 

utilize the queue information [63], [70]. Therefore, when vehicles are approaching to an 

intersection, the advisory speed announced by the conventional GLOSA models is not 

accurate, forcing drivers to adjust their speed based on their intuition. While the idea of 

utilizing smart intersections for queue detection is not new [71], in this dissertation, two 

different methods are proposed to use the collective perception messages broadcasted by 

the smart intersections to predict the traffic preview.  

One can use different traffic preview models from the literature [72]–[75] to predict the 

traffic flow of the road of interest. However, this work mostly focuses on developing a 

GLOSA application with a traffic preview, assuming that the traffic preview prediction is 

available. Therefore, instead of creating an entirely new prediction algorithm, simple 

representative traffic preview prediction methods are developed to explore the potential 

benefit of traffic preview. Then two different driver models which utilize traffic preview 

are developed. Finally, this use case scenario (GLOSA with Traffic Preview) is evaluated 
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for different parameters to identify the benefits of the developed algorithms. Fuel efficiency 

and comfort metrics are chosen as the main parameters for the evaluation.  

Current technology makes it possible to collect and share traffic data such as vehicle speed 

and trajectories and traffic flow rates. One can classify the traffic data into three different 

layers, namely macro-layer, micro-layer, and nano-layer. The macro-layer data consists of 

traffic flow data, and it is typically shared by map providers such as Google Maps, HERE 

Maps, and similar for a large traffic network. It is updated approximately every minute and 

can be used for route planning applications from point A to B. Micro layer traffic data is 

the traffic flow information between route segments such as two intersections. This data is 

updated around one-second intervals, and it is provided by map providers as well. The 

micro-layer data can be used to predict arrival time and refine route selection. Finally, the 

nano-layer traffic data can be defined as high-definition traffic data in the form of traffic 

flow or speed, location, and direction of each vehicle at an intersection. The nano-layer 

data can be potentially broadcasted by connected vehicles or smart intersections at 

approximately 10 Hz. This study mostly focuses on the utilization of nano-layer traffic 

flow data. The frequent update rate and detail of the nano-layer traffic data enable many 

vehicle control applications, including GLOSA, in which energy consumption, travel time, 

and passenger comfort improve. The nano-layer data can be used either to create an 

advisory speed for the human drivers or automated vehicles. This chapter presents two 

different methods that utilize the traffic preview information in a GLOSA application. 

While the first method relies on rule-based methodologies, the second method relies on a 
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reinforcement learning model to provide more accurate speed advisories to drivers than the 

conventional GLOSA and forms one of the major contributions of this dissertation. 

5.1.1 Traffic Preview 

Some traffic preview data is already known by the vehicle to infrastructure communication 

or the range sensors on the ego vehicle. Some of the information coming from the vehicle 

to everything (V2X) communication can be listed as traffic light signal phase and timing 

(SPaT), the layout of the intersection (MAP), location and speed of each vehicle as part of 

the cooperative perception message (CPM) in the form of basic safety message (BSM). In 

addition, distance and speed of the target vehicles can be acquired from the onboard range 

sensors such as radar, lidar, and stereo cameras. While this information is known, the future 

speed distribution for the road of interest is not known. One can statistically predict the 

future speed distribution, and then it can be used for developing new automated driving 

algorithms, such as GLOSA or traffic light management applications. This work utilizes 

the predicted traffic preview to develop an advanced GLOSA. However, this work does 

not focus on the development of traffic preview prediction. Therefore, in the first approach, 

an intelligent driver model (IDM) based microsimulation environment is used for creating 

a representative prediction of the traffic preview. The developed traffic preview 

microsimulation environment accepts SPaT and MAP messages as input from the traffic 

light alongside the cooperative perception messages (CPMs). By initializing the simulation 

with the input messages, the micro simulator runs the simulation for a predetermined traffic 

preview horizon every 100ms. Each simulation calculates the predicted passing time for 

target vehicles at the green light for each vehicle reported in CPMs.  
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5.1.2 Intelligent Driver Model 

Intelligent Driver Model (IDM) [76] is a mathematical model for the car-following 

behavior of human drivers. The formulation of the intelligent driver model is given in 

equations 5.1-5.3.  

 

�̇� =
𝑑𝑥

𝑑𝑡
= 𝑣  

 (5.1) 

�̇� =
𝑑𝑣

𝑑𝑡
= 𝑎 1 −

𝑣

𝑣
−

𝑠∗(𝑣 , ∆𝑣 )

𝑠
 

(5.2) 

𝑠∗(𝑣 , ∆𝑣 ) = 𝑠 + 𝑣 𝑇 +
𝑣 ∆𝑣

2√𝑎𝑏
 

(5.3) 

 

where: 

𝑣 : the velocity the vehicle would drive at in free traffic 

𝑠 : a minimum desired net distance  

𝑇: the minimum possible time to the vehicle in front 

𝑎: the maximum vehicle acceleration 

𝑏: a positive number 
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The original IDM formulation does not consider the traffic light. In this work, IDM is 

modified so that it obeys traffic lights following the car in front. Considering that the IDM 

can adjust its speed according to the vehicle in front, a rule base modification is made to 

make the IDM act as required by the traffic light. If there is an upcoming red traffic light, 

a virtual stopped vehicle is inserted into the simulation at the traffic light location. Then 

IDM calculations are performed in both of the two different cases. In the first case, the 

target vehicle is selected as the vehicle in front, and in the second case, to account the red 

traffic light the virtual stopped vehicle at the traffic light is selected as the target vehicle. 

Between two calculations, the minimum acceleration command is chosen to be applied to 

the simulated vehicle. 

5.1.3 Comfort  

According to [77], the ride comfort of passengers heavily depends on the magnitude of 

acceleration and its time derivative (jerk). While different studies suggest different comfort 

ranges for these parameters, the common consensus is that lower jerk and acceleration 

magnitudes result in better ride comfort. Jerk upper limit for discomfort in the literature 

ranges between 0.5 m/s3 - 0.9 m/s3. Acceleration upper limit for discomfort in the literature 

ranges between 1 m/s2 - 1.47 m/s2. 

5.1.4 Smart Intersection 

To fully benefit from the connected vehicle environment, it can be claimed that all traffic 

participants should communicate with each other. Unfortunately, considering that the 

penetration rate of connected vehicles on our current roads is significantly low, the 

connectivity functionality of the vehicles cannot be utilized efficiently. However, with 
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smart intersections, the feasibility of vehicle-to-everything V2X communication 

applications can be enhanced significantly. Smart intersections are equipped with range 

sensors such as cameras, lidar, and radar to detect and track vehicles and other vulnerable 

road users within the intersection zone. Then, the roadside communication unit (RSU) 

broadcasts the position and motion information of tracked vehicles and VRUs on behalf of 

them, as BSM messages. Therefore, a vehicle traveling at a smart intersection can be aware 

of other vehicles, which are not communicating, through V2I communication as if they are.  

In  Figure 40, one can see the typical smart intersection environment. In the depicted 

intersection, vehicles are approaching from westbound to the intersection. The 

demonstrated intersection is equipped with a camera (or other sensors, such as lidar and 

radar or their combinations) to track the detected vehicles’ speed, location, and heading. 

Then, position and motion information of tracked vehicles are encoded as BSMs to be 

broadcasted. The collection of these BSMs can be considered as a Collaborative Perception 

Message. The ego vehicle communicates with the smart intersection to receive SPaT, 

MAP, and CPM messages in the presented scenario. In addition to the communication 

sensor, the ego vehicle is also equipped with a range sensor to detect the target vehicle for 

automated longitudinal driving.  
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Figure 40 Smart intersection layout. Red vehicle is ego vehicle equipped with V2X 

onboard communication modem and range sensor. Smart Intersection is fitted with a 

camera (or range sensors, such as radar or lidar) alongside the V2X communication 

roadside modem. Smart intersection broadcasts SPaT, MAP, and CPM [78].  

5.1.5 Green Light Speed Advisory 

A simple conventional GLOSA system is designed and implemented to establish a baseline 

for evaluating the performance of the developed algorithms. A similar scenario to one 

shown in Figure 40 is constructed in the MATLAB simulation environment created to 

simulate the baseline GLOSA scenario. In the simulation, four vehicles are placed into the 

intersection, and all the vehicles are controlled with a modified IDM which drives the 

vehicles by considering traffic light status. The IDM controller of ego vehicle also receives 

GLOSA advisories to adjust the speed of the ego vehicle to pass at green when there is no 
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traffic. In the simulation, the initial positions (m) and speeds (m/s) of the vehicles are set 

as [0, 50, 105, 120] and [8, 15, 0, 0] where the traffic light is located at 130 m and the ego 

vehicle is the one located at 0 m. Two of the vehicles between the ego vehicle and traffic 

light wait for the traffic light to turn green, and the third vehicle and ego vehicle are 

approaching towards the traffic light. This simulation setup will be used throughout the 

chapter for simulations to ensure a consistent comparison between different simulation 

runs. The simulation result for the described baseline scenario is shown in  Figure 41. As 

seen from the plots, GLOSA does not consider the traffic between the ego vehicle and the 

traffic light. Therefore, the maximum speed advised by the conventional GLOSA system 

(GLOSA max) is not accurate. In the simulated scenario, the ego vehicle accelerates to 

reach maximum speed; however, when it encounters the target vehicle, it has to slow down 

because the target vehicle is also slowing down for the stopped vehicles at the intersection. 

As a result, lack of traffic preview resulted in unnecessary accelerations and decelerations.  
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Figure 41 Baseline scenario: ego vehicle is driven with IDM and baseline GLOSA [78].  

5.2 A Representative Traffic Preview Prediction Method 1: Passing Time Prediction for 
Target Vehicle  

As demonstrated in the previous section, GLOSA without traffic preview results in 

unnecessary acceleration and decelerations. While the effect of traffic can be compensated 

by human drivers intuitively, with a traffic preview prediction, it is possible to provide 

more accurate advisory speeds to drivers and automated vehicles. This work concentrates 

on how a traffic preview prediction can be used for designing a more precise GLOSA. As 

traffic prediction is not the main focus of the work, instead of more complex prediction 
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models, a simulation-based simple representative traffic preview model is developed. The 

developed preview model is given in Algorithm 5.1.  

Algorithm 5.1: Passing Time Prediction for Target Vehicle 

 Inputs: SPaT, MAP, CPM 

 Output: Predicted passing time of target vehicle 

1 Get current speed and locations of vehicles and SPaT, MAP   

2 Initialize each vehicles position and speed with an IDM 

3 Simulate the created vehicles for the prediction horizon 

4 Log the time for the target vehicle to Pass at Green 

 

As summarized in Algorithm 5.1, the designed Passing Time for Prediction for Target 

Vehicle accepts SPaT, MAP, and CPM messages as input. It outputs the target vehicle’s 

predicted passing- time (PT) at the green traffic light phase (Figure 42).  

 

Figure 42 Traffic Preview Prediction unit utilizes the SPaT, MAP, and CPM to predict 

passing time (at the green light) for each vehicle reported in CPM [78]. 
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The prediction is performed every 100ms. Vehicles reported in the CPM are initialized 

with an IDM with the reported initial speed and locations for each prediction step. Then 

for the selected time horizon, the vehicles with IDM are simulated such that they follow 

the vehicle in front (if there is one) and obey traffic lights. The traffic light is simulated 

based on the SPaT message. Once the target vehicle (vehicle traveling in front of the 

vehicle) passes the traffic light, the passing time is logged as the output (predicted passing-

time for the target vehicle). In Figure 43, one can see the simulated locations of detected 

vehicles for the prediction horizon of 30s. In the demonstrated example, the smart 

intersection detects four vehicles, including the ego-vehicle (vehicle under test). Based on 

the simulation results, the target vehicle (traveling in front of the vehicle) passes the traffic 

light located at 130m at 22s. 
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Figure 43 Visualization of predicted vehicle locations with respect to time by using the 

micro traffic simulation. By logging the passing time for each vehicle, the module outputs 

the predicted passing time for each vehicle [78].  

The designed GLOSA with traffic preview (GLOSA-TP) system is the modified version 

of the base GLOSA model. In GLOSA-TP, alongside SPaT, MAP, and ego vehicle speed 

and location, the predicted passing time of the target vehicle (PT) is used as another input. 

Passing time, then, is converted to an advisory speed for the driver with Equations 5.4 and 

5.55. Finally, using equation 5.4, passing time (PT) is converted to advisory speed with 

traffic preview, Traffic Advisory Speed (TAS).  

TAS=Distance to TL / (PT + Safe Time Headway)       (5.4) 



92 
 

Then as in equation 5.5, a new Predicted Speed Advisory (PSA) is selected as the minimum 

of GLOSA max and TAS as  

PSA=min (GLOSA max, TAS)        (5.5) 

In the implemented scenario, if the PSA is lower than the vehicle’s current speed, the 

vehicle is not allowed to accelerate. The simulation result for the GLOSA-TP is shown in  

Figure 44. As seen from the figure, the vehicle approaches the traffic intersection with a 

much smoother speed profile while avoiding unnecessary acceleration and decelerations, 

resulting in a more comfortable ride than the baseline scenario.  

 

Figure 44 GLOSA-TP scenario: ego vehicle driven with IDM with the PSA received from 

GLOSA-TP [78].  
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To demonstrate the fuel efficiency benefit of the designed algorithm, the resulting speed 

profiles from the baseline scenario and the GLOSA-TP scenario are feed in to a simulation 

model of a conventional vehicle with an internal combustion engine powertrain [79] to 

simulate fuel consumption. While the baseline scenario completed the scenario with 29.27 

miles per gallon (MPG) fuel efficiency, the proposed method showed 39.37 MPG fuel 

efficiency. Therefore, for this specific scenario, a 35% fuel efficiency improvement is 

shown with the prosed method.  

5.2.1 Real-World Data Simulation 

The developed algorithm is also tested with real-world data. One of the earliest smart 

intersections in the US is located at Marysville, OH [80], [81]. This intersection is equipped 

with cameras and a DSRC vehicle to infrastructure (V2I) communication roadside unit 

(RSU) as shown in Figure 45. The smart intersection broadcasts the detected vehicles and 

pedestrians speed and location information as BSM messages at 10 Hertz. The intersection 

also broadcasts the layout information of the intersection with the MAP message and also 

SPaT information. The developed algorithm is simulated with the data recorded from this 

specific intersection to demonstrate the potential benefits of the proposed algorithm. As 

compared to the baseline algorithm, the proposed algorithm resulted in less speed deviation 

(Figure 46). Also, in the baseline application, the ego vehicle had to stop for the traffic 

light. On the other hand, with the proposed algorithm, the vehicle passes the intersection 

at the green light without stopping. With the proposed algorithm, a 41% fuel efficiency 

performance is observed. 
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Figure 45 Marysville, OH smart intersection layout. Background image is retrieved from 

Google Street Views.  
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Figure 46 Left: Baseline simulation with real-world traffic data. Right: GLOSA-TP 

simulation with real-world traffic data [78].  

5.3 A Representative Traffic Preview Prediction Method 2:  Spatial & Temporal Speed 
Prediction 

As another method, the traffic preview is predicted as temporal and spatial speed prediction 

for the predetermined time and location horizons. For the prediction, the same IDM-based 

microsimulation environment is used. Similar to the previous method, the inputs of the 

microsimulation are SPaT, MAP, and CPMs. The microsimulation is run for each 

prediction step for the determined time and distance horizon by utilizing the 

aforementioned inputs as initial states. From the simulated vehicle trajectories, the 
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predicted speed information of each CPM vehicle is placed into the time distance grid, as 

shown in Figure 47. At the boundary of the grid, the speed information can be determined 

by utilizing the SPaT information and the speed limit. The algorithm for creating the 

temporal and spatial speed prediction is given in Algorithm 5.2. The output of the algorithm 

for one example time step is shown in Figure 47.  

 

Algorithm 5.2: Spatial & Temporal Speed Prediction 

 Inputs: SPaT, MAP, CPM 

 Output: Spatial & Temporal Speed Prediction 

1 Get current speed and locations of vehicles and SPaT, MAP   

2 Initialize each vehicle position and speed with an IDM 

3 Simulate the created vehicles for the prediction horizon 

4 Log the speed predictions on the spatial & temporal grid.  

5 Determine grid boundary values using SPaT and Speed Limit 

6 Interpolate the values for unknown grid points from known data points.  
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Figure 47 The temporal and spatial speed prediction distribution for selected horizon 

(distance range 0-130m, time range 0-30s)[78].  

5.4 GLOSA-TP with Reinforcement Learning 

As a second method, GLOSA-TP is designed with a reinforcement learning model 

approach. A reinforcement learning model is a machine learning-based control algorithm 

that takes actions to maximize the rewards collected over time. In the proposed use case 

scenario, instead of providing an advisory speed to the vehicle, a more general spatial and 

temporal speed prediction is fed to the reinforcement learning model to enable vehicle 
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control by optimizing the fuel economy and comfort of the passengers. For this purpose, a 

Deep Deterministic Policy Gradient (DDPG) reinforcement learning (RL) agent [82] is 

trained in the developed simulation environment to maximize the cumulative reward over 

time.  

The action (output) of the designed reinforcement learning actor is selected as the 

acceleration command. Observations for the designed reinforcement learning agent consist 

of the predicted spatial and temporal speed distribution, GLOSA minimum and maximum 

speeds, ego vehicle speed, location, acceleration, jerk, and the maximum speed calculated 

for the safe car following time gap. The agent is rewarded when the vehicle maintains the 

vehicle’s speed within the desired speed range by GLOSA as given in Equation 5.6. On 

the other hand, if the vehicle decelerates, the agent is penalized to ensure fuel efficiency as 

given in Equation 5.7. Similarly, the RL agent is penalized for higher jerk magnitudes to 

avoid an uncomfortable ride as given in Equation 5.8. During the training the reinforcement 

learning agent aims to maximize the cumulative reward. The designed RL system 

architecture is shown in Figure 48.  

𝑅 =

𝑖𝑓 (𝑉 > 𝑉 )

𝑖𝑓(𝑉 𝑉 < 𝑉 )

𝑖𝑓(𝑉 < 𝑉 )

− (𝑉 − 𝑉 )

0.1 ∗ 𝑉

− (𝑉 − 𝑉 )

   (5.6) 

𝑅 = − 2 ∗ 𝑑         (5.7) 

𝑅 = − 0.1 ∗ 𝑗𝑒𝑟𝑘         (5.8) 

Visualization of the speed cost and rewards and jerk cost are shown in  Figure 49 and 

Figure 50 respectively. 
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Figure 48 Reinforcement learning model system architecture.
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Figure 49 Visualization of speed related costs & rewards. 

 

Figure 50 Visualization of jerk cost [78]. 
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As stated earlier, the designed reinforcement learning agent architecture is an actor-critic 

neural network. While the actor neural network consists of four hidden layers, the critic 

network consists of five hidden layers. These hidden layers consist of fully connected 

layers followed by a rectified linear unit (RELU) layer. Each of the hidden layers are 

formed from 480 neurons. The architecture of the reinforcement learning model agent can 

be seen in Figure 51. The designed DDPG actor is a significantly redesigned version of a 

DDPG Adaptive Cruise Controller agent presented in [83].  

 

Figure 51 Reinforcement agent actor and critic networks [78]. 
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Figure 52 Training statistics for the designed RL model. 
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5.4.1 Simulation Results 

The designed reinforcement learning model is trained with two different reward/cost input 

sets (Figure 52). While the first training set did not have the jerk as one of the cost inputs, 

in the second training set, the jerk cost is fed to the agent to improve the comfort level of 

passengers. Since the agent trained with the jerk cost is expected to increase the ride 

comfort by reducing jerk, the remaining simulations will be demonstrated with the agent 

trained with the jerk cost.  

When we compare the performance of the reinforcement learning model with the baseline 

algorithm, we can see that it outperforms the baseline by providing a smoother speed 

profile. Finally, the designed GLOSA-TP models were compared with the baseline model 

for different initial ego vehicle speeds. The initial speed of the ego vehicle is varied to 

diversify the scenarios. For each scenario, the logged fuel economy results are shown in 

Table 4. The fuel efficiency benefit of both algorithms (GLOSA-TP rule-based and RL 

based model) is also shown in the bar graph in  Figure 53. As can be seen from these results, 

both of the algorithms improve the fuel efficiency compared to the baseline.  
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Initial 

Speed 

GLOSA 

(Baseline) 

GLOSA with  

RL w Jerk Cost Traffic Preview  

  FE (MPG) FE (MPG) Benefit (%) FE (MPG) Benefit (%) 

2 22.39 24.4 9 25.37 13 

4 23.05 26.1 13 27.95 21 

6 25.65 29.18 14 32.59 27 

8 29.27 39.37 35 41.06 40 

10 32.37 49.01 51 53.48 65 

12 44.91 55.52 24 61.86 38 

14 54.42 59.66 10 57.44 6 

16 68.47 77.8 14 69.91 2 

Table 4 Fuel economy benefits of developed GLOSA with traffic preview algorithms 

[78]. 
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Figure 53 The fuel economy benefits of developed algorithms as compared to the baseline 

scenario [78].  

5.5 Summary 

Considering that conventional GLOSA systems do not consider traffic queue information, 

this work presents two different approaches for generating speed advisory for connected 

vehicle drivers and automated vehicles. Both algorithms rely on predicting the future traffic 

flow characteristic at a smart intersection. Representative traffic prediction models for each 

algorithm that predicts vehicle future speed and the location at a smart intersection, were 

developed. Then, the prediction models were used to evaluate potential benefits of the 

developed GLOSA-TP algorithms. Then, with simulations, it was demonstrated that the 
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developed GLOSA-TP algorithms can improve fuel efficiency and comfort of passengers 

by avoiding unnecessary acceleration/deceleration and jerk. The presented fuel efficiency 

benefits reflect the fuel efficiency trend for different scenarios rather than highly accurate 

fuel efficiency analysis. The main fuel efficiency benefit will be achieved by avoiding 

unnecessary stops and thus avoiding unnecessary accelerations after the stop or 

unnecessary idling at the traffic light. To demonstrate the effectiveness of the algorithms 

more realistically, one needs to extend the simulation network and extend the simulation 

scope by analyzing the fuel consumption of vehicles for a time period that includes the 

departure of the vehicles from the traffic light. This was not done in this chapter as fuel 

consumption analysis is not the main topic of research here. GLOSA with Traffic Preview 

is only presented as a case study of cooperative perception and the real data in the smart 

intersection in Marysville does not have data for vehicles after they pass the traffic light.   
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Chapter 6. Longitudinal Control in Connected and Automated Driving 

In this chapter a design and implementation of a Cooperative Adaptive Cruise Controller 

(CACC) on an autonomous vehicle platform (2017 Ford Fusion) is presented. This is used 

for car following tasks in connected and automated driving. The developed CACC controls 

the intervehicle time gap between the target vehicle and ego vehicle using a feedforward 

PD controller. In this design, the feedforward information is the acceleration of the target 

vehicle which is communicated through Dedicated Short-Range Communication (DSRC) 

modems. This chapter explains the detailed architecture of the designed CACC with 

hardware and methods used for the both simulation and experiments. Also, an approach to 

overcome detection failures at curved roads is presented to improve overall quality of the 

designed CACC system. The presented results indicate that CACC improves the car 

following performance of the ego vehicle as compared to the classical Adaptive Cruise 

Controller. 

6.1 Background 

With the recent advancements in automotive sensors, cars are becoming more autonomous 

by making use of these new technologies. The Advanced Driver Assistant systems such as 

the Adaptive Cruise Control (ACC) system do not only ensure the safety but also increase 

the comfort of travel. A well-known longitudinal control method, Cooperative Adaptive 

Cruise Control (CACC), which is an ACC system supported by the Dedicated Short-Range 

Radio Communication (DSRC) technology that allows Vehicle-to-Vehicle (V2V) 

communication, enables the achievement of lower time gaps. Reducing the time gap 

distance between two vehicles can significantly increase the capacity of roads. Also, 
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platooning multiple vehicles has the potential to improve the fuel efficiency of the vehicles 

by avoiding unnecessary accelerations and decelerations, by reducing the air drag 

experienced by the following vehicles. Motivated by these advantages, in this chapter, the 

design and implementation of CACC on an autonomous vehicle platform (2017 Ford 

Fusion) with experimental results is presented. 

The designed CACC maintains the desired constant-time gap better than the well-known 

Adaptive Cruise Control (ACC). Thus, it is possible to reduce the gap for CACC. In truck 

platooning, smaller time gap results in higher fuel efficiencies by reducing the air drag 

resistance. Similarly reducing the gap time would increase the capacity of the highways 

significantly by improving the traffic flow rate [84]. Motivated by these advantages of 

CACC over ACC, in this chapter, a Cooperative Adaptive Cruise Controller design process 

for the autonomous vehicle platform is presented. 

Adaptive Cruise Controllers are already being used in production vehicles under different 

names. A comprehensive literature review for ACC systems is done in [85]. Adaptive 

Cruise Controller aims to maintain the time gap constant during car following maintaining 

string stability. However, ACC cannot use low time gap values since it would result in rear 

end collision in case of sudden speed changes in traffic and can not damp out shock waves 

very well  [86]. In ACC a small time gap causes string instability by amplifying the 

disturbances in the upstream direction. Using DSRC communication, one can improve the 

car following performance by reducing the time gap without breaking the string stability 

[87]. This car-following model is called Cooperative Adaptive Cruise Control. Some of the 

earlier work on CACC can be seen in [87]–[93]. In [87] authors presented their CACC 
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design methodology by considering the string stability requirements and they 

experimentally validated their design. One of the early implementations of CACC was 

done under California PATH program [88], [89]. In 2011 several research institutes formed 

a CACC platoon at Grand Cooperative Driving Challenge (GCDC). Two of the CACC 

implementations in this challenge can be seen in [91], [94]. In [92], authors presented their 

design for car-following with CACC and approaching maneuver controller. In [93], authors 

presented multi vehicle look ahead CACC simulation results which shows that the multi 

vehicle look ahead in CACC improves its performance.  

The next section will explain the designed CACC structure. Following that the simulation 

environment with target vehicle modeling and simulation results for the two vehicle car 

following scenario will be presented. Then, the experimental vehicle set up with the 

explanation of sensors will be explained. In the Perception section, in-lane vehicle 

detection algorithm will be explained. Finally, the chapter will be concluded with 

experimental results and their comparison with simulation results. 

6.2 CACC Architecture 

The control structure of the designed CACC system is shown in the block diagram in Figure 

54. The designed control system is similar to the one designed and shown to be string -

stable in [87]. Since the vehicle does not have built-in ACC the low-level controller is 

designed as a gain-scheduled PI controller. As an upper level controller, a PD controller 

with a feed-forward controller is used. To sustain the string stability, a constant time gap 

spacing policy is employed [95]. The input of the feedforward controller is the acceleration 
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of the target vehicle which is transmitted through DSRC radio communication. 

Formulation of the spacing policy is given in,  

𝛥𝑥 = 𝑥 − 𝑥 − 𝑙                    (6.1) 

𝛥𝑥 = 𝑉 𝑇 + 𝑠𝑡𝑎𝑛𝑑𝑠𝑡𝑖𝑙𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒                 (6.2) 

where 𝑙 is the length of the target vehicle, 𝑥  and 𝑥 are the position of the target and ego 

vehicle, 𝑇  is the desired time-gap and 𝑉  is the speed of the ego vehicle. The designed 

PD controller minimizes the spacing error e which is given as 

 𝑒 = 𝛥𝑥 − 𝛥𝑥                     (6.3) 

Gains of the PD controller are chosen as 𝑘 = 𝑘 = 𝑤  where the 𝑤  is chosen to be 

close to the bandwidth of the low-level closed-loop bandwidth. The feedforward controller 

is designed in the same as it was designed in [91]. Formulation of the feedforward 

controller is given in Equation 6.4, where 1/𝜏 represents the desired closed-loop 

bandwidth.  

𝐹 =                       (6.4) 

The architecture of the CACC system is illustrated in Figure 54. 
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Figure 54 Cooperative Adaptive Cruise Controller (CACC) block diagram [96]  

6.3 Simulation Environment 

Development of the initial CACC model is done in CarSim-Matlab co-simulation 

environment [97]. CarSim is a vehicle simulation environment with the capability of 

simulating the dynamics of the vehicle. It can also simulate the target vehicle as a kinematic 

object. In the simulation, the target vehicle is driven by an Intelligent Driver model. By 

changing the desired speed and/or acceleration limits for the target vehicle, one can create 

different driving scenarios using Intelligent Driver Model (IDM) [76]. The formulation of 

the IDM was previously given in Equations 5.1-5.3. 
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The IDM car-following model is commonly used in traffic simulations for simulating 

driving behavior of the human driver in traffic. In this case, the intelligent driver model is 

used to model a human driver for the target vehicle. In CarSim, one can also create realistic 

roads by importing the GPS trajectory of the route. The simulation of the radar and camera 

is also possible by using the virtual sensors offered in CarSim. Figure 55 shows the 

visualization of the car following scenario simulation with a radar field of view. 

 

Figure 55 CarSim CACC Simulation visualization [96]  

After creating the simulation environment which replicates the structure shown in Figure 

54 simulations run for two different scenarios: ACC and CACC. As the initial evaluation, 

the target vehicle in the created simulation environment first accelerates to a set speed of 

20 km/h then it changes set speed to 25km/h, and finally it stops. In the simulations, the 

ego vehicle follows the target vehicle with 1 sec time gap. As it can be seen from simulation 

results in Figure 56, CACC follows the target vehicle much better. Although both of the 
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speed controllers maintain the time gap, CACC time gap follows the set value (1 second) 

more accurately.  

 

Figure 56 CarSim ACC and CACC simulation results for 1 second time gap with an IDM 

driven target vehicle [96] 

In another scenario, in order to show the performance of the CACC in a more realistic 

scenario, the target vehicle speed and acceleration profiles over time are collected by 

driving the experimental vehicle in an urban route environment. By replaying the recorded 

data during the simulation, the real world driving experience with a sudden acceleration 
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and braking behavior of the target vehicle in an urban environment is simulated. Similar to 

the previous simulation results, CACC follows the desired time gap of 0.6s much better as 

compared to ACC (Figure 57).  Especially for sudden changes in speed of the target 

vehicle, CACC responds much better and keeps the desired spacing more accurately.  

 

Figure 57 CarSim ACC and CACC simulation results for 0.6 second time gap with a human 

driven target vehicle data [96]  
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6.4 Experimental Vehicle  

 

Figure 58 Autonomous vehicle development platform of Automated Driving Lab, at The 

Ohio State University [96]. 

For the experiments, a 2017 Ford Fusion with drive by wire capability is used (Figure 58). 

Since the vehicle is not equipped with an ACC, the throttle and brake actuation are realized 

through CAN bus messages. For the longitudinal motion measurements, speed and 

acceleration measurements on the vehicle CAN bus are used.  

As the electronic control unit, a dSpace MicroAutoBox II (Figure 59) is employed due to 

its easy prototyping property with high-performance real-time system implementation 

capabilities. As it can be seen from the block diagram, all equipment in the vehicle is 

connected to the MicroAutoBox controller. All the measurements coming from the sensors, 

vehicle CAN bus are processed in the controller and throttle and brake commands based 
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on the embedded algorithm are sent to the vehicle. All the algorithms and the data parsing 

coming from the sensors are programmed using Simulink blocks and they are embedded 

into the MicroAutoBox controller. As the user interface, a portable computer with 

ControlDesk application is used. 

To detect the objects on the road, the vehicle is equipped with a 76.5GHz Delphi forward 

looking radar which can track up to 64 objects and give their positions and relative velocity 

information. The radar is a combination of both long and middle range radars. Radar is 

connected to both MicroAutoBox and the laptop. While the data coming from the radar is 

parsed and processed in the MicroAutoBox, detections can be seen in real time for 

diagnosis purposes using DataView software. In order to visually validate the radar 

detections, a forward-looking webcam is connected to the laptop. DataView software can 

overlay the detections to the video stream acquired from this webcam (Figure 60). 

A black and white monocular smart camera from Mobileye (Figure 61) is used to detect 

lane lines on the road to determine in lane vehicles among detected targets via radar. This 

camera can detect the lane line markers on the road and provides the lane line information 

in the form of 3rd order polynomials. Coefficients of the lane line polynomials are available 

on the CAN bus alongside the road curvature information. 

The test vehicle is also equipped with two Denso WSU (Wireless Safety Unit) 5900 DSRC 

modems to communicate with the target vehicle. In the CACC scenario, the target vehicle 

broadcasts its acceleration alongside the Basic Safety Message (BSM) [47]. While the first 

modem is receiving the target vehicle acceleration, the second modem on the vehicle is 

used to transmit the acceleration of a virtual target vehicle. 
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Figure 59 CACC experimental vehicle hardware block diagram[96]  

 
Figure 60 Sample Radar Detection Visualization in real time [96] 
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6.5 Perception 

A radar is used to detect the positions of the target vehicles. The downside of this method 

is that the radar only provides the position and speed information of the detected objects. 

Since the radar does not know the lane information on the road, it cannot distinguish the 

vehicles which are in the lane and which are not. From the radar, an ACC target information 

is available, which is selected by the radar using the speed of the vehicle, steering angle, 

and yaw rate information of the ego vehicle. Although this target detection is valid most of 

the time, since the exact algorithm for choosing the ACC target vehicle is not known and 

since the availability of the ACC target depends on the algorithm used in the radar another 

method was developed to detect the vehicles in the lane.  

According to Zhang et.al [98], there are two main difficulties in detecting the target vehicle 

using radar. First, differentiation of the lane change or curve entry/exit behavior is 

challenging. Second, when the vehicle in the next lane goes into the curvature, it can be 

misclassified as in the ego lane. To overcome these difficulties, a camera and radar are 

used together. While the lane boundary information comes from the camera, objects 

detections are acquired from the radar. For each time step, acquired detections are sorted 

by their longitudinal range. Then, each detected object is checked to see whether it is in the 

ego lane or not by comparing its lateral position with respect to the lane boundaries. The 

block diagram of this system can be seen in Figure 61. One should note that if at least one 

of the lane is not visible to the camera, it is required to create the lane boundaries 

synthetically. If only one of the lane lines is available, the other lane boundary is created 

using the available lane boundary information and the lane width. If both of the lane lines 
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are not available, it is assumed that the vehicle moves straight, and the target object is 

searched within a window where the width of the window is equal to the lane width.  

 

Figure 61 In lane vehicle detection structure with camera and radar combination [96]   

Radar can provide the positions of the detected objects in polar coordinates (Figure 62). 

The measurements acquired from the radar for each object are listed with their range (ri), 

bearing angle (αi) parameters and range rate. These coordinates are converted into the 

Cartesian coordinate system using basic trigonometric equations. Since the radar is placed 

in front of the front bumper and the origin of the radar coordinate system is chosen as the 

center of the radar, measurements acquired from the radar are converted to the longitudinal 

distance (xi) and the lateral distance (yi) of the target objects from the center of the front 

bumper (Equations 6.5 and 6.6).   
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Figure 62 Radar detection coordinate system [96]. 

𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑥 = 𝑟 ∗ cos(𝛼 )       (6.5) 

𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑦 = 𝑟 ∗ sin(𝛼 )       (6.6) 

The camera in the vehicle is centered at the top of the windshield.  It provides the lane line 

definitions as a third order polynomial in the camera coordinate system, where the origin 

of the coordinate system is the location of the camera. The curve fitted to the left and right 

lanes are given in  

𝑦 (𝑥) = 𝑎 + 𝑎 ∗ 𝑥 + 𝑎 ∗ 𝑥 + 𝑎 ∗ 𝑥       (6.7) 

𝑦 (𝑥) = 𝑎 + 𝑎 ∗ 𝑥 + 𝑎 ∗ 𝑥 + 𝑎 ∗ 𝑥      (6.8) 

where y, x represents the lateral and longitudinal positions of the points on the fitted curve. 

Each ai represents the coefficients of the fitted curve to the lane lines. Here r and l 

superscripts differentiate the curve fits for left and right lane, respectively. At the final step, 
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by knowing the positions of the targets and lane boundaries, the closest target in the lane 

can be chosen as the in-lane target. For this purpose, firstly, all the objects are sorted by 

their longitudinal distances. Then, each detected object’s coordinates are translated to the 

camera coordinate system by adding the distance between the camera and the radar in the 

longitudinal direction (∆x) as 

𝑥 _ = 𝑥 + ∆x         (6.9) 

𝑦 _ = 𝑦            (6.10) 

Inserting the new lateral distance of the target objects into the Equations 6.7 and 6.8, the 

left (LB) and right boundaries (RB) of the lane at the distance of the target object are 

calculated as  

𝐿𝐵 = 𝑎 + 𝑎 ∗ 𝑥 _ + 𝑎 ∗ 𝑥 _ + 𝑎 ∗ 𝑥 _      (6.11) 

𝑅𝐵 = 𝑎 + 𝑎 ∗ 𝑥 _ + 𝑎 ∗ 𝑥 _ + 𝑎 ∗ 𝑥 _      (6.12) 

If the lateral distance of the ith detected object is between the calculated lane boundaries 

for the longitudinal distance of the ith object, this object is considered to be an in-lane 

possible target using 

(𝐿𝐵 < 𝑦 _ < 𝑅𝐵 )         (6.13) 

Among all in-lane possible targets, the closest vehicle in the longitudinal direction is 

accepted as the in-lane target vehicle. A sample experimental result for this method is 

presented in Figure 63. The lateral position of the target vehicle with respect to the center 

of the vehicle and lane boundaries are shown in the plot. One can see from the experimental 

result that the target vehicle is detected even in the curved section of the road accurately.  

 



122 
 

 

Figure 63 In lane vehicle detection experimental results [96]. 

6.6 Experimental Results 

In the experiments, the target vehicle speed profile is chosen to be the same as the 

simulation target vehicle speed profile. The target vehicle profile is generated in real time 

with the IDM driver, similar to the simulation environment. The virtual target vehicle 



123 
 

accelerates to 20 km/h and 25 km/h consecutively and then it stops. In the CACC scenario, 

the simulated acceleration values for the target vehicle are broadcasted through DSRC 

OBU and they are received by another OBU for the ego vehicle. One can see the 

experimental results for the ACC and CACC for 1 second gap time overlaid onto the 

simulation results in Figure 64. The simulation results match with the experimental results. 

The small mismatches between the experiment and CarSim simulation are caused by the 

fact that the CarSim vehicle model is not an exact model of the experimental vehicle. In 

the CarSim simulation, a generic D class vehicle model is used. In response to the speed 

changes in the target vehicle speed profile, the CACC speed controllers start accelerating 

and deceleration faster as compared to ACC using the target vehicle acceleration 

information coming from the DSRC modem. Thus, the CACC controller can follow the 

target vehicle more accurately. CACC time gap following performance is much better than 

the performance of ACC.  

Similarly, CarSim simulations and experiments are repeated for desired time gap of 0.6 s. 

The comparison of the simulation and experiment results are shown in Figure 65. Similar 

to the previous case, the simulation and experimental results are close to each other. CACC 

performs better while following the target vehicle with constant 0.6s time gap.  
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 Figure 64 Comparison of ACC and CACC experimental results with simulation results for 

1 second desired time gap [96] 
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 Figure 65 Comparison of ACC and CACC experimental results with simulation results for 

0.6 second desired time gap [96] 
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In the longitudinal controller design part, the design process of ACC and CACC structure 

of the Automated Driving Lab at The Ohio State University is presented with simulation 

and experimental results. Both simulation and experimental results show that 

communication between the target vehicle and ego vehicle in CACC increase the car 

following performance significantly. This performance improvement will lead to better 

string stability and capacity increase on the roads.  
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Chapter 7. Lateral Controller 

This chapter presents lateral controller used for following the desired path automatically in 

automated driving. One of the main tasks of the highway chauffeur and highway pilot 

automated driving systems is to keep the vehicle between the lane lines while driving on a 

pre-defined route. This task can be achieved by using camera and/or GPS to localize the 

vehicle between the lane lines. However, both sensors have shortcomings in certain 

scenarios. While the camera does not work when there are no lane lines to be detected, an 

RTK GPS can localize the vehicle accurately. On the other hand, GPS requires at least 3 

satellite connections to be able to localize the vehicle and more satellite connections and 

real-time over-the-air corrections for lane-level positioning accuracy. If GPS localization 

fails or is not accurate enough, lane line information from the camera can be used as a 

backup. In this section, a vision based lane keeping system which is aided by a GPS based 

path following application is developed to overcome the shortcomings of the GPS and 

camera sensors. The developed system has a parameter space based robust steering 

controller which can handle lateral motion control of the vehicle based on path tracking 

error detected using the GPS or camera sensor. The designed control system works for both 

low speed and high-speed driving scenarios and is robust to changes in vehicle mass. The 

results are demonstrated using the validated model of our 2017 Ford Fusion Hybrid 

research automated driving vehicle in Automated Driving Lab hardware-in-the-loop 

simulator.  
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7.1 Background 

There are six automated driving levels defined in SAE International standard J3016 varying 

from 0 to 5 [1], where 0 represents the no automation case and 5 represents the fully 

autonomous driving case with no human intervention. This section will cover a lane 

keeping application for a vehicle which is already equipped with an adaptive cruise control. 

This automation level falls within Level 2 which is partial automation where the steering 

and acceleration of the vehicle are handled by the automated driving system but the driver 

is still in the loop. In the literature and in production level vehicles, there are many lane-

keeping and lane departure warning applications. For instance, Tuncer et. al worked on 

developing a lane keeping system when the driver is inattentive [99]. In their application, 

a camera-based lane keeping controller was designed and simulated in a HIL simulator. 

Kang et. al proposed a solution for estimating the lane positions for short term lane 

information lost from the camera [100]. Although lane keeping applications and path 

fallowing applications are thoroughly studied in the literature, the failure of the existing 

systems would not be acceptable for a fully autonomous vehicle system. Considering the 

fact that many of these systems are using the camera to detect the lane lines and to localize 

the vehicle in the lateral direction, the failure of the camera detection would result in failure 

to keep being within the lane. As highlighted in the work of Yenikaya et.al [101], some of 

the camera detection failures can be caused by the absence of lane lines, poor lane line 

quality, shadow on the lane lines, or other vehicle occlusions. The camera may also 

completely fail to work or fail to communicate with the controller. Today, high accuracy 

GPS units are also available for accurate localization. For example, the GPS unit used in 
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our experimental vehicle OXTS xNAV550 has 1.6 m accuracy with single antenna, 0.4 m 

for DGPS mode and up to 2 cm for RTK mode using a base station. Also, with the use of 

online RTK correction services and RTK Bridge units it is possible to have RTK 

corrections without a base station. In the case of using RTK bridge unit, accuracy of the 

system is around 5cm. While RTK GPS units are very expensive today, as compared to the 

cameras, they are getting cheaper with the advance of the technology. Therefore, usage of 

a GPS based lane level path fallowing algorithm is suggested as one of the backup solutions 

for the camera failure cases. In the proposed solution, the GPS system is also not used 

solely for the lane keeping applications because it also has its own shortcomings. If the 

RTK corrections for the GPS are not available or the lane level map of the environment is 

not available, it is not possible to localize the vehicle within lane level accuracy. Therefore, 

a combination of the camera and GPS solution is preferred over using them alone by 

themselves.  

7.2 Lateral Vehicle Model 

In this section, lateral dynamics of the vehicle is modeled using the nonlinear vehicle model 

(Bicycle Model). In this model, the two front wheels are represented as a single front wheel 

and similarly, the two rear wheels of the vehicle are represented as a single rear wheel. As 

our test vehicle is only steerable from the front wheels, the test vehicle is modeled to be 

only steerable from the front wheel [102]. Forces acting on the vehicle in this model are 

shown in Figure 66. Lateral forces generated by the front/rear wheels, vehicle center of 

gravity, distance of the center of gravity from the wheels and the preview distance are 

represented in the figure as Ff / Fr, CG, lf / lr, ls, respectively. 
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The lateral direction steering controller for the automated lane-keeping application is 

designed using a linearized version of the nonlinear vehicle model. Linearized state space 

model of the lateral motion of the vehicle is given in Equation 7.1 where β is the vehicle 

side slip angle at the vehicle center of gravity, r is vehicle yaw rate, V is velocity, Δψ is 

yaw angle of the vehicle with respect to desired path’s tangent, ρref is the road curvature, δf 

is the steering wheel angle and µ is the friction coefficient of the road. The entries a11, a12, 

a21, a22, b11, b12 used in Equation 7.1 are given in Equations 7.2-7.7, where cr, cf are the 

cornering stiffness of the rear and front wheels, 𝐽 = 𝐽/µ is the virtual mass moment of 

inertia and the 𝑚 = 𝑚/µ is the virtual mass. 

 

Figure 66 Lateral vehicle model for lane keeping application [103] 
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7.3 Lane Detection 

Lane lines on the road can be used to localize the ego vehicle on the road Cartesian 

coordinates. Our automated driving research vehicle for experimental evaluation has a 

Mobileye camera which can provide the coefficients of the polynomial fit for the lane 

detections, lane detection availability and quality information. In this section, connected 

and automated driving HIL simulator with CarSim Real Time with Sensors and Traffic is 

used as the main development environment. The CarSim soft camera sensor in the HIL 

simulator provides the lane detection in the form of x, y coordinates (Figure 67). To 

simulate the real sensor output and extrapolate the lane detection points, two second order 

curves denoted by yl(x) and yr(x) are fitted to the left and right lane detection points coming 

from the CarSim software (Equations 7.8 and 7.9).  
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Figure 67 CarSim soft camera sensor visualization [103] 

𝑦 (𝑥) = 𝑎 + 𝑎 ∗ 𝑥 + 𝑎 ∗ 𝑥          (7.8) 

𝑦 (𝑥) = 𝑎 + 𝑎 ∗ 𝑥 + 𝑎 ∗ 𝑥            (7.9) 

By inserting a longitudinal distance x into the Equations 7.8 and 7.9, one can calculate the 

lateral distance of the vehicle from the right and left lane lines at that longitudinal distance. 

7.4 Path Generation  

For generating the lane level path following map/path, the method presented in [102], [104] 

is used. This method requires one to drive the car at a constant speed at the center of the 

road and collect accurate GPS data points. These GPS waypoints can also be automatically 

extracted from a realistic map. Collected GPS waypoints are divided into a predetermined 

number of polynomial segments to capture the different characteristics of the road. These 

segments are represented as 3rd order parametric polynomials of a distance parameter λ, 

where λ changes between i-1 to i, according to the number of the segment used. These 

polynomials are given below as: 
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𝑋 (𝜆) = 𝑎 𝜆 + 𝑏 𝜆 + 𝑐 𝜆 + 𝑑        (7.10) 

𝑌 (𝜆) = 𝑎 𝜆 + 𝑏 𝜆 + 𝑐 𝜆 + 𝑑        (7.11) 

where Xi and Yi are the path centerline coordinates for the ith segment. Since the 

polynomials fitted to two consecutive segments need to have continuity at their 

intersection, the polynomials can be fitted to the GPS waypoints using the constrained least 

squares method. However, to solve the constrained least squares problem, first, the 

unconstrained problem needs to be solved. The unconstrained problem can be formed in 

matrix form as shown below.  

𝑥 = 𝛬𝑛 ,          (7.12) 

𝑦 = 𝛬𝑛 ,          (7.13) 

𝛬 =
�̅� �̅� �̅�
0 0 0
⋮ ⋮ ⋮

1 0 0
0 �̅� �̅�
⋮ ⋮ ⋮

0 0 ⋯
�̅� 1 …
⋮ ⋮ ⋱

      (7.14) 

𝑛 , = [𝑎 𝑏 𝑐 𝑑 … 𝑎 𝑏 𝑐 𝑑 ]      (7.15) 

𝑛 , = [𝑎 𝑏 𝑐 𝑑 … 𝑎 𝑏 𝑐 𝑑 ]     (7.16) 

In the Λ matrix, �̅� represents the entire 𝜆 vector which ranges from i-1 to i, where i is the 

number of the segment. The number of elements in �̅� is equal to the number of the data 

points in the ith segment. For the given equations, the solution of the unconstrained least 

square problem is given in Equations 7.17 and 7.18 as 

𝑛 , = (𝛬 𝛬)  𝛬 𝑥         (7.17) 

𝑛 , = (𝛬 𝛬)  𝛬 𝑦         (7.18) 

To sustain the continuity and smoothness (continuity of the first derivative) at the segment 

boundaries, the constraints given below are defined.  
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𝑋 (𝑖) = 𝑋 (𝑖)         (7.19) 

𝑌 (𝑖) = 𝑌 (𝑖)         (7.20) 

( )
=

( )
         (7.21) 

( )
=

( )
         (7.22) 

( )
=

( )
         (7.23) 

( )
=

( )
         (7.24) 

From the equations 7.10 and 7.11, these constraints can be rewritten as shown in Equations 

7.25-7.30. 

𝑎 𝑖 + 𝑏 𝑖 + 𝑐 𝑖 + 𝑑 = 𝑎 𝑖 + 𝑏 𝑖 + 𝑐 𝑖 + 𝑑    (7.25) 

𝑎 𝑖 + 𝑏 𝑖 + 𝑐 𝑖 + 𝑑 = 𝑎 𝑖 + 𝑏 𝑖 + 𝑐 𝑖 + 𝑑    (7.26) 

3𝑎 𝑖 + 2𝑏 𝑖 + 𝑐 = 3𝑎 𝑖 + 2𝑏 𝑖 + 𝑐      (7.27) 

3𝑎 𝑖 + 2𝑏 𝑖 + 𝑐 = 3𝑎 𝑖 + 2𝑏 𝑖 + 𝑐      (7.28) 

6𝑎 𝑖 + 2𝑏 = 6𝑎 𝑖 + 2𝑏        (7.29) 

6𝑎 𝑖 + 2𝑏 = 6𝑎 𝑖 + 2𝑏        (7.30) 

These defined constraint equations are used in matrix form to convert the unconstrained 

problem into the constrained problem. These equations are combined into a matrix form as 

shown in Equations 7.31  and 7.32. 

𝐹𝑛 , = 0          (7.31) 

𝐹𝑛 , = 0          (7.32) 

Finally, the solution of the constrained problem is given in Equations 7.33 and 7.34.  

𝑛 , = 𝑛 , − (∧ ∧) 𝐹 [𝐹(∧ ∧) 𝐹 ] 𝐹 ,     (7.33) 
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𝑛 , = 𝑛 , − (∧ ∧) 𝐹 [𝐹(∧ ∧) 𝐹 ] 𝐹 ,     (7.34) 

7.5 Lateral Deviation Calculation 

The lateral controller takes the lateral deviation at a pre-defined preview distance as input 

and calculates the corresponding steering angle. As mentioned earlier, two different 

methods are used to calculate the lateral deviation in this application. The first method uses 

lane detections acquired from the camera and the second method uses the GPS localization 

and map-based waypoint information.  

7.6 Lateral Deviation from the Lane Line detections:  

The polynomials representing the lane lines must be parallel to one another as the lane lines 

are parallel to each other in a real road. Knowing this, the centerline of the road can be 

represented with the polynomial below in vehicle coordinates.  

𝑦 (𝑥) = 𝑎𝟎 + 𝑎𝟏 ∗ 𝑥 + 𝑎𝟐 ∗ 𝑥𝟐       (7.35) 

where coefficients of the polynomial which represents the centerline are given below. Here 

the superscript “c” indicates that the polynomial is a fit for the centerline of the road, and 

the coefficients of the polynomial are given in Equations 7.36-7.38.  

𝑎 = (𝑎 + 𝑎 )/2         (7.36) 

𝑎 = (𝑎 + 𝑎 )/2          (7.37) 

𝑎 = (𝑎 + 𝑎 )/2         (7.38) 

Inserting the preview distance ls into Equation 7.35 gives the lateral distance of the vehicle 

at the preview distance. 
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7.7 Lateral Deviation calculation from the map and GPS measurements:  

When the lane detections are not available or reliable, the lateral deviation at the preview 

distance is calculated using the current lateral deviation and the yaw angle error with 

respect to the generated map. Based on the geometry shown in Figure 66 the lateral 

deviation at the preview distance ls can be calculated as   

𝑦 = h + l tan (∆ᴪ)          (7.39) 

where h is the lateral deviation from the desired path at the vehicle center of gravity, ls is 

the preview distance and the ∆ᴪ is the yaw angle of the vehicle with respect to the desired 

path.  

 

Figure 68 Position and orientation of the vehicle with respect to the desired path [103]. 

First, the lateral deviation of the vehicle from the generated map is calculated. Assuming 

the radius of the curvature is much larger than the lateral deviation of the vehicle, the 

shortest distance to the path can be calculated by finding the perpendicular vector to the 

path from the vehicle center of gravity. This means that the tangent vector of the path will 
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be orthogonal to the shortest vector between the generated path and the vehicle center of 

gravity as shown in  Figure 68. Here the center of the gravity of the vehicle is represented 

using East and North map coordinates PE and PN respectively. Using the fact that cross 

product of two orthogonal vectors is zero, the solution of Equation 7.40 for λc gives the 

closest segment position to the vehicle. One can evaluate the x, y coordinates of the closest 

point on the path and the distance of the vehicle from the path by inserting λc into the 

Equation 7.41. 

(𝑋(𝜆) − 𝑃 , 𝑌(𝜆) − 𝑃 ) �̇�(𝜆) − �̇�(𝜆) = 0      (7.40) 

ℎ = 𝜌 (𝑋(𝜆 ) − 𝑃 ) + (𝑌(𝜆 ) − 𝑃 )       (7.41) 

 where  

𝜌 = 𝑠𝑔𝑛(𝑈(3))         (7.42) 

 𝑈 = (𝑋(𝜆 ) − 𝑃 , 𝑌(𝜆 ) − 𝑃 , 0)x �̇�(𝜆), �̇�(𝜆), 0      (7.43) 

If the third component of the cross product of the path tangent and distance vector is 

negative, it shows that the vehicle is in the inner side of the desired path and vice-versa. 

After finding ℎ, ∆ᴪ is calculated by subtracting the slope of the road at the closest point on 

the reference path from the yaw angle of the vehicle. Calculation of ∆ᴪ can be seen in 

Equation 7.44. 

  ∆ᴪ = ᴪ −
̇ ( )

̇ ( )
          (7.44) 

Finally, the lateral deviation at the preview distance can be calculated by inserting h, ls and 

∆ᴪ into Equation 7.39. 
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7.8 Lateral Controller Design 

The parameter space based design approach given is used to design the PD controller for 

the robust lane-keeping controller for the overall system shown in  Figure 69. The input 

and outputs of the system can be listed as the steering command and the lateral deviation 

at the preview distance, respectively. The test vehicle modeled in the state space model of 

Equation 7.1 has the numerical parameter values  J=3,728 kgm2, Cf=1.2e5 N/rad, Cr=1.9e5 

N/rad, lr= 1.5453 m and lf=1.30 m where the weight of the vehicle varies between 1,700 

kg and 2,000kg.  

Since the vehicle operates in different load and speed conditions, the controller is designed 

to be able to work under these different operating conditions as is shown in Figure 70 as 

an uncertainty box. Also, the preview distance for higher speeds is increased as 

ls=max(ksv,lsmax) where v is vehicle speed, ks is a proportional factor and lsmax is the upper 

bound on the preview length. In this chapter, ks is adjusted such that preview distance 

changes linearly between 4 m to 7 m for the chosen operating speed range 5 m/s to 30 m/s.  
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Figure 69 Lateral controller system block diagram [103] 

 

Figure 70 Lateral dynamics uncertainty box [103] 

As a D-stability requirement, desired settling time, damping ratio and maximum bandwidth 

are chosen as 0.5 seconds, 0.7 and 19 rad/sec respectively [105]. PD controller coefficients 

(Kp and Kd) are chosen as free parameters to find a solution region using the parameter 

space approach. A D-stability solution region is constructed for each corner of the 



140 
 

uncertainty box in  Figure 70 and they are overlaid on top of each other to find the overall 

solution region as shown in Figure 71. In this figure blue, green, red, cyan, magenta colored 

lines show Settling Time Constraint Complex Root Boundary (CRB), Damping Constraint 

CRB, Bandwidth Constraint CRB, Bandwidth Constraint Real Root Boundary (RRB), 

Settling Time Constraint RRB, respectively. Since blue line is covered by the magenta, it 

is not clearly visible. Calculation of these boundaries are shown in detail in [105]. By 

choosing a point in this solution region, one set of Kp and Kd values for the PD controller 

are chosen as shown in the right plot in Figure 71.  

 

Figure 71 Left: Solution regions for the corners of the uncertainty box is plotted on top of 

each other. Right: The zoomed version of the left figure where intersection of the solution 

regions is highlighted with a gray fill and chosen solution point is shown with a red dot 

[103] 

To be considered as a D-stable system, the poles of the system should lie within the D 

Stable region where it is defined by the desired settling time, the desired minimum damping 

ratio and the desired maximum bandwidth, all given earlier.  As it can be seen from Figure 

k p
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72, all of the dominant poles of the system which are marked as “x” lie in the D-Stable 

region for the chosen Kp and Kd coefficients of the PD controller. 

  

  

Figure 72 D-Stable region and the system pole positions in complex plane for the chosen 

Kp and Kd. Top Left: 5m/s, 1700 kg ls = 4m, Top Right:  5m/s, 2000 kg ls = 4m, Bottom 

Left: 30m/s, 1700 kg ls = 7m, Bottom Right: 30m/s, 2000 kg ls = 7m [103] 

7.9 Simulation Results 

To evaluate the performance of the system a designed lane keeping controller is tested in 

the HIL simulation environment which was described in Chapter 4. As a test track, a simple 

model of the high-speed test track in the Transportation Research Center proving ground 

is constructed in CarSim using its pre-recorded GPS waypoints. The top view of the TRC 
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testing track can be seen in the Google Maps image in Figure 73 which has two curved 

section between 1000m-4200m and 7200m-10100m. Since the GPS based path following 

localization is used as a backup solution, camera based lane keeping system is considered 

as the active system. In the experimental setup, the vehicle is equipped with a Mobileye 

camera where it can output the quality of the lane line detections. So, in the experiments 

the mode switching between the camera and GPS will be done based on this lane line 

detection quality information by the Lateral Calculation Module shown in Figure 69. If 

there are no reliable lane detections, the vehicle is going to switch to GPS based path 

following mode. Based on the road conditions, the lane quality of the system can fail 

anytime. To simulate the cases where the camera detection fails, the system switches to the 

GPS based lane keeping mode for pre-defined distance intervals (1500-1700, 5800-6000, 

and 9800- 10000 meters). In the first and third sections, the vehicle is travelling in the 

curved parts of the test track while it travels at the straight part of the road in the second 

interval. The designed system is tested for the different speed and vehicle mass conditions 

which are defined as the corners of the uncertainty box shwon in Figure 70. 
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Figure 73 Top view of the TRC test tracks from Google Maps [103] 
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The simulation results for the designed system are shown in Figure 74. 

 

Figure 74 Simulation Results for the designed lane keeping system. Top: lateral deviation 

vs distance traveled for different operating conditions. Bottom: Availability of lane 

detection vs distance traveled [103] 

When the lateral deviation graph (Figure 74) is analyzed, it can be seen that the designed 

system still keeps the vehicle in the lane even when the lane detection status goes to zero. 

Although both the vision based and the GPS based solutions have a higher error for the 

curved sections of the road, which increases for high speeds, this error is less than 12 cm. 
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7.10 Summary 

This chapter presented the use of a GPS based lane keeping/path following application as 

a backup to the camera based lane keeping application. By using these two methods 

together, lane level control for the vehicle is sustained even when one of the sensor inputs 

is not available or is not reliable. This happens for instance when lane markings are missing 

or are very vague or not observable due to weather conditions in certain parts of the road. 

As it can be seen from the simulation results in Figure 74, both designed systems keep the 

vehicle in the lane accurately. Although increasing the operating speed increases the lateral 

deviation, especially for the curved parts, the deviation is still under 12 cm for the highest 

vehicle speed of 30 m/s. Also, the system works in different operating conditions where 

the vehicle weight and the speed are varied over the uncertainty box.  
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Chapter 8. Conclusions 

Connected and autonomous vehicle applications are re-shaping the transportation industry. 

With these applications automotive industry aims to increase the safety of the occupants 

and create more efficient and comfortable ride experiences. Considering safety, efficiency 

and comfort are the active problems of the intelligent transportation field. Motivated by 

these development some of the enabling technologies for connected and autonomous 

vehicle features were developed in this dissertation. 

One of the least studied areas in connected vehicles is cooperative perception. In the 

Cooperative Perception (CP) system, connected agents not only share their own 

information, but also the information of agents surrounding them. In this dissertation, a 

cooperative perception architecture has proposed and implemented in the simulation 

environment. The architecture consists of JPDA object tracking algorithm and cooperative 

perception message generation modules. After introducing the cooperative perception 

architecture, two different use case scenarios were introduced. In the first use case scenario, 

the situational awareness of the ego vehicle is increased by utilizing CP messages 

broadcasted by a remote vehicle. In the presented scenario, CP messages broadcast the 

location and speed information of a pedestrian which is normally occluded by the remote 

vehicle. The second application of cooperative perception is demonstrated in a smart 

intersection environment. The smart intersection, alongside the SPaT and MAP messages, 

broadcasts the location and speed information of the approaching vehicles to the 

intersection. By utilizing smart infrastructure cooperative perception messages, a 

representative spatial and temporal traffic preview model is constructed. Then, a rule-based 
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algorithm and a Deep Deterministic Policy Gradient (DDPG) reinforcement learning agent 

model are developed to control vehicle speed when approaching the signalized 

intersections (GLOSA- with traffic preview). It is shown that the designed algorithms 

improve the fuel efficiency and comfort of the passengers.  

 

As the number of the perception sensors increases, the situational awareness of vehicles 

increases. However, in multi-sensor systems same targets can be reported by different 

sensors which have overlapping field of view. In this case, the threat assessment modules 

in the car needs to identify which reported tracks from different sources originate from the 

same target. This is called data association problem. Since the connected vehicle 

applications are relatively new, the data association task between the on board sensors and 

communication modems have not been researched extensively. Therefore, in this 

dissertation, a Mahalanobis distance based track to track data association algorithm was 

used to solve the data association problem between camera and communication sensors. 

For this purpose, associable parameters were first identified for the CAV applications. By 

analyzing the collected data from camera and DSRC sensors, it was found out that the 

location, relative heading, and relative speed measurements from these two sensors are 

comparable, and they can be used for the data association tasks. While the location 

measurements were the main parameters used in the implemented algorithm, speed and 

relative heading parameters were also used as another gating stage to prevent any false data 

association assessment. Later, the developed V2V and camera track to track association 

algorithm was experimentally tested for two different scenarios. It was shown that the data 
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association algorithm is effective for even curved roads and intersections. As a future work, 

it is recommended  to conduct more experiments with a higher number of vehicles in more 

complex scenarios before the deployment of the algorithm. As another improvement for 

the developed method, one can drop the buffering stage for V2V tracks and use the path 

history information, which is available in the BSM message set.  

Finally, as part of this work, lateral and longitudinal controllers were developed as part of 

the development of autonomous driving functionalities. For the longitudinal controller both 

ACC and CACC architectures were developed for the Automated Driving Lab autonomous 

vehicle development platform. The designed CACC architecture is a PD controller with 

feed forward of preceding vehicle acceleration which offers a string stable solution to 

control a platoon of vehicles. It is shown that communication between the target vehicle 

and ego vehicle in CACC improves the car following performance significantly. This 

performance improvement leads to better string stability and capacity increase. For the 

lateral controller, a GPS based path following application was developed as a backup to 

the camera based lane centering application. By using both path following and lane 

centering applications together, lateral control for the vehicle was sustained even when one 

of the sensor (GPS or camera) inputs was not available or was not reliable.  
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Appendix A. Abbreviations Table 

Abbreviation  Definition 
ADAS Advanced Driver Assistant System 
BSM Basic Safety Message 
BSW Blind Spot Warning 
CA Collison Avoidance 
CACC Cooperative Adaptive Cruise Controller 
CAV Connected and Autonomous Vehicles 
CDA Cooperative Driving Automation 
CP Cooperative Perception 
CPM Cooperative Perception Message 
CRB Complex Root Boundary 
DDPG Deep Deterministic Policy Gradient 
DSRC Dedicated Short Range Communication 
ETSI European Telecommunications Standards Institute 
FOV Field of View 
GCDC Grand Cooperative Driving Challenge 
GLOSA Green Light Optimized Speed Advisory 
GPS Global Positioning System 
HDOP Horizontal Dilution of Precision 
HIL Hardware in The Loop 
HV Host Vehicle 
IDM Intelligent Driver Model 
IMA Intersection Movement Assist 
IRSU Intelligent Roadside Unit 
JPDA Joint Probability Data Association 
JPDAF Joint Probabilistic Data Association Filter 
KF Kalman Filter 
LTA Lest Turn Assist 
MCMCDA Markov Chain Monte Carlo Data Association 
MHT Multiple Hypothesis Tracking 
MPC Model Predictive Control 
OBU Onboard Unit 
PID Proportional Integral Derivative 
PDAF Probabilistic Data Association Filter 
PT Passing- Time 
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RELU Rectified Linear Unit 
ROS Robot Operating System 
RRB Real Root Boundary 
RSU Road Side Units 
RV Remote Vehicle 
SPAT Signal phase and timing 
TAS Traffic Advisory Speed 
TMA Track Matching Accuracy 
TTTD Track to Track Distances 
UTM Universal Transverse Mercator 
VRU Vulnerable Road User 
V2X Vehicle to Everything 
WSU Wireless Safety Unit 

 

Table 5 Abbreviations table 

 


